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Abstract

This dissertation is concerned with the unconstrainedajloptimization of nonlinear problems. These
problems are not easy to solve because of the multiplicitpez! and global minima. In this dissertation,
we first study the pattern search method for local optimirati We study the pattern search method
numerically and provide a modification to it. In particulare design a new pattern search method for
local optimization. The new pattern search improves theieficy and reliability of the original pattern
search method. We then designed two simulated annealingithlgs for global optimization based on
the basic features of pattern search. The new methods aefdreshybrid. The first hybrid method is the
hybrid of simulated annealing and pattern search. This oteth denoted by MSA. The second hybrid
method is a combination of MSA and the multi-level singlekéige method. This method is denoted
by SAPS. The performance of MSA and SAPS are reported thrextdnsive experiments on 50 test

problems. Results indicate that the new hybrids are effieiad reliable.

Keywords:  Global optimization, pattern search, simulated annealingiti level single linkage, non-

linear optimization, hybridization.
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Nomenclature

Acronyms
PS Pattern search
MPS Modified pattern search
SA Simulated annealing
MSA Modified simulated annealing
SAPS Simulated annealing driven pattern search
MSL Multi level single linkage

Superscripts used throughout this dissertation

k Iteration counter
sa Simulated annealing
t Temperature counter

General symbols

Q Search region
N Sample size
n Dimension of the problem

Obijective function
x A vector

min/maz  Minimize/Maximize

T Thei*® component of the vectar
l; Lower bound in the'" dimension
Uu; Upper bound in thé'™™ dimension



Symbols related to pattern search

(k) k™ iterate ofz.

Ay Step size parameter at iterdte

\Y First order derivative

D The set of positive spanning directions
O Expansion factor at iteratiok

Ok Contraction factor at iteratioh

lim inf Limit inferior

n Step factor

Symbols related to simulated annealing

X Acceptance ratio

kp Boltzmann’s constant

mg Number of trial points

my Number of successful trial points

mo Number of unsuccessful trial points

0 Cooling rate control parameter

E€s Stop parameter

E; Energy state of the system configuration

AE; Difference in energy between new and current configurations
D Probability

S; State

Symbols related to MSA and SAPS hybrid
RD Random direction

A§*  Initial step size parameter used inside SA
b The best point vector

z Sample point
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Chapter 1

Introduction

Optimization is an important research area. It is the stddyr@ablems in which one seeks to minimize or
maximize a real function by systematically choosing thaigalof real or integer variables within an al-
lowed set. Optimization is mainly divided into two brancimesnely continuous and discrete optimization.
A continuous optimization is where the variables used irothjective function assume real values. On the
other hand, a discrete optimization is where the varialdesl in the objective function are restricted to as-
sume only discrete values, such as integers. Continuoumiagtion problems can be classified according
to the mathematical structure of the objective function emdstraints. For example, a problem that has
linear objective function and linear constraints is calidthear optimization problem. On the other hand,
a problem that has nonlinear (linear) objective functiothwionlinear or linear (nonlinear) constraints is
called a nonlinear optimization problem. In other wordsoalimear optimization problem is where the
objective function or the constraints or both contain nuedir terms. A nonlinear optimization problem
can either be unconstrained or constrained depending goréisence of constraints or limitations on the

variables.

A nonlinear optimization problem can have more than onenwgitisolution. The goal of a local op-
timization method is to obtain any one of the optimal soluio On the other hand, the goal of a global
optimization method is to obtain the best optimal soluticonf a number of solutions. The best (global)
optimal solution is not only hard to determine but also harderify. Despite its inherent difficulties,
global optimization is vital to many practical applicattonSome of these applications include, but not
restricted to engineering design, financial risk manageneamputational chemistry, molecular biology

and economic 4]28]. Global optimization problems canlbssified according to the properties of the
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objective function and constraints. A problem that has mstraints or constrained by simple lower and/or
upper bounds is called unconstrained global optimizatiamblem. A problem that has linear (nonlinear)
constraints and nonlinear objective function is callechadrly (nonlinearly) constrained global optimiza-
tion problem. These problems arise in real-life appligaioln many applications, global optimization
problems are of black-box type. A black-box scenario ocetrenever the objective function and/or con-
straints are not given in closed form, i.e., if the objecfiwection values and/or constraints are evaluated

via complex computations, simulations or experiments.

Our research is concerned with the design of unconstrailedigoptimization algorithms for solving
both noisy and black-box type global optimization problermfn ideal global optimization algorithm

should:

e work for a wide range of problems, be it easy, moderatelyddiffior difficult problems@?],

not depend on the properties (e.g., continuity) of the dhjedunction to be optimized,

be easy to implement, and

require very little computational effort.

It is not so easy to design an algorithm that satisfies all Hove@ criteria. In any case, progress have
been made and a number of global optimization algorithme baen suggested in the literature. We will
review these algorithms later in the chapter. In the nextiaecwe will present the global optimization

problem mathematically.

1.1 Problem formulation

We consider the problem of finding the global optimum of boxtrained global optimization problems.

The mathematical formulation of the global optimizatioolgem is defined as follows
optimize f(x) subject to x € Q, 1.2)

wherez = (z1,--- ,x,) is ann—dimensional vector of unknowng, C R™ is the search region, anfis
a nonlinear continuous real-valued objective functiom,, if : @ — R. The domain of the search space,

Q, is defined by specifying an upper limit and a lower limitl; of eachi*" component of:, i.e.,

i<z <wu;y, lLi,u;€éR, i=1,2,--- ,n. (1.2)
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Without loss of generality, we consider only the global miization problem since the global maxi-

mum can be found in the same way by reversing the sigfy 0é.,

max f(x) = —min(—f(z)). (1.3)

zef) e

A point z* € Q is called a global minimizer of with the corresponding global minimum value
fr=far)if
fF<f(z), forall zeq. (1.4)
On the other hand, a point®® € Q is referred to as a local minimizer gfover( if there is are > 0 such
that
f(z°) < f(z), forall ze N.(z'°)nQ, (1.5)

whereN (z!°¢) =l {z €R" : ||z — 2l < e}.

1.2 Classification of global optimization methods

Global optimization methods can be classified as detertiirasd stochastic methO(EHZl 26]. Deter-
ministic methods usually use gradient information and iofineperties such as known Lipschitz constant
of f. The main disadvantage of deterministic methods is that ¢h@not be implemented in noisy and
black-box type functions. In addition, these methods amy gow as they often perform an exhaus-
tive search. As opposed to deterministic methods, stachagtthods are very easy to implement and in
most instances, they do not require any functional progertience these methods are widely applicable.
Unlike deterministic methods, which guarantee convergdondhe global minimum, stochastic methods
assures convergence in a probabilistic sense. In additiencomputational costs of stochastic methods
are in general less than those of deterministic metl@is [d{ this reason, in this dissertation, we con-
centrate on stochastic methods, in particular simulateeaing and multi level single linkage with some

hybridization. We will briefly present some deterministitastochastic methods.

One of the best known deterministic method is the intervahietic methodB?] for global opti-
mization. It is based on the branch-and-bound metmd [38&. Branch-and-bound method is a technique
where the feasible region is relaxed and subsequently ispiitparts (branching) over which the lower
(and often also the upper) bounds of the objective functeloescan be determined (bounding). Another
important deterministic method is the multi-dimensionakelation methocJBZ] which is a generalization

of the bisection methoJL—LI16] to higher dimensions. It bedingenerating a sequence of intervals whose
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infinite intersection is the set of points desired. Howeuelike interval arithmetic method, this method
never attracted the global optimization researchers aactiioners. In addition to the above determin-
istic methods, Breiman and Cutluw] designed a detestinalgorithm for global optimization. This
algorithm assumes a bound on the second derivatives of titidn and uses this to construct an upper
envelope. Successive function evaluations lower thislepeeuntil the value of the global minimum is
found. Other deterministic methods includ&B [El], Lipschitz method, methods based on convex en-
velopes of the objective function over special domain likeds. There are softwares developed to solve
deterministic global optimization. Currently the brareaid-reduce optimization navigator (BAROIN)I[43]

is the best software in the field of deterministic global wyitiation.

Stochastic methods are either single sample (point) baseditiple sample (population) based meth-
ods. Within the single sample based methods, tabu sﬁpmﬂzﬂ)tive random searah [35] and simulated
annealing HZBl] are well known. Among the population basedhods, density cIusterinEl41], multi
level single IinkageDZ] and topographical multilevel gim linkage Ela] often referred to as two-phase
methods. Two-phase methods use both random sampling [(glbbae) and local search (local phase).
In the global phase, the function is evaluated in a numbeamdomly sampled points while in the local
phase, the sample points are scrutinised by a clusteritgitpee in order to identify potential points to

start a local search. A more detailed survey of the two-phastods for stochastic global optimization

can be found ir‘lﬂ4].

Other population based methods are genetic algorimn [@8jtrolled random searcm [Ellm 40]
and differential evolutionmﬂﬂ. These methods stathvein initial population set of points, drawn
uniformly in the search spade and subsequently manipulating this sample in order to oladbetter
population set. The better population set is obtained blacam all or some members of the current set
with new trial points. The mechanism used in creating tr@hts depends on the considered algorithm

]. For example, in genetic algorithm, trial points arem@eted by selecting successively a subset of
the population and then applying mutation and crossoveratipes on this set. In controlled random
search, a trial point is generated by forming a simplex uging 1) distinct points, chosen at random with
replacement from the population set, and reflecting one efptints in the centroid of the remainimg
points of the simplex, as in the Nelder and Mead algorirml[B?differential evolution, trial points are
generated using mutation and crossover operations. lti@uth the above stochastic methods, there exist
hybrid methods. The purpose of hybrid methods is to use thet@nentary strengths of several methods

within a single method. Next, we present the main featureékehybrid method for global optimization.
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1.3 Hybridization

Hybridization is basically the combination of principledgments) from different methods so as to give

rise to a new method that displays desirable propertieseobtiginal methods but not their weaknesses.

There are different ways to hybridize methods which comibive methodsBﬂB]. One approach
is to run one algorithm until it stops before the next oneaststl. This is known as sequential hybridiza-
tion. Another approach is to run the algorithms in paralehipre-defined manner, e.g., the next method
starts before the previous one ends. This is known as pangtheidization. However, in most cases, hy-
bridization is achieved by combining algorithmic elemeottthe original methods to end up with a single
algorithmic architecture. For instance, a popular apgrésito combine global features of a global method
with local features of a local method. Local methods are agatnally efficient because they make use
of local information around the current point to move to arpising region. This expedites convergence
whenever a point is within the region of attraction of a minimm On the other hand, global methods
are more reliable in locating the global minima because theore the whole search region and have

mechanisms to escape being trapped in local minima. Coesdyuhey are computationally expensive.

Itis expected that the combination of elements from locahwes with those of global methods would
result in methods that are more efficient, more accurate awd neliable in finding the global minimum.
Efficiency refers to the amount of efforts (be it CPU time ominer of function evaluations) required
to obtain a solution. Accuracy means how close is the finaltewl obtained by a global optimization
algorithm to the known global minimum of a problem. Reliapilis how successful is the method in
finding the global minimum. Hence such hybrid methods woagililt into being more reliable in locating
the global minimum than a local method and also more accarademore efficient than a global method.
Examples of hybrid methods include but not restricted tatated annealing combined with direct search

hybrid BE{] and tabu search combined with Nelder-Meadpgmhybrid [20].

We aim at designing hybrid methods that will possess ongngiihs of the original methods. In this
dissertation, we will combine global methods (simulatedesiing, multi level single linkage) and a local

method (pattern search).
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1.4 The structure of the dissertation

The dissertation is divided into six chapters as shown infefd]. In Chapter 2, we address the strengths
and weaknesses of the pattern search method. We first rdwiepattern search method in relation to its
description, convergence properties and its limitationsalving global optimization problems. Then we

propose a modified pattern search method.

In Chapter 3, we present an overview of the simulated ammpatiethod in regard to its origin. We

also present the simulated annealing for continuous pmubknd the cooling schedule.

In Chapter 4, we propose two new hybrid methods based on tterpaearch method, the simulated

annealing method and the multi level single linkage method.

In Chapter 5, we report the performance of the proposed thyhathods using extensive numerical

experiments on some well known test problems.

In Chapter 6, we summarize the work in this dissertation aoggse further avenues to extend and
enhance this research. Finally, we give a description ofniéi level single linkage algorithm and a

collection of 50 benchmark global optimization test proidein Appendixes A and B, respectively.
Chapter 1

Introduction

Chapter 2 Chapter 3

Pattern search Simulated annealing
for unconstraineg for unconstrained
local optimization global optimization

Chapter 4

Hybrid global optimization

algorithms based on P$

Chapter 5

Numerical
results

Chapter 6
Conclusion

Figure 1.1: The structure of the dissertation.



Chapter 2

Pattern search for unconstrained local

optimization

The pattern search methm[gl 48] is a recent direct seagthaah for local optimization. In this chapter,
we describe the pattern search method for unconstrainaetidptimization and propose a modification to

it.

2.1 The pattern search (PS) method

In its simplest form, the PS method is a variation of the comi@ search methou30]. However, the
mathematical formalization presented by Torczm [48] shtmat the PS method is a general class of
the direct search methods. For instance, the Hooke andsleethod|[25], the basic coordinate search
method I[;l)] and the multi-directional search metrml [48bdbrm part of the PS method. As such, in
some Iiterature'HS], the PS method is referred to as therghmed pattern search (GPS) method. In this
dissertation, we only deal with a simple but effective vatiaf the PS method. Before we describe the
PS method, we give two definitiong [4] that are essential fatewstanding the search directions of this
method. We also present an example of the search directeet by the PS method in a typical two

dimensional problem.
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Definition 2.1

T

A positive combination of the set of vectais = {d;},_, is a linear combinatiori \id;, where
i=1
XNi>0,i=1,2,---,7

Definition 2.2
A finite set of vectord = {d;}’_,, n+ 1 < r < 2n, forms a positive spanning set ff" if any v € R"
can be expressed as a positive combination of vectals ifihe set of vector® is said to positively span

R™. The setD is said to be a positive basis f&" if no proper subset ab spansR™.

Having presented the above definitions, we now describeitbetidns used by the PS method. The

simplest search directions used by the PS method is maderug @ vectors and given by the set
D:{€17”' yEny —€1, 7_671}7 (21)

wheree; is thei™ unit coordinate vector ilR”. The setD in equation[[Z11) is an example of a set with a
maximal positive spanning directions. In the following exae, we present possible trial points generated

by the PS method in a typical iteration process, say akthéeration in a two dimensional problem.

Example 2.1

In R?, the set of positive spanning directions, consists of fammn vectors of

10 -1 0
D= . (2.2)

0 1 0 -1
If the current iterate is(*) = (0, 0), the PS method may generate up to four trial points (seettae?OLL
step in sectiol2]2) located &t(1,0), N(0,1), W(—1,0) and S(0,—1) using four positive spanning
directions as shown in Figuke2.1.

N(0,1)  center of pattern

W (—1,0) E(1,0)

S(0,-1)

Figure 2.1: Trial points of PS &V, £, W and.S positions.
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2.2 Description of the PS method

In this section, we present a full description of the PS methbhe PS method generates a sequence of
iterates {z(1), z(?) ... () ...} with non-increasing objective function values. In eacreitien %, there
are two important steps of the PS method namely, the SEAREHsstd the POLL step. Note that we use

the valuer = 2n in the description of the PS method.

In the SEARCH step, the objective function is evaluated atigefnumber of points (say a maximum
of V points) on a mesh (a discrete subsefR¥f) so as to improve the current iterate. The mesh at the

current iteratez(®), is given by
My, ={meR"|m=2%® + AyDq : qe 2}, (2.3)

wherem is a mesh trial pointA, > 0 is a mesh size parameter (also known as the step size control
parameter) which depends on the iteratignandZ, is the set of nonnegative integers. There are no
specific rules on how to generate trial points of the SEAR@& 8t the current mesh. Users may generate
these points by some heuristic rules. The aim of the SEAR@pl istto find a feasible trial point (on a
mesh/},) that yields a lower objective function value than the fioctvalue atz(*). A SEARCH step

is therefore successful if there exists a feasible triahpoi € M), (wherem is one of theV points) such

that f(m) < f(z®). In such a casey is treated as the new iterate and the step Aizés increased

S0 as to choose the next trial points on a magnified mesh tleaprévious mesh. If the SEARCH step is
unsuccessful in improving the current iteraté), a second step, called the POLL step, is executed around
z®) with the aim of decreasing the objective function value. sT$tep must be done before terminating

the iteration.

The POLL step generates trial points at the poll set arouadttirent iterate;(*), as shown in Figure
27, for the case of a two dimensional problem, wh&ge= 1. The poll set is composed of trial points that
are positioned a stefy;, away from the current iterate*), along the direction designated by the columns

of D. This poll set is denoted b, and is defined by
Po={pi eR"|py=a™ + Ayd; : i€ D, i=1,---,r}, (2.4)

wherep; is a trial point in the POLL step. The order in which the point$’, are evaluated can also differ
and has no effect on convergence. We now present the stegfyascription of the PS algorithvﬂ [3]
using both the SEARCH and the POLL step.
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Algorithm 2.1: The PS algorithm (based on the SEARCH and the B®LL steps).

1. Initialization: Choose an initial point(®) € Q and an initial mesh siz&, > 0. Set the iteration

counterk = 0.

2. SEARCH step: Evaluatef at a finite number of points in the medi, as defined by[(2]13)If
f(m) < f(z®) for somem € M, then setz(**1) = m and go to step (the SEARCH step is
deemed successfullt the SEARCH step is unsuccessful, i.&(z*)) < f(m), for all V points in

M, then go to step 3.
3. POLL step: This step is executed only if the SEARCH step is unsuccessful

o If f(p;) < f(z®) for somep; in the poll setP;, defined by[ZW)then setz*+1) = p; and go

to step4 in order to increase the mesh si2e, (POLL step is declared successful).
e Otherwiseif f(z(®)) < f(p;) for all p; in the poll setP;, defined by[ZW), setF+1) = z(*)

and go to step in order to decrease the mesh sixg, (POLL step is declared unsuccessful).

4. Mesh expansion:Let A1 = 0 Ay, (with 6, > 1). Increase: := k + 1 and go to steg for a new

iteration.

5. Mesh reduction: Let Ay 1 = ¢rpAg, (With 0 < ¢ < 1). Increasek := k + 1 and go to steg for

a new iteration.

In summary, Algorithn2.1 performs the SEARCH and the POLL step. In the SEARCH stemlfective
function f is evaluated at a finite number of trial points € M, with the goal of improving the current
iteratez(*). If an improvement is accomplished, then the trial peinbecomes the current iterate and the
mesh size is increased, i.8\;; = 0;A; and the SEARCH step continues. Otherwise, if the SEARCH
step is unsuccessful in improving the current itetate, for all V, a second step called the POLL step

is invoked. If the POLL step is successful, i.¢(p;) < f(m(k)) for somep; € P, thenp, becomes the

new iterate, the mesh size is increased and the SEARCH stepgw is invoked. If (p;) > f(z®)) for

all p; € P, then the current iterate(*) is retained, the mesh size is decreased and the SEARCH step is

performed.
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In the literature of the PS method, no specific informatiogiven on how to implement the SEARCH
step. Indeed, the results of the PS method using only the P are reported in the Iiteratu[u[gl 30]. It
is also reported irm5] that the SEARCH step is a liabilityctmvergence. Therefore, in this dissertation,
we will only implement the POLL step in the PS method. Befoeepresent the PS algorithm based on
the POLL step, we would like to elaborate more on the POLL.sSfép discuss how the current iterate and

the step size are updated in the POLL step.

The POLL step begins by determining a trial paginin the poll setP, defined earlier, i.e.,
{pi € R"|p; = 2™ + Apd; : d; € D, wherei:=1,--- ,r},

wherez(¥) is the current iterate. The trial poipf is examined so as to determine if it is a better solution
than the current iterate(¥). (Here the trial poin; could be one of the positions, say for= 1, it is
E(1,0) of Figure[Z1). If the POLL step produces a successful pairg P, such thatf (p;) < f(z*)),
then the POLL step stops examining the remaining trial gamthe current POLL s&®,.. This means that

if the POLL step is declared successful then a new POLL stefssit this new current iteraig®+1) = p;.
Otherwise, the current iterate is retained, ué®") = 2(*) whenf(p;) > f(=*®)) for all the trial points

p; € P, i.e., the POLL step is declared unsuccessful. Thus, theitezate for the next POLL step is

updated as follows:

i £ (®)), f cP
Loty _ )P if f(pi) < f(x™)), for somep; € Py, 25

=) otherwise
In the case of a successful POLL step, the step size paramgigrfor the next iteration is increased to
Api1 = 0 Ak, Whered,, > 1, in a similar fashion as in mesh expansion of Algorithrm. This enhances
exploration of the PS method. However, when the POLL stemssiccessful, then step size parameter is
decreased td\; 1 = ¢ Ag, for 0 < ¢ < 1, in a similar way as in the mesh reduction of Algoriti2m.
This in turn enhances exploitation. In summary the steppszameter is updatem48] as follows:

0.0, if f(ps) < f(z®), for somep; € Py,
Apir = i) < (2.6)

oA\, otherwise
This POLL step is reiterated until the step size paraméfegets sufficiently small, thus ensuring conver-
gence to a local minimum. Note that 2%) approaches the optimum, the algorithm reduces the length of

steps taken. This turns out to be central to the convergemae which will be discussed in secti@nP.3.
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In most implementation of the PS method, the initial steg giarameter\y = 1 is used and the
updating of the step size parameter is carried out by

2N, if f(p;) < f(z®), for somep; € Py, 0}, = 2,
Apys = k (pi) < f(z™)) ks Ok @7

1A, otherwise ¢y = 1.

The basic PS method based only on the POLL step describe@ &bprvesented in Algorithra.2 below.
Note that from now on, the PS algorithm based on the POLL siktpevreferred to as the PS algorithm.

Algorithm 2.2: The PS algorithm.

1. Initialization:
Choose an initial feasible solutiari?) e Q. Select an initial step sizA, > 0. Choose the positive
spanning seD defined by equatiori{2d.1). Set the counter numidets 0 and: = 1. Choose the

stopping tolerancé\,;,; > 0.
2. POLL step:

2(a) Evaluate the objective functighat the trial pointp; = (z*) + Ad;) € Py, d; € D.

2(b) If f(p;) < f(=®) thensetz*+1 = p, and go to step 3.

Otherwise, increase := ¢ + 1 and go to step 2(c).

2(c) If ¢ < rthengo to step 2(a).

Otherwise, setz(*t1) = z(*) and go to step 4.
3. Mesh expansion:Increase the step size parametgr, ; = 0, A. Seti = 1 and go to step 5.
4. Mesh reduction: Decrease the step size paraméeigr.; = ¢ Ay. Seti = 1 and go to step 5.

5. Stopping condition: If Ax1 < A4, then stop. Otherwise, increase := k + 1 and go to step 2.

Having described the PS algorithm, we now illustrate a steptép process of this algorithm, using

the following example. In this example. we uge= 2 and¢y, = %
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Example 2.2

This example illustrates how the previous Algorithm 2.2 keoin R2. In Figure[Z2,2*) is the current
iterate at the:*" iteration and is represented by the dotted cirgleThe solid circles indicates the position
of the trial pointp; € Py to be examined, where= 1,--- ,r. The small open circle and the circled
asterisk® represent unsuccessful and successful trial points ridgglgcof the POLL step. The POLL
step begins by evaluating the function value of the triahppj € P, point by point, wheré = 1,--- . 4,
as shown in FigurE2.2. In Figure 2.2(a), the PS method caesphe trial poinp; by a step of size\,.

It computes the function value gt. If f(p;) > f(z(®)) then it examines the next trial poips as shown
in Figure 2.2(b). If it is not successful a4, i.e., f(p2) > f(z®)) then it computeps as shown in Figure
2.2(c). If ps is still unsuccessful then the process is repeated unthealtrial points inP, are examined,
i.e., until p4 is computed as shown in Figure 2.2(d). If all the points inB@LL setP; (i.e., p1, p2, p3
andp,) are not successful then the step size is reduced by halfaensim Figure 2.2(e), i.e., the next
POLL step begins at*+1) = () with A, ; = 1A,. On the other hand, suppose that the trial point
pa is successful, i.ef(p2) < f(z*)) as shown in Figure 2.2(f), then the whole POLL step processsst
anew atz(*+1) = p, with enlarged step size, i.e),; = 2A; as shown in Figure 2.2(h). A similar cycle

as shown in (a), (b), (c) and (d) of Figure 2.2 will be repeditdecessary) for the new POLL at"+1),

®) e p, © O po
A l—@ <—i7
©O—>e ° )
z®) p1 b3 z® p1

(@)

) o p2 © =0 p
Al
2k I 1A,
o O~ ® O
)
D3 p1 Ps | P
6
pa pa
) (h) Ak+1 — 2Ak ‘
®e D2 kDo »e
Ap b1
\
2(®) 1 2

Figure 2.2: Figures (a)-(f) shows how the POLL steps workeiéPS method.
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2.3 The convergence properties of the PS method

In this section, we will discuss the convergence of the PSiatktBefore proceeding to a formal statement
of the convergence of the PS method, let us first set the stiigdegin by discussing the properties of the

PS method which guarantees its convergence. These pespiertiude

1. At any iteratex*), the positive spanning sé contains at least one descent direction. This means

\/ﬁ ’

wheren is the dimension of the problem. This can be illustrated guFReZ3B for the case = 2. In
Figure[Z3B, the search direction pointing towagis a descent direction because it is witdi? of
the steepest descent directief’/ f(z). It can also be seen that the direction pointing towat ds

also descent. Furthermore, the PS method can be viewed adiargrrelated method. It is shown

Contour

g

—V f(x) Steepest descent

Figure 2.3: Convergence of the pattern search method.

in [Q] that if we suppose that is continuously differentiable, and for simplicity; f is Lipschitz

with a constanf\/, then from equatior {21 8), sindel; || = 1, we have

IVf ()] < VaMA. (2.9)
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2. Ask — +oo, the total number of successful iterations must be finitds Titeans that the number

of unsuccessful iterations (in POLL) is infinite. Therefafy, — 0 ask — +o0.

Clearly, the convergence analysis of the PS method is basétecstandard assumption that all trial
points produced by the algorithm lie in a compact set. Thahislevel se{ = € Q : f(x) < f(z()} is

bounded. This boundedness of the level set will ensure lilsadtep size parameter satisfies

lim Ay = 0. (2.10)
k—+o00

It has been established m48] that the PS method possémsesrivergence property i.e.
lim inf ||V f(=®) | =0, (2.11)

which follows directly from equatiorf{2.9) and equati@nl@).

After discussing the convergence of the PS method, we nousfoar attention in elaborating some
of the pros and cons of the PS method with regard to solvingagloptimization problems. We briefly
discuss the pros and cons of the PS method and thereaftersgragnodification that will eliminate some

of its limitations.

2.4 Pros and cons of the PS method

Associated with the PS method are the following advantages :

e Itis adirect search method and does not depend on any piesp@rontinuity or differentiability) of

the objective function being optimized.

e Itinitially makes a rapid progress towards a local solutian, excellent convergence characteristics.
e It is easily programmable and easy to implement.
We studied the numerical efficiency and robustness of the &8ad. We applied the PS method &

simple bounded global optimization test problems (see AgpeB). Our numerical experiments suggested

the following shortcomings of the PS method.

1. The initial step size parameterA,. Another problem experienced by the PS method is its tradi-

tional use of initial step siz&, = 1. This makes the search very slow in the case of problems with
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large search regions and hence takes longer time to convglgit is not appropriate for problems

with small search regions.

2. Badly scaled function The PS method is very slow to converge when the level setgediinction

are extremely elongated. This is because of its use of auataldirections.

3. Dimensionality problem. Lastly, the PS method suffers from curse of dimensionalifs the

number of dimension increases, the PS method breaks down.

Having discussed the limitations, we aim at remedying sohtleese limitations of the PS method.

2.5 The modified pattern search method

In this section we will discuss how to eliminate some of thergtomings of the PS method. Among the
shortcomings of the PS method, the initial step siseand searching along coordinate directions were

very sensitive. Hence we suggest the following modification

To deal with the problem of initial step size paramet&p < 1), we decided to use an initial step size

parameter which depends on the size of the search répidve propose
Ag=max{u; —l;|i=1,--- ,n}/2, (2.12)

whereu; and(; are upper and lower bounds respectively of the search reg@iéor each dimension.
The initial stepsize\y = 1 used in PS for unconstrained local optimization where namtdswexists for the
variable of the problem. The propery, — 0 ask — oo is an important ingredient for the convergence of
PS. In this study, we usef; in equation[[ZIR) to solve bound constrained global o@tin problems.
The step sizé\ is used in such a way that it takes into account on the sizeecddlarch space. There are
instances whereby the compon@@it> uj (orp{ < u;) of the trial pointp; = (p},--- , p?) falls outside

Q. In these cases, we re-generate a trial ppintith the component
= a4y — alb),

or

Pl =1+ w@®i - 1),

wherew is a random numbe(0, 1) andz(*)7 is the corresponding component of the current iterae,
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To deal with the problem of searching along coordinate timacwe decided to use a perturbation of
the coordinate direction. This modification is describedodisws. Starting at the current iteraié®) at
the k" iteration, the POLL step computes the next iteggte P, by a step sizé\,, in the same way as in
the PS method. However, it does not compute the functiorevatly; as in the PS method. Instead it uses

this point as a stepping stone to compute the trial pgintith a step of size- = nA, and this trial point

p; IS given by
pi=pi+rxU, (2.13)
whereU = (Uy, ..., U,)T is a directional cosines with random components

Rj is a uniform random number in the interyial1, 1]. The PS method equipped wilh{2112) abd (P.13) is
denoted by MPS. The above modifications in equafion12[X2ZW| preserves the convergence properties

of the PS method. The POLL step of this modification can beagxgt using the following example.

Example 2.3

The POLL step of this modification is explained as followsgdrigure§ 2K, 215 alld 2.6. In these Figures,
the definitions of the dotted circle, solid circlee and® are the same as in examp@e except for the
small open circle which represents a stepping point. Given the current gerét in Figure[Z3, the point
p1 is first computed as in POLL step of Algorithm 2.2. Unlike tH® ethod, the MPS does not calculate
the function value ap,. In its place, a new neighboring poip§ using equation[{Z13) is calculated
uniformly on the surface of a hypersphere with radiusThe POLL step then compares the function
values off(z(®)) and f(p1). If it is successful, i.e.f(p1) < f(z(¥)) then the new POLL step begins at
the new iterate:(*t1) = p; with A, ; = 2A;, as in the POLL step of Algorithr.2. If it is unsuccessful,
i.e., f(p1) < f(z™®)) then the second coordinate direction is used indirectlyetwegate the trial poing,

as shown in Figure2.5. This process is reiterated. If nornleeofrial pointsp;, (fori = 1,--- ,r), is better
than the current iterate*) then the POLL step begins at*+? = z(*) with A, ; = A, /2. FigurelZ®
shows that the poini; is successful and the new POLL step begins'at!) = 5, with A;; = 2A,.
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Figure 2.4: The first trial point by MPS.
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Figure 2.5: The generation of the second trial point by MP&mie first trial point is unsuccessful.
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pr =ty

®

Apy1 =240y
O Ay

Figure 2.6: The generation of the second trial point of MP®mvthe first trial point is successful.

2.6 Summary

In this chapter, we have reviewed the PS method. The two magiredient of the PS method, i.e., the
SEARCH and the POLL step were discussed. Thereafter, weagivetivation as to why we discarded the
SEARCH step in the PS algorithm. Furthermore, this chapserelucidates the convergence properties of
the PS method. The shortcomings of the PS method are elad@atl some strategies to deal with these
shortcomings were suggested. The remaining limitationyfife., getting trapped in local minimum, will

be ameliorated by hybridizing PS with simulated annealiftty wr without multi level single linkage.



Chapter 3

Simulated annealing for unconstrained

global optimization

This chapter forms the core of the hybrid methods that wilidesigned in Chapter 4. We review the
physical annealing and the Metropolis algoritfl;' [36]. WecdBs the simulated annealing metlg [21]

for continuous problems. Finally, we present the coolirftesitile.

3.1 The physical annealing

The physical annealing is a thermal process for obtainimgdoergy states of a solid in a heat bath. At
first, the solid is heated until all atoms are randomly areahin a liquid state and then it is cooled by

gradually lowering the temperature.

Central to physical annealing is the attainment of the tlaéequilibrium. At each temperature, enough
time is spent for the solid to reach the thermal equilibriulinthe liquid is cooled slowly enough, then
crystals will be formed and the system will have reached itsmum energy at the ground state. However,
if the system is cooled quickly, then it will end up in a polystalline or amorphous state (local optimal

structure), i.e., trapped in a local minimum energy.

Computer simulation of the thermal equilibrium of a collentof atoms at a given temperature was
achieved by Metropolis et aIHBG]. They suggested an dlgorifor obtaining the thermal equilibrium.

The algorithm is known as the Metropolis algorithm. The gimef the simulated annealing method is

20
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based on principles of the condensed matter physics, iitpkart the physical annealing.

3.2 The Metropolis procedure

In 1953, Metropolis et al. EB] used the Monte Carlo method, now knag the Metropolis algorithm,

to simulate the collection of particles in thermal equiliion at a given temperatur€. The Metropolis
algorithm generates a sequence of states of the systemtimiggmor atoms in the following way. Given

a current states;, of the system of particles with corresponding eneljythe system is perturbed to a
new states; with energyE;. If the change AE = E; — E;, represents a reduction in the energy value
then the new state; is accepted. If the chang®E represents an increase in the energy value, then the
new state is accepted with probabilityp(—(AE/kpT'), whereT is the surrounding temperature ahg

is the Boltzmann constant. The acceptance rule describmeab called the Metropolis criterion and the
algorithm that goes with it, is known as the Metropolis aition. The Metropolis algorithm is described

as follows:

Algorithm 3.2: The Metropolis Algorithm.

set surrounding temperature
pick initial states; at random.
repeat
propose new state; picked at random;
AE = E; — E;
if AE <0thenp=1elsep = exp(—AE/kpT);
if randon0,1) < pthens; = s; ;

until thermal equilibrium reached.

In the physical annealing, a thermal equilibrium is reache@ach temperature if the lowering of
the temperature is done sufficiently slowly. Similarly, iretcase of the Metropolis algorithm, a thermal
equilibrium can be achieved by generating a large numbeanéitions at a given temperature. At thermal
equilibrium, the probability that the system of particlesin state,s;, with energyF; is given by the

Boltzmann distribution, i.e.,

exp (_Ei), (3.1)

1
Pr{X = s;} =
riX =si} =7 kT

(T)
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whereX is a random variable denoting the current state of the sysfguarticles andZ (T) is defined as

2(T) =" exp (%) (3.2)
J
3.3 The simulated annealing (SA) method

In 1983, Kirkpatrick et al. EL] designed the simulated annealitgpathm for optimization problems by
simulating the physical annealing process. The formuladitthe optimization algorithm using the above
analogy consists of a series of Metropolis chains used fardift values of decreasing temperatures. In
this formulation, the system state corresponds to thelfEasolution, the energy of the state corresponds

to the objective function to be optimized, and the grountestarresponds to the global minimizer.

The general SA consists of two loops. In the inner loop, a remab points in a Markov chain (a
Markov chain is a sequence of trial solutions) in the configjon space is produced and some of them are
accepted. A trial solution is accepted only if it satisfies ifketropolis criterion. On the other hand, in the
outer loop, the temperature is progressively decreaseglwhble process depends on the cooling schedule
which will be discussed in secti@nB.5. The original SA aithon was intended for discrete optimization

problem. The general description of the SA algorithm is #s\ics:

Algorithm 3.3: A general description of the simulated anneé#ng algorithm.

Generate the initial configuration.
Select an initial temperatufg = Tj.
while stopping criterion is not satisfiedb
begin.
while no complete Markov chaido
begin
generate move;; computef(s;);
if accepthen update solutiors; and f(s;);
end;
decreasq’;

end.
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3.4 The simulated annealing algorithm for continuous probéms

In this section, we present the SA algorithm for continuopnoization problems. The stategands;
are now denoted by the pointsandy respectively ir). The corresponding energies of these states, i.e.,

E; andE; are therefore denoted by the function valyfés) and f(y) respectively.

The SA algorithm has been applied to optimization of multiaocontinuous functions by fewer au-
thors (Vanderbilt and Loui&O], Alluffi-Pentini et aDI],Bohachevsky et all [17] and Wang and Chen

]) than for the optimization of discrete functions. Haxee firstly these methods are to some extent dif-
ferent from the original SA approach to discrete optim@atiSecondly, their theoretical convergence and
sufficient numerical evidences on classified test problersisfying their reliability are missing. Dekkers
and Aarts|L—2|1] derived a local search-based continuouslatatiannealing (LSA) algorithm which is the-
oretical similar to discrete SA. An aspiration-based sated annealing (ASA) aIgorithrH[?] and a direct
search simulated annealing (DSA) aIgoritI'EL [9] have alsnideveloped which retains the convergence

properties of LSA.

One of the complications arising in going from the discretéhie continuous application of SA is that
of the point generation, i.e., generating a new pgiftom a given pointz. One of the possibilities is to
generatey using a uniform distribution of; the generation probability distribution functign,, in this
case, is given by,, = 1/m(£2) wherem(?) is the Lebesgue measure of the QetHowever, this choice
does not consider the structural information of functiotuga and hence Dekkers and Aalgl [21] put
forward a mechanism consisting of two possibilities; eitheoint is drawn uniformly in the search region
Q with probability ¢; or a step is made into a descent direction from the curreint powith probability

(1 — ), wherey is a fixed number irf0, 1). Dekkers and Aartuﬂ] denote this generation mechanism by

#ﬂ) if w<y,

Gzy = (33)
LS(x) if w>1,
wherew a uniform random number i), 1). LS(z) denotes a local technique procedure that generates a
pointy in a descent direction from such thatf(y) < f(z). The local techniqué.S(z) from z is not a
complete local technique but only a few steps of some apjatepdescent search. Thusfify) < f(z)

theny is not necessarily a local minimum.

Like any other standard SA algorithm based on Markov chdhes essential features of LSA, ASA

and DSA are as follows: Starting from a randomly generatéélirpoint x € € and with an assigned



3.4 The simulated annealing algorithm for continuous protd 24

valueT; of the temperature parameter (the temperature couriseinitially set to zero). These methods
generates a new trial poinj, using the mechanisri (3.3). The objective functfdp) is calculated. If the
changeAf,, = f(xz) — f(y) represents a reduction in the value of the objective functien the new
pointy is accepted. If the change represents an increase in thetibjunction value then the new point

y is accepted using a Metropolis acceptance probability

Azy(Th) = min{ 1, exp(=(f(x) = f(y))/T¢) }- (3.4)

This process is repeated for a large enough number of esafor eacti;. A new Markov chain is then
generated (starting from the last accepted point in theipuevMarkov chain) for a reduced temperature

until the algorithm stops. The algorithm for continuous LM] is sketched below.

Algorithm 3.4: The LSA algorithm for the continuous problem.

begin
initialize (T, x);
stop criterion := false;
while stop criterion = false do
begin
fori:=1to L do
begin
generatey from z using [3.3B);
if f(y) — f(z) < 0thenaccept;
else ifexp(—(f(y) — f(z))/T:) >random0, 1) then accept;
if accepthen z := y;
end,
lower T3;
end;

end.

Remark 3.1:

We will describe the components of the above LSA algorithm, the values of, and L, the lowering
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of T3, and the stop criterion. All these are specified by the cgaichedule which is discussed in the next

section

3.5 Cooling schedule

The choice of the cooling schedule (also known as the amteatihedule) is the heart of SA. The cooling
schedule affects the number of times the temperature isdeed. We saw earlier in sectibn]3.1 that
if a system is cooled hastily, then it will end up with a polystialline state, i.e., a system with high
energy. Similarly, in the case of an optimization probleha, fast cooling takes place (i.e., temperature is
decreased at a fast rate) then the problem will be trappedbiceaminimum. Therefore, in order to avoid
being entrapped in a local minimizer, an optimal coolingesitiie should be in place. An optimal cooling
schedule consists of optimizing four important parameteasnely: the choice of initial temperatuig,

the lengthL of the Markov chain (the number of trial points for each terapgre ), stopping criterion and
finally the cooling rate of the temperature at each step dingpproceeds. These parameters are described

as follows.

Choice of an initial temperature

The initial temperature valug, must be high enough to ensure a large number of acceptantesiitial
stages of the algorithm. Using a value that is too high wijluiee more computational effort, while using
a low value will rule out the likelihood of an uphill step, thilosing the global feature of the method.
Dekker and Aarts]ﬂl] suggested an optimal scheme to cadctlile initial temperaturéy. In this scheme,
a number of trials, sayh,, are generated, and requiring that the initial acceptaate y, = x(7p) be
close tol. The valuex(Tp)is defined as the ratio between the number of accepted triatspand the

number of proposed trial points, i.e.,

m1 + mg X exp(=Af+/Tp)

— . 35
X0 e (3.5)

Herem, anmy denote the number of trialgng = m; + mo) with Af,, < 0 andAf,, > 0 respec-
tively, andA f+ the average value of thoskf,,-values, for whichA f,, > 0. This initial value of the

temperaturdly given below, is then derived from the equatibn13.5), i.e.,

-1
Ty =AfF| In e : (3.6)
maxo —m1(1 — xo)

Length of the Markov chain

At each temperature, the SA algorithm can be considered aaroVi chain whose length is defined by
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the number of trial points allowed at this temperature. Thimber of trial points at each temperature
is denoted by the parametér Dekkers and Aartslﬂl] suggested an approach which geseaafixed
number of points, i.e.,

L=1Lgxn, 3.7)
wheren denotes the dimension of the search redand L is a constant.

Cooling rate of the temperature
Once we have the starting temperature, we need to move frenteomperature to the other. This can be
achieved by using a cooling rate, i.e., the rate at whidallecreases at each Markov chain. Dekkers and

Aarts B] suggested the following scheme

T, xln(l—l—é))l 3.8

T =T 1

. ( T )
whereo (T3) is a small positive number and denotes the standard daviatihie values of the cost function

at the points in the Markov chain d. The rate of decrease depends on the standard deviatior of th
objective function values obtained during the Markov chdine greater the standard deviation, the slower

is the decrease. The constaris called the distance parameter and determines the spelet@ment of
the temperaturel]Z[lS?,].

Stopping criterion (final temperature)
The algorithm process cannot be performed indefinitely.ofsging criterion must be in place to terminate
the algorithm. Dekkers and AarljZl] proposed a stoppinglition based on the idea that the average
function valuef (7;) over a Markov chain decrease with, so thatf(7}) converges to the optimal solution
asT; — 0. If small changes have occurred fifT}) in two consecutive Markov chains, the procedure will

stop. Therefore the simulated annealing algorithm is teateid if

df(T;) T,

T, F(1p)| = 59

wheref(Tp) is the mean value of at the points in the initial Markov chairf,(7}) is the smoothed func-
tion value of f over a number of chains in order to reduce the fluctuation&®f), < is a small positive

number called the stop parameter. In this dissertation, iWedopt the stopping criterion proposed by

Hedar and FukushimEjM], i.e., the algorithm will be teratéd after the temperature falls below a certain
tolerance, i.e.,
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The setting of this final temperature in equation (B.10) giilk a complete cooling schedule because some

problems have high initial temperatures while others hawveihitial temperatures.

The advantages and disadvantages of the SA method are ek gethe next section.

3.6 Advantages and disadvantages of the SA method

In this section, we discuss the advantages and disadvan&é§& method. Some of the advantages of the

SA method includes

e SAs able to avoid getting trapped in local minima.

e SA has been proven mathematically to converge to the glolmhmam given some assumptions on
the cooling scheduIJ:[.IZDSZ].

e SAis a very simple architecture.
However, SA has some disadvantages, e.g.,

e Itis not easy to derive an optimal cooling schedule for SA.

e SA often suffers from slow convergence.
3.7 Summary
In this chapter, we have discussed the physical annealoaeps, the Metropolis algorithm for simulating

such process and the SA algorithm for discrete and contswvatable problems. Finally, we have also

mentioned some advantages and disadvantages of SA.



Chapter 4

The hybrid global optimization algorithms
based on PS

Up until now, we have not presented how to globalize the P$hodket Here by globalization of the PS
method, we mean designing a global optimization algorittasell on PS. One way to globalize the PS
method is by hybridizing it with a global method. In this chexp we propose two hybrid methods that
combine the PS method and the simulated annealing (SA) mhetiitb or without the multi level single
linkage method. Both of these hybrid methods use the SA mlesisathe main engine to search for the
global minimum. In particular, these hybrid methods useiatgeneration scheme which is similar to the
scheme used in the local search-based simulated annelatig (nethod Ell]. We will briefly describe

this generation scheme before the discussion of the hybeitiods.

4.1 Generation mechanism

In any search method, the mechanism for generating a triai {goof paramount importance. In our case,
we will propose a generation mechanism through which tibéhs are generated both globally by using
a uniform distribution and locally by using a local techréquA similar strategy was used in LSA [21]
and direct search simulated annealing (DSA) [9]. For exarb§lA uses a gradient-based local technique
whereas DSA uses a derivative-free local technique. Thal lechnique used in LSA guarantees local
descent while the local technique used in DSA does not. Wehessame idea, but unlike LSA, our local

technique does not guarantee local descent; it is alscegntifferent from the local technique used in

28
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DSA. There are several ways of generating trial points frogivan point. We present two approaches of
the generation mechanism: generation mechanism | (GMd)gameration mechanism Il (GM-II). The

two generation mechanisms are described below.

Generation mechanism | (GM-I)

The first approach GM-I is given by the following probabildistribution:

i w<,

Gy = (4-1)
RD(z) if w>,

wherew is a random number if0,1), 0 < ¢» < 1 and RD(x) is a local technique which stands for
random direction. The procedure involvedRD (x) is described as follows. The local technig® (z)
is invoked ifw > . The directiond; is first selected randomly from the set of positive spanningctions
D defined by equatiod{2.1) in Chapf@r 2. Then a trial point @rieighbourhood af at thet*" Markov

chain is generated by moving a step of lengtff along the direction/;, i.e.,
y =x+ A}, 4.2)

wherez is the current iterate antl;* is a step size parameter (inside the Markov chain of the SAodgt

The step size paramet&* is updated at the end of each Markov chain.

Generation mechanism Il (GM-II)
The second approach GM-II is similar to GM-I except that iksa different local technique. GM-Il is

given by the following probability distribution:

ey T w<,

Jzy = (4.3)
PD(x) if w> 1,

where PD(x) stands for perturbed direction and is described as follodvgrial point y in PD(z) is
generated and is given by

y=19y +rxU, (4.4)
wherey/’ is the same as the poigtin equation[[ZP) i.e.,
y =2+ Afd;. (4.5)

The directiond; is chosen randomly fronb as inRD(z), U in @A4) is a normalized directional vector
same as in equatiof{2]14). In essence, the trial ppintequation [ZK) is generated by perturbing the
pointy generated byR D (z) in equation[[ZR).
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Calculation of the initial step length

The initial step length in both generation mechanisms isutaled as follows:
o=Cxmax{u; —l;|i=1,---,n}, (4.6)

where0 < ¢ < 1, andu; andl; are upper and lower bounds of tf& component of: respectively. The
initial step length Aj® in equation[[416), is independent of the coordinate dioestidue to the following
reasons: it produces, on average, better results and itairasrthe step length of the original PS. Notice
that Aj” in GM-I and GM-II is much smaller thar\, used in equatior{{Z12) for MPS. This choice was

determined empirically.

Updating of the step size in GM I and Il
In both RD(z) and PD(x), the step size paramet&;® varies with the Markov chain and is updated as

follows: At the end of each Markov chain, the following ratia, is computed by

ra = 2P 4.7)

nops’

wherenops is the number of times the local technigi® () or PD(x) is invoked to generate trial points
andnacp is the number of times the trial points generated#iy(x) or PD(z) are accepted in the Markov
chain. The ratiora, in equation[{4]7) determines whether to increase or dsertee step size parameter
A3j®. For instance, if the acceptance rate of the points gertebst& D () or PD(z) is too high at the™®
Markov chain then we increasmfil by a% at the end of the'™ Markov chain; if the rate is too low we
decrease\j{, by a%. On the other hand, if the rate is close to 50% then we fekg = A;“. Thus the

next step size parametéy;?, for the (¢ + 1)™" Markov chain is updated as follows
(1+a)A* if ra>¢,
A= 01 —a)A®* if ra<1-E¢, (4.8)
AV if 1-¢&<ra<é,

where¢ is a constant, say = 0.6 and the parametet is such thad < a < 1.

Having discussed the generation mechanism, we are now isithgooto present details of the hybrid

methods in the following section.
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4.2 Proposed hybrid methods

In this section, we present the full details of our main hgttmniethods. The first hybrid method is similar to
LSA except that it modifies the generation scheme of the LS#hatk In particular, it uses the generation
mechanism GM-I or GM-II and also updates the step size usingteons[417)KZ18). In addition, it keeps
a record of the best point found using a singleton$ethich is updated with a better point found in the

Markov chain. This hybrid is referred to as the modified saedl annealing or MSA.

The second hybrid method extends MSA by incorporating thii reuel single linkage (MSL) method
[E] within the MSA method. It uses a sgtconsisting ofV points, initially drawn uniformly in the search
region). The setS is updated during the course of each Markov chain. This byisrreferred to as the

simulated annealing driven pattern search or SAPS.

4.2.1 Modified simulated annealing (MSA)

Like the LSA method, the MSA method initializes the painand the parameters of the cooling schedule

before the beginning of the first Markov chain. The Sénitially contains the point} = z.

Structurally, like any other SA method, the MSA method has lwops. In the outer loop, the MSA
method, not only decreases the temperature as in LSA, lmtiptiates the step size paramekgf* using
equation[[ZB). On the other hand, in the inner loop, MSAediffrom LSA in that MSA uses the point
generation mechanism GM-I or GM-Il and updates theSets soon as a better point is found in the

Markov chain. Therefore the sgtcontains the best point visited by the MSA method.

The detailed structure of this hybrid is represented in 6Ll using a flowchart.
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Figure 4.1: Flowchart for the MSA algorithm.
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The algorithm for MSA is presented below in Algorithm 4.1.

Algorithm 4.1: The MSA Algorithm.

1. Initialization : Generate an initial point. Setz] = z, 2/ € S. Set the temperature countet 0.

Compute the initial temperatuf® using equatior{316). Calculate an initial step size patan}”

using equation{416).

2. The inner and outer loops

while the stopping condition is not satisfied do
begin
fori:=1toL do
begin
generatey from x using the mechanism in@1) or [£3B) ;
if f(y)— f(xz) < 0then accept;
else ifexp(—(f(y) — f(z))/T: ) > random(0, 1) then accept;
if accept thene = y;
update the setS , i.e., if f(z) < f(zf) thenzf = z;
end;
t=t+1;
lower T; using equation{3]8) ;
update A using equation@.g);

end.

Remarks:

4.1. The stopping condition is given by equatibn (8.10).

4.2. The inner and outer loops of Algorithm 4.1 are similathtose of Algorithm 3.4, i.e., the LSA algo-
rithm, but the significant changes are highlighted in bold.
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4.2.2 Simulated annealing driven pattern search (SAPS)

The SAPS hybrid method is the MSA method equipped with the Mf&thod. Like LSA, it initializes
the parameters of the cooling schedule. In addition, it cemas by filling the se$ with a sample of

N (N >> n) points uniformly distributed over the search spd&te This initial set is given byS =
{zf,--- 2% }. The computer implementation &fis done by an array where the best point (having the
lowest function value) and the worst point (having the hgjtienction value) are stored in th& and the
Nt positions respectively. Rank ordering of other points leetwthe best point{ and the worst point

z, is not needed.

Structurally, SAPS consists of the inner and the outer ldblpas the same outer loop as MSA where
both the temperature and the step si¥® are updated. The inner loop of SAPS generates trial points
using the same generation mechanism as in MSA. Howevemitez loop of SAPS differs from that of
MSA in the following aspects. At eaati"™ Markov chain of SAPS, the worst point, in S is repeatedly
targeted and attempts are made to replace it with the triat go That is, if f(y) < f(z,) thenz¥; in
S is replaced byy. The best point:y and the worst point4; in S are found each time the worst point
z; is replaced. This process of updatifigvith new better points continues until &l members of5 are
replaced. The complete replacement of point§ iwill require at leastV replacements. The replacement
process requires more that replacements especially when a new pajrgnters the sef' (by replacing
the worst point:};) and becomes the worst pointfh The duration of replacing the whole s¢tlepends

on the sizeS. Therefore the replacement processsahay extend over a number of Markov chains.

When all members of the initial sét, at¢ = 0, are replaced at a (later) Markov chain, the member
of S are treated as new. Note that the creation of a nev$ s=tn occur either before the completion or
at the end of the Markov chain. If a neSvis created before the completion of the Markov chain, say at
the t' Markov chain, then thet® Markov chain stops temporarily and a single iteration-dastSL is
invoked (which is described in sectibml.3). After compuietbf the single iteration-based MSL, thHé
Markov chain continues until the lengfhof the Markov chain is reached. However, if a névis created
at the end of the'® Markov chain, then the single iteration-based MSL is inebkefore the nextt + 1)
Markov chain begins. In both cases, the targeting processnc@s in the subsequent Markov chain(s)
until another news' is created and the single iteration-based MSL is invokeds procedure continues

until the stopping criterion is met. Notice that the stogpaondition used is that of SA.
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4.3 The single iteration-based MSL algortihm.

The process involved in the single iteration-based MSL rétlym is described as follows. The members
of S is ordered and a fraction, sayV, 0 < ~ < 1, of best points is used in the single iteration-based
MSL. A local search is carried out from each potential pailgntified by the single iteration-based MSL
algorithm. The best minimizer found by the local search isoded byz®. An important parameter of the

single iteration-based MSL is the critical distankg and is calculated by
AY = max{A{*, BA;}, 4.9

where3 > 1. Hence whent = 0, i.e., initially, A§* = BA{*. However, during the initial period of
SAPS, the value oAj” increases. An increase ik indicates that the temperature is high so there is no
need to perform a high number of local searches (in orderd@aepetition). This is achieved by setting
A = A7, Aj* > BA§®. This ensures that local searches are performed from feanpal points only.

A detailed description of the MSL method will be given laterthe Appendix A. For a comprehensive

literature on MSL, seeELZ]. Here we present the singletitamebased MSL algorithm.

Algorithm 4.2: The single iteration-based MSL algorithm.
Step 1 Order the sample points such thdt:!) < f(z?,,),1 <i<~yN — 1. Seti := 1,

Step 2 Apply a local search procedure . For everyi = 2,--- ,vN, apply a loca
search procedure to the sample paifitexcept if there is another sample point, or
previous detected local minimum within the critical distan\¢ of 2¢. Updatex®,

if necessary.

Remark 4.3:

The local search procedure invoked in Algorithm 4.2 is theSvitgorithm presented in Chapter 2. In
addition to the parametek{ which determines the number of local search in the singlatitsn-based
MSL algorithm, we also have the initial step size paramétgmof the local search MPS. We takk, of

MPS to be equal to the current step sixg at thet'" Markov chain, i.e.,

Ao = A3, (4.10)

The main structure of the SAPS hybrid is represented in E[@R using a flowchart.
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Figure 4.2: Flowchart for the SAPS algorithm.
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The algorithm for SAPS is presented below in Algorithm 4.3.

Algorithm 4.3: The SAPS algorithm.

1. Initialization : Same as in step 1 of the MSA algorithm except the initialarabf the setS =

{af,--- 2% }. Leta® = 2f. Set the parameter value f6r

2. The inner and outer loops

while stopping condition is not satisfied do
begin
fori:=1toL do
begin
generatey from z using the mechanism ifi(4.1) &r{®.3);
if f(y) — f(xz) < 0then accept;
else ifexp(—(f(y) — f(z))/T) > random(0, 1) then accept;
if accept thenr = y;
if f(z%) > f(z)thenz?, = x and find the best and worst points in the setS;
if the set S is replaced entirely then
begin
if A% > BAG* then Af = Ag? elseA§ = A,
perform the single iteration-based MSL algorithm using theset.S;
end;
end;
t:=t+1;
lower T; using equation{318);
updateA;® using equation{418);

end.

Remarks:

4.4. The stopping condition is given by equatibn (8.10).
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4.5. The inner and outer loops of Algorithm 4.3 are similathose of Algorithm 4.1, i.e., the MSA algo-
rithm, but the significant changes are highlighted in bold.

4.6. The MSL algorithm keeps a record of the number of differainimizer found, as this is needed to
stop MSL. On the other hand, Algorithm 4.2, does not keep ardeaf the number of local minima found.

It only keeps a record of the best minimum poitit,

4.4 Summary

In this chapter, we have presented two new hybrid globalckearethods in which the pattern search
method is combined with the SA method with and without thetihelel single linkage method. Both of
these hybrids uses a generation mechanism which is basée settof positive spanning directions. The

performance of these hybrid methods will be discussed iméxé chapter.



Chapter 5

Numerical results

In this chapter, we present the computational results ing@aiions. In the first section, we present the
results of the PS method and the MPS method presented in&tapin the second section, we present
results of the two hybrid methods, MSA and SAPS, presentéchiapter 4. We use 50 test problems as
benchmark problems to determine the robustness and efficarthese methods. These problems range
from 2 to 20 in dimension and have a variety of inherent diffies. All the test problems can be found in

Appendix B.

The algorithms were run 100 times on each of the 50 test prablk® determine the success rate.
Therefore there were 5000 runs in total. The success rat&f, @n algorithm, on a problem is the number
of successful runs out of 100 runs. A successful run was edunthen the following condition was
satisfied,

f* - fopt < 0-01> (5.1)

where f,,,; is the known global minimum of the problem aifid is the best function value obtained when
an algorithm terminates. Before we discuss the results ene$t problems, we introduce the following
notation. We denote the average number of function evalusitand average cpu time by fe and cpu
respectively. Note that the average was computed using thoss for which the global minima were

obtained, i.e., when sr is positive. We use sr, fe and cpueasriteria for comparison.

39
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5.1 Numerical results for PS and MPS

In this section, the numerical results of PS and MPS are ptede Initially, we assessed the capabilities
of PS in solving the global optimization test problems. Weibdy presenting the parameter values of PS

and MPS.

5.1.1 Parameter values

In this subsection, we specify suggested parameters vallesinitial step size parameterd,, was set
toAg =1 and
Ag =max{u; —l;|[i=1,--- ,n}/2 (5.2)

for PS and MPS respectively. We have also tested PS usingiven by equation[{5]2). We denote this
version of PS by PS-I. The paramet&y used by MPS and PS-I depends on the size of the search region
2. Some of the problems have large search regions, theré&fgrehould be proportional to the size of

Q2. The MPS method has an additional parameter, namgelyhich is used in determining the stepn
equation[Z113). We have used= 0.15. Our numerical experiments suggest that this is a good ehdic
parameter similar tg is used in|a|7] in the context of local point generation byi@ted annealing where

n = 0.15 is also suggested.

Two common parameters of PS, PS-1 and MPS are the expansionfa and the shrinkage factar,
of equation[[Z6). We have takép = 2 and¢;, = % PS, PS-l and MPS were terminated when the step

size parametef ;, decreased below a certain tolerandeg,;, i.e., whenA; < A, = 0.001.

5.1.2 Numerical comparison

We have implemented PS, PS-I and MPS using the parametearsvgluen in the previous subsection.
Each run starts with an initial random point. Rather thangisi seed point for the random number gener-
ator in all algorithms, we have randomized the initial seEldis means that for each of the 100 runs, we
use different initial points in PS, PS-1 and MPS. The resoftPS, PS-I and MPS are presented in Table
B, where the notation, tr, in the last row represents tesallts, TP denotes the abbreviated names of the
test problems and is the dimension of the test problem. We note that none of lgarithms succeeded

in finding the global minimum for the test problems, namelkiky (ACK), Epistatic Michalewicz (EM),
Griewank (GW), Levy and Montalvo 2 (LM2), Miele and Cantr@MiCP), Modified Langerman (ML),



5.1.2 Numerical comparison 41

Neumaier 2 (NF2), Odd Square (OSP), Paviani (PP), Pricessistor Modelling (PTM), Rastrigin (RG),
Rosenbrock (RB), Salomon (SAL), Schafferl (SF1), Schaf{&F2), Schwefel (SWF), Storn’s Tcheby-
chev (ST) and Wood (WP). Except for these 18 problems, adirgithoblems were solved by at least one of
the algorithms. The total success, sr, is therefore out 8032ns. Therefore the results for 32 problems

are presented in Tad[e®.1.

From the total results of Table™.1, it can be seen that MPi&eibest performer. It was successful in
2116 runs out of 3200 runs with total fe=41,900. PS-I is theas-up. It was successful in 1896 runs out
of 3200 runs with total fe=104,553. Finally, PS was the wpesformer. It was successful in 1734 runs
out of 3200 runs with total fe=115,525. PS-1 and MPS perfoetids than PS because they use an initial
step sizeA( which takes into account the size of the search regions. dfuge is useful especially for
problems with large search region. HowevAg used by PS, for unconstrained local optimization, does

not consider the size of the search region.

When analysing the numerical results of these algorithnmgyugable5.1L, the following two questions

arise.

e does the choice of initial step siz¥, in equation[[5R) improve PS-I?

e does the choice of perturbed coordinate directions impkdR&?

To address the first question, we compare PS and PS-I. THedstdts of Tabld 511l shows that PS-I
is much superior to PS in terms of fe and sr. For instance, &®ikved about 9% less fe and 9% more
successes in locating the global minimum than PS. This étecthat the choice of the initial step size

parameter) in equation[[5R) has an effect in improving the convergaate of PS-I.

Although we have presented the results for PS, here we ceniBS and PS-I to see the effect of
perturbed coordinate directions. Tablel5.1 shows that b60groblems, PS-I and MPS solved 31 and
32 problems respectively. Both PS-1 and MPS failed to sahegame 18 problems. In addition, PS-I
failed to solve Camel Back6 Hump Problem (CB6). Total ressliow that MPS has achieved 60% less
fe. This difference in the total fe is largely due to two perk, namely Exponential Problem (EXP) and
Sinusoidal Problem (SIN). MPS, however, has achieved 22 maccesses than PS-I. For the same set
of problems, MPS proved its superiority over PS-I. Thesalteslemonstrate the effects of the perturbed
coordinate directions in PS-I. Hence our modifications tel R& fully justified. Finally, we make the

observation that despite being a local solver MPS locatedytbbal minimum in 2116 runs out of 3200
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runs. Hence this potential can be harnessed by incorpgrtitenfeatures of PS-1 or MPS in a global solver.

Table 5.1: Comparison of PS, PS-1 and MPS using 32 problems.

PS PS-I MPS

TP n fe sr fe sr fe sr
AP 2 189 95 196 97 159 88
BL 2 170 100 190 100 160 100
B1 2 221 95 223 94 200 85
B2 2 224 49 229 48 192 57
BR 2 140 100 160 100 150 100
CB3 2 149 57 143 70 142 67
CB6 2 0 0 0 0 149 94
CM 4 306 49 144 97 434 99
DA 2 195 2 170 3 208 4
EP 2 170 3 192 50 174 69
EXP 10 8600 100 7900 100 3200 100
GP 2 193 42 188 49 196 56
GRP 3 833 12 933 15 393 84
H3 3 311 61 300 60 262 65
H6 6 1618 68 1508 61 984 63
HV 3 310 1 290 1 1200 4
HSK 2 158 95 172 99 141 92
KL 4 780 100 640 100 500 100
LM1 3 491 55 482 85 298 84
MC 2 147 75 159 69 141 71
MR 3 3067 75 3400 100 3600 100
MG 4 910 100 1000 100 900 100
MRP 2 187 75 191 68 169 71
MGP 4 173 3 148 5 146 13
NF3 10 9100 100 9192 99 9100 100
PRD 2 167 3 195 4 154 5
PWQ 4 1010 99 1000 100 960 100
SBT 2 150 22 122 27 135 20
S5 4 875 40 897 39 700 40
S7 4 833 24 889 27 641 39
S10 4 848 33 800 25 657 35
SIN 20 83000 1 72500 4 15455 11

tr 115,525 1734 104,553 1896 41,900 2116
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5.2 Numerical results for MSA and SAPS

In this section, the numerical results for the two hybrid moels discussed in Chapfdr 4 are presented in
two subsections. Again we have conducted 100 runs on eatlheprcand each run starts with random
initial point. Initial members of the set are also generated randomly. We will first present the nurakri
results for MSA and for a refinement of MSA. Then we accounttfier numerical results of SAPS. We

begin with the parameter values of MSA and SAPS.

5.2.1 Parameter values

Both MSA and SAPS were implemented using the cooling scleedescribed in sectidn 3.5, i.e., using
equations[(3I5)E(318). The values of the parameters in tloéng schedule are kept almost the same as
those suggested in [21]. Therefore for the cooling schedlutmth MSA and SAPS, we use the following
common parameter values, namely the acceptanceygtio 0.9 and the number of trialg,g = 10n for
the calculation of initial temperaturg, in €8), and constant, = 10 for the calculation of the length of
the Markov chain in[[317). We also use the distance paranmeted.1 for determining the decrement of the
temperature in(318) as suggestec“ruﬂ, 21]. Howeveroueadd to be sensitive and hence conducted
a number of runs with various values @fNote that each run of an algorithm generates a differetiaini
temperature. Hence we present the average initial temyseral he average initial temperatufg,, for
each problem is given in Tadled.4. Note also that each rum edgorithm on a problem, the same initial
temperature was generated. This means that the averagétanitperature7;, for MSA and SAPS on a
particular problem is the same. This has been done for adaiparison. The value af in the stopping

condition of equation{3.10) is chosen toiaén(10~3, 10737y), as suggested in_[24], i.e.,

T, <min(1073,1073Tp). (5.3)

The other parameters (other than the cooling schedule péeash common to both MSA and SAPS
includet used in the generation scherief4¢llised in determining the initial step siZg* in (£.4), and
« and¢ used in updating the step si2g¢, in equation[[4B). The parameter= 0.75 is used as suggested
in [21]. We have carried out numerical testing using a nundfealues of¢, e.g.,£ = 0.5, £ = 0.6 and
¢ = 0.7 and the best results were obtained o= 0.6. This value produced the overall best results in
terms of fe and sr. Hence we u§e= 0.6 for the rest of the numerical experiments. Other parameters

a used in equatior {4.8) andused in equatior {4.6). We also observe that not all paramate sensitive.



5.2.2 Numerical studies of the MSA method 44

For example, the parametarappears to be more sensitive than others, whike less sensitive. Hence
we have studied the sensitivity afand( using a series of runs. Each run of MSA or SAPS produces a
different number of Markov chains. Hence, we present theaaeenumber of Markov chains. We denote
the average number of Markov chainsy;.,..,. Note that this average was computed using those runs

for which the global minima were obtained.

5.2.2 Numerical studies of the MSA method

In this subsection, we present the results of MSA. We begih thie study of tuning the parameter values
of ¢ anda in MSA. Fine tuning of parameters is a difficult task and netals easy to see the effects
caused by different parameter values. Nonetheless, we tiljtain good values of these parameters. We
then compare the MSA algorithm and its refinement. By refimgnvee mean that a local search (the MPS
algorithm) is performed from the final solution of MSA. Filyalwe try to answer an important question.
In particular, we answer the question: To what extent doesitie of local search affects the performance

of MSA.

We begin by studying the effect of varying the paramétewe have used the generation mechanism
GM-I for this study. The parametgrdetermines the initial step siz&j* in equation [[46). For this, we
have conducted a series of runs of MSA using the values 0005, 0.03, 0.05 and 0.1 for the parameter
¢. The results are presented in Tahbld 5.2. Although the seaudt similar for other problems, we present
the results for 11 problems as representatives. Table b\#ssthat the total sr fof = 0.005 and¢ = 0.1
are worse than the remaining parameter values. Howeventdleesults in TablEBl 2 shows thais less
sensitive for the values = 0.01, 0.03 and0.05. All these three values have comparable fe, sr and cpu.

We have decided to use the parameter 0.01 for the rest of the numerical experiments.
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Table 5.2:Results of MSA for different values @f, GM-I.

¢ =0.005 ¢=0.01 ¢=0.03 ¢ =0.05 ¢=0.1

TP fe Sr fe Sr fe sr fe Sr fe sr
DA 1981 21 1978 27 2065 27 2026 18 2068 24
GP 2089 19 2064 23 2068 23 2218 20 2370 10
EXP 22258 100 22170 100 22137 100 22142 100 22305 100
GW 38922 100 39427 100 39550 100 39306 100 39712 100
LM2 31455 100 31446 100 31572 100 31635 100 31749 100
NF3 46952 100 47210 100 47250 100 47332 100 47701 100
RG 26817 100 26918 100 26558 100 27094 100 26469 100
RB 50324 100 52046 100 51553 100 52221 100 52128 100
PP 32078 100 31927 100 32629 100 32375 100 32689 100
SAL 22733 80 22907 80 22636 78 22970 90 23920 88
SWF 23675 99 23535 100 23742 100 24408 100 24323 100
tr 299,284 919 301,628 930 301,760 928 303,727 928 305,4342 92

Next, we study the effect af in equation[[£B). The parametercontrols the expansion and reduction
of the step size parametéx;* of equation [4B). We fixX’ = 0.01 and generate trial points using the
generation mechanism GM-I for this study. A series of runthefMSA algorithm was conducted using
the values 0.10, 0.15 and 0.20. We denote the implementafiddSA usinga = 0.10, « = 0.15
anda = 0.20 by MSA,—¢.10, MSA,—o.15 and MSA, .29 respectively. The results for MSAq.1o and
MSA —.20 are presented in Tab[eh.3. The total results do not contaimesults of 9 problems, namely
Epistatic Michalewicz (EM), Gulf Research (GRP), Modifiedrigerman (ML), Neumaier 2 (NF2), Odd
Square (OSP), Price’s Transistor Modelling (PTM), Sche#f€SF2), Shekel's Foxholes (FX) and Storn’s
Tchebychev (ST9) since both MGAg.10 and MSA,—q.o¢ failed to solve them in all 100 runs. The results
of the remaining 41 problems are therefore presented ire[al. The total success, sr, is out of 4100

runs.

A comparison of MSA_q.10 and MSA,—.20 using sr and fe is presented in Tablel5.3. MSA2o
was successful in 3764 runs out 4100 runs with total fe=8I3,70n the other hand, MSA (.10 was
successful in 3541 runs out of 4100 runs with total fe=494,2the execution time (cpu) for MSA.o.10
and MSA,—¢.o0 are the same. These results shows that MSA is superior to MSA—_q 1o in terms of
sr. The results for MSA_q 15 is presented in a later table. A general trend of the ressilisat fe and sr
increases witlw. The reason is because the larger the value, tfie more exploration of the search space
is performed. This requires high fe. However, for highetthe total sr increases. For instance, in Table
there are at least 3 problems in MSA 20, €.9., Dekker (DA), Hartman 3 (H3) and Shubert (SBT),

for which sr increased significantly.
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Table 5.3:Comparison of different values in MSA using 41 problems, GM-I.

MSA.—o.10 MSA.—0.20
TP n fe sr cpu fe sr cpu
ACK 10 21139 99 0.080 23240 98 0.090
AP 2 2208 85 0.002 2240 92 0.002
BL 2 2195 100 0.002 2170 100 0.002
B1 2 2684 83 0.004 2427 95 0.003
B2 2 2700 76 0.004 2355 84 0.003
BR 2 2079 91 0.002 1949 95 0.002
CB3 2 2136 100 0.002 2191 100 0.002
CB6 2 2054 87 0.002 2083 98 0.002
CM 4 5519 100 0.008 5808 100 0.008
DA 2 2258 2 0.002 1821 81 0.002
EP 2 1417 78 0.002 1166 79 0.002
EXP 10 22324 100 0.060 22101 100 0.060
GP 2 2355 21  0.003 2067 25 0.002
GW 10 38772 100 0.120 39346 100 0.120
H3 3 2349 31 0.010 2203 77 0.010
H6 6 8061 97 0.100 8463 96 0.110
HV 3 5036 1 0.006 5391 6 0.006
HSK 2 1479 95 0.002 1234 100 0.002
KL 2 3999 100 0.006 4044 100 0.006
LM1 3 4106 100 0.006 3828 100 0.005
LM2 10 31520 100 0.090 31353 100 0.080
MC 2 1996 99 0.002 1899 99 0.002
MR 3 3436 99 0.004 3317 100 0.004
MCP 4 3256 100 0.008 3352 100 0.008
MRP 2 2486 99 0.003 2334 100 0.002
MGP 2 1845 99 0.007 1581 100 0.005
NF3 10 47357 100 0.110 46880 100 0.110
PP 10 32175 100 0.120 32504 100 0.120
PRD 2 1574 100 0.003 1429 100 0.002
PWQ 4 8359 99 0.010 8274 100 0.010
RG 10 26318 100 0.070 27435 100 0.080
RB 10 50009 100 0.120 52209 100 0.120
SAL 2 21677 82 0.050 23263 84 0.050
SF1 2 1393 100 0.002 1287 100 0.002
SBT 2 1813 23 0.003 1669 58 0.002
SWF 10 23451 99 0.060 40633 99 0.110
S5 4 3444 98 0.006 3075 100 0.005
S7 4 3372 100 0.006 3045 99 0.005
S10 4 3474 98 0.007 3233 100 0.006
SIN 20 82204 100 0.610 80190 100 0.580
WP 4 8178 100 0.010 8698 99 0.010
tr 494,207 3541 1.720 513,787 3764 1.748

We have also presented the full results of MSA 15 in Tablda.#. MSA,_ 15 also solved the same 41
problems as solved by MSA .10 and MSA,—g.20. MSA.—o.20 is the best performer in terms of sr but it
is the worst performer in terms of fe. MSAg.15 performs relatively well in terms of fe and sr. Therefore

for the rest of our numerical experiments, we use the paematuea = 0.15.
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We now study the results presented in TdbI& 5.4. In particwia study the effect of the refinement of
MSA.—o.15. We denote the refined version of M4y 15 by MSA-I. The refinement is done by carrying
out the local search, MPS, from the final solution of MSA 15. The initial step size\, for MPS is taken
asA;*, wheret is the final temperature counter. It also uses the parameheesy = 0.15 and¢ = 0.01.

We note that MSA-I did not succeed in finding the global minmmior 7 test problems, namely Epistatic
Michalewicz (EM), Modified Langerman (ML), Odd Square (OS®jce’s Transistor modelling (PTM) ,
Schaffer 2 (SF2), Shekel's foxholes (FX) and Storn’s Tclobley (ST9). The results for these 7 problems
are not presented in Tadleb.4. The average initial temperdor the remaining 43 problems are also
presented in Tabled.4. The valueXf for the problems, namely EM, ML, OSP, PTM, SF2, FX and ST9
are 0.01, 0.001, 0.47, 8876204, 19.23, 1.14 and 666,62&cthggly. Note that some of the problems
have high initial temperature, for example, DA, PTM, RB an&.W Tabld5.}4, the results in the column
under MSA-I have two parts. The results outside the braaietesents the combined fe contributed by
MSA.—o.15 and the local search (MPS) used for the refinement of the folatisn. On the other hand,

the results inside the bracket represent the fe contriduetie local search MPS alone.

To answer the question that we posed at the beginning of tiisestion, that is, the effect of the
refinement of MSA, we compare MSA( .15 and MSA-I. The total results in Table®.4 shows that MSA-I
is superior to MSA_o.15 by 7% with respect to sr. On the other hand, MSA.15 is superior to MSA-I
by 6% and 28% with respect to fe and cpu respectively. MSAgrimmed the success rate for some of the
problems like Bohachevsky 2 (B2), Dekker (DA), Easom (ERjtthhan 3 (H3), Helical (HV), Salomon
(SAL) and Shubert (SBT) which are all highlighted in bold. €Tincrease in function evaluation (fe) for
most problems using MSA-I can be attributed to the use oflleearch. For example, the fe for BL is
2184(52), where2184 represent the combined fe for both M$A) 15 and the local search (MPS) . The
number inside the bracket, i.62 represent the fe for MPS only. The remaining fe, 2832 represent the

fe for MSA,—q.15 only.

We now study the total number of Markov chains,, 1o, in Table[EH#. Tablé5l4 shows that
MSA.—o.15 and MSA-I incurredn,,..kor = 6793 and 7162 respectively. The high,,q 100 I MSA-
| justifies why it has higher total fe than MSAg.15. Note that then,,..kov Values for some prob-
lems for MSA,—o.15 are higher than those of MSA-I. This is becausg,, .., IS the average number
of Markov chains where the average is taken over the suadessis. MSA-I has more successful runs
than MSA.—o.15. Notice that for some problems the valuesmf,, .., are the same and this has been

indicated with boxes in Tab[e5.4.
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The total results for MSA-I in TablET8.4 includes the resutsGulf Research Problem (GRP) and
Neumaier 2 Problem (NF2) where MQA, 15 failed. We compare MSA_(.15 and MSA-I excluding
these two functions. The total cpu and fe for MSA-I, withdugge two functions, are 1.77 and 510,620
respectively. Therefore, both MSAq.15 and MSA-I have similar cpu and fe if we exclude the results of

these two functions from the total results of Tdbld 5.4.

Table 5.4:Comparison of MSA_g.15 and MSA-I using 43 problems, GM-I.

MSA.=o0.15 MSA-I
TP n To fe Sr CPU  Nmarkow fe Sr CPU  Nmarkouv
ACK 10 28.84 22594 99 0.080 225 22759 (289) 100  0.090 224
AP 2 3949.00 2154 97 0.002 107 2234(76) 99 0.003 106
BL 2 96.97 2132 100 0.002 [106 2184(52) 100 0.002 [106
B1 2 15157.49 2436 96 0.003 121 2478(51) 100 0.003 120
B2 2 15154.47 2494 80 0.003 124 2522(51) 95 0.003 123
BR 2 446.91 2011 95 0.002 100 2044 (64) 100  0.002 98
CB3 2 2394.86 2148 100 0.002 107 2198 (50) 100  0.002 107
CB6 2 8410.76 2009 98 0.002 104 2149 (60) 100 0.002 104
cM 4 7.49 5767 100 0.008 143 5801(34) 100 0.008 143
DA 2 9469730.00 1978 27 0.002 98 1900 (21) 56 0.002 93
EP 2 0.90 1148 89 0.002 57 1098 (52) 99  0.002 51
EXP 10 2.20 22170 100 0.06 [221] 22290 (120) 100 0.060 [221]
GP 2 63901.00 2064 23 0.002 102 2215(70) 82 0.002 106
GW 10 1583.55 39427 100 0.120 393 40561 (1134) 100 0.130 393
GRP 3 23.23 0 0 0.000 0 3646 (360) 15 0.520 109
H3 3 3.68 2000 52 0.010 69 2074 (154) 100 0.010 63
H6 6 2.63 8269 97 0.110 137 8432 (311) 100 0.110 135
HV 3 69139.00 4809 7 0.006 159 5688 (411) 26 0.007 175
HSK 2 1.97 1324 96 0.002 65 1380 (77) 100 0.002 64
KL 2 0.23 4049 100 0.006 4212 (163) 100 0.006 [100
LM1 3 201.55 3963 100 0.005 131 4060 (97) 100  0.005 131
LM2 10 79.16 31446 100 0.090 314 31608 (162) 100  0.090 314
MC 2 11.30 1925 100 0.002 95 1985 (60) 100 0.002 95
MR 3  348426.00 3346 100 0.005 [111 8870 (5524) 100 0.006 [111]
MCP 4 8.64 3371 100 0.008 83 3967 (595) 100 0.009 83
MRP 2  154127.00 2283 100 0.002 113 2294(12) 100 0.002 113
MGP 2 2.68 1641 100 0.006 81 1670 (29) 100 0.006 81
NF2 4  689690.00 0 0 0.000 0 12191 (117) 1 0.110 276
NF3 10  18299.00 47210 100 0.110 471 49002 (1792) 100 0.120 471
PP 10 184.43 31927 100 0.110 318 32027 (100) 100 0.110 318
PRD 2 0.19 1483 100 0.002 73 1546 (63) 100 0.002 73
PWQ 4  36236.00 8296 100 0.010 207 8424 (128) 100 0.010 207
RG 10 616.90 26918 100 0.070 268 26971 (53) 100 0.070 268
RB 10 9653091.00 52046 100 0.120 52100 (54) 100 0.120 [520]
SAL 2 57.17 22907 80 0.050 228 22978 (610) 96 0.050 222
SF1 2 0.69 1373 100 0.002 68 1486 (113) 100 0.002 68
SBT 2 212.80 1699 66 0.003 84 1712 (18) 80 0.003 80
SWF 10  11908.00 23535 100 0.070 235 24787 (1252) 100 0.070 235
S5 4 10.37 3208 99 0.005 79 3256 (58) 100  0.005 79
s7 4 10.60 3119 99 0.006 77 3172(68) 100 0.006 77
s10 4 10.64 3248 100 0.007 80 3319(71) 100 0.008 80
SIN 20 4.99 81700 100 0.610 [408] 82657 (957) 100 0.620 [408]
WP 4 1452635.00 8484 100 0.010 211 8510 (26) 100 0.010 211

tr 496,291 3700 1.728 6793 526,457(15,559) 3949 2.400 7162
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Up to now, we have presented the result for MSA 15 using the generation mechanism GM-I. It
would be interesting to see how MSAy 15 performs with the generation mechanism GM-II. Therefore,
we present the full results of MSA .15 using GM-II in Tabld&.b. In this table, we note that MSA 15
was not successful on the same 9 problems as in M3Ay, Table[E. MSA_q 15 was successful in
3657 runs out of 4100 runs with total fe=494,469 as shown Wel®&®. On the other hand, MSAg. 15
was successful in 3700 runs out of 4100 runs with total fes2®b6 as shown in TableZ%.4. One can

conclude that GM-I and GM-II are comparable in terms of fegrsd cpu.

Finally, note that the MSA algorithm performed well in segdale or closely separable multimodal
functions, e.g., Ackley (ACK), Levy and Montalvo (LM 1 & 2) drRastrigin (RG), and Schwefel (SWF),
as opposed to a number of non-separable functions, e.gkeeknd Aarts (DA), Schaffer 2 (SF2), and
Goldstein and Price (GP). This is evident in Tdbld 5.4. Fetance, MSA was successful in 499 runs out
of 500 runs for the case of the above 5 separable or closetyaap functions. On the other hand, MSA
was successful only in 50 runs out of 300 runs for the abover3emarable functions. One important
feature of the generation mechanism employed in MSA is thadaadinate step is performed in such a
way that a single variable is changed to obtain a trial pairGM-I. We believe that this feature favours
the separable functions. A further research can involvesrgtdnding the reasons for failure of MSA on

some nonseparable functions. We have stated this in théusior.
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Table 5.5:Results of MSA .15 using 43 problems, GM-II.

TP n fe sr cpu

ACK 10 20972 99 0.080
AP 2 2108 91 0.002
BL 2 2147 100 0.002
B1 2 2484 94 0.003
B2 2 2458 83 0.003
BR 2 1930 96 0.002
CB3 2 2190 100 0.003
CB6 2 2026 96 0.002
CM 4 5633 100 0.009
DA 2 1952 30 0.003

EP 2 1135 85 0.002
EXP 10 22073 100 0.060
GP 2 2093 15 0.003
GW 10 39335 100 0.140
H3 3 2139 38 0.010
H6 6 7843 90 0.010
HV 3 5441 4 0.007

HSK 2 1320 97 0.002
KL 2 4030 100 0.007

LM1 3 3936 100 0.006

LM2 10 31397 100 0.090
MC 2 1922 99 0.002

MR 3 3269 100 0.005
MCP 4 3021 100 0.008
MRP 2 2271 100 0.003
MGP 4 1670 100 0.006
NF3 10 47083 100 0.120
PP 2 32444 100 0.120
PRD 4 1504 100 0.003
PWQ 9 8412 100 0.010
RG 10 26894 100 0.080
RB 10 50932 100 0.130
SAL 2 23599 82 0.060

SF1 2 1355 100 0.002
SBT 2 1668 61 0.003
SWF 10 24839 100 0.070
S5 4 3187 99 0.006
S7 4 3123 100 0.006
S10 4 3260 99 0.007
SIN 20 80892 100 0.620
WP 4 8482 99 0.010
tr 494,469 3657 1.718
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5.2.3 Numerical studies of the SAPS method

In this subsection, we present the results of SAPS. The SAgSBithm is implemented using the same
parameter values of the cooling schedule as in MSA. We havgtudy the effect of in equation[(31B). In
addition to these parameters values, there are two othamgders common to MSA and SAPS, namely
¢ in equation[(4) and in equation[[4B). Good values of these parameters wererieallyi obtained in
subsectiol 5212 for MSA. We therefore use the same valugeirmplementation of SAPS, i.e., we use
¢ =0.01 anda = 0.15.

Other parameters of SAPS gbeused in equatior(4].9), the siZé€ of S and~. Of these parameters,
~ is used by MSL. In this subsection, we study these paramatetg¢he paramete¥ in equation [[(3B)
empirically in order to obtain suitable values for them. Taeametep was found to be sensitive in our
study. Hence, we have presented a series of results withugvalues of. Before we present the results,
we introduce some notations. We denote the average numhkanes the single iteration-based MSL
algorithm is performed per run by. and the average number of times MPS is performed per MSt, by

We also denote the average number of MPS, out,gf that obtains the global minimum by, .

We begin our numerical investigation with the distance peaters. We fix N = 3n and~y = 1 for this
study. We use the generation mechanism GM-I. We run SAP§ uififerent values of, namely 0.1, 0.3
and 0.5. The results are presented in T&DIE 5.6. We note ARS Slid not succeed in finding the global
minimum of 7 test problems for all values, namely Epistatic Michalewicz (EM), Modified Langemn
(ML), Odd Square (OSP), Price’s Transistor modelling (PT8thaffer 2 (SF2), Shekel’s foxholes (FX)
and Storn’s Tchebychev (ST9). The results of the 43 probmsherefore presented in Tablel5.6.

From the total results in Table’b.6, we see that the SAPSitignwas successful in 4176, 4105 and
4022 runs out of 4300 runs for= 0.1, 0.3 and 0.5 respectively. SAPS achieved these succesdesalo
fe equal to 1,021,630, 801,985 and 767,9115fer 0.1, 0.3 and 0.5 respectively. The above results shows
that both fe and sr decrease&mmcreases. This is because the temperature decreasey slbahevers
is small and hence more fe is needed in order to converge.e®rerat least 3 problems, e.g., Goldstein
and Price (GP), Salomon (SAL) and Shubert (SBT) for whichifserd significantly. We have highlighted
these 3 problems in bold. Cleardy= 0.1 is the best value in terms of sr and= 0.5 is the best value in
terms of fe. We have decided to choose the best parametat baseiccess rate, sr. Therefore, we use the

parametep = 0.1 for the rest of the numerical experiments.
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Table 5.6:Results of SAPS for different values &fGM-I.

6=0.1 6=0.3 6=0.5

TP n fe sr cpu fe sr cpu fe sr cpu
ACK 10 34797 100 0.140 22706 100 0.080 21819 100 0.070
AP 2 2695 99 0.003 1466 100 0.002 1292 100 0.001
BL 2 2808 100 0.003 1578 100 0.002 1302 100 0.001
B1 2 2873 100 0.003 1818 100 0.002 1559 100 0.002
B2 2 2881 99 0.003 1843 97 0.002 1563 95 0.002
BR 2 2468 100 0.002 1567 100 0.002 1480 100 0.002
CB3 2 2414 100 0.003 1320 100 0.002 1091 100 0.001
CB6 2 2525 100 0.003 1581 100 0.002 1429 100 0.002
CM 4 6515 100 0.009 3263 100 0.005 2643 100 0.004
DA 2 2924 98 0.003 2649 96 0.003 2487 96 0.002
EP 2 1648 99 0.003 1492 94 0.002 1392 96 0.002
EXP 10 26465 100 0.070 12381 100 0.030 9048 100 0.002
GP 2 2634 99 0.003 1678 88 0.002 1497 64 0.002
GW 10 52196 100 0.150 28762 100 0.080 22314 100 0.060
GRP 3 6467 100 1.040 10007 100 1.610 11408 100 1.840
H3 3 3120 100 0.020 2600 100 0.020 2154 100 0.010
H6 6 18184 100 0.240 11390 100 0.140 9778 100 0.120
HV 3 12586 81 0.010 8453 66 0.007 7524 64 0.006
HSK 2 2000 100 0.003 1318 100 0.002 1021 99 0.002
KL 2 4811 100 0.007 2056 100 0.003 1505 100 0.002
LM1 3 4929 100 0.006 2684 100 0.003 2208 100 0.003
LM2 10 37091 100 0.110 17177 100 0.050 13399 100 0.040
MC 2 2396 100 0.003 1383 100 0.002 1188 100 0.001
MR 3 17985 100 0.020 16201 100 0.020 13052 100 0.010
MCP 4 12741 100 0.030 10142 100 0.020 8915 100 0.020
MRP 2 2709 100 0.003 1672 100 0.002 1475 100 0.002
MGP 4 1918 100 0.007 1094 100 0.004 913 100 0.003
NF2 10 16967 20 0.140 10433 32 0.100 9952 21 0.100
NF3 10 237368 100 0.410 275763 100 0.430 305831 100 0.540
PP 2 37587 100 0.140 17810 100 0.060 13315 100 0.004
PRD 4 1871 100 0.003 1132 100 0.002 922 100 0.002
PWQ 9 10829 100 0.010 5916 100 0.006 4883 100 0.005
RG 10 44180 100 0.130 28682 100 0.070 25312 100 0.060
RB 10 89715 100 0.190 60083 100 0.110 53265 100 0.090
SAL 2 26641 97 0.060 12230 80 0.020 10255 63 0.02
SF1 2 1835 100 0.002 1284 100 0.001 1000 100 0.001
SBT 2 2122 84 0.003 1429 52 0.002 1157 24  0.002
SWF 10 45701 100 0.120 39786 100 0.100 33531 100 0.080
S5 4 5782 100 0.008 4482 100 0.006 4240 100 0.006
S7 4 5699 100 0.009 4596 100 0.007 4276 100 0.007
S10 4 5818 100 0.010 4632 100 0.008 4153 100 0.008
SIN 20 206177 100 1.350 157943 100 0.960 145540 100 0.850
WP 4 10558 100 0.010 5503 100 0.006 4823 100 0.006
tr 1,021,630 4176 4.488 801,985 4105 3.987 767,911 4022 33.99
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We now study the effect of varying the parameteused in equatior{4.9). We fix= 0.1,y = 1
and N = 3n use the generation scheme GM-I for this study. We run SAP&itgn using three values
of 3, namely10, 15 and20. The results are presented in Tabld 5.7. We note that SARS fam the same
problems, e.g., EM, ML OSP, PTM, SF2, FX and ST9 for each vafye. SAPS has a positive success
rate on the remaining 43 problems for each valug.oHence Tabl&5l7 does not contain the results for

these 7 problems.

The SAPS algorithm was successful in 4178, 4179 and 4176owtraf 4300 runs fo = 10, 15 and
20 respectively. SAPS achieved these successes for tatgud to 1,384,360, 1,147,738 and 1,021,630
for 5 = 10, 15 and 20 respectively. Total results shows that fe deeseass increases. The decrease in
fe asp increases can be justified as follows. We know that the numblecal searches performed in the

single iteration-based MSL algorithm depends on the lenfthe critical distance\§, which is given by
A§ = max{A{*, A}

The critical distance\{ takes the valuggA§® in cases whergAj* > Aj?. Hence, the parametgrhas

an effect on the critical distance. Therefore, the largés, the lesser the number of local searches are
performed resulting in lesser fe. We will explain later wieydecreases with using the information in
Table[E:8. On the other hand, the total results also shovistha insensitive tg3. We have also tested
SAPS withg = 30. The results have shown a slight decrease in sr for this védeace, we usg = 20

for the rest of numerical study.

Some additional results of the implementation of SAPS thadypced the results in TaHIe.7 will be
presented next in Table’b.8.
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Table 5.7:Results of SAPS for different values 6f GM-I.

B8=10,y=1 B=15v=1 B=20,v=1

TP n fe sr cpu fe Sr cpu fe Sr cpu
ACK 10 46520 100 0.150 39309 100 0.130 34797 100 0.140
AP 2 2778 100 0.003 2714 100 0.003 2695 99 0.003
BL 2 2755 100 0.003 2797 100 0.003 2808 100 0.003
B1 2 2917 100 0.003 2958 100 0.003 2873 100 0.003
B2 2 3029 99 0.003 2883 99 0.003 2881 99 0.003
BR 2 2549 100 0.003 2403 100 0.002 2468 100 0.002
CB3 2 2428 100 0.003 2449 100 0.002 2414 100 0.003
CB6 2 2617 100 0.003 2607 100 0.002 2525 100 0.003
CM 4 6816 100 0.010 6699 100 0.009 6515 100 0.009
DA 2 3283 99 0.003 3068 97 0.003 2924 98 0.003
EP 2 1776 93 0.010 1737 95 0.002 1648 99 0.003
EXP 10 36199 100 0.080 29323 100 0.070 26465 100 0.070
GP 2 2680 98 0.030 2630 99 0.003 2634 99 0.003
GW 10 71112 100 0.190 58503 100 0.160 52196 100 0.150
GRP 3 9331 100 1.400 8170 100 1.300 6467 100 1.040
H3 3 3614 100 0.020 3455 100 0.002 3120 100 0.020
H6 6 21792 100 0.270 19524 100 0.240 18184 100 0.240
HV 3 13310 85 0.020 12969 81 0.010 12586 81 0.010
HSK 2 2062 100 0.003 2116 100 0.003 2000 100 0.003
KL 2 5023 100 0.007 4892 100 0.007 4811 100 0.007
LM1 3 4921 100 0.006 5013 100 0.006 4929 100 0.006
LM2 10 47771 100 0.120 40621 100 0.110 37091 100 0.110
MC 2 2405 100 0.003 2415 100 0.002 2396 100 0.003
MR 3 21297 100 0.020 18251 100 0.010 17985 100 0.020
MCP 4 16840 100 0.040 16308 100 0.003 12741 100 0.030
MRP 2 2887 100 0.003 2717 100 0.003 2709 100 0.003
MGP 4 1909 100 0.007 1913 100 0.007 1918 100 0.007
NF2 10 14804 26 0.140 15395 26 0.140 16967 20 0.140
NF3 10 287709 100 0.460 251521 100 0.390 237368 100 0.410
PP 2 46081 100 0.160 39235 100 0.130 37587 100 0.140
PRD 4 1961 100 0.003 1862 100 0.003 1871 100 0.003
PWQ 9 11844 100 0.010 11318 100 0.010 10829 100 0.010
RG 10 44389 100 0.120 44252 100 0.110 44180 100 0.130
RB 10 179634 100 0.300 130350 100 0.240 89715 100 0.190
SAL 2 28942 96 0.060 27526 99 0.060 26641 97 0.060
SF1 2 1980 100 0.002 1919 100 0.002 1835 100 0.002
SBT 2 2034 82 0.003 2128 83 0.003 2122 84 0.003
SWF 10 63999 100 0.160 45541 100 0.120 45701 100 0.120
S5 4 6593 100 0.009 5913 100 0.008 5782 100 0.008
S7 4 6620 100 0.010 5999 100 0.009 5699 100 0.009
S10 4 6522 100 0.010 5804 100 0.010 5818 100 0.010
SIN 20 325257 100 2.060 248712 100 1.520 206177 100 1.350
WP 4 15370 100 0.020 11819 100 0.010 10558 100 0.010

tr 1,384,360 4178 5.940 1,147,738 4179 4.868 1,021,630 414@188
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Having established the effect ofin sr and fe in Tabl€&l7, we now study the effectin n,s and
n.. The values,; andn, are the direct consequences of the implementation of MSIARS We now
present the data fot,, andn, in Table[58. Notice that the results in Taplel5.7 5.8 wobrained

using the same implementation of SAPS.

The total results in Tab[eF.8 shows that SAPS performeg 175, 173 and 170 single iteration-based
MSL for g = 10, 15 and 20 respectively. The total number of local searanéisel above MSL call were
nps = 299, 258 and 237 respectively for= 10, 15 and 20. Although the total number of local searches in
each of the above cases is high but the number of local seardd$L is considerably low. For example,

there were% (=1.7), 1.5 and 1.4 local searches per MSL foe 10, 15 and 20 respectively.

On the other hand, we were encouraged to see the results.féor example, the number of successful
local searches were, = 227 out of n,; = 299, n, = 199 out of n,, = 258, andn, = 181 out of
nys = 237 for B = 10, 15 and 20 respectively. The decrease in value,gfandn, asg increases justifies
why fe decreases with as we have seen in Talfleb.7. The above results shows thaitieee 76%, 77%
and 76% local searches were successful in locating the Igidbamum value. Indeed, there are a number
of problems, e.g., GW, H3 and MC, where 100% local searches swecessful, i.e. On the

other hand, there are some problems where not all locallsegggroduced the global minimum, such as

the problems MGP, SAL and SBT wh.
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Table 5.8: Results of SAPS for different valueshfGM-I.

B =10 B=15 B =20
P n nps(ng) — Me nps(ng) Te nps(ng) Te
ACK 10 9 (5) 3 7(4) 3 6 (4) 3
AP 2 5(4) 4 4(4) 4 4(3) 4
BL 2 5(5) 3 5 (5) 3 5(5) 3
B1 2 4 (3) 3 4(3) 3 3(3) 3
B2 2 4(2) 3 3(2) 3 3(2) 3
BR 2 4(4) 4 4(4) 3 4(4) 4
CB3 2 3(3) 3 3(3) 3 3(3) 3
CB6 2 5 (5) 3 4(4) 4 4(4) 4
CM 4 5 (4) 3 5(4) 3 5(3) 3
DA 2 9 (6) 7 8 (6) 6 6 (5) 6
EP 2 9 (8) 8 8 (8) 8 8 (7) 7
EXP 10 7(7) 2 5(5) 2 4(4) 2
GP 2 4(2) 3 4(2) 3 4(2) 3
GW 10 6 (6) 3 4(4) 3 3(3) 3
GRP 3 4(4) 3 4(4) 3 3(3) 2
H3 3 7(7) 5 6 (6) 5 5(5) 4
H6 6 16(16) 10 13(13) 10 12(12) 10
HV 3 6 (2) 5 6 (2) 6 6 (2) 5
HSK 2 6 (6) 5 6 (6) 5 5(5) 5
KL 2 3(3) 2 3(3) 2 2(2) 2
LM1 3 5(3) 3 5(3) 3 5(3) 3
LM2 10 7 (6) 3 5(4) 2 4(3) 2
MC 2 5(5) 4 5(5) 4 4(4) 4
MR 3 4(4) 3 4(3) 3 4(3) 3
MCP 4 11(11) 4 10(10) 5 8(8) 4
MRP 2 5(5) 3 4(4) 3 4 (4) 3
MGP 4 4(2) 3 3(2) 3 3(2) 3
NF2 10 7(2) 4 6 (2) 3 6(2) 4
NF3 10 34(34) 24 30(30) 24 29(29) 24
PP 2 6 (6) 3 4(4) 3 4(4) 3
PRD 4 4(4) 3 3(3) 3 3(3) 3
PWQ 9 6 (6) 3 5 (5) 3 4 (4) 3
RG 10 9(3) 3 9(3) 3 9(3) 3
RB 10 7(2) 3 6(2) 3 5(2) 3
SAL 2 7(1) 3 5(1) 3 4(1) 3
SF1 2 4(4) 3 4 (3) 3 3(3) 3
SBT 2 4(2) 2 4(2) 2 4(2) 2
SWF 10 6 (3) 3 5(3) 3 5(3) 3
S5 4 9(4) 3 7 (4) 3 7(3) 3
S7 4 8 (4) 4 7(3) 3 7 (3) 3
S10 4 8 (4) 3 7(3) 3 7 (3) 3
SIN 20 13(7) 3 10(5) 3 8 (4) 3
WP 4 5(3) 3 4(3) 3 4 (3) 3
tr 299(227) 175 258 (199) 173 237 (181) 170
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We have so far conducted numerical testing of SAPS for vangauameter values using the generation
mechanism GM-I. The results obtained were very satisfgctve have shown that the best results of
SAPS were obtained fgt = 20 andé = 0.1. It will be interesting to see the results of SAPS for the a&bov
parameters values using the generation mechanism GM-hicéjehe results of SAPS using GM-II are
presented in Tablgd.9. Note that SAPS was not successftidaame 7 problems as in SAPS of Table
BE. From the total results in Tadleb.9, we see that SAPS uaessful in 4181 runs out of 4300 runs
with total fe=1,030,017. On the other hand, Tdbld 5.7 shdvas $APS was successful in 4176 runs out
4300 runs with total fe=1,021,630. These results show tA#tSis insensitive to GM-I and GM-II. This
is because — 0 faster thamA* — 0. Hence GM-Il— GM-| for a smallere in the stoppig condition of
equation [(3.710). However, our experience have shown th&Sdecomes sensitive to GM-1 and GM-II
for largere in the stopping condition. We have decided to choose GM-lilierrest of our numerical

studies.
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Table 5.9:Results of SAPS fop = 20 using 43 problems, GM-II.

TP n fe sr cpu
ACK 10 34793 100 0.120
AP 2 2755 100 0.003
BL 2 2754 100 0.003
B1 2 2934 100 0.003
B2 2 2845 98 0.003
BR 2 2487 100 0.003
CB3 2 2406 100 0.003
CB6 2 2534 100 0.003
CM 4 6697 100 0.010
DA 2 3218 98 0.003
EP 2 1742 97 0.003
EXP 10 26559 100 0.070
GP 2 2653 100 0.003
GW 10 53351 100 0.160
GRP 3 2653 100 0.890
H3 3 3505 100 0.020
H6 6 16650 100 0.210
HV 3 12439 84 0.010
HSK 2 2016 100 0.003
KL 2 4816 100 0.007
LM1 3 4973 100 0.006
LM2 10 37314 100 0.110
MC 2 2429 100 0.003
MR 3 18911 100 0.013
MCP 4 14062 100 0.027
MRP 2 2714 100 0.003
MGP 4 1896 100 0.007
NF2 10 16846 20 0.150
NF3 10 231860 100 0.410
PP 2 38428 100 0.140
PRD 4 1837 100 0.003
PWQ 9 10675 100 0.013
RG 10 44730 100 0.120
RB 10 96411 100 0.200
SAL 2 26038 99 0.061
SF1 2 1859 100 0.002
SBT 2 2107 85 0.003
SWF 10 56793 100 0.160
S5 4 5950 100 0.008
S7 4 5757 100 0.009
S10 4 5646 100 0.009
SINF 20 201941 100 1.290
WP 4 11033 100 0.012
tr 1,030,017 4181 4.278
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Next, we study the effect of varying the initial sample si¥eof S. We fixd = 0.1, 6 = 20, v = 1
and generate trial points using GM-I for this study. We runPSAusing three values @¥, namely3n,
5n and7n. For each value oiV, the SAPS algorithm was run 100 times on 12 representativelems.
The results are presented in Table’.10. The SAPS algoritamsuccessful in 1170, 1171 and 1166
runs out of 1200 runs foN = 3n, 5n and7n respectively. SAPS accomplished these successes for total
fe=590,095, 523,476 and 482,849 f§r= 3n, 5n and7n respectively. From the total results, we can see
that the parameteN = 7n is the best in terms of fe and cpu followed By = 5n. Note also that SAPS
exhibits similar results folV. = 3n and N = 5n in terms of sr. We have decided to use the size= 5n
because it has a slightly higher sr thAh= 7n. We know that a single iteration-based MSL is invoked
when all members of' are replaced. Therefore, intuitively speaking the largerX is, the smaller the

n. will be. This has been clearly reflected in Table.10. Fonge, then,. for the parametelN = 3n is
66, while that of N = 7n is 49.

Table 5.10:Results of SAPS for different sample sixe GM-I.
N =3n N =b5n
TP n fe sr cpu  ne fe sr cpu  ne
DA

N ="Tn
fe Sr cpu  ne

2 2924 94 0.003 6 2894 99 0.003 6 2759 98 0.003 5

EP 2 1648 98 0.003 8 2676 96 0.003 8 1537 95 0.003 6
GP 2 2634 99 0.003 3 2471 98 0.003 3 2492 98 0.003 2
EXP 10 26465 100 0.070 2 24137 100 0.070 2 23894 100 0.070 2
GW 10 52196 100 0.150 3 48315 100 0.140 2 47747 100 0.14 4
HV 3 12586 79 0.01 5 11435 78 0.01 5 10308 75 0.01 2
LM2 10 37091 100 0.110 2 35049 100 0.110 2 33878 100 0.110 2
NF3 10 237368 100 0.410 25 188142 100 0.350 19 162471 100 0.3PD

RG 10 44180 100 0.130 3 42866 100 0.120 2 41138 100 0.120 2
RB 10 89715 100 0.190 3 86965 100 0.190 3 79829 100 0.170 3
PP 10 37587 100 0.140 3 35364 100 0.140 2 35401 100 0.150 2
SWF 10 45701 100 0.120 3 43162 100 0.120 2 41395 100 0.110 2
tr 590,095 1170 1.343 66 523,476 1171 1.263 56 482,849 116@131. 49

Having determined the siz&¥ to use, we now investigate the effect of varying the paramet# the
MSL algorithm. We fixN = 5n, § = 0.1, 6 = 20. for this study. A series of runs of the SAPS algorithm
was conducted using the valuesygfnamely 1, 0.5 and 0.25. The results fo= 1, v = 0.5 andy = 0.25
are presented in Tad[e®]11, Table.12 and Tabld 5.13 rasggc
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The results for SAPS where MSL was implemented using 1 is presented in Tab[e5]11. Here again,
it is noteworthy that SAPS was not successful on the same Mgms, namely Epistatic Michalewicz
(EM), Modified Langerman (ML), Odd Square (OSP), Price’snBiator modelling (PTM) , Schaffer 2
(SF2), Shekel's foxholes (FX) and Storn’s Tchebychev (ST®erefore, the results for these 7 problems
are not represented in the total results. From the totaltsgsue see that SAPS with the parametet 1
was successful in 4167 runs out of 4300 runs with total fe;888. The total number ofi,(ny) iS

175(149). This indicates that out of 175 local searchesopmdd 149 attained the global minimum.
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Table 5.11:Results of SAPS usingy = 5n & vy = 1 using 43 problems, GM-I.

TP n fe sr cpu Nps(ng) Ne
ACK 10 31961 100 0.130 5(3) 3
AP 2 2600 100 0.003 3(3) 3
BL 2 2647 100 0.003 4(4) 2
Bl 2 2743 100 0.003 2(2) 2
B2 2 2800 97 0.004 3(2) 3
BR 2 2338 100 0.003 3(3) 3
CB3 2 2381 100 0.003 2(2) 2
CB6 2 2409 100 0.003 3(3) 3
CM 4 6496 100 0.010 4(3) 2
DA 2 2894 99 0.003 6(5) 6
EP 2 1676 96 0.003 8(8) 8
EXP 10 24137 100 0.070 3(3) 2
GP 2 2471 98 0.003 3(2) 3
GW 10 48315 100 0.150 2(2) 2
GRP 3 5966 100 0.090 3(2) 2
H3 3 2879 100 0.020 4(4) 3
H6 6 16353 99 0.200 9(9) 8
HV 3 11435 78 0.010 5(2) 5
HSK 2 1819 100 0.003 4(4) 3
KL 2 4637 100 0.007 2(2) 1
LM1 3 4809 100 0.007 4(2) 2
LM2 10 35049 100 0.100 3(3) 2
MC 2 2276 100 0.003 3(3) 3
MR 3 14908 100 0.010 3(3) 2
MCP 4 10278 100 0.020 6(6) 3
MRP 2 2572 100 0.003 3(3) 2
MGP 4 1845 100 0.007 2(2) 2
NF2 10 14542 20 0.140 6(1) 3
NF3 10 188142 100 0.340 22(22) 19
PP 2 35364 100 0.130 3(3) 2
PRD 4 1753 100 0.003 2(2) 2
PWQ 9 9707 100 0.020 3(3) 3
RG 10 42866 100 0.130 9(3) 2
RB 10 86965 100 0.190 5(2) 3
SAL 2 25866 96 0.070 3(1) 3
SF1 2 1780 100 0.002 3(3) 3
SBT 2 2053 84 0.003 3(2) 2
SWF 10 43162 100 0.120 5(2) 2
S5 4 5435 100 0.008 6(3) 3
S7 4 5736 100 0.009 7(3) 3
S10 4 5507 100 0.010 6(3) 3
SIN 20 182865 100 1.350 7(3) 2
WP 4 9161 100 0.010 3(3) 3

tr 911,598 4167 3.408 175(149)
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Table[5. TP shows the results for SAPS where MSL is implendentth v = 0.5. Note that SAPS was
not successful on the same 7 problems agyfer 1. Therefore, the results for these 7 problems are not
represented in the total results. From the total resultsegghat SAPS foy = 0.5 was successful in 4156
runs out of 4300 runs with total fe=831,421. The total nunmider,,(n,) is 152(142) which indicates that

93% of totaln,, attained the global minimum.
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Table 5.12:Results of SAPS usingy = 5n & v = 0.5 using 43 problems, GM-.

TP n fe sr cpu Nps(ng) Ne
ACK 10 28790 100 0.120 3(3) 3
AP 2 2612 100 0.003 3(3) 3
BL 2 2620 100 0.003 4(4) 2
Bl 2 2743 100 0.003 2(2) 2
B2 2 2786 98 0.003 3(2) 2
BR 2 2258 100 0.003 2(2) 2
CB3 2 2381 100 0.003 2(2) 2
CB6 2 2405 100 0.003 3(3) 3
CM 4 6308 100 0.010 3(3) 2
DA 2 2843 98 0.003 6(4) 5
EP 2 1618 97 0.003 7(7) 6
EXP 10 24209 100 0.070 3(3) 2
GP 2 2447 97 0.003 3(2) 3
GW 10 48335 100 0.160 2(2) 2
GRP 3 8450 100 0.130 4(4) 3
H3 3 2808 100 0.020 4(4) 3
H6 6 15702 99 0.190 9(9) 8
HV 3 11700 7 0.010 5(2) 5
HSK 2 1749 100 0.003 3(3) 3
KL 2 4608 100 0.070 2(2) 1
LM1 3 4594 100 0.006 3(2) 2
LM2 10 34145 100 0.110 2(2) 2
MC 2 2271 100 0.003 3(3) 3
MR 3 15410 100 0.010 3(3) 2
MCP 4 8538 100 0.020 4(4) 3
MRP 2 2577 100 0.003 3(3) 2
MGP 2 1821 100 0.007 2(2) 2
NF2 4 14039 12 0.130 5(2) 4
NF3 10 173192 100 0.300 20(20) 19
PP 10 35219 100 0.140 3(3) 2
PRD 2 1751 100 0.003 2(2) 2
PWQ 4 9628 100 0.010 3(3) 3
RG 10 37953 100 0.110 7(3) 2
RB 10 79549 100 0.170 4(2) 3
SAL 10 25288 98 0.070 3(1) 3
SF1 2 1796 100 0.002 3(2) 2
SBT 2 1979 80 0.003 3(2) 2
SWF 10 38529 100 0.120 3(2) 2
S5 4 5202 100 0.008 5(3) 3
S7 4 5065 100 0.008 5(3) 3
S10 4 4973 100 0.009 5(3) 3
SIN 20 141043 100 1.100 5(3) 2
WP 4 9487 100 0.010 3(3) 3

tr 831,421 4156 3.165 152(142) 136
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The results for the SAPS where MSL uses the parameter(.25 is presented in Tab[eGl3. SAPS
still unable to solve any of the 7 problems mentioned befdieerefore, the results for these 7 problems
are not represented in the total results. From the totaltsgsue see that SAPS with = 0.25 was
successful in 4154 runs out of 4300 runs with total fe=764, 7&he total number ofi,;(n,) is 148(136)

which shows that 92% of the total,, attained the global minimum.
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Table 5.13:Results of SAPS using = 5n & v = 0.25 using 43 problems, GM-I.

TP n fe sr cpu Nps(ng) Ne
ACK 10 28038 100 0.100 3(3) 3
AP 2 2590 100 0.003 3(3) 3
BL 2 2444 100 0.003 3(3) 2
Bl 2 2743 100 0.003 2(2) 2
B2 2 2814 100 0.003 3(2) 3
BR 2 2331 100 0.003 3(3) 3
CB3 2 2381 100 0.003 2(2) 2
CB6 2 2400 100 0.003 3(3) 3
CM 4 6143 100 0.010 3(3) 2
DA 2 2751 99 0.003 6(4) 5
EP 2 1607 92 0.002 7(7) 7
EXP 10 23890 100 0.070 3(3) 2
GP 2 2474 97 0.003 3(2) 3
GW 10 48741 100 0.160 2(2) 2
GRP 3 4920 100 0.080 2(2) 2
H3 3 2762 100 0.020 4(4) 3
H6 6 14749 100 0.190 8(8) 7
HV 3 11700 1 0.010 5(2) 5
HSK 2 1759 100 0.003 3(3) 3
KL 2 4504 100 0.007 2(2) 1
LM1 3 4511 100 0.006 3(2) 2
LM2 10 34295 100 0.100 2(2) 2
MC 2 2199 100 0.002 3(3) 3
MR 3 14466 100 0.010 2(2) 2
MCP 4 7718 100 0.020 4(4) 3
MRP 2 2487 100 0.003 3(3) 2
MGP 2 1821 100 0.007 2(2) 2
NF2 4 13615 12 0.120 4(1) 3
NF3 10 167293 100 0.310 19(19) 19
PP 10 35381 100 0.140 3(3) 2
PRD 2 1731 100 0.003 2(2) 2
PWQ 4 9526 100 0.010 3(3) 3
RG 10 34013 100 0.100 5(3) 2
RB 10 69925 100 0.170 4(2) 3
SAL 10 25053 96 0.070 3(1) 3
SF1 2 1724 100 0.002 2(2) 2
SBT 2 1944 77 0.003 2(2) 2
SWF 10 33251 100 0.100 3(2) 2
S5 4 4784 100 0.008 5(3) 3
S7 4 4627 100 0.008 4(3) 3
S10 4 4539 100 0.008 4(3) 3
SIN 20 110820 100 0.870 3(3) 2
WP 4 9300 100 0.010 3(3) 3

tr 766,764 4154 2.758 148(136)
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In summary, SAPS was successful in 4167, 4157 and 4154 ruraf d300 runs fory = 1, 0.5 and
0.25 respectively. SAPS achieved these successes fofd¢etl 1,598, 835,340 and 766,764 for= 1,
0.5 and 0.25 respectively. In conclusion= 1 is the best in terms of sr and= 0.25 is the best in terms
of fe. The totaln,s(ny) for v = 1, 0.5 and 0.25 are 175(149), 152(142) and 148(136) respéctilt is
clear that the choice of the parameter vajueas an effect om,, i.e.,n,s decreases agdecreases. The
reason for this trend is because the number,gfdepends on the number of pointsy, used in the single

iteration-based MSL. Clearly, the smaller the number offsoused in MSL, the smaller thg,, value.

5.3 Overall Performance

We have so far presented the results of MSA, MSA-I and SAP&aggly. In this section, we how compare
the best results obtained by each of the above algorithmte tdat we use the results of those functions
for which all the methods succeeded in finding the global mimn for fair comparison. In other words,
we use only 41 problems that were solved by the three algositimamely MSA_q 15, MSA-1 and SAPS.

We extract information for MSA_o.15, MSA-I and SAPS using Table®$.4 ahd3.13. These results are
summarized in TablE'R]L4, where we have also presentedttiepu and the number of problems,,;,
solved by an algorithm. Notice that the results presentddlime[5. T4 are different from the corresponding
total results in TablE®R4 ald5]13. This is because, we are insed the total results for 41 problems that

were solved by the three algorithms.

Table 5.14: Comparison of the algorithms using total result

Algorithm fe sr cpu P,y
MSA.—o.15 496,291 3700 1.73 41
MSA-I 510,620 3933 1.77 43
SAPS 748,229 4082 2.56 43

We rank order the algorithms using the data from TRRIE]5. t¥paesent in TablER15. In Tadle D 15,
it can be seen that there is no overall best performer in tefrtisree criteria, namely fe, sr and cpu. In
terms of fe, MSA—q.15 is the best performer. In terms of sr, SAPS is the best pedbmhile in terms of

cpu, MSA,—q.15 is the best performer.



5.4 Effect of temperature on step size parametef') 67

Table 5.15: Rank order of algorithms.

Rank 1 2 3

fe MSA.—0.15 MSA-I SAPS

Sr SAPS MSA-I MSA —o.15
cpu MSA.—0.15 MSA-I SAPS

5.4 Effect of temperature on step size parameter4;*)

In this section, we discuss the effect of temperature on tie size parameted{® in equation [ZB).

At initial stages of the algorithm, most of the trial point® accepted because the temperature is high.
As a result, the ratioya, of equation[[4]7) increases and consequently the step\sizéncreases, so as
to explore the search space. On the other hand, as the tdmpedacreases, few points are accepted.
Therefore, the ratiora, decreases and consequenilyj”* decreases, so that the algorithm focuses more
on exploitation. We have demonstrated this phenomena hirgriMSA once for each of the 4 different
problems, namely Hosaki (HSK), Goldstein and Price (GPgk8h5 (S5) and Rosenbrock (RB). Results
are presented in Figurés b1 192]5.3 5.4. Each gragkrsa\;* and temperature profiles. The
x-axis of each graph represents number of Markov chaing/aands represent&;® on the left-hand side
and temperature on the right-hand side. The figures vary fnailem to problem. For example in Figure
B, A increases up to its highest peak whep,,.t., = 30 with T; = 0.1 before it starts to decrease. On
the other hand, in Figufe®.2; increases up to its maximum whep,,,x., = 18 with T; ~ 1.5 before

it starts to decline.
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Figure 5.1: Effect ofl; on A{* for HSK problem.
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Figure 5.2: Effect of; on A{* for GP problem.
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Figure 5.3: Effect off; on A{* for S5 problem.
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Figure 5.4: Effect of; on A;* for RB problem.
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5.5 A study of the critical distanceA{ in the single iteration-based MSL

In this section, we explain how the critical distané of equation [[ZP) changes in the single iteration-
based MSL. The distanc®{ is used to control the number of local search made. The \afus equation
#@3) is given by

AY = max{A{* BA;}, (5.4)
wheref is equal to 20 in regard to the results of Tabld 5.7. For thislystve used two functions and
ran SAPS using the best parameter values found. Resultsesenped in Figurds 3.5 ahdb.6. The
axis represents the number of Markov chaipsixis representd;* on the left-hand side and{ on the

right-hand side.

An important feature of both figures is that they usg¢ = 3A§* for a sizeable number of Markov
chains before using\§ = Aj“. Towards the end of a run the SAPS algorithm again uses- 3A;*. For
example, in FigurEBl5A¢ takes the valuggAj® = 3 from the 1% to the 22"¢ Markov chain; it takes the

values ofA3$? from the23™ to 45'" Markov chain. FinallyA¢ takes the value ofA3® = 3.

The A{ used by the single iteration-based MSL has been indicattd«wn each figure. This feature
of the SAPS indicates that more local searches are perfotometds the beginning and towards the end

of a run.
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Figure 5.5: Profile oA{ and Aj“ for BP problem.
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Figure 5.6: Profile ofA7 andA§* for KL problem.

5.6 Summary

In this chapter, we have presented the numerical resulB$MMPS, and the two hybrids, namely MSA
and SAPS. We have applied the algorithm to different tesblpros and compared the different hybrids

developed. Results have shown that the new algorithms ficeeeft and robust.



Chapter 6

Conclusion and future research

The objective of this dissertation is devoted to design &epatsearch based global optimization. To
achieve this objective, we have proposed two global opttion based on PS. They are modified simu-

lated annealing (MSA) and simulated annealing driven pagearch (SAPS).

We have carried out an extensive numerical testing of the algarithms using a large set of test
problems. We have first empirically found the optimal valoéshe parameters of both the algorithms.

Sensitivity analysis of some parameters is also performed.

We have conducted numerous runs of each algorithm using thaneone value of some parameters.
Results obtained by the algorithms for all runs were verigfattory. Both MSA and SAPS have proved
to be efficient and reliable in terms of the number of functealuations, cpu times and locating the global

minimum value.

We have also developed a modified pattern search (MPS) fak toinimization. MPS have improved

the pattern search method (MPS) considerably in terms aieiity and reliability.

The approach we adopted in designing the PS based globatination is new and therefore there
will be further scope to develop more efficient and relialdlebgl optimization algorithm for both uncon-

strained and constrained problems.

We have used a single iteration based MSL algorithm withenftamework of simulated annealing.
Hence the stopping condition used was that of the simulatedaling. An important aspect that requires
further research is to theoretically study the criticatalige of the MSL which will also form part of our

future work. One can also study the reasons for failure ofesnonseparable functions.
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Appendix A

The multi level single linkage algorithm

MSL [E] is a modification of the multistart (Msmﬁll] methodhigh overcomes some of the drawbacks
of MS. It consists of two phases in an iteration: a global phersd a local phase. In the global phase, the
function is evaluated @/ random points. In the local phasg; N, sample points are scrutinized to perform
local searches in order to yield a candidate global minimizberev is the iteration an® < v < 1. The
local search procedure will be applied to a subsetd¥ points. We denote the critical distancehyThe
goal for the MSL algorithm is to find all local minima. We nowegent the MSL algorithm at the™

iteration in full details.

The MSL algorithm.

1. SampleN points from the search regidn and calculate the function valug$z?), i = 1,--- | N,
of these points. Add these points to the previously dréwn 1) N points in all earlier iterations.

Discard a percentage of worse points.

2. Order the sample points such thfgt:?) < f(z£ ), 1 <i < R, R being the number of remaining
points, i.e.,R = yuN. Start a local search from each new pairft except if there is another
sample point or previous detected local minimum within thiécal distancer, of 2. Add new

local minimum point found during the local search to a sebc&l minima found so far.

3. If the stopping condition is satisfied then stop else gaddp &.
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Remark:

1. The distance, (computed for every" iteration) is computed by

1
1 N) "
ro =77 11+ 2yu(@)o "N

Al
5 N | (A1)

wherep(Q) is the Lebesgue measure of the regiare = 4, andI'(n) is the gamma function.



Appendix B

A collection of benchmark global
optimization test problems

In this appendix, we presend well-known benchmark problems which are often used by dlopé-

mization researchers. These problems represent vari@agathristic terrain found in real-world prob-
lems,.e.g., unimodal or multimodal, with or without plaisaand ridges, and high or low dimensional.
Some of these test problems (TP) can be found in textbookadividual research articles, or at differ-
ent web sites. A collection of these 50 problems is found ineAl al. B]. Please note that in several
cases the global minimizer* and corresponding global minimuyf{z*) are known only as a numerical

approximation.

1. Ackley’'s Problem (ACK)

min f(x) = —20exp <0.2 inﬂ) — exp (% Zcos(%mﬁ) +20+e (B.1)
\ =1 i=1

subject to =30 <x; <30,i€{1,2,...,n}. (B.2)

3

The number of local minima is not known. The global minimunioisated at the origin, i.e, with

f(z*) = 0. Tests were performed for = 10.
2. Aluffi-Pentini’s Problem (AP)

min f(z) = 0.2521* — 0.521% + 0.1z; + 0.525> (B.3)
X

subject to —10 < z1, 29 < 10. (B.4)

The function has two local minima, one of them is global wjtfe*) ~ —0.3523 located at

(—1.0465,0).
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3. Becker and Lago Problem (BL)

min f(z) = (21| = 5)% + (|| - 5)? (B.5)
subject to —10 < z1, 29 < 10. (B.6)
The function has four minima located &t = (+5, £5), all with f(z*) =0
4. Bohachevsky 1 Problem (B1)
mﬂﬁin f(x) = 22+ 223 —0.3cos(3mx1) — 0.4cos(4mwy) + 0.7 (B.7)
subject to —50 < 1,29 < 50. (B.8)

The number of local minima is unknown but the global minimizelocated at:* = (0, 0) with

fa)=0.

5. Bohachevsky 2 Problem (B2)
min f(z) = 22 + 223 — 0.3 cos(3mx1) cos(4mas) + 0.3 (B.9)
subject to —50 < x1, 29 < 50. (B.10)

The number of local minima is unknown but the global minimizelocated at:* = (0,0) with

f(a*) =0,

6. Branin Problem (BR)
min f(z) = a(zy — bw1? + ey — d)? + g(1 — h)cos(z1) + g, (B.11)
(B.12)

subject to —5< 121 <10,0 < x9 <15,

wherea = 1, b = 5.1/(47?), ¢ = 5/, d = 6, g = 10, h = 1/(87). There are three minima, all

global, in this region. The minimizers are

¥~ (—m,12.275), (7, 2.275), (3w, 2.475)

with f(z*) = 5/(4n).

7. Camel Back—3 Three Hump Problem (CB3)
min f(z) = 22} — 1.0521 + 228 + 2129 + 23 (B.13)
(B.14)

X
subject to -5 < x1,29 <5.
= (0,0) with f(z*) = 0.

The function has three local minima, one of them is globahied at:*
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8. Camel Back—6 Six Hump Problem (CB6)

min f(z) =

4oy — 2127 + %x? + w79 — 423 + 423
xT
subject to

(B.15)
) S T1,T2 é 9.

(B.16)
This function is symmetric about the origin and has thregumate pairs of local minima with values

f ~ —1.0316, —0.2154, 2.1042. The function has two global minimaat ~ (0.089842, —0.712656)
and(—0.089842,0.712656) with f(z*) ~ —1.0316.

9. Cosine Mixture Problem (CM)

max flx) =

n

0.1 Zn: cos(bmx;) — Z z7

(B.17)
i=1
subjectto —1 <uz; <1,i€{1,2,

..,n}. (B.18)
The global maxima are located at the origin with the functratues0.20 and0.40 for n = 2 and
n = 4, respectively.

10. Dekkers and Aarts Problem (DA)

min f(z) = 10527 + 23
x

— (22 + 22)?2 +107°(2? + 23)* (B.19)
subject to =20 < 71,290 <20

(B.20)
The origin is a local minimizer, but there are two global miiders located at* = (0, 15) and
(0, —15) with f(z*

) = —24776.518.
11. Easom Problem (EP)

min f(z) = —cos(xzy)cos(zz) exp (—(z1 — )% — (w2 — 7)?) (B.21)
subject to —10 < z1, 29 < 10. (B.22)
The minimum value is located &, ) with f(z*) =
zero, when away fronir, ).

—1. The function value rapidly approaches
12. Epistatic Michalewicz Problem (EM)

mln f(x

. 9 2m
sin yz sin | —— s
T

(B.23)
subject to Og i <mie{l,2,...,n},

(B.24)
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where
x;cos(f) — xip1sin(f), i=1,3,5,...,<n
Yi =4 x;sin(f) + zipqcos(h), i=2,4,6,...,<n , (B.25)
z;, 1=n

andd = g, m = 10.

The number of local minima is not known but the global miniemiis presented in TableB.1.

Table B.1:Epistatic Michalewicz's global optimizers.
n  f(z") x*

5 -4.687658 (2.693,0.259,2.074,1.023,1.720)
10 -9.660152 (2.693,0.259,2.074,1.023,2.275,0.5088201794,2.219,0.533)

13. Exponential Problem (EXP)

max f(x) = exp (—0.5 Zxﬁ) (B.26)
i=1
subjectto —1<uz; <1,i€{1,2,...,n}. (B.27)

The optimal valuef (z*) = 1 is located at the origin. Our tests were performed wits 10, 20.

14. Goldstein and Price (GP)

min f(x) = [1+ (z1 + 22+ 1)? (19 — 142y + 32% — 14as + 6122 + 323)]  (B.28)
T
x [30 + (221 — 3w2)? (18 — 32x1 + 127 + 4839 — 36122 + 2723) |

subject to —2< 21,29 < 2. (B.29)

There are four local minima and the global minimum is located" = (0, —1), with f(z*) = 3.

15. Griewank Problem (GW)

. 1 . 9 - Ty
min fx) = 14 pw ;xi - ECOS <\7> (B.30)
subjectto —600 < x; < 600,i € {1,2,...,n}. (B.31)
The function has a global minimum locatedat = (0,0,...,0) with f(z*) = 0. Number of

local minima for arbitraryn is unknown, but in the two dimensional case there are somedds@D
minima. Tests were performed far= 10. Note that this function becomes simpler and smoother

in the numeric space, and easy to solve, as the dimensiooétite search space is increasQ [34].
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16. Gulf Research Problem (GRP)

99

. (u; — x)) } ’

min f(z) = exp| ———— ) —0.01 x 4| , B.32
s = 3 e (1 (8.32)
subjectto 0.1 < z1 <100,0 < 29 < 25.6, and0 < x3 < 5, (B.33)

whereu; = 25 + [-501n(0.01 x i)]/1°. This problem has a global minimizer @, 25, 1.5) with
fz®) =0.

17. Hartman 3 Problem (H3)

4
mln flx Z ¢ Z aij(x pzj (B.34)

i=1
subject to 0<z; < 1,3 € {1,2,3} (B.35)

with constantsy;;, p;; andc; given in Tabl€B.P. There are four local minimé?® ~ (p;1, pi2, Pi3)

with f(z!°¢) ~ —¢;. The global minimum is located at

~ (0.114614, 0.555649, 0.852547)

with f(z*) ~ —3.862782.

Table B.2:Data for Hartman 3 problem.

oG ij Pij

=1 2 3 j=1 2 3
1 1 3 10 30 0.3689 0.117 0.2673
2 12 0.1 10 35 0.4699 0.4387 0.747
3 3 3 10 30 0.1091 0.8732 0.5547
4 32 0.1 10 35 0.03815 0.5743 0.8828

18. Hartman 6 Problem (H6)

4
mln flx Z C; €Xp Z aij(x pzj (B.36)

i=1 =
subject to -0<z; < 1,3 e{1,...,6}, (B.37)

with constantsa;; and ¢; given in Table[B.B and constants; in Table[E:4. There are four lo-
cal minima,z!° =~ (p;1,...,pig) With f(2°°) ~ —¢;. The global minimum is located at* ~

(0.201690, 0.150011, 0.476874, 0.275332,0.311652, 0.657301) with f(z*) ~ —3.322368.
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Table B.3:Data for Hartman 6 problem.
7 C; aij

j=1 2 3 4 5 6

1 10 3 17 35 17 8
12 005 10 17 01 8 14
3 35 17 10 17 8
3.2 17 8 005 10 01 14

A WN P
w

Table B.4:Data for Hartman 6 problem.

i Dij

j=1 2 3 1 5 6
1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

19. Helical Valley Problem (HV)

min f(z) = 100 [(@ —100)2 + (\/(2? + 22) — 1)2] + a2 (B.38)
subject to —10 < 1,290,723 < 10 (B.39)
where
2L tan~1 =, if 1 >0
=4 " ! (B.40)

%tan_li—f + %, ifxy <0
This is a steep-sided valley which follows a helical pathe Tiinimum is located at* = (1,0,0)

with f(z*) = 0.
20. Hosaki Problem (HSK)

min f(z1,22) = (1 — 8wy + 72} — Lo} + Lat) 23 exp(—u2) (B.41)
x

subject to 0<21<5,0< 29 <6. (B.42)
There are two minima of which the global minimumfiéz*) ~ —2.3458 with z* = (4, 2).

21. Kowalik Problem (KL)

11 2
. 1‘1(1 + .%'Qbi)
_ . B.43
mxlnf(w) ; (a (1 + .%'3[)@ + 1‘4[)22 ( )
subjectto 0 <ux; <0.42,7 € {1,2,3,4}. (B.44)

The values for; andb; are given in TablEEI5:
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Table B.5:Data for Kowalik problem.
i 1 2 3 4 5 6 7 8 9 10 11
a; 0.1957 0.1947 0.1735 0.16 0.0844 0.0627 0.0456 0.0342 18.0320235 0.0246
b; 0.25 0.50 1.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

This is a least squares problem with a global optimal valte*) ~ 3.0748 x 10~ located at
x* ~ (0.192,0.190,0.123,0.135).

22. Levy and Montalvo 1 Problem (LM1)

n—1
min f(z) = % (10 sin?(my1) + Y (g — 1) [1+ 10 sin2(ﬂyi+1)]> (B.45)
i=1
+%(yn - 1)2
(B.46)

subject to —-10 <x; <10,i € {1,2,...,n}
wherey;, = 1 + %(mi + 1). There are approximately” local minima and the global minimum is
—1). Our tests were performed with= 3.

known to bef (z*) = 0 with z* = (-1, -1, ...,

23. Levy and Montalvo 2 Problem (LM2)

n—1
min f(x) = 0.1(sin?(37zy) + Z(mz — 1)?[1 + sin® (374 1] (B.47)
i=1
(2, — 1)?[1 + sin®(27z,,)])
subject to —5<ux; <5i€{l,2,...,n}. (B.48)
There are approximatelys™ minima and the global minimizer is known to be
z* = (1,1,...,1) with f(z*) = 0. Our tests were performed with= 10.
24. McCormick Problem (MC)
mxin f(x) = sin(zy + 22) + (21 — 22)% — (3/2)x1 + (5/2)22 + 1 (B.49)
subject to —1.5 <2 <4, -3< 29 <3. (B.50)
This problem has a local minimum .59, 1.59) and a global minimum at
o* ~= (—0.547, —1.547) with f(2*) ~ —1.9133.
25. Meyer and Roth Problem (MR)
> I1$3t‘ 2
: _ ! — B.51
min f(z) Z; < (STt > (B.51)
(B.52)

subjectto  —20 < z; < 20,i € {1,2,3}.
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This is a least squares problem with minimum vafge*) ~ 0.4x10~* located atr* ~ (3.13,15.16,0.78).

Table[B.® lists the parameter values of this problem.

Table B.6:Data for Meyer & Roth problem.

7 ti Vi Yi

1 1.0 1.0 0.126
2 2.0 1.0 0.219
3 1.0 2.0 0.076
4 2.0 2.0 0.126
5 0.1 0.0 0.186

26. Miele and Cantrell Problem (MCP)

mxin f(x) = (exp(x1) — 22)* +100(xy — 23)% + (tan(zs — 24))* + 218 (B.53)

subject to —1<z; <1,ie€{1,2,3,4}. (B.54)

The number of local minima is unknown but the global minimisdocated at:* = (0,1, 1, 1) with

f@*) =o.

27. Modified Langerman Problem (ML)

5
mxin flz)= — Z ¢cjcos (mdj) exp (—d; /) , (B.55)
j=1

subjectto 0 <uz; <10,i € {1,2,...,n}, (B.56)

n

whered; = (z; — a;;). The test used = 10. The constants; anda;; are given in TablEBI7.
=1

Table B.7:Data for modified Langerman problem.

J Cj aji

i=1 2 3 4 5 6 7 8 9 10
0.806 9.681 0.667 4.783 9.095 3,517 9.325 6.544 0.211 5.12220
0.517 9.400 2.041 3.788 7.931 12.882 2.672 3568 1.284 7.08374
0.100 8.025 9.152 5.114 7.621 4564 4711 2996 6.126 0.78482
0.908 2.196 0.415 5.649 6.979 9510 9.166 6.304 6.054 9.31.426
0.965 8.074 8.777 3.467 1.867 6.708 6.349 4534 0.276 7.6B367

a b wnN -

The number of local minima is not known, but the global miniane shown in TablEB18.
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Table B.8:Global optimizers for modified Langerman problem.
n  flz*) z*

5 -0.965 (8.074,8.777,3.467, 1.867, 6.708)
10 -0.965 (8.074,8.777, 3.467, 1.867, 6.708, 6.349, 46246, 7.633, 1.567)

28. Modified Rosenbrock Problem (MRP)
min f(z) = 100(zy — 2122 + [6.4(z5 — 0.5)% — 1 — 0.6] (B.57)
subject to -5 < x1,29 <5. (B.58)

This function has two global minima each wiftiz*) = 0 (corresponding to the intersection of two
parabolas) and a local minimum (where the parabolas appneébout intersection). The global

minima are located at* ~ (0.3412,0.1164), (1, 1).
29. Multi-Gaussian Problem (MGP)
5
max flz)= Zai exp (—((xl — bi)2 + (2o — ci)Q)/diQ) (B.59)
=1
subject to —2< 2,29 < 2. (B.60)

The function has one global maximum &t ~ (—0.01356, —0.01356) with f(z*) ~ 1.29695.
There are also 4 other local maxima and a saddle point. Védueke parameters;, b;, ¢;, andd;

are given in TablgBI9.

Table B.9:Data for Multi-Gaussian problem.

7 a; bi Cj dl

1 0.5 0.0 0.0 0.1
2 1.2 1.0 0.0 0.5
3 1.0 0.0 -0.5 0.5
4 1.0 -0.5 0.0 0.5
5 1.2 0.0 1.0 0.5

30. Neumaier 2 Problem (NF2)

n n 2

min f(x) = Z (bk — Z xﬁ) (B.61)
k=1 =1

subjectto 0 <uz; <mn,ie€{1,2,...,n}. (B.62)

We consider a case when= 4 andb = (8, 18, 44, 114). The global minimum igf(1,2,2,3) = 0.
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31. Neumaier 3 Problem (NF3)

min f(z) = D (@i =17 = wimig (B.63)
=1 =2
subjectto —n? <x; <n?ie{1,2,...,n}. (B.64)

The case considered hereris= 10. The number of local minima is not known, but the global

minima can be expressed as:

fla*) = —”(”+4g(”_ D) ef =i(n+1—1i).

The global minima for some values ofare presented below.

Table B.10:Global minima for Neumaier 3 problem.
n 10 15 20 25 30

f(z*) -210 -665 -1520 -2900 -4930

32. Odd Square Problem (OSP)

min f(z) = — (1.0 4+ 0.2d/(D + 0.01)) cos (Dr) e~ /27 (B.65)
subject to —15<z; <15,i € {1,2,...,20} (B.66)
where
d= Z(alcZ — b))%, D= +/n(max|z; —b;]),
i=1
and

b=(1,1.3,0.8,-0.4,-1.3,1.6, -2, —6,0.5,1.4), bigy; = b;,i = 1,2,--- , 10

The number of local minima for a givem is not known but the global minimum is known to be

f(a*) ~ —1.143833, 2* = b (many solutions near b). We used: = 10 in our experiment.

33. Paviani Problem (PP)

10 02

mxin f(z) = Z [(111(@ —2))2 + (In(10 — CUZ))Q} - (H acZ) (B.67)
i=1 i=1

subject to 2<x;<10,1€{1,2,...,10}. (B.68)

This function has a global minimizer af ~ 9.351 for all ¢, with f(z*) ~ —45.778.
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34. Periodic Problem (PRD)
min f(z) = 14 sin?z; +sin? a9 — 0.1exp(—x12 — 29?) (B.69)
xT
subject to —10 < z1, 29 < 10. (B.70)

There are 49 local minima all with value 1 and global minimaeeted at:* = (0, 0) with f(z*) =
0.9.

35. Powell's Quadratic Problem (PWQ)
min f(z) = (21 + 1021)% + 5 (23 — 24)” + (02 — 2w3)" + 10 (21 — 24)"* (B.71)
subject to —10 < z; < 10,7 € {1,2,3,4}. (B.72)

This is a unimodal function wittf (z*) = 0, 2* = (0,0,0,0). The minimizer is difficult to obtain

with accuracy as the Hessian matrix at the optimum is simgula

36. Price’s Transistor Modelling Problem (PTM)

4
min f(z) = VD (e + 52 (B.73)
k=1
subjectto —10 < z; < 10,7 € {1,2,...,9}, (B.74)

where
o =(1 — z129)z3{explrs(gix — gaprr x 1073 — gspws x 1073)] — 1} — gsp + gapa,
B =(1 — z122)z4{explre(g1r — gor — garw7 X 107° + ggpwg x 107%)] — 1}

— 95k1 + G4k,

Y =T1X3 — T2X4.

The values ofy;;, are given in TablEB1.

Table B.11:Data for Price’s transistor modelling problem.

7 Jik

k=1 2 3 4
1 0.485 0.752 0.869 0.982
2 0.369 1.254 0.703 1.455
3 5.2095 10.0677 22.9274 20.2153
4 23.3037 101.779 111.461 191.267
5 28.5132 111.8467 134.3884 211.4823

The global minimum occurs very close (©.9,0.45, 1,2, 8,8,5,1,2) with f(z*) = 0. The number

of local minima is unknown.
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37. Rastrigin Problem (RG)

min f(z) = 10n + Z [27 — 10cos (2ma;)] (B.75)
i=1
subjectto —5.12 < x; <5.12,i € {1,2,...,n}. (B.76)

The total number of minima for this function is not exactlyokm but the global minimizer is located
atz* = (0,0,...,0) with f(z*) = 0. Forn = 2, there are about 50 local minimizers arranged in a

lattice like configuration. Our tests were performed with- 10.

38. Rosenbrock Problem (RB)
n—1 )
mxin f(z) = Z [100 (i1 — x?)" + (z; — 1)2 (B.77)
=1
subjectto  —30 < =x; <30,i € {1,2,...,n}. (B.78)
Our tests were performed with= 10. This function is known as the extended Rosenbrock function

It is unimodal, yet due to a saddle point it is very difficuliéaate the minimizes* = (1,1,...,1)

with f(z*) = 0.

39. Salomon Problem (SAL)

min f(x) = 1 — cos (27||z]]) + 0.1||z|| (B.79)
€T
subject to —100 < x; <100 (B.80)
n
wherel|z|| = ,|> 7. The number of local minima (as a function @f is not known, but the
=1
global minimizer is located at* = (0,0,0,...,0) with f(z*) = 0. Our tests were performed with
n = 10.

40. Schaffer 1 Problem (SF1)

(sin/zF7a3) 05
(140.001 (22+22))”
subjectto  —100 < z1, 22 < 100. (B.82)

min f(z) = 0.5+ (B.81)

The number of local minima is not known, but the global minmmis located at:* = (0,0) with
f(a*) =0
41. Schaffer 2 Problem (SF2)
min f(z)= (23 +23)" (sin? (50(z? + 23)%1) + 1) (B.83)

subject to —100 < x1, o < 100. (B.84)



A collection of benchmark global optimization test probtem 87

The number of local minima is not known, but the global minmmis located at:* = (0,0) with

f(a*) =o.

42. Schubert Problem (SBT)

5

min f(x) =TTy | D Jcos (G + D +j) (B.85)
j=1
subjectto —10 < z; <10,i € {1,2,...,n}. (B.86)

Our tests were performed withh = 2. The number of local minima for this problem (given is
not known but forn = 2, the function has 760 local minima, 18 of which are globahwfitz*) ~

—186.7309. All two dimensional global minimizers are listed in TabIER:

Table B.12:Global optimizers for Schubert problem.

*

T

(-7.0835,4.8580), (-7.0835,-7.7083), (-1.4251,-7.0835 (5.4828,4.8580),  (-1.4251,-0.8003),
(4.8580,5.4828),  (-7.7083,-7.0835), (-7.0835,-1.4251}-7.7083,-0.8003),  (-7.7083,5.4828),
(-0.8003,-7.7083), (-0.8003,-1.4251),  (-0.8003,4.9580 (-1.4251,5.4828),  (5.4828,-7.7083),
(4.8580,-7.0835),  (5.4828,-1.4251),  (4.8580,-0.8003)

43. Schwefel Problem (SWF)
min f(z) = — Zmz sin <\/ |ml|> (B.87)
=1
subjectto —500 < x; < 500,7 € {1,2,...,n}. (B.88)

The number of local minima for a givem is not known, but the global minimum valygz*) ~

—418.9829n is located at* = (s, s,...,s), s = 420.97. Our tests were performed with= 10.

44. Shekel 5 Problem (S5)

1
min f(z) = - — (B.89)
Y @ ay)+e
j=1
subjectto 0 <z; <10,5 € {1,2,3,4}, (B.90)

with constantsz;; andc; given in TableLB.IB below. There are five local minima and tlubg

minimizer is located at* = (4.00,4.00,4.00, 4.00) with f(z*) ~ —10.1532.
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Table B.13:Data for Shekel problem family.

1 Qij Ci
j=1 2 3 4
S5 1 4 4 4 4 01
2 1 1 1 1 02
3 8 8 8 8 02
4 6 6 6 6 04
5 3 7 3 7 04
S7 6 2 9 2 9 06
7 5 5 3 3 03
S10 8 8 1 8 1 07
9 6 2 6 2 05
10 7 36 7 36 05
45. Shekel 7 Problem (S7)
min f(z) = — Z ! (B.91)
x o ‘ 4 '
Y (wy —ay) e
=1
subjectto 0 <z; <10,5 € {1,2,3,4}, (B.92)

with constants;; andc; given in Tabl€B.IB. There are seven local minima and theagiinimizer

is located at:* = (4.00,4.00, 4.00,4.00) with f(z*) ~ —10.4029.

46. Shekel 10 Problem (S10)

—_

0

4
=1
J E azg + (&7

i=1
subjectto 0 <z; <10,5 € {1,2,3,4} (B.94)

(B.93)

min f(x
€T

with constants:;; andc; given in TabldB.IB. There are 10 local minima and the globainmizer

is located at:* = (4.00,4.00,4.00, 4.00) with f(z*) ~ —10.5364.
47. Shekel's Foxholes (FX)

(B.95)

30
mxin flx) = - Z
: CJ + Z a]Z

subjectto 0 < x; < 10,z € {1,2,...,10}. (B.96)

Our tests were performed with= 5 and10. The constants; anda; are given in Table 4. The

number of local minima is not known, but the global minima presented in TabEeB.L5.
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Table B.14:Data for Shekel’'s foxholes problem.

J cj aji

i=1 2 3 4 5 6 7 8 9 10
0.806 9.681 0.667 4.783 9.095 3,517 9.325 6.544 0.211 5.12220
0.517 9.400 2.041 3.788 7.931 2.882 2.672 3568 1.284 7.08374
0.100 8.025 9.152 5.114 7.621 4564 4.711 2996 6.126 0.78482
0.908 2.196 0.415 5649 6.979 9510 9.166 6.304 6.054 9.3¥.A26
0.965 8.074 8.777 3.467 1863 6.708 6.349 4,534 0.276 7.6B367
0.669 7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.48208
0.524 1.256 3.605 8.623 6.905 4584 8.133 6.071 6.888 4.18448
0.902 8.314 2.261 4.224 1781 4.124 0.932 8.129 8.658 1.20962
0.531 0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.97B37
10 0.876 7.305 2.228 1.242 5928 9.133 1.826 4.060 5.204 38.78.247
11 0.462 0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 13.2B.016
12 0.491 2.699 3516 5874 4.119 4.461 7.496 8.817 0.690 36.59.789
13 0.463 8.327 3.897 2.017 9570 9.825 1.150 1.395 3.885 46.38.109
14 0.714 2.132 7.006 7.136 2.641 1.882 5943 7.273 7.691 02.88.564
15 0.352 4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 19.28670
16 0.869 8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 72.271.826
17 0.813 8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 54.490.591
18 0.811 4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 28.38.740
19 0.828 2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 09.96.675
20 0.964 6.306 8583 6.084 1.138 4.350 3.134 7.853 6.061 77.4%.258
21 0.789 0.652 2.343 1370 0.821 1.310 1.063 0.689 8.819 38.83.070
22 0.360 5,558 1.272 5756 9.857 2.279 2.764 1.284 1.677 41.24.234
23 0.369 3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 80.22.027
24 0992 8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 92.40.064
25 0.332 1460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 25.2D.224
26 0.817 0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 24.00.644
27 0.632 0.679 2.800 5.523 3.049 2968 7.225 6.730 4.199 49.69.229
28 0.883 4.263 1.074 7.286 5599 8.291 5.200 9.214 8.272 84.38.506
29 0.608 9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 31.88.732
30 0.326 4.138 2,562 2532 9.661 5.611 5500 6.886 2.341 99.68.500

©O©oOo~NOOODWNPRE

Table B.15:Global optimizers for Shekel’s foxholes problem.
n f(z™) x*

5 -10.4056 (8.025, 9.152, 5.114, 7.621, 4.564)
10 -10.2088 (8.025, 9.152,5.114, 7.621, 4.564, 4.7716268926, 0.734, 4.982)

48. Sinusoidal Problem (SIN)

min fx)= —[ATlLsin(x; — 2) + [[[-, sin(B(z; — 2))] (B.97)

subject to 0<uz;<180,i € {1,2,...,n}. (B.98)

The variabler is in degrees. Parametdraffects the amplitude of the global optimumB; affects
the periodicity and hence the number of local minimahifts the location of the global minimum;
andn indicates the dimension. Our tests were performed wlith= 2.5, B = 5,z = 30, and

n = 10 and20. The location of the global solution is at = (90 + 2,90 + z, ..., 90 + z) with the
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global optimum value of (z*) = —(A + 1). The number of local minima increases dramatically in

dimension, and wheB = 5 the number of local minima is equal to:

[n/2] nl
g2 B.99
; ((n—Qz‘)!(zz‘)! ) ( )
49. Storn’s Tchebychev Problem (ST)
min f(z) = p1 +p2 + ps, (B.100)
where
(u—d)? ifu<d n
P = w=3 (12",
0 ifu>d i=1
(v—d)? ifv<d n .
p2 = v=) (-1.2)"
0 ifv>d i=1
(w; —1)? ifw;>1
m n 94 n—i
p3:Z (wj+1)2 if w; < -1 wj :Z<Ej_1> L,
j=0 i=1
0 if —1<w;<1

forn =09: x; € [—128,128]", d = 72.661, andm = 60
forn=17. xz; € [—327687 32768]", d = 10558.145, andm = 100.

The number of local minima is not known but the global minimigmknown to be as shown in

Table[BT6. Our tests were performed with= 9.

Table B.16:Global optimizers for Storn’s Tchebychev problem.

9 0 (128, 0, -256, 0, 160, 0, -32, 0, 1)
17 0 (32768, 0, -1331072, 0, 21299, 0, -180224, 84480, 0421532688, 0, -128, 0, 1)

50. Wood'’s Problem (WP)
min f(z) = 100(xa — 23)2 + (1 — 21)? + 90(z4 — 23)% + (1 — x3)? (B.101)
+10.1[(z2 — 1)2 + (24 — 1)?] + 19.8(29 — 1)(24 — 1)
subject to —10 < z; < 10,3 € {1,2,3,4}. (B.102)
The function has a saddle nedr, 1,1, 1). The only minimum is located at* = (1,1,1,1) with
fz*) =0.
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