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Abstract

This dissertation is concerned with the unconstrained global optimization of nonlinear problems. These

problems are not easy to solve because of the multiplicity oflocal and global minima. In this dissertation,

we first study the pattern search method for local optimization. We study the pattern search method

numerically and provide a modification to it. In particular,we design a new pattern search method for

local optimization. The new pattern search improves the efficiency and reliability of the original pattern

search method. We then designed two simulated annealing algorithms for global optimization based on

the basic features of pattern search. The new methods are therefore hybrid. The first hybrid method is the

hybrid of simulated annealing and pattern search. This method is denoted by MSA. The second hybrid

method is a combination of MSA and the multi-level single linkage method. This method is denoted

by SAPS. The performance of MSA and SAPS are reported throughextensive experiments on 50 test

problems. Results indicate that the new hybrids are efficient and reliable.

Keywords: Global optimization, pattern search, simulated annealing, multi level single linkage, non-

linear optimization, hybridization.
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Nomenclature

Acronyms

PS Pattern search

MPS Modified pattern search

SA Simulated annealing

MSA Modified simulated annealing

SAPS Simulated annealing driven pattern search

MSL Multi level single linkage

Superscripts used throughout this dissertation

k Iteration counter

sa Simulated annealing

t Temperature counter

General symbols

Ω Search region

N Sample size

n Dimension of the problem

f Objective function

x A vector

min/max Minimize/Maximize

xi Theith component of the vectorx

li Lower bound in theith dimension

ui Upper bound in theith dimension

v



vi

Symbols related to pattern search

x(k) kth iterate ofx.

∆k Step size parameter at iteratek

∇ First order derivative

D The set of positive spanning directions

θk Expansion factor at iterationk

φk Contraction factor at iterationk

lim inf Limit inferior

η Step factor

Symbols related to simulated annealing

χ Acceptance ratio

kB Boltzmann’s constant

m0 Number of trial points

m1 Number of successful trial points

m2 Number of unsuccessful trial points

δ Cooling rate control parameter

εs Stop parameter

Ei Energy state of the system configurationi

∆Ei Difference in energy between new and current configurations

p Probability

si State

Symbols related to MSA and SAPS hybrid

RD Random direction

∆sa
0 Initial step size parameter used inside SA

xb The best point vector

xρ
i Sample point
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Chapter 1

Introduction

Optimization is an important research area. It is the study of problems in which one seeks to minimize or

maximize a real function by systematically choosing the values of real or integer variables within an al-

lowed set. Optimization is mainly divided into two branchesnamely continuous and discrete optimization.

A continuous optimization is where the variables used in theobjective function assume real values. On the

other hand, a discrete optimization is where the variables used in the objective function are restricted to as-

sume only discrete values, such as integers. Continuous optimization problems can be classified according

to the mathematical structure of the objective function andconstraints. For example, a problem that has

linear objective function and linear constraints is calleda linear optimization problem. On the other hand,

a problem that has nonlinear (linear) objective function with nonlinear or linear (nonlinear) constraints is

called a nonlinear optimization problem. In other words, a nonlinear optimization problem is where the

objective function or the constraints or both contain nonlinear terms. A nonlinear optimization problem

can either be unconstrained or constrained depending on thepresence of constraints or limitations on the

variables.

A nonlinear optimization problem can have more than one optimal solution. The goal of a local op-

timization method is to obtain any one of the optimal solutions. On the other hand, the goal of a global

optimization method is to obtain the best optimal solution from a number of solutions. The best (global)

optimal solution is not only hard to determine but also hard to verify. Despite its inherent difficulties,

global optimization is vital to many practical applications. Some of these applications include, but not

restricted to engineering design, financial risk management, computational chemistry, molecular biology

and economics [8, 28]. Global optimization problems can be classified according to the properties of the

1



1.1 Problem formulation 2

objective function and constraints. A problem that has no constraints or constrained by simple lower and/or

upper bounds is called unconstrained global optimization problem. A problem that has linear (nonlinear)

constraints and nonlinear objective function is called a linearly (nonlinearly) constrained global optimiza-

tion problem. These problems arise in real-life applications. In many applications, global optimization

problems are of black-box type. A black-box scenario occurswhenever the objective function and/or con-

straints are not given in closed form, i.e., if the objectivefunction values and/or constraints are evaluated

via complex computations, simulations or experiments.

Our research is concerned with the design of unconstrained global optimization algorithms for solving

both noisy and black-box type global optimization problems. An ideal global optimization algorithm

should:

• work for a wide range of problems, be it easy, moderately difficult or difficult problems [47],

• not depend on the properties (e.g., continuity) of the objective function to be optimized,

• be easy to implement, and

• require very little computational effort.

It is not so easy to design an algorithm that satisfies all the above criteria. In any case, progress have

been made and a number of global optimization algorithms have been suggested in the literature. We will

review these algorithms later in the chapter. In the next section, we will present the global optimization

problem mathematically.

1.1 Problem formulation

We consider the problem of finding the global optimum of box-constrained global optimization problems.

The mathematical formulation of the global optimization problem is defined as follows

optimize f(x) subject to x ∈ Ω, (1.1)

wherex = (x1, · · · , xn) is ann−dimensional vector of unknowns,Ω ⊆ R
n is the search region, andf is

a nonlinear continuous real-valued objective function, i.e.,f : Ω → R. The domain of the search space,

Ω, is defined by specifying an upper limitui and a lower limitli of eachith component ofx, i.e.,

li ≤ xi ≤ ui, li, ui ∈ R, i = 1, 2, · · · , n. (1.2)
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Without loss of generality, we consider only the global minimization problem since the global maxi-

mum can be found in the same way by reversing the sign off , i.e.,

max
x∈Ω

f(x) = −min
x∈Ω

(−f(x) ). (1.3)

A point x∗ ∈ Ω is called a global minimizer off with the corresponding global minimum value

f∗ = f(x∗) if

f∗ ≤ f(x), for all x ∈ Ω. (1.4)

On the other hand, a pointxloc ∈ Ω is referred to as a local minimizer off overΩ if there is anǫ > 0 such

that

f(xloc) ≤ f(x), for all x ∈ Nǫ(x
loc) ∩ Ω, (1.5)

whereN ǫ(x
loc)

def
= {x ∈ R

n : ‖x− xloc‖ < ǫ }.

1.2 Classification of global optimization methods

Global optimization methods can be classified as deterministic and stochastic methods [22, 26]. Deter-

ministic methods usually use gradient information and other properties such as known Lipschitz constant

of f . The main disadvantage of deterministic methods is that they cannot be implemented in noisy and

black-box type functions. In addition, these methods are very slow as they often perform an exhaus-

tive search. As opposed to deterministic methods, stochastic methods are very easy to implement and in

most instances, they do not require any functional properties. Hence these methods are widely applicable.

Unlike deterministic methods, which guarantee convergence to the global minimum, stochastic methods

assures convergence in a probabilistic sense. In addition,the computational costs of stochastic methods

are in general less than those of deterministic methods [41]. For this reason, in this dissertation, we con-

centrate on stochastic methods, in particular simulated annealing and multi level single linkage with some

hybridization. We will briefly present some deterministic and stochastic methods.

One of the best known deterministic method is the interval arithmetic method [27] for global opti-

mization. It is based on the branch-and-bound method [38]. The branch-and-bound method is a technique

where the feasible region is relaxed and subsequently splitinto parts (branching) over which the lower

(and often also the upper) bounds of the objective function value can be determined (bounding). Another

important deterministic method is the multi-dimensional bisection method [52] which is a generalization

of the bisection method [16] to higher dimensions. It beginsby generating a sequence of intervals whose



1.2 Classification of global optimization methods 4

infinite intersection is the set of points desired. However,unlike interval arithmetic method, this method

never attracted the global optimization researchers and practitioners. In addition to the above determin-

istic methods, Breiman and Cutler [18] designed a deterministic algorithm for global optimization. This

algorithm assumes a bound on the second derivatives of the function and uses this to construct an upper

envelope. Successive function evaluations lower this envelope until the value of the global minimum is

found. Other deterministic methods includeαBB [1], Lipschitz method, methods based on convex en-

velopes of the objective function over special domain like boxes. There are softwares developed to solve

deterministic global optimization. Currently the branch-and-reduce optimization navigator (BARON) [43]

is the best software in the field of deterministic global optimization.

Stochastic methods are either single sample (point) based or multiple sample (population) based meth-

ods. Within the single sample based methods, tabu search [19], adaptive random search [35] and simulated

annealing [2, 21] are well known. Among the population basedmethods, density clustering [41], multi

level single linkage [42] and topographical multilevel single linkage [13] often referred to as two-phase

methods. Two-phase methods use both random sampling (global phase) and local search (local phase).

In the global phase, the function is evaluated in a number of randomly sampled points while in the local

phase, the sample points are scrutinised by a clustering technique in order to identify potential points to

start a local search. A more detailed survey of the two-phasemethods for stochastic global optimization

can be found in [44].

Other population based methods are genetic algorithm [23],controlled random search [6, 10, 40]

and differential evolution [12, 45]. These methods start with an initial population set of points, drawn

uniformly in the search spaceΩ and subsequently manipulating this sample in order to obtain a better

population set. The better population set is obtained by replacing all or some members of the current set

with new trial points. The mechanism used in creating trial points depends on the considered algorithm

[11]. For example, in genetic algorithm, trial points are generated by selecting successively a subset of

the population and then applying mutation and crossover operations on this set. In controlled random

search, a trial point is generated by forming a simplex using(n+1) distinct points, chosen at random with

replacement from the population set, and reflecting one of the points in the centroid of the remainingn

points of the simplex, as in the Nelder and Mead algorithm [37]. In differential evolution, trial points are

generated using mutation and crossover operations. In addition to the above stochastic methods, there exist

hybrid methods. The purpose of hybrid methods is to use the complementary strengths of several methods

within a single method. Next, we present the main features ofthe hybrid method for global optimization.
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1.3 Hybridization

Hybridization is basically the combination of principles (elements) from different methods so as to give

rise to a new method that displays desirable properties of the original methods but not their weaknesses.

There are different ways to hybridize methods which combinetwo methods [39, 46]. One approach

is to run one algorithm until it stops before the next one is started. This is known as sequential hybridiza-

tion. Another approach is to run the algorithms in parallel in a pre-defined manner, e.g., the next method

starts before the previous one ends. This is known as parallel hybridization. However, in most cases, hy-

bridization is achieved by combining algorithmic elementsof the original methods to end up with a single

algorithmic architecture. For instance, a popular approach is to combine global features of a global method

with local features of a local method. Local methods are computationally efficient because they make use

of local information around the current point to move to a promising region. This expedites convergence

whenever a point is within the region of attraction of a minimum. On the other hand, global methods

are more reliable in locating the global minima because theyexplore the whole search region and have

mechanisms to escape being trapped in local minima. Consequently they are computationally expensive.

It is expected that the combination of elements from local methods with those of global methods would

result in methods that are more efficient, more accurate and more reliable in finding the global minimum.

Efficiency refers to the amount of efforts (be it CPU time or number of function evaluations) required

to obtain a solution. Accuracy means how close is the final solution obtained by a global optimization

algorithm to the known global minimum of a problem. Reliability is how successful is the method in

finding the global minimum. Hence such hybrid methods would result into being more reliable in locating

the global minimum than a local method and also more accurateand more efficient than a global method.

Examples of hybrid methods include but not restricted to simulated annealing combined with direct search

hybrid [9, 31] and tabu search combined with Nelder-Mead simplex hybrid [20].

We aim at designing hybrid methods that will possess only strengths of the original methods. In this

dissertation, we will combine global methods (simulated annealing, multi level single linkage) and a local

method (pattern search).
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1.4 The structure of the dissertation

The dissertation is divided into six chapters as shown in Figure 1.1. In Chapter 2, we address the strengths

and weaknesses of the pattern search method. We first review the pattern search method in relation to its

description, convergence properties and its limitations in solving global optimization problems. Then we

propose a modified pattern search method.

In Chapter 3, we present an overview of the simulated annealing method in regard to its origin. We

also present the simulated annealing for continuous problems and the cooling schedule.

In Chapter 4, we propose two new hybrid methods based on the pattern search method, the simulated

annealing method and the multi level single linkage method.

In Chapter 5, we report the performance of the proposed hybrid methods using extensive numerical

experiments on some well known test problems.

In Chapter 6, we summarize the work in this dissertation and propose further avenues to extend and

enhance this research. Finally, we give a description of themulti level single linkage algorithm and a

collection of 50 benchmark global optimization test problems in Appendixes A and B, respectively.

Introduction

Pattern search
for unconstrained
local optimization

Simulated annealing
for unconstrained
global optimization

Hybrid global optimization

algorithms based on PS

Numerical
results

Conclusion

Chapter 1

Chapter 2 Chapter 3

Chapter 4

Chapter 5

Chapter 6

Figure 1.1: The structure of the dissertation.



Chapter 2

Pattern search for unconstrained local

optimization

The pattern search method [30, 48] is a recent direct search method for local optimization. In this chapter,

we describe the pattern search method for unconstrained local optimization and propose a modification to

it.

2.1 The pattern search (PS) method

In its simplest form, the PS method is a variation of the coordinate search method [30]. However, the

mathematical formalization presented by Torczon [48] shows that the PS method is a general class of

the direct search methods. For instance, the Hooke and Jeeves method [25], the basic coordinate search

method [30] and the multi-directional search method [49] also form part of the PS method. As such, in

some literature [15], the PS method is referred to as the generalized pattern search (GPS) method. In this

dissertation, we only deal with a simple but effective variant of the PS method. Before we describe the

PS method, we give two definitions [4] that are essential for understanding the search directions of this

method. We also present an example of the search directions used by the PS method in a typical two

dimensional problem.

7
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Definition 2.1

A positive combination of the set of vectorsD = {di}r
i=1 is a linear combination

r
∑

i=1

λidi, where

λi ≥ 0, i = 1, 2, · · · , r.

Definition 2.2

A finite set of vectorsD = {di}r
i=1, n+ 1 ≤ r ≤ 2n, forms a positive spanning set forR

n if any ν ∈ R
n

can be expressed as a positive combination of vectors inD. The set of vectorsD is said to positively span

R
n. The setD is said to be a positive basis forR

n if no proper subset ofD spansRn.

Having presented the above definitions, we now describe the directions used by the PS method. The

simplest search directions used by the PS method is made up ofr = 2n vectors and given by the set

D = {e1, · · · , en,−e1, · · · ,−en}, (2.1)

whereei is theith unit coordinate vector inRn. The setD in equation (2.1) is an example of a set with a

maximal positive spanning directions. In the following example, we present possible trial points generated

by the PS method in a typical iteration process, say at thekth iteration in a two dimensional problem.

Example 2.1

In R
2, the set of positive spanning directions, consists of four column vectors of

D =







1 0 −1 0

0 1 0 −1







. (2.2)

If the current iterate isx(k) = (0, 0), the PS method may generate up to four trial points (see laterthe POLL

step in section 2.2) located atE(1, 0), N(0, 1), W (−1, 0) andS(0,−1) using four positive spanning

directions as shown in Figure 2.1.

E(1, 0)

Center of patternN(0, 1)

W (−1, 0)

S(0,−1)

x(k)

Figure 2.1: Trial points of PS atN , E, W andS positions.
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2.2 Description of the PS method

In this section, we present a full description of the PS method. The PS method generates a sequence of

iterates {x(1), x(2), · · · x(k), · · · } with non-increasing objective function values. In each iterationk, there

are two important steps of the PS method namely, the SEARCH step and the POLL step. Note that we use

the valuer = 2n in the description of the PS method.

In the SEARCH step, the objective function is evaluated at a finite number of points (say a maximum

of V points) on a mesh (a discrete subset ofR
n) so as to improve the current iterate. The mesh at the

current iterate,x(k), is given by

Mk = {m ∈ R
n |m = x(k) + ∆kDq : q ∈ Z

r
+}, (2.3)

wherem is a mesh trial point,∆k > 0 is a mesh size parameter (also known as the step size control

parameter) which depends on the iterationk, andZ+ is the set of nonnegative integers. There are no

specific rules on how to generate trial points of the SEARCH step in the current mesh. Users may generate

these points by some heuristic rules. The aim of the SEARCH step is to find a feasible trial point (on a

meshMk) that yields a lower objective function value than the function value atx(k). A SEARCH step

is therefore successful if there exists a feasible trial pointm ∈ Mk (wherem is one of theV points) such

that f(m) < f(x(k)). In such a case,m is treated as the new iterate and the step size∆k is increased

so as to choose the next trial points on a magnified mesh than the previous mesh. If the SEARCH step is

unsuccessful in improving the current iteratex(k), a second step, called the POLL step, is executed around

x(k) with the aim of decreasing the objective function value. This step must be done before terminating

the iteration.

The POLL step generates trial points at the poll set around the current iterate,x(k), as shown in Figure

2.1, for the case of a two dimensional problem, where∆k = 1. The poll set is composed of trial points that

are positioned a step∆k away from the current iteratex(k), along the direction designated by the columns

of D. This poll set is denoted byPk and is defined by

Pk = { pi ∈ R
n | pi = x(k) + ∆kdi : di ∈ D, i := 1, · · · , r }, (2.4)

wherepi is a trial point in the POLL step. The order in which the pointsin Pk are evaluated can also differ

and has no effect on convergence. We now present the step by step description of the PS algorithm [3]

using both the SEARCH and the POLL step.
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Algorithm 2.1: The PS algorithm (based on the SEARCH and the POLL steps).

1. Initialization: Choose an initial pointx(0) ∈ Ω and an initial mesh size∆0 > 0. Set the iteration

counterk = 0.

2. SEARCH step:. Evaluatef at a finite number of points in the meshMk as defined by (2.3).If

f(m) < f(x(k)) for somem ∈ Mk then setx(k+1) = m and go to step4 (the SEARCH step is

deemed successful).If the SEARCH step is unsuccessful, i.e.,f(x(k)) ≤ f(m), for all V points in

Mk then go to step 3.

3. POLL step: This step is executed only if the SEARCH step is unsuccessful.

• If f(pi) < f(x(k)) for somepi in the poll setPk defined by (2.4),then setx(k+1) = pi and go

to step4 in order to increase the mesh size∆k, (POLL step is declared successful).

• Otherwise if f(x(k)) ≤ f(pi) for all pi in the poll setPk defined by (2.4) , setx(k+1) = x(k)

and go to step5 in order to decrease the mesh size∆k, (POLL step is declared unsuccessful).

4. Mesh expansion:Let ∆k+1 = θk∆k, (with θk > 1). Increasek := k+ 1 and go to step2 for a new

iteration.

5. Mesh reduction: Let ∆k+1 = φk∆k, (with 0 < φk < 1). Increasek := k + 1 and go to step2 for

a new iteration.

In summary, Algorithm2.1 performs the SEARCH and the POLL step. In the SEARCH step, theobjective

functionf is evaluated at a finite number of trial pointsm ∈ Mk with the goal of improving the current

iteratex(k). If an improvement is accomplished, then the trial pointm becomes the current iterate and the

mesh size is increased, i.e.,∆k+1 = θk∆k and the SEARCH step continues. Otherwise, if the SEARCH

step is unsuccessful in improving the current iteratex(k), for all V, a second step called the POLL step

is invoked. If the POLL step is successful, i.e.,f(pi) < f(x(k)) for somepi ∈ Pk thenpi becomes the

new iterate, the mesh size is increased and the SEARCH step process is invoked. Iff(pi) ≥ f(x(k)) for

all pi ∈ Pk then the current iteratex(k) is retained, the mesh size is decreased and the SEARCH step is

performed.
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In the literature of the PS method, no specific information isgiven on how to implement the SEARCH

step. Indeed, the results of the PS method using only the POLLstep are reported in the literature [3, 30]. It

is also reported in [15] that the SEARCH step is a liability toconvergence. Therefore, in this dissertation,

we will only implement the POLL step in the PS method. Before we present the PS algorithm based on

the POLL step, we would like to elaborate more on the POLL step. We discuss how the current iterate and

the step size are updated in the POLL step.

The POLL step begins by determining a trial pointpi in the poll setPk defined earlier, i.e.,

{ pi ∈ R
n | pi = x(k) + ∆kdi : di ∈ D, wherei := 1, · · · , r },

wherex(k) is the current iterate. The trial pointpi is examined so as to determine if it is a better solution

than the current iteratex(k). (Here the trial pointpi could be one of the positions, say fori = 1, it is

E(1, 0) of Figure 2.1). If the POLL step produces a successful pointpi ∈ Pk such thatf(pi) < f(x(k)),

then the POLL step stops examining the remaining trial points in the current POLL setPk. This means that

if the POLL step is declared successful then a new POLL step starts at this new current iteratex(k+1) = pi.

Otherwise, the current iterate is retained, i.e.,x(k+1) = x(k), whenf(pi) ≥ f(x(k)) for all the trial points

pi ∈ Pk, i.e., the POLL step is declared unsuccessful. Thus, the next iterate for the next POLL step is

updated as follows:

x(k+1) =











pi if f(pi) < f(x(k)), for somepi ∈ Pk,

x(k) otherwise.
(2.5)

In the case of a successful POLL step, the step size parameter∆k+1 for the next iteration is increased to

∆k+1 = θk∆k, whereθk > 1, in a similar fashion as in mesh expansion of Algorithm2.1. This enhances

exploration of the PS method. However, when the POLL step is unsuccessful, then step size parameter is

decreased to∆k+1 = φk∆k, for 0 < φk < 1, in a similar way as in the mesh reduction of Algorithm2.1.

This in turn enhances exploitation. In summary the step sizeparameter is updated [48] as follows:

∆k+1 =











θk∆k if f(pi) < f(x(k)), for somepi ∈ Pk,

φk∆k otherwise.
(2.6)

This POLL step is reiterated until the step size parameter∆k gets sufficiently small, thus ensuring conver-

gence to a local minimum. Note that asx(k) approaches the optimum, the algorithm reduces the length of

steps taken. This turns out to be central to the convergence proof which will be discussed in section 2.3.
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In most implementation of the PS method, the initial step size parameter∆0 = 1 is used and the

updating of the step size parameter is carried out by

∆k+1 =











2∆k if f(pi) < f(x(k)), for somepi ∈ Pk, θk = 2,

1
2∆k otherwise, φk = 1

2 .

(2.7)

The basic PS method based only on the POLL step described above is presented in Algorithm2.2 below.

Note that from now on, the PS algorithm based on the POLL step will be referred to as the PS algorithm.

Algorithm 2.2: The PS algorithm.

1. Initialization:

Choose an initial feasible solutionx(0) ∈ Ω. Select an initial step size∆0 > 0. Choose the positive

spanning setD defined by equation (2.1). Set the counter numbersk = 0 andi = 1. Choose the

stopping tolerance∆tol > 0.

2. POLL step:

2(a) Evaluate the objective functionf at the trial pointpi = (x(k) + ∆kdi) ∈ Pk, di ∈ D.

2(b) If f(pi) < f(x(k)) then setx(k+1) = pi and go to step 3.

Otherwise, increasei := i+ 1 and go to step 2(c).

2(c) If i ≤ r then go to step 2(a).

Otherwise, setx(k+1) = x(k) and go to step 4.

3. Mesh expansion:Increase the step size parameter∆k+1 = θk∆k. Seti = 1 and go to step 5.

4. Mesh reduction: Decrease the step size parameter∆k+1 = φk∆k. Seti = 1 and go to step 5.

5. Stopping condition: If ∆k+1 < ∆tol then stop.Otherwise, increasek := k + 1 and go to step 2.

Having described the PS algorithm, we now illustrate a step by step process of this algorithm, using

the following example. In this example. we useθk = 2 andφk = 1
2 .
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Example 2.2

This example illustrates how the previous Algorithm 2.2 works in R
2. In Figure 2.2,x(k) is the current

iterate at thekth iteration and is represented by the dotted circle⊙. The solid circle• indicates the position

of the trial pointpi ∈ Pk to be examined, wherei = 1, · · · , r. The small open circle◦ and the circled

asterisk⊛ represent unsuccessful and successful trial points respectively of the POLL step. The POLL

step begins by evaluating the function value of the trial point pi ∈ Pk, point by point, wherei = 1, · · · , 4,

as shown in Figure 2.2. In Figure 2.2(a), the PS method computes the trial pointp1 by a step of size∆k.

It computes the function value atp1. If f(p1) > f(x(k)) then it examines the next trial pointp2 as shown

in Figure 2.2(b). If it is not successful atp2, i.e.,f(p2) > f(x(k)) then it computesp3 as shown in Figure

2.2(c). If p3 is still unsuccessful then the process is repeated until allthe trial points inPk are examined,

i.e., until p4 is computed as shown in Figure 2.2(d). If all the points in thePOLL setPk (i.e., p1, p2, p3

andp4) are not successful then the step size is reduced by half as shown in Figure 2.2(e), i.e., the next

POLL step begins atx(k+1) = x(k) with ∆k+1 = 1
2∆k. On the other hand, suppose that the trial point

p2 is successful, i.e.,f(p2) < f(x(k)) as shown in Figure 2.2(f), then the whole POLL step process starts

anew atx(k+1) = p2 with enlarged step size, i.e.,∆k+1 = 2∆k as shown in Figure 2.2(h). A similar cycle

as shown in (a), (b), (c) and (d) of Figure 2.2 will be repeated(if necessary) for the new POLL atx(k+1).

(a) (b) (c)

 

(d) (e)

(h)(f)

x(k)

x(k)

p1

p1

p1

x(k) x(k)

x(k)

x(k)

x(k)

∆k

∆k

1
2
∆k

p1

p1

p1p1

p2

p2p2

p2p2

p3p3

p3

p4p4

∆k

∆k+1 = 2∆k

⊛ x(k+1)

Figure 2.2: Figures (a)-(f) shows how the POLL steps works inthe PS method.
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2.3 The convergence properties of the PS method

In this section, we will discuss the convergence of the PS method. Before proceeding to a formal statement

of the convergence of the PS method, let us first set the stage.We begin by discussing the properties of the

PS method which guarantees its convergence. These properties include

1. At any iteratex(k), the positive spanning setD contains at least one descent direction. This means

that there exist somedi ∈ D for which

−∇f(x(k))
T
di ≥

1√
n
‖∇f(x(k))‖ ‖di‖, (2.8)

wheren is the dimension of the problem. This can be illustrated in Figure 2.3 for the casen = 2. In

Figure 2.3, the search direction pointing towardsS is a descent direction because it is within45◦ of

the steepest descent direction−∇f(x). It can also be seen that the direction pointing towardsE is

also descent. Furthermore, the PS method can be viewed as a gradient related method. It is shown

S

E

N

W

∇f(x)

−∇f(x) Steepest descent

Contour

Figure 2.3: Convergence of the pattern search method.

in [30] that if we suppose thatf is continuously differentiable, and for simplicity,∇f is Lipschitz

with a constantM , then from equation (2.8), since‖di‖ = 1, we have

‖∇f(x(k))‖ ≤
√
nM∆k. (2.9)
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2. Ask → +∞, the total number of successful iterations must be finite. This means that the number

of unsuccessful iterations (in POLL) is infinite. Therefore, ∆k → 0 ask → +∞.

Clearly, the convergence analysis of the PS method is based on the standard assumption that all trial

points produced by the algorithm lie in a compact set. That is, the level set{x ∈ Ω : f(x) < f(x(0)) } is

bounded. This boundedness of the level set will ensure that the step size parameter satisfies

lim
k→+∞

∆k = 0. (2.10)

It has been established in [48] that the PS method possesses the convergence property i.e.

lim inf
k→+∞

‖∇f(x(k))‖ = 0, (2.11)

which follows directly from equation (2.9) and equation (2.10).

After discussing the convergence of the PS method, we now focus our attention in elaborating some

of the pros and cons of the PS method with regard to solving global optimization problems. We briefly

discuss the pros and cons of the PS method and thereafter propose a modification that will eliminate some

of its limitations.

2.4 Pros and cons of the PS method

Associated with the PS method are the following advantages :

• It is a direct search method and does not depend on any properties (continuity or differentiability) of

the objective function being optimized.

• It initially makes a rapid progress towards a local solution, i.e., excellent convergence characteristics.

• It is easily programmable and easy to implement.

We studied the numerical efficiency and robustness of the PS method. We applied the PS method on50

simple bounded global optimization test problems (see Appendix B). Our numerical experiments suggested

the following shortcomings of the PS method.

1. The initial step size parameter∆0. Another problem experienced by the PS method is its tradi-

tional use of initial step size∆0 = 1. This makes the search very slow in the case of problems with
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large search regions and hence takes longer time to converge. Also it is not appropriate for problems

with small search regions.

2. Badly scaled function. The PS method is very slow to converge when the level sets of the function

are extremely elongated. This is because of its use of coordinate directions.

3. Dimensionality problem. Lastly, the PS method suffers from curse of dimensionality. As the

number of dimension increases, the PS method breaks down.

Having discussed the limitations, we aim at remedying some of these limitations of the PS method.

2.5 The modified pattern search method

In this section we will discuss how to eliminate some of the shortcomings of the PS method. Among the

shortcomings of the PS method, the initial step size∆0 and searching along coordinate directions were

very sensitive. Hence we suggest the following modifications.

To deal with the problem of initial step size parameter (∆0 = 1), we decided to use an initial step size

parameter which depends on the size of the search regionΩ. We propose

∆0 = max{ui − li | i = 1, · · · , n }/2, (2.12)

whereui and li are upper and lower bounds respectively of the search regionΩ for each dimension.

The initial stepsize∆0 = 1 used in PS for unconstrained local optimization where no bounds exists for the

variable of the problem. The property∆k → 0 ask → ∞ is an important ingredient for the convergence of

PS. In this study, we used∆0 in equation (2.12) to solve bound constrained global optimization problems.

The step size∆0 is used in such a way that it takes into account on the size of the search space. There are

instances whereby the componentpj
i > uj (or pj

i < uj) of the trial pointpi = (p1
i , · · · , pn

i ) falls outside

Ω. In these cases, we re-generate a trial pointpi with the component

pj
i = x(k)j + ω(uj − x(k)j),

or

pj
i = lj + ω(x(k)j − lj),

whereω is a random number(0, 1) andx(k)j is the corresponding component of the current iterate,x(k).
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To deal with the problem of searching along coordinate direction, we decided to use a perturbation of

the coordinate direction. This modification is described asfollows. Starting at the current iteratex(k) at

thekth iteration, the POLL step computes the next iteratepi ∈ Pk by a step size∆k in the same way as in

the PS method. However, it does not compute the function value atpi as in the PS method. Instead it uses

this point as a stepping stone to compute the trial pointp̃i with a step of sizer = η∆k and this trial point

p̃i is given by

p̃i = pi + r × U, (2.13)

whereU = (U1, . . . , Un)T is a directional cosines with random components

Uj = Rj/(R
2
1 + · · · +R2

n)
1/2
, j = 1, · · · , n, (2.14)

Rj is a uniform random number in the interval[−1, 1]. The PS method equipped with (2.12) and (2.13) is

denoted by MPS. The above modifications in equation (2.12)-(2.14) preserves the convergence properties

of the PS method. The POLL step of this modification can be explained using the following example.

Example 2.3

The POLL step of this modification is explained as follows using Figures 2.4, 2.5 and 2.6. In these Figures,

the definitions of the dotted circle⊙, solid circle• and⊛ are the same as in example2.2 except for the

small open circle◦ which represents a stepping point. Given the current iteratex(k) in Figure 2.4, the point

p1 is first computed as in POLL step of Algorithm 2.2. Unlike the PS method, the MPS does not calculate

the function value atp1. In its place, a new neighboring point̃p1 using equation (2.13) is calculated

uniformly on the surface of a hypersphere with radiusr. The POLL step then compares the function

values off(x(k)) andf(p̃1). If it is successful, i.e.,f(p̃1) < f(x(k)) then the new POLL step begins at

the new iteratex(k+1) = p̃1 with ∆k+1 = 2∆k as in the POLL step of Algorithm2.2. If it is unsuccessful,

i.e., f(p̃1) ≤ f(x(k)) then the second coordinate direction is used indirectly to generate the trial point̃p2

as shown in Figure 2.5. This process is reiterated. If none ofthe trial points,̃pi, (for i = 1, · · · , r), is better

than the current iteratex(k) then the POLL step begins atx(k+1) = x(k) with ∆k+1 = ∆k/2. Figure 2.6

shows that the point̃p1 is successful and the new POLL step begins atx(k+1) = p̃1 with ∆k+1 = 2∆k.
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x(k) ∆k

r

p1

p̃1

p2

p3

p4

Figure 2.4: The first trial point by MPS.

x(k)
p1

p2

p̃2

p3

p4

∆k

Figure 2.5: The generation of the second trial point by MPS when the first trial point is unsuccessful.
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∆k

∆k+1 = 2∆k

x(k) p1

p̃1 = x(k+1)

p2

⊛

Figure 2.6: The generation of the second trial point of MPS when the first trial point is successful.

2.6 Summary

In this chapter, we have reviewed the PS method. The two main ingredient of the PS method, i.e., the

SEARCH and the POLL step were discussed. Thereafter, we givea motivation as to why we discarded the

SEARCH step in the PS algorithm. Furthermore, this chapter also elucidates the convergence properties of

the PS method. The shortcomings of the PS method are elaborated and some strategies to deal with these

shortcomings were suggested. The remaining limitation of PS, i.e., getting trapped in local minimum, will

be ameliorated by hybridizing PS with simulated annealing with or without multi level single linkage.



Chapter 3

Simulated annealing for unconstrained

global optimization

This chapter forms the core of the hybrid methods that will bedesigned in Chapter 4. We review the

physical annealing and the Metropolis algorithm [36]. We discuss the simulated annealing method [21]

for continuous problems. Finally, we present the cooling schedule.

3.1 The physical annealing

The physical annealing is a thermal process for obtaining low energy states of a solid in a heat bath. At

first, the solid is heated until all atoms are randomly arranged in a liquid state and then it is cooled by

gradually lowering the temperature.

Central to physical annealing is the attainment of the thermal equilibrium. At each temperature, enough

time is spent for the solid to reach the thermal equilibrium.If the liquid is cooled slowly enough, then

crystals will be formed and the system will have reached its minimum energy at the ground state. However,

if the system is cooled quickly, then it will end up in a polycrystalline or amorphous state (local optimal

structure), i.e., trapped in a local minimum energy.

Computer simulation of the thermal equilibrium of a collection of atoms at a given temperature was

achieved by Metropolis et al. [36]. They suggested an algorithm for obtaining the thermal equilibrium.

The algorithm is known as the Metropolis algorithm. The genesis of the simulated annealing method is

20
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based on principles of the condensed matter physics, in particular the physical annealing.

3.2 The Metropolis procedure

In 1953, Metropolis et al. [36] used the Monte Carlo method, now known as the Metropolis algorithm,

to simulate the collection of particles in thermal equilibrium at a given temperatureT . The Metropolis

algorithm generates a sequence of states of the system of particles or atoms in the following way. Given

a current state,si, of the system of particles with corresponding energyEi, the system is perturbed to a

new statesj with energyEj . If the change,∆E = Ej − Ei, represents a reduction in the energy value

then the new statesj is accepted. If the change∆E represents an increase in the energy value, then the

new state is accepted with probabilityexp(−(∆E/kBT ), whereT is the surrounding temperature andkB

is the Boltzmann constant. The acceptance rule described above is called the Metropolis criterion and the

algorithm that goes with it, is known as the Metropolis algorithm. The Metropolis algorithm is described

as follows:

Algorithm 3.2: The Metropolis Algorithm.

set surrounding temperatureT .

pick initial statesi at random.

repeat

propose new statesj picked at random;

∆E = Ej − Ei;

if ∆E ≤ 0 then p = 1 elsep = exp(−∆E/kBT );

if random[0, 1) < p then si = sj ;

until thermal equilibrium reached.

In the physical annealing, a thermal equilibrium is reachedat each temperature if the lowering of

the temperature is done sufficiently slowly. Similarly, in the case of the Metropolis algorithm, a thermal

equilibrium can be achieved by generating a large number of transitions at a given temperature. At thermal

equilibrium, the probability that the system of particles is in state,si, with energyEi is given by the

Boltzmann distribution, i.e.,

PT {X = si} =
1

Z(T )
exp

(−Ei

kBT

)

, (3.1)
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whereX is a random variable denoting the current state of the systemof particles andZ(T ) is defined as

Z(T ) =
∑

j

exp
(−Ej

kBT

)

. (3.2)

3.3 The simulated annealing (SA) method

In 1983, Kirkpatrick et al. [29] designed the simulated annealing algorithm for optimization problems by

simulating the physical annealing process. The formulation of the optimization algorithm using the above

analogy consists of a series of Metropolis chains used at different values of decreasing temperatures. In

this formulation, the system state corresponds to the feasible solution, the energy of the state corresponds

to the objective function to be optimized, and the ground state corresponds to the global minimizer.

The general SA consists of two loops. In the inner loop, a number of points in a Markov chain (a

Markov chain is a sequence of trial solutions) in the configuration space is produced and some of them are

accepted. A trial solution is accepted only if it satisfies the Metropolis criterion. On the other hand, in the

outer loop, the temperature is progressively decreased. The whole process depends on the cooling schedule

which will be discussed in section 3.5. The original SA algorithm was intended for discrete optimization

problem. The general description of the SA algorithm is as follows:

Algorithm 3.3: A general description of the simulated annealing algorithm.

Generate the initial configurationsi.

Select an initial temperatureT = T0.

while stopping criterion is not satisfieddo

begin.

while no complete Markov chaindo

begin

generate movesj; computef(sj);

if acceptthen update solutionsi andf(si);

end;

decreaseT ;

end.
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3.4 The simulated annealing algorithm for continuous problems

In this section, we present the SA algorithm for continuous optimization problems. The statessi andsj

are now denoted by the pointsx andy respectively inΩ. The corresponding energies of these states, i.e.,

Ei andEj are therefore denoted by the function valuesf(x) andf(y) respectively.

The SA algorithm has been applied to optimization of multimodal continuous functions by fewer au-

thors (Vanderbilt and Louie [50], Alluffi-Pentini et al. [14], Bohachevsky et al. [17] and Wang and Chen

[51]) than for the optimization of discrete functions. However, firstly these methods are to some extent dif-

ferent from the original SA approach to discrete optimization. Secondly, their theoretical convergence and

sufficient numerical evidences on classified test problems justifying their reliability are missing. Dekkers

and Aarts [21] derived a local search-based continuous simulated annealing (LSA) algorithm which is the-

oretical similar to discrete SA. An aspiration-based simulated annealing (ASA) algorithm [7] and a direct

search simulated annealing (DSA) algorithm [9] have also been developed which retains the convergence

properties of LSA.

One of the complications arising in going from the discrete to the continuous application of SA is that

of the point generation, i.e., generating a new pointy from a given pointx. One of the possibilities is to

generatey using a uniform distribution onΩ; the generation probability distribution functiongxy, in this

case, is given bygxy = 1/m(Ω) wherem(Ω) is the Lebesgue measure of the setΩ. However, this choice

does not consider the structural information of function values and hence Dekkers and Aarts [21] put

forward a mechanism consisting of two possibilities; either a point is drawn uniformly in the search region

Ω with probabilityψ; or a step is made into a descent direction from the current point x with probability

(1−ψ), whereψ is a fixed number in[0, 1). Dekkers and Aarts [21] denote this generation mechanism by

gxy =











1
m(Ω) if ω ≤ ψ,

LS(x) if ω > ψ,

(3.3)

whereω a uniform random number in[0, 1). LS(x) denotes a local technique procedure that generates a

point y in a descent direction fromx such thatf(y) ≤ f(x). The local techniqueLS(x) from x is not a

complete local technique but only a few steps of some appropriate descent search. Thus, iff(y) < f(x)

theny is not necessarily a local minimum.

Like any other standard SA algorithm based on Markov chains,the essential features of LSA, ASA

and DSA are as follows: Starting from a randomly generated initial point x ∈ Ω and with an assigned
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valueTt of the temperature parameter (the temperature countert is initially set to zero). These methods

generates a new trial point,y, using the mechanism (3.3). The objective functionf(y) is calculated. If the

change∆fxy = f(x) − f(y) represents a reduction in the value of the objective function then the new

point y is accepted. If the change represents an increase in the objective function value then the new point

y is accepted using a Metropolis acceptance probability

Axy(Tt) = min{ 1, exp(−(f(x) − f(y) )/Tt ) }. (3.4)

This process is repeated for a large enough number of iterations for eachTt. A new Markov chain is then

generated (starting from the last accepted point in the previous Markov chain) for a reduced temperature

until the algorithm stops. The algorithm for continuous LSA[21] is sketched below.

Algorithm 3.4: The LSA algorithm for the continuous problem.

begin

initialize (T0, x);

stop criterion := false;

while stop criterion = false do

begin

for i := 1 to L do

begin

generatey from x using (3.3);

if f(y) − f(x) ≤ 0 then accept;

else ifexp(−(f(y) − f(x) )/Tt ) >random[0, 1) then accept;

if acceptthen x := y;

end;

lowerTt;

end;

end.

Remark 3.1:

We will describe the components of the above LSA algorithm, i.e., the values ofT0 andL, the lowering
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of Tt, and the stop criterion. All these are specified by the cooling schedule which is discussed in the next

section

3.5 Cooling schedule

The choice of the cooling schedule (also known as the annealing schedule) is the heart of SA. The cooling

schedule affects the number of times the temperature is decreased. We saw earlier in section 3.1 that

if a system is cooled hastily, then it will end up with a polycrystalline state, i.e., a system with high

energy. Similarly, in the case of an optimization problem, if a fast cooling takes place (i.e., temperature is

decreased at a fast rate) then the problem will be trapped in alocal minimum. Therefore, in order to avoid

being entrapped in a local minimizer, an optimal cooling schedule should be in place. An optimal cooling

schedule consists of optimizing four important parameters, namely: the choice of initial temperatureT0,

the lengthL of the Markov chain (the number of trial points for each temperature ), stopping criterion and

finally the cooling rate of the temperature at each step as cooling proceeds. These parameters are described

as follows.

Choice of an initial temperature

The initial temperature valueT0 must be high enough to ensure a large number of acceptances atthe initial

stages of the algorithm. Using a value that is too high will require more computational effort, while using

a low value will rule out the likelihood of an uphill step, thus losing the global feature of the method.

Dekker and Aarts [21] suggested an optimal scheme to calculate the initial temperatureT0. In this scheme,

a number of trials, saym0, are generated, and requiring that the initial acceptance ratio χ0 = χ(T0) be

close to1. The valueχ(T0)is defined as the ratio between the number of accepted trial points and the

number of proposed trial points, i.e.,

χ0 =
m1 +m2 × exp(−∆f+/T0)

m1 +m2
. (3.5)

Herem1 anm2 denote the number of trials(m0 = m1 + m2) with ∆fxy ≤ 0 and∆fxy > 0 respec-

tively, and∆f+ the average value of those∆fxy-values, for which∆fxy > 0. This initial value of the

temperatureT0 given below, is then derived from the equation (3.5), i.e.,

T0 = ∆f+

(

ln
m2

m2χ0 −m1(1 − χ0)

)−1

. (3.6)

Length of the Markov chain

At each temperature, the SA algorithm can be considered as a Markov chain whose length is defined by
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the number of trial points allowed at this temperature. Thisnumber of trial points at each temperature

is denoted by the parameterL. Dekkers and Aarts [21] suggested an approach which generates a fixed

number of points, i.e.,

L = L0 × n, (3.7)

wheren denotes the dimension of the search regionΩ andL0 is a constant.

Cooling rate of the temperature

Once we have the starting temperature, we need to move from one temperature to the other. This can be

achieved by using a cooling rate, i.e., the rate at whichT decreases at each Markov chain. Dekkers and

Aarts [21] suggested the following scheme

Tt+1 = Tt

(

1 +
Tt × ln(1 + δ)

3σ(Tt)

)−1

, (3.8)

whereσ(Tt) is a small positive number and denotes the standard deviation of the values of the cost function

at the points in the Markov chain atTt. The rate of decrease depends on the standard deviation of the

objective function values obtained during the Markov chain. The greater the standard deviation, the slower

is the decrease. The constantδ is called the distance parameter and determines the speed ofdecrement of

the temperature [21, 33].

Stopping criterion (final temperature)

The algorithm process cannot be performed indefinitely. A stopping criterion must be in place to terminate

the algorithm. Dekkers and Aarts [21] proposed a stopping condition based on the idea that the average

function valuef(Tt) over a Markov chain decrease withTt, so thatf(Tt) converges to the optimal solution

asTt → 0. If small changes have occurred inf(Tt) in two consecutive Markov chains, the procedure will

stop. Therefore the simulated annealing algorithm is terminated if
∣

∣

∣

∣

∣

dfs(Tt)

dTt

Tt

f(T0)

∣

∣

∣

∣

∣

< εs, (3.9)

wheref(T0) is the mean value off at the points in the initial Markov chain,fs(Tt) is the smoothed func-

tion value off over a number of chains in order to reduce the fluctuations off(Tt), εs is a small positive

number called the stop parameter. In this dissertation, we will adopt the stopping criterion proposed by

Hedar and Fukushima [24], i.e., the algorithm will be terminated after the temperature falls below a certain

tolerance, i.e.,

Tt ≤ ε. (3.10)
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The setting of this final temperature in equation (3.10) willgive a complete cooling schedule because some

problems have high initial temperatures while others have low initial temperatures.

The advantages and disadvantages of the SA method are presented in the next section.

3.6 Advantages and disadvantages of the SA method

In this section, we discuss the advantages and disadvantages of SA method. Some of the advantages of the

SA method includes

• SA is able to avoid getting trapped in local minima.

• SA has been proven mathematically to converge to the global minimum given some assumptions on

the cooling schedule [21, 32].

• SA is a very simple architecture.

However, SA has some disadvantages, e.g.,

• It is not easy to derive an optimal cooling schedule for SA.

• SA often suffers from slow convergence.

3.7 Summary

In this chapter, we have discussed the physical annealing process, the Metropolis algorithm for simulating

such process and the SA algorithm for discrete and continuous variable problems. Finally, we have also

mentioned some advantages and disadvantages of SA.



Chapter 4

The hybrid global optimization algorithms

based on PS

Up until now, we have not presented how to globalize the PS method. Here by globalization of the PS

method, we mean designing a global optimization algorithm based on PS. One way to globalize the PS

method is by hybridizing it with a global method. In this chapter, we propose two hybrid methods that

combine the PS method and the simulated annealing (SA) method with or without the multi level single

linkage method. Both of these hybrid methods use the SA method as the main engine to search for the

global minimum. In particular, these hybrid methods use a point generation scheme which is similar to the

scheme used in the local search-based simulated annealing (LSA) method [21]. We will briefly describe

this generation scheme before the discussion of the hybrid methods.

4.1 Generation mechanism

In any search method, the mechanism for generating a trial point is of paramount importance. In our case,

we will propose a generation mechanism through which trial points are generated both globally by using

a uniform distribution and locally by using a local technique. A similar strategy was used in LSA [21]

and direct search simulated annealing (DSA) [9]. For example LSA uses a gradient-based local technique

whereas DSA uses a derivative-free local technique. The local technique used in LSA guarantees local

descent while the local technique used in DSA does not. We usethe same idea, but unlike LSA, our local

technique does not guarantee local descent; it is also entirely different from the local technique used in

28



4.1 Generation mechanism 29

DSA. There are several ways of generating trial points from agiven point. We present two approaches of

the generation mechanism: generation mechanism I (GM-I) and generation mechanism II (GM-II). The

two generation mechanisms are described below.

Generation mechanism I (GM-I)

The first approach GM-I is given by the following probabilitydistribution:

gxy =











1
m(Ω) if ω ≤ ψ,

RD(x) if ω > ψ,

(4.1)

whereω is a random number in[0, 1), 0 < ψ < 1 andRD(x) is a local technique which stands for

random direction. The procedure involved inRD(x) is described as follows. The local techniqueRD(x)

is invoked ifω > ψ. The directiondi is first selected randomly from the set of positive spanning directions

D defined by equation (2.1) in Chapter 2. Then a trial point in the neighbourhood ofx at thetth Markov

chain is generated by moving a step of length∆sa
t along the directiondi, i.e.,

y = x+ ∆sa
t di, (4.2)

wherex is the current iterate and∆sa
t is a step size parameter (inside the Markov chain of the SA method).

The step size parameter∆sa
t is updated at the end of each Markov chain.

Generation mechanism II (GM-II)

The second approach GM-II is similar to GM-I except that it uses a different local technique. GM-II is

given by the following probability distribution:

gxy =











1
m(Ω) if ω ≤ ψ,

PD(x) if ω > ψ,

(4.3)

wherePD(x) stands for perturbed direction and is described as follows.A trial point y in PD(x) is

generated and is given by

y = y′ + r × U, (4.4)

wherey′ is the same as the pointy in equation (4.2) i.e.,

y′ = x+ ∆sa
t di. (4.5)

The directiondi is chosen randomly fromD as inRD(x), U in (4.4) is a normalized directional vector

same as in equation (2.14). In essence, the trial pointy in equation (4.4) is generated by perturbing the

point y generated byRD(x) in equation (4.2).
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Calculation of the initial step length

The initial step length in both generation mechanisms is calculated as follows:

∆sa
0 = ζ × max{ui − li | i = 1, · · · , n }, (4.6)

where0 < ζ < 1, andui andli are upper and lower bounds of theith component ofx respectively. The

initial step length,∆sa
0 in equation (4.6), is independent of the coordinate directions due to the following

reasons: it produces, on average, better results and it maintains the step length of the original PS. Notice

that∆sa
0 in GM-I and GM-II is much smaller than∆0 used in equation (2.12) for MPS. This choice was

determined empirically.

Updating of the step size in GM I and II

In bothRD(x) andPD(x), the step size parameter∆sa
t varies with the Markov chain and is updated as

follows: At the end of each Markov chain, the following ratio, ra, is computed by

ra =
nacp

nops
, (4.7)

wherenops is the number of times the local techniqueRD(x) orPD(x) is invoked to generate trial points

andnacp is the number of times the trial points generated byRD(x) orPD(x) are accepted in the Markov

chain. The ratio,ra, in equation (4.7) determines whether to increase or decrease the step size parameter

∆sa
t . For instance, if the acceptance rate of the points generated byRD(x) orPD(x) is too high at thetth

Markov chain then we increase∆sa
t+1 by α% at the end of thetth Markov chain; if the rate is too low we

decrease∆sa
t+1 by α%. On the other hand, if the rate is close to 50% then we take∆sa

t+1 = ∆sa
t . Thus the

next step size parameter∆sa
t+1 for the(t+ 1)th Markov chain is updated as follows

∆sa
t+1 =



























(1 + α)∆sa
t if ra ≥ ξ,

(1 − α)∆sa
t if ra ≤ 1 − ξ,

∆sa
t if 1 − ξ < ra < ξ,

(4.8)

whereξ is a constant, sayξ = 0.6 and the parameterα is such that0 < α < 1.

Having discussed the generation mechanism, we are now in a position to present details of the hybrid

methods in the following section.
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4.2 Proposed hybrid methods

In this section, we present the full details of our main hybrid methods. The first hybrid method is similar to

LSA except that it modifies the generation scheme of the LSA method. In particular, it uses the generation

mechanism GM-I or GM-II and also updates the step size using equations (4.7)-(4.8). In addition, it keeps

a record of the best point found using a singleton setS which is updated with a better point found in the

Markov chain. This hybrid is referred to as the modified simulated annealing or MSA.

The second hybrid method extends MSA by incorporating the multi level single linkage (MSL) method

[42] within the MSA method. It uses a setS consisting ofN points, initially drawn uniformly in the search

regionΩ. The setS is updated during the course of each Markov chain. This hybrid is referred to as the

simulated annealing driven pattern search or SAPS.

4.2.1 Modified simulated annealing (MSA)

Like the LSA method, the MSA method initializes the pointx and the parameters of the cooling schedule

before the beginning of the first Markov chain. The setS initially contains the pointxρ
1 = x.

Structurally, like any other SA method, the MSA method has two loops. In the outer loop, the MSA

method, not only decreases the temperature as in LSA, but also updates the step size parameter∆sa
t using

equation (4.8). On the other hand, in the inner loop, MSA differs from LSA in that MSA uses the point

generation mechanism GM-I or GM-II and updates the setS as soon as a better point is found in the

Markov chain. Therefore the setS contains the best point visited by the MSA method.

The detailed structure of this hybrid is represented in Figure 4.1 using a flowchart.
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Figure 4.1: Flowchart for the MSA algorithm.
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The algorithm for MSA is presented below in Algorithm 4.1.

Algorithm 4.1: The MSA Algorithm.

1. Initialization : Generate an initial pointx. Setxρ
1 = x, xρ

1 ∈ S. Set the temperature countert = 0.

Compute the initial temperatureT0 using equation (3.6). Calculate an initial step size parameter∆sa
0

using equation (4.6).

2. The inner and outer loops:

while the stopping condition is not satisfied do

begin

for i := 1 toL do

begin

generatey from x using the mechanism in(4.1) or (4.3) ;

if f(y) − f(x) ≤ 0 then accept;

else ifexp(−(f(y) − f(x) )/Tt ) > random(0, 1) then accept;

if accept thenx = y;

update the setS , i.e., if f(x) < f(xρ
1) then xρ

1 = x;

end;

t := t+ 1;

lowerTt using equation (3.8) ;

update∆sa
t using equation(4.8);

end.

Remarks:

4.1. The stopping condition is given by equation (3.10).

4.2. The inner and outer loops of Algorithm 4.1 are similar tothose of Algorithm 3.4, i.e., the LSA algo-

rithm, but the significant changes are highlighted in bold.
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4.2.2 Simulated annealing driven pattern search (SAPS)

The SAPS hybrid method is the MSA method equipped with the MSLmethod. Like LSA, it initializes

the parameters of the cooling schedule. In addition, it commences by filling the setS with a sample of

N (N >> n) points uniformly distributed over the search spaceΩ. This initial set is given byS =

{xρ
1, · · · , x

ρ
N}. The computer implementation ofS is done by an array where the best point (having the

lowest function value) and the worst point (having the highest function value) are stored in the1st and the

N th positions respectively. Rank ordering of other points between the best pointxρ
1 and the worst point

xρ
N is not needed.

Structurally, SAPS consists of the inner and the outer loop.It has the same outer loop as MSA where

both the temperature and the step size∆sa
t are updated. The inner loop of SAPS generates trial points

using the same generation mechanism as in MSA. However, the inner loop of SAPS differs from that of

MSA in the following aspects. At eachtth Markov chain of SAPS, the worst pointxρ
N in S is repeatedly

targeted and attempts are made to replace it with the trial point y. That is, iff(y) < f(xρ
N ) thenxρ

N in

S is replaced byy. The best pointxρ
1 and the worst pointxρ

N in S are found each time the worst point

xρ
N is replaced. This process of updatingS with new better points continues until allN members ofS are

replaced. The complete replacement of points inS will require at leastN replacements. The replacement

process requires more thatN replacements especially when a new pointy enters the setS (by replacing

the worst pointxρ
N ) and becomes the worst point inS. The duration of replacing the whole setS depends

on the sizeS. Therefore the replacement process ofS may extend over a number of Markov chains.

When all members of the initial setS, at t = 0, are replaced at a (later) Markov chain, the member

of S are treated as new. Note that the creation of a new setS can occur either before the completion or

at the end of the Markov chain. If a newS is created before the completion of the Markov chain, say at

the tth Markov chain, then thetth Markov chain stops temporarily and a single iteration-based MSL is

invoked (which is described in section 4.3). After completion of the single iteration-based MSL, thetth

Markov chain continues until the lengthL of the Markov chain is reached. However, if a newS is created

at the end of thetth Markov chain, then the single iteration-based MSL is invoked before the next(t+1)th

Markov chain begins. In both cases, the targeting process continues in the subsequent Markov chain(s)

until another newS is created and the single iteration-based MSL is invoked. This procedure continues

until the stopping criterion is met. Notice that the stopping condition used is that of SA.
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4.3 The single iteration-based MSL algortihm.

The process involved in the single iteration-based MSL algorithm is described as follows. The members

of S is ordered and a fraction, sayγN , 0 < γ ≤ 1, of best points is used in the single iteration-based

MSL. A local search is carried out from each potential point identified by the single iteration-based MSL

algorithm. The best minimizer found by the local search is denoted byxb. An important parameter of the

single iteration-based MSL is the critical distance∆c
t and is calculated by

∆c
t = max{∆sa

t , β∆sa
0 }, (4.9)

whereβ > 1. Hence whent = 0, i.e., initially, ∆sa
0 = β∆sa

0 . However, during the initial period of

SAPS, the value of∆sa
t increases. An increase in∆sa

t indicates that the temperature is high so there is no

need to perform a high number of local searches (in order to avoid repetition). This is achieved by setting

∆c
t = ∆sa

t , ∆sa
t > β∆sa

0 . This ensures that local searches are performed from few potential points only.

A detailed description of the MSL method will be given later in the Appendix A. For a comprehensive

literature on MSL, see [42]. Here we present the single iteration-based MSL algorithm.

Algorithm 4.2: The single iteration-based MSL algorithm.

Step 1 Order the sample points such thatf(xρ
i ) < f(xρ

i+1), 1 6 i 6 γN − 1. Seti := 1.

Step 2 Apply a local search procedure toxρ
1. For everyi = 2, · · · , γN , apply a local

search procedure to the sample pointxρ
i except if there is another sample point, or

previous detected local minimum within the critical distance∆c
t of xρ

i . Updatexb,

if necessary.

Remark 4.3:

The local search procedure invoked in Algorithm 4.2 is the MPS algorithm presented in Chapter 2. In

addition to the parameter∆c
t which determines the number of local search in the single iteration-based

MSL algorithm, we also have the initial step size parameter∆0 of the local search MPS. We take∆0 of

MPS to be equal to the current step size∆sa
t at thetth Markov chain, i.e.,

∆0 = ∆sa
t . (4.10)

The main structure of the SAPS hybrid is represented in Figure 4.2 using a flowchart.
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Figure 4.2: Flowchart for the SAPS algorithm.
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The algorithm for SAPS is presented below in Algorithm 4.3.

Algorithm 4.3: The SAPS algorithm.

1. Initialization : Same as in step 1 of the MSA algorithm except the initialization of the setS =

{xρ
1, · · · , x

ρ
N}. Letxb = xρ

1. Set the parameter value forβ.

2. The inner and outer loops:

while stopping condition is not satisfied do

begin

for i := 1 toL do

begin

generatey from x using the mechanism in (4.1) or (4.3);

if f(y) − f(x) ≤ 0 then accept;

else ifexp(−(f(y) − f(x) )/Tt ) > random(0, 1) then accept;

if accept thenx = y;

if f(xρ
N) > f(x) then xρ

N = x and find the best and worst points in the setS;

if the setS is replaced entirely then

begin

if ∆sa
t > β∆sa

0 then ∆c
t = ∆sa

t else∆c
t = β∆sa

0 ;

perform the single iteration-based MSL algorithm using thesetS;

end;

end;

t := t+ 1;

lowerTt using equation (3.8);

update∆sa
t using equation (4.8);

end.

Remarks:

4.4. The stopping condition is given by equation (3.10).
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4.5. The inner and outer loops of Algorithm 4.3 are similar tothose of Algorithm 4.1, i.e., the MSA algo-

rithm, but the significant changes are highlighted in bold.

4.6. The MSL algorithm keeps a record of the number of different minimizer found, as this is needed to

stop MSL. On the other hand, Algorithm 4.2, does not keep a record of the number of local minima found.

It only keeps a record of the best minimum point,xb.

4.4 Summary

In this chapter, we have presented two new hybrid global search methods in which the pattern search

method is combined with the SA method with and without the multi level single linkage method. Both of

these hybrids uses a generation mechanism which is based on the set of positive spanning directions. The

performance of these hybrid methods will be discussed in thenext chapter.



Chapter 5

Numerical results

In this chapter, we present the computational results in twosections. In the first section, we present the

results of the PS method and the MPS method presented in Chapter 2. In the second section, we present

results of the two hybrid methods, MSA and SAPS, presented inChapter 4. We use 50 test problems as

benchmark problems to determine the robustness and efficiency of these methods. These problems range

from 2 to 20 in dimension and have a variety of inherent difficulties. All the test problems can be found in

Appendix B.

The algorithms were run 100 times on each of the 50 test problems to determine the success rate.

Therefore there were 5000 runs in total. The success rate, sr, of an algorithm, on a problem is the number

of successful runs out of 100 runs. A successful run was counted when the following condition was

satisfied,

f∗ − fopt ≤ 0.01, (5.1)

wherefopt is the known global minimum of the problem andf∗ is the best function value obtained when

an algorithm terminates. Before we discuss the results on the test problems, we introduce the following

notation. We denote the average number of function evaluations and average cpu time by fe and cpu

respectively. Note that the average was computed using those runs for which the global minima were

obtained, i.e., when sr is positive. We use sr, fe and cpu as the criteria for comparison.

39
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5.1 Numerical results for PS and MPS

In this section, the numerical results of PS and MPS are presented. Initially, we assessed the capabilities

of PS in solving the global optimization test problems. We begin by presenting the parameter values of PS

and MPS.

5.1.1 Parameter values

In this subsection, we specify suggested parameters values. The initial step size parameters,∆0, was set

to ∆0 = 1 and

∆0 = max{ui − li | i = 1, · · · , n}/2 (5.2)

for PS and MPS respectively. We have also tested PS using∆0 given by equation (5.2). We denote this

version of PS by PS-I. The parameter∆0 used by MPS and PS-I depends on the size of the search region

Ω. Some of the problems have large search regions, therefore∆0 should be proportional to the size of

Ω. The MPS method has an additional parameter, namelyη, which is used in determining the stepr in

equation (2.13). We have usedη = 0.15. Our numerical experiments suggest that this is a good choice. A

parameter similar toη is used in [17] in the context of local point generation by simulated annealing where

η = 0.15 is also suggested.

Two common parameters of PS, PS-I and MPS are the expansion factorθk and the shrinkage factorφk

of equation (2.6). We have takenθk = 2 andφk = 1
2 . PS, PS-I and MPS were terminated when the step

size parameter∆k decreased below a certain tolerance,∆tol, i.e., when∆k < ∆tol = 0.001.

5.1.2 Numerical comparison

We have implemented PS, PS-I and MPS using the parameter values given in the previous subsection.

Each run starts with an initial random point. Rather than using a seed point for the random number gener-

ator in all algorithms, we have randomized the initial seed.This means that for each of the 100 runs, we

use different initial points in PS, PS-I and MPS. The resultsof PS, PS-I and MPS are presented in Table

5.1, where the notation, tr, in the last row represents totalresults, TP denotes the abbreviated names of the

test problems andn is the dimension of the test problem. We note that none of the algorithms succeeded

in finding the global minimum for the test problems, namely Ackley (ACK), Epistatic Michalewicz (EM),

Griewank (GW), Levy and Montalvo 2 (LM2), Miele and Cantrell(MCP), Modified Langerman (ML),
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Neumaier 2 (NF2), Odd Square (OSP), Paviani (PP), Price’s Transistor Modelling (PTM), Rastrigin (RG),

Rosenbrock (RB), Salomon (SAL), Schaffer1 (SF1), Schaffer2 (SF2), Schwefel (SWF), Storn’s Tcheby-

chev (ST) and Wood (WP). Except for these 18 problems, all other problems were solved by at least one of

the algorithms. The total success, sr, is therefore out of 3200 runs. Therefore the results for 32 problems

are presented in Table 5.1.

From the total results of Table 5.1, it can be seen that MPS is the best performer. It was successful in

2116 runs out of 3200 runs with total fe=41,900. PS-I is the runner-up. It was successful in 1896 runs out

of 3200 runs with total fe=104,553. Finally, PS was the worstperformer. It was successful in 1734 runs

out of 3200 runs with total fe=115,525. PS-I and MPS perform better than PS because they use an initial

step size∆0 which takes into account the size of the search regions. Thischoice is useful especially for

problems with large search region. However,∆0 used by PS, for unconstrained local optimization, does

not consider the size of the search region.

When analysing the numerical results of these algorithms using Table 5.1, the following two questions

arise.

• does the choice of initial step size∆0 in equation (5.2) improve PS-I?

• does the choice of perturbed coordinate directions improveMPS?

To address the first question, we compare PS and PS-I. The total results of Table 5.1 shows that PS-I

is much superior to PS in terms of fe and sr. For instance, PS-Iachieved about 9% less fe and 9% more

successes in locating the global minimum than PS. This indicates that the choice of the initial step size

parameter∆0 in equation (5.2) has an effect in improving the convergencerate of PS-I.

Although we have presented the results for PS, here we compare MPS and PS-I to see the effect of

perturbed coordinate directions. Table 5.1 shows that out of 50 problems, PS-I and MPS solved 31 and

32 problems respectively. Both PS-I and MPS failed to solve the same 18 problems. In addition, PS-I

failed to solve Camel Back6 Hump Problem (CB6). Total results show that MPS has achieved 60% less

fe. This difference in the total fe is largely due to two problems, namely Exponential Problem (EXP) and

Sinusoidal Problem (SIN). MPS, however, has achieved 220 more successes than PS-I. For the same set

of problems, MPS proved its superiority over PS-I. These results demonstrate the effects of the perturbed

coordinate directions in PS-I. Hence our modifications to PS-I are fully justified. Finally, we make the

observation that despite being a local solver MPS located the global minimum in 2116 runs out of 3200
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runs. Hence this potential can be harnessed by incorporating the features of PS-I or MPS in a global solver.

Table 5.1: Comparison of PS, PS-I and MPS using 32 problems.

PS PS-I MPS

TP n fe sr fe sr fe sr

AP 2 189 95 196 97 159 88

BL 2 170 100 190 100 160 100

B1 2 221 95 223 94 200 85

B2 2 224 49 229 48 192 57

BR 2 140 100 160 100 150 100

CB3 2 149 57 143 70 142 67

CB6 2 0 0 0 0 149 94

CM 4 306 49 144 97 434 99

DA 2 195 2 170 3 208 4

EP 2 170 3 192 50 174 69

EXP 10 8600 100 7900 100 3200 100

GP 2 193 42 188 49 196 56

GRP 3 833 12 933 15 393 84

H3 3 311 61 300 60 262 65

H6 6 1618 68 1508 61 984 63

HV 3 310 1 290 1 1200 4

HSK 2 158 95 172 99 141 92

KL 4 780 100 640 100 500 100

LM1 3 491 55 482 85 298 84

MC 2 147 75 159 69 141 71

MR 3 3067 75 3400 100 3600 100

MG 4 910 100 1000 100 900 100

MRP 2 187 75 191 68 169 71

MGP 4 173 3 148 5 146 13

NF3 10 9100 100 9192 99 9100 100

PRD 2 167 3 195 4 154 5

PWQ 4 1010 99 1000 100 960 100

SBT 2 150 22 122 27 135 20

S5 4 875 40 897 39 700 40

S7 4 833 24 889 27 641 39

S10 4 848 33 800 25 657 35

SIN 20 83000 1 72500 4 15455 11

tr 115,525 1734 104,553 1896 41,900 2116
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5.2 Numerical results for MSA and SAPS

In this section, the numerical results for the two hybrid methods discussed in Chapter 4 are presented in

two subsections. Again we have conducted 100 runs on each problem and each run starts with random

initial point. Initial members of the setS are also generated randomly. We will first present the numerical

results for MSA and for a refinement of MSA. Then we account forthe numerical results of SAPS. We

begin with the parameter values of MSA and SAPS.

5.2.1 Parameter values

Both MSA and SAPS were implemented using the cooling schedule described in section 3.5, i.e., using

equations (3.5)-(3.8). The values of the parameters in the cooling schedule are kept almost the same as

those suggested in [21]. Therefore for the cooling scheduleof both MSA and SAPS, we use the following

common parameter values, namely the acceptance ratioχ0 = 0.9 and the number of trialsm0 = 10n for

the calculation of initial temperatureT0 in (3.6), and constantL0 = 10 for the calculation of the length of

the Markov chain in (3.7). We also use the distance parameterδ = 0.1 for determining the decrement of the

temperature in (3.8) as suggested in [7, 9, 21]. However, we foundδ to be sensitive and hence conducted

a number of runs with various values ofδ. Note that each run of an algorithm generates a different initial

temperature. Hence we present the average initial temperature. The average initial temperature,T0, for

each problem is given in Table 5.4. Note also that each run of an algorithm on a problem, the same initial

temperature was generated. This means that the average initial temperature,T0, for MSA and SAPS on a

particular problem is the same. This has been done for a fair comparison. The value ofε in the stopping

condition of equation (3.10) is chosen to bemin(10−3, 10−3T0), as suggested in [24], i.e.,

Tt ≤ min(10−3, 10−3T0). (5.3)

The other parameters (other than the cooling schedule parameters) common to both MSA and SAPS

includeψ used in the generation scheme (4.1),ζ used in determining the initial step size∆sa
0 in (4.6), and

α andξ used in updating the step size∆sa
t+1 in equation (4.8). The parameterψ = 0.75 is used as suggested

in [21]. We have carried out numerical testing using a numberof values ofξ, e.g.,ξ = 0.5, ξ = 0.6 and

ξ = 0.7 and the best results were obtained forξ = 0.6. This value produced the overall best results in

terms of fe and sr. Hence we useξ = 0.6 for the rest of the numerical experiments. Other parametersare

α used in equation (4.8) andζ used in equation (4.6). We also observe that not all parameters are sensitive.
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For example, the parameterα appears to be more sensitive than others, whileζ is less sensitive. Hence

we have studied the sensitivity ofα andζ using a series of runs. Each run of MSA or SAPS produces a

different number of Markov chains. Hence, we present the average number of Markov chains. We denote

the average number of Markov chains bynmarkov. Note that this average was computed using those runs

for which the global minima were obtained.

5.2.2 Numerical studies of the MSA method

In this subsection, we present the results of MSA. We begin with the study of tuning the parameter values

of ζ andα in MSA. Fine tuning of parameters is a difficult task and not always easy to see the effects

caused by different parameter values. Nonetheless, we try to obtain good values of these parameters. We

then compare the MSA algorithm and its refinement. By refinement, we mean that a local search (the MPS

algorithm) is performed from the final solution of MSA. Finally, we try to answer an important question.

In particular, we answer the question: To what extent does the use of local search affects the performance

of MSA.

We begin by studying the effect of varying the parameterζ. We have used the generation mechanism

GM-I for this study. The parameterζ determines the initial step size∆sa
0 in equation (4.6). For this, we

have conducted a series of runs of MSA using the values 0.005,0.01, 0.03, 0.05 and 0.1 for the parameter

ζ. The results are presented in Table 5.2. Although the results are similar for other problems, we present

the results for 11 problems as representatives. Table 5.2 shows that the total sr forζ = 0.005 andζ = 0.1

are worse than the remaining parameter values. However, thetotal results in Table 5.2 shows thatζ is less

sensitive for the valuesζ = 0.01, 0.03 and0.05. All these three values have comparable fe, sr and cpu.

We have decided to use the parameterζ = 0.01 for the rest of the numerical experiments.
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Table 5.2:Results of MSA for different values ofζ, GM-I.
ζ = 0.005 ζ = 0.01 ζ = 0.03 ζ = 0.05 ζ = 0.1

TP fe sr fe sr fe sr fe sr fe sr

DA 1981 21 1978 27 2065 27 2026 18 2068 24
GP 2089 19 2064 23 2068 23 2218 20 2370 10
EXP 22258 100 22170 100 22137 100 22142 100 22305 100
GW 38922 100 39427 100 39550 100 39306 100 39712 100
LM2 31455 100 31446 100 31572 100 31635 100 31749 100
NF3 46952 100 47210 100 47250 100 47332 100 47701 100
RG 26817 100 26918 100 26558 100 27094 100 26469 100
RB 50324 100 52046 100 51553 100 52221 100 52128 100
PP 32078 100 31927 100 32629 100 32375 100 32689 100
SAL 22733 80 22907 80 22636 78 22970 90 23920 88
SWF 23675 99 23535 100 23742 100 24408 100 24323 100

tr 299,284 919 301,628 930 301,760 928 303,727 928 305,434 922

Next, we study the effect ofα in equation (4.8). The parameterα controls the expansion and reduction

of the step size parameter∆sa
t of equation (4.8). We fixζ = 0.01 and generate trial points using the

generation mechanism GM-I for this study. A series of runs ofthe MSA algorithm was conducted using

the values 0.10, 0.15 and 0.20. We denote the implementationof MSA usingα = 0.10, α = 0.15

andα = 0.20 by MSAα=0.10, MSAα=0.15 and MSAα=0.20 respectively. The results for MSAα=0.10 and

MSAα=0.20 are presented in Table 5.3. The total results do not contain the results of 9 problems, namely

Epistatic Michalewicz (EM), Gulf Research (GRP), Modified Langerman (ML), Neumaier 2 (NF2), Odd

Square (OSP), Price’s Transistor Modelling (PTM), Schaffer 2 (SF2), Shekel’s Foxholes (FX) and Storn’s

Tchebychev (ST9) since both MSAα=0.10 and MSAα=0.20 failed to solve them in all 100 runs. The results

of the remaining 41 problems are therefore presented in Table 5.3. The total success, sr, is out of 4100

runs.

A comparison of MSAα=0.10 and MSAα=0.20 using sr and fe is presented in Table 5.3. MSAα=0.20

was successful in 3764 runs out 4100 runs with total fe=513,787. On the other hand, MSAα=0.10 was

successful in 3541 runs out of 4100 runs with total fe=494,207. The execution time (cpu) for MSAα=0.10

and MSAα=0.20 are the same. These results shows that MSAα=0.20 is superior to MSAα=0.10 in terms of

sr. The results for MSAα=0.15 is presented in a later table. A general trend of the results is that fe and sr

increases withα. The reason is because the larger the value ofα, the more exploration of the search space

is performed. This requires high fe. However, for higherα, the total sr increases. For instance, in Table

5.3 there are at least 3 problems in MSAα=0.20, e.g., Dekker (DA), Hartman 3 (H3) and Shubert (SBT),

for which sr increased significantly.
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Table 5.3:Comparison of differentα values in MSA using 41 problems, GM-I.
MSAα=0.10 MSAα=0.20

TP n fe sr cpu fe sr cpu

ACK 10 21139 99 0.080 23240 98 0.090
AP 2 2208 85 0.002 2240 92 0.002
BL 2 2195 100 0.002 2170 100 0.002
B1 2 2684 83 0.004 2427 95 0.003
B2 2 2700 76 0.004 2355 84 0.003
BR 2 2079 91 0.002 1949 95 0.002
CB3 2 2136 100 0.002 2191 100 0.002
CB6 2 2054 87 0.002 2083 98 0.002
CM 4 5519 100 0.008 5808 100 0.008
DA 2 2258 2 0.002 1821 81 0.002
EP 2 1417 78 0.002 1166 79 0.002
EXP 10 22324 100 0.060 22101 100 0.060
GP 2 2355 21 0.003 2067 25 0.002
GW 10 38772 100 0.120 39346 100 0.120
H3 3 2349 31 0.010 2203 77 0.010
H6 6 8061 97 0.100 8463 96 0.110
HV 3 5036 1 0.006 5391 6 0.006
HSK 2 1479 95 0.002 1234 100 0.002
KL 2 3999 100 0.006 4044 100 0.006
LM1 3 4106 100 0.006 3828 100 0.005
LM2 10 31520 100 0.090 31353 100 0.080
MC 2 1996 99 0.002 1899 99 0.002
MR 3 3436 99 0.004 3317 100 0.004
MCP 4 3256 100 0.008 3352 100 0.008
MRP 2 2486 99 0.003 2334 100 0.002
MGP 2 1845 99 0.007 1581 100 0.005
NF3 10 47357 100 0.110 46880 100 0.110
PP 10 32175 100 0.120 32504 100 0.120
PRD 2 1574 100 0.003 1429 100 0.002
PWQ 4 8359 99 0.010 8274 100 0.010
RG 10 26318 100 0.070 27435 100 0.080
RB 10 50009 100 0.120 52209 100 0.120
SAL 2 21677 82 0.050 23263 84 0.050
SF1 2 1393 100 0.002 1287 100 0.002
SBT 2 1813 23 0.003 1669 58 0.002
SWF 10 23451 99 0.060 40633 99 0.110
S5 4 3444 98 0.006 3075 100 0.005
S7 4 3372 100 0.006 3045 99 0.005
S10 4 3474 98 0.007 3233 100 0.006
SIN 20 82204 100 0.610 80190 100 0.580
WP 4 8178 100 0.010 8698 99 0.010

tr 494,207 3541 1.720 513,787 3764 1.748

We have also presented the full results of MSAα=0.15 in Table 5.4. MSAα=0.15 also solved the same 41

problems as solved by MSAα=0.10 and MSAα=0.20. MSAα=0.20 is the best performer in terms of sr but it

is the worst performer in terms of fe. MSAα=0.15 performs relatively well in terms of fe and sr. Therefore

for the rest of our numerical experiments, we use the parameter valueα = 0.15.
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We now study the results presented in Table 5.4. In particular, we study the effect of the refinement of

MSAα=0.15. We denote the refined version of MSAα=0.15 by MSA-I. The refinement is done by carrying

out the local search, MPS, from the final solution of MSAα=0.15. The initial step size∆0 for MPS is taken

as∆sa
t , wheret is the final temperature counter. It also uses the parameter valuesα = 0.15 andζ = 0.01.

We note that MSA-I did not succeed in finding the global minimum for 7 test problems, namely Epistatic

Michalewicz (EM), Modified Langerman (ML), Odd Square (OSP), Price’s Transistor modelling (PTM) ,

Schaffer 2 (SF2), Shekel’s foxholes (FX) and Storn’s Tchebychev (ST9). The results for these 7 problems

are not presented in Table 5.4. The average initial temperature for the remaining 43 problems are also

presented in Table 5.4. The value ofT0 for the problems, namely EM, ML, OSP, PTM, SF2, FX and ST9

are 0.01, 0.001, 0.47, 8876204, 19.23, 1.14 and 666,623 respectively. Note that some of the problems

have high initial temperature, for example, DA, PTM, RB and WP. In Table 5.4, the results in the column

under MSA-I have two parts. The results outside the bracket represents the combined fe contributed by

MSAα=0.15 and the local search (MPS) used for the refinement of the final solution. On the other hand,

the results inside the bracket represent the fe contributedby the local search MPS alone.

To answer the question that we posed at the beginning of this subsection, that is, the effect of the

refinement of MSA, we compare MSAα=0.15 and MSA-I. The total results in Table 5.4 shows that MSA-I

is superior to MSAα=0.15 by 7% with respect to sr. On the other hand, MSAα=0.15 is superior to MSA-I

by 6% and 28% with respect to fe and cpu respectively. MSA-I improved the success rate for some of the

problems like Bohachevsky 2 (B2), Dekker (DA), Easom (EP), Hartman 3 (H3), Helical (HV), Salomon

(SAL) and Shubert (SBT) which are all highlighted in bold. The increase in function evaluation (fe) for

most problems using MSA-I can be attributed to the use of local search. For example, the fe for BL is

2184(52), where2184 represent the combined fe for both MSAα=0.15 and the local search (MPS) . The

number inside the bracket, i.e.,52 represent the fe for MPS only. The remaining fe, i.e,2132 represent the

fe for MSAα=0.15 only.

We now study the total number of Markov chains,nmarkov, in Table 5.4. Table 5.4 shows that

MSAα=0.15 and MSA-I incurrednmarkov = 6793 and7162 respectively. The highnmarkov in MSA-

I justifies why it has higher total fe than MSAα=0.15. Note that thenmarkov values for some prob-

lems for MSAα=0.15 are higher than those of MSA-I. This is becausenmarkov is the average number

of Markov chains where the average is taken over the successful runs. MSA-I has more successful runs

than MSAα=0.15. Notice that for some problems the values ofnmarkov are the same and this has been

indicated with boxes in Table 5.4.
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The total results for MSA-I in Table 5.4 includes the resultsof Gulf Research Problem (GRP) and

Neumaier 2 Problem (NF2) where MSAα=0.15 failed. We compare MSAα=0.15 and MSA-I excluding

these two functions. The total cpu and fe for MSA-I, without these two functions, are 1.77 and 510,620

respectively. Therefore, both MSAα=0.15 and MSA-I have similar cpu and fe if we exclude the results of

these two functions from the total results of Table 5.4.

Table 5.4:Comparison of MSAα=0.15 and MSA-I using 43 problems, GM-I.
MSAα=0.15 MSA-I

TP n T0 fe sr cpu nmarkov fe sr cpu nmarkov

ACK 10 28.84 22594 99 0.080 225 22759 (289) 100 0.090 224
AP 2 3949.00 2154 97 0.002 107 2234 (76) 99 0.003 106
BL 2 96.97 2132 100 0.002 106 2184 (52) 100 0.002 106
B1 2 15157.49 2436 96 0.003 121 2478 (51) 100 0.003 120
B2 2 15154.47 2494 80 0.003 124 2522 (51) 95 0.003 123
BR 2 446.91 2011 95 0.002 100 2044 (64) 100 0.002 98
CB3 2 2394.86 2148 100 0.002 107 2198 (50) 100 0.002 107
CB6 2 8410.76 2099 98 0.002 104 2149 (60) 100 0.002 104
CM 4 7.49 5767 100 0.008 143 5801 (34) 100 0.008 143
DA 2 9469730.00 1978 27 0.002 98 1900 (21) 56 0.002 93
EP 2 0.90 1148 89 0.002 57 1098 (52) 99 0.002 51
EXP 10 2.20 22170 100 0.06 221 22290 (120) 100 0.060 221
GP 2 63901.00 2064 23 0.002 102 2215 (70) 82 0.002 106
GW 10 1583.55 39427 100 0.120 393 40561 (1134) 100 0.130 393
GRP 3 23.23 0 0 0.000 0 3646 (360) 15 0.520 109
H3 3 3.68 2090 52 0.010 69 2074 (154) 100 0.010 63
H6 6 2.63 8269 97 0.110 137 8432 (311) 100 0.110 135
HV 3 69139.00 4809 7 0.006 159 5688 (411) 26 0.007 175
HSK 2 1.97 1324 96 0.002 65 1380 (77) 100 0.002 64
KL 2 0.23 4049 100 0.006 100 4212 (163) 100 0.006 100
LM1 3 201.55 3963 100 0.005 131 4060 (97) 100 0.005 131
LM2 10 79.16 31446 100 0.090 314 31608 (162) 100 0.090 314
MC 2 11.30 1925 100 0.002 95 1985 (60) 100 0.002 95
MR 3 348426.00 3346 100 0.005 111 8870 (5524) 100 0.006 111
MCP 4 8.64 3371 100 0.008 83 3967 (595) 100 0.009 83
MRP 2 154127.00 2283 100 0.002 113 2294 (12) 100 0.002 113
MGP 2 2.68 1641 100 0.006 81 1670 (29) 100 0.006 81
NF2 4 689690.00 0 0 0.000 0 12191 (117) 1 0.110 276
NF3 10 18299.00 47210 100 0.110 471 49002 (1792) 100 0.120 471
PP 10 184.43 31927 100 0.110 318 32027 (100) 100 0.110 318
PRD 2 0.19 1483 100 0.002 73 1546 (63) 100 0.002 73
PWQ 4 36236.00 8296 100 0.010 207 8424 (128) 100 0.010 207
RG 10 616.90 26918 100 0.070 268 26971 (53) 100 0.070 268
RB 10 9653091.00 52046 100 0.120 520 52100 (54) 100 0.120 520
SAL 2 57.17 22907 80 0.050 228 22978 (610) 96 0.050 222
SF1 2 0.69 1373 100 0.002 68 1486 (113) 100 0.002 68
SBT 2 212.80 1699 66 0.003 84 1712 (18) 80 0.003 80
SWF 10 11908.00 23535 100 0.070 235 24787 (1252) 100 0.070 235
S5 4 10.37 3208 99 0.005 79 3256 (58) 100 0.005 79
S7 4 10.60 3119 99 0.006 77 3172 (68) 100 0.006 77
S10 4 10.64 3248 100 0.007 80 3319 (71) 100 0.008 80
SIN 20 4.99 81700 100 0.610 408 82657 (957) 100 0.620 408
WP 4 1452635.00 8484 100 0.010 211 8510 (26) 100 0.010 211

tr 496,291 3700 1.728 6793 526,457(15,559) 3949 2.400 7162
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Up to now, we have presented the result for MSAα=0.15 using the generation mechanism GM-I. It

would be interesting to see how MSAα=0.15 performs with the generation mechanism GM-II. Therefore,

we present the full results of MSAα=0.15 using GM-II in Table 5.5. In this table, we note that MSAα=0.15

was not successful on the same 9 problems as in MSAα=0.15, Table 5.4. MSAα=0.15 was successful in

3657 runs out of 4100 runs with total fe=494,469 as shown in Table 5.5. On the other hand, MSAα=0.15

was successful in 3700 runs out of 4100 runs with total fe=496,291 as shown in Table 5.4. One can

conclude that GM-I and GM-II are comparable in terms of fe, srand cpu.

Finally, note that the MSA algorithm performed well in separable or closely separable multimodal

functions, e.g., Ackley (ACK), Levy and Montalvo (LM 1 & 2) and Rastrigin (RG), and Schwefel (SWF),

as opposed to a number of non-separable functions, e.g., Dekkers and Aarts (DA), Schaffer 2 (SF2), and

Goldstein and Price (GP). This is evident in Table 5.4. For instance, MSA was successful in 499 runs out

of 500 runs for the case of the above 5 separable or closely separable functions. On the other hand, MSA

was successful only in 50 runs out of 300 runs for the above 3 nonseparable functions. One important

feature of the generation mechanism employed in MSA is that acoordinate step is performed in such a

way that a single variable is changed to obtain a trial point in GM-I. We believe that this feature favours

the separable functions. A further research can involve understanding the reasons for failure of MSA on

some nonseparable functions. We have stated this in the conclusion.
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Table 5.5:Results of MSAα=0.15 using 43 problems, GM-II.

TP n fe sr cpu

ACK 10 20972 99 0.080

AP 2 2108 91 0.002

BL 2 2147 100 0.002

B1 2 2484 94 0.003

B2 2 2458 83 0.003

BR 2 1930 96 0.002

CB3 2 2190 100 0.003

CB6 2 2026 96 0.002

CM 4 5633 100 0.009

DA 2 1952 30 0.003

EP 2 1135 85 0.002

EXP 10 22073 100 0.060

GP 2 2093 15 0.003

GW 10 39335 100 0.140

H3 3 2139 38 0.010

H6 6 7843 90 0.010

HV 3 5441 4 0.007

HSK 2 1320 97 0.002

KL 2 4030 100 0.007

LM1 3 3936 100 0.006

LM2 10 31397 100 0.090

MC 2 1922 99 0.002

MR 3 3269 100 0.005

MCP 4 3021 100 0.008

MRP 2 2271 100 0.003

MGP 4 1670 100 0.006

NF3 10 47083 100 0.120

PP 2 32444 100 0.120

PRD 4 1504 100 0.003

PWQ 9 8412 100 0.010

RG 10 26894 100 0.080

RB 10 50932 100 0.130

SAL 2 23599 82 0.060

SF1 2 1355 100 0.002

SBT 2 1668 61 0.003

SWF 10 24839 100 0.070

S5 4 3187 99 0.006

S7 4 3123 100 0.006

S10 4 3260 99 0.007

SIN 20 80892 100 0.620

WP 4 8482 99 0.010

tr 494,469 3657 1.718
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5.2.3 Numerical studies of the SAPS method

In this subsection, we present the results of SAPS. The SAPS algorithm is implemented using the same

parameter values of the cooling schedule as in MSA. We however study the effect ofδ in equation (3.8). In

addition to these parameters values, there are two other parameters common to MSA and SAPS, namely

ζ in equation (4.6) andα in equation (4.8). Good values of these parameters were empirically obtained in

subsection 5.2.2 for MSA. We therefore use the same values inthe implementation of SAPS, i.e., we use

ζ = 0.01 andα = 0.15.

Other parameters of SAPS areβ used in equation (4.9), the sizeN of S andγ. Of these parameters,

γ is used by MSL. In this subsection, we study these parametersand the parameterδ in equation (3.8)

empirically in order to obtain suitable values for them. Theparameterδ was found to be sensitive in our

study. Hence, we have presented a series of results with various values ofδ. Before we present the results,

we introduce some notations. We denote the average number oftimes the single iteration-based MSL

algorithm is performed per run bync and the average number of times MPS is performed per MSL bynps.

We also denote the average number of MPS, out ofnps, that obtains the global minimum byng.

We begin our numerical investigation with the distance parameterδ. We fixN = 3n andγ = 1 for this

study. We use the generation mechanism GM-I. We run SAPS using different values ofδ, namely 0.1, 0.3

and 0.5. The results are presented in Table 5.6. We note that SAPS did not succeed in finding the global

minimum of 7 test problems for allδ values, namely Epistatic Michalewicz (EM), Modified Langerman

(ML), Odd Square (OSP), Price’s Transistor modelling (PTM), Schaffer 2 (SF2), Shekel’s foxholes (FX)

and Storn’s Tchebychev (ST9). The results of the 43 problemsare therefore presented in Table 5.6.

From the total results in Table 5.6, we see that the SAPS algorithm was successful in 4176, 4105 and

4022 runs out of 4300 runs forδ = 0.1, 0.3 and 0.5 respectively. SAPS achieved these successes for total

fe equal to 1,021,630, 801,985 and 767,911 forδ = 0.1, 0.3 and 0.5 respectively. The above results shows

that both fe and sr decrease asδ increases. This is because the temperature decreases slowly wheneverδ

is small and hence more fe is needed in order to converge. There are at least 3 problems, e.g., Goldstein

and Price (GP), Salomon (SAL) and Shubert (SBT) for which sr differs significantly. We have highlighted

these 3 problems in bold. Clearlyδ = 0.1 is the best value in terms of sr andδ = 0.5 is the best value in

terms of fe. We have decided to choose the best parameter based on success rate, sr. Therefore, we use the

parameterδ = 0.1 for the rest of the numerical experiments.
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Table 5.6:Results of SAPS for different values ofδ, GM-I.

δ = 0.1 δ = 0.3 δ = 0.5

TP n fe sr cpu fe sr cpu fe sr cpu

ACK 10 34797 100 0.140 22706 100 0.080 21819 100 0.070

AP 2 2695 99 0.003 1466 100 0.002 1292 100 0.001

BL 2 2808 100 0.003 1578 100 0.002 1302 100 0.001

B1 2 2873 100 0.003 1818 100 0.002 1559 100 0.002

B2 2 2881 99 0.003 1843 97 0.002 1563 95 0.002

BR 2 2468 100 0.002 1567 100 0.002 1480 100 0.002

CB3 2 2414 100 0.003 1320 100 0.002 1091 100 0.001

CB6 2 2525 100 0.003 1581 100 0.002 1429 100 0.002

CM 4 6515 100 0.009 3263 100 0.005 2643 100 0.004

DA 2 2924 98 0.003 2649 96 0.003 2487 96 0.002

EP 2 1648 99 0.003 1492 94 0.002 1392 96 0.002

EXP 10 26465 100 0.070 12381 100 0.030 9048 100 0.002

GP 2 2634 99 0.003 1678 88 0.002 1497 64 0.002

GW 10 52196 100 0.150 28762 100 0.080 22314 100 0.060

GRP 3 6467 100 1.040 10007 100 1.610 11408 100 1.840

H3 3 3120 100 0.020 2600 100 0.020 2154 100 0.010

H6 6 18184 100 0.240 11390 100 0.140 9778 100 0.120

HV 3 12586 81 0.010 8453 66 0.007 7524 64 0.006

HSK 2 2000 100 0.003 1318 100 0.002 1021 99 0.002

KL 2 4811 100 0.007 2056 100 0.003 1505 100 0.002

LM1 3 4929 100 0.006 2684 100 0.003 2208 100 0.003

LM2 10 37091 100 0.110 17177 100 0.050 13399 100 0.040

MC 2 2396 100 0.003 1383 100 0.002 1188 100 0.001

MR 3 17985 100 0.020 16201 100 0.020 13052 100 0.010

MCP 4 12741 100 0.030 10142 100 0.020 8915 100 0.020

MRP 2 2709 100 0.003 1672 100 0.002 1475 100 0.002

MGP 4 1918 100 0.007 1094 100 0.004 913 100 0.003

NF2 10 16967 20 0.140 10433 32 0.100 9952 21 0.100

NF3 10 237368 100 0.410 275763 100 0.430 305831 100 0.540

PP 2 37587 100 0.140 17810 100 0.060 13315 100 0.004

PRD 4 1871 100 0.003 1132 100 0.002 922 100 0.002

PWQ 9 10829 100 0.010 5916 100 0.006 4883 100 0.005

RG 10 44180 100 0.130 28682 100 0.070 25312 100 0.060

RB 10 89715 100 0.190 60083 100 0.110 53265 100 0.090

SAL 2 26641 97 0.060 12230 80 0.020 10255 63 0.02

SF1 2 1835 100 0.002 1284 100 0.001 1000 100 0.001

SBT 2 2122 84 0.003 1429 52 0.002 1157 24 0.002

SWF 10 45701 100 0.120 39786 100 0.100 33531 100 0.080

S5 4 5782 100 0.008 4482 100 0.006 4240 100 0.006

S7 4 5699 100 0.009 4596 100 0.007 4276 100 0.007

S10 4 5818 100 0.010 4632 100 0.008 4153 100 0.008

SIN 20 206177 100 1.350 157943 100 0.960 145540 100 0.850

WP 4 10558 100 0.010 5503 100 0.006 4823 100 0.006

tr 1,021,630 4176 4.488 801,985 4105 3.987 767,911 4022 3.993
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We now study the effect of varying the parameterβ used in equation (4.9). We fixδ = 0.1, γ = 1

andN = 3n use the generation scheme GM-I for this study. We run SAPS algorithm using three values

of β, namely10, 15 and20. The results are presented in Table 5.7. We note that SAPS failed on the same

problems, e.g., EM, ML OSP, PTM, SF2, FX and ST9 for each valueof β. SAPS has a positive success

rate on the remaining 43 problems for each value ofβ. Hence Table 5.7 does not contain the results for

these 7 problems.

The SAPS algorithm was successful in 4178, 4179 and 4176 runsout of 4300 runs forβ = 10, 15 and

20 respectively. SAPS achieved these successes for total feequal to 1,384,360, 1,147,738 and 1,021,630

for β = 10, 15 and 20 respectively. Total results shows that fe decreases asβ increases. The decrease in

fe asβ increases can be justified as follows. We know that the numberof local searches performed in the

single iteration-based MSL algorithm depends on the lengthof the critical distance∆c
t , which is given by

∆c
t = max{∆sa

t , β∆sa
0 }.

The critical distance∆c
t takes the valueβ∆sa

0 in cases whereβ∆sa
0 > ∆sa

t . Hence, the parameterβ has

an effect on the critical distance. Therefore, the largerβ is, the lesser the number of local searches are

performed resulting in lesser fe. We will explain later why fe decreases withβ using the information in

Table 5.8. On the other hand, the total results also shows that sr is insensitive toβ. We have also tested

SAPS withβ = 30. The results have shown a slight decrease in sr for this value. Hence, we useβ = 20

for the rest of numerical study.

Some additional results of the implementation of SAPS that produced the results in Table 5.7 will be

presented next in Table 5.8.
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Table 5.7:Results of SAPS for different values ofβ, GM-I.

β = 10, γ = 1 β = 15, γ = 1 β = 20, γ = 1

TP n fe sr cpu fe sr cpu fe sr cpu

ACK 10 46520 100 0.150 39309 100 0.130 34797 100 0.140

AP 2 2778 100 0.003 2714 100 0.003 2695 99 0.003

BL 2 2755 100 0.003 2797 100 0.003 2808 100 0.003

B1 2 2917 100 0.003 2958 100 0.003 2873 100 0.003

B2 2 3029 99 0.003 2883 99 0.003 2881 99 0.003

BR 2 2549 100 0.003 2403 100 0.002 2468 100 0.002

CB3 2 2428 100 0.003 2449 100 0.002 2414 100 0.003

CB6 2 2617 100 0.003 2607 100 0.002 2525 100 0.003

CM 4 6816 100 0.010 6699 100 0.009 6515 100 0.009

DA 2 3283 99 0.003 3068 97 0.003 2924 98 0.003

EP 2 1776 93 0.010 1737 95 0.002 1648 99 0.003

EXP 10 36199 100 0.080 29323 100 0.070 26465 100 0.070

GP 2 2680 98 0.030 2630 99 0.003 2634 99 0.003

GW 10 71112 100 0.190 58503 100 0.160 52196 100 0.150

GRP 3 9331 100 1.400 8170 100 1.300 6467 100 1.040

H3 3 3614 100 0.020 3455 100 0.002 3120 100 0.020

H6 6 21792 100 0.270 19524 100 0.240 18184 100 0.240

HV 3 13310 85 0.020 12969 81 0.010 12586 81 0.010

HSK 2 2062 100 0.003 2116 100 0.003 2000 100 0.003

KL 2 5023 100 0.007 4892 100 0.007 4811 100 0.007

LM1 3 4921 100 0.006 5013 100 0.006 4929 100 0.006

LM2 10 47771 100 0.120 40621 100 0.110 37091 100 0.110

MC 2 2405 100 0.003 2415 100 0.002 2396 100 0.003

MR 3 21297 100 0.020 18251 100 0.010 17985 100 0.020

MCP 4 16840 100 0.040 16308 100 0.003 12741 100 0.030

MRP 2 2887 100 0.003 2717 100 0.003 2709 100 0.003

MGP 4 1909 100 0.007 1913 100 0.007 1918 100 0.007

NF2 10 14804 26 0.140 15395 26 0.140 16967 20 0.140

NF3 10 287709 100 0.460 251521 100 0.390 237368 100 0.410

PP 2 46081 100 0.160 39235 100 0.130 37587 100 0.140

PRD 4 1961 100 0.003 1862 100 0.003 1871 100 0.003

PWQ 9 11844 100 0.010 11318 100 0.010 10829 100 0.010

RG 10 44389 100 0.120 44252 100 0.110 44180 100 0.130

RB 10 179634 100 0.300 130350 100 0.240 89715 100 0.190

SAL 2 28942 96 0.060 27526 99 0.060 26641 97 0.060

SF1 2 1980 100 0.002 1919 100 0.002 1835 100 0.002

SBT 2 2034 82 0.003 2128 83 0.003 2122 84 0.003

SWF 10 63999 100 0.160 45541 100 0.120 45701 100 0.120

S5 4 6593 100 0.009 5913 100 0.008 5782 100 0.008

S7 4 6620 100 0.010 5999 100 0.009 5699 100 0.009

S10 4 6522 100 0.010 5804 100 0.010 5818 100 0.010

SIN 20 325257 100 2.060 248712 100 1.520 206177 100 1.350

WP 4 15370 100 0.020 11819 100 0.010 10558 100 0.010

tr 1,384,360 4178 5.940 1,147,738 4179 4.868 1,021,630 41764.488
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Having established the effect ofβ in sr and fe in Table 5.7, we now study the effect ofβ in nps and

nc. The valuesnps andnc are the direct consequences of the implementation of MSL in SAPS. We now

present the data fornps andnc in Table 5.8. Notice that the results in Table 5.7 and 5.8 wereobtained

using the same implementation of SAPS.

The total results in Table 5.8 shows that SAPS performednc = 175, 173 and 170 single iteration-based

MSL for β = 10, 15 and 20 respectively. The total number of local searches in the above MSL call were

nps = 299, 258 and 237 respectively forβ = 10, 15 and 20. Although the total number of local searches in

each of the above cases is high but the number of local search per MSL is considerably low. For example,

there were175
299 (=1.7), 1.5 and 1.4 local searches per MSL forβ = 10, 15 and 20 respectively.

On the other hand, we were encouraged to see the results forng. For example, the number of successful

local searches wereng = 227 out of nps = 299, ng = 199 out of nps = 258, andng = 181 out of

nps = 237 for β = 10, 15 and 20 respectively. The decrease in value ofnps andng asβ increases justifies

why fe decreases withβ as we have seen in Table 5.7. The above results shows that there were 76%, 77%

and 76% local searches were successful in locating the global minimum value. Indeed, there are a number

of problems, e.g., GW, H3 and MC, where 100% local searches were successful, i.e.,nps = ng . On the

other hand, there are some problems where not all local search nps produced the global minimum, such as

the problems MGP, SAL and SBT wherenps 6= ng .
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Table 5.8: Results of SAPS for different values ofβ, GM-I.

β = 10 β = 15 β = 20

TP n nps(ng) nc nps(ng) nc nps(ng) nc

ACK 10 9 (5) 3 7 (4) 3 6 (4) 3

AP 2 5 (4) 4 4 (4) 4 4 (3) 4

BL 2 5 (5) 3 5 (5) 3 5 (5) 3

B1 2 4 (3) 3 4 (3) 3 3 (3) 3

B2 2 4 (2) 3 3 (2) 3 3 (2) 3

BR 2 4 (4) 4 4 (4) 3 4 (4) 4

CB3 2 3 (3) 3 3 (3) 3 3 (3) 3

CB6 2 5 (5) 3 4 (4) 4 4 (4) 4

CM 4 5 (4) 3 5 (4) 3 5 (3) 3

DA 2 9 (6) 7 8 (6) 6 6 (5) 6

EP 2 9 (8) 8 8 (8) 8 8 (7) 7

EXP 10 7 (7) 2 5 (5) 2 4 (4) 2

GP 2 4 (2) 3 4 (2) 3 4 (2) 3

GW 10 6 (6) 3 4 (4) 3 3 (3) 3

GRP 3 4 (4) 3 4 (4) 3 3 (3) 2

H3 3 7 (7) 5 6 (6) 5 5 (5) 4

H6 6 16(16) 10 13(13) 10 12(12) 10

HV 3 6 (2) 5 6 (2) 6 6 (2) 5

HSK 2 6 (6) 5 6 (6) 5 5 (5) 5

KL 2 3 (3) 2 3 (3) 2 2 (2) 2

LM1 3 5 (3) 3 5 (3) 3 5 (3) 3

LM2 10 7 (6) 3 5 (4) 2 4 (3) 2

MC 2 5 (5) 4 5 (5) 4 4 (4) 4

MR 3 4 (4) 3 4 (3) 3 4 (3) 3

MCP 4 11(11) 4 10(10) 5 8 (8) 4

MRP 2 5 (5) 3 4 (4) 3 4 (4) 3

MGP 4 4 (2) 3 3 (2) 3 3 (2) 3

NF2 10 7 (2) 4 6 (2) 3 6 (2) 4

NF3 10 34(34) 24 30(30) 24 29(29) 24

PP 2 6 (6) 3 4 (4) 3 4 (4) 3

PRD 4 4 (4) 3 3 (3) 3 3 (3) 3

PWQ 9 6 (6) 3 5 (5) 3 4 (4) 3

RG 10 9 (3) 3 9 (3) 3 9 (3) 3

RB 10 7 (2) 3 6 (2) 3 5 (2) 3

SAL 2 7 (1) 3 5 (1) 3 4 (1) 3

SF1 2 4 (4) 3 4 (3) 3 3 (3) 3

SBT 2 4 (2) 2 4 (2) 2 4 (2) 2

SWF 10 6 (3) 3 5 (3) 3 5 (3) 3

S5 4 9 (4) 3 7 (4) 3 7 (3) 3

S7 4 8 (4) 4 7 (3) 3 7 (3) 3

S10 4 8 (4) 3 7 (3) 3 7 (3) 3

SIN 20 13(7) 3 10(5) 3 8 (4) 3

WP 4 5 (3) 3 4 (3) 3 4 (3) 3

tr 299(227) 175 258 (199) 173 237 (181) 170
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We have so far conducted numerical testing of SAPS for various parameter values using the generation

mechanism GM-I. The results obtained were very satisfactory. We have shown that the best results of

SAPS were obtained forβ = 20 andδ = 0.1. It will be interesting to see the results of SAPS for the above

parameters values using the generation mechanism GM-II. Hence, the results of SAPS using GM-II are

presented in Table 5.9. Note that SAPS was not successful forthe same 7 problems as in SAPS of Table

5.7. From the total results in Table 5.9, we see that SAPS was successful in 4181 runs out of 4300 runs

with total fe=1,030,017. On the other hand, Table 5.7 shows that SAPS was successful in 4176 runs out

4300 runs with total fe=1,021,630. These results show that SAPS is insensitive to GM-I and GM-II. This

is becauser → 0 faster than∆sa
t → 0. Hence GM-II→ GM-I for a smallerε in the stoppig condition of

equation (3.10). However, our experience have shown that SAPS becomes sensitive to GM-I and GM-II

for larger ε in the stopping condition. We have decided to choose GM-I forthe rest of our numerical

studies.
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Table 5.9:Results of SAPS forβ = 20 using 43 problems, GM-II.

TP n fe sr cpu

ACK 10 34793 100 0.120

AP 2 2755 100 0.003

BL 2 2754 100 0.003

B1 2 2934 100 0.003

B2 2 2845 98 0.003

BR 2 2487 100 0.003

CB3 2 2406 100 0.003

CB6 2 2534 100 0.003

CM 4 6697 100 0.010

DA 2 3218 98 0.003

EP 2 1742 97 0.003

EXP 10 26559 100 0.070

GP 2 2653 100 0.003

GW 10 53351 100 0.160

GRP 3 2653 100 0.890

H3 3 3505 100 0.020

H6 6 16650 100 0.210

HV 3 12439 84 0.010

HSK 2 2016 100 0.003

KL 2 4816 100 0.007

LM1 3 4973 100 0.006

LM2 10 37314 100 0.110

MC 2 2429 100 0.003

MR 3 18911 100 0.013

MCP 4 14062 100 0.027

MRP 2 2714 100 0.003

MGP 4 1896 100 0.007

NF2 10 16846 20 0.150

NF3 10 231860 100 0.410

PP 2 38428 100 0.140

PRD 4 1837 100 0.003

PWQ 9 10675 100 0.013

RG 10 44730 100 0.120

RB 10 96411 100 0.200

SAL 2 26038 99 0.061

SF1 2 1859 100 0.002

SBT 2 2107 85 0.003

SWF 10 56793 100 0.160

S5 4 5950 100 0.008

S7 4 5757 100 0.009

S10 4 5646 100 0.009

SINF 20 201941 100 1.290

WP 4 11033 100 0.012

tr 1,030,017 4181 4.278
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Next, we study the effect of varying the initial sample sizeN of S. We fix δ = 0.1, β = 20, γ = 1

and generate trial points using GM-I for this study. We run SAPS using three values ofN , namely3n,

5n and7n. For each value ofN , the SAPS algorithm was run 100 times on 12 representative problems.

The results are presented in Table 5.10. The SAPS algorithm was successful in 1170, 1171 and 1166

runs out of 1200 runs forN = 3n, 5n and7n respectively. SAPS accomplished these successes for total

fe=590,095, 523,476 and 482,849 forN = 3n, 5n and7n respectively. From the total results, we can see

that the parameterN = 7n is the best in terms of fe and cpu followed byN = 5n. Note also that SAPS

exhibits similar results forN = 3n andN = 5n in terms of sr. We have decided to use the sizeN = 5n

because it has a slightly higher sr thanN = 7n. We know that a single iteration-based MSL is invoked

when all members ofS are replaced. Therefore, intuitively speaking the larger theN is, the smaller the

nc will be. This has been clearly reflected in Table 5.10. For example, thenc for the parameterN = 3n is

66, while that ofN = 7n is 49.

Table 5.10:Results of SAPS for different sample sizeN , GM-I.

N = 3n N = 5n N = 7n

TP n fe sr cpu nc fe sr cpu nc fe sr cpu nc

DA 2 2924 94 0.003 6 2894 99 0.003 6 2759 98 0.003 5

EP 2 1648 98 0.003 8 2676 96 0.003 8 1537 95 0.003 6

GP 2 2634 99 0.003 3 2471 98 0.003 3 2492 98 0.003 2

EXP 10 26465 100 0.070 2 24137 100 0.070 2 23894 100 0.070 2

GW 10 52196 100 0.150 3 48315 100 0.140 2 47747 100 0.14 4

HV 3 12586 79 0.01 5 11435 78 0.01 5 10308 75 0.01 2

LM2 10 37091 100 0.110 2 35049 100 0.110 2 33878 100 0.110 2

NF3 10 237368 100 0.410 25 188142 100 0.350 19 162471 100 0.32017

RG 10 44180 100 0.130 3 42866 100 0.120 2 41138 100 0.120 2

RB 10 89715 100 0.190 3 86965 100 0.190 3 79829 100 0.170 3

PP 10 37587 100 0.140 3 35364 100 0.140 2 35401 100 0.150 2

SWF 10 45701 100 0.120 3 43162 100 0.120 2 41395 100 0.110 2

tr 590,095 1170 1.343 66 523,476 1171 1.263 56 482,849 1166 1.213 49

Having determined the sizeN to use, we now investigate the effect of varying the parameter γ of the

MSL algorithm. We fixN = 5n, δ = 0.1, β = 20. for this study. A series of runs of the SAPS algorithm

was conducted using the values ofγ, namely 1, 0.5 and 0.25. The results forγ = 1, γ = 0.5 andγ = 0.25

are presented in Table 5.11, Table 5.12 and Table 5.13 respectively.
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The results for SAPS where MSL was implemented usingγ = 1 is presented in Table 5.11. Here again,

it is noteworthy that SAPS was not successful on the same 7 problems, namely Epistatic Michalewicz

(EM), Modified Langerman (ML), Odd Square (OSP), Price’s Transistor modelling (PTM) , Schaffer 2

(SF2), Shekel’s foxholes (FX) and Storn’s Tchebychev (ST9). Therefore, the results for these 7 problems

are not represented in the total results. From the total results, we see that SAPS with the parameterγ = 1

was successful in 4167 runs out of 4300 runs with total fe=911,598. The total number ofnps(ng) is

175(149). This indicates that out of 175 local searches performed 149 attained the global minimum.
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Table 5.11:Results of SAPS usingN = 5n & γ = 1 using 43 problems, GM-I.

TP n fe sr cpu nps(ng) nc

ACK 10 31961 100 0.130 5(3) 3

AP 2 2600 100 0.003 3(3) 3

BL 2 2647 100 0.003 4(4) 2

B1 2 2743 100 0.003 2(2) 2

B2 2 2800 97 0.004 3(2) 3

BR 2 2338 100 0.003 3(3) 3

CB3 2 2381 100 0.003 2(2) 2

CB6 2 2409 100 0.003 3(3) 3

CM 4 6496 100 0.010 4(3) 2

DA 2 2894 99 0.003 6(5) 6

EP 2 1676 96 0.003 8(8) 8

EXP 10 24137 100 0.070 3(3) 2

GP 2 2471 98 0.003 3(2) 3

GW 10 48315 100 0.150 2(2) 2

GRP 3 5966 100 0.090 3(2) 2

H3 3 2879 100 0.020 4(4) 3

H6 6 16353 99 0.200 9(9) 8

HV 3 11435 78 0.010 5(2) 5

HSK 2 1819 100 0.003 4(4) 3

KL 2 4637 100 0.007 2(2) 1

LM1 3 4809 100 0.007 4(2) 2

LM2 10 35049 100 0.100 3(3) 2

MC 2 2276 100 0.003 3(3) 3

MR 3 14908 100 0.010 3(3) 2

MCP 4 10278 100 0.020 6(6) 3

MRP 2 2572 100 0.003 3(3) 2

MGP 4 1845 100 0.007 2(2) 2

NF2 10 14542 20 0.140 6(1) 3

NF3 10 188142 100 0.340 22(22) 19

PP 2 35364 100 0.130 3(3) 2

PRD 4 1753 100 0.003 2(2) 2

PWQ 9 9707 100 0.020 3(3) 3

RG 10 42866 100 0.130 9(3) 2

RB 10 86965 100 0.190 5(2) 3

SAL 2 25866 96 0.070 3(1) 3

SF1 2 1780 100 0.002 3(3) 3

SBT 2 2053 84 0.003 3(2) 2

SWF 10 43162 100 0.120 5(2) 2

S5 4 5435 100 0.008 6(3) 3

S7 4 5736 100 0.009 7(3) 3

S10 4 5507 100 0.010 6(3) 3

SIN 20 182865 100 1.350 7(3) 2

WP 4 9161 100 0.010 3(3) 3

tr 911,598 4167 3.408 175(149)
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Table 5.12 shows the results for SAPS where MSL is implemented with γ = 0.5. Note that SAPS was

not successful on the same 7 problems as forγ = 1. Therefore, the results for these 7 problems are not

represented in the total results. From the total results, wesee that SAPS forγ = 0.5 was successful in 4156

runs out of 4300 runs with total fe=831,421. The total numberof nps(ng) is 152(142) which indicates that

93% of totalnps attained the global minimum.
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Table 5.12:Results of SAPS usingN = 5n & γ = 0.5 using 43 problems, GM-I.

TP n fe sr cpu nps(ng) nc

ACK 10 28790 100 0.120 3(3) 3

AP 2 2612 100 0.003 3(3) 3

BL 2 2620 100 0.003 4(4) 2

B1 2 2743 100 0.003 2(2) 2

B2 2 2786 98 0.003 3(2) 2

BR 2 2258 100 0.003 2(2) 2

CB3 2 2381 100 0.003 2(2) 2

CB6 2 2405 100 0.003 3(3) 3

CM 4 6308 100 0.010 3(3) 2

DA 2 2843 98 0.003 6(4) 5

EP 2 1618 97 0.003 7(7) 6

EXP 10 24209 100 0.070 3(3) 2

GP 2 2447 97 0.003 3(2) 3

GW 10 48335 100 0.160 2(2) 2

GRP 3 8450 100 0.130 4(4) 3

H3 3 2808 100 0.020 4(4) 3

H6 6 15702 99 0.190 9(9) 8

HV 3 11700 77 0.010 5(2) 5

HSK 2 1749 100 0.003 3(3) 3

KL 2 4608 100 0.070 2(2) 1

LM1 3 4594 100 0.006 3(2) 2

LM2 10 34145 100 0.110 2(2) 2

MC 2 2271 100 0.003 3(3) 3

MR 3 15410 100 0.010 3(3) 2

MCP 4 8538 100 0.020 4(4) 3

MRP 2 2577 100 0.003 3(3) 2

MGP 2 1821 100 0.007 2(2) 2

NF2 4 14039 12 0.130 5(2) 4

NF3 10 173192 100 0.300 20(20) 19

PP 10 35219 100 0.140 3(3) 2

PRD 2 1751 100 0.003 2(2) 2

PWQ 4 9628 100 0.010 3(3) 3

RG 10 37953 100 0.110 7(3) 2

RB 10 79549 100 0.170 4(2) 3

SAL 10 25288 98 0.070 3(1) 3

SF1 2 1796 100 0.002 3(2) 2

SBT 2 1979 80 0.003 3(2) 2

SWF 10 38529 100 0.120 3(2) 2

S5 4 5202 100 0.008 5(3) 3

S7 4 5065 100 0.008 5(3) 3

S10 4 4973 100 0.009 5(3) 3

SIN 20 141043 100 1.100 5(3) 2

WP 4 9487 100 0.010 3(3) 3

tr 831,421 4156 3.165 152(142) 136
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The results for the SAPS where MSL uses the parameterγ = 0.25 is presented in Table 5.13. SAPS

still unable to solve any of the 7 problems mentioned before.Therefore, the results for these 7 problems

are not represented in the total results. From the total results, we see that SAPS withγ = 0.25 was

successful in 4154 runs out of 4300 runs with total fe=766,764. The total number ofnps(ng) is 148(136)

which shows that 92% of the totalnps attained the global minimum.
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Table 5.13:Results of SAPS usingN = 5n & γ = 0.25 using 43 problems, GM-I.

TP n fe sr cpu nps(ng) nc

ACK 10 28038 100 0.100 3(3) 3

AP 2 2590 100 0.003 3(3) 3

BL 2 2444 100 0.003 3(3) 2

B1 2 2743 100 0.003 2(2) 2

B2 2 2814 100 0.003 3(2) 3

BR 2 2331 100 0.003 3(3) 3

CB3 2 2381 100 0.003 2(2) 2

CB6 2 2400 100 0.003 3(3) 3

CM 4 6143 100 0.010 3(3) 2

DA 2 2751 99 0.003 6(4) 5

EP 2 1607 96 0.002 7(7) 7

EXP 10 23890 100 0.070 3(3) 2

GP 2 2474 97 0.003 3(2) 3

GW 10 48741 100 0.160 2(2) 2

GRP 3 4920 100 0.080 2(2) 2

H3 3 2762 100 0.020 4(4) 3

H6 6 14749 100 0.190 8(8) 7

HV 3 11700 77 0.010 5(2) 5

HSK 2 1759 100 0.003 3(3) 3

KL 2 4504 100 0.007 2(2) 1

LM1 3 4511 100 0.006 3(2) 2

LM2 10 34295 100 0.100 2(2) 2

MC 2 2199 100 0.002 3(3) 3

MR 3 14466 100 0.010 2(2) 2

MCP 4 7718 100 0.020 4(4) 3

MRP 2 2487 100 0.003 3(3) 2

MGP 2 1821 100 0.007 2(2) 2

NF2 4 13615 12 0.120 4(1) 3

NF3 10 167293 100 0.310 19(19) 19

PP 10 35381 100 0.140 3(3) 2

PRD 2 1731 100 0.003 2(2) 2

PWQ 4 9526 100 0.010 3(3) 3

RG 10 34013 100 0.100 5(3) 2

RB 10 69925 100 0.170 4(2) 3

SAL 10 25053 96 0.070 3(1) 3

SF1 2 1724 100 0.002 2(2) 2

SBT 2 1944 77 0.003 2(2) 2

SWF 10 33251 100 0.100 3(2) 2

S5 4 4784 100 0.008 5(3) 3

S7 4 4627 100 0.008 4(3) 3

S10 4 4539 100 0.008 4(3) 3

SIN 20 110820 100 0.870 3(3) 2

WP 4 9300 100 0.010 3(3) 3

tr 766,764 4154 2.758 148(136)
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In summary, SAPS was successful in 4167, 4157 and 4154 runs out of 4300 runs forγ = 1, 0.5 and

0.25 respectively. SAPS achieved these successes for totalfe=911,598, 835,340 and 766,764 forγ = 1,

0.5 and 0.25 respectively. In conclusion,γ = 1 is the best in terms of sr andγ = 0.25 is the best in terms

of fe. The totalnps(ng) for γ = 1, 0.5 and 0.25 are 175(149), 152(142) and 148(136) respectively. It is

clear that the choice of the parameter valueγ has an effect onnps, i.e.,nps decreases asγ decreases. The

reason for this trend is because the number ofnps depends on the number of points,γN , used in the single

iteration-based MSL. Clearly, the smaller the number of points used in MSL, the smaller thenps value.

5.3 Overall Performance

We have so far presented the results of MSA, MSA-I and SAPS separately. In this section, we now compare

the best results obtained by each of the above algorithms. Note that we use the results of those functions

for which all the methods succeeded in finding the global minimum for fair comparison. In other words,

we use only 41 problems that were solved by the three algorithms, namely MSAα=0.15, MSA-I and SAPS.

We extract information for MSAα=0.15, MSA-I and SAPS using Table 5.4 and 5.13. These results are

summarized in Table 5.14, where we have also presented the total cpu and the number of problems,Psol,

solved by an algorithm. Notice that the results presented inTable 5.14 are different from the corresponding

total results in Table 5.4 and 5.13. This is because, we are have used the total results for 41 problems that

were solved by the three algorithms.

Table 5.14: Comparison of the algorithms using total results.

Algorithm fe sr cpu Psol

MSAα=0.15 496,291 3700 1.73 41

MSA-I 510,620 3933 1.77 43

SAPS 748,229 4082 2.56 43

We rank order the algorithms using the data from Table 5.14 and present in Table 5.15. In Table 5.15,

it can be seen that there is no overall best performer in termsof three criteria, namely fe, sr and cpu. In

terms of fe, MSAα=0.15 is the best performer. In terms of sr, SAPS is the best performer while in terms of

cpu, MSAα=0.15 is the best performer.
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Table 5.15: Rank order of algorithms.

Rank 1 2 3

fe MSAα=0.15 MSA-I SAPS

sr SAPS MSA-I MSAα=0.15

cpu MSAα=0.15 MSA-I SAPS

5.4 Effect of temperature on step size parameter (∆sa
t )

In this section, we discuss the effect of temperature on the step size parameter∆sa
t in equation (4.8).

At initial stages of the algorithm, most of the trial points are accepted because the temperature is high.

As a result, the ratio,ra, of equation (4.7) increases and consequently the step size∆sa
t increases, so as

to explore the search space. On the other hand, as the temperature decreases, few points are accepted.

Therefore, the ratio,ra, decreases and consequently∆sa
t decreases, so that the algorithm focuses more

on exploitation. We have demonstrated this phenomena by running MSA once for each of the 4 different

problems, namely Hosaki (HSK), Goldstein and Price (GP), Shekel 5 (S5) and Rosenbrock (RB). Results

are presented in Figures 5.1, 5.2, 5.3 and 5.4. Each graph presents∆sa
t and temperature profiles. The

x-axis of each graph represents number of Markov chains andy-axis represents∆sa
t on the left-hand side

and temperature on the right-hand side. The figures vary fromproblem to problem. For example in Figure

5.1,∆sa
t increases up to its highest peak whennmarkov = 30 with Tt ≈ 0.1 before it starts to decrease. On

the other hand, in Figure 5.3,∆sa
t increases up to its maximum whennmarkov = 18 with Tt ≈ 1.5 before

it starts to decline.
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Figure 5.1: Effect ofTt on∆sa
t for HSK problem.
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Figure 5.2: Effect ofTt on∆sa
t for GP problem.
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Figure 5.3: Effect ofTt on∆sa
t for S5 problem.
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Figure 5.4: Effect ofTt on∆sa
t for RB problem.
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5.5 A study of the critical distance∆
c
t in the single iteration-based MSL

In this section, we explain how the critical distance∆c
t of equation (4.9) changes in the single iteration-

based MSL. The distance∆c
t is used to control the number of local search made. The value∆c

t of equation

(4.9) is given by

∆c
t = max{∆sa

t , β∆sa
0 }, (5.4)

whereβ is equal to 20 in regard to the results of Table 5.7. For this study we used two functions and

ran SAPS using the best parameter values found. Results are presented in Figures 5.5 and 5.6. Thex-

axis represents the number of Markov chains;y-axis represents∆sa
t on the left-hand side and∆c

t on the

right-hand side.

An important feature of both figures is that they use∆c
t = β∆sa

0 for a sizeable number of Markov

chains before using∆c
t = ∆sa

t . Towards the end of a run the SAPS algorithm again uses∆c
t = β∆sa

0 . For

example, in Figure 5.5,∆c
t takes the valueβ∆sa

0 = 3 from the1st to the22nd Markov chain; it takes the

values of∆sa
t from the23rd to 45th Markov chain. Finally,∆c

t takes the value ofβ∆sa
0 = 3.

The∆c
t used by the single iteration-based MSL has been indicated with ∗ in each figure. This feature

of the SAPS indicates that more local searches are performedtowards the beginning and towards the end

of a run.
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5.6 Summary

In this chapter, we have presented the numerical results forPS, MPS, and the two hybrids, namely MSA

and SAPS. We have applied the algorithm to different test problems and compared the different hybrids

developed. Results have shown that the new algorithms are efficient and robust.



Chapter 6

Conclusion and future research

The objective of this dissertation is devoted to design a pattern search based global optimization. To

achieve this objective, we have proposed two global optimization based on PS. They are modified simu-

lated annealing (MSA) and simulated annealing driven pattern search (SAPS).

We have carried out an extensive numerical testing of the newalgorithms using a large set of test

problems. We have first empirically found the optimal valuesof the parameters of both the algorithms.

Sensitivity analysis of some parameters is also performed.

We have conducted numerous runs of each algorithm using morethan one value of some parameters.

Results obtained by the algorithms for all runs were very satisfactory. Both MSA and SAPS have proved

to be efficient and reliable in terms of the number of functionevaluations, cpu times and locating the global

minimum value.

We have also developed a modified pattern search (MPS) for local minimization. MPS have improved

the pattern search method (MPS) considerably in terms of efficiency and reliability.

The approach we adopted in designing the PS based global optimization is new and therefore there

will be further scope to develop more efficient and reliable global optimization algorithm for both uncon-

strained and constrained problems.

We have used a single iteration based MSL algorithm within the framework of simulated annealing.

Hence the stopping condition used was that of the simulated annealing. An important aspect that requires

further research is to theoretically study the critical distance of the MSL which will also form part of our

future work. One can also study the reasons for failure of some nonseparable functions.
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Appendix A

The multi level single linkage algorithm

MSL [42] is a modification of the multistart (MS) [41] method which overcomes some of the drawbacks

of MS. It consists of two phases in an iteration: a global phase and a local phase. In the global phase, the

function is evaluated atN random points. In the local phase,γvN , sample points are scrutinized to perform

local searches in order to yield a candidate global minimizer, wherev is the iteration and0 < γ < 1. The

local search procedure will be applied to a subset ofγvN points. We denote the critical distance byrv.The

goal for the MSL algorithm is to find all local minima. We now present the MSL algorithm at thevth

iteration in full details.

The MSL algorithm.

1. SampleN points from the search regionΩ and calculate the function valuesf(xρ
i ), i = 1, · · · ,N ,

of these points. Add these points to the previously drawn(v − 1)N points in all earlier iterations.

Discard a percentage of worse points.

2. Order the sample points such thatf(xρ
i ) ≤ f(xρ

i+1), 1 ≤ i ≤ R, R being the number of remaining

points, i.e.,R = γvN . Start a local search from each new pointxρ
i except if there is another

sample point or previous detected local minimum within the critical distancerv of xρ
i . Add new

local minimum point found during the local search to a set of local minima found so far.

3. If the stopping condition is satisfied then stop else go to step 1.
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Remark:

1. The distancerv (computed for everyvth iteration) is computed by

rv = π−
1
2

[

Γ(1 +
n

2
)µ(Ω)σ

log(vN)

vN

]
1
n

, (A.1)

whereµ(Ω) is the Lebesgue measure of the regionΩ, σ = 4, andΓ(n) is the gamma function.



Appendix B

A collection of benchmark global
optimization test problems

In this appendix, we present50 well-known benchmark problems which are often used by global opti-

mization researchers. These problems represent various characteristic terrain found in real-world prob-

lems,.e.g., unimodal or multimodal, with or without plateaus and ridges, and high or low dimensional.

Some of these test problems (TP) can be found in textbooks, inindividual research articles, or at differ-

ent web sites. A collection of these 50 problems is found in Ali et. al. [5]. Please note that in several

cases the global minimizerx∗ and corresponding global minimumf(x∗) are known only as a numerical

approximation.

1. Ackley’s Problem (ACK)

min
x
f(x) = −20 exp



−0.2

√

√

√

√

1
n

n
∑

i=1

xi
2



− exp

(

1
n

n
∑

i=1

cos(2πxi)

)

+ 20 + e (B.1)

subject to −30 ≤ xi ≤ 30, i ∈ {1, 2, . . . , n}. (B.2)

The number of local minima is not known. The global minimum islocated at the origin, i.e, with

f(x∗) = 0. Tests were performed forn = 10.

2. Aluffi-Pentini’s Problem (AP)

min
x
f(x) = 0.25x1

4 − 0.5x1
2 + 0.1x1 + 0.5x2

2 (B.3)

subject to −10 ≤ x1, x2 ≤ 10. (B.4)

The function has two local minima, one of them is global withf(x∗) ≈ −0.3523 located at

(−1.0465, 0).
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3. Becker and Lago Problem (BL)

min
x
f(x) = (|x1| − 5)2 + (|x2| − 5)2 (B.5)

subject to −10 ≤ x1, x2 ≤ 10. (B.6)

The function has four minima located atx∗ = (±5,±5), all with f(x∗) = 0.

4. Bohachevsky 1 Problem (B1)

min
x
f(x) = x2

1 + 2x2
2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7 (B.7)

subject to −50 ≤ x1, x2 ≤ 50. (B.8)

The number of local minima is unknown but the global minimizer is located atx∗ = (0, 0) with

f(x∗) = 0.

5. Bohachevsky 2 Problem (B2)

min
x
f(x) = x2

1 + 2x2
2 − 0.3 cos(3πx1) cos(4πx2) + 0.3 (B.9)

subject to −50 ≤ x1, x2 ≤ 50. (B.10)

The number of local minima is unknown but the global minimizer is located atx∗ = (0, 0) with

f(x∗) = 0.

6. Branin Problem (BR)

min
x
f(x) = a(x2 − bx1

2 + cx1 − d)2 + g(1 − h) cos(x1) + g , (B.11)

subject to −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15, (B.12)

wherea = 1, b = 5.1/(4π2), c = 5/π, d = 6, g = 10, h = 1/(8π). There are three minima, all

global, in this region. The minimizers are

x∗ ≈ (−π, 12.275), (π, 2.275), (3π, 2.475)

with f(x∗) = 5/(4π).

7. Camel Back–3 Three Hump Problem (CB3)

min
x
f(x) = 2x2

1 − 1.05x4
1 + 1

6x
6
1 + x1x2 + x2

2 (B.13)

subject to −5 ≤ x1, x2 ≤ 5. (B.14)

The function has three local minima, one of them is global located atx∗ = (0, 0) with f(x∗) = 0.



A collection of benchmark global optimization test problems 77

8. Camel Back–6 Six Hump Problem (CB6)

min
x
f(x) = 4x2

1 − 2.1x4
1 + 1

3x
6
1 + x1x2 − 4x2

2 + 4x4
2 (B.15)

subject to −5 ≤ x1, x2 ≤ 5. (B.16)

This function is symmetric about the origin and has three conjugate pairs of local minima with values

f ≈ −1.0316, −0.2154, 2.1042. The function has two global minima atx∗ ≈ (0.089842,−0.712656)

and(−0.089842, 0.712656) with f(x∗) ≈ −1.0316.

9. Cosine Mixture Problem (CM)

max
x

f(x) = 0.1

n
∑

i=1

cos(5πxi) −
n
∑

i=1

x2
i (B.17)

subject to −1 ≤ xi ≤ 1, i ∈ {1, 2, . . . , n}. (B.18)

The global maxima are located at the origin with the functionvalues0.20 and0.40 for n = 2 and

n = 4, respectively.

10. Dekkers and Aarts Problem (DA)

min
x
f(x) = 105x2

1 + x2
2 − (x2

1 + x2
2)

2 + 10−5(x2
1 + x2

2)
4 (B.19)

subject to −20 ≤ x1, x2 ≤ 20. (B.20)

The origin is a local minimizer, but there are two global minimizers located atx∗ = (0, 15) and

(0,−15) with f(x∗) = −24776.518.

11. Easom Problem (EP)

min
x
f(x) = − cos(x1) cos(x2) exp

(

−(x1 − π)2 − (x2 − π)2
)

(B.21)

subject to −10 ≤ x1, x2 ≤ 10. (B.22)

The minimum value is located at(π, π) with f(x∗) = −1. The function value rapidly approaches

zero, when away from(π, π).

12. Epistatic Michalewicz Problem (EM)

min
x
f(x) = −

n
∑

i=1

sin(yi)

(

sin

(

iy2
i

π

))2m

, (B.23)

subject to 0 ≤ xi ≤ π, i ∈ {1, 2, . . . , n}, (B.24)



A collection of benchmark global optimization test problems 78

where

yi =



















xi cos(θ) − xi+1 sin(θ), i = 1, 3, 5, . . . , < n

xi sin(θ) + xi+1 cos(θ), i = 2, 4, 6, . . . , < n

xi, i = n

, (B.25)

andθ = π
6 ,m = 10.

The number of local minima is not known but the global minimizer is presented in Table B.1.

Table B.1:Epistatic Michalewicz’s global optimizers.
n f(x∗) x∗

5 -4.687658 (2.693,0.259,2.074,1.023,1.720)
10 -9.660152 (2.693,0.259,2.074,1.023,2.275,0.500,2.138,0.794,2.219,0.533)

13. Exponential Problem (EXP)

max
x

f(x) = exp

(

−0.5

n
∑

i=1

xi
2

)

(B.26)

subject to −1 ≤ xi ≤ 1, i ∈ {1, 2, . . . , n}. (B.27)

The optimal valuef(x∗) = 1 is located at the origin. Our tests were performed withn = 10, 20.

14. Goldstein and Price (GP)

min
x
f(x) =

[

1 + (x1 + x2 + 1)2
(

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)]

(B.28)

×
[

30 + (2x1 − 3x2)
2
(

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)]

subject to −2 ≤ x1, x2 ≤ 2. (B.29)

There are four local minima and the global minimum is locatedatx∗ = (0,−1), with f(x∗) = 3.

15. Griewank Problem (GW)

min
x
f(x) = 1 + 1

4000

n
∑

i=1

xi
2 −

n
∏

i=1

cos

(

xi√
i

)

(B.30)

subject to −600 ≤ xi ≤ 600, i ∈ {1, 2, . . . , n}. (B.31)

The function has a global minimum located atx∗ = (0, 0, . . . , 0) with f(x∗) = 0. Number of

local minima for arbitraryn is unknown, but in the two dimensional case there are some 500local

minima. Tests were performed forn = 10. Note that this function becomes simpler and smoother

in the numeric space, and easy to solve, as the dimensionality of the search space is increased [34].
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16. Gulf Research Problem (GRP)

min
x
f(x) =

99
∑

i=1

[

exp

(

−(ui − x2)
x3

x1

)

− 0.01 × i

]2

, (B.32)

subject to 0.1 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 25.6, and0 ≤ x3 ≤ 5, (B.33)

whereui = 25 + [−50 ln(0.01 × i)]1/1.5. This problem has a global minimizer at(50, 25, 1.5) with

f(x∗) = 0.

17. Hartman 3 Problem (H3)

min
x
f(x) = −

4
∑

i=1

ci exp



−
3
∑

j=1

aij(xj − pij)
2



 (B.34)

subject to 0 ≤ xj ≤ 1, j ∈ {1, 2, 3} (B.35)

with constantsaij, pij andci given in Table B.2. There are four local minima,xloc ≈ (pi1, pi2, pi3)

with f(xloc) ≈ −ci. The global minimum is located at

x∗ ≈ (0.114614, 0.555649, 0.852547)

with f(x∗) ≈ −3.862782.

Table B.2:Data for Hartman 3 problem.
i ci aij pij

j = 1 2 3 j = 1 2 3

1 1 3 10 30 0.3689 0.117 0.2673
2 1.2 0.1 10 35 0.4699 0.4387 0.747
3 3 3 10 30 0.1091 0.8732 0.5547
4 3.2 0.1 10 35 0.03815 0.5743 0.8828

18. Hartman 6 Problem (H6)

min
x
f(x) = −

4
∑

i=1

ci exp



−
6
∑

j=1

aij(xj − pij)
2



 (B.36)

subject to −0 ≤ xj ≤ 1, j ∈ {1, . . . , 6}, (B.37)

with constantsaij and ci given in Table B.3 and constantspij in Table B.4. There are four lo-

cal minima,xloc ≈ (pi1, . . . , pi6) with f(xloc) ≈ −ci. The global minimum is located atx∗ ≈
(0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657301) with f(x∗) ≈ −3.322368.
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Table B.3:Data for Hartman 6 problem.
i ci aij

j = 1 2 3 4 5 6

1 1 10 3 17 3.5 1.7 8
2 1.2 0.05 10 17 0.1 8 14
3 3 3 3.5 1.7 10 17 8
4 3.2 17 8 0.05 10 0.1 14

Table B.4:Data for Hartman 6 problem.
i pij

j = 1 2 3 4 5 6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

19. Helical Valley Problem (HV)

min
x
f(x) = 100

[

(x2 − 10θ)2 + (
√

(x2
1 + x2

2) − 1)2
]

+ x2
3 (B.38)

subject to −10 ≤ x1, x2, x3 ≤ 10 (B.39)

where

θ =







1
2π tan−1 x2

x1
, if x1 ≥ 0

1
2π tan−1 x2

x1
+ 1

2 , if x1 < 0
(B.40)

This is a steep-sided valley which follows a helical path. The minimum is located atx∗ = (1, 0, 0)

with f(x∗) = 0.

20. Hosaki Problem (HSK)

min
x
f(x1, x2) =

(

1 − 8x1 + 7x2
1 − 7

3x
3
1 + 1

4x
4
1

)

x2
2 exp(−x2) (B.41)

subject to 0 ≤ x1 ≤ 5 , 0 ≤ x2 ≤ 6. (B.42)

There are two minima of which the global minimum isf(x∗) ≈ −2.3458 with x∗ = (4, 2).

21. Kowalik Problem (KL)

min
x
f(x) =

11
∑

i=1

(

ai −
x1(1 + x2bi)

(1 + x3bi + x4b2i

)2

(B.43)

subject to 0 ≤ xi ≤ 0.42, i ∈ {1, 2, 3, 4}. (B.44)

The values forai andbi are given in Table B.5:



A collection of benchmark global optimization test problems 81

Table B.5:Data for Kowalik problem.
i 1 2 3 4 5 6 7 8 9 10 11

ai 0.1957 0.1947 0.1735 0.16 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 0.0246
bi 0.25 0.50 1.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

This is a least squares problem with a global optimal valuef(x∗) ≈ 3.0748 × 10−4 located at

x∗ ≈ (0.192, 0.190, 0.123, 0.135).

22. Levy and Montalvo 1 Problem (LM1)

min
x
f(x) = π

n

(

10 sin2(πy1) +
n−1
∑

i=1

(yi − 1)2
[

1 + 10 sin2(πyi+1)
]

)

(B.45)

+π
n(yn − 1)2

subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, . . . , n} (B.46)

whereyi = 1 + 1
4(xi + 1). There are approximately5n local minima and the global minimum is

known to bef(x∗) = 0 with x∗ = (−1,−1, . . . ,−1). Our tests were performed withn = 3.

23. Levy and Montalvo 2 Problem (LM2)

min
x
f(x) = 0.1(sin2(3πx1) +

n−1
∑

i=1

(xi − 1)2[1 + sin2(3πxi+1] (B.47)

+(xn − 1)2[1 + sin2(2πxn)])

subject to −5 ≤ xi ≤ 5, i ∈ {1, 2, . . . , n}. (B.48)

There are approximately15n minima and the global minimizer is known to be

x∗ = (1, 1, . . . , 1) with f(x∗) = 0. Our tests were performed withn = 10.

24. McCormick Problem (MC)

min
x
f(x) = sin(x1 + x2) + (x1 − x2)

2 − (3/2)x1 + (5/2)x2 + 1 (B.49)

subject to −1.5 ≤ x1 ≤ 4,−3 ≤ x2 ≤ 3. (B.50)

This problem has a local minimum at(2.59, 1.59) and a global minimum at

x∗ ≈= (−0.547,−1.547) with f(x∗) ≈ −1.9133.

25. Meyer and Roth Problem (MR)

min
x
f(x) =

5
∑

i=1

(

x1x3ti
(1 + x1ti + x2vi)

− yi

)2

(B.51)

subject to −20 ≤ xi ≤ 20, i ∈ {1, 2, 3}. (B.52)



A collection of benchmark global optimization test problems 82

This is a least squares problem with minimum valuef(x∗) ≈ 0.4×10−4 located atx∗ ≈ (3.13, 15.16, 0.78).

Table B.6 lists the parameter values of this problem.

Table B.6:Data for Meyer & Roth problem.
i ti vi yi

1 1.0 1.0 0.126
2 2.0 1.0 0.219
3 1.0 2.0 0.076
4 2.0 2.0 0.126
5 0.1 0.0 0.186

26. Miele and Cantrell Problem (MCP)

min
x
f(x) = (exp (x1) − x2)

4 + 100(x2 − x3)
6 + (tan(x3 − x4))

4 + x1
8 (B.53)

subject to −1 ≤ xi ≤ 1, i ∈ {1, 2, 3, 4}. (B.54)

The number of local minima is unknown but the global minimizer is located atx∗ = (0, 1, 1, 1) with

f(x∗) = 0.

27. Modified Langerman Problem (ML)

min
x
f(x) = −

5
∑

j=1

cj cos (πdj) exp (−dj/π) , (B.55)

subject to 0 ≤ xi ≤ 10, i ∈ {1, 2, . . . , n}, (B.56)

wheredj =
n
∑

i=1

(xi − aji)
2. The test usedn = 10. The constantscj andaji are given in Table B.7.

Table B.7:Data for modified Langerman problem.
j cj aji

i = 1 2 3 4 5 6 7 8 9 10

1 0.806 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.1222.020
2 0.517 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.0337.374
3 0.100 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.7344.982
4 0.908 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.3771.426
5 0.965 8.074 8.777 3.467 1.867 6.708 6.349 4.534 0.276 7.6331.567

The number of local minima is not known, but the global minimaare shown in Table B.8.
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Table B.8:Global optimizers for modified Langerman problem.
n f(x∗) x∗

5 -0.965 (8.074, 8.777, 3.467, 1.867, 6.708)
10 -0.965 (8.074, 8.777, 3.467, 1.867, 6.708, 6.349, 4.534,0.276, 7.633, 1.567)

28. Modified Rosenbrock Problem (MRP)

min
x
f(x) = 100(x2 − x1

2)2 +
[

6.4(x2 − 0.5)2 − x1 − 0.6
]2

(B.57)

subject to −5 ≤ x1, x2 ≤ 5. (B.58)

This function has two global minima each withf(x∗) = 0 (corresponding to the intersection of two

parabolas) and a local minimum (where the parabolas approach without intersection). The global

minima are located atx∗ ≈ (0.3412, 0.1164), (1, 1).

29. Multi-Gaussian Problem (MGP)

max
x

f(x) =

5
∑

i=1

ai exp
(

−((x1 − bi)
2 + (x2 − ci)

2)/di
2
)

(B.59)

subject to −2 ≤ x1, x2 ≤ 2. (B.60)

The function has one global maximum atx∗ ≈ (−0.01356,−0.01356) with f(x∗) ≈ 1.29695.

There are also 4 other local maxima and a saddle point. Valuesfor the parametersai, bi, ci, anddi

are given in Table B.9.

Table B.9:Data for Multi-Gaussian problem.
i ai bi ci di

1 0.5 0.0 0.0 0.1
2 1.2 1.0 0.0 0.5
3 1.0 0.0 -0.5 0.5
4 1.0 -0.5 0.0 0.5
5 1.2 0.0 1.0 0.5

30. Neumaier 2 Problem (NF2)

min
x
f(x) =

n
∑

k=1

(

bk −
n
∑

i=1

xi
k

)2

(B.61)

subject to 0 ≤ xi ≤ n, i ∈ {1, 2, . . . , n}. (B.62)

We consider a case whenn = 4 andb = (8, 18, 44, 114). The global minimum isf(1, 2, 2, 3) = 0.
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31. Neumaier 3 Problem (NF3)

min
x
f(x) =

n
∑

i=1

(xi − 1)2 −
n
∑

i=2

xixi−1 (B.63)

subject to −n2 ≤ xi ≤ n2, i ∈ {1, 2, . . . , n}. (B.64)

The case considered here isn = 10. The number of local minima is not known, but the global

minima can be expressed as:

f(x∗) = −n(n+ 4)(n − 1)

6
, x∗i = i(n + 1 − i).

The global minima for some values ofn are presented below.

Table B.10:Global minima for Neumaier 3 problem.
n 10 15 20 25 30

f(x∗) -210 -665 -1520 -2900 -4930

32. Odd Square Problem (OSP)

min
x
f(x) = − (1.0 + 0.2d/(D + 0.01)) cos (Dπ) e−D/2π (B.65)

subject to −15 ≤ xi ≤ 15, i ∈ {1, 2, . . . , 20} (B.66)

where

d =

√

√

√

√

n
∑

i=1

(xi − bi)
2, D =

√
n (max |xi − bi|) ,

and

b = (1, 1.3, 0.8,−0.4,−1.3, 1.6,−2,−6, 0.5, 1.4), b10+i = bi, i = 1, 2, · · · , 10

The number of local minima for a givenn is not known but the global minimum is known to be

f(x∗) ≈ −1.143833, x∗ ∼= ~b (many solutions near b). We usedn = 10 in our experiment.

33. Paviani Problem (PP)

min
x
f(x) =

10
∑

i=1

[

(ln(xi − 2))2 + (ln(10 − xi))
2
]

−
(

10
∏

i=1

xi

)0.2

(B.67)

subject to 2 ≤ xi ≤ 10, i ∈ {1, 2, . . . , 10}. (B.68)

This function has a global minimizer atx∗i ≈ 9.351 for all i, with f(x∗) ≈ −45.778.
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34. Periodic Problem (PRD)

min
x
f(x) = 1 + sin2 x1 + sin2 x2 − 0.1 exp(−x1

2 − x2
2) (B.69)

subject to −10 ≤ x1, x2 ≤ 10. (B.70)

There are 49 local minima all with value 1 and global minimum located atx∗ = (0, 0) with f(x∗) =

0.9.

35. Powell’s Quadratic Problem (PWQ)

min
x
f(x) = (x1 + 10x1)

2 + 5 (x3 − x4)
2 + (x2 − 2x3)

4 + 10 (x1 − x4)
4 (B.71)

subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, 3, 4}. (B.72)

This is a unimodal function withf(x∗) = 0, x∗ = (0, 0, 0, 0). The minimizer is difficult to obtain

with accuracy as the Hessian matrix at the optimum is singular.

36. Price’s Transistor Modelling Problem (PTM)

min
x
f(x) = γ2 +

4
∑

k=1

(αk
2 + βk

2) (B.73)

subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, . . . , 9}, (B.74)

where

αk =(1 − x1x2)x3{exp[x5(g1k − g3kx7 × 10−3 − g5kx8 × 10−3)] − 1} − g5k + g4kx2,

βk =(1 − x1x2)x4{exp[x6(g1k − g2k − g3kx7 × 10−3 + g4kx9 × 10−3)] − 1}

− g5kx1 + g4k,

γ =x1x3 − x2x4.

The values ofgik are given in Table B.11.

Table B.11:Data for Price’s transistor modelling problem.
i gik

k = 1 2 3 4

1 0.485 0.752 0.869 0.982
2 0.369 1.254 0.703 1.455
3 5.2095 10.0677 22.9274 20.2153
4 23.3037 101.779 111.461 191.267
5 28.5132 111.8467 134.3884 211.4823

The global minimum occurs very close to(0.9, 0.45, 1, 2, 8, 8, 5, 1, 2) with f(x∗) = 0. The number

of local minima is unknown.
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37. Rastrigin Problem (RG)

min
x
f(x) = 10n+

n
∑

i=1

[

x2
i − 10 cos (2πxi)

]

(B.75)

subject to −5.12 ≤ xi ≤ 5.12, i ∈ {1, 2, . . . , n}. (B.76)

The total number of minima for this function is not exactly known but the global minimizer is located

atx∗ = (0, 0, . . . , 0) with f(x∗) = 0. Forn = 2, there are about 50 local minimizers arranged in a

lattice like configuration. Our tests were performed withn = 10.

38. Rosenbrock Problem (RB)

min
x
f(x) =

n−1
∑

i=1

[

100
(

xi+1 − x2
i

)2
+ (xi − 1)2

]

(B.77)

subject to −30 ≤ xi ≤ 30, i ∈ {1, 2, . . . , n}. (B.78)

Our tests were performed withn = 10. This function is known as the extended Rosenbrock function.

It is unimodal, yet due to a saddle point it is very difficult tolocate the minimizerx∗ = (1, 1, . . . , 1)

with f(x∗) = 0.

39. Salomon Problem (SAL)

min
x
f(x) = 1 − cos (2π‖x‖) + 0.1‖x‖ (B.79)

subject to −100 ≤ xi ≤ 100 (B.80)

where‖x‖ =

√

√

√

√

n
∑

i=1

x2
i . The number of local minima (as a function ofn) is not known, but the

global minimizer is located atx∗ = (0, 0, 0, . . . , 0) with f(x∗) = 0. Our tests were performed with

n = 10.

40. Schaffer 1 Problem (SF1)

min
x
f(x) = 0.5 +

“

sin
√

x2
1+x2

2

”2
−0.5

(1+0.001(x2
1+x2

2))
2 (B.81)

subject to −100 ≤ x1, x2 ≤ 100. (B.82)

The number of local minima is not known, but the global minimum is located atx∗ = (0, 0) with

f(x∗) = 0.

41. Schaffer 2 Problem (SF2)

min
x
f(x) = (x2

1 + x2
2)

0.25
(

sin2
(

50(x2
1 + x2

2)
0.1
)

+ 1
)

(B.83)

subject to −100 ≤ x1, x2 ≤ 100. (B.84)
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The number of local minima is not known, but the global minimum is located atx∗ = (0, 0) with

f(x∗) = 0.

42. Schubert Problem (SBT)

min
x
f(x) =

∏n
i=1





5
∑

j=1

j cos ((j + 1)xi + j)



 (B.85)

subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, . . . , n}. (B.86)

Our tests were performed withn = 2. The number of local minima for this problem (givenn) is

not known but forn = 2, the function has 760 local minima, 18 of which are global with f(x∗) ≈
−186.7309. All two dimensional global minimizers are listed in Table B.12:

Table B.12:Global optimizers for Schubert problem.
x∗

(-7.0835,4.8580), (-7.0835,-7.7083), (-1.4251,-7.0835), (5.4828,4.8580), (-1.4251,-0.8003),
(4.8580,5.4828), (-7.7083,-7.0835), (-7.0835,-1.4251), (-7.7083,-0.8003), (-7.7083,5.4828),

(-0.8003,-7.7083), (-0.8003,-1.4251), (-0.8003,4.8580), (-1.4251,5.4828), (5.4828,-7.7083),
(4.8580,-7.0835), (5.4828,-1.4251), (4.8580,-0.8003)

43. Schwefel Problem (SWF)

min
x
f(x) = −

n
∑

i=1

xi sin

(

√

∣

∣xi

∣

∣

)

(B.87)

subject to −500 ≤ xi ≤ 500, i ∈ {1, 2, . . . , n}. (B.88)

The number of local minima for a givenn is not known, but the global minimum valuef(x∗) ≈
−418.9829n is located atx∗ = (s, s, . . . , s), s ≈ 420.97. Our tests were performed withn = 10.

44. Shekel 5 Problem (S5)

min
x
f(x) = −

5
∑

i=1

1
4
∑

j=1

(xj − aij)
2 + ci

(B.89)

subject to 0 ≤ xj ≤ 10, j ∈ {1, 2, 3, 4}, (B.90)

with constantsaij andcj given in Table B.13 below. There are five local minima and the global

minimizer is located atx∗ = (4.00, 4.00, 4.00, 4.00) with f(x∗) ≈ −10.1532.
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Table B.13:Data for Shekel problem family.
i aij ci

j = 1 2 3 4

S5 1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4

S7 6 2 9 2 9 0.6
7 5 5 3 3 0.3

S10 8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

45. Shekel 7 Problem (S7)

min
x
f(x) = −

7
∑

j=1

1
4
∑

i=1

(xj − aij)
2 + ci

(B.91)

subject to 0 ≤ xj ≤ 10, j ∈ {1, 2, 3, 4}, (B.92)

with constantsaij andcj given in Table B.13. There are seven local minima and the global minimizer

is located atx∗ = (4.00, 4.00, 4.00, 4.00) with f(x∗) ≈ −10.4029.

46. Shekel 10 Problem (S10)

min
x
f(x) = −

10
∑

j=1

1
4
∑

i=1

(xj − aij)
2 + ci

(B.93)

subject to 0 ≤ xj ≤ 10, j ∈ {1, 2, 3, 4} (B.94)

with constantsaij andcj given in Table B.13. There are 10 local minima and the global minimizer

is located atx∗ = (4.00, 4.00, 4.00, 4.00) with f(x∗) ≈ −10.5364.

47. Shekel’s Foxholes (FX)

min
x
f(x) = −

30
∑

j=1

1

cj +

n
∑

i=1

(xi − aji)
2

(B.95)

subject to 0 ≤ xi ≤ 10, i ∈ {1, 2, . . . , 10}. (B.96)

Our tests were performed withn = 5 and10. The constantscj andaji are given in Table B.14. The

number of local minima is not known, but the global minima arepresented in Table B.15.
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Table B.14:Data for Shekel’s foxholes problem.
j cj aji

i = 1 2 3 4 5 6 7 8 9 10

1 0.806 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.1222.020
2 0.517 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.0337.374
3 0.100 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.7344.982
4 0.908 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.3771.426
5 0.965 8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.6331.567
6 0.669 7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.4098.208
7 0.524 1.256 3.605 8.623 6.905 4.584 8.133 6.071 6.888 4.1875.448
8 0.902 8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.2085.762
9 0.531 0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.9727.637
10 0.876 7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247
11 0.462 0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016
12 0.491 2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789
13 0.463 8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109
14 0.714 2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564
15 0.352 4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670
16 0.869 8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826
17 0.813 8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591
18 0.811 4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740
19 0.828 2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675
20 0.964 6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258
21 0.789 0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070
22 0.360 5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234
23 0.369 3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027
24 0.992 8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064
25 0.332 1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224
26 0.817 0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644
27 0.632 0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229
28 0.883 4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506
29 0.608 9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732
30 0.326 4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500

Table B.15:Global optimizers for Shekel’s foxholes problem.
n f(x∗) x∗

5 -10.4056 (8.025, 9.152, 5.114, 7.621, 4.564)
10 -10.2088 (8.025, 9.152, 5.114, 7.621, 4.564, 4.771, 2.996, 6.126, 0.734, 4.982)

48. Sinusoidal Problem (SIN)

min
x
f(x) = − [A

∏n
i=1 sin(xi − z) +

∏n
i=1 sin(B(xi − z))] (B.97)

subject to 0 ≤ xi ≤ 180, i ∈ {1, 2, . . . , n}. (B.98)

The variablex is in degrees. ParameterA affects the amplitude of the global optimum;B affects

the periodicity and hence the number of local minima;z shifts the location of the global minimum;

andn indicates the dimension. Our tests were performed withA = 2.5, B = 5, z = 30, and

n = 10 and20. The location of the global solution is atx∗ = (90 + z, 90 + z, . . . , 90 + z) with the
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global optimum value off(x∗) = −(A+ 1). The number of local minima increases dramatically in

dimension, and whenB = 5 the number of local minima is equal to:

⌊n/2⌋
∑

i=0

(

n!

(n− 2i)!(2i)!
3n−2i22i

)

. (B.99)

49. Storn’s Tchebychev Problem (ST)

min
x
f(x) = p1 + p2 + p3, (B.100)

where

p1 =







(u− d)2 if u < d

0 if u ≥ d
u =

n
∑

i=1

(1.2)n−ixi

p2 =







(v − d)2 if v < d

0 if v ≥ d
v =

n
∑

i=1

(−1.2)n−ixi

p3 =

m
∑

j=0























(wj − 1)2 if wj > 1

(wj + 1)2 if wj < −1

0 if − 1 ≤ wj ≤ 1

wj =

n
∑

i=1

(

2j

m
− 1

)n−i

xi,

for n = 9: xi ∈ [−128, 128]n, d = 72.661, andm = 60

for n = 17: xi ∈ [−32768, 32768]n , d = 10558.145, andm = 100.

The number of local minima is not known but the global minimumis known to be as shown in

Table B.16. Our tests were performed withn = 9.

Table B.16:Global optimizers for Storn’s Tchebychev problem.
n f(x∗) x∗

9 0 (128, 0, -256, 0, 160, 0, -32, 0, 1)
17 0 (32768, 0, -1331072, 0, 21299, 0, -180224, 84480, 0, -2154, 0, 2688, 0, -128, 0, 1)

50. Wood’s Problem (WP)

min
x
f(x) = 100(x2 − x2

1)
2 + (1 − x1)

2 + 90(x4 − x2
3)

2 + (1 − x3)
2 (B.101)

+10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, 3, 4}. (B.102)

The function has a saddle near(1, 1, 1, 1). The only minimum is located atx∗ = (1, 1, 1, 1) with

f(x∗) = 0.
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