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Abstract 

The Iron Age is a very critical aspect of South Africa’s history. It represents a technology that 

laid a solid foundation for the development of South Africa in terms of its economy, politics 

and society. It is therefore imperative to study Iron Age, or rather its remnants such as 

stone-walled structures and ash middens because these give insight into this critical time 

period’s technology and those responsible for it. Remote sensing spatial technology 

provides the opportunity not only to study these Iron Age remnants but to save time and 

resources while doing so through satellite imagery. This study employs remote sensing by 

comparing different multispectral satellite images ̶ GeoEye 1 and SPOT 5 ̶ to find the 

optimum platform to detect key archaeological remnants  ash middens  from the Iron 

Age period in the Suikerbosrand Nature Reserve located in Southern Gauteng, South Africa. 

The performance of GeoEye 1 and SPOT 5 in detecting ash middens was compared through 

supervised classification techniques, Support Vector Machine and Maximum Likelihood 

Classification, on different band combinations of the two images. Overall, the band 

combination of Green, Red and NIR is the best performing on both SPOT 5 and GeoEye 1 

compared to Green, Red, and Mid IR on SPOT 5 and Green, Red, and Blue on GeoEye 1. 

However, higher accuracy of results for the detection of ash middens were obtained on the 

GeoEye 1 platform. The GeoEye platform performed better than the SPOT platform in the 

detection and analysis of ash middens.  
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1. Introduction 

The no longer extant Iron Age societies of Southern Africa dating to the 1700s left traces 

that, when studied, can provide meaningful glimpses into the past to help the 

reconstructing of the history of past societies. Remnants of stone-walled structures and ash 

middens  defined in archaeology as piles of rubbish or ash heaps (Renfrew and Bahn, 1991; 

Boeyens and Hall, 2009; Boeyens and Plug, 2011)  are critical examples of these traces. 

Remnants of ash middens, for instance, provide a profound reflection on the political and 

economic life ways of Iron Age societies. These have been detected and studies at a number 

of Late Iron Age sites in South Africa, such as Molokwane (Maggs, 1976; Pistorius, 1992; 

Huffman, 2007), Marothodi and Kadithswene (Boyens 2003, and other references on his 

study of ash middens) According to Boeyens and Hall (2009) and Boeyens and Plug (2011) 

the larger the midden, the richer and more powerful was the court that produced it. As a 

consequence, locating such middens and studying their position within the overall 

configuration of Iron Age settlements is crucial for the understanding of power relations 

inside it. Identifying and mapping these ash middens with traditional survey techniques can 

be difficult, due for example to dense vegetation, and time consuming. The use of 

multispectral satellite imagery classification offers the potential to speed up the process of 

detecting them on the ground and to provide a method that will not be so heavily affected 

by inter-analyst variability in visual identification from panchromatic imagery (as is the case 

in aerial photo interpretation). The purpose of this research is thus to use visually identify 

middens on the satellite images. Analysing ash middens on two remote sensing platforms 

(SPOT 5 and GeoEye 1 satellite imagery) and integrating a ground based approach of ground 

truthing will give way to improve the detection and therefore study of ash middens. 

Studying ash middens sheds light into societies of the past and their complex settlement, 

political and economic dynamics. The use of remote sensing techniques can provide a 

platform for effective and efficient research regarding ash middens; in turn, saving money 

and time often spent during traditional field survey. This research is critical because if the 

remote sensing platforms perform well (statistically) and produce successful results that 

answer the research questions, less time and money will be spent in the field, therefore 

reducing the labour intensiveness that goes into archaeological research. Regardless of the 

outcome, this research project is a step towards showing the ability of remote sensing to 
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contribute to archaeological research. In principle, middens can be easily recognizable on 

the ground. Nevertheless, it takes a lot of walking and spending time to cover ground that 

can be remotely surveyed in a few minutes with remote sensing.  

1.1. Study Area 

This research was conducted in the southern Gauteng region of South Africa, where stone-

walled structures together with related ash middens are present within what is now known 

as the Suikerbosrand Nature Reserve (Figure 1). Suikerbosrand lies between the Vaal River 

and the city of Johannesburg (Sadr and Rodier, 2012) and is predominantly covered by hills 

and valleys that extend over more than 80km2 of land (Mason, 1986). The area experiences 

about 650 -700mm of average annual rainfall, with open grasslands (Mason, 1986; Sadr and 

Rodier, 2012). Circa 1 000 or more Iron Age settlements are mostly located on the hills and 

the steep valleys on the southern-western and north-western parts of Suikerbosrand 

(Mason, 1986). This research focused on a 49 hectare area, which extends a little over 

Suikerbosrand to an adjacent farm, which was particularly selected for its richness of stone-

walled settlements (SWS) and ash middens.  

1.2. Problem Statement 

Sadr and Rodier (2012) have shown that SWS in the Southern part of Gauteng are easily 

visible but can be difficult to classify with satellite imagery (remote sensing platforms). 

Moreover, inter-analyst differences, the variability that exists in identifying and demarcating 

SWS by different analysts who are interpreting the same set of imagery, in classification play 

a role in delineating these types of archaeological traces (Hunt and Sadr, 2014). Although 

the ash middens (and their spatial limits) are not so difficult to identify when conducting 

field survey; a sharp line to circumscribe them cannot be drawn since the ashy soil around 

the ash middens gradually fades over a few meters into the background soil.  It is important 

to be able to delineate a line around the ash midden because it allows one to estimate the 

size of the midden in question. When the ashy soil gets mixed up with the background soil, 

it becomes somewhat difficult to tell them apart (although it is still).  

The introduction and use of remote sensing, as well as the enhancement of satellite imagery 

(and its characteristics) has had profound advantages for archaeology and its various 
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applications such as settlement discovery and distribution (MacQuilkan and Sadr, 2010; 

Abrams and Comer, 2013; Sadr, 2015). These advantages include:  

 

Figure 1: study area map in Suikerbosrand Nature Reserve, Southern Gauteng, South 

Africa 

i) its speed which reduces costs, time and the potential risk associated with archaeological 

survey and excavations; ii) the establishment of site strategies that speak to conservation 

and preservation (Lasaponara and Masini, 2011). More specifically, in southern African 

archaeology, remote sensing has inspired and directed scholars to quite comprehensive 

discussions and conclusions with regards to the people and their settlements (Seddon, 1968; 

Denbow, 1979; Mason, 1986). For instance, Mason (1865) identified 998 sites in the 

Transvaal through aerial photographs; Mason (1976) surveyed the highveld identifying 

settlement patterns; Sadr and Rodier (2012) were able to map and study the evolution of 

SWS covering an area of over 70,000 square km in southern Gauteng. This would have 

simply not have been possible through the sole employment of traditional field survey 

methods due to the sheer amount of data present in the study areas considered. 
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Consequently, techniques must be established for archaeology so as to better extract and 

understand information from the various active and passive satellite data sets. The use of 

statistical techniques is one strong and reliable approach in archaeological research. Sadr 

and Rodier (2012) employed a statistical approach to identify and analyse the clusters of the 

vast number of different SWS sites in the Suikerbosrand Nature Reserve; Sadr in press 

(2012) used statistics to compare, in detail, the SWS group (I, II, and III) structures in the 

Southern Gauteng region. The understanding of radiometric or geometric distortions, noise 

reduction and data integration has not been discussed extensively (Lasaponara and Masini, 

2011). This is because archaeology has leaned to photo interpretation as a result of the wide 

use of aerial photography. Therefore, the use of multispectral imagery at high (GeoEye 1) 

and medium (SPOT 5) resolution brings a new approach in the study of archaeological 

materials and settlements. The comparison of these sets of imagery will be a crucial initial 

step towards saving money and time while effectively studying ash middens and better 

contextualise SWS which otherwise end up being understood as stone wall configuration 

patterns with little or no archaeology in between. 

1.3. Conceptual Framework: research question 

For the purpose of this research, two inter-related questions set the core of the study. 

These questions are:  

 Do ash middens have a distinctive spectral signature that allows for their detection 

in multispectral remote sensing imagery? 

 How does the accuracy and precision of supervised classification of ash middens 

compare at different multispectral imagery resolutions? 

1.4. Aims  

 To classify archaeological sites (i.e. ash middens) using high and medium 

multispectral resolution imagery. 

 To assess the performance of different remote sensing classification algorithms 

applied to different multispectral images in detecting ash middens in Southern 

Gauteng, Southern Africa.  

1.5. Objectives  
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 Identify ash middens (and their extent) on the GeoEye and SPOT images through 

supervised image classification techniques, Maximum Likelihood Classification (MLC) 

and Support Vector Machine (SVM) 

 Compare and analyse the results and examine their reliability using accuracy 

assessment.  

2. Literature Review  

2.1. Archaeology and Iron Age 

Social questions are fundamental in studying early societies. They help in exploring the 

complexities, which include economy, politics and others, that exist (or do not exist) in 

societies. In archaeology, it is invariably the case that only remnants of these societies are 

left behind and do not say anything on their own. Social questions therefore need to be 

asked in an attempt to understand these remnants, and they include: size/scale of the 

society in question, its internal organisation, politics and socio-economic dynamics (Renfrew 

and Bahn, 1991). These questions are not meant to make generalizations about societies 

because of the distinctness and uniqueness that exist in societies such as hunter-gatherers 

(the San in Southern Africa, for example) and politically complex societies such as 

Mapungubwe in Southern Africa (Huffman, 2007: 376). Although most of these societies are 

extinct, they are still worth studying because they give a trace of human behaviour in the 

past which is rich and holds the potential to provide useful insight for projecting into the 

future (Fagan, 1992).   

Pre-colonial farming societies (also referred to as Iron Age societies) thrived in some parts of 

Southern Africa, in places like South Africa, Zimbabwe and Botswana. In the interior of 

South Africa, they extend over Gauteng to North West and farther (Maggs, 1976; Huffman, 

2007; Boeyens and Hall, 2009). These farming communities were given the term Iron Age 

because they made iron tools (Mason, 1974; Huffman, 2007). According to Mason (1974: 

211), Iron Age, within a South African perspective, refers to “a technology that led to the 

earliest major transformation of human society in South Africa”. This technology, based on 

farming and metal production, laid a solid foundation and paved the way for the booming 

production of complex technology, economy, politics and societies in South Africa (Mason, 

1974). Unlike foragers, these farming communities maintained residence in particular 

locations for longer time periods. Late Iron Age settlements are characterised by stone-
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walled structures with houses and cattle kraals. Middens and storage pits were distributed 

outside the settlements (Maggs, 1976; Mason, 1986; Hall, 2000; Hall, 2010; Huffman, 2007: 

3).  

The South African interior is filled with stone-walled structures such that it is difficult, but 

not impossible, to assign historical identity of the sites to a particular people (Maggs, 1976; 

Boeyens and Plug, 2011) due to misinterpretations and ignored oral records (Boeyens and 

Plug, 2011). Nevertheless, it has been established that the (Western) Sotho-Tswana groups 

are responsible for SWS, known as Molokwane, which occurs over Gauteng to Zeerust, 

dating from the beginning of the late 18th century (Hall, 2000; Huffman, 2007: 38). 

Sotho/Tswana people, one of Late Iron Age farming communities, extended their settlement 

buildings south of the Vaal River over the eastern and northern grasslands of the Free State 

by the early first half of the 17th century (Hall, 2010) from north Broedestroom Early Iron 

Age. Historic records have helped archaeologists identify the presence of Sotho-Tswana 

groups (from parts of the west) known as the Kwena in the Suikerbosrand (Huffman, 2007: 

433).  

David (2013: 2) defines ash middens as “rubbish dumps, containing a high proportion of 

materials considered inedible or not otherwise immediately usable by humans, beasts and 

poultry”. In contrast, in the interior of South Africa, Tswana communities have various 

phrases associated with middens such as ‘Kgosi ke thutubudu’ which translates ‘the chief is 

a midden’ and ‘Kgosi thothobolo e olelwa matlakala’ which literally translates ‘A chief is like 

an ash-heap on which is gathered all the refuse’. This is interpreted, within a cultural 

context, as ‘the higher the position, the greater the responsibility’ (Boeyens and Plug, 2011: 

9). Researchers such as Hall, Huffman (2007), Mason 1974), Taylor (1979) make the general 

presumption that the elite of highest rank or senior leader of the village in farming 

communities possesses the largest household hence has great wealth (Mason, 1986; 

Boeyens and Plug, 2011), also so as to accommodate all village activities, house a big family 

and officials (Huffman, 2007: 22). The size of ash middens reflects the size of the political 

court and its wealth. Consequently, larger court middens mean reflect more feasts as a 

result of wealth and power. All this combined together is indicative of the political power of 

the chief. These translations immediately highlight that ash middens in the South African 

interior are associated with chieftaincy and status.  



7 
 

One important aspect of ash middens entails understanding whether they are just rubbish 

heaps are related to near-by activities such as religious ceremonies, meals and craftwork 

(Boeyens and Plug, 2011). In Sukur (Nigeria), various structures that are enclosed within one 

SWS such as huts/houses or granaries use one midden which is usually located ‘outside and 

close but not immediately next to the entrance of the SWS’ (David, 2013). In some Southern 

African areas, two ash middens are distinguished: large and domestic middens. Large 

middens are associated with the chief and ruling elite while domestic ones are those related 

to households (Huffman, 2007; Boeyens, 2009; Boeyens and Plug, 2011). The discarded 

material from the chief is dumped outside his house, in front of and adjacent to the gateway 

at its side (Hall, 2000; Boeyens and Plug, 2011). According to David (2013), middens do not 

really grow in size or age but contribute as nutrients to plots surrounding the house, which 

is not necessarily the case in South Africa (Boeyens and Plug, 2011). Middens from different 

areas in the settlement contain just about the same material which includes: organic related 

material such as ash, bone, fragments, charcoal from hearths (Mason, 1986; David, 2013). 

This material is a result of economic, religious, juridical and socio-political activities where 

the elite ruling party of men participated, as well as animal slaughter during public rituals, 

ceremonies and feasts (Boeyens and Plug, 2011). Activities were in the form of performing 

very crucial economic dealings and operations; settling high court cases, debates around 

important political issues (Boeyens, 2009; Boeyens and Plug, 2011). They are also associated 

with, or a consequence of, the practices of craftwork such as hide-working. 

Being able to estimate the sizes and boundaries of ash middens gives significant insight in 

the life ways of Iron Age societies because large middens are strongly associated with 

chieftaincy and the elite while smaller ones point to relatively smaller households. Estimates 

of certain ash middens can be easily used to determine the status or rank of surrounding 

settlements (whether they belonged to the elite/ senior leaders or not). Furthermore, the 

relation between settlements and middens might also be made even when the stone-walled 

structures are no longer visible on the landscape. Remote sensing can contribute to 

understanding the relations between settlements and ash middens. Detecting and 

calculating the details of ash middens can in turn inform about the settlements and social, 

political and economic organization of Iron Age communities.  
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2.1. Remote Sensing in archaeology 

Remote sensing techniques offer the opportunity to detect archaeological sites in their 

complexity and context through satellite imagery. Developments in earth observation 

techniques over time have provided profound enhancements in landscape studies which 

mainly include: aerial photographs (AP) for mapping the distribution of stone-walled 

structures,  particularly in the 1960s and 1970s in South Africa (Taylor, 1979; Mason, 1986; 

Sadr and Rodier, 2012) and Botswana (Seddon, 1968; Denbow, 1979); the use of satellite 

imagery such as Thematic Mapper in the 1980s (Lasaponara and Masini, 2011), Google Earth 

(GE) and spatial technologies such as GIS (MacQuilkan and Sadr, 2010; Sadr and Rodier, 

2012). However, the use of AP and GE has some limitations which include lack of availability 

(since AP are often not free) and the unequal resolution of GE through time which means 

that not all areas in question are covered by the same imagery resolution (MacQuilkan and 

Sadr, 2010). Moreover, often times archaeological sites and remains are either not clear or 

hidden from view due to modern vegetation, environmental processes, burial by modern 

infrastructure (Parcak, 2009). Further advancements in spatial remote sensing techniques 

have provided new platforms in the form of sensors for acquiring better results through 

capturing and analysing detailed data.   

Advanced remote sensing platforms in the form of passive and active sensors have inspired 

novel approaches in studying archaeological material. The launch of advanced passive and 

active sensors as well as multispectral and hyperspectral imagery that have different 

properties has thus allowed for more complexity in studying archaeological features 

(Abrams and Comer, 2013). Satellite imagery at high spatial resolution has immensely 

improved the study of archaeological remains since 1999 (Lasaponara and Masini, 2011). 

The increase in spectral and spatial resolution of satellite imagery has nevertheless not 

completely solved the problem of detecting archaeological features. For example, small 

archaeological material concealed by dense vegetation is still sometimes difficult to study 

(Lasaponara and Masini, 2011). 

Passive sensors, as the ones used to acquire the images in this research rely on natural 

energy sources, mainly the sun, whereas active sensors make use of their own energy 

sources which are man-made (Janssen and Bakker, 2004; Woldai, 2004; Abrams and Comer, 

2013). Passive sensors, such as SPOT and GeoEye, invariably capture data during the day as 
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they require the reflected radiation. They are affected by their dependence on the sun, 

which has changing conditions throughout the day. Atmospheric conditions which interfere 

with radiation also affect passive sensors. These limitations in turn temper with the detail 

and complexity within which archaeological features are analysed (Sadr and Rodier, 2012). 

Passive sensors still provide good ground coverage with relatively good (medium) spatial 

resolution between 2 and 20/30m with SPOT (Lasaponara and Masini, 2011), Landsat 8 and 

RapidEye, for example (Toth and Jozkow, 2016). Conversely, high resolution images less 

than 2m or between 0.31 and 2m include Worldview and IKONOS (www.seos-project.eu; 

www.satimaigingcorp.com). The use of passive based sensors comes with having to pay 

careful attention to interferences from the atmosphere which requires the use of specific 

techniques (i.e. atmospheric correction) before analysing the data.   

In remote sensing spatial, spectral and temporal resolutions are distinguished, and differ as 

per sensor. The definitions used here are adopted from Abrams and Comer (2012: 64): 

spatial resolution is defined as pixel sizes that belong to satellite imagery or instruments 

that record image /radiation data, for instance high spatial resolution is 0.41–4 m, and 30-

1000 m is low resolution (Digital Globe, 2015); spectral resolution refers to the magnitude of 

the wavelength interval (bands) that the sensor is measuring, where high spectral resolution 

is 220 bands, medium is 3-15, and low resolution is 0-3 bands (Digital Globe, 2015); 

temporal resolution is taken to refer to the time that passes when a sensor acquires image 

data on particular location, high temporal resolution is <24-3days, medium is 4-16 days, and 

low is > 16 days (Digital Globe, 2015). Spatial, spectral and temporal resolutions determine 

the level of detail and complexity within which archaeological features are observed and 

analysed.  

One can see that using different remote sensing techniques allows for analysing the 

middens on distinct resolutions  spatial, spectral and temporal (Abrams and Comer, 2013). 

For instance, using active and passive sensor platforms to analyse ash middens may produce 

different results. This is because spatial and spectral properties will differ depending on the 

satellite imagery. The naked-eye can only extend vision in the visible portion of the 

electromagnetic spectrum (see Woldai, 2004: 59 and Parcak, 2009) thus remote sensing is 

needed as it registers data going beyond this portion (Parcak, 2009). Hence different 

satellites record reflected radiation in various parts of the electromagnetic spectrum in 

http://www.seos-project.eu/
http://www.satimaigingcorp.com/
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different ways (Woldai, 2004). These parts include: the optical portion, the ultraviolet 

portion which is practically useful for remote sensing, and the visible region (Woldai, 2004: 

58). Table 1 (Schowengerdt, 2007: 8) shows spectral regions that are usually used in remote 

sensing. As a result, greater clarity is perceived by the naked eye as all data beyond the 

visible electromagnetic spectrum have been recorded, with all distracting features 

eliminated (Parcak, 2009). Furthermore, this results in clearer and easier reconstruction of 

past landscapes. All of the above mentioned rigorous processes and techniques ensure that 

no destruction of the landscape and archaeology within will occur ─ if any at all ─ given that 

archaeological sites tend to be sensitive and therefore minimal disturbance.  

Table 1: Major spectral regions used in remote sensing (adapted from Schowengerdt, 2007: 

8) 

Name  Wavelength range Radiation source Surface property of 
interest 

Visible (V) 0.4 – 0.7 µm Solar Reflectance 

Near InfraRed (NIR) 0.7 – 1.1 µm Solar Reflectance 

Short Wave InfraRed 
(SWIR) 

1.1 – 1.35 µm 
1.4 – 1.8 µm 
2 – 2.5 µm 

Solar Reflectance 

MidWave InfraRed 
(MWIR) 

3 – 4 µm 
4.5 – 5  µm 

Solar, thermal Reflectance, 
Temperature 

Thermal or LongWave 
InfraRed (TIR or LWIR) 

8 – 9.5 µm 
10 – 14 µm 

Thermal Temperature 

Microwave, radar 1 mm – 1m Thermal (passive), 
Artificial (active) 

Temperature (passive), 
Roughness (active) 

 

It is worth noting that the spatial resolution of satellite imagery can be insufficient to 

identify and measure objects in their full complexity and detail, looking at shape for instance 

(Schowengerdt, 2007). This can be somewhat a problem in archaeology, for example, where 

interest lies in the complexity, detail and full context of discovered objects (Hall, 2000; 

Huffman, 2007; Sadr and Rodier, 2012). Spectral measurements therefore come into play as 

they provide an opportunity to identify these objects not exclusively based on their shape 

but on other characteristics which are a reflection of other (physical and chemical) 

properties of archaeological remains. Spectral reflectance curves which can be deduced 

from objects or earth’s surface materials indicate radiation that is reflected as a function of 

wavelength (Woldai, 2004; Schowengerdt, 2007). These reflectance curves are very useful 
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as they are not just estimates but are specifically related to particular objects (Woldai, 

2004). 

3. Methods and Materials 

The data and materials employed in this research project were integrated to produce a 

balanced remote sensing and ground based project. The remote sensing platforms that 

were used include: passive sensors SPOT 5 and GeoEye 1 satellite imagery (see tables 1 and 

2 for properties of the sensors).  

3.1. Data Collection: Remote Sensing   

The study area imagery of the various remote sensing platforms were not difficult to access 

as this research is part of an on-going project on analysing SWS in southern Gauteng 

(courtesy of Prof. Karim Sadr). The use of different satellite imagery allowed for a 

comparison between the performances of two passive sensors (GeoEye and SPOT) with 

different spatial resolutions and comparable spectral bands. The images were acquired 

during the winter season: June of 2013 for GeoEye 1 and August 2013 for SPOT 5.  

Table 1. SPOT 5 properties (adapted from www.spotimage.com) 

MODE  SPATIAL RESOLUTION 

(METERS) 

SPECTRAL RESOLUTION 

(MICRONS) 

PANCHROMATIC  2.5 – 5  480 – 710 nm 

MULITSPECTRAL 10  500 – 590 nm (green) 

 10 610 – 680 nm (red) 

 10 780 – 890 nm (Near IR) 

 20 1.580 – 1.750 nm (Mid IR) 

 

Table 2. GeoEye 1 properties (adapted from www.digitalglobe.com) 

MODE  SPATIAL RESOLUTION  SPECTRAL RESOLUTION  

PANCHROMATIC 41 cm GSD at Nadir  450 – 800 nm (black and white) 

MULITSPECTRAL 1.65 cm GSD at Nadir  450 – 510 nm (blue) 

 1.65 cm GSD at Nadir 510 – 580 nm (green) 

 1.65 cm GSD at Nadir 655 – 690 nm (red) 

http://www.spotimage.com/
http://www.digitalglobe.com/
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 1.65 cm GSD at Nadir 780 – 920 nm (Near IR) 

 

Ground confirmation is critical regardless of the advantages that come with using remote 

sensing. It is fundamental for locating features in the real world and for classification 

(Tehrany et al, 2013). Ground based work was conducted using a handheld GPS device in 

support of ground truthing in August 2015. The GPS device was used to record geographical 

coordinates of ash middens and stone-walled structures within the 49ha study area. Several 

coordinates were recorded starting from the centre right to the edge of each ash midden at 

1m intervals. As a consequence, 39 known ash middens were recorded within the 49ha 

area. It is, however, important to note that field work was conducted during late 

spring/early summer, and not in winter as some imagery was acquired. This did not have a 

huge impact, if any, in the consistency of data collection as there is a rather small gap 

between the periods of acquiring satellite imagery and ground truthing. 

3.2. Image Pre-processing  

Techniques including QUAC and FLAASH have been developed to halt the impacts of 

atmospheric interferences to avoid compromising the quality of the results from preforming 

analyses on satellite imagery. Pre-processing an image can significantly increase the 

reliability of inspection. As such, images must be radiometrically and spectrally calibrated 

before analysis. In this case, this was done using FLAASH. FLAASH is a technique that is used 

to correct wavelengths in the visible through near-infrared and shortwave infrared regions 

(www.harrisgeospatial.com). With its ability to support multispectral sensors, FLAASH is 

more appropriate for pre-processing the multispectral sensor based images used in this 

research. Furthermore, it contains the necessary algorithms for dealing with strong 

atmospheric conditions such as the presence of clouds (ENVI, 2006; Adelabu et al, 2014). In 

using FLAASH, the first step is to calibrate the images so as to extract data and create a 

scientific product. Calibration aims to compensate for radiometric errors from sensor 

defects, variations in scan angle, and system noise to produce an image that represents true 

spectral radiance at the sensor (ENVI, 2006; Adelabu et al, 2014). FLAASH was conducted on 

ENVi software. 
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3.3. Data analysis methods 

SPOT and GeoEye imagery were processed using ENVi 5.2 software so as to classify (based 

on training and test samples) a number of earth surface objects using land cover 

classification methods. Due to the nature of the study area which does not comprise a 

highly differentiated land cover, 5 cover classes (Table 3) were identified. The landscape of 

the study area comprises mainly open dry land and vegetation. There are no surrounding 

features such as streams or rivers that can be included in the land cover classes. The data 

gathered from field work was also imported into ArcMap for visualisation, manipulation and 

map making. 

Table 3. Land cover classes 

Land Cover Class  Description 

Ash Middens Ash heap especially around SWS 

Bare soil Surface with no vegetation 

Scattered vegetation  Mixed vegetation scattered across the 

landscape 

Archaeological features SWS 

Road Built-up area i.e. road 

 

Research has shown that a number of ash middens in satellite imagery are identifiable with 

the naked eye as light coloured patches especially around stone walled structures (Denbow, 

1979; Sadr and Rodier, 2012). Therefore, identifying ash middens on the satellite images 

was based on research (Sadr and Rodier, 2012) and experience gained from working with 

stone-walled structures and ash middens on satellite imagery, particularly Google Earth. The 

identified ash middens (and stone-walled structures) were then compared to the ground 

truth data. Identifying more or less ash middens on GeoEye and SPOT as compared to 

ground truth data was a step towards highlighting the differences on the performances of 

the two platforms as will be seen later. 
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3.3.1. Classification and Bands  

Land cover classification can be supervised or unsupervised. In a supervised classification, a 

‘specialist’ identifies training sites (areas that represent a unique land cover type) on the 

satellite image so as to identify classes (Sisodia et al, 2014). In an unsupervised 

classification, on the other hand, the specialists’ knowledge of the identifying classes for the 

classification is not required (Sisodia et al, 2014). Instead, unsupervised classification uses 

spectral clusters to classify automatically. Although automated, an unsupervised 

classification was not selected because it suffers from producing poor accuracy from mixed 

pixels when working with imagery that may have classes of similar reflectance (Sisodia et al, 

2014). Supervised classification was used in this research because it gives better accuracy 

when, for instance, a satellite image has the same reflectance for multiple classes (Erener, 

2013; Sisodia et al, 2014: 1418). Supervised classification can be conducted through 

techniques which include Maximum Likelihood Classification (MLC), Minimum Distance and 

Parallelpiped classification and more advanced techniques such as Support Vector Machine 

(SVM). 

MLC and SVM were selected for this study. Referred by some as a conventional probabilistic 

classification technique (Foody and Mathur, 2006: 181), MLC is regarded as one of the most 

effective and used classifiers and it generally known for producing accurate results (Otukei 

and Blaschke, 2010; Aguirre-Gutierrez et al, 2012; Erener, 2013; Sisodia et al, 2014). It is a 

pixel-based classification technique that estimates a statistical probability based on inputs 

of classes created from training sites whereby a pixel is ascribed to a class it most likely 

belongs to (Otukei and Blaschke, 2010; Aguirre-Gutierrez et al, 2012; Sisodia et al, 2014). 

MLC is a parametric technique with the underlying assumption that the data assume a 

normal distribution (Mondal et al, 2012).  

SVM, on the other hand, is a pattern classification method which inherently hosts a 

distribution-free algorithm with the potential of overcoming poor statistical estimation (Li et 

al, 2012). SVM obtains better empirical accuracy and more generalization capabilities; and 

more especially when working with small training sample sizes (Mountrakis et al, 2011; Li et 

al, 2012). Unlike MLC, SVM is a non-parametric classification technique (Mondal et al, 2012). 

MLC and SVM with their different characteristics make for a good comparison. For example, 
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this comparison shows whether a parametric or non-parametric approach is better for 

classifying archaeological features. Furthermore, studies have shown that SVM is often 

more accurate than MLC.  

Supervised classification techniques make use of training sites which are digitized for each 

land cover class. The sample for the number of training sites differed for GeoEye and for 

SPOT. A stratified random sample technique was used to digitize the sites because it allows 

for the selection of a random sample within particular categories i.e. land cover classes. For 

GeoEye, between 50 and 70 training sites were digitized while only between 30 and 50 were 

digitized on the SPOT platform. The reason behind this has to do with the spatial resolution 

of the two platforms. GeoEye 1 has a higher spatial resolution which means one can zoom 

into more pixels and digitize more training sites while SPOT 5 has a lower spatial resolution 

meaning one cannot zoom into as many pixels as in GeoEye 1 thereby digitizing fewer 

training sites on SPOT 5. 

A series of classifications were conducted on the imagery covering the 49ha area then 

tested on the wider region covered by SPOT 5 and GeoEye 1. When conducting 

classifications, a combination of bands was used for the different image platforms. Two 

major comparisons were made, one with the same bands from different satellite images and 

the other with different bands. GeoEye 1 and SPOT 5 have four bands each with three 

similar ones (Green, Red, and Near Infrared) and the last ones different from each other as 

shown in tables 1 and 2. Comparing the three same bands on the different platforms 

revealed the performance of the bands on the two distinct platforms in identifying ash 

middens. In the second comparison, two of the same bands from each platform combined 

with the last bands, making the overall combination different on the two platforms. 

Comparing different bands shows the impact of a blue band in GeoEye and Mid IR in SPOT 5. 

These combinations were as follows:  

The first comparison between the same combination of bands: 

 GeoEye 1: Green, Red and NIR 

 SPOT 5: Green, Red and NIR 

The second comparison between a different combination of bands: 
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 GeoEye 1: Red, Green, Blue 

 SPOT 5: Red, Green, Mid IR 

The measurement of reflected or emitted radiation from different surface features forms 

the core and foundation of remote sensing hence different surface features reflect or 

absorb the sun’s radiation in different ways. The level of reflectance and absorption is 

dependent on the physical and chemical state of surface features in question such as 

moisture and surface roughness (Erener, 2013; Sisodia et al, 2014). These variations in 

reflectance and absorption allow for the identification of different surface features by 

examining their spectral reflectance patterns (and arbitrary profiles). For instance, the 

reflectance of green vegetation tends to be high in the in the near infrared band (Erener, 

2013). For bare soil, reflectance is influenced by soil texture, and surface roughness. 

Vegetation will have high reflectance in NIR than bare soil.   

The behaviour of these two sets (combination) of bands, as mentioned above, was 

compared using an arbitrary profile which refers to the pixels of any image that sit beneath 

a transect (www.harrisgeospatial.com). This was carried out on the ENVi software by 

drawing an arbitrary profile line across an area of interest within both platforms. The area of 

interest was one that had a variety of classes i.e. vegetation, ash middens, SWS, soil etc. As 

such, the profile line went across these different classes so as to examine the pixels of each 

image platform when using the same bands and then different ones as can be seen in 

figures 2 and 3. The profile was drawn on the same areas across both GeoEye 1 and SPOT 5 

image platforms on the same combination of bands and on a different combination. 

3.3.2. Accuracy Assessment  

The most common approach for assessing accuracy of classification in remote sensing is to 

compare the classified land cover type with the spatial and temporal (time) data with which 

it corresponds, provided these are usually of high accuracy (Comber et al, 2012; Comber et 

al, 2013). This method is commonly known as the confusion matrix (or sometimes as the 

validation matrix). The confusion matrix takes into account a few accuracies, namely: overall 

accuracy, producer’s and user’s accuracy which are then used to give statistical measures of 

the precision and reliability of the classified information and the extent to which they are 

correct, or incorrect (Comber, 2012).  
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Figure 2: An example of how an arbitrary line was drawn across the image on the GeoEye 

platform.  

 

Figure 3: An example of how an arbitrary line was drawn across the image on the SPOT platform.  

However, there are limitations to utilising this method in that the confusion matrix does not 

give information with regards to the spatial spread of the level of error (Comber et al, 2012; 

Comber et al, 2013). Furthermore, the overall accuracy provided by the confusion matrix 

may not be suitable for sub-regions within the land cover classes where, in reality, the 

accuracy levels may be higher or lower than the overall one (Comber et al, 2012; Comber et 

al, 2013). The confusion matrix was conducted using regions of interest (ROI) which simply 

refer to the geographical coordinates obtained using a handheld GPS and digitized in Google 
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Earth. It was conducted for MLC on SPOT 5 and GeoEye 1 and for SVM on SPOT 5 and 

GeoEye 1 platforms. The confusion matrix is crucial in responding to the research questions. 

4. Results  

4.1. Classification  

After running supervised classification techniques – MLC and SVM – on the two platforms 

(GeoEye 1 and SPOT 5), the results were produced in the form of maps. The results below 

(figures 4 – 7) show eight maps which allow for visual comparison of the results. One can 

immediately spot the difference in the classification maps between SPOT 5 and GeoEye 1. 

SPOT 5 classification maps show less detail (larger pixels) with respect to the land cover 

classes as opposed to GeoEye 1 classification maps, which are more detailed. In all the 

images, a black outline has been overlaid to delineate known ash middens used as test 

middens with the 49ha study area. Similarly, a grey outline has been used to delineate 

stone-walled structures. 

The maps are presented according to the two platforms, two classification techniques and 

respective band sets. The respective combination of bands is listed on the bottom right of 

each classified image. The first four maps (figure 4 – 5) present the classified platforms 

when using the same combination of bands. The second set of maps (figures 6 – 7) then 

presents classified platforms with the different combination of bands.  

One can see from the maps (figure 4 – 7) that the black outline sits atop the bright green 

colour representing ash middens on the GoeEye platform more than on the SPOT platform. 

For example, 15 black outlines out of 39 sit on classified ash middens on SPOT 5 done with 

MLC and green, red and NIR. Conversely, over 25 black outlines sit on classified ash middens 

on GeoEye 1 using MLC and green, red, NIR. On the other hand, the grey outline is less often 

identified on around the pink colour representing stone-walled structures when considering 

both platforms and band combinations. This highlights that ash middens (black outlines) are 

more accurately classified than stone-walled structures (grey outlines). Furthermore, 

considering the lack of variety landscape of the study area (with respect to the number of 

land cover classes), it is fairly reasonable to suggest that other land cover features were well 

classified. Such features include: the road and the soil.  
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Figure 4: Classified images from the Top: SPOT 5 MLC. Bottom: SPOT 5 SVM. Bands Green, Red, 

and NIR.  
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Figure 5: Classified images from the top: GeoEye 1 MLC. Bottom: GeoEye 1 SVM. Bands Green, 

Red, and NIR. 
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Figure 6: Classified images from the top: SPOT 5 MLC. Bottom: SPOT 5 SVM. Red, Green, and Mid 

IR bands. 
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Figure 7: Classified images from the top: GeoEye 1 MLC. Bottom: GeoEye 1 SVM. Red, Green, and 

Blue bands. 
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4.2. Accuracy Assessment and Kappa Coefficient 

Through using the accuracy assessment and the kappa coefficient, the accuracy of the two 

techniques, MLC and SVM, in classifying all the land cover classes overall and the single 

cover classes individually was assessed. When looking at figures 8 and 9 of the accuracy 

assessment results below, it is immediately apparent that the classification techniques 

achieved higher accuracy on the GeoEye platform as opposed to the SPOT platform. Figure 8 

reports the accuracy in classifying the classes when using the combination of bands (green, 

red and NIR) on both platforms. When using this combination, higher results were achieved 

when using both MLC and SVM on GeoEye. On SPOT, both MLC and SVM were lower at 

57%. Using a different combination of bands while applying the same classification 

techniques on the same area provided different results as shown in figure 9. Again, MLC and 

SVM produced higher results on GeoEye (although not as high as when using the first band 

combination). MLC and SVM on SPOT yielded lower results as compared to using GeoEye. As 

a consequence, adding Mid IR to green and red bands on SPOT increased MLC and SVM 

accuracy results to go higher than when using NIR with green and red.   

 The kappa coefficient values further coincided with the accuracy assessment results from 

Figures 8 and 9 which also report the kappa coefficient. The kappa (κ) coefficient 

(equation1) serves to measure the agreement between the classification and ground truth 

pixels (Comber et al, 2012). Therefore, a kappa value of 1 represents a perfect agreement 

where as a value of 0 represents no agreement. Overall, there is a perfect relationship 

between the classification and ground truth pixels on the GeoEye platform when using 

either the same or different combination of bands. The same cannot be said for the SPOT 

platform. There is a relatively poor relationship when using the same band combinations, 

but a perfect relationship when using a different combination i.e. replacing NIR with Mid IR 

band. Nonetheless, there are some dynamics within these results that need to be 

considered, and these will be detailed in the discussion.  
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Equation 1: Kappa coefficient 

 

Figure 8: accuracy assessment of the same bands (SPOT 5: Green, Red and NIR and GeoEye 1: 

Green, Red and NIR) on the different satellite images, SPOT 5 and GeoEye 1 

 

Figure 9: accuracy assessment of different bands (GeoEye 1: Red, Green, Blue and SPOT 5: Red, 

Green, Mid IR) on the different satellite images, SPOT 5 and GeoEye 1. 

4.3. User and Producer Accuracy 

In order to better articulate the reliability of the results (the overall accuracy and the kappa 

coefficient); the user and producer accuracies of the datasets were calculated. The user 
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accuracy refers to the chance that a pixel assigned as a particular land cover class in the 

image is really that particular class (ENVI, 2006; Adelabu et al, 2014). The producer accuracy 

refers to the chance that a particular land cover class representing an area on the ground is 

classified as that class (www.harrisgeospatial.co.za). Both the user and producer accuracies 

are estimated from the full results of the accuracy assessment which is calculated in ENVi. In 

estimating the user and producer accuracies, the total number of classified pixels was 

considered. Tables (1 – 8) reporting these results are in the Appendix. All the land cover 

classes are included in the tables so as to show the performance of ash middens (which are 

highlighted) in relation to other features. The tables show that both the user and producer 

accuracies for ash middens are quite high. The overall accuracy of both the user and 

producer probabilities was higher on the GeoEye platform as opposed to SPOT. The same 

combination of bands  Green, Red, and NIR  yielded very high results on GeoEye 1 and 

SPOT 5, but the different combination of bands was not far behind on both platforms. 

4.4. Band Combinations  

The two band combinations of the respective platforms did not perform so differently from 

the above mentioned results when tested on profiles. The graphs below show the results of 

the arbitrary profiles, first on the same combination of bands and then on the different 

combination. On the one hand, GeoEye 1 profiles are very narrow because of the greater 

number of pixels that comes with the imagery. On the other, SPOT 5 profiles are very broad 

because of the fewer pixels offered by the imagery. Figures 10 and 11 show the pixels (and 

thereby reflectance of bands) of the selected bands (i.e. green, red and NIR on GeoEye and 

SPOT; replacing NIR with blue on GeoEye and with Mid IR on SPOT). There is a common 

pattern of peaks on areas covered by ash middens from the profiles. This is because the 

reflectance of ash middens at bands green, red, and NIR on both image platforms is 

relatively higher. It can be seen from figure 10 that the pixels of the three bands (appearing 

in different colours) have three relative distinct peaks that represent ash middens. 

Furthermore, it is worth noting that, as expected, where the profile cuts across green 

vegetation, NIR is higher than where the profile cuts across bare soil.  
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Figure 11 with the different combination of bands revealed similar results to the same band 

combinations in figure 10. This is because there are also three distinct peaks in the 

reflectances of the bands representing ash middens, and dips that represent bare soil. In 

figures 10 and 11, a black arrow has been used to show the peaks that represent ash 

middens and a grey arrow has been used to represent the relatively low signature levels of 

bare soil. However, the peaks representing ash middens vary as some are higher (vertically 

exaggerated) than others.  

  

Figure 10: left: SPOT 5. Right: GeoEye 1. Profiles from same bands on both platforms: Green, Red, 

and NIR.  

 

Figure 11: profiles based on different bands on SPOT 5 and GeoEye 1. Left: SPOT 5 bands: Red, Mid 

IR. Right: GeoEye 1 bands: Red, Green, Blue. 

 

5. Discussion  

5.1. Accuracy Assessment and Kappa Coefficient with respect to bands 
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Figure 8, showing the accuracy assessment results with the same band combinations, 

revealed that higher classification accuracy was achieved on the GeoEye 1 image (97% from 

using both MLC and SVM). MLC and SVM performed relatively poor in classifying the land 

cover classes (57% from both MLC and SVM). When using different band combinations 

between SPOT 5 and GeoEye 1 as shown in figure 9, higher classification accuracy was again 

obtained on the GeoEye 1 platform and lower values on the SPOT 5 platform. Nevertheless, 

MLC and SVM performed better on the SPOT platform using a different combination of 

bands (MLC: 75% and SVM: 73%). The addition of the Mid IR band green and red on the 

SPOT platform (thus using a different combination of bands) improves the accuracy of MLC 

and SVM in classifying the land cover classes. On the other hand, replacing the NIR band 

with the blue band on the GeoEye platform very slightly decreases the accuracy results. NIR 

is the optimal band for classifying the land cover classes. 

The kappa coefficient values further confirmed the above mentioned preliminary 

conclusions. A perfect (high measure between classification and ground truth pixels) 

relationship between the classification and the ground truth pixels meant that the 

combination of bands in question were optimal. There was a perfect relationship that was 

achieved on the GeoEye platform when using both band combinations. Therefore, the two 

sets of band combinations are optimal in classifying land the specified land cover classes. 

This makes sense since the accuracy produced using both band combination sets was very 

high (above 90% for both). SPOT platform presented a different scenario. A perfect 

relationship was achieved when using a different band set but not when using the same 

band combination set. NIR is not an optimal band in classifying the land cover classes 

because its presence meant that there is a poor relationship between ground truth pixels 

and the classification. As a result, Mid IR can be deemed an optimal band on the SPOT 

platform based its perfect relationship.  The platforms upon which the classifications were 

carried out must be taken into careful consideration. 

5.2. Platforms ̶ GeoEye and SPOT and Techniques ̶ MLC and SVM 

The performance of the bands is influenced by the remote sensing platform. . Higher 

classification accuracy was achieved on the GeoEye imagery when using both the same and 

different combination of bands. These high accuracy results can be attributed to the higher 

spatial and spectral resolution of the GeoEye platform. The high resolutions mean that there 
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is great detail on the platform to achieve the correct classification (and a high probability of 

classification and ground truth pixels which is indicative of a perfect relationship). On the 

contrary, slightly lower accuracy results were produced when working on the SPOT imagery 

most likely due to the lower spatial resolution of the platform as shown in table 2. The lower 

spatial resolution of SPOT gives rise to relatively low classification accuracy because the 

pixels cover larger areas. This results in difficulties when assigning an ROI to the correct land 

cover class. Moreover, the lower spatial resolution may also mean that midden smaller than 

10 meters in extent may be easily missed when using this imagery. 

The supervised classification techniques gave somewhat unexpected results. It was 

expected that SVM, as an advanced technique would perform better that MLC on all 

platforms. This was not the case. MLC produced slightly higher accuracy (75%) on the SPOT 

platform when using a different combination of bands than the SVM (73%). The same can 

be seen from the GeoEye platform where SVM accuracy results (96%) were higher by only 

1% from that of MLC (95%). Both MLC and SVM classifications had the same accuracy (97%) 

when classifying using same combination of bands. Although, it is important to bear in mind 

the influence of the GeoEye platform in yielding higher results. Both SVM and MLC 

performed poorly when classifying using the same combination of bands on SPOT. Overall, 

both SVM and MLC are good classification techniques on the GeoEye platform irrespective 

of the band combination and on SPOT provided that a different band combination is used. 

However, MLC is a better classification technique than SVM on the SPOT platform given the 

use bands ̶ green, red and Mid IR but not with NIR.  

5.3. User and Producer Accuracy 

The user and producer accuracies showed that some individual classes were better classified 

than others. The user and producer accuracies of all land cover classes were above 90% on 

the GeoEye platform when using the band combination: Green, Red, and NIR. The results 

(appendix) showed that there is a high probability that the pixels assigned as ash middens in 

the image were really ash middens on the ground. The use of the same band combination 

(Green, Red, and NIR) did not yield the same results on the SPOT platform as some of the 

land cover classes such as red soil and especially SWS were below 70% but ash middens 

remained high at 93%. These slightly lower accuracy values indicate a misclassification of 

pixels thereby mean that some areas on the ground classified as red soil are not actually red 
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soil, for example. On average, using a different band combination (Red, Green, and Blue) on 

the GeoEye platform yielded high accuracies, nothing less than 80%, almost as high as when 

using Green, Red, and NIR. Adding the band, MIR, on SPOT 5 saw ash midden accuracies 

remain high but a slight drop with red soil going below 50% and SWS staying around 65% on 

average. It is important to note that the addition of the blue band on GeoEye did not have a 

great impact on the user and producer accuracy. Adding the MIR band on SPOT did not have 

a great impact instead it increased the percentages of SWS and dropped that of red soil 

compared to NIR. According to the high user and producer accuracies, ash middens were 

classified more accurately irrespective of the band combination or platform as opposed to 

red soil, for example.  

5.4. Bands and Spectral Profiles 

The pixels of the platforms give rise to high reflectance of ash middens. Looking at the 

profile graphs on the SPOT 5 platform with the band combination green, red and NIR, it can 

be seen that there is a fairly higher reflectance than on the SPOT 5 platform with the band 

combination green, red and Mid IR. Mid IR band reduces the level of reflectance on the 

SPOT platform. On the other hand, similar deductions are made from the GeoEye 1 profiles. 

There is a slightly higher reflectance on the GeoEye 1 platform when using the band 

combination of green, red, and NIR as opposed red, green, and blue. The blue band reduces 

the level of reflectance on the GeoEye 1 platform. As a consequence, ash middens can be 

fairly easily located, detected and delineated with remote sensing data because they have a 

high reflectance, based on the image pixels, than the other earth surface features (hence 

the peaks on the profile graphs as shown earlier). This high reflectance could be an 

indication of ash middens having a distinct spectral signature and that they reflect more 

radiance than they absorb.  

5.5. Limitations  

Every study has its limitations; hindrances that might obscure the results, discussion and 

final interpretations of a research. In this case, the imagery from the different sensors was 

not acquired at exactly the same time thus slightly decreasing the comparability of the 

results. It is without doubt that each technique comes with certain inherent limitations. One 

of the major limitations of this study is the nature of the landscape (low differentiation of 
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land features) which makes it impossible to increase the land cover classes. Furthermore, 

ash that has mixed with background soil may cause confusion during the classification 

process. However, the spectral signature of the centre of the ash midden is invariably 

different from that of background soil. Nevertheless, the project was still feasible and 

further research using similar techniques might corroborate the nature of this project. 

Furthermore, only a sample of remotely sensed imagery can be examined from a relatively 

small area. Future studies will show how far afield the results are applicable. 

6. Conclusion 

Using remote sensing techniques in detecting ash middens demonstrates a key step closer 

to saving time and money when conducting research with ash middens. The high reflectance 

of ash middens relative to other land cover classes has indicated that ash middens have 

distinct spectral signatures. The next research step could involve taking a spectrometer to 

the field to get readings of the spectral signatures of the respective land cover classes. 

Overall, the band combination of Green, Red and NIR makes the best platform on GeoEye 

but not very far from using Green, Red, and Blue. For SPOT, replacing the NIR with Mid IR 

has noticeable implications hence using the different band combinations, Green, Red, and 

Mid IR, made SPOT the best platform for the automated detection of ash middens. Other 

factors influence the process of detecting ash middens. One can say with confidence that 

pixels assigned as ash middens in the image were really ash middens on the ground given 

the high accuracy assessment results.  

It is evident that certain bands are good in classifying certain classes. Having NIR on SPOT 

lowered the producer and accuracy results of SWS and increased those of red soil while 

replacing it with Mid IR increased SWS and decreased red soil. As a result, the main research 

questions can now be explicitly answered. The GeoEye platform is better than the SPOT 

platform in the detection and analysis of ash middens. This is because the spectral and high 

spatial resolution of GeoEye allowed for more accurate mapping of ash middens in Southern 

Gauteng. SVM, although advanced, is not a significantly better supervised classification 

technique in classifying ash middens. This means that ash middens can be well detected at 

medium resolution (SPOT) ideally with the use of Green, Red, and Mid IR bands. With that 

said ash middens can be much better detected at high multispectral resolution (GeoEye) 

with both band combinations. The techniques used in this study can be applied elsewhere in 
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southern Africa for comparison considering the material making up the ash middens; would 

it be the same in this area and elsewhere in southern Africa? Such a study would depend on 

the availability of satellite imagery, which in some regions may be hard to acquire. 
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8. Appendix 

Table 1: SPOT 5 MLC User and Producer accuracy. Bands: Green, Red, NIR 

Class 
Producer 
Accuracy 

User 
Accuracy 

Producer 
Accuracy 

User 
Accuracy 

 Percent Percent Pixels Pixels 

road 96.77 93.75 30/31 30/32 

vegetation 60.98 75.76 25/41 25/33 

ash middens 93.55 87.88 29/31 29/33 

SWS 48.57 65.38 17/35 17/26 

soil 93.55 61.7 29/31 29/47 

red soil 64.52 68.97 20/31 20/29 

 

Table 2: SPOT 5 SVM User and Producer accuracy. Bands: Green, Red, NIR 

Class 
Producer 
Accuracy 

User 
Accuracy 

Producer 
Accuracy 

User 
Accuracy 

 
Percent Percent Pixels Pixels 

road 96.77 88.24 30/31 30/34 

vegetation 60.98 80.65 25/41 25/31 

ash 
middens 90.32 93.33 28/31 28/30 

SWS 57.14 58.82 20/35 20/34 

soil 70.97 56.41 22/31 22/39 

red soil 67.74 65.63 21/31 21/32 

 

Table 3: GeoEye 1 MLC User and Producer accuracy. Bands: Green, Red, NIR 

Class 
Producer 
Accuracy 

User 
Accuracy 

Producer 
Accuracy 

User 
Accuracy 

 
Percent Percent Pixels Pixels 

road 100 100 58/58 58/58 

vegetation 96.23 92.73 51/53 51/55 

ash middens 96.23 100 51/53 51/51 

SWS 90 93.75 45/50 45/48 

soil 96.43 94.74 54/56 54/57 

red soil 100 98.15 53/53 53/54 

 

Table 4: GeoEye 1 SVM User and Producer accuracy. Bands: Green, Red, NIR 

Class Producer User Producer User 
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Accuracy Accuracy Accuracy Accuracy 

 
Percent Percent Pixels Pixels 

road 100 100 58/58 58/58 

vegetation 94.34 96.15 50/53 50/52 

ash middens 100 100 53/53 53/53 

SWS 94 90.38 47/50 47/52 

soil 96.43 96.43 54/56 54/56 

red soil 96.23 98.08 51/53 51/52 

 

Table 5: GeoEye 1 MLC User and Producer accuracy: Bands: Red, Green, Blue 

Class 
Producer 
Accuracy 

User 
Accuracy 

Producer 
Accuracy 

User 
Accuracy 

 
Percent Percent Pixels Pixels 

road 100 100 58/58 58/58 

vegetation 94.34 89.29 50/53 50/56 

ash middens 96.23 98.08 51/53 51/52 

SWS 86 91.49 43/50 43/47 

soil 96.64 94.64 53/56 53/56 

red soil 100 98.15 53/53 53/54 

 

Table 6: GeoEye 1 SVM User and Producer accuracy: Bands: Red, Green, Blue 

Class 
Producer 
Accuracy 

User 
Accuracy 

Producer 
Accuracy 

User 
Accuracy 

 
Percent Percent Pixels Pixels 

road 100 100 58/58 58/58 

vegetation 96.23 91.07 51/53 51/56 

ash middens 100 98.15 53/53 53/54 

SWS 88 93.62 44/50 44/47 

soil 96.43 96.43 54/56 54/56 

red soil 96.23 98.08 51/53 51/52 

 

Table 7: SPOT 5 MLC User and Producer accuracy. Bands: Red, Green, Mid IR 

Class 
Producer 
Accuracy 

User 
Accuracy 

Producer 
Accuracy 

User 
Accuracy 

 Percent Percent Pixels Pixels 

road 100 93.94 31/31 31/33 

vegetation 70.73 64.44 29/41 29/45 

ash middens 90.32 90.32 28/31 28/31 
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SWS 68.57 64.86 24/35 24/37 

soil 80.65 55.56 25/31 25/45 

red soil 12.9 44.44 4/31 004/09 

 

Table 8: SPOT 5 SVM User and Producer accuracy. Bands: Red, Green, Mid IR 

Class 
Producer 
Accuracy 

User 
Accuracy 

Producer 
Accuracy 

User 
Accuracy 

 
Percent Percent Pixels Pixels 

road 100 91.18 31/31 31/34 

vegetation 56.1 67.65 23/41 23/34 

ash middens 87.1 93.1 27/31 27/29 

SWS 57.14 68.97 20/35 20/29 

soil 87.1 51.92 27/31 27/52 

red soil 32.26 45.45 010/31 010/22 

 

 


