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Abstract

The Iron Age is a very critical aspect of South Africa’s history. It represents a technology that
laid a solid foundation for the development of South Africa in terms of its economy, politics
and society. It is therefore imperative to study Iron Age, or rather its remnants such as
stone-walled structures and ash middens because these give insight into this critical time
period’s technology and those responsible for it. Remote sensing spatial technology
provides the opportunity not only to study these Iron Age remnants but to save time and
resources while doing so through satellite imagery. This study employs remote sensing by
comparing different multispectral satellite images— GeoEye 1 and SPOT 5-to find the
optimum platform to detect key archaeological remnants — ash middens — from the Iron
Age period in the Suikerbosrand Nature Reserve located in Southern Gauteng, South Africa.
The performance of GeoEye 1 and SPOT 5 in detecting ash middens was compared through
supervised classification techniques, Support Vector Machine and Maximum Likelihood
Classification, on different band combinations of the two images. Overall, the band
combination of Green, Red and NIR is the best performing on both SPOT 5 and GeoEye 1
compared to Green, Red, and Mid IR on SPOT 5 and Green, Red, and Blue on GeoEye 1.
However, higher accuracy of results for the detection of ash middens were obtained on the
GeoEye 1 platform. The GeoEye platform performed better than the SPOT platform in the

detection and analysis of ash middens.
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1. Introduction

The no longer extant Iron Age societies of Southern Africa dating to the 1700s left traces
that, when studied, can provide meaningful glimpses into the past to help the
reconstructing of the history of past societies. Remnants of stone-walled structures and ash
middens — defined in archaeology as piles of rubbish or ash heaps (Renfrew and Bahn, 1991;
Boeyens and Hall, 2009; Boeyens and Plug, 2011) — are critical examples of these traces.
Remnants of ash middens, for instance, provide a profound reflection on the political and
economic life ways of Iron Age societies. These have been detected and studies at a number
of Late Iron Age sites in South Africa, such as Molokwane (Maggs, 1976; Pistorius, 1992;
Huffman, 2007), Marothodi and Kadithswene (Boyens 2003, and other references on his
study of ash middens) According to Boeyens and Hall (2009) and Boeyens and Plug (2011)
the larger the midden, the richer and more powerful was the court that produced it. As a
consequence, locating such middens and studying their position within the overall
configuration of Iron Age settlements is crucial for the understanding of power relations
inside it. Identifying and mapping these ash middens with traditional survey techniques can
be difficult, due for example to dense vegetation, and time consuming. The use of
multispectral satellite imagery classification offers the potential to speed up the process of
detecting them on the ground and to provide a method that will not be so heavily affected
by inter-analyst variability in visual identification from panchromatic imagery (as is the case
in aerial photo interpretation). The purpose of this research is thus to use visually identify
middens on the satellite images. Analysing ash middens on two remote sensing platforms
(SPOT 5 and GeoEye 1 satellite imagery) and integrating a ground based approach of ground

truthing will give way to improve the detection and therefore study of ash middens.

Studying ash middens sheds light into societies of the past and their complex settlement,
political and economic dynamics. The use of remote sensing techniques can provide a
platform for effective and efficient research regarding ash middens; in turn, saving money
and time often spent during traditional field survey. This research is critical because if the
remote sensing platforms perform well (statistically) and produce successful results that
answer the research questions, less time and money will be spent in the field, therefore
reducing the labour intensiveness that goes into archaeological research. Regardless of the

outcome, this research project is a step towards showing the ability of remote sensing to



contribute to archaeological research. In principle, middens can be easily recognizable on
the ground. Nevertheless, it takes a lot of walking and spending time to cover ground that

can be remotely surveyed in a few minutes with remote sensing.

1.1. Study Area

This research was conducted in the southern Gauteng region of South Africa, where stone-
walled structures together with related ash middens are present within what is now known
as the Suikerbosrand Nature Reserve (Figure 1). Suikerbosrand lies between the Vaal River
and the city of Johannesburg (Sadr and Rodier, 2012) and is predominantly covered by hills
and valleys that extend over more than 80km? of land (Mason, 1986). The area experiences
about 650 -700mm of average annual rainfall, with open grasslands (Mason, 1986; Sadr and
Rodier, 2012). Circa 1 000 or more Iron Age settlements are mostly located on the hills and
the steep valleys on the southern-western and north-western parts of Suikerbosrand
(Mason, 1986). This research focused on a 49 hectare area, which extends a little over
Suikerbosrand to an adjacent farm, which was particularly selected for its richness of stone-

walled settlements (SWS) and ash middens.

1.2. Problem Statement

Sadr and Rodier (2012) have shown that SWS in the Southern part of Gauteng are easily
visible but can be difficult to classify with satellite imagery (remote sensing platforms).
Moreover, inter-analyst differences, the variability that exists in identifying and demarcating
SWS by different analysts who are interpreting the same set of imagery, in classification play
a role in delineating these types of archaeological traces (Hunt and Sadr, 2014). Although
the ash middens (and their spatial limits) are not so difficult to identify when conducting
field survey; a sharp line to circumscribe them cannot be drawn since the ashy soil around
the ash middens gradually fades over a few meters into the background soil. It is important
to be able to delineate a line around the ash midden because it allows one to estimate the
size of the midden in question. When the ashy soil gets mixed up with the background soil,

it becomes somewhat difficult to tell them apart (although it is still).

The introduction and use of remote sensing, as well as the enhancement of satellite imagery

(and its characteristics) has had profound advantages for archaeology and its various



applications such as settlement discovery and distribution (MacQuilkan and Sadr, 2010;

Abrams and Comer, 2013; Sadr, 2015). These advantages include:

}N\ Suikerbosrand, Southern Gauteng, South Africa

Legend

sws

ash middens
4%na

spot and geoeye

DEM

Value
wmw High - 242805

-

Figure 1: study area map in Suikerbosrand Nature Reserve, Southern Gauteng, South

Africa

i) its speed which reduces costs, time and the potential risk associated with archaeological
survey and excavations; ii) the establishment of site strategies that speak to conservation
and preservation (Lasaponara and Masini, 2011). More specifically, in southern African
archaeology, remote sensing has inspired and directed scholars to quite comprehensive
discussions and conclusions with regards to the people and their settlements (Seddon, 1968;
Denbow, 1979; Mason, 1986). For instance, Mason (1865) identified 998 sites in the
Transvaal through aerial photographs; Mason (1976) surveyed the highveld identifying
settlement patterns; Sadr and Rodier (2012) were able to map and study the evolution of
SWS covering an area of over 70,000 square km in southern Gauteng. This would have
simply not have been possible through the sole employment of traditional field survey

methods due to the sheer amount of data present in the study areas considered.



Consequently, techniques must be established for archaeology so as to better extract and
understand information from the various active and passive satellite data sets. The use of
statistical techniques is one strong and reliable approach in archaeological research. Sadr
and Rodier (2012) employed a statistical approach to identify and analyse the clusters of the
vast number of different SWS sites in the Suikerbosrand Nature Reserve; Sadr in press
(2012) used statistics to compare, in detail, the SWS group (I, Il, and lll) structures in the
Southern Gauteng region. The understanding of radiometric or geometric distortions, noise
reduction and data integration has not been discussed extensively (Lasaponara and Masini,
2011). This is because archaeology has leaned to photo interpretation as a result of the wide
use of aerial photography. Therefore, the use of multispectral imagery at high (GeoEye 1)
and medium (SPOT 5) resolution brings a new approach in the study of archaeological
materials and settlements. The comparison of these sets of imagery will be a crucial initial
step towards saving money and time while effectively studying ash middens and better
contextualise SWS which otherwise end up being understood as stone wall configuration

patterns with little or no archaeology in between.

1.3. Conceptual Framework: research question

For the purpose of this research, two inter-related questions set the core of the study.

These questions are:

e Do ash middens have a distinctive spectral signature that allows for their detection
in multispectral remote sensing imagery?

e How does the accuracy and precision of supervised classification of ash middens
compare at different multispectral imagery resolutions?

1.4. Aims

e To classify archaeological sites (i.e. ash middens) using high and medium
multispectral resolution imagery.

e To assess the performance of different remote sensing classification algorithms
applied to different multispectral images in detecting ash middens in Southern

Gauteng, Southern Africa.

1.5. Objectives



e Identify ash middens (and their extent) on the GeoEye and SPOT images through
supervised image classification techniques, Maximum Likelihood Classification (MLC)
and Support Vector Machine (SVM)

e Compare and analyse the results and examine their reliability using accuracy

assessment.

2. Literature Review

2.1. Archaeology and Iron Age

Social questions are fundamental in studying early societies. They help in exploring the
complexities, which include economy, politics and others, that exist (or do not exist) in
societies. In archaeology, it is invariably the case that only remnants of these societies are
left behind and do not say anything on their own. Social questions therefore need to be
asked in an attempt to understand these remnants, and they include: size/scale of the
society in question, its internal organisation, politics and socio-economic dynamics (Renfrew
and Bahn, 1991). These questions are not meant to make generalizations about societies
because of the distinctness and uniqueness that exist in societies such as hunter-gatherers
(the San in Southern Africa, for example) and politically complex societies such as
Mapungubwe in Southern Africa (Huffman, 2007: 376). Although most of these societies are
extinct, they are still worth studying because they give a trace of human behaviour in the
past which is rich and holds the potential to provide useful insight for projecting into the

future (Fagan, 1992).

Pre-colonial farming societies (also referred to as Iron Age societies) thrived in some parts of
Southern Africa, in places like South Africa, Zimbabwe and Botswana. In the interior of
South Africa, they extend over Gauteng to North West and farther (Maggs, 1976; Huffman,
2007; Boeyens and Hall, 2009). These farming communities were given the term Iron Age
because they made iron tools (Mason, 1974; Huffman, 2007). According to Mason (1974:
211), Iron Age, within a South African perspective, refers to “a technology that led to the
earliest major transformation of human society in South Africa”. This technology, based on
farming and metal production, laid a solid foundation and paved the way for the booming
production of complex technology, economy, politics and societies in South Africa (Mason,
1974). Unlike foragers, these farming communities maintained residence in particular

locations for longer time periods. Late Iron Age settlements are characterised by stone-



walled structures with houses and cattle kraals. Middens and storage pits were distributed
outside the settlements (Maggs, 1976; Mason, 1986; Hall, 2000; Hall, 2010; Huffman, 2007:
3).

The South African interior is filled with stone-walled structures such that it is difficult, but
not impossible, to assign historical identity of the sites to a particular people (Maggs, 1976;
Boeyens and Plug, 2011) due to misinterpretations and ignored oral records (Boeyens and
Plug, 2011). Nevertheless, it has been established that the (Western) Sotho-Tswana groups
are responsible for SWS, known as Molokwane, which occurs over Gauteng to Zeerust,
dating from the beginning of the late 18" century (Hall, 2000; Huffman, 2007: 38).
Sotho/Tswana people, one of Late Iron Age farming communities, extended their settlement
buildings south of the Vaal River over the eastern and northern grasslands of the Free State
by the early first half of the 17 century (Hall, 2010) from north Broedestroom Early Iron
Age. Historic records have helped archaeologists identify the presence of Sotho-Tswana
groups (from parts of the west) known as the Kwena in the Suikerbosrand (Huffman, 2007:

433).

David (2013: 2) defines ash middens as “rubbish dumps, containing a high proportion of
materials considered inedible or not otherwise immediately usable by humans, beasts and
poultry”. In contrast, in the interior of South Africa, Tswana communities have various
phrases associated with middens such as ‘Kgosi ke thutubudu’ which translates ‘the chief is
a midden’ and ‘Kgosi thothobolo e olelwa matlakala’ which literally translates ‘A chief is like
an ash-heap on which is gathered all the refuse’. This is interpreted, within a cultural
context, as ‘the higher the position, the greater the responsibility’ (Boeyens and Plug, 2011:
9). Researchers such as Hall, Huffman (2007), Mason 1974), Taylor (1979) make the general
presumption that the elite of highest rank or senior leader of the village in farming
communities possesses the largest household hence has great wealth (Mason, 1986;
Boeyens and Plug, 2011), also so as to accommodate all village activities, house a big family
and officials (Huffman, 2007: 22). The size of ash middens reflects the size of the political
court and its wealth. Consequently, larger court middens mean reflect more feasts as a
result of wealth and power. All this combined together is indicative of the political power of
the chief. These translations immediately highlight that ash middens in the South African

interior are associated with chieftaincy and status.



One important aspect of ash middens entails understanding whether they are just rubbish
heaps are related to near-by activities such as religious ceremonies, meals and craftwork
(Boeyens and Plug, 2011). In Sukur (Nigeria), various structures that are enclosed within one
SWS such as huts/houses or granaries use one midden which is usually located ‘outside and
close but not immediately next to the entrance of the SWS’ (David, 2013). In some Southern
African areas, two ash middens are distinguished: large and domestic middens. Large
middens are associated with the chief and ruling elite while domestic ones are those related
to households (Huffman, 2007; Boeyens, 2009; Boeyens and Plug, 2011). The discarded
material from the chief is dumped outside his house, in front of and adjacent to the gateway
at its side (Hall, 2000; Boeyens and Plug, 2011). According to David (2013), middens do not
really grow in size or age but contribute as nutrients to plots surrounding the house, which
is not necessarily the case in South Africa (Boeyens and Plug, 2011). Middens from different
areas in the settlement contain just about the same material which includes: organic related
material such as ash, bone, fragments, charcoal from hearths (Mason, 1986; David, 2013).
This material is a result of economic, religious, juridical and socio-political activities where
the elite ruling party of men participated, as well as animal slaughter during public rituals,
ceremonies and feasts (Boeyens and Plug, 2011). Activities were in the form of performing
very crucial economic dealings and operations; settling high court cases, debates around
important political issues (Boeyens, 2009; Boeyens and Plug, 2011). They are also associated

with, or a consequence of, the practices of craftwork such as hide-working.

Being able to estimate the sizes and boundaries of ash middens gives significant insight in
the life ways of lron Age societies because large middens are strongly associated with
chieftaincy and the elite while smaller ones point to relatively smaller households. Estimates
of certain ash middens can be easily used to determine the status or rank of surrounding
settlements (whether they belonged to the elite/ senior leaders or not). Furthermore, the
relation between settlements and middens might also be made even when the stone-walled
structures are no longer visible on the landscape. Remote sensing can contribute to
understanding the relations between settlements and ash middens. Detecting and
calculating the details of ash middens can in turn inform about the settlements and social,

political and economic organization of Iron Age communities.



2.1. Remote Sensing in archaeology

Remote sensing techniques offer the opportunity to detect archaeological sites in their
complexity and context through satellite imagery. Developments in earth observation
techniques over time have provided profound enhancements in landscape studies which
mainly include: aerial photographs (AP) for mapping the distribution of stone-walled
structures, particularly in the 1960s and 1970s in South Africa (Taylor, 1979; Mason, 1986;
Sadr and Rodier, 2012) and Botswana (Seddon, 1968; Denbow, 1979); the use of satellite
imagery such as Thematic Mapper in the 1980s (Lasaponara and Masini, 2011), Google Earth
(GE) and spatial technologies such as GIS (MacQuilkan and Sadr, 2010; Sadr and Rodier,
2012). However, the use of AP and GE has some limitations which include lack of availability
(since AP are often not free) and the unequal resolution of GE through time which means
that not all areas in question are covered by the same imagery resolution (MacQuilkan and
Sadr, 2010). Moreover, often times archaeological sites and remains are either not clear or
hidden from view due to modern vegetation, environmental processes, burial by modern
infrastructure (Parcak, 2009). Further advancements in spatial remote sensing techniques
have provided new platforms in the form of sensors for acquiring better results through

capturing and analysing detailed data.

Advanced remote sensing platforms in the form of passive and active sensors have inspired
novel approaches in studying archaeological material. The launch of advanced passive and
active sensors as well as multispectral and hyperspectral imagery that have different
properties has thus allowed for more complexity in studying archaeological features
(Abrams and Comer, 2013). Satellite imagery at high spatial resolution has immensely
improved the study of archaeological remains since 1999 (Lasaponara and Masini, 2011).
The increase in spectral and spatial resolution of satellite imagery has nevertheless not
completely solved the problem of detecting archaeological features. For example, small
archaeological material concealed by dense vegetation is still sometimes difficult to study

(Lasaponara and Masini, 2011).

Passive sensors, as the ones used to acquire the images in this research rely on natural
energy sources, mainly the sun, whereas active sensors make use of their own energy
sources which are man-made (Janssen and Bakker, 2004; Woldai, 2004; Abrams and Comer,

2013). Passive sensors, such as SPOT and GeoEye, invariably capture data during the day as

8



they require the reflected radiation. They are affected by their dependence on the sun,
which has changing conditions throughout the day. Atmospheric conditions which interfere
with radiation also affect passive sensors. These limitations in turn temper with the detail
and complexity within which archaeological features are analysed (Sadr and Rodier, 2012).
Passive sensors still provide good ground coverage with relatively good (medium) spatial
resolution between 2 and 20/30m with SPOT (Lasaponara and Masini, 2011), Landsat 8 and
RapidEye, for example (Toth and Jozkow, 2016). Conversely, high resolution images less

than 2m or between 0.31 and 2m include Worldview and IKONOS (www.seos-project.eu;

www.satimaigingcorp.com). The use of passive based sensors comes with having to pay

careful attention to interferences from the atmosphere which requires the use of specific

techniques (i.e. atmospheric correction) before analysing the data.

In remote sensing spatial, spectral and temporal resolutions are distinguished, and differ as
per sensor. The definitions used here are adopted from Abrams and Comer (2012: 64):
spatial resolution is defined as pixel sizes that belong to satellite imagery or instruments
that record image /radiation data, for instance high spatial resolution is 0.41—4 m, and 30-
1000 m is low resolution (Digital Globe, 2015); spectral resolution refers to the magnitude of
the wavelength interval (bands) that the sensor is measuring, where high spectral resolution
is 220 bands, medium is 3-15, and low resolution is 0-3 bands (Digital Globe, 2015);
temporal resolution is taken to refer to the time that passes when a sensor acquires image
data on particular location, high temporal resolution is <24-3days, medium is 4-16 days, and
low is > 16 days (Digital Globe, 2015). Spatial, spectral and temporal resolutions determine
the level of detail and complexity within which archaeological features are observed and

analysed.

One can see that using different remote sensing techniques allows for analysing the
middens on distinct resolutions — spatial, spectral and temporal (Abrams and Comer, 2013).
For instance, using active and passive sensor platforms to analyse ash middens may produce
different results. This is because spatial and spectral properties will differ depending on the
satellite imagery. The naked-eye can only extend vision in the visible portion of the
electromagnetic spectrum (see Woldai, 2004: 59 and Parcak, 2009) thus remote sensing is
needed as it registers data going beyond this portion (Parcak, 2009). Hence different

satellites record reflected radiation in various parts of the electromagnetic spectrum in
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different ways (Woldai, 2004). These parts include: the optical portion, the ultraviolet
portion which is practically useful for remote sensing, and the visible region (Woldai, 2004:
58). Table 1 (Schowengerdt, 2007: 8) shows spectral regions that are usually used in remote
sensing. As a result, greater clarity is perceived by the naked eye as all data beyond the
visible electromagnetic spectrum have been recorded, with all distracting features
eliminated (Parcak, 2009). Furthermore, this results in clearer and easier reconstruction of
past landscapes. All of the above mentioned rigorous processes and techniques ensure that
no destruction of the landscape and archaeology within will occur — if any at all — given that

archaeological sites tend to be sensitive and therefore minimal disturbance.

Table 1: Major spectral regions used in remote sensing (adapted from Schowengerdt, 2007:

8)
Name Wavelength range Radiation source Surface property of
interest
Visible (V) 0.4-0.7 um Solar Reflectance
Near InfraRed (NIR) 0.7-1.1um Solar Reflectance
Short Wave InfraRed 1.1-1.35um Solar Reflectance
(SWIR) 1.4-1.8 um
2—-2.5um
MidWave InfraRed 3—-4um Solar, thermal Reflectance,
(MWIR) 45-5 um Temperature
Thermal or LongWave 8-9.5um Thermal Temperature
InfraRed (TIR or LWIR) 10-14 um
Microwave, radar 1mm-1m Thermal (passive), Temperature (passive),
Artificial (active) Roughness (active)

It is worth noting that the spatial resolution of satellite imagery can be insufficient to
identify and measure objects in their full complexity and detail, looking at shape for instance
(Schowengerdt, 2007). This can be somewhat a problem in archaeology, for example, where
interest lies in the complexity, detail and full context of discovered objects (Hall, 2000;
Huffman, 2007; Sadr and Rodier, 2012). Spectral measurements therefore come into play as
they provide an opportunity to identify these objects not exclusively based on their shape
but on other characteristics which are a reflection of other (physical and chemical)
properties of archaeological remains. Spectral reflectance curves which can be deduced
from objects or earth’s surface materials indicate radiation that is reflected as a function of

wavelength (Woldai, 2004; Schowengerdt, 2007). These reflectance curves are very useful
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as they are not just estimates but are specifically related to particular objects (Woldai,

2004).

3. Methods and Materials

The data and materials employed in this research project were integrated to produce a
balanced remote sensing and ground based project. The remote sensing platforms that
were used include: passive sensors SPOT 5 and GeoEye 1 satellite imagery (see tables 1 and

2 for properties of the sensors).

3.1. Data Collection: Remote Sensing

The study area imagery of the various remote sensing platforms were not difficult to access
as this research is part of an on-going project on analysing SWS in southern Gauteng
(courtesy of Prof. Karim Sadr). The use of different satellite imagery allowed for a
comparison between the performances of two passive sensors (GeoEye and SPOT) with
different spatial resolutions and comparable spectral bands. The images were acquired

during the winter season: June of 2013 for GeoEye 1 and August 2013 for SPOT 5.

Table 1. SPOT 5 properties (adapted from www.spotimage.com)

MODE SPATIAL RESOLUTION | SPECTRAL RESOLUTION
(METERS) (MICRONS)
PANCHROMATIC 25-5 480—-710 nm
MULITSPECTRAL 10 500 — 590 nm (green)
10 610 — 680 nm (red)
10 780 — 890 nm (Near IR)
20 1.580 — 1.750 nm (Mid IR)

Table 2. GeoEye 1 properties (adapted from www.digitalglobe.com)

MODE SPATIAL RESOLUTION SPECTRAL RESOLUTION
PANCHROMATIC 41 cm GSD at Nadir 450 — 800 nm (black and white)
MULITSPECTRAL 1.65 cm GSD at Nadir 450 — 510 nm (blue)

1.65 cm GSD at Nadir 510 — 580 nm (green)

1.65 cm GSD at Nadir 655 — 690 nm (red)

11
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1.65 cm GSD at Nadir 780 — 920 nm (Near IR)

Ground confirmation is critical regardless of the advantages that come with using remote
sensing. It is fundamental for locating features in the real world and for classification
(Tehrany et al, 2013). Ground based work was conducted using a handheld GPS device in
support of ground truthing in August 2015. The GPS device was used to record geographical
coordinates of ash middens and stone-walled structures within the 49ha study area. Several
coordinates were recorded starting from the centre right to the edge of each ash midden at
1m intervals. As a consequence, 39 known ash middens were recorded within the 49ha
area. It is, however, important to note that field work was conducted during late
spring/early summer, and not in winter as some imagery was acquired. This did not have a
huge impact, if any, in the consistency of data collection as there is a rather small gap

between the periods of acquiring satellite imagery and ground truthing.

3.2. Image Pre-processing

Techniques including QUAC and FLAASH have been developed to halt the impacts of
atmospheric interferences to avoid compromising the quality of the results from preforming
analyses on satellite imagery. Pre-processing an image can significantly increase the
reliability of inspection. As such, images must be radiometrically and spectrally calibrated
before analysis. In this case, this was done using FLAASH. FLAASH is a technique that is used
to correct wavelengths in the visible through near-infrared and shortwave infrared regions
(www.harrisgeospatial.com). With its ability to support multispectral sensors, FLAASH is
more appropriate for pre-processing the multispectral sensor based images used in this
research. Furthermore, it contains the necessary algorithms for dealing with strong
atmospheric conditions such as the presence of clouds (ENVI, 2006; Adelabu et al, 2014). In
using FLAASH, the first step is to calibrate the images so as to extract data and create a
scientific product. Calibration aims to compensate for radiometric errors from sensor
defects, variations in scan angle, and system noise to produce an image that represents true
spectral radiance at the sensor (ENVI, 2006; Adelabu et al, 2014). FLAASH was conducted on

ENVi software.
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3.3. Data analysis methods

SPOT and GeoEye imagery were processed using ENVi 5.2 software so as to classify (based
on training and test samples) a number of earth surface objects using land cover
classification methods. Due to the nature of the study area which does not comprise a
highly differentiated land cover, 5 cover classes (Table 3) were identified. The landscape of
the study area comprises mainly open dry land and vegetation. There are no surrounding
features such as streams or rivers that can be included in the land cover classes. The data

gathered from field work was also imported into ArcMap for visualisation, manipulation and

map making.
Table 3. Land cover classes
Land Cover Class Description
Ash Middens Ash heap especially around SWS
Bare soil Surface with no vegetation
Scattered vegetation Mixed vegetation scattered across the
landscape
Archaeological features SWS
Road Built-up area i.e. road

Research has shown that a number of ash middens in satellite imagery are identifiable with
the naked eye as light coloured patches especially around stone walled structures (Denbow,
1979; Sadr and Rodier, 2012). Therefore, identifying ash middens on the satellite images
was based on research (Sadr and Rodier, 2012) and experience gained from working with
stone-walled structures and ash middens on satellite imagery, particularly Google Earth. The
identified ash middens (and stone-walled structures) were then compared to the ground
truth data. ldentifying more or less ash middens on GeoEye and SPOT as compared to
ground truth data was a step towards highlighting the differences on the performances of

the two platforms as will be seen later.
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3.3.1. Classification and Bands

Land cover classification can be supervised or unsupervised. In a supervised classification, a
‘specialist’ identifies training sites (areas that represent a unique land cover type) on the
satellite image so as to identify classes (Sisodia et al, 2014). In an unsupervised
classification, on the other hand, the specialists’ knowledge of the identifying classes for the
classification is not required (Sisodia et al, 2014). Instead, unsupervised classification uses
spectral clusters to classify automatically. Although automated, an unsupervised
classification was not selected because it suffers from producing poor accuracy from mixed
pixels when working with imagery that may have classes of similar reflectance (Sisodia et al,
2014). Supervised classification was used in this research because it gives better accuracy
when, for instance, a satellite image has the same reflectance for multiple classes (Erener,
2013; Sisodia et al, 2014: 1418). Supervised classification can be conducted through
techniques which include Maximum Likelihood Classification (MLC), Minimum Distance and
Parallelpiped classification and more advanced techniques such as Support Vector Machine

(SVM).

MLC and SVM were selected for this study. Referred by some as a conventional probabilistic
classification technique (Foody and Mathur, 2006: 181), MLC is regarded as one of the most
effective and used classifiers and it generally known for producing accurate results (Otukei
and Blaschke, 2010; Aguirre-Gutierrez et al, 2012; Erener, 2013; Sisodia et al, 2014). It is a
pixel-based classification technique that estimates a statistical probability based on inputs
of classes created from training sites whereby a pixel is ascribed to a class it most likely
belongs to (Otukei and Blaschke, 2010; Aguirre-Gutierrez et al, 2012; Sisodia et al, 2014).
MLC is a parametric technique with the underlying assumption that the data assume a

normal distribution (Mondal et al, 2012).

SVM, on the other hand, is a pattern classification method which inherently hosts a
distribution-free algorithm with the potential of overcoming poor statistical estimation (Li et
al, 2012). SVM obtains better empirical accuracy and more generalization capabilities; and
more especially when working with small training sample sizes (Mountrakis et al, 2011; Li et
al, 2012). Unlike MLC, SVM is a non-parametric classification technique (Mondal et al, 2012).

MLC and SVM with their different characteristics make for a good comparison. For example,
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this comparison shows whether a parametric or non-parametric approach is better for
classifying archaeological features. Furthermore, studies have shown that SVM is often

more accurate than MLC.

Supervised classification techniques make use of training sites which are digitized for each
land cover class. The sample for the number of training sites differed for GeoEye and for
SPOT. A stratified random sample technique was used to digitize the sites because it allows
for the selection of a random sample within particular categories i.e. land cover classes. For
Geotye, between 50 and 70 training sites were digitized while only between 30 and 50 were
digitized on the SPOT platform. The reason behind this has to do with the spatial resolution
of the two platforms. GeoEye 1 has a higher spatial resolution which means one can zoom
into more pixels and digitize more training sites while SPOT 5 has a lower spatial resolution
meaning one cannot zoom into as many pixels as in Geokye 1 thereby digitizing fewer

training sites on SPOT 5.

A series of classifications were conducted on the imagery covering the 49ha area then
tested on the wider region covered by SPOT 5 and GeoEye 1. When conducting
classifications, a combination of bands was used for the different image platforms. Two
major comparisons were made, one with the same bands from different satellite images and
the other with different bands. GeoEye 1 and SPOT 5 have four bands each with three
similar ones (Green, Red, and Near Infrared) and the last ones different from each other as
shown in tables 1 and 2. Comparing the three same bands on the different platforms
revealed the performance of the bands on the two distinct platforms in identifying ash
middens. In the second comparison, two of the same bands from each platform combined
with the last bands, making the overall combination different on the two platforms.
Comparing different bands shows the impact of a blue band in GeoEye and Mid IR in SPOT 5.

These combinations were as follows:
The first comparison between the same combination of bands:

e GeoEye 1: Green, Red and NIR
e SPOT 5: Green, Red and NIR

The second comparison between a different combination of bands:
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e GeoEye 1: Red, Green, Blue
e SPOT 5: Red, Green, Mid IR

The measurement of reflected or emitted radiation from different surface features forms
the core and foundation of remote sensing hence different surface features reflect or
absorb the sun’s radiation in different ways. The level of reflectance and absorption is
dependent on the physical and chemical state of surface features in question such as
moisture and surface roughness (Erener, 2013; Sisodia et al, 2014). These variations in
reflectance and absorption allow for the identification of different surface features by
examining their spectral reflectance patterns (and arbitrary profiles). For instance, the
reflectance of green vegetation tends to be high in the in the near infrared band (Erener,
2013). For bare soil, reflectance is influenced by soil texture, and surface roughness.

Vegetation will have high reflectance in NIR than bare soil.

The behaviour of these two sets (combination) of bands, as mentioned above, was
compared using an arbitrary profile which refers to the pixels of any image that sit beneath
a transect (www.harrisgeospatial.com). This was carried out on the ENVi software by
drawing an arbitrary profile line across an area of interest within both platforms. The area of
interest was one that had a variety of classes i.e. vegetation, ash middens, SWS, soil etc. As
such, the profile line went across these different classes so as to examine the pixels of each
image platform when using the same bands and then different ones as can be seen in
figures 2 and 3. The profile was drawn on the same areas across both GeoEye 1 and SPOT 5

image platforms on the same combination of bands and on a different combination.

3.3.2. Accuracy Assessment

The most common approach for assessing accuracy of classification in remote sensing is to
compare the classified land cover type with the spatial and temporal (time) data with which
it corresponds, provided these are usually of high accuracy (Comber et al, 2012; Comber et
al, 2013). This method is commonly known as the confusion matrix (or sometimes as the
validation matrix). The confusion matrix takes into account a few accuracies, namely: overall
accuracy, producer’s and user’s accuracy which are then used to give statistical measures of
the precision and reliability of the classified information and the extent to which they are

correct, or incorrect (Comber, 2012).
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Figure 3: An example of how an arbitrary line was drawn across the image on the SPOT platform.

However, there are limitations to utilising this method in that the confusion matrix does not
give information with regards to the spatial spread of the level of error (Comber et al, 2012;
Comber et al, 2013). Furthermore, the overall accuracy provided by the confusion matrix
may not be suitable for sub-regions within the land cover classes where, in reality, the
accuracy levels may be higher or lower than the overall one (Comber et al, 2012; Comber et
al, 2013). The confusion matrix was conducted using regions of interest (ROI) which simply

refer to the geographical coordinates obtained using a handheld GPS and digitized in Google
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Earth. It was conducted for MLC on SPOT 5 and GeoEye 1 and for SVM on SPOT 5 and

GeokEye 1 platforms. The confusion matrix is crucial in responding to the research questions.

4. Results

4.1. Classification

After running supervised classification techniques — MLC and SVM — on the two platforms
(GeoEye 1 and SPOT 5), the results were produced in the form of maps. The results below
(figures 4 — 7) show eight maps which allow for visual comparison of the results. One can
immediately spot the difference in the classification maps between SPOT 5 and GeoEye 1.
SPOT 5 classification maps show less detail (larger pixels) with respect to the land cover
classes as opposed to Geokye 1 classification maps, which are more detailed. In all the
images, a black outline has been overlaid to delineate known ash middens used as test
middens with the 49ha study area. Similarly, a grey outline has been used to delineate

stone-walled structures.

The maps are presented according to the two platforms, two classification techniques and
respective band sets. The respective combination of bands is listed on the bottom right of
each classified image. The first four maps (figure 4 — 5) present the classified platforms
when using the same combination of bands. The second set of maps (figures 6 — 7) then

presents classified platforms with the different combination of bands.

One can see from the maps (figure 4 — 7) that the black outline sits atop the bright green
colour representing ash middens on the GoeEye platform more than on the SPOT platform.
For example, 15 black outlines out of 39 sit on classified ash middens on SPOT 5 done with
MLC and green, red and NIR. Conversely, over 25 black outlines sit on classified ash middens
on GeoEye 1 using MLC and green, red, NIR. On the other hand, the grey outline is less often
identified on around the pink colour representing stone-walled structures when considering
both platforms and band combinations. This highlights that ash middens (black outlines) are
more accurately classified than stone-walled structures (grey outlines). Furthermore,
considering the lack of variety landscape of the study area (with respect to the number of
land cover classes), it is fairly reasonable to suggest that other land cover features were well

classified. Such features include: the road and the soil.
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SPOT 5: Maximum Likelihood Classification
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Figure 4: Classified images from the Top: SPOT 5 MLC. Bottom: SPOT 5 SVM. Bands Green, Red,
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GeoEye 1: Maximum Likelihood Classification
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SPOT 5: Maximum Likelihood Classification
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GeoEye 1: Maximum Likelihood Classification
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4.2. Accuracy Assessment and Kappa Coefficient

Through using the accuracy assessment and the kappa coefficient, the accuracy of the two
techniques, MLC and SVM, in classifying all the land cover classes overall and the single
cover classes individually was assessed. When looking at figures 8 and 9 of the accuracy
assessment results below, it is immediately apparent that the classification techniques
achieved higher accuracy on the GeoEye platform as opposed to the SPOT platform. Figure 8
reports the accuracy in classifying th