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ABSTRACT 

Introduction: Group B Streptococcus (GBS) is a leading cause of neonatal sepsis and 

meningitis. Vaccinating pregnant women against GBS may protect their infants from 

invasive GBS disease. The licensure of GBS vaccines might be based on immunological 

parameters should correlates of protection be established. We evaluated the burden of 

invasive GBS disease, and explored the association between naturally occurring GBS 

antibody concentrations and invasive GBS disease in South African infants.  

 

Methods: Using a case-control study, we compared maternal and infant GBS serotype-

specific capsular and surface-protein IgG antibody concentrations. Neurodevelopmental 

screening was performed at 3 and 6 months-of-age. Furthermore, we compared the effect 

of maternal HIV-infection on GBS specific antibody concentrations and transplacental 

antibody transfer. 

 

Results: The incidence (per 1,000 live births) of invasive GBS disease within 6 days of life 

was similar between HIV-exposed (1.13) and HIV-unexposed infants (1.46; p=0.487). 

However, there was a 4.67-fold (95% CI: 2.24-9.74) greater risk of invasive GBS disease 

at age 7-90 days in HIV-exposed infants (2.27 vs. 0.49; p<0.001). The overall case fatality 

ratio among cases was 18.0%, and the adjusted odds of developing neurological sequelae 

at 6 months age was 13.2-fold (95% CI: 1.4-121) greater in cases (13.2%) than controls 

(0.4%).  

 

Median antibody concentrations (µg/mL) were lower in HIV-infected than HIV-uninfected 

women for serotypes Ib (p=0.033) and V (p=0.040); and for pilus island (PI)-1 (p=0.016), 

PI-2a (p=0.015), PI-2b (p=0.015) and fibrinogen-binding protein A (p<0.001). For 
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serotypes Ia and III, cord to maternal ratios were 37.4% (p<0.001) and 32.5% (p=0.027) 

lower in HIV-infected compared to HIV-uninfected mother-newborn dyads.  

 

Using Bayesian modelling, we demonstrated >90% reduction in risk of invasive GBS 

disease with maternal antibody concentrations ≥6 µg/mL and ≥3 µg/mL for serotype Ia and 

III, respectively. There was no association between GBS surface-protein antibody 

concentrations and invasive GBS disease. 

 

Conclusion: The high burden of invasive GBS disease in South Africa is partly due to the 

high prevalence of maternal HIV-infection (29%), which is associated with lower GBS 

antibody concentrations and transplacental antibody transfer. We identified putative 

correlates of protection for GBS serotype-specific capsular antibodies to serotypes Ia and 

III, which could facilitate vaccine licensure.   
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PREFACE 

This thesis is presented to the reader in the University of the Witwatersrand’s 

recommended “divided block” format. In this format, the thesis consists of two parts: the 

first part includes the Introduction and Methods chapters that are written in the traditional 

thesis format, and second part in which the Results and Discussion of the study’s 

objectives are presented as individual chapters. 

 

This thesis deals with the clinical epidemiology of Group B Streptococcus (GBS) in a low-

middle income setting (Johannesburg, South Africa) with a high burden of disease. In 

addition, we aimed to identify GBS serotype-specific capsular antibody thresholds that 

correlate with protection against invasive GBS disease in young infants, which may assist 

in the licensure of the maternal GBS polysaccharide-protein conjugate vaccine undergoing 

development.  

 

In the Introduction chapter, I will briefly describe the global epidemiology and clinical 

significance of invasive GBS disease, and the decline of disease burden observed in some 

high income countries. I will briefly outline selected microbial characteristics of GBS, and 

outline the immunological and clinical features of invasive GBS disease in infants. 

Thereafter, I will discuss the concept of maternal vaccination as an alternative strategy to 

prevent disease in young infants. In particular, the transfer of serotype-specific capsular 

antibodies from the mother to the foetus during pregnancy has been associated with 

protection against invasive disease in young infants, and I will present a systematic review 

thereof. I will outline the potential use of GBS surface-proteins as alternative vaccine 

candidates. As my research was undertaken in a high HIV-burden setting, I will also 
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discuss the potential role of maternal HIV-infection on GBS antibody concentrations and 

transplacental transfer thereof to their newborns.  

 

In Chapter Two, Materials and Methods are described. In order to achieve the main 

objectives, two studies were undertaken. The first, a matched case-control study, was 

conducted to explore the burden of invasive GBS disease in South African infants. This 

study was also used to establish sero-correlates of protection, against invasive GBS disease 

in young infants (0-90 days age), using maternal GBS serotype-specific capsular and 

selected surface-protein antibody levels. The second study, a cross-sectional study, 

explored the impact on maternal HIV-infection on antibody concentrations and 

transplacental transfer.  

 

Chapter’s 3 to 6 present the results and discussion of my work. In chapter 3, the incidence 

of invasive disease, risk factors, clinical presentation and outcomes (including short-term 

neurological sequelae) in infants in our setting is reported. In Chapter 4, the effect of 

maternal HIV-infection on capsular and surface-protein antibody concentrations and 

transplacental transfer thereof to newborns is described. In Chapter 5 and 6, the association 

between naturally occurring maternal IgG capsular and surface-protein antibodies and the 

risk of invasive GBS disease in young infants is detailed. 

 

The thesis concludes with a summation of the main findings of my research in Chapter 7, 

which discusses the context of invasive GBS disease in young infants in our setting and the 

implications thereof more generally. 
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1.0 Introduction 

1.1 Epidemiology  

Streptococcus agalactiae is an encapsulated Gram-positive coccus which colonises the 

human gastrointestinal and genitourinary tracts. This species of Streptococcus belongs 

exclusively in the ‘Group B’ Lancefield grouping, and thus commonly referred to as 

Group B Streptococcus (GBS) (Lancefield, 1934, Rajagopal, 2009). Invasive GBS disease 

in adults is uncommon but may occur in immunocompromised patients. The greatest 

burden of invasive GBS disease, however, is in infants less than three months of age and 

predominantly occurs through transmission of GBS from mother to infant. By the early 

1970’s, GBS was recognised to be a significant cause of neonatal sepsis (Reid, 1975, 

Anthony and Okada, 1977). Currently, GBS is the leading cause of sepsis and meningitis 

in young infants in the United States of America (USA) (Stoll et al., 2011, Thigpen et al., 

2011, Weston et al., 2011), despite successful preventative measures that minimise 

transmission of the organism. The burden of invasive GBS disease is substantially greater 

in countries where preventative strategies have been implemented to a limited extent 

(Edmond et al., 2012); for example, South Africa reports one of the highest incidences    

(2-3 cases per 1,000 live births) of invasive GBS disease globally, which has remained 

relatively constant  from the 1990s to 2008  (Haffejee et al., 1991, Madhi et al., 2003, 

Cutland et al., 2015).  Globally, the incidence of invasive GBS disease in infants less than 

3 months of age has been approximated to be 0.53 cases per 1,000 live births (Edmond et 

al., 2012).  

 

Early-onset disease (EOD) is defined as presenting within the first 6 days of life, although 

more than 80% of EOD cases present within the first 12 hours of birth (Madhi et al., 2003, 

Heath et al., 2009). Even though the incidence of EOD in the USA is as low as 0.26 cases 
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per 1,000 live births in 2010 (Schrag and Verani, 2013), invasive GBS disease contributes 

to as much as 38-43% of cases of early-onset neonatal sepsis; in contrast disease caused by 

Escherichia coli accounts for 24-29% of cases of early-onset neonatal sepsis (Stoll et al., 

2011, Weston et al., 2011). In comparison, the incidence of EOD in South Africa has been 

reported between 1.5 and 2 cases per 1,000 live births (Haffejee et al., 1991, Madhi et al., 

2003, Cutland et al., 2015). Late-onset disease (LOD) is defined as illness presenting from 

day 7 to 89 of life, with almost half of cases presenting with meningitis (Madhi et al., 

2003, Heath et al., 2009). The incidence of LOD, unlike EOD has remained unchanged in 

high income countries (0.3-0.4 cases per 1,000 live births) (Schrag and Verani, 2013) as 

well as in South Africa (1.0 cases per 1,000 live births) (Madhi et al., 2003) and may be 

higher in children exposed to HIV-infection (Epalza et al., 2010, Cutland et al., 2015). The 

clinical burden attributed to invasive GBS disease in young South African infants has 

remained significant even though preventative strategies to reduce the incidence of disease 

are recommended. 

 

The vast majority of epidemiological data regarding invasive GBS disease is reported from 

the USA, where interventions to reduce the burden of disease have been initially 

pioneered. With the implementation of intra-partum antibiotic prophylaxis (IAP) and 

formal screening programs in 1996 in the USA, the incidence of EOD had decreased from 

1.7 cases per 1,000 live births (in 1993) to 0.6 cases per 1,000 live births (in 1998) (Schrag 

et al., 2000), but had subsequently plateaued between 1999 and 2001 at 0.5 cases per 1,000 

live births (Verani et al., 2010). This resulted in a revision of the screening programme, in 

2002, from a “risk-based” (i.e. the provision of IAP to pregnant women with defined risk 

factors for GBS transmission)  to “universal screening” (i.e. the provision of IAP to all 

GBS colonized pregnant women irrespective of risk factors); the incidence of invasive 
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GBS disease had subsequently declined by a further 20-40% (Verani et al., 2010). For 

EOD, the incidence has decreased to 0.26 cases per 1,000 live births by 2010,  but the 

incidence of LOD has remained largely unchanged over the past 20 years (0.3-0.4 cases 

per 1,000 live births) (Verani et al., 2010, Schrag and Verani, 2013). Notably, 

epidemiological data from the USA consistently mentions a higher incidence of invasive 

GBS disease in black Americans compared to their white counterparts, although reductions 

in invasive GBS disease incidence have been observed in both groups (Schrag and Verani, 

2013). In a recent report by Ferrieri et al., only a modest decline in overall incidence was 

observed in the USA state of Minnesota between 2000 and 2010, but more concerning was 

an increase in incidence since 2010 (Ferrieri et al., 2013). It seems that strategies to prevent 

EOD, such as universal screening and IAP, are limited in contributing to a further decline 

in incidence of EOD in the USA, and may need to be controlled through other measures 

(this will discussed in further detail in chapter 1.9). (Schrag and Verani, 2013, Verani et 

al., 2014). 

 

In high income countries (mostly European) that have continued to favour the risk-based 

approach, declines in the incidence of invasive GBS disease were noted when IAP was 

initiated using this strategy, but the incidence of disease has increased in subsequent years. 

As examples, the incidence of EOD (per 1,000 live births) in the United Kingdom 

increased from 0.30 in 1991 to 0.41 in 2010 (Lamagni et al., 2013), and increased from 

0.11 in 1987 to 0.19 in 2011 in the Netherlands (Bekker et al., 2014). Such surveillance 

over 20-25 years highlights the limitations in the risk-based strategy for preventing EOD.  

 

The global burden of invasive GBS disease in young infants was recently summarised in a 

systematic review, which included 56 studies over the period 2000 and 2011; the majority 
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of which were from European and American countries (Edmond et al., 2012). This review 

highlighted striking variability in incidence of invasive GBS disease between and within 

regions. In a meta-analysis of invasive GBS disease in infants less than 90 days of age, the  

incidence (per 1,000 live births) was reported as 0.57 (range: 0.00-2.60) in Europe, and 

0.67 (range: 0.25-2.13) in the Americas; as low as 0.02 (range: 0.00-0.14) in Asia; and 

highest in Africa as 1.21 (range: 0.24-1.97).  The low incidences of invasive GBS disease 

reported across Asia may be an underestimate because a large number (>70%) of deliveries 

occur outside the health-care settings, possibly resulting in an ascertainment bias with 

many of the EOD cases missed at birth (Montagu et al., 2011). For the same reason, it is 

likely that the incidence in Africa may also be underestimated; poor access to 

microbiology laboratories to confirm invasive GBS disease may also contribute to 

underestimating the incidence (Capan et al., 2012, Johri et al., 2013). Furthermore, it 

should be noted that there were very few studies on invasive GBS disease incidence from 

low income countries, accounting for 5% of those included in the review (Edmond et al., 

2012). In a separate review of studies conducted only in low-middle income countries, 

high incidences were reported in Africa, with South Africa having the highest reported 

incidence (3.06 cases per 1,000 live births) (Dagnew et al., 2012).  

 

The incidence of invasive GBS disease in South African infants has been reported in four 

previous studies (Haffejee et al., 1991, Madhi et al., 2003, Frigati et al., 2014, Cutland et 

al., 2015). The first study to report on the incidence of invasive GBS disease was 

conducted between 1986 and 1989 on South African Indians residing in Kwazulu Natal 

province, which reported an overall incidence of 2.65 (2.09 for EOD and 0.56 for LOD) 

(Haffejee et al., 1991). Ten years later, Madhi et al. reported a similar incidence of EOD 

(2.06 cases) in indigenous black South Africans from Soweto but an almost double 
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incidence for LOD (1.00) (Madhi et al., 2003). Between 2004 and 2008, the incidence of 

EOD declined marginally in Soweto (1.50; 95% CI: 1.30-1.71), but the incidence of LOD 

increased (1.22; 95% CI: 1.05-1.42) (Cutland et al., 2015). The increased incidence of 

LOD might be due to the increase in prevalence of Human Immunodeficiency Virus (HIV) 

infection among pregnant women from 17.0% in 1997 to 29.3% in 2008 (National 

Department of Health, 2012). The latter two studies were conducted at the same public 

hospital in Soweto (i.e. the Chris Hani Baragwanath Academic Hospital); where in excess 

of 22 000 babies are born each year. This hospital practises a risk-based approach to the 

prevention against GBS transmission, but the use of IAP has been reported in only 10.2% 

of vaginal deliveries (Cutland et al., 2012). Other studies from South Africa include a 

retrospective laboratory-based review over a two year period from the Western Cape 

province, in which the crude incidence of invasive GBS disease was estimated to be 0.67 

cases per 1,000 live births (Frigati et al., 2014).  

 

In settings with a high prevalence of maternal HIV-infection, including South Africa, there 

is paucity of data on the effect thereof on GBS recto-vaginal colonisation in the women 

and invasive disease in their infants. Recto-vaginal GBS colonisation has not been found to 

be higher in HIV-infected women during pregnancy or at birth (El Beitune et al., 2006, 

Mavenyengwa et al., 2010, Gray et al., 2011, Shah et al., 2011, Cutland et al., 2012). Gray 

et al. postulated that lower CD4+ T-lymphocyte counts may be associated with alterations 

in the commensal vaginal flora, with a lower prevalence of GBS colonisation (Gray et al., 

2011). Similarly, a lower prevalence of GBS vaginal colonization was reported in HIV-

infected compared to HIV-uninfected South African women, with half of those with HIV-

infection having CD4+T-lympocyte counts <350 cells/mm3 at the time of sampling 

(Cutland et al., 2012). Although similar transmission ratios of GBS to the newborns were 
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reported between HIV-infected and HIV-uninfected mothers, newborns of HIV-infected 

mothers with low CD4+ T-lymphocyte counts had an increased risk of developing neonatal 

sepsis (Cutland et al., 2012). Also, newborns of HIV-infected mothers have been reported 

to have an increased risk of invasive GBS disease compared to those born to HIV-

uninfected mothers (Epalza et al., 2010, Cutland et al., 2015). The South African study 

reported by Cutland et al. in 2015 (for the period 2004-2008) described a 2.25-fold 

(95% CI: 1.84–2.76) greater incidence of invasive GBS disease in HIV-exposed (4.46) 

compared to HIV-unexposed infants (1.98). The increased risk in HIV-exposed infants was 

observed for EOD (2.10 vs. 1.24; risk ratio 1.69, 95% CI: 1.28–2.24) and LOD (2.36 vs. 

0.74; risk ratio 3.18, 95% CI: 2.34–4.36) (Cutland et al., 2015). This study was conducted 

during the early periods of the antiretroviral treatment (ART) treatment program in South 

Africa. With establishment of the ART program and improvements in the prevention of 

mother to child transmission (PMTCT) program in South Africa in 2010 (National 

Department of Health, 2010), pregnant women on ART are expected to be less 

immunocompromised, which might alter the risk of invasive GBS disease in their 

neonates.   

 

In summary, the burden of invasive GBS disease in South Africa has generally been higher 

than studies from other countries, possibly related to poor execution of the risk-based 

approach for EOD and the increasing burden of maternal HIV-infection. Amongst low-

middle income countries, South Africa has a heightened level of access to healthcare, 

resulting in most deliveries occurring at medical facilities, with invasive GBS cases 

possibly being more readily identifiable. The past studies from South Africa have, 

however, not detailed the risk factors for invasive GBS disease in depth and have not 

evaluated for sequelae related to invasive GBS disease beyond in-facility mortality. 
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Similarly, such data are lacking from most other studies on invasive GBS disease from 

low-middle income countries.  

1.2 Clinical burden and outcomes of invasive Group B Streptococcal disease 

Invasive GBS disease in young infants has a high mortality ratio and significant morbidity 

in young infants. The meta-analysis by Edmond et al. reported a global mortality for 

invasive GBS disease to be 9.6%, with case fatality ratios as high as 33% in low income 

countries like Malawi (Edmond et al., 2012). In this meta-analysis, the case fatality ratio 

was highest in Africa (22%) compared to Europe (7%) and Americas (11%). In a separate 

review, Dagnew et al. reported case fatality ratios as high as 60% for invasive GBS disease 

in low-middle income countries (Dagnew et al., 2012). In South Africa, the case fatality 

ratio has been reported to be as low as 6% in the Western Cape, (Frigati et al., 2014) but 

consistently higher (16.9%-17.8%) in Soweto (Madhi et al., 2003, Cutland et al., 2015). In 

addition, GBS meningitis carries a poorer outcome than sepsis alone, with 4-6 fold higher 

mortality in low-middle income countries compared to high-income countries (Furyk et al., 

2011). The higher mortality in low-middle income countries may be attributed to a number 

of factors including limited access to resources, resource utilization and quality of care. In 

contrast, reductions in the mortality attributable to invasive GBS disease in high income 

countries has largely been due to ready access to antibiotics and the successful 

implementation of preventative strategies (Dermer et al., 2004). 

 

In infants surviving invasive GBS disease, neurological sequelae are thought to result from 

direct damage to the developing brain from GBS meningitis or from cerebral hypo-

perfusion during GBS related septic shock episodes (Law et al., 2005). In addition, GBS 

precipitates preterm deliveries, which in itself contributes to neurological sequelae. There 

are limited studies describing the neurological outcomes of infants surviving invasive GBS 
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disease and GBS meningitis. Of 1037 bacteraemic episodes in neonates with or without 

meningitis, Chu et al. reported neurological complications in 3.5% of neonates, 41.7% of 

which were caused by GBS (Chu et al., 2014). A retrospective review of infants with GBS 

meningitis at hospital discharge between 1998 and 2006 in the USA reported poor 

neurological outcomes in 11/50 (22%) survivors of EOD and LOD. Infants had clinical 

signs such as: hypotonia (n=2), hypertonia (n=9), seizures (n=10), clonus (n=2), dysphagia 

(n=3), ptosis (n=2), cortical blindness (n=1), hearing loss (n=2) and temperature instability 

(n=1) (Levent et al., 2010). In a multivariate analysis, seizures before or at presentation 

was found to be the most useful marker of poor neurological outcome at discharge. These 

findings were similar to a meta-analysis of eight studies in high income countries which 

showed that 23% (range: 16-38%) of survivors of neonatal meningitis have moderate to 

severe neurological impairment (Seale et al., 2014).  

 

The drawback of short-term outcome studies, however, is the failure to recognise infants 

with mild development delay or learning problems. Consequently, a series of studies have 

addressed the long-term neurological outcomes from GBS meningitis. Edwards et al. has 

summarised studies (prior to 1985) reporting on GBS meningitis outcomes: an average 

fatality of 27% was noted and up to one-third of survivors had neurological sequelae 

measured at different age time points (Edwards et al., 1985). Table 1.1 further summarises 

studies reporting on long-term neurological sequelae of GBS meningitis survivors from 

1985 onwards (Edwards et al., 1985, Wald et al., 1986, Bedford et al., 2001, Libster et al., 

2012). Although studies have used different standards and tools for assessing neurological 

sequelae, all these studies were carried out in well-resourced high-income countries. 

Overall, 213 children between 3 and 18 years were evaluated in these four studies, with 95 
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(45%) displaying neurological sequelae, including 19% with severe sequelae which 

includes cerebral palsy, severe seizures, visual and auditory impairments.  

 

The high morbidity associated with invasive GBS disease is also coupled with a significant 

economic burden that is almost double in the first two years of life following invasive 

disease (Platt et al., 1999, Schroeder et al., 2009). Comparing invasive GBS cases to 

controls, the main cost drivers were a high level of care and duration of hospitalization. 

Although long term neurological sequelae have not been assessed in low-middle income 

countries with limited resources, the heightened cost of treating GBS invasive disease may 

further exacerbate the poorer outcomes seen in these settings.
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Table 1.1: Summary of studies reporting long-term outcomes amongst survivors of Group B Streptococcus meningitis  

Author date 
country 

GBS 
meningitis; 

n= 

Demised; 
n= 

Assessed for 
neurological 
impairment; 

n= 

Ages at 
follow-up 

assessment 
Neurological impairment 

     
normal mild-moderate severe 

Edwards 
1985 USA1 
(Edwards et 
al., 1985) 

61 13 (21%) 38 
3.3-9years 
(Mean age-  

6 years) 
19 (50%) 

8 (21%) 
Unilateral sensorineural deafness (2); 

borderline mental retardation (2); spastic or 
flaccid monoparesis (3); hydrocephalus, 

arrested (2); seizure disorder, controlled ( 1 ); 
expressive or receptive speech and language 

delay (2); porenecephalic cyst (1); mild 
frontal cortical atrophy (1); deficit in visual 

and auditory memory (1). 

11 (29%) 
Global mental retardation (7); relapse of 

GBS meningitis (1); uncontrolled seizures 
(6); cortical blindness (6); microcephalus (3); 

hydrocephalus (3); spastic or flaccid 
quadriparesis (3); central diabetes insipidus 

(1); mild mental retardation (3). 

Wald 1986 
USA (Wald 
et al., 1986) 

74 20 (27%) 34 
3-18years 

(Mean age- 
8.6 years) 

  

9 (26%) 
spastic quadriplegia (4); profound mental 

retardation (8);hemiparesis (1); deafness (4); 
cortical blindness (2); seizure disorder (7); 

hydrocephalus (6). 

Bedford 
2001 UK2  

(Bedford et 
al., 2001) 

98  98 5 years 50 (51%) 

35 (36%) 
Moderate: disability impaired their 

functioning but attended mainstream schools; 
mild neuromotor disabilities; intellectual 

impairment; moderate sensorineural hearing 
loss; mild or moderate visual impairment; 

epilepsy that was controlled with treatment; 
hydrocephalus without complications. 

13 (13%) 
Unable to attend a mainstream school; severe 

neuromotor impairment; significant 
intellectual impairment; severe seizure 

disorders; severe visual or auditory 
impairment. 

Libster 2012 
USA (Libster 
et al., 2012) 

90 5 (6%) 43 
3-12 years 
(Mean age-
6.8 years) 

43 (56%) 

11 (25%) 
Impairment based on Mullen or WIAT-II 
score (9); grade retention (3); persistent 

asymptomatic seizure disorder (3); 
hydrocephalus with ventriculoperitoneal 
shunt (1); loss of terminal digit of right 

thumb and forefinger (1). 

8 (19%) 
Profound global developmental delay (8); 

hydrocephalus (2); cortical visual impairment 
(4); bilateral sensorineural deafness (4); 
cerebral palsy/spasticity (5); persistent 

symptomatic seizures (4). 

1USA-United States of America; 2UK-United Kingdom
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1.3 Microbiology of Group B Streptococcus 

Streptococcus agalactiae is amongst many species belonging to the genus of Streptococcus. 

The Streptococcus genus can be classified according to the haemolysis pattern of growth on 

blood agar; as alpha-haemolytic (for example, Streptococcus pneumoniae), beta haemolytic 

(examples include Streptococcus pyogenes and Streptococcus agalactiae) or non-haemolytic 

(for example, Streptococcus viridans). Some species are classified according to the antigenic 

components of the cell wall, of which Streptococcus agalactiae has the B-antigen. 

Streptococcus agalactiae is a membrane bound eukaryotic. They are visualised as Gram-stain 

positive cocci on microscopy and grow non-fastidiously as 3-4 mm white colonies on blood 

agar. On a molecular level, the GBS cell surface is comprised of a capsule, peptidoglycan cell 

wall and a cell membrane (Figure 1.1). The GBS polysaccharide capsule is differentiated into 

specific serotypes based on the arrangement of the mono- and oligosaccharides, all ending 

with a sialic-acid residue. The GBS cell surface also comprises of multiple surface-proteins, 

some of which aid in the adherence of GBS to the epithelial surfaces.  

 

The virulence of GBS is attributed to the capsular and surface-proteins, and extracellular 

substances produced by the organism. The primary step in the pathogenesis of GBS is 

attachment to the host, followed by replication and evading host defences. Table 1.2 

summarizes few important structural components of the organism that contribute to its 

virulence.   
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Figure 1.1: Molecular representation of Streptococcus agalactiae (Adapted from Figure 4-35a, 
Brock Biology of Microorganisms, 11th Edition, Pearson Prentice Hall, 2006) 
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Table 1.2: Structural components of Group B Streptococcus (GBS) and its role in organism 
virulence, Adapted from (Rajagopal, 2009). 

Structural component Mechanism of action 

Immune evasion 

Capsular polysaccharide  
Prevents recognition of GBS through exhibiting similar 
carbon structures as vertebrate cell 

C5a peptidase 
Cleaves complement 5a, thus disrupting host cellular 
recruitment 

Superoxide dismutase Detoxifies oxygen radicals 

Toxins 

β-haemolysin Allows invasion of the host cell and induces apoptosis 

CAMP factor Forms pores in host cell membrane 

Adherence 

Pili   Directly adheres to host epithelium 

Fibrinogen-binding protein A 
Adherence to host epithelium by binding fibrinogen on 
cell membrane 

GBS Immunogenic Bacterial 
Adhesin 

Assists in adherence to host epithelium 

Laminin-binding protein 
Adherence to host epithelium by binding laminin on cell 
membrane 

C-protein Assists in adherence to host epithelium 

Resistance to antimicrobial peptides 

penicillin-binding protein 1 Affords resistance to antimicrobial peptides 
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1.3.1 The Group B Streptococcus polysaccharide capsule 

The sialic acid rich capsular polysaccharide (CPS) is differentiated into 10 serotypes (Types 

Ia, Ib, II and III–IX) and functions mainly to prevent recognition by the host’s immune system 

(Maisey et al., 2008, Rajagopal, 2009, Melin, 2011). More recently, it has been suggested that 

the CPS may also be involved in biofilm formation (Xia et al., 2015). Each serotype has its 

own unique antigenic properties with serotype III being the most virulent and least 

immunogenic of all serotypes (Davies et al., 2001). Globally, serotype distributions of GBS 

CPS have been similar for most regions with Ia, Ib, II, III and V making up 94% of the 

invasive serotypes (Edmond et al., 2012). Serotype Ia and III account for more than two thirds 

of invasive isolates, with serotype Ia being more prevalent in EOD and III in LOD. There has 

also been reports of the increased prevalence of serotype V, which is now the dominant 

serotype in some regions (Le Doare and Heath, 2013). Serotype data from south-east Asia, 

although scanty, have reported a larger proportion of disease by serotype II (Johri et al., 2013). 

In South Africa, the serotype distribution is similar to global estimates except that serotype III 

has been found to be more common for EOD (49-58%) compared to serotype Ia (23-31%) 

(Madhi et al., 2003, Madzivhandila et al., 2011). Recently, a twenty year surveillance in the 

United Kingdom demonstrated minor variations in the serotype distributions of invasive 

isolates (Lamagni et al., 2013); these may mirror serotypes colonizing the pregnant women. 

Vaginal colonizing serotypes have also been found to be similar in HIV-infected and HIV-

uninfected South African women (Madzivhandila et al., 2011). Consequently, a pentavalent 

(Ia, Ib, II, III and V) CPS vaccine would protect against more than 90% of disease causing 

serotypes globally, including South Africa. 
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Multilocus sequence typing (i.e. characterizing organisms using fragments of genes) of CPS 

serotypes based on the allelic profiles has identified certain sequence types (ST) to be more 

prevalent (ST1, 17, 19, 23) (Jones et al., 2003). Individual ST’s may have different virulence 

potentials, with ST17 reported as more prevalent in invasive isolates whereas ST19 is more 

common among colonising isolates. (Davies et al., 2004, Lin et al., 2006, Fluegge et al., 

2011).  The genotyping of GBS strains, although more costly, is a more accurate assessment of 

strain identification and may prove to be more useful in future epidemiological studies.   

 

1.3.2 Group B Streptococcus surface-proteins 

In addition to the virulence properties of the CPS, the GBS bacterium has surface-proteins 

which also contribute to evading host defences (Lindahl et al., 2005). In this thesis, I will 

examine the potential role of five surface-proteins [namely pilus island-1, -2a, and -2b, 

fibrinogen-binding protein A (FbsA) and GBS Immunogenic Bacterial Adhesin (BibA)] as 

potential epitopes to prevent invasive GBS disease in infants. 

 

 Pili or fimbriae are long filamentous strands on the bacterial surface which were first 

identified through electron microscopy in 2005 (Lauer et al., 2005). The function of the pili 

are to facilitate adherence and attachment to the cervical and lung epithelium, to resist innate 

antimicrobial peptides and macrophages, and they play a role in biofilm formation (Maisey et 

al., 2008, Konto-Ghiorghi et al., 2009, Rajagopal, 2009, Rinaudo et al., 2010, Sheen et al., 

2011, Sharma et al., 2013). Pili also facilitate the penetration of GBS through the blood-brain 

barrier (Maisey et al., 2007, Banerjee et al., 2011, Tazi et al., 2012). Two genomic pilus units 

have been identified; Pilus Island (PI) 1 and 2, which is further divided into 2a and 2b (Dramsi 

et al., 2006). Overall, PI distributions among GBS isolates have been reported similarly across 
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different regions with PI-1 in 70%, PI-2a in 70-80% and PI-2b in 20-30%. PI-1 usually occurs 

in combination with either PI-2a or PI-2b (Margarit et al., 2009, Madzivhandila et al., 2013, 

Martins et al., 2013). Importantly, all GBS strains carry at least one PI (Martins et al., 2013). 

Pilus island distributions have also been found to be associated with CPS serotypes, with most 

serotype III isolates having the combination of PI-1 and 2b, whilst serotype Ia is commonly 

associated with PI-2a. The combination of PI-1 and 2a are variably found with serotypes Ib, II, 

III and V (Madzivhandila et al., 2013, Martins et al., 2013). Each PI has three protein coding 

genes that code LPXTG (Leu-Pro-X-Thr-Gly) motif-carrying proteins, i.e. the backbone 

protein (PilB) and two ancillary proteins (PilA and PilC; Figure 1.2), and two sortase genes 

that code the assembly of the pili. Each backbone and ancillary protein is necessary for the 

functioning of the pilus island and serve as antigenic targets on the surface of the pili for 

antibody binding (Dramsi et al., 2006, Rosini et al., 2006, Margarit et al., 2009).  

 

Additional GBS surface-proteins contributing to the virulence of the organism include FbsA 

and BibA, both of which were discovered recently (Schubert et al., 2004, Santi et al., 2007). 

Both surface-proteins, like pili, contribute to the adherence of the GBS to the epithelial 

surfaces and are highly immunogenic (Meinke et al., 2010). The FbsA protein does this by 

binding to fibrinogen, a glycoprotein which is part of the underlying structure of host 

epithelial cells (Schubert et al., 2004). Furthermore, the FbsA protein is thought to facilitate 

penetration of the brain endothelium and cause meningitis (Mu et al., 2014). Although various 

strains require FbsA to bind, the presence of FbsA is not conserved across all strains (Meinke 

et al., 2010).  
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Figure 1.2: Arrangement of pilus island (PI)-1, -2a and -2b proteins. Adapted from 
(Vengadesan et al., 2011)  
Footnote: PilA, PilB and PilC are motif-carrying proteins, i.e. the backbone protein (PilB) and two ancillary 
proteins (PilA and PilC); GBS and SAN are encoding genes for the particular proteins.  
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In addition to facilitating adherence, BibA also plays a role in resisting phagocytosis by 

blocking complement pathway regulators and is thought to be conserved more widely across 

strains (Santi et al., 2007, Santi et al., 2009). Overall, surface-proteins have provided a more 

in-depth understanding of GBS virulence factors and are potential antigenic targets for 

intervention against invasive disease.  

 

1.4 Pathogenesis of early and late onset Group B Streptococcus disease 

The pathogenesis of EOD differs from that of LOD. The gastrointestinal tract is the natural 

habitat for GBS in humans, with GBS being a normal commensal of the gastrointestinal and 

genitourinary tract in 20-40% of pregnant women, in whom colonisation may be transient, 

persistent or dynamic (Melin, 2011). Vertical transmission of GBS from colonized mothers to 

30-70% of their newborns may occur in-utero or during the peri-partum period. Invasive EOD 

may then follow in approximately 1-3% of colonized newborns (Melin, 2011). After 

adherence by GBS to the female genital tract, the mediators for this commensal bacterium to 

cause invasive disease in newborns is unclear. Alterations in gene expression, virulence of the 

organism and bacterial overgrowth has been proposed as mechanisms to explain this invasive 

potential (Rajagopal, 2009). Colonizing GBS may ascend and penetrate into the amniotic 

cavity, regardless of whether the membranes have ruptured or not (Whidbey et al., 2013). 

Intra-amniotic infection may not necessarily manifest with symptoms in the mother, but 

aspiration of infected amniotic fluid into the newborns lungs may result in adhesion to lung 

epithelium, bacterial replication and evasion of the newborn immune system. From the lungs, 

haematogenous spread may cause septicaemia and/or meningitis (Melin, 2011). Certain 
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additional virulence factors may facilitate GBS penetration of blood-brain barrier (Magalhaes 

et al., 2013).  

 

The pathogenesis of LOD, however, is less well understood. Although different modes of 

transmission have been described, the pre-requisite for invasive disease is thought to be 

intestinal GBS acquisition, followed by translocation into the mesenteric nodes, rather than the 

lung being the portal of entry (Filleron et al., 2014). The mother is still thought to be the most 

likely source; either through colonisation of the infant’s gastrointestinal tract at birth from 

swallowed infected amniotic fluid, or in the days following delivery through direct contact 

(faecal-oral) or through breast-milk consumption. Studies have demonstrated that the same 

genotypic colonising strain in the mother at birth was present in a large proportion mother-

infant colonised pairs as late as eight weeks of infant age (Berardi et al., 2013a). In addition, 

almost half of infants with LOD had the same serotype at presentation as the mother did at 

birth (Dillon et al., 1987). Gastrointestinal colonization of the newborn may result in invasive 

GBS disease after a period of latency, which could have been precipitated by aberrations in 

immunity, alteration of virulence potential or bacterial overgrowth.  

 

Breast-milk transmission has also been proposed to contribute to the pathogenesis of LOD, 

including possibly being responsible for recurrent disease. It is hypothesized that breast-milk 

is initially contaminated with GBS when the organism is transferred from the throat of a 

colonised infant. The mother can then subsequently re-infect the infant during breastfeeding, 

even in the absence of mastitis (Kotiw et al., 2003, Berardi et al., 2013a, Filleron et al., 2014). 

Alternatively, the breast-milk may become contaminated when enteric-derived GBS is 

inadvertently transferred to breast-milk via uncleaned hands (Filleron et al., 2014). Lastly, 
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nosocomial acquisition (<10%), including health worker as a source, might also contribute to 

GBS transmission to newborns (Berardi et al., 2013a). Further studies are warranted to 

improve our understanding of the pathogenesis of LOD.  

 

1.5 Immunology of Group B Streptococcus colonisation and invasive disease 

To further understand the pathogenesis of invasive GBS disease in neonates, an understanding 

of the immune system and its interaction with GBS is necessary. The normal immune response 

to a microbial organism is a combination of innate and adaptive immune responses aimed at 

clearing putative pathogens, as well as establishment of immunological memory. Components 

of the innate immune system include the mucosal epithelial barrier and its natural 

antimicrobial peptides, phagocytes (neutrophils and macrophages), natural killer T-

lymphocytes, complement factors, and various cytokines and plasma proteins (Abbas and 

Lichtman, 2006). These components, through various mechanisms, form a non-specific first 

line of defence against microbes that are identified by specific receptors or pattern recognition 

molecules (Landwehr-Kenzel and Henneke, 2014). Additionally, some of the components of 

the innate immune system relay secondary signals to activate the adaptive immune system, 

which is comprised of cell mediated and humoral immunity, the components of which are T-

lymphocyte and B-lymphocytes, respectively (Abbas and Lichtman, 2006). The adaptive 

immune response is more structured and uses components of the innate system to achieve 

organism destruction. The host first needs to recognise the GBS organism as ‘foreign’, 

followed by opsonisation, recruitment of phagocytic cells (neutrophils, macrophages) through 

releasing chemical mediators (cytokines/chemokines) and finally extra- or intra-cellular killing 
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by engulfing (phagocytosis) the pathogen and/or releasing toxic metabolites (Abbas and 

Lichtman, 2006).  

 

As GBS is composed of a CPS and infection is thought to be extracellular, humoral rather than 

cell mediated immunity dominates in protecting against invasive disease, and thus is the focus 

of further discussion.  Humoral immunity is driven by B-lymphocytes which produce 

immunoglobulins (Ig) (Abbas and Lichtman, 2006). There are five classes of antibodies, 

namely; IgM, IgG, IgA, IgE and IgD.  The presence of an antigen will stimulate B-

lymphocytes to produce antibodies in the lymphoid organs. After primary exposure, some B-

lymphocytes differentiate into ‘memory’ cells which are able to respond more avidly to 

subsequent attacks by the same organism. The primary immune response to an infectious 

agent may have a lag time of 5-10 days, is predominantly IgM that is produced in small 

quantities and not organism specific. In contrast, the secondary response to that organism is 

with large quantities of IgG that responds more rapidly and more specifically to epitopes of 

that organism (Abbas and Lichtman, 2006).  

 

IgG antibody functions in many different ways (Abbas and Lichtman, 2006). Firstly, the 

antibody is able bind to the microbe or its toxins and in doing so block its attachment or 

destruction to the host cell. In addition to preventing attachment by binding to the microbe, the 

microbe is now marked (as “foreign”) for recognition by phagocytes, a process referred to as 

opsonisation. Opsonisation of the microbe by antibody is critical in protecting the human host 

against capsular organism like GBS which are otherwise able to evade phagocytosis. Although 

uncommon, coating the microbe also results in destruction by natural-killer T-lymphocytes. A 

further mechanism in which antibody favours microbial destruction is through activation of 
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the classical pathway complement system. The antibody binds to the microbial surface as well 

as complement C1 triggering the complement cascade. This, together with innate triggering of 

the alternate and lectin pathways, leads to deposition of C3b fragments on the bacterial 

surfaces which are recognised by phagocytes. In addition, complement factors act as triggers 

for recruitment of inflammatory cells. The complement factors also end in a complex molecule 

that may directly cause osmotic lysis of the microbial cell membrane (Abbas and Lichtman, 

2006).  

 

In the neonates, physiological differences of both the innate and adaptive immune system has 

been proposed to explain their vulnerability to invasive GBS disease, more so in those born 

prematurely (Wilson, 1986, Kallman et al., 1998). Aberrations in the neonatal immune system 

may occur at multiple levels. With regard to humoral immunity, neonates without exposure to 

the organism are dependent on the transplacental transfer of their mother’s IgG to protect 

against invasive GBS disease (Anthony, 1986). Each new acquisition of serotype-specific 

GBS in the mother results in an increase in the maternal immunoglobulins specific to that 

serotype. It is the transfer of this serotype-specific IgG from the mother to the foetus in 

pregnancy, which is dependent on gestational age, that may offer protection against invasive 

GBS disease in the first few months of infant life (Baker et al., 2003, Amirthalingam et al., 

2014, Madhi et al., 2014). Therefore, IgG detected in neonatal serum soon after birth is usually 

maternal in origin unless there was chronic in-utero infection, which is unlikely with GBS 

(Niewiesk, 2014, Faucette et al., 2015).  

 

In addition, deficiencies in both the classical and complement pathways have been reported in 

neonates (Edwards, 1986). Admittedly, controversies have arisen as to the role of the classical 
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and alternate complement pathways (Edwards, 1986, Wilson, 1986) with some studies 

reporting antibody-independent killing from activation of the classical pathway (Baker et al., 

1982, Baker et al., 1986). It has also been postulated that deficiencies in complement 

components utilized in the alternate pathway may predispose neonates to developing disease, a 

deficiency which is thought may be overcome by an increased concentration of antibody 

(Baker et al., 1986).  

 

Furthermore, the process of recruiting inflammatory cells, as well as the quantity, to the 

alveolus of the neonatal lung has been shown to be deficient (Wilson, 1986). Additionally, the 

intra- and extra-cellular killing mechanism by neutrophils have been shown to be deficient in 

neonates compared to adults (Kenzel and Henneke, 2006). Thus, overall immune system 

immaturity and the dependence on maternal IgG have left the young infant vulnerable to 

invasive GBS disease. 

 

1.6 Risk factors for invasive Group B Streptococcal disease 

Several risk factors for acquiring invasive EOD have been identified (Verani et al., 2010). The 

only absolute risk for invasive disease in the newborn is maternal genitourinary and/or 

gastrointestinal GBS colonisation, which is often characterized as heavy colonisation in the 

presence of GBS bacteriuria (Verani et al., 2010). Certain factors like sexual practises and diet 

have been suggested as contributors to colonisation but the mechanisms are unclear (Percha et 

al., 2011). Other maternal risk factors common to most neonatal infections, including GBS 

are: prolonged rupture of membranes (>18 hours), intra-amniotic infection (chorioamnionitis 

or endometritis), black race and young maternal age (Verani et al., 2010, Al-Kadri et al., 2013, 
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Chan et al., 2013, Alam et al., 2014). Infants born to young pregnant women are thought to be 

at increased risk of invasive GBS disease because their mothers have had less exposure to 

GBS and thus have lower GBS antibody levels (Anthony et al., 1994, Campbell et al., 2000). 

Infant risk factors include: a sibling who had GBS during their infancy, prematurity and low 

birth weight. Prematurity and low birth weight has also been reported as significant 

contributors to LOD (Berardi et al., 2013d). Premature infants have reduced antibody transfer 

from the mother, especially if they were less than 34 weeks gestation (Boyer et al., 1984c, 

Christensen et al., 1984, Lin et al., 2001). Although uncommon, obstetric procedures like 

internal foetal monitoring and multiple vaginal examinations have been identified as potential 

risk factors (Verani et al., 2010).  

 

1.7 Clinical features of invasive Group B Streptococcus disease in infants 

The typical presentation of EOD, usually within 12 hours of birth (75-95%), is respiratory 

distress (tachypnoea, sternal recessions and/or the need for supplementary oxygen) with an 

associated bacteraemia in 60-80% of cases (Madhi et al., 2003, Heath et al., 2009, Al-Kadri et 

al., 2013). Complications include the need for ventilator support or septic shock characterised 

by hypotension and metabolic acidosis (Madhi et al., 2003, Heath et al., 2009). Newborns with 

invasive GBS disease at birth may also present with perinatal asphyxia (Heath et al., 2009). In 

a minority of newborns, bacteraemia without a focus of infection may be present in a 

relatively healthy newborn, or diagnosed with transient tachypnoea of the newborn (Madhi et 

al., 2003). Meningitis is the more common manifestation of LOD, with clinical symptoms of 

irritability, seizures or fever (Heath et al., 2009, Levent et al., 2010). GBS may also manifest 

as a septic arthritis, osteomyelitis or cellulitis (Heath et al., 2009). Recurrences of invasive 
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GBS disease have been reported in up to 2% of cases despite antibiotic treatment (Broughton 

et al., 1976, Heath et al., 2009, Shoda et al., 2012).  

 

1.8 Adverse maternal effects associated with Group B Streptococcus 
colonisation 

In addition to the invasive disease manifestations in infants, GBS colonisation has adverse 

maternal effects during pregnancy that may have bearing on perinatal outcome. Women with 

intra-amniotic infection may present with fever, uterine tenderness or offensive liquor, but 

often go undetected in labour. The intra-amniotic infection may contribute significantly 

towards preterm delivery and stillbirths (Newton and Clark, 1988, Allen et al., 1999, Edwards 

and Gonik, 2013). Cytokine and chemokines releases, precipitated by in-utero GBS infection 

precipitate labour by weakening amniotic membranes resulting in their premature rupture 

(Edwards and Gonik, 2013). Thus GBS-colonised parturient women have an increased risk of 

delivering premature low birth weight babies, placing them at increased risk to the adverse 

effects of prematurity. Furthermore, maternal GBS infection has been associated with 

stillbirths with more than half of parturient women with GBS bacteraemia having spontaneous 

miscarriages or stillbirths (Embleton et al., 1999, Phares et al., 2008, Monari et al., 2013). 

Although the newborn may not be born with invasive GBS disease, the secondary effect of 

GBS maternal infection may cause a significant burden on perinatal outcomes. 

 

1.9 Prevention and management of invasive Group B Streptococcus disease  

Invasive GBS disease, either sepsis and/or meningitis, is managed by administering 

intravenous antibiotic therapy to the affected infant. Primary prevention of disease in the 
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newborn is often not possible because the newborn is born with symptoms of invasive disease. 

Hence, pregnant women have been targeted with interventions, including IAP for colonised 

mothers, to help reduce the burden of EOD in newborns. In high income countries, the 

reduction in incidence over the past twenty years has largely been attributable to the successful 

implementation of IAP to colonised parturient women who have been universally screened 

between 35 and 37 weeks gestation. The incidence of EOD has declined by more than 80% 

since the implementation of IAP (Schrag and Verani, 2013). Other high income countries have 

also successfully adopted these guidelines that were formulated by the Center for Disease 

Control (CDC) in the USA (Schrag and Verani, 2013). However, these strategies cannot be 

readily implemented in most low-middle income countries where a large proportion of 

deliveries occur outside the hospital setting (Montagu et al., 2011). This, coupled with the high 

cost of screening pregnant women and providing IAP, and creating the necessary 

infrastructure that enables the administration of intravenous IAP at least 4 hours prior to 

delivery has hampered preventative efforts in low-middle income countries (Glasgow et al., 

2007, Fairlie et al., 2013). Furthermore, other limitations of the CDC guidelines include; false 

negative cultures in colonised parturient women, failure to institute IAP for sudden deliveries, 

the risk of resistance to penicillin, and the limited effect of IAP on preventing preterm 

delivery, stillbirths and LOD (Schrag and Verani, 2013). These limitations, as well as the 

failure to implement these strategies in low-middle income countries, have led to a paradigm 

shift regarding the future prevention of invasive GBS disease. In 2012, a symposium of the 

major international role players in the fight against GBS was held to discuss a move towards a 

more long-term sustainable global alternative strategy (Rappuoli and Black, 2013). 

Vaccinating pregnant women against GBS infection may protect infants from invasive GBS 

disease and may be an attractive and feasible alternative preventative strategy.  
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1.10 Group B Streptococcus prevention through maternal vaccination 

Maternal serotype-specific capsular IgG transferred to the foetus has been proposed to be 

protective against invasive GBS disease in the neonates (Baker and Kasper, 1976). 

Vaccinating pregnant women in the second trimester of pregnancy could result in an increase 

in maternal antibody levels which in turn may be transferred to the foetus in the last trimester. 

This strategy has been successful in contributing to the prevention of neonatal tetanus 

(Demicheli et al., 2015), the incidence of which has been reduced by >80% since vaccination 

of pregnant women in low-middle income countries has been widely implemented (Steinhoff, 

2013). In the USA, similar vaccination strategies, for pregnant women, have been approved 

for the prevention of influenza and pertussis in infants (Steinhoff, 2013). Maternal GBS 

vaccination is potentially cost effective, both in high income (Mohle-Boetani et al., 1993, 

Oster et al., 2014) and low-middle income countries (Kim et al., 2014). Additionally, there has 

been growing public awareness about the benefits of maternal vaccination to prevent other 

diseases in young infants; in addition to also protecting the pregnant women. A recent survey 

of 1013 women in the United Kingdom reported that at least 72% of women would accept 

vaccination in pregnancy (McQuaid et al., 2014).  

 

Serotype-specific GBS polysaccharide-protein conjugate vaccines have been in development 

since the early 1990’s (Kasper et al., 1996). Studies have reported that vaccination induces 

IgG responses which persist for long periods and could protect against LOD (Baker et al., 

2003, Edwards et al., 2012). Furthermore, maternal-infant animal studies have demonstrated 

improved survival in mice pups whose mothers were vaccinated in pregnancy (Paoletti et al., 

1994). A trivalent GBS polysaccharide-protein conjugate vaccine (serotypes Ia, Ib and III), 

has completed phase-II evaluation among pregnant women in Europe, North America and 
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Africa (Madhi et al., 2013). These serotypes cause 70-80% of all invasive GBS disease in 

early-infancy. In order to licence this vaccine, a large phase III efficacy trial will be required. 

This will require a sample size of approximately 60 000 pregnant women and the study will 

need to be conducted in a setting with a high incidence of invasive GBS disease but where 

preventative strategies cannot be pragmatically implemented - such a study will incur 

tremendous logistical challenges. An alternate pathway to license new vaccines is based on 

using immunologic endpoints for those diseases for which immunological correlates of 

protection have been established from previous vaccine-studies or through sero-

epidemiological studies (Plotkin, 2013). This could then be followed by phase IV studies to 

establish vaccine effectiveness. This strategy of licensure, i.e. using a correlate of protection, 

is not novel and has been previously adopted in licensure of meningococcal and influenza 

vaccines, and more recently new formulations of polysaccharide-protein conjugate 

pneumococcal vaccines (The European Agency for the Evaluation of Medicinal Products, 

1997, Frasch et al., 2009, World Health Organization Immunization Vaccines and Biologicals, 

2012).  The first step in this process, however, is to determine an antibody concentration 

associated with a reduced risk of invasive GBS disease; i.e. defined as the sero-correlate of 

protection. 

 

1.10.1 Sero-correlates of protection to the GBS capsular polysaccharide  

A systematic review was undertaken to determine the association between capsular antibodies 

and invasive GBS disease in young infants, (the published paper is attached as Appendix 1). 

We searched Pubmed, Medline and Scopus databases using the search terms; “Streptococcus 

agalactiae” (MESH) OR “Streptococcus agalactiae” OR “Group B Streptococcus” OR “Group 

B Streptococcal Infection” OR “Group B Strep” AND “Antibody” (MESH) OR “Antibody” 
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OR “Immunoglobulin” OR “IgG” OR “anti-GBS” OR “immunology” OR “immunity”. The 

inclusion process of searched articles used The Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines (Figure 1.3). 

 

We identified 18 studies reporting on antibody levels in infants with invasive GBS disease 

(Baker and Kasper, 1976, Baker et al., 1977, Baker and Kasper, 1977, Wilkinson, 1978, 

Christensen et al., 1980, Vogel et al., 1980, Baker et al., 1981, Christensen et al., 1982, 

Klegerman et al., 1983, Gotoff et al., 1984, Gray et al., 1985, Gotoff et al., 1986, Feldman and 

Ferrante, 1990, Gray et al., 1990, Lin et al., 2001, Matsubara et al., 2002, Lin et al., 2004, 

Baker et al., 2013). We extracted data on: study region and population, methods to identifying 

cases and controls/cohorts, clinical presentation of cases, timing of presentation of cases, age 

range of cases and control/cohorts, serotype distribution, serological assay used and type of 

antibody determination, the availability of reference serum, quantitative capsular antibody 

levels in maternal, cord or infant sera and whether a threshold for protection against disease 

was proposed. Table 1.3 and 1.4 summarises studies addressing correlates of protection 

against invasive GBS disease and selected animal model studies measuring survival against 

GBS inoculum after passive immunization with CPS antibody sera, respectively. 

 

The CPS was first reported as immunogenic in mice model studies and antibodies directed 

against the capsule protected mice from invasive GBS disease (Lancefield and Freimer, 1966, 

Lancefield et al., 1975). Baker et al. proposed that capsular antibody transferred from mother 

to the foetus will be protective against invasive GBS disease in the infant and reported a series 

of case-control studies comparing serotype III capsular antibodies in mothers of infants with 

GBS to mothers of healthy infant controls (Baker and Kasper, 1976) (Table 1.3). 
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Figure 1.3: Flow diagram of selected studies reporting on capsular Group B Streptococcus 
(GBS) antibodies  
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Using the radioactive antigen binding assay (RABA) test, which measures total 

immunoglobulin, median capsular antibody levels to serotype III were lower in cases 

compared to controls (Baker et al., 1977, Baker et al., 1981). In a comparison of 111 cases and 

45 controls, median serotype III capsular antibody levels were significantly lower in both 

mothers and their infants with invasive GBS disease (0.6 µg/mL and 0.4 µg/mL respectively) 

than in the control mothers-infant dyads (12.6 µg/mL and 5.8 µg/mL respectively) (Baker et 

al., 1981). None of the infants with invasive disease had antibody levels >1.7 µg/mL and only 

18.6% of mothers of infants with invasive disease had antibody levels above 2 µg/mL as 

compared to 73% of mothers in the controls. Based on the findings of this study, serotype III 

capsular antibody levels above 2 µg/mL was postulated as protective against invasive serotype 

III GBS disease.  

 

Subsequent studies have used the enzyme linked immunosorbent assay (ELISA) method, 

which is superior to the RABA that was used by the initial studies (Table 1.3). Antibody 

concentrations measured by ELISA correlate with RABA assays but ELISA is able to 

specifically measure IgG and detect antibody at lower concentrations (Polin et al., 1982, 

Guttormsen et al., 1996). During the 1980’s, a series of studies were carried out on mice to 

determine survival at different antibody concentrations. These studies determined that capsular 

antibody concentration of ≥1 µg/mL for serotype Ia, ≥0.2 µg/mL for serotype Ib and 

≥1.3 µg/mL for serotype III protected more than 90% of mice from a lethal challenge with that 

specific serotype strain (Klegerman et al., 1983, Boyer et al., 1984a, Gotoff et al., 1984, 

Gotoff et al., 1986) (Table 1.4). The usefulness of these levels, initially obtained from murine 

studies, was then evaluated as a marker for protection in humans (Table 1.3). Although none 

of the infants with invasive GBS disease or their mothers had levels above these proposed 
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concentrations, so too did a large proportion of the colonized mothers of healthy infants. This 

was also observed in a series of studies conducted by Gray et al., who matched cases to 

serotype-specific colonised newborns rather than colonised mothers (Gray et al., 1985, Gray et 

al., 1990). From this, we are able to infer that there may be other mechanisms (for example, 

microbial virulence factors) that contribute to the risk of invasive GBS disease.  

 

The largest case-control study aimed at establishing a sero-correlate of protection against 

invasive GBS disease in neonates was undertaken in USA by Lin et al. between 1995 and 

1998 (Lin et al., 2001, Lin et al., 2004) (Table 1.3). The samples taken from 138,740 live 

births in 14 hospitals identified 53 cases with serotype Ia and 29 cases with invasive serotype 

III GBS disease in infant’s ≥34 weeks gestation. These were matched to 336 serotype Ia 

colonized controls and 330 serotype III colonised controls. Geometric mean antibody 

concentrations (GMC’s) for serotype Ia were 0.32 µg/mL and 0.22 µg/mL in mothers and their 

newborns with invasive GBS disease, compared to 0.65 µg/mL and 0.52 µg/mL in mothers 

colonized by the homotypic serotype and their healthy newborns, respectively. This study also 

estimated the percentage risk reduction for invasive GBS disease at different antibody levels. 

Using serotype-specific IgG <0.5 µg/mL as reference, the odds ratio (OR) was 0.69 (31% 

reduction), 0.45 (55% reduction) and 0.12 (88% reduction) with a maternal antibody 

concentration of ≥0.5 µg/mL, ≥2 µg/mL and ≥5 µg/mL, respectively. For serotype III, GMC’s 

were 2.73 µg/mL and 2.03 µg/mL in mothers and newborns of invasive GBS cases, compared 

to 4.27 µg/mL and 3.29 µg/mL in serotype III colonized women and their healthy newborns, 

respectively. Using an IgG concentration <2 µg/mL as reference the OR for invasive GBS 

disease estimated to be 0.25 (75% reduction), 0.23 (77% reduction) and 0.07 (91% reduction) 

for maternal antibody concentrations of ≥2 µg/mL, ≥5 µg/mL and ≥10 µg/mL, respectively. 
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Hence, maternal antibody concentration of ≥5 µg/mL for serotype Ia and ≥10 µg/mL for 

serotype III was calculated to reduce the risk of invasive GBS disease by approximately 90%. 

In contrast to the studies by Lin et al., Baker et al. (a re-analysis of samples taken between 

1998 and 1999) , using <0.1 µg/mL as reference, reported the relative risk of 0.11 (89% 

reduction) for serotype Ia, 0.09 (91% reduction) for serotype III and 0.29 (71% reduction) for 

serotype V if the maternal antibody concentration was ≥0.5 µg/mL (Baker et al., 2013). After 

Bayesian modelling, the authors suggested that an antibody concentration of ≥1 µg/mL would 

be protective for Ia and III and probably V against invasive GBS disease. The difference in the 

proposed correlate of protection between the study by Lin et al. and Baker et al. could have 

been due to differences in selection of controls and the ELISA assay not being the same 

between the studies. Importantly, estimating a threshold for protection using odds ratios or 

relative risk is not statistically sufficient as they measure a relative risk to a given threshold. 

Thus, using additional statistical methods, including Bayesian modelling as used by Baker et 

al., is thought to provide a more accurate estimate of a protective antibody threshold. 

 

There have not been any further published studies on correlates of protection against invasive 

GBS disease since 1999, except for the Design of a Vaccine Against Neonatal Infections 

(DEVANI) study, which is, a pan-European program that collected sera from mothers of cases 

and controls. The DEVANI study also reported an association between high antibody 

concentrations and a reduced risk of invasive GBS disease for serotypes Ia, Ib and III (Melin 

and Efstratiou, 2013). No studies have been undertaken in low-middle income countries on 

establishing a correlate for protection against invasive GBS disease.  
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Table 1.3: Studies describing serotype-specific capsular antibody concentrations in mothers of infants with and without invasive 
Group B Streptococcus (GBS) disease [A summarized version of this table appears in Appendix 1] 

Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Baker 1976 
(Baker and 

Kasper, 1976) 
USA 

Case-
control 

7 with GBS III 
(3 ≤5days, 2S 1M;   

4 ≥10days, 2M 
2BJ) 

 

29 Pregnant 
women 

vaginally 
colonized with 

serotype III 

Pregnant 
women with 
serotype III 

vaginal-
colonization 

and infant did 
not develop 

GBS  

RABA3 
[detectable 

levels defined 
as binding 
capacity of 
>40% at a 
dilution of 

≥1:2 

III 
(Total Ig) 

Not 
reported 

Mothers (n=7): 
0 of 7 mothers had 
detectable levels 
 

Mothers (n=29): 
22 of 29 (76%) of 
mothers had detectable 
levels  
 

No 

Infants (n=5):  
0 of 5 infants had 
detectable levels 

Infants-cord blood 
(n=3):  
3 of 3 infants had 
detectable levels 

Baker 1977 
(Baker et al., 

1977) 
USA 

Case-
control 

31 with GBS III 
 (9 ≤5 days, 4S 

5M; 
22 >9 days, 4S 

11M 7BJ) 
7 of 31 were from 

1976 study 

 
43 Pregnant 

women 
vaginally 

colonized with 
serotype III 

 
12 Pregnant 

women 
colonised with 
other serotypes 

 
16 non-

colonized 

Pregnant 
women with 
serotype III 

vaginal-
colonization 

and infant did 
not develop 

GBS  

RABA 
[the degree of 

antigen 
binding was 

converted to a 
concentration 

III 
(Total Ig) 

Not 
reported 

Mothers (n=29): 
Median~1 (<1–26) 

Mothers (n=43): 
Median~12 (<1–>40) 

No 
 Infants (n=31):  

Sepsis- 
Median 0.65(0.34–1.52) 
Meningitis- 
Median 0.45(0.32–1.52) 
Arthritis/Osteomyelitis- 
Median 1.05(0.33–1.78) 

Infants:  
No data 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Baker 1977 
(Baker and 

Kasper, 1977) 
USA 

Case-
Control 
(Data 
from 
1977 

study) 
 

17 with GBS III  
(8 ≤5 days, 4S 4M 
9 >9 days, 4S 5M) 

 
 

43 Pregnant 
women 

vaginally 
colonized with 

type III 
 

1 Pregnant 
women 

vaginally 
colonized II  

 
10 non-

colonised 

Pregnant 
women with 
serotype III 

vaginal-
colonization 

and infant did 
not develop 

GBS  

RABA3 
[enriched 
antigen-

detectable 
levels defined 

as binding 
capacity of 
>40% at a 
dilution of 

≥1:2 

III 
(Total Ig) 

Not 
reported 

Mothers (n=15): 
2 of 15 mothers had 
detectable levels 
 

Mothers (n=43): 
31 of 43 (72%) of 
serotype III colonized 
mothers had detectable 
levels 
5 of 10 (50%) of non-
colonized mothers had 
detectable levels No 

Infants (n=17):  
0 of 17 infants had 
detectable levels 

Infants:  
No data 

Wilkinson 
1978 

(Wilkinson, 
1978) 
USA 

Cohort 
 

10 with GBS III 
(not specified) 

4 colonized 
newborns with 

serotype III 

Healthy 
newborn with 
serotype III 
colonization 
(ear, cord, 

gastric) 

Radioimmuno
assay 

III 
(Total Ig) 

Not 
reported  

Mothers (n=4): 
Mean 31.7 
 

Mothers (n=2): 
Mean 12.1  
 

No 

Infants (n=8): 
Mean 9.3 

Infants (n=4): 
Mean 11.0 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Christensen 
1980 

(Christensen et 
al., 1980) 
Sweden 

 

Case 
control 

7 with GBS 
3 with III 
3 with Ib 
1 with Ia 

 
(4 ≤2 days, 3S 

1M; 
3 >7 days, 3M) 

 [3 premature: 34-
36 weeks] 

 
13 pregnant 

women 
colonised 

(urethra and 
cervix) with 

5 with III 
3 with Ia 
2 with Ib 

3 mix sero 

Pregnant 
women with 

serotype-
specific urethra 

and cervix 
colonisation and 

infant did not 
develop GBS, 
all term infants 

Radiolabelled 
protein A 

Ia, Ib, III 
(IgG) 

Not 
reported 

Mothers (n=7): 
6/7 had lower levels than 
controls specific to 
serotype 
Ia <1cpmX104 

Ib 3-4cpmX104 
III <1cpmX104 

Mothers (n=13): 
All had higher antibody 
levels than cases except 
1 case which had similar 
to controls 
 

No 

Infants:  
No data 

Infants:  
No data 

Vogel 1980 
(Vogel et al., 

1980) 
USA 

Cohort 

54 with GBS 
2 with Ia 
8 with Ib 
4 with II 

40 with III 
 

(not specified) 
 

108 pregnant 
women 

vaginally 
colonised 
22 with Ia 
28 with Ib 
22 with II 
36 with III 

 
129 non-
colonised 
women 

Pregnant 
women with 

serotype- 
specific vaginal 
colonisation and 

infant did not 
develop GBS 

Indirect 
immunofluore

scent assay 

Ia, Ib, II, III 
(IgG) 

Not 
reported 

Mothers (n=54): 
Serotype-specific 
antibody detected on  
0/2 (0%) with Ia 
1/8 (13%) with Ib 
0/4 (0%)  with II 
8/40 (20%) with III 
 [levels were low] 

Mothers (n=108): 
Colonised- Serotype-
specific antibody 
detected on  
59% - Ia 
57% - Ib 
96% -  II 
50% - III 
Mothers (n=129): 
Non-colonised- antibody 
detected on  
26% - Ia 
54% - Ib 
82% - II 
47% - III 

No 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Baker 1981 
(Baker et al., 

1981) 
USA 

Case-
control 

111 with GBS III 
(32 <5days, 18S 

14M;  
79 > 7 days, 28S 

51M) 

45 Pregnant 
women 

vaginally 
colonized with 

type III 

Pregnant 
women with 
serotype III 

vaginal-
colonization 

and infant did 
not develop 

GBS (matched 
to EOD) 

RABA3 
III 

(Total Ig) 
Not 

reported 

Mothers (n=32): 
Sepsis-  
Median 0.6 (0.3–40.3) 
Meningitis- 
Median 0.6 (0.3–1.55) 
 
6 of 32 (19%) mothers  
had level >2 µg/mL 
 

Mothers (n=45): 
Median 12.6 (0.3–40.3) 
 
 
 
33 of 45 (73%) mothers 
had level >2 µg/mL 

>2 µg/mL as 
protective  

 
 

Infants EOD (n=32): 
Sepsis- 
Median 0.4 (0.3–1.3) 
Meningitis- 
Median 0.3 (0.3–1.1) 
Infants LOD (n=79): 
Sepsis- 
Median 0.4 (0.3–1.6) 
Meningitis- 
Median 0.4 (0.3–1.2) 

Infants-cord blood 
(n=45): 
5.8 (0.3–40.3) 
  
29 of 45 (64%) infants  
had levels >2 µg/mL 

Christensen 
1982 

(Christensen et 
al., 1982) 
Sweden 

Case-
control 

16 with GBS 
2 with Ia 
4 with Ib 
2 with II 
8 with III 
(12 EOD6, 

3LOD7, 
 1 death) 

29 pregnant 
women 

urogenital 
colonised 
10 with Ia 
5 with Ib 
5 with II 
9 with III 

 

Pregnant 
women with 

serotype-
specific urethra 

and cervix 
colonisation and 

infant did not 
develop GBS, 
all term infants 
(Sera on 5 in 1st 

trimester) 

Radiolabelled 
protein A 

Ia, Ib, II, III 
(IgG) 

Not 
reported 

Mothers (n=16):  
14 of 16 had lower 
serotype-specific 
antibody than controls 

Mothers (n=29): 
All had higher antibody 
levels than cases except 
for 2 cases 

No 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Klegerman 
1983 

(Klegerman et 
al., 1983) 

USA 

Cohort 
11 with GBS Ia 
(8 EOD, 7S 1M; 
 3 LOD, 2S 1M) 

25 Pregnant 
women 

vaginally or 
rectally 

colonised with 
Ia  
 

50 randomly 
selected 
pregnant 
women 

Pregnant 
women with 
serotype Ia 

vaginal or rectal 
colonisation and 

infant did not 
develop GBS 

 

ELISA4  
Ia 

(IgG) 
Not 

reported 

Mothers and infants/cord 
(n=11): 
None of the 11 infected 
infants had level 
≥0.17 µg/mL 
 
Median 0.04 (<0.03–
0.16) 

Mothers colonized 
(n=25): 
36% of colonised had 
level ≥1 µg/mL 
 
Mothers randomly 
selected (n=50): 
12% of randomly 
selected had level 
≥1 µg/mL 

No association 
established between 
capsular antibody 

levels in colonised and 
non-colonised mothers 
and risk of disease in 

newborn.  
Colonised women 

had higher levels than 
non-colonised 

 

Gotoff 1984 
(Gotoff et al., 

1984) 
USA 

Cohort 

9 with GBS Ib 
(5 EOD, 5S; 

 4 LOD, 2S 2M) 
[5 premature: 25-

35 weeks] 

25 Pregnant 
women 

vaginally or 
rectally 

colonised with 
Ib 
 

50 randomly 
selected 
pregnant 
women 

Pregnant 
women with 
serotype Ib 

vaginal or rectal 
colonisation and 

infant did not 
develop GBS 

 

ELISA 
Ib 

(IgG) 
Not 

reported 

Mothers and infants/cord 
(n=9): 
Median 0.06 (<0.03–
0.09) 
 
None of the 9 infected 
infants had level 
≥0.2 µg/mL  

Mothers colonized 
(n=25): 
Median 0.15 (<0.02–4.7) 
44% of colonised had 
level ≥0.2 µg/mL 
 
Mothers randomly 
selected (n=50): 
Median 0.03 (<0.02-
39.9) 
20% of randomly 
selected had level 
≥0.2 µg/mL 

No association 
established between 
capsular antibody 

levels in colonised and 
non-colonised mothers 
and risk of disease in 

newborn.  
Colonised women had 
higher levels than non-

colonised 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Gray 1985 
(Gray et al., 

1985) 
USA 

Cohort 

15 with GBS II 
(13 EOD, 12S 

1M; 
2 LOD, 2M) 
[9 premature] 

347 colonized 
newborns (4 

sites) 
94 with Ia/c 
69 with Ib 
70 with II 
99 with III 

15 with Ia&III 
 

54 non-
colonized 

 

Healthy 
newborn with 

serotype 
colonization at 

4 sites-(ear, 
umbilicus, 

throat, anus)  
 

95% of infants 
were cultured,  

 (60% of 
mothers-de 

facto) 

ELISA4 
II 

(IgG) 

No 
(Average 

was 
assumed 

from 
pooled 

Ig) 

Mothers and infants-cord 
(n=15): 
Calculated Mean ~1.77 
(0–4.5) 
 
5/15 (33%) with type II 
disease had levels 
≥2 µg/mL 

Mothers (n=401): 
Had GBS II antibody 
levels >2 µg/mL in 
24% of Ia/c 
15% of Ib 
37% of II (mean4.8) 
17% of III  
27% of Ia&III 
2% of non-colonized They chose >2 µg/mL 

as an indicative figure 
for prevalence and not 

as protective level  

Infants-cord blood 
(n=401): 
Had GBS II antibody 
levels >2 µg/mL in 
26% of Ia/c 
16% of Ib 
36% of II (mean 4.7) 
14% of III  
20% of Ia&III 
2% of non-colonized 

Gotoff 1986 
(Gotoff et al., 

1986) 
USA 

Cohort 

42 with GBS III 
(not specified) 
[24-41 weeks] 

 

25 Pregnant 
women 

vaginally or 
rectally 

colonised with 
III 
 

102 randomly 
selected 
pregnant 
women 

Pregnant 
women with 
serotype III 

vaginal or rectal 
colonisation and 

infant did not 
develop GBS 

 

ELISA 
III 

(IgG) 
Not 

reported 

Mothers and infants/cord 
(n=42): 
Median 0.05 (<0.02-0.3) 
 
None of the 42 infected 
infants had level 
>0.3 µg/mL 
 

Mothers colonized 
(n=25): 
Median 0.78 (0.1-10.7) 
9 of 25 (36%) of 
colonised had level 
≥1.3 µg/mL 
 
Mothers randomly 
selected (n=102): 
Median 0.05 (<0.02-
21.7) 
13% of randomly 
selected had level 
≥1.3 µg/mL 

 
0.75 µg/mL protected 

80% of mice and 
1.3 µg/mL protected 
97% of mice against 

lethal challenge 
 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Feldman 1990 
(Feldman and 

Ferrante, 
1990) 
UK 

Cohort 
19 with GBS III 
(not specified) 

 
10 (2 with III) 

mothers of 
colonized 
newborns  

 
  90 randomly 

selected 
pregnant 
women  

 
12 non-pregnant 

women 

Healthy 
newborn with 
non-specific 

serotype  
colonization  

 
 

ELISA4 
III 

(IgG) 

Yes 
(from C. 
Baker) 

Mothers (n=19): 
Mean 0.6 (<0.5–4.3)  
 
2 of 19 (11%) mothers 
had levels ≥2 µg/mL but 
their infants had levels 
below 

Mothers colonized 
(n=10): 
Mean~15 (<0.5–>100) 
 
Mothers randomly 
selected (n=90): 
Mean~12 (<0.5–>100) 
 
Non pregnant(n=12): 
Mean~11.5 (<0.5–>100) 

>2 µg/mL as 
protective 

Gray 1990 
(Gray et al., 

1990) 
USA 

 

Cohort-
1982 

abstract 
 

8 with GBS Ia 
(Not specified) 

 

347 colonized 
newborns (4 

sites) 
94 with Ia/c 
69 with Ib 
70 with II 
99 with III 

15 with Ia & III 
 

54 non-
colonized 

 

Healthy 
newborn with 

serotype  
colonization at  

4 sites-(ear, 
umbilicus, 

throat, anus) 
 

95% of infants 
were cultured,  

 (60% of 
mothers-de 

facto) 

ELISA 
Ia  

(IgG) 
No 

Mothers and infants-cord 
(n=8): 
 
2 of 8 (25%) with Ia had 
antibody levels 
≥ 2µg/mL 
mean~1.05 

Mothers (n=401): 
Mean for Ia (n=94) was 
9.1±8.3 
Mean for other serotypes 
(n=253) 7.3±8.2 

>2 µg/mL as 
epidemiological 

marker and not as 
protective level. 

Infants-cord blood 
(n=401): 
Mean for Ia (n=94) was 
6.5±5.1 
Mean for other serotypes 
(n=253) 6.5±5.7 
Had GBS Ia antibody 
levels >2 µg/mL in 
16% of Ia 
6% of Ib 
14% of II 
14% of III and  
5% of non-colonized 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Lin 2001 (Lin 
et al., 2001) 

USA 

Case-
control 

53 with GBS Ia 
(All <7days, 47S 
5SM 1M) 
[4 premature: <34 
weeks] 

336 colonised 
newborns with 

Ia 

Healthy 
newborn with 

serotype Ia 
colonization at 

4 sites-(ear, 
umbilicus, 

throat, anus) 

ELISA4 
Ia 

(IgG) 

Yes 
(serum- 
20-Nabi 
Pharm) 

Mothers (n=49): 
GMC5 0.32 
65%  had level 
<0.5 µg/mL 
 
2 of 49(4%) had level 
>5 µg/mL 

Mothers (n=326): 
GMC 0.65 
52%  had level 
<0.5 µg/mL 
 
 
 

On 45 cases and 319 
controls pairs 
Using <0.5 as 
reference (Odds=1) 
Mother: OR 0.69 if 
≥0.5 (31% reduction 
OR 0.45 if ≥2 (55% 
reduction) 
OR 0.12 if ≥5 (88% 
reduction) 
Cord: OR 0.58 if ≥0.5 
(42% reduction 
OR 0.09 if ≥4 (91% 
reduction) 
Suggested ≥5 µg/mL 
as protective 

Infants-cord blood 
(n=49): 
GMC 0.22 
1 of 49 (2%) had level 
≥4 µg/mL 

Infants-cord blood 
(n=323): 
GMC 0.52 
53 of 323 (16%)  had 
level ≥4 µg/mL 

Matsubara 
2002 

(Matsubara et 
al., 2002) 

Japan 

Cohort 
4 with GBS VIII 
(All <7 days 4S) 

13 Pregnant 
women 

vaginally 
colonised with 

VIII and  
538 non 

colonised at 28 
weeks  

Pregnant 
women 

vaginally 
colonised with 

VIII 

ELISA 
VIII 
(IgG) 

yes 

Mother (n=4): 
GMC 
0.41±0.07 (0.26-0.57) 

Mother: 
GMC 
Colonised with VIII 
(n=13) 
5.53±2.79 (0.47-33.85) 
 
Non colonised (n=535) 
1.53±0.32 (0.07-104.97) 

Suggested >1 µg/mL 
as protective 

Infant (n=4): 
GMC  
0.49±0.12(0.35-0.84) 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Reference 
Location 

Study 
design 

Cases/Infected 
with GBS n= 

(# at days after 
birth & sepsis(S) 
or meningitis(M) 

bone/joint(BJ) 

Controls/ 
Cohorts 

Matching 
criteria of 

controls/cohort 

Assay used GBS 
Antibodies 
(Total Ig 
or IgG)1 

Ref 
serum2 

Antibody levels in cases 
(in µg/mL) unless 
otherwise stated 

Antibody levels in 
controls/cohort 

(in µg/mL) unless 
otherwise stated 

Suggested threshold 
for protection 

Lin 2004 (Lin 
et al., 2004) 

USA 

Case-
control 

29 with GBS III 
(All<7 days 25S 

4SM) 

330 colonised 
newborns (4 
sites) with III 

Healthy 
newborn with  
serotype III  

colonization at  
4 sites (ear, 
umbilicus, 

throat, anus) 

ELISA4 
III 

(IgG) 

Yes 
(Serum-
19-Nabi 
Pharm) 

Mothers (n=28): 
GMC5 2.73 
11 of 28 (41%) had level 
<2 µg/mL 

Mothers (n=306): 
GMC 4.27 
27 of 306 (9%)  had 
level <2 µg/mL 

On 26 cases and 143 
controls pairs 
Using <2 as reference 
(Odds=1) 
Mother: OR 0.25 if 
≥2 (75% reduction 
OR 0.23 if ≥5 (77% 
reduction) 
OR 0.09 if ≥10 (91% 
reduction) 
Cord: OR 0.31 if ≥2 
(69% reduction 
OR 0.26 if ≥5 (91% 
reduction) 
OR 0.15 if ≥6 (85% 
reduction) 
Suggested 
≥10 µg/mL as 
protective 

Infants-cord blood 
(n=27): 
GMC 2.03 

Infants-cord blood 
(n=312): 
GMC 3.29 

Baker 2013 
(Baker et al., 

2013) 
USA 

Case-
control 

33 GBS 
17 with Ia 
9 with III 
7 with V 

(all<7days 29S 
4SM ) 

99 Pregnant 
women 

vaginally or 
rectally 

colonised 
matched for 

ethnicity, age 
and colonising 

serotype 

Pregnant 
women with 

serotype Ia, III 
or V vaginal or 

rectal 
colonisation and 

infant did not 
develop GBS 

ELISA 
Ia, III, V 

(IgG) 
Yes 

Mothers: 
Median (IQ range) 
Ia(n=17)-0.20(0.06-1.68) 
III(n=9)-0.06(0.02-0.12) 
V(n=7)-0.09(0.04-0.80) 

Mothers: 
Median (IQ range) 
Ia(n=51)-1.83(0.20-5.54) 
III(n=27)-1.64(0.14-5.51 
V(n=21)-0.53(0.07-1.0) 

Using <0.1 as 
reference,  
Relative risk  
Mother:  
For Ia-RR 0.11 if 
≥0.5 (89% reduction) 
For III-RR 0.09 if 
≥0.5 (91% reduction) 
For V-RR 0.29 if 
≥0.5 (71% reduction) 
 
Suggested ≥1 µg/mL 
as protective for Ia 
and III and 
probably V 

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2Reported using standardised reference serum, 3RABA- Radioactive Antigen Binding Assay, 4ELISA- Enzyme Linked 
Immunosorbent Assay, 5GMC’s- Geometric Mean Concentrations; 6EOD- Early Onset Disease (0-6 days age), 7LOD- Late Onset Disease (7-89 days age). ~denotes approximation.
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Table 1.4: Studies reporting on capsular antibody and animal survival against Group B Streptococcus challenges      

Author and 
Year of 

publication 

Animal 
model 

Anti-sera 
 

Inoculum [Lethal dose 
LD] 

Assay used GBS 
Antibodies 
(Total Ig or 

IgG)1 

Standar
dised 

referenc
e serum 

Comments 

Stewardson-
Krieger 1977 
(Stewardson-
Krieger et al., 

1977) 

Mice 
-Human sera  
-Gamma-globulin 

2 stock strain injected 
intra-peritoneal at the same 

time as sera [LD90] 

Lancefield 
method 

Ia 
(Total Ig) 

Not 
reported 

-14/56 sera protected ≥75% of mice challenged with 
GBS Ia 
-Pooled gamma globulin protected 100% of mice 
challenged with GBS Ia 

Baltimore 
1981 

(Baltimore et 
al., 1981) 

Mice 

-Commercial human 
immune globulin 
-Laboratory volunteers  
-Adults immunised with 
GBS-III vaccine 

1 clinical strain injected 
intra-peritoneal [LD90] 

RABA2 
III 

(Total Ig) 
Not 

reported 

-None of the groups of mice given the commercial 
human immune globulin or laboratory volunteer sera 
demonstrated ≥50% mice survival. 
-Groups of mice given the vaccinated adult sera 
demonstrated ≥50% mice survival 

Fleming 1982 
(Fleming, 

1982) 
Mice 

-Pooled human immune 
globulin 
-Rabbit antisera  
-Adults immunised with 
GBS-III vaccine.  

2 stock strains injected 
intra-peritoneal [LD50] 

RABA 
III 

(Total Ig) 
Not 

reported 

-100% of mice given the commercial human immune 
globulin and rabbit antisera demonstrated survival. 
-52% of mice litters given the vaccinated adult sera 
demonstrated survival 

De Cueninck 
1982 (De 

Cueninck et 
al., 1982) 

Rats 
-Human sera (pre and post 
vaccination with GBS-III 
vaccine).  

2 stock strain injected 
subcutaneously [LD50] 

ELISA3 
III 

(IgG) 
Yes 

-Pre-vaccinated sera did not protect rats. 
0.8 µg/mL of  subject 1 sera protected 100% of rats 
0.6 µg/mL of  subject 2 sera protected 90% of rats  
0.2 µg/mL of  6 subjects sera protected 50% of rats 

Larsen 1983 
(Larsen et al., 

1983) 
 

Monkey 

-5 received IVIG 24 hours 
prior to inoculum 
-5 received IVIG 24 hours 
prior to inoculum as well 
as their babies at birth 
-17 did not have any IVIG 

Intra-amniotic inoculum24 
hours before delivery. 

 
RABA 

III 
(Total Ig) 

Not 
reported 

60%  mortality in IVIG group 
71%  mortality in no IVIG group 
Similar mean antibody levels 

Klegerman 
1983 

(Klegerman 
et al., 1983) 

 

Mice 
-Human donor sera with 
antibodies to GBS Ia.  
 

1 stock strain and 4 clinical 
strains injected intra-

peritoneal 24 hours later 
[LD90] 

 

ELISA 
Ia 

(IgG) 
Not 

reported 

0.50 µg/mL protected 100% of mice (stock strain) 
0.25-1 µg/mL protected 100% of mice dependant on 
strength of inoculum of clinical strains 
Therefore ≥1.0 µg/mL suggested as protective 

Boyer 1984 
(Boyer et al., 

1984a) 
 

Mice 
-Human donor sera with 
antibodies to GBS Ib.  
 

1 stock strain and 4 clinical 
strains injected intra-
peritoneal 24 hours later  

[LD90] 

ELISA 
Ib 

(IgG) 
Not 

reported 

0.038-0.175 µg/mL protected 100% of mice 
dependant on strength of inoculum 
Therefore ≥0.2 µg/mL suggested as protective 

Gotoff 1986 
(Gotoff et al., 

1986) 
 

Mice 
-Human donor sera with 
antibodies to GBS III. 
  

Inoculum from 4 clinical 
strains injected intra-

peritoneal 24 hours later 
[LD90] 

 

ELISA 
III 

(IgG) 
Not 

reported 

0.50 µg/mL protected 50% of mice  
0.75 µg/mL protected 80% of mice  
1.3 µg/mL protected 97% of mice  
Therefore ≥1.3 µg/mL suggested as protective  

1Total Ig or IgG- Total Immunoglobulin or Immunoglobulin G, 2RABA- Radioactive Antigen Binding Assay, 3ELISA- Enzyme Linked Immunosorbent Assay 
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In a meta-analysis, we selected studies reporting the proportion of invasive GBS disease cases 

and controls with an antibody concentration ≥2 µg/mL to serotypes Ia and III (Figures 1.4 and 

1.5). An antibody concentration of ≥2 µg/mL was chosen as this was initially suggested by 

Baker et al. to protect against invasive serotype III GBS disease (Baker et al., 1981). Although 

these studies are not directly comparable due to differences in methodology and absence of 

standardized immunological assay, the proportion of invasive GBS disease cases with a 

serotype-specific capsular antibody ≥2 µg/mL was generally lower than in controls. The odds 

of invasive GBS disease was 2.38 (95% CI: 1.20-4.70) and 6.56 (95% CI: 2.10-20.55) times 

greater in infants whose mothers had antibody levels <2 µg/mL for serotype Ia and III, 

respectively (Figure 1.4 and 1.5). 

 

 Over the past four decades, quantitative serotype-specific capsular antibody concentrations 

have been reported to be lower in infants with invasive GBS disease compared to levels in 

mothers of healthy infants or colonized but healthy infant controls. This systematic review, 

however, highlighted that differences in study-design, age-range of invasive GBS cases, 

antibody assay methods and lack of standardized reference serum (available from Dr Carol 

Baker and Nabi Biopharmaceuticals) between tests have limited the comparability of studies 

as well as the interpretation of the serologic outputs proposed as putative measures of 

protection. As such, these studies have been unsuccessful in determining an antibody level that 

could be used as a sero-correlate of protection. In addition, studies have not independently 

explored the association between antibody levels and LOD, and most studies mainly focused 

on disease caused by serotypes Ia and III. 
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Figure 1.4: Proportion of mothers of infants with a capsular antibody concentrations ≥2 µg/mL for serotype Ia, a meta-analysis 
 

 

Figure 1.5: Proportion of mothers of infants with a capsular antibody concentrations ≥2 µg/mL for serotype III, a meta-analysis 
Footnote: ~denotes approximation; pval is p-value
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Furthermore, the quantitative determination of IgG capsular antibodies transferred from 

mother to infant is unlikely to be the only determinant of the correlate of protection; this 

measure should probably be supplemented with opsonophagocytic activity assays to measure 

antibody functionality (Hastings et al., 1985). The functionality of naturally occurring 

capsular antibodies in infants with invasive GBS disease cases and in pregnant women has 

been evaluated by some (Klesius et al., 1973, Hemming et al., 1976, Hastings et al., 1985, 

Kim et al., 1988); however, whether in vitro evaluation of opsonophagocytosis in neonatal 

serum correlates with in vivo protection is unclear because opsonophagocytic activity assays 

utilise exogenous components such as complement that may be physiologically deficient in 

the neonate (Edwards, 1986). Although opsonisation of GBS serotype III by naturally 

occurring antibodies was similar in colonized and non-colonized women (Hastings et al., 

1985), natural acquired capsular antibody to serotype III in infants with invasive GBS disease 

did not demonstrate opsonophagocytosis activity (Hemming et al., 1976). An association 

between opsonophagocytosis and higher antibody concentrations in healthy neonates and 

donor sera has, however, been shown (Kim et al., 1988, Feldman et al., 1998), and 

opsonophagocytic activity increases post-GBS vaccination (Lancaster et al., 2011, Edwards et 

al., 2012). 

 

This review also noted that a proportion of infants developed invasive GBS disease despite 

high antibody levels at birth in their mothers (Baker et al., 1977, Baker et al., 1981). This 

paradox may be due to maternal acquisition of GBS occurring just prior to delivery, resulting 

in a rapid increase of poorly functional antibodies being transferred to the foetus, which are 

inadequate to protect the neonate against invasive disease. The other possibility is that studies 

using RABA may have measured elevated IgM, rather than IgG, in the sera of mother’s blood 
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with recently acquired GBS colonization. Furthermore, antibody concentrations required to 

protect against different serotypes may vary, as demonstrated in experimental animal-model 

and in-vitro studies (Klegerman et al., 1983, Hastings et al., 1985). 

 

Further prospective cohort studies, in diverse settings, are needed to corroborate whether there 

is a possible sero-correlate of protection against invasive GBS disease. Such studies should 

also measure functional antibody, using opsonophagocytic activity assays, to improve the 

elucidation of the sero-correlate of protection against EOD and LOD. This could contribute to 

the licensure pathway of a GBS polysaccharide-protein conjugate vaccine without needing to 

undertake large scale efficacy trials in pregnant women. 

 

1.10.2 Sero-correlates of protection to GBS surface-proteins 

Most vaccines to GBS have elicited antibody responses to the antigens of the CPS-specific 

serotypes. However, even with a pentavalent CPS vaccine, serotype coverage may be limited 

in certain regions and non-typable strains of CPS range between 7–14% (Margarit et al., 2009, 

Madzivhandila et al., 2011). An alternate to capsular polysaccharide epitopes as vaccine 

targets against GBS, are the possibility of surface-protein antigens which are associated with 

virulence and genetically conserved across GBS strains. A number of GBS surface-proteins 

have been identified over the past few years and some have been shown to be immunogenic, 

inducing antibodies in animal studies and improving survival in challenge (Lindahl et al., 

2005, Meinke et al., 2010) (Table 1.5).   
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Table 1.5: Vaccine candidate studies using Group B Streptococcus (GBS) surface-proteins 

Protein name Biological function/ virulence potential Vaccine-candidate studies 

  Animal-model  Human 

α-C protein Unknown Yes Yes  

β-C protein Unknown Yes Yes 

Rib1 Unknown Yes Yes 

Alp2 (R28) Adhesion to epithelial cells Yes No 

Alp3 Unknown No No 

C5 Peptidases Inactivates human C5a; Adhesion to epithelial cells Yes No 

Pilus Island  Directly adheres to host epithelium Yes No 

FbsA2 
Adherence to host epithelium by binding 
fibrinogen on cell membrane 

Yes No 

FbsB3 
Adherence to host epithelium by binding 
fibrinogen on cell membrane 

Yes No 

BibA4 Assists in adherence to host epithelium Yes No 

Lmb5 
Adherence to host epithelium by binding laminin 
on cell membrane 

No No 

Sip6 Unknown Yes Yes 
1Rib- resistance to proteases immunity group B, 2FbsA- Fibrinogen-binding protein A, 3FbsB- Fibrinogen-
binding protein B, 4BibA- GBS Immunogenic Bacterial Adhesin, 5Lmb- Laminin-binding protein, 6Sip- surface 
immunogenic protein 
 

The DEVANI project reported no association between PI antibodies and the risk of invasive 

GBS disease (Melin and Efstratiou, 2013). However, mice-model studies reported that 

vaccination of pregnant mice with PI antigens was associated with survival in their litters 

following inoculation with the GBS strains (Margarit et al., 2009). These studies used ELISA 

to measure antibodies to PI-2a and -2b (Maione et al., 2005, Margarit et al., 2009). It is 

possible that based on the coverage of the PI antigens amongst the various serotypes, PI 

vaccines may potentially protect against 94-99% of invasive GBS strains (Margarit et al., 

2009, Martins et al., 2013). In addition, pili play a crucial role in adherence to mucosa, which 

is the primary step to vaginal-recto colonisation; and hence a PI based vaccine could 

potentially reduce GBS colonization in pregnant women and reduce mucosal acquisition of 

GBS in newborns (Margarit et al., 2009).  
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Similarly, animal model studies have identified FbsA and BibA as highly immunogenic and 

antibodies to these proteins protected mice from GBS inocula. (Santi et al., 2009, Meinke et 

al., 2010, Papasergi et al., 2013). Experimental models comprising of maternal immunization 

with subsequent neonatal pup challenge were conducted by vaccinating female mice with a 

fragment of the FbsA protein at three time points prior to mating. The pup litters were then 

injected with lethal doses of GBS inocula within 48 hours of birth. Vaccinating maternal mice 

conferred protection to 50% of their pups compared to no survival of pups born to 

unvaccinated mice (Papasergi et al., 2013). Similarly, maternal mice vaccinated with BibA 

surface-protein conferred protection to 68% their pups who survived a lethal GBS inoculum 

challenge. In addition, in-vitro opsonophagocytic assays demonstrated enhanced killing by 

polymorphonuclear cells using the vaccinated BibA sera in adult mice (Santi et al., 2009).  

 

Although the PIs, FbsA and BibA surface-proteins seem to be attractive vaccine targets for 

preventing invasive GBS disease in humans, based on the animal-model studies above, this 

needs to be corroborated in humans. Studies on the association between other surface-protein 

antibodies and colonisation or disease in humans include that on antibodies to surface 

immunogenic protein (Sip), resistance to proteases immunity group B (Rib), αC-protein and 

βC proteins (Moyo et al., 2001, Lachenauer et al., 2002, Larsson et al., 2006, Manning et al., 

2006, Pannaraj et al., 2007, Pannaraj et al., 2008) (Table 1.5). Overall, most studies of these 

human studies did not identify an association between surface-protein antibodies and the risk 

of EOD , with similar GMC’s observed in mothers of neonates with invasive GBS disease  

compared to GBS colonised mothers of healthy neonates. In the first case-control study, 

measuring the IgG to the βC protein by ELISA, the GMC in the 5 cases (1.51 µg/mL, range: 

0.49-7.07) was similar to the 13 colonised controls (1.88 µg/mL, range: 0.17-34.2) 
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(Lachenauer et al., 2002). Similarly, GMC’s in 9 cases (0.97 µg/mL, 95% CI: 0.48-1.97) were 

similar to the 16 colonised controls (0.76 µg/mL, 95% CI: 0.49-1.19) in a separate study on 

βC protein (Pannaraj et al., 2007). Also for αC protein, GMC’s were similar comparing 42 

cases (371 ng/mL, 95% CI: 261-525) to 58 colonised controls (313 ng/mL, 95% CI: 231-424) 

(Pannaraj et al., 2008). The only study to have reported increased odds of disease associated 

with lower antibody thresholds, measured antibodies to Rib and αC in Rib expressed strains of 

invasive GBS disease compared to colonised controls (Larsson et al., 2006). Consequently, a 

correlate of protection has not been demonstrated in humans for any GBS surface-protein. 

Virulence potential and immunogenicity of surface-proteins may need further investigation 

and conclusions cannot be drawn from these studies which generally had small sample sizes. 

 

1.11 The effect of HIV on Group B Streptococcus antibodies and the 
transplacental transfer  

The efficacy of a GBS polysaccharide-protein conjugate vaccine may also be dependent on 

factors such as the effect of maternal HIV-infection on antibody levels and transplacental 

transfer to the foetus. Transplacental antibody transfer to the foetus is almost exclusively IgG 

antibody, with more efficient transfer of IgG1 than IgG2 (Chu and Englund, 2014). Maternal 

GBS capsular and surface-protein antibody has been shown to correlate with cord 

concentrations at birth, although maternal antibody concentrations are low in the majority of 

women (Baker et al., 1977, Boyer et al., 1984c, Lagergard et al., 1992, Lin et al., 2001, 

Larsson et al., 2006). The transfer of maternal IgG antibody mostly occurs in the third 

trimester of pregnancy, and infant to maternal ratios are estimated between 77-125% at term 

(≥37weeks), 50-75% between 34-36 weeks, 50% by 32-34 weeks and 30% at 28-30 weeks 

gestation.  
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The transfer of maternal antibody across the placenta is via an active transport mechanism 

utilizing Fc receptors (Leach et al., 1996, Kruczek et al., 2010). IgG must cross over from the 

syncytiotrophoblast and endothelium to pass from the maternal to foetal circulation (de 

Moraes-Pinto et al., 1996). It is postulated that HIV-infection, which is associated with a 

hyper-gammaglobulinaemia state, may result in a saturation of these receptors, hence 

impeding antibody transfer to the foetus (de Moraes-Pinto et al., 1996). Additional factors that 

also influence transplacental antibody transfer include placental integrity, IgG subclass, 

malaria, malnutrition, high parity, and gestational age (Cumberland et al., 2007, Kruczek et 

al., 2010, Chu and Englund, 2014). It is also thought that surface-protein antibody, which is 

predominantly IgG1 subtype, is transferred more efficiently across the placenta than antibody 

to polysaccharide which is predominantly IgG2 (Chu and Englund, 2014). 

 

Low levels of maternal antibody to various epitopes have been reported in HIV-infected 

pregnant women (Jones et al., 2011, Gupta et al., 2014). Studies have also demonstrated lower 

transplacental transfer ratios of measles, varicella, tetanus, haemophilus, pertussis and 

pneumococcus antibodies in HIV-infected compared to HIV-uninfected maternal-newborn 

dyads (de Moraes-Pinto et al., 1996, Scott et al., 2005, Cumberland et al., 2007, Jones et al., 

2011, Gupta et al., 2014). In 46 HIV-infected mother-newborn dyads, the transplacental 

transfer ratio of IgG to varicella, measles, pneumococcus and tetanus was 20-30% less than in 

the 53 HIV-uninfected mother-newborn dyads (de Moraes-Pinto et al., 1996). Geometric mean 

tetanus cord to maternal antibody ratios in 617 HIV-uninfected pairs was 0.92 (95% CI: 0.89–

0.96) compared to 0.73 (95% CI: 0.65–0.82) in HIV-infected pairs (Cumberland et al., 2007). 

Similar results were reported for measles antibodies in the same setting (Scott et al., 2005). In 

South Africa, median cord to maternal antibody ratios demonstrated reduced transplacental 
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transfer of antibodies to Haemophilus influenzae type b (23%), pertussis (40%) and tetanus 

(27%) (Jones et al., 2011). This study reported no association between placental transfer of 

antibody and CD4+ T-lymphocyte or HIV-1 viral load counts. A subsequent analysis of this 

South African cohort (Le Doare et al., 2015), measured GBS antibody concentration and 

transplacental antibody transfer of 46 HIV-infected and 58 HIV-uninfected mother-infant 

pairs. HIV-infected mothers had lower baseline GMC’s than HIV-uninfected for serotypes 1a 

(p=0.02), Ib (p=0.03), II (p=0.03), III (p=0.04) and V (p=0.04). There was also a reduction in 

the median cord to maternal ratio of capsular antibody between HIV-infected and HIV-

uninfected mother-infant pairs for serotypes II (0.42 vs 1.00; p<0.01), V (0.51 vs 0.75; 

p=0.04) and III (0.54 vs 0.95; p=0.05), but not for serotypes Ia (0.66 vs 0.60; p=0.86) and Ib 

(0.48 vs 0.52; p=0.48) (Le Doare et al., 2015) 

 

Antibody transfer from mother to foetus is crucial in the protection against various organisms 

during early neonatal life. The negative effect of HIV on maternal antibody concentrations and 

the transplacental transfer has been documented. This needs to be considered in GBS vaccine 

development, especially in setting with high maternal HIV-infection prevalence. 

 

This study aims to: (i) Characterise the burden of invasive GBS disease and subsequent 

neurological sequelae thereof, including the effect of maternal HIV-infection on disease 

burden in infants; (ii) Determine the effect of maternal HIV-infection on antibody 

concentrations to GBS capsular and select surface-protein epitopes and transplacental transfer 

to newborns and (iii) Evaluate the association of maternal and infant serotype-specific 

capsular, pilus island, FbsA and BibA protein antibody concentrations and the risk of invasive 

GBS disease in young infants in a low-middle income setting.   
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2.0 Methods  

2.1 Study Objectives 

The objectives of my thesis were to undertake: (i) An epidemiological study describing the 

risk-factors, incidence and sequelae of invasive GBS disease in young infants; (ii) A cross-

sectional study evaluating the effect of maternal HIV-infection on GBS capsular and surface-

protein antibody levels and the transplacental transfer to the newborns; (iii) Determine  

whether a sero-correlate of protection against invasive GBS disease could be established for 

serotype-specific capsular antibody, as well as for selected GBS surface-protein epitopes. 

These objectives were addressed by a matched case-control study for the epidemiological and 

immunological studies (2.1.1 and 2.1.3); and a cross-sectional study for 2.1.2.   

 

2.1.1 Epidemiology of Group B Streptococcus   

1. To describe the incidence of early-onset and late-onset invasive GBS disease over a 

twelve month period (November 2012 to October 2013). 

2. To evaluate the effect of maternal HIV-infection on the incidence of invasive GBS 

disease. 

3. To investigate maternal and infant factors that are associated with invasive GBS 

disease. 

4. To describe the serotype distribution of early-onset and late-onset invasive GBS 

disease. 

5. To measure the mortality in infants with early-onset and late-onset invasive GBS 

disease. 

6. To describe the short-term (3 and 6 month) neurodevelopment outcomes in infants who 

had invasive GBS disease compared to matched healthy controls. 
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2.1.2 The effect of maternal HIV-infection on Group B Streptococcus antibody levels and 
transplacental transfer  

1. To determine the effect of maternal HIV-infection on serum serotype-specific capsular 

(Ia, Ib, III and V), pilus island (1, 2a and 2b), FbsA and BibA antibody concentrations. 

2. To evaluate the effect of maternal HIV-infection on the transplacental transfer of 

serotype-specific capsular (Ia, Ib, III and V), pilus island (1, 2a and 2b), FbsA and 

BibA antibody concentrations to newborns.  

3. To analyse the correlation between maternal CD4+ T-lymphocyte counts on maternal 

antibody concentration and transplacental transfer of serotype-specific capsular (Ia, Ib, 

III and V), pilus island (1, 2a and 2b), FbsA and BibA antibodies.  

4. To analyse the correlation between maternal HIV-1 viral load counts on maternal 

antibody concentration and transplacental transfer of serotype-specific capsular (Ia, Ib, 

III and V), pilus island (1, 2a and 2b), FbsA and BibA antibodies. 

 

2.1.3 Immunological correlates of protection against invasive Group B Streptococcus  

1. To determine the association between naturally acquired maternal GBS capsular (Ia 

and III) IgG antibodies and invasive GBS disease in infants born at ≥34 weeks 

gestational age.  

2. To evaluate the association between naturally acquired maternal GBS pilus island (1, 

2a and 2b) antibodies and invasive GBS disease in infants born at ≥34 weeks 

gestational age.  

3. To determine the association between naturally acquired maternal GBS FbsA and 

BibA antibodies and invasive GBS disease in infants born at ≥34 weeks gestational 

age.   
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2.2 Study Population  

2.2.1 Description of the study population 

South Africa has reported the highest incidence of invasive GBS disease in young infants 

globally over the last two decades (Dagnew et al., 2012, Edmond et al., 2012), mainly from 

studies conducted at Chris Hani Baragwanath Academic Hospital (CHBAH) (Madhi et al., 

2003, Cutland et al., 2015). CHBAH is the only public hospital to the residents of Soweto, a 

peri-urban black African suburb in Johannesburg. Standard preventative and management 

practices of invasive GBS disease have remained unchanged since the incidence was first 

reported in 1997 in this setting. For the purposes of our study, we expanded on the sample 

population by including the three largest hospitals offering paediatric and obstetric care in the 

greater Johannesburg metropolitan area. The two additional secondary-tertiary level hospitals 

included are, Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) and Rahima 

Moosa Mother and Child Hospital (RMMCH). In pregnant women without access to private 

health insurance (80-90%), delivery of babies generally occurs either at a government funded 

public hospital or midwife obstetric units (MOU’s) which are located within primary health 

care clinics in the community. These MOU’s would refer women with complications during 

labour (for example: cephalopelvic disproportion or slow progress) to their respective public 

hospitals. 

 

Of the six districts in the Gauteng province (see map- Appendix 5), CHBAH, CMJAH and 

RMMCH are located within the Johannesburg Metropolitan District but do receive referral of 

complicated cases of women in labour from hospitals in three other surrounding districts 

(West Rand District, Ekurhuleni District and Sedibeng District). The greater Johannesburg 

metropolitan is further divided into seven sub-districts, namely Regions A to G (see map- 
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Appendix 6). Region D citizens access health care at either CHBAH or five MOU’s. A further 

two MOU’s in Region G also refer complicated cases in labour to CHBAH. The CMJAH is 

situated in Region F with one MOU in this sub-district. The RMMCH is situated in Region B 

with no MOU in this sub-district. The single MOU in Region C refers to RMMCH and in 

region E refers either to CMJAH or RMMCH. CHBAH is predominantly utilized by black-

Africans, whilst CMJAH and RMMCH cater for a more diverse racial mix of individuals in 

central and northern regions.  

 

Within these sub-districts, infants with invasive GBS disease would be admitted to one of four 

regional hospitals that offer paediatric services, namely; CHBAH, CMJAH, RMMCH and 

Edenvale Hospital.  Infants are not hospitalized at the MOU’s or other primary level care 

facilities in these sub-districts. Table 2.1 outlines the GBS surveillance statistics from 2009 to 

2011 for each hospital in the Gauteng region, with the majority of cases in the Johannesburg 

metropolitan being diagnosed at CHBAH, CMJAH, RMMCH hospitals, whilst there was only 

a single case reported at Edenvale hospital. This surveillance data excluded cases admitted at 

private facilities in this region, however, <10% of the Soweto population have medical 

insurance (Mayosi and Benatar, 2014). Therefore, it is highly probable that most neonates 

living in this region would be admitted to CHBAH.  
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Table 2.1: Overall number of Group B Streptococcus cases (all ages) reported in government 
funded hospitals within the six districts in Gauteng province between 2009 and 2011 (National 
Institute of Communicable Diseases, 2012).  

District/region Hospital 2009 2010 2011 

JHB1 Region D Chris Hani Baragwanath Academic Hospital 109 108 99 

JHB Region F Charlotte Maxeke Johannesburg Academic Hospital 46 39 51 

JHB Region B Rahima Moosa Mother and Child Hospital 21 19 24 

JHB Region B South Rand Hospital (non-paediatric) - 4 1 

JHB Region B Helen Joseph Hospital (non-paediatric) 4 11 3 

JHB Region E Edenvale Hospital - - 1 

Ekurhuleni Far East Rand Hospital - 1 - 

Ekurhuleni Tambo Memorial Hospital 2 3 7 

Ekurhuleni Natalspruit Hospital 47 29 38 

Ekurhuleni Pholosong Hospital - 2 - 

Ekurhuleni Tembisa Hospital 6 10 8 

West rand Leratong Hospital 18 19 16 

West rand Dr Yusuf Dadoo Hospital 6 1 2 

West rand Carletonville Hospital 1 - - 

Sedibeng Sebokeng Hospital 10 9 7 

Thswane Tshwane District Hospital 1 3 1 

Thswane Steve Biko Academic Hospital 1 9 5 

Thswane Kalafong Hospital 5 13 10 

Thswane Dr George Mukhari Hospital 19 32 35 
1JHB- Johannesburg metropolitan  
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2.2.2 Obstetric and paediatric care in the study population 

Pregnant women are routinely evaluated at antenatal clinics close to their place of residence. 

At the first antenatal visit, the health of the mother and foetus is assessed by nurses and the 

gestational age of the foetus estimated. The mother is then followed up one to four weeks later 

(depending on the timing of her gestation), or referred to a hospital for continuation of 

antenatal care if assessed to have significant co-morbidities such as pregnancy induced 

hypertension, gestational diabetes, multiple pregnancies or previous complicated deliveries. 

Included at the first antenatal visit is screening for HIV and syphilis infection, and Rhesus 

blood group typing.   

 

The standard-of-care for testing for HIV-infection status in pregnant women is a rapid HIV 

antibody screening test followed by a confirmatory rapid HIV antibody test (National 

Department of Health, 2010). If the results are indeterminate, an HIV ELISA is done to 

confirm her status. Following a positive HIV result, a CD4+ T-lymphocyte count test is done 

and the mother clinically staged according to the World Health Organization (WHO) staging. 

Prior to April 2013, women with a CD4+ T-lymphocyte count >350 cells/mm3 and WHO 

stage 1 and 2 received antiretroviral prophylaxis with zidovudine (AZT) twice daily whilst 

those women with CD4+ T-lymphocyte count ≤350 cells/mm3 or WHO stage 3 or 4 were 

initiated on  triple antiretroviral therapy (ART), namely tenofovir (TDF), lamivudine (3TC) 

and nevirapine (NVP). From April 2013, the prevention of mother to child transmission 

(PMTCT) recommendation was amended so that all women regardless of their CD4+ T-

lymphocyte count are started on triple therapy (National Department of Health, 2013). 

Furthermore, a fixed dose combination tablet, daily dose regimen was instituted. The change 

in the PMTCT management of HIV-infected pregnant women phased in over the next 3-6 
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months. During labour, the mothers on triple ART continue their treatment, whereas those on 

AZT prophylaxis take AZT 3 hourly and receive a single dose of NVP, followed by a single 

dose of combination TDF and emtricitabine (FTC) after delivery. Those pregnant women with 

a CD4+ T-lymphocyte count <350 cells/mm3 are continued on ART, whereas if the CD4+ T-

lymphocyte count is >350 cells/mm3, the ART is continued until one week after cessation of 

breastfeeding. The infants are started on daily NVP for six weeks. Breastfed infants are to 

continue NVP as long as they are breastfeeding in mothers not on triple ART, but to stop NVP 

at six weeks if the mother is on triple ART or the infant is formula fed (National Department 

of Health, 2010) (National Department of Health, 2013). HIV-infected women in this setting 

receive their HIV care, which is fully funded by the State, at one of the antenatal clinics or at 

their respective hospitals. 

 

Paediatric and obstetric standard-of-care practises are generally similar across the three 

hospitals, all of which are affiliated to the Faculty of Health Sciences of the University of 

Witwatersrand. Although these hospitals are designated to function as secondary or tertiary 

level hospitals, deficiencies in primary health centres results in these hospitals also rendering 

primary-level health care services to mothers and their children, including a high proportion of 

uncomplicated deliveries occur at these facilities. Complicated deliveries and sick newborns, 

including those with suspected sepsis and meningitis are also referred to one of the above 

three hospitals. At CHBAH, the largest of the hospitals, approximately one-third of deliveries 

occur by Caesarean section. Furthermore, approximately 15-18% of births weigh <2500 grams 

(i.e. low birth weight; Table 2.2).
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Table 2.2: Estimated number of births at Chris Hani Baragwanath Academic Hospital (CHBAH) between 2005 and 2011 
(Department of Obstetrics and Gynaecology, 2012)  

 
2005 2006 2007 2008 2009 2010 2011 

Birth weight Total 
Live 
birth 

Total 
Live 
birth 

Total 
Live 
birth 

Total 
Live 
birth 

Total 
Live 
birth 

Total 
Live 
birth 

Total 
Live 
birth 

500-999 372 195 435 228 461 269 489 259 420 253 486 304 484 315 

1000-1499 510 439 634 501 584 492 624 516 670 518 654 538 627 523 

1500-1999 827 736 856 741 940 846 1063 939 934 831 1017 923 966 879 

2000-2499 1758 1679 2039 1945 2236 2164 2353 2253 2188 2120 2465 2385 2336 2245 

≥2500 16851 16718 18782 18645 19290 19147 19037 18882 18606 18472 18649 18515 18993 18841 

Total 20318 19767 22746 22060 23511 22918 23566 22849 22818 22194 23271 22665 23406 22803 

Caesarean 
Section 

5765 
(28.4%) 

 
6066 

(26.7%) 
 

6703 
(28.5%) 

 
7354 

(31.2%) 
 

7628 
(33.4%) 

 
8016 

(34.4%) 
 

8179 
(34.9%) 
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In Johannesburg, the “risk-based” rather than “universal screening” strategy is used for 

reducing the risk of EOD. Intra-partum antibiotics are recommended for women in whom 

GBS is isolated from a sterile site during pregnancy or labour, or women with maternal fever, 

non-labour related abdominal tenderness or prolonged rupture of membranes. However, a 

recent study in the same setting showed that only 10-12% of vaginal deliveries, regardless of 

risk factors, delivering at CHBAH received IAP during labour (Cutland et al., 2012). This is in 

contrast to the universal screening approach that is adopted in many high-income countries, in 

which pregnant women are screened for GBS recto-vaginal colonization at 35-37 weeks 

gestation and prescribed IAP during labour and at least 4 hours prior to anticipated birth if 

colonised with GBS. The universal screening approach has been shown to be a more effective 

than the risk based strategy on preventing EOD and is recommended as standard-of-care in 

USA (Verani et al., 2010).   

 

The care of newborns at the study hospitals include examination of all newborns with a birth 

weight of less than 2500 grams, newborns born before the mother reached hospital, newborns 

referred from the MOUs, or those with signs of respiratory distress or sepsis. First line 

antibiotics for management of neonatal sepsis at the hospitals are intravenous gentamicin and 

either penicillin or ampicillin. A full blood count and blood culture is routinely undertaken 

prior to initiating antibiotics. Furthermore, a lumbar puncture is undertaken to sample the 

cerebrospinal fluid (CSF) in all neonates with suspected sepsis, as well as if GBS is isolated 

from blood culture. 

 

Neonates and older infants who had already been discharged home following birth that are 

suspected of subsequently having sepsis or meningitis are admitted to the general paediatric 
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wards at the hospitals. Markers of infection, including a white cell count and C-reactive 

protein (CRP) are usually measured in addition to blood and CSF cultures. These procedures 

are undertaken at the discretion of the attending physician; however, there is a low threshold 

for investigating for sepsis in this setting. First line antibiotics for young infants with 

suspected sepsis is gentamicin and either penicillin or ampicillin; whilst those with suspected 

meningitis are empirically treated with a third generation cephalosporin (usually cefotaxime). 

 

2.3 Study Design and Method: Case-control study 

2.3.1 Study Design 

From November 2012 to February 2014, a matched case-control study was undertaken at the 

three University of the Witwatersrand-affiliated academic hospitals in Johannesburg, namely 

CHBAH, CMJAH and RMMCH. We planned on enrolling at least 80 cases of invasive GBS 

disease over twelve months, and aimed at recruiting five individually-matched controls for 

every case of invasive GBS disease (i.e. a 1:5 case-control ratio). We anticipated that from 

every five controls enrolled; at least one would be colonized with GBS (based on maternal 

GBS colonization data in this setting) (Kwatra et al., 2014).  

 

2.3.2 Inclusion and Exclusion Criteria 

Inclusion criteria for maternal participants 

(i) Pregnant women delivering at CHBAH, CMJAH, RMMCH or referred to these 

facilities from their respective MOU’s within 24 hours of delivery. 

(ii) Able to understand and comply with planned study procedures. 

(iii) Provides written informed consent. 
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Inclusion criteria for infants 

(i) Identification of GBS from a normally sterile site in infants admitted to CHBAH, 

CMJAH, RMMCH 

(ii)  Infants < 90 days of age 

Exclusion Criteria  

(i) Refusal for study participation 

(ii) Women on GBS vaccine trials 

	

2.3.3 Study Method 

2.3.3.1 Definitions of case and control subjects: 

Case subjects were defined as an infant <90 days old with GBS confirmed by culture on 

blood, CSF or other normally sterile site, or by latex agglutination of CSF. These cases were 

identified by daily surveillance, with the assistance of microbiology and/or paediatric staff. 

EOD was defined as isolation of GBS within the first 6 days of life. LOD was defined as 

isolation of GBS from days 7-89 after birth.  

 

Control subjects: To match for cases of EOD, healthy neonates were enrolled within the first 6 

days of life and followed through to ensure they remained free of invasive GBS disease until 

90 days of age.  Secondly, to match for cases of LOD, we enrolled infants born within 14 days 

(but >7 days of life) to the day of the case subject and who did not develop invasive GBS 

disease. All controls were further matched to cases for gestational age at birth (within 2 weeks 

of the gestational age if the case was born prematurely (<37 weeks gestation) and to term if 

the case was born at ≥37 weeks gestational age, maternal HIV-infection status, maternal age 

(within 2.5 years of the case mother’s age).   
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2.3.3.2 Assessment of gestational age: 

In order to achieve accuracy, gestational age at birth was calculated using the following 

hierarchal tools.  

1) The gestational age at birth was estimated from an ultrasound examination 

performed before 24 weeks gestational age. 

2) If the mother did not have an ultrasound examination performed before 24 weeks 

gestational age, gestational age staging was undertaken using the Ballard score 

completed within 24 hours of birth by the attending doctor or study staff.  

3) If the mother/infant did not have either of the above undertaken and was certain of 

her last normal menstrual period (LMP), this was used to stage the gestational age. 

4) In the absence of any of the above methods for calculating the gestational age at 

birth, we used any available ultrasound examination (≥24 weeks) to calculate the 

gestational age. 

5) If none of the above methods were available, then either the symphysis fundal 

height (SFH) at the time of labour was used, or the newborn was classified as being 

“term” if the birth weight was more than 2500 grams. 

 

2.3.3.3 Method for recruitment of Case subjects: 

Daily in-person audits with the National Health Laboratory Service (NHLS), Department of 

Microbiology and/or attending physicians were undertaken at CHBAH, CMJAH and 

RMMCH to identify cases of Streptococcus agalactiae from a sterile site. The mother was 

approached for consent and enrolment of her child and herself within 72 hours of the culture 

result becoming available. We attempted to enrol cases within a maximum period of 120 hours 

from the time the culture as delay in enrolment could have affected antibody measurements.
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Procedures conducted at the time of enrolment (Table 2.3): 

 Maternal and infant case report forms were completed by the study doctor or nurse. 

 Maternal and delivery history including identifiable risk factors for GBS were obtained 

from the mothers and from the available clinical records. For those mothers who 

delivered at one of the site hospitals, the maternal files were extracted for data. 

Furthermore, examination of the mother, the use of IAP and maternal blood results 

including HIV status and CD4+ T-lymphocyte counts were recorded.  

 Infant’s history, examination, routine blood results and in-patient management were 

recorded from the infants hospital file. 

 Bloods was taken from the mother (5mL) and infant (1-2mL) to measure antibodies to 

the four common CPS serotypes (Ia,Ib,III,V), and 5 proteins; 3 pilus proteins (PI-1, PI-

2a and PI-2b), FbsA and BibA. 

 The mother was swabbed (rectal and lower vaginal) for GBS culture and sero-typing.  

 A clean-catch midstream urine specimen was taken for GBS culture.  

 The mother was given a copy of the informed consent form and a card with a follow-

up date to return at the next visit. 

 Specimens were transported at room temperature to the laboratory at the Respiratory 

and Meningeal Pathogens Research Unit (RMPRU) for processing within 6 hours or 

otherwise refrigerated for 24-48 hours.  
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Table 2.3: Schedule of visits and procedures on participants in the study  

Schedule of visits Visit 1 Visit 2 Visit 3 Visit 4 

Time Period 

GBS1 culture 
positive or 

Control 
(enrolment) 

4 weeks post 
delivery 

(±1week)      
(21-35 days) 

12 weeks post 
delivery 

(±1week)      
(77-91 days) 

24 weeks post 
delivery 

(±1week)   
(161-175 

days) 

ICF2 signed X    

Inclusion/ exclusion/ Withdrawal 
criteria 

X    

Medical history (Mom) X    

Targeted physical exam (Mom) X    

Medical history (infant) X X X X 

Physical examination (infant) X X X X 

Denver-II developmental assessment 
(infant) 

 X X X 

Swabs (rectal &vaginal) for GBS 
culture (Mom) 

X    

Urine culture (Mom) X    

Maternal Blood for antibodies  
(Capsular,  Pilus, FbsA and BibA) 

X    

Cord/Infant Blood for antibodies 
(Capsular,  Pilus, FbsA and BibA) 

X    

1GBS-Group B Streptococcus; 2ICF- Informed consent form 

 

During the study, it was increasing difficult to enrol mothers whose newborn had demised 

from invasive GBS disease prior to the culture result becoming available. Once the culture 

result became available, the mothers were telephonically contacted to inform them of the 

disease as well as advise them on future preventative measures. The Ethics Committee also 

approved us retrospectively collecting clinical data from the medical records and run antibody 

analysis on residual sera at NHLS taken at the time of admission of the cases, in the event that 

consent was unavailable from the parent of the child.  
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Case recruitment started on the 7th November 2012 and ended on the 6th November 2013. Over 

the twelve month period, 126 cases of invasive GBS disease were identified from the three 

academic hospitals (Figure 2.1). We obtained consent from and enrolled 99 mother-infant 

pairs whilst data was retrospectively collected on a further 27 infants. Four subjects were 

excluded from the analysis, including two with recurrent episodes of invasive GBS disease, 

one case in which the culture result was revised to be Streptococcus viridans and one case 

which occurred in a 120 day old infant. Consequently, 122 invasive GBS disease cases were 

analysed, of which 119 isolates were serotyped. The cases in which serotypes were 

unavailable included two cases in which GBS was identified only on bacterial latex antigen 

and one case in which the isolate was not retrieved. For the antibody analysis, infant blood 

was unavailable on 10 subjects. Furthermore, we excluded two enrolled cases that had blood 

samples taken >120 hours from the date of culture and four infants in whom we were unable 

to enrol suitable matched controls. Therefore, serum was available from 103 infants (including 

1 set of twins) and 89 mothers (Figure 2.1).  
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Excluded from overall analysis 
Not GBS (n=1) 
>90 days (n=1) 
2nd episode of GBS (n=2) 
 
 
 
Excluded from antibody analysis 
Not serotyped (n=3) 
No serum/plasma (n=10) 
Serum obtained late (n=2) 
No matched control (n=4) 

 

 

 

 

 

 

 

 

 
Figure 2.1: Schematic representation of cases presenting at the three sites  
Footnote: CHBAH-Chris Hani Baragwanath Academic Hospital; CMJAH-Charlotte Maxeke Johannesburg Academic 
Hospital; RMMCH-Rahima Moosa Mother and Child Hospital; EOD-early onset disease; LOD-late onset disease.  

Overall n=126 
EOD= 66 
LOD=60

CHBAH n=84 
EOD=47 
LOD=37

CMJAH n=22 
EOD=11 
LOD=11

RMMCH n=20 
EOD=8 

LOD=12

99 mother-
infant pairs 

enrolled 

27 infants- 
retrospectively 
collected data

26 
EOD=17 
LOD=9 

96  
EOD=49 
LOD=47 

90[mother/infant pairs] 
EOD=47 
 LOD=43 

13[only infant blood] 
EOD=9 
 LOD=4 

CHBAH n=69 
EOD=40 
LOD=29

CMJAH n=16 
EOD=8 
LOD=8

RMMCH n=18 
EOD=8 

LOD=10

Overall n=103 
EOD= 56 
LOD=47

Total GBS cases-103  
EOD (n=56): <34=15; ≥34=41     
LOD (n=47): <34=6;   ≥34=41  

Total GBS cases-122  
EOD (n=66): <34=22; ≥34=44 
LOD (n=56): <34=8;   ≥34=48 

Informed by microbiologist or physician about invasive GBS 
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2.3.3.4 Method for recruitment of control subjects matched for EOD  

Controls were recruited over a fifteen month period from the 13th November 2013 to the 12th 

February 2014 during normal working hours at CHBAH only. Mothers in labour were 

screened to match the above criteria. Cord blood was collected during delivery and stored until 

the mother was clinically stable (±4 hours). Mothers of healthy neonates were identified, 

informed about the study, given an opportunity to read and sign the informed consent form 

and thereafter consented if willing to participate in the study. If the mother declined, the cord 

blood was discarded. In a minority (<5%) of deliveries, cord blood was not obtained and the 

mother was consented to obtain blood from the neonate within 72 hours of birth. The rest of 

the procedures conducted at the time of enrolment were the same as those mentioned in 

chapter 2.3.3.3 above. Audits of the microbiology laboratory continued three months after 

enrolment of controls ended to monitor whether any of the controls may have subsequently 

developed invasive GBS disease. Controls were also interviewed at the 3 month visit to 

confirm they were not hospitalized with sepsis. 

 

2.3.3.5 Method for recruitment of control subjects matched for LOD  

These infants were recruited from the community, except for the otherwise healthy premature 

infants who were also enrolled from the neonatal wards provided they had not been previously 

diagnosed with sepsis and the reason for hospitalization was only for feeding support and 

weight gain. Mothers of healthy infants were identified in the postnatal wards and given 

specific dates on which to return to the RMPRU clinic for enrolment. In addition, the 

maternity birth registers were used to identify mothers who were discharged with their baby 

after delivery and fulfilled the matching criteria. The contact numbers of these mothers were 
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sourced from the hospital patient registry. At the RMPRU clinic, mothers were informed about 

the study, given an opportunity to read the informed consent form and consented if agreeable 

to participate. The procedures carried out on the mother and infant were the same as for those 

listed for the cases in chapter 2.3.3.3 above.  

 

2.3.3.6 Follow-up visits of cases and controls 

Both cases and controls were followed up at 1, 3 and 6 months of chronological age at the 

RMPRU (Table 2.3). Those subjects who failed to attend the schedule visit within 14 days of 

the infants scheduled visit were excluded from the analysis of that age, whereas some were 

completely lost to follow-up because they did not attend any follow-up visits. For those 

children who did not attend follow-up, attempts were made to maintain the timing of the visit 

by contacting the next of kin, using alternative telephone numbers provided and by conducting 

home visits. 

 

The follow-up visits were conducted by one of two trained research assistants, an enrolled 

nurse or a study doctor (myself or RMPRU medical officer). All cases and controls assessed as 

having developmental delay were additionally evaluated by a study doctor (myself or RMPRU 

medical officer). At these visits, a directed medical history and examination was conducted on 

the infant with particular neurodevelopmental focus. The Denver Developmental Screening 

Test II (Denver-II) (Appendix 7) was used to identify infants with suspected developmental 

delay. In addition, infants with hypertonia and/or hydrocephalus were categorised as having 

abnormal neurological findings. Infants diagnosed with neurological abnormalities were 
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referred for further care, including for occupational, physio and speech therapy. No blood 

samples were taken at these visits. 

 

In 1992, the Denver-II was modified from the original Denver Developmental Screening Test 

which was developed in 1967 (Frankenburg et al., 1992). The Denver-II is a broadly accepted 

screening tool for developmental delay and has been approved by the American Academy of 

Pediatrics. The Denver-II, however, is not diagnostic or a predictor of later developmental 

delay. The Denver-II makes a valuable screening tool reaching sensitivities of 83% (Glascoe 

et al., 1992), which has been demonstrated to have high degree of intra- and inter-examiner 

correlation (Frankenburg et al., 1992). Furthermore, as the normal development of a child may 

be wide-ranging within ages, a percentile range based on growth and milestone curves in 

which each developmental test item may be accomplished is provided (Frankenburg et al., 

1992, Shahshahani et al., 2010).  

 

The Denver II includes 125 test items in 4 domains: gross-motor (32), fine-motor (29), 

language (39) and personal-social (25). An age line is drawn vertically corresponding to the 

age of the infant. For premature infants, an adjustment for the number of weeks to term is 

undertaken. At least three items to the left and three to the right of the age line are assessed in 

each of the four domains. Each test item is represented horizontally as a percentile age range 

(25-90%) for which it is estimated that the item can be achieved. The scoring system for the 

test items are graded as follows;  

 “pass”- the infant performed the item or the caregiver reported this 

 “fail”- the infant did not perform the item or the caregiver reported this 
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 “no opportunity”- the infant has not had the chance to perform the item as reported by 

the caregiver 

  “refusal”- the infant refused to attempt the item.  

A “fail” or “refusal” by the infant in an item to the left of the age line was classified as a 

“delay”, whilst a “fail” or “refusal” by the infant in an item through the 75-90% age percentile 

was classified as a “caution” (Figure 2.2). The final result was then scored as “normal” (no 

delays or 1 caution) or “suspect” (≥2 cautions or ≥1 delay) in each of the four domains. 

 

 

 

 

 

Figure 2.2: Interpretation of Denver-II scoring system (adapted from the Denver II screening 
test) 

 

2.3.4 Laboratory Method 

2.3.4.1 Blood and CSF collection and processing for GBS isolation. 

Investigation for invasive GBS disease was undertaken at the discretion of attending 

physicians as part of the standard-of-care. Group B Streptococcus isolation by culture from 

otherwise sterile sites (blood or CSF) was undertaken by the NHLS. Blood was inoculated into 

a Bactec bottle at the infant’s bedside by the attending physician at the time of admission and 

processed through a Bact/Alert microbial system (Organon Teknika, Durham, NC). A positive 

specimen was then plated on blood and chocolate agar incubated both aerobically and at 35ºC 

under 5-10% CO2, and observed for growth for a period of 72 hours. CSF specimens obtained 

Caution Delay 

25th  75th  90th  25th  90th  75th  
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from a lumbar puncture of the infant were Gram stained and then directly plated onto blood or 

chocolate agar plates and inoculated into an enrichment broth (Brain Heart Infusion, 

Diagnostics Media Production) and observed for growth for 72 hours. These specimens were 

subjected to a GBS antigen agglutination test if culture did not yield growth and if the cell 

count was suggestive of meningitis. In addition, direct susceptibility was done as per 

laboratory standard operating procedure, according to Clinical and Laboratory Standards 

Institute (CLSI) guidelines. At the time of enrolment, the positive plate was retrieved from the 

NHLS microbiology laboratory and transported to the RMPRU laboratory for serotyping, pilus 

typing and storage of GBS isolate. 

  

2.3.4.2 Maternal Vaginal, Rectal and Urine swab collection and isolation of GBS 

A single recto-vaginal swab was used to identify GBS colonisation in the first 8 cases and 22 

control mothers. This was amended to separate lower vaginal and rectal swabs subsequently to 

improve the sensitivity of GBS detection (Kwatra et al., 2013). The method of swabbing was 

otherwise consistent during the study period. Both vaginal and rectal specimens were collected 

using rayon tipped swabs (Medical Wire Equipment Co. Ltd. Cat: MW170). The rectal swab 

was inserted approximately 2 cm pass the anal verge and rotated against the rectal mucosa. 

The vaginal swab was inserted approximately 2 cm pass the introitus towards the lower vagina 

mucosal wall and rotated. Additionally, a swab of mid-stream urine sample collected in a 

sterile container was obtained for culture. All three swabs were inserted into the Amies 

transport medium without charcoal and transported to the RMPRU laboratory for processing. 

Swabs collected during normal working hours were processed within 24 hours, whereas swabs 

collected on weekends or public holidays were stored at 2-8°C and processed during 

laboratory hours.   
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Isolation of GBS from each swab was conducted according to the following procedures. 

Although conventional media detects GBS, we chose to use CHROMAgar StrepB as it is more 

sensitive in detecting GBS from rectal swabs and similar in detecting GBS from vaginal swabs 

(Kwatra et al., 2013). Furthermore, CHROMAgar StrepB has a higher specificity and detects 

non-haemolytic GBS as well (Morita et al., 2014). Swabs were plated out onto CHROMAgar 

StrepB (Media Mage Cat: M10155) in a semi-quantitative manner, by rubbing the swab onto 

the first quadrant of the agar plate, and then with a sterile loop streaking out across from the 

first quadrant to the second and then from the second to the third and from the third to the 

fourth quadrant. The CHROMAgar StrepB plates were incubated at 37°C for 18-24 hours in 

aerobic conditions and examined for growth of mauve GBS-like colony morphologies. If 

GBS-like colonies were not visible within 24 hours after incubation, the plates were incubated 

for a further 24 hours and re-examined for growth. If GBS like colonies were identified, they 

were subjected to further confirmatory tests, such as the catalase test, growth on bile esculin 

agar, inability to hydrolyze esculin, the Christie Atkinson Munch-Petersen (CAMP) test and 

the Welcogen bacterial latex agglutination test. Confirmed GBS isolates were stored in a 

medium containing skim milk, tryptone, glucose, and glycerin (STGG) at -70°C.  

 

2.3.4.3 GBS serotyping and pilus-typing 

The GBS isolates from the NHLS and the maternal swabs were serotyped and pilus-typed at 

RMPRU. Serotyping was performed by the latex agglutination method with specific antisera 

against types Ia, Ib and II to IX CPS antigens (Statens Serum Institute, SSI, Sweden) as 

described (Afshar et al., 2011). Briefly, GBS isolates stored in STGG storage medium were 

thawed and plated out on sheep blood agar supplemented with nalidixic acid and colistin. A 
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suspension was made of isolated GBS colonies that were picked off from sheep blood agar in 

50μL of sterile saline in a sterile tube. Five microliters of the suspension were pipetted onto a 

glass slide with an equal volume of the latex bead suspensions, mixed for 5 to 10 seconds and 

observed for agglutination. Any agglutination or clumping seen after 30 seconds was not 

classified as a positive reaction. The process of serotyping commenced with the more common 

antigens first, in the hierarchal order of Ia, III, V, II, Ib, IV, VI, VII, VIII and IX, with no 

further testing undertaken once a serotype was identified.  

 

Discordant serotype results from the rectal, vaginal or urine swab and those samples in which 

the invasive isolate serotype did not match the mothers colonising serotype were further typed 

by a single-plex polymerase chain reaction (PCR) method for serotypes Ia, Ib, II, III, IV and V 

using primer sequences described by Poyart et al. (Poyart et al., 2007). The dlts gene was used 

as a PCR positive control for GBS identification.  Briefly, stored GBS isolates were sub-

cultured on 5% blood agar supplemented with nalidixic acid and colistin and incubated for 

growth. Colonies were picked off and the Deoxyribonucleic Acid (DNA) was extracted using 

the NucliSENS® EasyMAG. The sample is then subjected to 40 PCR cycles to amplify the 

DNA. Each cycle goes through stages which activate the Taq DNA polymerase, denaturing of 

the DNA template, anneal the complementary primers to the target gene and extension of the 

DNA strand. The results were then interpreted by identifying the matching band size on 

agarose gel electrophoresis.  

 

Pilus island typing of all invasive and colonizing GBS isolates were detected by real time PCR 

using TaqMan probes for PI-1, PI-2a and PI-2b, with primers that target the genomic regions 
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coding for the ancillary protein-1 of each PI  as described previously (Madzivhandila et al., 

2013).  Briefly, GBS isolates were sub-cultured on sheep blood agar supplemented with 

nalidixic acid and colistin and incubated overnight at 37 °C in 5 % CO2. A single GBS colony 

was suspended in 300 µL nuclease-free distilled water, heated at 95°C for 10 minutes, and 

centrifuged at 9000g for 1 min to pellet the cell debris. Four microliters of the supernatant was 

added to each PCR. The PCRs were run on an AB 7500 instrument (Applied Bio-systems; 

Singapore) in a 25 µL reaction volume with TaqMan universal PCR master (Applied Bio-

systems, USA). The detection of PI-2b was performed as a single-plex reaction, and PI-1 and 

PI-2a were detected in duplex. GBS strains 2603 V/R (PI-1 and PI-2a) and COH1 (PI-2b) 

obtained from American type culture collection (ATCC) organisation were used as reference 

strains. A threshold CT value is generated when the fluorescence passes through if 

amplification occurred. We did not investigate isolates for expression of FbsA and BibA. 

 

2.3.4.4 Blood Sample collection, processing and storage 

Maternal and infant blood sample were collected by venepuncture of a peripheral vein using 

sterile techniques. Five to ten millilitres of cord blood was collected at birth. The cord was 

clamped distally and the blood milked towards the distal end. Blood was aspirated into a 

syringe from the cord vessels. All blood samples were kept at room temperature to allow 

clotting; following which it was transported within 4-6 hours to the RMPRU lab for 

processing. The blood was stored in the 2-8ºC at RMPRU if not processed immediately for a 

maximum period of 24 hours. Blood was centrifuged for 5 min at a 3220 relative centrifugal 

force, equivalent to 4000 rpm (revolutions per minute). The serum was then aliquoted into 2-3 

pre-labelled tubes and stored at –70ºC. Serum samples were processed in batches.  
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2.3.4.5 Antibody measurement in serum/plasma using a multiplex Luminex assay  

Quantitative serum serotype-specific and surface-protein IgG antibody concentrations were 

measured with a multiplex Luminex platform. The multiplex Luminex assay is a fluorescence 

based micro-bead immunosorbent assay that utilizes differential dye-coded beads unique to 

each antigen against multiple antigens being tested in a single sample. 

 

2.3.4.5.1 The Luminex multiplex assay versus ELISA  

The multiplex Luminex is able to measure immune response simultaneously against multiple 

antigens, whereas the ELISA assay measures antibody responses individually for each antigen. 

The Luminex assay is consequently less labour intensive and requires less sample volume than 

the ELISA (Pang et al., 2005). The procedure of antibody determination by ELISA is 

undertaken by coating the well with the antigen and then adding the sample, incubating and 

allowing for antigen-antibody complexes to form. This is followed by a wash of the unbound 

antibody and the addition of enzyme-labelled secondary antibody and further incubation to 

allow binding.  The final step is the addition the enzyme substrate which is metabolized by 

secondary antibody bound enzyme to form coloured product. The sample plate is inserted into 

the machine and the optical density of the colour products measured. In contrast, the Luminex 

assay utilises differential dye-coded beads specific to the antigen. These beads are inserted 

into the well with the sample and incubated for binding to take place. Thereafter, fluorescent 

dye-labelled secondary antibody is added and further incubated. After washing off unbound 

antibody, the plate is inserted into the machine to measure fluorescence intensity. The 

fluorescence intensity is measured as digital signals of red and near-infrared to the beads. 

Antibody concentration is then calculated based on the fluorescence intensity values 

specifically to that antigen. 
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2.3.4.5.2 Reference Serum  

Capsular and pilus island protein antigens were kindly provided by Novartis Vaccines and 

Diagnostics (Italy), while BibA and FbsA protein antigens were provided by Valneva Austria 

GmbH. Capsular polysaccharides were coupled to the microsphere beads (Bio-Rad, CA, USA) 

with the crosslinking agent 4-(4,6 dimethoxy[1,3,5]triazin-2-yl)-4- methyl-morpholinium 

(DMTMM), while protein antigens were coupled to beads with a two-step carbodiimide 

reaction (Schlottmann et al., 2006, Ditse et al., 2013). Polygam (purified pooled commercial 

gammaglobulin; National Bioproducts, South Africa) was used as an in-house reference 

serum. Antibody concentrations against GBS capsular polysaccharides were assigned to a 

reference by calibrating them with standard GBS reference serums provided by an academic 

collaborator, Dr Carol J Baker from the USA. These concentrations are shown in Table 2.4. 

For the proteins, however, no international reference serum is available and thus laboratories 

assign in house arbitrary concentrations to the reference standard.  An arbitrary concentration 

of 10 000 units/mL for each protein antigen was assigned to the reference. For PI, antibody 

was measured to the backbone or ancillary protein antigenic targets on the surface of the pilus 

island, i.e. GBS-80 for PI-1, GBS-67 for PI-2a and SAN1518 for PI-2b (Figure 1.2). For 

BibA, we measured antibodies to the BibA-COH1 antigen. 

 

Table 2.4:  Antibody concentrations (against capsular polysaccharides) of the reference serum 
supplied by Dr Carol J Baker 

Serotype IgG (µg/mL) 

Ia 11.72 

Ib 4.33 

III 8.78 

V 6.41 
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2.3.4.5.3 Validation of multiplex assay 

The Luminex multiplex assay used to determine the antibody titres was validated with 

standard quality assurance validation steps including establishing the linearity of the assay, a 

multiplex versus single-plex comparison, determining the upper and lower limits of detection 

and the specificity of the in-house reference serum. 

 

The first step in the validation process was to develop the linearity and range of the assay.  

The standard curves were developed using Polygam reference at different dilutions for each of 

the tested antibodies (Figure 2.3.1-2.3.9).  The dilutions in the figures below are represented 

by “S” and were as follows: S1- 1:100, S2- 1:400, S3- 1:1600, S4- 1:6400, S5- 1:25600, S6- 

1:102400 and S7- 1:409600. 

 

   

Figure 2.3.1: Standard linearity curves for serotype Ia   
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Figure 2.3.2: Standard linearity curves for serotype Ib 

 

 

 

   

Figure 2.3.3: Standard linearity curves for serotype III  
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Figure 2.3.4: Standard linearity curves for serotype V 

 

 

 

   

Figure 2.3.5: Standard linearity curves for pilus island-1 (PI-1)  
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Figure 2.3.6: Standard linearity curves for pilus island-2a (PI-2a) 

 

 

 

   

Figure 2.3.7: Standard linearity curves for pilus island-2b (PI-2b)  
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Figure 2.3.8: Standard linearity curves for GBS Immunogenic Bacterial Adhesin 
(BibA)  

 

 

 

   
Figure 2.3.9: Standard linearity curves for fibrinogen-binding protein A (FbsA)  
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The Luminex assay was also validated by comparing the median fluorescence intensity (MFI) 

values for reference serum (Polygam 1:100 dilution) obtained with the multiplex assay as 

compared to those obtained by single-plex assays. We observed a maximum variation of 20% 

in the results (Table 2.5). These were not undertaken for FbsA and BibA. 

 

Table 2.5:  Median fluorescence intensity (MFI) values obtained for reference serum at 1:100 
dilutions with the multiplex assay as compared to those obtained by single-plex assays for IgG 
antibodies 

Antigen Median % Min % Max % 

Ia 100 86 111 

Ib 85 79 97 

III 101 84 110 

V 103 82 112 

PI-1 105 80 122 

PI-2a 105 82 119 

PI-2b 106 81 120 
 

 

Lower limits of detection (LLD) for the multiplex assay were calculated from the fluorescence 

of the mean blank value plus 3 standard deviations whilst lower limits of quantification (LLQ) 

were calculated from the fluorescence of the mean blank value plus 10 standard deviations. 

The LLD and LLQ values were converted to antibody concentration from an “averaged” 

reference curve consisting of the mean fluorescence values at each concentration and the 

concentrations for the cut off were determined relative to the reference. For statistical 

purposes, any value that falls below the LLD was assigned a value of half of the LLD 

(Table 2.6).  
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Table 2.6: Lower limits of detection for capsular and surface-protein antibody concentrations 

  ug/mL AU/mL 

Serum IgG Ia Ib III V PI-1 PI-2a PI-2b BibA FbsA 

Mean (FI1)  2.20 1.73 1.97 1.62 1.54 1.5 1.4 2.21 2.47 

Standard deviation SD (FI)  0.57 0.38 0.38 0.48 0.41 0.34 0.32 0.59 0.76 

Mean + 3SD (FI)  3.91 2.86 3.11 3.07 2.78 2.52 2.35 3.99 4.75 

Mean + 10 SD (FI)  7.91 5.52 5.78 6.46 5.68 4.90 4.58 8.14 10.06 

LLD2 (Mean + 3SD) 0.0008 0.002 0.004 0.016 41 110 46 6 19 

LLQ3 (Mean + 10 SD ) 0.0017 0.0189 0.0343 0.194 83.5 250.7 100 9.6 61 

½  of LOD  0.0004 0.001 0.002 0.008 20.5 55 23 3 9.5 

1FI-Fluorescence intensity;  2LLD- lower limits of detection; 3LLQ- lower limits of quantification. 

 

To assess analytical specificity and to verify antigenic integrity of each GBS antigen–

microsphere set, each GBS antigen (100 µg/mL) was incubated at 37˚C for 2 hours as an 

inhibitor to different wells containing the multiplexed GBS–microsphere mix and reference 

serum added at 1:100 dilutions. Following incubation, the serology assay was performed. 

Specificity results for each GBS antigen–microsphere using homologous and heterologous 

inhibition were determined by calculating the percent inhibition in MFI signal in the presence 

of the GBS inhibitor relative to the FI signal in the absence of the inhibitor using the following 

equation. 

% inhibition =100 X  ((FI of reference serum )- (FI of reference serum  + inhibitor antigen)) 
                                                                              FI of reference serum  
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We achieved >87% specificity with the CPS antigens. Cross-reactivity was observed between 

serotype Ia and Ib antigens and between serotype III and V antigens. No significant cross-

reactivity was shown between surface-proteins. The specificity of FbsA was low (Table 2.7). 

 

Table 2.7: Specificity and cross reactivity of capsular and surface-protein antibody using the 
multiplex assay  

Antigen Ia Ib III V PI-1 PI-2a PI-2b BibA FbsA 

Ia 100% 31% 9% 8% 3% 2% 3% -10% -1% 

Ib 2% 98% 1% 3% -3% -2% -2% -13% -6% 

III 2% 1% 96% 17% 1% -1% 0% -11% -4% 

V 3% 11% 3% 88% 7% 6% 5% -5% 5% 

PI-1 -6% -16% -6% -24% 96% 2% -1% -9% 1% 

PI-2a -12% -18% -12% -25% 2% 95% -2% -23% -16% 

PI-2b -2% -4% 1% -9% 2% 4% 91% -6% 9% 

BibA 0% 2% -2% 5% 11% 11% 12% 93% 13% 

FbsA -1% -10% -7% -35% -15% -23% -15% -17% 32% 

 

High and low controls were screened by using samples with high and low antibody titres from 

a previous study at the RMPRU (Kwatra et al., 2015) . Antibody concentrations were assigned 

to the high and low controls using the in-house reference (Table 2.8). 

 

Table 2.8: High and low control capsular and surface-protein antibody concentrations 

Control 
µg/mL AU/mL 

Ia Ib III V PI-1 PI-2a PI-2b BibA FbsA 

High  7.72 1.17 8.58 3.86 4994 4227 3422 8135 5383 

Low  0.05 0.12 0.22 0.80 768 1568 725 3338 2213 
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With regard to the reproducibility of the assay, the coefficient of variation was 9.83, 10.94, 

12.32 and 9.53 for capsular serotypes Ia, Ib, III and V, and 8.29, 12.48, 8.49, 8.04 and 16.95 

for surface-proteins PI-1, PI-2a, PI-2b, BibA and FbsA, respectively. Once the validation 

process was completed, coating and counting of the beads were done at the beginning and 

repeated as required.  

 

2.3.4.5.4 The procedure for measuring antibody concentrations using the Luminex assay 

The following steps were undertaken to run serum samples:  

1. The dilution plate was labelled according to the samples to be tested  

2. Standards prepared from reference serum were serially diluted in four-fold dilutions 

beginning at 1:100. 

3. High and low controls were diluted at 1:100 dilution. 

4. The sample was diluted to 1:100, but this was modified to 1:200 after the 3rd run as 

many samples were over range. 

5. All samples, standards and controls were prepared in true duplicates 

6. The filter plate was saturated with 100µL of assay buffer (Phosphate buffer solution 

7.2, 10% Foetal Bovine serum and 0.05% Sodium Azide) and the plate was vacuumed 

7. The antigen coated beads were prepared in assay buffer.  

8. Each well would roughly contain 3500 beads of each of the nine tested antigens. 

9. The plate was then washed twice with wash buffer (Phosphate buffer solution 7.2, 

0.5% Tween, 0.02% Sodium Azide).Washing is simply pipetting the wash buffer 

solution in the wells followed by vacuum of the plate. 

10. 50µL of the sample, standards and controls were added into its corresponding well. 
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11. The plate was incubated with the sample at room temperature for 60minutes on a 

shaker. 

12. The secondary antibody was prepared in wash buffer (1:100) 

13. After incubation, the plate vacuumed and washed three times with wash buffer 

14. 50µL of the secondary antibody was added to each well. 

15. The plate was further incubated with the sample at room temperature for 30 min on a 

shaker. 

16. After incubation, the plate vacuumed and washed three times with wash buffer  

17. Then we added 130µL of wash buffer to each well. 

18. Thereafter, 100-110 µL of wash buffer containing beads were transferred to the 

reading plate.  

19. The Luminex machine was calibrated and setup with the plate format  

20. The bead numbers were allocated with respect to coating antigen. 

21. Antigen specific antibody concentration for the standard and controls were entered into 

the machine.  

22. Samples information with respect to dilution and sample identity were entered into the 

machine.   

23.  The plate was inserted into the machine for the run.  

24. Acquisition software (Bio-Plex Manager) was used to acquire and analyse data using a 

5 Parameter Logistic curve fit. 

25. Only 38 samples could be run at a time and took approximately an hour to run.  
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2.3.4.5.5 Quality Assurance of tested samples 

The quality assurance of each tested plate of samples included identifying the over range 

samples which were then re-tested at higher dilutions (1:300-1:1000). In addition, 

concentration for high and low controls for each plate were within acceptance criteria (i.e. ± 

30% of their original concentration), as well as a <20% coefficient variability was accepted 

between the true duplicates. Cross-checking of results was overseen by a senior medical 

scientist [Gaurav Kwatra] at the RMPRU. 

 

2.3.5 Data Analysis 

Data was collected on study-specific data collection forms and entered into specially designed 

Microsoft Access and Excel databases. Data were analysed using STATA version 13.1 

(College Station, Texas, USA), R version 2.15 (Vienna, Austria), JAGS (Plummer, 2003) and 

GraphPad Prism version 6.05 for Windows (GraphPad Software, California USA).  

 

2.3.5.1 Group B Streptococcus epidemiology 

Cases of GBS were stratified as EOD and LOD. The incidence (per 1,000 live births) of 

invasive GBS disease in the twelve month period was calculated as the number of EOD or 

LOD GBS cases of black-African descent, specifically residing in Region D (n=28755) and 

Region G (n=2749), among whom hospitalization occurs predominantly at CHBAH. Maternal 

HIV-infection was reported in 8827 (Region D: 8072 and Region G: 755) live births. We did 

not undertake incidence calculation for the other regions, due to the overlap of utilization of 

other health care facilities not under surveillance in those regions (Table 2.9).   
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Table 2.9: Live birth estimates for the Johannesburg metropolitan in regions D and G (District Research Committee, 2014) 

  2012 2013  
  

Region Hospital/MOU Nov Dec Jan Feb Mar April May June Jul Aug Sept Oct Total 
Total 

(region D 
& G 

HIV- 
infected 

 Hospital              

31504 
8827 

(28.0%) 

D CHBAH1 1707 1705 1982 1662 1902 1777 1804 1700 1951 2072 1837 1715 21814 

 MOU’s2              

D Lilian Ngoyi 201 197 204 181 160 180 182 189 185 152 185 186 2202 

D Mofolo 77 86 73 92 88 79 66 58 78 86 86 67 936 

D Chiawelo 90 95 83 67 112 83 110 110 100 101 110 100 1161 

D Zola 75 114 112 99 114 99 100 90 116 119 103 107 1248 

D Itereleng 110 122 123 113 113 110 104 144 118 110 112 115 1394 

G Stretford 87 91 104 109 111 111 116 109 131 101 102 97 1269 

G Lenasia South 110 114 115 124 124 123 106 119 127 139 149 130 1480 
1CHBAH- Chris Hani Baragwanath Academic Hospital; 2MOU’s- midwife obstetric units  
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Demographic and clinical characteristics were compared between cases of EOD and LOD. 

Odds ratios for proportions were reported using the Chi-square or Fisher’s exact test. Medians 

were reported for non-parametric variables and compared using the Mann-Whitney test. 

Serotype distributions were reported as proportions of the total number of cases serotyped and 

stratified by EOD and LOD 

 

Maternal and infant risk factors were compared between cases and matched controls. The 

primary objective of the case-control study was to compare neurodevelopmental outcomes and 

evaluate for serum capsular antibody thresholds associated with protection against invasive 

GBS disease, rather than to compare risk factors. Thus, using conditional logistics regression, 

multivariate odds ratios were calculated for identifying risk factors, which included adjusting 

for criteria that we matched controls to, as well as including risk factors identified in the 

univariate analysis with p-value <0.15.  

 

Survival analysis was conducted on infants with GBS at the 90 day of life time-point and 

stratified by gestational age, EOD and LOD. Kaplan-Meier survival estimates were 

constructed. Case fatality ratios were calculated as the proportion of deaths during 

hospitalization by the total number of GBS cases. 

 

Univariate and adjusted odds ratios (aOR) were also reported on predictors of mortality using 

chi-square and logistic regression test, respectively. In the multivariate analysis, an adjustment 

was made for those variables in which the univariate analysis reported p-value <0.15. 

Neurodevelopment parameters were measured for invasive GBS cases and matched controls at 

3 and 6 months of age. The proportion of cases and controls with a “suspect” score on the 
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Denver-II were reported. Infants with increased tone or and with evidence of hydrocephalus 

on cranial sonar or computed tomography (CT) brain scan were regarded as having abnormal 

neurological findings. Using conditional logistic regression, multivariate odds ratios were used 

to compare abnormal Denver-II and neurological findings between cases and controls. An 

adjustment was made for factors that may impact on neurodevelopment; including, gender, 

gestational age, birth weight <2500 grams, perinatal asphyxia, mechanical ventilation, infant 

HIV-exposure status and previous non-GBS hospitalizations.  

 

2.3.5.2 Association between capsular antibody levels and invasive Group B Streptococcus disease  

In keeping with previous studies (Lin et al., 2001, Lin et al., 2004), infants <34 weeks 

gestation were excluded from the analysis as they are likely to have low transpalcental 

antibody transfer (Boyer et al., 1984c, Christensen et al., 1984).  Furthermore, the analysis was 

restricted to serotypes Ia and III that were the dominant serotypes causing disease 

(Madzivhandila et al., 2011). For the primary analysis, we compared controls in which the 

mother was colonized with the same serotype (i.e. homotypic controls) that caused the disease 

in cases. A secondary analysis was conducted on controls in which the mothers were either 

non-colonized or colonized with GBS serotypes heterotypic to the case serotype (i.e. non-

homotypic controls). The primary analysis focused on maternal rather than infant antibody 

concentrations which could have been affected by possible antibody absorption related to the 

invasive GBS disease in cases. 

 

Using a method described by Kleinbaum and Klein, matched sets of cases and controls were 

pooled and the number of strata was reduced by combining interchangeable sets (Kleinbaum 
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DG and Klein M, 2002). Each stratum contained a case and a homotypic colonized control 

that was matched for all of the following five variables: (i) serotype, (ii) EOD or LOD, (iii) 

maternal HIV-status, (iv) maternal age as <25 years, 25-<35 years and ≥35 years and (v) 

gestational age as 34-<37 weeks and ≥37 weeks (Table 2.10). Conditional logistic regression 

was used to compare the proportion of stratum matched cases to homotypic colonized 

controls, and stratum matched cases to non-homotypic controls at different antibody 

thresholds using <0.1 µg/mL as a referent. An adjustment was made for those variables in 

which the p-value was <0.20 when comparing demographic and risk factors. Odds ratios and 

95% confidence interval were reported. Two-tailed p-values <0.05 were considered 

statistically significant. 

 

Table 2.10: Stratum matched interchangeable sets of cases and controls 

   Number of matched strata 
Maternal HIV 

status 
Maternal age 

(years) 
Gestational age 

(weeks) 
Ia-EOD1 Ia-LOD2 III-EOD III-LOD 

Negative 

<25 
34-<37 

1 7   
25-<35 2    
≥35     
<25 

≥37 
3 8 11 15 

25-<35 4  12 16 
≥35     

Positive 

<25 
34-<37 

   17 
25-<35   13  
≥35     
<25 

≥37 
5 9  18 

25-<35 6 10 14 19 
≥35     

1EOD- Early-onset disease, 2LOD- Late-onset disease.  

 

Demographic characteristics and commonly reported risk factors for invasive GBS disease 

were compared between stratum matched cases and homotypic colonized controls, and stratum 

matched cases and non-homotypic controls using Chi-square, Fisher’s exact or Mann-Whitney 

test. Median antibody concentrations were reported and stratified by EOD, LOD and maternal 
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HIV-status. Median infant to maternal ratios was compared between stratum matched EOD 

cases and controls using the Mann-Whitney test.  

 

To explore the association between antibody concentration and invasive GBS disease, we used 

a Bayesian model (Carey et al., 2001) to calculate the probability that a woman with serotype-

specific IgG concentration greater than or equal to c, gives birth to a neonate who would 

develop EOD or LOD due to the homotypic serotype, P(D|Ab>=c). We assumed antibody 

concentrations from cases and controls follow a Weibull distribution and placed non-

informative priors on the Weibull parameters. To adjust for the case-control design of the 

study, the model allocates a common stratum-specific marginal risk of disease to cases and 

controls from the same stratum.  A Beta (25, 2500) was used for the prior distribution of the 

marginal probability of disease P(D), corresponding  to a most probable marginal risk of 

disease equal to 0.4% with the central 95% mass falling within 0.25% and 0.60%. The 

marginal risk of serotype-specific disease was calculated as the proportionate risk of disease in 

colonized women for that serotype (i.e. based on the incidence of serotype-specific disease in 

this population and the maternal GBS colonization prevalence). Further details regarding the 

model have been described (Carey et al., 2001). Under the Bayesian framework, we obtain 

possible values for the quantity of interest, referred to as the posterior distribution, given the 

data and the prior information. The posterior mode and a range where the centre mass of the 

distribution lies are usually reported.  In our setting, we are interested in P(D|Ab>=c).  For 

each value c, we plot the posterior mode and the range from the 25th to 75th percentile of the 

posterior distribution.  
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2.3.5.3 Association between surface-protein antibody concentrations and invasive Group B 
Streptococcus disease  

The analysis plan for surface-protein antibody was similar to that undertaken for capsular 

antibody, except for the differences outlined below. For the primary analysis for FbsA and 

BibA antibody, we compared cases to controls whose mothers were colonized with GBS. For 

the primary analysis for PI-proteins, we compared cases in which the specific PI was 

identified from the invasive isolate to controls whose mothers were colonized with GBS 

strains with the homotypic PI (irrespective of serotype or the presence of two pilus island units 

in a sample). The secondary analysis compared cases to non-colonized controls. Each stratum 

contained a case and a colonized control that was matched for all of the following: (i) pilus-

type (for pilus protein analysis), (ii) EOD or LOD, (iii) maternal HIV-status, (iv) maternal age 

as <25 years, 25-<35 years and ≥35 years and (v) gestational age as 34-<37 weeks and ≥37 

weeks. Conditional logistic regression was used to compare the proportion of stratum matched 

cases to colonized controls, and stratum matched cases to non-colonized controls at different 

antibody thresholds. The referent was determined by visual analysis of the separation point 

between the cases and controls from the reverse cumulative plots. We adjusted for possible 

confounding variables in which the p-value was <0.20 in the univariate analysis.  

 
Bayesian modelling was undertaken to determine the absolute risk of disease per 1,000 live 

births. We assumed that the antibody concentrations follow a Weibull distribution.  The most 

probable marginal risk of disease was equal to 1% with the central 95% mass falling within 

0.64% and 1.41%. The marginal risk was calculated as the proportionate risk of disease and 

maternal GBS colonization reported in this population. We plotted the posterior mode and the 

range from the 25th to 75th percentile of the posterior distribution. Further details regarding the 

model have been described in chapter 2.3.5.2 above.  
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2.3.6 Quality Control 

For all cases, data of clinical information from the hospital records were extracted by myself. 

The majority of control subjects were enrolled by study assistants or enrolled nurses. Data was 

captured in real time onto specifically designed Microsoft Access databases. Source 

documentation underwent quality checks on average every second month. The database 

underwent a complete quality check with source document referencing between October 2013 

and January 2014 by a RMPRU employed data clerk. 

 

2.3.7 Ethics 

The study was approved by the University of Witwatersrand Human Research Ethics 

Committee (HREC) on the 28th September 2013 (HREC number: M120963; Appendix 8) and 

registered on the South African National Clinical Trial Register (DOH-27-0113-4309). 

Informed consent was obtained from women at the time of study-enrolment.   

Amendments to the protocol were made in January and April 2013 and included the following: 

1. “The mother of this infant will be approached for consent and enrolment of her child 
and herself within 72hours of the culture result.”  
 

This was amended to a week instead of 72 hours as this gave us more time to enrol the patient. 

 

2. “The mothers will be consented for her HIV status together with her CD4+ T-
lymphocyte and HIV-1 viral load counts undertaken in the past three months” 
 

The time frame of ‘past three months’ was removed as many mothers had their CD4+ T-

lymphocyte test done early in pregnancy. 
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3. “Five controls, matched for gestational age of the case (±2 week), maternal HIV 
status, maternal age (±2 years) and race will be identified and recruited within 21 days 
of the case.” 
 

The criteria for matching controls was amended for the maternal age from ‘±2 years’ to ±3 

years as we had difficulty in identifying controls with our strict matching criteria. We 

amended the time-frame for recruitment of the control from ‘within 21 days of the case’ to as 

close to the case as possible. 

 

4. “The positive plate will be retrieved from the NHLS microbiology laboratory for 
serotyping and storage” 
 

The standard practise of the NHLS laboratory was to discard the agar plate after 5 days 

without serotyping the organism due to the high cost of serotyping.  This was an essential 

component when evaluating the antibody levels in the infant as the antibody levels are directly 

related to the serotype causing disease. 

 

5. “For GBS isolation, swabs will be inoculated onto CNA agar (5 % horse blood with 
10μg/mL colistin and 15μg/mL nalidixic acid) and into 2mL of Todd-Hewitt broth 
supplemented with 8 μg/mL gentamycin and 15 μg/mL nalidixic acid, followed by 
inoculation onto 5 % horse blood agar” 
 

Based on research done in the unit, it was found that CHROMAgar is more sensitive at 

detecting GBS than the above-mentioned CNA agar and thus we decided to use the 

CHROMAgar for this study.	  
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2.4 Study Design and Method: Cross-sectional study 

2.4.1 Study Design  

A cross-sectional study was undertaken on pregnant mothers at the CHBAH from 29th January 

2013 to 17th July 2014 to determine the effect of maternal HIV-infection on GBS antibody 

concentration and the transplacental transfer to the newborn. The HIV-1 sero-prevalence 

amongst pregnant women in this setting was 28.4% during the study period 

 

2.4.2 Sample Size Calculation 

The sample size was premised on evaluating the differences in the ratio of antibody transfer 

between HIV-infected and HIV-uninfected mothers to their foetus with an 80% power  

	

Ratio	of	antibody	transfer	 	 	 	 	

	 	 	 	
	

 

It was hypothesized that the range of ratio of transplacental antibody transfer in HIV-

uninfected mother-newborn dyads is between 80-120% based on reported data (Boyer et al., 

1984c, Lagergard et al., 1992, Lin et al., 2001). From this, the sample population for both 

HIV-infected and HIV-uninfected was calculated for a 20%, 30%, 40% and 50% difference in 

antibody transfer (Table 2.11). These calculations are based on assuming that log (transfer 

ratio) is normally distributed with a standard deviation of approximately 0.5. An estimate 

sample of 79 HIV-infected and 79 HIV-uninfected pregnant women was required to detect at 

least 20% difference in transplacental transfer between HIV –infected compared to HIV-

uninfected women (Table 2.11).  
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Table 2.11: Sample size calculations based on differences in antibody transfer ratio 

 

2.4.3 Inclusion and Exclusion Criteria 

Inclusion criteria  

(i) Infant weight ≥2500grams 

(ii) Known maternal HIV-status 

 

Exclusion Criteria  

(i) Unwilling to consent to the study 

(ii) Unable to obtain maternal or cord/ infant blood 

(iii) Mothers currently on GBS vaccine trials 

(iv)  Previously vaccinated mothers against GBS 

	

2.4.4 Study Method 

Study staff members were stationed in the maternity wards during normal working hours from 

Monday to Friday at CHBAH. Gestational age was estimated using the same hierarchy of 

methods used in chapter 2.3.3.2. Cord blood was collected on potential participants at the time 

of birth. The mother was approached once clinically stable after delivery and consented to 

enrol in the study if she met the inclusion criteria. The cord blood was discarded if the mother 

declined participation.   

Transfer Ratio for HIV-uninfected  1.2 1 0.8 

difference=0.2  
HIV-infected 119 79 48 
HIV-uninfected 119 79 48 

difference =0.3 
HIV-infected 48 31 18 
HIV-uninfected 48 31 18 

difference =0.4 
HIV-infected 24 16 9 
HIV-uninfected 24 16 9 

difference =0.5 
HIV-infected 14 9 5 
HIV-uninfected 14 9 5 
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Procedures conducted at the time of enrolment: 

 Maternal and infant case report forms were completed by the study nurse, research 

assistant or study doctor. 

 Maternal and delivery history including identifiable risk factors for GBS were obtained 

from the mothers and from the available clinical records. Furthermore, examination of 

the mother, the use of IAP and maternal blood results including HIV status and CD4+ 

T-lymphocyte counts were recorded.  

 Infant’s history, examination, routine blood results and in-patient management were 

recorded from the infants hospital file. 

 Blood was collected within 24 hours of delivery from the mother (5mL) in addition to 

the cord blood at birth (5mL) for antibodies to the 4 common serotypes (Ia, Ib, III and 

V), and 5 proteins; 3 pilus proteins (PI-1, PI-2a and PI-2b), FbsA and BibA. Newborns 

were not tested for HIV-1 infection immediately after delivery. 

 Blood (2mL) was taken from HIV-infected mother for HIV-1 viral load testing. 

 The mother was swabbed (rectal and lower vaginal) for GBS culture within 24 hours of 

delivery.  

 The mother was given a copy of the informed consent form. 

 Specimens were transported at room temperature to the RMPRU laboratory for 

processing within 6 hours or otherwise refrigerated at 2-8°C for 24-48 hours. 

 

2.4.5 Laboratory Method 

The laboratory methods (i.e. maternal vaginal and rectal swab collection and isolation of GBS, 

serotyping and pilus-typing, and antibody measurement using a multiplex Luminex assay) for 

this study were the same as for the case-control study (chapter 2.3.4.2 to 2.3.4.5.). 
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In addition, for HIV-1 viral load testing, blood was collected in an EDTA containing tube, 

following which it was centrifuged for 5 min at 3220 relative centrifugal force, equivalent to 

4000rpm (revolutions per minute) to separate the plasma and buffy coat (leucocytes and 

platelets) from the erythrocytes and then stored at -70ºC. 

 

HIV-1 viral loads were measured using the real-time PCR COBAS® AmpliPrep/COBAS® 

TaqMan® HIV-1 Test, version 2.0. This was an in vitro nucleic acid amplification test for the 

quantitation of Human Immunodeficiency Virus Type 1 (HIV-1) RNA in human plasma using 

the Roche COBAS®. The test quantitates HIV-1 RNA over the range of 20-10,000,000 

copies/mL. Values below the detectable range of 20copies/mL were assigned the value of 20. 

 

2.4.6 Data Analysis 

Data was collected on study-specific data collection forms and entered into specially designed 

Microsoft Access and Excel databases. Data was analysed using STATA version 13.1 

(College Station, Texas, USA) and GraphPad Prism version 6.05 for Windows (GraphPad 

Software, California USA). Two-tailed p-values <0.05 were considered statistically 

significant.   

 

Maternal and cord blood IgG antibody concentrations were measured, and cord blood to 

maternal ratio calculated to compare the efficiency of transplacental antibody transfer between 

HIV-exposed and HIV-unexposed newborns.	Demographic characteristics were compared 

between HIV-uninfected and HIV-infected mother-newborn dyads using Chi-square or 

Fisher’s exact test for proportions whilst the Mann-Whitney test was used to compare the 
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medians. Antibody concentrations remained non-parametric after log transformation, thus 

median concentrations are reported.  

 

Median maternal antibody concentrations were compared between HIV-uninfected and HIV-

infected women at delivery and cord blood antibody concentrations between HIV-unexposed 

and HIV-exposed newborns using the Mann-Whitney test. Using quantile regression, median 

maternal antibody concentrations, cord blood antibody concentrations and cord to maternal 

ratios between HIV-uninfected and HIV-infected women were compared, and adjusted for 

overall colonization, colonizing serotype for homotypic capsular antibodies, maternal age and 

parity. The proportions of HIV-infected and HIV-uninfected women with serotype-specific 

capsular antibody concentrations (above different thresholds proposed to be protective against 

invasive GBS disease in their infants) was compared (Chapter 1.10.1). In HIV-infected 

women, CD4+ T-lymphocyte counts and HIV-1 viral loads were correlated with maternal 

antibody concentrations and cord to maternal ratios using Spearman’s test. Furthermore, the 

maternal antibody concentrations and cord to maternal ratios at varying CD4+ T-lymphocyte 

counts and HIV-1 viral load thresholds were compared using the Mann-Whitney test. 

 

2.4.7 Quality Control 

Quality control was carried out as outlined in chapter 2.3.6. 

 

2.4.8 Ethics 

The study was approved by the University of Witwatersrand Human Research Ethics 

Committee on the 7th November 2012 (HREC number: M120905, Appendix 9) and registered 
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as an observational study on the South African National Clinical Trial Register (DOH-27-

0113-4310). Written informed consent was obtained from the women at time of study-

enrolment. 

 

The HREC approved the study on condition that the manner in which we recruited the 

participants was amended. Instead of consenting mothers in labour, the HREC suggested that 

we obtain the cord blood which is normally discarded as standard practise and then consent 

the mother once she has settled clinically post-delivery. Should the mother decline 

participation, the cord-blood would have been discarded in the appropriate manner. 

 

In addition, an amendment to the protocol was made in February 2013. The South African 

PMTCT group had moved away from doing HIV-1 viral load testing in pregnant women 

routinely. In the protocol, we indicated that the HIV-1 viral load results will be obtained as 

part of the standard of care. HIV-1 viral load testing is thought to be an important determinant 

of placental antibody transfer in pregnant women. As this was no longer standard practice, we 

requested approval to obtain 1-2 mL of the mothers’ blood to do the HIV-1 viral load test.
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3.0 Burden of invasive Group B Streptococcus (GBS) disease and 
subsequent neurodevelopmental outcome in South African infants  

An estimated 680 000 neonatal deaths from severe bacterial infections occurred globally in 

2012 (Seale et al., 2014). Group B Streptococcus is a leading cause of sepsis and meningitis in 

neonates, despite the decline in incidence of EOD following widespread use of IAP for 

pregnant women recto-vaginally colonized in the USA (Thigpen et al., 2011, Weston et al., 

2011, Schrag and Verani, 2013).  In contrast, the burden of invasive GBS disease in low-

middle income such as South Africa, where screening for GBS during pregnancy coupled with 

IAP is not standard of care, has remained unchanged over the past two decades (Haffejee et 

al., 1991, Madhi et al., 2003, Cutland et al., 2015). Additionally, maternal HIV-infection has 

been associated with increased risk of invasive GBS disease in their infants (Epalza et al., 

2010, Cutland et al., 2015). In this chapter, the epidemiology of invasive GBS disease in South 

African infants was described (the published paper is attached as Appendix 2) 

 

3.1 Results 
3.1.1 Participant selection and demographic characteristics 

We identified 122 invasive GBS disease cases in infants <90 days of age over a 12 month 

period, including 82 (67.2%) at CHBAH, 22 (18.0%) at CMJAH and 18 (14.8%) at RMMCH.  

In addition, two infants (1.6%) had a recurrence of invasive GBS disease associated with the 

same serotype (i.e. Ia and Ib) at 5 and 8 days following completion of 10 and 7 days of 

intravenous antibiotics, respectively. Sixty-six (54.1%) infants had EOD, 95.5% (n=63) of 

which were identified within 24 hours of life, and all of them had bacteraemia. A higher 

proportion of cases occurred in males (55.7%) and 116 of 122 (95.1%) were of black-African 

descent, including 95.1% (n=78) of cases at CHBAH. The prevalence of premature birth   
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(<37 weeks gestational age) was more common among EOD (45.4%) than LOD cases (25.0%; 

p=0.019; Table 3.1); including when stratified to <34 weeks of gestational age (33.3% vs. 

14.3% respectively; p=0.015). The odds of presenting with meningitis were 45.91 (95% CI: 

10.04-410.36; p<0.001) times greater in LOD (58.9%) compared to EOD cases (3.0%), the 

latter presenting predominantly as sepsis (Table 3.1). Maternal HIV-infection was 3.50 

(95% CI: 1.53-8.09) fold greater among LOD (55.4%) compared to EOD cases (25.8%; 

p<0.001).  Only, 1 case and 1 control were diagnosed as HIV-infected at 6 weeks of age. 

 

3.1.2 Incidence and serotype distribution of invasive GBS disease 

Of 31 504 live births, there were 75 cases of invasive GBS disease in black-African infants 

residing in regions D and G; 73 (89.0%) infants presented to CHBAH and 2 (11.1%) to 

RMMCH. The overall incidence (per 1,000 live births) of invasive GBS disease was 2.38 

(95% CI: 1.87-2.98); the incidences of EOD (n=43) and LOD (n=32) were 1.37 (95% CI: 

0.99-1.84) and 1.02 (95% CI: 0.70-1.43) respectively. The estimated incidence of disease was 

significantly higher in HIV-exposed than in HIV-unexposed infants [3.40 (95% CI: 2.29-4.85) 

versus 1.94 (95% CI: 1.41-2.60) respectively; p=0.016]. The incidence of EOD was similar in 

HIV-exposed (1.13; 95% CI: 0.54-2.08) and HIV-unexposed (1.46; 95% CI: 1.00-2.04; 

p=0.487) infants but the incidence risk ratio of LOD was 4.67 (95% CI: 2.24-9.74) greater in 

HIV-exposed (2.27; 95% CI: 1.39-3.50) compared to HIV-unexposed infants (0.49; 95% CI: 

0.24-0.87; p<0.001). Overall, serotypes Ia, Ib and III constituted 75.8% and 92.5% of EOD 

and LOD cases, respectively (Figures 3.1 and 3.2).  Serotype Ia (48.5%) was the commonest 

cause of EOD and serotype III (64.2%) for LOD. Serotype V was the third commonest 

serotype, including 18.2% of EOD and 7.6% of LOD cases.  
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Table 3.1: Demographic characteristics of infants with invasive Group B Streptococcal (GBS) 
disease 

 All cases, 
n=122 

EOD1, 
n=66 

LOD2, 
n=56 

OR(95% CI)3 p-value4 

Gestational Age      
≥37 weeks 78 (63.9) 36 (54.6) 42 (75.0) 0.40 (0.17-0.93) 0.019 

<37 - ≥34 weeks 14 (11.5) 8 (12.1) 6 (10.7) 1.15 (0.32-4.31) 0.808 
<34 weeks 30 (24.6) 22 (33.3) 8 (14.3) 3.00 (1.13-8.56) 0.015 

Birth Weight      
≥2500 grams 77 (63.1) 38 (57.6) 39 (69.6) 0.59 (0.26-1.33) 0.169 

1500-2499 grams 27 (22.1) 14 (21.2) 13 (23.2) 0.89 (0.35-2.30) 0.791 
1000-1499 grams 10 (8.2) 7 (10.6) 3 (5.4) 2.10 (0.45-13.12) 0.292 

≤999 grams 8 (6.6) 7 (10.6) 1 (1.8) 6.53 (0.79-299.28) 0.068 
Gender      

Male 68 (55.7) 35 (53.0) 33 (58.9) 0.79 (0.36-1.72) 0.513 
Race      

Black 116 (95.1) 62 (93.9) 54 (96.4) 0.57 (0.05-4.20) 0.526 
Mixed race 6 (4.9) 4 (6.1) 2 (3.6)   

Maternal HIV status      
HIV-infected 48 (39.4) 17 (25.8) 31 (55.4) 0.27 (0.12-0.64) <0.001 

HIV-uninfected 73 (59.8) 48 (72.7) 25 (44.6) 2.67 (1.15-6.24) 0.012 
HIV-unknown 1 (0.8) 1 (1.5)    

Mode of delivery      
Caesarean-section 29 (23.8) 20 (30.3) 9 (16.1) 2.27 (0.87-6.25) 0.066 

Vertex delivery 91 (74.6) 45 (68.2) 46 (82.1) 0.47 (0.18-1.18) 0.078 
Unknown 2 (1.6) 1 (1.5) 1 (1.8)   

GBS isolation      
Blood only 87 (71.3) 64 (97.0) 23 (41.1) 45.91 (10.04-410.36) <0.001 
CSF5 only 13 (10.7)  13 (23.2)  <0.001 

Blood and CSF 22 (18.0) 2 (3.0) 20 (35.7) 0.06 (0.01-0.26) <0.001 
Infant age at presentation      

Median(range) 0 (0-74) 0 (0-5) 15 (7-74)   
<24hours 63 (51.6) 63 (95.5)    
1-6 days 3 (2.5) 3 (4.5)    

7-28 days 41 (33.6)   41 (73.2)   
>28 days 15 (12.3)  15 (26.8)   

1EOD- Early-onset disease, 2LOD- Late-onset disease, 3OR(95% CI)- calculated odds ratio with 95% confidence 
comparing EOD to LOD, 4p-value- using Chi-squared, Fisher exact or Wilcoxon rank-sum (Mann-Whitney) test, 
5CSF- Cerebrospinal fluid.   
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Figure 3.1: Serotype distributions of infants with Group B Streptococcus (GBS) 
disease 

 

   
Figure 3.2: Serotype distributions of infants with early-onset Group B Streptococcus 
(GBS) disease 

 

 
Figure 3.3: Serotype distributions of infants with late-onset Group B Streptococcus 
(GBS) disease  
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3.1.3 Risk factors for invasive GBS disease 

For cases born at ≥34 weeks gestational age, at least 5 controls (mean; 7) were matched for 

EOD and 3 (mean; 5) for LOD, however, we only managed to enrol between 1 to 4 controls 

(mean; 2) for cases born at <34 weeks gestational age. Offensive draining liquor 

(aOR: 27.37; 95% CI: 1.94-386.50) was a risk factor for EOD, whereas maternal GBS 

bacteriuria was a risk factor for EOD (aOR: 8.41; 95% CI: 1.44-49.15) and LOD 

(aOR: 3.49; 95% CI: 1.17-10.40; Table 3.2). Maternal fever (≥38°C) was observed in only one 

case. Although the occurrence prolonged (>18 hours prior to delivery) rupture of membranes 

(PROM) was more common in EOD cases than controls, no increased risk was found in the 

multivariate analysis (p=0.213; Table 3.2). Although thirteen (12.8%) mothers of invasive 

GBS disease cases were not swabbed at enrolment, the prevalence of maternal GBS 

colonization was higher in mothers of EOD cases (74.5%) than controls (25.1%). Maternal 

risk factors were not different in HIV-infected and HIV-uninfected mothers (Table 3.3).  

 

Intra-partum antibiotic prophylaxis (IAP) was not administered to most mothers who had at 

least one risk factor (per Center for Disease Control risk based criteria for IAP; i.e. gestation 

<37 weeks, PROM and maternal intra-partum fever) predisposing to invasive GBS disease 

(Verani et al., 2010). Among EOD cases, 5 (16.1%) of 31 mothers with at least one risk factor 

received IAP ≥4 hours prior to delivery, two (6.5%) received IAP within 4 hours of delivery 

and 24 (77.4%) did not receive IAP during labour (Table 3.2). Among controls, 36 (34.6%) of 

104 mothers with at least one risk factor received IAP ≥4 hours prior to delivery, four (3.9%) 

received IAP within 4 hours of delivery and 64 (61.5%) did not receive IAP during labour. For 

infants born to mothers with risk factors, who received IAP at least 4 hours before delivery, 

the odds of developing EOD was 0.36 (95% CI: 0.10-1.08; Table 3.2).  
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Table 3.2: Risk factors for invasive Group B Streptococcal (GBS) disease in early-onset and late-onset disease cases and matched 
controls 

 Cases Controls 
Univariate-OR 

(95% CI)1 
p-value 

Multivariate-OR 
(95% CI)2 

p-value 

Early-onset disease n=56 n=323  

Maternal GBS colonization 35/47 (74.5) 81/323 (25.1) 8.71 (4.15-19.23) <0.001 3.38 (0.77-14.83) 0.107 

Prolonged ROM (>18hours)3 14/49 (28.6) 32/313 (10.2) 3.51 (1.57-7.54) <0.001 2.08 (0.61-7.08) 0.239 

Maternal fever (≥38.0 °C)4 1/50 (2.0) 0/319 (0)  0.136   

Offensive liquor 10/52 (19.2) 1/317 (0.3) 75.24 (10.05-3274.04) <0.001 27.37 (1.94-386.50) 0.014 

Maternal GBS Bacteriuria 27/47 (57.5) 22/220 (10.0) 12.15 (5.51-26.79) <0.001 8.41 (1.44-49.15) 0.018 

Any IAP5 7/31 (22.6) 40/104 (38.5) 0.47 (0.16-1.26) 0.103   

IAP ≥4 hours prior to delivery  5/31 (16.1) 36/104 (34.6) 0.36 (0.10-1.08) 0.074   

No IAP 24/31 (77.4) 64/104 (61.5) 2.14 (0.80-6.41) 0.103   

       

Late-onset disease n=46 n=212  

Maternal GBS colonization 28/42 (66.7) 64/212 (30.2) 4.63 (2.17-10.11) <0.001 2.44 (0.88-6.79) 0.088 

Prolonged ROM(>18hours)3 2/35 (5.7) 18/204 (8.8) 0.63 (0.07-2.83) 0.746   

Offensive liquor 2/38 (5.3) 3/203 (1.5) 3.70 (0.30-33.27) 0.178   

Maternal GBS Bacteriuria 18/42 (42.9) 25/212 (11.8) 5.61 (2.48-12.46) <0.001 3.49 (1.17-10.40) 0.025 

Any IAP  1/12 (8.3) 16/56 (28.6) 0.23 (0.01-1.84) 0.269   

IAP  ≥4 hours prior to delivery  1/12 (8.3) 10/56 (17.9) 0.42 (0.01-3.59) 0.674   

No IAP 11/12 (91.7) 40/56 (71.4) 4.40 (0.54-201.01) 0.269   
1Univariate-OR(95% CI)- calculated odds ratio with 95% confidence using Fisher exact test comparing cases and controls, 2 Multivariate-OR(95% CI)- 
calculated odds ratio with 95% confidence of disease using conditional logistic regression (For early-onset disease: adjusted for HIV-status, maternal age at 
delivery, gestational age,  maternal GBS colonization, prolonged ROM, offensive liquor, maternal temperature>38, GBS bacteriuria and any intra-partum 
antibiotics. For late-onset disease: adjusted for HIV-status, maternal age at delivery, gestational age, maternal GBS colonization and GBS bacteriuria), 3 

Prolonged ROM (>18 hours) - prolonged rupture of membranes, 4Maternal fever during labour, 5IAP-Intrapartum antibiotic prophylaxis to pregnant women 
that met risk-based criteria (gestation <37 weeks, PROM and maternal intra-partum fever). 
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Table 3.3: Risk factors for invasive Group B Streptococcus (GBS) disease in HIV-infected and 
HIV-uninfected mothers of GBS cases 

Risk factors 
HIV-infected, 

n=41 
HIV-uninfected, 

n=61  
OR (95% CI)1 p-value 

Prematurity (<37 weeks) 12 (29.3) 21 (34.4) 0.79 (0.30-2.00) 0.585 

Prolonged ROM 
(>18hours)2 

5/31 (16.1) 11/53 (20.8) 0.73 (0.18-2.63) 0.775 

Maternal fever (≥38.0 °C) 0/25 (0) 1/52 (1.9)  0.999 

Offensive liquor 3/32 (9.4) 9/58 (15.5) 0.56 (0.09-2.52) 0.527 

GBS Bacteriuria 23/38 (60.5) 22/51 (43.1) 2.02 (0.79-5.20) 0.105 

1OR(95% CI)- calculated Odds ratio with 95% confidence using Fischer exact test comparing cases and controls, 
2 Prolonged ROM(>18 hours)- prolonged rupture of membranes. 

 

3.1.4 Clinical presentation of invasive GBS disease 

Infants with EOD presented frequently with respiratory distress (83.3%) and 59.3% had a CRP 

>10 mg/l at time of investigation (Table 3.4). In contrast, other clinical and laboratory signs of 

sepsis were less frequent (<15%), including leukopenia in only 12.5% of EOD cases. Pyrexia 

(39.3% vs 3.0%; p<0.001) was more prevalent in LOD cases than EOD. As compared to EOD, 

infants with LOD also had an increased odds of presenting with poor feeding (OR: 20.71; 

95% CI: 4.54-187.69), irritability (OR: 16.65; 95% CI: 5.03-69.74) and lethargy (OR: 3.37; 

95% CI 1.17-10.51). Also, LOD cases were more likely to have CRP>40 mg/l (58.7% vs 

30.5%; p=0.004) and leukopenia (37.5% vs 12.5%; p=0.001) than EOD cases (Table 3.4). 
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Table 3.4: Clinical and laboratory features of infants with invasive Group B Streptococcal 
(GBS) disease 

 All cases, 
n=122 

EOD1, 
n=66 

LOD2, 
n=56 

OR(95% CI)3 p-value4 

Signs and symptoms      

Respiratory distress 75 (61.5) 55 (83.3) 20 (35.7) 0.11 (0.04-0.28) <0.001 

Poor feeding 24 (19.7) 2 (3.0) 22 (39.3) 20.71 (4.54-187.69) <0.001 

Irritability 33 (27.1) 4 (6.1) 29 (51.8) 16.65 (5.03-69.74) <0.001 

Lethargy 23 (18.9) 7 (10.6) 16 (28.6) 3.37 (1.17-10.51) 0.012 

Apnoea 13 (10.7) 6 (9.1) 7 (12.5) 1.43 (0.38-5.50) 0.543 

Seizures 13 (10.7) 6 (9.1) 7 (12.5) 1.43 (0.38-5.50) 0.543 

Increased tone 21/119 (17.7) 9/63 (14.3) 12/56 (21.4) 1.63 (0.57-4.82) 0.308 

Decreased tone 16/119 (13.5) 9 /63 (14.3) 7/56 (12.5) 0.86 (0.25-2.82) 0.776 

Temperature      

Median(range) 36.8 (33.2-40) 36.6 (33.2-38) 37.5 (35.8-40)  <0.001 

≥38°C 24 (19.7) 2 (3.0) 22 (39.3) 20.71 (4.54-187.69) <0.001 

≤35.5°C 5 (4.1) 5 (7.6) 0 (0)  0.062 

Intensive/High care      

Mechanical Ventilation 19 (15.6) 10 (15.2) 9 (16.1) 0.93 (0.31-2.84) 0.889 

CPAP5 6 (4.9) 6 (9.1) 0 (0)  0.031 

Inotropic support 8 (6.6) 5 (7.6) 3 (5.4) 0.69 (0.10-3.75) 0.725 

Markers of infection      

WCC6 n=120 n=64 n=56   

Median(range)x109/L 11.8 (1.2-36.2) 13.7 (2.4-36.2) 8.0 (1.2-35.7)  0.003 

WCC>20x109/L 27 (22.5) 17 (26.6) 10 (17.9) 0.60 (0.22-1.57) 0.255 

WCC<5x109/L 29 (24.2) 8 (12.5) 21 (37.5) 4.20 (1.56-12.08) 0.001 

CRP7 n=105 n=59 n=46   

Median(range)mg/L 31.0 (0-351.0) 18.0 (0-277.0) 43.5 (1.0-351.0)  0.002 

CRP>10mg/L 69 (65.7) 35 (59.3) 34 (73.9) 1.94 (0.78-4.96) 0.118 

CRP>40mg/L 45 (42.9) 18 (30.5) 27 (58.7) 3.24 (1.34-7.87) 0.004 
1EOD- Early-onset disease, 2LOD- Late-onset disease, 3OR(95% CI)- calculated odds ratio with 95% confidence 
comparing LOD to EOD i.e. LOD was used as the reference comparison group, 4p-value- using Chi-squared, 
Fisher exact or Wilcoxon rank-sum (Mann-Whitney) test, 5CPAP- Continuous positive airway pressure, 6WCC- 
White cell count, 7CRP- C-reactive protein.  
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3.1.5 Mortality and neurological outcomes of invasive GBS disease 

Overall, 23 (18.9%) cases were admitted for intensive care, of whom 19 (10 EOD and 9 LOD) 

required mechanical ventilation and 8 (5 EOD and 3 LOD) required inotropic support. The 

mortality ratio among cases ventilated was 60.0% (n=6) of EOD and 55.6% (n=5) for LOD; 

and 87.5% (n=7) cases who required inotrope support died. The overall case fatality ratio 

among cases was 18.0% (22/122), including 22.7% for EOD (15/66) and 12.5% for LOD 

(7/56). Most fatalities (14/22; 63.6%) occurred within 48 hours of presentation to hospital or 

birth, including 11/14 (78.6%) of deaths among the EOD cases. Significant infant predictors of 

mortality were gestational age <34 weeks (aOR: 9.45; 95% CI: 2.11-42.29), apnoea at 

presentation (aOR: 16.54; 95% CI: 1.55-176.33), seizures (aOR: 6.71; 95% CI: 1.07-42.24) 

and need for inotropic support (aOR: 281.93; 95% CI: 7.32-10864.64; Table 3.5). HIV-

exposed infants were not at increased risk of death (aOR: 0.14; 95% CI: 0.02-0.79). 
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Table 3.5: Predictors of mortality from invasive Group B Streptococcus (GBS) disease 

 Demised 
n=22 

Survived 
n=100 

Univariate-OR 
(95% CI)1 

p-value 
Multivariate-OR 

(95% CI)2 
p-value 

Timing of disease       

Early-onset disease 15 (68.2) 51 (51.0) 2.06 (0.71-6.47) 0.143 1.31 (0.29-5.95) 0.726 

Late-onset disease 7 (31.8) 49 (49.0) 0.49 (0.16-1.41) 0.143   

Mode of presentation       

Meningitis 5 (22.7) 30 (30.0) 0.69 (0.18-2.18) 0.608   

Gestational age       

<34 weeks 11 (50.0) 19 (19.0) 4.26 (1.42-12.58) 0.002 9.45 (2.11-42.29) 0.003 

HIV-exposure       

HIV-exposed 4 (18.2) 44 (44.0) 0.28 (0.07-0.95) 0.030 0.14 (0.02-0.79) 0.027 

HIV-unexposed 17 (77.3) 56 (56.0) 2.67 (0.85-9.92) 0.092   

HIV-unknown 1 (4.5)      

Gender       

Male 11 (50.0) 57 (57.0) 0.75 (0.27-2.12) 0.549   

Clinical features       

Apnoea 7 (31.8) 6 (6.0) 7.31 (1.79-29.7) <0.001 16.54 (1.55-176.33) 0.020 

Seizures 5 (22.7) 8 (8.0) 3.38 (0.76-13.34) 0.058 6.71 (1.07-42.24) 0.043 

High/intensive care       

Mechanical Ventilation support 11 (50.0) 8 (8.0) 11.5 (3.31-40.06) <0.001 0.34 (0.03-3.77) 0.376 

Inotropic support 7 (31.8) 1 (1.0) 46.2 (5.09-2101.36) <0.001 281.93 (7.32-10864.64) 0.002 

Lab markers       

WCC3(<5x109/l) 6 (27.3) 23 (23.0) 1.26 (0.36-3.88) 0.670   

CRP4(>40mg/l) 6 (27.3) 39 (39.0) 0.59 (0.17-1.76) 0.302   
1OR(95% CI)- calculated odds ratio with 95% confidence comparing infants that demised versus survivors of invasive GBS disease using Chi-squared or 
Fisher exact test , 2 Multivariate-OR(95% CI)- calculated odds ratio with 95% confidence using logistic regression (adjusted for timing of disease, HIV-
exposure, prematurity (<34 weeks), ventilation, inotropic support, apnoea, seizures), 3WCC- White cell count, 4CRP- C-reactive protein. 
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Survival data was unavailable for 17/122 (13.9%) infants at 90 days of age. Reasons for data 

being unavailable included: ten cases who were unable to continue study participation and 

seven cases that were lost to follow-up; these were censored. Figures 3.3-3.6 demonstrate the 

Kaplan-Meier survival curves at the 90 days of age time-point for infants who had invasive 

GBS disease. We observed an increased rate of mortality in premature infants. 

     

Figure 3.4:  Kaplan-Meier survival curve at 90 days of age for infants who had 
invasive Group B Streptococcus (GBS) disease 

 

     
Figure 3.5:  Kaplan-Meier survival curve at 90 days of age for infants who had 
invasive Group B Streptococcus (GBS) disease stratified by early-onset (EOD) 
and late-onset (LOD) disease  
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Figure 3.6:  Kaplan-Meier survival curve at 90 days of age for infants who had 
early-onset invasive Group B Streptococcus (GBS) disease stratified by 
gestational age 

 

 

 

     
Figure 3.7:  Kaplan-Meier survival curve at 90 days of age for infants who had 
late-onset invasive Group B Streptococcus (GBS) disease stratified by 
gestational age  
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Of the 100 surviving cases discharged from hospital, both the three and six monthly follow-

ups were completed for 63 cases and 214 controls; whilst a further 10 cases and 66 controls 

only attended one of the two visits. Reasons for follow-up data being unavailable in the 

remaining cases included 6 whose parents declined study participation, 4 cases born to women 

considered unable to provide informed consent and 17 cases were lost to follow-up. 

Demographic and clinical characteristics were similar between cases and controls (Table 3.6). 

At 3 months of age, there were concerns about normal neurological development in 9 of 68 

(13.2%) infants with invasive GBS disease and 1 of 262 (0.4%) control infants (Table 3.7). 

GBS affected infants were 21.48 (95% CI: 2.58 179.15; p=0.005) times more likely have 

neurological sequelae than controls. Three cases one with hypertonia and one with personal-

social delay on Denver-II subsequently showed signs of recovery from neurological 

impairment at 6 months, whilst one case did not attend the visit.  

 

At 6 months of age, four additional cases had an abnormal Denver-II screening test. Amongst 

the cases; two had fine-motor delay only, one had gross-motor delay only, one had gross and 

fine-motor delay and one had gross, fine-motor and personal-social delay. Four cases had 

hypertonia and/or hyper-reflexia on neurological examination with a normal Denver-II 

assessment. The only control with an abnormal Denver-II screening test had gross motor 

delay. GBS-affected infants were 13.18 (95% CI: 1.44 120.95; p=0.023) times more likely 

have neurological sequelae than controls. Neurological abnormalities were detected in a 

greater proportion of GBS affected infants with meningitis (23.5%) than sepsis (9.8%). 

Hydrocephalus was confirmed in two infants with meningitis (Table 3.7). 
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Table 3.6: Baseline demographic characteristics of Group B Streptococcus (GBS) cases and matched controls at 3 and 6 month 
visits 

 All EOD1 LOD2 
3 month visit Cases, n=68 Controls, n=262 p-value Cases, n=37 Controls, n=109 p-value Cases, n=31 Controls ,n=153 p-value 

Gestation          
≥37 weeks 48 (70.6) 193 (73.7) 0.611 24 (64.9) 72 (66.1) 0.895 24 (77.4) 121 (79.1) 0.836 
<37 weeks 20 (29.4) 69 (26.3)  13 (35.1) 37 (33.9)  7 (22.6) 32 (20.9)  

Median(Range) 39.5 (28.0-43.0) 38.8 (28.0-44.0) 0.525 38.4 (28.0-42.0) 38.2 (30.0-44.0) 0.959 40.0 (29.3-43.0) 39.1 (28.0-44.0) 0.134 
Birth weight          

≥2500 grams 48 (70.6) 204 (77.9) 0.208 26 (70.3) 73 (67.0) 0.711 22 (71.0) 131 (85.6) 0.047 
<2500 grams 20 (29.4) 58 (22.1)  11 (29.7) 36 (33.0)  9 (29.0) 22 (14.4)  

Median(Range) 2903 (870-4155) 3008 (1195-4315) 0.066 2895 (870-4155) 2870 (1195-3955) 0.973 2915 (1415-3610) 3105 (1465-4315) 0.010 
Gender          

Male  41 (60.3) 134 (51.2) 0.178 20 (54.1) 62 (56.9) 0.765 21 (67.7) 72 (47.1) 0.036 
HIV exposure           

HIV-exposed 29 (42.6) 122 (46.6) 0.563 10 (27.0) 30 (27.5) 0.953 19 (61.3) 92 (60.1) 0.904 
HIV-unexposed 39 (57.4) 140 (53.4)  27 (73.0) 79 (72.5)  12 (38.7) 61 (39.9)  

Clinical presentations          
GBS meningitis 19 (27.9)   2 (5.4)   17 (54.8)   

Perinatal asphyxia 9 (13.2)   9 (24.3)      
Ventilated 3 (4.4)   2 (5.4)   1 (3.2)   

          
6 month visit Cases, n=68 Controls, n=232 p-value Cases, n=36 Controls, n=96 p-value Cases, n=32 Controls ,n=136 p-value 

Gestation          
≥37 weeks 50 (73.5) 185 (79.7) 0.274 24 (66.7) 71 (74.0) 0.406 26 (81.3) 114 (83.8) 0.725 
<37 weeks 18 (26.5) 47 (20.3)  12 (33.3) 25 (26.0)  6 (18.7) 22 (16.2)  

Median(Range) 40.0 (28.0-43.0) 39.0 (26.2-44.0) 0.588 38.2 (28.0-42.0) 38.4 (30.0-44.0) 0.446 40.0 (28.0-43.0) 39.2 (26.2-44.0) 0.042 
Birth weight          

≥2500 grams 51 (75.0) 189 (81.5) 0.241 26 (72.2) 71 (74.0) 0.841 25 (78.1) 118 (86.8) 0.217 
<2500 grams 17 (25.0) 43 (18.5)  10 (27.8) 25 (26.0)  7 (21.9) 18 (13.2)  

Median(Range) 2920 (870-4155) 3039 (1170-3955) 0.072 2903 (870-4155) 2920 (1405-3955) 0.690 2938 (1200-3610) 3093 (1170-395) 0.039 
Gender          

Male  43 (63.2) 124 (53.5) 0.153 21 (58.3) 55 (57.3) 0.914 22 (68.8) 69 (50.7) 0.066 
HIV exposure           

HIV-exposed 27 (39.7) 100 (43.1) 0.618 9 (25.0) 24 (25.0) 0.999 18 (56.3) 76 (55.9) 0.970 
HIV-unexposed 41 (60.3) 132 (56.9)  27 (75.0) 72 (75.0)  14 (43.7) 60 (44.1)  

Clinical presentations          
GBS meningitis 17 (25.0)   2 (5.6)   15 (46.9)   

Perinatal asphyxia 9 (13.2)   9 (25.0)   -   
Ventilated 4 (5.9)   2 (5.6)   2 (6.3)   

1EOD- Early-onset disease, 2LOD- Late-onset disease.  
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Table 3.7: Neurological sequelae of infants with invasive Group B Streptococcus (GBS) disease at 3 and 6 month visits 

 
Cases Controls 

Univariate-OR 
(95% CI) 1 

p-value 
Multivariate-OR

(95% CI) 2 
p-value 

Sepsis Meningitis Overall   
3 months  n=49 n=19 n=68 n=262     
Overall3 3 (6.1) 6 (31.6) 9 (13.2) 1 (0.4) 39.81 (5.27-1751.09) <0.001 21.48 (2.58-179.15) 0.005 
 Abnormal Denver-II assessment4 2 (4.1) 1 (5.3) 3 (4.4) 1 (0.4)     

Hypertonia/hyper-reflexia5 1 (2.0) 5 (26.3) 6 (8.9) 0     
         
6 months  n=51 n=17 n=68 n=232     
Overall 5 (9.8) 4 (23.5) 9 (13.2) 1 (0.4) 35.24 (4.66-1550.57) <0.001 13.18 (1.44-120.95) 0.023 

Abnormal Denver-II assessment 4 (7.8) 1 (5.9) 5 (7.4) 1 (0.4)     
Hypertonia/hyper-reflexia 1 (2.0) 3 (17.6) 4 (5.9) 0     

1 Univariate-OR(95% CI)- calculated Odds ratio with 95% confidence using Fisher exact test comparing overall cases and controls, 2 Multivariate-
OR(95% CI)- calculated Odds ratio with 95% confidence using conditional logistic regression (adjusted for gender, gestational age, birth weight ≥2500, 
perinatal asphyxia, ventilation at presentation, HIV-status and previous non-GBS admissions), 3Number (%) of cases and controls with neurological sequelae 
based on abnormal Denver-II assessments and hypertonia/hyper-reflexia, 4Abnormal Denver-II assessments in four tested domains (Gross Motor, Fine Motor, 
Language and Personal/Social), 5Hypertonia and/or hyper-reflexia on neurological examination of infant with a normal Denver-II assessment. 
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3.2 Discussion 

The overall incidence (per 1,000 live births) of invasive GBS disease in this study was 

2.38 (95% CI: 1.87-2.98), which is double that reported for Africa (1.21; 95% CI: 0.50-1.91), 

and even greater compared to other regions as determined in a recent meta-analysis (Edmond 

et al., 2012). Though maternal HIV-infection status was not associated with any difference in 

incidence of EOD, we observed a five-fold greater risk of LOD in HIV-exposed compared to 

HIV-unexposed infants. The observed case fatality ratio (18.0%) was similar to that previously 

reported in the mid-1990s (Madhi et al., 2003), however, lower than reported for Kenya (46%) 

and Malawi (33%) but almost double that in high income settings (7-11%) (Dagnew et al., 

2012, Edmond et al., 2012). Neurological sequelae were noted in 13.2% of infants with 

invasive GBS disease surviving to 6 months-of-age. 

 

Compared to the period 1997-1999 from the same setting, there was a marginal decline in 

EOD incidence (1.37; 95% CI: 0.99-1.84 vs. 2.06; 95% CI: 1.54-2.76 in 1997-99) (Madhi et 

al., 2003), nevertheless, the incidence was similar to that reported in USA in the early 1990’s 

prior to the implementation of IAP (Schrag et al., 2000). Despite the majority of births in our 

setting (99%) occurring in health-care facilities, the implementation of the risk-based IAP 

strategy, recommended at the hospitals has not been effectively implemented, with only 23.2% 

of women for whom it was indicated actually receiving IAP timeously. The reasons for this 

need to be investigated further and could include lack of recognition of risk-factors or failure 

to administer IAP by birth-attendants, very late arrival at delivery-facilities in relation to birth, 

or under-staffing at the delivery-facility (average of  60 deliveries occur at CHBAH daily) 

which results in oversight in effective implementation of even a risk-based IAP strategy. This 

challenge of risk-based IAP implementation, further accentuates the logistical challenges that 
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South Africa would face in implementing a more expensive and resource intensive strategy of 

screening women for GBS recto-vaginal colonization at 35-37 weeks of gestational age, 

coupled to IAP of colonized women at least 4 hours prior to delivery (Verani et al., 2010).  In 

addition to the common risk factors for invasive GBS disease such as PROM and maternal 

fever, we also identified a higher proportion of GBS bacteriuria in mothers of infants with 

EOD compared to controls. The prevalence of maternal GBS bacteriuria has been reported to 

be 2-7% in pregnancy and is considered to be a surrogate marker of heavy recto-vaginal 

colonization, as well as a risk factor for EOD (Verani et al., 2010). This was corroborated by 

our study and supports the CDC recommendation to provide IAP to women who are identified 

to have GBS growth in urine during pregnancy (Verani et al., 2010). Furthermore, GBS 

bacteriuria was identified in a greater proportion to mothers of LOD cases (43%) than their 

controls (12%). Of the 18 cases of LOD whose mothers had GBS bacteriuria, 16 (88.9%) of 

isolates was the same serotype to that causing disease in the infant. These finding strongly 

support that IAP should be provided to mothers with GBS bacteriuria as it may be a risk factor 

for LOD as well (Verani et al., 2010).  

 

In keeping with the higher morbidity caused by infectious diseases in HIV-exposed infants in 

low-middle income countries (Koyanagi et al., 2011, Landes et al., 2012), the high maternal 

HIV prevalence (29.5%) may account in part for the high burden of invasive GBS disease in 

South Africa. Although the incidence of LOD among HIV-unexposed infants in our setting 

(0.49; 95% CI: 0.24-0.87) is similar to that seen in the Americas (0.31; 95% CI: 0.16-0.89) 

and globally (0.24; 95% CI: 0.17-0.30) (Edmond et al., 2012), we found that HIV-exposed 

infants were at a greater risk of developing LOD compared to HIV-unexposed infants. This 

finding had also been observed in a smaller number of cases from Belgium, and more recently 
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in another study reporting on invasive GBS disease from 2004-2008 from Soweto, South 

Africa (Epalza et al., 2010, Cutland et al., 2015). The reasons for the increased susceptibility 

to invasive GBS disease could be due to perturbations of the infant immune system caused by 

exposure to HIV virion in-utero or maternal ART (Afran et al., 2014); or lower levels of 

transferred maternal capsular antibody (Jones et al., 2011). Notably, no significant difference 

in incidence was observed when comparing CD4+ T-lymphocyte counts amongst mothers of 

cases of LOD and controls (data not shown). 

 

Significant predictors for invasive GBS disease related death in our study included premature 

birth and presentation with apnoea or seizures, which are important warning signs of severe 

illness in neonates (World Health Organization, 2005). Contrary to previous reports, in our 

study, HIV-exposure did not predict mortality in infants with invasive GBS disease (Landes et 

al., 2012). These findings were unexpected and need to be verified with larger sample sizes 

before definitive conclusion can be drawn. Although the neonatal immune system differs to 

older children, there isn’t any clear evidence to support an association between mortality and 

cytokines or other deficiencies (Filteau, 2009). The majority of deaths (63.6%) occurred 

within 48 hours of hospitalization, highlighting the fulminant course of invasive GBS disease 

in young infants even in secondary-tertiary level care hospitals. This may explain the failure of 

recognition of invasive GBS disease as a major cause of morbidity and mortality in low-

resource settings, where there are logistical constraints to timeously accessing health-care 

facilities and many of the cases might have died prior to an opportunity for investigating for 

invasive disease.  Furthermore, the potentially fulminant course of invasive GBS disease, 

coupled with the observation that 95.5% of EOD occurred within 24 hours of birth in our 

setting, highlights a further possible reason for under-ascertainment of the burden of EOD in 
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low-income settings where large number of births occur outside of health care settings or 

where there is limited laboratory infrastructure to investigate for invasive GBS disease at the 

time of birth. Also, the high proportion of EOD presenting within 24 hours of birth, 

predominantly with signs of respiratory distress at the time of birth, suggest that GBS 

infection possibly occurred whilst in-utero. This supports the notion that GBS infection may 

occur in-utero from ascending infection into the amniotic cavity even in the presence of 

macroscopically intact amniotic sac (Whidbey et al., 2013), which could  be aspirated by the 

foetus  resulting in congenital pneumonia and sepsis manifesting as respiratory distress at  

birth. 

 

In addition to the high mortality ratio, survivors of invasive GBS disease were more likely to 

have neurological sequelae at 6 months of age (13.2%) than controls (0.4%). The proportion 

of GBS-meningitis cases who survived with neurological sequelae (23.5%) was similar to that 

reported at discharge in infants with GBS meningitis in the USA between 1998 and 2006 

(22%, 11/50) (Levent et al., 2010). The relatively low overall risk of neurological sequelae in 

our setting may also be related to the high mortality in these infants. Furthermore, in the 

absence of screening for auditory and visual deficits, as well as the early assessments, we are 

likely to have underestimated the number of infants with neurological sequelae from invasive 

GBS disease. There have been previous reports of long-term neurological sequelae in 26-50% 

of GBS meningitis survivors at 3-18 years of age (Edwards et al., 1985, Wald et al., 1986, 

Bedford et al., 2001, Libster et al., 2012), and we are continuing with follow-up of our cohort 

to report on long-term neurological outcomes.  
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Compared to earlier studies in South Africa, we have observed a shift in the distribution of 

serotypes causing EOD, with serotype Ia being most common now (48.5%) compared to 

serotype III (49%-58%) in previous studies (Madhi et al., 2003, Madzivhandila et al., 2011). 

Also, there is an increase in proportion of EOD caused by serotype V (18.2% of EOD and 

7.6% of LOD), compared to the previous years in the same setting (5.8% of EOD and 1.9% of 

LOD) (Madzivhandila et al., 2011), which is similar to the proportion of invasive GBS disease 

cases reported from high-income countries (14-18% of EOD and 14% of LOD) (Zaleznik et 

al., 2000, Phares et al., 2008). Although there are differences in the invasive potential of 

different GBS serotypes, with serotype III being most invasive (Madzivhandila et al., 2011), 

temporal changes in serotype distribution associated with recto-vaginal colonization are 

mirrored by changes in their relative contribution to EOD as observed with serotype Ia over a 

twenty-year surveillance period in United Kingdom (Lamagni et al., 2013). Nevertheless, the 

majority of serotypes causing EOD (76%) and LOD (93%) in our study were due to serotypes 

Ia, Ib and III, which are included in a trivalent GBS polysaccharide-protein conjugate vaccine 

targeted at immunization of pregnant women currently in clinical trials (Madhi et al., 2013)   

 

Limitations of our study include case enrolments over a single year; nevertheless, we 

identified a large number of invasive GBS disease cases and report a persistently high 

incidence. Due to study constraints, we did not blind examiners performing 

neurodevelopmental screening tests but plan to do so at future visits. Although other 

developmental screening test are available (i.e. Bailey), we were limited to using the Denver-II 

screening test which has been shown to be reliable in young infants (Frankenburg et al., 1992). 

Furthermore, we currently only report on neurological sequelae up to 6 months of age, and did 

not have any follow-up outcomes on 27% of cases discharged from hospital. The short-term 
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follow-up for neurological sequelae could fail to identify mild development delay or learning 

problems that manifest later in life, or conversely may over-estimate the long-term sequelae as 

the neurological system matures in children (Eyre, 2003).  

 

Our study emphasizes the need to consider alternate strategies for the prevention of invasive 

GBS disease in settings such as ours, where screening for recto-vaginal GBS colonization and 

even risk-based approaches coupled to IAP is not being effectively implemented or not 

logistically feasible. This includes the potential of preventing invasive GBS disease in 

newborns and young infants through targeted vaccination of pregnant women. Maternal 

vaccination aimed at the protection of young infants against infectious disease has been 

demonstrated to be effective against neonatal tetanus, influenza illness and pertussis until 6 

months of age (Steinhoff, 2013, Amirthalingam et al., 2014, Madhi et al., 2014). Considering 

the increased risk of LOD in HIV-exposed infants, the immunogenicity of a GBS 

polysaccharide-protein conjugate vaccine would also need to be evaluated in this population.
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4.0 HIV-1 is associated with lower Group B Streptococcus (GBS) capsular 
and surface-protein IgG antibody levels and reduced transplacental 
antibody transfer in pregnant women 

A meta-analysis of studies undertaken from 2000 to 2011, reported the highest incidence of 

invasive GBS disease to be in low-middle income countries from Eastern and Southern Africa 

(Edmond et al., 2012). Maternal and infant GBS serotype-specific capsular antibody has been 

associated with protection against homotypic serotype invasive GBS disease in infants (Baker 

and Kasper, 1976). Furthermore, GBS surface-proteins which facilitate adherence to host 

epithelium such as PI-1, PI-2a, PI-2b, FbsA and BibA have been shown to be immunogenic, 

and induce antibodies in animal-model studies that improved survival following systemic GBS 

inoculation challenges (Lindahl et al., 2005, Margarit et al., 2009, Meinke et al., 2010). 

 

Although maternal HIV-infection is not associated with higher prevalence of recto-vaginal 

GBS colonization during pregnancy or at birth (El Beitune et al., 2006, Mavenyengwa et al., 

2010, Gray et al., 2011, Shah et al., 2011, Cutland et al., 2012), a greater risk of invasive GBS 

disease  have been reported in HIV-exposed compared to HIV-unexposed infants (Epalza et 

al., 2010, Cutland et al., 2015). The basis for the increased susceptibility to invasive GBS 

disease in HIV-exposed infants remains to be ascertained and could include maternal HIV-

infection being associated with lower concentrations of protective GBS antibodies or impaired 

transplacental antibody transfer (Afran et al., 2014). In this chapter, the effect of maternal 

HIV-infection on GBS capsular and surface-protein antibody concentrations, as well as the 

effect on transplacental antibody transfer is described (the published paper is attached as 

Appendix 3)   
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4.1 Results 
4.1.1 Participant selection and demographic characteristics 

Of the 320 women screened, 70 refused consent and 76 failed to meet the inclusion criteria. 

We therefore enrolled 174 mother-newborn dyads, ten of whom were subsequently excluded 

(including nine dyads where the newborn gestational age was ≤36 weeks, and one dyad in 

whom maternal blood was taken >12 hours following delivery). Thus, 164 mother-newborn 

dyads were analysed, including 81 HIV-uninfected and 83 HIV-infected women all of whom 

had singleton births. Except for HIV-infected women being older (median 30.7 vs 26.0 years; 

p=0.006), they were otherwise similar in demographic characteristics compared to HIV-

uninfected women (Table 4.1).  Among the 83 HIV-infected women at the time of delivery, 36 

(43.4%) were on triple ART, 46 (55.4%) on AZT only and one (1.2%) had not received any 

ART. The median duration on triple ART from initiation to delivery was 13.4 weeks (range: 

1.4 - >44) and 17.1 weeks (range: 2.4 - 42.7) for women on AZT only. Overall, 49 (29.9%) of 

164 women were colonized with GBS; colonization was similar in HIV-uninfected (27.2%) 

and HIV-infected (32.5%; p=0.453) women (Table 4.1). The commonest colonizing serotype 

was Ia (59.1% of all serotypes) in HIV-uninfected women and III (40.7% of serotypes) in 

HIV-infected women (Table 4.1). 

All women had detectable antibody levels to all four GBS serotypes, however, cord blood 

antibody levels were not detected in two samples for serotype Ia and in five samples each for 

serotypes Ib, III and V. Regarding surface-protein antibodies, only one woman had 

undetectable antibody levels to PI-2a. For cord blood samples, antibody levels were 

undetectable on two for BibA, four for FbsA, five for PI-1 and PI-2b, and six for PI-2a. The 

final analysis included all samples as results were similar when the undetectable samples were 

excluded from the analysis (data not shown).   
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Table 4.1: Demographic and recto-vaginal colonization characteristics of HIV-uninfected and 
HIV-infected mother-newborn dyads 

1p-value after comparing HIV-uninfected and HIV-infected mother-newborn dyads using Chi-square, Fisher’s 
exact or Mann-Whitney test, 2number of GBS rectal/vaginal colonized mothers stratified by colonizing serotype 
(an HIV-uninfected mother was dual colonized with Ia and V), 3serotype proportion of colonized mothers,  
4Multiple two-way comparisons using Fisher’s exact test.  

 

All mother-

newborn dyads 

(n=164) 

HIV-uninfected 

mother-newborn 

dyads 

(n=81) 

HIV-infected 

mother-newborn 

dyads 

(n=83) 

p-value1 

Mother     

Age: Median (IQR)  28.0 (23.1-33.7) 26.0 (22.1-31.2) 30.7 (23.7-35.6) 0.006 

Parity: Median (IQR)  1 (0-2) 1 (0-2) 1 (0-2) 0.079 

Black-African race 157 (98.1) 78 (96.3) 83 (100.0) 0.118 

GBS colonization      

Colonized mothers2 49 (29.9) 22 (27.2) 27 (32.5) 0.453 

Ia 21 [42.9]3 13 [59.1] 8 [29.6] 

0.1314 

Ib 2 [4.1] 0 [0] 2 [7.4]  

II 4 [8.2] 2 [9.1] 2 [7.4] 

III 14 [28.6] 3 [13.6] 11 [40.7] 

V 9 [18.4] 5 [22.7] 4 [14.8] 

Newborn     

Male gender 90 (54.9) 45 (55.6) 45 (54.2) 0.863 

Gestational age: Median (IQR) 40.0 (38.3-40.3) 40.0 (38.2-40.4) 40.0 (38.4-40.2) 0.997 

Birth weight: Median (IQR) 3063 (2878-3363) 3130 (2895-3385) 3034 (2852-3275) 0.194 
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4.1.2 Maternal HIV-infection status and capsular antibodies 

Median capsular antibody concentrations (µg/mL) were lower in HIV-infected than HIV-

uninfected women for serotypes Ib (0.06 vs. 0.09; p=0.033) and V (0.40 vs.0.59; p=0.040); 

similar trends were observed for serotype Ia (0.13 vs. 0.36; p=0.077), but this difference was 

not significant (Figure 4.1 A-D, Table 4.2). Median cord blood capsular antibody 

concentrations (for all serotypes) were significantly lower in HIV-exposed than in HIV-

unexposed newborns; the respective antibody concentrations (μg/mL) for serotypes Ia, Ib, III 

and V were 0.07 vs. 0.26 (p=0.005), 0.07 vs. 0.15 (p=0.013), 0.15 vs. 0.25 (p=0.005) and 0.34 

vs.0.57 (p=0.004) (Figure 4.1 A-D, Table 4.2). 

 

Table 4.2: Median antibody concentrations in HIV-infected and HIV-uninfected mother and 
cord/newborn sera  

 
Mother Cord/ Newborn 

 
HIV-uninfected 
Median(IQR)1 

n=81 

HIV-infected 
Median(IQR) 

n=83 
p-value2 

HIV-unexposed 
Median(IQR) 

n=81 

HIV-exposed 
Median(IQR) 

n=83 
p-value2 

Capsular 
serotypes 
(µg/mL) 

      

Ia 0.36 (0.05-4.20) 0.13 (0.05-0.81) 0.077 0.26 (0.04-3.43) 0.07 (0.02-0.47) 0.005 
Ib 0.09 (0.06-0.22) 0.06 (0.04-0.15) 0.033 0.15 (0.07-0.26) 0.07 (0.03-0.22) 0.013 
III 0.25 (0.11-0.79) 0.21 (0.10-0.42) 0.261 0.25 (0.11-0.62) 0.15 (0.06-0.32) 0.005 
V 0.59 (0.27-1.07) 0.40 (0.25-0.71) 0.040 0.57 (0.28-1.33) 0.34 (0.16-0.76) 0.004 
Surface-
proteins 
(AU/mL) 

      

PI-1 1020 (327-4913) 549 (264-1865) 0.016 1177 (264-2799) 502 (195-1917) 0.039 
PI-2a 1972 (845-4765) 1130 (485-3866) 0.015 1966 (609-6167) 1560 (424-5747) 0.541 
PI-2b 1072 (610-2543) 611 (306-1704) 0.015 865 (457-2674) 478 (259-1427) 0.024 
BibA 4790 (2527-8412) 3829 (1769-8174) 0.236 4350 (1610-8596) 2943 (1606-6870) 0.266 
FbsA 2169 (1418-4914) 1444 (711-2886) <0.001 2758 (1305-5611) 1717 (794-3797) 0.010 
1Interquartile range, 2Mann-Whitney test.   
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Figure 4.1: Tukey box and whisker plots comparing capsular antibody concentrations of 
serotype-Ia, serotype-Ib, serotype-III and serotype-V between HIV-uninfected and -infected 
mothers, and HIV-unexposed and -exposed newborns  
Footnote: Mother HIV- denotes HIV-uninfected and HIV+ denotes HIV-infected, Newborn HIV- denotes HIV-
unexposed and Newborn HIV+ denotes HIV-exposed. The y-axis has been log10 scaled. For the box and whisker 
plots; the box represents the distance of the 25th and 75th percentile with the median represented by the solid line 
within the box. The upper whisker represents 1.5 times the interquartile distance from the 75th centile, while the 
lower whisker represents 1.5 times the interquartile distance from the 25th centile. The dot symbols represent 
outliers above the upper whisker.  



130 
 

After adjusting for confounding factors, we compared maternal antibody concentrations 

between HIV-infected and HIV-uninfected women at multiple percentiles using quantile 

regression analysis. Significant differences in antibody concentrations for serotypes Ia, III and 

V between HIV-infected and HIV-uninfected women were found at higher percentiles (above 

65th), suggesting that HIV-infected women also tended to have lower antibody concentrations 

that HIV-uninfected at higher percentiles (Table 4.3). Corroborating this, we demonstrated 

that a lower proportion of HIV-infected women had capsular antibody concentrations above 

thresholds of ≥1 µg/mL and ≥2 µg/mL for serotypes Ia and III (Table 4.4). Using multivariate 

analysis, with an antibody concentration of <0.5 µg/mL as a referent, the adjusted odds of 

having capsular antibody concentration ≥2 µg/mL in HIV-infected compared to HIV-

uninfected women were 0.33 (95% CI: 0.15-0.75; p=0.008) and 0.34 (95% CI: 0.12-1.00; 

p=0.049) for serotypes Ia and III, respectively (Table 4.4). 

 

Notably, two infants born to HIV-infected women developed late-onset GBS meningitis from 

serotypes Ia and III at 19 and 22 days of age, and among whom their mother’s antibody 

concentrations were 0.08 and 0.12 for the homotypic serotypes and the transplacental ratio 

was 0.14 and 0.69, respectively.  
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Table 4.3: P-values comparing maternal antibody concentrations between HIV-infected and 
HIV-uninfected pregnant women using quantile regression analysis at different percentiles  

Percentiles Ia Ib III V PI-1 PI-2a PI-2b BibA FbsA 

0.5 0.634 0.279 0.795 0.263 0.241 0.21 0.139 0.314 0.084 

0.6 0.236 0.128 0.963 0.159 0.098 0.223 0.126 0.242 0.049 

0.7 0.008 0.124 0.055 0.029 0.023 0.136 0.014 0.493 0.026 

0.8 0.002 0.666 0.005 0.035 0.01 0.047 0.09 0.649 0.117 

0.9 <0.001 0.241 <0.001 0.002 <0.001 0.002 0.188 0.032 0.152 

Footnote: Adjusted for overall colonization, colonizing serotype for capsular antibodies, maternal age and parity 

 

 

Table 4.4: Proportion of HIV-infected and HIV-uninfected women with capsular antibody 
concentrations (µg/mL) above different thresholds 

Antibody 
concentration 

(µg/mL) 

HIV-infected 
n=83 

HIV-uninfected 
n=81 

aOR (95% CI)1 p-value 

Ia     
<0.5 59 (71.1) 46 (56.8) Referent  
≥0.5 24 (28.9) 35 (43.2) 0.44 (0.22-0.89) 0.021 
≥1 17 (20.5) 30 (37.0) 0.37 (0.16-0.72) 0.005 
≥2 14 (16.9) 26 (32.1) 0.33 (0.15-0.75) 0.008 

     
Ib     

<0.5 72 (86.7) 72 (88.9) Referent  
≥0.5 11 (13.3) 9 (11.1) 1.34 (0.51-3.52) 0.550 
≥1 7 (8.4) 4 (4.9) 2.11 (0.57-7.78) 0.261 
≥2 3 (3.6) 2 (2.5) 1.95 (0.30-12.59) 0.482 

     
III     

<0.5 64 (77.1) 55 (67.9) Referent  
≥0.5 19 (22.9) 26 (32.1) 0.48 (0.23-1.02) 0.058 
≥1 10 (12.1) 17 (21.0) 0.37 (0.14-0.95) 0.038 
≥2 7 (8.4) 14 (17.3) 0.34 (0.12-1.00) 0.049 

     
V     

<0.5 49 (59.0) 37 (45.7) Referent  
≥0.5 34 (41.0) 44 (54.3) 0.58 (0.30-1.11) 0.099 
≥1 14 (16.9) 23 (28.4) 0.46 (0.21-1.03) 0.059 
≥2 6 (7.2) 10 (12.3) 0.50 (0.16-1.54) 0.228 

1Adjusted-OR (95% CI)- calculated odds ratio with 95% confidence of disease using logistic regression  
(adjusted for parity, maternal age and serotype-specific colonization)  
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Overall, median cord to maternal ratios for capsular antibody ranged between 75% to 119% in 

HIV-uninfected mother-newborn dyads and 47% to 93% among HIV-infected mother-

newborn dyads (Table 4.5). In the multivariate model, after adjusting for overall colonization, 

serotype-specific colonization, maternal age and parity, the cord to maternal ratio was 37.4% 

(p<0.001) and 32.5% (p=0.027) lower for serotypes Ia and III in HIV-infected compared to 

HIV-uninfected mother-newborn dyads (Table 4.5). 

 

Table 4.5: Transplacental antibody transfer (cord to maternal blood ratio) between HIV-
uninfected and HIV-infected mother-newborn dyads  

  

HIV-uninfected mother-
newborn dyads 

Median CMR1 (IQR)2 
n=81 

HIV-infected mother-
newborn dyads 

Median CMR (IQR) 
n=83

Reduction, %3 p-value4 

Capsular serotypes       

Ia 0.749 (0.562-1.021) 0.469 (0.322-0.754) 37.4 <0.001 
Ib 1.187 (0.730-1.959) 0.930 (0.593-1.574) 21.7 0.483

III 0.902 (0.605-1.229) 0.609 (0.407-0.976) 32.5 0.027

V 0.954 (0.677-1.310) 0.825 (0.543-1.158) 13.5 0.084

Surface-proteins       

PI-1 1.056 (0.835-1.453) 0.948 (0.669-1.431) 10.2 0.379

PI-2a 0.904 (0.545-1.317) 1.262 (0.613-3.000) NR5 0.213

PI-2b 1.006 (0.598-1.588) 0.904 (0.562-1.521) 10.1 0.500

BibA 0.860 (0.687-1.139) 0.759 (0.539-1.126) 11.7 0.207

FbsA 0.964 (0.601-1.695) 1.159 (0.454-2.347) NR 0.385
1CMR-cord to maternal ratio, 2Interquartile range, 3Reduction in cord to maternal ratio comparing HIV-infected 
and HIV-uninfected mother-newborn dyads; calculated as the ratio of the cord to maternal ratio from HIV-
infected/HIV-uninfected women, subtracted from 1, 4Using quantile regression (adjusted for overall colonization, 
colonizing serotype for capsular antibodies, maternal age and parity), 5No reduction.	 	
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4.1.3 Maternal HIV-infection status and surface-protein antibodies 

As compared to HIV-uninfected women, HIV-infected women had lower median antibody 

concentrations (AU/mL) against surface-protein PI-1 (549 vs. 1020; p=0.016), PI-2a (1130 vs. 

1972; p=0.015), PI-2b (611 vs. 1072; p=0.015) and FbsA (1444 vs.2169; p<0.001), but not 

significantly so for BibA (3829 vs. 4790; p=0.236) (Figure 4.2 A-E, Table 4.2). Cord blood 

median surface-protein antibody concentrations were lower in HIV-exposed compared to 

HIV-unexposed newborns for PI-1 (502 vs. 1177; p=0.039), PI-2b (478 vs. 865; p=0.024) and 

FbsA (1717 vs.2758; p=0.010) (Figure 4.2 A-E, Table 4.2). The median cord to maternal 

ratios (range 76%-126%) were similar for all antibodies directed against surface-proteins 

between HIV-uninfected and HIV-infected mother-newborn dyads (Table 4.5). 

 

4.1.4 Effect of CD4+ T-lymphocyte and HIV-1 viral load counts on GBS antibody in HIV-
infected women 

In HIV-infected women, 71 of 83 (85.5%) had a CD4+ T-lymphocyte count measured within 

6 months before delivery with a median CD4+ T-lymphocyte count of 423 cells/mm3 (IQR: 

264-594). The median HIV-1 viral load in 79/83 (95.2%) participants was 96 copies/mL (IQR: 

20-3841) and undetectable in 28 of the 79 (35.4%) samples. There was no correlation between 

CD4+ T-lymphocyte counts and maternal antibody concentrations or between CD4+ T-

lymphocyte counts and cord to maternal ratios for any of the nine measured antibodies. 

Furthermore, median maternal antibody concentrations and cord to maternal ratios were 

similar when stratified by different thresholds of CD4+ T-lymphocyte counts (Table 4.6 and 

4.7). Similarly, there was no correlation between maternal HIV-1 viral load and maternal 

antibody concentration or cord to maternal ratios for any of the nine measured antibodies 

(Table 4.6 and 4.7).  
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Figure 4.2: Tukey box and whisker plots comparing surface-protein antibody concentrations of 
PI-1, PI-2a, PI-2b, BibA and FbsA between HIV-uninfected and -infected mothers, and HIV-
unexposed and -exposed newborns  
Footnote: Mother HIV- denotes HIV-uninfected and HIV+ denotes HIV-infected, Newborn HIV- denotes HIV-
unexposed and Newborn HIV+ denotes HIV-exposed. Arbitrary units is abbreviated AU. The y-axis has been 
log10 scaled. For the box and whisker plots; the box represents the distance of the 25th and 75th percentile with 
the median represented by the solid line within the box. The upper whisker represents 1.5 times the interquartile 
distance from the 75th centile, while the lower whisker represents 1.5 times the interquartile distance from the 25th 
centile. The dot symbols represent outliers above the upper whisker. 
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Table 4.6: Median (interquartile range) capsular (µg/mL) and protein (AU/mL) antibody concentrations stratified by CD4+ T-
lymphocyte counts and HIV-1 viral load in HIV-infected women 

 Ia Ib III V PI-1 PI-2a PI-2b BibA FbsA 

CD4+ 
(cells/mm3) 

         

<200 (n=7)
0.11 

 (0.06-0.81) 
0.10  

(0.05-0.42) 
0.21  

(0.19-0.35) 
0.57  

(0.44-0.71) 
224  

(196-4616) 
2235  

(362-5577) 
604  

(326-892) 
7342  

(1760-18105) 
1444  

(525-5117) 

200-350 (n=19)
0.19  

(0.06-0.69) 
0.11 

 (0.04-0.19) 
0.27 

 (0.15-0.36) 
0.44  

(0.27-0.72) 
480  

(265-1983) 
772 

 (493-2291) 
539  

(242-2025) 
3210 

 (1723-8174) 
1563 

 (778-2733) 

350-500 (n=21)
0.09 

 (0.03-0.87) 
0.07  

(0.03-0.14) 
0.23 

 (0.10-0.55) 
0.39  

(0.10-1.01) 
581  

(361-1227) 
2123  

(700-4203) 
732  

(411-1895) 
2894 

(1732-6301) 
1074  

(584-2426) 

>500 (n=24)
0.13  

(0.04-0.49) 
0.06  

(0.04-0.09) 
0.13  

(0.07-0.63) 
0.37  

(0.23-0.68) 
451  

(249-1636) 
733  

(415-3014) 
502  

(298-876) 
3723  

(1731-7213) 
1227  

(761-1710) 

p-value1 0.637 0.089 0.369 0.178 0.671 0.369 0.777 0.219 0.571 

Viral load 
(copies/mL) 

         

<40 (n=31)
0.14  

(0.07-0.75) 
0.06  

(0.04-0.17) 
0.27  

(0.12-0.69) 
0.43  

(0.25-0.71) 
446  

(217-2037) 
1074  

(457-2557) 
411  

(277-4822) 
4309  

(1760-9098) 
1454  

(542-2886) 

40-1000 (n=21)
0.09 

(0.05-0.45) 
0.06  

(0.04-0.12) 
0.19  

(0.10-0.33) 
0.48  

(0.28-0.71) 
549  

(273-1417) 
866  

(542-2123) 
735  

(406-1761) 
3829  

(1723-7280) 
1228  

(754-2426) 
1000-10 000 

(n=14)
0.06  

(0.04-1.01) 
0.03 

 (0.02-0.09) 
0.15  

(0.09-0.45) 
0.20  

(0.07-0.68) 
452 

(196-979) 
1490 

 (273-3744) 
446  

(255-604) 
3081  

(1354-3979) 
1110  

(393-3702) 

>10 000 (n=13)
0.18  

(0.07-0.87) 
0.12  

(0.05-0.23) 
0.28  

(0.15-0.35) 
0.48  

(0.31-0.61) 
686  

(484-1227) 
3866 

(772-5577) 
728  

(538-1322) 
5645  

(3046-13400) 
1559  

(897-4053) 

p-value2 0.529 0.580 0.709 0.738 0.263 0.108 0.348 0.177 0.598 
1comparing median antibody concentration in mothers with CD4+ T-lymphocyte counts <200 and CD4+ T-lymphocyte counts >500 using Mann-Whitney 
test; 2comparing median antibody concentration in mothers with HIV-1 viral load <40 and HIV-1 viral load >10 000 using Mann-Whitney test.
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Table 4.7: Cord to maternal median (interquartile range) ratios stratified by CD4+ T-lymphocyte counts and HIV-1 viral load in 
HIV-infected mother-newborn dyads  

 Ia Ib III V PI-1 PI-2a PI-2b BibA FbsA 

CD4+ (cells/mm3)          

<200 (n=7) 
0.45 (0.38-

0.54) 
1.54 (0.59-

1.96) 
1.00 (0.53-

1.28) 
0.83 (0.65-

1.41) 
0.80 (0.58-

1.25) 
1.98 (0.56-

4.76) 
1.17 (0.79-

2.20) 
1.13 (1.03-

1.31) 
1.79 (0.78-

4.39) 

200-350 (n=19) 
0.48 (0.18-

0.94) 
1.17 (0.84-

1.97) 
0.61 (0.40-

0.98) 
0.79 (0.54-

1.20) 
0.75 (0.33-

1.43) 
0.93 (0.39-

2.71) 
0.78 (0.24-

1.71) 
0.67 (0.55-

1.31) 
1.16 (0.28-

2.48) 

350-500 (n=21) 
0.45 (0.37-

0.65) 
0.79 (0.51-

1.04) 
0.52 (0.38-

0.78) 
0.81 (0.56-

1.03) 
1.09 (0.70-

1.63) 
1.67 (1.13-

3.47) 
1.08 (0.75-

1.31) 
0.78 (0.53-

1.17) 
1.75 (0.74-

3.13) 

>500 (n=24) 
0.50 (0.32-

0.70) 
1.01 (0.66-

1.66) 
0.73 (0.45-

0.99) 
0.89 (0.53-

1.21) 
1.04 (0.72-

1.66) 
1.26 (0.65-

2.53) 
0.92 (0.64-

1.50) 
0.75 (0.65-

1.02) 
1.14 (0.62-

2.10) 

p-value1 0.887 0.850 0.321 0.539 0.395 0.603 0.603 0.047 0.422 

Viral load 
(copies/mL) 

         

<40 (n=31) 
0.45 (0.28-

0.87) 
1.00 (0.59-

2.09) 
0.81 (0.51-

1.13) 
1.03 (0.56-

1.33) 
1.09 (0.70-

1.40) 
1.68 (0.71-

3.51) 
1.12 (0.69-

1.58) 
0.93 (0.57-

1.35) 
1.75 (0.51-

3.73) 

40-1000 (n=21) 
0.57 (0.38-

0.71) 
1.02 (0.62-

1.26) 
0.56 (0.41-

0.81) 
0.65 (0.54-

0.83) 
0.75 (0.58-

1.43) 
0.65 (0.46-

1.36) 
0.78 (0.46-

1.05) 
0.70 (0.57-

0.82) 
0.83 (0.43-

1.23) 

1000-10 000 (n=14) 
0.51 (0.35-

0.82) 
0.98 (0.51-

1.51) 
0.53 (0.32-

0.98) 
0.87 (0.58-

2.04) 
1.07 (0.78-

2.16) 
2.03 (1.34-

3.62) 
1.03 (0.90-

2.17) 
0.83 (0.54-

1.33) 
1.38 (0.81-

2.19) 

>10 000 (n=13) 
0.52 (0.38-

0.74) 
0.82 (0.75-

1.24) 
0.61 (0.40-

0.78) 
0.77 (0.59-

1.03) 
0.86 (0.67-

1.35) 
1.32 (0.59-

2.19) 
0.78 (0.50-

1.12) 
0.55 (0.48-

0.88) 
1.03 (0.52-

2.13) 

p-value2 0.969 0.464 0.185 0.389 0.728 0.403 0.232 0.139 0.479 
1comparing median cord to maternal ratios in mothers with CD4+ T-lymphocyte counts <200 and CD4+ T-lymphocyte counts >500 using Mann-Whitney test; 
2comparing median cord to maternal ratios in mothers with viral load <40 and viral load >10 000 using Mann-Whitney test.
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4.2 Discussion 

The findings from our study suggest that the possible mechanisms for the increased 

susceptibility to invasive GBS disease in HIV-exposed infants may relate to lower maternal 

capsular and surface-protein antibody concentrations, and inefficient transplacental transfer of 

capsular antibody to the foetus of HIV-infected women. HIV-infected women had lower GBS 

capsular antibody concentrations than their HIV-uninfected counterparts, and notably a lower 

proportion of HIV-infected women had capsular antibodies above the putative “protective” 

thresholds that has been reported to protect against invasive GBS disease in their infants 

(Chapter 1.10.1). The lower GBS antibody concentrations in HIV-infected women could 

represent waning of natural acquired antibody or reduced humoral immune responsiveness to 

recto-vaginal colonization which likely induces the antibody responses (Kwatra et al., 2015). 

Additionally, reduced maternal exposure to GBS may also result in lesser antibody production 

to various serotype-specific epitopes (Dangor et al., 2015). This is supported by some studies 

which reported a lower prevalence of GBS colonization in HIV-infected women, including 

previously in our setting (Gray et al., 2011, Cutland et al., 2012); although this was not 

observed in the current study cohort.  

 

The transplacental transfer of antibodies to serotypes Ia and III, which account for the majority 

(72%) of invasive GBS disease globally (Edmond et al., 2012), was 37.4% and 32.5% lower in 

HIV-exposed compared to HIV-unexposed newborns. Additionally, maternal capsular 

antibody concentrations were lower in HIV-infected women compared to HIV-uninfected 

women for serotypes Ib and V, with a trend towards being lower for serotype Ia, but not for 

serotype III. Serotype III, which has the highest invasive potential, is the least immunogenic of 
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all serotypes (Davies et al., 2001, Madzivhandila et al., 2011) and this may explain why 

concentrations were similar in HIV-infected and HIV-uninfected women. Furthermore, the 

trend toward higher colonization prevalence of serotype III in HIV-infected compared to HIV-

uninfected women in our study may have contributed to similar serotype III antibody 

concentrations between the women (Table 4.1). 

 

We also measured antibody concentrations to select GBS surface-proteins which induce 

antibody responses and could be possible vaccine epitopes. There is, however, a paucity of 

data on these GBS surface-protein antibody concentrations and no international reference 

standards exist. Thus, we can only report on the comparisons using in-house reference serum 

employed consistently across all samples. HIV-infected women had lower median 

concentrations for all GBS surface-proteins, although antibody differences to BibA were not 

significant. In addition, we observed that contrary to the capsular antibody transfer, the 

transfer of surface-protein antibodies from mother to foetus was more efficient, and similar 

between HIV-infected and HIV-uninfected mother-newborn dyads. This may occur because 

surface-protein antibodies, which are mainly subclass IgG1, are more efficiently transferred 

than capsular antibodies, which are predominantly of subclass IgG2 (Palmeira et al., 2012).  

 

Our results are consistent with reports showing reduced transplacental transfer of maternal 

antibodies directed against epitopes of varicella (31% reduction), measles (35% reduction), 

pneumococcus (24-30% reduction), Haemophilus influenzae type b (23% reduction), pertussis 

(40% reduction) and tetanus (27-52% reduction) in HIV-infected compared to HIV-uninfected 

mother-newborn dyads (de Moraes-Pinto et al., 1996, Scott et al., 2005, Cumberland et al., 
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2007, Jones et al., 2011, Gupta et al., 2014). However, no difference in transplacental antibody 

transfer between HIV-infected and HIV-uninfected women for pathogens such as herpes, 

some pneumococcal serotypes and influenza have also been reported (de Moraes-Pinto et al., 

1996, Gupta et al., 2014, Madhi et al., 2014). Transplacental IgG antibody transfer is thought 

to occur via an active transport mechanism utilizing neonatal Fc receptors found on the 

placenta (Leach et al., 1996, Kruczek et al., 2010, Palmeira et al., 2012). The decrease in 

transplacental antibody transfer in HIV-infected women is thought to be as a consequence of 

maternal hyper-gammaglobulinaemia which saturates the neonatal Fc receptors (de Moraes-

Pinto et al., 1999). Other reasons for the variation in transplacental antibody transfer may 

relate to differences in IgG subclass and mechanism of transfer of antibody (i.e. active or 

passive transport) (Palmeira et al., 2012). 

 

Although our study did not identify a significant association between CD4+ T-lymphocyte 

counts and HIV-1 viral loads on maternal antibody and cord to maternal ratios among HIV-

infected women, the study was not powered (with a sample size of 79) to detect a significant 

relationship when the true correlation is between -0.35 and 0.35. Similarly, no association has 

been observed between maternal CD4+ T-lymphocyte counts and transplacental transfer of  

pneumococcal, Haemophilus influenzae type b, pertussis and tetanus antibodies in HIV-

infected women (Jones et al., 2011, Gupta et al., 2014),  whereas a positive correlation with 

CD4+ T-lymphocyte counts and maternal antibody concentrations was reported to antibodies 

to pertussis, pneumococcus and tetanus (Jones et al., 2011). More recently, a large European 

cohort study reported an increased risk of bacterial infections in HIV-exposed infants, 

particularly if born to women with low CD4+ T-lymphocyte counts (Taron-Brocard et al., 
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2014). Most pregnant women in our setting had undetectable HIV-1 viral load and had 

immune reconstituted at the time of antibody sampling. A study conducted in Nairobi in HIV-

infected women reported a 44% decrease of measles antibody transfer with every log10 

increase in HIV-1 viral load, indicating that infants born to women with advanced maternal 

HIV-infection may be at increased risk of disease due to reduced acquisition of maternal 

antibody concentrations (Farquhar et al., 2005).  

 

Limitations of our study include that we did not match for age and colonization status in HIV-

infected and HIV-uninfected women, however, we adjusted for these factors in the 

multivariate analysis and findings remained consistent. Furthermore, we did not quantify the 

effect of cross reactivity of serotype Ib with Ia, as previously documented by Brigsten et al.  

(Brigtsen et al., 2002), may have had on the absolute antibody concentration for serotype Ib. 

The assay was, however, applied consistently to both HIV-infected and HIV-uninfected dyads 

and hence is unlikely to alter the differences observed between HIV-infected and HIV-

uninfected women in our study. Also, our study only measured IgG antibodies, whilst IgA 

antibodies may also be transplacentally transferred; and have been associated with protection 

against invasive GBS disease in animal model studies (Shen et al., 2000, Meinke et al., 2010). 

Additionally, CD4+ T-lymphocyte counts were measured as part of standard-of-care at any 

time within 6 months (mean: 2.8 months) of delivery and the study was not specifically 

powered to address whether immunological status or different HIV-1 viral load were 

associated with differences in maternal antibody or transplacental antibody transfer. 
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The lower GBS antibody concentrations and reduced transplacental antibody transfer in HIV-

infected women, which places their infants at risk for invasive GBS disease, may be mitigated 

by maternal GBS vaccination. An investigational trivalent GBS polysaccharide-protein 

conjugate vaccine was however reported to be less immunogenic in HIV-infected than HIV-

uninfected pregnant women (Heyderman et al., 2014). Therefore, in HIV-burden settings, 

maternal vaccination may require modified formulations or dosing schedules in HIV-infected 

women.    
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5.0 Association between capsular antibody concentrations and invasive 
Group B Streptococcus (GBS) disease in South African infants 

The burden of invasive GBS disease in young infants is highest in low-middle income 

countries where an alternative to IAP for GBS-colonized pregnant women is required 

(Dagnew et al., 2012, Edmond et al., 2012). Vaccinating women during pregnancy with 

tetanus, influenza and pertussis vaccines, which increases the transplacental transfer of 

protective antibodies to the newborns, prevents illness during early infancy (Steinhoff, 2013, 

Amirthalingam et al., 2014, Madhi et al., 2014) Similarly, maternal GBS vaccination could 

prevent invasive GBS disease in young infants. The identification of serological correlates of 

protection against invasive GBS disease could expedite the licensure of GBS vaccines, 

without needing to undertake large efficacy trials (Madhi et al., 2013). Although maternal 

serotype-specific capsular antibody levels are associated with protection against invasive GBS 

disease in high-income settings (Chapter 1.10.1) , this association has not been assessed in 

low-middle income countries. In this chapter, the association between naturally acquired 

serotype Ia and III GBS capsular antibody levels and invasive GBS disease in infants born at 

≥34 weeks gestational age in a low-middle income setting was investigated (the paper is in 

press, Vaccine 2015).  

 

5.1 Results 
5.1.1 Participant selection and demographic characteristics 

Over a twelve month period, 122 (66 EOD and 56 LOD) infants were diagnosed with invasive 

GBS disease. The clinical characteristics of these infants are reported in chapter 3.1 Sixty-

three (51.6%) cases were excluded from the analysis: 30 (24.6%) infants were <34 weeks 

gestation, blood samples were unavailable for 15 cases and only obtained >72 hours in 2 
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infants after confirmation of disease, 13 infants had disease caused by serotypes other than Ia 

or III, 2 infants were diagnosed by a positive CSF latex agglutination test, and the GBS isolate 

was not retrieved for one infant (Figure 5.1). Of 544 controls, 57 infants were excluded (50 

were infants <34 weeks gestation and suitable matched controls were unavailable for a further 

7). Maternal GBS colonization was confirmed in 135 (27.7%) of the remaining 487 controls, 

of whom 53 (39.3%) were colonized with serotype Ia and 39 (28.9%) with serotype III.  

 

Final antibody comparisons, after strata-matching cases and controls, was conducted on 27 

(EOD-15, LOD-12) mother-infant pairs for serotype Ia and 29 (EOD-7, LOD-22) for serotype 

III. These were matched to 43 homotypic and 360 non-homotypic (65 colonized with other 

serotypes and 295 non-colonized) controls for serotype Ia, and on 31 homotypic and 351 non-

homotypic (75 colonized with other serotypes and 276 non-colonized) controls for serotype III 

(Figure 5.1). 

 

5.1.2 Comparison of cases to homotypic controls 

Cases and homotypic controls had similar maternal and infant demographic characteristics, as 

well as risk factors for invasive GBS disease such as parity, race/ethnicity, the risk of 

prolonged rupture of membranes and the use of intrapartum antibiotic prophylaxis (Table 5.1).  

 

The median maternal and infant serotype Ia antibody concentrations (in µg/mL) were 0.05 

(IQR: 0.02-0.24) and 0.01 (IQR: 0.01-0.07) in cases and 0.29 (IQR: 0.06-1.60) and 0.19 (IQR: 

0.05-1.54) in homotypic controls, respectively (Figures 5.2, Tables 5.2 and 5.3). The median 

maternal and infant serotype III antibody concentrations (in µg/mL) were  



144 
 

0.14 (IQR: 0.08-0.33) and 0.04 (IQR: 0.02-0.08) in cases, and 0.29 (IQR: 0.13-0.58) and 0.15 

(IQR: 0.06-0.44) in homotypic controls, respectively (Figures 5.2, Tables 5.2 and 5.3). 

Stratified by EOD and LOD, serotype Ia and III maternal and infant antibody concentrations 

were lower in cases compared to homotypic controls (Tables 5.2 and 5.3). Maternal homotypic 

controls matched to LOD cases had similar antibody concentrations as homotypic EOD 

controls enrolled at birth (p=0.958) 

 

 

 

 

 

 

 

   

  

 

 

 

 

Figure 5.1: Diagrammatic representation of participant enrolment and exclusion   
Footnote: *Five mothers of controls were colonized by more than 1 serotype. .

Serotype Cases 
Homotypic 
colonized 
controls 

Controls 
colonized with 
other serotypes 

Non-colonized 
controls 

Ia  27 43 65 295 

III  29 31 75 276 

Cases (n=122) 
Ia=47, III=47, other=28 

Controls (n=544) 
Ia=58, III=42, other=52a, Non-

colonized=397

Excluded (n=63) 
 <34 weeks gestation, n=30 
 No blood/late draw, n=17 

 Not serotyped, n=3 
 Not Ia or III, n=13 

Excluded (n=57) 
 <34 weeks gestation, n=50 
 Not matched to cases, n=7  

n=59 (Ia=28, III=31) n=487 (Ia=53, III=39) 

Stratum matching: (i) serotype, (ii) EOD or LOD, (iii) maternal HIV-
status, (iv) maternal age as <25 years, 25-<35 years and ≥35 years and 

(v) gestational age as 34-<37 weeks and ≥37 weeks. 
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Table 5.1:  Demographic characteristics and invasive Group B Streptococcus (GBS) disease risk factors in matched cases and homotypic 
controls ≥34 weeks of age  

 Serotype Ia Serotype III 

 
Cases n=27 

[EOD1=15, LOD2=12] 
Controls n=43 

[EOD=30, LOD=13] 
p-value3 

Cases n=29 
[EOD=7, LOD=22] 

Controls n=31 
[EOD=16, LOD=15] 

p-value 

Maternal       

HIV-infected 9 (33.3) 13 (30.2) 0.786 17 (58.6) 16 (51.6) 0.586 

HIV-uninfected 18 (66.7) 30 (69.7)  12 (41.4) 15 (48.4)  

Median age in years (IQR4) 23.9 (19.7-30.0) 24.2 (21.4-29.0) 0.286 26.8 (24.4-31.3) 25.1 (21.4-31.7) 0.510 

Median parity (IQR) 0 (0-1) 1 (0-2) 0.155 1 (1-2) 1 (0-2) 0.227 

Black-African Race 25 (92.6) 42 (97.7) 0.555 29 (100) 30 (96.8) 0.999 

Fever 0/21 (0) 0/41 (0) 0.999 0/17 (0) 0/29 (0) 0.999 

PROM5 (>18 hours) 4/24 (16.7) 3/41 (7.3) 0.409 1/21 (4.8) 3/29 (10.3) 0.630 

IAP6 3/27 (11.1) 3/42 (7.1) 0.672 0/29 (0) 3/30 (10.0) 0.237 

Infant       

Median gestation in weeks (IQR) 39.0 (37.0-40.0) 39.3 (38.0-40.3) 0.562 40.0 (40.0-40.2) 39.2 (38.0-40.4) 0.050 

Median birth weight in grams (IQR) 2925 (2720-3275) 3035 (2830-3450) 0.372 3110 (2800-3320) 3095 (2740-3520) 0.636 

Male gender 16 (59.3) 22 (51.2) 0.508 15 (51.7) 17 (54.8) 0.809 

Day of life at enrolment        

EOD-Median (IQR) 4 (3-5) 1 (1-1) <0.001 3 (3-5) 1 (1-1) <0.001 

LOD-Median (IQR) 20 (15-29) 20 (16-22) 0.870 17 (11-23) 24 (14-27) 0.193 
1EOD- Early-onset disease, 2LOD- Late-onset disease, 3p-value- using Chi-squared, Fisher exact or Mann-Whitney test, 4IQR-Interquartile range, 5PROM- prolonged 
rupture of membranes, 6IAP-Intrapartum antibiotic prophylaxis.
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Figure 5.2: Scatter plots comparing maternal serotype Ia, infant serotype Ia, maternal 
serotype III and infant serotype III antibody concentrations between cases, homotypic 
controls and non-homotypic controls 
Footnote: The centre line represents the median and the upper and lower whiskers represent the 75th and 25th 
quartile, respectively. y-axis is log10 scale.   
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Table 5.2: Maternal antibody concentrations (µg/mL) of cases and controls ≥34 weeks of 
age  

 Cases1 Homotypic controls2 Non-homotypic controls3 

 Median(IQR)4 [n=]5 Median(IQR) [n=] Median(IQR) [n=] 

Serotype Ia      

Overall 0.05 (0.02-0.24) [n=27] 0.29 (0.06-1.60) [n=43] 0.14 (0.03-0.84) [n=360] 

EOD6 0.06 (0.03-0.42) [n=15] 0.28 (0.09-2.23) [n=30] 0.13 (0.03-0.81) [n=235] 

LOD7 0.04 (0.02-0.14) [n=12] 0.50 (0.06-1.43) [n=13] 0.15 (0.03-0.92) [n=125] 

HIV-infected 0.06 (0.03-0.20) [n=9] 0.12 (0.06-0.50) [n=13] 0.14 (0.04-0.83) [n=164] 

HIV-uninfected 0.05 (0.02-0.24) [n=18] 0.77 (0.13-2.44) [n=30] 0.13 (0.03-0.94) [n=196] 

Serotype III    

Overall 0.14 (0.08-0.33) [n=29] 0.29 (0.13-0.58) [n=31] 0.21 (0.11-0.47) [n=351] 

EOD 0.13 (0.06-1.38) [n=7] 0.25 (0.09-0.91) [n=16] 0.19 (0.11-0.47) [n=198] 

LOD 0.14 (0.08-0.28) [n=22] 0.30 (0.14-0.55) [n=15] 0.23 (0.12-0.49) [n=153] 

HIV-infected 0.11 (0.07-0.26) [n=17] 0.30 (0.15-0.55) [n=16] 0.22 (0.11-0.54) [n=148] 

HIV-uninfected 0.27 (0.11-0.60) [n=12] 0.21 (0.11-2.24) [n=15] 0.20 (0.11-0.46) [n=203] 

1Mother of infants with invasive GBS disease, 2Mother was colonized with the same serotype that caused the 
disease in cases, 3Mother was either non-colonized or colonized with GBS serotypes that did not cause 
disease in cases, 4Median (interquartile range), 5Number of cases, 6EOD- Early-onset disease, 7LOD- Late-
onset disease.  
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Table 5.3: Infant antibody concentrations (µg/mL) of cases and controls ≥34 weeks of age 

 Cases1 Homotypic controls2 Non-homotypic controls3 

 Median(IQR)4 [n=]5 Median(IQR) [n=] Median(IQR) [n=] 

Serotype Ia      

Overall 0.01 (0.01-0.07) [n=27] 0.19 (0.05-1.54) [n=43] 0.08 (0.02-0.45) [n=360] 

EOD6 0.02 (0.01-0.12) [n=15] 0.21 (0.05-1.66) [n=30] 0.09 (0.02-0.61) [n=235] 

LOD7 0.01 (0.01-0.01) [n=12] 0.06 (0.04-0.43) [n=13] 0.05 (0.01-0.25) [n=125] 

HIV-infected 0.01 (0.01-0.01) [n=9] 0.06 (0.03-0.08) [n=13] 0.06 (0.02-0.30) [n=164] 

HIV-uninfected 0.02 (0.01-0.07) [n=18] 0.37 (0.07-3.43) [n=30] 0.09 (0.02-0.60) [n=196] 

Serotype III      

Overall 0.04 (0.02-0.08) [n=29] 0.15 (0.06-0.44) [n=31] 0.12 (0.05-0.30) [n=351] 

EOD 0.08 (0.03-0.16) [n=7] 0.24 (0.11-0.56) [n=16] 0.16 (0.08-0.42) [n=198] 

LOD 0.03 (0.02-0.08) [n=22] 0.07 (0.06-0.21) [n=15] 0.07 (0.03-0.17) [n=153] 

HIV-infected 0.03 (0.02-0.05) [n=17] 0.08 (0.06-0.32) [n=16] 0.10 (0.04-0.23) [n=148] 

HIV-uninfected 0.07 (0.04-0.09) [n=12] 0.18 (0.09-0.52) [n=15] 0.14 (0.07-0.35) [n=203] 

1Infants with invasive GBS disease, 2Infants in which the mother was colonized with the same serotype that 
caused the disease in cases, 3Infants in which the mother was either non-colonized or colonized with GBS 
serotypes that did not cause disease in cases, 4Median (interquartile range), 5Number of cases, 6EOD- Early-
onset disease, 7LOD- Late-onset disease.  
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A lower proportion of mothers of cases (5/27; 18.5%) as compared to mothers of 

homotypic controls (20/43; 46.5%) had a serotype Ia antibody concentration ≥0.5 µg/mL 

(Figure 5.3, Table 5.4). The adjusted odds ratio was 0.18 (95% CI: 0.04-0.73) in cases 

compared to homotypic controls when the maternal antibody concentration was 

≥0.5 µg/mL (Table 5.4). A maternal serotype III antibody concentration ≥0.5 µg/mL was 

also less prevalent but not significant in cases (20.7%) than homotypic controls (35.5%) 

with an adjusted odds ratio of 0.27 (95% CI: 0.05-1.56; Figure 5.3, Table 5.4). Similarly, 

there was a lower proportion of serotype Ia and III antibody concentration ≥0.5 µg/mL in 

infants with invasive GBS disease than homotypic controls (Table 5.4).  

 
Figure 5.3: Reverse cumulative plots demonstrating the proportion of mothers of cases and 
homotypic controls at antibody thresholds for serotypes Ia and III. 
Footnote: The solid line represents the proportion of mothers at various antibody thresholds. The upper and 
lower dash lines are the 95% confidence intervals. The bold dash line is the estimated fitted line.  
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Table 5.4: Comparing antibody (µg/mL) thresholds between matched cases and homotypic 
controls  

 Cases1 
Homotypic 
controls2 

OR (95% CI)3 p-value aOR (95% CI)4 p-value 

Serotype Ia n=27 (%) n=43 (%)     
Maternal       

<0.1 17 (63.0) 12 (27.9)     
0.1-<0.5 5 (18.5) 11 (25.6) 0.31 (0.07-1.42) 0.131 0.26 (0.05-1.32) 0.104 

≥0.5 5 (18.5) 20 (46.5) 0.18 (0.05-0.68) 0.011 0.18 (0.04-0.73) 0.017 
Infant       

<0.1 21 (77.8) 19 (44.2)     
0.1-<0.5 2 (7.4) 9 (20.9) 0.20 (0.04-1.15) 0.072 0.28 (0.04-1.78) 0.176 

≥0.5 4 (14.8) 15 (34.9) 0.20 (0.05-0.90) 0.036 0.18 (0.04-0.85) 0.031 
       
Serotype III n=29 (%) n=31 (%)     
Maternal       

<0.1 10 (34.5) 5 (16.1)     
0.1-<0.5 13 (44.8) 15 (48.4) 0.29 (0.05-1.72) 0.174 0.50 (0.07-3.29) 0.467 

≥0.5 6 (20.7) 11 (35.5) 0.21 (0.04-1.16) 0.073 0.27 (0.05-1.56) 0.145 
Infant        

<0.1 24 (82.8) 13 (41.9)     
0.1-<0.5 4 (13.8) 12 (38.7) 0.38 (0.10-1.47) 0.160 0.44 (0.10-2.02) 0.293 

≥0.5 1 (3.4) 6 (19.4) 0.16 (0.02-1.47) 0.105 0.14 (0.02-1.38) 0.093 
1Infants with invasive GBS disease, 2healthy infants in which the mother was colonized with the same 
serotype that caused the disease in cases, 3Calculated Odds ratio with 95% confidence using conditional 
logistic regression, 4Adjusted odds ratio with 95% confidence using conditional logistic regression (serotype 
Ia: adjusted for parity and day of life at enrolment; serotype III: adjusted for gestational age and day of life at 
enrolment)  
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As a significant proportion (approximately 20%) of cases had a maternal antibody 

concentration ≥0.5 µg/mL and developed serotype Ia and III disease, we evaluated for a 

sero-correlate threshold of protection using a Bayesian framework. The risk of invasive 

GBS disease per 1,000 live births decreased with increasing antibody concentrations. The 

Bayesian model demonstrated an estimated 50%, 70% and >90% reduction in risk of 

invasive GBS disease with maternal antibody concentrations ≥3 µg/mL, ≥4 µg/mL and 

≥6 µg/mL for serotype Ia (Figure 5.4 A), and an estimated 75% and >90% risk reduction 

with maternal antibody concentrations ≥2 µg/mL and ≥3 µg/mL for serotype III (Figure 

5.4 B). 

(A)

(B) 

Figure 5.4: Probability of invasive Group B Streptococcus (GBS) disease risk to serotype 
Ia (A) and serotype III (B) at varying maternal antibody concentrations using a Bayesian 
model 
Footnote:  The circles represent the posterior mode (i.e. the most likely value) and vertical lines represent the 
50% credible interval.  
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Maternal and infant antibody concentrations correlated well in cases for serotypes Ia and 

III (Figure 5.5). In 3/27 (11.1%) infants that developed serotype Ia disease, however, their 

respective mothers had antibody concentrations above 5 µg/mL (Figure 5.5 A). None of 

the serotype III mothers of cases had an antibody concentration ≥3 µg/mL (Figure 5.5 B). 

 

 

 
 

(A)            (B)  

Figure 5.5: Correlation between maternal and infant serotype Ia (A) and III (B) antibody 
concentrations in infants that developed invasive Group B Streptococcus (GBS) disease 
Footnote: The Spearman’s test was used to measure the correlation between maternal and infant antibody 
concentrations in infants with disease.  
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The infant to maternal serotype Ia antibody ratio was significantly lower in cases (0.43; 

IQR: 0.20-0.61) with EOD as compared to homotypic controls (0.71; IQR: 0.59-1.14; 

p=0.012; Table 5.5). The infant: maternal serotype III antibody ratio was not significantly 

lower in cases with EOD (0.55; IQR: 0.12-0.98) as compared to homotypic controls (0.90; 

IQR: 0.58-1.17; p=0.071; Table 5.5).  

 

Table 5.5: Infant to maternal antibody ratio of early-onset mother-newborn pairs  

 Median (IQR)1 
infant/cord to maternal 

ratio 
p-value2 

Serotype Ia   
Cases (n=15) 0.43 (0.20-0.61)  

Homotypic controls (n=30) 0.71 (0.59-1.14) 0.012 
Non-homotypic controls (n=235) 0.67 (0.45-1.00) 0.013 

Serotype III   
Cases (n=7) 0.55 (0.12-0.98)  

Homotypic controls (n=16) 0.90 (0.58-1.17) 0.071 
Non-homotypic controls (n=198) 0.79 (0.53-1.18) 0.091 

1Median (interquartile range), 2p-value- comparing cases with homotypic and non-homotypic controls using 
Mann-Whitney test. 

 

5.1.3 Comparison of cases to non-homotypic controls 

Cases and non-homotypic controls had similar demographic characteristics and infant risk 

factors for disease (Table 5.6). Maternal and infant serotype Ia and III antibody 

concentrations were similar between heterotypic and non-colonized controls (data not 

shown). Non-homotypic controls had lower median maternal and infant antibody 

concentrations than homotypic controls (Tables 5.2 and 5.3).The median maternal and 

infant serotype Ia antibody concentrations (in µg/mL) was 0.14 (IQR: 0.03-0.84) and 0.08 

(IQR: 0.02-0.45) in non-homotypic controls (Figures 5.2, Tables 5.2 and 5.3). The median 

maternal and infant serotype III antibody concentrations was 0.21 (IQR: 0.11-0.47) and 

0.12 (IQR: 0.05-0.30) in non-homotypic controls (Figures 5.2, Tables 5.2 and 5.3). As with 

homotypic controls, a higher proportion of non-homotypic controls, as compared to cases, 

had maternal and infant antibody concentrations ≥0.5 µg/mL (Table 5.7). 
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Table 5.6:  Demographic characteristics and disease risk factors in matched cases and non-homotypic controls ≥34 weeks  

 Serotype Ia Serotype III 

 
Cases n=27 

[EOD1=15, LOD2=12] 
Controls n=360 

[EOD=235, LOD=125] 
p-value3 

Cases n=29 
[EOD=7, LOD=22] 

Controls n=351 
[EOD=198, LOD=153] 

p-value 

Maternal       

HIV-infected 9 (33.3) 164 (45.6) 0.218 17 (58.6) 148 (42.2) 0.086 

HIV-uninfected 18 (66.7) 196 (54.4)  12 (41.4) 203 (57.8)  

Median age in years (IQR4) 23.9 (19.7-30.0) 24.9 (21.3-30.4) 0.117 26.8 (24.4-31.3) 26.3 (22.3-30.5) 0.207 

Median parity (IQR) 0 (0-1) 1 (0-2) 0.100 1 (1-2) 1 (0-2) 0.084 

Black-African Race 25 (92.6) 354 (98.3) 0.101 29 (100) 346 (98.6) 0.999 

Fever 0/21 (0) 0/339 (0) 0.999 0/17 (0) 0/328 (0) 0.999 

PROM5 (>18 hours) 4/24 (16.7) 40/347 (11.5) 0.508 1/21 (4.8) 30/337 (8.9) 0.999 

IAP6 3/27 (11.1) 44/354 (12.4) 0.999 0/29 (0) 32/345 (9.3) 0.156 

Infant       

Median gestation in weeks (IQR) 39.0 (37.0-40.0) 39.4 (38.0-40.3) 0.214 40.0 (40.0-40.2) 39.5 (38.1-40.3) 0.062 

Median birth weight in grams (IQR) 2925 (2720-3275) 3065 (2805-3363) 0.274 3110 (2800-3320) 3110 (2860-3375) 0.677 

Male gender 16 (59.3) 187 (51.9) 0.463 15 (51.7) 179 (51.0) 0.940 

Day of life at enrolment        

EOD-Median (IQR) 4 (3-5) 1 (1-1) <0.001 3 (3-5) 1 (1-1) <0.001 

LOD-Median (IQR) 20 (15-29) 19 (14-24) 0.734 17 (11-23) 19 (15-24) 0.210 
1EOD- Early-onset disease, 2LOD- Late-onset disease, 3p-value- using Chi-squared, Fisher exact or Mann-Whitney test, 4IQR- Interquartile range, 5PROM- prolonged 
rupture of membranes, 6IAP-Intrapartum antibiotic prophylaxis.
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Table 5.7: Comparing antibody (µg/mL) thresholds between matched cases and non-
homotypic controls 

 
Cases1 

Non-
homotypic2 

controls 
OR (95% CI)3 p-value aOR (95% CI)4 p-value 

Serotype Ia n=27 (%) n=360 (%)     
Maternal       

<0.1 17 (63.0) 159 (44.2)     
0.1-<0.5 5 (18.5) 88 (24.4) 0.64 (0.22-1.83) 0.403 0.70 (0.24-2.02) 0.504 

≥0.5 5 (18.5) 113 (31.4) 0.49 (0.17-1.37) 0.175 0.52 (0.18-1.51) 0.227 
Infant       

<0.1 21 (77.8) 200 (55.6)     
0.1-<0.5 2 (7.4) 75 (20.8) 0.28 (0.06-1.23) 0.092 0.31 (0.07-1.40) 0.129 

≥0.5 4 (14.8) 85 (23.6) 0.53 (0.18-1.61) 0.263 0.64 (0.20-2.02) 0.448 
       
Serotype III n=29 (%) n=351 (%)     
Maternal       

<0.1 10 (34.5) 74 (21.1)     
0.1-<0.5 13 (44.8) 193 (55.0) 0.47 (0.19-1.14) 0.096 0.50 (0.20-1.24) 0.137 

≥0.5 6 (20.7) 84 (23.9) 0.52 (0.18-1.51) 0.227 0.43 (0.14-1.29) 0.132 
Infant        

<0.1 24 (82.8) 149 (42.5)     
0.1-<0.5 4 (13.8) 143 (40.7) 0.26 (0.08-0.78) 0.017 0.23 (0.07-0.70) 0.010 

≥0.5 1 (3.4) 59 (16.8) 0.13 (0.02-1.06) 0.057 0.10 (0.01-0.84) 0.034 
1Infants with invasive GBS disease, 2healthy infants in which the mothers were either non-colonized or colonized 
with GBS serotypes that did not cause disease in cases, 3Calculated Odds ratio with 95% confidence using 
conditional logistic regression, 4Adjusted odds ratio with 95% confidence using conditional logistic regression 
(serotype Ia: adjusted for maternal age, parity, black-African race and day of life at enrolment; serotype III: 
adjusted for maternal HIV-status, parity, intrapartum antibiotic prophylaxis, gestational age and day of life at 
enrolment)  
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5.2 Discussion 

This study describes a positive association between low capsular antibody concentrations and 

invasive GBS disease in South African infants from a low-middle income setting. Mothers 

whose infants developed invasive serotype Ia or III GBS disease had reduced antibody 

concentrations compared to homotypic controls, and we demonstrated that increased maternal 

antibody concentrations were associated with a reduced risk of invasive serotype Ia or III 

disease in the infant. A maternal antibody threshold concentration ≥6 µg/mL and ≥3 µg/mL 

would provide a >90% reduction in the risk of serotype Ia and III disease. 

 
Identifying a sero-correlate of protection by measuring naturally acquired maternal antibody 

concentrations in infants with invasive GBS disease as compared to healthy controls could 

facilitate licensure of the GBS polysaccharide-protein conjugate vaccine in which phase II 

trials have been concluded (Madhi et al., 2013). Using previous studies to identify a specific 

putative threshold of protection against serotype-specific invasive GBS disease is, however, 

difficult because of differences in assay methods, lack of standardized reference sera and 

differences in participant selection (Dangor et al., 2015). Baker et al. proposed that a maternal 

antibody concentration ≥1 µg/mL be used as a correlate of protection against invasive serotype 

Ia and III GBS disease in North American infants (Baker et al., 2014). However, Lin et al., 

using data derived from a much larger cohort study, suggested that maternal antibody 

threshold concentrations of ≥5 µg/mL and ≥10 µg/mL protect against serotype I and III disease 

respectively (Lin et al., 2001, Lin et al., 2004). It is likely that the threshold of protection 

exists between 1 µg/mL and 10 µg/mL, as supported by our study, and further studies using 

standardized antibody assays are likely warranted to further define a specific correlate of 

protection.   
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In addition to comparing cases with homotypic controls, where maternal colonization status 

induce antibody responses (Dangor et al., 2015), we specifically compared cases to non-

homotypic controls. We did this analysis because, in our setting, we have previously reported 

variable associations between maternal capsular antibody levels and colonization status 

(Kwatra et al., 2015). Non-colonized controls may have been colonized with GBS previously 

which could have induced the higher median antibody concentrations and subsequently 

resulted in the loss of GBS carriage, or conversely lower antibody levels could have increased 

susceptibility to the acquisition of GBS colonization  (Kwatra et al., 2015). 

 

We report lower infant to maternal antibody ratios, mainly in cases with serotype Ia disease 

although a similar trend was observed in serotype III disease.  This contrasts with a previous 

study that showed similar infant to maternal antibody ratios between cases and controls (Lin et 

al., 2001, Lin et al., 2004). Our findings of a lower infant to maternal ratio in cases might 

represent adsorption of maternal derived homotypic capsular antibody in the infant following 

the onset of invasive GBS disease.  

 

Although we used a different assay method than in other studies, we used reference serum 

provided by Dr Carol J Baker to create standard antibody concentrations for our assay. We 

found lower median maternal antibody concentrations in homotypic controls in our setting (Ia-

0.29, IQR: 0.06-1.60 and III-0.29, IQR: 0.13-0.58) compared to controls in the USA (Ia-1.83, 

IQR: 0.20-5.54 and III-1.64, IQR: 0.14-5.51) (Baker et al., 2014).  The lower circulating 

antibody concentrations in colonized mothers of healthy infants may in part relate to the high 

prevalence of maternal HIV-infection in our setting.  
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One of the strengths of our study was that we closely matched cases and controls for variables 

known to influence infant antibody concentrations (Christensen et al., 1984, Anthony et al., 

1994), but our study has some limitations. The association observed with maternal capsular 

antibody and risk for invasive GBS disease in their infants observed by us, whilst 

corroborating that of others (Lin et al., 2001, Baker et al., 2014), nevertheless needs to be 

interpreted in the context that rather than being the effector for protection, it could be a proxy 

marker of some other immune mediator of protection which is also transferred to the foetus 

and was not measured for in our study. Furthermore, we were unable to analyse EOD and 

LOD cases independently due to the relatively small numbers of cases and therefore focused 

the analysis on maternal antibody concentrations where levels were comparable for EOD and 

LOD. A further limitation is that antibody levels measured in the infant after confirmation of 

invasive GBS disease may have been low as a result of consumption during the immune 

response. These limitations may be overcome by conducting a large resource-intensive study, 

such as conducted by Lin et al. (Lin et al., 2001), where antibodies are measured at birth in all 

infants who are prospectively monitored for invasive GBS disease. 

 

In conclusion, we show that maternal GBS capsular antibody levels are associated with 

protection against invasive GBS disease in infants in a low-middle income setting. 

Vaccine-induced antibody levels ≥6 µg/mL and ≥3 µg/mL, as measured by our assay, would 

likely protect the majority of infants against invasive GBS disease caused by serotypes Ia and 

III in our setting. This work may potentially be useful in the licensure pathway for GBS 

polysaccharide-protein conjugate vaccine.   



159 
 

6.0 Association between maternal Group B Streptococcus (GBS) surface-
protein antibody concentrations and invasive disease in their infants 

Correlates of protection for maternal GBS serotype-specific capsular antibody levels in 

protecting their young infants against invasive GBS disease has been proposed in a few studies 

(Chapter 1.10.1). A drawback of serotype-specific GBS polysaccharide-protein conjugate 

vaccine, e.g. the trivalent vaccine currently under development, is the possibility for 

replacement disease if vaccine formulations are limited to select serotypes, even though the 

majority (79%) of disease are currently  caused by the selected serotypes (Edmond et al., 

2012, Madhi et al., 2013).  This could be overcome by targeting non-serotype-specific GBS 

epitopes that contribute to the virulence of organism, are genetically conserved between GBS 

strains, and are immunogenic. Such potential vaccine epitopes include immunogenic surface-

proteins (Lindahl et al., 2005, Meinke et al., 2010). In this chapter, the association between 

maternal IgG antibodies to select GBS surface-proteins and invasive GBS disease in their 

infants was determined (the published paper is attached as Appendix 4). 

6.1 Results 
6.1.1 Participant selection and demographic characteristics 

In infants born at ≥34 weeks gestational age, serum was available on 70 mother-infant pairs 

with invasive GBS disease and 487 controls. After stratum matching, the final FbsA and BibA 

paired analysis included 69 cases, 128 GBS colonized controls and 332 non-colonized 

controls. Risk factors for invasive GBS disease and demographic characteristics were similar 

between cases and matched controls, except for history of PROM during labour being more 

common in cases (19.3%) than matched colonized controls (4.9%, p=0.002), and infants with 

EOD being older (median: 3 days) at the time of enrolment than matched colonized and non-

colonized controls (median: 1 day, p<0.001 for both; Table 6.1 and 6.2).  
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Table 6.1:  Demographic characteristics of matched cases and colonized controls ≥34 weeks 
of age for FbsA and BibA  

 FbsA/ BibA 

 
Cases n=69 

[EOD1=34, LOD2=35] 
Controls n=128 

[EOD=75, LOD=53] 
p-value3 

Maternal    
HIV-infected 29 (42.0) 54 (42.2) 0.983 
HIV-uninfected 40 (58.0) 74 (57.8)  
Median age in years (IQR4) 25.4 (21.7-30.4) 25.2 (22.7-30.9) 0.430 
Median parity (IQR) 1 (0-2) 1 (0-2) 0.567 
Black-African Race 66 (95.7) 126 (98.4) 0.346 
Fever 0/50 (0) 0/118 (0) 0.999 
PROM (>18 hours)5 11/57 (19.3) 6/123 (4.9) 0.002 
IAP6 4/69 (5.8) 9/124 (7.3) 0.774 
Infant    
Median gestation in weeks (IQR) 40.0 (38.3-40.3) 39.3 (38.0-40.4) 0.255 
Median birth weight in grams (IQR) 2995 (2800-3250) 3085 (2800-3410) 0.257 
Male gender 39 (56.5) 59 (46.1) 0.163 
Day of life at enrolment     

EOD-Median (IQR) 4 (3-5) 1 (1-1) <0.001 
LOD-Median (IQR) 17 (12-25) 20 (15-24) 0.265 

1EOD- Early-onset disease, 2LOD- Late-onset disease, 3p-value- using Chi-squared, Fischer exact or Wilcoxon 
rank-sum (Mann-Whitney) test,

 4IQR-Interquartile range, 5Prolonged (>18 hours) rupture of membranes 6IAP-
Intrapartum antibiotic prophylaxis. 
 

Table 6.2:  Demographic characteristics of cases and non-colonized controls ≥34 weeks of 
age for FbsA and BibA 

 FbsA/ BibA 

 
Cases n=69 

[EOD1=34, LOD2=35] 
Controls n=332 

[EOD=206, LOD=126] 
p-value3 

Maternal    
HIV-infected 29 (42.0) 142 (42.8) 0.908 
HIV-uninfected 40 (58.0) 190 (57.4)  
Median age in years (IQR4) 25.4 (21.7-30.4) 25.4 (21.7-30.3) 0.860 
Median parity (IQR) 1 (0-2) 1 (0-2) 0.946 
Black-African Race 66 (95.7) 327 (98.5) 0.143 
Fever 0/50 (0) 0/315 (0) 0.999 
PROM (>18 hours)5 11/57 (19.3) 39/321 (12.2) 0.142 
IAP6 4/69 (5.8) 47/329 (14.3) 0.073 
Infant  
Median gestation in weeks (IQR) 40.0 (38.3-40.3) 39.3 (38.0-40.2) 0.164 
Median birth weight in grams (IQR) 2995 (2800-3250) 3063 (2790-3360) 0.426 
Male gender 39 (56.5) 176 (53.0) 0.595 
Day of life at enrolment  

EOD-Median (IQR) 4 (3-5) 1 (1-1) <0.001 
LOD-Median (IQR) 17 (12-25) 19 (15-24) 0.314 

1EOD- Early-onset disease, 2LOD- Late-onset disease, 3p-value- using Chi-squared, Fischer exact or Wilcoxon 
rank-sum (Mann-Whitney) test, 4IQR-Interquartile range, 5Prolonged (>18 hours) rupture of membranes 6IAP-
Intrapartum antibiotic prophylaxis.  
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After strata matching, including specific pilus island matching, the final paired analysis was 

conducted on 29 invasive GBS cases with PI-1 containing strains and correspondingly 64 PI-1 

colonized and 289 non-GBS colonized controls, 37 invasive GBS cases with PI-2a containing 

strains and correspondingly 77 PI-2a colonized and 319 non-colonized controls, and 29 

invasive GBS cases with PI-2b containing strains and correspondingly 29 PI-2b colonized and 

279 non-colonized controls. Maternal and infant demographic characteristics and risk factors 

for disease were similar between cases and PI-specific controls; apart from gestational age 

(40.2 vs 39.4 weeks, respectively; p=0.014) in PI-1, infant gender (64.9 vs 44.6% males; 

p=0.038) and the occurrence of prolonged rupture of membranes (21.9% vs 2.7%, p=0.003) in 

cases for PI-2a (Table 6.3). When comparing cases to non-colonized controls, gestational age 

differed for PI-1 and PI-2b (Table 6.4). The timing of enrolment for EOD cases differed 

(median: 3 or 4 days) compared to PI-specific controls (median: 1 day) and non-colonized 

controls (median: 1 day; Tables 6.3 and 6.4). 
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Table 6.3:  Demographic characteristics of pilus-specific cases and colonized controls ≥34 weeks of age 

 PI-1 PI-2a PI-2b 

 
Cases n=29 
[EOD1=14, 
LOD2=15] 

Controls n=64 
[EOD=39, 
LOD=25] 

p-
value3 

Cases n=37 
[EOD=21, 
LOD=16] 

Controls n=77 
[EOD=48, 
LOD=29] 

p-
value3 

Cases n=29 
[EOD=11, 
LOD=18] 

Controls n=29 
[EOD=14, 
LOD=15] 

p-
value3 

Maternal          

HIV-infected 12 (41.4) 23 (35.9) 0.616 14 (37.8) 31 (40.3) 0.804 14 (48.3) 14 (48.3) 0.999 

HIV-uninfected 17 (58.6) 41 (64.1)  23 (62.2) 46 (59.7)  15 (51.7) 15 (51.7)  
Median age in years 
(IQR4) 

25.4 (22.4-31.5) 25.5 (22.1-31.7) 0.772 24.4 (20.9-30.0) 25.2 (22.6-30.5) 0.211 25.4 (22.7-30.3) 28.7 (22.8-31.2) 0.397 

Median parity (IQR) 1 (0-2) 1 (0-1) 0.506 0 (0-1) 1 (0-2) 0.121 1 (1-2) 1 (0-2) 0.435 

Black-African Race 29 (100.0) 63 (98.5) 0.999 35 (94.6) 76 (98.7) 0.246 29 (100.0) 28 (96.6) 0.999 

Fever 0/21 (0) 0/62 (0) 0.999 0/28 (0) 0/73 (0) 0.999 0/19 (0) 0/29 (0) 0.999 

PROM (>18 hours)5 4/24 (16.7) 3/63 (4.8) 0.088 7/32 (21.9) 2/74 (2.7) 0.003 3/22 (13.6) 2/29 (6.9) 0.641 

IAP6 1/29 (3.5) 6/64 (9.4) 0.428 4/37 (10.8) 5/77 (6.5) 0.469 0/29 (0) 2/29 (6.9) 0.491 

Infant          
Median gestation in 
weeks (IQR) 

40.2 (40.0-40.6) 39.4 (38.1-40.4) 0.014 40.0 (38.0-40.2) 39.4 (38.0-40.3) 0.599 40.0 (40.0-40.6) 39.3 (38.2-40.4) 0.058 

Median birth weight in 
grams (IQR) 

3100 (2835-
3200) 

3123 (2805-
3405) 

0.438 
2960 (2770-

3270) 
3090 (2860-

3370) 
0.185 

3110 (2835-
3210) 

3150 (2760-
3450) 

0.367 

Male gender 14 (48.3) 33 (51.6) 0.769 24 (64.9) 34 (44.6) 0.038 14 (48.3) 17 (58.6) 0.430 

Day of life at enrolment           

EOD-Median (IQR) 3 (3-5) 1 (1-1) <0.001 4 (3-5) 1 (1-1) <0.001 3 (3-5) 1 (1-1) <0.001 

LOD-Median (IQR) 17 (11-27) 20 (15-24) 0.334 20 (13-24) 20 (16-23) 0.669 17 (10-27) 23 (13-24) 0.574 
1EOD- Early-onset disease, 2LOD- Late-onset disease, 3p-value- using Chi-squared, Fischer exact or Wilcoxon rank-sum (Mann-Whitney) test, 4IQR-
Interquartile range, 5Prolonged (>18 hours) rupture of membranes 6IAP-Intrapartum antibiotic prophylaxis.  
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Table 6.4:  Demographic characteristics of pilus-specific cases and non-colonized controls ≥34 weeks of age 

 PI-1 PI-2a PI-2b 

 
Cases n=29 
[EOD1=14, 
LOD2=15] 

Controls n=289 
[EOD=173, 
LOD=116] 

p-
value3 

Cases n=37 
[EOD=21, 
LOD=16] 

Controls n=319 
[EOD=194, 
LOD=125] 

p-
value3 

Cases n=29 
[EOD=11, 
LOD=18] 

Controls n=279 
[EOD=157, 
LOD=122] 

p-
value3 

Maternal          

HIV-infected 12 (41.4) 114 (39.5) 0.839 14 (37.8) 133 (41.7) 0.652 14 (48.3) 114 (40.9) 0.441 

HIV-uninfected 17 (58.6) 175 (60.6)  23 (62.2) 186 (58.3)  15 (51.7) 165 (59.1)  
Median age in years 
(IQR4) 

25.4 (22.4-31.5) 26.0 (21.6-30.3) 0.711 24.4 (20.9-30.0) 25.2 (21.5-29.7) 0.378 25.4 (22.7-30.3) 26.1 (21.6-30.3) 0.953 

Median parity (IQR) 1 (0-2) 1 (0-2) 0.732 0 (0-1) 1 (0-2) 0.196 1 (1-2) 1 (0-2) 0.298 

Black-African Race 29 (100.0) 284 (98.3) 0.999 35 (94.6) 314 (98.4) 0.158 29 (100.0) 274 (98.2) 0.999 

Fever 0/21 (0) 0/272 (0) 0.999 0/28 (0) 0/302 (0) 0.999 0/19 (0) 0/262 (0) 0.999 

PROM (>18 hours)5 4/24 (16.7) 34/279 (12.2) 0.520 7/32 (21.9) 39/308 (12.7) 0.147 3/22 (13.6) 30/269 (11.2) 0.725 

IAP6 1/29 (3.5) 36/286 (12.6) 0.224 4/37 (10.8) 42/316 (13.3) 0.801 0/29 (0) 32/276 (11.6) 0.055 

Infant          
Median gestation in 
weeks (IQR) 

40.2 (40.0-40.6) 39.4 (38.0-40.3) 0.003 40.0 (38.0-40.2) 39.3 (38.0-40.2) 0.595 40.0 (40.0-40.6) 39.4 (38.1-40.3) 0.025 

Median birth weight in 
grams (IQR) 

3100 (2835-
3200) 

3095 (2845-
3370) 

0.605 
2960 (2770-

3270) 
3085 (2835-

3365) 
0.280 

3110 (2835-
3210) 

3105 (2850-
3375) 

0.579 

Male gender 14 (48.3) 150 (51.9) 0.709 24 (64.9) 170 (53.3) 0.181 14 (48.3) 148 (53.1) 0.698 

Day of life at enrolment           

EOD-Median (IQR) 3 (3-5) 1 (1-1) <0.001 4 (3-5) 1 (1-1) <0.001 3 (3-5) 1 (1-1) <0.001 

LOD-Median (IQR) 17 (11-27) 19 (15-24) 0.474 20 (13-24) 19 (15-24) 0.795 17 (10-27) 19 (15-24) 0.292 
1EOD- Early-onset disease, 2LOD- Late-onset disease, 3p-value- using Chi-squared, Fischer exact or Wilcoxon rank-sum (Mann-Whitney) test, 4IQR-
Interquartile range, 5Prolonged (>18 hours) rupture of membranes 6IAP-Intrapartum antibiotic prophylaxis. (*one mother had twins with GBS, **Parity was 
unknown in 2 cases)
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6.1.2 Antibody levels to FbsA  

There was a larger proportion of colonized controls than cases at higher antibody thresholds; 

the adjusted odds ratio for disease decreased from 0.40 (95% CI: 0.16-1.04) to 

0.22 (95% CI: 0.05-0.02) and 0.04 (95% CI: 0.01-0.69) with antibody threshold ≥2000, ≥5000 

and ≥10 000AU/mL, respectively (Figure 6.1 and Table 6.5). The odds ratio for disease also 

decreased with increasing antibody concentrations when comparing cases to non-colonized 

controls (Table 6.6). The median maternal FbsA antibody concentrations (in AU/mL) was 

1942 (IQR: 1120-3688) in cases as compared to colonized controls (2752; IQR: 1620-5108) 

and non-colonized controls (2296; IQR: 1408-4627; Table 6.7). The median infant FbsA 

antibody concentrations was 1131 (IQR: 679-2104) in cases as compared to infants of 

colonized (1744; IQR: 775-3303) and non-colonized controls (1696; IQR: 859-3486, Table 

6.8).  

     
Figure 6.1: Reverse cumulative plots demonstrating the proportion of mothers 
of cases and colonized controls to antibody concentrations for FbsA 
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6.1.3 Antibody levels to BibA 

The proportion of cases and controls (colonized and non-colonized) with antibody 

concentrations at various thresholds were similar and the adjusted odds ratios were not 

significant (Figure 6.2, Table 6.5 and 6.6). The median BibA maternal antibody concentrations 

(in AU/mL) was 4512 (IQR: 2587-9774) in cases as compared to 5727 (IQR: 2560-9913) in 

colonized controls and 5243 (IQR: 2420-9871) in non-colonized controls (Table 6.7). The 

median infant BibA antibody concentrations was 1866 (IQR: 787-3919) in cases as compared 

to 2901 (IQR: 1554-6593) in infants of colonized and 3063 (IQR: 1397-6447) in non-

colonized controls (Table 6.8).  

 

 

     

Figure 6.2: Reverse cumulative plots demonstrating the proportion of mothers 
of cases and colonized controls to antibody concentrations for BibA 
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Table 6.5: Maternal antibody (AU/mL) thresholds to FbsA and BibA surface-protein epitopes 
in mothers of cases and colonized controls  

 Cases Controls OR (95% CI)1 p-value aOR (95% CI)2 p-value 

FbsA n=69 (%) n=128 (%)     

<1000 16 (23.2) 20 (15.6) Ref    

≥1000 53 (76.8) 108 (84.4) 0.55 (0.26-1.18) 0.124 0.56 (0.24-1.32) 0.182 

≥2000 34 (49.3) 82 (64.1) 0.41 (0.18-0.94) 0.035 0.40 (0.16-1.04) 0.061 

≥5000 10 (14.5) 32 (25.0) 0.37 (0.12-1.33) 0.082 0.22 (0.05-1.02) 0.053 

≥10000 2 (2.9) 15 (11.7) 0.20 (0.03-1.26) 0.086 0.04 (0.01-0.69) 0.027 

BibA n=69 (%) n=128 (%)     

<2000 13 (18.8) 20 (15.6) Ref    

≥2000 56 (81.2) 108 (84.4) 0.62 (0.28-1.38) 0.237 0.54 (0.22-1.36) 0.191 

≥5000 34 (49.3) 71 (55.5) 0.66 (0.26-1.50) 0.293 0.53 (0.19-1.48) 0.214 

≥10000 15 (21.7) 32 (25.0) 0.39 (0.13-1.16) 0.092 0.30 (0.08-1.17) 0.083 

≥15000 11 (15.9) 19 (14.8) 0.47 (0.14-1.56) 0.218 0.43 (0.11-1.71) 0.231 
1calculated Odds ratio with 95% confidence using conditional logistic regression, 2Adjusted odds ratio with 95% 
confidence using conditional logistic regression (BibA and FbsA: adjusted for prolonged rupture of membranes, 
infant gender, day of life at enrolment) 

 

 

Table 6.6: Maternal antibody (AU/mL) thresholds to FbsA and BibA surface-protein epitopes 
in mothers of cases and non-colonized controls 

 Cases 
Non-colonized 

controls 
OR (95% CI)1 p-value aOR (95% CI)2 p-value 

FbsA n=69 (%) n=332 (%)     

<1000 16 (23.2) 49 (14.8) Ref    

≥1000 53 (76.8) 283 (85.2) 0.53 (0.28-1.02) 0.057 0.51 (0.24-1.05) 0.067 

≥2000 34 (49.3) 191 (57.5) 0.47 (0.23-0.94) 0.034 0.41 (0.18-0.91) 0.028 

≥5000 10 (14.5) 76 (22.9) 0.38 (0.15-0.96) 0.040 0.36 (0.12-1.07) 0.066 

≥10000 2 (2.9) 39 (11.5) 0.12 (0.02-0.62) 0.011 0.12 (0.02-0.71) 0.019 

BibA n=69 (%) n=332 (%)     

<2000 13 (18.8) 66 (19.9) Ref    

≥2000 56 (81.2) 266 (80.1) 1.00 (0.51-1.95) 0.998 1.10 (0.52-2.33) 0.805 

≥5000 34 (49.3) 171 (51.5) 0.90 (0.44-1.83) 0.769 0.93 (0.42-2.07) 0.854 

≥10000 15 (21.7) 82 (24.7) 0.84 (0.36-1.96) 0.683 0.94 (0.37-2.37) 0.894 

≥15000 11 (15.9) 45 (13.6) 1.36 (0.51-3.67) 0.543 1.52 (0.50-4.58) 0.457 
1calculated Odds ratio with 95% confidence using conditional logistic regression, 2Adjusted odds ratio with 95% 
confidence using conditional logistic regression (BibA and FbsA: adjusted for Black-African Race, prolonged 
rupture of membranes, IAP, gestational age, day of life at enrolment)  
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Table 6.7: Maternal antibody concentrations (AU/mL) in cases and controls ≥34 weeks of age  

 Cases 
Colonized controls 

(protein/pilus-specific) 
Non-colonized controls 

 Median(IQR)1 [n=]2 Median(IQR) [n=] Median(IQR) [n=] 
FbsA    

Overall 1942 (1120-3688) [69] 2752 (1620-5108) [128] 2296 (1408-4627) [332] 
EOD3 1741 (863-3529) [34] 2152 (1074-3703) [75] 2139 (1304-4408) [206] 
LOD4 2465 (1244-4007) [35] 3456 (1954-7920) [53] 2675 (1509-5012) [126] 

HIV-infected 1758 (901-3392) [29] 2630 (1312-5934) [54] 1986 (1105-4109) [142] 
HIV-uninfected 2012 (1199-4512) [40] 2827 (1826-4323) [74] 2478 (1592-5185) [190] 

BibA    
Overall 4512 (2587-9774) [69] 5727 (2560-9913) [128] 5243 (2420-9871) [332] 

EOD 5289 (2058-9835) [34] 4072 (2009-7808) [75] 4638 (2309-8949) [206] 
LOD 4498 (2607-8884) [35] 8459 (5108-14524) [53] 6007 (2930-13882) [126] 

HIV-infected 3926 (2690-6604) [29] 6260 (2391-12477) [54] 5044 (2136-9708) [142] 
HIV-uninfected 5756 (2387-10884) [40] 4989 (2811-8987) [74] 5572 (2761-10113) [190] 

PI-1      
Overall 432 (203-3391) [29] 1052 (301-6463) [64] 789 (317-2419) [289] 

EOD 674 (154-5041) [14] 2650 (487-7888) [39] 821 (329-2926) [173] 
LOD 432 (251-2142) [15] 497 (245-2036) [25] 659 (301-2054) [116] 

HIV-infected 419 (183-1090) [12] 449 (201-3628) [23] 632 (280-1988) [114] 
HIV-uninfected 666 (251-5041) [17] 1569 (497-8121) [41] 886 (327-3195) [175] 

PI-2a    
Overall 2352 (1133-9522) [37] 1944 (728-7269) [77] 2123 (868-5914) [319] 

EOD 4198 (1239-9522) [21] 2033 (662-6583) [48] 1982 (845-5577) [194] 
LOD 2038 (620-8816) [16] 1860 (757-8844) [29] 2197 (1034-8223) [125] 

HIV-infected 1625 (616-3622) [14] 1591 (532-5807) [31] 1586 (745-4203) [133] 
HIV-uninfected 4405 (1580-12842) [23] 2935 (903-10910) [46] 2563 (1136-8114) [186] 

PI-2b    
Overall 2633 (410-4242) [29] 709 (436 -1432) [29] 844 (405-2199) [279] 

EOD 2633 (271-10986) [11] 983 (428-6094) [14] 723 (332-1853) [157] 
LOD 2423 (436-4242) [18] 705 (436-1127) [15] 892 (509-2443) [122] 

HIV-infected 2156 (410-16249) [14] 622 (249-998) [14] 785 (380-2524) [114] 
HIV-uninfected 2633 (305-3640) [15] 1127 (614-5964) [15] 903 (409-1895) [165] 

1Median (interquartile range), 2number of cases, 3EOD- Early-onset disease, 4LOD- Late-onset disease. 
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Table 6.8: Infant antibody concentrations (AU/mL) of cases and controls ≥34 weeks of age  

 Cases 
Colonized controls 

(protein/pilus-specific) 
Non-colonized controls 

 Median(IQR)1 [n=]2 Median(IQR) [n=] Median(IQR) [n=] 
FbsA    

Overall 1131 (679-2104) [69] 1744 (775-3303) [128] 1696 (859-3486) [332] 
EOD3 1721 (798-2421) [34] 2433 (961-3711) [75] 2260 (1086-4479) [206] 
LOD4 873 (604-1554) [35] 1264 (588-2103) [53] 1109 (568-1893) [126] 

HIV-infected 809 (436-1523) [29] 1283 (513-2710) [54] 1142 (619-2352) [142] 
HIV-uninfected 1623 (795-2466) [40] 2135 (956-3653) [74] 2192 (1113-4390) [190] 

BibA    
Overall 1866 (787-3919) [69] 2901 (1554-6593) [128] 3063 (1397-6447) [332] 

EOD 3326 (1770-7262) [34] 4028 (1644-6613) [75] 3746 (1602-7093) [206] 
LOD 982 (547-2237) [35] 2600 (1417-6456) [53] 2287 (1205-4923) [126] 

HIV-infected 1288 (773-2176) [29] 2134 (1187-6328) [54] 2485 (1240-5977) [142] 
HIV-uninfected 3326 (1029-7267) [40] 4463 (1919-6775) [74] 3653 (1602-7093) [190] 

PI-1      
Overall 408 (76-1452) [29] 901 (215-5534 ) [64] 595 (196-1852) [289] 

EOD 839 (256-2721 ) [14] 1920 (613-7111) [39] 883 (264-2839) [173] 
LOD 101 (67-667) [15] 413 (97-955) [25] 297 (110-1041) [116] 

HIV-infected 87 (45-420) [12] 636 (94-1920) [23] 331 (128-1323) [114] 
HIV-uninfected 697 (183-2615) [17] 1127 (453-7001) [41] 800 (264-2483) [175] 

PI-2a    
Overall 887 (187-2151) [37] 1573 (413-5747) [77] 1336 (462-5453) [319] 

EOD 928 (548-2225) [21] 2617 (540-6262) [48] 1921 (581-7179) [194] 
LOD 730 (102-1659) [16] 744 (302-3422) [29] 713 (364-3390) [125] 

HIV-infected 291 (55-903) [14] 1009 (302-4559) [31] 750 (372-3940) [133] 
HIV-uninfected 1167 (693-2225) [23] 2087 (515-7306) [46] 1907 (649-5883) [186] 

PI-2b    
Overall 480 (113-2055) [29] 510 (253-1749) [29] 591 (245-1500) [279] 

EOD 1286 (480-2650) [11] 1677 (311-5073) [14] 716 (301-2206) [157] 
LOD 196 (91-1045) [18] 423 (182-602) [15] 478 (182-1145) [122] 

HIV-infected 573 (73-2620) [14] 219 (154-712) [14] 400 (143-1218) [114] 
HIV-uninfected 480 (128-2055) [15] 1064 (378-3092) [15] 716 (301-1695) [165] 

1Median (interquartile range), 2number of cases, 3EOD- Early-onset disease, 4LOD- Late-onset disease.	
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6.1.4 Antibody levels to pilus island proteins 

A greater proportion of PI-1 colonized maternal controls had antibody concentrations at higher 

thresholds than mothers of cases resulting in a decreased odds ratio for disease, however, the 

adjusted odds ratio did not differ significantly (Figure 6.3 and Table 6.9). The median PI-1 

antibody concentrations (in AU/mL) was 432 (IQR: 203-3391) in mothers of invasive GBS 

cases compared to controls with PI-1 colonization (1052; IQR: 301-6463) and those not 

colonized by GBS (789; IQR: 317-2419; Table 6.7). The median infant PI-1 antibody 

concentrations was 408 (IQR: 76-1452) in cases, 901 (IQR: 215-5534) in infants of women 

colonized with PI-I strains and 595 (IQR: 196-1852) in control infants whose mothers were 

not-colonized by GBS (Table 6.8).  

 

The proportions of mothers with PI-2a and PI-2b antibodies were similar between cases and 

controls (Figures 6.4 and 6.5). Similarly median maternal antibody concentrations did not 

differ between cases than controls (Table 6.7). Comparing maternal PI2a and PI2b antibody 

concentrations between cases and controls at varying thresholds did not demonstrate 

differences in the adjusted odds ratio for disease for PI-2a and PI-2b antibodies (Table 6.9 and 

6.10).  
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Figure 6.3: Reverse cumulative plots demonstrating the proportion of mothers 
of cases and colonized controls to antibody concentrations for pilus island-1 
(PI-1) 

     

Figure 6.4: Reverse cumulative plots demonstrating the proportion of mothers 
of cases and colonized controls to antibody concentrations for pilus island-2a 
(PI-2a)  
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Figure 6.5: Reverse cumulative plots demonstrating the proportion of mothers 
of cases and colonized controls to antibody concentrations for pilus island-2b 
(PI-2b) 
Footnote: The solid line represents the proportion of mothers at various antibody thresholds. 
The upper and lower dash lines are the 95% confidence intervals. The bold dash line is the 
estimated fitted line.  
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Table 6.9: Maternal antibody (AU/mL) thresholds to pilus island surface-protein epitopes in 
mothers of cases and colonized controls  

 Cases Controls OR (95% CI)1 p-value aOR (95% CI)2 p-value 

PI-1 n=29 (%) n=64 (%)     

<500 15 (51.7) 23 (35.9) Ref    

≥500 14 (48.3) 41 (64.1) 0.57 (0.23-1.42) 0.226 0.64 (0.20-2.03) 0.446 

≥1000 12 (41.4) 32 (50.0) 0.55 (0.21-1.47) 0.236 0.59 (0.17-2.06) 0.408 

≥2000 9 (31.0) 27 (42.2) 0.47 (0.17-1.33) 0.156 0.39 (0.10-1.58) 0.189 

≥5 000 5 (17.2) 20 (31.3) 0.28 (0.07-1.11) 0.070 0.29 (0.06-1.43) 0.130 

≥10000 1 (3.5) 10 (15.6) 0.15 (0.02-1.31) 0.086 0.10 (0.01-1.31) 0.079 

PI-2a n=37 (%) n=77 (%)     

<1000 9 (24.3) 24 (31.2) Ref    

≥1000 28 (75.7) 53 (68.8) 1.48 (0.57-3.81) 0.417 1.44 (0.45-4.59) 0.533 

≥2000 21 (56.8) 38 (49.4) 1.54 (0.57-4.16) 0.392 1.14 (0.33-3.97) 0.834 

≥5000 13 (35.1) 27 (35.1) 1.12 (0.37-3.35) 0.844 0.58 (0.14-2.50) 0.466 

≥10000 9 (24.3) 16 (20.8) 1.04 (0.31-3.46) 0.945 0.83 (0.18-3.88) 0.812 

PI-2b n=29 (%) n=29 (%)     

<1000 12 (41.4) 17 (58.6) Ref    

≥1000 17 (58.6) 12 (41.4) 1.99 (0.69-5.72) 0.202 1.72 (0.56-5.26) 0.342 

≥2000 17 (58.6) 6 (20.7) 4.15 (1.15-14.96) 0.030 3.32 (0.88-12.45) 0.076 

≥5000 7 (24.1) 6 (20.7) 1.87 (0.46-7.63) 0.383 1.65 (0.40-6.87) 0.490 

≥10 000 6 (20.7) 2 (6.9) 3.21 (0.52-19.95) 0.210 3.03 (0.46-19.76) 0.248 
1calculated Odds ratio with 95% confidence using conditional logistic regression, 2Adjusted odds ratio with 95% 
confidence using conditional logistic regression (PI-1: adjusted for prolonged rupture of membranes, gestational 
age and day of life at enrolment; PI-2a: adjusted for parity, prolonged rupture of membranes, birth weight, infant 
gender and day of life at enrolment; PI-2b: adjusted for gestational age and day of life at enrolment) 
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Table 6.10: Maternal antibody (AU/mL) thresholds to pilus island surface-protein epitopes in 
mothers of cases and non-colonized controls 

 Cases 
Non-colonized 

controls 
OR (95% CI)1 p-value aOR (95% CI)2 p-value 

PI-1 n=29 (%) n=289 (%)     

<500 15 (51.7) 113 (39.1) Ref    

≥500 14 (48.3) 176 (60.9) 0.59 (0.27-1.26) 0.173 0.63 (0.29-1.38) 0.248 

≥1000 12 (41.4) 125 (43.3) 0.69 (0.31-1.54) 0.364 0.75 (0.33-1.71) 0.495 

≥2000 9 (31.0) 81 (28.0) 0.80 (0.33-1.92) 0.614 0.84 (0.34-2.06) 0.699 

≥5 000 5 (17.2) 43 (14.9) 0.78 (0.26-2.36) 0.665 0.75 (0.24-2.38) 0.627 

≥10000 1 (3.5) 22 (7.6) 0.35 (0.04-2.87) 0.329 0.38 (0.05-3.21) 0.376 

PI-2a n=37 (%) n=319 (%)     

<1000 9 (24.3) 87 (27.3) Ref    

≥1000 28 (75.7) 232 (72.7) 1.10 (0.49-2.46) 0.824 1.35 (0.54-3.37) 0.522 

≥2000 21 (56.8) 162 (50.8) 1.27 (0.54-2.95) 0.585 1.55 (0.59-4.09) 0.377 

≥5000 13 (35.1) 89 (27.9) 1.39 (0.54-3.60) 0.492 1.71 (0.57-5.19) 0.342 

≥10000 9 (24.3) 61 (19.1) 1.25 (0.45-3.47) 0.665 1.66 (0.50-5.45) 0.406 

PI-2b n=29 (%) n=279 (%)     

<1000 12 (41.4) 160 (57.3) Ref    

≥1000 17 (58.6) 119 (42.7) 1.98 (0.90-4.33) 0.088 1.95 (0.88-4.31) 0.101 

≥2000 17 (58.6) 72 (25.8) 3.19 (1.44-7.04) 0.004 3.09 (1.37-6.85) 0.006 

≥5000 7 (24.1) 35 (12.5) 2.50 (0.91-6.83) 0.074 2.37 (0.84-6.68) 0.101 

≥10 000 6 (20.7) 24 (8.6) 2.97 (1.00-8.81) 0.050 2.66 (0.87-8.15) 0.087 
1calculated Odds ratio with 95% confidence using conditional logistic regression, 2Adjusted odds ratio with 95% 
confidence using conditional logistic regression (PI-1: adjusted for gestational age and day of life at enrolment; 
PI-2a: adjusted for parity, Black-African Race, prolonged rupture of membranes, infant gender and day of life at 
enrolment; PI-2b: adjusted for IAP, gestational age and day of life at enrolment)	 	
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6.1.5 Absolute risk of invasive GBS disease and surface-protein antibodies 

Using Bayesian modelling, we analysed the risk of invasive GBS disease in relation to 

surface-protein antibodies. None of the studied surface-protein antibodies demonstrated a 

protective threshold against invasive GBS disease, nor were there any significant reductions in 

the risk of disease with increasing antibody concentrations (Figures 6.6 A-E). Although the 

adjusted odds ratio had shown significant difference between mothers of cases and colonized 

controls for FbsA antibodies at thresholds above 10 000 Au/mL and a similar trend for PI-1, 

no threshold was identified to being associated with a reduced risk of invasive GBS disease 

for either of these proteins. 

 

Furthermore, in an exploratory analysis, we measured whether there were any correlations 

between the select surface-protein antibody concentrations and serotypes I and III antibodies 

in cases and homotypic controls, of which there was none (Figure 6.7).  
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  (A)     (B) 
 
 

  
(C)     (D)   

  
(E) 

 
Figure 6.6: Probability of invasive GBS disease risk to FbsA (A), BibA (B), PI-1 (C), 
PI-2a (D) and PI-2b (E) at varying maternal antibody concentrations using a Bayesian 
model.  
Footnote: The circles represent the posterior mode (i.e. the most likely value) and vertical lines represent 
the 50% credible interval. 
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Figure 6.7: Probability of invasive Group B Streptococcus (GBS) disease risk to PI-1, PI-2a, PI-2b, BibA and FbsA maternal 
antibody concentrations in serotype-specific Ia (Top row) and III (Bottom row) cases and homotypic controls. 
Footnote: The circles represent the posterior mode (i.e. the most likely value) and vertical lines represent the 50% credible interval. 
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6.2 Discussion 

To our knowledge, this is the first study to report on the association between maternal FbsA, 

BibA and PI surface-protein antibody concentrations and the risk of invasive GBS disease in 

infants. We report a relative association between maternal FbsA antibody concentrations and a 

similar trend for PI-1 antibody concentrations and invasive GBS disease in their infants. 

However, using Bayesian modelling, there was no absolute association between FbsA and PI-

1 antibody concentrations and invasive GBS disease and a correlate of protection could not be 

defined. Furthermore, no association was identified between maternal or infant BibA and the 

PI surface-protein antibodies and the risk of invasive GBS disease in infants. Our findings of 

lack of associations between maternal antibodies to these proteins and protection against 

invasive GBS disease in their infants are in contrast to the potential of these antigens being 

developed into vaccines as was suggested in animal model challenge studies.  

 

Studies addressing the role of antibodies to various other GBS surface-proteins in infants with 

invasive GBS disease or their mothers include Sip, Rib, αC protein and βC protein 

(Lachenauer et al., 2002, Larsson et al., 2006, Manning et al., 2006, Pannaraj et al., 2007, 

Pannaraj et al., 2008). Except for one study that measured antibody to the Rib surface protein 

(Larsson et al., 2006), no association between surface-protein antibodies and the risk of 

invasive GBS disease has been reported in humans. 

 

In an exploratory analysis, we attempted to identify whether the association between serotype 

Ia and III antibody concentrations and invasive GBS disease (as demonstrated in chapter 5) 

could have been as a result of antibodies to these tested surface-proteins being the effector for 
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protection rather than antibody to serotype Ia and III. We found no correlation between 

invasive GBS disease and any of the studied surface-protein antibody in serotype Ia or III 

disease cases and homotypic controls (Figure 6.7). 

 

A limitation of our study was that we did not measure whether GBS cultured isolates 

expressed FbsA and BibA in cases and controls so as to compare protein antibody 

concentration by type-specificity. It is however thought that BibA may be expressed more 

universally (>90%) in GBS strains, and approximately half of strains express FbsA (Santi et 

al., 2009, Meinke et al., 2010). A further limitation is that we measured antibody 

concentrations using our own in-house references as no reference sera are currently available.  

 

In conclusion, our study failed to identify a definitive association for higher maternal 

antibodies to the five studied GBS surface-proteins and risk for invasive GBS disease in young 

infants, suggesting a low likelihood that these proteins have potential for being developed into 

successful vaccine candidates on their own.   
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 7.0 Integrated Discussion and Conclusion  

In this thesis, there were several major findings. The high incidence of invasive GBS disease 

in black-Africans from South Africa is coupled with a high case fatality ratio and significant 

neurological sequelae among survivors. This persistently high incidence of EOD is partly due 

to the failure of implementation of preventative IAP strategies for EOD and the heightened 

risk for LOD in infants born to HIV-infected women. In addition, this work further 

corroborated the association between maternal serotype-specific capsular antibody levels and 

the risk of invasive GBS disease among young infants in a low-middle income country. Also, 

our results suggest that maternal HIV-infection would need to be considered in the evaluation 

of GBS vaccines in settings with a high prevalence of HIV. 

 

The prevalence of GBS colonization in pregnant women in this setting is high and warrants 

particular attention because maternal colonization is a pre-requisite for EOD. The risk-based 

strategy of identifying pregnant women to be targeted with IAP has not been effectively 

executed in our setting, which is likely to be typical of other low-middle income countries. In 

Soweto, only 23 % of women who fulfil the criteria of intervention outlined by the CDC, 

actually received antibiotics. In our setting, in contrast to other low income countries where a 

large proportion of deliveries occur at home, approximately 99% of deliveries occur in a 

health care setting. Furthermore, in Soweto, 70% of the deliveries in this region occurred at 

CHBAH, a tertiary academic centre. Thus, even when women deliver at health care facilities, 

IAP cannot be practically implemented. This may be partly due to a lack of recognition of 

risk-factors or failure to administer IAP by birth-attendants or under-staffing at the delivery 

facility, all of which result in an oversight for effective implementation of this strategy. Even 

though the CDC recommended universal screening and IAP has further reduced EOD, this 
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approach involves logistical challenges including being expensive and a resource intensive 

strategy for its success. This includes the need for pregnant women being screened for GBS 

recto-vaginal colonization at 35-37 weeks of gestational age, their results made available to 

health workers in a timely manner and IAP provided for all colonized women at least 4 hours 

prior to delivery. Therefore, in low-middle income settings, an effective GBS vaccine 

targeting pregnant women is more likely to be feasible in preventing invasive GBS disease 

than IAP to screened women. 

 

The high incidence of LOD in our setting is partly due to a high prevalence of maternal HIV-

infection (29%) amongst pregnant women.  Although an improvement in the PMTCT program 

has led to a decrease in the number of HIV-infected newborns, immunological susceptibilities 

have been identified in infants that are HIV-exposed-but-uninfected. These vulnerable infants 

are at a heightened risk of invasive GBS disease partly because of lower maternal GBS 

antibody concentrations and reduced transplacental antibody transfer in HIV-infected women 

during pregnancy. This could possibly be mitigated by modifications, such as using a higher 

dose or more frequent dosing, of the trivalent GBS polysaccharide-protein conjugate vaccine. 

 

A trivalent GBS polysaccharide-protein conjugate vaccine composed of capsular epitopes 

from serotypes Ia, Ib and III for vaccination of pregnant women to protect their young infants 

against invasive GBS disease has completed phase-II evaluation. These serotypes cause 70%-

80% of all invasive GBS disease in early-infancy. The further clinical evaluation of this 

vaccine is however challenged by the declining incidence of EOD in high income countries. In 

order to license this vaccine, a large phase III efficacy trial will be required. This will require a 

sample size of over 60 000 pregnant women to be conducted in high incidence settings of 

invasive GBS disease, which will incur tremendous logistical challenges. An alternate 
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pathway to licensure of some new-vaccines is based on immunologic endpoints for those 

diseases for which immunological correlates of protection have been established from 

previous vaccine-studies or through sero-epidemiological studies. This will then be followed 

by phase IV studies to establish vaccine effectiveness. Consequently, the licensure of the GBS 

vaccine might be based on immunological parameters should correlates of protection be 

established in a diversity of settings, similar to that used for the meningococcal vaccine.  

 

In this thesis, I have shown that mothers whose infants developed serotype Ia or III invasive 

GBS disease had lower antibody concentrations compared to women who were colonized by 

homotypic serotypes and whose infants remained free of disease. These findings are the first 

from a low-middle income country that establish a sero-correlate of protection, and 

corroborate findings from two studies in the USA. The concordance of the data on association 

of maternal serotype-specific capsular antibody levels and risk of invasive GBS disease in 

their infants from different settings, lend further credence to licensure of polysaccharide based 

GBS vaccines using a correlate of protection. Based on the assay employed in our laboratory, 

we propose that maternal antibody concentrations of ≥6 µg/mL and ≥3 µg/mL are sero-

correlates of protection against serotypes Ia and III invasive disease. 

 

In addition to examining the role of maternal capsular antibody and invasive GBS disease in 

young infants, we performed the first clinical study investigating antibodies to selected GBS 

surface-proteins that have been shown to be immunogenic in animal models. We were unable 

to identify a definitive association for higher maternal antibodies to these GBS surface-

proteins and risk for invasive GBS disease in young infants, suggesting that these proteins 

may not be suitable vaccine candidates. 
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This thesis has identified several areas for further research that may help to further understand 

invasive GBS disease and develop better therapies. This includes addressing the observation in 

which some mothers with high antibody levels have infants that develop invasive GBS 

disease, whereas in contrast, a large proportion of colonised mothers have low antibody levels 

and their infants remain free of invasive disease. The possible reason for this may be related to 

virulence potential of the organism and my recommendation is that correlate studies be 

undertaken against various genotypic strains, including the more virulent ST 17 strains. 

Additionally, these studies should measure the functionality of antibodies using 

opsonophagocytic assays. The value of these qualitative assays is still, however, debatable as 

they require exogenous components which are often also deficient in the newborn (i.e. 

complement). Consequently, newer microbiological or molecular techniques may explain why 

some infants born to women with low antibody levels do not develop invasive GBS disease. A 

further recommendation is that studies be undertaken to address the pathogenesis of LOD, 

which to date, the burden has remained unchanged even in high-income countries. In addition, 

breastmilk antibodies and the risk of invasive GBS disease need further evaluation. 

 

In conclusion, the high burden of invasive GBS disease in this low-middle income setting is 

related to lower maternal GBS capsular antibody levels that may be further deficient in HIV-

exposed infants. Vaccine induced antibody levels ≥6 µg/mL and ≥3 µg/mL, as measured by 

our assay, would likely protect the majority of infants against invasive GBS disease caused by 

serotypes Ia and III in our setting. This work may potentially be useful in future GBS 

polysaccharide-protein conjugate vaccine efficacy studies.  
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A trivalent Group B streptococcus (GBS) polysaccharide-protein conjugate vaccine for
vaccination of pregnant women is under development to protect their newborns against
invasive GBS disease. Establishing sero-correlates of protection against invasive GBS disease in
infants could expedite the licensure pathway of polysaccharide-protein conjugate vaccine.
A systematic review of studies reporting on the association of capsular antibodies and invasive
GBS disease in infants and colonization in women or newborns was undertaken. Most studies
that described maternal and/or infant capsular antibody levels in infants with invasive GBS
disease identified an association between low capsular antibody levels in invasive GBS cases
compared to controls. Different assay methods and the lack of standardized reference ranges
for serotype-specific antibody levels makes it difficult to select an antibody level that may be
used as a reliable sero-correlate of protection. Further studies using standardized methods
are warranted.

KEYWORDS: capsular antibodies • GBS • infants • sero-correlates • vaccine

Group B Streptococcus (GBS) remains the lead-
ing cause of neonatal sepsis and meningitis in
the USA [1,2], where the burden of disease dur-
ing the first six days of life (early onset disease
[EOD]) has declined by 80% [3]. The major
preventative intervention to reduce invasive
GBS disease has been maternal recto-vaginal
screening for GBS colonization at 35–37 weeks
of pregnancy, coupled with intrapartum antibi-
otics prophylaxis (IAP) to colonized parturient
women [3]. However, IAP is expensive and not
feasible in settings with limited laboratory
facilities or in developing countries where a
high proportion of births occur outside of
healthcare facilities [4,5]. Furthermore, the inci-
dence of GBS disease in infants 7 to 90 days
of age (i.e., late onset disease [LOD]) and the
incidence of EOD among prematurely born
babies has remained high in the USA despite
the provision of IAP [3,6].

Vaccination of pregnant women with a
GBS vaccine may offer an alternate strategy

for the prevention of invasive GBS disease in
young infants. Additionally, maternal GBS vac-
cination may protect pregnant women against
GBS disease and reduce their risk of premature
birth and/or stillbirth [6]. A trivalent GBS poly-
saccharide-protein conjugate vaccine (GBS-CV)
composed of capsular serotypes Ia, Ib and III
has recently completed Phase I and II trials [7].
Challenges in the licensure of a GBS vaccine
targeted at pregnant women include the enroll-
ment of a large number of pregnant women
(estimated 60,000) and limited localities where
such a study could be undertaken to measure
vaccine efficacy against the clinical endpoint
of invasive GBS disease [7]. Therefore, alternate
strategies that may enable licensure of a
GBS-CV include immunogenicity studies that
demonstrate whether serotype-specific capsular
antibody levels, measured in either the mother
and/or neonate, confer protection against
invasive GBS disease in the newborn. These
sero-correlates of protection, coupled with
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supporting safety data, have been accepted licensure-pathway
strategies for meningococcal-, inactivated influenza- and pneu-
mococcal conjugate vaccines [8–10].

To determine whether sero-correlates of protection could be
established for invasive GBS disease, we therefore reviewed stud-
ies that examined the association between maternal or newborn
serotype-specific capsular antibody levels and invasive GBS dis-
ease among newborns and/or young infants, Furthermore, we
reviewed the association between capsular antibody levels and
GBS recto/vaginal colonization among pregnant women or skin
surface (or other site) colonization among newborns.

Methods
A literature search was undertaken of PubMed, Medline and
Scopus databases using the search terms: ‘Streptococcus
agalactiae’(MESH) OR ‘Streptococcus agalactiae’ OR ‘Group
B Streptococcus’ OR ‘Group B Streptococcal Infection’
OR ‘Group B Strep’ AND ‘Antibody’(MESH) OR
‘Antibody’ OR ‘Immunoglobulin’ OR ‘IgG’ OR ‘Anti-GBS’
OR ‘Immunology’ OR ‘Immunity’. The Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
checklist and flow diagram were used to identify, screen and
exclude studies. Two authors (ZD and GK) independently
carried out searches and abstracted data with a third author
(SAM) adjudicating on conflicting results. The minimum
inclusion criteria were studies reporting on capsular GBS
antibodies in mothers or infants. We did not add age limits
to the searches; however, we subsequently excluded studies
reporting on invasive disease in adults. Furthermore, we also
screened for references of the reviewed manuscripts for any
other reports on GBS capsular antibodies and invasive disease
or colonization (FIGURE 1).

Data extraction

We abstracted the following data: study region and population,
study design, period of recruitment, methods of identifying
cases and controls, clinical presentation of cases, timing of pre-
sentation of cases, age range of cases and controls, serotype
distribution, serological assay used and type of antibody deter-
mination, the availability of reference serum, standardization of
assay method and quantitative capsular antibody levels in
maternal, cord or infant sera. We also determined whether the
study authors proposed threshold capsular antibody levels,
either in the mother or young infant, which conferred protec-
tion against invasive GBS disease in the neonate.

Other confounding factors such as IAP, and risk factors for
disease such as prematurity and prolonged rupture of mem-
branes were reported inconsistently in the studies. Similarly,
only a few studies matched or adjusted for factors that may
influence antibody levels, including ethnicity, maternal and
gestational age.

An exploratory analysis, using exact conditional logistic
regression, [11], was undertaken to compare the proportions of
cases and controls with antibody levels ‡2 mg/ml that were
reported in various studies. In one study, the raw numerical

data were not reported; hence, we derived the number of cases
and controls from the reverse cumulative plots. We reported
the odds ratio (95% CI) for invasive GBS disease in infants
with an antibody level <2 mg/ml. A meta-analysis was con-
ducted and the pooled odds ratios (95% CI) reported [12].
Data were analyzed using STATA version 13.0 (College
Station, TX, USA) and SAS version 9.2 (Cary, NC, USA). Two-
tailed p-values <0.05 were considered statistically significant.

Findings
Out of 144 published articles, we identified 18 studies [13–30]

that reported on capsular antibody levels in infants with inva-
sive GBS disease and 29 studies that reported on maternal or
newborn colonization with GBS [29,31–58]. Six studies were
excluded because they were unavailable in English [38,42,44–46,58].
Furthermore, we identified 17 animal model studies reporting
natural antibody responses or survival following inoculum of
lethal doses of GBS strains after passive immunization of
antiserum [21,24,59–73]. These animal model studies were not part
of the main review.

Association between GBS capsular antibody levels &

invasive GBS disease in young infants

The association between serotype-specific capsular antibody
levels and invasive GBS disease in newborns was initially char-
acterized in 1976 by Baker and colleagues [13], who subse-
quently extended their work in two larger studies [14,19]. Using
radioactive antigen binding assays (RABA), Baker and col-
leagues suggested that a capsular serotype III antibody level
>2 mg/ml conferred protection against early-onset GBS III
disease based on a study of 111 mothers of infants with sero-
type III GBS disease (including 32 cases of EOD) and 45 con-
trol women colonized with serotype III who delivered healthy
newborns [19]. None of the 111 infants with invasive GBS dis-
ease had an antibody level >1.6 mg/ml, while 29 (64.4%) of
healthy newborns had antibody levels >2 mg/ml. Thirty-three
(73.3%) of 45 colonized control mothers, but only 6 (18.8%)
of 32 mothers of infants with EOD had antibody level
>2 mg/ml (TABLE 1).

Subsequent studies conducted by Gotoff and colleagues [21,22,24]
and Gray and colleagues [23,26] measured capsular IgG levels
(using ELISA) against serotypes Ia, Ib, II and III. Although these
authors did not suggest a putative antibody level of protection,
lower serotype-specific capsular antibodies in infants with EOD
and LOD were found in cases compared with controls, as were
the finding in most of the other studies.

A sero-correlate of protection against invasive GBS disease
was demonstrated in a prospective cohort study compromising
138,740 newborns [27,28]. Serotype-specific colonized healthy
newborn controls were observed to have higher serotype-
specific capsular antibody than the matched infant cases with
serotypes Ia and III invasive GBS disease. The odds of inva-
sive GBS disease was 0.12 (95% CI: 0.02–0.93) at a maternal
antibody threshold of ‡5 mg/ml for serotype Ia and
0.09 (95% CI: 0.01–0.78) at a threshold of ‡10 mg/ml for
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serotype III, indicating possible serotype-specific differences in
the antibody concentration required to protect against invasive
GBS disease [27,28].

More recently, a reanalysis of sera from a matched case–con-
trol study conducted by Baker and colleagues reported lower
median serotypes Ia, III and V antibody concentrations in
EOD cases compared with controls [30]. Using logistic regres-
sion, the relative risk of developing invasive GBS disease with
an antibody level of ‡0.5 mg/ml was 0.11 (95% CI: 0.01–
0.74) for serotype Ia, 0.09 (95% CI: 0.00–0.72) for serotype
III and 0.29 (95% CI: 0.01–3.10) for serotype V. Also, using
a Bayesian model, it was suggested that the risk of serotype III
GBS disease decreased substantially with antibody concentra-
tions ‡0.45 mg/ml. Consequently, a threshold of ‡1 mg/ml in
the mother at birth was proposed as a putative measure of

protection against invasive GBS disease in the newborn for
serotypes Ia, III and V [30].

FIGURE 2A & 2B compares the proportion of invasive GBS dis-
ease cases and controls with an antibody level ‡2 mg/ml to
serotypes Ia and III. An antibody level of ‡2 mg/ml was chosen
as this was initially suggested by Baker and colleagues to pro-
tect against serotype III GBS disease [19]. Although these studies
are not directly comparable due to differences in methodology
and absence of standardized immunological assay, in a meta-
analysis, the proportion of invasive GBS disease cases with a
serotype-specific capsular antibody ‡2 mg/ml was generally
lower than in controls. The odds of invasive GBS disease was
6.56 (95% CI: 2.10–20.55) and 2.38 (95% CI: 1.20–4.70)
times greater in infants whose mothers had antibody levels
<2 mg/ml for serotypes III and Ia, respectively.

Records identified through database searching
Pubmed, n = 689; Medline, n = 1636; Scopus, n = 397

Total = 2722

89 articles excluded
Active immunization in humans, animals or
vaccine efficacy studies in animals, n = 42
Passive immunization in humans, n = 1
Adult invasive disease/colonization, n = 3
Duplication of study data, n = 1
Diagnostic/assay setup, n = 2
Monoclonal antibodies, n = 4
Functional antibody assays, n = 14
Antibody data by category/sub-class, n = 10
Reviews/comments, n = 6
Articles not in English, n = 6

Studies reporting
on capsular
antibodies in
GBS invasive

disease
n = 18

Studies included in systematic review
n = 55

Papers included by title
Pubmed, n = 210; Medline, n = 253; Scopus, n = 83

Total = 546

Record of duplicates
n = 224

Abstracts read
n = 322

Excluded by abstract
n = 184

Full articles assessed for eligibility
n = 138 + 6 = 144

Studies reporting
on capsular
antibodies in

GBS
colonization

n = 22
(+1 that also reported on

invasive disease)

Studies reporting
on capsular
antibodies in

animal-models
n = 15

(+2 that also reported on
invasive disease)

Records identified
through other

sources
n = 6

Figure 1. Flow diagram of selected studies reporting on capsular Group B Streptococcus antibodies.
GBS: Group B Streptococcus.

Group B Streptococcus antibody levels & correlates of protection Review
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Association between GBS capsular antibody levels in GBS

colonized & noncolonized mothers & infants

Linden and colleagues suggested that urogenital carriage may
induce antibody production [35]. All studies, except one, were
cross-sectional and measured antibody levels at delivery or during
pregnancy [33]. In general, serotype-specific antibody levels were
higher in colonized compared with noncolonized pregnant
women [29,31–33,35–37,43,49,53,55–57] and colonized compared with
noncolonized newborns [40,41]. In a few studies, however, antibody
levels were similar between colonized and noncolonized women,
including for serotype III [35,53,56], Ib [35,55] and Ia [53] (TABLE 2).

Discussion
An association between low serotype-specific antibody levels in
mothers and the occurrence of invasive GBS disease in infants
is reported in most studies. The different antibody assays and
the lack of standardized reference ranges for capsular-specific
IgG, despite the existence of reference serum (available from
Dr Carol Baker and Nabi Biopharmaceuticals), makes it diffi-
cult to select a specific antibody level that may be used as a
reliable sero-correlate of protection. In addition, studies have

not independently explored the association between antibody
levels and LOD and were mainly focused on serotypes Ia and
III. Further prospective cohort studies, in diverse settings, are
likely needed to establish sero-correlate of protection for the
five most prevalent GBS serotypes. Such studies should also
measure functional antibody, using opsonophagocytic activity
assays (OPA), to improve the elucidation of the sero-correlate
of protection against invasive GBS disease. This could contrib-
ute to the licensure pathway of a GBS vaccine without needing
to undertake large-scale efficacy trials in pregnant women.

In 1981, Baker and colleagues suggested an antibody thresh-
old of >2 mg/ml against serotype III as a correlate of protec-
tion [13]. This antibody threshold had subsequently been
supported in other studies using ELISA [24,25]. Although RABA
and ELISA demonstrated significant correlation [74,75], ELISA
has the advantages of being able to detect immunoglobulin
subclasses and has a lower detection limit for measuring anti-
bodies compared with RABA [74]. More recently, a threshold of
‡1 mg/ml in women at birth has been proposed as a correlate
for protection in newborns against serotypes Ia and III invasive
GBS disease for EOD [30]. This is, however, in contrast to the

Study (year) Cases Controls OR (95% CI) p-value

Study (year) Cases Controls OR (95% CI) p-value

Baker, (1981) [19]

Baker, et al. (2013) [30]

Combined

Klegerman, (1983) [21]

21/67 (31%)

0/8 (0%)

7/45 (16%)

5/25 (20%)

88/319 (28%)

2.45 (0.29, Inf) 0.448

0.151

0.151

0.013

2.06 (0.87, 5.69)

2.85 (0.75, 13.63)

2.38 (1.20, 4.70)

~24/51 (47%)

117/395 (30%)

~4/17 (24%)

11/70 (16%)

0/9 (0%)

15/26 (58%)Lin, et al. (2004) [28]

Baker, et al. (2013) [30]

Combined

Lin, et al. (2001) [27]

6/32 (19%) 33/45 (73%) 11.45 (3.54, 43.02)

3.16 (1.16, 8.26)

<0.001

0.023

0.023

0.001

Odds ratio
0 10 20 30 40

Odds ratio
0 105

9.00 (1.23. Inf)

6.56 (2.10, 20.55)

116/143 (81%)

~12/27 (45%)

161/215 (75%)

A

B

Figure 2. Proportion of mothers of infants with a capsular antibody concentration (A) ‡2 mg/ml for serotype III, a
meta-analysis; and (B) ‡2 mg/ml for serotype Ia, a meta-analysis.
Using exact conditional logistic regression, OR were used to compare the proportion of mothers of infants with invasive GBS disease
(cases) versus mothers of wellbaby controls with an antibody concentration ‡2 mg/ml.
~ In the study by Baker 2013, we derived the number of cases and controls from the reverse cumulative plots.
GBS: Group B Streptococcus; OR: Odds ratio.
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10-fold higher antibody concentration proposed by Lin and
colleagues [27,28]. Such differences may be due to differences in
control selection and serological assays [30] and therefore, high-
light the need to establish a standardized assay to measure GBS
capsular antibodies.

Quantitative determination of IgG capsular antibodies trans-
ferred from mother to infant is unlikely to be the only determi-
nant of the correlate of protection; and this should probably be
supplemented with OPA to measure antibody functionality [76].
The functionality of naturally occurring capsular antibodies in
infants with invasive GBS disease and in pregnant women has
been evaluated by some [76–79]; however, whether in vitro evalu-
ation of opsonophagocytosis (i.e., phagocytosis initiated by an
opsonin) in newborn serum will translate into protection is
unclear, due to the OPA assay including exogenous compo-
nents such as complement that may be physiologically deficient
in the newborn [80]. Although opsonization of serotype III by
naturally occurring antibodies in colonized and noncolonized
women was similar [76], natural acquired capsular antibody to
serotype III in infants with invasive disease due to the homo-
typic serotype did not demonstrate opsonophagocytosis activ-
ity [78]. An association between higher antibody concentrations
in healthy newborns and donor sera have however been shown
to be associated with opsonophagocytosis [79,81], and OPA activ-
ity was greater post-GBS vaccination than prevaccination [82,83].

A small proportion of infants developed invasive GBS disease
despite high antibody levels at birth in their mothers [14,19].
This paradox may be due to maternal acquisition of GBS
occurring just prior to delivery, resulting in a rapid increase of
poorly functional antibodies being transferred to the fetus,
which are inadequate to protect the newborn against invasive
disease. The other possibility is that studies using RABA may
have measured elevated IgM, rather than IgG, in the sera of
mother’s blood with recently acquired GBS infection/coloniza-
tion. Furthermore, antibody concentrations required to protect
against different serotypes may vary, as demonstrated in experi-
mental animal model and in vitro studies [21,76].

Due to various confounding factors, especially the timing of
recto-vaginal acquisition of GBS, it is difficult to gauge the sig-
nificance of an association between GBS antibody levels and col-
onization. Although studies reported higher serotype-specific
capsular antibody levels in pregnant women colonized by the
homotypic serotype compared with noncolonized women, these
studies were cross-sectional and unable to address the effect that
the timing of GBS acquisition had on capsular antibody levels.
Further longitudinal cohort studies in pregnant women are
required to evaluate whether high serotype-specific capsular anti-
body level (and OPA titers) during early stages of pregnancy is
able to reduce the risk of later recto-vaginal acquisition of homo-
typic serotype colonization. Also, these studies could address the
effect that capsular antibody has on the duration of colonization
and the antibody kinetics associated with new colonization epi-
sodes. Such studies could inform whether capsular antibody
induced through vaccination can impact on recto-vaginal coloni-
zation in the women, which would also be important for

protection of premature children against invasive GBS disease in
the absence of them benefiting from transplacental antibody
acquisition that mainly occurs beyond 34 weeks of
gestational age.

Conclusion
The potential of preventing invasive GBS disease among young
infants through maternal immunization with multivalent
serotype-specific GBS-CV is supported by the observation of
an inverse association between maternal and/or infant serotype-
specific capsular antibody levels and the risk of invasive GBS
disease. Further studies, using standardized methods, which
measure antibody concentrations as well as OPA in the women
and their infants, are warranted to establish serological corre-
lates of protection against EOD and LOD. Furthermore, the
association between maternal capsular antibody and risk of
subsequent GBS colonization during pregnancy also warrants
further investigation, both in terms of natural and vaccine-
induced capsular antibody.

Expert commentary
GBS is currently the leading cause of sepsis and meningitis in
neonates despite adequate preventative strategies in developed
countries. IAP to screened GBS colonized women between
35 and 37 weeks’ gestation has been recommended by the
CDC. This preventative strategy has resulted in a more than
80% decline in the incidence of early-onset GBS disease EOD
in the USA since 1990. In developing countries, however, such
strategies have not been utilized due to logistical and resource
limitations. Furthermore, a large proportion of deliveries in
developing countries tend to occur outside the hospital setting.
These limitations in developing countries, coupled with the
failure of IAP in reducing the incidence of LOD, have favored
the need for an alternate strategy in the prevention of invasive
GBS disease.

Vaccinating pregnant women against GBS infection may
protect infants from invasive GBS disease. Maternal antibodies
transferred from mother to fetus have been proposed to be pro-
tective against GBS disease, and deficiencies in maternal anti-
body have been associated with disease in cases compared with
controls. A trivalent GBS-CV composed of capsular epitopes
from serotypes Ia, Ib and III has completed Phase II evaluation
among pregnant women in Europe, North America and Africa.
These serotypes cause 70–80% of all invasive GBS disease in
early infancy. In order to license this vaccine, a large Phase III
efficacy trial will be required. This would require a sample size
of over 60,000 pregnant women to be conducted in a GBS
prevention naive setting with a high incidence of disease, which
will incur tremendous logistical challenges. An alternate path-
way to licensure of some new vaccines is based on immunolog-
ical endpoints for those diseases for which immunological
correlates of protection have been established from previous
vaccine studies or through sero-epidemiological studies. This
would then be followed by Phase IV studies to establish vaccine
effectiveness. This strategy of licensure through a correlate of

Group B Streptococcus antibody levels & correlates of protection Review
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protection is not novel and has been previously adopted in
licensure of other vaccines. Primarily, an antibody concentra-
tion that would reduce the risk of disease would need to be
adequately determined and thus, a systematic review of studies
reporting on the association of capsular antibodies and invasive
GBS disease in infants and colonization in women or newborns
was undertaken.

This review has highlighted some of the deficiencies in the
methods used to determine sero-correlates of protection. Only
a few studies have addressed the association between capsular
GBS antibody levels and invasive disease, focusing mainly on
serotypes Ia and III. Furthermore, differences in study design,
age range of invasive disease cases and antibody assay methods
(including absence of an internationally standardized reference
serum) limited the comparability of studies as well as the inter-
pretation of the serologic outputs proposed as putative meas-
ures of protection.

Five-year view
Licensure of a trivalent GBS-CV could be achieved in the
next few years. Sero-epidemiological studies describing putative

levels of protection to various serotypes can expedite this pro-
cess. We recommend that further studies be carried out in a
diversity of settings using standardized methods and assays,
including the use of standardized reference serum.
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Key issues

• Group B Streptococcus (GBS) is the leading cause of neonatal sepsis and meningitis, despite current preventative measures.

• Vaccinating pregnant women against GBS infection may protect infants from invasive GBS disease and may be an alternative strategy.

• Establishing sero-correlates of protection against specific capsular epitopes causing disease may favor the licensure of the GBS

polysaccharide-protein conjugate vaccine.

• Limited studies using nonstandardized methods have identified an association between low capsular GBS antibodies and the risk of

developing invasive disease; however, no established measure of protection can be drawn from these.

• Further studies using standardized methods are warranted in a diversity of settings to establish a sero-correlate of protection against

early- and late-onset disease.
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Abstract

Introduction

Group B Streptococcus (GBS) is a leading cause of neonatal sepsis and meningitis. We

aimed to evaluate the burden of invasive early-onset (0–6 days of life, EOD) and late-onset

(7–89 days, LOD) GBS disease and subsequent neurological sequelae in infants from a

setting with a high prevalence (29.5%) of HIV among pregnant women.

Methods

A case-control study was undertaken at three secondary-tertiary care public hospitals in Jo-

hannesburg. Invasive cases in infants<3 months age were identified by surveillance of lab-

oratories from November 2012 to February 2014. Neurodevelopmental screening was done

in surviving cases and controls at 3 and 6 months of age.

Results

We identified 122 cases of invasive GBS disease over a 12 month period. Although the inci-

dence (per 1,000 live births) of EOD was similar between HIV-exposed and HIV-unexposed

infants (1.13 vs. 1.46; p = 0.487), there was a 4.67-fold (95%CI: 2.24–9.74) greater risk for

LOD in HIV-exposed infants (2.27 vs. 0.49; p<0.001). Overall, serotypes Ia, Ib and III con-

stituted 75.8% and 92.5% of EOD and LOD, respectively. Risk factors for EOD included of-

fensive draining liquor (adjusted Odds Ratio: 27.37; 95%CI: 1.94–386.50) and maternal

GBS bacteriuria (aOR: 8.41; 95%CI: 1.44–49.15), which was also a risk-factor for LOD

(aOR: 3.49; 95%CI: 1.17–10.40). The overall case fatality rate among cases was 18.0%.
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The adjusted odds for neurological sequelae at 6 months age was 13.18-fold (95%CI: 1.44–

120.95) greater in cases (13.2%) than controls (0.4%).

Discussion

The high burden of invasive GBS disease in South Africa, which is also associated with

high case fatality rates and significant neurological sequelae among survivors, is partly due

to the heightened risk for LOD in infants born to HIV-infected women. An effective trivalent

GBS conjugate vaccine targeted at pregnant women could prevent invasive GBS disease

in this setting.

Introduction
There has been slow progress in the decline of neonatal mortality rates in developing countries
where severe bacterial infections accounted for an estimated 680 000 neonatal deaths in 2012
[1, 2]. Group B streptococcus (GBS) has been recognized as a leading contributor of neonatal
sepsis and meningitis in developed countries, even though intra-partum antibiotic prophylaxis
(IAP) is routinely administered to GBS-colonized pregnant women [3–5]. Additionally, neuro-
developmental problems are seen in about 22–50% of infants surviving GBS meningitis [6–10].
In developing countries, such as South Africa, where GBS screening and IAP during pregnancy
is not standard-of-care, the mortality rate from invasive GBS disease is higher than in devel-
oped countries (10–60% compared to 7–11%) [11–13]. Furthermore, in South Africa, the high
prevalence of maternal HIV-infection (29.5%) [14] is likely to aggravate the burden of invasive
GBS disease [15]. We therefore prospectively determined the incidence of invasive GBS disease,
including the effect of maternal HIV-infection on disease burden in infants born in Johannes-
burg. Furthermore, we evaluated risk factors for invasive GBS disease and assessed early neuro-
developmental sequelae in GBS-affected infants and healthy controls.

Methods
Between November 2012 and February 2014, we undertook a case-control study at the three
largest academic hospitals in Johannesburg; namely Chris Hani Baragwanath Academic Hospi-
tal (CHBAH), Charlotte Maxeke Johannesburg Academic Hospital and Rahima Moosa Mother
and Child Hospital. The standard-of-antenatal care for the prevention of invasive GBS in neo-
nates does not include universal screening for recto-vaginal GBS colonization during pregnan-
cy although IAP is provided to women who have risk factors such as maternal fever and
prolonged rupture of membranes (�18 hours prior to delivery). Blood and cerebrospinal fluid
(CSF) cultures are routinely performed in infants admitted with suspected sepsis or meningitis.
HIV infection testing is routinely performed in pregnant women and confirmed using two in-
dependent rapid antibody screening tests [16]. Pregnant women with a CD4+ lymphocyte
count>350 cells/mm3 and WHO stage 1 and 2 received antiretroviral prophylaxis with zido-
vudine (AZT); whilst those with CD4+ lymphocyte count�350 cells/mm3 or WHO stage 3 or
4 were initiated on triple antiretroviral therapy (ART). From April 2013, all pregnant women
irrespective of CD4+ lymphocyte count were initiated on ART [16, 17].

Invasive GBS disease (cases) were defined as an infant<90 days of age in whom GBS was
cultured from blood, CSF or other normally sterile sites; or when GBS was identified in CSF by
latex agglutination. Cases were identified by ZD through daily surveillance of the pediatric
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wards and microbiology services at the three hospitals. Early-onset disease (EOD) was defined
when GBS was isolated in infants younger than seven days of life, and infants between 7–89
days of age with GBS disease were regarded as having late-onset disease (LOD).

Control subjects were matched for: (i) gestational age to term, or within 2 weeks for cases
born<37 weeks gestation, (ii) maternal HIV-infection status, (iii) maternal age (within 2.5
years of the case mother’s age), and (iv) enrollment within 0–6 days after birth for EOD cases
and within 14 days (but>7 days of life) of chronological age for LOD cases. Controls for EOD
were selected from admission and labor wards at CHBAH, whereas controls for LOD were
identified through the birth registries and contacted telephonically for possible study-enrol-
ment. For cases born at�34 weeks gestational age, at least 5 controls (mean: 7; range: 5–14)
were matched for EOD and 3 controls (mean: 5; range: 3–7) for LOD. For cases born at<34
weeks gestational age, at least one control (mean: 2; range: 1–5) was matched for EOD and at
least one control (mean: 2, range: 1–4) for LOD. All controls were clinically well at enrolment,
and followed up to confirm they did not develop invasive GBS disease.

Cases and controls were followed up at 3 and 6 months of the infant’s chronological age.
These visits were carried out by either one of three trained research assistants or by ZD. At
these visits, the infant’s underwent neurological and development examinations and were
screened using the Denver Developmental Screening Test II (Denver-II). The Denver-II makes
a valuable screening tool (83% sensitivity) with a high degree of test-retest and inter-examiner
reliability [18, 19]. The Denver-II tests 4 domains; gross-motor, fine-motor, language and per-
sonal-social. Each test item is represented horizontally as a percentile age range (25–90%) for
which it is normally estimated that the item can be achieved. A “fail” or “refusal” by the infant
in an item to the left of the age line is classified as a “delay”, whilst a “fail” or “refusal” by the in-
fant in an item through the 75–90% age percentile is classified as a “caution”. The final result
was then scored as “normal” (no delays or 1 caution) or “suspect/abnormal” (�2 cautions or
�1 delay) in each of the four domains. We defined neurological sequelae as an abnormal Den-
ver-II developmental screening test for any of the four domains or hypertonia and/or hyper-
reflexia detected on examination. Infants with developmental delay were referred to occupa-
tional, physical and/or speech therapists. Visual and hearing assessments were not routinely
tested on participants.

Laboratory methods
GBS was isolated from blood samples using the Bact/Alert microbial system (Organon
Teknika, Durham, NC). Positive specimens were subsequently plated on blood or chocolate
agar incubated both aerobically and at 35 degrees under 5–10% CO2, and observed for colony
growth for 72 hours. Gram-staining was performed on CSF samples, which were also plated
onto blood or chocolate agar plates, inoculated into an enrichment broth (Brain Heart Infu-
sion, Diagnostics Media Production) and observed for colony growth for 72 hours. Specimens
were also analyzed by a GBS antigen agglutination test if the CSF cell counts were suggestive of
bacterial meningitis. Positive GBS isolates were serotyped and stored.

Although screening for maternal GBS colonization is not a routine investigation in Johan-
nesburg, maternal colonization status was determined for participants enrolled in the study by
separately swabbing the lower vagina and rectum using Rayon tipped swabs and charcoal-free
Amies transport medium (Medical Wire Equipment Co. Ltd. Cat: MW170). In addition, a
mid-stream urine specimen was also cultured. Mothers of cases and controls were swabbed at
the time of enrolment, while controls matched to EOD were swabbed immediately after deliv-
ery. Swabs were plated onto CHROMAgar StrepB plates (Media Mage Cat: M10155) which
were incubated at 37°C for 18–24 hours in aerobic conditions and examined for growth of
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mauve GBS-like colony morphologies. Identified colonies were subjected to further confirma-
tory tests, such as the catalase test, growth on bile esculin agar, inability to hydrolyze esculin,
Christie Atkinson Munch-Petersen (CAMP) test and B antigen latex agglutination test [20].
Serotyping for GBS types Ia, Ib, II to IX was performed using latex agglutination (Statens
Serum Institute, SSI, Sweden) [21]. Non-typeable and discordant isolates were further charac-
terized by a single-plex PCR method for serotypes Ia, Ib, II, III, IV and V using primer se-
quences described by Poyart et al. [22].

Statistical analysis
The incidence (per 1,000 live births) of invasive GBS disease over a twelve month period was
calculated as the number of cases (EOD or LOD) in black-African infants that specifically re-
sided in regions D and G of the Johannesburg metropolitan area. We only included black Afri-
can infants with GBS disease residing in these specified regions because the care-givers of these
infants predominantly access health care at either CHBAH or RMMCH. We did not undertake
incidence calculation for non-black African infants or black-African infants not residing in re-
gions D and G because these infants were likely to utilize other health care facilities not under
surveillance in the study. There were 31504 live births over 12 months in regions D and G;
8827 (28%) infants were born to HIV-infected women [23].

For proportions, Chi-square or Fischer’s exact test were used to compare demographic and
clinical characteristics between cases of EOD and LOD. Medians were reported for non-
parametric variables and compared using the Wilcoxon rank-sum (Mann-Whitney) test. Sero-
type distributions were reported as proportions of the total number of cases serotyped and
stratified by EOD and LOD.

Univariate analysis was used to identify risk factors for invasive GBS disease, predictors of
infant mortality and to compare neurological sequelae. For the multivariate analysis, adjusted
odds ratios (aOR) using conditional logistic regression was used to adjust for variables with p-
values<0.15 detected by univariate analysis. For the identification of risk factors predisposing
to invasive GBS disease, we also included gestational age, maternal age and HIV status. For
neurological sequelae, we adjusted for factors that may impact on neurodevelopment; includ-
ing, gender, gestational age, birth weight<2500 grams, perinatal asphyxia, mechanical ventila-
tion, infant HIV-exposure status and previous non-GBS-related hospitalizations. Data was
analyzed using STATA version 13.1 (College Station, Texas, USA). Two-tailed p-values<0.05
were considered statistically significant. The study was approved by the University of Witwa-
tersrand Human Research Ethics Committee (HREC number: M120963). Written informed
consent was obtained from mothers of infants at enrolment for participation in the study.

Results
There were 122 infants (<90 days-of-age) with invasive GBS disease over a 12 month period,
including 82 (67.2%) at CHBAH, 22 (18.0%) at CMJAH and 18 (14.8%) at RMMCH. Most in-
fants (n = 116; 95.1%) were of black-African descent and 48 (39.4%) of all infants were born to
HIV-infected mothers. Sixty six (54.1%) infants had EOD, of which 63 (95.5%) were identified
within the first 24 hours of life. The predominant clinical presentation was sepsis (97.0%) and
meningitis (58.9%) in infants with EOD and LOD, respectively (Table 1).Overall, 44 (36.1%)
cases occurred in infants born before 37 completed gestational weeks; EOD occurred signifi-
cantly more commonly than LOD in prematurely-born infants (45.4% versus 25.0%; p = 0.019;
Table 1). Recurrence of invasive GBS disease occurred in two infants (1.6%), and one case and
one control were diagnosed as HIV-infected at 6 weeks of age. Group B Streptococcus was cul-
tured in 119 (97.5%) cases, whilst 3 (2.5%) cases of meningitis were identified on GBS latex
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agglutination of CSF samples, Of the 35 cases of meningitis, 6 (17.1%) had>250 red cells/μl in
their CSF.

HIV-exposed infants were 3.50 (95% CI: 1.53–8.09) times more likely to suffer from LOD
than EOD. Additionally HIV-exposed infants were 6.85 (95% CI: 2.64–18.31) fold more likely
to have GBS meningitis than HIV-unexposed infants. The CSF biochemistry and cytology pa-
rameters were similar between HIV-exposed and-unexposed infants: median CSF protein
(p = 0.203), glucose (p = 0.364), polys (p = 0.984) and lymphs (p = 0.813).

Table 1. Demographic characteristics of infants with invasive Group B Streptococcal (GBS) disease.

All cases, n = 122 EOD1, n = 66 LOD2, n = 56 OR(95%CI)3 p-value4

Gestational Age

�37 weeks 78 (63.9) 36 (54.6) 42 (75.0) 0.40 (0.17–0.93) 0.019

<37 - �34 weeks 14 (11.5) 8 (12.1) 6 (10.7) 1.15 (0.32–4.31) 0.808

<34 weeks 30 (24.6) 22 (33.3) 8 (14.3) 3.00 (1.13–8.56) 0.015

Birth Weight

�2500 grams 77 (63.1) 38 (57.6) 39 (69.6) 0.59 (0.26–1.33) 0.169

1500–2499 grams 27 (22.1) 14 (21.2) 13 (23.2) 0.89 (0.35–2.30) 0.791

1000–1499 grams 10 (8.2) 7 (10.6) 3 (5.4) 2.10 (0.45–13.12) 0.292

�999 grams 8 (6.6) 7 (10.6) 1 (1.8) 6.53 (0.79–299.28) 0.068

Gender

Male 68 (55.7) 35 (53.0) 33 (58.9) 0.79 (0.36–1.72) 0.513

Race

Black 116 (95.1) 62 (93.9) 54 (96.4) 0.57 (0.05–4.20) 0.526

Mixed race 6 (4.9) 4 (6.1) 2 (3.6)

Maternal HIV status

HIV-infected 48 (39.4) 17 (25.8) 31 (55.4) 0.27 (0.12–0.64) <0.001

HIV-uninfected 73 (59.8) 48 (72.7) 25 (44.6) 2.67 (1.15–6.24) 0.012

HIV-unknown 1 (0.8) 1 (1.5)

Mode of delivery

Caesarean-section 29 (23.8) 20 (30.3) 9 (16.1) 2.27 (0.87–6.25) 0.066

Vertex delivery 91 (74.6) 45 (68.2) 46 (82.1) 0.47 (0.18–1.18) 0.078

Unknown 2 (1.6) 1 (1.5) 1 (1.8)

GBS isolation

Blood only 87 (71.3) 64 (97.0) 23 (41.1) 45.91 (10.04–410.36) <0.001

CSF5 only 13 (10.7) 13 (23.2) <0.001

Blood and CSF 22 (18.0) 2 (3.0) 20 (35.7) 0.06 (0.01–0.26) <0.001

Infant age at presentation

Median(range) 0 (0–74) 0 (0–5) 15 (7–74)

<24hours 63 (51.6) 63 (95.5)

1–6 days 3 (2.5) 3 (4.5)

7–28 days 41 (33.6) 41 (73.2)

>28 days 15 (12.3) 15 (26.8)

1EOD-Early-onset disease.
2LOD-Late-onset disease.
3OR(95%CI)-calculated odds ratio with 95% confidence comparing EOD to LOD.
4p-value-using Chi-squared, Fischer exact or Wilcoxon rank-sum (Mann-Whitney) test.
5CSF-Cerebrospinal fluid.

doi:10.1371/journal.pone.0123014.t001

Burden of Invasive Group B Streptococcus Disease

PLOS ONE | DOI:10.1371/journal.pone.0123014 April 7, 2015 5 / 13



Incidence and serotype distribution of invasive GBS disease
Of 31 504 live births, there were 75 cases of invasive GBS disease in black-African infants resid-
ing in regions D and G; 73 (89.0%) infants presented to CHBAH and 2 (11.1%) to RMMCH.
The overall incidence (per 1,000 live births) of invasive GBS disease was 2.38 (95% CI: 1.87–
2.98); the incidences of EOD (n = 43) and LOD (n = 32) were 1.37 (95% CI: 0.99–1.84) and
1.02 (95%CI: 0.70–1.43) respectively. The estimated incidence of disease was significantly
higher in HIV-exposed than in HIV-unexposed infants [3.40 (95% CI: 2.29–4.85) versus 1.94
(95% CI: 1.41–2.60) respectively; p = 0.016]. The incidence of EOD was similar in HIV-ex-
posed (1.13; 95%CI: 0.54–2.08) and HIV-unexposed (1.46; 95%CI: 1.00–2.04; p = 0.487) infants
but the incidence risk ratio of LOD was 4.67 (95% CI: 2.24–9.74) greater in HIV-exposed (2.27;
95% CI: 1.39–3.50) compared to HIV-unexposed infants (0.49; 95%CI: 0.24–0.87; p<0.001).
Among the 66 cases of EOD; 32 (48.5%) were caused by serotype Ia, 5 (7.6%) by serotype Ib, 3
(4.5%) by serotype II, 13 (19.7%) by serotype III, 1 (1.5%) by serotype IV and 12 (18.2%) by se-
rotype V. Among the 56 cases of LOD; 15 (26.8%) were caused by serotype Ia, 34 (60.7%) by se-
rotype III, 4 (7.1%) by serotype V and 3 (5.4%) were not typed. Serotype III was the
commonest (n = 23; 71.9%) cause of GBS meningitis, followed by serotype Ia (n = 8; 25.0%)

Risk factors for early-onset GBS invasive disease
Offensive draining liquor (aOR: 27.37; 95% CI: 1.94–386.50) was a risk factor for EOD, where-
as maternal GBS bacteriuria was a risk factor for EOD (aOR: 8.41; 95% CI: 1.44–49.15) and
LOD (aOR: 3.49; 95% CI: 1.17–10.40) (Table 2). Maternal fever (�38°C) was observed in only
one case. Although the occurrence prolonged (>18 hours prior to delivery) rupture of mem-
branes (PROM) was more common in EOD cases than controls, no increased risk was found
in the multivariate analysis (p = 0.213) (Table 2). Thirteen (12.8%) cases mothers were not
swabbed at enrollment. The prevalence of GBS colonization was higher in EOD cases (74.5%)
than controls (25.1%). Maternal risk factors were not different in HIV-infected and -uninfected
mothers (S1 Table).

Intra-partum antibiotic prophylaxis (IAP) was not administered to most mothers who had
at least one risk factor (per Center for Disease Control risk based criteria for IAP; i.e. gestation
<37 weeks, PROM and maternal intra-partum fever) predisposing to neonatal GBS disease
[24]. Among EOD cases, 5 (16.1%) of 31 mothers with at least one risk factor received IAP�4
hours prior to delivery, two (6.5%) received IAP within 4 hours of delivery and 24 (77.4%) did
not receive IAP during labor. Among controls, 36 (34.6%) of 104 mothers with at least one risk
factor received IAP�4 hours prior to delivery, four (3.9%) received IAP within 4 hours of de-
livery and 64 (61.5%) did not receive IAP during labor. For infants born to mothers who re-
ceived IAP at least 4 hours before delivery, the odds of acquiring EOD was 0.36 (95% CI: 0.10–
1.08).

Clinical presentation of GBS invasive disease
Infants with EOD presented most frequently with respiratory distress (83.3%), whilst other
clinical and laboratory signs of sepsis occurred less frequently (<15%) (S2 Table). Respiratory
distress was less common among LOD (35.7%) than EOD cases (p<0.001), but pyrexia oc-
curred more frequently in LOD (39.3% vs 3.0%; p<0.001). As compared to EOD, infants with
LOD also had an increased odds of presenting with poor feeding (OR: 20.71; 95% CI: 4.54–
187.69), irritability (OR: 16.65; 95% CI: 5.03–69.74) and lethargy (OR: 3.37; 95% CI 1.17–
10.51), and were more likely to have CRP>40 mg/l (58.7% vs 30.5%; p = 0.004) and leucopenia
(37.5% vs 12.5%; p = 0.001) (S2 Table)
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Mortality and neurological outcomes of GBS invasive disease
The overall case fatality rate among cases was 18.0% (22/122), including 22.7% (15/66) for EOD
and 12.5% (7/56) for LOD. Most deaths (14/22; 63.6%) occurred within 48 hours of hospital ad-
mission or birth. Twenty three (18.9%) infants were admitted to intensive care, of whom 19 (10
EOD and 9 LOD) required mechanical ventilation and 8 (5 EOD and 3 LOD) required inotropic
support (Table 3). The mortality rate among infants requiring ventilation was 60.0% (n = 6) for
EOD and 55.6% (n = 5) for LOD, and seven (87.5%) infants requiring inotropic support demised.
Significant infant predictors of mortality were gestational age<34 weeks (aOR: 9.45; 95% CI:
2.11–42.29), apnea at presentation (aOR: 16.54; 95% CI: 1.55–176.33), seizures (aOR: 6.71; 95%
CI: 1.07–42.24) or the need for inotropic support (aOR: 281.93; 95% CI: 7.32–10864.64) (Table 3).
HIV-exposed infants were not at increased risk of death (aOR: 0.14; 95% CI: 0.02–0.79).

Of the 100 surviving cases discharged from hospital, both the three and six monthly follow-
ups were completed for 63 cases and 214 controls; whilst a further 10 cases and 66 controls
only attended one of the two visits (S3 Table). Reasons for follow-up data being unavailable in
the remaining cases included 6 whose parents declined for study participation, 4 cases born to
women considered unable to provide informed consent and 17 cases were lost to follow-up. At
3 months of age, there were concerns about normal neurological development in 9 of 68
(13.2%) infants with invasive GBS disease and 1 of 262 (0.4%) control infants (Table 4).
GBS-affected infants were 21.48 (95% CI: 2.58–179.15; p = 0.005) times more likely have

Table 2. Risk factors for invasive Group B Streptococcal (GBS) disease in early-onset and late-onset disease cases andmatched controls.

Cases Controls Univariate-OR (95%CI)1 p-value Multivariate-OR (95%CI)2 p-value

Early-onset disease n = 56 n = 323

Maternal GBS colonization 35/47 (74.5) 81/323 (25.1) 8.71 (4.15–19.23) <0.001 3.38 (0.77–14.83) 0.107

Prolonged ROM (>18hours)3 14/49 (28.6) 32/313 (10.2) 3.51 (1.57–7.54) <0.001 2.08 (0.61–7.08) 0.239

Maternal fever (�38.0°C)4 1/50 (2.0) 0/319 (0) 0.136

Offensive liquor 10/52 (19.2) 1/317 (0.3) 75.24 (10.05–3274.04) <0.001 27.37 (1.94–386.50) 0.014

Maternal GBS Bacteriuria 27/47 (57.5) 22/220 (10.0) 12.15 (5.51–26.79) <0.001 8.41 (1.44–49.15) 0.018

Any IAP5 7/31 (22.6) 40/104 (38.5) 0.47 (0.16–1.26) 0.103

IAP �4 hours prior to delivery 5/31 (16.1) 36/104 (34.6) 0.36 (0.10–1.08) 0.074

No IAP 24/31 (77.4) 64/104 (61.5) 2.14 (0.80–6.41) 0.103

Late-onset disease n = 46 n = 212

Maternal GBS colonization 28/42 (66.7) 64/212 (30.2) 4.63 (2.17–10.11) <0.001 2.44 (0.88–6.79) 0.088

Prolonged ROM(>18hours)3 2/35 (5.7) 18/204 (8.8) 0.63 (0.07–2.83) 0.746

Offensive liquor 2/38 (5.3) 3/203 (1.5) 3.70 (0.30–33.27) 0.178

Maternal GBS Bacteriuria 18/42 (42.9) 25/212 (11.8) 5.61 (2.48–12.46) <0.001 3.49 (1.17–10.40) 0.025

Any IAP 1/12 (8.3) 16/56 (28.6) 0.23 (0.01–1.84) 0.269

IAP �4 hours prior to delivery 1/12 (8.3) 10/56 (17.9) 0.42 (0.01–3.59) 0.674

No IAP 11/12 (91.7) 40/56 (71.4) 4.40 (0.54–201.01) 0.269

1Univariate-OR(95%CI)-calculated odds ratio with 95% confidence using Fischer exact test comparing cases and controls.
2 Multivariate-OR(95%CI)-calculated odds ratio with 95% confidence of disease using conditional logistic regression (For early-onset disease: adjusted for

HIV-status, maternal age at delivery, gestational age, maternal GBS colonization, prolonged ROM, offensive liquor, maternal temperature>38, GBS

bacteriuria and any intra-partum antibiotics. For late-onset disease: adjusted for HIV-status, maternal age at delivery, gestational age, maternal GBS

colonization and GBS bacteriuria).
3 Prolonged ROM (>18 hours)-prolonged rupture of membranes.
4Maternal fever during labor.
5IAP-Intrapartum antibiotic prophylaxis to pregnant women that met risk-based criteria (gestation <37 weeks, PROM and maternal intra-partum fever).

doi:10.1371/journal.pone.0123014.t002
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neurological sequelae than controls. Three cases; one with hypertonia and one with an person-
al-social delay on Denver-II subsequently showed signs of recovery from neurological im-
pairment at 6 months, whilst one case did not attend the visit.

At 6 months of age, four additional cases had an abnormal Denver-II screening test.
Amongst the cases; two had fine-motor delay only, one had gross-motor delay only, one had
gross and fine-motor delay and one had gross, fine-motor and personal-social delay. Four
cases had hypertonia and/or hyper-reflexia on neurological examination with a normal Den-
ver-II assessment. The only control with an abnormal Denver-II screening test had gross
motor delay. GBS-affected infants were 13.18 (95% CI: 1.44-120.95; p = 0.023) times more like-
ly have neurological sequelae than controls. Neurological abnormalities were detected in a
greater proportion of GBS-affected infants with meningitis (23.5%) than sepsis (9.8%). Hydro-
cephalus was confirmed in two infants with meningitis.

Discussion
Our study confirms the high incidence of invasive GBS disease (2.38 per 1 000 live births) ob-
served in the last two decades in South Africa [11, 25], which is about twice the overall

Table 3. Predictors of mortality from invasive Group B streptococcus (GBS) disease.

Demised, n = 22 Survived, n = 100 Univariate-OR (95%CI)1 p-value Multivariate-OR (95%CI)2 p-value

Timing of disease

Early-onset disease 15 (68.2) 51 (51.0) 2.06 (0.71–6.47) 0.143 1.31 (0.29–5.95) 0.726

Late-onset disease 7 (31.8) 49 (49.0) 0.49 (0.16–1.41) 0.143

Mode of presentation

Meningitis 5 (22.7) 30 (30.0) 0.69 (0.18–2.18) 0.608

Gestational age

<34 weeks 11 (50.0) 19 (19.0) 4.26 (1.42–12.58) 0.002 9.45 (2.11–42.29) 0.003

HIV-exposure

HIV-exposed 4 (18.2) 44 (44.0) 0.28 (0.07–0.95) 0.030 0.14 (0.02–0.79) 0.027

HIV-unexposed 17 (77.3) 56 (56.0) 2.67 (0.85–9.92) 0.092

HIV-unknown 1 (4.5)

Gender

Male 11 (50.0) 57 (57.0) 0.75 (0.27–2.12) 0.549

Clinical features

Apnea 7 (31.8) 6 (6.0) 7.31 (1.79–29.7) <0.001 16.54 (1.55–176.33) 0.020

Seizures 5 (22.7) 8 (8.0) 3.38 (0.76–13.34) 0.058 6.71 (1.07–42.24) 0.043

High/intensive care

Mechanical Ventilation support 11 (50.0) 8 (8.0) 11.5 (3.31–40.06) <0.001 0.34 (0.03–3.77) 0.376

Inotropic support 7 (31.8) 1 (1.0) 46.2 (5.09–2101.36) <0.001 281.93 (7.32–10864.64) 0.002

Lab markers

WCC3(<5x109/l) 6 (27.3) 23 (23.0) 1.26 (0.36–3.88) 0.670

CRP4(>40mg/l) 6 (27.3) 39 (39.0) 0.59 (0.17–1.76) 0.302

1OR(95%CI)-calculated odds ratio with 95% confidence comparing infants that demised versus survivors of GBS disease using Chi-squared or Fischer

exact test.
2 Multivariate-OR(95%CI)-calculated odds ratio with 95% confidence using logistic regression (adjusted for timing of disease, HIV-exposure, prematurity

(<34 weeks), ventilation, inotropic support, apnea, seizures).
3WCC-White cell count.
4CRP-C-reactive protein.

doi:10.1371/journal.pone.0123014.t003
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incidence in Africa (1.21; 95%CI: 0.50–1.91) and other regions [13]. Furthermore, we observed
a five-fold greater risk of LOD in HIV-exposed compared to HIV-unexposed infants. The ob-
served case fatality rate (18.0%) was similar to that previously reported [11]; this rate is lower
than rates reported for Kenya (46%) and Malawi (33%) but almost double the rates reported in
high income settings (7–11%) [12, 13]. Concerns about neurological development were noted
in a significant proportion (13.2%) of infants with invasive GBS disease surviving to 6 months-
of-age.

Unlike the declining trend of EOD in the United States (USA), most likely due to the imple-
mentation of IAP [26], there has been no significant change in the incidence rates of EOD in
South Africa [11]. The lack of recognition of risk-factors for invasive GBS disease by staff, the
late presentation of expectant mothers to antenatal facilities, and the severely under-staffed de-
livery units are likely factors to explain why only a quarter of women eligible for IAP received
this therapy timeously even though the majority of births (±99%) occur in health-
care facilities.

Maternal GBS bacteriuria, which is a surrogate marker of heavy recto-vaginal colonization,
was significantly associated with EOD and LOD. In our study, maternal GBS bacteriuria was
identified in 43% of mothers of LOD cases, of which almost 90% were infected with the same
serotype that was isolated from maternal urine sample. These finding strongly support that
IAP should be provided to mothers with GBS bacteriuria as it may be a risk factor for both
EOD and LOD [24].

In keeping with the higher morbidity caused by infectious diseases in HIV-exposed infants
in low-middle income countries [27, 28], the high maternal HIV prevalence (29.5%) may ac-
count, in part, for the high burden of invasive GBS disease in South Africa. Although the inci-
dence of LOD among HIV-unexposed infants in our setting is similar to that seen in the USA
and other countries [5, 13], we found that HIV-exposed infants were at a greater risk of devel-
oping LOD compared to their unexposed peers, as reported [15]. The reasons for this are un-
clear but may be related to perturbations of the infant immune system caused by exposure to
HIV virion in-utero or maternal ART [29]; or lower levels of transferred maternal antibody
predisposing HIV-exposed infants to invasive GBS disease [30]. Notably, no significant

Table 4. Neurological sequelae of infants with invasive Group B Streptococcus (GBS) disease at 3 and 6 month visits.

Cases Controls Univariate-OR (95%CI) 1 p-value Multivariate-OR (95%CI) 2 p-value

Sepsis Meningitis Overall

3 months n = 49 n = 19 n = 68 n = 262

Overall3 3 (6.1) 6 (31.6) 9 (13.2) 1 (0.4) 39.81 (5.27–1751.09) <0.001 21.48 (2.58–179.15) 0.005

Abnormal Denver-II assessment4 2 (4.1) 1 (5.3) 3 (4.4) 1 (0.4)

Hypertonia/hyper-reflexia5 1 (2.0) 5 (26.3) 6 (8.9) 0

6 months n = 51 n = 17 n = 68 n = 232

Overall 5 (9.8) 4 (23.5) 9 (13.2) 1 (0.4) 35.24 (4.66–1550.57) <0.001 13.18 (1.44–120.95) 0.023

Abnormal Denver-II assessment 4 (7.8) 1 (5.9) 5 (7.4) 1 (0.4)

Hypertonia/hyper-reflexia 1 (2.0) 3 (17.6) 4 (5.9) 0

1 Univariate-OR(95%CI)- calculated Odds ratio with 95% confidence using Fischer exact test comparing overall cases and controls
2 Multivariate-OR(95%CI)- calculated Odds ratio with 95% confidence using conditional logistic regression (adjusted for gender. gestational age, birth

weight �2500, perinatal asphyxia, ventilation at presentation, HIV-status and previous non-GBS admissions).
3Number (%) of cases and controls with neurological sequelae based on abnormal Denver-II assessments and hypertonia/hyper-reflexia.
4Abnormal Denver-II assessments in four tested domains (Gross Motor, Fine Motor, Language and Personal/Social).
5Hypertonia and/or hyper-reflexia on neurological examination of infant with a normal Denver-II assessment.

doi:10.1371/journal.pone.0123014.t004
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difference was observed when comparing CD4+counts amongst mothers of cases of LOD and
controls (data not shown).

Significant predictors for invasive GBS disease related-death in our study included prema-
ture birth, apnea and/or seizures; which are indicators of severe illness in neonates [31]. Con-
trary to previous reports, in our study, HIV-exposure did not predict mortality in infants with
invasive GBS disease [28]. Most deaths (63.6%) occurred within 48 hours of hospitalization,
highlighting the fulminant nature of invasive GBS disease. Neurological sequelae was noted in
a higher proportion of infants surviving GBS meningitis, similar to other reports [6]. The rela-
tively low overall risk of neurological sequalae in our setting may also in part be related to the
high mortality in these infants. Furthermore, in the absence of screening for auditory and visual
deficits, as well as the early assessments, we are likely to have underestimated the number of in-
fants with neurological sequelae from invasive GBS disease. There have been previous reports
of long-term neurological sequelae in 26–50% of GBS meningitis survivors at 3–18 years of age
[7–10], and we are continuing follow-up of children in this study to evaluate their long-term
neurological outcomes.

Our results show that serotype Ia, instead of serotype III, is now the commonest (48.5%)
cause of EOD in South Africa [11, 32]. In keeping with results from high-income countries [33,
34], the proportion of EOD and LOD caused by serotype V is increasing in South Africa [35].
Although there are differences in the invasive potential of different GBS serotypes, with sero-
type III being most invasive [32], temporal changes in serotype distribution associated with
recto-vaginal colonization are mirrored by changes in their relative contribution to EOD as ob-
served with serotype Ia over a twenty-year surveillance period in the United Kingdom [36].
Molecular characterization has however recognized the highly invasive ST-17 clone to be asso-
ciated with serotype III invasive disease [37]. Nevertheless, the majority of serotypes causing
EOD (76%) and LOD (93%) in our study were due to serotypes Ia, Ib and III, which are includ-
ed in a trivalent polysaccharide protein conjugate vaccine targeted at immunization of preg-
nant women currently in clinical trials [38]

Limitations of our study include case enrolments over a single year; nevertheless, we identi-
fied a large number of invasive GBS cases and report a persistently high incidence of invasive
GBS disease. Due to study constraints, we did not blind examiners performing neurodevelop-
mental screening tests but plan to do so at future visits. Although other developmental screen-
ing test are available (i.e. Bailey), we were limited to using the Denver-II screening test which
has been shown to be reliable in young infants [19]. Furthermore, we currently only report on
neurological sequelae up to 6 months of age, and did not have any follow-up outcomes on 27%
of cases discharged from hospital. The short-term follow-up for neurological sequelae could
fail to identify mild development delay or learning problems that manifest later in life, or con-
versely may over-estimate the long-term sequelae as the neurological system matures in chil-
dren [39]. We were also unable to identify any significant differences in neurodevelopmental
outcomes in HIV-exposed and-unexposed infants due to a small sample of infants with
neurological sequelae.

Maternal vaccination effectively protects young infants against diseases such as tetanus, in-
fluenza and pertussis until 6 months of age [40–42]. Our study emphasizes the need to consider
targeted vaccination of pregnant women for the prevention of invasive GBS disease in low-re-
source settings with a high prevalence of maternal HIV infection and where screening for
recto-vaginal GBS colonization and IAP administration is not logistically feasible. An experi-
mental trivalent GBS vaccine has been reported poorly immunogenic in HIV-infected pregnant
women [43] and the immunogenicity of newer GBS conjugate vaccines therefore needs to be
urgently evaluated in settings with a high prevalence of maternal HIV-infection.
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HIV-1 Is Associated With Lower Group B
Streptococcus Capsular and Surface-Protein IgG
Antibody Levels and Reduced Transplacental
Antibody Transfer in Pregnant Women
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Background. Human immunodeficiency virus (HIV)-exposed infants are at increased risk of invasive Group B
Streptococcus (GBS) disease; however, the reason for this increased susceptibility has not been characterized.

Methods. We compared GBS capsular and surface-protein maternal immunoglobin G antibody concentrations
and cord-maternal ratios between HIV-infected and HIV-uninfected mother-newborn dyads.

Results. Median capsular antibody concentrations (µg/mL) were lower in HIV-infected than HIV-uninfected
women for serotypes Ib (P = .033) and V (P = .040); and for pilus island (PI)–1 (P = .016), PI-2a (P = .015), PI-2b
(P = .015), and fibrinogen-binding protein A (P < .001). For serotypes Ia and III, cord-maternal ratios were 37.4%
(P < .001) and 32.5% (P = .027) lower in HIV-infected compared to HIV-uninfected mother-newborn dyads. The ad-
justed odds of having capsular antibody concentration ≥2 µg/mL when comparing HIV-infected to -uninfected
women were 0.33 (95% confidence interval [CI], .15–.75) and 0.34 (95% CI, .12–1.00) for serotypes Ia and III, respec-
tively. Antibody levels and cord-maternal ratios were independent of CD4+ lymphocyte counts or HIV-1 viral load.

Conclusions. The lower GBS antibody concentrations and reduced transplacental antibody transfer in HIV-
infected women, which likely contribute to their infants being at heightened susceptibility for invasive GBS disease,
could possibly be mitigated by vaccination with a GBS conjugate vaccine currently under clinical development.

Keywords. antibody; Group B Streptococcus; HIV; immunity; Streptococcus agalactiae; transplacental transfer.

Group B Streptococcus (GBS) is a leading cause of sepsis
and meningitis in newborns and young infants [1, 2]. A
meta-analysis of studies undertaken from 2000 to 2010
reported the highest incidence of invasive GBS disease
to be in low-middle income countries from Eastern and

Southern Africa [3–7]. Maternal and newborn GBS
serotype-specific capsular antibody has been associated
with protection against homotypic serotype invasive
GBS disease in infants [8]. Furthermore, GBS surface
proteins which facilitate adherence to host epithelium
such as pilus island (PI) PI-1, PI-2a, PI-2b; fibrino-
gen-binding protein A (FbsA); and GBS immunogenic
bacterial adhesin (BibA) have been shown to be immu-
nogenic, and induce antibodies in animal-model studies
that improved survival following systemic GBS inocula-
tion challenges [9–11].

Although maternal human immunodeficiency virus
(HIV) infection is not associated with higher prevalence
of recto-vaginal GBS colonization during pregnancy
or at birth [12–16], a greater risk of invasive GBS
disease has been reported in HIV-exposed compared

Received 26 November 2014; accepted 26 January 2015; electronically published
4 February 2015.

Correspondence: Shabir A. Madhi, MD, PhD, Respiratory and Meningeal Patho-
gens Research Unit, University of the Witwatersrand, Chris Hani Rd, Chris Hani-
Baragwanath Hospital, Respiratory and Meningeal Pathogens Research Unit, New
Nurses Residence-1st Fl West Wing, Bertsham, Gauteng 2131, South Africa
(madhis@rmpru.co.za).

The Journal of Infectious Diseases® 2015;212:453–62
© The Author 2015. Published by Oxford University Press on behalf of the Infectious
Diseases Society of America. All rights reserved. For Permissions, please e-mail:
journals.permissions@oup.com.
DOI: 10.1093/infdis/jiv064

Maternal HIV Infection and GBS Antibody • JID 2015:212 (1 August) • 453

 at U
niversity of W

itw
atersrand on July 17, 2015

http://jid.oxfordjournals.org/
D

ow
nloaded from

 

mailto:madhis@rmpru.co.za
mailto:journals.permissions@oup.com
http://jid.oxfordjournals.org/
a0010428
Typewriter
Appendix 3

a0010428
Typewriter
231



to HIV-unexposed infants [17, 18]. The basis for the increased
susceptibility to invasive GBS disease in HIV-exposed infants
remains to be ascertained and could include maternal HIV
infection being associated with lower concentrations of
protective GBS antibodies or impaired transplacental antibody
transfer [19].

The aim of this study was to determine the effect of maternal
HIV infection on immunoglobin G (IgG) serotype-specific (Ia,
Ib, III, and V) capsular antibody and select GBS surface-protein
(PI-1, PI-2a, PI-2b, BibA, and FbsA) antibody concentrations in
the mother and transplacental transfer to their newborns.

METHODS

We undertook a cross-sectional study of pregnant women deliv-
ering at Chris Hani Baragwanath Academic Hospital from
January to July 2013. This tertiary-level care hospital serves
the black-African community of Soweto and surrounding
areas. Pregnant women in this region deliver either at this hos-
pital (approximately 22 000 births annually) or at the midwife-
obstetric units (approximately 9500 births annually) [20].

The HIV-1 sero-prevalence among pregnant women in this
setting was 28.4% during the study period [20]. The provision
of antiretroviral therapy (ART) to prevent mother-to-child trans-
mission of HIV has been detailed elsewhere [21, 22]. Briefly,
following routine confirmation of HIV infection in the pregnant
women, a CD4+ lymphocyte count is measured, which at the time
if >350 cells/µL, zidovudine (AZT) was provided until delivery.
Pregnant women with a CD4+ count ≤350 cells/µL or World
HealthOrganizationclinical stage3or4were initiatedon tripleART.
From April 2013, all HIV-infected pregnant women irrespective
of CD4+ lymphocyte count were initiated on triple ART [22].

The study sample size was calculated based on the assump-
tion that the antibody transfer rate is normally distributed
with a standard deviation of approximately 0.5. We also as-
sumed a transplacental antibody transfer ratio of 1.0 in HIV-
uninfected mother-newborn dyads [23, 24]. A sample of 79
HIV-infected and 79 HIV-uninfected pregnant women was re-
quired to detect at least 20% difference in transplacental transfer
ratio between HIV-exposed compared to HIV-unexposed new-
borns with 80% power and α < 0.05.

Study staff enrolled women in the labor and delivery wards
during normal working hours from Monday to Friday. Inclu-
sion criteria were: an infant birth weight ≥2500 grams, known
maternal HIV status during pregnancy, and willingness to par-
ticipate in the study. Gestational age was estimated using the fol-
lowing hierarchy of methods: antenatal ultrasound examination
before 24 completed gestational weeks, the Ballard score done
within 24 hours of birth, a reliable history of the last menstrual
period, an antenatal sonar done at ≥24 weeks, or the fundal
symphysis height (centimeters) examination during labor.
Cord blood was taken at the time of birth and maternal blood

within 12 hours of delivery from enrolled participants. Cord
blood was withdrawn using a needled syringe from the umbil-
ical vessels. Blood samples were allowed to clot at room temper-
ature and transported to the Respiratory and Meningeal
Pathogens Research Unit within 4–6 hours for processing and
storage. The blood was stored at 2°C–8°C if not processed im-
mediately for a maximum period of 24 hours. Blood was centri-
fuged for 5 minutes at a 3220 relative centrifugal force and the
serum then aliquoted and stored at −70°C. Serum samples were
thawed and analyzed in batches. Newborns were not tested for
HIV-1 infection immediately after delivery.

The Luminex fluorescence based microbead immunosorbent
assay was used to measure IgG antibodies to capsular serotypes
Ia, Ib, III, and V, and to surface-proteins PI-1, PI-2a, PI-2b, BibA,
and FbsA. Capsular and PI protein antigens were kindly provided
byNovartisVaccinesandDiagnostics (Italy),whileBibAandFbsA
protein antigens were provided by Valneva Austria GmbH. Cap-
sular polysaccharides were coupled to the microsphere beads
(Bio-Rad, Hercules, California) with the crosslinking agent
4-(4,6 dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium
(DMTMM) and protein antigens were coupled to beads with a
2-step carbodiimide reaction [25, 26]. Polygam (purified pooled
commercial gammaglobulin; National Bioproducts, South Africa)
was used as reference serum and calibrated with standard capsu-
lar serotype-specific GBS reference serum kindly provided by
Prof Carol J. Baker. For protein-specific antigen antibody deter-
mination, reference serum was assigned arbitrary units (AU) of
10 000 AU/mL. Bead fluorescence was read with the Bio-Plex 200
instrument using Bio-Plex Manager 5.0 software (Bio-Rad,
Texas). Details are described in the Supplementary Appendix.

Serum capsular IgG was reported in micrograms per milliliter
(µg/mL) with a lower limit of detection of 0.0008, 0.002, 0.004,
and 0.016 µg/mL for serotypes Ia, Ib, III, and V, respectively;
while protein-specific IgG was reported in AU per milliliter
(AU/mL) with a lower limit of detection of 41, 110, 46, 6, and
19 per AU/mL for Pil-1, Pil-2a, Pil-2b, BibA, and FbsA, respec-
tively. Samples below these limits were assigned a value of half
the lower limit of detection for statistical analysis.

For analytical specificity of each GBS antigen-microsphere
set, reference serum was incubated at 1:100 dilutions with
each GBS antigen and incubated at 37°C for 2 hours. The spe-
cificity was recorded as the difference in reactivity between the
absorbed and unabsorbed serum samples in a multiplex assay.
Homologous inhibition was >90% for all capsular polysaccha-
ride and protein antigens with the exception of serotype V
(88%) and Fbs-A protein (32%). Heterologous inhibition across
antigens was <15%; except for serotype Ib, which was inhibited
by 31% with serotype Ia, and for serotype V, which was inhib-
ited by 17% with serotype III.

In HIV-infected women, CD4+ lymphocyte counts measured
during pregnancy were recorded and maternal blood obtained
at the time of delivery was tested for HIV-1 RNA viral load
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using the real-time polymerase chain reaction COBAS Ampli-
Prep/COBAS TaqMan HIV-1 Test, version 2.0 (Roche COBAS;
Roche Molecular Systems, Branchburg, New Jersey), which has
a lower limit of detection of 20 copies per milliliter, with values
below this being assigned an arbitrary value of 20.

Maternal GBS colonization was assessed at delivery by per-
forming separate lower vaginal and rectal swabs. Rayon-
tipped swabs were used for sampling, which was placed into
Amies transport medium without charcoal (Medical Wire
Equipment Co Ltd Cat: MW170, UK) and transported to
the laboratory for processing. The laboratory methods of
GBS identification and serotyping on vaginal and rectal
swabs have been described [27].

Data Analysis
Maternal and cord blood IgG antibody concentrations were mea-
sured, and cord-blood-to-maternal ratio calculated to compare
the efficiency of transplacental antibody transfer between HIV-
exposed and HIV-unexposed newborns. Demographic character-
istics were compared between HIV-uninfected and HIV-infected
mother-newborn dyads using χ2 or Fisher’s exact test for propor-
tions; while theMann–Whitney test was used to compare the me-
dians. Antibody concentrations remained nonparametric after
log transformation; thus, median concentrations are reported.

Median maternal antibody concentrations were compared
between HIV-uninfected and HIV-infected women at delivery
and cord blood antibody concentrations between HIV-
unexposed and HIV-exposed newborns using the Mann–
Whitney test. Using quantile regression, we further compared
median maternal antibody concentrations, cord blood anti-
body concentrations, and cord-maternal ratios between HIV-
uninfected and HIV-infected women, and adjusted for overall
colonization, colonizing serotype for homotypic capsular anti-
bodies, maternal age, and parity. We also compared the propor-
tions of HIV-infected and -uninfected women with capsular
antibody concentrations above various thresholds proposed to
be protective against invasive GBS disease in their infants [8].
In HIV-infected women, CD4+ T-lymphocyte counts and
HIV-1 viral load was correlated with maternal antibody concen-
trations and cord-maternal ratios using Spearman’s test. Fur-
thermore, we compared maternal antibody concentrations
and cord-maternal ratios at varying CD4+ lymphocyte counts
and HIV-1 viral load thresholds using the Mann–Whitney test.

Datawere analyzed using STATAversion 13.1 (College Station,
Texas) and GraphPad Prism version 6.05 for Windows (Graph-
Pad Software, La Jolla, California). Two-tailed P values < .05 were
considered statistically significant. Written informed consent was
obtained from the women at time of study enrollment. The study
was approved by the University of Witwatersrand Human Re-
search Ethics Committee (HREC number: M120905) and regis-
tered as an observational study on the South African National
Clinical Trial Register (DOH-27-0113-4310).

RESULTS

Of the 320 women screened, 70 refused consent and 76 failed to
meet the inclusion criteria. We therefore enrolled 174 mother-
newborn dyads, 10 of whomwere subsequently excluded (includ-
ing 9 dyads where the newborn gestational age was ≤36 weeks,
and 1 dyad in whommaternal blood was taken >12 hours follow-
ing delivery). Thus, 164 mother-newborn dyads were analyzed,
including 81 HIV-uninfected and 83 HIV-infected women, all
of whom had singleton births. Except for HIV-infected women
being older (median 30.7 vs 26.0 years; P = .006), they were oth-
erwise similar in demographic characteristics compared to HIV-
uninfected women (Table 1). Among the 83 HIV-infected
women at the time of delivery, 36 (43.4%) were on triple ART,
46 (55.4%) on AZT only, and 1 (1.2%) had not received any
ART. The median duration on triple ART from initiation to de-
livery was 13.4 weeks (range, 1.4–>44) and 17.1 weeks (range,
2.4–42.7) for women on AZT only. Overall, 49 (29.9%) of 164
women were colonized with GBS; colonization rates were similar
in HIV-uninfected (27.2%) and HIV-infected (32.5%) women
(Table 1). The commonest colonizing serotype was Ia (59.1%
of all serotypes) in HIV-uninfected women and III (40.7% of se-
rotypes) in HIV-infected women (Table 1).

All women had detectable antibody levels to all 4 GBS sero-
types, although cord blood antibody levels were not detected in
2 samples for serotype Ia and in 5 samples each for serotypes Ib,
III, and V. Regarding surface-protein antibodies, only 1 woman
had undetectable antibody levels to PI-2a. For cord blood sam-
ples, antibody levels were undetectable on 2 samples for BibA, 4
samples for FbsA, 5 samples for PI-1 and PI-2b, and 6 samples
for PI-2a. The final analysis included all samples, as results were
similar when the above samples were excluded from the analysis
(data not shown).

Maternal HIV Infection Status and Capsular Antibodies
Median capsular antibody concentrations (µg/mL) were lower in
HIV-infected than HIV-uninfected women for serotypes Ib (0.06
vs 0.09; P = .033) and V (0.40 vs 0.59; P = .040); similar trends
were observed for serotype Ia (0.13 vs 0.36; P = .077), but this
difference was not significant (Figure 1A–D, Supplementary
Table 1). Median cord blood capsular antibody concentrations
(for all serotypes) were significantly lower in HIV-exposed
than in HIV-unexposed newborns; the respective antibody
concentrations (μg/ml) for serotypes Ia, Ib, III, and V were
0.07 versus 0.26 (P = .005), 0.07 versus 0.15 (P = .013), 0.15 versus
0.25 (P = .005), and 0.34 versus 0.57 (P = .004) (Figure 1A–D,
Supplementary Table 1).

After adjusting for confounding factors, we compared maternal
antibody concentrations between HIV-infected and -uninfected
women at multiple percentiles using quantile regression analysis.
Significant differences in antibody concentrations for serotypes Ia,
III, and V between HIV-infected and -uninfected women were
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found at higher percentiles (above 65th), suggesting that HIV-
infected women also tended to have lower antibody concentrations
that HIV-uninfected at higher percentiles (Supplementary
Table 2). Corroborating this, we demonstrated that a lower pro-
portion of HIV-infected women had capsular antibody concentra-
tions above thresholds of ≥1 µg/mL and ≥2 µg/mL for serotypes
Ia, III, and V (Table 2). Using multivariate analysis, with an anti-
body concentration of <0.5 µg/mL as a referent, the adjusted odds
of having capsular antibody concentration ≥2 µg/mL in HIV-
infected compared to -uninfected women were 0.33 (95% confi-
dence interval [CI], .15–.75; P = .008), 0.34 (95% CI, .12–1.00;
P = .049), and 0.50 (95% CI, .16–1.54; P = .228) for serotypes Ia,
III, and V, respectively (Table 2).

Overall, median cord-maternal ratios for capsular antibody
ranged between 75% to 119% in HIV-uninfected mother-
newborn dyads and 47% to 93% among HIV-infected moth-
er-newborn dyads (Table 3). In the multivariate model, after
adjusting for overall colonization, serotype-specific coloniza-
tion, maternal age, and parity, the cord-maternal ratio was
37.4% (P < .001) and 32.5% (P = .027) lower for serotypes
Ia and III in HIV-infected compared to HIV-uninfected
mother-newborn dyads (Table 3). Two infants born to HIV-
infected women developed late-onset GBS meningitis from
serotypes Ia and III at 19 and 22 days of age, and among
whom their mothers antibody concentrations were 0.08 and

0.12 for the homotypic serotypes and the transplacental ratio
was 0.14 and 0.69, respectively.

Maternal HIV Infection Status and Surface-Protein Antibodies
As compared to HIV-uninfected women, HIV-infected women
had lower median antibody concentrations (AU/mL) against
surface-protein PI-1 (549 vs 1020; P = .016), PI-2a (1130 vs 1972;
P = .015), PI-2b (611 vs 1072; P = .015), and FbsA (1444 vs 2169;
P < .001), but not significantly so for BibA (3829 vs 4790; P = .236)
(Figure 2A–E, Supplementary Table 1). Cord blood median
surface-protein antibody concentrations were lower in HIV-
exposed compared to HIV-unexposed newborns for PI-1 (502 vs
1177; P = .039), PI-2b (478 vs 865; P = .024), and FbsA (1717 vs
2758; P = .010) (Figure 2A–E, Supplementary Table 1). Themedian
cord-maternal ratios (range, 76%–126%) were similar for all anti-
bodies directed against surface-proteins between HIV-uninfected
and HIV-infected mother-newborn dyads (Table 3).

Effect of HIV Viral Load and CD4+ Lymphocyte Count on GBS
Antibody in HIV-infected Women
In HIV-infected women, 71 of 83 (85.5%) had a CD4+ lympho-
cyte count measured within 6 months before delivery with a
median CD4+ lymphocyte count of 423 cells/µL (range, 46–
1268). The median HIV-1 viral load in 79/83 (95.2%) partici-
pants was 96 copies/mL (range, 20–146 055) and undetectable

Table 1. Demographic and Recto-vaginal Colonization Characteristics of HIV-Uninfected and HIV-Infected Mother-Newborn Dyads

All Mother-newborn Dyads
(n = 164)

HIV-uninfected Mother-newborn
Dyads (n = 81)

HIV-infected Mother-newborn
Dyads (n = 83) P Valuea

Mother
Age: Median (range) 28.0 (18.2–42.7) 26.0 (18.2–42.0) 30.7 (18.7–42.7) .006

Parity: Median (range) 1 (0–5) 1 (0–5) 1 (0–4) .079

Black-African race 157 (98.1) 78 (96.3) 83 (100.0) .118
GBS colonization

Colonized mothersb 49 (29.9) 22 (27.2) 27 (32.5) .453

Ia 21 [42.9]c 13 [59.1] 8 [29.6] .131d

Ib 2 [4.1] 0 [0] 2 [7.4]

II 4 [8.2] 2 [9.1] 2 [7.4]
III 14 [28.6] 3 [13.6] 11 [40.7]

V 9 [18.4] 5 [22.7] 4 [14.8]

Newborn
Male gender 90 (54.9) 45 (55.6) 45 (54.2) .863

Gestational age:
Median (range)

40.0 (36.1–44.0) 40.0 (36.1–44.0) 40.0 (36.4–43.5) .997

Birth weight: Median
(range)

3063 (2500–4415) 3130 (2510–4415) 3034 (2500–3910) .194

Abbreviations: GBS, Group B Streptococcus; HIV, human immunodeficiency virus.
a P-value after comparing HIV-uninfected and HIV-infected mother-newborn dyads using Chi-square, Fisher’s exact or Mann–Whitney test.
b Number of GBS rectal/vaginal colonized mothers stratified by colonizing serotype (an HIV-uninfected mother was dual colonized with Ia and V).
c Serotype proportion of colonized mothers.
d Multiple 2-way comparisons using Fischer’s exact test.
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in 28 of the 79 (35.4%) samples. There was no correlation
between CD4+ lymphocyte counts and maternal antibody
concentrations or between CD4+ lymphocyte counts and
cord-maternal ratios for any of the 9 measured antibodies.
Furthermore, median maternal antibody concentrations and
cord-maternal ratios were similar when stratified by different
thresholds of CD4+ lymphocyte counts (Supplementary
Tables 3 and 4). Similarly, there was no correlation between

maternal HIV-1 viral load and maternal antibody concentration
or cord-maternal ratios for any of the 9 measured antibodies
(Supplementary Tables 3 and 4).

DISCUSSION

The findings from our study suggest that the possible mecha-
nisms for the increased susceptibility to invasive GBS disease

Figure 1. Tukey box-and-whisker plots comparing capsular antibody concentrations of serotype-Ia (A), serotype-Ib (B), serotype-III (C), and serotype-V (D)
between HIV-uninfected and -infected mothers, and HIV-unexposed and -exposed newborns. The y-axis has been log10 scaled. For the box-and whisker-
plots, the box represents the distance of the 25th and 75th percentiles with the median represented by the solid line within the box. The upper whisker
represents 1.5 times the interquartile distance from the 75th centile, while the lower whisker represents 1.5 times the interquartile distance from the 25th
centile. The dot symbols represent outliers above the upper whisker. Abbreviations: HIV, human immunodeficiency virus; Mother HIV+, HIV infected; Mother
HIV–, HIV uninfected; Newborn HIV+, HIV exposed; Newborn HIV−, HIV unexposed.
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in HIV-exposed infants may relate to lower maternal capsular
and surface-protein antibody concentrations, and inefficient
transplacental transfer of capsular antibody to the fetus of

HIV-infected women [28–30]. HIV-infected women had
lower GBS capsular antibody concentrations than their HIV-
uninfected counterparts, and notably a lower proportion of

Table 2. Proportion of HIV-infected and HIV-uninfected Women With Capsular Antibody Concentrations (µg/mL) Above Different
Thresholds

Antibody Concentration HIV-infected n = 83 HIV-uninfected n = 81 aOR (95%CI)a P Value

Ia

<0.5 59 (71.1) 46 (56.8) Referent
≥0.5 24 (28.9) 35 (43.2) 0.44 (.22–.89) .021

≥1 17 (20.5) 30 (37.0) 0.37 (.16–.72) .005

≥2 14 (16.9) 26 (32.1) 0.33 (.15–.75) .008
Ib

<0.5 72 (86.7) 72 (88.9) Referent

≥0.5 11 (13.3) 9 (11.1) 1.34 (.51–3.52) .550
≥1 7 (8.4) 4 (4.9) 2.11 (.57–7.78) .261

≥2 3 (3.6) 2 (2.5) 1.95 (.30–12.59) .482

III
<0.5 64 (77.1) 55 (67.9) Referent

≥0.5 19 (22.9) 26 (32.1) 0.48 (.23–1.02) .058

≥1 10 (12.1) 17 (21.0) 0.37 (.14–.95) .038
≥2 7 (8.4) 14 (17.3) 0.34 (.12–1.00) .049

V

<0.5 49 (59.0) 37 (45.7) Referent
≥0.5 34 (41.0) 44 (54.3) 0.58 (.30–1.11) .099

≥1 14 (16.9) 23 (28.4) 0.46 (.21–1.03) .059

≥2 6 (7.2) 10 (12.3) 0.50 (.16–1.54) .228

Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus.
a Adjusted odds ratio (OR) (95%CI)-calculated OR with 95% confidence of disease using logistic regression (adjusted for parity, maternal age and serotype-specific
colonization).

Table 3. Transplacental Antibody Transfer (Cord to Maternal Blood Ratio) Between HIV-uninfected and HIV-infected Mother-newborn
Dyads

HIV-uninfected Mother-newborn
Dyads Median CMRa (IQR)b n = 81

HIV-infected Mother-newborn
Dyads Median CMR (IQR) n = 83 Reduction, %c P Valued

Capsular serotypes
Ia 0.749 (0.562–1.021) 0.469 (0.322–0.754) 37.4 <.001

Ib 1.187 (0.730–1.959) 0.930 (0.593–1.574) 21.7 .483

III 0.902 (0.605–1.229) 0.609 (0.407–0.976) 32.5 .027
V 0.954 (0.677–1.310) 0.825 (0.543–1.158) 13.5 .084

Surface-proteins

PI-1 1.056 (0.835–1.453) 0.948 (0.669–1.431) 10.2 .379
PI-2a 0.904 (0.545–1.317) 1.262 (0.613–3.000) NRe .213

PI-2b 1.006 (0.598–1.588) 0.904 (0.562–1.521) 10.1 .500

BibA 0.860 (0.687–1.139) 0.759 (0.539–1.126) 11.7 .207
FbsA 0.964 (0.601–1.695) 1.159 (0.454–2.347) NR .385

Abbreviation: HIV, human immunodeficiency virus.
a Cord to maternal ratio (CMR).
b Interquartile range (IQR).
c Reduction in cord to maternal ratio comparing HIV-infected and HIV-uninfected mother-newborn dyads; calculated as the cord to maternal ratio for HIV-infected/
HIV-uninfected women, subtracted from 1.
d Using quantile regression (adjusted for overall colonization, colonizing serotype for capsular antibodies, maternal age and parity).
e No reduction.
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Figure 2. Tukey box-and-whisker plots comparing surface-protein antibody concentrations of Pil-1 (A), Pil-2a (B), Pil-2b (C), BibA (D), and FbsA (E ) be-
tween HIV-uninfected and -infected mothers, and HIV-unexposed and -exposed newborns. The y-axis has been log10 scaled. For the box-and-whisker plots,
the box represents the distance of the 25th and 75th percentiles with the median represented by the solid line within the box. The upper whisker represents
1.5 times the interquartile distance from the 75th centile, while the lower whisker represents 1.5 times the interquartile distance from the 25th centile. The
dot symbols represent outliers above the upper whisker. Abbreviations: AU, arbitrary units; HIV, human immunodeficiency virus; Mother HIV+, HIV infected;
Mother HIV−, HIV uninfected; Newborn HIV+, HIV exposed; Newborn HIV−, HIV unexposed.
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HIV-infected women had capsular antibodies above the puta-
tive “protective” thresholds that has been reported to protect
against invasive GBS disease in their infants [8]. The lower
GBS antibody concentrations in HIV-infected women could
represent waning of natural acquired antibody or reduced hu-
moral immune responsiveness to recto-vaginal colonization,
which likely induces the antibody responses (personal corre-
spondence Gaurav Kwatra-manuscript under preparation). Ad-
ditionally, reduced maternal exposure to GBS may also result in
lesser antibody production to various serotype-specific epitopes
[8]. This is supported by some studies that reported a lower
prevalence of GBS colonization in HIV-infected women, in-
cluding previously in our setting [15, 16], although this was
not observed in the current study cohort.

The transplacental transfer of antibodies to serotypes Ia and III,
which account for the majority (72%) of invasive GBS disease
globally [3], was 37.4% and 32.5% lower in HIV-exposed com-
pared to HIV-unexposed newborns, respectively. Additionally,
maternal capsular antibody concentrations were lower in HIV-
infected women compared to HIV-uninfected women for sero-
types Ib and V, with a trend toward being lower for serotype Ia,
but not for serotype III. Serotype III, which has the highest inva-
sive potential, is the least immunogenic of all serotypes [31, 32]
and this may explain why concentrations were similar in HIV-
infected and -uninfected women. Furthermore, the trend toward
higher colonization prevalence of serotype III in HIV-infected
compared to HIV-uninfected women in our study may have
contributed to similar serotype III antibody concentrations
between the women.

We also measured antibody concentrations to select GBS sur-
face-proteins, which induce antibody responses and could be
possible vaccine targets. There is, however, a paucity of data
on these GBS surface-protein antibody concentrations and no
international reference standards exist. Thus, we can only report
on the comparisons using in-house reference serum employed
consistently across all samples. HIV-infected women had lower
median concentrations for all GBS surface-proteins, although
antibody differences to BibA were not significant. In addition,
we observed that contrary to the capsular antibody transfer,
the transfer of surface-protein antibodies from mother to
fetus was more efficient, and similar between HIV-infected
and HIV-uninfected mother-newborn dyads. This may occur
because surface-protein antibodies, which are mainly subclass
IgG1, are more efficiently transferred than capsular antibodies,
which are predominantly of subclass IgG2 [33].

Our results are consistent with reports showing reduced
transplacental transfer of maternal antibodies directed against
epitopes of varicella (31% reduction), measles (35% reduction),
pneumococcus (24%–30% reduction), Haemophilus influenzae
type b (23% reduction), pertussis (40% reduction), and tetanus
(27%–52% reduction) in HIV-infected compared to HIV-
uninfected mother-newborn dyads [28, 29, 34–36]. However,

no difference in transplacental antibody transfer between
HIV-infected and -uninfected women for pathogens such as
herpes, some pneumococcal serotypes, and influenza has also
been reported [29, 34, 37]. Transplacental IgG antibody transfer
is thought to occur via an active transport mechanism utilizing
neonatal Fc receptors found on the placenta [30, 33, 38]. The
decrease in transplacental antibody transfer in HIV-infected
women is thought to be as a consequence of maternal hypergam-
maglobulinemia, which saturates the neonatal Fc receptors [39].
Other reasons for the variation in transplacental antibody trans-
fer may relate to differences in IgG subclass and mechanism of
transfer of antibody (ie, active or passive transport) [33].

Although our study did not identify a significant association
between CD4+ lymphocyte counts and HIV-1 viral loads
on maternal antibody and cord-maternal ratios among HIV-
infected women, the study was not powered (with a sample
size of 79) to detect a significant relationship when the true cor-
relation is between −0.35 and 0.35. Similarly, no association has
been observed between maternal CD4+ lymphocyte counts and
transplacental transfer of pneumococcal, H. influenzae type b,
pertussis, and tetanus antibodies in HIV-infected women
[28, 29], whereas a positive correlation with CD4+ lymphocyte
counts and maternal antibody concentrations was reported to
antibodies to pertussis, pneumococcus, and tetanus [28].
More recently, a large European cohort study reported an in-
creased risk of bacterial infections in HIV-exposed infants, par-
ticularly in women with low CD4+ lymphocyte counts [40].
Most pregnant women in our setting had undetectable HIV-1
viral load and had immune reconstituted at the time of antibody
sampling. A study conducted in Nairobi in HIV-infected
women reported a 44% decrease of measles antibody transfer
with every log10 increase in viral load, indicating that infants
born to women with advanced maternal HIV infection may
be at increased risk of disease due to reduced acquisition of
maternal antibody concentrations [41].

Limitations of our study include that we did not match for
age and colonization status in HIV-infected and -uninfected
women; however, we adjusted for these factors in the multivar-
iate analysis and findings remained consistent. Furthermore, we
did not quantify the effect that cross-reactivity of serotype Ib
with Ia (as previously documented by Brigsten et al [42]) may
have had on the absolute antibody concentration for serotype
Ib. The assay was, however, applied consistently to both HIV-
infected and -uninfected dyads and hence is unlikely to alter the
differences observed between HIV-infected and HIV-uninfect-
ed women in our study. Also, our study only measured IgG an-
tibodies, while IgA antibodies may also be transplacentally
transferred, and have been associated with protection against
GBS invasive disease in animal model studies [11, 43]. Addi-
tionally, CD4+ lymphocyte counts were measured as part of
standard-of-care at any time within 6 months (mean, 2.8
months) of delivery and the study was not specifically powered
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to address whether immunological status or HIV-1 viral load
were associated with differences in maternal antibody or trans-
placental antibody transfer.

The lower GBS antibody concentrations and reduced trans-
placental antibody transfer in HIV-infected women, which
places their infants at risk for invasive GBS disease, may be mit-
igated by maternal GBS vaccination. Furthermore, an investiga-
tional trivalent GBS polysaccharide-protein conjugate vaccine
was found to be less immunogenic in HIV-infected than
HIV-uninfected pregnant women [44]. Therefore, in HIV-
burden settings, maternal vaccination may require modified
formulations or dosing schedules in HIV-infected women.
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Objectives: Group B Streptococcus (GBS) surface-proteins have been shown to be
immunogenic and potential vaccine candidates. We aim to determine the association
between maternal IgG antibodies to select GBS surface-proteins and invasive GBS disease in
their infants. Methods: Using a matched case–control study, maternal antibody levels for
GBS-immunogenic bacterial adhesin, fibrinogen-binding protein A and pilus-island (PI) PI-1,
PI-2a, PI-2b were compared between infants with invasive GBS disease and well-baby
controls. Results: The absolute risk of disease did not differ between cases and colonized
controls with increasing antibody concentrations for these surface-proteins. There was,
however, a relative risk reduction in invasive disease associated with fibrinogen-binding
protein A, with an adjusted odds ratio of 0.04 (95% CI: 0.01–0.69) at antibody levels
‡10,000 AU/ml. Conclusion: We have not demonstrated an association between naturally
occurring fibrinogen-binding protein A, GBS-immunogenic bacterial adhesin, and PI surface-
protein antibodies and the risk of invasive disease in young infants. These surface-proteins
may not be suitable GBS vaccine candidates.

KEYWORDS: BibA, FbsA, GBS, Group B Streptococcus, pilus island, Streptococcus agalactiae

Group B Streptococcus (GBS) remains the
most frequent cause of sepsis and meningitis
in young infants, even in high-income coun-
tries where intrapartum antibiotic prophylaxis
(IAP) is provided to recto-vaginally colonized
pregnant women [1–3]. This highlights the
need for vaccines targeted against this patho-
gen. An association between maternal GBS
serotype-specific capsular antibody levels and
invasive GBS disease has been determined [4].
A drawback of the current trivalent (serotypes
Ia, Ib, and III) GBS polysaccharide–protein
conjugate vaccine currently under development
is that there exist the possibility for replace-
ment disease if vaccine formulations are lim-
ited to select serotypes, even though the
majority (79%) of the disease is caused by

these three of the 10 known serotypes [5,6].
This could be overcome by targeting non-sero-
type-specific GBS epitopes that contribute to
the virulence of the organism, are genetically
conserved between GBS strains, and are
immunogenic.

A number of surface-proteins have been
studied as potential candidates for vaccine
development in animal-model studies [7,8] (SUP-

PLEMENTARY TABLE 1) [supplementary material can
be found online at www.informahealthcare.
com/suppl/14760584.2015.1085307]. Only a
few surface-proteins (surface immunogenic
protein [Sip], resistance to proteases immu-
nity group B [Rib], aC protein and bC pro-
tein), however, have been studied in infants
to determine the association between
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antibody levels and invasive GBS disease [9–13], of which, only
antibodies to Rib protein have shown promise. The objective
of our study is to determine the association between maternal
antibodies to GBS immunogenic bacterial adhesin (BibA),
fibrinogen-binding protein A (FbsA), and pilus island (PI)
proteins of PI-1, PI-2a, and PI-2b and invasive GBS disease
in their infants <90 days age. These surface-proteins function
primarily in attachment of the bacterium to the host sur-
face [14]. In addition, it is thought that all strains carry at least
one PI, whereas the expression of FbsA and BibA is more var-
iable across strains [8,15].

Methods
We undertook a matched case–control study at three secondary-
tertiary level hospitals in Johannesburg, South Africa, from
November 2012 to February 2014. The study population and
standard-of-care practices at these hospitals have been
described [16]. In brief, pregnant women at these hospitals are
not routinely screened for recto-vaginal GBS colonization,
although IAP is recommended for pregnant women with other
risk factors for invasive GBS disease in their infants. Young
infants admitted to these hospitals with clinical features of sepsis
or meningitis are investigated with blood cultures and cerebro-
spinal fluid cultures to identify causative pathogens.

Through daily laboratory and pediatric ward surveillance at
the hospitals, infants <90 days of age with confirmed invasive
GBS disease based on culture from blood, cerebrospinal fluid
or other normally sterile site, or by bacterial latex agglutination
on cerebrospinal fluid were identified. Early-onset disease
(EOD) was defined as isolation of GBS in the first 6 days of
life, while late-onset disease (LOD) was defined as isolation of
GBS from days 7 to 89 of age. Controls (infants who were free
of invasive GBS disease) were matched to the timing of disease
in the cases; first 6 days of life for EOD cases and within
14 days (but >7 days of age) for LOD cases, to maternal age
(±2.5 years of the case), maternal HIV-status and gestational
age (‡37 weeks gestation or ±2 weeks of gestational age of the
case if the case was preterm). We attempted to match five con-
trols to each case of invasive GBS disease.

At enrolment, the mothers of cases and controls had rectal
and lower vaginal swabs collected for GBS culture and sero-
typing. The laboratory methods for GBS identification and
serotyping have been previously described [17]. PI typing of
GBS invasive and colonizing isolates was done by real-time
PCR using Taqman probes for PI-1, PI-2a, and PI-2b, with
primers that target the genomic regions coding for the ancil-
lary protein (AP)-1 of each PI [18]. In brief, frozen GBS iso-
lates were sub-cultured on sheep blood agar supplemented
with nalidixic acid and colistin and incubated overnight at
37�C in 5% CO2. One GBS colony was suspended in the
300 ml nuclease-free water and heated for 10 min at 95�C.
The tubes were centrifuged and the resulting supernatant
was used in the PCR. The PCRs were performed on an
AB 7500 instrument (Applied Bio-systems; Woodlands,
Singapore) in a 25 ml reaction volume with TaqMan universal

PCR master mix (Applied Bio-systems; Foster city, CA,
USA). The detection of PI-2b was performed as a single-plex
reaction, and PI-1 and PI-2a were detected in duplex. GBS
strains 2603 V/R (PI-1 and PI-2a) and COH1 (PI-2b)
obtained from American type culture collection were used as
reference strains. A threshold CT value is generated when the
fluorescence passes through if amplification occurred. We did
not investigate isolates for expression of FbsA and BibA.

Serum was collected from the mothers and their infants
within 72 h of culture confirmation in cases and at the time of
enrolment from controls. We measured IgG antibodies to
BibA, FbsA, PI-1, PI-2a, and PI-2b using the Luminex fluores-
cence micro-bead immunosorbent assay, as well as capsular
antibody to serotypes Ia, Ib, III, and V. Antibody concentra-
tions were reported in arbitrary units per milliliter (AU/ml)
with a lower limit of detection of 41, 110, 46, 6, and 19 per
AU/ml for PI-1, PI-2a, PI-2b, BibA, and FbsA, respectively.
The assay methods and specificity standards have been previ-
ously described [19]. For PI, antibody was measured to the
backbone or AP antigenic targets on the surface of the PI, that
is, GBS-80 for PI-1, GBS-67 for PI-2a, and SAN1518 for
PI-2b. For BibA, we measured antibodies to the BibA-COH1
antigen.

Statistical analysis

Demographic characteristics and risk factors for invasive dis-
ease were compared between cases and controls using the c2

or Fisher’s exact test, or the Mann–Whitney U test to com-
pare medians. Median antibody concentrations were reported
but not compared as this was a matched case–control study.
For the primary analysis for FbsA and BibA antibody, we
compared cases with controls whose mothers were colonized
with GBS. For the primary analysis for PI proteins, we com-
pared cases in which the specific PI was identified from the
invasive isolate to controls whose mothers were colonized
with GBS strains with the homotypic PI. The secondary anal-
ysis compared cases with non-colonized controls. We pooled
matched sets of cases and controls and reduced the number
of strata by combining interchangeable sets [20]. Each stratum
contained a case and a colonized control that was matched
for all of the following: pilus-type (for pilus protein analysis);
EOD or LOD; maternal HIV-status; maternal age as <25,
25 to <35, and ‡35 years; and gestational age as 34 to
<37 and ‡37 weeks. Reverse cumulative plots were con-
structed to show the proportion of mothers with antibody
concentrations at various thresholds for each protein. Condi-
tional logistic regression was used to compare the proportion
of stratum matched cases with colonized controls, and stratum
matched cases with non-colonized controls at different anti-
body thresholds. The referent was determined by visual analy-
sis of the separation point between the cases and controls
from the reverse cumulative plots. We adjusted for variables
in which the p value was <0.20 in the univariate analysis.
Odds ratios and 95% CI are reported. Two-tailed p value
<0.05 was considered statistically significant.
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Bayesian modeling was used to calculate the probability that
a woman with a GBS IgG concentration greater than or equal
to c, gives birth to a neonate who would develop EOD or
LOD, P(D|Ab ‡ c). We assumed that the antibody concentra-
tions follow a Weibull distribution.

A b (25, 2500) was used for the prior distribution of the
marginal probability of disease P(D).

The most probable marginal risk of disease was equal to 1%,
with the central 95% mass falling within 0.64 and 1.41%. The
marginal risk was calculated as the proportionate risk of disease
and maternal GBS colonization reported in this population [16].
We plotted the posterior mode and the range from 25th to 75th
percentile of the posterior distribution. Further details regarding
the model have been described [21]. This was undertaken to
determine the absolute risk of disease per 1000 live births.

Data were analyzed using STATA version 13.1 (College Sta-
tion, Texas), R version 2.15 (Vienna, Austria), JAGS [22] and
GraphPad Prism version 6.05 for Windows (GraphPad Soft-
ware; San Diego, CA, USA). The study was approved by the
University of Witwatersrand Human Research Ethics Commit-
tee (HREC number: M120963) and registered on the South
African National Clinical Trial Register (DOH-27-0113-4309).
Written informed consent was obtained from women at the
time of study enrolment.

Results
In infants born at ‡34 weeks gestational age, serum was avail-
able on 70 mother–infant pairs with invasive GBS disease and
487 controls. After stratum matching, the final FbsA and BibA
paired analysis included 69 cases, 128 GBS colonized controls,
and 332 non-colonized controls. Risk factors for invasive dis-
ease and demographic characteristics were similar between cases
and matched controls, except for history of prolonged rupture
of membranes during labor being more common in cases
(19.3%) than matched colonized controls (4.9%; p = 0.002),
and infants with EOD being older (median: 3 days) at the
time of enrolment than matched colonized and non-colonized
controls (median: 1 day, p < 0.001 for both; TABLE 1 and SUPPLE-

MENTARY TABLE 2).
After strata matching, including specific PI matching, the

final paired analysis was conducted on 29 invasive cases with
PI-1 containing strains and correspondingly 64 PI-1 colonized
and 289 non-GBS colonized controls, 37 invasive cases with
PI-2a containing strains and correspondingly 77 PI-2a colo-
nized and 319 non-colonized controls, and 29 invasive cases
with PI-2b containing strains and correspondingly 29 PI-2b
colonized and 279 non-colonized controls. Maternal and infant
demographic characteristics and risk factors for disease were
similar between cases and PI-specific controls; apart from

Table 1. Demographic characteristics of matched cases & colonized controls ‡34 weeks of age for FbsA &
BibA.

FbsA/BibA

Cases n = 69 (EOD = 34, LOD = 35) Controls n = 128 (EOD = 75, LOD = 53) p-value

Maternal

HIV-infected 29 (42.0) 54 (42.2) 0.983

HIV-uninfected 40 (58.0) 74 (57.8)

Median age in years (IQR) 25.4 (21.7–30.4) 25.2 (22.7–30.9) 0.430

Median parity (IQR) 1 (0–2) 1 (0–2) 0.567

Black-African race 66 (95.7) 126 (98.4) 0.346

Fever 0/50 (0) 0/118 (0) 0.999

PROM† (>18 h) 11/57 (19.3) 6/123 (4.9) 0.002

IAP 4/69 (5.8) 9/124 (7.3) 0.774

Infant

Median gestation in weeks (IQR) 40.0 (38.3–40.3) 39.3 (38.0–40.4) 0.255

Median birth weight in grams (IQR) 2995 (2800–3250) 3085 (2800–3410) 0.257

Male gender 39 (56.5) 59 (46.1) 0.163

Day of life at enrollment

EOD-median (IQR) 4 (3–5) 1 (1–1) <0.001

LOD-median (IQR) 17 (12–25) 20 (15–24) 0.265

p value: using Chi-squared, Fischer exact or Wilcoxon rank-sum (Mann–Whitney) test;
†Prolonged (>18 h) rupture of membranes.
EOD: Early-onset disease; LOD: Late-onset disease; IQR: Interquartile range; IAP: Intrapartum antibiotic prophylaxis.
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Figure 1. Reverse cumulative plots demonstrating the proportion of mothers of cases and colonized controls to antibody
concentrations for (A) FbsA, (B) BibA, (C) PI-1, (D) PI-2a, & (E) PI-2b.
The solid line represents the proportion of mothers at various antibody thresholds. The upper and lower dotted lines are the 95% confi-
dence intervals.
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Figure 2. Probability of invasive GBS disease risk to (A) FbsA, (B) BibA, (C) PI-1, (D) PI-2a, & (E) PI-2b at varying maternal
antibody concentrations using a Bayesian model.
The circles represent the posterior mode (i.e., the most likely value) and vertical lines represent the 50% credible interval.
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gestational age (40.2 vs 39.4 weeks, respectively; p = 0.014) in
PI-1, infant gender (64.9 vs 44.6% males; p = 0.038) and the
occurrence of prolonged rupture of membranes (21.9 vs 2.7%;
p = 0.003) in cases for PI-2a (TABLE 2). When comparing cases
with non-colonized controls, gestational age differed for
PI-1 and PI-2b (SUPPLEMENTARY TABLE 3). The timing of enrolment
for EOD cases differed (median: 3 or 4 days) compared with
PI-specific (median: 1 day) and non-colonized controls
(median: 1 day; TABLE 2 and SUPPLEMENTARY TABLE 3).

Antibody levels to FbsA

There was a higher proportion of colonized controls than cases
at higher antibody thresholds; the adjusted odds ratio for dis-
ease decreased from 0.40 (95% CI: 0.16–1.04), 0.22 (95% CI:
0.05–0.02), and 0.04 (95% CI: 0.01–0.69) with antibody
threshold ‡2000, ‡5000, and ‡10,000 AU/ml,
respectively (FIGURE 1A and TABLE 3). The odds ratio for disease also
decreased with increasing antibody concentrations when com-
paring cases with non-colonized controls (SUPPLEMENTARY TABLE 4).
The median maternal FbsA antibody concentrations (in AU/
ml) was 1942 (interquartile range (IQR): 1120–3688) com-
pared with colonized controls (2752; IQR: 1620–5108) and
non-colonized controls (2296; IQR: 1408–4627; SUPPLEMENTARY

TABLE 5). The median infant FbsA antibody concentrations was
1131 (IQR: 679–2104) compared with infants of colonized
controls (1744; IQR: 775–3303) and non-colonized controls
(1696; IQR: 859–3486, SUPPLEMENTARY TABLE 6).

Antibody levels to BibA

The proportion of cases and controls (colonized and non-col-
onized) with antibody concentrations at various thresholds

were similar and the adjusted odds ratios were not
significant (TABLE 3, FIGURE 1B and SUPPLEMENTARY TABLE 4). The median
BibA maternal antibody concentrations (in AU/ml) was
4512 (IQR: 2587–9774) in cases compared with 5727 (IQR:
2560–9913) in colonized controls and 5243 (IQR: 2420–
9871) in non-colonized controls (SUPPLEMENTARY TABLE 5). The
median infant BibA antibody concentrations was 1866 (IQR:
787–3919) in cases compared with infants of colonized
2901 (IQR: 1554–6593) and non-colonized controls
3063 (IQR: 1397–6447) (SUPPLEMENTARY TABLE 6).

Antibody levels to pilus-island proteins

A larger proportion of PI-1 colonized controls had antibody
concentrations at higher thresholds than cases resulting in a
decreased odds ratio for disease; however, the adjusted odds
ratio for disease did not significantly differ between cases and
colonized controls (TABLE 4 & FIGURE 1C). The median
PI-1 antibody concentrations (in AU/ml) was 432 (IQR: 203–
3391) in mothers of invasive cases compared with controls
with PI-1 colonization (1052; IQR: 301–6463) and those not
colonized by GBS (789; IQR: 317–2419; SUPPLEMENTARY TABLE 5).
The median infant PI-1 antibody concentrations was
408 (IQR: 76–1452) in cases, 901 (IQR: 215–5534) in infants
of women colonized with PI-1 strains and 595 (IQR: 196–
1852) in control infants whose mothers were not colonized by
GBS (SUPPLEMENTARY TABLE 6).

The proportion of mothers with PI-2a and PI-2b antibodies
at increasing thresholds were higher in cases than
controls (TABLE 4 & FIGURE 1D, E). Similarly, median maternal anti-
body concentrations trended to being higher in cases than con-
trols (SUPPLEMENTARY TABLE 5). Comparing maternal PI-2a and PI-2b

Table 3. Maternal antibody (AU/ml) thresholds to FbsA and BibA surface-protein epitopes in mothers of
cases & colonized controls.

Cases Controls OR (95% CI)† p-value aOR (95% CI)‡ p-value

FbsA n = 69 (%) n = 128 (%)

<1000 16 (23.2) 20 (15.6) Ref

‡1000 53 (76.8) 108 (84.4) 0.55 (0.26–1.18) 0.124 0.56 (0.24–1.32) 0.182

‡2000 34 (49.3) 82 (64.1) 0.41 (0.18–0.94) 0.035 0.40 (0.16–1.04) 0.061

‡5000 10 (14.5) 32 (25.0) 0.37 (0.12–1.33) 0.082 0.22 (0.05–1.02) 0.053

‡10,000 2 (2.9) 15 (11.7) 0.20 (0.03–1.26) 0.086 0.04 (0.01–0.69) 0.027

BibA n = 69 (%) n = 128 (%)

<2000 13 (18.8) 20 (15.6) Ref

‡2000 56 (81.2) 108 (84.4) 0.62 (0.28–1.38) 0.237 0.54 (0.22–1.36) 0.191

‡5000 34 (49.3) 71 (55.5) 0.66 (0.26–1.50) 0.293 0.53 (0.19–1.48) 0.214

‡10,000 15 (21.7) 32 (25.0) 0.39 (0.13–1.16) 0.092 0.30 (0.08–1.17) 0.083

‡15,000 11 (15.9) 19 (14.8) 0.47 (0.14–1.56) 0.218 0.43 (0.11–1.71) 0.231

†Calculated odds ratio with 95% confidence using conditional logistic regression.
‡Adjusted odds ratio with 95% confidence using conditional logistic regression (BibA and FbsA: adjusted for prolonged rupture of membranes, infant gender, day of life
at enrollment).
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antibody concentrations between cases and controls at varying
thresholds did not demonstrate differences in the adjusted
odds ratio for disease for PI-2a and PI-2b antibodies (TABLE 4,
SUPPLEMENTARY TABLE 7).

Absolute risk of GBS disease & surface-protein antibodies

Using Bayesian modeling, we were able to estimate the abso-
lute risk of invasive disease. None of the studied surface-pro-
tein antibodies demonstrated a protective threshold against
invasive disease, nor were there any significant reductions in
the risk of disease with increasing antibody concentrations
(FIGURE 2A–E). Although the adjusted odds ratio showed a signif-
icant difference between cases and colonized controls for FbsA
antibodies at thresholds above 10,000 Au/ml and a similar
trend for PI-1, no decrease in the absolute risk of disease was
observed.

Furthermore, in an exploratory analysis, we measured
whether there were any correlations between the select
surface-protein antibody concentrations in serotypes I and
III cases and homotypic controls, of which there was
none (SUPPLEMENTARY FIGURE 1).

Discussion
To the best of our knowledge, this is the first study to report
FbsA, BibA and PI GBS surface-protein antibody concentra-
tions and the risk of invasive GBS disease in infants. We
found no association between maternal BibA and the PI sur-
face-protein antibodies and the risk of invasive GBS disease
in infants; however, we observed a relative association between
maternal FbsA antibody concentrations and a similar trend
for PI-1 antibody concentrations and invasive GBS disease in
their infants. Although the odds ratios for disease declined
with increasing antibody concentrations to FbsA and PI-1,
only a small proportion of cases (2.9 and 3.5%, respectively)
and controls (11.7 and 15.6%, respectively) had antibody lev-
els >10,000 AU/ml. Importantly, determining the odds ratio
for disease at various antibody levels requires a given arbitrary
threshold that may not be clinically relevant. An alternative
method, using Bayesian modeling, is to estimate the probabil-
ity of disease at various antibody thresholds, and choose a
protective threshold based on a sharp decrease in probability
of disease. We were unable to identify any changes in the
probability of disease at any antibody threshold and therefore

Table 4. Maternal antibody (AU/ml) thresholds to pilus island surface-protein epitopes in mothers of cases
& colonized controls.

Cases Controls OR (95% CI)† p value aOR (95%CI)‡ p-value

PI-1 n = 29 (%) n = 64 (%)

<500 15 (51.7) 23 (35.9) Ref

‡500 14 (48.3) 41 (64.1) 0.57 (0.23–1.42) 0.226 0.64 (0.20–2.03) 0.446

‡1000 12 (41.4) 32 (50.0) 0.55 (0.21–1.47) 0.236 0.59 (0.17–2.06) 0.408

‡2000 9 (31.0) 27 (42.2) 0.47 (0.17–1.33) 0.156 0.39 (0.10–1.58) 0.189

‡5 000 5 (17.2) 20 (31.3) 0.28 (0.07–1.11) 0.070 0.29 (0.06–1.43) 0.130

‡10,000 1 (3.5) 10 (15.6) 0.15 (0.02–1.31) 0.086 0.10 (0.01–1.31) 0.079

PI-2a n = 37 (%) n = 77 (%)

<1000 9 (24.3) 24 (31.2) Ref

‡1000 28 (75.7) 53 (68.8) 1.48 (0.57–3.81) 0.417 1.44 (0.45–4.59) 0.533

‡2000 21 (56.8) 38 (49.4) 1.54 (0.57–4.16) 0.392 1.14 (0.33–3.97) 0.834

‡5000 13 (35.1) 27 (35.1) 1.12 (0.37–3.35) 0.844 0.58 (0.14–2.50) 0.466

‡10,000 9 (24.3) 16 (20.8) 1.04 (0.31–3.46) 0.945 0.83 (0.18–3.88) 0.812

PI-2b n = 29 (%) n = 29 (%)

<1000 12 (41.4) 17 (58.6) Ref

‡1000 17 (58.6) 12 (41.4) 1.99 (0.69–5.72) 0.202 1.72 (0.56–5.26) 0.342

‡2000 17 (58.6) 6 (20.7) 4.15 (1.15–14.96) 0.030 3.32 (0.88–12.45) 0.076

‡5000 7 (24.1) 6 (20.7) 1.87 (0.46–7.63) 0.383 1.65 (0.40–6.87) 0.490

‡10,000 6 (20.7) 2 (6.9) 3.21 (0.52–19.95) 0.210 3.03 (0.46–19.76) 0.248

†Calculated odds ratio with 95% confidence using conditional logistic regression.
‡Adjusted odds ratio with 95% confidence using conditional logistic regression (PI-1: adjusted for prolonged rupture of membranes, gestational age and day of life at
enrollment; PI-2a: adjusted for parity, prolonged rupture of membranes, birth weight, infant gender and day of life at enrollment; PI-2b: adjusted for gestational age and
day of life at enrollment).
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unable to define correlates of protection for the studied sur-
face-proteins. Our findings of lack of associations between
maternal antibodies to these proteins and protection against
invasive disease in their infants are contradictory to the prom-
ise shown for these antigens as potential vaccine epitopes in
animal-model studies.

Animal-model studies have identified FbsA and BibA as
highly immunogenic, and antibodies to these proteins protected
mice from GBS inoculums [8,23,24]. Furthermore, using neonatal
pup challenge models, maternal mice immunized with frag-
ments of the FbsA and BibA proteins were more likely to sur-
vive GBS challenges than those not vaccinated [23]. Similarly,
maternal mice vaccinated with antigen components of PI-1,
PI-2a, and PI-2b antigens compared with unvaccinated controls
had improved survival in their litters after GBS inocula-
tion [25,26]. In addition, in vitro opsonophagocytic assays dem-
onstrated enhanced killing by polymorphonuclear cells using
the vaccinated BibA and PI sera of adult mice [24–26].

Other studies addressing the role of antibodies to various
GBS surface-proteins in mothers of infants or newborns with
invasive disease include: surface immunogenic protein (Sip),
resistance to proteases immunity group B (Rib), aC protein
and bC protein [9–13]. Overall, most studies that addressed the
association between natural surface-protein antibodies and the
risk of GBS disease have reported similar geometric mean con-
centrations in the mother of infected neonates compared with
GBS colonized mothers with well newborns. An association
between Rib antibody levels and invasive GBS disease has,
however, been demonstrated [11]. Median antibody concentra-
tions were lower in Rib expressed cases (n = 14) compared
with controls (n = 60), including an association for disease.

Studies have reported an inverse association between capsular
antibody levels and the risk of invasive GBS disease [4]. We
found no correlation between invasive GBS disease and any of
the studied surface-protein antibody in serotype Ia or III

disease cases and homotypic controls, further corroborating that
these surface-protein antibodies are unlikely to be a marker of
protection against invasive GBS disease.

A limitation of our study was that we did not measure
whether GBS-cultured isolates expressed FbsA and BibA in cases
and controls so as to compare protein antibody concentration by
type specificity. It is, however, thought that BibA may be
expressed more universally (>90%) in GBS strains, and approxi-
mately half of strains express FbsA [8,24]. A further limitation is
that we measured antibody concentrations using our own in-
house references as no references are currently reported. In addi-
tion, we have not measured the association between IgA antibod-
ies to these surface-proteins and the risk of invasive GBS disease,
as suggested to be protective by others [8]. Furthermore, most
participants were of black African descent and the results thereof
cannot be extrapolated to other racial groups.

In conclusion, our study failed to identify a definitive associ-
ation for higher maternal antibodies to the five studied GBS
surface-proteins and risk for invasive GBS disease in young
infants, suggesting a low likelihood that these proteins have
potential for being developed into successful vaccine candidates.
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Key issues

. Group B Streptococcus (GBS) is a common cause of sepsis and meningitis in young infants.

. An alternative strategy to GBS prevention is maternal vaccination, to which a trivalent capsular polysaccharide conjugate vaccine has

completed Phase II trials.

. This vaccine, although covers the most prevalent GBS serotypes globally, may be less effective in certain regions and the risk for

replacement disease is a possibility.

. Immunogenic GBS surface-proteins have been identified and favor survival in mice challenge studies.

. This is the first study conducted in infants with invasive disease, in which no association was demonstrated for antibodies to fibrinogen-

binding protein A, GBS-immunogenic bacterial adhesin, and pilus island proteins.

. These surface-proteins are unlikely to be suitable vaccine candidates.

Maternal antibody and invasive GBS disease Original Research
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Map outlining the six districts in Gauteng Province. (Modified from Department of Health and 

Social Development)  
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Map outlining the sub-districts/Regions of the Johannesburg metropolitan and location of the 

three site hospitals. (Modified from Department of Health and Social Development) 
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