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Abstract 

Modern tree biomass allometry makes use of “form factor”, which is the ratio of the true 

volume to the apparent volume.  However, there is no database of form factors of South 

African trees, hence this study was undertaken to assess the possibility of assigning form 

factors to trees in a quick and easy way, either by visual assessment of an image of the tree or 

by simple field measurements. Stem diameter, taper and node length data for 112 trees was 

collected using both in situ and in-lab measurements from photos taken of the same trees in 

the field. The data were used to model tree volume using the fractal properties of branching 

architecture. The estimated tree volume was then used along with basal diameter and tree 

height to calculate the form factor. 

Results showed that measurements taken off images underestimated stem diameter and node 

length by 4% and 5% respectively, but the fractal allometry relationships developed using 

either the manual in-field or image analysis approach were not statistically different. This 

proves that dry season photography is sufficiently accurate for establishing relationships 

needed to construct a fractal model of tree volume. The image analysis approach requires a 

clear unobstructed view of the sample tree. This requirement made the approach less effective 

as when trees were in close proximity and when branches overlapped. The time taken using 

the photographic approach was twice the amount taken for the manual in-field. 

Form factor varied between species, but the variation was not statistically significant 

(p=0.579). The mean form factor per species ranged from 0.43 to 0.69. Form factors were 

negatively correlated with wood density (-0.177), basal diameter (-0.547) and height (-0.649). 

Due to the unavailability of an independent tree biomass dataset, it was impossible to validate 

the allometric equations based on estimated form factors and wood density. The inclusion of 

form factor was shown to improve the accuracy of biomass estimation by 11%. 

Principal component analysis showed that form factors can be assigned using tree height and 

the form quotient. 
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Chapter 1 

Background 

The United Nations Framework Convention on Climate Change recognises the capability of 

forests, woodlands and savannas to sequester and store carbon (Samalca, 2007), but this 

capability has not been fully evaluated (Da Silva et al., 2015). This has made the assessment 

of tree biomass a highly pertinent contemporary issue in relation to global change (Bombelli 

et al., 2009; Da Silva et al., 2015). Field measurements are the most used approach in 

biomass assessment, as they are more accurate than remote sensing and GIS-based 

approaches (Lu, 2006). The traditional approach for field measurements has been to cut down 

trees, measure their stem diameters and weigh components (for example twigs and branches) 

so as to calculate biomass; but such an approach is time consuming, destructive and 

expensive (Netshiluvhi and Scholes, 2001, Nickless et al., 2011). The solution is to predict 

biomass from an easily measured tree dimension parameter such as diameter, using the 

principle of allometry (Netshiluvhi and Scholes, 2001, Nickless et al., 2011). 

Allometry is the relationship between changes in the size of one part of an organism to 

changes in its overall size (Gayon, 2000). In forestry, the basic principle of allometry is 

evident in that, proportions between biomass and diameter follow the same rules for trees 

growing under the same conditions (Picard et al., 2012). This means that a difficult to 

measure variable for example tree biomass can be predicted from an easier to measure 

dimension for example diameter, using an allometric equation, thereby providing a 

potentially simple and quick method of estimating biomass (Netshiluvhi and Scholes, 2001). 

Allometric equations are simple mathematical forms of equations that express the 

relationship between a dependent variable for example biomass and an independent variable 

for example diameter (Netshiluvhi and Scholes, 2001). A major problem with this approach 

is that such arbitrary relationships vary from species to species and from site to site (Nickless 

et al., 2011), and this results in an inconsistent choice of allometric equations. The massive 

costs associated with the establishment of allometric equations have also contributed to 

obstacles which hinder the estimation of the overall biomass of tropical forests and woodland 

comprised of many different species (Kamatou, 2003). Tree species occurring in tropical 

forests and woodlands are mostly of low commercial value and therefore have never had 

empirical allometries developed (Kamatou, 2003).  
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Recent approaches to estimating biomass have attempted to address the problem of the 

arbitrary and inconsistent choice of allometric relationships by proposing universal forms of 

equations based on geometric logic and adjusted for species using a form factor (Návar, 

2010). Mass rather than volume is derived from the universal equations by using wood 

density, conventionally given the symbol “ρ and units Mg m¯³ (Návar, 2010). The new 

allometric equation is in the form 

M = β0 + β1(FρD
2
H)                              [equation 1] 

where M is biomass (expressed as dry mass in Mg); β0 and β1 are model coefficients, F is 

form factor, ρ is wood density (in Mg mˉ³); D is stem diameter (in m) and H is total height (in 

m) of the tree from the ground to the top of the canopy, excluding stray branches which might 

extend above the canopy.  

From the new allometry, the stem diameter and height can be easily measured and there are 

databases, for example Van Wyk (1974) and www.worldagroforestry.org on the wood 

density of many African species. However, there is no database for the form factors of 

different tree species, making it a challenge to use the new allometry. At present, it is either 

necessary to assume a standard form factor for all trees in a broad forest type such as tropical 

rainforest or tropical dry forest, which then reduces the accuracy of the biomass or volume 

estimate; or to measure the form factor for each species, which is nearly as much work as to 

estimate species-specific empirical allometries. The challenge is to devise a sufficiently 

accurate way of estimating form factors for South African species without the trouble and 

expense of cutting a large number of trees.  

One approach is to model the volume of a tree without weighing it, the approach being based 

on the fact that a tree is made up of many similar parts of itself (Sala, 2013). A model of the 

tree volume based on fractal properties of its branching architecture provides a potentially 

quicker and non-destructive method of estimating tree volume, which can then be used along 

with basal diameter and canopy height to calculate form factor (Kamatou, 2003).  

 

 

 



3 
 

Aim of the Research 

To determine if the form factors of South African trees can be easily assigned, thereby 

improving the accuracy of biomass estimation.  

Objectives 

(1) To estimate the form factors of a sample of representative species using fractal allometry. 

Key questions and hypotheses: 

a) Are dry-season photographs an efficient and sufficiently accurate way to collect the 

data needed to construct a fractal model for tree volume? 

b) How does an allometry equation built from physical principles (involving form factor, 

wood density, height and diameter at the base) compare with existing empirical 

allometries? 

H1: physically-based allometries have equal or better precision and accuracy than 

empirical allometries. 

c) Does the inclusion of a species-specific form factor improve species-specific models? 

H2: Inclusion of a species form factor increases the precision of biomass estimation 

relative to equations not including a form factor.  

d) Is the form factor related to wood density or any other tree attribute? 

H3: Form factor is independent of wood density or any other tree attribute.  

(2) To assess if form factor can be assigned to trees without destructive harvesting or time 

consuming field measurements. 

e) Is it possible to allocate the form factors with sufficient accuracy from a visual 

inspection of the tree or a few simple measurements taken from the photographs? 

H4: Form factor can be assigned to trees without destructive harvesting or time 

consuming measurements. 
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Literature review 

Biomass assessment 

Biomass is defined as the living and dead organic matter (Bombelli et al., 2009), and consists 

of the above ground components (foliage, reproductive structure, branches including twigs, 

main stem and stump) and the below ground component which is made up of coarse and fine 

roots (Samalca, 2007). Forest biomass serves as both a source and sink of carbon, thus the 

amount of carbon stored in vegetation globally is greater than that stored in the atmosphere 

(Bombelli et al., 2009). This means that any changes in vegetation cover as a result of forest 

degradation or deforestation affects the amount of carbon in the atmosphere (Bombelli et al., 

2009). Land use changes to a large extent involving changes in biomass, account for about a 

fifth of the anthropogenic forcing of the global climate (Le Quéré et al., 2016), thereby 

making biomass assessment a very important issue climate change modelling (Bombelli et 

al., 2009; Da Silva et al., 2015). In addition to the important role that it plays in the 

evaluation of stocks and fluxes of carbon (Návar, 2010), biomass assessment also enables the 

monitoring of resource availability and use through the quantification of fuelwood or timber 

at a given time (Samalca, 2007). Since the energy content of wood is strongly related to its 

mass, estimating the biomass allows the quantification of the primary energy which can be 

obtained from trees as a substitute for fossil fuels (Návar, 2010). 

Many studies have focused on the assessment of above-ground forest biomass because it 

accounts for the majority of the biomass in a forest (Samalca, 2007). This is less true in drier 

woodlands and savannas, where a large part of the biomass may be underground. However 

the technical difficulties of measuring below-ground biomass mean that above-ground 

biomass is almost inevitably used as a proxy for total biomass, after applying an “expansion 

factor” to account for underground biomass (Konôpka et al., 2011). 

Breidenbach et al. (2014) state that, “the uncertainty associated with biomass assessment is 

important in the further use of the assessment results in policymaking and international 

reporting. Nations that have signed the United Nations Framework Convention on Climate 

Change are obliged to report estimates and uncertainties for their biomass assessment (IPCC, 

2000). The uncertainty also shows the quality of the biomass assessment thereby revealing its 

weaknesses, and this serves as the basis for identifying areas for possible improvement in 

such assessments (Breidenbach et al., 2014).  



5 
 

The first source of uncertainty in biomass estimation is associated with sampling errors in the 

selection of sample plots, with the size of the error being affected by the sampling scheme, 

sample size, estimation procedure (Samalca, 2007). Sampling errors can be reduced by 

randomly selecting the sample plots in a stratified approach (Henry et al., 2015).  

Measurement errors are the second source of the uncertainty in biomass estimation and they 

can occur as a result of the type of instrument used, improper use of the correct measurement 

instrument, recording error and the nature of the object being measured for example an 

irregular girth (Chave et al., 2005; Shettles et al., 2015).  Measurement error has two parts, 

the random error which tends to zero as the sample size increases; and the systematic error 

for example inclusion of buttresses in the measurement of tree diameters                                

(Brown et al., 1995). The systematic measurement error does not tend to zero even if the 

sample size is increased, and should therefore be avoided by all means possible (Samalca, 

2007).  

The third source of uncertainty is the model error which is as a result of variation in the 

residuals around model predictions (Shettles et al., 2015). Applying the same model to all 

trees also contributes to the systematic error, but this is avoided or corrected for by 

independent calibration and validation (Shettles et al., 2015). In most biomass assessment 

studies, it is usually only the sampling error that is accounted for and this results in the total 

uncertainty of biomass estimations being under-estimated by a large factor (Shettles et al., 

2015).  

Above-ground biomass has been assessed using remote sensing, GIS-based approaches and 

field measurements (Samalca, 2007). Though the three approaches can be jointly used to map 

biomass stocks across landscapes, the problem with remote sensing and the GIS-based 

approach is that they are not be accurate at the relevant spatial scales as compared to filed 

measurements (Lu, 2006). However the massive costs and destructive harvesting of sample 

trees associated with field measurements result in allometry being the preferred method of 

estimating biomass (Nickless et al., 2011). 

Use of allometric equations in biomass estimation 

Návar (2010) states that, “the development and application of allometric models is the 

standard methodology for above-ground biomass estimation”. Allometric models can be 

classified as empirical, semi-empirical or theoretical, based on the methods of parameter 

estimation (Návar, 2010).  
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Empirical allometry involves the destructive harvesting of sample trees and measurement of 

diameter and height, followed by the cutting of the trees into the main biomass components 

(stem, branches and leaves) (Kamatou, 2003). The components will then be weighed so as to 

measure their fresh weight and then small subsamples are oven dried in the laboratory to a 

constant weight at 70°, to determine their initial water content (Kamatou, 2003). This value 

then allows the dry weight of the tree to be calculated from the field-measured wet weight 

(Návar, 2010). The dry to fresh weight ratios are multiplied by the total fresh weight of each 

component so as to calculate the total dry biomass for each (Návar, 2010).  

Historically, allometric equations have been entirely empirical, based on the destructive 

sampling of individual trees (Kamatou, 2003). In the past few decades, approaches have been 

proposed for parameter estimation without having to fell any sample trees, an example being 

the use fractal properties of tree branching architecture (Návar, 2010).  

Fractal allometry 

Sala (2013) defines a fractal as “a fragment geometric shape that can be sub-divided into 

parts which are similar to the whole shape in some way”. A tree can be divided into segments 

“branches”, with each branch having a similar shape to the whole tree (Sala, 2013). The 

underlying reason why a tree is a fractal is the conservation of the transport vessel cross-

sectional area between the roots and terminal branches, coupled with the similar physical 

constraints under which all parts of the tree must function (MacFarlene et al., 2014). The 

fractal properties of tree branching architecture make it possible to estimate tree biomass 

through fractal allometry (Kamatou, 2003). Fractal allometry enables the estimation of the 

total stem volume (V) from a measurement of the stem diameter (D), and then the repeated 

application of the set of single-node branching and taper rules which govern the recurrent 

patterns of tree branches until some defined terminal diameter is reached (Van Noordwijk 

and Mulia, 2002). The measurements which define the “rules” can be made in a relatively 

quick and non-destructive manner as compared to empirical allometry which requires felling, 

drying and weighing of a large number of trees (Kamatou, 2003; Picard et al., 2012).  
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Figure 1.1: A tree as a fractal object made up of parts (branches) similar to the whole tree. 

Each branch looks like the whole tree. 

The assumption of self-similarity across scales is the basis for the technique                      

(Van Noordwijk et al., 1994). For a tree, any branching point in principle looks the same as 

any other, be it the first or last branching point (Van Noordwijk and Mulia, 2002). This 

means that it is not necessary to measure the length, diameter and taper of every single 

branch segment to obtain the summed volume of the whole tree (Van Noordwijk et al., 1994). 

Instead, measurements are done on a small subsample comprised of single branch segments 

connected from the first branching point to the terminal twig; to derive a scaling rule that 

expresses how diameters, lengths and tapers change throughout the canopy (Van Noordwijk 

and Mulia, 2002).  However the self-similarity can be lost or altered below or above certain 

diameter thresholds, hence the rules for end structures “i.e. terminal twigs,” have to be 

defined (Kamatou, 2003). 

One method for constructing a fractal model of tree volume involves the determination of 

three relationships (Kamatou, 2003). The first, is the ratio of the squared diameter just below 

a branching point to the summed squared diameters just above the branch, (referred to as the 

proportionality factor “p”), as a function of stem diameter (Van Noordwijk et al., 1994). In 

principle, “p” should be approximately 1 since the cross sectional area of tracheids is 

approximately equal across the node (Arastu, 1998). A low co-efficient of determination 

when “p” is regressed against stem diameter shows the independence of the former on the 

latter (Van Noordwijk et al., 1994), and therefore establishes the viability of the fractal 

allometry model and validates its assumptions (Van Noordwijk and Mulia, 2002). A visual 
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scan of the relationship can be used to deduce the thresholds for which relationship is valid 

(Van Noordwijk et al., 1994).  

The second relationship is the internode length (L) as a function of diameter at the base of 

that branch (Dproximal). The third required relationship, is taper per unit internode length 

(defined as Ddistal/Dproximal/L), as a function of stem diameter at the base of the node 

(Kamatou, 2003). Determination of each relationship requires around 30 sets of 

measurements spread over the likely range to fit a reasonable regression model based on the 

normal distribution of error (Henry et al., 2015). 

The three relationships provide the information required as input for the fractal allometry 

programme which calculates the volume of the whole tree. A description of how the 

programme works is given in Chapter 2.  

Traditional forms of allometric equations and the new universal form 

In biomass estimation, most allometric have a polynomial form, Y=a+b.D+c.D²+d.D³; or 

follow a power function, Y=bD
a
 (Van Noordwijk, 1999). 

where Y is biomass, D is diameter and; a, b, c and b are model parameters. 

The shape of polynomial equations is not biologically sound and any data extrapolation 

outside the model range is likely to introduce significant error (Ketterings et al., 2001; Martin 

et al., 2010). The power function is the most used mathematical model for biomass 

estimation (Nickless et al., 2011) since it shows a good fit as it continuously rises and passes 

through the origin (Martin et al., 2010). It has also been shown to capture the allometry of a 

range of species (Kuyah et al., 2012). Colgan (2012) considers the best allometry for South 

African savanna trees to be that by Nickless et al. (2011), which follows a power-law 

relationship between stem diameter and above ground biomass and is of the form: 

 M = bD
a 

where M is Above Ground Biomass (in kg), D is basal stem diameter (in cm) , b is the factor 

and a is the power. 

Most allometric equations predict biomass from stem diameter, because stem diameter can be 

easily and accurately measured (West, 2009), but recent studies have shown that model 

fitting is greatly improved by the inclusion of additional biometric variables for example tree 

height either fitted independently as H or as a combined variable D²H (Chave et al., 2005). 
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Other scholars for example, Komiyama et al. (2005) have also recommended including wood 

density as a predictive variable in biomass equations. Significant variation in form factor has 

been found in recent studies of diameter to height relationships and this has resulted in the 

drive to include both height and stem diameter in allometric equations so as to capture the 

variation in form factor, and also including “ρ” to account for variation in wood density 

(Colgan, 2012). Chave et al. (2005) developed an allometric equation which takes into 

account stem diameter (D), height (H), form factor (F) and wood density (ρ), of the form: 

 Above-Ground Biomass = Fρ(πD²/4)H 

The relationships expressed by allometric equations vary from species to species and from 

site to site, resulting in an inconsistent choice of the equations (Nickless et al., 2011). Recent 

approaches to estimating biomass have attempted to address the inconsistency in the choice 

of allometric equations by proposing universal forms of equations (Návar, 2010). The 

proposed universal allometric equation is a modification of Chave et al., (2005) equation and 

is of the form: 

M = β0 + β1(FρD
2
H)  

where M is biomass (expressed as dry mass in Mg); β0 and β1 are model coefficients, F is 

form factor, ρ is wood density (in Mg m¯³); D is stem diameter (m) and H is total tree height 

(m). 

Stem diameter is traditionally measured by foresters at breast height (1.3m above the 

ground), thus the widely-used or mis-used abbreviation “dbh”. A significant part of the tree 

mass may occur in the portion between the ground and breast height, and African woodland 

and savanna trees frequently branch quite low down. Therefore common practice in 

surveying African woodlands and savannas is to measure the diameter just above basal 

swelling, at about 0.3m above the ground. It is easier and more accurate to measure the 

circumference of the stem using a tape, rather than measuring diameter using a callipers, and 

measurements in whole cm are less prone to being incorrectly recorded than measurements in 

fractions of a meter. Both these factors can be subsumed into the value of β1, and Table 1.1 

shows the values of β1 under different scenarios. 
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Table 1.1: Approximate theoretical values of β1 when stem circumference is measured in 

metres or centimetres, as well as when diameter is calculated from a circumference 

measurement in m or cm 

Scenario Approximate theoretical value of β1 

Diameter measured in m π/4   or ~0,785 

Diameter measured in cm π/400   or ~0,00785 

If D was the basal circumference measured in m 1/(4π)   or ~0,08 

If D was the basal circumference measured in cm 1/(400π)   or ~ 0.8×10¯³ 

The information allows for stem measurements in different units to be corrected for. 

It is expected that if the diameter or height tends to zero, the mass will be zero and this means 

that β0 can be ignored. The inclusion of ρ in the universal allometric equation takes out much 

of the parameter variation in β1 if β0 is ignored, meaning that β1 should take up a value close 

to the theoretical values shown in Table 1.1, and should not need to be determined species by 

species and site by site. The wood density and form factor together capture the individuality 

of different species. 

Due to the linear structure of the linear structure of the universal new allometry equation, all 

parameters (except D) contribute proportionally to the uncertainty in the answer, hence a 10% 

error in estimating the wood density would lead to a 10% error in mass estimation, likewise 

with a 10% error in the form factor or 10% error in tree height. Since D is squared, a 10% 

error would result in a 21% error in mass estimation. Typical mature savanna trees have a 

basal diameter of around 30cm and it easy to read the tape to an accuracy of 1cm. Thus the 

typical magnitude of D measurement error is around 1%. The typical height of a tree of that 

size is 10m. Heights are usually estimated by triangulation or by satellite laser altimetry, both 

with errors of around 0.5 to 1m, which translate into a 5 to 10% error (Rosette et al., 2010). 

While wood density can be measured in the lab with great precision to less than 1% error, the 

variation between individuals in a species is probably about 10%. Thus to keep the accuracy 

of the overall allometric estimate of mass around 10%, the form factor needs to be estimated 

with similar accuracy.  
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Form factor 

The stem form factor of a tree can be defined as the ratio of its stem volume to the volume of 

a cylinder with a diameter equal to the basal diameter of the stem and a length equal to the  

height to the top of the stem (Washusen, 2002). The formula is given below: 

F = V/(D
2
Hπ/4) 

where F is the form factor (m³m¯³), V is the wood volume of the tree in m³, D is the stem 

basal diameter (conceptually in m, but conventionally measured and expressed in cm), H is 

the height from the ground to the highest part of the stem (m).  

Tree stems can be thought of as a series of cylinders, with the stem diameter and height to the 

top of the canopy being likened to the diameter and length of the cylinder respectively. Since 

the cross sectional area of the stem containing the vascular tissue is approximately equal 

throughout the tree (Arastu, 1998), there should be a linear relationship between the stem 

volume and the product of the stem cross sectional area measured near the base by the height 

of the tree (Burkhart and Tomé, 2012). Deviations from the ideal cylindrical stem form are 

expressed by the form factor. Many stems taper towards the tip, and this would lead to a form 

factor less than 1, whilst others may have a “coke bottle” bulge in the middle in order to 

provide storage volume for water, thus having a form factor greater than 1.  

There are form factor theories, dating back to as early as the mid nineteenth century that have 

been suggested to explain both the shape of tree stems and the changes in stem diameter with 

an increase in tree height (Gray, 1956; Colgan et al., 2013) . One such is Metzger’s “girder” 

theory, which has a mechanical basis (Gray, 1956). It suggests that the tree stem is a beam of 

uniform resistance against the bending force of the wind (Newnham, 1956). The lateral 

pressure from the wind acts on the crown and is transmitted down towards the base of the 

stem, resulting in the greatest pressure being felt at the base of the stem                           

(Newnham, 1956). The tree ensures uniform resistance to the wind along its stem by 

allocating growth resources in response to the different pressure exerted on the different parts 

of the stem (Newnham, 1965). Since wind pressure decreases as we move to the upper parts 

of the stem, the lower parts receive more material since they are subject to the greatest wind 

pressure, whilst the upper parts receive relatively less material (Newnham, 1956). However 

the strengthening of the stem as a response to wind pressure diverts building materials from 

the crown and roots where they are greatly needed to ensure the growth of the tree and seed 

production (Newnham, 1965). There is a need to optimise on the allocation of these resources 
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so as to ensure that the tree is able to meet its growth requirements and at the same time, have 

enough resources to build up enough stem strength required to withstand the wind pressure                  

(Newnham, 1956; Colgan et al., 2013). The most efficient allocation of the resource material 

for tree growth is achieved by a decrease in stem thickness as we go up the stem (Newnham, 

1956; Newnham 1965), hence the reason why trees taper. 

Gray (1956) agreed with Metzger that wind pressure was the dominant factor in determining 

the shape of tree stems, but he disagreed with the notion that the stem was a beam of uniform 

resistance. In his argument, Gray (1956) suggested that the quadratic paraboloid which has 

20% less volume than the cubic paraboloid (suggested by Metzger), could satisfy the 

mechanical requirements of the stem to resist bending from wind pressure (Newnham, 1965). 

Colgan et al. (2013) state that, “according to Metzger’s theory, the height at any point along 

the stem is proportional to the cube of the diameter at that point”. This is relatively true for 

the branchless part of the stem between the buttswell and the bottom of the crown (Colgan et 

al., 2013). Gray (1956) showed that for the whole tree including the branches, tree height was 

more closely related to the square of the diameter (Colgan et al., 2013). Most of the modern 

day form factor theories implicitly retain a mechanical basis, such as resistance to bending 

and elastic buckling from wind as the reasons why tree stems are shaped the way they are 

(Colgan et al., 2013). 

Stem form factor is of great interest in commercial forestry which is mainly interested with 

the merchantable bole. Information about the shape of tree stems and how the taper of such 

stems varies across trees is important in the construction of volume tables for the estimation 

of merchantable timber (Newnham, 1965; Colgan et al., 2013). Tree volume models which 

only consider diameter at breast height (dbh) and height as the independent variables, without 

allowing for variations in the shape of the stem are prone to errors  deriving from this source 

(Socha and Kulej, 2007). The modelling of tree volume began with volume tables to estimate 

the merchantable volume of the bole (Gervorkiantz and Olsen, 1955), and later progressed to 

the use of taper models (Jordan et al., 2005). Ver Planck and MacFarlane (2014) state that, 

“the next stage in tree volume modelling must be to describe the whole tree volume”. Whole 

tree volume modelling is needed to inform the utilization of whole trees, not just the 

merchantable bole (Ver Planck and MacFarlene, 2014). Forest carbon accounting systems 

require the biomass of the whole tree to be estimated, hence the need to quantify the volume 

of the main stem and all the branches.  
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The availability of whole tree volume data makes it possible to calculate the whole tree form 

factor. Conceptually the form factor of a tree relates the actual wood volume of the stem and 

branches to the theoretical cylinder volume of the whole tree. Since this research project is 

focused on estimating total above ground biomass, emphasis will be on the form factor of the 

whole tree and not stem form factor. Without data on the form factor of a tree, the volume of 

a standing tree will either be under or over-estimated (Adenkule et al., 2013). 

Relationship between form factor and other tree dimension attributes 

Gray (1966) related tree form factor to the nature of branching; and found that the form factor 

was smaller for sparsely-branched conifers than for the heavily-branched broad-leaved trees. 

Trees of the same stem diameter, height and wood density can have different form factors as 

a result of different crown lengths and allocations to branch density (Gray, 1956). This may 

translate into different vertical mass distributions thereby resulting in variation in form factor 

that is independent of tree size (Gray, 1956; Colgan et al., 2013). Colgan (2012) suggested 

that in addition to wood density, variation in form factor between tree species was also a 

significant contributor to differences in tree mass. Colgan et al. (2013) carried out a study to 

determine whether form factor or wood density was the dominant driver of variation in the 

biomass of African savanna species of the same height and stem diameter. They concluded 

that variation in tree biomass amongst equal sized trees was mainly driven by variation in 

wood specific gravity between species. Form factors calculated by Colgan et al. (2013) 

occupied the range 0.57 to 0.77 and were not statistically different from each other for four 

out of the five common species: Combretum apiculatum (0.67±0.12) Acacia nigrescens 

(0.69±0.10), Sclerocarya birrea (0.70±0.18) and Lannea schweinfurthii (0.75±0.21). 

Wood density in African savanna tree can range from about 0.4 (for example Commiphora 

species) to about 1.3Mg m¯³ in Combretum imberbe, a three-fold variation (Van Vuuren et 

al., 1978). In contrast, the wood density of species documented by Colgan et al. (2013) 

ranged from 0.5 for Sclerocarya birrea to 1.01 for Combretum imberbe, a two fold variation. 

Assigning tree form factor by visually assessing a tree image 

The traditional approach to form factor studies is to calculate the form factor by dividing the 

stem volume by the volume of a cylinder that has the same diameter and length as the stem 

diameter and height respectively, but however an alternative method which involves 

assigning form factor by visually assessing a digital image of a tree, is suggested in this 

study. For example, a tree may be judged to be slender or squat by just inspecting its shape. 
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The efficiency and accuracy of such a method of assigning form factors from tree images has 

not been assessed to date. 

A method of visually assessing bole straightness and subjectively rating tree form factor as 

good, fair or poor has been widely used in plantations of Eucalyptus and Pinus species, where 

bole straightness is important for the end use of the biomass (Shelbourne and Namkoong, 

1966). In Canada, the Northern Hardwoods Research Institute assigned form factors to the 

trees of New Brunswick by looking at the number of stems, presence of sweeps, lean and 

general crown shape (Pelletier et al., 2013). The institute developed a tree classification 

system comprising of eight form classes coded F1 to F8 and for each form class there was an 

image of two trees which had a structure described by the form class (Pelletier et al., 2013). 

A standing tree in the field could be assigned a form factor by comparing its shape to the tree 

images in a handbook and selecting the tree image whose shape most closely resembles that 

of the standing tree. 

Photo-based measurement of tree dimensions  

Measurements of diameters, stem height and length of internodes can be done by felling the 

sample trees and measuring every single branch or by climbing the tree, but both methods are 

time consuming and laborious (Kamatou, 2003). Alternatively, the parameters can be 

estimated from dry season (leafless) photographs of the trees. This, in combination with 

fractal allometry could be very cost effective, but still rigorous and traceable way of deriving 

allometric estimates. 

Advances in technology have enabled the determination tree dimension parameters by 

photogrammetry (Shlyakhter et al., 2001), which is the science of obtaining, measuring and 

interpreting information about the surface of an object without physical contact with the 

object (Schenk, 2005). Digital photogrammetry has been used in the measurement of tree 

dimensions, for example Zhang et al. (2007) estimated the fractal dimensions of tree crowns 

using the technique, whilst Barrett and Brown (2012) determined canopy volume from digital 

images. According to Barrett and Brown (2012), the use of photographs in forest mensuration 

speeds up the collection of data in the field without compromising on accuracy as compared 

to the in situ approach. 

Takahashi et al. (1997) developed a photo-based measurement system for measuring tree 

height and diameter, comprising a special measuring camera, the   MC-100, an angle sensor 

fitted onto the camera, an image scanner and a computer. The MC-100 has two modes; the 
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distance mode which measures the distance from the lens to the object it is focusing on, and 

the scale mode composed of a scale mark from which the size of the object is calculated by 

proportional allotment (Takahashi et al., 1997). A colour image scanner is used to enter the 

images into a computer with a software designed for measuring tree dimension parameters 

from the images (Takahashi et al., 1997). Under the system, tree height is calculated directly 

from the photograph by proportional allotment using a measuring staff of known length 

placed adjacent to the tree, whilst tree diameter is measured from the images by calculating 

the object size from the scale mark using proportional allotment (Takahashi et al., 1997). 

Clark et al. (2000) estimated diameter from tree images captured by a non-metric Kodak DC-

120 digital camera. The method involved determination of image pixel size and using 

diameter extraction software to derive diameter from raw image data for example image 

distance representing the stem height of the desired diameter (Clark et al., 2000).         

Shimizu et al. (2014) also developed a technique called digiscoping to measure the diameters 

of slender stems from digital images using image editing software such as Adobe Photoshop 

and calculations from spread-sheet software. 
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Chapter 2: Materials and Methods 

Sites and study species 

The study used a sample of eight South African tree species, seven of which collectively 

make up 80% of the tree biomass in the Lowveld landscape. Individuals for five of the study 

species, Combretum apiculatum (CA), Sclerocarya birrea (SB), Terminalia sericea (TS), 

Dichrostachys cinerea (DC) and Lannea schweinfurthii (LS), were selected at the main study 

site, Wits Rural Facility (24° 30'S, 31° 06'E), a 350ha teaching and research station in the 

central Lowveld, in Limpopo Province (Shackleton, 2001). The most common soil types at 

the facility are the shallow sandy lithosols which are underlain by potassic granites and 

grandiorite (Shackleton, 2001). The dominant tree species are Combretum collinum, T. 

sericea, Acacia gerrardi, A. nilotica, D.cinearea and S.birrea (Shackleton, 2001). Wits Rural 

Facility was chosen as the main study site as the trees occur in the vicinity and conventional 

empirical allometric equations exist for seven of the study species, derived at or near that 

location.  

The second study site was an area situated between 500m and 2km east of the Phalaborwa 

entrance gate (22° 55'S, 31° 17'E and 350m to 450m above sea level) of Kruger National 

Park; where individuals of the remaining two lowveld species, Combretum imberbe (CI) and 

Colophospermum mopane (CM) were selected, as the two species were not found at the main 

study site. The area is underlain by migmatitic gneiss and is part of the Phalaborwa Sandveld 

dominated by C.apiculatum, T.sericea and C.mopane (Munnik et al., 1996). 

Table 2.1: Sample sizes and the total sets of measurements for each species, as well as the 

locations were data were collected. 

Species Site  n Sets of measurements 

Combretum apiculatum Wits Rural Facility 15 51 

Sclerocarya birrea Wits Rural Facility 18 53 

Terminalia sericea Wits Rural Facility 16 53 

Dichrostachys cinerea Wits Rural Facility 19 59 

Lannea schweinfurthii Wits Rural Facility 10 33 

Combretum imberbe Phalaborwa 9 37 

Colophospermum mopane Phalaborwa 13 47 

Portulacaria afra Pretoria Botanical Gardens 12 41 
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Figure 2.1: The locations of the two study sites in Limpopo Province, where data collection 

was done. 

The eighth species, Portulacaria afra (PA) was selected as a deliberate example of an 

extreme form factor, and sample individuals were selected from the Pretoria Botanical 

Gardens. 



18 
 

The data needed to model the tree volume using fractal allometry was derived using two 

methods, in situ and in-lab measurements from images taken of the same trees in the field. 

Measurements at Wits Rural Facility and Phalaborwa were done in October 2015, whereas 

those at the Pretoria Botanical Gardens were done in December. For each method, a set of 

about 5 measurements for each sample tree following a branch from base to tip, was used to 

derive a scaling rule that expressed how diameters, lengths and tapers change throughout the 

canopy. Systematic sampling was done to select sample trees for each species, representative 

of a range of stem sizes. Each stem emerging from the ground was treated as a separate tree, 

thus for D.cinerea (a shrub species) only the single stemmed individuals were considered. 

Sampling and the photography of the trees 

The sample trees were chosen in such a way that a clear unobstructed photograph of each tree 

could be taken. A T-shaped measuring staff 2m tall and 2m wide was placed adjacent to a 

sample tree, vertical and perpendicular to the direction of the photograph and an image of the 

tree was taken using a 6 mega-pixel digital camera. The procedure was repeated for all the 

sample trees of each species and images were imported into IrfanView image processing 

software, for taking measurements. The image horizontal and vertical length of the T-shaped 

measuring staff were then measured in pixels, thereby enabling the calculation of the 

horizontal and vertical scale factor for image measurements using the formula: 

Scale factor = actual length of the measuring staff (cm)/length of the measuring staff in pixels 

The scale factor therefore related the actual length of the measuring staff in (cm) to the length 

of the measuring staff as measured on the image. The scale factor was then used to convert 

the image measurements from pixels into cm using the following formula: 

length of tree portion (cm) = vertical scale factor × image length of tree portion (pixels) 

For example, if the vertical length of the T-shaped as measured from an image was 800pixels, 

the scale factor of that image would be 200cm/800pixels = 0.25. This meant that for the 

vertical measurements on that image, each pixel was equivalent to 0.25cm on the ground. If 

the total height of the tree as measured on the image was 2540pixels, then the total height on 

the ground would be 0.25×2540 = 621.5cm. The same procedure was repeated for diameter 

measurements, but using a horizontal scale factor. 
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Procedure for data collection 

Light coloured tape was wrapped around the stem at each measurement point to ensure easy 

visibility in the photo and to ensure that the measurements taken of the images were taken at 

the same place as those in situ. The procedure was as follows as described by Kamatou 

(2003): 

(a) Five over-bark circumference measurements were taken using a diameter tape. The 

first circumference (C1) was measured just above the basal swelling, the second one 

(C2) just before the first branching, C3 at half basal length. The fourth (C4) and fifth 

circumference (C5) measurements were done on the two branches that the stem splits 

into just after the first branching as shown in Figure 2.1. Diameters (D1, D2, D3, D4 

and D5) were calculated by dividing the circumferences (C1, C2, C3, C4 and C5) 

respectively by π. The length of the bole (L) from C1 to C2, and the length from the 

ground to C1 were measured using a tape measure.  

(b) Diameters corresponding to C1, C2, C3, C4 and C5 were measured from the digital 

images as well using the procedure described in the previous section.  

(c) About five sets of circumference and internode length measurements and 

measurements were taken per sample tree, both in situ and off photographs, following 

procedure (a) and (b), on progressive smaller branches between the first fork and the 

terminal branch.  

(d) The total tree height was measured from images using the procedure described under 

the section on “Sampling and photography of trees”. 

(e) Crown diameter was calculated using the cross method described by Blozan (2006). 

The first length measurement was from one edge of the crown through the centre of 

the tree to the other edge, while the second length measurement was also from edge to 

edge but perpendicular to the first cross section. Crown diameter was calculated as the 

average of the two length measurements. 

(f) All of the measurements were done in cm, but measurements for the following were 

converted to m by dividing by 100:  

height at which the basal circumference was measured, height to the first branching 

point, total tree height and canopy diameter. 

(g) The time taken for the above measurements was noted so that comparisons could be 

made regarding the effort required to derive new species allometries using in situ and 

photographic approach. 
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(h) Two bark samples were extracted from each stem at the midpoint of each bole using 

an increment borer. The bark samples were then taken to the Phytotron Laboratory at 

the University of the Witwatersrand, where they were soaked in plastic trays for 

rehydration. The length and circumference of each hydrated bark sample was 

measured using the calliper, and the green volume was calculated using the formula: 

V = (πD²H/4) 

where V is green bark volume ( in mm³), H is the length of the bark sample (in mm), 

D is the circumference divided by 2 (in mm). 

The bark samples were then placed in an oven for 4hours at 80°C and their oven dry 

weight was measured on an electric balance. Thereafter, bark density was calculated 

by dividing the oven dry mass of the bark samples by their green volume. 

(i) The figures for the wood density for L.shweinfurthii and D.cinerea were acquired 

from Carson et al. (2012); whilst those given by Van Vuuren et al. (1978) for the 

other study species are Air dry densities (at 10% moisture content), and they were 

converted to wood density using the following formula: 

Wood density = air dry density (at 10% moisture content)×100/(100-10%) 

Van Vuuren et al. (1978), regarded air dry density as wood density at 10% moisture 

content because the average moisture content for thoroughly air dried wood in South 

Africa was 10.5% (which they rounded off to 10%). Likewise the researcher considers 

air dry density as wood density at 10% moisture content. 

(j) For P.afra, a set of witness disks of known wet and dry diameter were used to 

calculate the wood density of the species.  The first step was to measure the oven dry 

weight of each disk on an electric balance, followed by the calculation of the green 

volume using the formula: 

V=πD
2
H/4 

where V is the volume of the disk in cm³, D is the wet diameter of the disk in cm, and 

H is the length of the disc (measured using a veneer calliper). 

Wood shrinks tangentially, radially and longitudinally when it is oven dried, but it 

was assumed that longitudinal shrinkage for the disk samples was 0%. The basic 

density of the disk samples was calculated by dividing the oven dry weight by the 

green volume, and converted to air dry density (10% moisture content) by multiplying 

by a factor of 1.22 as suggested by Carson et al. (2012). The air dry density was then 

converted to wood density using the formula: 
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Wood density = air dry density (at 10% moisture content)×100/(100-10%) 

 

The witness disks for P.afra did not include bark, thus it was assumed that the bark 

density of the species is the same as its wood density. 

 

 

Figure 2.2: Measurements points for the collection of data needed to model tree volume 

based on the fractal properties of branching architecture. 

Calculation of tree biomass using the Fractal allometry programme 

A computer programme called FractalGu (Appendix 1), written by Professor R.J Scholes 

using Pascal language was used to calculate tree biomass. The programme required input files 

created in Notepad (“i.e. one input file for each species”), which were placed into the same 

computer directory as the executable file for the programme. Each input file had information 

about the relationships between the following (i) the ratio of the squared diameter below a 

branch to summed squared diameter above the branch as a function of diameter, (ii) internode 

length as a function of diameter at the base of that branch, (iii) taper of the stems per unit 

internode as a function of stem diameter, (iv) bark thickness as a function of stem diameter 

and (v) twig dry mass excluding leaves as a function of twig diameter. In addition to the five 

relationships above, each input file also had a figure for the wood density, bark density and 

terminal twig diameter of the species it was associated with. An example of an Input file is 

shown in Appendix 2.  

L2 
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Regression analysis was used to quantify the first three relationships for each species using 

data from both in situ and image measurements. Taper was calculated as follows: 

node taper = [100*(Dbottom – Dtop)/Dbottom]/L 

where Dbottom is the diameter at the base of a stem/branch segment, Dtop is the diameter at the 

top of the stem/branch segment, and L is the length between the two diameters. 

After reading the input file for T.sericea , the programme asked the researcher to enter the 

following input information for the first T.sericea sample tree: (i) a basal circumference (cm), 

(ii) the height above the ground at which the basal circumference was measured (m), (iii) the 

height at which the first branching occurred (m), (iv) the main stem circumference just below 

the first branch, (v) the height to the top of the tree (m) and (vi) the crown diameter (m). 

Subsequently, the fractal allometry programme proceeded to calculate the volume of the 

whole tree by applying a recursive algorithm. The algorithm proceeded from the given 

diameter at the base of the tree, predicted the first internode length and taper, calculated and 

stored to memory the stem segment volume and then estimated the stem diameters above the 

node. The programme repeated the process for one branch of the fork, while putting the 

diameter of the other branch into temporary memory to be retrieved for later calculation. The 

volumes of each node were accumulated. The process ended for that branch when the 

predicted next diameter was smaller than the twig diameter which had been specified in the 

input file. The programme then went one branch back, retrieved the “other” diameter from 

memory and repeated the process until the terminal diameter was reached; then it went two 

branches back. That way, it worked its way through the entire tree, solving for the volume of 

all branches it left out on the way, until the whole tree volume had been calculated. 

Afterwards, the programme calculated the form factor for the whole tree by dividing the tree 

volume by the volume of the equivalent cylinder, given the basal diameter and an 

independent measure of tree height. After calculating the tree volume, bole volume, twig 

mass, bark mass, form factor and above ground tree mass of the first T.sericea sample tree, 

the programme asked the researcher to enter the input information for the second sample tree. 

The process was repeated until the programme calculated the above-ground biomass of all the 

T.sericea sample trees. Thereafter, the programme stopped, generated an output file for 

T.sericea and wrote it to a comma-separated variable file (CSV file). 
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The process was repeated for all the species, with each species having its output file. The 

whole process to calculate the aboveground biomass of a sample tree using the fractal 

allometry programme tree took fractions of a second on a modern personal computer.  

Statistical analyses 

Model fitting 

The data violated the assumption of homogeneity of variance, which is typical of biomass 

data (Samalca, 2007). The solution was to log transform the data and fit a model for each 

species. A species neutral model was then fit by pooling data from all the trees.  Log 

transformation resulted in the new allometry, M = β0 + β1(FρD
2
H)  being modified into the 

form:  

ln(M) = β0
*
+β1

*
ln(FρD

2
H)                 [equation 2] 

where M is biomass (kg), F is the form factor, ρ is wood density (kg m¯³), H is total tree 

height (m) of the tree from the ground to the top of the canopy, D is basal stem diameter (m), 

β0* and β1* are the log regression parameters which are estimated by ordinary least squares 

regression. 

Comparisons of new allometry with existing empirical allometry 

A biomass dataset independent of the one used in model calibration makes it possible to 

validate a biomass model. A model is validated by comparing its predictions with 

observations independent of those used to fit it (Picard et al., 2012).  Biomass estimates from 

allometric models can be used to compare the models in terms of their precision, bias and 

parsimony using the Root Mean Square Error, 95% confidence interval of the slope and 

intercept of the equations, and the Akaike Information Criterion, respectively (Piccard et al., 

2012).  

Empirical allometries developed by Colgan et al. (2013) (Table 2.2), Nickless et al. (2011) 

(Table 2.3), and Tietema (1993) and Shackleton (1998) (Table 2.4) were chosen to be tested 

against the allometry developed by the researcher. Allometric equations differ between 

environments thus the need to test new allometry against published allometry developed from 

the same area. The above empirical allometries (with the exception of Tietema, 1993) were 

selected because they were developed in Lowveld where the research was conducted. 
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Table 2.2: Colgan et al. (2013) species-specific equations and the species neutral equation 

(ALL) of the form ln(M)=β0+β1ln(D
2
H); relating stem diameter D (cm) and height H (m) to 

biomass (kg).  

Spp β0 β1 r² ‘H’ range (m) ‘D’ range (cm) n 

CA -2.750 0.941 0.88 1.2-7.9 2-25 121 

SB -3.982 1.043 0.94 2.0-10.1 8-58 16 

LS -3.576 1.02 0.98 1.4-9.3 2-40 37 

CM -2.550 0.895 0.92 0.5-8.8 1-44 371 

CI -3.528 1.066 0.90 2.5-8.7 6-39 9 

ALL -2.597 0.929 0.82 0.5-15.5 2-79 707 

The allometry was developed using data from 782 destructively harvested stems in a savanna 

woodland near Kruger National Park 

Table 2.3: Nickless et al. (2011) species-specific equations of the form ln(M)=β0+β1ln(D)  

relating stem diameter D (cm) to biomass (kg).  

Spp β0 β1 r² ‘D’ range (cm) n 

TS -3.62 2.79 0.99 0.8-10.4 36 

CA -3.27 2.8 0.98 2.1-18.2 30 

SB -3.35 2.62 0.99 3.6-33 30 

CM -2.77 2.49 0.96 1-44 30 

DC -3.08 3.12 0.95 0.7-9.6 66 

Data sets used in the regression statistics were made available by Scholes (1988) and 

Goodman (1990) 

Table 2.4: Species-specific equations by Tietema (1993) and Shackleton (1998) expressed in 

the original form ln(M)=b+aln(D
2
H); relating stem diameter D (cm) and height H (m) to 

biomass (kg). The original form was also converted to the standard form M=bD
a
; relating 

stem diameter (cm) to biomass (kg); where “b” is the factor and “a” is the power 

Author spp Original  form: 

ln(M)=b+aln(D
2
H);  

 

r² n Standard form: 

M=bDa; 

Shackleton (1998) 

 

 a (slope) b (intercept)   a (power) b (factor) 

TS 2.687 -2.827 0.98 15 2.687 0.032273 

DC 2.559 -2.571 0.96 15 2.559 0.050258 

Tietema (1993) TS 1.2286 0.0871 0.95 12 2.4572 0.032366 

CA 1.1001 0.2232 0.94 58 2.2002 0.085556 

CM 1.3341 0.0644 0.95 36 2.6681 0.023329 

DC 1.0337 0.2787 0.85 33 2.0674 0.108558 
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A major limitation of this study was the unavailability of an independent biomass data to 

validate the new allometry. The unavailability of an independent dataset meant that there 

were no biomass estimates for the new allometry form, and this made it impossible to 

compare the new allometry with existing empirical allometry in terms of precision and 

parsimony.  

The first option was to express both the new and empirical allometry in the standard form 

M=bD
a
, by relating biomass (M in kg) to the basal stem diameter (D in cm), and proceed to 

do a graphical exploration of the equations. However not much can be deduced from 

graphically comparing the equations in the above mentioned form, thus the next step was  a 

comparison using the 95% confidence interval of the slope and intercept of the allometric 

equations. The allometry by Tietema (1993) and Shackleton (1998) was in the original form 

ln(M)=b+aln(D
2
H), but the constants “b” and “a” were changed to β0 and β1  respectively, so 

that all the equations would have the regression co-efficients. A major problem was that the 

new allometry and the empirical allometries had different predictor variables, i.e. FρD
2
H (for 

the new allometry), D (for Nickless et al., 2011) and D
2
H [for Tietema (1993); Shackleton 

(1998) and Colgan et al. (2013)]. The solution was to express the empirical equations in the 

untransformed form M = β0 + β1(FρD
2
H). The empirical equations by Tietema (1993); 

Shackleton (1998) and Colgan et al. (2013) were converted from ln(M) = β0
*
+β1

*
ln(D

2
H)  to 

the form: 

M = β0 + β’1(D
2
H)                    [equation 3] 

where F and ρ were subsumed in the meta-constant β’1 

Equations by Nickless et al. (2011) were converted from ln(M) = β0
*
+β1

*
ln(D) to the form: 

M = β0 + β’1(D)                             [equation 4] 

where F, ρ and H were subsumed in the meta-constant β’1 

Data on form factors (estimated from the fractal allometry programme) and wood density 

(calculated according to the methodology given under point (i) of the section on “Procedure 

for data collection”) made it possible to split the meta-constant (β’1) of equation 3 into its 

components β1, F and ρ. The meta-constant (β’1) of equation 4 was split into its components 

β1, F, ρ and H using data from form factors, wood density and total tree height (measured 

from images as described in the previous section of this chapter). This is made it possible to 
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express equations 3 and 4 in the form M = β0 + β1(FρD
2
H). Thereafter, the empirical 

equations were log-transformed into the standard form ln(M) = β0
*
+β1

*
ln(FρD

2
H), by 

regressing the logarithm of biomass (M) to the logarithm of the compound variable (FρD
2
H). 

The new allometry and the standard form of empirical allometry were now of the same 

equation form, making it possible to test the former against the latter. The 95% confidence 

interval of the slope and intercept of the equations were calculated as follows: 

95% Confidence interval of slope = β1
*± (SE of slope × t1- α/2, n-2)                                         [equation 5]   

and 

95% Confidence interval of intercept = β0
*± (SE of intercept × t1- α/2, n-2)                        [equation 6] 

where β0
* 
is the intercept,  β1

* 
is the slope, SE is the standard error computed by SPSS, t1- α/2 is 

the 1- α /2 quantile of the standard t-distribution,  α is 0.05, n is the sample size, n-2 is the 

degrees of freedom. 

To test if the inclusion of form factor in allometric equations improves the precision of 

biomass estimation, a log-log model relating the compound variable (ρD
2
H) to the biomass 

estimated from the best empirical allometry by Colgan et al. (2013) was fit. 

Throughout the analyses, checks were performed to ensure that the assumptions of normality 

of residues and homogeneity of variance were not violated. Statistical analysis was performed 

using SPSS 16.0 (2010) at 95% confidence limits.  

Trend analysis for form factors 

Principal component analysis (PCA) was run in XLSTAT (2015.1) using the following 

variables; form factor, taper ratio, form quotient (ratio of the diameter above breast height to 

diameter at breast height), crown width, wood density, basal stem diameter and height. The 

purpose of PCA is to identify and explain trends in a data set, thus trends in the form factors 

of the study species were explored using PCA. Normalized versions of the original variables 

were supplied to the principal components because the variables were on different scales. The 

two principal components with the highest eigenvalues were chosen as the axis for an 

ordination plot on which the trends for form factors would be assessed. 
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    Chapter 3: Results 

Comparisons of regression formulae derived from in situ and image measurements  

Species specific regression formulae for the fractal allometry programme were derived from 

112 trees over a range a size classes. A comparison of stem diameters and node lengths 

measured in situ and from images shows that the image measurements underestimated both 

parameters by 4% and 5%, respectively (Figure 3.1). 

 

Figure 3.1: In situ versus image measurements of stem diameter (a) and node length (b). 

 

Statistical tests were used to test if the branch ratio, taper ratio and node length differed by 

species and or method, and to assess the significance of the slope and intercept of the 

different regression formulae. According to the ANOVA results each variable differed by 

species (p<0.001), but not by method used; with p values of 0.294, 0.236 and 0.383, 

respectively for branch ratio, taper ratio and node length. All the interaction effects 

(species×method, species×diameter, method×diameter and species×method×diameter) were 

not statistically significant for the relationships between branch ratio and stem diameter 
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(Table 3.1), branch taper and stem diameter (Table 3.2) and node length and stem diameter 

(Table 3.3). 

The co-efficient of determination for all the relationships was very low for all the species 

with 0.0001<r²<0.093 (in situ) and 0.02< r²<0.129 (images) for the relationship between 

branch ratio and stem diameter, 0.007<r²<0.205 (in situ measurements) and 0.029<r²<0,246 

(image measurements) for branch taper and stem diameter, and 0.097< r²<0.352 (in situ) and 

0.128< r²<0.206 (images) for node length and stem diameter (Appendices 3.1, 3.2 and 3.3). 

For the  relationship between branch ratio and stem diameter, the slopes for equations derived 

from in situ measurements were not statistically different from zero for all the species, with 

0.213<p<0.806 (Appendix 3.1), which means that branch ratio is not a function of stem 

diameter for in situ measurements. As for image measurements, the slope for the equations 

for C.imberbe (p=0.045) and D.cinerea (p=0.034) was statistically different from zero, 

implying that branch ratio is a function of stem diameter for the two species, but for the other 

species the slope was not statistically different from zero, with 0.138<p<0.769 (Appendix 

3.1). The intercept was statistically different from zero for all the species regardless of the 

method used, with p<0.001 for all the equations (Appendix 3.1).  

The slopes of the equations for the relationship between branch taper and stem diameter were 

not statistically different from zero for D.cinerea, L.shweinfurthii, C.mopane and C.imberbe 

with 0.072<p<0.526 (in situ) and 0.058<p<0.709 (images); but different from zero for the 

other four species, T.sericea, C.apiculatum, S.birrea and P.afra, with   p<0.005 and p<0.03 

for equations from in situ and image measurements respectively (Appendix 3.2). The 

intercept was statistically different from zero for equations derived using both methods with 

p<0.001 for all the equations.  

For the relationship between node length and stem diameter, the slopes of the equations for 

T.sericea, D.cinerea, L.shweinfurthii, C.mopane and C.imberbe were not significant, with 

0.093<p<0.909 and 0.064<p<0.863 (Table 3.3) for in situ and image measurements 

respectively. The equations for the other species, C.apiculatum, S.birrea and P.afra, had 

slopes that were statistically significant p<0.048 (in situ measurements) and p<0.021 (image 

measurements).  

The relationship between bark thickness and stem diameter was strong for T.sericea, 

C.apiculatum, S.birrea and C.imberbe (p>0.504), weak for L.schweinfurthii (p=0.3) and very 
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weak for D.cinerea and C.mopane (p<0.054). The slope of the regression formula was 

significant for T.sericea and D.cinerea (p<0.005) and not significant for the other species 

with 0.301<p<0.838). Bark thickness was also shown not to vary with species (p=0.521). 

Time required to collect allometric data  

Data was collected over a period of 16 days, which translates into an average of two days per 

species. Each day, nine trees were measured in situ over eight hours, the period also included 

the time taken to move from tree to tree. It took an average of 30 minutes per tree to collect 

the fractal data using in situ measurements. An average of one hour was spent collecting 

fractal data using the image analysis approach. The period included the time taken to climb 

each tree and wrap coloured tape around the stem at each measurement point, capturing the 

image, importing the image into IrfanView image processing software and measuring the 

diameters and node lengths. 

Table 3.1: ANOVA results for the relationship between branch ratio and stem diameter (cm) 

Source 

Type III Sum of 

Squares df Mean Square F p 

Corrected Model 18.294
a
 670 0.027 1.331 0.058 

Intercept 820.061 1 820.061 218.338 0.000 

Species 0.895 7 0.128 6.236 0.000 

Method 0.023 1 0.023 1.118 0.294 

Diameter 7.440 271 0.027 1.339 0.065 

species×method 0.084 6 0.014 0.681 0.665 

species×diameter 6.489 239 0.027 1.324 0.075 

method×diameter 1.172 67 0.017 0.853 0.747 

species×method×diameter 0.037 9 0.004 0.201 0.993 

Error 1.579 77 0.021   

Total 1078.187 748    

Corrected Total 19.873 747    

R Squared = 0.921 (Adjusted R Squared = 0.229) 
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Table 3.2: ANOVA results for the relationship between branch taper and stem diameter (cm) 

Source 

Type III Sum of 

Squares df Mean Square F p 

Corrected Model 552.195
a
 646 0.855 1.215 0.156 

Intercept 2396.410 1 2396.410 68.411 0.000 

Species 18.943 7 2.706 3.846 0.001 

Method 1.006 1 1.006 1.431 0.236 

Diameter 261.043 264 0.989 1.405 0.047 

species×method 3.384 6 0.564 0.802 0.572 

species×diameter 137.046 231 0.593 0.843 0.823 

method×diameter 35.770 65 0.550 0.782 0.840 

species×method×diameter 0.702 6 0.117 0.166 0.985 

Error 48.546 69 0.704   

Total 3334.417 716    

Corrected Total 600.740 715    

R Squared = 0.919 (Adjusted R Squared = 0.163) 

 

 

Table 3.3: ANOVA results for the relationship between node length (cm) and stem diameter 

(cm) 

Source 

Type III Sum of 

Squares df Mean Square F p 

Corrected Model 403.395
a
 670 0.602 1.766 0.001 

Intercept 9571.291 1 9571.291 153.257 0.000 

Species 39.250 7 5.607 16.445 0.000 

Method 0.262 1 0.262 0.769 0.383 

Diameter 121.507 271 0.448 1.315 0.077 

species×method 0.381 6 0.064 0.186 0.980 

species×diameter 109.926 239 0.460 1.349 0.062 

method×diameter 17.336 67 0.259 0.759 0.875 

species×method×diameter 3.482 9 0.387 1.135 0.349 

Error 26.254 77 0.341   

Total 12391.754 748    

Corrected Total 429.649 747    

R Squared = 0.939 (Adjusted R Squared =0.407) 
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Table 3.4: ANOVA results for the relationship between bark thickness (mm) and stem 

diameter (cm) 

Source 

Type III Sum of 

Squares df Mean Square F p 

Corrected Model 7.893
a
 97 0.081 1.247 0.548 

Intercept 13.328 1 13.328 204.306 0.005 

Species 0.293 4 0.073 1.124 0.521 

stemD 6.019 88 0.068 1.048 0.611 

species×stemD 0.226 3 0.075 1.157 0.495 

Error 0.130 2 0.065   

Total 22.459 100    

Corrected Total 8.024 99    

R Squared = 0.984 (Adjusted R Squared = 0.195) 

Model fitting 

Species specific allometry was constructed from 112 trees, whose diameter and height ranges 

were 4 to 89cm and 0.8-15.9m respectively. All the species specific allometries had good fits 

with 0.93<r²<0.99 and a species neutral equation was derived for all the study the species 

(Table 3.5). Graphs of the species-specific allometries developed by the researcher are shown 

in Figure 3.2. 
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Table 3.5: Species-specific biomass allometric equations, relating form factor, field wood density (kg/mˉ³), basal stem diameter (m) and height 

(m) to biomass (kg).  

spp β0
*
 SE of 

β0
*
 

β1
*
 SE of β1

*
 r² F 

μ±σ 

ρ 

μ±σ 

‘H’ range (m) ‘D’ range (cm) n 

TS 0.103 0.125 0.912 0.027 0.98 0.48±0.13 823±62 2.5-9.5 5-42 16 

CA -0.318 0.162 1.017 0.042 0.97 0.62±0.11 949±51 2.8-7.2 5-18 15 

SB 0.127 0.113 0.909 0.025 0.98 0.50±0.11 566±27 3.1-15.9 7-89 18 

DC -0.210 0.104 0.980 0.038 0.97 0.69±0.14 697±72 2.4-5.8 4-24 19 

LS 0.132 0.148 0.925 0.027 0.99 0.51±0.12 530±17 4.0-10.3 17-80 10 

CM 0.275 0.231 0.880 0.050 0.96 0.43±0.10 1027±48 4.2-10.4 12-28 13 

CI 1.038 0.274 0.786 0.045 0.97 0.63±0.14 1235±5 4.7-11.5 15-38 9 

PA -0.133 0.112 0.875 0.071 0.93 0.69±0.19 340 0.8-3.7 4-19 12 

ALL -0.121 0.042 0.962 0.010 0.98 0.57±0.16 753±256 0.8-15.9 4-89 112 

TS (Terminalia sericea), CA (Combretum apiculatum), SB (Sclerocarya birrea), DC (Dichrostachys cinerea), LS (Lannea Schweinfurthi), CM 

(Colophospermum mopane), CI (Combretum imberbe), PA (Portulacari afra). The last row (ALL) shows the species neutral equation. Species-

specific models are of the form ln(M)=β0
*
 + β1

*
ln(FρD

2
H)],  β0

* 
and β1

* 
are log regression coefficients, SE is the standard errors for the 

coefficients, R² is the co-efficient of determination, F is the form factor (mean μ±standard deviation σ), ρ is field wood density (mean μ±standard 

deviation σ), H is total tree height (m), D is basal stem diameter (m) thought the range in the table is given in cm, and n is sample size.
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Figure 3.2: Researcher’s species-specific equations relating the logarithm of biomass (kg) to 

the logarithm of the compound variable (FρD
2
H). Each point represents a tree stem.
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Researcher’s vs Colgan et al. (2013) form factors 

The form factors estimated by the fractal allometry were lower for each species as compared 

to those reported by Colgan et al. (2013), with margins as high as 0.3, 0.25 and 0.2 for 

T.sericea, L.schweinfurthii and S.birrea respectively, and as low as 0.05 for C.apiculatum 

(Table 3.6). C.mopane had the lowest form factor for both authors, 0.43 (Researcher) and 

0.57 (Colgan et al., 2013), respectively. 

 

Table 3.6: Comparisons between form factors derived by the researcher and those by Colgan 

et al. (2013).  

Spp Researcher’s form factor 

μ±σ (n) 

Colgan et al. (2013) form factor 

μ±σ (n) 

TS 0.48±0.13 (16) 0.77±0.18 (12) 

CA 0.62±0.11 (15) 0.67±0.12 (6) 

SB 0.50±0.11 (18) 0.70±0.18 (9) 

DC 0.69±0.14 (19) --- 

LS 0.51±0.12 (10) 0.75±0.21 (6) 

CM 0.43±0.10 (13) 0.57±0.12 (25) 

CI 0.63±0.14 (9) 0.72±0.29 (4) 

PA 0.69±0.19 12) --- 

ALL 0.57±0.16 0.67±0.29 (69) 

All shows the species mean form factor, μ is mean and σ is standard deviation. The number 

of trees per species whose form factors were calculated is given in brackets (n). (---) mean 

that Colgan et al. (2013) did not calculate the form factor of that species. 

Comparisons between equations 

Model coefficients for the new and empirical allometry in the form (M) = β0
*
+β1

*
ln(FρD

2
H) 

and M=bD
a 

are given in Appendix 3.1 and 3.2 respectively. A graphical comparison of the 

new equations and empirical equations of the form M=bD
a
 is shown in Figure 3.3. However 

not much could be deduced by comparing the equations in the form M=bD
a
. Instead the 

equations were compared in their standard form ln(M)=β0
*
+β1

*
ln(FρD

2
H) and a contrast of 

the 95% confidence intervals of the slope and intercept of the regression equations is shown 

in Figures 3.4 and 3.5. 

The slopes and intercepts of the equations in the form ln(M)=β0
*
+β1

*
ln(FρD

2
H) for the 

researcher’s allometry equations were different from those of the empirical types, as denoted 

by the   note in Table 3.7, with a few exceptions, denoted by a tick. Notable amongst the 
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exceptions were the slope and intercept for the researcher’s equations for C.apiculatum and 

C.mopane which were similar to those given by Nickless et al. (2011) as the confidence 

intervals overlapped. Colgan et al. (2013) allometry had the narrowest 95% confidence 

interval for each species (except D.cinerea, which was not part of that study). There was 

overlap between the confidence intervals of the slopes and intercepts of the species neutral 

equation of Colgan et al. (2013) and the researcher’s allometry for T.sericea, S.birrea and 

L.schweinfurthii. The researcher’s species specific and neutral allometry was also found to be 

different.  

For each species the biomass calculated by the fractal allometry program differed greatly 

from the estimates of the empirical allometry for the bigger trees, as diameters of those bigger 

trees were outside the range of validity of the former (Figure 3.3). Biomass calculated by the 

program was lower as compared to that calculated using Colgan et al. (2013) and              

Nickless et al. (2011) equations, meaning that the new allometry will provide lower biomass 

estimates as compared to the empirical allometry. 
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Figure 3.3: Comparisons of the standard form (M=bD
a
) of the new allometry and empirical 

allometry. 
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Table 3.7: Comparisons of the slope and intercept of the equations derived from fractal 

allometry to that of empirical allometries by the different authors. The equations are of the 

form ln(M)=β0
*
 + β1

*
ln(FρD

2
H)   

spp component Colgan 

et al. 

(2013) 

Nickless 

et al. 

(2011) 

Shakleton 

(1998) 

Tietema 

(1993) 

Researcher 

spp general 

equation 

Colgan 

et al. 

(2013) 

spp 

general 

equation 

TS slope       

 intercept       

CA slope   ---    

 intercept   ---    

SB slope   --- ---   

 intercept   --- ---   

DC slope ---      

 intercept ---      

LS slope  --- --- ---   

 intercept  --- --- ---   

CM slope   ---    

 intercept   --- ---   

CI slope  --- --- ---   

 intercept  --- --- ---   

PA slope --- --- --- ---   

 intercept --- --- --- ---   

A tick () shows that the slope/intercept of the fractal equation is similar to that of another 

author, an () mark shows a difference. For example a tick () for the slope of the CA 

equation by Nickless et al. (2011) means that the slope for the researchers equation for 

C.apiculatum is similar to that of the Nickless et al. (2011) for the same species. Two slopes 

or intercepts are considered similar if their error bars overlap (see Figure 3.4 and3.5). (---) 

shows that there is no empirical allometry for that species by that author. 
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Figure 3.4: The 95% confidence intervals of the slope of the standard equation form         

{ln(M) = β0
*
+β1

*
ln(FρD

2
H)} for the species specific and species neutral new allometry, 

empirical allometry and the Colgan et al. (2013) species neutral allometry.
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Figure 3.5: The 95% confidence intervals of the intercept of the standard equation form         

{ln(M) = β0
*
+β1

*
ln(FρD

2
H)} for the species specific and species neutral new allometry, 

empirical allometry and the Colgan et al. (2013) species neutral allometry.
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Effect of form factor on model precision 

A log-log model relating the compound variable (ρD
2
H) to the biomass estimated from the 

best empirical allometry by Colgan et al. (2013), showed that the slopes were from 0 to 11% 

less than 1, meaning that including form factor improves the accuracy in biomass estimation 

by 11% (Figure 3.6). 

 

 

Figure 3.6: Species specific equations relating the logarithm of biomass (kg) as estimated 

from the Colgan et al. (2013) equation for that species, to the logarithm of the compound 

variable (ρD
2
H).
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Form factor and its correlation with the other predictor variables 

Species mean form factors ranged from 0.43 to 0.69, with an overall mean of 0.57                 

(Table 3.5). There was interspecific variation in form factor as shown by the distribution of 

form factors of each species in different quadrants in Figure 3.6, though further statistical 

tests revealed that the variation was not statistically significant p=0.579 at 5% level              

(Table 3.8). 

Table 3:8: ANOVA results showing how the form factors varied by basal stem diameter and 

species 

Source 

Type III Sum of 

Squares Df Mean Square F p 

Corrected Model 2.869
a
 109 0.026 3.655 0.239 

Intercept 33.658 1 33.658 93.9 0.000 

Species 0.027 7 0.007 0.924 0.579 

Diameter 1.828 101 0.018 2.513 0.327 

Species×Diameter 0.002 1 0.002 0.347 0.615 

Error 0.014 2 0.007   

Total 39.375 112    

Corrected Total 2.883 111    

a. R Squared = 0.995 (Adjusted R Squared = 0.723)   

 

Form factor was negatively correlated with all the other predictor variables, with Pearson 

Correlation coefficients of -0.177, -0,547, and -0.649 for the linear relationships between 

form factor and wood density, form factor and basal diameter and, form factor and height; 

respectively. Only the relationship between form factor and wood density was statistically 

significant (p=0.031) at 5% level. Wood density was positively correlated with both basal 

diameter and height (r=0.085 and 0.477, respectively) but both relationships were not 

statistically significant at 5% level.  
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Table 3.9: Correlation amongst the predictor variables, with significance at 1% and 5% level, 

representing by * and ** respectively, where r is the Pearson r correlation coefficient 

 form 

factor 

wood 

density 

diameter height mean Range 

form factor     r 

                       Sig. (1-tailed) 

                       N 

1 -0.177
*
 -0.547

**
 -0.65

**
 0.571 

 

 

112 

 

 

 0.031 0.000 0.000 

112 112 112 112 

wood density   r 

                        Sig. (1-tailed) 

                        N 

-0.177
*
 1 0.085 0.477

**
 753.9 

 

 

112 

 

 

0.031  0.187 0.000 

112 112 112 112 

diameter           r 

                         Sig. (1-tailed) 

                         N 

-0.547
**

 0.085 1 0.819
**

 0.196 

 

 

112 

 

 

0.000 0.187  0.000 

112 112 112 112 

height              r 

                        Sig. (1-tailed) 

                        N 

-0.649
**

 0.477
**

 0.819
**

 1 5.65 

 

 

.477
**

 

 

 

0.000 0.000 0.000  

112 112 112 112 

 

Pattern analysis of form factors 

Two principal components, F1 and F2 with the highest eigenvalues (Table 3.10), were chosen 

as the axis for a map on which the trends for form factors would be assessed. The F1 and F2 

axis were closely related with tree height and form quotient, respectively; with each axis 

explaining 55.6% and 17.9% of the variation in form factor, in that order (Table 3.10). 

The distribution and clustering of form factors is shown in Figure 3.7. In the upper left 

quadrant, S.birrea form factors are clustered near the intersection of the F1 and F2 axis, 

though many of the dots are distributed along the F1 axis, whilst some degree of clustering is 

observed for T.sericea along the F2 axis and for P.afra near both axes. Form factors for half 

the T.sericea trees are also clustered in the upper right quadrant, and in the same quadrant, 

there is also a cluster of form factors of S.birrea and L.schweinfurthii trees. There is a cluster 

of form factors for D.cinerea and C.mopane along or near the F2 axis in the lower left and 

right quadrants respectively. Form factors for half the number of C.apiculatum trees are 

distributed in both the lower left and lower right quadrants, even though there is no clustering 

for the species. 

Trees of high form factors ranging (0.73 to 1.1) are mainly distributed along the F2 axis in 

the lower parts of the lower right and left quadrants, with the exceptions of high form factors 

for P.afra which are distributed in the upper left quadrant. On the other hand, the upper and 

lower portions of the upper right quadrant are comprised of trees with low (0.26 to 0.45) and 
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medium form factor (0.51 to 0.61) respectively. Form factors for S.birrea were shown to 

decrease along the F1 axis, whilst those for T.sericea, C.mopane, C.imberbe, D.cinerea and 

C.apiculatum decreased along the F2 axis. 

 

Table 3.10: The amount of information (eigenvalues) and variation (variability %) in form 

factor accounted for by each principal component 

 

F1 F2 F3 F4 F5 F6 F7 

Eigenvalue 3.894 1.254 0.700 0.585 0.369 0.142 0.056 

Variability (%) 55.622 17.913 9.995 8.355 5.278 2.030 0.807 

Cumulative % 55.622 73.535 83.530 91.885 97.163 99.193 100.000 

 

Table 3.11: Squared cosine values reflecting the representation quality of each variable along 

principal components F1 to F8. The figures in bold represent the highest squared cosine 

values for each variable 

 F1 F2 F3 F4 F5 F6 F7 

Form Factor 0.438 0.290 0.033 0.086 0.149 0.000 0.003 

taper 0.479 0.109 0.095 0.223 0.092 0.001 0.001 

form quotient 0.184 0.478 0.074 0.263 0.000 0.001 0.000 

crown width 0.823 0.019 0.018 0.002 0.074 0.053 0.010 

wd 0.339 0.200 0.437 0.010 0.005 0.005 0.003 

diameter 0.688 0.157 0.032 0.000 0.049 0.074 0.000 

height 0.943 0.001 0.010 0.000 0.000 0.007 0.039 
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Figure 3.7: Ordination plot showing the distribution of form factors for individual trees of 

each species, with each colour representing a different species. The axis F1 and F2 are mainly 

related to tree height and form quotient, respectively. The colours for each species are as 

follows: Terminalia sericea (red), Combretum apiculatum (blue), Sclerocarya birrea (green), 

Dichrostachys cinerea (orange), Lannea Schweinfurthi (black), Colophospermum mopane 

(tan), Combretum imberbe (purple), Portulacari afra (yellow). 
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    Chapter 4: Discussion 

Comparisons of regression formulae derived from in situ and image measurements 

Stem diameter and node length data required to construct a fractal model for tree volume, 

were collected using a manual in-field and a photographic approach. Results showed that 

measurements taken of images underestimated stem diameter and node length by 4% and 5% 

respectively, which are relatively small amounts. Under or over-estimation of stem diameter 

may be as a result of failure to clearly see the edges of the stem. Takahashi et al. (2007) state 

that the standard measurement error in stem diameter is 2% for images taken near tree and 

5% for those taken further away and the error for this study is within the specified range. 

Other authors for example Shimizu et al. (2014) had errors in the range 2% to 4% for their 

sample trees. The error in height measurement for the study was smaller as compared to that 

of Takahashi et al. (2007) which was 10.25% and this might be attributed to the different tree 

sizes for each study. Height of sample trees ranged from 0.8m to 15.9m but only 4% of the 

trees were more than 10m, as compared to the Takahashi et al. (2007) sample in which the 

height ranged from 10m to 24m. Therefore the margin of error in height measurement from 

images is likely to be higher amongst taller trees than the shorter ones.  

Since the stem diameter and height data from image and in situ measurements were not very 

different from each other, we would expect the fractal relationships developed using both 

datasets not to be statistically different. Statistical results showed that the interaction effects 

for the relationships between stem diameter and branch ratio, branch taper and node length, 

respectively; were not statistically significant, meaning that it does not matter which method 

is used for data collection, since for each species both the manual in-field and image analysis 

approach yield branch ratios, taper ratios and node lengths that are not statistically different 

from each other. The above statistical evidence coupled with the fact that errors in height and 

stem diameter measurements taken of images were within the standard acceptable errors, 

proves that data needed to construct a fractal model for tree volume can be collected in a 

sufficiently accurate way using dry season photographs.  

A clear unobstructed view of the entire tree was a prerequisite in the selection of the sample 

trees but many of the trees had overlapping branches and were in close proximity to each 

other. This narrowed the selection range for the sample trees resulting in a small sample size 

(n<20) for each species. Even though there were many trees of each species at each study 

site, very few of them satisfied the requirement for a clear unobstructed view. This serious 
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limitation makes dry season photographs to be an inefficient way of collecting measurements 

required in fractal allometry. Though this form of remote data collection can be used in 

savannas where a small sample size can be selected, it is inapplicable to woodlands and 

natural forests were trees are densely populated. 

Time taken to collect fractal allometry data using the photographic approach was twice the 

amount taken using the manual in-field approach. Measuring tree dimension parameters from 

images requires a number of steps and this lengthens the period for the method. The initial 

step involves climbing a tree so as to wrap coloured tape around its stem at each 

measurement point, followed by the capturing of the tree image. Thereafter the image is 

imported into IrfanView image processing software where stem diameters and node lengths 

are measured. Accurate measurements on images require one to magnify the tree image and 

the processing of the image further lengthens the time taken. The longer period taken to 

measure tree dimension parameter using images as compared to in situ measurements further 

contributes to the inefficiency of the former in collecting fractal allometry data. 

The low coefficient of determination values of both the equations for the relationship 

between branch ratio and stem diameter derived from in situ and image measurements show 

the independence of branch ratio on stem diameter, thereby establishing the viability of the 

fractal allometry model and validating its assumptions 

Model fitting and the comparisons between the new and existing empirical allometry 

The usefulness of an allometric equation depends on the ability to quantify the error 

associated with the equation, and this can be done by deriving the confidence intervals of the 

estimates from the equation (Nickless et al., 2011). However a major constraint of the study 

was the unavailability of an independent stem-by-stem dataset, which made it impossible to 

provide biomass estimates from the new allometry, independent of the derived estimates 

based on equations fitted to all the stems from a species. This made it impossible to 

rigorously quantify the error associated with the new allometric equations. The existing 

empirical allometry is also uncertain. According to Netshiluvhi and Scholes (2001), the 

equations given in Table 3.5 are not fully defined as there is no information on the bias and 

variance of the fit, as well as the confidence intervals of the predicted values. 

As a result, a comprehensive comparison of the new allometry against the existing empirical 

allometries to show which of the equations performed better could not be done, as only the 

confidence intervals of the slope and intercepts were compared. Colgan et al. (2013) 
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allometry had the narrowest confidence interval for the slope and intercept for each species 

(except D.cinerea which was not part of their study species), implying that it is the most 

precise allometry, which is not the same thing as most accurate (with the least bias). 

Arguably, for the assessment of plot biomass, where many stems are involved, accuracy is 

more essential than precision. 

Fitting the model M=bD
a
 provided no information on the value of including the form factor 

in biomass equations. It is possible to infer from the range of form factors derived here (0.43 

to 0.69), and the non-unitary slopes of the regression of new allometry on the best empirical 

allometry by Colgan et al. (2013) (both in the form ln(M) = β0
*
+β1

*
ln(FρD

2
H); that addition 

of from factors can improve fit by up to 11%. Therefore, the inclusion of species-specific 

form factor increases the precision of biomass estimation relative to equations not including a 

form factor. Other authors have tested the hypothesis and come to a similar conclusion. 

Including form factor in volume equations has been shown to improve the precision of 

volume estimation in plantation forestry (Adenkule et al., 2013) for example in Eucalyptus 

species (Gama et al., 2010). MacFarlene and Ver Planck (2012) showed that form factor 

explained a great proportion of the relative error in biomass estimation for hardwoods in 

Michigan. Including form factor in biomass equations reduces the error that arises from 

assuming that the tree stem is a perfect cylinder (Adenkule et al., 2013). Weiskittel et al. 

(2015) state that including additional variables for example form factor and wood density in 

allometric equations can improve their precision.  

Form factor and its relationship with other tree attributes 

Species-mean form factors estimated by the fractal allometry program were constantly lower 

as compared to those derived by Colgan et al., (2013). This might be as a result of the 

difference in tree sizes, as some of the researcher’s sample trees had diameters and heights 

outside the ranges considered by Colgan et al. (2013). 

Form factor was negatively correlated with wood density, basal stem diameter and height, 

meaning an increase in any of those variables corresponds with a decrease in form factor. The 

weak correlation between form factor and wood density means that the former cannot be 

estimated from the latter in future studies. Wood density was positively correlated with both 

basal diameter and height. This important, because wood density is also used in the new 

allometric form; therefore there is cross-correlation between two input variables which 

should in principle be independent of one another. Bruce and Max (1990) showed that form 
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factors changes with tree size. They argue that within a height class, form factors will 

decrease as diameter increase, and this is line with the results of this study. However they 

also state that form factor is positively correlated with height and this is contradicts the 

results of this study.  

Estimation of form factors from easily observable tree traits 

The distribution of form factors for S.birrea trees along the F1 axis implies that a form factor 

can be assigned to the species using height. Form factors for S.birrea were shown to decrease 

along the F1 principal component implying that for the species, tall trees are likely to have a 

smaller form factor as compared to the taller ones. This finding is consistent with the results 

shown in the correlation analysis which showed a negative correlation between form factor 

and height. However Bruce and Max (1990), argue that form factor is positively correlated 

with height meaning that the former decreases as the latter decreases. 

The distribution of the form factors for T.sericea, C.mopane, C.imberbe, D.cinerea and 

C.apiculatum trees along the F2 axis suggests that the form factor for those species can be 

assigned using the form quotient. This means that after one has measured the basal stem 

diameter and the diameter just before the first branch and calculated the ratio of the two 

diameters, they can go on to assign a form factor to that tree. The decrease in form factor 

along the F2 axis confirms the negative correlation between form factor and stem diameter. 

This result is consistent with the argument by Bruce and Max (1990) who state that form 

factor decreases as stem diameter increases.  

The F1 and F2 principal components which were chosen as the axis for the ordination plot to 

map trends for form factor were mainly related to tree height and form quotient, respectively. 

This means that the form factors of the study species can be assigned if data on tree height 

and form quotient is available. Tree height and the diameters needed to calculate the form 

quotient can be measured with sufficient accuracy from photographs of trees as shown in the 

second paragraph of this chapter. This means that form factors of South African trees can be 

assigned using few simple measurements of height and stem diameters taken from 

photographs. 

However the assigning of a form factor to tree by a visual assessment a photograph of the tree 

was inapplicable for this study as this approach required the distance between the 

photographer and each sample tree to be the same throughout data collection. The 

requirement for a clear unobstructed view for each sample tree meant that the researcher had 
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to select the ideal horizontal distance from their focal point to the object (tree), which would 

allow a clear view of the tree before its capture. Some of the trees were obstructed either by 

whole trees or overlapping branches, thus the distance from which the image was captured 

was dependent on whether or not the researcher could get a clear shot of the whole tree. 

Sample trees were of different sizes, meaning that the bigger the tree the further away the 

researcher had to stand in order to take a picture of the whole tree, and vice versa. These 

challenges resulted in great variation in the horizontal distances between the focal point and 

each sample tree. 
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Chapter 5: Conclusion 

This study proves that the error in measuring tree dimension parameters using dry season 

photography is well within the acceptable range of dendrometric measurements. Thus 

deriving vital tree measurements from photographs is sufficiently accurate for the purposes of 

biomass and volume estimation. Less time is spent in the field capturing the image of each 

sample tree as compared to measuring tree dimension parameters in situ, and this can result in 

significant cost savings and a faster way of collecting field data. However the time it takes to 

collect measurements using images is lengthened during the processing of the images to 

allow measurements in IrfanView, resulting in a longer period for image measurements when 

compared to the in situ ones. Fractal allometry relationships derived using both methods were 

not statistically significant, and this means that tree volume can be modelled using a dataset 

from in situ or image measurements.  

South African trees can be assigned a form factor, with an accounted variance of about 

73.5%, using easy field measurements of tree height and form quotient. Principal Component 

Analysis showed that the variation in form factor was mainly explained by these two 

variables. It is hard to accurately collect tree height data in situ, and that is where 

photographic approach comes in. This method of assigning form factors to South African 

trees saves us the trouble of having to cut down trees, weigh them and measure their 

cylindrical mass so as to calculate the form factor. 

The other suggested method of assigning a form factor to a tree by simply looking at its 

photograph may work if the image of each sample tree is captured at about the same 

horizontal distance away from the tree. This is rarely possible as the trees are often of 

different sizes and may be obstructed by other sample trees or overlapping branches.  

The study could not determine whether including a species-specific form factor would result 

in new allometry that performs better that the existing empirical allometry, as there was no 

independent data set to quantify the error associated with the former, but by logical inference, 

an allometry which includes form factor information could be both more precise and accurate 

than one that does not. Furthermore, the speed and ease with which data can be collected, and 

the removal of the need to fell, dry and weigh the sample trees, makes the combination of a 

fractal allometry volume estimation and a derived form factor very attractive for assigning 

allometric equations to large number of African species for which they are unknown 
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Appendix 1: The fractal allometry programme 

Fractal allometry programme (Courier font 10). 

PROGRAMME FractalGu; 

{-------------------------------------------------------------------} 

Uses fractal properties to estimate the wood mass, twig mass,            

bark mass, whole tree (aboveground) mass and stem area                    

of trees. Version developed for use by T. Muzite                                                      

R.J Scholes, Environmentek, CSIR                                                                           

November 2015 

{-------------------------------------------------------------------} 

uses wincrt;                                                              

const heap size=1000; {number of recursive nodes that can be recalled}   

type equation type= (none, linear, quadratic, loge, InIn, log10, loglog, 

power, exponent, unknown);                                              

const formlist: array [equationtype] of string [4] =                                 

           (‘none’, ‘line’, ‘quad’, ‘loge’, ‘InIn’, ‘lg10’, ‘lglg’, 

’powr’, ‘expt’, ‘unkn’);                                                                     

 var diam: array [1..heapsize] of real; {heap of cross-sectional 

areas}                                                                    

 Ta, Tb, La, Lb, Wa, Wb, Ba, Bb, Va, Vb, Asd,                      

 WoodDensity, Barkdensity, TermTwigd,                                  

 sumWoodMass, SumTwigMass, SumBarkMass, Sumwoodvol, SumBarkVol 

,BranchVol                                                                       

 ccm, woodvol, barkvol, bolevol, twigmass, woodmass, rcm, rm, Am²     

 In10, Nodelength, acm², dmm, dcm, dm, barkthick, woodarea,                                     

 dterm, stemArea, SumStemArea, assym, c², Area of Branches: real;                                     

 n,1,decile, ntwigs: integer;                                                     

 par: text;                                                                         

 bole form, bark form, twig form, taperform, node form:equation type;                               

 form name: string  [4];                                                  

 species code: string [8];                                                             

 response , sp : char                                                      

d descriptor:string [30];                                              

A AS:array [0..10] of real; 

{-------------------------------------------------------------------} 
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Function BranchAssymetry: real;                                                     

{the asymmetry of branching is expresses as the 

(area of branch 1)/ (area of branch 1 + 2) 

It therefore is constrained to between 0 and 1, with a mean of 0,5 and is 

assumed                                                                               

to be normally distributed.                                                

The normal distribution is described by the standard deviation of the 

asymmetry}                                                               

var randnum,bigger,z:real;                                       Function 

InvNormal (var q:real) :real;                                            

{given the probability of x>z, determines value of z }                     

var x, sqrtx, cubex: real;                                                

begin                                                                                        

 x: = sqrt (In (1.0/sqr (q)));                                             

 sqrx: sqrt (x);                                                         

 cubex : = sqrtx*x;                                                     

 InvNormal : = x- ((2.515517+0.802853*0.010328*sqrtx)/   

  (1.0+1,432788*x+0.189269*0.00138*cubex));                     

 end;                                                               

begin                                                               

 {Generate a random  number between 0.5 and 1.0}                       

 randomize;                                                           

 randnum: = 0.5+random (20000)/40000.0;                                      

 z: = InvNormal (randnum);                                             

 bigger: = z*Asd+0.5;                                                        

 if bigger>1.0 then BranchAssymetry:=1.0 else BranchAssymetry: = 

bigger;                                                                       

end;                                                                        

{-------------------------------------------------------------------------} 

function Solve (var x, a, b:real; var eqt:equation type) : real;       

begin                                                                        

{Solve the equation}                                                       

if x>0.000000001                                                               

 then                                                                     

 case eqt of                                                               

  linear  : solve: = a*x+b;                                           

  quadratic  : solve: = (a*sqr (x)) +b;                          

  loge : solve: = a*In (x)+b ;                                               

  InIn : solve: = exp (a*In (x)+b); 
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  log10 : solve:= a*In (x)/In10+b;                               

  loglog : solve:= exp ((a*In (x)/In10+b)*In10);             

  power : solve := (exp (a*In (x)))*b;                                   

  exponent : solve := exp (b*In (x))*a;                                

  end {of case}                                                                 

 else Solve : = 0.0;                                                                     

end; { of equationbuilder}                                                        

{-------------------------------------------------------------------------} 

Procedure Branch;                                                             

var area,sum area:real;                                                

begin                                                                     

end;                                                                        

{Main programme }                                                            

{-------------------------------------------------------------------------} 

Begin                                                                   

In10: = In (10.0);                                                      

{define database file}                                                  

write (‘Species code? (4letter genus+4letter species)>’); readIn         

(species Code);                                                        

assign (par, ‘a:\‘+species code +’.par’);                              

reset (par);                                                            

{read in database file}                                                 

{header lines first}                                                     

for 1:=1 to 2 do readIn (par); {header lines}                                                

{now the data, write them out as a check}                                   

readIn (par, descriptior, woodDensity);                                         

writeIn (descriptor, WoodDensity: 8:3);                                       

readIn (par, descriptor, BarkDensity);                                  

writeIn (descriptor, BarkDensity: 8:3);                                  

readIn (par, descriptor, TermTwigd);                                    

writeIn (descriptor, TermTwigd:8:3);                                       

TermTwigD: = termTwigD/10.0;                                             

{bole volume}                                                                         

readIn (par, descriptor, formname:Va,Vb);                                                 

writeIn (descriptor:30,formname:4,Va:8:3,Vb:8:3);                             

boleform: = none;                                                          

repeat 

bole form: = succ (bole form)                                             

until (formname = form list[bole form]) or (bole form = unknown);               

{bark thickness}                                                             
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readIn (par, descriptor, form name, Ba,Bb);                                   

writeIn (descriptor:30, form name:4, Ba:8:3, Bb:8:3);                   

bark form: = none;                                                         

repeat                                                                   

barkform: = succ (bark form)                                                  

until (formname = formlist [bark form]) or (bark form = unknown);                          

{twigmass}                                                             

readIn (par, descriptor: form name, Wa, Wb);                                            

writeIn (descriptor:30, form name:4,Wa:8:3, Wb:8:3);                         

twigform: = none;                                                               

repeat                                                                         

twigform: = succ (twig form)                                                  

until (form name=form list [twig form]) or (twig form = unknown);                 

{taper}                                                                

readIn (par, descriptor, form name, Ta, Tb);                                  

writeIn (descriptor:30, form name:4, Ta:8:3, Tb:8:3);                            

taper form: none;                                                                      

repeat                                                                                                      

taper form: = succ (taper form)                                                

until (formname = formlist [taper form]) or (taper form = unknown);          

{node length}                                                                 

readIn (par, descriptor, form name, La, Lb);                            

writeIn (descriptor:30, form name:4, La:8:3, Lb:8:3);                        

node form: = none;                                                                                      

repeat                                                                                  

node form: = succ (node form)                                             

until (form name = form list [node form]) or (node form = unknown);                    

{asymmetry}                                                           

readIn (par, descriptor, ASD);                                                  

WriteIn (descriptor:30,ASD:8:4);                                       

Close (par);                                                                            

 Write (‘Input parameters read in. Press any key to continue…’);        

readIn;                                                                          

repeat  { continue until user quits}                                                        

{Set accumulators to zero}                                           

SumTwigMass: = 0.0;                                        

SumWoodVol: = 0.0;                                                  

SumBarkVol; = 0.0;                                                   

SumStemArea; = 0.0;                                                      

ntwigs: = 0;                                                   
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{obtain the basal diameter}                                             

write(‘What is the basal circumference? (cm)> ‘);                   

readIn (ccm); WriteIn;                                               

dcm: ccm/pi; {diameter, cm}                                          

dm: dcm/100.0; {diameter in metres}                                       

acm²: = pi*sqr(dcm*0.5); {XS area, cm²}                               

 clrscr;                                                  

WriteIn(‘Circumference = ‘,ccm:6:1,’cm; Diameter = ‘dcm:6:1,’ 

cm; Area = ‘,acm2:6:0, ‘ cm²’);                                          

{Calculate the volume of the main bole, in m3}                               

 bolevol: = Solve (dm,Va,Vb,boleform); {outside bark bole 

volume, m3}                                                           

if bolevol <0.0 then bolevol: =0.0;                                 

{stem surface area}                                                        

StemArea: = (dcm*pi/100.0)*(bolevol/(acm2/10000.0));            

SumStemArea: SumStemArea+StemArea;                                                

{the bark volume on the main bole}                                     

BarkThick: = Solve(dcm,Ba,Bb,bark form)/10.0; {cm)                              

if BarkThick<0.0 then BarkThick:0.0;                                      

if BarkThick >=rcm then bark thick:=rcm;                                 

BarkVol: = StemArea*barkthick/100.0; {m³}                                                           

SumBarkVol: = SumBarkVol+BarkVol;                                    

Woodvol:=Bolevol-barkVol;                                         

if Woodvol <0.0 then Woodvol: = 0.0; {m³}                            

SumWoodVol: = SumWoodVol+WoodVol;                              

BoleVol: = Bolevol-BarkVol;                                                           

{Calculate the area of the first 2 branches}                        

assym: = 0.5;                                                        

c²  := ccm*ccm;                                                                                                                                                   

Area of Branches: = (Solve (c²,Ta,Tb,taper from)*c²)/(4.0*pi); 

{sum of XS area above branch}            

if Area of Branches<0.0 then Area of Branches:=c²/(4.0*pi);         

diam[1]:=sqrt (4.0*(Area of Branches*Assym)/pi);                                

diam[2]:=sqrt (4.0*(Area of Branches*(1.0-Assym))/pi);                        

n: = 2;                                                                

{commence the fractal recursion}                                       

repeat                                                                              

 if diam[n] > termTwigD                                              

  then {work out stem volume and carry on branching}              

  begin                                                  
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  dcm: = diam[n];                                                 

  acm²: = pi*sqr(dcm/2.0);                                   

  Node Length: = Solve (dcm,La,Lb,node form); {in cm}             

  if node length < 0.0 then node length: = 1.0;                   

   BranchVol: = Node length*acm²/1000000.0; {m3}              

  StemArea: = (dcm*pi/100.0)*(branchvol/(acm2/10000.0));        

  SumStemArea: = SumStemArea+StemArea;                            

  BarkThick: = Solve (dcm,Ba,Bb,bark form);                        

   if Bark Thick < 0.0 then Bark Thick: 0.0;                     

  if (2.0*BarkThick) > dcm then barkthick: = dcm*0.5;                   

  Barkvol: = (BarkThick/1000.0)*StemArea;                

  SumBarkVol: = SumBarkVol+BarkVol;                         

  Woodvol: = BranchVol-BarkVol;                           

  if WoodVol < 0.0 then WoodVol: = 0.0;                            

  SumWoodVol: = SumWoodVol+WoodVol;                      

  StemArea: = dcm*Nodelength/10000.0;                           

  assy: = 0.5;                                                    

   c²: = sqrt (dcm*pi);                               

  Area of Branches: = (Solve (c²,Ta,Tb, taper 

form)*c2)/(4.0*pi); {sum of XS area above branch};                                                    

  if Area of Branches < 0.0 then Area of Branches: = 

c²/(4.0*pi);                                                        

  diam[n]: = sqrt (4.0*Area of Branches*Assym/pi);      

  diam(n+1): = sqrt (4.0*Area of Branches*(1.0-Aassym)/pi);  

  n: = n+1;        

  end                                                         

 else {work out twig mass, and go back a branch}                             

  begin    

   ntwigs: = ntwigs+1;                                      

   dmm; = diam[n]*10.0;                                    

     TwigMass: = Solve (dmm,Wa,Wb,twig form);                          

     if TwigMass < 0.0 then Twig mass:=0.0;                         

     SumTwig Mass: = SumTwig Mass+Twig Mass/1000.0;                 

   n:=n-1;                                                              

   end;         

    until n = 0;                                                             

    SumWoodMass:=SumWoodVol*WoodDensity;                             

    SumBarkMass:=SumBarkVol*BarkDensity;                                        

    WriteIn (‘Fractal Allometry’);                                    

    WriteIn (‘Twig Mass = ‘,SumTwigmass:8:1,’ kg; Number of twigs       
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 =’,ntwigs:7,’ smaller than ‘,TermTwigD:4:1,’ cm’);                     

    WriteIn (‘Bark Mass= ‘,SumBarkMass:8:1,’ kg; Bark               

 volume=’, SumBarkVol:8:3,’ m³);                                   

    WriteIn (‘Wood Mass= ‘,SumWoodMass:8:1,’ kg; Wood volume =       

 ‘,SumWoodVol:8:3,’ m³; Main Bole = ‘,Bolevol:8:3,’ m³’);                      

   WriteIn (‘Tree Mass = ‘,(SumWoodMass+SumBarkMass+SumTwigMass):8:1,’   

 kg’);                                                                           

   WriteIn (‘Stem Surface Area = ‘,StemArea:8:4,’ m2 Projected stem     

 area = ‘,StemArea/pi*0.5:8:4,’ m²’);                                    

   writeIn;                                                          

   write (‘Enter any key to continue, or <q>uit > ‘);                   

   readIn (response);                                                   

   until response = ‘q’;                                               

   End 
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Appendix 2: An example of an input file for the FractalGu programme, showing the input 

parameters for T.sericea.  

 

Parameters for Fractal allometry of Terminalia sericea 

T Muzite March 2016                                                                                          

Wood density (kg/L)                       :  0.749                                                                    

BarkDensity (kg/L)                       :  0.39                                                                    

Terminal Twig diameter (mm)              :  10.0                                                                                                                                   

Assymetry (Al/(Al+As)                    :  0.5                                                                                                          

Bark thickness (cm) = Ba*ln(dcm)+Bb         :  0.2295 0.2693                                                                                                                                   

Twigmass (g) = Wa*twigdiam(mm)+Wb           :  2.0 0.0                                                                                                                                     

Branch taper (%/cm) = Ta*dcm+Tb            :  0.0 0.369                                                                                                                                   

Node length (cm) = La*ln(dcm)+Lb          :  1.3585 77.469                                                                                                                  

Area above:area below=Aa*Topdcm+Ab       :  0.0 1.2027                            
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Appendix 3.1: Summary of regression formulae for the relationship between branch ratio (unit less) and stem diameter (cm).  

 

 

spp method Coeff  SE T p Upper CI Lower CI R²  n 

TS 1 β0 1.203 0.049 24.672 0.000 1.105 1.301 0.000  53 

β1 0.000 0.003 0.138 0.891 -0.005 0.006 

TS 2 β0 1.201 0.041 29.104 0.000 1.118 1.284 0.001  53 

β1 0.000 0.002 0.194 0.847 -0.004 0.005 

CA 

 

1 

 

β0 1.197 0.047 25.250 0.000 1.102 1.292 0.000  51 

 β1 1.232E-5 0.005 0.002 0.998 -0.010 0.010 

CA 2 β0 1.194 0.045 26.812 0.000 1.105 1.284 0.000  51 

β1 5.200E-5 0.005 0.011 0.992 -0.010 0.010 

SB 1 β0 1.124 0.041 27.618 0.000 1.042 1.206 0.026  53 

β1 0.002 0.002 1.196 0.237 -0.001 0.006 

SB 2 β0 1.124 0.035 32.121 0.000 1.054 1.194 0.022  53 

β1 0.002 0.002 1.086 0.282 -0.001 0.005 

DC 1 β0 1.286 0.038 33.718 0.000 1.210 1.362 0.020  59 

β1 -0.005 0.005 -1.073 0.288 -0.016 0.005 

DC 2 β0 1.314 0.039 33.545 0.000 1.236 1.392 0.077  59 

β1 -0.012 0.006 -2.184 0.033 -0.023 -0.001 
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Appendix 3.1: continued 

The equation is in the form Br= β0+ β1D (where Br is branch ratio, β0 and β1 are regression coefficients, and D stem diameter. Method 1 is the in 

situ approach, while method 2 is the photographic approach 

 

 

 

spp method Coeff  SE T p Upper CI Lower CI R² n 

LS 1 β0 1.157 0.061 18.880 0.000 1.032 1.282 0.016 33 

β1 0.001 0.002 0.712 0.482 -0.002 0.005 

LS 2 β0 1.257 0.053 23.754 0.000 1.149 1.365 0.042 33 

β1 -0.002 0.002 -1.163 0.254 -0.005 0.001 

CM 

 

1 

 

β0 1.226 0.047 26.354 0.000 1.132 1.319 0.001 47 

β1 0.000 0.003 -0.185 0.854 -0.007 0.006 

CM 2 β0 1.205 0.048 25.264 0.000 1.109 1.301 0.000 47 

β1 0.000 0.003 0.050 0.960 -0.007 0.007 

CI 1 β0 1.295 0.063 20.722 0.000 1.168 1.422 0.129 37 

β1 -0.008 0.004 -2.274 0.029 -0.015 0.000 

CI 2 β0 1.315 0.061 21.448 0.000 1.190 1.439 0.168 37 

β1 -0.009 0.003 -2.655 0.012 -0.016 -0.002 

PA 1 β0 1.164 0.060 19.446 0.000 1.043 1.285 0.029 

 
41 

β1 -0.008 0.008 -1.079 0.287 -0.024 0.007 

PA 2 β0 1.187 0.057 20.919 0.000 1.072 1.302 0.077 41 

β1 -0.014 0.008 -1.803 0.079 -0.030 0.002 
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Appendix 3.2: Summary of regression formulae for the relationship between branch taper and stem diameter (cm).  

 

 

 

spp method coeff  SE T p Upper CI Lower CI R² n 

TS 1  β0 0.369 0.057 6.515 0.000 0.255 0.483 0.182 53 

β1 -0.009 0.003 -3.334 0.002 -0.015 -0.004 

TS 2 β0 0.301 0.046 6.586 0.000 0.209 0.393 0.127 53 

β1 -0.006 0.002 -2.722 0.009 -0.011 -0.002 

CA 

 

1 

 

β0 0.429 0.072 5.924 0.000 0.283 0.575 0.198 51 

β1 -0.024 0.007 -3.440 0.001 -0.038 -0.010 

CA 2 β0 0.293 0.034 8.590 0.000 0.224 0.361 0.246 51 

β1 -0.013 0.003 -3.918 0.000 -0.020 -0.006 

SB 1 β0 0.295 0.038 7.797 0.000 0.219 0.372 0.153 53 

β1 -0.005 0.002 -3.005 0.004 -0.008 -0.002 

SB 2 β0 0.288 0.037 7.854 0.000 0.215 0.362 0.155 53 

β1 -0.005 0.002 -3.055 0.004 -0.008 -0.002 

DC 1 β0 0.175 0.037 4.737 0.000 0.101 0.249 0.007 59 

β1 0.003 0.005 .638 0.526 -0.006 0.012 

DC 2 β0 0.198 0.042 4.675 0.000 0.113 0.284 0.003 59 

β1 -0.002 0.005 -.413 0.681 -0.013 0.009 
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Appendix 3.2: continued. 

The equation is in the form Bt= β0+ β1D (where Bt is branch taper, β0 and β1 are regression coefficients, and D stem diameter. Method 1 is the in 

situ approach, while method 2 is the photographic approach 

 

spp method coeff  SE T p Upper CI Lower CI R² n 

LS 1 β0 0.157 0.031 5.051 0.000 0.094 0.221 0.058 33 

β1 -0.001 0.001 -1.363 0.183 -0.003 0.001 

LS 2 β0 0.173 0.039 4.389 0.000 0.092 0.253 0.029 33 

β1 -0.001 0.001 -0.955 0.347 -0.003 0.001 

CM 

 

1 

 

β0 0.308 0.067 4.590 0.000 0.173 0.444 0.072 47 

β1 -0.008 0.004 -1.847 0.072 -0.017 0.001 

CM 2 β0 0.261 0.057 4.551 0.000 0.145 0.376 0.044 47 

β1 -0.005 0.004 -1.439 0.157 -0.013 0.002 

CI 1 β0 0.181 0.045 4.047 0.000 0.090 0.271 0.027 37 

β1 -0.002 0.002 -0.963 0.343 -0.007 0.003 

CI 2 β0 0.214 0.043 4.987 0.000 0.127 0.301 0.096 37 

β1 -0.004 0.002 -1.870 0.070 -0.009 0.000 

PA 1 β0 0.632 0.094 6.704 0.000 0.441 0.823 0.205 41 

β1 -0.037 0.012 -3.093 0.004 -0.061 -0.013 

PA 2 β0 0.727 0.141 5.143 0.000 0.441 1.013 0.116 41 

β1 -0.041 0.018 -2.263 0.029 -0.079 -0.004 
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Appendix 3.3: Summary of regression formulae for the relationship between internode length (cm) and stem diameter (cm).  

 

 

 

spp method coeff  SE T p Upper CI Lower CI R² n 

TS 1  β0 77.460 32.883 2.356 0.022 11.454 143.484 0.000 53 

β1 1.359 11.852 0.115 0.909 -22.435 25.152 

TS 2 β0 56.279 27.980 2.011 0.049 0.132 112.426 0.012 53 

β1 8.138 10.289 0.791 0.433 -12.508 28.784 

CA 

 

1 

 

β0 -30.899 31.897 -0.969 0.337 -95.000 33.201 0.214 51 

β1 53.169 14.575 3.648 0.001 23.881 82.458 

CA 2 β0 -19.752 33.192 -0.595 0.555 -86.454 46.950 0.179 51 

β1 50.284 15.380 3.269 0.002 19.377 81.190 

SB 1 β0 -24.866 50.985 -0.803 0.426 -87.014 37.281 0.223 53 

β1 43.358 11.128 3.896 0.000 21.038 65.679 

SB 2 β0 -26.189 31.292 -0.837 0.407 -89.011 36.633 0.220 53 

β1 42.436 11.199 3.789 0.000 19.953 64.918 

DC 1 β0 53.928 13.266 4.065 0.000 27.363 80.494 0.001 59 

β1 -1.531 6.946 -0.220 0.826 -15.440 12.378 

DC 2 β0 47.032 13.852 3.395 0.001 19.293 74.771 0.001 59 

β1 1.271 7.367 0.173 0.864 -13.481 16.023 
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Appendix 3.3: continued. 

The equation is in the form L= β0+ β1D (where L is node length, β0 and β1 are regression coefficients, and D stem diameter at the base of the 

internode. Method 1 is the in situ approach, while method 2 is the photographic approach 

spp method coeff  SE T p Upper CI Lower CI R² N 

LS 1 β0 53.851 31.139 1.729 0.094 -9.658 117.359 0.026 33 

β1 8.756 9.575 0.914 0.368 -10.773 28.284 

LS 2 β0 49.892 30.600 1.630 0.113 -12.516 112.301 0.031 33 

β1 9.449 9.544 0.990 0.330 -10.016 28.914 

CM 

 

1 

 

β0 26.541 37.685 0.704 0.485 -49.360 102.442 0.040 47 

β1 19.955 14.629 1.364 0.179 -9.510 49.419 

CM 2 β0 25.520 35.743 0.714 0.479 -46.470 97.511 0.042 47 

β1 19.661 13.988 1.406 0.167 -8.512 47.834 

CI 1 β0 -17.641 57.530 -0.307 0.761 -134.433 99.151 0.079 37 

β1 35.917 20.704 1.735 0.092 -6.114 77.949 

CI 2 β0 -25.954 56.004 -0.463 0.646 -139.648 87.741 0.094 37 

β1 38.752 20.317 1.907 0.065 -2.494 79.998 

PA 1 β0 2.576 11.891 0.217 0.830 -21.476 26.628 0.097 41 

β1 12.235 5.987 2.043 0.048 0.124 24.345 

PA 2 β0 2.311 9.240 0.250 0.804 -16.379 21.001 0.129 41 

β1 11.734 4.888 2.400 0.021 1.846 21.622 
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Appendix 3.4: Summary of regression formulae for the relationship between bark thickness (mm) and the logarithm of stem diameter (cm).  

 

 

spp 

 

 

Model 

Unstandardized Coefficients Standardized 

Coefficients 

 

 

T 

 

 

P 

 

 

R
2 

 

 

n 

B Std. Error Beta     

 

TS 

(Constant) 0.270 0.142  1.895 0.079  

0.625 

 

16 ln (stemD) 0.229 0.047 0.790 4.829 0.000 

 

CA 

(Constant) 0.014 0.228  0.063 0.951  

0.559 

 

15 ln (stemD) 0.372 0.092 0.748 4.058 0.001 

 

SB 

(Constant) -0.219 0.277  -0.792 0.440  

0.701 

 

18 ln (stemD) 0.542 0.088 0.838 6.132 0.000 

 

DC 

(Constant) 0.831 0.235  3.535 0.003  

0.047 

 

19 ln (stemD) -0.102 0.112 -0.217 -0.917 0.372 

 

LS 

(Constant) -0.070 0.850  -0.082 0.936  

0.264 

 

10 ln (stemD) 0.410 0.242 0.514 1.695 0.129 

 

CM 

(Constant) 0.441 0.518  0.852 0.413  

0.022 

 

13 ln  (stemD) 0.089 0.179 0.148 0.495 0.630 

 

CI 

(Constant) -0.464 0.434  -1.068 0.321  

0.477 

 

9 ln (stemD) 0.335 0.132 0.691 2.527 0.039 

The equation is in the form Bt= β0+ β1D (where Bt is bark thickness, β0 and β1 are regression coefficients, and D stem diameter. 
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Appendix 4.1: Comparisons of the log-regression coefficients of the new allometry (Researcher’s) and the standard form of the empirical 

allometry.  

spp Colgan et al. 

(2013) 

Nickless et al. 

(2011) 

Shackleton 

(1998) 

Tietema (1993) Researcher’s Researcher’s spp 

neutral 

Colgan et al. (2013) 

spp neutral 

 β0 β1 β0 β1 β0 β1 β0 β1 β0 β1 β0 β1 β0 β1 

TS 0.179 1.008 -0.286 1.010 -0.223 1.058 -0.495 0.968 0.103 0.912 0.042 0.962 -0.225 0.929 

CA -0.079 0.940 -0.468 1.088 --- --- -0.256 0.854 -0.318 1.017 

SB -0.265 1.043 0.268 1.018 --- --- --- --- 0.127 0.909 

DC --- --- 0.128 1.293 -0.359 1.061 -0.095 0.857 -0.210 0.980 

LS 0.167 1.018 --- --- --- --- --- --- 0.132 0.925 

CM 0.239 0.895 0.295 0.911 --- --- -0.473 0.976 0.275 0.880 

CI -0.797 1.065 --- --- --- --- --- --- 0.786 1.038 

PA --- --- --- --- --- --- --- ---   

The log-regression co-efficients for the empirical allometries were derived after converting the equations from their original form ln(M) = β0* + 

β1*ln(D
2
H) for [Colgan et al. (2013), Shackleton (1998) and Tietema (1993)] and ln(M) = β0* + β1*ln(D) for Nickless et al. (2011) to the 

standard form ln(M) = β0* + β1*ln(FρD
2
H). (--) shows that there is no empirical allometry for that species by that author. 
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Appendix 4.2: Comparisons of the factor (b) and power (a) of the new allometry equation (Researcher’s) and the existing empirical allometry.  

spp Colgan et al. 

(2013) 

Nickless et al. 

(2011) 

Shackleton 

(1998) 

Tietema (1993) Researcher’s Researcher’s spp 

neutral 

Colgan et al. (2013) 

spp neutral 

 b a b a b a b a b a b a b a 

TS 0.0607 2,5323 0.027 2.7875 0.0325 2.6846 0.0326 2.455 0.0729 2.2987 0.0656 2.4172 0.0802 2.3343 

CA 0.0873 2.3961 0.0383 2.7976 --- --- 0.0861 2.1983 0.0536 2.6148 0.0689 2.4518 0.0959 2.3677 

SB 0.02 2.6657 0.034 2.6221 --- --- --- --- 0.0464 2.3281 0.0539 2.4576 0.0468 2.3733 

DC --- --- 0.0457 3.1213 0.05 2.56 0.1082 2.0682 0.0733 2.3496 0.0927 2.2832 0.0959 2.2049 

LS 0.047 2.4708 --- --- --- --- --- --- 0.0589 2.2545 0.0809 2.3342 0.0623 2.2541 

CM 0.0713 2.4007 0.062 2.4933 --- --- 0.0231 2.6716 0.0699 2.3965 0.046 2.5789 0.0699 2.4904 

CI 0.0237 2.8787 --- --- --- --- --- --- 0.2934 2.1523 0.0411 2.6009 0.0743 2.5117 

PA --- --- --- --- --- --- --- --- 0.0108 2.4361 0.0176 2.6009 0.0099 2.5117 

Equations are of the form M=bD
a
. (--) shows that there is no empirical allometry for that species by that author. 
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Appendix 5: The 95% confidence intervals for the slope (β1) and intercept (β0) used to compare the new allometry (Researcher) to the existing 

empirical allometries.  

spp author β0 SE for 

β0 

CI Upper 

Limit 

Lower 

Limit 

β1 SE for 

β1 

CI  Upper 

Limit 

Lower 

Limit 

TS Colgan et al. (2013) 0.179 0.006 0.179±0.013 0.192 0.166 1.008 0.001 1.008±0.002 1.010 1.006 

Nickless et al. (2011) -0.286 0.135 -0.286±0.289 0.004 -0.575 1.099 0.029 1.099±0.062 1.161 1.038 

Shackleton (1998) -0.223 0.130 -0.223±0.279 0.056 -0.502 1.058 0.028 1.058±0.060 1.118 0.998 

Tietema (1993) -0.495 0.119 -0.495±0.255 -0.24 -0.750 0.968 0.025 0.968±0.053 1.021 0.914 

Researcher 0.103 0.125 0.103±0.268 0.371 -0.165 0.912 0.027 0.912±0.058 0.970 0.854 

CA Colgan et al. (2013) -0.079 0.008 -0.079±0.017 -0.061 -0.096 0.940 0.002 0.940±0.004 0.944 0.936 

 Nickless et al. (2013) -0.468 0.119 -0.468±0.257 -0.211 -0.725 1.087 0.031 1.087±0.067 1.153 1.02 

Tietema (1993) -0.257 0.093 -0.257±0.200 -0.056 -0.458 0.854 0.024 0.854±0.052 0.906 0.802 

Researcher -0.318 0.162 -0.318±0.350 0.032 -0.668 1.017 0.042 1.017±0.091 1.107 0.926 

SB Colgan et al. (2013) -0.265 0.005 -0.265±0.010 -0.254 -0.276 1.044 0.001 1.044±0.002 1.046 1.042 

Nickless et al. (2011) 0.268 0.106 0.268±0.225 0.493 0.043 1.018 0.023 1.018±0.049 1.067 0.969 

Researcher 0.127 0.113 0.127±0.239 0.366 -0.112 0.909 0.025 0.909±0.053 0.962 0.856 

DC Nickless et al. (2011) 0.128 0.112 0.128±0.236 0.364 -0.108 1.293 0.041 1.293±0.086 1.379 1.206 

Shackleton (1998) -0.359 0.092 -0.359±0.194 -0.165 -0.553 1.061 0.034 1.061±0.071 1.132 0.989 

Tietema 1993 -0.095 0.074 -0.095±0.156 0.061 -0.251 0.857 0.027 0.857±0.057 0.914 0.800 

Researcher -0.210 0.104 -0.210±0.219 0.009 -0.429 0.980 0.038 0.980±0.080 1.06 0.900 
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Appendix 5: continued 

spp Author β0 SE for 

β0 

CI Upper 

Limit 

Lower 

Limit 

β1 SE for 

β1 

CI  Upper 

Limit 

Lower 

Limit 

LS Colgan et al. (2013) 0.167 0.005 0.167±0.011 0.178 0.155 1.018 0.001 1.018±0.002 1.020 1.015 

Researcher 0.132 0.148 0.132±0.341 0.473 -0.209 0.925 0.027 0.925±0.062 0.987 0.863 

CM Colgan et al. (2013) 0.239 0.007 0.239±0.015 0.254 0.223 0.895 0.002 0.002±0.004 0.900 0.890 

Nickless et al. (2011) 0.295 0.184 0.295±0.405 0.700 -0.110 0.911 0.040 0.040±0.088 0.999 0.822 

Tietema (1993) -0.473 0.197 -0.473±0.433 -0.039 -0.907 0.976 0.043 0.043±0.094 1.070 0.881 

Researcher 0.275 0.231 0.275±0.508 0.783 -0.233 0.880 0.050 0.050±0.110 0.990 0.770 

CI Colgan et al. (2013) -0.797 0.007 -0.797±0.016 -0.78 -0.813 1.065 0.001 1.065±0.002 1.067 1.062 

 Researcher 1.038 0.274 1.038±0.648 1.686 0.390 0.786 0.045 0.786±0.106 0.892 0.670 

The equations are of the form ln(M) = β0* +β1*ln(FρD
2
H).  

 

 


