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Abstract

The propagation o atwo-dimensional fluid-driven pre-existing fluid-filled fradure in perme-
able rock by the injedion o a viscous, incompressble Newtonian fluid is considered. The
fluid flow in the fradureislaminar. By the goplicaion o lubricationtheory, apartial differen-
tial equation relating the half-width of the fradure to the fluid presaure and le&-off velocity
is obtained. The le&-off velocity is an urspedfied function whose form is derived from the
simil arity solution. The model is closed by the adoption o the PKN formulationin which the
fluid presaure is propational to the fradure half-width. The constant of propartionality de-
pendsonthe material propertiesof the rock throughits Youngmoduusand Poisonratio. The
groupinvariant solutions obtained describe hydraulic fraduring in a permeable rock. Results
are dso oltained for the case in which the rock is impermeable. Applicaions in which the
rate of fluid injedioninto the fracure andthe presaure & the fradure entry are independent of
time ae analysed. The limiting solutionin which the fradure length and fracure half-width
grow exporentially with time is derived. Approximate power law solutions for large values
of time for the fradure length and vdume ae derived. Finaly, the cae in which the fluid is
injeded by a pump working at a constant rate is investigated. The results are ill ustrated by
computer generated graphs.
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Chapter 1

INTRODUCTION

1.1 Introduction

A particular classof fraduresinrock developsasaresult of internal presaurisation byaviscous
fluid. These fradures are @ther man-made hydraulic fradures creaed by injeding a viscous
fluid from abore hde into the subsurfacereservoir rock in order to increase production from
oil and gas reservoirs or natural fradures such as kilometers-long vdcanic dykes driven by
magma coming from the upper mantle beneah the Earth’s crust or fisauresin rocks in mining
opened up bythe use of ultrahigh pressure water.

The problem of a pre-existing fluid-driven fradure propagating in rock, either permeable
or nat, arises in hydraulic fraduring, a technique widely used in the petroleum and mining
industries, aswell asin the formation o sill sand dykes and in magmatransport in the Earth’s
crust by means of magma-driven fradures. In thisdissertation, we will i nvestigate the problem

of apre-existing fluid-driven fradure propagating in permeéble rock.

1.2 Hydraulicfracturing

Hydraulic fraduring is a technique which was first introduced in the 1940s and hes proved
to be avery useful and standard technique for the enhancement of the production o oil and
natural gasfrom areservoir rock andfor theopening up d fisauresinrocksin mining. It occurs

naturally in the formation o intrusive dykes and sill sin the Earth’s crust[1]. In thistednique,
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ultrahigh presaure fluid, usually water with some additi ve substances to increase viscosity, is
injeded into the undergroundreservoir rock. For tensile aads to form, the presauure aeaed
by the fluid must exceeal the fradure toughressof the rock. Hence, new fradures are aeaed
and existing ores are opened up. Sand gains, aluminium pellets, glass beals, or similar
materials are caried in suspension by the fluid into the fradures. These ae cdled proppng
agents or proppants. When the presaure is released at the surface the fraduring fluid returns
to the wellbore & the fradures partially close on the proppants, leaving paths with increased
permeability for fluid flow.

In the mining industry, the use of explosives, usually dynamite, to bresk unmined rock

pases svera problems which include:

e the aedion o solid particles of small dimensions (radius 1.m) in the working atmo-
sphere which are very harmful to the lungs asthey are too small to be geded by cough
ing andtoolarge to passthroughthe dveoli,

e highlevel of destructivenessin which a grea ded of chemicd energy is wasted in the

form of noise and vibrations,
e theblasting site hasto be deaed of personrgl during the blasting operation.

In the petroleum industry, the processof hydrocarbonrecvery from the subsurfacereservoir
rock involves the flow of oil and gas from the reservoir into the wellbore and then to the
surface This processof hydraulic fracuring consists of pumping a fluid into the wellbore in
order to enlarge apre-existing fradure and fadlit ate the flow of oil and gas throughthe rock
formation. The main concept in hydraulic fraduringisto induce a cad in the rock formation
to fadlit ate the flow of oil and gas throughthe formation. Hence hydraulic fraduring hes
proved to be an adternative methodfor the bresing o rocksin the miningindustry andin the
opening up d fisaures for hydrocarbonrevery in the petroleum industry.

Modelli ng hydaulic fraduring o rocks requires consideration o both fluid and solid me-

chanics.

e On the one hand, the lubrication equations to charaderize the flow of fluid in the thin

fradure and



e onthe other, the dasticity equations to describe the deformation and propagation o the

fradure.

1.2.1 Lubrication theory and elasticity equations

Lubricaion theory is the analysis of fluid in thin layers. For an incompressble fluid, it be-
comes applicable in the governing o fluid flow in the fracture onthe assumptionthat the ratio
of the fradure half-width, H, to the length of the fradure, L, is much lessthan ore. This
concept is dedt with extensively in Chapter 2.

The dasticity equations which control the rock deformation produced by the interna fluid
presaure in the fradure ae dso applicable becaise many investigatorg 2] have shown that
rocks behave dasticdly over somerange of stress Obvioudly, if the cmmpressve stressapplied
onarock exceals some limiting value, the rock will fail i ntension. In a similar manner, there
are somelimitingshea stressesthat can beimposed uponrocks. The shea condtionsthat will

lead to fail ure have been discussed in Hubbert and Willi [3]. When fraduring hydaulicdly,
and when presaure due to the injeded fluid is applied rapidly, most rocks will fail in abrittle
or ductile manner. A rock behavesin a ductile manner if it is able to suppat an increasing
load asit deforms. When the load suppated by the rock deaeases as the strain increases, the
rock isthen said to bein a brittle state. A rock exhibits either of these two types of behaviour
inarange of stresees which depend esentially onthe mineralogy, microstructure, and also on

fadors auch as temperature[4].

1.3 Dynamics of fracture width

Under static condtions, fradures will be very narrow. If fluid isinjeded at reasonable pump-
rates into narrow fradures under high injedion presaure, the fradure walls are forced apart.
As the fradure width increases, the presaure necessry to keep the fradure propagating will
have to increase, otherwise the fradure width will remain small. Thisis easily seen from the
PKN model which states that

p = Ah(z,t), (1.3.2)



where A isa constant that is determined from the material properties of the rock[5]. Also,

p=ps— o0 (132)

isthe net presaure of thefluid, pf, theinterna fluid pressure and o, isthe far-field compressve
stress perpendicular to the fradure and i(x, t) is the half-width of the fradure. One of the
important passble predictions of the PKN theory isthe behaviour to be expeded when thereis

nofluid injedioninto the fradure & the fradure entry. Thisisinvestigated in this dissertation.

1.4 Literature review

In the last half century a significant amourt of work has been dore in the mathematicd mod-
elling o hydraulic fraduresin rocks. Some of the work involves modelli ng fluid-driven frac
ture in permeéable rock while some is in impermeabdle rock. These models, which aim at
cdculating the net fluid presaure, le&-off, opening, size and shape of the fradure given the
properties of the rock, injedionrate and fluid charaderistics, have to acourt for the primary
physicd medanismsinvolved, namely, deformation o therock, fraduring o creaion o new
surfaces in the rock, flow of viscous fluid in the fradure and le&-off of the fracuring fluid
into the permeéble rock.

A number of significant contributions have been made to the solution o the fluid-driven
fradure problem in the past fifty yeas. Some of these ae anayticd models with analyticd
solutions whil e others are numerica models with numericd solutions.

Earlier work on mathematica modelling d hydraulic fradures involved finding approx-
imate solutions for simple fradure geometries[1, 6, 7, 8]. Recent work has been concerned
with developing numericd algorithmsto simulate threedimensional propagation o hydraulic
fradureq[9, 10]. One of the first analyticd solutions was developed by Perkins and Kern[6].
Their model, cdled the PK model, adapted the dassc plane strain cradk solution o Sneddon
and Elliot[11]. An extension d the work by Perkins and Kern was made by Nordgren[7] and
is cdled the PKN model. Inthe PKN model, the dfed of fluid lossinto the surroundng rock
masswas investigated.

Ancther model, known as the KGD model was developed by Khristianovic and Zheltov[8]

4



and also by Geatsma and ce Klerk[12]. The geometry and properties of these models are
discussed in Sedion 15 that foll ows.

A magjor contribution was made by Spence and Sharp [13] towards the mathematicd mod-
eling o fluid-driven fradures. They initiated the work on self-similar solutions and scding
for aKGD cradk propagating in an elastic, impermeéeble medium with finite toughress The
toughressof arock is a quantitative value that represents its resistance to fradure when ex-
posed to ahigh strain rate impad stress

A new diredion o analyticd study is based onthe gplicaion o Lie group analysis to
the investigation o problems arising from pre-existing fluid-driven fraduring o rock. The
group invariant solution for a pre-existing fluid-driven fradure in an impermeable rock has
been derived using the Lie point symmetries of the norlinea partial differential equation for
the half-width of the fradure[5]. The research work of this dissertation investigates applying

Liegroupanalysisto the problem of a pre-existingfluid driven fracure in permeéble rock.

1.5 Fracture geometry models

A number of fradure geometry models have previously been proposed for the process of
hydraulic fraduring in rock. These models are two-dimensional and they arose in the ealy
1960s from the need to have analyticd solutions to the complex solid and fluid mecdanics
interadion, given the properties of the rock, injedion rate and fluid charaderistics. These
analyticd solutionsare for the fluid presaure, le&k-off, opening, size and shape of the fradure.
It isworth nating that most models propased in hydrauli ¢ fraduring consider planar fradures
rather than kinked or curved ones[14, 15, 16].

1.5.1 ThePKN model

This model was developed by Perkins and Kern[6] and Norgren[7]. It makes the assumption
that the fracure has a constant height and an €lli pticd crosssedionas shown in Figure 1.5.1.
It also assumes that the fluid flow and fradure propagation are one-dimensional in adiredion

perpendicular to the dliptic crosssedion. The fluid presaure is taken to be constant in the



Fraduretip

Figure 1.5.1: The PKN model.

verticd plane perpendicular to the diredion o propagation and it is aso assumed that the
fluid presaure in the fradure deaeases towards the fradure tip so that, at the tip, the fluid

presaure equals the compressve stress

1.5.2 TheKGD or plane strain model

This model was developed by Khristianovic and Zheltov[8] and Geeatsma and de Klerk[12].
This model assumes that the fradure deformation and propagation evolve in a situation o
plane strain. Fluid flow in the fradure and the fradure propagation are assumed to be one-
dimensional and fradure height is constant, eat harizontal plane deforming independently,

as hownin Figure 1.5.2.

1.5.3 ThePenny-shape or r adial model.

In thismodel, the fradure propagates within a given plane andis symmetrica with resped to
the point at which fluid isinjeded as shown in Figure 1.5.3.



Fracture tip

e

Fluid flow

/
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Figure 1.5.3: The penny-shaped or radial model. @), isthe fluid flux.



1.6 Mathematical method of solution

Modelli ng the problem of a pre-existing fluid-driven fradure in impermeeble rock using the
PKN theory results in a nonlinea partial differential equation. This equation is a norinea
diffusion equation.

In this dissertation, we investigate the case when the rock in questionis permeéble. This
impliesthat thefluid injeded into the fradure le&s off into the surroundngrock. Thele&-off
playsa aucid rolein the overall readion o therock to the presaure of thefluid beinginjeded.
For the case in which therock is permeable, the norlinea diffusion equation contains a lesk-
off term, v,,. Thisfurther compli catesthe solution d the nonlinea partial diff erential equation
which naw has two dependent variables and two independent variables.

A goodway of obtaining analyticd solutions of this norlinea diffusion equationisto use
Liegroupanalysis. In thistechnique, we derive the Lie point symmetries of the partial differ-
ential equation. The existence of these Lie point symmetries|ealsto the le&k-off velocity, v,,,
satisfying afirst order linea partia differential equation. The fluid flow in the fradure obeys
the Navier-Stokes and massconservation equations. Lubricationtheory isused to smplify the
equation gowerningthefluid motioninthefradure[17]. This amplificaionstemsfrom thefad
that the dharaderistic haf-width, H, of the fradure, is gmall compared to the charaderistic
length, L, of the fradure; that is

H
— 1. 1.6.1
7 << ( )
It is also assumed that
H 2
Re (f) << 1, (1.6.2)

which implies that the inertiaterm in the Navier-Stokes equation can be negleded. In (1.6.2),
Re isthe Reynadds number defined by

Re= YL (1.6.3)

v

where U isthe dharaderistic fluid velocity in the diredion o propagation o the fradure and
v is the kinematic viscosity of the fluid. Lubricaion theory is developed in Chapter 2. The
invariant solutionsfor apre-existing fluid-driven fracture in permeable rock are obtained using

the Lie point symmetry method



1.7 Numerical methods

The initial value solver ODE 45 in MATLAB and the computer algebra padage, MATHE-
MATICA, with the built-in numericd differential equation solver, NDSolve, are used to nu
mericdly solve the system of two initial value problems encourtered in thisreseach. Thetwo
initial value problems are obtained by transformations derived from a scding analysis of the

original boundary value problem.

1.8 Outlineof research work

Two related problems will be considered and their analytic and numericd solutions anal-
ysed. The problems are hydraulic fradure in permeale rock when the le&-off velocity at
the fluid/rock interfaceis propartional to the fracure half-width and secondy when the le&k-
off velocity at the fluid/rock interfaceis propartional to the gradient of the fradure half-width.

In Chapter 2 a concise outli ne of the theory of groupanalysis of differentia equations, the
mathematicd method d solution o the partial differential equation derived in this research
work, ismade. The thin fluid film theory is briefly introduced and reviewed and the goproxi-
mations to the Navier-Stokes equation are explained.

Chapter 3 commences with the presentation o atwo-dimensional PKN fracure model for
a permeable rock. The initial fradure shape is unspedfied and is only determined from the
group invariant and numericd solutions obtained. By using the thin fluid film approxima-
tions of lubricaiontheory, the Navier-Stokes equationis reduced to alubricaion equation. A
norlinea diff usion equation for the half-width h(z, t) of the fradure is derived using the thin
film approximation and the PKN formulation (1.3.1). This equation contains a term which
is the le&k-off velocity, v,,. The Lie point symmetries of the partia differential equation are
derived and a condtion onw,, for the Lie point symmetries to exist is obtained. The general
form of the group invariant solution for h(z,t), v,(z,t) and p(x,t) is derived. The partia
differential equation reducesto anonlinea second ader ordinary differential equationin two
dependent variables when the similarity form of h(z,¢) and v, (z,t) are substituted into it.

Lastly, the physicd significance of some spedal values of the ratio & which feaures in the



groupinvariant solutionsis discussed.

In Chapter 4 analysisis given for the problem of afluid-driven fracture in permeéable rock
when the le&-off velocity, v,,, is propartional to the fracure haf-width h. Exad solutions are
obtained for some spedal cases and dscussonis given onthe physicd significance of these
cases. The general numericd solutionis obtained and discussed.

In Chapter 5, a correspondng analysisis given for the problem of a fluid-driven fracure
in permeable rock when the le&-off velocity is propational to the gradient of the fradure
half-width. Exad solutions are dso ohtained and dscussed for some spedal cases and the
general numericd solutionis derived.

Finally, the general conclusions and asummary of the results are given in Chapter 6.
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Chapter 2

BACKGROUND

2.1 Introduction

This chapter presents the main results from the theory of Lie group analysis of differential
equations that will be used in solving the nonlinea partial and ardinary diff erential equations
derived in this reseach. The theory of Lie groupanalysis of differential equations which has
extensively been dedt with in several bookg[18, 19, 20, 21, 22] was initiated by the 19th cen-
tury Norwegian mathematician, Sophus Lie (18421899. It is a systematic way of obtaining
exad solutions of linea and norinea ordinary and pertia differential equations.

A concise introductionis also given of the theory of thin fluid films, also known as lubri-

caiontheory. Lubrication theory describes the fluid flow inside the thin layer fradure.

2.2 Liepoint symmetries

We consider the norlinea second ader partial differential equation
F(tv €, h, ht> hxa htam h’tt7 ha:x) = 07 (221)

in the two independent variables x and ¢ and dependent variable h, which is the fracure half-
width, where asubscript denotes partial diff erentiation.
The Lie point symmetry generators

X =€t , h)g + &%(t, x, h)2 +n(t, x, h)3 (2.2.2)

ot ox oh
11



of equation (2.2.1) are derived by solving the determining equation,

XEEt, 2, h, by, hay hig, by has)| =0, (2.2.3)

F=0

for &'(t,x, h), €2(t,z, h) and n(t, x, h), where X2, cdled the second polongation of X, is

given by
0 0 0 0 0
(2] _ s
X X+ G on, + (o oh. + Cllahtt + (12 ohn. + (oo oh. (2.2.4)
where
G = Di(n) — e Dy(€"),  i=1,2, (2.2.5)
Cij = Dj(G) — haDj(€),  i,j=1,2, (2.2.6)

with summation over the repeaed index &k from 1 to 2. The total derivatives with resped to

the independent variablest and z in (2.2.5) and (2.2.6) are
0 0 0 0

Di=D,=— — — — 4+ .. 2.2.7
1 iy +ht@h +httaht +h“ahx + oy ( )
0 0 0 0
Dy=D,=— — — — ... 2.2.

The partial differential equation oltained in the pre-existing fluid-driven fradure problem is
seand ader and therefore we only need the second prolonggtion of X. The unknowvn func-
tions £'(t, x, h), £2(t,z, h) and n(t,z,h) in the Lie point symmetry do nd depend onthe
derivatives of h. The derivatives of i in the determining equation are independent. Hence, the
coefficient of ead derivative of h in the determining equation (2.2.3) must be zeo.

The determining equation (2.2.3) can therefore be separated acarding to derivatives of h
andthe aefficient of eat derivative set to zero. Solving this overdetermined system of equa-
tions produces expressons for £1(t, x, h), £2(t,x, h) and n(t, z, h). These solutions contain
constants. By setting all the constants to zero except one in turn, we obtain all the Lie point
symmetry generators X;, : = 1,2,...,n. We dso oltain alinea partial differential equation
for the le&-off velocity v,, which must be satisfied for the Lie point symmetriesto exist.

2.3 Liesequations

The one parameter group d transformations
7' = f'(z,a), i=1,2,....n (2.3.1)

12



where a isthe group parameter, generated by the Lie point symmetry

0

X=¢ oz’

(2.32)

where thereis ammation ower the repeded index 4, is obtained by solvingthe Lie equations

dz’ ,
=T 2.3.3
o=@, (233
subjed to theinitial condtions
T, _, =2 (234)

Lie equations will be used in Chapters 4 and 5to derive the aordinate transformation which

will t ransform aboundry value problem to two initial value problems.

2.4 Group invariant solutions
The symmetry generators obtained are of the form

0 0 0
=&l — 4+ £ — 4+, -
Xz gz (t,l‘, h>8t +£z (t,l’, h)ﬁas +771(t7177h)8h (241)

fori = 1,2,...n, where n is the number of admitted Lie point symmetries. Since a onstant
multiple of aLie point symmetry isaso aLie point symmetry, any linea combination o Lie

point symmetriesis also aLie point symmetry. Denote by X thislinea combination:
XC = Cle + CQXQ + Cng + .. + Can, (242)

wherec;,i = 1,2, ...n, are mnstants.
The groupinvariant solution, h = ¢(t, =), of the norlinea partial differential equationis
obtained by solving the equation
X.(h —¢(t,x)) =0. (24.3)
h=¢(t,x)
The groupinvariant solutionisthen substituted into the nonlinea partial differential equation.
This aubstitution reduces the partial differential equation to an ordinary differential equation

inanew variable, cdled the simil arity variable.

13



In the analysis of the fluid-driven fraduring o a permeable rock, the time rate of change
of massof fluid in the fradure is the net diff erence between the rate & which massof fluid is
entering the fradure and the rate & which massof fluid isleged-off into the rock formation.
The fraduring fluid is incompressble, hence the volume of afluid element is also conserved
and the balance law can be expressd in terms of volume of fluid instead of mass of fluid.
When the balance law is expressed in terms of the similarity variable a @ndtionis obtained
on the ratios of the unknavn constants ¢;, 7 = 1, 2, ..., n. Theratios of the constants ¢; in the
linea combination (2.4.2) are further obtained from the boundary condtion at the fracure tip

andthe given initial total volume V of the fradure.

2.5 Thin fluid film approximation

In the analysis of afluid-driven fradure of rock, the relevant equations are the Navier-Stokes
and continuity equations for a homogenous, viscous, incompressble Newtonian fluid which
in vedorial form are

ov -1

5 T Vu=—Vp+ vV + F, (2.5.1)

=0, (25.2)
where v isthefluid velocity, p, thefluid presaure, v, the kinematic viscosity of thefluid and £,
the bodyforceper unit mass Consider athin film of viscousincompressblefluid in theregion
between two elastic half-spaces, bounded above by = = h(t, x) and below by z = —h(t, ), as
shown in Figure 2.5.1. We dhocse L to be asuitable charaderistic length of the fracdure and
H asuitable charaderistic half-width of the fradure. Let U be the charaderistic fluid velocity
in the fradure in the z-diredion. Under the consideration that the charaderistic half-width,
H, of the fradure is anall compared to the charaderistic length L of the fradure, the thin
fluid film approximation[17] is given by (1.6.1) and (1.6.2) where Re, the Reynadds number,
is defined by Re = L. The thin film approximation removes the time derivative % and the
nonlinea term (v - V)v from the Navier-Stokes equation [17]. It is important to nde that
the thin film approximation applies even for high Reynolds number flow provided (1.6.2) is
satisfied.

14



z = h(x,t)
e /T

viscous incompressblefluid

,,,,,,,,,,,,,,,,,,,,,,, \Z = —h(z,1)

Figure 2.5.1: Thin film of viscous incompressble fluid of charaderistic thickness H and

charaderistic lenght L

In summary, the Navier-Stokes equationis linea in the thin fluid film approximation. The
lineaity of the Navier-Stokes equation in the thin fluid film approximation daes nat imply
that the problem of afluid-driven fradure of rock islinea. Nonlineaity of the problem enters

from the boundry condtion at the fluid-rock interface
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Chapter 3

TWO DIMENSIONAL HYDRAULIC
FRACTURE IN PERMEABLE ROCK

3.1 Introduction

In this chapter, we will consider a two-dimensional PKN fluid-driven fradure model for per-
meable rock. It isworth naingthat the permeability of the rock impliesthat the injeded fluid
le&ks off into the surroundng rock formation. A review of hydraulic fradure modelling hes
been given by Mendelsohn23]. Thefluid used to drivethefradureisaviscousincompressble
Newtonian fluid.

One of the objedives of this chapter isto enumerate the assumptions on which our model
depends in Sedion 33. Using these asumptions, we will formulate the mathematics under-
lying the fluid-driven fradure. The thin fluid film equations for the fluid flow in the two-
dimensional fradure ae derived. In Sedion 35, we derive the norinea diffusion equation
in the dependent variable h(x,t) and le&-off term v, (z,t). The symmetries of the noninea
diffusion equation are obtained in Sedion 36. These symmetries exist provided the |e&k-off
velocity satisfies a first order linea partial differential equation. Finally in Sedion 37, we

discussthe spedal values for the parameter < that are of clear physicd significance.

16



3.2 Thinfluid film equationsfor theflow in atwo-dimensional

fracture

In this sdion, we will derive the two-dimensional thin fluid film equations for the flow of

the injeded viscous incompressble fluid in the fradure. Consider the flow in the region be-

z iaoi

v:(0, 2, 1)
-
vz(0, 2, ) z = L(t)
Vg Un

7 $ \ X
Up b,
z = —h(z,t)

Figure 3.2.1: A cradk propagating in an elastic permeable medium(the aordinate diredion y

pointsinto the page). The le&k-off velocity, v, is perpendicular to the interface

tween the two boundries z = h(x,t) andz = —h(z,t) where h(x, t) isthe haf-width of the
fradure. The catesian coordinate system is as shown in Figure 3.2.1. The fluid flow isin-
dependent of y and oleys the two-dimensional Navier-Stokes equation for an incompressble
fluid:

ov 1 9

5 T V= —;Zp + vV (3.2.1)

andthe conservation of massequation

V=0, (3.2.2)



wherev = (v, (x, z,t),0,v.(x, z, t)) denctesthe fluid velocity, p(z, z, t), thefluid presaure, p,
the density of the fluid which is a constant and v, the kinematic viscosity. The bodyforce per
unit massis negleded. The fluid flow is symmetricd abou theline z = 0.
In order to simplify equations (3.2.1) and(3.2.2), wefirst introducethe charaderistic quantiti es
andjustificationis then made of their choice

charaderistic length in z-diredion=L

charaderistic lenght in z-diredion= H

charaderistic fluid velocity in z-diredion= U

charaderistic fluid velocity in z-diredion W = fU
pUL
H2

charaderistic fluid presaure P =
L L
charaderistic time T:ﬁ'
We now justify the expressonfor the charaderistic velocity in the z- diredion. The continuity

equation, (3.2.2), written in cartesian coordinates, is

Ov, v,
o + 5 0. (3.2.3)
The order of magnitude of termsin (3.2.3) is
u w
7 + T 0 (3.249)
and therefore
W = EU (3.2.5)
=TU 2.

To justify the expressonfor the charaderistic fluid presaure, consider the z-comporent of the

Navier-Stokes equation

Duv, op v, 0%,
1% Di ——a—x—FM(W—F 022 . (326)
The order of magnitude of thetermsin (3.2.6) is
U P u U
Since guation (1.6.1) is stisfied,
U U
e > I (3.2.8)



Therefore, the viscous term can be goproximated by 2—% and equation (3.2.7) becomes
U_2 P uU

P I ~ _E + ﬁ’ (329)
where T = £. Now
inertiaterm 2% H\?
[Eam _ L _Re(Z) «1 (3.2.10)
viscous term b L
by (1.6.2) and (3.2.9) reducesto
UL
which isthe dharaderistic fluid presaure.
Introducethe dimensionlessvariables:
E_Ut __x __Zz Uy _ v, L __H%»
—_—— p— Z=— _—— —_—— —_—
L g v "um Puo

and write the massconservation equation and ead comporent of the Navier-Stokes equation
in dmensionlessform. This gives:

the massconservation equation:

ov, Ov
= £ = 3.212
oz oz 0 ( )
the xz-comporent of Navier-Stokes equation:
H\? (v, ov, ov, op (H\?0%, 0%,
— = v, —— v, —— _ —— — G .2.1
R6<L> (at +U””8§+UZ(’)E> 8f+(L) o2 | o2 (3213

the z-componrent of Navier-Stokes equation:

H\* [ 0v, ov, ov, op  (H\'9*v, [(H\’o,
Re(L) (at+”xaf+vzaz) az+<L> (%QJF(L) 7> (3214

The motivationfor putting the Navier-Stokes and massconservation equations in dimension-

lessform arises from the need to knowv which terms can be negleded in the thin fluid film
approximation d the concerned equations.
Imposethethinfluid film approximation, (1.6.1) and (1.6.2). Equations(3.2.12) to (3.2.14)

reduceto
dv, ~0v,
7t =0 (3.2.15)
op 01,
- = 21
ox 0z’ (32.16)
P _, (3.2.17)
0z
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The two-dimensional continuity equation (3.2.15) isunatered by the thin film approximation.
Equations (3.2.16) and (3.2.17) are the z-comporent and z- comporent of the Navier-Stokes

equationin the thin fluid film approximationin dimensionlessform.

3.3 Mathematical formulation

We oonsider the two-dimensional PKN model of a pre-existing fluid-filled hydraulic fracure
propagating in a permeale linea elastic medium and driven by a viscous incompressble
Newtonian fluid as shown in Figure 3.2.1. The cae when the fradure is driven by a non
Newtonian fluid is of importance aaxd will be considered in future work. The fradureisdriven
by afluid injeded into it at the rate il—‘t/ per unit length in the y diredion at the entry to the
fradure. Theinjeded fluid causes the fradure to propagate dongthe z-axis, perpendicular to
the compressve stressof magnitude 0. Asthe fradure is being propagated in the permeable
medium, fluid is being lesked-off into the rock formation throughthe interfacebetween the
rock andthe injeded fluid.

To buld a mathematicd modd for the rock fraduring process it will be necessary to
consider both the medhanics of the fluid inside the fradure and the way that thisinterads with
the dasticity of the surroundngrock. We begin by making the foll owing assumptions for our

model:

e The rock is a permeéble medium and there is fluid le&-off into it. The fluid le&-off

into the rock massisin the diredion perpendicular to the fluid/rock interface
e Therock isalinealy elastic material which assumes gnall displacement gradients.

e The fradure propagates along the positive z-diredion, is one-sided, 0 < x < L(¢),
identicd in every plane y=constant and haslength L(¢) and helf-width i(x, t).

e In every plane y= constant, the fradure is ymmetricad abou the xz-axis. The upper
surfaceisy = h(zx,t) andthe lower surfaceis y=-h(z,t).
e Thefradureiscompletely filled with the injeded fluid. That is, the fluid front concides

with thetip of the fradure andthereisnofluid lag.
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e Theflow of fluid inside the fradureislaminar.

e Theflow of fluid inside the fradure is modell ed using lubrication theory.

3.4 Governing equations

3.4.1 Fluid problem: Lubrication theory

The oordinate system is as chasen in Figure 3.2.1. The fluid flow in the fradure is inde-
pendent of the y-coordinate and oleys the two-dimensional Navier-Stokes equation for an
incompressble fluid. For athin fradure whose length is much greder than its width, the thin
fluid film approximation, (1.6.1) and (1.6.2), is satisfied. The fluid flow in the fradure is then
governed by the dimensionlessequations (3.2.15) to (3.2.17). These thin fluid film equations
arevalid aslongasthethin fluid film approximations, (1.6.1) and (1.6.2), hold through-out the
processof the hydraulic fraduring. Lubrication theory bresks down when equations (1.6.1)
and (1.6.2) nolonger hald.

The fluid variables are
vy = vg(x, 2, 1), v, =0, v, = v,(x, 2, t), p=p(z,z,t). (3.4.1)

By dropping the overhead bars for simplicity, the thin film equations of lubricaion theory in

dimensionlessform, (3.2.15) to (3.2.17), become

@ B v, @ _0 0v, n ov,
or 022" 0z ox 0z

= 0. (3.4.2)

Fracture problem: Elasticity equation

Under the linea theory of eadticity, if an eastic half-spacez > 0 is subjeded to the normal
tradiono,, = —py(z,t) ontheinterna faceof the fradure, then for afradure that propagates
inthe positive z—diredion, the presaureisrelated to the half-width of the fracture by the plane
strain elastic equation o the form
L(t)
Pl 1) = py(e,t) — oy = — ( £ ) e (343
0

(1l —v) s—x
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where F is the Younds moduus and v is the Poison ratio of the rock. At the fluid-rock
interface it is asumed that there is a no-slip condtion so that the shea tradionis negligible.
Equation (3.4.3) isanontrivia singuar integral equation which describes the normal surface
stresses resulting from the deformation o the interfaceof the dastic material from a planar
state.

An dternative to this classca two-dimensional modelling is the PKN theory discussed
in Sedions 1.3 and 15 and which is used throughou this dissertation. The PKN theory is
adopted in this dissertation because of its amplicity, unlike the plane strain equation (3.4.3)
whichisdifficult to solve analyticdly when couped with other equations of hydrauli c fradure.

The dastic constitutive law for the two-dimensional model of afluid driven fradure prop-

agatingin apermeable linea elastic mediumin PKN theory[5] is given as

p = Ah(z,t), (3.4.9)
where[6] )
EH

A= (0= o ULE" (3.4.5)

In (3.4.5) F and ¢ are the Youndgs moduus and Poisonratio of the rock, B isthe breadth in
the y—diredion o the fradure, ;. the dynamic viscosity and H, L and U are the charaderistic
quantiti es defined ealier. Also,

pP=ps— 0o (3.4.6)

is the net presaure of the fluid that will be determined, p; istheinternal fluid presaure in the

fradure and o isthe far field compressve stressperpendicular to the fradure.

3.4.2 Initial and boundary conditions

At the solid boundry of the fradure, the boundary condtions are the no-slip condtion for a
viscous fluid and the le&k-off condtion.

Denote by v, (x, t) the fluid velocity at the interface measured relative to the interfacein
the diredion perpendicular to the interface The velocity v, (z, t) is referred to as the le-off
velocity.

From Figures3.4.1 and 34.2, we obtain the foll owing boundry condtionsat z = +h(z, t).
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o Dh
A= Dt

Figure 3.4.1: Tangent plane & a point onthe  Figure 3.4.2: Tangent plane & a paint on the

surface z = h(z, t). surface z = —h(x,t).

No slip condtion:
Tangential comporent of the fluid velocity at the boundary equals the tangential compo-
nent of the velocity of the boundary.

z = h(z,1): vz (x, h,t)cosa = —%;Lsinoz, (3.4.7)

Dh .
z = —h(z,t): vz (x, —h,t)cosa = —Filsma, (3.4.8)

where 2. denotes the material ti me derivative.
L e&k-off condtion:

Normal comporent of the fluid velocity at the boundary equals the normal componrent
of the velocity of the boundry + normal comporent of the velocity of fluid relative to the

boundxry.

z = h(z,t): v, (z, h, t)cosa = ?ZCOS@ + vp(x, t), (3.4.9)
z = —h(z,t): v,(x,—h,t)cosa = —%?00304 — vp(z, ). (3.4.10

Now
tana = _g_: =0 (%) (3.4.11)

andin the thin film approximation% << 1. Thus« is gnal and

tana = O(a) = O (%) , Sna=0(a) =0 (%) , cosa = ((1) (34.12

and the boundary condtions (3.4.7) to (3.4.10) reduceto the foll owing condtions.
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No-slip condtion:

z = h(z,t): vg(x, h,t) =0, (34.13
z = —h(z,t): vg(z, —h,t) = 0. (3.4.19
Leak-off condtion:
z = h(x,t): v,(z, h,t) = %ﬁ: + v, (2, 1), (3.4.15
z=—h(z,t): v, (x,—h,t) = —%;L — vp(z,t). (3.4.16)

The thin film approximation % << 1 is a good approximation except nea the tip of the
fradure. The boundary condtions (3.4.13) to (3.4.16) will t herefore be valid except nea the
fradure tip where the thin film approximation kregks down. Equations (3.4.15) and (3.4.16)
are expresxd in dmensionlessform. The le&-off velocity v,, has been made dimensionless
by division bythe dharaderistic velocity in the z-diredion %U . By expanding the material

time derivative, (3.4.15) becomes

oh oh
v,(z, h,t) = N + v, h, t)ﬁ_x + vp(x, t)
oh

since v, (x, h,t) = 0 from the no slip bounary condtion (3.4.13). Similarly, the boundry
condtion (3.4.16) beaomes

v, (z, —h,t) = —% — vp(x, t). (3.4.18

Initial condtions:

In the model, the rock has a pre-existing fracure. Hence, the initial fradure shapeis such that
t=0: h(x,0) = ho(z). (3.4.19

In general, it will not be posgblefor asimil arity solutionto satisfy condtion (3.4.19). We will
investigate the initial condtion i (z, 0) given by the simil arity solutionin Chapters 4 and 5

The initial dimensionlesslength and vdume of the fradure is also spedfied:
t=0: L(0) =1, (3.4.20)
t=0: V(0) = 1. (3.4.21)
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Thisisequivalent to takingthe charaderistic length of the fracture to be theinitial dimensional

length and the dharaderistic volume of the fradure to be theinitial dimensional volume.

Condtion a the fracturetip:

The mathematicd formulationis summarized as foll ows:

Governing equdions:

op _ 0,
or 0227
Bounday condtions:
z = h(z,t): vg(z, h,t) =0,
z=—h(z,t): ve(x, —h,t) =0,
z = h(z,t): v,(z, h,t) = g—};(x,t) + vp (2, 1),
z = —h(x,t): v,(x,—h,t) = —%(w,t} — Uy (z,t).
Initial condtions:
t=0 h(z,0) = hy(x),
t=0 L(0) =1,
t=0 V(0) =1
condtion d the fracturetip:
x = L(t) h(L(t),t) =0

(3.4.22)

(3.4.23)

(3.4.24)

(3.4.25)

(3.4.26)
(3.4.27)

(3.4.28)

(3.4.29)

(3.4.30)
(3.4.31)

(3.4.32)

(3.4.39)

Using equations (3.4.23) to (3.4.25) and boundry condtions (3.4.26) to (3.4.29), anonlinea
partial differential equation relating the half-width of the fradure h(z, t) to the fluid presaure

p(z, t) andle&-off velocity v, (z, t) will be derived in the next sedion.
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3.5 Nonlinear diffusion equation with leak-off term

We will now derive the norlinea diff usion equation for the half-width of the fradure i(z, t).
This equation also contains aterm describing fluid legk-off at the fluid/rock interface

We first obtain an expresson for v,.(z, z,t). By integrating equation (3.4.23) twice with
resped to z and applyingthe no dlip boundry condtions (3.4.26) and (3.4.27) at the interface

between the fluid and the solid boundry, we obtain

vz, 2,t) = —% (h*(z,t) — 2%) % (35.1)

The continuity equation (3.4.25) is integrated with resped to z aaossthe two-dimensiona
fradure. Thisgives
"o,
v, (z, hyt) —v,(z,—h,t) + / a—(w, z,t)dz = 0. (35.2)
—h €T

Using boundry condtions (3.4.28) and (3.4.29), equation (3.5.2) beaomes

oh 1 " ov,
En + vp(x,t) + 5 /_h %(x, z,t)dz = 0. (3.5.3)

The partia derivative inside the integral is taken ouside the integral using Leibnitz formula
for differentiation uncer the integral sign[24]:

h(,t) h(z,t)
0 / vz (2, 2,t)dz = / %(x,z,t)dz + vz (z, h, t)@ — (2, —h,t) <_@)

o h(at) Chwp) 0T Ox Ox
(3.5.4)
which using the no-dlip boundary condtions (3.4.26) and (3.4.27), simplifiesto
g [ht) /h(xvt) v
— ve(x, 2, t)dz = —(x, z,t)dz. (3.5.5)
Ox —h(z,t) ( ) —h(z,t) Ox ( )
Using (3.5.5), equation (3.5.3) becomes
oh 10 ("
n + 39 /h v (T, 2, t)dz = —v, (2, t). (3.5.6)

Equation (3.5.6) has the form of a conservation equation with a sink term. We now substitute

equation (3.5.1) into equation (3.5.6) to oktain:

oh 10 [0p

h
orily {%(x, t) /_h(hQ(x,t) — 22)dz| = —v,(z,1). (3.5.7)
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This gives the norlinea partial differential equation

Oh 10 (,30p

Using equation (3.4.4), we obtain the nonlinea diffusion equation

oh A (,,0h

We will now derive the equation relating the rate of change of total volume of the fradure
per unit length in the y-diredion to the resultant areaflux into the fradure & the entry and at
the fluid-rock interface

The total volume of the fradure, V'(¢), per unit length in the y-diredionis
L(t)
Vit) =2 / h(z, t)da. (35.10)
0

Equation(3.5.10) isdimensionless Thetotal volumeV (t) was made dimensionlessby division
by the dcharaderistic volume per unit length in the y— diredion, HL. The injeded fluid is
incompressble. Therefore, per unit length in the y-diredion,
the time rate of change of the total volume of the fracture = the rate of fluid flow into the
fracture at the entry to the fracture - rate of fluid |eak-off at the fluid-rock interface
Atz = 0, therate of fluid flow into the fradure per unit length in the y-diredion, which isthe
areaflux into the fradture per unit length in the y-diredion, is
h(0,t) h(0,t)
G = / v(0, 2, t)dz = 2/ v2(0, 2, t)dz. (35.11)
—h(0,t) 0

Therate of flow of leaked-off fluid into the rock massper unit |ength in the y-diredion, which

isthe aeaflux of the lea&ked-off fluid per unit length in the y-diredion, is

L(t)
G2 = 2/ v (2, t)dz. (35.12
0
Hence, per unit length in the y-diredion, therate of increase of thetotal volume of the fradure,
X is
avo_
G q1 — q2
h(0,t) L(t)
= 2/ v,(0, z,t)dz—Q/ v (2, t)dz. (35.13
0 0
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We substitute (3.5.1) evaluated at = = 0 into equation (3.5.13) and integrate to oktain

v 2, 9p o
o= _§h (071&)%(0,75) - 2/0 vp(z, t)dx. (35149

Applying equation (3.4.4) we obtain

v 2\ 4, Oh L®
= 20,05 0,6~ 2 /0 on(z, ). (35.15

A statement of the problem is as follows: Solve for h(zx,t), v,(x,t) and L(t) the partial
differentia equation

oh A O [ ;0h
— = (=) - 5.1
ot~ 30z (h 8$) - (35.16)
subjed to the boundary condtion
h(L(t),t) =0 (35.17)
andtheinitial condtion
L(0)=1 (3.5.19
and the balancelaw
v 2\ ,  Oh L)
o= —?h (O’t>8_x(0’t) — 2/0 v, t)de, (35.19
where
L(t)
V(t) = 2/ h(z,t)dx. (3.5.20)
0

Onceh(x,t) has been oltained, p(x, t) isgiven by
p(z,t) = Ah(x,t). (35.21

Problem (3.5.16) to (3.5.21) isnat a dosed problem since ejuation (3.5.16) isnat sufficient to
determine the le&-off term v,,(z, t). Further modelling will be required for v, (z, t) in order
to have awell posed closed problem. However, in thisdissertation, Lie groupanalysisis used
to determine the form of v,,(x, t).

We will derive agroupinvariant solution for h(x,t), v,(z,t) and L(t). Thefirst step in

adhieving this goal isto investigate the Lie point symmetries of equation (3.5.16).
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3.6 Lie point symmetries and general properties of group
invariant solutions

We will use alinea combination o the Lie point symmetries of the norlinea diffusion equa-

on  Ad [, ,0h

to construct a group invariant solution for i(x,t), v,(z,t), L(t), p(z,t) and V(). We will

tion

first outlinein a concise manner the derivation o the Lie point symmetries of (3.6.1) and then
establi sh some general properties of the groupinvariant solution. The complete derivation o
the Lie point symmetries of equation (3.6.1) is presented in Appendix A.

The Lie point symmetries

0 0 0
el 2
X =& (t,x, h)_at +&5(t, x, h)_&x +n(t, z, h)—ah (3.6.2)

of equation (3.6.1) are derived by solving the determining equation19]

=0 (3.6.3)

eq(3.6.1)

A
X (ht — §h3hm — ARRE + vn>

for ¢!, €2 and 7 where X 2 isthe second prolongation o the Lie point symmetry generator X .
The subscriptsin equation (3.6.3) dencte partial differentiation. It can be verified that

X = (a+ Cgt)% + (ca + CJ.Z')% + %(203 - cg)h(%
= X1+ o Xo + 3X5 + Xy, (3.6.4)
where
X, = %, (3.6.5)
X, = t% . %h%, (3.6.6)
X3 = xaa + ;h%, (3.6.7)
X, = a%’ (36.8)



and ¢y, ¢, c3 and ¢, are onstants, provided the fluid le&k-off velocity, v, (x,t), satisfies the
first order linea partial differential equation

n

ot

ov, 2
+ (¢4 + c37) Un _ 5(03 — 2¢9)Up,. (3.6.9)

(01 + 02t> aiL‘

Now, h(z,t) isagroupinvariant solution o (3.6.1) provided

X (h—o(x,t))| =0, (3.6.10)
h=¢
that is, provided
(1 + Cgt)% + (e + c;:,x)% = %(203 — C9) . (3.6.11)

The system of first order diff erential equations of the charaderistic curves of (3.6.11) are

dt e do (3612

c1 + CQt - C4 + C3T %(263 - Cg)¢

Itisequivalently rewritten as

dt da dt d

1+ ot cat e’ g+ oot %(203 — )

(36.13)

On integrating eath of the differential equationsin (3.6.13), one arives at the foll owing two
independent first integrals, respedively:

PR e LA A ¢ | (3.6.14)

2c3—cy

&3
(Cl + CQt) €2 (Cl + Cgt) 32

The constants 7; and [, form abasis of invariants of (3.6.11) sincethey are independent. The
general form of the solution o (3.6.11) is

L= (), (36.15)

where f isan arbitrary function. Hence

2cg3—co

d(x,t) = (c1 + cot) 32 f(£), (3.6.16)

where
Cq4 + C3T

[ (3.6.17)
(Cl + Czt)g
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But since¢(z,t) = h(z,t), it followsthat

2c3—co

h(z,t) = (c1 + cat) 32 f(£), (3.6.18

where f (&) isan arbitrary function o &.

Consider now the fluid le&k-off velocity, v, (z,t). We note that the existence of the group
invariant solution (3.6.18) requires that v, (z,t) satisfies equation (3.6.9). The differentia
equations of the charaderistic curvesof (3.6.9) are

dt dx dvy,

= = 3.6.19
et ctesr 2z —2c)v, ( )
which may equivalently be written as
dt d dt dv,
- S . (3.6.20)
1+t eyt o3z cr et Z(cs —2¢)v,

We integrate the two differential equationsin (3.6.20) to oktain the basis of invariants

Ccq4 + C3x Un

Iy = ———, I, = T (3.6.21)
(c1 + cat) 2 (c1+ cot)” 32
respedively.
The general form of the solution of (3.6.19) is

Iy = g(1y), (36.22)

where g isan arbitrary function. Hence

2(c3—2c9)

vn(@,t) = (1 +oot) = g(€) (36.23)

and ¢ isas defined by equation (3.6.17).

We have sucealed in oltainingthe general form of the groupinvariant solutionfor thefrac
ture half-width, h(x,t), and velocity of le&k-off fluid, v, (z,t). We now expressthe problem
in terms of the variable ¢ and the functions f(£) and g(¢).

Consider first the partial differential equation (3.6.1). We substitute (3.6.18) and (3.6.23)
for h(x,t) and v, (z,t) into equation (3.6.1). The partial differential equation (3.6.1) becomes

the second ader nonlinea ordinary differential equation

A,d df d Gz C2 .
3% ¢ (f3d—§> + C3d_§(§f) + §(g —5)f—g=0. (3.6.24)
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Equation (3.6.24) does nat depend onc,. We can therefore choase ¢, = 0 in (3.6.17) so that
¢ =0whenz = 0.
Consider next the boundary condtion (3.4.22),

h(L(t),t) = 0. (3.6.25)

From equation (3.6.18), the boundary condtion (3.6.25) becomes

f§)=0 a ¢= % (3.6.26)
(Cl + Cgt) °2

But the fradure half-width, i(z,t) isnot a zeo function. For instance & timet¢ = 0, h(x,t)

satisfies the initial condtion (3.4.19). Therefore, from (3.6.26), f cuts the -axis at & =
—esl)__ which must be a ®nstant. Thus
(Cl+62t) €2

= = constant = A (3.6.27)
(Cl + Cgt) 2
and therefore
L(t) = cé(cl + cﬂ)% (3.6.28
3

But from (3.4.31), theinitial condtionis L(0) = 1. Thus

c3

A=cye, 2. (3.6.29)

Thelength of the fradure, L(t), asafunction o timeistherefore derived as

3

L(t) = (1 + ?t) o (3.6.30)
1
For large times, L(t) becomes the power law
€3
co [
L(t) = <9> ter (3.6.31)
(&1
The boundary condtion (3.6.26) beacomes
€3
flese, @) =0 (3.6.32

andthevariable ¢, given by (3.6.17) can be expressed intermsof L(t) as

~3 g
& =304 10k (3.6.33)
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Consider next the balancelaw (3.5.15). Substituting(3.6.18) and(3.6.23) into (3.5.15) and
using (3.6.30) for L(t) gives

c3

v__ 2, 3(c1 + cat) 35273 £3(0) ‘A%q g(€)de. (3.6.34)

_ 4 oy 2 3a-
d 3

df( ) — o —(c1 + cat)

In order to evaluate the left hand side of (3.6.34), consider the total volume, V (¢), of the

ol

fradure per unit length in the y-diredion which is given by (3.5.20). Using (3.6.17) and
(3.6.18) for ¢ and h(z, t) respedively and (3.6.30) for L(t), (3.5.20) beacomes

3
-z

/O e (3639

5¢
3

SIS
ol

Vit) = i@+m)

Diff erentiating equation (3.6.35) with resped to ¢ gives

3
)

dV o 2 Co §c_3,% €34
w2 (5 - _) (1 + eat) / F(€)de. (3.6.36)
Substituting (3.6.36) into (3.6.34) yields
raf O = (2-5) [T roae-2 [T g @ea

Lastly, from (3.6.35) thetotal volume V() of the fradure per unit length in the y-diredion

can be expressed as

V@:%O+§Q'2, (3.6.39)
1
where .
2 3@ty o
o= =o' [ figas (3639
C3 0
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A summary of the mathematicd formulationis as follows:

Aad 3f) (@_.) g
siae (PR) reagen+ g (2-s)r-g=0.

_c
f (0361 °2> =0,

df o 030;6 3 030;@
Ac300=<—5)/ d—/ de,
S OO = =5) [ F©d=2 | g
2 §g8-4 [
Vo=—¢q F(&)dE,
C3 0
Cy . Co C3
1 B C3Cy
5c3_1
CQ 3 co 3
V(t) =W (1 + —t) ,
C1
L(t) = (1 + C—2t> °
C1
2¢3_1
25(3752 %%7% 02 3 co 3
h(z,t) = (a1 +cat) 32 f(§) = ¢ 1+ at f(&),
2¢c3_4
2(cg—2cg) %%_% Co 3cy 3
= et ea) g0 =57 (14 20) gt
1
p = Ah(x,t),

3

C T
620361 Zm.

(3.6.40)

(3.6.41)

(3.6.42)

(3.6.43)

(3.6.44)

(3.6.45)

(3.6.46)

(3.6.47)

(3.6.48)
(3.6.49)

(3.6.50)

We now make a tange of variablesin order to simplify equations (3.6.40) to (3.6.50).

Let
T
U= —.
L(t)
Therange of u is0 < u < 1. From (3.6.50),
_c3
& =c3c; P

Also let

(3.6.51)

(3.6.52)

(3.6.53)



g(&) =cic; " ?G(u). (3.6.59)

Equations (3.6.40) to (3.6.50) expressed in terms of «, F'(u) and G(u) become :

A% <F3Z—§> + 3L wr) + (Cﬁ - 5) Flu)— 3G(u) =0, (3655

du Cs3
F(1)=0, (3.6.56)
1 1
AR (0) () = (9 - 5) / F(u)du — 3 / G (u)du, (3.6.57)
du c3 0 0
C3 % !
Vo =2 (—) / F(u)du, (3.6.58
C1 0
L _as (3.6.59)
e czcq e
V(t) =V, (1 + ?t) e (3.6.60)
1
L(t) = (1 n ?t) ° (3.6.61)
1
s\ cy \ i3
h(z,t) = <—> (1 + —t) F(u), (3.6.62
€1 G
s\ ? ey \ 33
vp(z,t) = () (1 + t) G(u), (3.6.63
C1 C1
p(z,t) = Ah(x,t), (3.6.64)

where 0 < u < 1. This completes the mathematicd formulation d the problem.

We seethat the solution depends ontheratios X, £, £ of the constants and nd on the con-
stants sparately. Thisis becaise only the ratio of the constantsin (3.6.4) can be determined
since a onstant multiple of aLie point symmetry isalso aLie point symmetry.

In order to solve the system of equations (3.6.55) to (3.6.64), theratio 2, the initia total
volume 1 and G(u), or a relation between G(u) and F'(u), need to be given. Equation
(3.6.55) isthen an ordinary differential equation for F'(u) subjed to the boundry condtions
(3.6.56) and (3.6.57). Theratio £ isobtained from (3.6.58) and theratio 2 from (3.6.59). The
solutionsfor V (t), L(t), h(x,t), v,(z,t) andp(z, t) are then given by (3.6.60) to (3.6.64).
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In Chapters 4 and 5we will consider the solution for two spedal relations between G(u)

and F'(u) and for arange of values of £.

3.7 Speaal valuesfor the ratio g—g

When analysing the results it is more convenient to work with the ratio 2 than with 2. We
investigate here the values taken by £ when arange of physica condtionsareimposed onthe
fluid-driven fradure. The cnstants c; and ¢; are assumed to be positive while ¢, takes on all
valuesonthered line.

The results derived here do nd depend onthe choicefor G(u) or the relation between G (u)
and F'(u).

3.7.1 Length of thefracture

Thelength of thefradure, L(t), isgiven by (3.6.61). As £ — 0, thelength L(¢) of thefracture

tendsto unity. Consider thelimit £ — co. Then rewriting (3.6.61) as

L(t) = exp {Z—zln (1 n 2—22—?)} (37.1)
and wsing the expansion
In(l4+¢€) =¢e— g + § + O(e"), (3.7.2)
ase — 0, it followsthat in thelimit £ = oo,
L(t) = exp(Z—jt). (3.7.3)

Ast — oo andfor al valuesof & the fradure length, L(t), behaves as the power law

c3

(C_Z) o (3.7.4)

C1

The spedl of propagation o the fradureis

c3

€
dL _ s (1 + C—Qt) t (3.7.5)

Eicg C1
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The fradure propagates at constant speed if
%1 (3.7.6)

Co

The speal of propagation o the fradure has an exporential time-dependence in the limit

L _ & en (C—%> . (3.7.7)

% — oo given by

Cc2

3.7.2 Total volume of thefracture

The total volume of the fradure per unit length in the y-diredion, V' (¢), is given by (3.6.60).

The total volume of the fradure remains constant if

% _ 2. (3.7.8)
Ca

Inthelimit £ = oo, V() has exporential time-dependencegiven by

5C3

V(t) = Voexp (§C—1t> : (3.7.9)

Ast — oo andfor al valuesof < the fracture volume, V' (¢), behaves as the power law

o
v, (C_2> [(3E-3) (37.10)
C1
Also _—
dVv 5 Co C3 1 Cy 3 3
— =—-—= ===V [1+ —t . 3.7.11
dt 3 C1 <CQ 5) 0 ( * C1 ) ( )
The rate of change of the total volume of the fradure per unit length in the y-diredion is
constant if
% _0s. (3.7.12)
Ca

3.7.3 Presare atthefracture entry

From (3.6.64) and (3.6.62) the presaure & the fradure entry, = = 0, is

p(0,) = A (63) (1 + CQt) e F(0). (3.7.19)

C1 &1
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The presaure & the entry to the fradure remains constant if

C3
Co

~0.5. (3.7.19)

For values of & < 0.5 the pumping presaure & the fradure entry, = = 0, is a deaeasing
function o time while for values of £ > 0.5, the pumping presaure & the fracture entry isan

increasing function o time.

3.7.4 Rateof working of the presaure at the fracture entry

The rate of working o the presaure & the fradure entry per unit length in the y-diredion,
W(t),is

W (t) = p(0, t)%. (3.7.15)
Using(3.7.11) and (3.7.13) we obtain
dV 5 Cy C3 1 C3 % Cy %Z_g_%
— =CAZ2 (22 (=2 14+ -2 F(0). 71
p0.0 5 = 242 (CQ 5) (C) Vo( *J) (0) (37.16)

Thus, the rate of working o the presaure & the fradure entry per unit length in the y-diredion

(which we can interpret as the rate of working d the pump) is constant if

& _ g — 0.7143. (3.7.17)

Co

3.7.5 Rateof fluid injedion into the fracture

The rate of fluid injedion into the fradure per unit length in the y-diredion, ¢, is given by
(3.5.11):
h(0,t)
G = 2/ v2(0, 2, t)dz. (3.7.18
0

But from (3.5.1) evaluated at = = 0,

dp
o (0,1). (3.7.19

1
v.(0, 2, 1) = —3 (R*(0,t) — 2°)
Substituting (3.7.19) into (3.7.18) gives

_ 2.4 dp
Q= 3h (O,t)ax(o,t). (3.7.20)
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Using (3.6.64) and (3.6.62), (3.7.20) beames
G =2 (?> (1 * %t> 0% ). (37.21)
1

Thusthe rate of fluid injedioninto the fradure isindependent of timeif

% _os. (3.7.22)

Co

3.7.6 Rateof fluid leak-off at thefluid/rock interface

The rate of fluid le&k-off at the interface between the fluid and rock per unit length in the
y-diredion, ¢o, isgiven by (3.5.12):

L(t)
Q2 = 2/ U (7, t)dz. (3.7.23
0

Using (3.6.63), (3.7.23) becomes
(1+20)

=2 (z_j) / Glu (37.24)

Thustherate of fluid le&k-off at the fluid-rock interfaceisindependent of timeif

5¢3
co

SV
Wl

% _0s. (3.7.25)

C2

3.7.7 Balancelaw for flux of fluid

By considering the balance law for the flux of fluid into the fradure auseful expresson for
therate of fluid injedion can be obtained. From (3.5.13), per unit length in the y-diredion,
rate of fluid injedioninto the fracture = rate of change of the total volume of the fracture +
rate of fluid leak-off at the fluid-rockinterface

Thus

©= + Q2 (3.7.26)

and wsing (3.7.11), (3.6.58) for VO and (3.7.24), (3.7.26) beaomes

o= g (Z—‘jy <1 + —t) { / Gu)du + (5 - —) / F(u)du] . @727

Equation (3.7.27) for the rate of fluid injedioninto the fracture will be useful for interpreting

the results. The results derived in this dionare summarized in Table (3.7.1).
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Length of the fradure is constant

Total volume of the fluid in the fradure is constant

Presaure & the fradture entry is constant

Rate of working o the presaure & the fradure entry is constant
Rate of fluid injedioninto the fradure is constant

Rate of fluid le&k-off at the fluid/rock interfaceis constant
Rate of change of the total volume of the fradure is constant

Spedl of propagation d the fradure is constant

= =0.5

=0.714

=0.8

=0.8

=038

2 =1.0

Table 3.7.1: Physicd significanceof values of theratio .
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Chapter 4

LEAK-OFF VELOCITY
PROPORTIONAL TO FRACTURE
HALF-WIDTH

4.1 Introduction

In order to solve the boundiry value problem (3.6.55) to (3.6.64), either G(u) must be given
or arelation between G(u) and F'(u) stated. In this chapter, we begin by spedfyingaform for
G(u) whichisin dired propationto F'(u). The constant of propationdlity is 5 and it plays
an important role in this chapter and in subsequent chapters. Equations (4.2.4) to (4.2.13)
which are now in terms of the dependent variable F'(u) are solved for speda cases which
yield exad solutions. We have identified two spedal cases of exad solutions. The first case
which yields exad solutions corresponds to the condtion in which the net flow of viscous
incompresgble fluid into the fradure & the fradure entry is zero. The seand case of exad
solutions corresponds to a condti onin which the net flow of viscousincompressblefluid into
the fradure & the fradure entry is positive. Another passble physicd condtioniswhen there
is fluid extradion ou of the fradure & the fradure entry. No exad solution hes been found
for this condtion.

In Sedion 4.3, analyticd solutions are obtained for the case when therate of fluid injedion
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into the fradture & thefradure entry iszero whilein Sedion 4.5, analyticd solutionsfor which
the rate of fluid injedionis paositive & the fradure entry are obtained. The results for the two
cases of analyticd solutions are discussed and analysed in Sedions 4.4 and 46. Numericd
analysis of the boundary value problem (4.2.4) to (4.2.13) commencesin Sedion 4.7 with the
transformation o the boundary value problem into two intial value problemswhich are eaier

to solve.

4.2 Leak-off velocity proportional to half-width of fracture
Consider the case where G(u) is propartional to F'(u):
G(u) = BF(u), (4.2.1)

where 3 isa constant. It followsfrom (3.6.62) and (3.6.63) that

c3 c3 h(zx,t)
n = B h(z,1) = fo =L 4.2.2
v ﬁ(c1+cQt) (z,1) 501L(t)% (4.2.2)
For large times,
o~ 5h(2t 28 (4.2.3)

Cc3

Hence, v, (z, t) ispropartional to the half-width of the fradure, h(x, t). It followsimmediately
from (4.2.2) that v,, vanishes at the fradure tip since h(z, t) vanishes there. From (4.2.2), the
case § > 0 describes fluid le&-off into the rock massand 5 < 0 describes fluid inflow into
the fradure & the fluid-rock interface The case 5 = 0 represents no legk-off of fluid into the

rock massand this means that the rock isimpermeable.
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The boundry value problem is then stated as foll ows:

d dF d ey
F(1) =0, (4.2.5)
dF Cy !
AF"“(O)%(O) = (0_3 -5— 3ﬂ> /0 F(u)du, (4.2.6)
(s [
Vo=2 (01) /0 F(u)du, (4.2.7)
2_2% (4.2.8)
C1 C3 C1
V) =V, (1 + %t) e (4.2.9)
1
L{t) = (1 + Z—%) v (4.2.10)
1
hz,t) = <z—3) <1 + Z—%) " P, (4.2.11)
1 1
vz, t) = 8 (23) ' (1 + Z%) " P, (4.2.12)
1 1
p(z,t) = Ah(x,t), (4.2.13
where
T

Firstly, we determine how F'(u) behavesasu — 1. The asymptotic behaviour of F'(u) as
u — 1 isrequired in the numericd solution for F'(u). We seek a solution having asymptotic

series expansion o the form
F(u) ~ Zan(b —u)™ a8 u—1, (4.2.15
n=1

where b, a,, s, are onstantsand a,, # 0 for somen > 1 ands,, > 0withs; < s5 < s3---.

Using boundry condtion (4.2.5), we obtain b = 1. Hence, (4.2.15) becmes:

F(u) ~ Z an (1 —u)’, a  u— 1l (4.2.16)
n=1
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The asymptotic sequenceof functions {(1 — u)*"} is such that

(1 — )+

—F———0 as 1.
(1 —u)sn - v

Therefore, we goproximate F'(u) by thefirst andleading term of the series. Thus

F(u) ~ ai(1 —u)*.

We substitute (4.2.18) for F'(u) into the diff erential equation (4.2.4) to oltain

(4.2.17)

(4.2.18)

atAsi(4s1—1)(1—u)* 12 —3ays; (1—u)" '+ (2 =238+ 3s1)ar(1—u)* ~ 0, (4.2.19)

C3

asu — 1. In order that the dominant termsin (4.2.19) balance eab other
481 —2= S1 — 1,

which impliesthat

1
S1 = —.

3
Substituting equation (4.2.21) into (4.2.19) gives
%Aa‘f(l —u) T —a(1—w) 3+ (21— 38)a(l — ) ~0

C3

asu — 1, andtherefore

1
§Aa‘f—a1+<C—2—1—3ﬁ)a1(1—u)~0
C3
asu — 1. Hence settingu = 1in (4.2.23), we obtain
w=(2)
1 — A .

Thus, the asymptotic solution o (4.2.4) asu — 1is

F(u) ~ (%) (1 - u)3.

ol

The asymptotic solution (4.2.25) for F'(u) istruefor all the values of £ and 3.

(4.2.20)

(4.2.21)

(4.2.22)

(4.2.23)

(4.2.24)

(4.2.25)

We now consider two spedal cases which yield exad analyticd solutions for the diff eren-

tial equation (4.2.4).
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4.3 Exact solution for zero fluid injedion rate at fracture
entry
We first consider the spedal case when
C2
—~ _5-36=0. (43.1)
C3
The differential equation (4.2.4) reducesto

AL <F3d—F) + 3L ) o, (432)

subjed to the boundxry condtions (4.2.5) and (4.2.6):

F(1) =0. (4.3.3)
Ty =0 (4.34)

In (4.2.6), F'(0) # 0 andfinite because h(0, t) # 0 andfinitein (4.2.11). Integrate (4.3.2) with

resped to u:

dF
AF3d— + 3uF(u) = A, (4.3.5)
u

where A isa constant. To oltain A impose the boundry condtion (4.3.4) at w = 0. Since
F(0) isfinite, A = 0 and (4.3.5) becomes

oo (4.3.6)

which isvariables separable diff erential equation. Integrating (4.3.6) gives

F3(u) = —%qﬂ + B, (4.3.7)

where B isa constant. Imposing the boundiry condtion (4.3.3) at « = 1 gives

9
B = T (4.3.8)
and therefore )
91\°? 1
F(u) = (ﬁ) (1 — uz) . (4.3.9)



Substituting (4.3.9) into (4.2.7) gives

C3 A ‘/0 3
A 4.3.10
C1 36 <[) ’ ( )
where
1
I = / (1 — u?)3du = 0.8413 (4.3.11)
0
and therefore from (4.2.8)
Co Co % 3 A
2= Z2) = 4312
¢, C3 <[> 36 ( )
Also from (4.2.14),
X
= 4.3.1
u 10 (4.3.13)

The solutioncan be expressed interms of either 3 or 2. We will expressthe solutionin terms

of . From (4.3.1),

1
5:—(9—5) (4.3.14)
3 C3
andfrom (4.2.9) to (4.2.13),
é(ﬁ_l)
3 3\c 5
Co % At 2
_ 1 =(12) = 431
vio-vi+2 () 5 (4315)
5 cs
Cy Vb At -
Lit)=[1+2 () & 4.3.16
() [+03(I)36 , 4319
Vi AU 2 13
Wz, t) =2 [14+ 2 (20) 22 1—- 2 | 431
(.6 =37 +03(1 36 ()] (4317

A (Vo)
Uz, t) = % <70)

Vo\d Al e 2 15
1+9(—0) —] {1— v } . (4319

p(z,t) = Ah(x,t). (4.3.19

By expressng 3 in terms of 2, (4.3.18) beaomes

o Ca 2A VE) 4 Co Vb 3 At

The solutionfor h(z,t), v,(x,t) and p(z, t) can be expressed interms of L(t):

2/¢3
3(5,-2)

[1—L2—(t)} . (4320

o t) = L ppie-2 z* 1%
(@.8) = L0 |1 - g | (4.3.21)
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(e 2A [V, 4 4(1-22) z? 3
vp(z,t) = <C3 5) o7 (21> L(t) 37 |1 20 (4.3.22
andp(z,t) isrelated to h(z,t) by (4.3.19).

Inthelimit 2 — oo, 8 — —1.66, L(t), h(z,t), V (¢), va(x, t) andp(z, t) have exporential
time-dependence and (4.3.15) to (4.3.19) tend to

V(t) = Vyexp <% (?)2\1&) : (4.3.23)

L(t) = exp (3% <?) At) : (4.3.29)
3 2 %

h(z,t) = %exp (5%1 (?) At) {1 - Lft)Q] , (4.3.25)

4 3 2 3
on(a,t) = —% (;/—3) exp <5i4 (?) At) [1 - Lft)2} (4.3.26)

andp(z,t) and h(z,t) arerelated by (4.3.19).

4.4 Discusson of resultsfor 3 = 5 (% — )

Consider now the physicd significance of the spedal case (4.3.14). Equation (4.3.14) defines
adividing curve between solutions of interest in the (i—;, B) plane. Therate of fluid injedion
into the fradure & the fradure entry, ¢, is given by (3.7.27) and the rate of fluid le&-off at
the fluid/rock interface ¢, is given by (3.7.24). When G(u) = GF(u), and after substituting
(4.3.9), (4.3.10) and (4.3.12), equation (3.7.27) for the rate of fluid injedioninto the fradure
at the fracture entry becomes

A VN L (WY e
= () 1 () 2
o 108(1) +36<[ 3

and equation (3.7.24) for the rate of fluid le&k-off at the fluid/rock interfacebecomes

A (Vo)
Q2—%<7> 1+

When condtion (4.3.14) is substituted into (4.4.1), we obtain

c3_ 4
c 3

2 (35 +5— 6—2) I. (4.4.1)

C3

5
3

5¢3_4

1 (Vy 3 o 30,73
— =] —A 1. 4.4.2

¢ = 0. (4.4.3)
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This implies that the rate of fluid injedion into the fradure & the fradure entry vanishes for
all valuesof £ and (3 that satisfiy (4.3.14). This occurs when the net flow of viscousfluid into
and ou of the fradure & the fradure entry is zero. Physicdly this could correspondto the
case in which pumping hes ceaed and the entrance to the fradure seded. The fradure then
relaxes and evolves due to leek-off or inflow at the fluid/rock interface For the casein which

ﬁ<%(9—5>, (4.4.4)

C3

we have anegative net flux and the rate of fluid injedion at the fradure entry
¢ < 0. (4.4.5)

Physicdly, (4.4.4) describes fluid suction out of the fradure. The condtion

5>1<9—5) (4.4.6)

3 C3

describes fluid injedioninto the fradure.

Condition (4.3.14) can be solved for 3 in terms of 2togve

5(1 _cs
63G$c) (4.4.7)

andfor 2 interms of 5 as
C3 1
= = . 4.4.8
Co 5+ 36 ( )

The graph o 3 against £ given by equation (4.4.7) is plotted in Figure 4.4.1. For values of

(G abowve the aurve there is fluid injedion into the fradure & the entry to the fracure while
for values of (3 below the aurve fluid is extraded at the fradure entry. We will i nvestigate the
wholerange —oo < & < oo to determine the results produced by the solution. Table (3.7.1)
shows that the range of values of pradicd interestis0 < £ < 1. Inthe graphica results that
foll ow, we have redefined

t' = At. (4.4.9)

and for simpli city dropped the dash.
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10

Fluid injection at fracture entry Fluid injection at fracture entry

Fluid suction out of fracture at entry

Fluid suction out of fracture at entry

=10t

S5(l_c3
Figure4.4.1: Graph o § = Q plotted against £ for therange —2 < & < 2.

co

4.4.1 Fracture length and volume

Consider first the length of the fradure L(t) given by (4.3.16) and (4.3.24) and potted in
Figure 4.4.2. As 2 increases from 0 to 0.2, § deareases from +oo to 0 and there is fluid
lesk-off at the fluid-rock interface At £ = 0.2, 3 = 0 and there is no fluid le&-off. As
2 increases from 0.2 to +oo, (§ deaeases from 0 to —% and fluid enters the fracture & the
fluid-rock interface For 0 < £ < oo, L(t) isan increasing function o time and L(t) — oo

ast — oo. As & increases from —oo to 0, 3 deaeases from —g to —oco. Since 2 < 0, 2 <0
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andit followsthat L(t) — +oo in thefinite time

3
c3 (1 36
AR R 4.4.10

Co <Vb) A ( )

InFigure4.4.2, L(t) — oo infinitetimet’ = At = 36 when 2=-land % = 1. Thelength
of the fradure increases for —oo < £ < oo except a £ = 0 even thoughthere is no fluid

injedionat the entry to the fracure. Finally for £ = oo, L(¢) — oo exporentially as¢ — oc.

6 T
C; C: | /
Z-05 =1 I
C C | /
[ - Gle=1
Sr [ 7
|
| y
4 | ‘
|
‘ /
| s" : /
| / ! / C3/c=0.5
Lo 3¢ I / ' ' 1
2t ocyfe=02 |
e C3/C2:0.1
| — | 03/0,=0.001
I
0 L } L L L L L L
0 20 3640 60 80 100 120 150

Figure 4.4.2: Le&k-off velocity propationa to fradure half-width: Graph o fradure length
L(t) given by (4.3.16) and (4.3.24) plotted against ¢ for aseledion o values of the parameter

e gndfor 2 = 1.
) I
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Consider next the total volume of the fradure V' (¢) given by (4.3.15) and (4.3.23) and
plotted in Figure 4.4.3. For the analyticd solutions considered in this sdion, the rate of fluid
injedioninto the fradure & the fradure entry is zero. Hencethe total volume of the fradure
V (t) can only change due to lesk-off or inflow at the fluid-rock interface For 0 < & < 0.2,
G > 0 and there is le&k-off at the fluid-rock interface The time rate of change of fradure
volumeis negative, 2- < 0,and V(t) — 0 ast — oo. For 2 = 0.2, therock isimpermesble
and V (t) is constant for all time. This compares with the length of the fradure, L(¢), which
still i ncresses when £ = 0.2. For 0.2 < & < oo, # < 0 andthefluid entersthe fradure & the
fluid-rock interface Then V/(¢) is an increasing function o time, 2 > 0 and V() — oo as
¢t — co. We have atime dependent exporential solutionwhen & = co. As & increases from
—oo t0 0, # deaeases from —g to —oo andfluid entersthe fracture & the fluid-rock interface
Since® <0and 2 <0, V() — oc inthefinite time (4.4.10).

T

14F ¢ G |
,3:_0.5 j:_]j

Cy ‘ Cy |

| ca/cp=c0

12¢ J

Cy/C=1 -

C3/cp=0.5 o

€3/cp=0.2

- 000 C3/cp=0.1
|

0 20 364 60 80 100 120 140

Figure 4.4.3: Le&-off velocity propational to fradure half-width: Total volume of the frac
ture %) given by (4.3.15) and (4.3.23) plotted against ¢ for aseledion d values of the param-

eter < andfor Lo =
c2 I
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4.4.2 Fracture half-width and leak-off velocity

Consider now h(x,t) which is given by (4.3.17) and (4.3.25) and potted in Figures 4.4.4ato
4.4.11a Theinitia fradure shape h(z,0) canna be spedfied arbitrarily. Since L(0) = 1, it
follows from (4.3.17) and (4.3.25) that

h(z,0) = QV_; (1—2%)%. (4.4.11)
Also,
Vo
= _—. 4412
h(0,0) = ( )
Now consider the half-width of the fracure & x = 0. From (4.3.17) for . finite,
Vi e (VP AL] P
h0,4) = -2 |14+ 2(22) = 4.4.13
0.1 = 20 +03(I>36] | (4413
andfrom (4.3.25) for & = oo,
Y L (V)
h(0,t) = 2Iexp <54 ( I) At) . (4.4.19

For0 < 2 < 1, thewidth of the fracture & the entry, 1(0, ¢), deaeases ast increases. When
& = 3, the width of the fradure & the entry, (0,t), remains constant. For ; < & < oo,
h(0,t) increases as t increases. For —oo < £ < 0, h(0,t) — oo in the finite time given
by (4.4.10). The results are ill ustrated in Figures 4.4.4ato 4.4.11a. Also from (4.3.17) and

(4.3.25),

(SIS

oh _ _Vox
or 31

. (44.15)

, @41 2
1o (Vo) & x?2 |73
142 (X)) 5 -
T 360 ( T ) t L2
on  Vix 1 (V\? 22 78
P e —— (2] At |1— 4.4.1
or ~ 31 P ( 27 ( T ) t) [ o (4.4.16)

and therefore ? — —oo asx — L(t). The thin film approximation bregks down in the
T

vicinity of the fraduretip, x = L(t).
Finally, consider v, (z,t) which is given by (4.3.18) and (4.3.26) and is aso plotted in
Figures4.4.4bto 4.4.11h From (4.3.18) for £ finite

BA VN T e NP AE] TS
0 2 0
0.1 =22 (Lo (M) A 441
on(0,4) 72(1) +03(I) 36] (4417
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andfor & = oo,
Cc2

_10A (! INVATAN

For0 < 2 <0.2,v, > 0 andthereislesk-off of fluid at the fluid/rock interface Also v, (0, )
deaeases as ¢ increases. For 0.2 < 2 < oo, v,(z,t) < 0 andthereis fluid inflow at the
fluid/rock interface For 0 < £ < 2, the magnitude of v,,(0, ) deaeases as ¢ increases except
a =02 where v,, vanishes. When a =2, the magnitude of v,,(0,¢) remains constant
andwhen 2 < & < oo the magnitude of the inflow at the fluid/rock interfaceincreases as t
increases. For —oo < 2 <0,6<0 andthereisfluid inflow at the fluid/rock interface Also

vn(z,t) — —oco inthefinitetime (4.4.10).
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h(x,t)

3-0.0008

G

Vh(X,D)

b O 0.5 | 1

Figure 4.4.4: (a) Fradure haf-width, h(z,t), given by (4.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.3.18), plotted against « for a range of values of ¢ and for
& =0.0008, 8 = 415.
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h(x,t)

Vn(X,t)

0.02
0.015
0.01

0.005

| | | | X
(b) 0 0.2 0.4 0.6 0.8 1. 1.2

Figure 4.4.5: (a) Fradure haf-width, h(z,t), given by (4.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.3.18), plotted against « for a range of values of ¢ and for
8 =0.1, 5 = 1.66.
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h(x,t)

\ \ \ \
X
0 0.2 0.4 0.6 0.8 1. 1.2

Figure 4.4.6: Fradure halfwidth, h(z,t), given by (4.3.17) plotted against z for arange of values of ¢
andfor 2 = 0.2, 8 = 0. Thele-off velocity at the fluid/rock interface vy, (x, t), given by (4.3.18) is

Z&0.
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h(x,t)
0.55r

Vn(X,1)
0

~0.002
~0.004
~0.006
~0.008

-0.01

-0.012

(b) —0.014%

Figure 4.4.7: (a) Fradure haf-width, h(z,t), given by (4.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.3.18), plotted against « for a range of values of ¢ and for
£ =05,0=-1.
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h(x,t)

Vh(X,1)

-0.005

-0.01

-0.015

-0.02
(b)

Figure 4.4.8: (a) Fradure haf-width, h(z,t), given by (4.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.3.18), plotted against « for a range of values of ¢ and for
@ =2 0=-1.5.
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h(x,t)

Vh(X,1)

-0.005

-0.01

-0.015

-0.02
(b)

Figure 4.4.9: (a) Fradure haf-width, h(z,t), given by (4.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.3.18), plotted against « for a range of values of ¢ and for
&8 =5 0=-1.6.
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h(x,t)

Vih(X,1)

-0.01

-0.02

t=20
C3
o
B=—1.66

=

-0.03

()

Figure 4.4.10: (a) Fradure half-width, h(z,t), given by (4.3.25) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.3.26), plotted against « for a range of values of ¢ and for
8 = 0o, = —1.66.
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h(x,t)

-0.02

-0.04

-0.06
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-0.1

-0.12
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-0.14 b

(b)

Figure 4.4.11: (a) Fradure half-width, h(z,t), given by (4.3.17) and (b) le&-off velocity at the
fluid/rock interface v, (x, t), given by (4.3.18), plotted against « for arange of values of ¢ and for o=
-1, 8=-2.

61



4.5 Exact solution for non-zero fluid injedion rate at frac-
ture entry
We now look for asolution o (4.2.4) subjed to (4.2.5) and (4.2.6) which is of the form
F(u) = ala — )", (4.5.1)

where a, o and o are constants to be determined such that « £ 0 and o > 0. The value of «

for which F'(u) satisfies (4.2.5) isa = 1. Equation (4.5.1) becomes
F(u) =a(l —u)’. (4.5.2)
Substituting (4.5.2) into (4.2.4), we obtain
Aa*o(40 —1)(1 —u)* % —=3ac(1—u)" ' +a (Z—j +30—2— 35) (1—u)? =0. (45.3)

Equation (4.5.3) will be satisfied if

Ad*o(4o0 —1)(1 —u)* % = 3ac(1 —u)" ' =0 (4.5.4)
and
% +30-2-33=0. (4.5.5)
3

Equatingthe powersof 1 — « in (4.5.4) gives

1
==, 45.6
o= (4.5.6)
When o is aubstituted into (4.5.4) and (4.5.5), we obtain
éa4 —a =0, (4.5.7)
9
Co
——-1-38=0. (4.5.8)
C3
Solving (4.5.7) gives
9 3
a= (K) : (4.5.9)
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Hence, the solution o theform (4.5.1) is

Flu) = <K>% (1- )7, (4.5.10)

provided that (4.5.8) is stisfied.

We nate that the boundary condtion (4.2.6) was not used to oktain (4.5.10), but it must be
satisfied for (4.5.10) to be asolution o the problem. Wewill now show that (4.2.6) is satisfied.
Substituting (4.5.10) into the |eft hand side of (4.2.6) gives

AF%O)%(O) = -3 (%) ’ , (4.5.11)

whil e substituting (4.5.10) into the right hand side gives

C—i —5- 35) /01 Fu)du = Z (Z—j ~5-— 3ﬂ> (%) : (4512

Hence, the boundry condtion (4.2.6) is satisfied provided (4.5.8) holds.
By substituting (4.5.10) into (4.2.7) we obtain

SAVP
i_j — 2430 , (45.13)
and hencefrom (4.2.8), ,
Z_j _ 82A4‘§) i_z (4.5.14)
We dso have from (4.2.14)
u:%, 0<u<l. (4.5.15)

The solution can be written either in terms of 5 or 2. As in the first speda solutionwe

will expresstheresultsin termsof £. From (4.5.8),

gt <6_2 _ 1) . (4.5.16)

3 C3
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From (4.2.9) to (4.2.13),

8V ey, 13
t)y=Vo |1+ =2 =At 451
vio =i |1+ 582" @517
8V302 E_;
L) = |1+ 270204 45.18
=1+ 552" @518
2Vh 8V co i(2-12) z 13
Bz t) = 220 |14 202y 1- 4519
(@8 =3 { T 243 o } L] (4519

2/¢3 1
1 3 g(f*Q) 3
on(,1) = —0_ <@ - 1) AV {1 + %C—Qm} ’ {1 - %} , (45.20)

p(z,t) = Ah(x,t). (45.23)

h(z,t) = %%L(t)é@ii) {1 - %} ' (4.5.22)
valz, t) = % (z—i - 1) AVAL()i (6-3) {1 - ﬁ} " (4.5.23)

andp(z,t) isgiven by (4.5.21) and (4.5.22).
Inthelimit £ — oo, we have 8 — —3 and the groupinvariant solutions for L(t), V (t),

h(z,t), v,(z,t) and p(z, t) have an exporential ti me-dependencegiven as

V(t) = Voexp (%ng) , (4.5.24)
L(t) = exp (82T‘/§At) , (4.5.25)
h(z,t) = 2;/Oexp (1762‘3)3 At) {1 — Lft)} : , (4.5.26)
(2, ) = fgfgfex <1$2V903At) {1 - %] (4.5.27)

andp(z,t) isgiven by (4.5.21) and (4.5.26). The constant A is as defined in (3.4.5).
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4.6 Discussgon of resultsfor 3 = 3 (2—3 — )

Consider now the physicd significance of the spedal case

gt <0_2 _ 1) . (4.6.1)

3 C3

Unlike the condtion (4.3.14), condtion (4.6.1) does not make aphysicd quantity vanish,
neither does it define adividing curve between solutions in the <§—;, 6) plane. Substituting
(4.2.1), (4.5.10), (4.5.13) and (4.5.14) firstly, into (3.7.27) and secondy, into (3.7.24) gives
the rate of fluid injedion at the fracure entry

8 8 ¢ §<%7%
)= —AVA |14+ V32 A¢ 4.6.2
0(t) = 755 AV { toshy, } (4.62)

and the rate of fluid le&k-off at the fluid/rock interface

5(¢c3

8 & §<¥

4 372

BAV {1 + 557 CSAt] (4.6.3)

_4
5

8

£) = —
@(t) = 513

respedively. Thus ¢, () > 0 and fluid is always injeded into the fradure & the fradure entry
for the spedal case (4.6.1). Thestrength of theinjeded fluid either increases or deaeases with
time depending onthe value taken by the parameter o andit is constant when 2 =08.

Condtion (4.6.1) can be written as

1—<
B=—u (4.6.4)
co
and as
C3 1
= = . 4.6.

InFig 4.6.1, § given by (4.6.4) is plotted against 2. As with the spedal case (4.3.14) we
investigate the whole range —co < £ < oo. Table 3.7.1 shows that the range of values of

pradicd interestis( < £ < 1.

4.6.1 Fracture length and volume

Consider now the length of the fradure given by (4.5.18) and (4.5.25) and dotted in Figure

4.6.2for aseledion of valuesof £. For 0 < £ < 1, L(¢) increases even when thereis|eak-off
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15t

(-2)
c2
33
c2

Figure 4.6.1: Graph o § =

against ¢ for therange —2 < & < 2.
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at the fluid/rock interface For £ =1, 3 = 0 andthe rock isimpermeeble. Thelinea growth

in L(t) isdue entirely to the fluid injedion at the fradure entry:

8 8 5
= — AV 1+ —V3A 4.6.

the strengtt of whichincreases at ¢ increases. For £ < 0, L(t) — oo algebraicaly in thefinite

time
243 C3
AM=——(—-—]. 4.6.7
8V ( €2 ) (467
8 T / :
’ 5 ) } i C/Cr=00
Zo0s5) 2o / |
C Cy :
| [
6r “ /’ i .
I | e“' i ]
/ : P C3/Cp=2
I ‘ | P |
| ! /
Lt) 4 | / | e 1
‘J“ i ///// C3/C=1
| ///// C3/c=0.5
: _
= / _— #/ Bl
/ =
= 1 Cy/c=10°
O L ; L L L
0 20 243 40 60 80 90

Figure 4.6.2: Led&-off velocity propationa to fradure haf-width: Graph o fradure length,
L(t), given by (4.5.18) and (4.5.25) plotted against ¢ for 1, = 1 and a seledion dof values of

the parameter £.
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In Figure 4.6.3, the fracture volume V' (¢) given by (4.5.17) and (4.5.24) is plotted against
¢ for the same values of & asused in Figure 4.4.3for V(¢). When 0 < £ < 0.2,V ({) — O as
t —oo.When2 =02, = % andle&-off at the fluid/rock interfacebalancesthe deaeasing
inflow rate & the fradure entry so that V/(¢) remains constant. When & = +1, 8 = 0 and
therock isimpermeeble. The rate of fluid injedion, ¢, (¢) increases with time and hence V' (t)

increases. The fradure volume V() — oo in thefinite time (4.6.7) when £ < 0.

14’ C3 5 C3_ %
12 \ |

10r

e ¢3/C,=0.5

C3/C,=0.2

- — C3/Cp=0.1-
|

0 20 28 40 60 80 100 120 140
t

Figure 4.6.3: Le&-off velocity propartional to fradure half-width: Total volume of the frac
ture, %(t), given by (4.5.17) and (4.5.24) plotted against ¢ for 1, = 1 andaseledion o values

of &
co "
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4.6.2 Fracture half-width and leak-off velocity

Consider next h(z, t) which isgiven by (4.5.19) and (4.5.26) andis plotted in Figures 4.6.4 to

4.6.9. For the second case of exad solution, the initia fradure shape 1 (0, t) is

h(z,0) = §VO (1—2)7. (4.6.8)
From (4.5.19), when £ isfinite,
[, 8e, (iET
h(0,t) = 5 [1 + Iggm] (4.6.9)
andfor £ = oo,
2Vh 16V
h(0,t) = —— At |. 4.6.10

For0 < & < 3,5 < 3 < oo, h(0,t) deaeases as ¢ increases and the width of the fradure
at the entry deaeases as ¢ increases. The maximum le&k-off occurs always nea the fradure
entry where h(x, t) ishighest andits drenght deaeases with time. For thisrange of 2 therate
of fluid injedion at the entry deaeases with time. The presaure & the entry p(0, ¢) required
toinducefradure dso deaeases with time, a cnsequence from the PKN formulation (1.3.1).
When & = 7, 3 = 3 and h(0,t) remains constant. The presaure & the fracture entry p(0, t)
is constant from (1.3.1) even thoughthe rate of fluid injedion at the entry and le&-off at the
interfacedeaease with time. These operating condtions result in the width of the fradure
at the entry remaining constant. For the spedal case discussed in Sedion (4.4), there was no
inflow at the fradure entry and /,(0, ¢) remained constant when £ = 5 and L(t) increzsed due
to inflow at the fluid/rock interface For § < & < oo, thefluid pressure p(0, t) increases with
time and hence (0, ¢) increases as ¢ increases. For —oo < 2 < 0, h(0,?) — oo inthefinite
time (4.6.7).

From (4.5.19) and (4.5.26), the gradient of the fradture half-widthisgivenfor 0 < £ < oo by

1(¢3 2
oh W[ 8Vde,, 1 H(EN v\
O _ 2oty SNy — 6.
or 9 [ T 243 o t} 10 (4611
andin thelimit & = oo, by

on 2V 8V z \ 73

O g (S0 ps) (1- 2 4.6.12

or 9 ex'“( 729 ) ( L(t)) (4612
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At the fradure entry when ¢ = 0 andfor —oo < £ < oo,

oh 2V5
— = ——. 4.6.13
Inthelimit ¢t — oo andfor i—z > 0,
h
O (0, 00) = 0. (4.6.14)
ox

Asz — L(t), g—h
T

down in the neighbouhood d the fradure tip.

— —oo. Thethin film approximation (1.6.1) and (1.6.2) therefore bre&ks

Lastly, consider v, (z,t) which is given by (4.5.20) and (4.5.27) and dotted in Figures
4.6.410 4.6.9. From (4.5.20), for £ finite,

16 ¢ 8V ey 1307
n(0,8) = — AV [ = — 1) [14+ =2 =At 46.1
on(0,8) = 5757V (03 ) { HTEP } (4619
andfor g—g = 00,
16AVE  (16V3
n(0,1) = — 0 O At). 4.6.16
w08 = —5157 eXp(729 ) (46.16)

For0 < & <1, v(z,t) > 0, there is le&k-off at the fluid/rock interface ad v,, deaeases
ast increases. For 1 < & < oo, v,(x,t) < 0 andthereisinflow of fluid at the fluid/rock
interface For 0 < 2 < 2, the magnitude of v,(0, ) deaeases ast increases. When & = 2,
the magnitude of v,,(0,¢) remains constant and when 2 < £ < oo the magnitude of v,,(0,?)
increases ast increases. For —oo < 2 <0,6<0 and there is fluid inflow at the fluid/rock

interface ad v,,(0,¢) — —oo inthefinitetime (4.6.7).

70



h(x,t)
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t=0 2=10°
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Figure 4.6.4: (a) Fradure haf-width, h(z,t), given by (4.5.19) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.5.20), plotted against « for a range of values of ¢ and for
% =107%, 3 = 33333.
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Figure 4.6.5: (a) Fradure haf-width, h(z,t), given by (4.5.19) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.5.20), plotted against « for a range of values of ¢ and for
£ =0.5,5=0.33.
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h(x,t)

| | X
0 0.5 1 15

Figure 4.6.6: Fracture half-width, h(z,t), given by (4.5.19) plotted against z for arange of values of
tandfor & =1, 3 = 0. Theleak-off velocity at the fluid/rock interface v, (z, ), given by (4.5.20), is

Zex0.
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h(x,t)

Vn(X!t)
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B=—0.166

Figure 4.6.7: (a) Fradure haf-width, h(z,t), given by (4.5.19) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.5.20), plotted against « for a range of values of ¢ and for
& =2,p=-0.166.
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Figure 4.6.8: (a) Fradure haf-width, h(z,t), given by (4.5.26) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (4.5.27), plotted against « for a range of values of ¢ and for
8 = 0o, = —0.33.
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Figure 4.6.9: (a) Fradure haf-width, h(xz,t), given by (4.5.19) and (b) le&-off velocity at the

fluid/irock interface v, (z,t), given by (4.5.20), plotted against « for a range of values of ¢ and for
o =-1,0=-0.66.

76



4.7 Transformation of boundary value problem intotwoini-
tial value problems

When
5#}(@_5) and 57&1(_2_1) (4.7.1)
3 C3 3

C

C3
the problem is lved numericdly. In this sdion, we present amethod d solving numericdly
the boundary value problem (4.2.4), (4.2.5) and (4.2.6) by transforming it to two initia value
problems. Thismethodwill also be used in Chapter 5 to transform the boundary value problem
derived there to two initial value problems. It is shown in Appendix B that any differential
equation o theform

d

dF d
A— | FP— A— (uF')+ BF = 4.7.2
du ( du) * du (wF) + 0 ( )

admits only one Lie point symmetry generator and it existsonly if A # 0. Equation (4.2.4) is
of the form (4.7.2) with A = 3 and B = Z—j — 5 — 3. Equation (4.2.4) therefore caanat be
integrated completely in general to give an analyticd solution. It is lved numericdly for a
range of values of £ and /. It has been shown that invariance of a boundary value problem
for an ordinary differential equation under a scding transformation all ows the boundary value
problem to be transformed to two initial value problems which are eaier to solve[25]. This
methodwasfirst used to solve the Blasius boundary value problem for steady two-dimensional
flow of an incompressble fluid past a flat plate placed edgewise to the stream[26]. Severa
extensions of the technique have been made[27, 28, 29].
The Lie point symmetry generator admitted by any diff erential equation o theform (4.7.2)
is, from Appendix B,
d

d
X =3u—- + 2F . (4.7.3)

The transformation (u, F) — (u, F'), generated by the Lie point symmetry (4.7.3) is derived
by solving Li€'s equations subjed to initial condtions as described in Sedion 23. Li€'s
equationsandtheinitia condtionsfor thetransformation generated by the Lie point symmetry
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(4.7.3) are

du

% = 3@, ﬂ(O) = u,
dFF  _— —
— =2F F0)=F.

where a isthe group parameter. The solution o (4.7.4) is
T = >, F = e*F.
Let A\ = e3¢, then (4.7.5) becomes
U=Au, F=\iF
The boundxry value problem (4.2.4) to (4.2.6) is
AL (F?’E) w3 wp) + (C—2 —5- 3ﬂ> F(u) =0,

du du du C3

AFS(@)%(O) _ (0—2 _5- 35) /01 F(u)du.

C3

Under the transformation (4.7.6), equations (4.7.7) to (4.7.9) become

A% <F3g) + 3% (uF (W) + <Z—§ —5— 35) F(a) =0,
F(\) =0,
AF?’(O)%(O) - (% _5- 35) /0 ' F(a)da.

(4.7.4)

(4.7.5)

(4.7.6)

(4.7.7)

(4.7.8)

(4.7.9)

(4.7.10)

(4.7.11)

(4.7.12)

We seethat the diff erential equation (4.7.7) isinvariant under the transformation (4.7.6). This

is the basic property of atransformation generated by a Lie point symmetry of a differential

equation.
We now choacse
F(0)=1
Then from (4.7.6),
1
0=

(4.7.13)

(4.7.14)



The parameter ) is defined by (4.7.11). The boundxry value problem, (4.7.7) to (4.7.9), can
therefore be transformed into the foll owing two initial value problems:

Initial Value Problem 1

d (—3dF d ,_ — _
Aﬁ (F?’%) + 3% (uF (u)) + (2—2 -5 36) F(u) =0, (4.7.15
F(0) =1, (4.7.16)
d? Cy )\— N\ —
A%(O) = <c_3 —5— 35) /0 F(u)du, (4.7.17)
where 0 < u < X\ and )\ isdefined by
F()\) =0. (4.7.18

Initial Value Problem 2

AL <F3£) w3 wr) + (C—2 _5- 35) Fu)=0, (4719

du du du C3
F(0) = A3, (4.7.20)
F 1
A 0y = e (0—2 5 35) / F(u)du, (4.7.21)
du C3 0

where 0 < u < 1 andthe parameter \ isobtained from Problem 1.

The Initial Vaue Problem 1 is used orly to cdculate A\. The solution F'(u) is obtained
by solving the Initial Value Problem 2. The remainder of the solution is given by (4.2.7)
to (4.2.13). Before we consider the numerica solution for general values of 3 and & we
will transform the boundrry value problem for the two speaa cases for which an analyticd
solution has been foundinto two Initial Value Problems. These Initial Value Problemswill be

solved. It will give a dhedk onthe numericd method
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Spedalcase:ﬁzé(g—j— )

The boundary value problem (4.7.7) to (4.7.9) reduces to

A% <F3%> + 3%(uF(u)) =0, (4.7.22
F(1) =0, (4.7.23
dF

%(0) — 0. (4.7.24)

Thisboundiry value problem can be transformed to the foll owing two initia value problems:

Initial Value Problem 1:

d [—sdF d _—=_\
Aﬁ (F %> - 3% (uF(u)) =0, (4.7.25)
F(0) =1, (4.7.26)
dF
27 (0) = 47.2
where 0 < w < X and )\ isdefined by
F()\) =0. (4.7.28)
Initial Value Problem 2 :
d 4dF d
F(0)= A%, (4.7.30)
dF
%(0) =0, (4.7.3))

where( < v < 1 and ) is obtained from Problem 1.

Solvingthe Initia Value Problem 1 for () gives

o (9NT 20 \F
Using (4.7.28), we obtain
A= @ (4.7.33
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The solution o the Initial Value Problem 2 is

F(u) = (%)é (1—u?)".

Equation (4.7.34) agrees with (4.3.9) derived for F'(u) in Sedion 43.

W=

Spedal case: 3 = 1 <0—2—1>

C3

(4.7.39)

For this oedal case the boundiry value problem (4.7.7) to (4.7.9) is transformed to the fol-

lowingtwo Initial Value Problems:

Initial Value Problem 1

d [—3dF d , — _
A—|F — — (uF) —4F(u) =
( dﬂ) +3dﬂ (uF) (w) =0,

Initial Value Problem 2

d [ dF d

2 dF

F(0) = \"3, A@(O) = —4)\? /1 F(u)du,

where 0 < u < 1 andthe parameter \ isobtained from Problem 1.

In order to solve Problem 1, look for a solution o (4.7.35) of the form

F(a)=A(B-qa)",

(4.7.35)

(4.7.36)

(4.7.37)

(4.7.38)

(4.7.39)

(4.7.40)

where A, B andn are constants to be determined such that A # 0 andn > 0. Using (4.7.36a)

we have
AB" = 1.
Substituting (4.7.40) into (4.7.35) and solving gves

1 s 9B
n=r-, A ="

3 A
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andtherefore using (4.7.41),

s

I
7N
~| ©
N
ol

&

I
7N
ol =
N
(NI

Thus

and hencefrom (4.7.37),

N[

(3

(4.7.43)

(4.7.44)

(4.7.45)

It can be verified that the boundiry condtion (4.7.36b) isidenticdly satisfied by (4.7.44). The

solution o the Initial Value Problem 2 is performed in asimilar way by looking for a solution

of (4.7.38) of theform (4.7.40). It isfound ou that

F(u) = (%) (1—u)s.

W=

Equation (4.7.46) agrees with (4.5.10) derived for F'(u) in Sedion 45.

4.8 Numerical solution

In order to transform A from the equations, redefine

t' = At, v, ==

and then suppressthe dash. The partial differential equation (3.6.1) beaomes

oh 19 (,50h)
ot 30z \ " oz) "™

The boundxry value problem (4.2.4) to (4.2.6) becomes

d% (F3d—F> w3 wr) + (9 —5-33

du du C3
F(1) =0,
FS(O)%(O) _ (Z—z 5 35) /OlF(u)du,

(4.7.46)

(4.8.1)

(4.8.2)

(4.8.3)
(4.8.4)

(4.8.5)

which is transformed into the two initial value problems (4.7.15) to (4.7.18) and (4.7.19) to

(4.7.2) with A = 1:
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Initial Value Problem 1

d (ﬁ@) +3-L (@F(@) + (0—2 ~5- 3ﬁ) F(u) =0, (4.86)

du du du C3

F(0) =1, (4.8.7)

dF . Co A —

%(0) = (a —5— 3ﬁ) /0 F(u)du, (4.8.8)
where 0 < @ < X\ and )\ isdefined by

F(\) =0. (4.8.9)

Initial Value Problem 2

d 3dF d o B

o (F @> + 3% (uF(u)) + <c_3 —5— 3ﬁ> F(u) =0, (4.8.10

F(0)= A3, (4.8.11)

dF 1 dF

@(0) Y ﬁ(o)’ (4.8.12

where 0 < u < 1 andthe parameter \ is obtained from Problem 1.

We present the numerica method employed to solve equations (4.8.6) to (4.8.9) of the
Initial Value Problem 1 and (4.8.10) to (4.8.12) of the Initial Value Problem 2. The second
order differential equation (4.8.6) can be transformed into the couded system of first order
differentia equations

dF

— =Y, (4.8.13
du

dys Loom2 0 o C2 7

du F C3

subjed to the initial and boundry condtions
F0)=1, 5%0)=K, FM\)=0 (4.8.15)

where K isto be determined. The seoond ader differential equation (4.8.10) is transformed

into the convenient set of couged first order diff erential equations

dF
dys 1 Fopae gy 2 _ 9 38)F (4.8.17)
du ~ F3 Ys Y3 c3 ’ A
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subjed to theinitial condtions
F(0)= A3, y3(0) = Asy(0). (4.8.18)

Thesolution o the couped system (4.8.16) to (4.8.17) subjed to theinitia condtions(4.8.18a)
and (4.8.18b) is also the solution o the origina boundry value problem (4.2.4) subjed to
the boundiry condtions (4.2.5) and (4.2.6). The values of A\ and y,(0) are obtained diredly
by solving (4.8.13)-(4.8.14) subjed to (4.8.153), (4.8.15b) and (4.8.15c) using the shoding
method

The dgorithm for the shoding methodis as foll ows

e STEP1

For fixed values of the parameters £ and (3, solve the first order system (4.8.13) and
(4.8.14) of the Initia Value Problem 1 subjed to (4.8.15a), (4.8.15b) and (4.8.15c) for
F and )\ usingthe IVP solver-ODE 45in MATLAB. Thefirst step in determining F and
A involves integration o (4.8.13) and (4.8.14) badkward from z = A\, touw = 0 with

varying values of A, urtil the condtion
|F).(0) — 1] < ey, (4.8.19

where e, = 1077 is stistied. Because of the singuarity at w = ), it is necessary to
commence the backward integration with the asymptotic representations for 7 (u) and
yo(u) asinitial condtionsat an e—neighbouhood d the point w = \ where the solution
F () faces dnguarity. These asymptotic representations can be derived diredly from
(4.2.25) using the transformation (4.7.6) with A = 1 as

ol

F ~ (903 (A —1)3, (4.8.20)

Yo ~ —%(%)é (\—7)75. (4.8.21)

When (4.8.19) is satisfied the value of the slope K for the couped first order system
(4.8.13)-(4.8.14) then satisfies

F\.(0) — K| < e, (4.8.22)
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that is

—-—/

F\ (0) — ey < Ky < Fy_(0) + &3, (4.8.23)
where e, istakento be 107°.

STEP 1 therefore provides us with an interval i nside which we know that the slope K,

lies and this ensures afaster rate of convergenceof K.

e STEP2

Use the symbadlic property of MATHEMATICA to solve the first order system (4.8.13)
and (4.8.14) of IVP 1 onthedomain 0 < v < w wherew > A\, subjed to theinitial
condtions

— dF (
du
where K, isan iterate from F'y_(0) — e to Fy_(0) + &5.

0) = K, (4.8.24)

In order to ensure an acarate value of the slope K; used as initial condtion, the step
sizefor the iteration must be of order say 10~%. This also ensures the acarragy of the

value of \ obtained.

For ead iteration, solvefor A,

e STEP3

3 A—0.00001
Ki—(——-5-— 35)/ F(u)du| < e (4.8.25
0

wheres; = 1077, then the value of )\ obtained in STEP 2 isthe required value. Becaise
thereisasinguarity at w = A, theupper limitintheintegral is st equal to A —0.000001.

By obtaining A in STEPS 1, 2 and 3 we now solve for F'(u) the couped system (4.8.16)
to (4.8.17) subjed to known initial condtions (4.8.18a) and (4.8.18b). The initial condtion

(4.8.18b) must satisfy
dFr

du
where ¢, = 107%. During the numericd computation it turns out that the acarary of the

(0) = ASya(0)| < &u, (4.8.26)

shoaingmethodat the fradure tip depends grongy onthe value of the slope /\%yg(o) used as
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initial condtionfor the cuped system (4.8.16) to (4.8.17) which in turn dependson e;. Cal-
culationsmadewhen 3 = 107 and ez = 107!2 in (4.8.26) show that the overall properties of
the solution F'(u) differed littl e from those for e; = 10~7 and solutions overlap onthe domain
[0, 1) except in the neighbouhood d the fradure tip where v = 1. Calculations made with
g3 = 1073 ande3 = 107? in (4.8.26) show a goodagreament between the numericd solution
and the exad solutionin the region away from the fradure tip but asthe tip is approached the
agreament beginsto fail. Tables 4.8.1 and 4.8.2 show the numericd and analyticd solutions
for F'(u) for the two cases in Sedions 4.3 and 45 in which exad solutions are known. The
results shown are obtained for 5 = 10~7 and solutions only agreeto 3 dedmal placesin the

fradure tip neighbouhood

4.9 Numerical Results

In this sedion, we analyse the general results obtained from the numericd computation o the
simil arity dependent variable F'(u) for arange of values of the parameters 5 and 3. Itwas
discovered numericaly while daing the cdculations that for eat value of the parameter &
there exists a minimum value for the le&-off parameter 5. Below this value of 3 thereis no
solution o the Initial Value Problem (4.8.16) to (4.8.18). The set of values of the parameters
2 and g inthe (2, 3) plane for which a solution exists to the Initial Value Problem (4.8.16)
to (4.8.18) isboundd below. Thisis hownin Fig 4.9.1.

4.9.1 Physical significanceof curves

Consider the aurve

B = b (4.9.1)

34

c2
The set of values of the parameters (z—;, () satisfying (4.9.1) describes an operating condtion
in which there is no fluid injedion o extradion at the fradure entry. That is, (4.9.1) is the

curvefor noinjedion o extradion o fluid at the fracure entry.
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Speda Case & — 33 —5=0
u Exad Solution | Numericd Solution
0.000 1.650960 1.650960
0.200 1.628650 1.628650
0.400 1557750 1557750
0.600 1422760 1422760
0.800 1.174460 1.174460
0.900 0.949122 0.949122
0.920 0.884168 0.884168
0.940 0.806099 0.806100
0.960 0.706604 0.706605
0.980 0.562733 0.562734
0.982 0.543496 0.543496
0.984 0.522747 0.522747
0.986 0.500157 0.500158
0.988 0.475266 0.475266
0.990 0.447392 0.447393
0.992 0.415461 0.415462
0.994 0.377598 0.377598
0.996 0.329972 0.329973
0.998 0.261987 0.261987
1.000 0.000000 0.000860

Table 4.8.1: Comparison o the numericd and analyticd solutions for F'(u) for the spedal

case§—§—35—5:0.
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Speda Case 2 —35—-1=0
u Exad Solution | Numericd Solution
0.000 2.080080 2.080090
0.200 1.930980 1.930980
0.400 1.754410 1.754410
0.600 1.532620 1.532620
0.800 1.216440 1.216440
0.900 0.965489 0.965491
0.920 0.896281 0.896283
0.940 0.814325 0.814327
0.960 0.711379 0.711381
0.980 0.564622 0.564624
0.982 0.545136 0.545138
0.984 0.524148 0.524150
0.986 0.501330 0.501332
0.988 0.476220 0.476222
0.990 0.448140 0.448142
0.992 0.416017 0.416019
0.994 0.377976 0.377978
0.996 0.330193 0.330195
0.998 0.262074 0.262076
1.000 0.000000 0.001045

Table 4.8.2: Comparison o the numericd and analyticd solutions for F'(u) for the spedal

casejj—;—Sﬂ—l:O.
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The limiting curve for solutionsis described by

s(5-2)

Brmin = 35 ) (4.9.2)
where 3,,;, 1S the minimum value of ;3 for a given value of g—z For
s(5-2)

3 ’
there ae no solutions. Equation (4.9.2) was found numericdly. We ae naot able to give an
analyticd proof that there no solutionswhen (4.9.3) is stisfied or provide aphysicd explana-
tion. In the region bouned by the aurve (4.9.1) and (4.9.2), there is extradion d fluid at the
fradure entry. Hencethe solution o the Initial Value Problems 1 and 2 oliained using values
of the parameters < and (3 in this bounced region describes an operating condtionin which
thereis fluid extradion ou of the fradure & the fradure entry. This may have gplicaionin

the extradion o oil from afradurein permeable rock.

4.9.2 Graphical resultsfor fixed g—j and varying values of 5

We present in this ®dion the graphicd results obtained for h(z,t), v,(x,t) and L(t) from
the numericd solution o the two Initial Value Problems in Sedion 4.8 when the parameter
< isfixed and 3 is varied. For the two analyticd solutions we investigated a wide range of
values of o and 3 because it was not difficult to produce graphs from the analyticd results.
It requires more work to derive the numericd results and therefore asmall er range of values
of the parameters, 5 and &, will be considered. The values of the parameters used are those
of clea physicd significance The results show how ( affeds the propagation o the fradure
length and growth of the fradure half-width.

In Figure 49.2, £ = 0.1 and from equation (4.9.2), 3,.;, = 0.66. Therefore only the
case in which fluid le&ks off at the fluid/rock interface ca be considered. The values of 3
considered in order of increasingle&-off are 0.66, 1, 1.66, 3 and 10. In Figure 4.9.2 (a), le&-
off reduces the extent of propagation o the fracure length in a given time, with the fradure
length propagating farthest when 3 = 0.66. For £ = 0.1 andwhen 3 = 1.66, equation (4.9.1)

is satisfied and we have the exad solutionfor which the rate of fluid injedioninto the fradure
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a the entry, ¢; = 0. When 5 = 3, (4.6.1) is stisfied and we obtain the exad solution of
Sedion 45 for which there is fluid injedion into the fradure which increases with time. In
Figure 4.9.2 (b), the gradient of the fracure half-width % — —o0 asx — L(t). Thethin
film approximation therefore bregks down in the neighbouhood d the fradure tip. In Figure
4.9.2 (c), the graph for v, (z,t) clealy refleds the underlying assumption that v,, oc h. For
low values of 3, legk-off is approximately uniform over the fradure and an urexpeded shape
in which g—g(o,t) > () is obtained. For higher values of 3, the expeded shape is obtained.
The case in which there is no le&-off canna be analysed since solution daes not exist when
g =0.

InFigure4.9.3, L(?), h(x,t) andv,(z,t) areplotted for £2 = 0.2. When £ = 0.2 thetotal
volume of the fradure remains constant. There is no solutionfor 5 < —1 and the values of
( used are those of significance andthey are 5 = —1,0,1.33,5,10. When 3 = 0, thereisno
le&k-off of fluid and equation (4.9.1) for which therate of fluid injedioninto thefradure & the
fradure entry, ¢; = 0, is stisfied. When 3 = 1.33, equation (4.6.1) for which the rate of fluid
injedion at the entry, ¢;, is positiveis stisfied. In Figure 4.9.3 (a), the rate of increase of the
fradure length deaeases as le&-off increases. Fluid injedion at the fluid/rock interface &so
increases the fradure length. When there is le&-off, the fradure shape is as expeded with
h(z,t) deaeasing as x increases. Fluid injedion at the interfacegives an unexpeded result in
which g—fg > 0 initially and the maximum width occurs nea the mid-point of the fradure.

In Figure 4.9.4, L(t), h(z,t) and v, (x,t) are plotted for &2 = 0.5. When £ = 0.5, the
presaure & the entry, p(0, ), is constant. No solution was foundwhen g < —2. Solutions
for —2 < [ < —1 correspondto fluid extradion at the fradure entry and an unexpeded
shape is obtained. When 5 = —1, equation (4.9.1) for which the rate of fluid injedion at the
entry, ¢;, iszero is stisfied and when 5 = 0.33, (4.6.1) for which the rate of fluid injedion at
entry, ¢;, ispaositiveis stisfied. Injedion d fluid at the interface caises the fradure length to
propagate further in a given time than when the rock isimpermeéble or when there is le&-off.
This occurs even when fluid is extraded at the entry. In Figure 4.9.4 (), fluid le&k-off at the
interfacedeaeases the rate of propagation o the fradure length.

InFigure 4.9.5, L(t), h(z,t) andv,(z, t) are plotted for £ = 0.8. When £ = 0.8, therate

of fluid injedion at the fradure entry is constant. No solution was foundwhen g < —2.25.
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Equation (4.9.1) is satisfied when 5 = —1.25 and (4.6.1) is stisfied when 3 = 0.083. There
isno fluid le& off into the rock masswhen 5 = 0 while for § = 5 there is le&-off. Fluid
injedionat the interfaceincreases the rate of propagation o the fradure length even athough
there is fluid extradion at the fracure entry. When there isfluid injedion at the interfacethe
unexpeded shape of the fradure in which h(z, ) first increases with = before deaeasing is
again oltained.

InFigure 4.9.6, L(t), h(z,t) and v, (z,t) are plotted for & = 1. When £ = 1, the length
of the fradure grows linealy with time for al values of 3. The speed of propagation o the

dL
L dt!

fradure is constant. No solutionexist when § < —2.33. When g = —1.33, thereisno
fluid injedion at the entry and equation (4.9.1) is stisfied. For 3 = 0, there is no le&-off
at the interface ad equation (4.6.1) is aso satisfied. Fluid injedion throughthe interface
increases the rate of propagation d the fradure length even if there is fluid extradion at the
entry. The unexpeded shape for the half-width of the fradure is obtained again.

In all cases the maximum rate of growth of the length of the fradure occured for the

limiti ng solution gven by (4.9.2).
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Figure 4.9.2: Graphs for & = 0.1 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 4.9.3: Graphs for & = 0.2 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 4.9.4: Graphs for & = 0.5 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 4.9.5: Graphs for & = 0.8 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 4.9.6. Graphs for & = 1andaseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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4.9.3 Graphical resultsfor fixed 3 and varying values of

We present in this sdionthe graphicd results obtained for L(t), h(z, t) andv,(x,t) when the
parameter & isvaried and /3 is fixed. The values of . used are those of physicd significance
intherange 0 < & < 1. Theresults obtained show how the parameter & affeds the rate of
propagation d the fradure length and growth of the fradure half-width.

In Figure 4.9.7, 5 = —2 and solution exists for 0.5 < 2 < oo. All solutions have fluid
injedion at the fluid/rock interface ad extradion o fluid at the fradture entry. The maximum
width of the fracture does not depend grealy onthe parameter £ and occurs at the middle of
the fradure, not at the entry sincefluid extradion accurs there. The fradure length increases
as increases, even althoughfluid extradion accurs at the entry. In Figure 4.9.7(c), the graph
of v, (z,t), whichisnegative acossthe fracure for all valuesof <, verifiesthat fluid isalways
injeded at the fluid/rock interface

In Figure 4.9.8, 5 = —1 and the solution exists for 0.2 < £ < oco. All solutions have
fluid injedion at the interface For 0.2 < £ < 0.5, there is extradion o fluid at the entry.
For £ = 0.2 and & = 0.35, the half-width of the fradure initially increases with = before
deaeasing. For 0.5 < £ < oo, thereisfluid injedion always at the entry to the fradure.
When o = 0.5, equation (4.9.1) is satisfied and the rate of fluid injedion at the entry, ¢4,
vanishes. Equation (4.6.1) is not satisfied for any value of £ when 5 = —1. Thelength of the
fradure & agiventimetincreasesas & increases. It isgreaer when thereisfluid injedionat
the entry <§—§ > 0.5) than when thereisfluid extradionat the entry (0.2 < & < 0.5).

In Figure 4.9.9, 5 = 0 and the solution exists for 0.125 < & < oo. All solutions have
no fluid exchange & the interface Hence the rock massis impermeale. The fradure length
increases as £ increeses and the rate of increese is snall when fluid extradion occurs at the
entry. The shape of A (x,t) when 0.125 < 2 < 0.2 isdueto fluid extradionat the entry. For
0.2 < £ < oo, there is fluid injedion at the entry and the maximum width always occurs
at the entry to the fradture. When & = 0.2, thereis noinjedion o extradion d fluid at the
fradure entry.

In Figure 4.9.10, 5 = 1 and the solution exists for 0.091 < £ < oco. All solutions have

leak-off of fluid at the interface Fluid extradion at the entry occurs for 0.091 < 5_3 < 0.125.
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Fluid injedion at the entry occursfor 0.125 < & < co. When £ = (0.125, equation (4.9.1) is
satisfied and ¢; = 0. For £ = 0.25, equation (4.6.1) is stisfied and ¢; > 0. In Figure 4.9.10
(a), L(t) increases as & increases. The growth of L(t) is dronger when there is injedion o
fluid at the entry than when fluid is being extraded at the entry.

In Figure 4.9.11, 5 = 2 and the solution exists for 0.0714 < £ < oco. All solutions
have les-off of fluid at the interface Fuid extradion cceurs for 0.0714 < £ < 0.091. The
shape of the fradure for £ = 0.0714 again is due to the extradion o fluid at the entrance
to the fradure. Injedion o fluid at the entry ocaurs for 0.091 < & < oo and aspedal case
for which equation (4.6.1) is stisfied occurs when £ = 0.143. Equation (4.9.1), for which
¢ = 0, is sttisfied when £ = 0.091. The fradure length L(¢) incresses as ¢ increases. The
lesk-off velocity v, isalmost uniform as £ increases to urity.

In Figure 4.9.12, 5 = 5 and the solution exists for 0.043 < i—z < oo. All solutions have
leak-off of fluid at the interface Extradion o fluid at the entry occursfor 0.043 < g—z < 0.05
whileinjedion o fluid at the entry occurs for 0.05 < & < oco. Therate of fluid injedtion at
the entry vanisheswhen & = 0.05. When & = 0.0625, equation (4.6.1) is stisfied and the
exad solution, (4.5.17) to (4.5.21), applies.

In &l cases the fradure length at a given time increases as £ increases to urity. This
corresponds physicdly to the transition from fluid extradion at the fradure entry for small

values of < to fluid injedionat the entry with increasing strength as £ increases.
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Figure 4.9.7: Graphs for 3 = —2 and a sdledion o vaues of & : (&) Fradure length L(t) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

vy, (2, t) plotted against « at time t = 50.
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Figure 4.9.8: Graphsfor 3 = —1 and a sdledion o vaues of & : (&) Fradure length L(t) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

vy, (2, t) plotted against « at time t = 50.
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v (2, t) plotted against « at time t = 50.
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4.10 Conclusion

We have presented solutionsto the fluid-driven fradure problem for the case in which the rock
permeability is such that the velocity of fluid le&-off is propartional to the half-width of the
fradure. The solutions contain the parameters & and 5. The le&-off parameter 3 determines
the condtion o flow at thefluid/rock interface When 5 > 0, fluid le&ks off into the rock mass
at theinterface adwhen 3 < 0, there is backward flow into the fracture a the interface This
may occur when the rock massis saturated with fluid. For 5 = 0, thereisnofluid exchange &
the interface ad the rock isimpermeable.

Numericd and analyticd solutions were foundfor the volume of the fradure, V (¢), frac
turelength, L(t), fradure haf-width, h(z, t), le&k-off velocity, v, (z,t) andthefluid presssire
p(z,t) for values of £ and 3 of physicd significance in the range —co < 2 < oo and
—2.66 < 8 < oo. Inthe limit a = o0, time dependent exporentia solutions were derived
for V' (t), L(t), h(x,t), v,(z,t) and p(x, t). For large times, approximate power law solutions
can also be derived.

Three caegories of solution were obtained that depend onthe values of the parameters.

The arve

f= @ (4.10.1)

partitions the (£, 3) plane into two parts. For values of (£, 3) above the aurve (4.10.1), the
rate of fluid injedioninto the fradure & the fradure entry is always paositive. This could de-
scribe the processof hydraulic fracuring. Analyticd groupinvariant solutions were obtained

for the operating condtion

(- 2)
inwhichfluidisalwaysinjeded at the entry. For thevaluesof (£, 3) below the aurve (4.10.1),
therate of fluid injedionis negative andfluid isaways extraded from the fracure & the entry.
The lower limit curve for solutionsis
s(3-2)
B = qa (4.10.3)
Cc2

An analyticd proof of the aurve (4.10.3) could na be establi shed andits physicd significance
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could na be determined. Solutionswith parametersin the range

8(%:%) <p< 5(%:5‘3) (4.104)

Cc2 c2

could describe the processof extradion o fluid from a fradure in a permeable rock. Group
invariant solutions and numericd solutions were obtained for this case. For the values of
(£, 8) onthe dividing curve (4.10.1), the rate of fluid injedion at the entry, ¢;, vanishes and
we obtained analyticd solutionsfor which thereisnofluid injedion o extradion at the entry.
This could describe the evolution of afluid-filled fradure, seded at its entrance, in permeéble
rock.

The rate of fluid injedion at the entry, ¢, is further controlled by the parameter . For
i—z = 0.8, ¢; isconstant and fluid injedion at the entry is constant. For g—g < 0.8, ¢q; deaeases
ast increases and for g—z > 0.8, ¢; increases ast increases.

The graphicd solutionsin Sedions 4.9.2 and 4.9.3 ill ustrate that the length of the fradure,
L(t), awaysincreasesevenif thereisles-off of fluid at theinterface adfluid extradionat the
entry. Of interest isthe behaviour that is observed when thereisnofluid injedion at the entry.
The fradure relaxes to different fina states depending onwhether 5 < 0, 3 = 0 or 3 > 0.
In particular, when 5 > 0 the fradure width will beacme narrower and the fradure length
longer until the interfacegrips the proppng material that holds the interface gart . Indeed,
when 5 > 0, fluid will continue to le&k off over the whole fradure aea and particularly nea
the entry where h(z, t) ismaximum. Thisle&k-off limitsthe alditional length obtained when
thereisnofluid injedion at the entry.

From Figures 4.9.2a to 4.9.6a, the speed of propagation % increeses as [ deaeases and
its maximum value occurs aways on the limiting solution curve. In fad fluid injedion at the
interfaceis always gredest and extradion o fluid at the fradure entry stongest for all values
of 3 and 2 onthe limiting solution curve. When (3 is large and negative the maximum width
of the fradure occurs at approximately the mid-point of the fradure. This is due to large
negative values of 3 being asociated with extradion o fluid at entry. This fluid extradion
prevents the width of the fradure & the entry from increasing as much as at the mid-paint. In
all the solutions obtained, the graphs for the le&k-off velocity, v,,, refled that it is propartional
to the fradure half-width, h(z,t). From Figures 4.9.7ato 4.9.12a, the speed of propagation
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of fradure length, 9%, increases as & increases. Smaller values of < are associated with
extradion o fluid at the fradure entry while larger values are assciated with injedion o
fluid at the entry. For all solutions obtained, the gradient of the fradure half-width, %, tends
to —oo asx — L(t). Hence, the thin film approximation bre&ks down in the neighbouhood
of thetip of the fradure, z = L(¢).

Finally, to chedk the acwracgy of the numericd solution, we solved the two Initial Value
Problems numericdly for the spedal cases (4.3.1) and (4.5.8) which yield exad anayticd
solutions. We found that the numericd solution is in goodagreanent with the analyticd
solutionsas shownin Tables4.8.1 and 4.8.2. The solutions agreeto five dedmal places except

at the fraduretip. In Table 4.8.1 the solutions at the fradure tip agreeto threedeamal places
whil e the agreament at the fraduretip in Table 4.8.2 isto two dedmal places.
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Chapter 5

LEAK-OFF VELOCITY
PROPORTIONAL TO GRADIENT OF
FRACTURE HALF-WIDTH

5.1 Introduction

In this Chapter we consider the second spedal case in which G(u) is propartional to 4. The
le&k-off velocity istherefore propartional to the gradient of the fluid/rock interface Theresult-
ing boundry value problem for F'(u) is lved analyticaly for two spedal cases which yield
exad solutions. For the first spedal case which is considered in Sedion 5.3, the rate of fluid
injedioninto the fradure & the fradure entry is zero whil e for the seaond spedal case which
is considered in Sedion 54, there is always inflow of fluid at the fradure entry. Numericd
computationis used to oltain results in general and this begins with the transformation o the
boundry value problem into two Initial Value Problems using the invariance of the boundary
value problem under ascdingtransformation. The dgorithm outlined in Chapter 4 for solving
the two initial value problems also applies in this Chapter.
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5.2 Leak-off velocity proportional to gradient of fluid-rock
interface

We now consider the case

G(u) = —ﬁuz—i, (5.2.1)

where (3 is a constant. It follows from the similarity solution (3.6.61), (3.6.62) and (3.6.63)
that o o

v = _gz_?(lia_%t) __ Z_j% (5.2.2)

Hence, v,, ispropartional to the gradient of the fradure half-width. The boundry value prob-
lem (3.6.55) to (3.6.64) beaomes

d 3dF d 2 B
A% (F du) +3(1+ ﬁ)% (uF) + (03 —5— Sﬁ) F=0, (5.2.3)
F(1)=0, (5.2.4)
dF !
AF3(0)—(0) = (9 -5-— 35) / F(u)du, (5.2.5)
du C3 0
C3 % 1
Vo=2 (—) / F(u)du, (5.2.6)
C1 0
2_2% (52.7)
C1 C3 C1
N
V(t)= Vo (1 + C—t) : (5.2.8)
1
€3

L(t) = (1 + ?t) 7 (5.2.9)

1

NN Lo
h(z,t) = (—) 1+ —t) F(u), (5.2.10
C1 C1
! 24 gp

vz, t) = -0 (C—3 (1 + C—%) W2 (5.2.11)

C1 1 du
p(z,t) = Ah(x,t), (5.2.12

where
T
= — <u<l. 2.1
u I’ 0<u< (5.2.13)



When % < 0, 8 > 0 describes le&k-off while 5 < 0 describes inflow at the fluid/rock
interface For the case % > 0, 8 > 0 describes inflow at the fluid/rock interfacewhile 5 < 0
describes le&-off. When ‘3—5 = 0, thereis nole&-off even for nonzero values of .

We now seek to determine the asymptotic solution o the diff erential equation (5.2.3) sub-
jed to the boundary condtion (5.2.4) asu — 1. This asymptotic solutionis required when

deriving the numericd solutionfor F'(u) . Look for an asymptotic solution o the form
F(u) ~a(n—u)" a  u—1, (5.2.19)

where a, n andn are mnstantsto be determined. The boundary condtion (5.2.4) givesn = 1
and therefore (5.2.14) becomes

F(u) ~a(l —u)" a  u— 1l (5.2.15
We substitute (5.2.15) into (5.2.3) to oktain

Aa*n(4n—1)(1—u)*" 2 =3an(1+5)(1—u)" '+ (C—2 —2+4+3n(1+ ﬁ)) a(l—u)" ~ 0,

C3
(5.2.16)
asu — 1. Thedominant terms balance eab other in (5.2.16) provided
dn —2=n—1, (5.2.17)
that is, provided
1
— 21
n=g (5.2.18)
Equation (5.2.16) becomes
A 4 Cy
5&—(1+5)a—|— C——l—i—ﬁ a(l—u)~0 a u— 1. (5.2.19
3
Let u — 11in(5.2.19). Thisgives
0= <9(1 i B)) " (5.2.20)
A
Hence, the assymptotic solutionis
F(u) ~ (9(1Xﬂ)>3 (1—u)% a u— 1l (5.2.21)



Equation (5.2.21) is setisfied for all valuesof £ but requires 5 > —1. This compares with the
asymptotic solution for F'(u) asu — 1 when G(u) = SF(u) in Chapter 4 which placel no
condtion ong.

In order to interpret the resultswe will require the rate of fluid injedioninto thefradure &
the fradure entry, ¢;, given by (3.7.27) and the rate of le&-off at the fluid/rock interface ¢»,
which isgiven by (3.7.24). Using (5.2.1), equations (3.7.27) and (3.7.24) bemme

4 5
9 3 3
3 C1 (&1
Sorlodr
/u—du. (5.2.23
0

@ = —20 (C—3) (1 T C—2t>
C1 1 du

But, integrating by parts and using the boundxry condtion F'(1) = 0 gives

27 ' dF !
[—35 / wSdu + (5—0—2) / F(u)du}, (5.2.22)
0 du 63 0

53
3 co

Yu

/1 dr (u)du = — /1 F(u)du. (5.2.29)
0 0

Equations (5.2.22) and (5.2.23) become

2 % %(: 7% 1
g =—= (C_Q —5— 35) <@) (1 + ﬁt) ’ / F(u)du (5.2.25
3 \c3 c1 C1 0

3 jea-3 1
0 = 20 (9) <1 + 9t> / F(u)du. (5.2.26)
&1 C1 0

We now consider two spedal casesfor which an exad analytica solution o the differential

and

equation (5.2.3) subjed to boundary condtions (5.2.4) and (5.2.5) can be derived.

5.3 Exact analytical solutions: Case 1

Wefirst consider the case

2 _5_33=0. (5.3.1)
C3
Equation (5.2.3) becomes
d 4dF d
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subjed to the boundry condtions

F(1) =0, (533
C;_Z(m 0. (5.34)

In boundary condtion (5.2.5), F'(0) # 0 because if F(0) = 0 then from (5.2.10), ~(0,¢) = 0
which isnot satisfied. Integrating (5.3.2) oncewith resped to u gives

AF%@ZZ +3(1+ B)uF(u)=C (5.3.5)

where C' is a onstant. Impasing the boundxry condtion (5.3.4) at v« = 0 gives C' = 0.
Equation (5.3.5) becomes

dF (1+75)
2_ — —
F T 3 AW (5.3.6)
which isvariables sparable. Thus
F(u) = —Muz + K, (5.3.7)
2\
where K isa constant. Since F'(1) = 0 it foll ows that
91+ )
K = 3.
5K (5.3.8)
and therefore )
. 9(1+5) 3 2\1
F(u) = ( 5N > (1 —u”)s, (5.3.9)
provided 5 > —1. Using (5.3.1), the solution (5.3.9) can be written as
Py = (2 (22 ;’(1—@3)% (5.3.10)
2A C3 ’ o

where & > 2 for anonrzero red solutionto exist. When (5.3.1) is sttisfied the solution exists
provided 3 > —1or 0 < £ < (0.5. This compares with the correspondng solution (4.3.9)
when G(u) = BF(u) which requires only that 3 and £ satisfy (5.3.1). Substituting (5.3.10)

into (5.2.6) gives ,
SH—— O 31
D) (@ - 2)
C3
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where

1
I = / (1 —u?)3du = 0.8413. (5.3.12)
0
Thusfrom (5.2.7), ,
e__ A (W (5.3.13)
(&1 <1 Cg) I
214 (=-=2
2 Co
and
x

The groupinvariant solution can be written either in terms of 5 or 2. We will write the

solutionin terms of £. From (5.2.8) to (5.2.12),

5(¢c3 1
L 7iE
#(i-2)
€3
1 AN
L(t) = |1+ — - (70) At (5.3.16)
24 (2 5)

L(t)2
l_a (t)
Y EE-AWATAS 1 o\® HEm)
Un(z,t) = — [ 2 - <—O) 1+ (—O) At
27 (% 5) 27 924 <5 i_;) I
2 a? B
1—— 5.3.18
< (- gm) 5349
p(x,t) = Ah(x,t). (5.3.19
The solutions exist provided
0<2 <05 (5.3.20)

Co

Theresultsfor h(z,t), v,(z,t) and p(x,t) can be expressed in terms of L(t) as follows

h(z,t) = %L(t)%(z‘i—i) {1 - %} ' (5.3.21)
Afr—a o\* _afcay 2 773
vn(z, 1) = % (; _ —§> (2—§) L3 (E) 2 {1 - Lft)?} (5.3.22)



andp(z,t) isgivenintermsof h(z,t) by (5.3.19).

Consider now the physicd significance of condtion (5.3.1) when
dF
= —fPu—. 3.2
G(u) Bu o (5.3.23

From (5.2.22), when (5.3.1) is stisfied, ¢; = 0. Thustherate of fluid injedioninto thefradure
at the fradure entry is zero. Condtion (5.3.1) therefore has the same physicd significance &
when G(u) = SF(u). Figures5.3.2 to 5.3.8 ill ustrate how afradure of length L(¢) may relax
after pumping at the entry has ceased and the entry to the fradureis sded.

Condtion (5.3.1) can be written as

B = E (5.3.24)

and also as
C3 1

Co B o+ 35
Equation (5.3.24) is plotted in the (g—;, 6) plane in Figure 5.3.1 together with other curves.

(5.3.25)

Sincethe solutionexistsonly for 5 > —1, it existsonly for 0 < £ < 0.5. Unlike the spedal
case G(u) = SF(u), thereisnosolutionfor £ > 0.5. Also the solutionsfor L(t), h(z,t) and
v, (2, t) do nd behave exporentialy intime & & — oo which compares with the exporential
behaviour of the solutions for the spedal case G(u) = SF(u) a £ — oo. In the numericd

Cc2

results that foll ow, ¢ is as defined in (4.4.9).
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5.3.1 Fracture length and volume

Consider first the fradure length L(¢) given by (5.3.16) and potted in Figure 5.3.2. Werestrict
our discusson to values of . intherange 0 < 2<05 for which the solution exists. For
0 <2 <020<p <ocoandthereisfluid lek-off at the interface When & = 0.2, 5 =0
and there is no fluid exchange & the interface For 0.2 < £ < 0.5, -1 < 3 < 0 andfluid
enters the fradure from the interface The fradure length L(¢) is an increasing function o
time for values of £ intherange 0 < £ < 0.5and L(t) — oo ast — oo. Evenathough
therate of fluid injedionat the entry is zero, the fradure length growsfor 0 < £ < 0.5. The
length L(¢) increases as & increases from 0 to 0.5 and L({) — oo as 2 — 0.5 which isthe

limiting value of £ for solutionsto exist.

14,*' ]

: / C3/C2:0.499
12 |

10|
8,\
Ly

afe=04

C3/C2=0.3
L /e =0001

0 20 40 60 80 100 120 140

Figure 5.3.2: Le&-off velocity propartional to gradient of fradure half-width: Graph o frac
ture length L(¢) given by (5.3.16) plotted against ¢ for a seledion o values of the parameter

@ andfor ¥ =
) I

Consider next thetotal volume of the fradure given by (5.3.15) and potted in Figure 5.3.3.

Sincethe fluid injedionrate & the entry is zero, the fracture volume, V' (¢), therefore changes
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due to exchange of fluid at the fluid/rock interface For 0 < £ < 0.2, 8 > 0 and thereis
le&k-off at the fluid/rock interface The time rate of change of fradure volume, % < 0 and

V(t) — 0ast — oo. For 2 = 0.2, nofluid exchange ocaurs at the interface ad V' (¢) is

constant for all time. Fluid enters the interfacefor 0.2 < i—g < 0.5 and the fradure volume

incresses ast increases. Therefore 47 > 0 and V (¢) — oo ast — oo.
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12|
|
10f |
H
Vo 8 /e =045
Vo -
61
i ¢3/cy =04
4L ' :
t/ C3/C2 =02
7—\A - 63/62 =0.001
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Figure 5.3.3: Le&-off velocity propartional to gradient of fradure haf-width: Graph o frac

ture volume %t) given by (5.3.15) plotted against ¢ for a seledion o values of the parameter

@ andfor 2 =
Cc2

5.3.2 Fracture half-width and leak-off velocity

Consider now h(x,t) which isgiven by (5.3.17) and potted in Figures 5.3.4 to 5.3.8. For all
Figures 5.3.4 to 5.3.8 there isnofluid injedion at the fradure entry. Fluid can therefore only

enter or leave the fradure & the fluid/rock interface Figures (5.3.4) and (5.3.5) clealy show
that the length of the fradure increases even if thereis le&-off at the fluid/rock interfaceor if

the rock isimpermeable. When there isinjedion o fluid at the fluid/rock interface Figures
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(5.3.6) to (5.3.8) show that the rate of increase in the length of the fradure increases as the
rate of fluid injedion at interfaceincreases andtendsto infinity as £ — 0.5. Most of thefluid
injedion acaurs in the neighbouhood d the fradure tip.

From (5.3.17),

Wl

)

=

(2-
Y At o\’
h0,t) = o7 [1+24< _8_3) <7>

1
2 c2

(5.3.26)

Inthis sdion, the analytica solutionexistsonly for 0 < £ < 0.5 andtherefore 1,(0, t) dways
deaeases ast increases and the width of the fradure & the entry deaeases ast increases. The

gradient of the fradure half-width is

At Vo\®
1+24<§—g_3> (70)

2

-2+
on _@ 3(2 )

O,y = V0 (-2) e

Therefore % — —oo asx — L(t). Lubricaiontheory bregs down in the neighbouhood d
thetip of the fradure, x = L(t).

Finally, consider v,,(x, t) whichisgiven by (5.3.18) andisplotted in Figures 5.3.4t0 5.3.8.
From (5.3.18),

v,(0,t) =0, (5.3.28)
and
+oo, 0< £ <0.2,
v (L, t) = 2 (5.3.29
—oo0, 02< 2 <0.5.

For all values, 0 < £ < 0.5, v,(z,t) is approximately zero at the interfacein the neigh-
bouhood d the fradure entry and v,, = +oc at the fradure tip depending onwhether 5 > 0
or3<0.For0<£ <02 8>0anduv,(z,t) > 0. Thereis therefore fluid lek-off in the
region0 < z < L(¢). When 0.2 < 2 < 0.5, 8 < 0andv,(z,t) < 0. Fluidinjedionat the

fluid/rock interfacetakes placein theregion0 < = < L(?).
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(b) 0.2 0.4 0.6 0.8 1. 1.2

Figure 5.3.4: (a) Fradure haf-width, h(z,t), given by (5.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.3.18), plotted against « for a range of values of ¢ and for
8 =0.1, 5 = 1.66.
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h(x,t)
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| | |
X
@ O 0.2 0.4 0.6 0.8 1. 1.2

Figure 5.3.5: (a) Fradure half-width, i(z,t), given by (5.3.17) plotted against = for arange of values
of t andfor 2 = 0.2, 8 = 0. The le-off velocity at the fluid/rock interface v, (z,t), given by
(5.3.18) is zero.
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Figure 5.3.6: (a) Fradure haf-width, h(z,t), given by (5.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.3.18), plotted against « for a range of values of ¢ and for
£ =0.3, 5= —0.55.

ca

122



h(x,t)

Vh(X,t)

-0.05-

-0.1

-0.15

-02r t=10

-0.25F

-0.3

(b) —0.35-

t=20

2.5

Figure 5.3.7: (a) Fradure haf-width, h(z,t), given by (5.3.17) and (b) le&-off velocity at the

fluid/irock interface v, (z,t), given by (5.3.18), plotted against « for a range of values of ¢ and for

£ =04, 5= -0.833.
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Figure 5.3.8: (a) Fradure haf-width, h(z,t), given by (5.3.17) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.3.18), plotted against « for a range of values of ¢ and for
o =0.499, § = —0.99.
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5.4 Exact analytical solutions: Case 2
We now look for asolution o (5.2.3) subjed to (5.2.4) and (5.2.5) which is of the form
Fu) =a(l —u)", (5.4.2)

where ¢ and n are constants to be determined such that « # 0 andn > 0. The boundxry
condtion (5.2.4) is satisfied by (5.4.1). We substitute (5.4.1) into (5.2.3) to oktain

Aa*n(4n —1)(1 —w)* 2 = 3a(1+ B)n(l —u)" ' +a (Sn(l + 0) + 2 2) (I—u)"=0.

C3
(5.4.2)
The gquation (5.4.2) will be satisfied if
Aa*n(4n — 1)(1 —u)*™ % = 3a(1 + B)n(l —u)* ' =0 (5.4.3)
and
3n(1+ B) + 2—2 —2=0. (5.4.4)
3
Equatingthe powersof (1 — u) in (5.4.3) gives
1
n=3. (5.4.5)
By substituting (5.4.5) into (5.4.3) and (5.4.4) we obtain
A 4
3¢ a(l+p3) =0, (5.4.6)
g=1-2 (5.4.7)
C3
Solving (5.4.6) for a gives
9 3
a= (—(1 + ﬁ)) . (5.4.8)
A
Hence the solution o (5.2.3) of theform (5.4.1) is
Py = (2 (2-¢ %(1—u)é (5.4.9)
=l - . 4.

A nonzero red solutionexistsfor —oco < i—i < 2.
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Equation (5.4.9) must satisfy the second boundry condtion (5.2.5). We now show that the
boundary condtion (5.2.5) isidenticdly satisfied. Substituting (5.4.9) into the left hand side
of (5.2.5) gives

AF?’(O)CCll—Z(O) = -3 (%) (2 - C—2> , (5.4.10)

C3

whil e substituting (5.4.9) into the right hand side of (5.2.5) gives

Cy ! 3 Co 9 Co %
(=5 w) [rwan= (25 s (Ue-2)) . e

On using (5.4.7) for g itisreadily verified that the boundary condtion (5.2.5) is stisfied.
By substituting (5.4.9) into (5.2.6) we obtain

y AV3
cs_ 8 AWy (5.4.12)
C1 243 (2 _ 0_2)
c3
and hencefrom (5.2.7),
(&) 4 AVvog
—= 54.13
o T2 (o) (5413
c2 2
We will expressthe resultsin terms of the parameter £.
From (5.2.8) to (5.2.12),
4 V3 2
Lit)=[1+-—— 0% At 54.14
c2 2
4 V3 s
V)=V, |1+ ——% At 54.1
2 4 V3 s 3
Wz t) =2V [1+ ——20 Ay R 5.4.16
(z,t) 3" +243(c_3_%> ] ( L(t)) , ( )
—3(B44
(1,t) = 0 e Y o
Uni®) 2187 (@ 1 243 (_3 1)
c2 2
e\ 41
p(z,t) = Ah(x,t). (5.4.18
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The solution exists provided the values of £ do nd lieintherange0 < £ < 0.5. Thisis
shownin Figure5.3.1. Inthelimit £ — oo, 5 — 1 andthe groupinvariant solutionsfor L(t),

V(t), h(z,t) and p(x,t) have an exporential time-dependencegiven by

L(t) = exp (%At) , (5.4.19
V(t) = Vpexp (2;)2‘/53 At) , (5.4.20)
h(z,t) = %Voexp (%ng) {1 . %)] , (5.4.21)
o, ) = 82/1\;/70 exp (_;12?3 At) 2 (1 - %) E (5.4.22)

andp(z,t) isgiven by (5.4.18) and (5.4.21).

5.5 Discusgon of resultsfor =1 — g_g

When (5.4.7), (5.4.9), (5.4.12) and (5.4.13) are substituted into (5.2.25) and (5.2.26) itisfound
that the rate of fluid injedion at the fradure entry is

32 4 V3 %(5%)
= —AV |14+ ——9 At 551
0(t) = 75V +243(c_3_1> ] 654
c2 2
and the rate of fluid le&-off at the fluid/rock interfaceis
Ha)
4 [(o-1 4
t)=— [ =& AVA 14+ ——0 At ) 55.2
a:(1) 243(0—3—5) Yo +243(c_3_1) ] (552)
€2 c2 2

Therefore ¢, (¢t) > 0 and fluid is dways injeded into the fradure & entry. The rate of fluid
le&k-off satisfies

>0 if j—z > 1
¢(1) _ (5.5.3)
<0 if L< @<,

2
Equation (5.5.1) is plotted in Figure 5.5.1 and (5.5.2) is plotted in Figure 5.5.2. The rate of

fluid injedion at the fradure entry is always positive. Therate of fluid inflow at the fluid/rock
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Figure 5.5.1: Led&-off velocity propational to gradient of fradure half-width and 3 =
1 — 2. Rate of fluid injeion at entry, ¢:(¢), given by (5.5.1) plotted against ¢ for & =
0.51,0.6,0.8,1,2andfor V;, = 1and A = 1.
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Figure5.5.2: Led-off velocity propartional to gradient of fradure half-widthand 5 = 1 — 2,
Rate of fluid lez-off at fluid/rock interface ¢»(t), given by (5.5.2) plotted against ¢ for £ =
0.51,0.6,0.8,1,2andfor 1, = 1and A = 1.
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interfacetends to negative infinity as £ — 5 which is a point on the limiti ng curve for solu-
tions.

Condtion (5.4.7) can be written as

8 ]
b= ‘26_3 (5.5.9)
and as
C3 1
== 555
& 1.7 (5.5.5)

In Figure 5.3.1, 5 given by (5.5.4) is plotted against £ for the whale range —oo < & < oo.
In Figures 5.5.3 to 5.5.10 which follow, 3 is given by (5.5.4), V, = 1 andt is as defined by
(4.4.9).

5.5.1 Fracture length and volume

Consider first the length of the fradture L(¢) given by (5.4.14) and potted in Figure 5.5.3. The
values of the parameter £ for which the solution exists stisfy —oco < £ < 0(1 < 8 < 00)
and0.5 < £ <oo(—-1< B <1).When0.5 <& <1,-1<f<0andthereisawaysfluid
inflow at the fluid/rock interface We seefrom Figure 5.5.3 that for & = 0.51 the length of
the fracture grows grongdy due to the inflow of fluid at the interface For £ =1, 5 = 0 and
no fluid leaves or enters the fradure throughthe interface For 1 < g—g <oo,0<p<1land
fluid le&ks off into the rock formation throughthe interface As = increases from —oo t0 0,
increases from 1 to +o0o. Therefore there isle&k-off of fluid at the interface ad L(¢) — oo in

thefinite time

At = % (5.5.6)

Consider next the total volume of the fradure given by equation (5.4.15) and dotted in
Figure 5.5.4. When 0.5 < & < 1, then —1 < 8 < 0 and fluid is always injeded at the
interfacein theregion0 < z < L(¢). For 1 < £ < 00,0 < 3 < 1 andthereisfluid lesk-off
at the interfacein theregion0 < = < L(t). When g = 0, there is no exchange of fluid at the
interface For 0.5 < £ < oo, thetime rate of change of fradure volume s pasitive, il—‘t/ > 0,

and V(t) — oo @t — oo. For —oo < £ < 0, %¢ > 0 and V(t) — oo in the finite time

(5.5.6). InFigure 5.5.4, when £ = —1 and 1 = 1, V(t) — occinthefinitet = At = 91.125.
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t

Figure 5.5.3: Le&k-off velocity propartional to gradient of fradure half-width: Graph o frac
ture length L(t) given by (5.4.14) plotted against ¢ for a seledion o values of the parameter

2 andfor V, = 1.

Thetotal volume of the fracture dwaysincreases for all the values of £ for which V' (¢) exists.

5.5.2 Fracture half-width and leak-off velocity

Consider now the fradure half-width given by (5.4.16) and potted in Figures 5.5.5to 5.5.10.
There is always inflow of fluid at the fradure entry for all cases presented in Figures 5.5.5 to
5.5.10. Fluid inflow at the fluid/rock interfaceoccursin Figures 5.5.5 to 5.5.9 and we seethat
the fradure length at time ¢ = 20 deaeases astherate of fluid injedion at the interface g¢»(t),
deaeases and as the rate of fluid injedion at the fradure entry, ¢;(¢), increases. This ens
to imply that fluid inflow at the interfaceis more important than fluid injedion at the entry to
thefradure. But ast beaomes aufficiently large, fluid injedion at the entry becomes gradually
more dfedive than fluid inflow at interface Thisis shown in Figure 5.5.3. In Figure 5.5.10
for which the rate of fluid inflow at the interface ¢, vanishes, the fradure length, L(¢), grows

linealy due entirely to injedion at the fracture entry.
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Figure 5.5.4: Le&-off velocity propartional to gradient of fradure half-width: Total volume
of thefradure %) given by (5.4.15) plotted against ¢ for aseledion dof values of the parameter

2 andfor V, = 1.

From (5.4.16),

2 4 V3
h(0,t) = =V 1+—7°>A

. 5.7
3 243(0_3_1 t (55 )

c2 2

For 0.5 < £ < oo, h(0,1) increases as ¢ increases and the width of the fracture & the entry
increases ast increases. Thisresult isill ustrated in Figures 5.5.5 to 5.5.10. Also,

()

Oh 2 4 V3 T B
— t) = —— 14+ ——0 At 1 - — . 5.5.8
(2.0) = —5% |1+ 553 =-1) ( L(t)) (558)

c2 2

win

and therefore 2(z,¢) — —oo asz — L(t). Lubrication theory therefore breeks down in the

neighbouhood d the fradure tip.
The graphs of thele&-off velocity, v, (z, t), given by (5.4.17), are shown in Figures 5.5.5b

to 55.10h Ontheinterface a@the fradure entry,

v,(0,) =0 (5.5.9)
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for al values 0.5 < £ < co. Inthe neighbouhood d the fradure tip,

—oo 05< & <1
v (L, t) = 2 . (5.5.10
+oo 1< E—z < 0
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Figure 5.5.5: (a) Fradure haf-width, h(z,t), given by (5.4.16) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.4.17), plotted against « for a range of values of ¢ and for
& =0.51, B = —0.96.
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Figure 5.5.6: (a) Fradure haf-width, h(z,t), given by (5.4.16) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.4.17), plotted against « for a range of values of ¢ and for
£ =0.6, 5 = —0.66.
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Figure 5.5.7: (a) Fradure haf-width, h(z,t), given by (5.4.16) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.4.17), plotted against « for a range of values of ¢ and for
8 =0.7,0=-042.
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Figure 5.5.8: (a) Fradure haf-width, h(z,t), given by (5.4.16) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.4.17), plotted against « for a range of values of ¢ and for
8 =0.8, 5 =-0.25.
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Figure 5.5.9: (a) Fradure haf-width, h(z,t), given by (5.4.16) and (b) le&-off velocity at the
fluid/irock interface v, (z,t), given by (5.4.17), plotted against « for a range of values of ¢ and for
£ =09, 5=-0.11.
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Figure5.5.10: (a) Fradure half-width, i(x, t), given by (5.4.16) plotted against = for arange of values
of t andfor i—; = 1.0, 8 = 0. Thele&-off velocity v,, = 0 and the rock isimpermeable.

5.6 Transformation of boundary value problem to two
initial value problems

In this dion we present a method for numericdly solving the boundry value problem
(5.2.3), (5.2.4) and (5.2.5) by transforming it to two initial value problems as discussd in
Chapter 4. Equation (5.2.3) is of the form

d dF d
A— | FP— A— (uF) + BF = 6.1
du( du)—i— du(u )+ 0, (5.6.1)

with A =3(1+ () and B = (@ - 38— 5) andit admitsonly oneLie point symmetry gen-
C3

erator. Equation (5.2.3) is not completely integrable to yield an analyticd solution and hence

itis solved numericaly for some values of £ and 3 which are of clea physicd significance

Equation (5.2.3) isinvariant under the scding transformation

Wi

u = \u, F=)\sF, (5.6.2)

asdiscussd in Sedion 47.
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The boundxry value problem (5.2.3) to (5.2.5) is

d dF d Cs B
A@ <F3%> +3(1 +ﬁ)@ (uF) + (5 -5— 3ﬁ) F =0,
F(1)=0,

AF?’(O)%(()) _ (% 5 35) /0 ' Flwdu.

C3

Under the transformation (5.6.2), equations (5.6.3) to (5.6.5) become

d [(—sdF d , — Co =,
A% (F %) +3(1+ ﬁ)ﬁ (uF) + (% —5— 3ﬁ) F(u) =0,
F(\) =0,
3, dF Co A
We now choase
F0)=1
Then from (5.6.2),
1
F(0) = 3z

(5.6.3)
(5.6.4)

(5.6.5)

(5.6.6)
(5.6.7)

(5.6.8)

(5.6.9)

(5.6.10)

where \ is defined by (5.6.7). The boundary value problem (5.2.3) to (5.2.5) can therefore be

transformed to the foll owing two Initial Value Problems:
Initial Value Problem 1.
d

A (F‘O’g) +3(1+5) d% (WF (1)) + (C—2 —5— 35) F(m) =0,

F(0) = 1, Ag(o) - (9 —5— 35) /0A F(7)da,

C3

where 0 < u < X and )\ isdefined by

Initial Value Problem 2:

AL (F?’E) +3(1+8) d% (wF(u)) + (C—2 —5- 35) F(u) =0,

du du c3

FO) =3 A% )= <C—2 _5- 35) /01 Fu)du,

du Cs3
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where(0 < u < 1.

Thevalueof )\ isobtained from thelnitial Value Problem 1. The solution F'(u) is obtained
from the Initial Value Problem 2. The remainder of the solution is then given by (5.2.6) to
(5.2.12). We will transform the boundry value problems for the caes (5.3.1) and (5.4.7)
in which exad analyticd solutions exist to two Initial Value Problems. These Initial Vaue
Problems will be solved for F'(u) to oktained the results foundin Sedions 5.3 and 54. This

was dorein Sedion 47 andit gives a chedk on the numericd method
: . _1fc
Special Case 1: 3 = 3 (i — 5)
For this gedal case the boundiry value problem (5.6.3) to (5.6.5) is transformed into the

followingtwo Initial Vaue Problems:

Initial Value Problem 1:

_ i
Fo)=1,  “0)=0, (56.17

F()\) = 0. (5.6.18
Initial Value Problem 2:
d 4dF Co d B
F(0) = A3, Cfi—F(O) =0, (5.6.20)
u

where 0 < u < 1 andthe parameter ) is obtained from Problem 1.
Integrating (5.6.16) oncewith resped to @ gives
AP (CQ - 2) TF(a) = A, (5.6.21)
du c3
where A isa mnstant. Applyingtheinitial condtions (5.6.17a) and (5.6.17b) at w = 0 gives
A = 0. Equation (5.6.21) becomes
—odF

AF' = =~ <— - 2) 7, (5.6.22)



which isvariables sparable. Thus

AF (@) = —g (0—2 - 2> @+ B (5.6.29)

C3

where B isa constant. Using (5.6.17a) it followsfrom (5.6.23) that B = A andtherefore

F(a) = (1 - 2?;& (Z - 2) #)é . (5.6.24)

By using (5.6.18), \ isobtained as
R L , (5.6.25)
3(2-2)

Similarly, equation (5.6.19) of the Initial Value Problem 2 is olved for F'(u) to oktain

provided & > 2.

Fu) = {;A (62 - 2)] % (1-u?)?, (5.6.26)

C3

provided & > 2. Equation (5.6.26) agrees with (5.3.10) derived for F(u) in Sedion 53.

Special Case2: f=1— 2

For this pedal case the boundiry value problem (5.6.3) to (5.6.5) is transformed into the
followingtwo Initial Value Problems:

Initial Value Problem 1
AL (F3d—F> ~3 (C—Q . 2) 23 (C—Q . 2) F=0 (5.6.27)

du du C3 du C3
_ 3 A
Foy =1, A%0)=4 <C—2 - 2) / F(u)da, (5.6.29)
du C3 0
where () < < X and )\ is defined by
F(\) =0. (5.6.29)
Initial Value Problem 2
F F
AL (AN g2 o) dE (2 9\ r oy, (5.6.30)
du du C3 du c3
1
F(0) = )(%j Ad—F(O) =4)\? (C—2 — 2> / F(u)du. (5.6.31)
du C3 0



where 0 < u < 1 andthe parameter \ is obtained from Problem 1.

In order to solve Problem 1 look for a solution o (5.6.27) of the form
F@)=A(B-a)", (5.6.32

where A, B andn are constantsto be determined such that A # 0 andn > 0. Using (5.6.283)
we have

1= AB". (5.6.33)

Substituting (5.6.32) into (5.6.27) and solving as described in Sedion 54 gives
ne L %A3 - (2 - @) B (5.6.34)

3 C3

and therefore using (5.6.33),

9 c s A :
A= {K (2 — i)} ., B= [9(2>} , (5.6.35)

(5.6.36)
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and hencefrom (5.6.29),

=

A
A= () . (5.6.37)
9 (2 . —3)
It can be verified that the boundary condtion (5.6.28b) isidenticdly satisfied by (5.6.36). The

solution o the Initial Value Problem 2 is performed in asimilar way by looking for a solution

of (5.6.30) of theform F(u) = A (B — u)". Itisfoundthat

Flu) = {% (2 - 9)] : (1—u)s, (5.6.39)

C3

where & < 2 for a nonzero red solution to exist. Equation (5.6.38) agrees with (5.4.9)

derived for F'(u) in Sedion 54.
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5.7 Numerical solution

Using 4.8.1, the boundry vaue problem (5.2.3) to (5.2.5) is transformed to the two Initial
Value Problems (5.6.11) to (5.6.13) and (5.6.14) to (5.6.15) with A = 1.

Initial value Problem 1:

% (73%) +3(1+0) % (aF(w) + (Z—i —5— 35) F@) =0, (57.)
F(0) =1, %(0) - C—j _5- 3ﬁ) /O/\F(ﬂ)dﬂ, (5.7.2)

F(\) =0. (5.7.3)

Initial value Problem 2:

4 (F3£> 3014 5) - (uF(u) + (9 5 35) Fluy=0,  (5.74)

du du C3

2 dF  dF
2 Y . 5.7.5
0 =X (575)

We will solve numericdly equations (5.7.1) to (5.7.3) of the Initial Value Problem 1 and
equations(5.7.4) and (5.7.5) of theInitial Value Problem 2 usingthe computer algebra padkage
MATHEMATICA. Firstly, we rewrite the second ader differential equation (5.7.1) as the

couped first order differential equations
dF

- = 5.7.6
dﬂ Y2, ( )
dyg 1 =2 9 _ Co —

— == |3y + 31+ Buy + | — -2 ) F| . (5.7.7)
du F 3

subjed to the initia and boundry condtions

F(0)=1, w(0)=k F(\) =0, (5.7.8)

where k isto be determined from the dgorithm outlined in Sedion 48. The second ader
differential equation (5.7.4) is rewritten as the set of couded differential equations

dF

LA (5.7.9)
dys 1 3F22 +3(1+ Buys + (2 —2) F (5.7.10)
du  F3 Ys Y3 C3 ’ o
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subjed to theinitial condtions
F(0) =A%, 53(0) = Aigs(0). (5.7.11)

Asaso oulined in Sedion 4.8, we first determine the value of A, starting the badkward inte-
gration o the system of first order equations (5.7.6) and (5.7.7) with the asymptotic represen-

tations
F) ~OA1+8)F (A —m)F & u— A\ (5.7.12)
o (T0) ~ —%(9)\(1+ﬁ))§ -3 @ T (5.7.13)

which are obtained from (5.2.21) using the scding transformation (5.6.2). The dgorithm for
solving the cupded systems (5.7.6) to (5.7.7) and (5.7.9) to (5.7.10) of first order ordinary
differential equations subjed to (5.7.8) and (5.7.11), respedively, is smilar to that described
in Sedion 4.8. Tables5.8.1 and 58.2 compare the numerica and analytica solutionsfor F'(u)
for the two cases in which analyticd solutions were derived in Sedions 5.3 and 54. The
results hown are obtained for e; = 10~7 and the analyticd and numericd solutions agree
to six deamal place @erywhere except in the neighbouhood d the fradure tip where the

solutions agreeto 3 dedamal places.

5.8 Numerical Results

We analyse the results obtained for the numerica solution o the two Initial Value Problems
for a sdedion o values of 3 and 5. We foundthat the set of values of (2—;,5) for which
a solution exists of the two Initial Value Problems is bounded below by a limit curve in the
(22, 3) plane.

The limiting curve for solutionsis described by

(-3) 0<% <05

338
ﬂmin = 2 (581)
-1, 0.5 < 2—2 < 00,

where (,,.;, is the minimum value of § for a given value of o, The limiting curve (5.8.1)

is plotted in Figure 5.3.1. No solution exists for values of (Z—;, () below the limiting curve.
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Speda Case 2 —35—5=0
u Exad Solution | Numericd Solution
0.000 2.289430 2.289430
0.200 2.258490 2.258490
0.400 2.160160 2.160160
0.600 1.972970 1.972970
0.800 1.628650 1.628650
0.900 1.316170 1.316170
0.920 1.226100 1.226100
0.940 1.117840 1.117840
0.960 0.979864 0.979864
0.980 0.780355 0.780355
0.982 0.753678 0.753678
0.984 0.724905 0.724905
0.986 0.693579 0.693580
0.988 0.659062 0.659062
0.990 0.620409 0.620409
0.992 0.576130 0.576130
0.994 0.523624 0.523624
0.996 0.457580 0.457581
0.998 0.363303 0.363303
1.000 0.000000 0.000838

Table 5.8.1: Comparison d the numericd andanalyticd solutionfor F'(u) for the spedal case

@ 35— 5=0.
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Spedal Case f=1—2
u Exad Solution | Numericd Solution
0.000 1.889880 1.889880
0.200 1.754410 1.754410
0.400 1.593990 1.593990
0.600 1.392480 1.392480
0.800 1.105210 1.105210
0.900 0.877205 0.877205
0.920 0.814325 0.814325
0.940 0.739864 0.739863
0.960 0.646330 0.646330
0.980 0.512993 0.512992
0.982 0.495289 0.495289
0.984 0.476220 0.476220
0.986 0.455488 0.455488
0.988 0.432675 0.432674
0.990 0.407163 0.407162
0.992 0.377976 0.377976
0.994 0.343414 0.343414
0.996 0.300000 0.299999
0.998 0.238110 0.238110
1.000 0.000000 0.000884

Table 5.8.2: Comparison d the numericd andanalyticd solutionfor F'(u) for the spedal case

B=1-2
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Equation (5.8.1) was found numericdly and noanalyticd proof has been foundthat no solu-
tionexists for values of (£, 3) below the limiting curve. For the two spedal cases for which
analyticd solutions were derived in Sedions 5.3 and 54, we foundthat the solutions did nat
exist for 5 < —1. The spedal analyticd results are therefore consistent with the general
numericd result for norrexistence of solutions. The values of (£, ) in the region bouned
by the aurves (5.8.1) and (5.3.1) in the (g’—z, ) plane describe operating condtions in which
fluid is extraded ou of the fradure & the entry to the fradure. Solutionsin this region could
have goplicationin the extradion o oil from afradure. The physicd significance of the aurve

(5.8.1) isnat known.

581 Graphical resultsfor fixed 2 and varying valuesof 3

We present in this s2dion a discusson onthe graphs obtained from the numericd solution of
the two Initial Value Problemsin Sedion 57. The graphs are those for which £ isfixed and
g isvaried. Hencethe dfed of 5 onh(x,t), L(t) andv,(z,t) can be studied.

InFigure 5.8.1, £ = 0.1 and the numericd solutionexists for 0.33 < 5 < oco. Solutions
describingfluid extradionat thefradure entry occur for 0.33 < 4 < 1.66. For 1.66 < 3 < oo,
solutions for fluid injedion into the fradure & the entry are obtained. When g = 1.66, we
have aparticular case of the exad solutionfor which thefluid injedionrate, ¢;, iszero. When
B = 0.4, the shape of h(x,t) was unexpeded sincethe half-width first increases with z before
deaeasing. This may be due to fluid extradion at the fracdure entry. Fluid inflow at the
interfaceocaursfor 0 < =z < 0.6 dueto % > 0 and le&-off occurs in the remaining region
0.6 <z < L(t).

InFigure5.8.2, & = (0.125 andthenumericd solutionexistsfor 0 < 3 < oco. All solutions
have le&-off at the interface &cept when 5 = 0 in which case nofluid exchange occurs at the
interface For 0 < 3 < 1, we obtain solutions describing fluid extradion ou of the fradure
at the entry and fluid injedion into the fradure & the entry ocaurs for 1 < 3 < oco. The
analyticd solution for which the rate of fluid injedion at the entry, ¢, is zero exists when
G = 1. In Figure 5.8.2a, we seethat as the le&-off parameter, [, increases, the increase in

length deaeases.

147



InFigure 5.8.3, £ = 0.2 and the numericad solution exists for —0.5 < 3 < oc. The vol-
ume of the fradure is always conserved when £ = (.2. Solutions describing fluid extradtion
at the entry ocaur for —0.5 < 3 < 0 while solutions that describe fluid injedion at the entry
ocaur for 0 < 3 < oco. When g = 0, v,(x,t) = 0 and thereis nofluid le&k-off at interface
An analyticd solutionexistsfor thiscase. In al casesthelength of the fradure increases. The
increese is greder than for an impermeable rock when there is fluid injedion at the interface
(8 < 0) andislessthan for an impermeable rock when there is fluid le&-off at the interface
(B > 0).

In Figure 5.8.4, & = (.5 and the numericd solutionexists for —1 < § < oo. Thefluid
presaure & the fradure entry is aways constant when 2 = 0.5. All solutions have fluid
injedion at the fradure entry. No solution exist for fluid extradion ou of the fracure & the
entry. When 5 = —0.9 and 5 = —0.5, fluid injedion occurs at the interfacewhilefor 5 = 5
and 5 = 10, thereisfluid le&-off at the interface For 5 = 0, nofluid exchange occurs at the
interface In al casesthe length of the fradure increases and the rate of increase deaeases as
[ increases from negative to pasitive values.

InFigure 5.8.5, & = 0.8 and the numerica solutionexistsfor —1 < 3 < co. Therate of
fluidinjedionat thefradure entry, ¢i, isalways constant for & = 0.8. All solutions havefluid
injedion at entry. When § = —0.25, the analyticd solutions (5.4.14) to (5.4.18) applies. No
le&k-off ocaursfor 3 = 0.

InFigure 5.8.6, & = 1 and the numericd solutionexistsfor —1 < § < co. Thelength of
the fradure, L(t), aways grows linealy with time when & = 1 andthe velocity of propaga-
tion o the fradure is constant. The graphs of L(t) against ¢ in Figure 5.8.6a ae straight li nes.
When 5 = 0, the exad solution (5.4.14) to (5.4.18) is stisfied.
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Figure 5.8.1: Graphs for & = 0.1 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity
v, (2, t) plotted against « at time t = 50.
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Figure 5.8.2: Graphs for & =0.125 and aseledion o values of 3 : (&) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against = at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 5.8.3: Graphs for & = 0.2 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 5.8.4: Graphs for & = 0.5 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 5.8.5: Graphs for & = 0.8 and aseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 5.8.6. Graphs for & = 1andaseledion d values of 3 : (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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5.82 Graphical resultsfor fixed 3 and varying values of

In this s2dion we will discussthe graphs obtained from the numericd solution o the two
Initial Value Problems of Sedion 57. The graphs are those for which £ is varied and 3
is kept fixed. This allows us to study the dfed of & onthe evolution o the fradure half-
width and propagation o the fradure length. The physicd significanceof the parameter £ for
0< 2 <lisgiveninTable3.7.1.

In Figure 5.8.7, 3 = —0.9 and the solution exists for 0.38 < & < oco. The solutions
obtained using the values of < intherange 0.38 < £ < 0.43 describe fluid extraction ou of
the fradure & the entry. For 0.43 < £ < oo, the solutions obtained describe fluid injedion
into the fradure & the fradure entry. When & = (.43, the fluid injeion rate & the fradure
entry vanishesandthe analyticd solution, (5.3.15) to (5.3.19), applies. All solutionshavefluid
injedion at the fluid/rock interface For all solutions presented, L(t¢) increases with time and
theincrease is greder for larger values of £.

InFigure5.8.8, 3 = —0.5 andthesolutionexistsfor 0.2 < £ < oo. For 0.2 < £ < 0.285,
the solutions describe fluid extradion ou of fradure & the fradure entry while for 0.285 <
£ < oo, solutionsfor which fluid isinjeded into the fradure & the entry are obtained. When

c2

= =0.285, equation (5.3.1) for which the rate of fluid injedion, ¢;, iszerois satisfied and the
analytica solution (5.3.15) to (5.3.19) isvalid. Equation (5.4.7) is stisfied when & = 0.67
and the second analytica solution (5.4.14) to (5.4.18) applies. When & = 0.2, the total
volume of the fluid in the fradure is constant and the graph o h(x, t) against = showsthat the
half-width first increases with x before deaeasing. This may be a a result of the extradion
of fluid at the fradure entry.

In Figure 5.8.9, # = 0 and the solution exists for 0.125 < & < co. The solutions
describing fluid extradion at the entry occur for 0.125 < # < 0.2 and those describing
fluid injedtion at the entry occur for 0.2 < £ < oo. Since§ = 0, al solutions have no
fluid exchange & the fluid/rock interface ad therefore the rock massis impermeable. When
a2 =02 equation (5.3.1) for which the rate of fluid injedion, ¢;, vanishes is satisfied and

the total volume of the fradure remains constant. When 2—; = (.125, fluid is extraded at the

fradure entry andthe graph o h(x,t) against = again increases with = before deaeasing.
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In Figure 5.8.10, 8 = 1 and the solution exists for 0.0714 < & < oco. Solutions that
describe fluid extradion at the fradure entry occur for 0.0714 < i—z < 0.125 while solutions
describing fluid injedion at the entry occur for 0.125 < & < co. Since§ = 1, dl solutions
have le&-off at the fluid/rock interface When 2 =0.125, equation (5.3.1), for which therate
of fluid injedion at the fradure entry vanishes, is stisfied. Theline 3 = 1 is an asymptote
for (5.4.7) inthe (£, 5) plane. Hence no numerica solution exists when (5.4.7) is sttisfied
because 3 = 1 isonly attained asymptoticaly. When £ = 0.0714, h(x, ?) initialy increases
with x before deaeasing. The smaller half-width at the fradure entry is due to the extradion
of fluid at the entry.

In Figure 5.8.11, § = 5 and the solution exists for 0.026 < £ < oco. Solutions that
describe fluid extradion at the fradure entry occur for 0.026 < £ < 0.05 while for 0.05 <
2 < oo, thereisawaysfluid injedionat the entry. When 2 = 0.05, therate of fluid injedion
a the fradure entry vanishes and the analyticd solution, (5.3.15) to (5.3.19), applies. The
fracure length increases as £ increases and when £ = 0.026 the graph df h(z,t) against x
has a small er half-width at the fradure entry due to the extradion o fluid at the entry.

We seethat as [ increases correspondng to larger le&-off velocity, the growth of the

fradure length in Figures 5.8.7ato 5.8.11a deaeases.
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Figure 5.8.7: Graphs for 5 = —0.9 and a seledion o values of & (a) Fradure length L(¢) plotted

against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

vy (2, t) plotted against « at time t = 50.
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Figure 5.8.8: Graphs for 5 = —0.5 and a seledion o values of & (a) Fradure length L(¢) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

vy (2, t) plotted against « at time t = 50.
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Figure5.8.9: Graphsfor 3 = 0 andaseledion o values of o (a) Fradurelength L(t) plotted against
time; (b) Fradure half-width h(x,t) plotted against = at timet = 50. The le&k-off velocity, vy, (z,t), is

zero for all values of g—; and the rock isimpermeable.

159



L(t)

al
1

I p=1 Corc, =1
4+ Cz/c, = 0.8
3 : Carc, = 0.5
2r Caje, = 0.12E
I Ca/c, = 0.071¢
l L L L L L L L L L L
@ 0 20 40 60 80 100 120 140 160 180 200

(b)

Vh(X,1)

0.8

0.6

0.4

B=1
t=50

Cg/c, = 0.071¢ 0.125

0.5

w )

©

0.5 1 1.5 2

Figure 5.8.10: Graphs for 3 = 1 and a seledion o values of &: (a) Fradure length L(t) plotted

against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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Figure 5.8.11: Graphs for 3 = 5 and a seledion o values of &: (@) Fradure length L(t) plotted
against time; (b) Fradure half-width i(z, t) plotted against « at time ¢ = 50; (c) Le&-off fluid velocity

v, (2, t) plotted against « at time t = 50.
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59 Conclusions

When the le&k-off velocity v, is propational to the gradient of the fradure half-width, solu-
tions depending eseentially onthe parameters & and  are obtained.

Numericd and analyticd solutions were foundfor the volume of the fradure, V' (¢), frac
turelength, L(t), fradure haf-width, h(z, t), le&k-off velocity, v, (x,t) andthefluid presssire
p(z,t) for values of £ and 3 of physicd significance in the range —oco < £ < oo and
—1 < 8 < oo. Unlike in Chapter 4 where exporential solutions were obtained for the two
spedad caseslealingto exad anayticd solutions, exporential solutionsexist only for the sec
ondspedal case which was derived in Sedion 54. They do nd exist for the first spedal case
which was derived in Sedion 53. The non-existence of exporentia solutionsin Sedion 53
isbecause the exadt analytica solutions obtained are valid only for values of the parameter £
satisfying0 < £ < 0.5. Exporential solutionsexistsonly inthelimit £ — co. Approximate
power law solutions for L(t) and V' (¢) which exist for large times can be foundfor the two
speadal cases.

Threeregions of the (£, 3) plane were foundfor £ > (. Therole of the aurve

5(3-2)
8= ? (5.9.2)
as a dividing curve between solutions for which fluid is injeded at the fradure entry and for
which fluid is extraded at the fradure entry was explained in Chapter 4. The rate of fluid
injedion a extradion at the entry vanishes when (5.9.1) is satisfied. The aurve
t(i-2)
8= —ga (5.9.2)
separates the solution spacefrom the spacefor which solutions do nd exist.

In Figures 5.8.1a to 5.8.6a, the length of the fradure increases when there is le&-off or
fluid injedion at the fluid/rock interface ad also when the rock isimpermeale. When there
isle&-off the increase in length is lessthan when the rock is impermeable whil e when there
isfluid injedion at the interfacethe length is greaer than when the rock isimpermeable.

We saw from Figures 5.8.7ato 5.8.11athat an increase in the parameter £ is asciated

with an increase in fradure length. This applies both when there is le&k-off and when thereis
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fluidinjedionat theinterface It also applieswhen therock isimpermeable. As 3 isincreased,
correspondng to weeker fluid injedion at interfaceor stronger le&k-off, the extent of growth
of the length of the fradure deaeased.

The graphs of the le&-off velocity in Figures 5.8.1c to 5.8.11c refled the fad that v, is
propartional to — 32

The gradient of the fracture half-width, 22, tendsto —oo asz — L(¢) for al the numerica
and analyticd solutions. Hencethe thin film theory bregks down in the neighbouhood d the
tip of the fradure.

By solving the two Initial Value Problems for the speda cases (5.3.1) and (5.4.7) which
yield exad analyticd solutions, we were &leto chedk the acarracy of the numericd solution.
We foundthat for the two speda cases the agreanent between the analyticd and numericd
solutions was to five dedmal places except nea the fradure tip where the agreament was to

threededmal places. The graphs of the numericd and analyticd solutions overlap.
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Chapter 6

Conclusions

We have shown in this work that similarity solutions can be derived for a fluid-driven pre-
existing fradure in permeable rock in asimilar way to that in an impermeable rock (Fitt et a,
2007 by the aopion d the PKN elasticity hypahesis, lubricaion theory and usingthe Lie
point symmetries of the resulting nodinea diffusion equation. Numericd results were dso
obained by reformulatingthe boundiry value problem as apair of initia value problemswhich
are eaier to solvethan the original boundary value problem. The pair of initial value problems
was lved using a shoaing method The boundiry value problem obtained in this work was
in terms of two dependent variables F' and G. In order to solve completely the problem, two
spedal relations between F' and G were aonsidered. In thefirst relation, G is propartional to
F andin the seoondrelation, G is propartional to %. The propationdity constant 3 plays a
key rolein understanding flow condtions at the fluid/rock interface Similarity solutionswere
obtained for ead of these relations.

The similarity solutions have several feaures. They describe the fluid-driven propaga
tion o a pre-existing fradure under varying operating condtions shown in Table 3.7.1. Pre-
existingfradures play akey rolein the successof hydrauli c fraduring asameans of fraduring
rock in the miningand petroleum industries. The solutions depend esentialy ontwo unceter-
mined parameters, £ and 3, which can be chasen to impose arange of operating condtions
at the fradure entry and at the fluid/rock interface These parameters were varied to oltain a
range of models which were solved numericdly. For eat of the two spedal relations between

F and G two sets of analyticd solutions were derived and ead set of analyticd solutions sat-
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isfiesaspedal relation between the parameters £ and j.

Solutions were dso foundfor a two-dimensional fluid-driven pre-existing fradure with
length and vdume propartional to exp(at) where « is a anstant. For large times the fradure
length and vdume behave gpproximately as power law solutions of the form at® where a and
b are constants.

Various operating condti onswere considered. For example, constant rate of fluid injedion
into the fradure & the entry aswell as constant rate of fluid le&-off at the fluid/rock interface
occur when £ = 0.8 while constant presaure & the entry, p(0,t), oceurs for 2 = 0.5. Operat-
ing condtionsresultingin a constant growth rate of the fradure volume occur for 2 =02

In our model, fluid can enter into the fradure & the fluid/rock interface Thisis passble
when the rock massis sturated with fluid. We assumed that the fluid in the rock massis the
same & the fluid in the fracdure. When v,, < h, the velocity at which fluid enters the fradure
throughthe interfaceis bounded since F'(u) is bounded and 3 has a minimum value of —2.66.

The discovery of an n-shaped fracture due to fluid extradion at the entry was unexpeded.
Fluid extradion at the entry reduces the speal of evolution o the interface nea the entry
relative to the interface avay from the fradure entry.

When G(u) = SF(u) the n-shaped fradure exists when

(8) , 5(-2)
el g A2 By, (6.0.1)
2 2 €2

or equivalently when
1 1 8
S P . S 0> — (6.0.2)

(8+30) ¢  (5+38) 3
which is the range for extradion o fluid at the fradure entry to exist when £ > 0. When

G(u) = —ﬁu% the correspondngranges are
5(L_ca
M 0< 3 1 (6.0.3)

1(1-3)
¥ < B < < =2 <
3% 34 ’ Co 2
c2 c2
and
1 C3 1

The n-shape is maximum at the lower limit and vanishes at the upper limit since
5(L_ e
O 0.1)=0 when g= M (6.0.5)

Ox é
c2
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The lubricaiontheory velocity profile

Op

. (6.0.6)

vz, 2,t) = —% (h2 — 22)

which was derived using the thin film approximation and which represents parallel flow is
totally incorred in the neighbouhood d the fradure tip. Yet by using it, solutions to the
gowverning equations can be obtained withou invoking any further condtion at the fradure
tip. The assymptotic relation used to commence the numericd integration o the differentia
equationwas obtained from (6.0.6) andis not an externaly imposed condtion. Also, at thetip
of the fradure, the gradient of the half-width satisfies % = —oo. Lubricaion theory bre&s
down only in the neighbouhood d thetip of the fradure.

In the solutions which were considered the length of the fradure dways increased even
when there was extradion o fluid at the fradure entry or le&-off of fluid at the fluid/rock
interface When there isle&-off of fluid the increase in length islessthan in an impermeéable
rock while when thereisinjedion o fluid at the interfacethe increasein length is greaer than
in an impermeéble rock.

The two exad anayticd solutions which were derived for

5(4-2)

Cc2

one when G(u) = BF(u) and the other when G(u) = —pult, describe the evolution o the
fluid-filled fradure when there is no injedion o fluid at the entry. They may be useful in
modelli ng the evolution o the fradure when the entranceis ®ded and it evolves as a result
of leek-off or fluid inflow at the fluid/rock interface

For both G(u) = BF(u) and G(u) = —But regions of the (i‘iﬁ) plane were found
which describe solutions with fluid extradion at the fradure entry. These solutions may be
useful inindustries such as the ail i ndustry in which fluid is extraded from the fradture.

In the PKN model, the excessfluid presaure, p(z,t), is propationa to the half-width,
h(z,t), of the fradure. Hence operating condtions based on pesaure can be imposed at the
fradure entry to oltain modelswhich are solved either analyticdly or, in general, numericdly.
However, the shortcoming o thismodel isthat the excesspresaure necessarily vanishes at the

fradure tip and therefore no stressintensity fador can be defined.
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Conservationlawsfor the norinea diff usion equations were not investigated in thiswork.
Further work can be dore, for example in the case when the fluid is non-Newtonian. Flow
of nonNewtonian fluids in fradures is of interest in several geophysicd and industrial ap-
plicaions. At ultra-high presaure the dependence of viscosity on presaure can be important.
Finally, the problem of afluid-driven fradurein which thefluid flow in the fradureisturbulent

can be investigated.

167



APPENDIX A

Derivation of the Lie point symmetriesof the nonlinear diffu-
sion equation for fluid driven fracture of permeable rock

In this :dion we will show completely the derivation o the Lie point symmetries of the

nonlinea diffusionequation

g—? = %% (h3%> — v (z,t). (A.2)
The diffusion equation (A.1) describes the evolution o the fradure haf-width duing the
processof hydraulic fraduringin apermeablerock. Sincetherock is permeablefluid le&s off
into the surroundng rock formation. The le& off velocity relative to the fluid/rock interface
iSv,(x,t).

Equation (A.1) isrewritten as
A 3 212
hy — §h hyw — ARZHE + v, = 0. (A.2)
The Lie point symmetry generator

0 0 0
X = 1 2

of equation (A.1) is derived by solving the determining equation

A
XPh, — ghi“>hm — ARPRZ +u,]| A =0, (A.4)

hi= g h3haa +Ah2h% —Un
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for £(t, z, h), €2(t, z, h) andn(t, z, h) where X2, the second polongation of X, is given by

0 0 0 0 0
(2] _ -
X X+ G o, + (2 o + Cnahtt + Ci2 oh.. + szahm (A.5)
and ; and (;; are defined by
Gi = Di(n) — hiDi(€"), i=1,2, (A.6)

with summation ower the repeaed index k£ from 1 to 2. The total derivatives with resped to
the independent variables ¢ and x are given by

0 0 0 0

D1 — Dt — & + htafh + httiaht + hxtiahz + ... 5 (A8)
0 0 0 0

Dy=D, = +hp—=—+ htpp— + hpg— + ... . (A.9)

dr " Toh Ohy Oh,
The le&-off velocity v, istredaed as an arbitrary function o the independent variables ¢t and

x.

From the determining equetion (A.4), we obtain

ov ov
19Un 20Un
¢ ot +< ox

+(s (—2Ah2hz) + (oo (—ghs)

+ 1 (—=AR*hyy — 2ARR2) + G

A = 0. (A.10)

ht:§h3hzz+Ah2h%7vn

We now cdculate the expressgonsfor ¢, (», and (32 acordingto equations (A.6) and (A.7):

1 = Di(n) = hDy(€') — haDi(€7), (A.11)
C2 = Dm(n) - htD:c(fl) - thx(SQ): (A.]_Z)
C22 = Dw(C2) - ha:tDz(gl) - ha:a:Dz(éQ) (A13)
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Expanding equations (A.11), (A.12) and (A.13) using (A.8) and (A.9), we obtain
G = m+hnn— hy (ftl + htffll) — hy (5{;2 + htﬁi) ; (A.14)
G = N+ hatin — he (61 4 hall) — ha (8 4 hati) | (A.15)
Co = Do (Du(n) = yDu(€') = haDo(€?)) = harDo(€) — haw Da(€7)
= D3(n) — hD3(€") = 2hutDu(€") = 2has Du(€?) — ha D3(E7)
= Taa + 2 Nan + Wo0nn + Poatn — i&py — 2hahisy, — Mih3Eh, — hihaa&,
—2h) = 2hhinl, = 2he &l — Bhohaa€h — ha, — 20365, — hiGR,. (A.16)

The expressons for (;, ¢, and (5, are substituted into the determining equation (A.10) to
obtain

ov ov
1_71 2_”
R

0 (— AR hey — 20RR3) + e + B, — By (& + hes,)

A
—§h3 (7713: + 2Ry e, + W2nnn + haatin — WL, — 2ha iy,
_hthiffllh - hthxmg}z - thtfi - 2hxhxt£}11 - thfi

—haheah — hot, — 232, — 1€,

A = 0. (A.17)

ht= g h3 h:l::l:"!‘Ath% —Un

We now expand equation (A.17), repladng h; using the partial differentia equation. This

gives a linea homogenous partia differential equation o order 2 for the unknavn functions
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EN(t, x, h), E(t, x, h) andn(t, x, h):

éla—vt + 528% — Ah2hzx77 - 2Ahh277 + i + — 5 h hl’a:nh + AthQ/th

A A2 A?
§h3hmx£t1 - Ahzh?yétl ngt - ?h(a fh - §h5h2 acacgh

A A? A
+ 31 haavn&y = S hihea€y = ARG+ ARhG0& + Sh heavn&y + AP R0nG,

A
—v2€ — ho&? — gh?’hmhmgi — ARPREEE + v, ho &8 — 20A2hyn,

2N2 2N2
—2AR%h2n, + Th5h Rl + 7hW hawlh + 20N2R*R3EL + 2A2RAREE] — 2AR%h v, €L

A 2A A
_2Ah2hivn£flL + 2Ah2h§££ + 2Ah2hi£2 - ghsnm: - 3 h hmnxh - gh hxnhh

A A2 A2 A2 2A2
—gh?’hmnh + jhﬁhm:{;z + jhﬁhmgix 3 B - —h?’vn{l + —hf‘h cheally

2A2 2A A2 A2 A A2
+7h5hi§ih - ?hghxvngih + ghﬁhihmﬁih + ?hf’hif}m - ghshivnfih + ?hGhixS}L

2A 2A 2A
_hghxtgi + _h3hxhxt§}1z + —h?’hmfg

A2 A
+—h°h2hel) — =h3haeuné) + 3

3 * 3 3 3
2A

A
3 R*h2E2, + §h3h§§,§h =0. (A.18)

A
+ AR hyheo &3 + §h3hzfi$ +

Sincethe functionsto be determined do nd depend onthe derivatives of h, equation (A.18) is
separated acording to partia derivatives of h. One then equates the coefficients of the partial
derivativesof h to zero. In thismanner, (A.18) decomposes into an overdetermined system of

equationsin which there ae more ejuations than unknavn variables.
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Equating the coefficients of the partia derivatives of h to zero yields
h2h . ﬁ 1 1 _ O
x'tzx - 3§hh + éh - Y

A
hohes & + ARZEL 4+ =h3€L, =0,

3
hohg & = 0.
hxt: f;:(),
h2. : 0=0
A4

h 2h h
hoo : M+ €& — higl, — 7€ — Celu, =0
77"‘ 351‘, 9 ng 3 gz 3€hv )

1
B : €+ el =0
2A . 1
Wi €R+ 20N + ToREh, + Shed, = 0

1
h2 . 2n+ hay, + hE) — 2hE2 + ghthh

2
__h2 gh:(]?

(A.19)

(A.20)
(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

2A A
ha: : 5 éhvn + 2Ah277z + 2Ah2€ Un + ?h?’?hh + _h gzhvn - _h3 gz = 07 (A28)

3
8vn A A

avn
L: 51 +§ - + Tt — UnTln + Unét - U?Lfflz - ghgnxx - ghgvngix -

From (A.21) and (A.22),
& =0 and & =0.

It then foll ows from (A.30) that

gh=¢()
Equation (A.20) reducesto
& =0,
which impli es that
& =& (x,1).
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(A.32)
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Equations (A.19) to (A.29) reduceto
1 2
P - —h&! — She2 =
77+ 3 gt 3 gz 07

1
h2 . 20+ hmy, + h& — 2hE% + §h27]hh =0,

2A A
he © €24 2AR*n, + ?h?’nxh — §h3§§1 =0

ov,,

c%n A
1: 51 + 52— + Ny — NhUn + gtlvn - §h377m: = 0

From (A.34), we have
h
=3 (€ -4).
Differentiatingn with resped to x and then with resped to /, we obtain

2 2
=Zhed and 1, = Z€2.

3 gxx Nzh 35z
We substitute ,, and 7., given by (A.39) into (A.36) to oltain

13A
& + T,

Since£? isindependent of /1, we eguate the efficients of the powers of & to zero:

Y & =0,
R &2 =0.

xrxr

Hence we conclude from (A.41) and (A.32) that

andfrom (A.42) we have

& (x) = cs + 3z,

where c; and ¢, are mnstants. Substitute (A.44) into (A.38). Hence (A.38) becomes

n(t,h) = %h (2¢5 — &) .
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(A.35)

(A.36)

(A.37)

(A.39)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)



If (A.45) for n(t, h) is ubstituted into (A.35) then (A.35) isidenticdly satisfied. If (A.45) for

n(t, h) is wubstituted into (A.37) then (A.37) becomes

v, 6vn 2 1
§R 4 @50 4 2 (28] — o) v — e =0,

(A.46)

Thefunctions ¢!, €2, v, are dl i ndependent of h. Hence eyuating the coefficients of powers of

h onead side of (A.46) gives
h: ftlt =0,

an Qv 2
W s T 2 (28] — ) v = 0.

From (A.47), we obtain
§1 =c + Cgt.

On substituting (A.44) and (A.49) into (A.48), we obtain

vy, v, 2
(c1 + cot) (9— + (¢4 + c37) 81:}1: 3 (c3 — 2¢2) vy,
Finally, substituting (A.49) into (A.45) gives
1
n= g (2C3 - CQ) h.

The Lie point symmetry generator istherefore of the form
)

0 o 1
X = (c1 + eot) 5% + (c4 + c37) p + = 3 (2c3 — ¢2) h%

=1 X1 + o Xo + e3X3 + ey Xy,

where
X =2
X =2

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)
(A.57)

provided that the le&k-off velocity v, (x,t) satisfies the first order linea partial differential

equation (A.50).
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APPENDIX B

Derivation of the Lie point symmetries of a nonlinear seaond
order ordinary differential equation

We derive the Lie point symmetry of the second ader nonlinea differential equation

d [ LdF d

where A, B are anstants. We will requirethat A ## 0 but wewill seethat thereisnocondtion
onpb.

Equation (B.1) can be written in the form

H(u,F,F,, F.,) =0, (B.2)
where
2 2
H = AFSd—F + 3AF? ar + Aud—F + (A + B)F. (B.3)
du? du du
The Lie point symmetry generator,
0 0

of equation (B.1) is derived by solving the determining equation,

X2 g =0, (B.5)

H=0
for the unknown functions & (u, F) andn(u, F) where X2, the second prolongation o X, is

given by

X =x + G (u, F, Fu)aiF + Go(u, F, FuaFuu)a%f (B.6)
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where

(o= D(n) — F.D(6), (B.7)
G = D(¢) — FuuD(€) (B.8)
and
D:CZL+FU$+FUUU£+---. (B.9)
The expanded form of ¢; and ¢, is
1= u+ Fu (ip — &) — Fiér, (B.10

The determining equation (B.5) beames

E(AF,) + 1 (3BAF?F + 6AFF, + A+ B) + ¢ (6AF?F, + Au) + G(AF?) =0.
" 812
We now substitute the expressons (B.10) and (B.11) for ¢; and (; into (B.12) to oltain the
determining equation

AEF, + 3nAF?F,, + 6pAFF2 + (A + B)n + 6AF2F,n, + Aun,

+6AF2F2np + AuF,np — 6AF2F2€, — AuF, £, — 6AF?F3¢p

—AuF2Ep + AFP0, + 20F, FPnp + AFPE2npp + AFPFyuune — AFPFE,,

—2AFPF?¢,p — ANFPF3¢pp — 3ANF,F F3¢r — 20AFPF, .8, =0. (B.13)
H=0

To impose the condtion H = 0 on (B.13) we use (B.3) for H to give

AF°F,, = — (BAF*F. + AuF, + (A+ B)F) (B.14)
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andreplaceF,,, in (B.13) by (B.14). The determining equation (B.13) then becmes
AEFF, —9NF?F2n — 3AuF,n — 3(A+ B)Fn+ 6AF?Fn+ (A+ B)Fn
+6AFPFun, + AuFn, + 6AF°Fnp + AuF Fynp — 6AF?F2E,
—AuFF,&, — 6AF3F3¢p — AuFF%p + AF* 5, + 20AF, Fn,p
+AFF2npp — 3NFPF2np — AuFFnp — (A + B)F?np — AFYE,£,,
—2AF*F}¢p — ANF*F)épp + INFPF ) ¢p + BAuFF.¢p
+3(A+ B)F?F&p + 6AFPF2E, + 2AuFF&, + 2(A+ B)F?¢, = 0. (B.15)

Since¢ andn do nd depend onthe derivativesof F', equation (B.15) is sparated acwordingto

the aoefficients of the derivatives of F'. Setting eat of these coefficientsto zero, we obtain
F3 . Fépp —3&p =0, (B.16)
F? . —3AFn+ AFnpp + 3AF?np + 2Auép — 20AF3¢,n = 0, (B.17)

F,: AF¢ — 3Aun + 6AF3n, + AuFE&, + 20F*n,p

~AF*,, +3(A+ B)F*p =0, (B.18)
1: —2(A+ B)n+ Aun, + AF?n,, — (A+ B)Fnp +2(A+ B)F¢, = 0. (B.19)

Integrate (B.16) to oktain
E(u, F) = F*G(u) + H(u). (B.20)
Substitute (B.20) into (B.17) to oktain

9n 3 On 3 sdG 8A

which may be rewritten as

0%n d (n 1dG  8A
o B (F) —smY G (). (B.22)

Integrating (B.22) oncewith resped to F' gives

op 3 _dG _, 8A
o5 T =27 F = uG(u)F + 4D(u) (B.23)
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where 4D(u) is used instead of D(u) to simplify the result for n. The integrating factor for
(B.23) is F3. Integrating (B.23) with resped to F gives

1dG 8
n(u, F) = Z%F‘r’ - 5—AAuG(u)F2 + D(u)F +

Eu)
F3

(B.24)

Substitute (B.20) and (B.24) into (B.18) and separate the resulti ng equation acording to pow-

ersof F. Thisgives

F8 . 65765 =0, (B.25)
Fo %Au% + (A —4B)G(u) =0, (B.26)
F* ‘5715 — 8‘2—5 =0, (B.27)
F?: A*W*G(u) =0, (B.28)
F: A (u% + H(u) — 3uD(u)) =0, (B.29)
F~?: AuBE(u) =0, (B.30)
1: 0=0. (B.31)
Asamethat A # 0. Equations (B.28) and (B.30) then gives
G(u) =0, (B.32)
E(u) = 0. (B.33)
When (B.32) and (B.33) are substituted into (B.20) and (B.24), we obtain
&(u, F) = H(u), (B.34)
n(u, F) = D(u)F, (B.35)
subjed to the condtions (B.27) and (B.29) which are
657}2[ - 8% =0, (B.36)
u% + H(u) — 3uD(u) = 0. (B.37)
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Equations (B.25) and (B.26) areidenticdly satisfied by (B.32). Substituting (B.34) and (B.35)
into (B.19), we obtain

2
AF4ZT€ + AuF(jl—lj —3(A+ B)FD(u) + 2(A + B)Fi—i] =0. (B.38)

We separate (B.38) acmordingto powersof F':
d*D

4, @2
Fl:i— =0, (B-39)
F: Aucjl—lj —3(A+B)D(u)+2(A+B)Cil—Z = 0. (B.40)

Integrate (B.39) to oltain
D = dlu + dQ, (B41)

where d, and d, are constants. We substitute (B.41) into (B.36) and onintegrating we have
H = 4du® + hyu + ho. (B.42)

where h; and h, are constants. We now substitute (B.41) and (B.42) into (B.37) and (B.40) to

obtain
9d,u? + (2hy — 3dy)u + hy = 0, (B.43)

We separate (B.43) acordingto powers of « to oktain

u?: dy =0, (B.45)
w: 2hy —3dy =0, (B.46)
1: hy=0. (B.47)
Equation (B.44) reducesto
(A+ B)(2hy — 3dy) = 0 (B.49)

whichisidenticdly satisfied. From (B.46), we obtain

hy = gdg. (B.49)
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Hence (B.34) and (B.35) become

E(u, F) = gudg, n(u, F) = doF

and therefore
ds 0 0
Henceif A # 0, equation (B.1) admits one Lie point Symmetry generator
0 9]
X = Sua—u + 2F8—F.
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