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ABSTRACT

Reinforcing bar, which it is commonly abbreviated as rebar, is used in the

construction industry to impart tensile strength to concrete structures, which

by nature is very brittle. At ArcelorMittal South Africa Newcastle Works, 460

MPa (minimum yield strength) rebar is traditionally produced by using

Vanadium as a micro-alloying addition in order for the mild steel to attain the

required strength as specified.  However, the fluctuating price of Vanadium

over the past years necessitated the use of alternative micro-alloying

elements. Niobium is currently used successfully instead of Vanadium on the

Rod mill, but not on the Bar mill, due to the difference in cooling facilities

between these rolling mills.

Alternative manufacturing routes and strengthening mechanisms for the cost

effective production of rebar containing Niobium on the Bar mill was

investigated. It was decided to produce a trial cast containing Niobium as a

micro-alloying element with a Chromium addition and subsequently roll it into

10 mm and 12 mm rebar at the Bar mill. The minimum yield strength of 460

MPa was not achieved. The average yield strength was approximately 430

MPa on both these sizes.
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1 INTRODUCTION

1.1 Background

Reinforcing bar, abbreviated as rebar, is used in the construction industry to

impart tensile strength to concrete structures, which by nature is very brittle.

Rebar is therefore a vital material in modern building and engineering

projects. Concrete is one of the most important building materials since its

properties include good formability, resistance to weathering and fire, and it

can withstand high compressive stresses, but unfortunately almost no tensile

and shear stresses. A Frenchman named Monier was the first person to apply

steel in combination with concrete to improve its tensile properties. Steel is

considered the best material to reinforce concrete with since the expansion

behaviour for both steel and concrete are similar, so under normal conditions

the two materials will expand and contract almost equally. The rebar is mainly

ribbed to guarantee a good joint between these two materials and to ensure

the cracks remain in the tension zone of a structural component. (1, 2, 3)

Figure 1: Ribbed reinforcing bar (rebar)
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Figure 2: Use of rebar in construction of a dam wall

Over the years, a lot of research globally has gone into the development of

high strength rebar with superior properties, since the use of high strength

rebar in concrete structures can greatly reduce the consumption of reinforcing

steel. This is because in reinforced concrete, steel alone accounts for 30-40%

of the cost. Different types of rebar are available in the market for concrete

reinforcement, such as rebar produced by a cold twisted deformed process, a

thermo-processed rebar and rebar produced by micro-alloying additions. (1, 2, 3)

This rebar must be produced according to international specifications. At

ArcelorMittal South Africa Newcastle Works, the BS4449/ 1997 460B

standard and SANS 920/2005 450 MPa (cert) weld is used. These standards

stipulate that the yield strength of the material must be above 460 MPa or 450

MPa, respectively, and that the Ultimate Tensile Strength (UTS) to Yield

Strength (YS) ratio (UTS/YS) must be at least 1.08. The minimum elongation

allowable at fracture is specified at 14%. The yield strength specification is

important in terms of structural stability. The minimum elongation and UTS/YS

ratio provides capacity for plastic deformation and is subsequently a safety

factor against fracture. Furthermore, the carbon content and carbon

equivalence value, which is an indication of weldability and ductility, is capped

at 0.25% and 0.51%, respectively. Weldability is important in order for

economical fabrication techniques to be utilised. (2, 4, 5)
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At ArcelorMittal South Africa Newcastle Works, 460 MPa rebar was

traditionally produced using Vanadium as a micro-alloying addition in order for

the mild steel to attain the required strength. However, the fluctuating price of

Vanadium over the past years necessitated the use of alternative micro-

alloying elements. Niobium can be used successfully instead of Vanadium in

rebar rolled at the Rod mill as a cost saving initiative. The Rod mill can

produce 5.5 mm to 14 mm rebar in coils or straightened lengths.  The Bar mill

can produce 10 mm to 40 mm rebar lengths. Customers on the local market

prefer rebar lengths rolled at the Bar mill for the following reasons:

• Scale removed during straightening at the Rod mill tends to

accelerate corrosion of the rebar and hence is aesthetically

displeasing.

• Material appears corrugated after straightening at the Rod

mill.

1.2 Problem Statement

The Niobium micro-alloyed rebar grade chemistry was designed and

optimised for the Rod mill. Since the visual appearance of rebar is very

important for stockists, this material was then rolled to lengths at the Bar mill

as a trial. However, this was unsuccessful since the minimum yield strength of

460 MPa was not achieved. This was due to the vast differences in cooling

rates experienced between the Rod and Bar mill, i.e. the Rod mill has

controlled forced fan air-cooling while the Bar mill lacks this facility.  Currently

the Bar mill still produces rebar containing Vanadium and it requires a higher

level of Vanadium alloying addition in order to achieve the mechanical

properties due to the slower cooling rates prevailing in the Bar mill process.

Due to the high tonnages produced as a result of customer demand for the

Bar mill rolled rebar, this is very expensive for ArcelorMittal South Africa

Newcastle Works.

As a result of the fluctuating steel market, it often happens that either the Bar

or Rod mill has orders exceeding capacity, and since high tonnages of rebar

are rolled on both mills, interchangeability can create capacity when needed if
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it can be successfully accomplished. This will optimise the use of both mills.

Therefore, alternate production routes or strengthening mechanisms need to

be investigated in order to achieve a minimum of 460 MPa yield strength on

Bar mill produced rebar. The focus will be on the 10 and 12mm sizes, since

these are the highest volume demand sizes in the market.

1.3 Objectives of the Research

The primary objective is to use both mills to produce rebar complying with

specifications. In order to use the mills interchangeably, it is necessary to

investigate different means to achieve a minimum of 460 MPa yield strength

in 10 and 12 mm rebar produced at the Bar mill. In order to achieve the

primary objective, the research was sub-divided into the following objectives:

i. Investigation of the current process routes available for the production

of rebar to decide the optimum route, within the limitations imposed by

the Bar mill, in a cost effective manner.

ii. Determining the effect of different micro- and macro-alloying elements

in order to design a suitable steel grade for the production of the rebar.

iii. The effect of different microstructures on mechanical properties was

investigated to design an optimum microstructure needed to achieve

the required minimum strength specification.

iv. The effect on finishing temperatures, via Gleeble simulated rolling, to

obtain the optimum microstructure and hence required yield strength,

was investigated.

1.4 Hypothesis

Reinforcing bar with a minimum yield strength requirement of 460 MPa can

successfully be produced at the Bar mill by using suitable micro- and macro-

alloying element additions.
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1.5 Structure of report

The report begins with the literature survey where the various available

process routes for the production of rebar and the mechanisms by which they

strengthen rebar is explained. The results of various previous trials done at

ArcelorMittal South Africa Newcastle Works and other plants are discussed.

The reasoning behind the process route of choice for the production of rebar

and the design of the steel grade for the trial is explained. The results

obtained from the evaluation of the trial rebar is given and compared with

rebar produced via other micro-alloying routes and /or cooling conditions. This

was followed by a summary of the findings of the trial as well as

recommendations for future work to be done.
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2 LITERATURE REVIEW

There are three manufacturing routes shown in the flowchart in figure 3 below,

which is basically employed for the production of rebar to impart strength,

namely:

• Cold Mechanical Working

• In line-heat treatment

• Micro-alloying

Figure 3: Methods for increasing the yield strength of rebar (6)

IN LINE HEAT
TREATMENT

Addition of Nb,
V, C

Twisting
Drawing
Cold rolling

AS ROLLED COLD WORK
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2.1 Cold Mechanical Working

Three cold working methods can be employed to impart strength to rebar i.e.

Cold Twisting, Drawing and Cold Rolling.  Rebar produced by cold twisting is

the most common method used and is abbreviated by CTD.  (6)

2.1.1 Background

The CTD process was developed in Europe in the 1970’s and after only a few

years of implementation, Europe and the rest of the world, except one

country, India, abandoned this method. The main reason for this was that high

strength was achieved at the cost of ductility (achieved elongation values

were less than 12%), and therefore the high strength CTD bars did not gain

global acceptance. This process remained the manufacturing process of

choice in India largely due to the previous closed market conditions and

significant cost savings. (7, 8)

It was taken for granted in India that all the CTD bars met the IS 1786-1985

Grade Fe 415 specification. The continual use of CTD bars with low ductility

and the above assumption created a great risk, as most of India lies in a high

seismic hazard zone. Emphasis on the UTS/YS ratio in seismic zones is

important since this allows for structures to yield, but not catastrophically fail,

in the event of an earthquake. To expand further, the minimum value specified

ensures yielding will not be confined to a specific area, thus greater

elongation of the rebar is permitted before fracture and consequently greater

ductility is achieved. It is only at the turn of the century that the CTD process

of manufacturing rebar slowly began to be replaced in India. (7, 8)

2.1.2 Principles

In cold twisting, the hot rolled mild steel is stretched and twisted beyond its

yield plateau and then the load is released. (Refer to Figure 4 below)(9)  This

operation results in a residual strain as well as in increased proof strength of

the rod. A linear elastic path (modulus of elasticity = original mild steel) is

followed upon reloading until the point is reached where the unloading began
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- the new increased ‘yield point’. Beyond the yield point, the material enters

the strain hardening range. (9) In cold rolling, the hot rolled rod is passed

through a series of rolls. The material is compressed and hence deforms as it

is forced into the gaps between the rolls. This deformation then increases the

strength of the material.  In cold drawing, carbide dies are employed to reduce

the cross section of the rod, thereby strengthening the material while

employing cold deformation. (9)

Figure 4: Effect of cold working on mild steel rebar (9)

2.1.3 Properties

Although cold working increases the proof strength of the steel, it inevitably

reduces the ductility of the material. The yield strength of CTD rebar is in the

order of 400 MPa with an elongation of ~14%. In addition to limited ductility,

this material suffers an inherent problem of poor weldability, since although

the carbon content is restricted to some extent, a certain amount is however

necessary to achieve the required strength of the rods using this process.
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These bars also have a high impact transition temperature, which is

undesirable. Since the rods are subjected to torsional stresses, they become

less corrosion resistant. Incorrect pitch of twisting (over - or under-twisting)

can result in undesirable results; hence care needs to be taken in this

regard. (2, 9)

Since this method involves an additional processing operation, extra

investment costs are incurred. Because it is a simple process, the operating

costs are at a minimum. Cold rolling results in good section control and coil

presentation. However, the ductility is much lower than that achieved in hot-

rolled steels. A cold drawing process also inherently reduces the ductility of

the material.  (6, 9)

2.2 In-line Heat Treatment

2.2.1 Background

The TEMPCORE® process, or Quench and Self Temper (QST) process, as it

is commonly referred to, is an in-line heat treatment process applied

commonly for the production of high quality rebar, especially in developed

countries. (6, 9) The TEMPCORE® patented process for producing rebar is

licensed to Centre de Recherches Metallurgiques (CRM), Belgium. The

TEMPCORE® process imparts strength to rebar by using a thermo-

processing control technique. THERMEX® is another patented process also

employing “Quench and Temper” technology. “Quench and Temper”

technology was developed in the early 1980’s in order to replace the CTD

process. Rebar produced by this method gained global acceptance by civil

engineers, especially since it met their requirements for seismic zones, i.e.

minimum YS of 500 MPa with adequate ductility.

2.2.2 Principles

The reheated steel billet is rolled and reduced progressively through all the

rolling stands in order to achieve the required final shape and size. It is only

immediately after the last rolling stage that the TEMPCORE® process is

applied in three successive stages.  This process is illustrated in Figure 5
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below and it further illustrated in relation to the continuous cooling diagram in

Figure 6 below. (10)

Figure 5: TEMPCORE® Process (10)

 Stage 1 - Quenching: Rapid quenching upon exit of the last rolling stand is

employed by specially designed cooling water spray system.(10) . The cooling

efficiency of the system is very high. This is due to the disruption of vapour

blanket formation around the bar since the kinetic energy of the water is high

and hence allows for immediate fully wetted cooling to occur. The surface

layer of the bar is quenched into the hard, but brittle, martensite phase up to a

certain depth below the skin, whilst the core remains austenitic. Depending

upon the operating and controlling parameters of the process, a layer below

the martensitic layer can be completely or partially transformed to bainite. (4, 6)

Stage 2 - Self-Tempering: When the bar leaves the area of drastic cooling

and is exposed to air, a temperature gradient is created through the cross-

section of the bars. Heat transfer then occurs from the hot core to the

quenched surface layer by conduction until the temperatures are equalised.

This results in the peripheral martensite, which was formed in Stage 1, being

self-tempered. The core still remains austenitic to ensure that adequate
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ductility is achieved and high yield strength is maintained. This temperature-

equalisation stage is dependent upon bar diameter and the application of

cooling conditions during Stage 1. (1, 6)

Stage 3 – Atmosphere cooling: This stage occurs on the cooling bed where

the austenitic core transforms to ductile ferrite and pearlite due to its much

slower cooling rate. The formation of this microstructure is dependent on

specific alloy chemistry, bar diameter, bar entry temperature to the rapid

cooling system, duration of cooling, and cooling efficiency. The final

microstructure consists of a strong surface layer of tempered martensite,

intermediate bainite layer and ductile core of ferrite and pearlite and it is this

unique combination that ensures the strength and ductility of the rebar. (10)

Figure 6: TEMPCORE® process in relation to the CCT diagram (4)
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Figure 7: Hardness profile of a cross-section of a QST bar (10)

Figure 7 above shows the typical hardness profile of a cross-section of a

rebar produced by the QST process. The variations in the hardness profile are

due to the different microstructures present in the rebar as shown in Figures

8, 9 and 10 below.

Figure 8: Photomicrograph illustrating a Martensitic microstructure (10)

Magnification: 500x        Etchant: 2% Nital
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Figure 9: Photomicrograph illustrating a Bainitic microstructure (10)

Magnification: 500x        Etchant: 2% Nital

Figure 10: Photomicrograph illustrating a Ferrite and Pearlite microstructure(10)

Magnification: 500x        Etchant: 2% Nital
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2.2.3 Properties

The TEMPCORE® process uses the composite microstructure in order to

attain the required properties, therefore enabling the use of lower Carbon and

Manganese contents to ensure better ductility and good weldability and high

bendability. In rebar produced by this method, the microstructure and hence

mechanical properties vary continuously from the surface to the centre of the

rebar. The overall yield strength is dependent on the volume fraction of the

individual phases present and is therefore in turn dependent on the process

parameters, the most important being the water flow rate, quenching time

(rebar finishing speed), finishing temperature and steel chemical composition.

For a given chemical composition, the yield strength is dependent on the self-

tempering temperature and martensitic and bainitic depth. (6)

Rebar produced by this method meets a YS of minimum 500 MPa and also

has relatively good corrosion resistance. Furthermore, no preheating or post

heating is required during welding. The tempered martensite surface layer

imparts high thermal resistance to rebars even at temperatures of up to

600°C. However, prolonged exposure at these conditions will result in a

compromise of the mechanical properties. (9)

2.2.4 CCR at ArcelorMittal South Africa Newcastle Woks

Previously TEMPCORE® or CCR (Controlled Cooled Rebar), as it is referred

to on the plant, was used as process route for the production of Rebar. It was

stopped and micro-alloying with Vanadium (V) then became the production

route of choice in order to achieve the required mechanical properties.

In 2005 CCR was trialed again at the Bar mill when the Vanadium price

increased drastically. Reinforcing bar was successfully produced using a plain

carbon steel grade without the use of expensive micro-alloying elements to

comply with the specifications of the CCR method, e.g. achieving of a

minimum of 460 MPa YS. However, the Bar mill production yield losses

(material losses due to cobbles and time to build up the mill) were high.
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Furthermore, the rolling tempo had to be decreased by two-thirds of normal

production rolling tempo, which made it less advantageous. Therefore a

breakeven price for vanadium was calculated on the plant, i.e., if the

vanadium price exceeded a certain level, only then would the use of the CCR

process be warranted.

2.3 Micro-alloy Additions

2.3.1 Background

Steels containing micro-alloying elements are considered as very important in

the industry and are estimated to constitute approximately 12 % of the total

world steel production. Their importance is derived from the fact that very low

levels of micro-alloying elements are needed to cause major strength and

toughness improvements in steels. Hence, the popularity of micro-alloyed

steels in the market place is simply due to their ability to increase mechanical

properties in an economically advantageous manner. The development of

these micro-alloyed steels has lead to the expansion of some key industries

including oil and gas extraction, transportation and construction. Over the past

40 years extensive research has been performed on the addition of alloying

elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti) in amounts

of less than 0.1 weight % to increase the strength of hot rolled structural grade

material. Strengthening of rebar was found to be possible without increasing

Carbon and/ or Manganese contents since the increase of these elements

proved detrimental to weldability and toughness of the steel. It is interesting to

note that Vanadium was reported as the first micro-alloy element to be widely

used as an addition to C-Mn steels dating back as early as 1916. (11, 12)

2.3.2 Principles

The combinations of metallurgical factors that govern the structure and

behaviour of micro-alloyed rebar include solid solution, grain refinement,

dislocations and precipitation hardening. A typical breakdown of how these

factors contribute to the strengthening of hot rolled steel is illustrated in Table

1 below. The mechanisms by which V, Nb and Ti influence the properties of
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the steel include the solute drag effect and the formation of carbides and

nitrides, which will be further explained. (11, 13, 14)

Table 1: Percentage contribution of strengthening mechanisms to hot-rolled
steels (15)

Strengthening Mechanism Percentage contribution

Precipitation Hardening 32 %

Grain Size Refinement 41 %

Pearlite 4 %

Solid Solution 8 %

Base 15 %

Solute Drag Effect

In the solid solution, micro-alloying elements, as well as all other elements in

steel, retard all diffusion-controlled processes. The solute drag effect is also

known as diffusion retardation. It is found to be stronger with a bigger

difference in atomic size of any specific element as compared to that of the

iron atom. Niobium is the most effective of the three micro-alloying elements

in this context, followed by Ti (See Table 2 and Figure 11 below). (14)

During hot rolling of steel, the solute drag effect assists in grain refinement

by (14):

• Preventing secondary grain growth during the interpass time, since

grain growth is a diffusion-controlled process.

• Retarding the onset of recrystallization, by niobium carbide

precipitates.
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Table 2: Atomic Radii of Refractory Metals (14)

Element Atom radius in nm Difference to the Fe-atom in
%

Ti 0.147 +14.8

V 0.136 +6.2

Cr 0.128 ~ 0

Nb 0.148 +15.6

Mo 0.140 +9.4

                      Figure 11: Retardation of recrystallization by austenite(13)

The Austenite (γ) to Ferrite (α) transformation, which is diffusion controlled, is

delayed due to the solute drag effect. This delay increases hardenability and

not only results in higher yield strengths, but also improved toughness and

ductility. (11, 14, 15, 16)
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Formation of Carbides, Nitrides and Carbonitrides
Significant strengthening is obtained by the precipitation of these micro-

alloying elements as carbides, nitrides and carbonitrides in ferrite. The main

influence on the formation of carbides, nitrides and carbonitrides is their

respective solubilities. The driving force for precipitation is strong

supersaturation, since their solubilities in ferrite is much less than in austenite

and solubility is a strong function of temperature. (11)

The solubility product describes the equilibrium conditions for the dissolution

and formation of non-metallic compounds, including carbides, nitrides and

carbonitrides.  Figure 12 summarizes the solubility product of several

carbides and nitrides in austenite. (12, 14)

Figure 12: Solubility of micro-alloy carbides and nitrides in austenite (12)

From the Figure 12, it is evident that carbides, nitrides and carbonitrides of

Vanadium have much larger solubilities in austenite than those of Titanium

and Niobium. The solubility of Vanadium nitride is about two orders of

magnitude smaller than its carbide. Furthermore, the lower Carbon (C)

content on rebar allows increased solid solubility of Nb in the austenite phase.
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In order to form nitrides and carbonitrides, the presence of nitrogen in these

micro-alloyed steels is vital and should be strictly monitored. The content of

Nitrogen (N) present determines the density of carbonitride precipitation and

hence the degree of precipitation strengthening. The effect of Nb in micro-

alloyed steel depends on the N content of the steel since Nb carbonitrides are

found to be present when the carbon to nitrogen ratio ranges between 1:1

and 4:1. In V micro-alloyed steel, not only is N employed in formation of

nitrides, but its presence optimizes the precipitation reaction and effectively

less V is needed to achieve the desired yield strength. (12, 15)

Characteristic Features of the effects of V, Nb, Ti in steels (11, 12, 14, 16)

The following are some of the characteristic features of each of the above-

mentioned elements:

Ti forms titanium nitrides, which are stable at high temperatures and thus

prevent austenite grain growth during reheating. Since Titanium is an

effective nitrogen scavenger, by forming TiN it ensures that there is enough

Niobium in solution at γ/α transformation temperatures for an effective solute

drag effect.

V exhibits high solubility of its precipitates in austenite and is therefore in

plentiful supply for precipitation hardening at/or after the γ/α transformation.

This ensures the precipitation of a high volume fraction of fine precipitates,

thus enhancing the effectiveness of precipitation hardening.

Nb which is not precipitated in austenite, will delay the γ/α transformation and

the small precipitates formed during and after the transformation gives

strength by precipitation hardening. The size of these precipitates is in the

order of 2 nm. It also retards recrystallization during hot rolling, promoting a

finer microstructure. Furthermore, it is a more effective grain refiner than V.

To increase the effectiveness of Nb, the billet soaking temperature prior to

rolling should be selected to ensure that almost all the Nb is in solid solution

prior to rolling. The relationship between solubility of the precipitates and

reheat furnace temperatures at different Nb and C contents are illustrated in
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Figure 13 below. If the Nb content exceeds the equilibrium, which is usually

attained during soaking, coarse Nb(C,N) precipitates of approximately 200

nm will exist which can retard austenite grain growth. It is because of the

retardation action that Nb micro-alloyed grades can possess a smaller

austenite grain size at the beginning of rolling and therefore a smaller

recrystallized austenite grain size during rolling at temperatures above

1000°C (16)

Figure 13: Solubility of Nb (C,N) in steel as a function of  C content at different
reheat temperatures(17)
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2.3.3 Properties

Figure 14: Yield strength of micro-alloyed ferrite pearlite steel (16)

Figure 14 above shows the yield strength for various Nb and V contents in air

cooled 0.18 % carbon steel. It is evident that Nb is the most effective micro-

alloy element in small additions, since only 0.03% Nb produce a yield strength

of about 480 MPa while twice as large a V addition would be required to

achieve the same properties. Nb enhances the effect of V when used in

combination.

Base composition [mass-%]:
C Mn Si

0.18 1.2 0.25
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Figure 15: Tensile properties of Nb micro-alloyed rebar for various C contents
and diameters (16)

An inspection of Figure 15 above, which illustrates tensile properties of Nb

micro-alloyed rebar of various C contents and diameters, indicates that in bar

diameters below about 20 mm, the yield strength (Re) and tensile strength

(Rm) drops significantly. This is due to the formation of bainite and sometimes

martensite together with ferrite and pearlite. With such a microstructure, the

yield point is suppressed and it is attributed to continuous yielding caused by

internal stresses. (16, 18)
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2.3.4 Overview of the Development of Micro-alloyed rebar in the Steel
Industry

Chemical Analysis and Substitution

Although Nb and V can both be used to strengthen rebar, the properties of the

product that result will be different since these elements are not

interchangeable and cannot be substituted for each other without considering

not only commercial, but also technical aspects. Nb and V respond differently

in terms of steel chemistry, continuous casting, hot rolling practice, and

preferred strengthening mechanism, which was previously explained in detail.

Furthermore, the solubility of Nb depends on the carbon content of steel, i.e.

when carbon is less than 0.1%, its solubility is high whereas the solubility of V

is independent on the carbon content of the steel. This dependence of Nb on

carbon content can be seen in Figure 13. In some literature, the presence of

nitrogen in Nb steels is said to be negative since its makes casting more

difficult and promotes precipitation at high temperature. It can be scavenged

by a titanium addition if necessary. By contrast, in V steels nitrogen acts as a

useful alloying addition. The phenomenon of ageing is not eliminated in Nb

steels. (16,19)  Literature studied states that nitrogen is required and hence is

beneficial, since it is needed for the formation of niobium carbonitride

precipitates that contributes to strengthening. (12, 15)

In 2005, experimental work was conducted by the Central Iron and Steel

Research Institute, jointly with Nanchang Iron & Steel Co. Ltd., in China in

order to develop rebar with yield strength of 400 MPa minimum. Their current

successful production of rebar at that stage was via a Vanadium micro-

alloying (20MnSiV) route. Since the rising high cost of Vanadium becomes a

problem it necessitated development work on Nb micro-alloyed rebar. Table 3

below indicates the chemical analysis of the first two trials casts that were

produced. Only rebar rolled from Trial Heat 2 met the specification, which is

explained below. (20)
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Table 3: Chemical Analysis of the Trial 20MnSiNb rebar material

This material was then rolled down to 12 mm and air-cooled.  Heat 1 exhibited

continuous stress – strain curves lacking a marked yield point. Therefore

0.2% proof stress was used for Heat’s 1 evaluation of yield strength, which

resulted in average values of maximum 380 MPa, that was below the required

specification value.  Heat 2 met the requirement by achieving a 410 MPa yield

point. In Heat 1, the microstructure consisted mainly of bainite, with

fragmented martensite present within the bainite, as compared to the ferrite

and pearlite structure with a little bainite found in the samples of Heat 2. The

higher Mn content of Heat 1 promoted the mixed bainitic + martensite

structure and was subsequently responsible for the lack of a marked yield

point on the stress-strain curves. The grain size number for Heat 1 rebar was

9.7 and 9.5 for Heat 2, which are both relatively fine. (20)

Continuous Casting

Steels containing micro-alloying elements are sensitive to the formation of

transverse cracks during continuous casting, due to the formation of micro-

alloy precipitates at the grain boundaries that lowers the ductility. Nb steels

are more sensitive to transverse crack formation than V steels since the

former’s compounds precipitate at a higher temperature than those in V

steels. This sensitivity increases in the presence of nitrogen. (16, 19)

Reheating, Rolling and Cooling Effects

Very few of the literature reports studied with regards to the strengthening

effect of Nb addition in rebar, gives any detail about the effects of the

processing parameters, such as reheat temperature and cooling rate after

rolling, on mechanical properties. In order for maximum grain refinement to be

achieved in Nb steels, the finishing temperature should be low which is not

Trial Heat %C %Mn %P %S %Nb %Si

1 0.20 1.47 0.032 0.026 0.030 0.65

2 0.18 1.38 0.033 0.036 0.026 0.53
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easy to achieve when rolling long products. This is not the case for V steels,

where a high finishing temperature is adequate. Nb steels require heavier

rolling loads since the rolling needs to be controlled at a lower temperature.

Subsequently roll wear has to be considered. (21)

As mentioned previously, reheat temperature is important since it affects the

solid solute Nb content and austenite grain size, which influence the

mechanical properties of the steel. In a joint trial conducted by CBMM Asia

(now Kobeko Research Institute) and Kobelco Research Institute in Japan on

0.25% C – 0.5% Si – 1.2% Mn – (0.05% Nb, 0.05% Nb+ 0.05% V) the above-

mentioned parameters were investigated.(22) These steels were referred to as

0NB for the base steel of 0.25% C – 0.5% Si – 1.2%Mn, 5NB where 0.05%

Nb was added and 5NV, where 0.05% Nb+ 0.05% V are added to the base

steel. In the laboratory experiments, the reheat temperature was varied from

1050 to 1250 °C and the reheat time was 30 min at each temperature while

the finishing temperature was controlled at 900 °C before air-cooling. It was

found that the yield strength in 5NB increased from 440 MPa as the reheat

temperatures increased at 1050 and 1100 °C to 485 MPa at 1250 °C. The

tensile strength also showed an increase of about 40 MPa with an increase in

reheating temperature in 5NB. Total elongation was higher than 28% but was

found to decrease with increasing reheating temperature.(22)

The influence of cooling rate on mechanical properties was investigated from

900 – 700 °C by varying the water density while keeping the reheat

temperature constant. The yield strength in 5NB increased 20-30 MPa as the

cooling rate was increased from 0.8 °C/s (only air cooling) to 40 °C/s (water

cooling). Similarly an increase in tensile strength was noted, but to a lesser

extent. However, the total elongation was not drastically affected. In addition

to these trials, the microstructures observed in 5NB reheated at 1150 °C

consisted of ferrite and pearlite. No bainite or martensite was present even

after the cooling rates were increased. The ferrite grain size was found to

have decreased with an increase in cooling rate. The prior austenite grain size

was observed since it contributes to final grain refinement in 5NB after
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reheating at 1150 °C for 30 minutes followed by a quench and was found to

be ASTM grain size number 3.7. (22) It was concluded from the trial that micro-

alloying the base steel with Nb or Nb + V was effective in increasing strength,

especially at high reheating temperature, and that it could be ascribed to

precipitation and grain refinement hardening. Furthermore, an accelerated

cooling up to 700 °C was effective to increase strength and yield point

elongation after hot rolling.

Similar trial results were achieved by Caribbean Ispat Limited (CIL) in Trinidad

where the effect of reheat temperature on Nb micro-alloyed rebar was

evaluated. (22, 23) In Trial 1 the billets were reheated at 1080 – 1100 °C and

Trial 2 the reheat temperature was increased to 1100 – 1160 °C. These billets

were then rolled to 10 mm rebar. It was found that yield strengths in excess of

460 MPa were achieved with the higher reheat temperatures. The higher

temperatures allowed an increased amount of Niobium Carbides and Niobium

Nitrides {Nb (C, N)} to be taken up in solution. Subsequently, an increased,

finer dispersion of Nb (C, N) was precipitated in the ferrite, and a decrease of

the austenite to ferrite transformation temperatures occurred. Furthermore,

the Nb (C, N) particles that were not taken into solution, contributed to grain

refinement which also increased the strength. (22, 23)

In the trials by CIL, cooling conditions of the rebar was also investigated and

once again similar results to that obtained by the Japanese workers as

discussed above was achieved. (22, 23) The reheat temperatures for these trials

were kept constant at 1130 °C and the material was rolled to 12 mm. In Trial

A, the billets were rolled with water cooling before the finishing block and

forced air cooling conditions with all the fans set at maximum after rolling on

the conveyer. For Trial B, no water-cooling was applied to the steel before the

finishing block and all the fans were off. The rebar, which experienced the

aggressive cooling, exhibited desirable mechanical properties, i.e. yield

strength up to 500 MPa was achieved.  The water-cooling applied to the

material prior to finishing affected the precipitation behaviour of Nb (C, N) by

enhancing it and thereby increasing the strength. The forced air-cooling after
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rolling enhances the fast transformation from austenite to ferrite which

favoured nucleation over growth and caused a further increase in the

material’s strength. (22, 23)

From examining the plant trials conducted in Japan as well as Trinidad, it is

observed that both these plants are in agreement that high billet reheating

temperature prior to rolling and accelerated cooling of the rebar after rolling

are beneficial in increasing the mechanical properties of rebar. The reheat

temperature at the Bar mill is between 80-100 °C lower than the actual

furnace temperature, therefore for the Bar mill, the actual reheating

temperature is approximately 1180 °C. Although it is possible to increase this

temperature at the Bar mill to 1250 °C, it is not feasible, because if the billets

are surface ground, they tend to adhere to each other in the furnace, and

hence it becomes a production problem. Furthermore, the Bar mill is not

equipped with controlled cooling facilities and this poses a major limitation in

increasing the mechanical properties of rebar.

2.3.5 Micro-alloying rebar at ArcelorMittal South Africa Newcastle Works

At ArcelorMittal South Africa Newcastle Works all rebar is currently being

produced via the micro-alloying process route. Traditionally 460 MPa rebar is

produced using V as a micro-alloy addition. However, the fluctuating price of

V over the past two years necessitated the use of alternative micro-alloying

elements. Nb is used successfully instead of V in rebar rolled to sizes less

than 14 mm at the controlled cooled Rod mill as a cost saving procedure. For

sizes greater than 14 mm, which is rolled at the Bar mill that lacks forced air

cooling facilities, V is still used. It requires a higher level of V alloy addition in

order to achieve the required mechanical properties due to the slower cooling

rates prevailing in the Bar mill process. Previous trials on the Bar mill with the

successful Nb Rod mill chemistry, was unsuccessful due to the difference in

cooling facilities (the Stelmor cooling conveyer on the Rod mill provides fast

and effective cooling).

In 2003 experimental work was conducted on the plant in order to develop

rebar with high yield strength. This was attempted by the production of trial
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heats with additions of Nb, Ti, V, Silicon (Si) and N. The idea was to influence

the mechanical properties through mechanisms of grain refinement, solid

solution strengthening and precipitation hardening. However, the emphasis

was placed on producing the rebar with the traditional V addition since only

one of the five different casts produced contained Nb. Table 4 gives the

chemical analysis for the two types rebar that were of particular interest.

Table 4: Chemical Analysis of the 2003 Trial rebar material

These casts were then rolled to 10 mm at the Rod mill and 25 mm at the Bar

mill in order to investigate and compare the effect of cooling rates and

different levels of deformation. It was found that the 10 mm rebar containing V

+ Chromium (Cr) + Silicon (Si) achieved the highest YS and UTS, namely 734

MPa and 1029 MPa, respectively. The microstructure of this material

consisted of bainite with traces of pearlite. The 10 mm Nb-Ti-N cast also

achieved a yield strength above 600 MPa, (average 650 MPa), while its

microstructure consisted mostly fine pearlite with traces of bainite. (24) On the

25 mm rebar rolled at the Bar mill that contained both V and Cr, the highest

yield strength and ultimate tensile strength achieved were 607 MPa and 777

MPa respectively. The microstructure of this material consisted of 45% ferrite

with the remainder being pearlite. The 25 mm Nb-Ti-N cast achieved a yield

strength above 500 MPa on this trial, (average 523 MPa), while its

microstructure consisted of 60% ferrite and the rest was pearlite. Large

titanium nitrides were also visible in the microstructure. However, these

results could not be repeated on a subsequent trial. (24)

%C %Mn %P %S %Nb %Si %V %Ti % N %Cr

Nb + Ti + N 0.22 1.45 0.027 0.007 0.020 0.49 0.060 0.023 0.014 0.030

V + Cr + Si 0.23 1.41 0.021 0.009 0.005 0.69 0.110 0.004 0.013 0.260
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On the Nb-Ti-N rebar, the intention was to form Niobium carbonitrides Nb(C,

N) and / or Niobium carbides (NbC) for precipitation strengthening.  At that

stage it was thought that the formation of titanium nitrides (TiN) had a

negative influence on the precipitation strengthening mechanism since

nitrogen was depleted in the form of titanium nitrides, leaving less nitrogen

available to combine with Nb for precipitation formation. Furthermore, when

the titanium nitrides were analysed, niobium was also found to be present. (24)

For rebar containing V-Cr-Si, it was envisaged that the improved strength was

achieved through the precipitation of vanadium carbides and/or carbonitrides

and Cr-carbides. The Cr addition increased the hardenability of the material

significantly and yielded positive results. On the 25 mm material, this cast

yielded the most superior mechanical properties. The fine grain structure

when compared to the others (grain size = 8.5) contributed to the high

strength of the material. (24) From this set of trials it was concluded that Nb

retarded the austenite growth and recrystallisation during rolling, but not the

ferrite growth during cooling after rolling. This is evident when comparing

mechanical results of the 10 mm rebar which experienced forced cooling after

rolling on the Rod mill and the 25 mm results which had slow / non-controlled

cooling on the Bar mill. (24)

In 2004 further development work on 460 MPa minimum yield strength rebar

continued and focused on the use of alternate micro-alloying elements instead

of V after its price began rocketing and nearly doubled. At that stage the Nb

price decreased and the Ti price also doubled. Rebar containing Nb and a

combination of Nb and Ti was investigated and compared against the normal

vanadium grades rolled at the Rod and Bar mill. The Nb-Ti rebar also

contained higher Nb and Manganese (Mn) additions than the Nb-only

containing grade. These casts were then rolled into 10, 12 and 14 mm coils at

the Rod mill and 20, 25 and 32 mm lengths at the Bar mill in order to

investigate and compare the effect of cooling rates and different levels of

deformation in addition to effectiveness of alloy additions on mechanical

properties. (25) Table 5 summarises the chemical compositions of these two Nb

containing trial rebars as well as the standard V grade.
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Table 5: Chemical Analysis of the 2004 Trial rebar material

On the 10 and 14 mm rebar rolled at the Rod mill both the V-only and Nb-

only achieved mechanical results exceeding the minimum mechanical

specifications, averaging a YS above 600 MPa for the 10 mm sizes and

greater than 530 MPa for the 14 mm sizes for both these grades. No Nb-Ti

rebar material was rolled to this size. The microstructure of the Nb-only

material consisted of bainite with islands of fine pearlite and a ferrite-pearlite

structure on the V-only rebar. On the 12 mm size, the Nb-Ti (with an average

YS = 680 MPa) exhibited superior mechanical properties when compared with

the standard vanadium grade (average YS = 631 MPa). Both these grades

exhibited mechanical properties within the specification values. No Nb-only

material was rolled to this size. The microstructure of the Nb-Ti material

consisted completely of acicular ferrite and bainite. (25)

On the 20 mm rebar rolled at the Bar mill, the V-only steel grade achieved

mechanical properties complying with the minimum mechanical specifications,

with an average YS of 546 MPa. The Nb-only rebar achieved an average

borderline yield strength of 460 MPa. No Nb-Ti rebar material was rolled to

this size. The microstructure of the Nb-only material consisted of coarse

%C %Mn %P %S %Nb %Si %V %Ti % N

Nb grade 0.230 1.400 0.018 0.010 0.025 0.480 0.006 0.002 0.005

Nb + Ti grade 0.235 1.565 0.015 0.009 0.033 0.510 0.004 0.013 0.004

V grade 0.210 1.330 0.028 0.006 0.003 0.430 0.056 0.002 0.011
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ferrite-pearlite with large pearlite grains, while the V-only rebar revealed a fine

ferrite-pearlite structure with well-distributed pearlite grains.

Similar results were achieved on the 25 mm rebar rolled at the Bar mill.

However, the V-only steel grade averaged a YS of 520 MPa while the Nb-only

rebar achieved 452 MPa average, which did not meet the specification value.

No Nb-Ti rebar material was rolled to this size. The microstructures achieved

were similar to that of the 20 mm rebar for both these grades. (25) For rebar

rolled to 32 mm, the V-only steel grade once again yielded superior results,

averaging yield strength 526 MPa. The Nb-only rebar, once again, did not

meet the yield strength specification. However, the Nb-Ti rebar achieved an

average borderline yield strength of 460 MPa. The microstructures observed

in the V – only and Nb-only rebar were similar to that of the 25 mm rebar. The

microstructure consisted of a slightly coarse ferrite-pearlite structure with well-

distributed pearlite grains on the Nb-Ti material. (25)

On the Rod mill trials it was concluded that rebar which meets the BS4449

specification could be produced containing Nb or a combination of Nb and Ti

in addition to the standard V grade. The mechanisms as to how the required

mechanical properties were achieved were previously explained in Section

2.3.2. (25)   The finishing temperatures immediately after the last rolling stand

on the Bar mill measured 1000 ° C on average. With respect to the Bar mill

trials, borderline results were obtained on the Nb - only and the combination

Nb-Ti material only. The reason is that the solute drag effect works in

collaboration with the cooling rate of the rebar and on the Bar mill there is not

controlled cooling facilities and hence the lack of fast and effective cooling.

In the 2004 trials only two of the three different steelgrades were rolled per

size at the mills, except for the 32 mm rebar which made it difficult for a

thorough evaluation and comparison to occur. Furthermore reheat furnace

temperatures were not monitored in these trials. It should be noted that no

Transmission Electron Microscopy (TEM) work was done to evaluate the

precipitates formed in any of the previous trials performed on rebar.
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To summarise the plant trials conducted at ArcelorMittal South Africa

Newcastle Works, it can be said that industrial experimentation with Nb micro-

alloying began in 2003 and continued vigorously in 2004. The success of the

Nb alloyed rebar’s dependence on cooling conditions became more and more

evident, mainly due to the solute drag effect.   Hence, the rebar produced on

the Rod mill was successful while those on the Bar mill was not. Summaries

of previous trials conducted at both the Rod and Bar Mill at ArcelorMittal

South Africa Newcastle Works are shown in Table 6 and 7 below.

Table 6: Summary of previous trials conducted on rebar rolled on the Rod Mill
at ArcelorMittal South Africa Newcastle Works (24, 25)

Rebar
Type

Size
(mm)

YS
(MPa)

UTS
(MPa)

UTS/YS
(1.08
min)

%
Elongation

(14 min)

Microstructure Compliant
with

specifications
(Yes / No)

V only 10 645 744 1.15 28 ferrite + pearlite Yes

V-Cr-

Si

10 734 1029 1.40 25 bainite +

pearlite

Yes

Nb

only

10 607 770 1.27 30 bainite + islands

of fine pearlite

Yes

Nb-Ti-

N

10 650 1020 1.57 24 fine pearlite +

traces of Bainite

Yes

V only 12 631 723 1.15 27 ferrite + pearlite Yes

Nb -Ti 12 680 759 1.12 30 acicular ferrite +

pearlite

Yes

Nb

only

14 558 728 1.30 27 bainite + islands

of fine pearlite

Yes

V only 14 531 741 1.40 21 ferrite + pearlite Yes
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Table 7: Summary of previous trials conducted on rebar rolled on the Bar Mill
at ArcelorMittal South Africa Newcastle Works (24, 25)

Rebar
Type

Size
(mm)

YS
(MPa)

UTS
(MPa)

UTS/YS
(1.08
min)

%
Elongation

(14 min)

Microstructure Compliant
with

specifications
(Yes / No)

V only 20 546 727 1.33 26 Fine ferrite +

pearlite

Yes

Nb

only

20 460 656 1.31 27 coarse ferrite +

pearlite

Borderline

V only 25 520 704 1.35 26 Fine ferrite +

pearlite

Yes

V-Cr-

Si

25 607 777 1.28 24 ferrite + pearlite Yes

Nb

only

25 452 670 1.48 25 coarse ferrite +

pearlite

No

Nb-Ti-

N

25 523 686 1.31 24 ferrite +

pearlite, large

TiN

Lack of
repeatability

V only 32 526 693 1.32 26 Fine ferrite +

pearlite

Yes

Nb

only

32 447 626 1.40 25 coarse ferrite +

pearlite

No

Nb -

Ti

32 460 679 1.48 26 Slightly coarse

ferrite + pearlite

Borderline

2.4 Comparison of Manufacturing Methods

2.4.1 Technical considerations

Since not all rebar is made via the same manufacturing route, these

differences have important implications for maintaining strength and ductility

through the construction process. (26) The advantages of both Micro-alloying

(MA) and Quench and Self Temper (QST) manufacturing routes over Cold

Twisted Deformed (CTD) is enormous in terms of material properties, such as

strength, ductility, weldability, bendability and corrosion resistance

characteristics. It is therefore understandable why this process route is
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obsolete globally for the production of high grade rebar. Over the past 30

years Quench and Self Tempered (QST) has become the most common

method of manufacturing rebar, mainly due to the cost of alloying elements

used in the Micro-Alloy (MA) route.

Properties of MA rebar are relatively homogenous in terms of chemistry,

crystal structure, strength and ductility through a section as compared with

QST bar and this should always be considered in subsequent processing

operations. If QST bar is heated above the tempering temperature (as low as

450 °C) for a certain period of time, the outside case will revert back to the

internal core properties and the bar will lose its strength. Therefore hot

bending and welding a QST rebar will not be possible without losing some

strength if the cooling is not controlled. (26) Furthermore, cutting a thread into a

MA rebar will be quite different compared with QST rebar, as MA rebar is

homogenous throughout a section and QST bar is not. For a MA rebar, loss of

strength will be proportional to material loss but for QST bar loss of strength

will be disproportional since the outer hardened case will be removed. (26)  The

technical consideration of substituting the micro-alloy Vanadium with Niobium

was discussed previously in Section 2.3.4. The factors considered included

the actual steel chemistry, continuous casting, hot-rolling practice, preferred

strengthening mechanism as well as the effect of Nitrogen.

2.4.2 Economic considerations

Cold Processed Bar

Since CTD technology is outdated, prices of the required equipment could not

be obtained. Furthermore, due to the strict mechanical requirements of rebar,

this process will not be considered further as an option for the manufacturing

route.
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Micro-alloying with Niobium versus Vanadium
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Figure 16: Prices of selected Ferroalloys (US$ / Kg) (27)

It is a well known fact that in a free market economy, the law of supply and

demand rules the prices of raw materials. Price increases may therefore be

attributed to a temporary imbalance in supply and demand and / or

speculative trading. Figure 16 above illustrates how the price of Vanadium

reached record highs in 2005 (130 US$ / Kg) which necessitated the

investigation into alternative micro-alloying elements. Since there are a limited

number of producers of Niobium, its price is usually stable. However, the price

of Niobium remained relatively stable until about this year when the price

began to increase while still remaining lower than that of Vanadium. This was

mainly due to a Niobium shortage. (19)

It should further be noted that Vanadium is added in much larger quantities

(up to double the amount in the current Rod mill rebar) as compared to

Niobium in order to achieve the required mechanical properties in rebar. Thus,

even if the micro-alloy prices are the same, it would still be economically

advantageous to add Niobium to the steel instead of Vanadium for strength.
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The calculated micro-alloy savings of replacing Vanadium with Niobium on the

10 and 12 mm rebar rolled at the Bar Mill based on 2005 and 2006

despatches was approximately R 10 million.

Thermoprocessing unit

In order to calculate the viability of installing a thermoprocessing unit for QST

a suitable non micro-alloyed steelgrade to be used for QST had to be created.

From communication with another plant in the group, the following plain

Carbon, Manganese with a Silicon addition for deoxidation was designed.

Table 8: Proposed steel chemistry for QST rebar

If the above steelgrade in Table 8 is to be used, it would replace the current

10 and 12 mm Niobium and Vanadium rebar rolled at the Rod Mill and Bar

Mill respectively. Therefore the micro-alloy cost saving on 10 and 12 mm

rebar using the plain Carbon grade based on 2005 and 2006 despatches was

calculated to be in the region of R 12 million.

A quote received from SMS MEER only for the supply of a new

thermoprocessing unit for the Bar Mill amounted up to 1.7 million euros.(28)

Even though the savings in the micro-alloy costs would warrant this large

capital expenditure, installing and commissioning the new unit would incur

huge production losses. The plant would not be able to supply its current

orders and hence, this would have enormous monetary implications and great

customer dissatisfaction due to not receiving material.

%C %Mn %P %S %Nb %Si %V %Ti

QST grade 0.11 0.50
0.030
max

0.030
max - 0.20 - -
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3 EXPERIMENTAL PROCEDURE

3.1 Manufacturing Route

After investigating the three existing manufacturing methods for the

production of rebar, it was decided to adhere to the current production route

on the plant, i.e. via micro-alloying. As previously explained, the dramatic

price increases and fluctuations of the Vanadium price made Niobium the

micro-alloying element of choice. It should be noted, that in addition to the

commercial analysis, a technical analysis was also taken into account to avoid

unforeseen cost penalties. This decision to remain with micro-alloying was

made since the CTD technology was out-dated and purchasing a new thermo-

processing unit would require a large capital expenditure and the loss of

production. More importantly, the cost saving for using Niobium instead of

Vanadium is not excessively less when compared to the cost savings of using

QST for the rebar.

3.2 Hardenability and Microstructure

The current Nb micro-alloyed rebar grade chemistry, which meets the

specifications, was designed and optimised for the Rod mill. As stated

previously, it was unsuccessful on the Bar mill due to the difference in cooling

facilities. On the Rod mill, the microstructure of the successful Nb-alloyed

rebar contains acicular ferrite and bainite. The microstructure of the material

from previous trials on the Bar mill, which failed to meet the minimum YS

requirement of 460 MPa, contained polygonal ferrite and pearlite.  Therefore

methods to influence the microstructure were concentrated upon. Cooling

faster can influence the microstructure. A schematic representation of a

continuous cooling transformation (CCT) diagram for steel, where fast cooling

results in crossing the “noses” of the hard phase regions (bainite, martensite),

as opposed to cooling slower where the slower cooling rate crosses the softer

ferrite, pearlite regions during transformation from austenite, is shown in

Figures 17 and 18, respectively.
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Figure 17: A schematic Continuous Cooling Transformation Diagram for steel
illustrating the effect of cooling rate

The Bar mill is, however, limited by its cooling facilities; therefore cooling

faster in order to achieve a bainitic microstructure is not an option. The

following method, which involves shifting the nose of the CCT, as indicated in

Figure 18, to influence the microstructure, will be considered.

Fast cooling

Slow cooling
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Figure 18: A schematic Continuous Cooling Transformation Diagram for the
same steel as in Figure 15 illustrating the effect of the shifting noses of
CCT while at a constant cooling rate.

A method employed to shift the nose, is to increase the hardenability of steel

by the addition of suitable alloying elements. Hardenability is also influenced

by austenite grain size. The larger it is, the greater the hardenability. The

method of coarsening the austenite grain size to increase the hardenability

will not be used and is not generally practised, since it had adverse effects on

other properties of the material, such as increasing the brittleness of the

material and causing a loss of ductility. (29)

3.3 Steel grade design

After much consideration, it was decided to use the successful Rod mill Nb

steel grade chemistry as the base composition and make suitable

adjustments to it for the production of the trial material. The alloying elements

were considered in conjunction with the rebar chemical specification, and its

Martensite

Bainite

Ferrite

Pearlite
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influence on other properties of the steel, as well as the impact of production

on the plant. Relative alloy costs were another consideration.

3.3.1 Grain Size Refinement

As previously explained, the strengthening mechanism of grain refinement

contributes a large percentage to increasing the yield strength of steel. The

Nb content of the trial cast was chosen to remain at the current aim of 0.020 –

0.030%, since it is found to be effective in these amounts as a result of its

solubility.(16) In addition to Niobium, which strengthens steels by this

mechanism, an Aluminium (Al) addition was also initially considered as a

grain refiner. Sufficient amounts of Al would have to be added for it to be an

effective grain refiner since it is a major de-oxidiser in steel.(30) Furthermore,

after discussions held with plant personnel, this could have a negative

influence on the castability at the Continuous Caster due to potential clogging.

Subsequently, the sequence lengths of rebar heats that are cast, which are

currently long, would decrease dramatically and hence negatively influence

production at the steel plant.

3.3.2 Hardenability and Weldability

The alloying elements, which increase hardenability, include Carbon (C),

Manganese (Mn), Molybdenum (Mo), Chromium (Cr), Silicon (Si) and Nickel

(Ni). However Mo and Ni will not be considered as possible additions due to

their relatively high costs.(26) The BS4449 international specification limits the

Carbon Equivalence (CE) and Carbon content to 0.51% and 0.25%,

respectively. The formula used to calculate CE is indicated below: (31)

CE = % C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15

Since C is cheaper than Mn and its effect on increasing hardenability is

greater than that of Mn, it was decided to adjust the C aim specification from

its current 0.15-0.18% to 0.21-0.25 % to increase the strength of the material.

Furthermore, the Mn content remained unadjusted to compensate for the

increase in C, so that the CE limit is still adhered to. The aim for Mn is already

towards the upper limit of the 1.60% max specification.
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The Si aim specification was also adjusted from its current 0.22-0.28% to

0.45-0.55%. This was done since Si has a strengthening effect and a mild

hardenability effect, i.e. between that of Cr and Ni. Furthermore, it does not

affect the CE calculation. Although Cr is a weaker hardenability agent than

Mn or Mo, it is highly cost effective (degree of hardenability increase/relative

alloy cost) and was therefore selected as a macro-alloying addition. Cr is also

a strong carbide former.(30) After inserting the new C aims into the CE formula,

the limit on the maximum Cr addition was calculated to be 0.30%. It was

decided to aim for 0.15-0.20% Cr in the trial cast since the specification limits

it to 0.30% maximum. The chemistry for the trial material as compared with

the Rod Mill Nb micro-alloyed rebar steel grade is given in Table 9.

Table 9: Chemistry comparison of current Nb Rod Mill rebar with Trial Bar Mill

%C %Mn %P %S %Nb %Si %Cr

Specification
for NH33201
(Rod Mill)

0.25
Max.

1.60
Max.

0.050
Max.

0.050
Max.

0.050
Max.

- 0.30
Max

Mittal Aim
Specification
for NH33201
(Rod Mill)

Min
Max

0.15
0.18

1.35
1.50

0.040
Max.

0.040
Max.

0.020
0.030

0.22
0.28

0.25
Max.

Mittal Aim
Specification
for NH33201
+ Cr (Bar Mill
trial)

Min
Max

0.21
0.25

1.35
1.50

0.040
Max.

0.040
Max.

0.020
0.030

0.45
0.55

0.15
0.20

3.4 Production of the trial cast

A development trial (DT) was drawn up for the production and rolling of the

experimental trial material and distributed throughout the plant. (See

APPENDIX A). A Basic Oxygen Furnace of 160 tons in capacity was used for

steel-making. After tapping, alloy trimming and heating was done at the ladle

furnace. The heat was continuously cast on a six-strand bloom caster. Square

blooms of 260 mm x 260 mm were cast and cut to required length. The trial

cast was produced successfully under normal standard practice instructions

for rebar at the steel plant with the adjusted chemistry.
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3.5 Rolling of the trial material

Twenty tons of the trial material in 260 mm square blooms was scheduled for

rolling into 101 mm square billets at the Billet mill for intermediate size rolling.

These 101 mm billets were to be used as input material into the Bar mill.  At

the Bar mill, ten tons of the 101 mm billets were scheduled for rolling into 10

mm rebar and ten tons of 101 mm billets were scheduled for rolling into 12

mm rebar. The trial material was rolled under normal rebar rolling practice to

lengths and then normally air-cooled.  (See figure 3 and APPENDIX A)

NEWCASTLE WORKS  REINFORCING STEEL PRODUCTION
FLOWCHART AT THE BAR MILL

STEELPLANT
260x260 mm blooms

BILLET MILL
101x101 mm billets

BAR MILL

Air Cooling
(Uncontrolled cooling)

10 – 12 mm Diameter
Lengths

Figure 19: Flowchart illustrating rebar production using the trial material at the
Bar mill
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3.6 Evaluation of the trial material

3.6.1 Overview of test procedures

In order to produce rebar of acceptable quality it is important that an adequate

quality control system be established and constantly maintained. This system

includes mechanical and metallurgical testing together with inspection of

surface and internal defects. If defects pass through the systems undetected,

they are later reflected in the poor mechanical properties of the rebar in terms

of low strength and ductility, inconsistent rebar geometry and inferior surface

quality. Therefore for this trial, critical inspection and testing of the trial

material was performed in order to remove defective material thereby

ensuring a true representation of the effects on the alloy additions to the

rebar. (9)

Mechanical testing as specified in the BS4449/ 1997 460B standard and

metallographic evaluation was conducted on samples of rebar produced from

the trial material. Only if the material meets the specification, would it be

despatched to a customer for evaluation on processability and customer

satisfaction would be assessed. The surface quality of the cast blooms was

inspected to determine the sensitivity of transverse crack formation in the trial

cast. The macro-structure of the blooms was evaluated to reveal internal

soundness. Tensile, hardness and metallographic evaluations of samples of

rebar produced from the trial cast were compared to vanadium alloyed rebar

produced on the Bar mill and niobium alloyed rebar produced at the Rod mill.

Furthermore, in an attempt to establish Bar mill rolling conditions for the 10

and 12 mm rebar, Gleeble simulations were performed on the samples at the

Industrial Metals & Minerals Research Institute (IMMRI), University of

Pretoria. The Zener-Holloman Parameter, Z, which combines the relationships

between the resulting grain size, temperature and applied strain rate for a hot

rolling process on the Gleeble machine was used (see APPENDIX B). The

first objective was to attempt to reproduce the current as-rolled microstructure

during the simulation in order to establish a base line. This was followed by an
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attempt to establish the finishing temperatures required on the Bar mill in

order to produce the desired microstructure and hardness. The effectiveness

of Nb as a precipitation strengthener as compared to V was also investigated.

The effect of age-ing was also investigated on the trial material to study

precipitation behaviour further. This age-ing was done artificially.

3.6.2 Metallographic testing

For light optical microscopy, specimens were cut and prepared using standard

laboratory techniques for grinding and polishing and subsequently etching in

2% Nital to reveal the microstructure. In addition to light microscopy,

transmission electron microscopy (TEM) was performed to determine if the

as-cast precipitates of the trial cast were dissolved and also to see how the

Nb(C,N) size and distribution compares to that of the V micro-alloyed rebar.

Although solubility calculations can provide a good indication of the amount of

dissolved Nb, TEM analysis was used to verify the state of these precipitates.

The TEM used in the investigation was equipped with Energy Dispersive

Spectrometer (EDS). Specimens were prepared in the same way as for the

optical microscopy. Carbon extraction replicas were prepared for precipitate

characterisation. After etching, the samples were coated with ~30 nm carbon,

which was followed by another etch in order to float off the carbon extraction

replicas. The carbon film (with the adherent precipitates) was subsequently

rinsed with distilled water, mounted on a copper (Cu) grid and dried and was

then investigated with the TEM. (32)

3.6.3 Mechanical testing

Tensile tests were carried out on the samples according to the EN 10 002

Part 1 specification.(33) This test method covers tensile testing of metallic

materials in any form at room temperature, specifically the methods of

determination of yield strength, yield point, tensile strength, elongation and

reduction in area. The tensile machine used was a Messphysik model

TTM600 of 600 kN maximum capacity. Hardness of the various as-rolled

rebar was performed on the transverse samples on a Vickers micro-hardness

tester using a load set at 25 according to ASTM E92-82 standard.(34) After the
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Gleeble simulation at IMMRI, the Vickers hardness was performed on the

specimens at a load of 1 kg. (32)

3.6.4 Macro-structural evaluation

Macro-etching, which is the etching of specimens for macro-structural

examination at low magnifications, usually a visual inspection, is a frequently

used technique for evaluating steel products such as billets and blooms.

Macro-etching was performed on ground, transverse bloom samples

according to the ASTM E381-01 standard. A procedure for rating the steel

samples by a graded series of photographs showing the incidence of certain

conditions is also included in this test method. (35)

Sulphur prints, also referred to as Baumann prints, are used at the Works, not

only to reveal the distribution of sulphide inclusions or the solidification pattern

in steels, which is its intended purpose, but also to provide an indication of

internal soundness of the steel. Sulphur prints of the ground, transverse

bloom samples were performed according to the ASTM E1180 standard. (36)

3.6.5 Grain size measurement

The grain size of the steel was measured in accordance with ASTM E112 –

96. (37) The carburising procedure usually referred to as the McQuaid-Ehn test

was followed which is suitable for carbon and alloy steels with carbon

generally below 0.25 %. The process steps involved is described below:

• The specimens were placed in a carburising box and carburised at 927

± 14 °C for 8 hours

• The specimens were then furnace cooled to a temperature below the

lower critical (600°C was used in this case) at a rate slow enough to

precipitate cementite in the austenite grain boundaries of the

hypereutectoid zone of the case.

• Once cooled, the specimens were sectioned to provide a fresh-cut

surface, and then etched with 2% Nital to reveal the grain size.
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3.6.6 Rolling simulation

Gleeble simulations were performed on samples in order to establish the

relationship between finishing temperature and grain refinement and further to

determine optimum microstructures of the rebar. In the Gleeble simulation, the

bar specimens were cut to 14 mm lengths, reheated, soaked and subjected to

three passes of 0.33 strains with an interpass time of 15 seconds. The final

deformation temperature was measured between 829 and 950 °C and

corresponded to a Bar mill finishing temperature ranging between 980-1110 °

C. The samples were subsequently cooled. After cooling to room temperature,

the samples were prepared for light optical microscopy and further hardness

and TEM evaluation.(32) The ageing treatment to induce precipitation was

done at a temperature of 700 ° C for 30 minutes.
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4 RESULTS

4.1 Chemical Analysis

The final chemical composition of a heat is given as the average of two

samples taken after 15 minutes and 30 minutes respectively, in the tundish

during casting of the heat at the Steel Plant. There is an allowable deviation

on chemical analyses between the cast and actual rolled product due to

segregation of elements in the steel and it is for this reason that chemical

analyses was also done on samples of rebar. Five samples were randomly

selected and submitted for chemical analysis.  The chemical compositions of

the samples were determined using an Optical Emission Spectrometer and a

Leco Combustion analyser. The results of these analyses are tabulated in

table 10:

Table 10: Chemistry comparison of actual chemistry of trial cast versus aim
specification

 %C %Mn %P %S %Nb %Si %Cr % Ti % N

Specification
for NH33201
(Rod Mill)

0.25
Max.

1.60
Max.

0.050
Max.

0.050
Max.

0.050
Max.

- 0.30
Max - -

Mittal Aim
Specification
for NH33201 +
Cr (Bar Mill
trial)

Min
  Max

0.21
0.25

1.35
1.50

0.040
Max.

0.040
Max.

0.020
0.030

0.45
0.55

0.15
0.20

0.020
Max.

0.010
Max.

Trial Cast
(Actual)  0.23 1.41 0.010 0.009 0.024 0.53 0.19 0.0023 0.0048

Product
analyses Ave 0.23 1.42 0.009 0.007 0.024 0.52 0.19 0.0024 0.0046

The chemistry of the trial cast was within the requirements stated in BS4449

specification. (5) Furthermore, the chemistry was within the aim specification as

per the development trial (See APPENDIX A). The Carbon Equivalence of the

cast and product samples was calculated to be 0.50, which is just below the

maximum allowable value by the BS4449 specification (5) of 0.51. Although Ti

and N additions were not made to this cast, residual contents of 0.0023 and

0.0048 resulted in a Ti:N ratio of 0.479. The C:N ratio was calculated to be

47.9. Although it is stated in some literature that a hypostoichiometric Ti:N

ratio (less than 3.42) is beneficial to Nb steels in terms of grain size control,

0.479 is too low to have an effect when compared to the ideal value of 2. (17)
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4.2 Surface Quality

The surface quality of the cast blooms and rolled billets was inspected to

determine the sensitivity of transverse crack formation in the trial cast as well

as to determine the presence of other surface defects. This was a concern for

this trial steel grade since the hardenability was increased, combined with the

fact that it contains Nb, which previously explained is susceptible to

transverse crack formation. The surface quality was evaluated by visual

inspection on 100% of the material on 3 faces of the blooms and billets. The

blooms and rolled billets had a good surface finish and no detrimental surface

defects were visible.

4.3 Macro-etching Results

The macro-structure of the blooms was evaluated to reveal internal

soundness. Transverse bloom slices from five random blooms were cut and

prepared for macro etching. The results revealed good, sound structures on

all blooms tested (see figure 20).  The ratings of the blooms according to the

ASTM E381-01 are tabulated in table 11 together with typical ratings of Nb-

only bloom slices for the purpose of comparison.(35)

Table 11: Typical Transverse bloom ratings according to ASTM E381 Plate 1:
Graded series

Conditions Ratings of
Nb-Cr

Ratings of
Nb-only

Subsurface conditions S2 S2
Random conditions R2 R2

Centre segregation C2 C2
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Figure 20:  Digital photograph showing the transverse Macro-etch section of a
bloom sample

4.4 Sulphur Prints

In addition to the macro-etches, sulphur prints were also used to reveal the

internal soundness of the trial blooms. Sulphur prints of five ground transverse

bloom slices were prepared and the results revealed no centre line cracks or

subsurface blowholes. Due to low levels of sulphur, the sulphur prints were

unclear and thus excluded from this report.

4.5 Mechanical Results

4.5.1 Tensile Tests

In order to comply with the BS4449 specification for reinforcing steel, the yield

strength needs to exceed 460 MPa. In addition to this, the tensile strength to

yield strength ratio must be greater than 1.08 and the % elongation larger

than 14. Due to the absence of marked yield point on the tensile graphs, 0.2

% offset method was used to determine the yield strength as illustrated in
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Figure 21 below. The mechanical results achieved on the 10 mm and 12 mm

rolled material from the trial cast are tabulated in table 12 and are graphically

plotted in Figures 22 - 25. Typical results achieved from micro-alloying with

Vanadium at the Bar Mill and results from Nb micro-alloyed grade when rolled

at the Rod mill are included for comparison purposes.

Figure 21: Tensile test graph for 10 mm Nb-Cr rebar showing 0.2 % offset
method for determination of yield strength

Table 12: Average mechanical properties of as-rolled rebar lengths and
comparisons

Plant Alloys Steelgrade Size
(mm)

YS
(MPa)

UTS
(MPa)

UTS/
YS

%
Elongation

BS4449
Specification - - - 460

min. - 1.08
min

14 min

Bar Mill Nb + Cr
NH33201
(Nb+Cr) 10 429 727 1.69 19

Bar Mill Nb + Cr
NH33201
(Nb+Cr) 12 436 762 1.74 16

Bar Mill V
VH33215
(V) 12 540 675 1.25 25

Rod Mill Nb
NH33201
(Nb) 10 500 665 1.33 22

Rod Mill Nb
NH33201
(Nb) 12 509 640 1.26 25
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Tensile results for 10 mm rebar
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Figure 22: Tensile results for 10 mm rebar

Tensile results for 12 mm rebar
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Figure 23: Tensile results for 12 mm rebar
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UTS/YS and Elongation results for 10 mm rebar
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Figure 24: UTS/YS ratio and % Elongation results for 10 mm rebar

UTS/YS and Elongation results for 12 mm rebar

0
2
4
6
8

10
12
14
16
18
20
22
24
26

UTS/ YS % Elongation

Mechanical property

Pr
op

er
ty

 v
al

ue Min Spec
Nb+Cr (Bar mill)
Nb (Rod mill)
V (Bar mill)

Figure 25: UTS/YS ratio and % Elongation results for 12 mm rebar
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The rebar produced from the trial chemistry did not meet the minimum yield

strength requirement of the BS4449 460B specification for both the 10 and 12

mm. For the 10 mm rebar, the yield strength achieved was on average 31

MPa below specification and for the 12 mm, 24 MPa below specification. It

can be noted that the UTS/YS ratio and minimum % elongation specification

was met for both the 10 and 12 mm rebar. When compared with the

mechanical properties achieved from the V micro-alloyed rebar on the Bar mill

and the Nb micro-alloyed rebar on the Rod mill, it can be seen that the trial

rebar is inferior to the currently produced material.

4.5.2 Hardness Tests

The hardness results achieved on the trial rebar are tabulated in table 13

below, together with typical results achieved from micro-alloying with V at the

Bar mill and results from Nb micro-alloyed grade when rolled at the Rod mill

are included for comparison purposes. The hardness results of Gleeble

simulated trial rebar in order to investigate the influence of finishing

temperatures are shown in table 14 below. The higher hardness’s exhibited

on the 10 mm and 12 mm Nb – Cr  trial rebar correlate to the high UTS values

previously found on these samples.

Table 13: Average hardness values of as-rolled rebar and comparisons

Sample Number Average (HV) Steel grade Mill
Cast 702510 - 10mm 203.3 VH33216 Bar
Cast 602134 - 10mm 230.3 NH33201 + Cr Bar
Cast 602134 - 12mm 223.7 NH33201 + Cr Bar
Cast 703723- 12mm 219.1 VH33216 Bar
Cast 703695 -12mm 225.9 NH33201 Rod
Cast 700251 -10mm 262.1 NH33201 Rod

Table 14: Average hardness values for Gleeble simulated 10mm Nb +Cr rebar

Average (HV)
Gleeble
FT (°C)

Equivalent Bar Mill FT
(°C)

237 875 1017
240 912 1063
237 950 1112
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4.6 Metallographic Results

4.6.1 Microstructural analysis

Transverse samples of the as – rolled trial rebar as well as the lab simulated

rolled rebar were cut and prepared for metallographic investigation using

standard techniques and also compared with samples from the V micro-

alloyed rebar rolled on the Bar mill and the Nb micro-alloyed rebar rolled on

the Rod mill. There results revealed the following:

• A polygonal ferrite-pearlite-bainite microstructure on the 10 and 12 mm

trial rebar (see Figures 26, 27 and 29)

• A microstructure containing similar amounts of polygonal ferrite-

pearlite-bainite after simulated bar rolling on 10 mm Nb – Cr trial rebar.

The finishing temperature (FT) of  875 °C on the Gleeble simulation,

which was equivalent to FT of 1017 °C on the Bar mill (see Figure 28)

• The desired acicular ferrite-bainite microstructure was achieved during

simulated bar rolling after increasing the finishing temperatures from

Gleeble FT of 912 °C = 1063 °C (Bar mill) to Gleeble FT of 950 °C =

1112 °C (Bar mill) on the 10 mm Nb-Cr rebar (see Figures 30 and 31)

•  An acicular ferrite-bainite microstructure on the 12 mm Nb micro-

alloyed rebar rolled on the Rod mill (See Figure C1, APPENDIX C)

• A relatively coarse polygonal ferrite and pearlite microstructure on the

12 mm V micro-alloyed rebar on the Bar mill (See Figure C2,

APPENDIX C)
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Figure 26: Photomicrograph showing a microstructure containing polygonal
ferrite–pearlite-bainite on 10 mm NH33201 (Nb + Cr) as-rolled rebar
sample etched in 2% Nital.

Figure 27: Photomicrograph showing a microstructure containing polygonal
ferrite–pearlite-bainite on 12 mm NH33201 (Nb + Cr) as-rolled rebar
sample etched in 2% Nital
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Figure 28: Photomicrograph showing a similar microstructure as Figure 23,
achieved under simulated rolling (finishing temperature = 875 ° C) of 10
mm NH33201 (Nb + Cr) rebar etched in 2% Nital. Z = 1.59x1018

Figure 29: Same figure as in Figure 20 but photomicrographed at a lower
magnification for comparison purposes.
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Figure 30: Photomicrograph after simulated rolling at Gleeble FT of 912 °C-
1063 °C (Bar mill) of 10 mm NH33201 (Nb + Cr) rebar etched in 2% Nital.
Z = 4.29x1017

Figure 31: Photomicrograph after simulated rolling at Gleeble FT of 950 °C –
1112 °C (Bar mill) of 10 mm NH33201 (Nb + Cr) rebar etched in 2% Nital.
Z = 1.20x1017
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4.6.2 TEM analysis of precipitates

The precipitation behaviour of the as-rolled 10 mm Nb-Cr rebar rolled on the

Bar mill was compared to both the 10 mm Nb-only rebar rolled on the Rod mill

and the 10 mm V-only rebar rolled on the Bar Mill. In addition, the effect of

aging was studied on the Nb-Cr rebar and the following was found: (see

Figures 32-35)(32)

• On the Nb – Cr as-rolled bar, few Nb(C,N) precipitates of the size 12-

50 nm are present.  This was a similar finding as for the Gleeble

simulated 10 mm rebar where very few 12 nm Nb(C,N) and 50-100 nm

Nb(C,N) were found.

• On the Nb only rod, few Nb(C, N) precipitates of size 10-300 nm are

present.

• On the V only rod, a relatively large number of 2-10 nm TiV(C,N)

precipitates together with 50-100 nm  Ti, Al, V-N present.

• After aging the Nb – Cr bar, a relatively large amount of Nb(C,N)

precipitates smaller than 20 nm were present.

Figure 32: TEM Micrograph showing evidence of a small amount of Nb(C,N)
precipitation present on the 10 mm Nb-Cr rebar rolled on the Bar mill.
Similar results were obtained for the Gleeble simulated rebar.
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Figure 33: TEM Micrograph showing evidence of a small amount of Nb(C,N)
precipitation present on the 10 mm Nb micro-alloyed rebar rolled on the
Rod mill.

Figure 34: TEM Micrograph showing evidence of a relatively large amount of
TiV(C,N) precipitates present on the 10 mm V micro-alloyed rebar rolled
on the Bar Mill.
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Figure 35: TEM Micrograph showing evidence of a larger amount of Nb(C,N)
precipitation on the 10 mm Nb-Cr micro-alloyed rebar rolled on the Bar
mill after ageing at 700 °C for 30 min.

4.6.3 Grain size analysis

The grain size of the as-rolled 10 and 12 mm sizes for Nb-Cr rebar rolled on

the Bar mill was compared to the Niobium only rebar rolled on the Rod mill

and the Vanadium rebar rolled on the Bar mill which can be found in Table 10

below. Figure 36 below shows the typical microstructure achieved after

etching subsequent to performing the McQuaid-Ehn test on the 10 mm trial

material to reveal to a grain size of 7.0. It can be seen from Table 15 that the

finer grain sizes are exhibited on the Nb – Cr trial rebar rolled at the Bar mill.

Table 15: Grain size of as-rolled material

Sample Number
Austenite Grain
size Steel grade Mill

Cast 602134 - 10mm 7.0 NH33201 + Cr Bar
Cast 602134 - 12mm 7.5 NH33201 + Cr Bar
Cast 702510 - 10mm 6.5 VH33216 Bar
Cast 703723- 12mm 6.5 VH33216 Bar
Cast 700251 -10mm 6.5 NH33201 Rod
Cast 703695 -12mm 6.5 NH33201 Rod
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Figure 36: Photomicrograph of 10 mm NH33201 (Nb + Cr) rebar after
austenitising and etched in 2% Nital to reveal a grain size of 7.0
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5 DISCUSSION

5.1 Effect of the Trial Chemistry on Production and Rolling

The chemical analysis of the trial cast and rolled product analysis produced

with the adjusted chemistry, i.e. increased Carbon and Silicon levels with a

Chromium addition, was within the aim specification and adhered to the

BS4449 standard. This grade was produced and cast on the Steel plant with

relative ease during the DT. If this grade was successful in achieving the

mechanical properties it would not be problem to the Steel plant in terms of

full production since no additional changes in processing practices would

need to done except for alloy additions stated in the DT.

The rolling tempo of the trial rebar was the same as for standard rebar at the

Bar mill incurring no additional production time losses or delays. Even with the

higher hardenability of this steelgrade as compared to standard rebar grades

no problems such as cobbles or “kick-backs” were encountered during the

rolling of this grade and almost 98 % yield was reported on the mill.

Furthermore, a concern raised in the literature that Nb steels exhibit the

tendency to bow on the cooling bed due to non-uniform transformation was

dispelled since the lengths did not show evidence of bowing while cooling. (19)

In addition, samples for testing were cut with ease in the same manner as

standard rebar, which was also an initial concern due to the higher

hardenability of the trial material. Therefore, if the rebar was successful,

rolling it on a full production basis on the Bar mill would also not require

additional changes in processing practices or the purchase of new equipment.

5.2 Surface Quality

The surface quality of the cast blooms and rolled billets were of acceptable

quality and were thus released for further rolling into rebar. There was no

evidence of the presence of transverse cracks. The blooms were critically

inspected due to a concern raised in literature relating to the sensitivity of

Niobium steels to transverse crack formation during casting. Since the

phenomenon of transverse cracking is more pronounced in the presence of
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Nitrogen, the absence of cracks is most likely due to low Nitrogen content of

the steel i.e. 0.0046 % attributed to the production of the steel via the Basic

Oxygen Furnace route. (16, 19)

 5.3 Macro-etching Results

The macro-structure of the blooms slices revealed good internal soundness

with no areas of excessive segregation or porosity visible. No evidence of

internal cracks was visible. This was also raised as a concern since the

hardenability of the steel was increased and internal cracking due to loss of

ductility was feared. The macro-etch result ratings were the same as the

ratings achieved for blooms of standard Nb rebar. The macro-etch results

further bear witness that no problems were encountered during the steel

making and casting of the trial steel grade.

5.4 Sulphur Prints

The results obtained from the sulphur prints are not further discussed since

they were unclear. This was due to the relatively low levels of sulphur present

in the steel (0.009 %).

5.5 Effect of increasing the hardenability

The effect of increasing the hardenability of the micro-alloyed Nb steel via

micro- and macro-alloy additions in order to compensate for the slow cooling

rate experienced on the Bar mill on the mechanical properties of rebar was

investigated. Increasing the hardenability of the steel had an effect on the

mechanical properties in that it increased the tensile strength of the material

substantially. However, the required mechanical property of minimum yield

strength of 460 MPa as stipulated in the BS 4449 specification was not

achieved on the 10 mm and 12 mm rebar produced from the trial cast. This

could be seen by comparing the mechanical properties of the different rebar

steel grades produced at the different mills in Section 4.5.1. Even though

increasing the tensile strength of a material is favourable in that it offers
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savings in terms of materials and fabrication, it is the yield strength that is

used to guarantee the stability of a structure.

The % elongation of the trial material was much lower than the standard

grades, indicating a lower ductility of this rebar compared with the other

grades. Furthermore, it must be remembered that even though it appears that

the trial material exceeds the required minimum UTS / YS ratio and it appears

that the ratios are even greater the standard rebar grades, it cannot be

concluded that the trial material performs better is this regard. This

appearance is only due to the fact that the UTS was higher and the yield

strength much lower than the standard grades. This trial rebar therefore

cannot provide a sufficient capacity for plastic deformation and hence cannot

provide a safety margin against fracture.

5.6 Microstructure of as-rolled and simulated bar

The microstructures of the as-rolIed Nb-Cr trial rebar,  V-only rebar rolled on

the Bar mill and Nb-only rebar was compared with the resultant

microstructures obtained during laboratory simulations to determine their

effect on mechanical properties. In the trial material rolled to 10 mm and 12

mm, a mixed microstructure of polygonal ferrite, pearlite and bainite was

obtained. It is the relatively slow cooling after rolling at the Bar mill that

produces the pearlite phase in addition to the other two phases referred to

above. As mentioned previously, with this mixed microstructure the yield point

is suppressed as a result of continuous yielding caused by internal stresses.
(16, 18) This is not the case when comparing the as-rolled microstructures of the

Niobium micro-alloyed rebar rolled on the Rod mill which contains acicular

ferrite and bainite and the relatively coarse polygonal ferrite and pearlite

microstructure obtained on the Vanadium micro-alloyed rebar on the Bar mill.

Both these grades with their respective microstructures achieve the minimum

yield strength requirements.  The as-rolled microstructure of the trial rebar

was successfully simulated on the Gleeble machine indicating an approximate

finishing temperature of 1017 °C on the Bar mill.
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5.7 Effect of Finishing Temperature

The finishing temperatures (FT) during simulation rolling of the trial material

were varied in order to investigate its effect on the resultant microstructures

and grain refinement. Since it was not practical to vary the finishing

temperatures on the Bar mill during production rollings of rebar, this

parameter was varied in the laboratory simulations. It was found that the

microstructure changes to mostly acicular ferrite–bainite at a Gleeble FT of

950 °C (equivalent to approximately 1112 °C on the Bar mill). This was the

highest FT the material was simulated at.  This was the desired microstructure

of the trial material since the successful as-rolled Niobium micro-alloyed rebar

rolled on the Rod mill consisted thereof.  The finishing temperatures

immediately after the last rolling stand on the Bar mill vary between 1020 -

1060 °C on average. From the literature is it stated that in order for maximum

grain refinement to be achieved in Nb steels, the finishing temperature should

be low. (21) However, the results of this simulation trial require the opposite in

order for the optimum microstructure to be obtained.

5.8 Effectiveness of Niobium as a Strengthener

Niobium is said to increase the strength and toughness of the material by

simultaneously grain refinement and precipitation hardening, as well as phase

transformation control. From the TEM analysis of the precipitates, it was found

that in the Niobium-Chromium trial rebar and the Niobium rebar rolled on the

Rod mill, a very low volume fraction of Nb(C, N) was contained in the steel. It

was only upon ageing the steel that some Niobium precipitation occurred.

This suggests that during rolling and cooling of the Niobium rebar on both the

Rod and Bar mill, the Niobium remains largely in solution and therefore it was

not utilised effectively as a precipitation strengthener in the steel. This result

was in contrast to the Vanadium rebar where copious precipitation of TiV(C,

N) was evident and hence the Vanadium was used effectively as a

precipitation strengthener. In the literature studied, contrasting views with

regards to the presence of Nitrogen were found. Therefore in this trial, it was

decided not to make an intentional Nitrogen addition to the steel. It should be
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noted that Nitrogen is added to the Vanadium steel grade but not on the

Niobium Rod mill grade. This lack of Nitrogen could contribute to the low

density of carbonitride precipitation observed in the Niobium grades. (12, 15, 32)

Niobium is said to be an effective strengthener when the carbon content of the

steel is low, since it allows for increased solid solubility in the austenite phase.

Billet soaking time and temperature also affects the solubility of the niobium

and hence its grain refining effectiveness. However, in the trial cast, the

carbon content of the steel was increased, which initially indicate a possibility

that not all the added niobium was taken into solution. In addition to that it was

also initially thought that the reheat temperature was too low. Currently the

reheat temperature is between 80-100 °C lower than the actual furnace

temperature, therefore for the Bar mill, the actual reheating temperature is

approximately 1180 °C. By reading off from Figure 37 below, which was

plotted by IMMRI for the trial rebar, it is evident that all the Niobium was in

solution prior to rolling. (32)   The grain sizes for the 12 mm trial rebar was

found to have the finest grain size of 7.5. The grain size found on the other

samples evaluated was of similar magnitude and ranged from 6.5 – 7.5.
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Figure 37: Solubility of Niobium (Graph supplied by IMMRI) (32)

5.9 Hardness Tests

The hardness tests performed on the material were done for comparison

purposes, especially in the event where the actual tensile tests were not

performed on the material. Hardness does not form part of the rebar

specifications. The 10 mm Niobium grade rolled on the Rod mill exhibited the

highest average hardness value, while the 10 mm Vanadium grade rolled on

the Bar mill showed the lowest values. This can be related to their respective

microstructures. The hardness of the Gleeble simulated Niobium-Chromium

trial rebar correlated well with the as-rolled hardness, i.e. 237 HV vs 230 HV.

Furthermore, the hardness values correlate well with the ultimate tensile test

results.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

• The primary objective to use both the Bar and Rod mill at ArcelorMittal

South Africa Newcastle Works to produce rebar complying with

specifications thereby introducing the advantage of interchangeability

was not met.

• The hypothesis that it would be possible to produce reinforcing bar with

a minimum yield strength requirement of 460 MPa successfully at the

Bar mill using suitable micro- and macro-alloying element additions

was proved untrue. The trial cast with the adjusted Rod mill Niobium

micro-alloyed chemistry rolled at the Bar mill to 10 mm attained a yield

strength of 429 MPa and 12 mm attained a yield strength of 436 MPa.

• After technical and economic investigations of the current process

routes available for the production of the trial rebar on the Bar mill, it

was decided that the optimum route was that of micro-alloying.

• The effect of different microstructures on mechanical properties was

investigated to design an optimum microstructure needed to achieve

the required minimum strength specification. The desired

microstructure was acicular ferrite and bainite. Different micro- and

macro-alloying elements were investigated in order to design a suitable

steel grade for the production of the rebar. Niobium was added as the

primary strengthener. To compensate for the slow cooling rate

experienced on the Bar mill, the hardenability of the trial steelgrade

was increased by the additions of Carbon, Silicon and Chromium.

However, this desired microstructure was not attained during the trials.

Instead a mixed microstructure consisting of polygonal ferrite, pearlite

and bainite was obtained on both the 10 and 12 mm rebar. This

microstructure was not optimum in terms of promoting higher yield

strength. The yield strength was found to have decreased while the

ultimate tensile strength increased.

• The effect of finishing temperatures, via Gleeble simulated rolling, to

obtain the optimum microstructure and hence the required yield

strength, was investigated. The desired microstructure of acicular
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ferrite and bainite on the trial rebar could be obtained by rolling about

50 – 60 °C higher in order to finish closer to 1080- 1120 °C on the Bar

mill.

• From the Transmission Electron Microscopy it was evident that the

Niobium was not effectively utilised as a precipitation strengthener in

the trial rebar rolled on the Bar mill and the Niobium only rebar rolled

on the Rod mill, even though it was in solution prior to rolling. The

Vanadium was however found to be an effective precipitation

strengthener in the Vanadium micro-alloyed rebar.

• Niobium does contribute to the formation of the microstructures during

rolling which improves the yield strength.

6.2 Recommendations

• Since the desired microstructure of acicular ferrite and bainite could

successfully be attained during the Gleeble simulations it is suggested

that an industrial trial be conducted on the Bar mill using higher reheat

and rolling temperatures for the 10 –12 mm Niobium-Chromium rebar

in an attempt to reproduce the simulation results.

• From the trials performed, it became evident that the Niobium

contributed minimally to precipitation strengthening on not only the

Niobium-Chromium rebar but also the Niobium-only rebar. It is

therefore recommended that a Niobium trial cast with a Nitrogen

addition be produced and the effect on the density of Niobium carbo-

nitride precipitation be investigated.

• Since the effect of using a combination of Vanadium and Niobium as

micro-alloy additions to steel for the production of rebar at the Bar mill

was not done in these trials, it is recommended that this claimed

synergistic effect be further investigated.
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APPENDIX A: DEVELOPMENT TRIAL SCHEDULE

DEVELOPMENT TRIAL
No. 06-001
AIM: To successfully increase the yield strength of 10 and 12 mm
Niobium micro-alloyed reinforcing bar (NH33201) to be rolled at the Bar
mill.

COMPILED BY: Kim Rajkumar (x8483, x6715)

1.     Background

Niobium is used instead of Vanadium in reinforcing as a cost saving
initiative. Customers prefer 10 and 12 mm Rebar lengths rolled at the
Bar mill as opposed to straightened Rod mill lengths, due to its surface
quality. However, because of the vast differences in cooling between the
Rod and Bar mills, the chemistry needs to be adjusted in order to
achieve a minimum yield strength of 460MPa.

2.  Production Planning             J. De Witt

2.1    Schedule the production of one trial cast, steel grade NH33201

STEEL PLANT

3.  Scheduling                     Scheduler

3.1   The DT is to be executed on the last cast in sequence.
3.2   Notify the standby metallurgist and K. Rajkumar (Tel: x 8483/ sc: 6715)

an hour before the start of the blowing process of the sequence.

4.   Hot Metal Pre-treatment               Hot Metal Operator

4.1    Follow standard practice instructions for production of this steel grade.

5.   BOF Production      BOF Operator/Standby Metallurgist
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5.1 Follow standard practice instructions for production of this steel grade,
with the following aim changes/additions on the last cast of sequence:

• Carbon to 0.21 – 0.25 %, aiming for 41= 0.20% C;
      44 = 0.21% C

• Silicon to 0.45 – 0.55 %, aiming for 41= 0.50% Si;
      44 = 0.50% Si

• Chromium to 0.15 – 0.20 %, aiming for 0.18%

6.   Ladle Furnace Production      LF Operator/Standby Metallurgist

6.1 Follow standard practice instructions for production of this steelgrade,
with the following necessary trimmings on the last cast of sequence:

• Carbon to 0.21 – 0.25 %, aiming for 0.23%

• Silicon to 0.45 – 0.55 %, aiming for 0.53%

• Chromium to 0.15 – 0.20 %, aiming for 0.18%

7.   Concast Production        CC Operator/Standby Metallurgist

7.1 Follow the standard practice instructions for production of this steel
grade.

7.2     The last six blooms of the trial cast will be put with AH33203 as per
          schedule.

BILLET MILL

8.   Billet Mill Production Scheduler           J. De Witt

8.1 Schedule 20 tons from the trial cast for rolling into 101mm billets for the
Bar Mill

8.2 Once the cast is produced, the cast number will be communicated
8.3 The remainder of the trial cast blooms will remain on hold until the

results of the DT is known.  If successful the material will be
released for the production of rebar, it not, the material will be
regraded to a suitable structural steel quality.

BAR MILL
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9.   Bar Mill Production Scheduler           Sailesh Murilal

9.1 Couple the trial cast to order numbers to be scheduled and rolled at the
Bar Mill as follows:

NLP6030841 10 mm  10 tons
NLP6030842 12 mm  10 tons

9.2 Please note that no other material except the trial cast material should
be coupled to the above order numbers.

9.3 Clearly note on the schedule that the material will be rolled according to
DT 06-001 and that Kim Rajkumar (Tel: x 8483/ sc: 6715) must be
contacted at least 1 hour prior to the rolling of the material.

10.   Bar Mill Production              Bar Mill SQC’S

10.1  Inform Kim Rajkumar (Tel: x 8483/ sc: 6715) one hour before both
         rollings of the trial material.
10.2 Roll the trial material into 10mm and 12 mm nostra standard lengths,
         according to normal nostra rolling practice.

11.   Bar Mill Inspection             Bar Mill SQC’S

11.1 Cut samples from the DT material and label it clearly with cast number
            and bundle number.
11.2  The DT material must be put on hold.
11.3  Send the samples to the Test House for attention of Kim Rajkumar.

QUALITY MANAGEMENT

12.   Test House / Kim Rajkumar

12.1  Mechanical testing must be done on the DT samples.
12.2  Report the results to Kim Rajkumar
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APPENDIX B: ZENER-HOLLOMAN PARAMETER

On the Gleeble Machine at IMMRI, the highest achievable strains are about 1-

10 s-1. However, during rolling on a Bar Mill, the strain rates are in the order of

50-100 s-1 and for rolling on the Rod Mill these rates increase to about 100 -

1000 s-1. Therefore in order for the simulation to correlate with the actual

strain rates, the Zener - Holloman parameter, Z, is used. This parameter

combines the relationships between temperature, applied strain rate and

resulting grain size for a hot rolling process. The calculation of this parameter

is given as:

       .
Z = ε  exp (Qdef / RT)    ……………………………………………………..(1)

and

d = AZ-p ………………………………………………………………………(2)

where        d       =  grain size,
       A and p  =  material constants
                 .

ε =  strain rate
Qdef   =   activation energy of deformation
R       =  gas constant
T       =   absolute temperature

Qdef = 400 kJ/mol was selected after consulting some texts (38, 39) in order

obtain the value for Niobium steels. Figure B1 below shows the equivalent

deformation temperatures of the Gleeble machine for 1 s-1 and Bar Mill strain

rate of 100 s-1 for similar austenite grain sizes to be obtained. Currently, the

finishing temperatures for the10-12 mm immediately after the last rolling stand

on the Bar Mill varies between 1020 - 1060 ° C on average. This implies that

for a strain rate of 100 s-1, the equivalent deformation temperature on the

Gleeble machine operating at 1 s-1, would range 875 – 915 ° C. (32)
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Figure B1: Equivalent deformation temperatures for Qdef = 400 kJ/mol (32)
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APPENDIX C: ADDITIONAL MICROSTRUCTURES

Figure C1: Photomicrograph showing a microstructure containing acicular
ferrite and bainite on 12 mm niobium micro-alloyed rebar rolled at the
Rod mill

Magnification: x 500      Etchant: 2% Nital

Figure C2: Photomicrograph showing a microstructure containing polygonal
ferrite and pearlite on 12 mm vanadium micro-alloyed rebar rolled at the
Bar mill

Magnification: x 500      Etchant: 2% Nital


