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Abstract

In this thesis we have presented a mathematical model of a scheduling problem which arises
in the Brewing Industry. We have implemented two different types of global optimization
algorithms to find the global minimum of the problem. Several instances of the scheduling
problem are considered and the results thereof are presented. The results show that significant
savings can be made if the global optimization techniques are used in brewery Industry.
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Chapter 1

Introduction

There are several scheduling problems that arise in the Brewing industry. In this thesis we will
focus on the scheduling of the filtration and packaging regimes of a brewery. Optimized fil-
tration and packaging schedules allow for better utilization of resources, thus enabling greater
volumes of beer to be packaged.

The problem arises in that at any brewery there is a number of different packaging job’s
that need to be completed each week. These jobs are required to be filtered and then pack-
aged, and have sequence dependent setup times. Due to a limited number of filtration and
packaging equipment within any brewery there is a requirement for the optimized scheduling
of jobs. This requirement becomes increasingly evident as the number of stock keeping units
(SKUs) a brewery must produce increases.

From the results of the thesis we clearly demonstrate the need for such optimization in the
brewing process. Although the problem presented is a true optimization problem, to the best
of our knowledge, there are no research papers on the subject in current literature. Hence we
intended to study the problem.

We have first described the problem and then presented a mathematical representation of
it. We have used two different algorithms to optimize the problem. Several instances of the
problem were considered and extensive numerical testing was done. Results are presented
which clearly show that a brewery can make significant gains if scheduling is improved.

In Chapter 2 we present the background to the problem, giving a high level description of each
component within the brewing process. We conclude the chapter by introducing the Flexible
Flow Shop Problem and present the mathematical model thereof, as it is used to describe the
filtration and packaging problem,

Chapter 3 introduces two combinatorial optimization techniques, namely, Simulated Anneal-
ing (SA) and Tabu Search (TS). We describe both algorithms in detail and use an example
scheduling problem on which to perform tests in order to show the significance of various
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parameter settings.

In Chapter 4 we implement SA and TS on a formulated brewery scheduling problem. A
phased approach is adopted, as we apply the algorithms on a base problem and gradually
increase the complexity of the problem.

Concluding remarks are made in Chapter 5.
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Chapter 2

Problem Definition

We begin with a brief description of the brewing process in order to provide the reader with
some insights into the background of the problem at hand. We then introduce the flexible
flow shop problem and a mathematical model thereof, from which we are able to optimize
components of the brewing problem.

2.1 Optimization within the Brewing Industry

There is a real need for optimization within the brewing industry. The optimized scheduling
of operations within any process industry can allow one to maximize profits by minimizing
the utilization of resources [1]. Within the brewing industry in particular, precise scheduling
is required in order to ensure that demand is met; this is due to the high level of limited
resources that must be shared whilst producing beer of different brands with different process
times. The main resources within the brewery are represented in Figure 2.1.

2.1.1 Process Description

The Brewhouse

The brew house marks the beginning of the brewing process. It is here where the malt, hops,
yeast and water, (the main ingredients required to brew beer), are combined together. The
malt is ground with other adjuncts and added to water. During this process starch is con-
verted into fermentable sugars and natural enzymes that convert proteins into the nutrients
needed to assist the growth of yeast during fermentation. Hops is also added and during the
transfer of brews from the brew house to the fermentation area, the yeast is added [2]. The
brewlength of a brewhouse refers to the volume of a single brew, and is dependent on the
capacity of the brewhouse.

The scheduling of the sequence and batch size of brews is a complex task, and efficient schedul-
ing ensures the availability of beer for packaging. Inefficient scheduling at this stage of the
process can affect the overall capacity of the brewery. For example, if one brews too large
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Figure 2.1: Macro view of Brewing Resources

a batch of a brand that requires long process times within the latter stages of the brewing
process, a bottleneck will be created. Elements which need to be considered in this phase of
the process are:

• Brew length,

• Brand specific process times,

• Cycle time of brands1,

• Number of tanks available in fermentation/unitank cellars,2

• Brand restrictions for each stream of brew house,

• Connectivity,

• Equipment CIP (cleaning in progress) as well as different cleaning regimes for different
brands, and

• Yeast availability and propagation3.

1The cycle time is the longest time a brand is in a particular piece of brew house equipment.
2Fermentation and unitank cellars occur in the next step of the brewing process after brewing.
3Each brand requires a certain amount of yeast as part of its recipe, the efficient propagation thereof means

that one must brew enough in order to produce yeast for further brews.
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Fermentation and ‘Storage and Maturation’ Vessels

Beer produced in the brew house is first transferred to the fermentation vessels (FV) wherein
the yeast begins the natural process of fermenting the sugars into alcohol and carbon dioxide.
Yeast is drawn off the bottom of the tank once the fermentation process is complete. Beer is
transferred from the FVs, via racking stations, to the ‘storage and maturation’ vessels (SVs)4.
A racking station contains a centrifuge through which beer is moved in order to remove impu-
rities. Within the SVs the fermentation process continues at a slower rate as the beer is stored
at sub zero temperatures. Where unitanks (UNIs) are used, the whole process of fermentation
and maturation occurs within a single tank [2]. Orders of magnitude of the Fermentation and
‘Storage and Maturation’ processes are presented in a later section.

The role of optimization in this phase of the brewing process is to minimize the amount
of time that beer remains in the FV’s after the fermentation process is complete, this amount
of time is known as aging. Elements which need to be considered in this phase of the process
are:

• Number of SVs and ready FVs,

• Tank capacities,5

• Connectivity,

• Equipment CIP.

Filtration, Bright Beer Cellars and Packaging Lines

In this part of the process beer is transferred from the SVs and UNIs to the ‘bright beer’
vessels (BBTs), via the filtration plants. The BBTs serve as buffer tanks for the packaging
lines, and beer must remain there for a minimum number of hours, ie. 4 hours. The capacity
of the filters are rated in hecto liters (Hl) per hour, and as with the SVs, UNIs and BBTs
may be subject to connectivity constraints [2].

During packaging it is essential to maximize the utilization of the line, i.e to make sure
one meets the demands in the demand week. Hence one needs to optimize the decision of how
much of which brand to filter. These decisions should also minimize the number of brand and
pack changes on the lines. Effective decisions should not only result in the volumes of the
demand week being met, but also in freeing up tanks in the SVs so as to allow for beer to be
transferred from the FVs. The constraints involved in this process are:

• Connectivity of BBTs, filters and packaging lines,

4This transfer does not necessarily need to be facilitated via racking stations, depending on the requirements

of the brand.
5The capacity of a tank is typically described as the number of brews one can hold in that tank, the volume

of the brew is determined by the brewlength.
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• Brand restrictions for filters, BBTs and packaging lines,

• Maintenance period for packaging lines,6

• Washout for filters (i.e After every z Hl the filter needs to be washed out),

• Rate of filters (HL/hr),

• Capacity of BBTs and SVs,

• Minimum run lengths for filters and packaging lines (Typically an hour of production is

the minimum),

• Equipment CIP.

2.1.2 Scheduling

It is common for the scheduling of a brewery to originate from a six-month forecast produced
by the management of a brewery. The forecast is continuously revised, and a rolling six week
forecast is used, from which the weekly plan to be implemented is based. Hence the brewery
receives a volume demand by stock keeping unit (SKU), for example 3500Hl brand A to be
packaged in 500ml bottles. The following schedules need to be created based on the demand:

• Brewing (Brew House to FV),

• Racking (FV to SV),

• Filtration (SV to BBT),

• Packaging (BBT to Packaging Line).

Before the brewing schedule can be created, the number of brews need to be calculated based
on the forecasted demands. Each brand has a particular recipe with regard to a dilution factor
and process times. The process times indicate the length of time that the beer is required
to remain in any particular stage of the process, ie. fermentation, storage and maturation.
Packaging volumes are quoted at standard (diluted) gravity and need to be converted to vol-
umes in high gravity (concentrated) form when establishing the number of brews required.
A brand specific dilution factor is used to obtain the high gravity requirements from the
demands quoted at standard gravity. To demonstrate the process, let us consider two hypo-
thetical brands: brand A and brand B. The recipes for brands A and B are described in Table
2.1. The second column of Table 2.1 presents the dilution factor, whilst columns three to six
present the individual and total process times.

6Scheduled maintenance periods are allocated to the packaging lines

7



Brand Dilution Factor (1Hl:1Hl) Process Time (Days)
FV SV UNI Total (incl. Brewing)

A 1.231 9 7 16 17
B 1.625 10 20 30 31

Table 2.1: Examples of brand recipes

Thus, if the packaging demand for brands A and B in Table 2.1 are required for the week
starting at t0, (i.e. day zero), then they must be brewed at t−17 and t−31 respectively. If the
packaging demand for brand A was 1231Hl then the volume to be brewed, without taking
losses into consideration would be 1000Hl, due to the dilution factor of 1.231. Hence to
calculate the number of brews required, the following equation may be used [2]:

NB =
D

1 − L
100

×
1

(DF × R)
(2.1)

where,

• NB: Number of brews required,

• D: Demand Volume,

• DF: Dilution Factor

• L: Losses 7 and

• R: Brew Length.

The number of brew is therefore given by NB = 11.1 ∼= 11, for the following parameter values:
D = 1231Hl, DF = 1.231, L = 10 and R = 100Hl.

7This is the percentage of beer lost through the process from the brew house to packaging.
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2.2 Scheduling Problems

The application of scheduling ranges from manufacturing to the services industry. Despite
there are numerous types of scheduling problems, they are often grouped into the following
five main classes as described by Jungwattanakit et al [3].

Workshops with only one machine: there is only one machine which is to be used when
scheduling a given number of jobs, subject to specified constraints.

Flowshop: there is more than one machine and each job must be processed on each of the
machines. The number of operations, j = 1, ..., k, for each job must be equal to the
number of machines, the jth operation of each job being processed on machine j, (hence
there are k stages).

Jobshop: this problem is the same as that of the flowshop problem, but in this instance,
each job has an individual processing order assigned for its operations.

Openshop: this problem is the same as that of the flowshop problem, however the processing
order of the jobs is arbitrary and any ordering will do.

Mixed workshop: there is a subset of jobs to be completed that must follow a pre-determined
path as well as other jobs which must be scheduled in order to minimize the objective
function.

The scheduling problem of the brewery introduced in section 2.1.1 falls into the flexi-
ble flowshop (FFS) environment, which is a generalization of the classical flowshop problem.
Within this environment, there are k stages, where any given stage may only consist of one
machine, but in at least one stage there will exist more than one machine. The jobs to be
scheduled are required to visit each of the stages from 1 to k. A machine can only process at
most one operation of a particular job at a time. Thus the problem involves the assignment
of the jobs to a machine at each stage and sequencing the jobs assigned to the machine so
that some optimality criteria are minimized [4].

2.2.1 The Mathematical Model of the Flexible Flow Shop Problem
(FFS)

In this section we present a number of features of FFS, after which we present the mathematical
model of FFS.
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FFS with Parallel Non-identical Machines

The flexible flow shop problem, as described in [4], has received much attention throughout the
literature, but the focus of these studies are mainly concentrated on problems with identical
machines. In many applications it is rare that identical machines will exist. In the case of a
real world problem, such as a brewery, it is common that new machines will run side by side
older less efficient machines. For example, within many brewery’s filtration plants, there may
be both new ‘candle’ filters as well as the older ’plate and frame’ filters in operation. This is
also true with regard to packaging lines, where the cost of replacing a line is high. The older
machines will perform the same operations as the newer machines, but will in general have
longer processing times.

Jobs and Their Operations

In the typical flexible flow shop problem there exists a set of n independent jobs, j ∈
{1, 2, . . . , n}, with due dates, d1, . . . , dn and we assume that the release dates, r1, . . . , rn,
of the jobs are non-negative. Each job j consists of k(k ≥ 2) different operations which have
to be processed.

Machine Dependent Processing Times

Each job j has a processing size pst
j, (with units in Hl), for each stage t, t ∈ {1, . . . , k} and at

each stage t, there is a set of mt unrelated parallel machines, i ∈ {1, 2, . . . ,mt}. Thus machine
i at stage t can process job j at the relative speed of vt

ij, (with units in Hl/hr). Hence, the
processing time pt

ij of job j on machine i at stage t is equal to pst
j/v

t
ij,(with units in hrs).

Setup Times

Setup time refers to the amount of time required to prepare machinery before a given job is
to be processed. Two types of setup times are considered in the problem, machine-dependent
(changeover) setup times and sequence-dependent setup times. Machine-dependent setup
times depend on the machine to which the job is assigned, and is assumed only to occur when
a job is assigned to be the first job processed on a particular machine at some stage. This
means that the changeover time cht

ij of job j depends on machine i performing it if job j is
assigned to the first position of the machine at stage t.

Sequence-dependent setup times can be described as the time considered between jobs, hence
the setup time st

lj between job l and job j at stage t, where job l is processed directly before
job j on the same machine, may have different values depending on both the job completed
and the job to be processed [4]. In some instances sequence dependent setup times could
depend on machine i, however we assume that it does not.
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Problem Assumptions

The problem assumes the following:

• Processing of jobs cannot be interrupted.

• The operations of a job have to take place sequentially.

• No machine can process more than one job at a time.

• No job can be processed by more than one machine at a time.

• In some of the stages there may be only one machine, but there must exist at least one
stage with multiple machines.

• All setup times are known constants.

The Objective Function

The makespan of the problem refers to the time it takes to complete all n jobs [5], and will
be equal to the completion time of the last job to leave the system. Thus if the completion
time of job j is defined to be Cj, the makespan may be defined as,

CMAX = maxj∈{1,....n}{Cj}. (2.2)

Let us define Uj = 1 if the due date for job j is smaller than the completion time Cj of job j,
otherwise Uj = 0. Thus the total number of tardy jobs can be defined as,

ηTa =
n

∑

j=1

Uj. (2.3)

The objective of the problem is to minimize a weighted average of the makespan and number
of tardy jobs. Thus, the objective value is defined by

λCMAX + (1 − λ)ηTa. (2.4)
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Notation and Formulation of a Mathematical Model

Jungwattanakit et al [4] describe the problem with a 0-1 mixed integer linear programming
formulation for FFS. The model is claimed to solve problems with up to six jobs and four
stages in acceptable time using an entry level Intel Pentium 4 2GHz PC.

The following notation is used,

Indices:

j, l: job index, j, l = 1, 2, 3, . . . , n.

t: stage index, t = 1, 2, 3, . . . , k.

i: machine index, i = 1, 2, 3, . . . ,mt at stage t.

Data:

rj: release date of job j.

dj: due date of job j.

Lj : the amount of time that passes between a job j’s due date and its completion, Lj > 0.

B: a constant greater than the sum of all completion and setup times.

st
jl: setup time between job j and job l at stage t where j 6= l.

cht
ij: setup time of job j if job j is assigned to machine i at the first position at stage t.

pst
j: processing size of job j at stage t.

vt
ij: relative speed of machine i at stage t for job j.

at
i: time when machine i at stage t becomes available.

Variables:

X t
ijl: a Boolean variable; X t

ijl = 1 if job j is scheduled immediately before job l on machine i
at stage t, and X t

ijl = 0 otherwise.

Ot
j: operating time of job j at stage t.

Ct
j: completion time of job j at stage t.

CMAX: the makespan.

Uj: a Boolean variable; Uj = 1 if the job is tardy, and Uj = 0 otherwise

Taj: tardiness of job j.

ηTa: the total number of tardy jobs in the schedule.
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The Optimization Problem

The problem can be formulated mathematically as follows:

minimize λCMAX + (1 − λ)ηTa (2.5)

subject to:

mt
∑

i=1

n
∑

j=0

X t
ijl = 1, ∀t, l (2.6)

mt
∑

i=1

n+1
∑

l=1

X t
ijl = 1, ∀t, j (2.7)

n+1
∑

l=1

X t
i0l = 1, ∀t, i (2.8)

n
∑

j=0

X t
ij(n+1) = 1, ∀t, i (2.9)

X t
ijj = 0, ∀t, i, j (2.10)

n
∑

j=0

X t
ijl =

n+1
∑

j=1

X t
ilj, ∀t, i, j (2.11)

X t
ijl ∈ {0, 1}, ∀t, i, j, l; j = 0; l = n + 1 (2.12)

Ot
j =

mt
∑

i=1

n+1
∑

l=1

pst
j

vt
ij

X t
ijl, ∀t, j (2.13)

Ct
l − Ct

j ≥ st
jl + Ot

j + ((
mt
∑

l=1

X t
ijl) − 1)B, ∀t, j, l; j 6= l (2.14)

Ct
j ≥ 0, ∀t, j (2.15)

Ct
l − Ct−1

j ≥
mt
∑

i=1

n
∑

j=1

X t
ijls

t
jl +

mt
∑

i=1

cht
ilX

t
i0l + Ot

j, ∀t, l (2.16)

C0
j = rj, ∀j (2.17)

Ct
j ≥

mt
∑

i=1

at
iX

t
i0j +

mt
∑

i=1

cht
ilX

t
i0l + Ot

j, ∀t, l (2.18)

CMAX ≥ Ct
j , ∀t, l (2.19)

Taj ≥ Ct
j , ∀t, l (2.20)

Taj ≥ 0, ∀t, l (2.21)

Uj ≤ BTaj, ∀t, l (2.22)

BUj ≥ Taj, ∀t, l (2.23)
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ηTa =
n

∑

j=1

Uj, ∀t, l (2.24)

Uj ∈ {0, 1}, ∀t, l (2.25)

Constraints (2.6) to (2.12) are responsible for ensuring the feasibility of the partial sched-
ule on each machine at each stage:

• Constraints (2.6) and (2.7) ensure that only one job is assigned to any particular position
at each stage by having only one discrete proceeding and following job.

• Constraints (2.8) and (2.9) ensure that only one job is assigned to the first and last
positions, respectively, on each machine at each stage.

• Constraint (2.10) ensures that after the job has finished a stage, it cannot be reprocessed
at the same stage.

• Constraint (2.11) forces that a consistent sequence is built at each stage.

• Constraint (2.12) sets X t
ijl to a binary variable.

Constraint (2.13) determines the machine dependent operating time of every job and con-
straints (2.14) to (2.18) determine the completion time of every job at stage t:

• Constraint (2.14) ensures that when job j follows job l on the same machine, it may only
begin once job j is processed and the required setup time of the machine is completed.
B represents a constant greater than the sum of all completion and setup times.

• Constraint (2.15) ensures that the completion time for each job is a positive value.

• Constraint (2.16) ensures that a job cannot be processed on stage t + 1 before it has
completed stage t.

• Constraint (2.17) ensures that a job cannot begin to be processed at stage 1 before its
release date.

• Constraint (2.18) ensures that the first job to be processed on a machine cannot begin
to be processed before the machine is available.

Constraints (2.19) links the makespan decision variable, whist constraints (2.20) and (2.21)
determine the value of the tardiness:

• Constraint (2.20) determines the correct value of lateness (Lj)

• Constraint (2.21) specifies only the positive lateness as the tardiness (Taj = max{0, Ck
j −

dj})

Constraints (2.22) to (2.25) link the decision variable to the number of tardy jobs, that is, if
tardiness is larger than zero, the job is tardy; otherwise the job is not tardy.
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Approaches to FFS

The flexible flow shop problem is a NP-hard problem, so algorithms that will find an optimal
solution in polynomial time are unlikely to exist, on the other hand for smaller problems, one
might be able to solve the problem exactly in reasonable time. Thus heuristic methods such as
those based on the local neighborhood search are used to find approximate solutions e.g. TS
and SA. Unlike procedures that rely on iterative improvements, procedures employing local
neighborhood search will accept inferior solutions for further neighborhood searches, in order
to escape local optima and to increase the chance of finding the global optimum [6]. Jones et
al [7] state that seventy percent of articles utilize genetic algorithms to solve the flexible flow
shop problem, twenty-four percent simulated annealing and only six percent make use of the
tabu search.

2.3 Scheduling Problems within the Brewing Industry

The scheduling problems within the brewing industry that arise as a result of planning a
filtration and packaging regime may be classified as a FFS problems as the constraints involved
are very similar to FFS. However, instead of using makespan as part of our objective function
we consider the total operating time incurred by the packaging lines. Hence our objective
function is given by:

λCTOTAL + (1 − λ)ηTa, (2.26)

where,

CTOTAL =
mt
∑

i=1

CMAXi. (2.27)

The sum in (2.27) is over all packaging lines and t is the final stage of the problem, i.e. t
represents the packaging phase. Thus CTOTAL is the sum of the completion times of the last
job on each packaging line.

We also redefine pst
j to be the volume of job j processed at stage t and make the assumption

that the processing of jobs can be interrupted. This is due to the fact that a job may be
interrupted when processed on a filter or packaging line due to cleaning requirements. Inter-
ruptions may occur for the following reasons:

1. If a piece of machinery does not process a job for a specified period of time, a number
of hours are needed for cleaning before processing any given job.
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2. If a piece of machinery runs for a specified amount of time, the machine will require to
be stopped and a number of hours may be needed for cleaning. The current job on the
machine needs to be stopped, and the remainder of the job may only commence after
the cleaning process has been completed.

Since the integrity of the packaging and filtration schedule must be maintained, constraints
(2.6) to (2.12) are necessary. The completion time of every job needs to be determined at
each stage of the problem, hence constraints (2.13) to (2.18) are vital. In order to ensure that
the schedule is feasible constraints (2.19) to (2.25) are required to determine whether a job is
tardy and the value of the tardiness.
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Chapter 3

Combinatorial Optimization
Techniques

In this chapter we introduce two different algorithms; they are Tabu Search (TS) and Sim-
ulated Annealing (SA). The algorithms are described in detail and in addition a simple se-
quencing problem is formulated to illustrate the various attributes and characteristics of each
of the algorithms.

3.1 Tabu Search

Tabu search [8] is a meta-heuristic optimization algorithm that has been widely used in both
academia and industry. To our knowledge it has not been implemented at a brewery but has
been developed to solve similar type flow shop problems [9]. In the past, it has been primarily
used to solve discrete optimization problems, although recently there have been versions de-
signed for continuous optimization problems [10]. However, in this thesis we will implement
it on a discrete scheduling problem.

TS is able to guide and modify the search process in such a way that solutions are gener-
ated surpassing the confines of local optimality. Hence TS is described as a ‘meta-heuristic’
approach [8].

3.1.1 TS Methodology

TS is an iterative algorithm which searches neighborhoods of the current solution in a restric-
tive manner for the global optimum. In order to understand the difference between a simple
descent method and TS we first present the simple decent method, followed by TS. The goal
of the simple descent method is to minimize an objective function F (x), x ∈ X. Each x ∈ X
has an associated neighborhood N(x) ⊂ X, and each solution x′ ∈ N(x) can be reached from
x by an operation called a move. Hence the simple descent method iteratively considers moves
to neighbor solutions that improve the current objective function value ending when no more
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improving solutions can be found. The final solution found by the simple descent method is
called the local optimum [8]. Figure 3.1 illustrates the flow chart of the simple descent method.

Figure 3.1: The Simple Descent Method

The simple descent method is an iterative method which attempts to improve the current
solution by searching the neighborhood of the current solution. The simple descent method
never accepts a solution which is ‘worse’ than the current solution.

In contrast to the simple descent method which is in most instances confined to only find
local optima, TS finds near global or global optima. The solution space through which it
searches is reduced through the use of tabu lists that record moves leading to ‘less desirable’
solutions. The so called tabu tenure is used to define the period of time for which an element
of the tabu list is recorded, (the concept of tabu tenure is expanded on in Section 3.1.2).
A ‘less desirable’ solution may however be accepted if it meets certain so called aspiration
criteria, thus avoiding a local optimum.
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Example 1

Let us consider a simple travelling salesman problem consisting of destinations j = 1, . . . , 10.
The objective of the problem is to minimize,

F (x) = Σ9
j=1sxjxj+1

, (3.1)

where each term in (3.1) depends on x, and xj represents the job directly before xj+1. Since
the example only consists of one stage, it is not necessary to denote t. We use a simple descent
algorithm with a random initial starting solution

x0 = (10, 1, 9, 2, 8, 3, 7, 4, 6, 5),

with F (x0) = 44. The sequence dependent setup times or distance, sxjxj+1
are defined as:

sxjxj+1
=
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The global minimum value of the problem at x∗ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) is 0. After the
simple descent method was applied for 1000 iterations or function calls, only 5 successful
moves were obtained with the best value being a local minimum of 19. Figure 3.2 repre-
sents the solution path, where the x-axis representing the number of iterations or function
calls performed, whist the y-axis represents the value of the objective function. TS was also
implemented on the problem using a tenure of 3, the global optimum was found at iteration 91.

Formal explanation of TS

Let us first consider the problem of minimizing/maximizing F (x) subject to x ∈ X, where X
denotes the solution space. As in an ordinary local search; TS begins to iteratively move from
one solution to the next until a chosen termination criterion is satisfied. A neighborhood,
N(x) ⊆ X, exists for each x ∈ X, with each solution x′ ∈ N(x)1. Unlike some conceptually

1The term ‘move’ describes the operation made to reach a solution
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Figure 3.2: Optimal Solution Path obtained by the Simple Descent Method for Example 1

expensive algorithms where the neighborhood is searched completely for an optimum, or al-
gorithms resulting in local optimality as they only allow moves to be made to neighborhood
solutions which improve on F (x); TS uses flexible memory structures that narrow down the
examination of the neighborhood N(x).

Memory structures result in the neighborhood N(x) being modified to N∗(x) where N∗(x) ⊆
N(x). Elements of N(x) that are excluded from N∗(x) are classified as tabu, whilst those
within N∗(x) make up candidate solutions [8, 11].

At times, due to defined ‘aspiration criteria’, a solution within the Tabu list may be cho-
sen allowing the TS to achieve better results, relying on the supposition that a bad strategic
choice can yield more information than a good random choice.

3.1.2 Memory Structures

Memory structures used in TS may be classified as either short or long term memory. In TS
strategies based on short term memory considerations, N∗(x) typically is a subset of N(x),
and the tabu classification serves to identify elements of N(x) excluded from N∗(x). In TS
strategies that include longer term memory considerations, N∗(x) may also be expanded to
include solutions not normally found in N(x). Characterized in this way, TS may be viewed
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as a dynamic neighborhood method. This means that the neighborhood of x is not a static
set, but rather a set that can change according to the history of the search [8].

Short Term Memory

A TS strategy involving only short term memory may result in a solution x being visited more
than once, but it is likely that the corresponding neighborhood N∗(x) will be different each
time.

Recency-based memory, is the most commonly used short term memory structure used in
the tabu search algorithm. When using recency based memory, selected attributes that occur
in solutions recently visited are labelled ‘tabu-active’. Thus these solutions within N∗ are
prevented from being visited again for a specified number of iterations. Tabu tenure is used
to define the period of recency based memory. Generally the iteration q at which a solution
becomes tabu is recorded and then released at iteration q + A, where A is the equal to the
tenure. There is no rule designed that provides the optimal tenure for particular classes of
problems, and an effective tenure usually depends on the size of the neighborhood and struc-
ture of the problem at hand. If the tabu tenure is too small it may result in repeated objective
function values; those that are too large can be recognized by a resulting deterioration in the
quality of the solutions found [12].

Figure 3.3 represents the solution paths created by implementing TS on Example 1 with
a tenure of 2 and 20 respectively. The x-axis of Figure 3.3 represents the number of iterations
performed, whist the y-axis represents the value of the objective function. One can clearly
see how with a tenure of 20 the quality of the values deteriorates towards the end, as well as
the repetition of objective function values throughout the solution path that results with a
tenure of 2.

Long Term Memory

When including longer term memories in TS, the likelihood of duplicating a previous neigh-
borhood upon revisiting a solution is reduced. Hence making choices that repeatedly visit
only a limited subset X is all but non-existent. Frequency-based memory is a type of long
term memory, and is conceptually perceived as ratios. In general the numerators of these
ratios could either represent a transition measure or a residence measure. A transition mea-
sure would express the number of iterations that an attribute enters or leaves the solutions
generated; whilst a residence measure would express the number of iterations an attribute
belongs to a solutions generated [8]. The denominators of the ratios may be,

• the total number of iterations,

• the sum or average of the numerators,

• the maximum value of the numerators.
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Figure 3.3: Sensitivity Analysis of Tenure for Example 1

Quality and Influence

The dimension of quality in TS memory refers to the ability to differentiate the merit of solu-
tions visited in the search. For instance, memory can be used to identify elements that occur
often in good solutions.

Explicit memory can be thought of as high quality memory as it records complete solutions,
typically consisting of elite solutions visited during the search.

Influence refers to the impact of the choices made during the search, not only in terms of
quality but also in terms of structure. Recording information about the influence of choices
on a particular solution incorporates an additional level of learning. Influence is an underly-
ing theme in attributive memory, which is used for guiding purposes. This type of memory
records information about solution attributes that change in moving from one solution to the
next. For example in a graph or network setting, attributes can consist of nodes or arcs that
are added, dropped or repositioned by the moving mechanism. In production scheduling, the
index of jobs may be used as attributes to inhibit or encourage the method to follow certain
search directions [5].

22



3.1.3 TS Flowchart

TS begins by establishing a candidate list of moves from an initial solution. If a candidate
solution is better than the current best solution or if it satisfies given criteria known as
‘Aspiration Criteria’, it is accepted as the new best solution. The move performed is recorded
in a tabu list to prevent the algorithm from revisiting past solutions for a specified number
of iterations. The algorithm ends when a given termination criteria is satisfied, for example a
maximum number of iterations performed. The tabu search method is represented as a flow
chart in Figure 3.4.

3.1.4 The TS Algorithm

Here we present a step by step description of the TS algorithm based on the flowchart given
in Figure 3.4. We have used the format of the algorithm as presented in [12], let:

1. H represent a selective history of the solutions encountered during the search.

2. N(H, xnow) represent the modified neighborhood that replaces N(xnow).

3. CandidateN(xnow) refer to the candidate subset.

Step 1 (Initialization)
(A) Select a starting solution xnow ∈ X
(B) Record the best known solution by setting xbest = xnow and define bestcost =
F (xbest).
(C) Set history record H empty.

Step 2 (Choice and Determination)
Determine CandidateN(xnow) as a subset of N(H, xnow). Select xnext from CandidateN(xnow)
to minimize F (x)|H over this set. ( xnext is called a highest evaluation element of
CandidateN(xnow).) Terminate by a chosen cut-off rule.

Step 3 (Update)
Re-set xnow = xnext, and if F (xnow) < bestcost, perform B of Step 1, then return to step
2 and additionally update the history record H.
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Figure 3.4: The Flow Chart of Tabu Search
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3.1.5 Intensification and Diversification

The following section offers some insights into commonly used strategies within the tabu
search.

Intensification Strategies

Intensification strategies are introduced in the search process to perform thorough searches in
attractive regions of the solution space. Hence the use of intensification strategies within the
tabu search algorithm is to alter decision rules in such a way that they promote the desirable
qualities of previous solutions in newly generated solutions. This can be accomplished in both
the long and short term of the solution life cycle.

Intensification strategies can be implemented through a number of methods. A common form
of an intensification strategy is to keep a sequential list, (of a fixed length), which records a
new solution at the end of it, (if it is the best solution found at the time). Then when the
strategy is required to be implemented, the current last member of the list is always chosen,
(and removed), as the starting point from which to resume the search. In addition to the
solution being recorded, associated short term memory of the tabu search at that point is also
required to be recorded. Hence when the search is resumed, the first move previously taken
from the solution is prohibited, thus a new solution path can be followed.

Diversification Strategies

Diversification strategies are often introduced to prevent searching processes from cycling,
hence they drive the search to new regions. This kind of strategy is evident in a number of
different algorithms. Within tabu search, diversification is implicitly created to some extent
by short term memory structures but is reinforced by longer term memory structures.
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Thermodynamic Simulation Combinatorial Optimization

System States Feasible Solutions
Energy Cost

Change of State Neighboring Solutions
Temperature Control Parameter
Frozen State Heuristic Solution

Table 3.1: Thermodynamic Simulation vs. Combinatorial Optimization

3.2 Simulated Annealing

The simulated annealing algorithm has been a widely used method of solving discrete optimiza-
tion problems since the 1980’s. The underlying philosophies governing simulated annealing
stem from the physical annealing process. In the field of condensed matter physics, annealing
is defined to be the thermal process used to obtain low energy states of a solid in a heat bath.
This process consists of two fundamental steps:

1. The temperature of the heat bath is increased to the boiling point of the solid in question.

2. The temperature of the heat bath is carefully decreased, until the particles of the melted
solid arrange themselves in the ground state of the solid.

During the first step, the particles of the melted solid arrange themselves randomly. However
in step two when the ground state of the solid is achieved, it is characterized by the particles
of the sold being arranged in a highly structured lattice, such that the energy of the system
is minimal. The structural properties of the cooled solid depend on the rate at which the
cooling was implemented. For instance it has been found that large crystals can be formed
when a slow cooling phase is implemented, but that imperfections occur when rapid cooling
schedules are implemented.

Back in 1953, Metropolis et al [13] presented an algorithm to simulate the system of par-
ticles in a temperature of the physical annealing process. The algorithm is known as the
Metropolis algorithm. It has been shown by Metropolis et al. that the thermal equilibrium of
the system of particles of a temperature can be achieved by the Metropolis algorithm. It was
later proposed by Kirkpatrick et al, [14] that this type of simulation could be used to search
the feasible solutions of an optimization problem, with the objective being to converge to an
optimal solution.

Reeves [12] describes how both Kirkpatrick at al [14] and Cerny [15] have both indepen-
dently shown how the original Metropolis algorithm can be applied to optimization problems
by mapping the elements of the physical cooling processes onto the elements of a combinato-
rial optimization problem as shown in the following table,
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Simulated Annealing for continuous variable problem has also been suggested by a number
of authors, see [16] and the references therein.

3.2.1 The Metropolis Procedure

In 1953, Metropolis et al.[13] used the Monte Carlo method now known as the Metropolis
algorithm to simulate the collection of particles in thermal equilibrium at a given temperature
T . The Metropolis algorithm generates a sequence of states of the system of particles or atoms
in the following way. Given a current state or solution, x, of the system of particles with cor-
responding energy F (x), the system is perturbed to a new state y with energy F (y). If the
change, ∆F = F (y) − F (x), represents a reduction in the energy value then the new state or
solution y is accepted. If the change ∆F represents an increase in the energy value, then the
new state is accepted with probability exp(−(∆F/kBT ), where T is the surrounding temper-
ature and kB is the Boltzmann constant. The acceptance rule described above is called the
Metropolis criterion and the algorithm that goes with it, is known as the Metropolis algorithm.

In the physical annealing, a thermal equilibrium is reached at each temperature if the low-
ering of the temperature is done sufficiently slowly. Similarly, in the case of the Metropolis
algorithm, a thermal equilibrium can be achieved by generating a large number of transitions
at a given temperature. At thermal equilibrium, the probability that the system of particles
is in state, x, with energy F (x) is given by the Boltzmann distribution, i.e.,

PT{X = x} =
1

Z(T )
exp

(−F (x)

kBT

)

, (3.2)

where X is a random variable denoting the current state of the system of particles and Z(T )
is defined as

Z(T ) =
∑

y

exp
(−F (y)

kBT

)

. (3.3)

3.2.2 The Simulated Annealing (SA) Method

In 1983, Kirkpatrick et al. [14] designed the simulated annealing algorithm for optimization
problems by simulating the physical annealing process. The simulation was achievable since
the Metropolis algorithm was in place. The formulation of the optimization algorithm using
the above analogy consists of a series of Metropolis chains used at different values of decreas-
ing temperatures. In this formulation, the system state corresponds to the feasible solution,
the energy of the state corresponds to the objective function to be optimized, and the ground
state corresponds to the global minimizer.

The general SA consists of two loops. In the inner loop, a number of points in a Markov
chain (a Markov chain is a sequence of trial solutions) in the configuration space is suggested
and from which some are accepted. A trial solution is accepted if it only satisfies the Metropo-
lis criterion. On the other hand, in the outer loop, the temperature is progressively decreased
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using a cooling schedule which will be discussed in this section. The original SA algorithm
was intended for discrete optimization problem. The general description of SA algorithm is
as follows:

Simulated annealing algorithms therefore are characterized by a point-wise search through
the feasible region. Trial points are generated according to some distribution over the search
region and a move to a better point is always accepted. As described previously local searches
such as the simple descent method are likely to be confined to local optima. Simulated an-
nealing avoids this by accepting ‘worse’ solutions subject to probability that decreases as the
algorithm progresses. The proceeding condition is used to accept a ’worse’ solution, x̂, at
some temperature Tk, k is the temperature counter. The probability of acceptance is,

exp

(

F (x) − F (x̂)

Tk

)

. (3.4)

The SA Algorithm

The SA algorithm [17] may be expressed as follows:

Step 1 Select an initial solution x.

Step 2 Select an initial temperature T0 > 0. It is important to note that the initial temperature
T0 is usually large, so that most cost increasing trials are accepted and there is little
chance of the algorithm being confined to local optima.

Step 3 For k iterations, randomly select x̂ ∈ N(x). Let ∆F = F (x̂) − F (x), if ∆F < 0 then
x = x̂. Otherwise let x = x̂ with probability exp(−∆F

Tk
).

Step 4 Set Tk+1 = α × Tk. If Tk meets the termination criteria, end the algorithm, otherwise
set k = k + 1 and return to Step 3.

3.2.3 Cooling Schedules

As already mentioned, a cooling schedule2 refers to the method by which the probability with
which the simulated annealing algorithm accepts a solution is decreased [17].

In general a cooling schedule consists of assigning the temperature parameter T an initial
value T0. Once T0 has been established a method is then required for reducing T as well as
for establishing how many trials should be attempted at each value of T . The algorithm will
end subject to some defined stopping criterion. Thus the four key components of a cooling
schedule are:

• An initial value of the control parameter T ,

2Also referred to as an annealing schedule in some literature.
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• a finite length of each homogeneous Markov chain,

• a decrement function for lowering T ,

• a final value of the control parameter, Tk, specified by a stopping criterion.

An Initial Value of the Control Parameter T

If one begins the process of simulated annealing with an initial temperature set so high that
almost all solutions are accepted, the result is that a series of random solutions will be pro-
duced, all of which could have been a starting solution. Thus it is recommended by most
researchers that a ‘moderately high’ temperature is used to begin with, or that the cooling
should be quite rapid during this phase of the algorithm. It is important to note however
that if the initial temperature is set too low, very little movement will be possible. Hence the
probability of the algorithm being confined to local optima is increased.

An initial temperature value can be obtained by generating a number of trials, say m0, and
requiring that the initial acceptance χ0 = χ(T0) be close to 1, where χ(T ) is defined as the
ratio between the number of accepted transitions and the number of proposed transitions.
The expected acceptance ratio χ is approximately given by,

χ =
m1 + m2 × exp(−∆F

(+)
/T )

m1 + m2

(3.5)

which can be rewritten as:

T = ∆F
(+)

(

ln

(

m2

m2χ − m1(1 − χ)

))−1

, (3.6)

where m1 an m2 denote the number of trials (m1 + m2 = m0) with ∆Fxx̂ ≤ 0 and ∆Fxx̂ > 0

respectively, and ∆F (x)
+

the average value of those ∆Fxx̂-values, for which ∆Fxx̂ > 0
(∆Fxx̂ = F (x̂) − F (x) ).

T0 is determined as follows: First, T0 is given some arbitrary value. Next the algorithm
is executed for a fixed number of transitions or moves, say m0, and after each transition, with
χ0 set to 0.95, is used to update the current value of T0; m1 and m2 now corresponds to the
number m1 of cost-decreasing and number m2 of cost-increasing transitions obtained so far.
Numerical experience shows that in this way T0 reaches a stable value after a small number
of transitions. This value is then taken as the initial value of the control parameter.

Markov Chain Length

One is able to fix the length of the Markov chains using a number that is related to the size of
the neighborhoods of the problem in question. The length should be large enough to enable
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the algorithm to explore the neighborhood of a given point thoroughly. A straightforward
selection, therefore, is given by the following relation,

L = L0 × n, (3.7)

where n denotes the dimension of the problem, i.e. the number of machines, and L0 is a
constant called the standard length. Note that the choice of L is problem specific. At each
temperature, the Metropolis algorithm attempts to reach equilibrium by means of perturba-
tions and rearrangement. The total number of transitions at the same temperature T that
constitutes a homogeneous Markov chain length is given by the parameter L.

Lowering the Control Parameter T

The most common technique used to the control parameter T is,

Tk+1 = αTk. (3.8)

where Tk and Tk+1 are the temperature at the beginning and at the end of the cooling schedule
at temperature change counter k. The ‘cooling rate’ α, typically has values ranging from 0.8
to 0.99 [5]. It is important to note that the probability of getting trapped in local optima is
higher when using a greater decrement rate. On the other hand, the more computation time
is spent when the slower decrement rate is used.

An alternative approach to decrease the control parameter T is suggested by Aarts and Korst
[17],

Tk+1 =
Tk

1 + (Tk(1 + δ)/3σTk
)

(3.9)

where σ(Tk) denotes the standard deviation of the values of the objective function values on
the Markov chain at Tk. The constant δ controls the cooling rate and is a measure of the
desired closeness to equilibrium. Small values (δ < 1) produce slow convergence.

Termination Criteria

A stopping criterion is required to terminate the cooling process. One may choose to stop
the algorithm after a fixed number of iterations, or after some number of iterations without
an improvement in the objective value. However it is common for the simulated annealing
algorithm to end after a specific level of final temperature of the system is reached, for example,

Tk ≤ ǫ (3.10)

where ǫ is a small number.
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Figure 3.5: Simulated Annealing: High vs. Low T0

Implementation of SA to Example 1

Let us once again consider the travelling salesman problem 3.1 introduced earlier in the chap-
ter. Figure 3.5 illustrates the solution paths when simulated annealing is applied with a
randomly chosen high initial temperature, T0 = 10, versus a derived low initial temperature
T0 = 4.48. The x-axis in Figure 3.5 represents the number of accepted solutions whilst the y-
axis represents the relative objective function values. The derived temperature was calculated
using (3.6) with m0 = 40. In both cases we used the temperature decrement rule (3.8) with
α = 0.95, the length of the Markov chains of 45 and ended the algorithm when T < 10−3.

Figure 3.5 clearly shows the advantage of using a calculated initial temperature as the
global optima is obtained in far fewer iterations or function calls.
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Chapter 4

Implementation of TS and SA to
Brewing Optimization

In this chapter we demonstrate how the scheduling problems within the brewing industry can
be optimized using the tabu search algorithm and simulated annealing algorithm. We begin
by first considering selected components of the problem, (defining them using the notation
introduced in Chapters 1 and 2), and gradually extend the problem through a series of phases
as we proceed.

4.1 Phase 1: Filtration and Packaging

We first consider the problem of scheduling the packaging regime of a hypothetical brewery
for a week. In order to do this one has to consider that the beer to be packaged must be
sourced from the storage and maturation tanks (SVs). Thus the beer must be transferred
from the SVs via the filtration plants to the bright beer tanks (BBTs) and then to the various
packaging lines. Thus we have 2 fundamental stages (t = 1, 2) to consider, the allocation of
how the required volumes of beer will be filtered as well as how they are to be packaged.

Let us consider the conceptual layout of the brewery in Figure (4.1). There are 3 filtration
plants and 6 packaging lines, hence m1 = 3 and m2 = 6 as well as 3 storage and maturation
cellars SV1, SV2 and SV3 consisting of 42, 6 and 14 tanks respectively.

We begin with a description of the problem in this phase. A stock keeping unit (SKU) is
a combination of a brand B and a pack type PT . In the problem we will consider, there are
9 brands and 4 different pack types. The brewery is required to schedule a demand for 15
SKU’s represented in Table 4.1. Columns 3 and 4 of Table 4.1 represent the brand and pack
type respectively of each SKU. The volumes are quoted at standard gravity.

The packaging type, PT , of an SKU describes the type of container the beer is to be packaged
in; Table 4.2 represents the packs considered as well as the volumes PTVj thereof.
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Figure 4.1: Conceptual Layout of a Brewery
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# SKU Brand Pack Type Volume (Hl)

1 11 1 1 180
2 14 1 4 12782
3 23 2 3 3602
4 24 2 4 13574
5 32 3 2 10959
6 44 4 4 865
7 54 5 4 3732
8 64 6 4 2371
9 71 7 1 370
10 73 7 3 3674
11 74 7 4 6802
12 81 8 1 580
13 83 8 3 3616
14 84 8 4 7415
15 92 9 2 1506

Table 4.1: SKU Weekly Demands

Pack Type Description PTVj (l)
1 Keg 30
2 Bottle 0.33
3 Can 0.5
4 Bottle 0.5

Table 4.2: Pack Types

For example SKU 83 is comprised of brand B = 8 and pack type PT = 3, (a 0.5l bottle).
For programming purposes, one can extract the types of brand and packaging type using,

B =
SKU − mod(SKU, 10)

10
, (4.1)

PT = mod(SKU, 10). (4.2)

The attributes of the filtration plants to be considered in the problem are illustrated in Table
4.3. The ‘washout volume’ in Table 4.3 represents the volume allowed to be filtered after
which the filter is required to be cleaned. The relative speed of the filtration plants v1

ij is
independent of job j and we assume that when they are in operation they are 100% efficient.
Hence we have, v1

ij = 550, 600 and 300 for i = 1, 2 and 3 respectively. We assume that the
only brand that filters 1 and 2 cannot process is brand 9, and that brand 9 is exclusively
processed on filter 3.
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Filter 1 2 3
Capacity (Hl/hr) 550 600 300
Washout Vol (Hl) 2500 2500 1500

Table 4.3: Filtration Plant Attributes

The capacities and efficiencies, (Ei), of each packaging line is illustrated in Table 4.4.
Efficiency is given as a percentage.

Line 1 2 3 4 5 6
Capacity (bphri) 24000 50000 23000 60000 70000 60000

Ei(%) 75 85 90 85 85 90

Table 4.4: Packaging Line Attributes

Note that the capacities of the packaging lines are quoted in the number of bottles per
hour (bphr). In this case there are 6 machines, i = 1, . . . , 6. Thus in order to obtain their
capacities in Hl/hr, taking into consideration efficiencies as well as the SKU in question we
use:

v2
ij =

bphri × PTVj ×
Ei

100

100
, i = 1, . . . , 6;∀j = 1 . . . n, (4.3)

where bphri is the number of bottles per hour packaged by machine i and PTVj is the volume
of the pack type of job j; the denominator of a 100 is used to obtain a relative speed of Hl/hr.

The sequence dependent setup times for each SKU take both the brand and pack type of
a job into consideration. Matrix Q represents brand dependent setup times, both the row
and column indices represent the 9 different brands. Matrix R represents the pack dependent
setup times used in the problem, both the row and column indices represent the 4 different
packaging types. The matrices are given by,

QjB lB =



































0 1.3 3 1.3 1.3 1.3 1.3 1.3 3
0 3 1.3 1.3 1.3 1.3 1.3 3

0 3 3 3 3 3 3
0 1.3 1.3 1.3 1.3 3

0 1.3 1.3 1.3 3
0 1.15 1.15 3

0 1.15 3
0 3

0



































,

35



and

RjPT lPT
=











0 1000 1000 1000
0 1000 1.15

0 1000
0











.

Hence if we were to consider the occurrence of two consecutive jobs j and l of SKU 32, (brand
= 3, pack =2), and SKU 44, (brand = 4, pack =4), respectively; the sequence dependent
setup time st

jl at t = 2 required would be,

s2
jl = QjB lB + RjPT lPT

(4.4)

s2
jl = Q34 + R24 (4.5)

s2
jl = 3 + 1.15 (4.6)

s2
jl = 4.15hrs (4.7)

We assume that in this problem the setup time of job j if job j is assigned to the first
position1 on machine i at stage t,

cht
ij = 0 ∀t = 1, . . . , k and ∀i = 1, . . . ,mt. (4.8)

However, the following interruptions will occur:

• If a packaging line or filter does not process a job within 24hrs, a 3hr cleaning process
will be completed before any new job is processed on the relevant piece of equipment.

• If a packaging line runs for more than 24hrs or a filtration plant filters the equivalent of
it’s washout volume, the respective piece of equipment will be stopped and a cleaning
process will begin. In the case of a packaging line 3hrs of cleaning will be allocated
whilst 0.2hrs of cleaning will be allocated to the filters. The current job on the given
machine will be stopped, and the remainder of the job will only commence after the
cleaning process has been completed.

The packaging demands in Table 4.1 are sourced from the SV tanks. Although there are
62 SV tanks, in our problem there are 42 tanks within the SV’s from which we can supply the
total demand. Thus there are 42 jobs that are required to be scheduled, i.e. j = 1, . . . , 42.

In Table 4.5 we present all 42 jobs and their attributes:

Column 1 - j: The job number,j = 1, . . . , 42.

Column 2 - SKUj: The type of SKU that the job will be packaged as.

1By this we mean that job j is the first job to be processed by machine i.

36



Column 3 - Cellarj: The SV cellar from which the job will be sourced.

Column 4 - Tankj: The SV tank within the relevant cellar from which the job will be
sourced.

Column 5 - pst
j: The volumes of jobs j = 1, . . . , 42 are quoted at standard gravity.

Column 6 - rj: The release dates rj indicate earliest time, in hours, at which a job may
begin to be processed.

Column 7 - Packaging Line: The initial assignment of the packaging line to process the
job.

Column 8 - Filter: The initial assignment of the filter to process the job.

If one adds the volumes, pst
j, of all tanks that pertain to a particular SKU, this will equal

the corresponding SKU’s packaging volume in Table 4.1.



j SKUj Cellarj Tankj pst
j rj Packaging Line Filter

1 14 1 1 1000 0 5 1
2 14 1 2 781 0 5 2
3 14 1 3 1000 41 5 1
4 14 1 4 1000 41 5 2
5 14 1 5 1000 41 5 1
6 14 1 6 1000 41 5 2
7 14 1 7 1000 41 5 1
8 14 1 8 995 41 5 2
9 14 1 9 1000 65 5 1
10 14 1 10 1007 89 5 2
11 11 2 1 180 0 7 1
12 14 2 2 2999 17 5 2
13 24 1 11 594 0 5 1
14 24 1 12 690 0 5 2
15 24 1 13 690 0 5 1
16 23 1 14 685 0 4 2
17 23 2 3 2917 0 4 1
18 24 3 1 3919 0 5 2
19 24 3 2 3760 0 5 1
20 24 3 3 3921 17 5 2
21 32 1 15 993 0 6 1
22 32 1 16 1000 0 6 2
23 32 1 17 1000 0 6 1
24 32 2 4 1966 0 6 2
25 32 2 5 3000 17 6 1
26 32 2 6 3000 41 6 2
27 44 1 18 865 89 5 1
28 54 3 4 2641 81.8 5 2
29 54 3 5 1091 89 5 1
30 64 1 19 657 0 5 2
31 64 1 20 861 17 5 1
32 64 1 21 853 17 5 2
33 71 3 6 370 0 7 1
34 74 3 7 3902 0 3 2
35 74 3 8 2900 17 3 1
36 73 3 9 3674 0 4 2
37 83 3 10 3616 17 4 1
38 81 3 11 580 41 7 2
39 84 3 12 4015 65 3 1
40 84 3 13 3400 65 3 2
41 92 1 22 652 17 1 3
42 92 1 23 854 17 1 3

Table 4.5: Initial assignment of the Packaging line and Filtration Jobs



4.1.1 Scenario 1

In this scenario we assume that the initial assignment of the packaging lines to each job, as
represented in Table 4.5, is fixed. Hence the total processing time will consist of both the fil-
tration and packaging process, but only moves with regard to the sequence of the jobs and the
allocation of the filters will be executed. Thus the assignment of the packaging lines remain
as given in Table 4.5. For the purposes of this exercise, we will ignore any physical constraints
associated to the BBTs and assume that the BBT tanks are emptied at the rate of the packag-
ing line it feeds. We will however ensure that after any given filtration job, a constant number
of hours, i.e. 4hrs, are added to the completion time of the job before it can be packaged.
In this way we ensure that the amount of time that the job would have spent in the BBT’s
is accounted for. The ‘First In First Out’ (FIFO) philosophy is also followed where applicable.

We assume that the filtration plants i = 1, . . . ,m1, as well as the packaging lines, i = 1, . . . ,m2

are available immediately, i.e. at
i = 0,∀t, i where at

i represents the time at which machine i at
stage t is available. We also assume that all jobs are required to complete within 1 week (168
hours). Our objective is to minimize the sum of the completion times of the last job on each
packaging line. Therefore the objective function to be minimized is:

λCTOTAL + (1 − λ)ηTa, (4.9)

where λ is given.

In Scenario 1 as well as proceeding scenarios2, we restrict the number of jobs that may be
allocated to each filter as follows:

• Filter 1: 20 jobs may be allocated.

• Filter 2: 20 jobs may be allocated.

• Filter 3: 2 jobs may be allocated.

It is important to note that only the number of jobs are restricted and no restrictions are
placed on the filters in regard to the brand of a particular job, nor the volume of the job.
These restrictions were imposed for realism.

Results for TS on Scenario 1

In the implementation of TS to Scenario 1, a diversification strategy was implemented to
prevent cycling by using a long term memory structure which kept record of accepted objective
function values from the beginning of the algorithm. After a given number of iterations, eg.
10, the last 5 accepted objective function values are examined, if the standard deviation of

2Scenarios 2 and 3
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these values was below 0.1 a random member of the candidate list is selected as the next best
solution and the search is resumed. A number of tests were conducted to see the effect on the
objective function value as a result of,

• the number of iterations performed,

• the length of tenure (Tenure) imposed,

• the number of iterations performed before the diversification strategy (D.S.) was imple-
mented.

The results of the tests are summarized in Tables 5.1, 5.2 and 5.3 respectively in Appendix A.

The tests revealed that the best solutions were found when a relatively small tenure of 5
was used and when the diversification strategy was implemented after 15 iterations. As ex-
pected, an increased number of iterations yielded better results. The best solution found
was that of 591.0355, see Table 5.3, which was found after 131 iterations, a tenure of 5 and
commencing the diversification strategy after 15 iterations, the solution path is represented in
Figure 4.2. Hence the number of iterations performed does not ensure optimality but rather
increases the likelihood thereof.

In Figure 4.2 the x-axis represents the number of iterations and the y-axis represents the
value of the objective function. One can clearly see in Figure 4.2 where the diversification
strategy is utilized, most noticeably after iteration 90. The large spike in the solution path
indicates where a random solution from the candidate list was accepted. After iteration 90,
one can see how the values of the objective function consistently decrease to the global or near
global optima.

Results for SA on Scenario 1

A number of tests were conducted to see the effect on the objective function value as a result
of implementing different cooling schedules. In particular we have used,

• m0 = m1 + m2 = 200 and m0 = m1 + m2 = 270

• α = 0.95 and α = 0.85

The best results for scenario 1 were obtained using a cooling schedule comprised of:

• An initial value of the control parameter T = 26.7983 (using equation (3.6), m0 =
m1 + m2 = 270).

• Markov chains with a length of L = 550,

• A decrement function, Tt+1 = αT, α = 0.95,
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Figure 4.2: TS Solution Path for a single case of Scenario 1

• A stopping criterion such that the method ends when T ≤ 0.001.

The algorithm yielded an optimal solution of 587.3726. The solution path is illustrated in
Figure 4.3, where the x-axis represents the number of accepted solutions found and the y-axis
represents the value of the objective function.

The best results obtained by SA and TS show that SA is the best performer in scenario 1.
We would like to mention that the results obtained by the other SA runs were not inferior
to the best results of TS. It is therefore clear that SA is the best performer in the problem
described by scenario 1.

A comparison of the number of function evaluations corresponding to the best run of SA
and TS confirms the superiority of SA over TS in scenario 1. TS made approximately 170000
function calls as oppose to SA which made approximately 108000.

To visualize the features of the optimized solution obtained by SA, we present two more
figures. Figure 4.4 illustrates by means of gannt charts, the events occurring on filters 1 and
2 for both the optimized and initial solutions. The events are comprised of a combination of
the processing of jobs and cleaning processes and brand changes. Thus the completion of a
particular job may be described by two events, i.e. if job j was interrupted due to a cleaning
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Figure 4.3: SA Solution Path for a single case of Scenario 1

procedure, then it would be described by an event representing the initial volume filtered,
followed by the cleaning event, and finally an event representing the remainder of job j to
be filtered. The first sub-figures (in the left hand side) in Figure 4.4 represent the initial
solution’s allocation of jobs to Filter 1 and Filter 2 respectively; whilst the second sub-figures
(in the right hand side) represent the optimized solution’s allocation of jobs to the filters. The
x-axis in these figures represent time in hours, whist the y-axis represents events.

It is evident that in the optimized solution the lines are more efficiently used as there is
less idle time between jobs.
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Figure 4.4: Initial and Optimized allocation of jobs for Filter 1 and Filter 2 in Scenario 1
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4.1.2 Scenario 2

Scenario 2 is an extension of Scenario 1. The difference being that in Scenario 2 moves will
be executed with regard to the sequence of the jobs and the allocation of the filters as well
as the as the assignment of the jobs to the packaging lines. For this problem, a number of
SKU’s may be packaged on either packaging line 2 or 4 as is illustrated (in bold) in the ‘Line
Restrictions’ matrix LR(SKU,PL), where the rows represent the various SKU (see Table
4.1), SKU = 1, . . . , 15 and the columns represent the packaging lines, PL = 1, . . . , 6. From
the matrix LR we can see that only lines 2 and 4 share SKU’s, namely 14, 24, 54, 64, 74 and
84, that can be allocated to either line. The matrix LR(SKU,PL) is given by:

LR(SKU,PL) =

































































0 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 0 0

































































In the previous problem presented in scenario 1, we have conducted a series of runs for SA
and TS where good parameter values were obtained. We have used these parameter values
for the problem presented in scenario 2.

TS was implemented with a tenure of 5 and the diversification strategy was implemented
after 15 iterations. The best result obtained by TS was 584.6004 after 200 iterations (170000
function calls)

The SA algorithm was therefore implemented with a cooling schedule comprised of:

• An initial value of the control parameter T = 26.7983 (using equation (3.6), m0 =
m1 + m2 = 270).

• Markov chains with a length of L = 550,

• A decrement function, Tt+1 = αT, α = 0.95,

• A stopping criterion such that the method ends when T ≤ 0.001.
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SA performed 108000 function calls, with a best result obtained of 572.6229.

Table 4.6 shows the % allocation of the total volume of each SKU to lines 2 and 4 in the
initial solution, and that of the result of each algorithm.

SKU Initial Solution TS SA
Line 2 Line 4 Line 2 Line 4 Line 2 Line 4

14 53% 47% 71% 29% 54% 46%
24 32% 68% 55% 45% 51% 49%
54 27% 73% 0% 100% 54% 46%
64 0% 100% 53% 47% 0% 100%
74 58% 42% 43% 57% 22% 78%
84 70% 30% 0% 100% 50% 50%

Table 4.6: % of SKU allocated to Line 2 and Line 4

In Table 4.6 one can clearly see that the implementation of SA has resulted in a more even
distribution of the volumes of the SKU’s than TS.

4.1.3 Scenario 3

In Scenario 3, we extend Scenario 2 by including the planning of the use of Fermentation
Vessels (FV) to the problem. Figure 4.5 illustrates the additional connectivity constraints
from FV to SV in our conceptual brewery. In Figure 4.5 one can clearly see connectivity
constraints between the FV’s and the SV’s. For example FV4 may only transfer beer to SV3.

We are not looking explicitly at inter tank transfers between SV and FV, but rather at
the amount of aging that transpires as a result of a filtration/packaging solution. Hence we
take into consideration the amount of time,((y′ − y) where y′ represents a point in time after
y), volumes of beer in FV’s age due to insufficient capacity in the SV’s. The actual volume
aged,FVy − SVy, is also taken into consideration. The objective function is thus redefined as,

λ(CTOTAL + A) + (1 − λ)ηTa. (4.10)

where,

A =
z

∑

y=0

((FVy − SVy) × (y′ − y)) (4.11)

and,

• z is the last point in time where the contents of a fermentation vessel is ready to be
transferred and an storage and maturation vessel’s capacity is available.

• SVy is the sum of the capacity volume of the storage and maturation vessels available
at time y,
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• FVy is the sum of the volume of the contents of a fermentation vessels available at time
y.

• y only represents points in time where SVy ≤ FVy and aging occurs.

• y′ is the next point in time after y, y′ > y.

The FV data added to the model consisted of 72 tanks, Table 4.7 presents 4 of these tanks as
an example.

Brand Tank Number Volume Cellar Ready (hr)

6 123 459 3 113
6 124 457 3 113
1 70 979 2 17
1 66 2746 2 65

Table 4.7: FV Data

The initial solution had a total packaging line runtime of 908 hours and a aging component
of 6494700 litre hours. After TS was implemented3 this was reduced to a packaging line
runtime of 541 hours and an aging component of 664571 litre hours. The use of SA4 resulted
in a total packaging line runtime of 542 hours and a aging component of 635382 litre hours.
SA was implemented with a cooling schedule comprised of,

• An initial value of the control parameter T = 2134.75 (using equation (3.6), m1 + m2 =
270).

• Markov chains with a length of 550,

• A decrement function, Tt+1 = αT, α = 0.95,

• A stopping criterion such that the method ends when T ≤ 0.001.

Despite the TS solution’s packaging line runtime concluding an hour earlier than that of
the SA solution, the aging that results from the SA solution is significantly less than that of
the TS solution. One must note however that SA performed significantly more function calls
than TS.

4.1.4 Scenario 4

In Scenario 4, we extend Scenario 3 by ignoring any restrictions imposed on the number of
jobs that any given filter may process.

3TS performed 170000 function calls.
4SA performed 180000 function calls.
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Both SA and TS were used to optimize scenario 4, the allocation of jobs as a percentage
of the total number of jobs, as well as the volume as a percentage of the total volume to
the filters are described in Table 4.8. SA was implemented on this scenario using a cooling

Filter SA TS
% of Jobs % of Volume % of Jobs % of Volume

1 38 38 40 41
2 33 39 31 36
3 29 23 29 23

Table 4.8: Summary of Results

schedule composed of:

• An initial value of the control parameter T = 1738200 (using equation (3.6), m1 +m2 =
270).

• Markov chains with a length of 550,

• A decrement function, Tt+1 = αT, α = 0.95,

• A stopping criterion such that the method ends when T ≤ 0.001.

SA performed approximately 227700 function calls resulting in a total packaging line runtime
of 520 hours and a aging component of 635382 litre hours.

TS performed approximately 2125000 function calls resulting in a packaging line runtime
of 718.7283 hours and a aging component of 642071 litre hours.

Even though TS has a better pack time than SA, 518.7288 vs 520, the aging component
of SA is smaller i.e. 635382 vs 642071. Hence SA performed better than TS.

Table 4.9 summarizes the packaging line run times obtained for each scenario after the
implementation of TS and SA.
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Scenario TS SA

1 591 587
2 585 573
3 541 542
4 518 520

Table 4.9: Results Summary of Scenarios 1 to 4

Figure 4.5: Conceptual Layout of a Brewery
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Chapter 5

Appendix A

Tenure D.S. Obj. Value
5 5 619.0911
5 10 619.0911
5 15 611.3076
5 30 613.3915
5 45 600.7108
10 5 629.7863
10 10 721.1669
10 15 721.1669
10 30 721.1669
10 45 719.6529
20 5 741.1127
20 10 741.1127
20 15 741.1127
20 30 741.1127
20 45 741.1127
30 5 748.9169
30 10 748.024
30 15 751.9289
30 30 748.7021
30 45 751.9289
40 5 746.5802
40 10 751.9289
40 15 748.0732
40 30 751.3171
40 45 751.0732

Table 5.1: Scenario 1:Tabu Search Results - 100 Iterations
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Tenure D.S. Obj. Value
5 5 610.5905
5 10 615.1478
5 15 602.4470
5 30 605.7431
5 45 619.0911
10 5 624.9347
10 10 651.2482
10 15 612.4082
10 30 612.1908
10 45 627.1935
20 5 741.1127
20 10 741.1127
20 15 741.1127
20 30 740.8136
20 45 741.1127
30 5 748.0732
30 10 751.9289
30 15 747.9086
30 30 751.9289
30 45 750.4289
40 5 748.3495
40 10 751.9289
40 15 751.9289
40 30 746.2875
40 45 748.3495

Table 5.2: Scenario 1:Tabu Search Results - 150 Iterations
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Tenure D.S. Obj. Value
5 5 614.9624
5 10 611.1269
5 15 591.0355
5 30 612.6734
5 45 610.5031
10 5 618.8648
10 10 602.5910
10 15 631.5604
10 30 640.0287
10 45 613.1576
20 5 741.1127
20 10 741.1127
20 15 740.4327
20 30 741.1127
20 45 741.1127
30 5 751.9289
30 10 748.3495
30 15 748.0732
30 30 751.9289
30 45 751.9289
40 5 751.9289
40 10 751.9289
40 15 750.5732
40 30 749.0732
40 45 751.7905

Table 5.3: Scenario 1:Tabu Search Results - 200 Iterations

51



Bibliography

[1] Hans-Otto Gnther H. and van Beek P. (Editors), Advanced Planning and
Scheduling Solutions in Process Industry, Springer, ISBN-10: 3540002227, 2003.

[2] Pringle A., ‘Industrial Engineer with 6 years experience in the brewing indus-
try’, personal communication, 2006.

[3] http://www.lifl.fr/t̃albi/challenge/docs/SCHEDULING-GRID-
COMPUTING-TESTCASE.pdf, An Introduction of the Flowshop Scheduling
Problem, 2007.

[4] Jungwattanakit, J, Reodecha, M, Chaovalitwongse, P. and Werner, F., ‘Algo-
rithms for flexible flow shop problems with unrelated paralelle machines, setup
times, and dual criteria’, Internal Report, Department of Industrial Engineer-
ing, Chulaongkorn University, Thailand, 2006.

[5] Pardalos P.M. and Resende G.C.M.,‘Handbook of Applied Optimization’, Ox-
ford University Press, 2002.

[6] Hansman,K. and Hoeck,M, ‘Production Control of a Flexible Manufacturing
System in a Job Shop Enviroment’, Internal Report, Department of Industrial
Engineering, University of Hamburg, Germany, 2006.

[7] Jones DF, Mirrazavi SK and Tamiz M, ‘Multi Objective meta-heuristics: An
overview of the current state-of-art’, European Journal of Operations Research,
137(1):1-9, 2002.

[8] Glover F. and Laguna M.,‘Tabu Search’, Kluwer Academic Publishers, 1997.

[9] Nowicki E., Smutnicki C., ‘Flexible flow shop scheduling’, Proc. of International
Conference on Industrial Engineering and Production Management, Book II,
Lyon, France, 85-94, 1997.

[10] Cheloueh, R and Siarry, P, ‘Tabu Search Applied to Global Optimization’,
European Journal of Operations Research, 123(2):256-270, 2000.

[11] Glover F., ‘Tabu Search: A Tutorial’, Interfaces, 20(4):74-94,1990.

52



[12] Reeves, C., ‘Modern Heuristic Techniques for Combinatorial Problems’
MaGraw-Hill Book Company Europe, 1995.

[13] Metropolis N.; Rosenbluth A.W, Rosenbluth M.N, Teller A.H. and Teller E,
‘Equation of state calculation by fast computing machines’, Journal of Chemical
Physics, 21,1087-1091, 1953.

[14] Kirkpatrick S, Gellat C.D. and Vecchi M.P., ‘Optimization by simulated an-
nealing’, Science, 220,671-680,1983.

[15] Cerny V., ‘A thermodynamical approach to the travelling salesman problem:
an efficient simulation algorithm’, Journal of Optimization Theory and Appli-
cations, 45:41-55, 1985.

[16] Dekkers A. and Aarts E.,‘Global Optimization Simulated Annealing’, Mathe-
matical Programming, 50:367-393, 1991.

[17] Aarts E. and Korst J., Simulated Annealing and Boltzmann Machine, John
Wiley & Sons, 1989.

53


