
Sparse Array Representations And Some

Selected Array Operations On GPUs

Hairong Wang
School of Computer Science

University of the Witwatersrand

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg,

in fulfilment of the requirements for the degree of Master of Science.

Supervisor: Professor Ekow Otoo

July 2014, Johannesburg

Declaration

I, Hairong Wang, hereby declare that this dissertation is my own, unaided work. It is being submitted for the

Degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted

before for any degree or examination at any other university.

Signature of candidate:

28th day of July 20 14 in Johannesburg .

i

Abstract

A multi-dimensional data model provides a good conceptual view of the data in data warehousing and On-Line

Analytical Processing (OLAP). A typical representation of such a data model is as a multi-dimensional array

which is well suited when the array is dense. If the array is sparse, i.e., has a few number of non-zero elements

relative to the product of the cardinalities of the dimensions, using a multi-dimensional array to represent the

data set requires extremely large memory space while the actual data elements occupy a relatively small fraction

of the space. Existing storage schemes for Multi-Dimensional Sparse Arrays (MDSAs) of higher dimensions

k (k > 2), focus on optimizing the storage utilization, and offer little flexibility in data access efficiency.

Most efficient storage schemes for sparse arrays are limited to matrices that are arrays in 2 dimensions. In

this dissertation, we introduce four storage schemes for MDSAs that handle the sparsity of the array with two

primary goals; reducing the storage overhead and maintaining efficient data element access. These schemes,

including a well known method referred to as the Bit Encoded Sparse Storage (BESS), were evaluated and

compared on four basic array operations, namely construction of a scheme, large scale random element access,

sub-array retrieval and multi-dimensional aggregation. The four storage schemes being proposed, together

with the evaluation results are: i.) The extended compressed row storage (xCRS) which extends CRS method

for sparse matrix storage to sparse arrays of higher dimensions and achieves the best data element access

efficiency among the methods compared; ii.) The bit encoded xCRS (BxCRS) which optimizes the storage

utilization of xCRS by applying data compression methods with run length encoding, while maintaining its

data access efficiency; iii.) A hybrid approach (Hybrid) that provides the best control of the balance between

the storage utilization and data manipulation efficiency by combining xCRS and BESS. iv.) The PATRICIA

trie compressed storage (PTCS) which uses PATRICIA trie to store the valid non-zero array elements. PTCS

supports efficient data access, and has a unique property of supporting update operations conveniently. v.)

BESS performs the best for the multi-dimensional aggregation, closely followed by the other schemes.

We also addressed the problem of accelerating some selected array operations using General Purpose Com-

puting on Graphics Processing Unit (GPGPU). The experimental results showed different levels of speed up,

ranging from 2 to over 20 times, on large scale random element access and sub-array retrieval. In particular, we

utilized GPUs on the computation of the cube operator, a special case of multi-dimensional aggregation, using

BESS. This resulted in a 5 to 8 times of speed up compared with our CPU only implementation. The main

contributions of this dissertation include the developments, implementations and evaluations of four efficient

schemes to store multi-dimensional sparse arrays, as well as utilizing massive parallelism of GPUs for some

data warehousing operations.

ii

Acknowledgements

First of all, I would like to thank my research supervisor, Professor Ekow Otoo, not only for his excellent

guidance during the course of my research work, but also for the ideas he suggested, and his patient revision

of my dissertation. My special thanks also go to Professor Michael Sears for his help and support.

I am grateful to the National Research Foundation (NRF) South Africa for their financial support for my study.

Finally, I would like to thank my husband, Sheng, for his love and support; and my three lovely daughters,

Nandi, Christine and Marilyn, for being the joy of my life.

iii

Contents

Declaration . i

Abstract . ii

Acknowledgements . iii

List of Figures vii

List of Tables viii

List of Algorithms viii

1 Introduction 1

1.1 Problem Motivation . 1

1.2 Problem Statement . 2

1.3 Overview of Some Known Approaches . 4

1.4 Overview of Our Solution . 5

1.5 Main Contributions . 7

1.6 Organization of the Dissertation . 8

2 Background and Related Work 9

2.1 Storage Schemes for Multi-Dimensional Sparse Arrays . 9

2.1.1 Index-Value Pair . 10

2.1.2 Offset-Value Pair . 11

2.1.3 Bit Encoded Sparse Storage . 12

2.1.4 Compressed Row or Column Storage . 13

2.2 Data Warehousing and OLAP . 14

2.3 Multi-Dimensional Aggregation . 16

2.3.1 The CUBE . 17

2.3.1.1 Search Lattice . 19

2.3.1.2 Algorithms for Computing the CUBE . 20

2.4 General Purpose Computing Using GPUs . 22

2.4.1 GPU Architecture . 23

iv

2.4.2 CUDA Programming Model . 24

2.5 Application of GPUs to Data Warehousing . 26

3 Multi-Dimensional Sparse Array Representations 28

3.1 Methodology . 28

3.2 Extended Compressed Row or Column Storage . 29

3.2.1 XCRS and Its Construction . 30

3.2.2 Random Element Access and Sub-Array Retrieval in xCRS 31

3.2.3 Space Utilization of xCRS . 33

3.3 Bit Encoded Extended Compressed Row Storage . 33

3.3.1 Word-Aligned Hybrid Code . 33

3.3.2 BxCRS and Its Construction . 34

3.3.3 Random Element Access and Sub-Array Retrieval in BxCRS 36

3.4 Hybrid Approach . 38

3.4.1 Hybrid and Its Construction . 38

3.4.2 Random Element Access and Sub-Array Retrieval in Hybrid 39

3.4.3 Some Properties of Hybrid . 40

3.4.3.1 The Storage Overhead . 40

3.4.3.2 The Time Complexities of Random Element Access and Sub-Array Re-

trieval in Hybrid . 40

3.5 PATRICIA Trie Compressed Storage . 41

3.5.1 PATRICIA . 41

3.5.2 PTCS and Its Key . 42

3.5.3 PTCS Construction . 43

3.5.4 Random Element Access and Sub-Array Retrieval in PTCS 46

3.5.5 Some Properties of PTCS . 47

4 Multi-Dimensional Aggregations of Sparse Array Elements 48

4.1 Aggregation Using PTCS and BESS . 49

4.2 Aggregation Using xCRS and BxCRS . 50

4.3 Aggregation Using Hybrid . 51

4.4 Comparative Analysis of Computing Aggregations Using Various Schemes 52

4.5 Computing the Cube . 53

4.5.1 Paths in the Search Lattice . 54

4.5.2 Computing the CUBE Using BESS . 56

4.5.3 Computing the CUBE Using PTCS . 58

v

5 Selected Array Operations on GPUs 59

5.1 Overview . 59

5.2 Large Scale Random Element Access . 61

5.3 Sub-Array Retrieval . 62

5.4 Computing The Cube . 65

5.4.1 Resetting the Attribute Order . 65

5.4.2 Sorting . 66

6 Experimental Setup 68

6.1 Experimental Environment . 68

6.2 Experimental Data . 68

7 Performance Evaluation 71

7.1 Storage Utilization of Various Storage Schemes . 71

7.2 Experimental Results and Comparative Analyses . 72

7.2.1 Results on CPU Only Processing . 72

7.2.1.1 Performance of Storage Scheme Construction 72

7.2.1.2 Performance of Large Scale Random Element Access 73

7.2.1.3 Performance of Sub-Array Retrieval . 75

7.2.1.4 Performance of Aggregation . 76

7.2.1.5 Performance of Computing the CUBE Using PTCS and BESS 77

7.2.2 Results on CPU+GPU Co-Processing . 78

7.2.2.1 Performance of Large Scale Random Element Access 78

7.2.2.2 Performance of Sub-Array Retrieval . 79

7.2.2.3 Performance of Computing the CUBE Using BESS 80

8 Conclusion 87

8.1 Main Objectives . 87

8.2 Main Contributions . 88

8.3 Future Work . 89

Appendix 90

A Additional Algorithms 90

A.1 The Sub-Array Retrieval Algorithm in XCRS . 90

A.2 The Algorithm to Search the Array compwrd . 91

A.3 The Sub-Array Retrieval Algorithm in PTCS . 92

vi

Bibliography 93

List of Figures

2.1 An Example of an MDSA . 11

2.2 The Aggregation on a 3-Dimensional Array . 17

2.3 The Aggregation on the Group-By of a Single Dimension . 18

2.4 A Search Lattice with 4 Attributes . 19

2.5 A Modern NVIDIA GPU Architecture . 24

2.6 CUDA Memory Hierarchy . 26

3.1 The Process of Bitmap Compressing . 35

3.2 An Example of a PATRICIA Trie . 42

3.3 A PTCS Key Structure . 43

3.4 The Insertion of a Key Into a PATRICIA Trie . 44

4.1 Aggregating the MDSA Represented in PTCS or BESS . 50

5.1 An Example of P-Ary Search . 62

7.1 Storage Ratios for the 8-Dimensional Sparse Arrays . 72

7.2 The Construction Time of Various Storage Schemes . 73

7.3 The Average Random Element Access Time of Various Storage Schemes 74

7.4 The Structures of the Sub-Arrays to be Retrieved . 75

7.5 The Average Sub-Array Retrieval Time of Various Storage Schemes (k = 2 and k = 3) 77

7.6 The Average Sub-Array Retrieval Time of Various Storage Schemes (k = 4 and k = 8) 77

7.7 The Multi-Dimensional Aggregation Time of Various Storage Schemes (k = 2 and k = 3) . . 81

7.8 The Multi-Dimensional Aggregation Time of Various Storage Schemes (k = 4 and k = 8) . . 81

7.9 The Multi-Dimensional Aggregation Time of Various Storage Schemes (k = 4 and k = 8) . . 81

7.10 The Time for Computing the Cube Using PTCS and BESS (k = 2 and k = 3) 82

7.11 The Time for Computing the Cube Using PTCS and BESS (k = 4 and k = 8) 82

7.12 The Average CPU+GPU Random Element Access Time Using BESS 83

7.13 The Average CPU+GPU Random Element Access Time Using xCRS 83

7.14 The Average CPU+GPU Random Element Access Time Using Hybrid 83

7.15 The Average CPU+GPU Sub-Array Retrieval Time Using BESS 84

vii

7.16 The Average CPU+GPU Sub-Array Retrieval Time Using xCRS 84

7.17 The Average CPU+GPU Sub-Array Retrieval Time Using Hybrid 84

7.18 The CPU+GPU Time for Computing the Cube Using BESS (k = 4) 85

7.19 The CPU+GPU Time for Computing the Cube Using BESS (k = 8) 85

7.20 The Sort and Aggregation Time for Computing the Cube Using BESS (k = 4) 86

7.21 The Sort and Aggregation Time for Computing the Cube Using BESS (k = 8) 86

List of Tables

2.1 The Parameters and Notations . 10

2.2 An Example of Index-Value Pair Representation . 11

2.3 An Example of Offset-Value Pair Representation . 12

2.4 An Example of BESS Representation . 13

2.5 An Example of CRS . 14

3.1 An Example of XCRS . 31

3.2 An Example of BxCRS . 36

3.3 An Example of Hybrid . 39

3.4 The PTCS Key-Value Pair . 43

4.1 The Costs of Computing Multiple Aggregations . 53

6.1 The Specifications of a Set of Experimental Data . 70

viii

List of Algorithms

1 XCRS Construction . 31

2 XCRS Random Element Access . 32

3 Compressing the Bitmap . 35

4 BxCRS Random Element Access . 37

5 PTCS Construction . 45

6 PTCS Random Element Access . 46

7 Computing the Paths in a Search Lattice . 56

8 Computing the Cube Using BESS . 57

9 GPU P-Ary Search Algorithm . 63

10 GPU Sub-Array Retrieval Using BESS . 64

11 Generating the Dimensional Data of an MDSA . 70

12 XCRS Sub-Array Retrieval . 90

13 Searching the Array compwrd . 91

14 PTCS Sub-Array Retrieval . 92

ix

Chapter 1

Introduction

A multi-dimensional data model provides a good conceptual view of the data in data warehousing. This system

supports On-Line Analytical Processing (OLAP) and facilitates complex analyses and visualizations of data.

It enables finding certain patterns or trends in the data. Such valuable sources of information are essential

in business management and decision making. Data warehouses usually contain historical, summarized and

consolidated data, perhaps from several operational databases, over very long periods of time. They tend to

be much larger than an individual operational database. The workloads are mostly complex queries that often

need to access large amount of data and perform operations, such as scans and aggregations. As a result, the

data in a data warehousing system is usually modeled as a multi-dimensional arrays [5]. For example, a data

warehouse may represent business data (such as the sales data of a car manufacturer), medical data, scientific

data and other real-world data. These data sets are characterized by several dimensions of interest and one

or more measured values. Allied to the multi-dimensional data model is the multi-dimensional data cube,

where the dimensions form the axes of the cube in multi-dimensional OLAP (MOLAP). It is typical in data

warehousing and MOLAP to have the data sets be large and sparse, and it is not unusual in MOLAP data to

find that 20% or fewer of the data elements are non-zero [42]. This degree of sparsity of data tends to be much

higher with higher dimensions. We define the sparsity of a multi-dimensional array later in this text. Storing

and manipulating large multi-dimensional data sets are also very common in many scientific and statistical

databases, as well as scientific and engineering applications. The challenge in these applications is to find an

efficient storage scheme to store very large data sets that have large number of dimensions.

1.1 Problem Motivation

A typical representation of a multi-dimensional data model is as a multi-dimensional array. It organizes the

data in multi-dimensional space, where each dimension represents one of the attributes of the data. The size

of the multi-dimensional space is determined by the cross product of the cardinalities of each dimension. Such

an approach is reasonably efficient when the array is dense, and has the advantage of excellent data access

1

1.2 Problem Statement

efficiency. However, if the multi-dimensional data is sparse, using multi-dimensional array to represent such

data sets requires extremely large data space while the actual data elements occupy only a small fraction of this

space. Even though the entire storage space cannot be defined in memory, the actual data of non-zero values can

be accommodated entirely in memory. Besides extremely large storage overhead, the efficiency in accessing

data is easily traded off by visiting large amounts of invalid array elements. A number of storage schemes

exist for sparse matrices, i.e., 2-dimensional sparse arrays, but not necessarily for higher dimensional arrays.

Sparse matrices and sparse arrays result from data structures used for representing the information in various

applications. Examples are: i.) use of adjacency matrix representation for very large graphs in numerous graph

applications; ii.) multi-dimensional representation of relations for relational database and consequently in data

warehousing.

The data in data warehousing and MOLAP is characterized by large volume, high dimensionality, and sparsity.

Let ρ denote the occupancy ratio of a k-dimensional array A[Dk−1] . . . [D0], where Dj , 0 ≤ j ≤ k − 1,

is the cardinality or bound of the jth dimension. Suppose the number of non-zero elements is Nnz , then

ρ = Nnz/
∏k−1
j=0 Dj and the sparsity , denoted by σ, is defined by σ = 1− ρ. Multi-dimensional array is often

a desirable data structure to be used to represent the data in data warehousing and MOLAP. It is essential to

handle the sparsity in the array structure so that we can achieve overall performance enhancement. Efficient

storage schemes of sparse matrices have been developed to gain significant performance improvements in

scientific computing and engineering applications.

1.2 Problem Statement

The question is whether a storage scheme can be implemented that stores only those occupied cells of array

elements (or the non-zero values) in the corresponding multi-dimensional array structure with efficient ele-

ment access performance. The problem we address concerns developing and implementing a storage scheme

for multi-dimensional sparse arrays (MDSAs) that uses space proportional to the number of non-zero ele-

ments without compromising on the element access efficiency. Formally, we have the following: given a

k-dimensional array A[Dk−1] . . . [D1] [D0] of Nnz non-zero elements where Nnz �
∏k−1
j=0 Dj , define an

efficient representation of the array A using space O(Nnz) that has element access time of O(k) at best and

O(logNnz) in the worst case. To elaborate on the problem statement, consider the non-zero elements of the

k-dimensional sparse array, A[Dk−1] . . . [D0] mapped onto a p-dimensional array F [Mp−1] . . . [M0] where

p < k. The size of F is
∏p−1
j=0Mj = s ≥ cNnz , for some small constant c. The array F is assumed to be lin-

earized into a sequence of consecutive memory locations L[s] = L〈0〉,L〈1〉, . . . ,L〈s− 1〉. The problem then

becomes finding a data structure to representL and a function f() that maps an elementA〈nk−1, nk−2, . . . , n0〉

2

1.2 Problem Statement

onto a location L〈q〉, with A〈0, 0, . . . , 0〉 assigned to L〈0〉 such that L stores only or mostly the non-zero el-

ements. We desire an efficient compute function f() such that f(〈nk−1, nk−2, . . . , n0〉)→ q and its inverse

function f−1(q)→ 〈nk−1, nk−2, . . . , n0〉.

Our primary goal in this research is to develop efficient storage schemes for multi-dimensional sparse arrays

that address the problem stated above, i.e., reducing the storage overhead and maintaining the data access ef-

ficiency for query operations. Less storage overhead results in reduced memory and disk space, and better

utilization of memory bandwidth. Efficient data access ensures less runtime penalties and faster matrix and

array computations. It is also crucial to perform the typical array operations and data analytics on the result-

ing data structure of any storage scheme without restoring the original sparse array. A number of problems

precipitate from the original principle research problem. These include:

Time to create the representative structure of L: The general presentation of the non-zero elements of a

sparse matrix or array is in the Matrix Market format (MM-format) [3, 4], which is also referred to as

the Coordinate format. It is an ASCII file format with indexes that are either 0-based or 1-based. Each

record gives the coordinates and the non-zero value. The first record represents the values of the bounds

of the dimensions and the number of records of non-zero values in the file. Given an MDSA in the

MM-format, the question is how fast can the data structure for L be created? What is the occupancy

ratio achievable by L?

Complexity of accessing a random element A〈nk−1, . . . , n0〉: Given the array index 〈nk−1, . . . , n0〉, what

is the complexity of computing q = f(〈nk−1, . . . , n0〉), or given the value of q, what is the complexity

of computing 〈nk−1, . . . , n0〉 = f−1(q)?

Sub-array retrieval: Given a k-dimensional array A[Dk−1] . . . [D0] and rectilinear boundary indexes L =

〈lk−1, . . . , l0〉 and H = 〈hk−1, . . . , h0〉 where lj ≤ hj , 0 ≤ j ≤ k− 1, what is the time to return all the

non-zero elements in the sub-array defined by L and H?

Multi-dimensional aggregation: Given an aggregate function f() and a subset of k dimensions, how fast can

the aggregation be computed for the representative data structure ofL? This is also related to the problem

of sub-array retrieval where in that case, an aggregate function is applied to the elements retrieved.

Nearest neighbor retrieval and top-k: Given a non-zero value L〈q〉 and a distance metric, determine the

nearest non-zero element L〈q′〉. Related to this is the top-k that subsumes the nearest neighbor query.

In this case we are given a non-zero value L〈q〉 and a measure function g(), we desire the first k values

L〈q′1〉,L〈q′2〉, . . . , L〈q′k〉, closest to L〈q〉 that satisfy g(L〈q〉)⊗ g(L〈q′j〉), 1 ≤ j ≤ k, where ⊗ ∈

{<,≤,=, >,≥}.

3

1.3 Overview of Some Known Approaches

Multi-dimensional data model not only captures the structure of the underlying data well, it is also amenable to

parallelism. Parallelism plays a significant role in processing the massive amount of data in data warehousing

and MOLAP. As the secondary goal of this research, we explore parallelizing selected array operations on

GPUs using some of the storage schemes concerned in this research. The selected array operations include

large scale random array element access, sub-array retrieval, as well as multi-dimensional aggregation on a

special case of the cube computation.

1.3 Overview of Some Known Approaches

A number of methods have been used to handle sparse multi-dimensional arrays in the literature. In the case

of 2-dimensional sparse arrays or sparse matrices the Compressed Row (or Column) Storage (CRS/CCS) is a

well known scheme. This is discussed in detail in Section 2.1.4. The Offset-Value pair [51] is the most often

used method to optimize the storage utilization of multi-dimensional sparse arrays with higher dimensionality

(> 2). It stores only a pair of values; an offset value l and the data element v, for each non-zero element in

the sparse array, given a scan order of the array and thereby incurring a low storage overhead. Some typical

scan orders are the row-major or column-major order. Given a k-dimensional array A[Dk−1] . . . [D0], where

an element A〈nk−1, . . . n0〉, is referenced by the indexes nk−1, nk−2, . . . , n1, n0, a scan order is termed row-

major if the scan of the elements has the lowest index n0, varying the fastest. It is termed column-major order

if the high order index nk−1 varies the fastest. The computation of offsets from the array indexes, or vice versa,

requires certain number of algebraic operations such as multiplication, addition, division, or subtraction. These

computations become expensive when they are performed on a large number of dimensions.

Bit Encoded Sparse Storage (BESS) [12] was designed to overcome the computational cost of offset-value pair

by encoding the array indexes into binary bits, concatenating these bits, and interpreting the concatenated bit

string as an integer (see Section 2.1.3 for more details). As a result, the algebraic operations are replaced by

more efficient bit concatenation operation. This method has the same storage efficiency as the offset-value pair.

The random array element access time, in both cases, is achieved in time O(logNnz), since a binary search

algorithm has to be used for a random element access.

Sparse matrices, a class of multi-dimensional array with k = 2, arise in a wide range of compute-extensive

scientific and engineering applications. Many different storage schemes for sparse matrix have been designed

to take advantage of the structure of the matrices or the specificity of the problem from which they arise.

Consequently, these storage schemes are often application or structure specific, and limited to 2 dimensions.

On the other hand, there are relatively much less methods to efficiently represent multi-dimensional sparse

4

1.4 Overview of Our Solution

arrays of more than 2 dimensions. The k-dimensional data models applied in data warehousing, OLAP systems

and multi-dimensional databases, typically have k > 2.

1.4 Overview of Our Solution

We developed four storage schemes for MDSAs, and implemented algorithms for constructing these schemes.

Our approaches, in developing new storage schemes, include extending sparse matrix storage schemes to higher

dimensions, combining different storage schemes, and applying suitable data compression, when necessary,

to the resulting representation of MDSAs using some storage formats. We also further explored a trie based

approach, PATRICIA Trie Compressed Storage, an improved version from our previous work [48]. These

storage schemes are:

Extended Compressed Row Storage (xCRS): Compressed Row Storage, the widely used sparse matrix stor-

age scheme, is extended to represent sparse arrays of any dimensions by simply mapping the multi-

dimensional sparse array to a set of one dimensional arrays.

Bit Encoded Extended Compressed Row Storage (BxCRS): To address the shortcoming of xCRS on very

sparse multi-dimensional arrays, we applied data compression using Run Length Encoding to optimize

the storage utilization of xCRS, while maintaining its data access efficiency.

Hybrid Approach (Hybrid): The xCRS and BESS are combined to give a better control of the balance be-

tween storage utilization and data manipulation efficiency.

PATRICIA Trie Compressed Storage (PTCS): A PATRICIA trie that stores a key-value pair for each non-

zero element is constructed for a given MDSA.

To evaluate the storage schemes, we designed and implemented algorithms for large scale random array ele-

ment access, sub-array retrieval, and multi-dimensional aggregation, for each of the storage schemes outlined

in the previous paragraph, as well as a known scheme, BESS, for comparative purpose. As a special case

of multi-dimensional aggregation, we also implemented algorithms to compute the cube operator using two

storage schemes, namely PTCS and BESS, respectively.

We explored accelerating some of the operations for the sparse arrays using GPU as a co-processor. These

operations include large scale random array element access or searching, and sub-array retrieval. Finally, com-

puting the cube operator using BESS was accelerated using GPU as a co-processor. Data warehousing and

OLAP analyze large volumes of data and are highly compute- and data-intensive. In addition, the multi-core

5

1.4 Overview of Our Solution

and many-core architectures are the current predominant technologies and will remain as trends in the fu-

ture. Therefore, parallelism should be exploited whenever possible in these applications. We chose GPU as

the parallel platform for this purpose. Traditionally designed for gaming applications, GPUs have relatively

more computing power and high memory bandwidth compared with their contemporary CPUs. While the

performance of graphics hardware is rapidly increasing, they become more programmable due to the flexi-

ble architectural designs with every major generations of GPUs. High level GPU programming models and

languages, or programming models for heterogeneous systems, such as Compute Unified Device Architecture

(CUDA) from NVIDIA [32] and OpenCL [23], have been emerging to meet the demands of utilizing GPUs

or other types of processors for general purpose computing. Furthermore, compared with other parallel plat-

forms, heterogeneous systems often have potential to achieve excellent performance/cost ratio. All these

features of GPUs make them an attractive platform to be utilized in many applications. Recent research work

has shown that GPUs can be used to accelerate data warehousing applications [49, 46]. GPUs have been suc-

cessfully applied to accelerate individual database operations, such as sort [13] and join [19], relational query

processing [18], and some of the data mining operations [11].

As part of the work of our second goal, the issue of computing the multi-dimensional aggregation on a special

case of the cube operator was examined. The cube operator is the multi-dimensional generalization of group-

by [44] operator. It computes group-bys corresponding to all possible combinations of a list of attributes.

Many queries over data warehouses and MOLAP require summary data and as such use aggregate operations.

Further, data analyses in these applications are often interactive. Hence, response time is a crucial factor in

the performance. Materializing some of the summary data, or pre-computing partial or total cube, is a key

technique to answer common queries efficiently in data warehousing and MOLAP. In computing the cube, we

mainly combined the following two approaches; one was to represent the MDSA using a space efficient storage

scheme, such as BESS; the other was to utilize GPUs in computing some part of the cube operation.

Taking the time constraint into consideration, we restricted ourselves to consider only the case where the data

can be fit into main memory, leaving the case where the data can not fit into main memory for future work. The

methods to represent MDSAs we propose ensure either more data fitting into main memory or efficient access

to the data. Accommodating more data in main memory results in less partitioning cost on disk data, hence less

I/O cost. Graefe pointed out a number of benefits of data compression in database system [14]. These benefits

include reduced disk space, improved I/O performance, more data being fit into main memory, etc. The author

also pointed out that most query processing can be carried out on the compressed data. Some of these benefits

can be realized to a certain degree by applying a suitable storage scheme to an MDSA. Organizing MDSAs

using an efficient storage scheme could lead to two fold benefits. Firstly, we may achieve an optimal storage

utilization, efficiency in data manipulation, or a desired balance between them, by carefully choosing a storage

scheme to represent the MDSA. Secondly, we may further apply one of the data compression techniques, such

6

1.6 Organization of the Dissertation

as in the case of BxCRS, to the data represented in some storage schemes to improve the storage utilizations

while maintaining their data access efficiencies.

1.5 Main Contributions

The main contributions of this dissertation include the following. Firstly, we designed, implemented and eval-

uated four of the storage schemes for MDSAs, namely xCRS, BxCRS, Hybrid and PTCS. These methods

contribute towards a wider range of methods of organizing MDSAs in data warehousing, MOLAP, and other

relevant applications in different fields. They provide different features such as optimal storage utilization,

efficient data access, or some balance between the two. Among these methods, we investigated various basic

yet novel ideas, such as using trie based data structure to store MDSAs, combining different storage schemes

to gain better control of the balance between space and computational efficiencies, and applying data compres-

sion within a storage scheme. Secondly, by utilizing GPUs as a co-processor to accelerate some selected array

operations, we demonstrated how GPUs can be applied to accelerate some basic operations in data warehous-

ing and MOLAP, and consequenly improve the performance in these applications. Thirdly, we implemented

computing the cube using BESS as the storage scheme, and utilizing GPUs as the co-processor. The benefits

of this approach are as follows.

• Using BESS as the storage scheme leads to more data being accommodated in memory. Further, since

BESS represents the dimensional data (or the indexes of the array elements) in a very compact form, it

not only simplifies some of the necessary operations, such as sorting when computing the cube, but also

optimizes the PCI-Express bus bandwidth between the CPU and GPU implicitly, by transferring more

information in the same amount of data.

• We were able to achieve a speed-up of 5 to 8 times compared with our single-core CPU implementation

of computing the cube using BESS or PTCS. Hence, the effectiveness of utilizing both CPU and GPUs

on the problem of computing the cube was demonstrated.

Due to the limited time for this research, the problems of nearest neighbor and top-k retrievals are not addressed

in this dissertation. They are left for future work, where we hope to design and implement the algorithms in

these regards for the data represented by the selected storage schemes.

7

1.6 Organization of the Dissertation

1.6 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 gives the backgrounds and related works in

MDSA storage schemes, data warehousing and OLAP, multi-dimensional aggregation and general purpose

computing on GPUs. We introduce the designs of new storage schemes in Chapter 3, as well as the relevant

algorithms for creating the storage structures, implementing the basic array operations, and give some analytical

properties of each scheme. We discuss computing the multi-dimensional aggregations and the cube operator

using various storage schemes in Chapter 4. Our approaches to utilize GPUs on the selected array operations

are presented in Chapter 5. The experimental setup and discussion of data sources for reproducibility are

given in Chapter 6. The experimental results and comparative analyses of the results obtained are presented in

Chapter 7. We finally conclude the work of this dissertation in Chapter 8, where we also discuss the direction

for future work.

8

Chapter 2

Background and Related Work

In this chapter, we discuss related work on multi-dimensional sparse array representation and their application

to data warehousing and OLAP. We discuss earlier works on computing multi-dimensional aggregates and the

cube operator. We also briefly present the GPU architecture, the CUDA programming model and their use as

general purpose computing engines in related fields.

2.1 Storage Schemes for Multi-Dimensional Sparse Arrays

There exist a number of storage schemes for multi-dimensional sparse arrays, mostly specialized for sparse

matrices. Many different schemes for sparse matrices have been designed to take advantage of the structure of

the matrices or the specificity of the problem from which they arise. For example, the special sparse structures

that are often exploited in designing storage schemes for sparse matrix include: a diagonal matrix where the

matrix consists of a few diagonals of non-zero elements; a block matrix where the non-zero elements are

square dense blocks; symmetric matrix; asymmetric matrix etc. The purpose of each of these schemes is to

gain efficiency both in memory utilization and matrix computations. A survey of such a collection of sparse

matrix storage formats can be found in the work of Barret et al. [2] and Saad [39].

In the following text, we give an overview of some of the known storage formats that are relevant to our work.

These formats are general in the sense that they do not make any assumption about the sparsity or the structural

shape of the underlying arrays. Table 2.1 gives the notations and descriptions of the parameters used in the

analyses of the various storage schemes in this dissertation.

9

2.1 Storage Schemes for Multi-Dimensional Sparse Arrays

Parameter Description
and Notation

Ci The number of bytes in an integer

Cil The number of bytes in the longest integer

Cf The number of bytes in a float or real number

dj The name of a dimension j

Dj The cardinality or bound of a dimension j or dj

S The size of a storage space in bytes

W The bit length of a computer word

Nnz The number of non-zero elements in an array

Nj Nj =
∏k−1
r=k−j Dr, 1 ≤ j ≤ k

ρ The occupancy ratio, ρ = Nnz/Nk
σ The sparsity of an MDSA, σ = 1− ρ

l, v The offset and value pair for an array element A〈nk−1 . . . n0〉

BEI Bit Encoded Index

Table 2.1: The parameters and notations

2.1.1 Index-Value Pair

The index-value pair format is the simplest format for representing an MDSA. It is also termed Coordinate

(COO) format and is commonly used for sparse matrices. This is the general format for storing the non-zero

values of an MDSA in an ASCII file and is also referred to as the Matrix-Market format [3]. To represent a

k-dimensional sparse array, the index-value pair uses k + 1 one-dimensional arrays or vectors; one vector for

storing all the non-zero values, and the other k vectors for storing the indexes of the corresponding non-zero

values. The length of each of these vectors is Nnz , i.e., the number of non-zero elements. Hence, the total

storage space required for the index-value representation is (kCi + Cf)Nnz . Table 2.2 shows the index-value

pair representation of an example MDSA in Figure 2.1. In Table 2.2, the vector val stores the non-zero values,

and the vectors ind1, ind2, ind3 store the corresponding indexes, for each non-zero value, on dimension

I, J, K respectively. The example of the 3-dimensional sparse array of Figure 2.1 is used throughout the

dissertation.

Both the storage and the data access efficiencies of the index-value pair format become worse when the number

of dimensions, k, increases. However, two variations to this format, namely, Offset-Value Pair and Bit Encoded

Sparse Storage, are commonly applied for MDSAs of higher dimensions, where the k one-dimensional arrays

of indexes are reduced to only one.

10

2.1 Storage Schemes for Multi-Dimensional Sparse Arrays

Figure 2.1: An example 3-dimensional (5× 3× 4) sparse array.

ind1 ind2 ind3 val

0 0 0 20.5

0 0 1 11.2

0 2 2 17.0

0 2 3 23.6

2 0 3 14.9

ind1 ind2 ind3 val

2 1 0 15.2

2 1 1 17.8

2 2 2 21.3

2 2 3 25.1

.

Table 2.2: The index-value pair representation of the MDSA in Figure 2.1.

2.1.2 Offset-Value Pair

Given a k-dimensional sparse array A[Dk−1] . . . [D0], the offset-value pair format represents each non-zero

element inA using two values, an offset and the non-zero value. The offset l is a displacement in a given linearly

addressed space starting from 0. We may obtain a linear address space for any sparse array by traversing the

array elements in a certain scan order, such as row- or column-major order. Other scan orders are the Z-order,

the Peano-Hilbert order and the Grey-Code order [40]. For example in a row-major offset-value representation,

the k-dimensional index 〈nk−1, . . . , n0〉 of any array element is used to compute its offset l as

l =

k−1∑
i=0

ni

i−1∏
j=0

Dj

Offset-value pair storage uses two one-dimensional arrays; one to store the actual non-zero values and the other

to store the corresponding offsets. The lengths of both of these two arrays are Nnz . Thus, the storage space

requirement using offset-value pair is only (Cil+Cf)Nnz . Table 2.3 shows two offset-value pair representations

of the 3-dimensional array of Figure 2.1 for two different linear addressing. This method is often used to

11

2.1 Storage Schemes for Multi-Dimensional Sparse Arrays

represent multi-dimensional sparse arrays because of its storage efficiency [51], which is linear in the number

of non-zero elements. Random array element access in offset-value pair has a complexity of O(logNnz)

using binary search. One may argue if the use of interpolation search, with average search time complexity of

O(log logNnz) [37], would not be more appropriate. In practice, this is worse than the use of binary search,

since the interpolation search involves multiplication and division of floating point numbers while the binary

search involves only one integer division by 2 and is more efficient.

offset 1 val

0 20.5

1 11.2

10 17.0

11 23.6

27 14.9

28 15.2

.

A

offset 2 val

0 20.5

4 20.5

7 15.2

15 11.2

19 14.2

22 17.8

.

B

Table 2.3: The offset-value pair representations of the MDSA in Figure 2.1. Table A is in the row-major (I − J −K)

order, and Table B is in the column-major (K − J − I) order.

The major shortcoming of offset-value pair is that it is not computationally efficient. To compute an offset,

we need to do k − 1 multiplications and summations, and to recover the array index, we need to do the same

amount of divisions and subtractions. Another issue of offset-value pair is that it has the potential to overflow.

The value
∏k−1
i=0 Di tends to be very large when the dimensionality increases, or the individual dimensions

have large cardinalities. This could result in a large integer value that overflows the 32-bit or even a 64-bit

integer representation. Our approach, in this dissertation, is to partition the very large linear address space, if

it occurs, into relatively smaller ones.

2.1.3 Bit Encoded Sparse Storage

Bit Encoded Sparse Storage (BESS) consists of two one-dimensional arrays; one stores the non-zero values,

the other stores the bit encoded indexes of the corresponding non-zero values [12]. This is very much like

the Offset-Value pair approach, except that the ‘Offset’ in BESS is computed by concatenating the bit en-

coded representations of the indexes. Let 〈nk−1, . . . , n1, n0〉, denote the index of a non-zero array element

and let βj , 0 ≤ j < k, denote the compact binary bit representation of the index value nj . A Bit En-

coded Index (BEI) of such an array element is the integer representation of the concatenation of the βj’s,

12

2.1 Storage Schemes for Multi-Dimensional Sparse Arrays

β = βk−1||βk−2|| . . . ||β0. The BEI is then interpreted as a simple integer position code. This can be per-

ceived as the equivalent to the offset index in the preceding discussion of the Offset-Value representation. We

term the generated BEI also as a key. An example of using BESS to represent the MDSA of Figure 2.1 is

shown in Table 2.4. The column β is the concatenated bit sequences of the 3 index values for each non-zero el-

ement. We use dlogDie(0 ≤ i ≤ 2) bits for each dimension. These are concatenated in the order of I−J−K.

The storage requirement of BESS is (Cil +Cf)Nnz . A random array element is accessed in timeO(logNnz),

since like the offset-value pair format, a binary search is used to determine whether a non-zero value exists or

not given a k-dimensional index 〈nk−1, . . . , n1, n0〉.

β BEI val

00000000 0 20.5

00000001 1 11.2

00001010 10 17.0

00001011 11 23.6

00100011 35 14.9

00100100 36 15.2

.

Table 2.4: The BESS representation of the MDSA in Figure 2.1.

Offset-value pair and BESS are both very efficient in storage space utilization. However, the computational

efficiencies of these two storage schemes are limited to using binary search or sequential scan of the non-

zero values. The difference between them lies in the computation of the offset in the former and the BEI in the

latter. While computing the offset of an array element involves certain number of multiplications and additions,

constructing the BEI only takes a number of bit operations, which are considered to be more efficient than the

arithmetic operations. A well studied comparison between the offset-value pair and BESS was presented in

the work of Goil et al. [12] and the result showed that BESS is much more efficient than the the use of the

offset-value pair. As a result, we compare our new methods being introduced in this dissertation, with BESS,

but the basic idea of offset-value pair is applied in designing the methods of xCRS and the Hybrid storage

scheme.

2.1.4 Compressed Row or Column Storage

Compressed row or column storage (CRS or CCS) is widely used to represent sparse matrices. It uses three

one-dimensional arrays, denoted by val, cind and rptr respectively here, to represent a sparse matrix. The

array val stores the non-zero values, cind stores the column indexes of each non-zero element and rptr stores

13

2.2 Data Warehousing and OLAP

the pointers (position index of the values) of the starting position of each row in the array cind. Table 2.5

illustrates an example of CRS representation of a 6× 6 matrix A. In CRS, the array elements are traversed in

row-major order. CCS is similar to CRS except that the array elements are traversed in column-major order.

The random array element access time in CRS isO(logD0). However, the actual sizes of the rows vary and can

be far less than the cardinality D0 due to the sparsity of the matrix. Retrieval of a row is much more efficient

than of a column in CRS, and vice versa in CCS.

A =



10.2 0 0 0 2.34 0

13.7 23.5 0 0 0 11.6

0 17.3 0 35.4 0 0

53.2 0 28.1 0 0 0

0 0 0 89.4 0 13.9

0 44.5 0 0 20.9 0



offset 0 1 2 3 4 5 6 . . . 10 11 12 13

val 10.2 2.34 13.7 23.5 11.6 17.3 35.4 . . . 13.9 44.5 20.9 13

cind 0 4 0 1 5 1 3 . . . 5 1 4 13

rptr 0 2 5 7 9 11 13

Table 2.5: The CRS of matrix A

2.2 Data Warehousing and OLAP

The multi-dimensional data model, which we focus on in this research, is intended to represent primarily the

data in data warehousing and OLAP. Data warehousing and OLAP are the core technology in decision support

systems. Data warehousing refers to a collection of decision support technologies. It aim at enabling the

knowledge workers to make better and faster decisions [5]. Data warehousing has been increasingly deployed

in many industries, such as manufacturing, retail, financial services, etc. A data warehouse is an integrated

repository that stores information which may originate from multiple, possibly heterogeneous operational or

legacy data sources [41]. A data warehouse may contain original raw data or preprocessed data. OLAP,

which enables analysts to work with data warehouses interactively, supports dynamic synthesis, analysis, and

consolidation of large volumes of data [30].

The data in a warehouse and OLAP system is typically modeled as multi-dimensional data, in the sense that

the data can be modeled as dimension attributes and measure attributes [44]. A measure attribute measures

some numeric value, such as sales, budget, etc., and dimension attributes define the dimensions on which the

14

2.2 Data Warehousing and OLAP

measures are viewed, such as time, location, etc. Thus, the multi-dimensional data views the measures as

values in the multi-dimensional space. Further, a dimension can be defined by a set of attributes, forming a

hierarchy. For simplicity, we did not take the hierarchy of a dimension into consideration in this research.

The construction, operation, and maintenance of a data warehouse and OLAP server involve many techniques

and research issues. An overview of these topics is presented in the work of Chaudhuri et al. [5]. In the

evaluations of the new and existing storage schemes, we selected four operations, namely the construction of

the storage structure, random element access, sub-array retrieval and multi-dimensional aggregation, as the

main performance criteria for comparisons. The random element access and sub-array retrieval are the most

basic and yet fundamental operations to constitute the efficient queries over data warehouse, together with the

slicing and dicing operations in OLAP. In the materialized views of data warehousing, roll-up and drill-down

operations in OLAP use aggregations.

If the data in data warehouses and OLAP is to be represented in an MDSA storage format, the first basic array

operation we need to consider is random element access. Data warehouses usually contain large volumes of

data that are still sparse in the multi-dimensional space. It is essential to be able to efficiently access the data

in order to answer the queries efficiently. Random element access, on one hand, means retrieving the value

associated with a given array index. In array structure representation, this could be done conveniently by finding

the displacement in a linear address space according to the index. However, when the array is represented in a

certain storage scheme, to access an array element using its array index requires using computations according

to the schemes. On the other hand, we may need to recover the array indexes of the elements given a position

index in a storage scheme. The efficiency of this inverse mapping is actually a critical factor in the performance

of computations, such as sub-array retrieval, aggregation, and nearest neighbor queries.

Unlike in operational databases, the operations in data warehousing and OLAP may not often access individual

data; instead they often need to access the data in a ‘sub-region’. For example, in Figure 2.1, we may only be

interested in the data on the dimension I with index value 1 or 2. In this case, we need to extract the data

on this specific dimension value efficiently. We refer to this operation as sub-array retrieval. More precisely,

given a k-dimensional array A[Dk−1] . . . [D0] and rectilinear boundary indexes L = 〈lk−1, . . . , l0〉 and H =

〈hk−1, . . . , h0〉 where lj ≤ hj , 0 ≤ j ≤ k − 1, we are required to retrieve all the non-zero elements in the

sub-array defined by L and H . Sub-array retrieval constitutes the partial and exact match queries over data

warehouses.

To analyze the multi-dimensional data in a data warehouse or MOLAP, an analyst may want to see a summary

data in a number of selected dimensions. The summary data is often presented in an m-dimensional array

(1 ≤ m ≤ k, k is the dimensionality). Especially, in OLAP, the summary data is often called cross-tab or

15

2.3 Multi-Dimensional Aggregation

pivot-table whenm = 2, and data cube whenm > 2. For example, in Figure 2.2, the aggregation result on the

dimensions (J,K) is a cross-tab, the aggregation may also be carried on (I,K) or (I, J). These operations,

called pivoting, are to get different summarized data by aggregating on some of the specific dimensions only,

ignoring all the other dimensions, or assuming the special all [44] value for them. On the other hand, sometimes

we assign fixed values, instead of the all value, on some dimensions first, then carry out aggregations on the

remaining dimensions. We refer to these operations as slicing (specify a fixed value on one dimension only),

and dicing (specify fixed values on more than one dimension). Besides these operations, OLAP servers also

support two other operations, namely roll-up and drill-down. Roll-up refers to the aggregation operations that

move from aggregating on more detailed group-by attributes to less detailed ones. Drill-down, the inverse of

roll-up, refers to the aggregation operations that move from less detailed group-by attributes to more detailed

ones. The typical OLAP operations we discussed above mainly involve aggregations on varying dimensions

or combinations of dimensions, as well as accessing the data frequently on varying parts.

Refreshing or updating a data warehouse raises a number of issues in itself, although we do not consider them

in this research. However, we should point out that among the storage schemes we considered, PATRICIA trie

compressed storage (PTCS) has the unique advantage of efficiently supporting some update operations, such

as insertion and deletion. This is due to the fact that PTCS employs PATRICIA trie structure to store the valid

elements in an MDSA. The other storage schemes are based on array structure, where the insertion or deletion

of a single element may cause the whole structure to be rebuilt.

2.3 Multi-Dimensional Aggregation

Aggregation is a very important statistical concept to summarize information about large amounts of data [14].

The idea is to represent a set of items by a single value or to classify items into groups and determine one

value per group. Aggregation is usually supported in the form of aggregate functions, which determine a

set of values from an input set of values, such as a relation. Aggregate functions can be classified into three

categories: distributive, algebraic and holistic [16, 1]. An aggregate function f() is distributive if it allows the

input data set to be partitioned into disjoint sets that can be aggregated independently and the results combined

to obtain the final one. Aggregate functions such as determining the maximum, minimum, summation, count

of values, are all distributive. Algebraic aggregate functions, such as computing the average value, can be

expressed in terms of other distributive functions. Holistic aggregate functions, such as finding the median

or standard deviation, are those that cannot be computed in parts and combined. Aggregation is an important

operation in data warehousing and MOLAP applications. Therefore in data analytics and decision support

systems. Data warehousing and MOLAP applications typically aggregate data across many dimensions, when

16

2.3 Multi-Dimensional Aggregation

processing queries or looking for anomalies, patterns and trends.

The group of attributes constituting the dimensions along which the aggregates are computed are called the

group-by attributes or dimensions. Since we do not consider the hierarchy of a single dimension in this research,

we use the term dimension and attribute interchangeably. The Figure 2.2 shows the aggregations on the group-

bys of a single dimension (K) and two dimensions (I, J) for the MDSA in Figure 2.1. The aggregate function

in this example is summation. For example, to compute the aggregation on the group-by of K, we group the

array elements according to their index value on dimension K. Those elements with the same index value on

k are grouped into the same group. The aggregate function is then carried on to each group. Figure 2.3 shows

this process. Given a k-dimensional sparse array, aggregating on a group ofm(1 ≤ m ≤ k) dimensions results

in an m-dimensional array. Algorithms for aggregate functions require grouping of the input data, and then

one output item is computed per group. The typical grouping methods are based on either sorting or hashing.

Figure 2.2: The aggregations with the aggregate function as summation, on a single dimension and multiple dimensions

2.3.1 The CUBE

It is often necessary to aggregate data efficiently in data warehousing applications. To make interactive analysis

possible in these applications, various levels of aggregations are usually precomputed. To conveniently support

multiple aggregations, Gray et al. proposed the “cube” operator [16], which computes aggregations over all

possible combinations of a set of dimensions. By changing the granularity on the group of attributes or dimen-

sions, different aggregation information can be obtained. For example, to analyze computer sales, one might

put special focus on the effects of brand and type of the computers, ignoring all the other attributes. In such a

17

2.3 Multi-Dimensional Aggregation

Figure 2.3: The aggregation process for the group-by of a single dimension K. The aggregate function is summation.

case, we may analyze the total sale of computers by brand and type respectively, or by some combinations of

both. Given a data set with k attributes, the number of all possible combinations of the k attributes is
∑k

i=0

(
k
i

)
,

which is 2k. This number is exponential with respect to the number of dimensions. Thus, computing the cube

presents challenges on both speed and space.

A number of efficient methods of computing multi-dimensional aggregation and the cube have been devel-

oped [1, 38, 51, 17]. While many of these methods have been developed in the context of relational database

systems, most of them are applicable to the database systems with different data models. In the following text,

some of the basic rules in computing aggregation and the cube are outlined, we also present some of the state

of the art methods in computing the cube.

As Graefe points out in [14], two types of algorithms for aggregation, based on sorting and hashing are often

used in standard database aggregation problems. The data items are sorted on their grouping attributes in a

sort-based aggregation algorithm. This allows us to compute multiple aggregations in one scan of the data.

Furthermore, the output data is also in sorted order and can further be exploited to compute other aggregations.

By hashing on the grouping attributes, items of the same group can be found and aggregated in hash-based

algorithms.

Some basic techniques for computing the cube are outlined in the work of Gray et al. [16]. The objectives of

these techniques are to:

18

2.3 Multi-Dimensional Aggregation

• Minimize the data movement.

• Use sorting or hashing to organize the data.

• Map the non-integer types of attribute values to integers starts from zero.

• Use parallelism.

2.3.1.1 Search Lattice

Underlying all the cube construction methods for relational data sets is the lattice representation of 2k combina-

tions of k attributes and their parent-child relationships. Such a lattice for 4 attributes (dimensions) is shown in

Figure 2.4. Each node, called a cuboid, in the lattice represents some combination of the attributes and the all

Figure 2.4: A search lattice with 4 attributes.

node represents the empty combination. The edges represent the parent-child relationships between the nodes.

There is an edge connecting two nodes if one (child) of them can be computed from the result of the another

(parent). For example, the edge between ABC and AB indicates the aggregation on AB can be computed

from the result of the aggregation on ABC. Figure 2.4 shows that at each level, a child node may have more

than one parent node from which it can be computed. It is necessary to find the parent that minimizes the cost

of computing the child node. The algorithm presented in the work of Agarwal et al. [1] found the best way of

computing each level i 1 from level i + 1 by reducing the problem to a weighted bipartite matching problem.

Once each child node is assigned to a parent, the search lattice can be partitioned into a number of paths each

containing a series of cuboids with parent-child relationships determined. For example, in Figure 2.4, one such
1Typically, the all node in a search lattice is at level 0, and level i includes all the cuboids with the combinations (group-bys) of i

attributes.

19

2.3 Multi-Dimensional Aggregation

path is ABCD → ABC → AB → A. To compute all the group-bys on this path, the input data need to be

sorted only once according to the attribute order at the root node (node ABCD in this case), and read only

once as well. In order to optimize the cube computation, it is often desirable to determine a certain number of

paths in the search lattice so that the cost of sorting, memory space requirement and disk reads, of computing

the cube can be minimized. Ross et al. in [38] argued that there must exist at least
(

k
dk/2e

)
paths in the search

lattice. They also showed that this was an upper bound on the number of paths required to cover all the nodes

in the search lattice. The algorithm to find
(

k
dk/2e

)
paths proposed in [38] is further discussed in Chapter 4.

Based on the different approaches to utilize parent-child relationships among the nodes in the search lattice,

two methods, top-down and bottom-up, are often used to compute the cube. Top-down approach computes

less detailed group-bys from more detailed ones, so that one sort operation at the finest level granularities may

be shared among the less detailed ones. Bottom-up approach computes more detailed group-bys from less

detailed ones so that the partial sort on the less detailed granularities may be used to generate more detailed

sorts.

2.3.1.2 Algorithms for Computing the CUBE

Fast algorithms to compute the cube operator were introduced in [1] by optimizing sort-based and hash-based

grouping methods with several optimizations. These optimization techniques include:

1. Combining common operations across multiple aggregates;

2. Caching the results of a group-by from which other group-bys are computed;

3. Computing as many group-bys as possible while the input data is in memory and sorted in a certain

attribute order;

4. Sharing sorting cost in sort-based methods or partitioning cost in hash-based methods across multiple

group-bys.

The algorithm PipeSort [1], first generates a set of paths using a local optimizing technique based on weighted

bipartite matching at each level of the search lattice. These paths are then evaluated in turn. During the

evaluation of a path, the data is sorted in the order indicated by the attribute order of the root node in the path.

After the data is sorted, all the group-bys in the path are computed in pipelined fashion during a single scan of

the data. The number of sorts that PipeSort has to perform, is at least
(

k
dk/2e

)
, which is exponential in k, the

number of dimensions. Clearly, when the number of dimensions increases, the cost of sorting will dominate the

20

2.3 Multi-Dimensional Aggregation

complexity of the cube computation. Thus parallelism of the sort operation, which we will show in Chapter 5,

is a viable means to improve the efficiency of computing the cube.

The algorithm Memory-Cube, introduced in [38], is similar to PipeSort in that it also applies the pipelined

evaluation of the cuboids in a path. However, Memory-Cube tries to generate an optimal set of paths (i.e., the

number of sorts) in the search lattice while PipeSort does not guarantee this. Further, Memory-Cube utilizes

considerably sharing of the cost of sorts among different paths.

An array-based algorithm, Array-Cubing algorithm, to compute the cube for MOLAP systems introduced by

Zhao et al. [51] performs well because the array representation allows direct access to the data elements. Most

importantly, re-sorting the non-zero values on different sets of aggregate attributes can be done by simply

visiting those array elements in the right order. It was also shown that given appropriate data compression

techniques, the Array-Cubing algorithm could be significantly faster than the relational algorithms, and it might

also be used for relational OLAP. Array-Cubing algorithm organizes large arrays in chunks, and the array

chunks in turn are organized using offset-value pair storage scheme. The algorithm computes a minimum

memory spanning tree (MMST) for a given dimension order, based on the choice of the parent node that

minimizes the memory required for computing a child node at each level. Generally, if the required memory

for each MMST node is allocated, the computation of the nodes can be done concurrently. However, this is not

always the case for large sparse data sets with high dimensions.

Harinarayan and others [17] investigated the issue of how to determine the set of aggregates, on different com-

binations of dimensions, to be computed in the case where the whole cube is too expensive to be materialized.

A greedy algorithm was proposed to work on a lattice framework by determining an optimal set of aggregates

to be computed, while the remaining ones can be computed from the materialized ones with minimum cost if

such a need arises at query processing time. The algorithm, termed the Greedy Algorithm, was designed on the

basis of a linear cost model. In the linear cost model, the cost of computing a child node, in the search lattice,

is the size of the parent node. The Greedy Algorithm determines a set of predetermined number of nodes to

materialize by comparing the benefits of one new parent node over the other already selected ones in the set.

A new node is added to the set only if the benefit of that node is greater than the benefits of those that are

compared with. The total benefit of a new node v is the sum over all the child nodes w of v of the benefit using

v to evaluate w. Suppose we denote the cost of a node v as C(v), which is the space cost associated with that

node [17], the benefit of v over a competitor node u is either C(u)− C(v) if C(v) < C(u), or 0 otherwise.

While there are various efficient sequential algorithms to compute multi-dimensional aggregations, the follow-

ing works showed the effectiveness of parallelizing the same computation.

21

2.4 General Purpose Computing Using GPUs

• A general methodology for the efficient parallelization of the existing data cube construction algorithms

was described by Dehne et al. in [7], which supports the transfer of optimized sequential data cube code

to a parallel setting.

• MCMD-CUBE, a new parallel data cube construction method for multi-core processors with multi-disks

introduced by Dehne et al. in [8], could achieve close to linear speed-up on the cube construction. Based

on PipeSort, MCMD-CUBE parallelizes the computation of each of the paths PipeSort generates as

follows. First apply a parallel external memory sort, MCMD-SORT, on the root cuboid of a path. Then

aggregate the sorted cuboid in parallel. After carefully dividing the workload among the processors,

MCMD-SORT utilizes STL sort of the STL library and a merging algorithm based on deterministic

sampling method to get the entire data sorted. The aggregation on the sorted data is parallelized by first

partitioning the data into smaller segments. Then each segment is aggregated in parallel, followed by

computing the aggregates across the segment boundaries in parallel as well. Finally the child cuboids

following the root cuboid in the path, are computed in parallel level by level using their parent cuboid.

2.4 General Purpose Computing Using GPUs

Computer graphics chips, known as Graphics Processing Units or GPUs, are primarily designed to process

interactive 3D graphics efficiently. The use of computer graphics hardware for non-graphics or general pur-

pose computation, collectively known as General Purpose Computing on GPU (GPGPU), has been an active

research area for many years. GPUs have been successfully applied as co-processors to CPU to accelerate a

broad range of applications, such as seismic database, molecular dynamics, and MRI processing [34]. The state

of GPGPU can be best put as the statement that appeared in [36]: “The rapid increase in the performance of the

graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware a

compelling platform for computationally demanding tasks in a wide variety of application domains.”

Three prominent features of GPU, which have been harnessed for general purpose computing, are computa-

tional power, high memory bandwidth and low energy consumption. For example, NVIDIA’s Tesla K40 offers

a capacity of 2880 cores, 12GB device memory with 288GB/sec bandwidth, and peak single precision floating

point performance at 4.29 Teraflops. Along with the rapid developments in hardware, GPUs have become

more flexible and programmable with every major generation of the products. Besides graphics APIs, such

as OpenGL and DirectX, high level GPU programming models have been emerged to meet the demands of

general purpose computing. For example, NVIDIA’s CUDA [32] allows programmers to use C/C++, Python,

or Fortran language extensions to program GPUs. The promising hardware features and programmability of

GPUs make it possible to realize supercomputing with a PC. However, not all problems can be mapped effi-

22

2.4 General Purpose Computing Using GPUs

ciently onto GPUs. It is hard to define such a boundary so as to tell what kind of applications should run better

on GPUs or CPUs. Vuduc et al. present some discussions on the limits of GPUs on general purpose computing

in their work [47, 27].

2.4.1 GPU Architecture

Driven by the ever-increasing demand for real time, high-resolution 3D graphics rendering, GPUs have been

designed to provide a large number of simple, highly parallel, multi-threaded cores with very high memory

bandwidths. The following context in this section is primarily based on NVIDIA GPU. The Nvidia GPU

architecture is built around a scalable array of multi-threaded Streaming Multiprocessors (SMs). Figure 2.5

shows a modern NVIDIA GPU architecture. Each SM has a number of streaming processors (SPs) that share

the control logic and instruction cache. In Figure 2.5, 2 SMs form a building block, and each SM has 8

SPs. Note that these numbers differ with each new generation of GPUs. The GPU device memory (global

memory in Figure 2.5) is typically in the amount of several gigabytes for the low end product line, and several

tens to hundreds of gigabytes for the high end. Compared with the system memory (DRAMs) on the CPU

motherboard, the GPU device memory has higher bandwidth and higher access latency. However, it is often

possible to hide the slow access to global memory by utilizing the high memory bandwidth in coalescing

accesses to memory among multiple threads. Moreover, each SM has a on-chip local memory, although small

in size, which is shared among the SPs and has very low access latency.

A GPU supports thousands of concurrent threads due to the fact that each SP itself is designed to execute

hundreds of threads concurrently. Compared with CPU threads, GPU threads are extremely light-weighted and

the thread management, such as creation, scheduling, and synchronization, is done by hardware in SMs with

very little cost. The number of GPU threads could surpass the one of CPU’s easily by thousands. To manage

such a large amount of threads, GPU employs a unique architecture called Single Instruction Multiple-Threads

(SIMT). In SIMT, a multiprocessor creates, manages, schedules, and executes threads in groups. For example,

the SMs on a NVIDIA GPU typically organize the threads in groups of 32 threads called warps [32]. A thread

group executes one common instruction at a time. If the execution path diverges, such as in a conditional

statement, within a group, then each path will be executed serially. When all the paths are executed, the

threads in the same group converge back to the same execution path. The SIMT architecture performs best

while executing non-divergent data parallel codes.

23

2.4 General Purpose Computing Using GPUs

Figure 2.5: A modern NVIDIA GPU architecture [24].

2.4.2 CUDA Programming Model

Along with the GPU hardware evolution from fixed function devices into increasingly flexible programmable

processors, high level, general purpose GPU programming models have also emerged. NVIDIA’s CUDA [32],

introduced in 2006, is one such programming model. CUDA abstracts the parallel features of GPUs to high

level programming language extensions, in C and C++. The key abstractions include a hierarchy of thread

group, shared memories and barrier synchronizations. The main concepts behind CUDA programming model

can be summarized as follows.

Kernel: Kernel is equivalent to a function in the C language. A kernel is callable from the host and executed

on the device by many threads in parallel. A kernel launch requires specifying the execution configura-

tion which defines the number of threads, multi-processors, etc., to execute the kernel.

Thread Hierarchy: Threads in CUDA can be identified using a 1-dimensional, 2-dimensional or 3-dimensional

thread index, forming 1-dimensional, 2-dimensional or 3-dimensional blocks . This provides a natural

way to invoke computation across the elements in a data structure such as 1, 2 or 3-dimensional array.

Memory Hierarchy: CUDA provides multiple memory spaces to its threads, including per-thread registers

and local memory, per-block shared memory, and global memory, plus two read-only memory spaces,

constant and texture memory.

Heterogeneous Programming: CUDA programming model assumes that the kernels are executed on a sep-

arate device, the GPU, that acts as a co-processor to the host, CPU, which runs the rest of the program. It

24

2.4 General Purpose Computing Using GPUs

also assumes that the host and device maintain their own memory spaces, referred to as host memory and

device memory respectively. In CUDA, the communication between the host and device is via the PCIe

bus, which has a much lower bandwidth compared with the device memory bandwidth. The dynamic

memory allocation on the device memory, I/O of the device are done by the host.

Barrier Synchronization: CUDA threads within the same block can be synchronized by a synchronization

function being called in a kernel. The thread that executes the synchronization function will be held

at the calling location until every thread within the block reaches that location. However, CUDA does

not allow threads in different blocks being barrier synchronized. This allows CUDA runtime system to

execute the thread blocks in any order.

As mentioned above, CUDA allows programmers to access several types of memory space, see Figure 2.6.

These memory spaces differ in size and access latency. Appropriate use of these memory spaces can have

significant performance implications. The registers and shared memory are on-chip memory, thus they can be

accessed extremely fast. Each thread has one set of local registers, and each multiprocessor or block has its

own parallel data cache or shared memory. These two types of memory space are very scarce in sizes. Local

memory is usually used to hold automatic variables, which belong to individual thread, either in the registers

or in the global memory. Local memory is not an actual hardware component of the multi-processor. The read-

only constant memory is shared by all the threads. It is implemented as a read-only region of global memory.

The variables in the constant memory (or constant variables) are usually cached for efficient access. The

read-only texture memory is also implemented as a read-only region of device memory. The texture memory

provides an alternative memory access path to some regions of the global memory. The global memory has

the largest size and highest access latency. For more details on CUDA memory hierarchy, we refer the readers

to [32, 24].

One of the limitations of CUDA is that it is hardware specific. Using CUDA makes it difficult to access other

types of processing units within a single multi-platform source code. Open Computing Language (OpenCL)

is an open standard for general purpose parallel programming of heterogeneous systems that include CPUs,

GPUs, and other types of processors, such as digital signal processors (DSPs) [23]. OpenCL programming

model can easily be mapped onto that of CUDA in their execution models and memory hierarchies [33]. How-

ever, OpenCL has a more complex platform and device management model that reflects its support for cross

platform, cross vendor portability. Another important parallel programming API for heterogeneous computing

system is OpenACC [35]. The OpenACC API describes a collection of compiler directives to specify loops

and regions of code in C, C++, and Fortran to be offloaded from a host CPU to an attached accelerator, such

as GPU. Directives, similar to “#pragma” directives in OpenMP, are simple hints provided to the compiler.

The complier then attempts to generate parallel kernel code for a GPU or other types of processor. OpenACC

25

2.5 Application of GPUs to Data Warehousing

Figure 2.6: CUDA memory hierarchy [32].

allows programmers to create high level heterogeneous programs without the need to explicitly program the

accelerator or launch the kernel on it.

2.5 Application of GPUs to Data Warehousing

We give an overview, in this section, of the applications of GPUs to data warehousing, database management

and data mining. For a broader range of applications and GPGPU techniques, we refer the readers to the work

of Owens et al. [36] and Hwu [21]. To address the data movement overheads in data warehousing applications,

Wu et al. [49] proposed a set of compiler optimizations, kernel fusion/fission, which were inspired by loop

fusion/fission optimizations in the scientific computing. Using kernel fusion, one new functionally equivalent

kernel is created from two or more dependent kernels. Thus reduces the data traffic in PCIe bus, and creates

larger body of code for compiler optimizations. Kernel fission, on the other hand, tries to hide PCIe transfer

time by overlapping kernel execution and data transfer using CUDA streams [32]. A stream is a sequence of

commands that execute in order. Multiple streams can be created to one GPU. Different streams may execute

their commands out of order with respect to one another or concurrently.

Many works have been done on using GPUs to accelerate database applications. In particular, He et al. [18]

designed and implemented an in-memory relational query co-processing system, termed GDB, using GPUs.

The GDB supports a number of common relational query processing operators, namely selection, projection,

26

2.5 Application of GPUs to Data Warehousing

ordering, aggregation and join. These operators were implemented using a set of data-parallel primitives such

as map, split and sort. Each operator in GDB tries to utilize effectively the computation resources based on

a co-processing scheme. The co-processing scheme in this regard takes into consideration the costs of data

movements between CPU and GPU, data partitioning between CPU and GPU. Moreover, He et al. [10] pointed

out that the overhead of data transfer between CPU and GPU through PCIe bus might outweigh the benefit of

GPU acceleration and suggested the use of data compression technique to alleviate the performance problem.

The parallel data mining system, GPUMiner, introduced by Fang et al. [11], demonstrated the effectiveness of

utilizing GPUs to two of the data mining algorithms, k-means clustering and Apriori frequent itemset mining

(FIM). GPU is a co-processor to CPU in GPUMiner. As such, the tasks for each algorithms are carefully

divided between CPU and GPU in such a way that both computing resources can be utilized optimally. Another

feature in GPUMiner is that the use of “regular-shaped” data structures, e.g., bitmap, that are suitable for the

GPUs. Counting is a core operation in both k-means clustering and Apriori FIM. K-means clustering counts

the number of data objects associated with a cluster, and Apriori counts the number of transactions containing

the same item. These associations in both cases are represented using bitmaps, i.e., 2-dimensional arrays of

binary bits, in GPUMiner. This data structure suits GPUs well, especially in the case of trie-based Apriori

algorithm.

Sorting is a fundamental building block for many applications in different domains, such as database sys-

tems [15], and scientific computing. This is no exception for data warehousing applications as well. Sorting is

a crucial part in sort-based aggregation problem. The importance of sorting has led to the design of many sort-

ing algorithms for different parallel platforms, including heterogeneous systems using GPUs [13, 43, 28]. As

part of our algorithm in computing the cube operator, we utilized the GPU based radix sort from the Thrust [20],

a C++ template library for CUDA.

27

Chapter 3

Multi-Dimensional Sparse Array Representations

3.1 Methodology

The multi-dimensional array is widely used to represent multi-dimensional data model in various kinds of

applications. The storage requirement for a k-dimensional array A[Dk−1] . . . [D1] [D0] is cNk, where Nk =∏k−1
i=0 Di, for some constant c that depends on the data type of the array elements. The access time for a

random array element is O(k) for a dense array. On the other hand, if the array is sparse, i.e., the majority

of the array elements are zero or have the same value, storing the whole array will result in inefficient space

usage. This is especially the case when the dimensionality and sparsity of the array both become high, while

the number Nnz of valid array elements, or non-zero values, remain relatively small. In such cases only the

valid array elements need to be stored in such a way that the storage overhead is minimized, while an element

is still accessed efficiently.

The basic methodology we follow in designing a storage scheme for MDSAs is to find a function f() that maps

any given k-dimensional sparse array space to an r-dimensional array space for 1 ≤ r < k. Typically values

for r are 1 or 2. Such a function f() must be an invertible (or bijective) function. Given any array index, 〈nk−1,

. . . , n1, n0〉, of a k-dimensional array element, the function f() should map it to a unique array index, 〈pr−1,

. . . , p1, p0〉, in the corresponding r-dimensional array space. The function must also have an inverse f−1(),

that maps the index 〈pr−1, . . . , p1, p0〉 back to 〈nk−1, . . . , n1, n0〉 in the k-dimensional array. We summarize

this bijective mapping, termed dimensional mapping, as follows.

〈nk−1, . . . , n1, n0〉
f()←−−→
f−1()

〈pr−1, . . . , p1, p0〉 (3.1)

One can conceive that the index 〈pr−1, . . . , p1, p0〉 addresses an element in an r-dimensional array space

F [Mr−1] . . . [M1] [M0] that is also linearized into a sequence of consecutive locationsL[s] = L〈0〉,L〈1〉, . . . ,

L〈s − 1〉, or formed into r − 1 independent vectors. For simplicity, we termed the resulting r-dimensional

array index in the mapping above as the key. According to the dimensional mapping, both offset-value pair

and BESS map a k-dimensional sparse array space to one-dimensional array space, so that the resulting key is

28

3.2 Extended Compressed Row or Column Storage

simply a scalar value. It is an offset value in the case of the former, and bit encoded index (an integer) in the

case of BESS.

The dimensional mapping enables us to transform the array indexes in k-dimensions to the ones in a lower

r-dimensions where often r = 1 or r = 2. Consequently, the original array indexes can be represented by

more compact keys. To represent an MDSA, we construct the keys for those non-zero array elements only,

and a key-value pair for each non-zero element is stored. The question, which naturally arises here, is how to

organize these key-value pairs? The simplest way, yet efficient in storage utilization, is to store the keys and

their corresponding non-zero values, in a number of one-dimensional arrays, or vectors, such as in the cases

of index-value pair, offset-value pair and BESS. The drawback of these methods is that accessing a random

element in the resulting structure can be done at best in O(logNnz). It is possible to improve the data access

efficiency by storing some ‘extra’ information, together with the key-value pairs, about the array structure.

In the following sections, we introduce four new approaches for storing large multi-dimensional sparse arrays.

Besides giving detailed descriptions of the methods, we also present some of the algorithms on their respective

three basic operations. These operations include the following.

Construction: This operation constructs the data structure such as array or trie under a certain scheme to store

the valid array elements and their corresponding keys from the inputs in MM-format.

Random Element Access (or Searching): Given an array index, 〈nk−1, . . . , n0〉, this procedure determines

whether the corresponding array element exists or not, and retrieves the actual value if it exists.

Sub-Array Retrieval: Given the starting index, L = 〈lk−1, . . . , l0〉, and ending index, H = 〈hk−1, . . . , h0〉,

of a sub-array, where lj ≤ hj for 0 ≤ j ≤ k − 1, the procedure retrieves all the valid array elements

within the sub-array bounded by L and H .

3.2 Extended Compressed Row or Column Storage

Extended compressed row or column storage explores applying the idea of CRS or CCS for higher k-dimensional

(k > 2) sparse arrays. This format is able to achieve the most efficient data access performance among the

storage formats considered in this research. However, it suffers from poor storage utilization.

29

3.2 Extended Compressed Row or Column Storage

3.2.1 XCRS and Its Construction

We extended the basic ideas of CRS/CCS to map sparse arrays of k-dimensions (k > 2) to 2-dimensional array

space. The result of such a mapping is that the original array can be defined as a total number of
∏k−1
i=1 Di rows

or one-dimensional arrays. Alternatively, the array can also be defined as a number of columns depending on

the traversal order of the elements in the 2-dimensional space. We refer to these extensions of CRS/CCS as

Extended Row or Column Storage and they are abbreviated as xCRS or xCCS. Due to the similarity of xCRS

and xCCS, we consider only xCRS in the rest of the dissertation. The same ideas can be easily applied to

xCCS.

In the offset-value pair, an offset of a non-zero element is the displacement or relative address of the element in

a linear address space. This definition can be extended to define an offset for an m-dimensional (1 ≤ m ≤ k)

array in a linear address space. In xCRS, we set m = 1, and term the one-dimensional vectors as rows. The

row offset, in xCRS, is defined using the leading k− 1 index values, i.e., 〈nk−1, . . . , n2, n1〉, and computed as∑k−1
i=1 ni

∏i−1
j=1Dj for an array element.

The dimensional mapping in xCRS allows us to obtain a unique key for each array element, using its row

offset and the index value on the dimension d0. Formally, given any array element with index, 〈nk−1, . . . ,

n1, n0〉, in a k-dimensional arrayA[Dk−1] . . . [D1] [D0], the xCRS key for this element is defined as an index,

(
∑k−1

i=1 ni
∏i−1
j=1Dj , n0), in a 2-dimensional array space.

We represent the xCRS key-value pairs for the non-zero elements in an MDSA following the idea of CRS as

described below. The non-zero values and their corresponding index values on the dimension d0 are stored

in two one-dimensional arrays, denoted by val and cind, in row-major order respectively. We use another

one-dimensional array, rptr, to store the starting positions for each row in cind (or val). If a row in xCRS has

no valid array element, the starting position of such a row is indicated by a special value, denoted by “−1”.

Note that each row in xCRS has an entry in array rptr, which is located according to its row offset. The xCRS

representation of the 3-dimensional array example in Figure 2.1 is shown in Table 3.1.

To implement xCRS, we only need to construct the three one-dimensional arrays, namely val, cind, and rptr,

by reading the input data once. This process is simple when the input data is already in the desired order, i.e.,

row-major order. Otherwise, preprocessing of the input data is necessary. An algorithm to construct xCRS is

given in Algorithm 1. In this algorithm, the statements between Lines 4 and 11 are for updating array rptr.

Line 4 finds the difference between the current row and previous row visited. If the difference is greater than

1, then there are some unoccupied rows between the current row and previous one. In such a case the value of

30

3.2 Extended Compressed Row or Column Storage

−1’s are inserted (Line 7) for these rows in rptr.

offset 0 1 2 3 4 . . . 8 9 10 11 12 13 14 15

val 20.5 11.2 17.0 23.6 14.9 . . . 25.1 20.5 14.2 45.6 75.3 13

cind 0 1 2 3 3 . . . 3 0 1 2 3 13

rptr 0 −1 2 −1 −1 . . . 7 −1 −1 −1 9 11 12 13

Table 3.1: The xCRS representation of the MDSA in Figure 2.1.

Algorithm 1: xcrsConstruct(n, v, val, cind, rptr, ctr, lastvisited)
Input: An index-value pair, n[0..k − 1] and v; xCRS arrays val, cind, rptr; a counter array ctr[0..1]

and the last visited row index lastvisited[0..k − 2].
Output: The xCRS arrays with the data v and relevant indexes are inserted.
begin

cind[ctr[1]]← n[0]

val[ctr[1]]← v

4 tmp←getRowOffset(n) - getRowOffset(lastvisited)
if tmp ≥ 1 then

while tmp > 1 do Insert −1s for unoccupied rows
7 rptr[ctr[0]]← −1

ctr[0]← ctr[0] + 1

tmp← tmp− 1

rptr[ctr[0]]← ctr[1]

11 ctr[0]← ctr[0] + 1

ctr[1]← ctr[1] + 1

/* Update the last visited row */

if lastvisited[0..k − 2] 6= n[1..k − 1] then
lastvisited[0..k − 2]← n[1..k − 1]

return

3.2.2 Random Element Access and Sub-Array Retrieval in xCRS

To access an array element, with its index as 〈nk−1, . . . , n1, n0〉, in xCRS, we first compute its row offset,

denoted by row offset , then visit the array rptr at the entry rptr[row offset]. If the value of the entry is

−1, that particular row has no valid array elements. Otherwise, the row has valid elements, and they are

stored within a range which starts at position rptr[row offset] in val. The range ends at the starting position

of the next occupied row. Once the starting and ending positions of the row is determined, we use binary

search algorithm to retrieve the index value n0 within that range in cind. If it is found, the value of this array

element can be retrieved in the array val at the same position as n0 in the array cind. This process is shown

in Algorithm 2. The time complexity of a random element access in xCRS is O(logD0) if the corresponding

31

3.2 Extended Compressed Row or Column Storage

row is occupied, andO(k) otherwise. Due to the sparsity of the array, the actual size of a row in the array cind

(or val) is usually much less than the cardinality, D0, on the dimension d0.

Algorithm 2: xcrsSearch(val, cind, rptr, n)
Input: XCRS arrays and the array index n[0..k − 1] of an element
Output: Returns the corresponding value v if the array element exists, or returns a FALSE value.
begin

FALSE ← −1

p← getRowOffset(n[1..k − 1])
q1← rptr[p]

if q1 6= −1 then
q2← rptr[p+ 1]

if q2 = −1 then
tmp← p+ 2

while rptr[tmp] = −1 do
tmp← tmp+ 1

q2← tmp

v ← binarySearch(cind, val, q1, q2− 1, n[0])
else

v ← FALSE

return v

The random element access operation can be easily extended to retrieve the elements in a sub-array. In xCRS,

the elements in a sub-array are often distributed in the array valwith a constant stride. Within a single row, only

a fraction of the elements (with contiguous addresses) might fall in the range of the sub-array, and every two

neighboring fractions have the same stride (or distance). Based on this property, we can retrieve the elements

in a sub-array by visiting the relevant rows one by one. We determine the range of a row in the same way

as we did in the random element access. Once a row is located in cind, we examine each index value, by

comparing the value n0 with l0 and h0, to determine if it belongs to the sub-array. Note that the computation

of the row offsets can be avoided by simply incrementing the row offsets by the constant stride. An algorithm

to retrieve the non-zero elements of a given sub-array in xCRS is given as Algorithm 12, Appendix A. The time

complexity of sub-array retrieval in xCRS is linear with respect to the number of rows that lie in the sub-array

bounds.

32

3.3 Bit Encoded Extended Compressed Row Storage

3.2.3 Space Utilization of xCRS

Given a k-dimensional sparse array A[Dk−1] . . . [D1][D0], and the sizes of the three xCRS arrays val, cind

and rptr denoted as Sval, Scind and Srptr respectively, the storage space usage of xCRS, Sxcrs, is computed as

Sxcrs = Sval + Scind + Srptr = (Cf + Ci)Nnz + CilNk−1 (3.2)

where Nk−1 =
∏k−1
i=1 Di. Such a space requirement is not optimal compared with the space requirement

of cNk using multi-dimensional array structure, except that Nk−1 is much less than Nk. The storage space

requirement for xCRS becomes worse when the sparsity of the multi-dimensional array is very high. This is

because the xCRS array rptr, which stores the starting positions of each row, may have become sparse itself.

In the following sections, we discuss two different approaches to improve the storage utilization of xCRS while

sacrificing its data access efficiency as little as possible.

3.3 Bit Encoded Extended Compressed Row Storage

In xCRS representation of MDSAs, the array rptr easily becomes sparse itself when the sparsity of the MDSA

is considerably high (say σ > 90%). Recall that we define sparsity as σ = 1 − ρ. To address this issue, we

applied a bitmap data compression method, following the idea of Word-Aligned Hybrid (WAH) code [50],

to compress the array rptr. We term the resulting representation of an MDSA as Bit Encoded Extended

Compressed Row Storage (BxCRS).

3.3.1 Word-Aligned Hybrid Code

WAH is a fast bitmap compression scheme that is based on the idea of run-length encoding. It not only offers

good compression, but also supports fast bitwise logical operations that lead to improved query response time.

In WAH, there are two types of regular words: literal words and fill words. The implementation in the work of

Otoo et al. [50], used the most significant bit of a word to distinguish between a literal word (0) and a fill word

(1). Let us denote a computer word length in bits as W . The W − 1 bits following the most significant bit in

a literal word contain the literal bit values from the original bitmap. The second most significant bit in a fill

word indicates the type of the fill bits (0 or 1), and the remaining W − 2 bits store the fill length. For example,

assume that w = 32, a word C0000002 (Hex 1) in WAH is interpreted as a fill word of fill bit 1, and the fill

length is 2. If it is decompressed, the resulting bitmap is 62 bits of 1’s. A WAH literal word, say 7111A023

1Hex stands for Hexadecimal number.

33

3.3 Bit Encoded Extended Compressed Row Storage

(Hex), when decompressed, the resulting bitmap is the same as the lower 31 (or w − 1 in general) bits in the

literal word itself. Besides regular words, WAH uses an active word to store the last bits (less than W −1) that

could not be stored as literal or fill words.

We applied WAH with slight modification in compressing the bitmap of the xCRS array rptr. The modification

is that we restrict the lower W − 2 bits in a fill word to be always 1. This restriction on the fill word enables

us to have random access to any row using its row offset.

3.3.2 BxCRS and Its Construction

We construct BxCRS for an MDSA based on its xCRS representation. The process is carried out in the fol-

lowing 4 steps.

Step 1: Construct a bitmap for the xCRS array rptr. Each element in rptr corresponds to an entry in the

bitmap array. An entry in the bitmap is either 0 or 1 according to whether its corresponding entry in

rptr being −1 or not.

Step 2: Group the entries in the bitmap into groups of W − 1 (W is the bit length of a computer word), then

represent each group as a computer word.

Step 3: Transform each word into either a literal word or fill word by examining its value. The resulting

compressed words are stored in a one-dimensional array, compwrd. Algorithm 3 shows the BxCRS

bitmap compression procedure.

Step 4: Eliminate the entries with “−1” values in rptr and store only the starting positions of those rows with

valid array elements. The resulting array is denoted as rptr c.

The process of compressing the array rptr and the final BxCRS representation of the example array in Fig-

ure 2.1 are shown of Figure 3.1 and Table 3.2 respectively. The BxCRS represents a k-dimensional sparse array

using four one-dimensional arrays. In Table 3.2, the arrays val and cind are the same as the corresponding

arrays in the xCRS representation (see Table 3.1); the array rptr c now contains only the starting positions of

those rows which have at least one non-zero element; the fourth array compwrd stores the compressed words

of the bitmap constructed from the array rptr in the xCRS representation.

34

3.3 Bit Encoded Extended Compressed Row Storage

Algorithm 3: compressBitmap(rptr bitmap, total row no)
Input: A bitmap array rptr bitmap[..], total row no

Output: An array, compwrd, with compressed words and the number of regular words
no regular wrds

begin
/* W is the bit length of a computer word */

wrdcnt← 0

for i = 1 to total row no/(W − 1) do
Group W − 1 entries in rptr bitmap into a word wrd
if wrd = onefill then The bits in wrd are all 1

Construct a fill word of bit 1 and store it to compwrd[wrdcnt]

wrdcnt← wrdcnt+ 1

else if wrd = 0 then the bits in wrd are all 0

Construct a fill word of bit 0 and store it to compwrd[wrdcnt]

wrdcnt← wrdcnt+ 1

else The bits in wrd are mixed
Store the wrd to compwrd[wrdcnt]

wrdcnt← wrdcnt+ 1

no regular wrds← wrdcnt

/* Group the remaining bits into one active word */

Construct the active word and store it into compwrd[wrdcnt]

return compwrd and no regular wrds

The storage space usage of BxCRS, Sbxcrs is computed as the sum of the sizes of the four BxCRS arrays,

denoted as Sval, Scind, Srptr c and Scompwrd respectively.

Sbxcrs = Sval + Scind + Srptr c + Scompwrd

= (Cf + Ci)Nnz + CilNo + Cid
Nk−1

W − 1
e

(3.3)

where No is the number of occupied rows. The difference between Sxcrs and Sbxcrs lies in the difference

between Srptr in xCRS and Srptr c + Scompwrd in BxCRS. To illustrate this difference, let us first define a

variable γ as the ratio of the number of occupied rows to the total row number, i.e., γ = No/Nk−1. The

ratio of Srptr c + Scompwrd to Srptr is then computed as follows. For the definitions of the other notations, see

Figure 3.1: The process of compressing array rptr. (The word length is 4)

35

3.3 Bit Encoded Extended Compressed Row Storage

offset 0 1 2 3 4 . . . 7 8 9 10 11 12 13

val 20.5 11.2 17.0 23.6 14.9 . . . 21.3 25.1 20.5 14.2 45.6 75.3 13

cind 0 1 2 3 3 . . . 2 3 0 1 2 3 13

rptr c 0 2 4 5 7 . . . 12 13

compwrd 0101 1001 1101 1001 1101

Table 3.2: The BxCRS representation of the MDSA in Figure 2.1.

Table 2.1.

Srptr c + Scompwrd
Srptr

=
CilNo + CidNk−1

W−1e
CilNk−1

=
CilγNk−1 + CidNk−1

W−1e
CilNk−1

= γ +
Ci

CilNk−1
d Nk−1

W − 1
e

≤ γ +
Ci

CilNk−1
(
Nk−1

W − 1
+ 1)

= γ +
Ci

Cil(W − 1)
+

Ci
CilNk−1

For a certain MDSA, Ci
Cil(W−1) + Ci

CilNk−1
is a constant value, and Ci

CilNk−1
� Ci

Cil(W−1) . Hence, the compres-

sion ratio of rptr in BxCRS is determined by γ. Furthermore, if the non-zero values of the array are uniformly

distributed, then γ = 1 − σ, since No = (1 − σ)Nk−1. Thus we can conclude that the overall space saving

in BxCRS is approximately (1 − γ)Srptr. Using BxCRS, the storage requirement of xCRS can be reduced

considerably only when the value of γ is sufficiently small, which means the sparsity σ of the MDSA is very

high.

3.3.3 Random Element Access and Sub-Array Retrieval in BxCRS

The processes of a random array element access and sub-array retrieval in BxCRS and in xCRS have many

similarities. This is due to the fact that the two representations of an MDSA differ only in the arrays, rptr in

xCRS and rptr c, compwrd in BxCRS, that store the starting positions of the rows in the 2-dimensional array

space. Given a certain row offset value, row offset , in xCRS, the value rptr[row offset] could tell us whether

the row is unoccupied or occupied. If it is occupied the starting position of the row in cind is the value of

rptr[row offset]. In BxCRS, on the other hand, the array rptr c stores only the starting positions of those

occupied rows. We need to visit the array compwrd to determine whether a particular row is occupied or not

(Algorithm 13 in Appendix A shows such a procedure). If it is occupied, we go further to find out the position

36

3.4 Hybrid Approach

in rptr c that tell us the starting position of the row in cind.

Given a row offset value, we visit the corresponding bit in the compressed word, compwrd[b row offset
W−1 c]. The

bit value tells us if the row is occupied (1) or not (0). If the row is occupied, we need to count all the previous

1’s, i.e., the occupied rows, in the compressed words up to the current word in compwrd. The count of these

1’s is the position in rptr c that stores the starting position of the particular row in cind. This process is spelled

out in Algorithm 4. In our implementation of random element access and sub-array retrieval, we built a table

or array, denoted as count1Table, of the incremental counts of 1’s for each word in compwrd. For example, the

entry count1Table[12] stores all the 1’s in the leading 12 compressed words in compwrd. Using this method,

the time complexity of counting 1’s is reduced to O(1), from the linear time complexity of counting the 1’s

directly in compwrd. Hence, this table could remarkably speed up the counting process mentioned above, and

it is only built at runtime.

Algorithm 4: bxcrsSearch(val, cind, rptr c, compwrd, n)
Input: BxCRS arrays and the index n[0..k − 1] of an array element
Output: Returns the corresponding value v if the array element exists, or returns a FALSE value.
begin

FALSE ← −1

r ← getRowOffset(n)
/* W is the bit length of a word in compwrd */

r ← r/(W − 1)

t← r%(W − 1)

Get the bit, b, at position W − 1− t in compwrd[r]

if b 6= 0 then
Find the number q of bit 1’s, in compwrd[0..r − 1], and up to position W − 1− t in
compwrd[r]

p1← rptr c[q]

p2← rptr c[q + 1]

v ← binarySearch(cind, val, p1, p2− 1, n[0])
else

v ← FALSE

return v

A random array element access and sub-array retrieval in BxCRS has the same time complexities as in xCRS

(see Section 3.2.2). However, as the comparison in the previous paragraphs showed, the computational cost

of accessing a row in BxCRS is slightly more expensive than in xCRS. More precisely, the ‘extra’ computing

costs are mainly from the computation of the location of a row, i.e., b row offset
W−1 c, in the array compwrd, and

finding the number of 1’s in the last word in compwrd.

37

3.4 Hybrid Approach

3.4 Hybrid Approach

Compressing the array rptr in BxCRS using WAH achieves very good compression ratio only when the MDSA

is very sparse, say σ > 95%. Another way of reducing the size of the array rptr is to store the starting positions

of ‘blocks’ of more than one dimension instead of one-dimensional rows as in xCRS. The Hybrid Approach,

Hybrid, explores combining xCRS with BESS to achieve a good balance between storage and data access

efficiencies. The Hybrid method allows mapping a k-dimensional array to any r-dimensional array (r ≤ k),

instead of a 2-dimensional array only as in xCRS. The mapping transforms the k-dimensional array into a

number of (r − 1)-dimensional (1 ≤ r ≤ k) arrays that are each linearized. We use BESS to represent the

non-zero elements in each (r−1)-dimensional array, and xCRS to represent the resulting r-dimensional array.

3.4.1 Hybrid and Its Construction

Similar to the definition of row offset in xCRS, we define block offset in Hybrid as the displacement of an

(r − 1)-dimensional array in a linear address space. The block offset is defined using the leading k − r + 1

index values, i.e., 〈nk−1, . . . , nr−1〉, and computed as
∑k−1

i=r−1 ni
∏i−1
j=r−1Dj . Within each (r−1)-dimensional

array, following the idea of BESS, we construct the bit encoded index, BEI , for each non-zero element. We

find the BEI for a non-zero element using its lower r − 1 index values 〈nr−2, . . . , n0〉. In constructing the

BEIs, we use dlogDie(0 ≤ i ≤ r − 2) bits for each dimension di. The bits are concatenated in the order

of dr−2, . . . , d0, and interpreted as an integer. Applying this dimensional mapping to a k-dimensional array

A[Dk−1] . . . [D0], we are able to construct a unique key for each non-zero element in A, and the key is defined

as (block offset , BEI).

The Hybrid approach organizes the key-value pairs as follows. The non-zero values and their corresponding

BEIs are stored in two 1-dimensional arrays (or vectors), val and bei, respectively. We use the third array,

bptr, to store the starting positions of each (r − 1)-dimensional array in bei. If an (r − 1)-dimensional array

has no valid array elements, we store “−1” for that particular array. The entry for an (r−1)-dimensional array

in bptr is obtained using its block offset , which is simply bptr[block offset]. The Hybrid representation of

the example MDSA in Figure 2.1 is shown in Table 3.3. In this example, we chose r = 3. The array bptr

in Table 3.3 stores the starting positions of each 2-dimensional array. For example all the non-zero elements

with index value n2 = 0, are stored within the range which starts at the position bptr[0] = 0, and ends at the

starting position of next occupied block (which is 4) in the array val.

The dimensional mapping in Hybrid allows r to be any value between 1 and k. To show how to choose r with

38

3.4 Hybrid Approach

offset 0 1 2 3 4 5 6 . . . 10 11 12 13

val 20.5 11.2 17.0 23.6 14.9 15.2 17.8 . . . 14.2 45.6 75.3 13

bei 0000 0001 1010 1011 0011 0100 0101 . . . 0001 0110 1011 13

bptr 0 −1 4 −1 9 13

Table 3.3: The Hybrid representation of the MDSA in Figure 2.1.

respect to k, we define a parameter hybrid ratio α, where r = αk, 1
k ≤ α ≤ 1. When α = 1

k , r becomes

1, the Hybrid representation results in the original MDSA. If α = 2
k , then r = 2, the Hybrid becomes xCRS.

When α increases from 1
k to 1, the method gradually transforms into BESS. In another words, the data access

efficiency is gradually traded off by storage space efficiency.

3.4.2 Random Element Access and Sub-Array Retrieval in Hybrid

Given the Hybrid representation of an arrayA, we access an array element, 〈nk−1, . . . , n0〉, using the following

procedure.

Step 1: Compute the block offset of the sub-array where the array element belongs to.

Step 2: Examine the value bptr[block offset]. If it is “−1”, the array element has no valid data. Otherwise,

we find the starting position of the corresponding sub-array.

Step 3: Determine the starting position of the next occupied sub-array by examining the value

bptr[block offset +1]. We keep on increasing the value block offset until we found the next occupied

sub-array.

Step 4: Construct the bit encoded index, BEI , of the array element.

Step 5: Search for the value BEI within the range determined by Steps 2 and 3.

Sub-array retrieval is efficient in Hybrid when one or more (r − 1)-dimensional sub-arrays, which are repre-

sented in BESS, entirely belong to the sub-array being retrieved. This is true because the range of an (r − 1)-

dimensional array in bei or val is easily determined as shown in the procedure for random element access. In

other cases, we need to retrieve the sub-array elements in multiple (r−1) dimensional sub-arrays. A sequential

scan or binary search then needs to be used to find those desired elements within each (r − 1)-dimensional

sub-array.

39

3.4 Hybrid Approach

3.4.3 Some Properties of Hybrid

3.4.3.1 The Storage Overhead

The storage space usage of Hybrid approach, Shybrid is

Shybrid = Sval + Sbei + Sbptr = (Cf + Ci)Nnz + Cil

k−1∏
i=r−1

Di (3.4)

where Sval, Sbei and Sbptr represent the sizes of the Hybrid arrays val, bei and bptr respectively. For a certain

r, we can minimize the storage usage by reordering the dimensions so that
∏k−1
i=r−1Di is minimum for a k-

dimensional sparse array.

To compare the storage utilization of Hybrid with that of xCRS, consider the following ratio.

Sbptr
Srptr

=
Cil
∏k−1
i=r−1Di

CilNk−1

=

∏k−1
i=r−1Di∏k−1
i=1 Di

=
1∏r−2

i=1 Di

When r approaches the value k, the ratio above decreases rapidly. This means that the storage overhead in

Hybrid can be much less than the one in xCRS. On the other hand, when r approaches 2, the sizes of those

(r − 1)-dimensional arrays become smaller, and accessing the array elements within these ‘blocks’ becomes

more efficient. At r = 2, the ratio is 1, and the Hybrid representation becomes equivalent to the xCRS. Hence,

we conclude that a desirable balance between storage utilization and data access efficiency can be achieved by

choosing some proper values for r. Similarly, if we compare the storage usage of Hybrid with that of BESS,

the additional space requirement incurred in Hybrid is Cil
∏k−1
i=r−2Di. This value can be a very small fraction

of Nk−1 by reordering the dimensions.

3.4.3.2 The Time Complexities of Random Element Access and Sub-Array Retrieval in Hybrid

The time complexity of finding the starting position of an (r − 1)-dimensional array in bei is O(k − r). This

is due to the costs of computing the block offset and BEI of an array element from its index 〈nk−1, . . . , n0〉.

Recall that block offset =
∑k−1

i=r−1 ni
∏i−1
j=r−1Dj . There are k − r + 1 additions and k − r multiplications

(assuming
∏t
j=r−1Dj , r − 1 ≤ t ≤ k − 1 is precomputed). The cost of computing the BEI involves r − 2

binary bit shift and binary bit or operations, which are negligible compared with the cost of computing the

block offset . Similarly, the cost of the inverse operations, finding the array index of an element from its

40

3.5 PATRICIA Trie Compressed Storage

block offset and BEI, is dominated by the cost of k− r division operations to recover the leading k− r index

values (〈nk−1, . . . , nr−1〉).

Within each (r−1)-dimensional array, the random element access time is bounded byO(logNb), whereNb is

the number of non-zero elements in a (r− 1)-dimensional sub-array. Nb is usually much less than the (r− 1)-

dimensional space
∏r−2
i=0 Di. The difference betweenNnz andNb depends on the value of r. When r increases

from 1 to k,Nb increases gradually from the number of non-zero elements in a xCRS row toNnz . Similarly, in

sub-array retrieval, the time complexity, to retrieve multiple elements within an (r−1)-dimensional sub-array,

also depends on Nb.

3.5 PATRICIA Trie Compressed Storage

PATRICIA trie compressed storage (PTCS) represents a multi-dimensional sparse array by constructing a

PATRICIA trie for the non-zero elements only in the MDSA. Each node in the PATRICIA trie stores a key-

value pair. This results in the storage space requirement for representing the MDSA is linear in the number

of the non-zero elements. A unique characteristic of PTCS, compared with the array-based storage schemes,

is its flexibility for update operations such as insertion and deletion. While an update operation on the data

structures for sparse array, often requires rearranging the whole data, it is only a matter of single node insertion

or deletion for a trie data structure.

3.5.1 PATRICIA

PATRICIA stands for Practical Algorithm to Retrieve Information Coded In Alphanumeric. It is a system for

constructing an index for a binary coded library, and was introduced by Donald R. Morrison in 1968 [29]. The

basic idea of PATRICIA is to avoid one way branching in binary trie by including in each node the number

of bits to skip over before making the next test. A very important property of PATRICIA trie is that there

are no void (NULL) external nodes, which means that if there are N external nodes, then there are N − 1

internal nodes. This property is exploited by ‘folding’ the external nodes into internal nodes plus one header

node. Thus each internal node in a PATRICIA trie becomes an external or a leaf node as well. This method

of representing the PATRICIA trie was first described by Knuth [25]. We adopt this approach for our sparse

array representation. A PATRICIA trie constructed in this manner is shown in Figure 3.2. In this example, the

decimal number in each node indicates the bit position (or bit-index) to be tested for branching, and the binary

bit sequences are the keys. The key construction method is given later in the following section.

41

3.5 PATRICIA Trie Compressed Storage

Figure 3.2: The Patricia trie representing the MDSA in Figure 2.1. (The bit index starts from 1 and increase from left to

right)

3.5.2 PTCS and Its Key

PTCS maps k-dimensional sparse array space to one-dimensional array, or linear space, similar to the mapping

in offset-value pair and BESS. In this work we construct the binary keys in the same manner as BESS. We

implement this dimensional mapping by creating a unique key in linear space for each non-zero element. Each

key-value pair is then inserted into a PATRICIA trie as a single node.

PTCS keys are constructed by encoding the array index of each non-zero element into a single binary bit

sequence. The bit sequence is then interpreted as an integer using the minimum number of bits in a computer

word. We use dlog2Die (0 ≤ i ≤ k−1) bits to encode the index value of dimension di. Given a k-dimensional

index 〈nk−1, . . . , n1, n0〉, let βj be the dlog2Dje bit representation of nj . The bit values of the k-dimensional

index are concatenated in order such that β = βk−1|| . . . ||β1||β0 and then stored in the low-order bits of an

integer word. Both PTCS and BESS keys are generated in the same manner. For example, a possible key

structure for a 4-dimensional sparse array A[12][12][12][1200] is shown in Figure 3.3, assuming the length

of an integer is 32. In Figure 3.3, the trailing 11-bits in positions, 10 to 0, store the bits of dimension d0.

The sequence of 4-bits in positions 14 down to 11 store the 4 bits of dimension d1. The 4-bits of each of the

remaining dimensions d2 and d3 are similarly concatenated in the key. The remaining leading bit positions

are set to 0 signifying that they are not used. Following this simple key construction method, the keys and

their corresponding values for the example 3-dimensional array in Figure 2.1 are shown in Table 3.4. In this

example, we used 3, 2, 2 bits respectively for the dimensions d2, d1, d0 (or I, J,K in the example), and the

42

3.5 PATRICIA Trie Compressed Storage

Figure 3.3: A PTCS key structure for a 4-dimensional sparse array.

size of an integer is assumed to be 8 bits only. The bit sequences are concatenated in the order of I-J-K. Only

the trailing 7 bits of an integer are used in this case. Note also that traversing the leaf nodes from left to right,

when the PTCS keys are constructed as described, gives the row-major traversal of the non-zero elements of

the sparse array.

val index β ptcs key

20.5 (0, 0, 0) 00000000 0

11.2 (0, 0, 1) 00000001 1

17.0 (0, 2, 2) 00001010 10

23.6 (0, 2, 3) 00001011 11

14.9 (2, 0, 3) 00100011 35

15.2 (2, 1, 0) 00100100 36

17.8 (2, 1, 1) 00100101 37

21.3 (2, 2, 2) 00101010 42

.

Table 3.4: The PTCS key-value pairs for the MDSA in Figure 2.1

3.5.3 PTCS Construction

To insert a key-value pair in a given PATRICIA trie, we examine first if the key is already in the trie or not. If

it does not exist, a new node will be created and inserted into the trie. The PATRICIA trie node structure used in

our implementation for PTCS is specified using an abstract C struct as follows.

struct PTCSnode
{

int bit pos
long int key
float val
PTCSnode* llink

PTCSnode* rlink

}

43

3.5 PATRICIA Trie Compressed Storage

The PATRICIA trie node structure given above has five data fields. The fields key and val store the PTCS

key and value respectively. The field bit pos indicates the bit position in a key to be examined for branching

purpose. In PTCS, the value of bit pos starts from 1 at the most significant bit in a key and increases towards

the least significant bit. The fields llink and rlink are the pointers to the left and right child nodes respectively.

Figure 3.4: The insertion of a key x = 1000100 into the PATRICIA trie of Figure 3.2.

Given a PTCS key-value pair (x, v), we traverse down the trie by examining a number of bits (see next section

for more details) in the key x. Once a leaf node is reached, a key comparison is done to see if the key in the

leaf node is the same as the key to be inserted. If they do not match, we find the first bit position i that differs

in the two keys. We then traverse the trie again from the root node until we reach a leaf node or a node where

the value of the bit pos field is not less than the value i. Let us denote this particular node as tmp. At this

position, we create a new node with the key-value pair, and set the value of the bit pos as i. For the new node,

we need to adjust its parent and child links. In the case of the parent link, we inspect the bit value in x at the

position which indicated by the bit pos field in the parent node of tmp. If it is 1, the right link of the parent

node of tmp will point to the new node, or the left link of the parent node of tmp will point to the new node if

the bit value is 0. To adjust the child links, we examine the bit value in x at position i. If it is 1, the left link of

the new node points to the node tmp, the right link points to the new node itself, and vice versa if it is 0. For

example, the insertion of a key x = 1000100 into the PATRICIA trie of Figure 3.2 is illustrated in Figure 3.4.

The node n8 in Figure 3.4 is equivalent to the node tmp, and the node n9 is the new node with the key value

1000100. The Algorithm 5 gives the insertion process for creating the PTCS storage scheme.

44

3.5 PATRICIA Trie Compressed Storage

Algorithm 5: ptcsInsert(T, key, val)
Input: A PATRICIA trie T , a key (key) and value (val) pair.
Output: The PATRICIA trie T with the key-value pair inserted.
begin

if T = NULL then Empty trie
Insert a header node
return T

else
ptr1← T , tmp← pt.rlink

/* Traverse the trie until a leaf node is reached */

while ptr1.bit pos < tmp.bit pos do
ptr1← tmp

if getBit(key, tmp.bit pos) = 1 then
tmp← tmp.rlink

else
tmp← tmp.llink

if key = tmp.key then The key is already in the trie
return T

else
i = firstDifferentBit(key, tmp.key)

ptr1← T , ptr2← pt.rlink

/* Look for the right position for the new node between the root node

and the node tmp */

while ptr1.bit pos < ptr2.bit pos and ptr2.bit pos < i do
ptr1← ptr2

if getBit(key, ptr2.bit pos) = 1 then
ptr2← ptr2.rlink

else
ptr2← ptr2.llink

left = getBit(key, i)?ptr2 : NULL

right = getBit(key, i)?NULL : ptr2

ptr3 = createNewNode(i, key, val, left, right)

if ptr3.rlink = NULL then
ptr3.rlink = ptr3

else
ptr3.llink = ptr3

/* Adjust the left or right pointer of node ptr2 */

if getBit(key, ptr1.bit pos) then
ptr1.rlink = ptr3

else
ptr1.llink = ptr3

return T

45

3.5 PATRICIA Trie Compressed Storage

3.5.4 Random Element Access and Sub-Array Retrieval in PTCS

Random element access: Given a PTCS key x, we traverse the PATRICIA trie until a leaf node is reached.

At the leaf node, we compare the stored key with x. If the keys match, we retrieve the value of the node.

Note that only a single key comparison is done in the search process. We describe the random element

access process in more detail in the following example. Suppose we search for, or try to access, a key

x with bit sequence ‘0101010’ in the PATRICIA trie of Figure 3.2. We start at the root node (n1) by

checking its bit pos field, which indicates that we examine the bit at position 1 (the leftmost bit) in the

key x. That bit is 0, so we go to the left branch. At node n2, we check the bit in x at position 2, which is

1, that leads us to the right, node n3. From node n3, we move down to n5. At node n5, the bit in position

7 examined in x is 0. The left link of n5 takes us back to n3 again. However, the value of bit pos in

node n3 is less than that of node n5. This indicates a leaf node is reached. We find a desired leaf node

by traversing down the PATRICIA trie until we come to a node, where the values of the bit pos field do

not increase any more. The random element access process is shown in Algorithm 6.

Algorithm 6: ptcsSearch(T, key)
Input: The PATRICIA trie T and a key, key.
Output: Return the data val if the key is found or NULL if not found.
begin

pt← T , tmp← pt.rlink

while pt.bit pos < tmp.bit pos do
pt← tmp

if GetBit(key, tmp.bit pos) = 1 then
tmp← tmp.rlink

else
tmp← tmp.llink

if key = tmp.key then
return tmp.val

else
return NULL

Sub-array retrieval: In the design of sub-array retrieval algorithm, the following property of PATRICIA trie

is exploited. Pre-order traversal of Patricia trie in PTCS results in a sorted list of the array elements

in row-major order. Following this property, the elements in a sub-array resides only in one of the sub-

tries. For example, all the array elements that have value 2 on dimension d2 resides in the right sub-trie

rooted at node n2 in Figure 3.2. Algorithm 14 in Appendix A is designed using the same property for

sub-array retrieval in PTCS. The size of the sub-trie is dependent on the size of the sub-array defined.

Furthermore, it is possible to traverse only part of this sub-trie to retrieve the desired sub-array elements.

46

3.5 PATRICIA Trie Compressed Storage

3.5.5 Some Properties of PTCS

Note that the PATRICIA trie in PTCS has only data nodes, each node represents one data item, there is no node

in the trie used only for a branching purpose. If an MDSA contains Nnz valid array elements, a PATRICIA

trie with Nnz nodes will suffice to represent the entire non-zero values. Thus the storage used to represent a

multi-dimensional sparse array is linear with respect to the number of non-zero values. The PATRICIA trie

node structure is the same as the one given in Section 3.5.3 on Page 43, and the size of one node is denoted by

Spnode. The exact amount of storage space required for PTCS, Sptcs is computed as follows.

Sptcs = NnzSpnode ≈ (Ci + 3Cil + Cf)Nnz (3.5)

In the above formula, we assumed the size of a pointer data type to be the same as the size of the longest integer.

The basic operations, such as random element access in PTCS take time proportional to the height of the trie.

If an MDSA, represented in PTCS, contains Nnz non-zero values, then the average height h of the trie is at

least dlog2Nnze [9]. The average number of bits examined during a successful random search in a PATRICIA

trie is approximately logNnz + 0.33275, and logNnz − 0.31875 during an unsuccessful one [26]. Based on

these results, we may expect that a random element access in PTCS has the time complexity of O(logNnz).

The time complexity of sub-array retrieval in PTCS is determined by the size, Nb, of the sub-trie where the

sub-array resides. Once the root node of the sub-trie is found, the traversal of the nodes in that sub-trie has

the time complexity of O(Nb). The computational costs in sub-array retrieval include key comparisons and

decomposing the PTCS key into array index.

A drawback of PTCS lies in its key construction. Recall that a PTCS key is constructed by encoding each

index value on the dimension di using dlogDie bits. When Di is much less than 2dlogDie, this method could

lead to the imbalanced distribution of bits 0 and 1 in the PTCS keys. For example, if D = 5, we use 3 bits

to encode the index values. They are 0 → 000, 1 → 001, 2 → 010, 3 → 011, and 4 → 100. If we assume

these index values appear randomly (or uniformly), then the occurrences of 0’s are much more than that of 1’s

in the keys. A PATRICIA trie is insensitive to the order in which the keys are inserted, but it is very sensitive

to the distribution of the bits in the keys [26]. If bit 0 appears far more often than the bit 1, or vice versa, the

resulting PATRICIA trie is likely to become more imbalanced.

In this chapter, we have introduced four new storage schemes for organizing multi-dimensional sparse arrays.

These methods share the same approach in handling sparsity of the array by storing only the valid array ele-

ments, and applying various dimensional mappings. Our main concern in the design of storage schemes for

MDSAs is to reduce the storage overhead without compromising the data access efficiency. Analytical proper-

ties of each of these methods have been discussed to show their advantages and disadvantages. Experimental

results and further analyses are given in Chapter 7.

47

Chapter 4

Multi-Dimensional Aggregations of Sparse Array Ele-

ments

Data warehousing and OLAP systems frequently use aggregations to answer complex queries. The data in

these systems is characterized by massive volume and high dimensionality. In such a context, carrying out

aggregation needs to be very efficient with respect to space and time. This is especially the case in computing

the cube. A multi-dimensional data in MOLAP consists of measure data and dimensional data. It is typical that

one measure data is associated with a set of dimensional data. Since the dimensional data is often represented as

integers, it takes up the most volume of the data, especially in the case of high dimensions, in data warehouses.

Reducing the storage of dimensional data could lead to reduced volume of the data. Each storage scheme we

introduced in Chapter 3 reduces the storage for the dimensional data by a certain degree, while leaving the

measure data as the original. In the design of these schemes, besides improving the storage utilization, we

also take into consideration maintaining efficient data access. Accessing an array element, in any of these

storage schemes, can be done independently and efficiently. In multi-dimensional aggregation and the cube

computation, applying a storage scheme to represent the multi-dimensional data could lead to the following

benefits. Firstly, more data can fit in the memory, thereby reducing the I/O. Secondly, accessing an array

element is efficient, hence increasing the speed. Thirdly, the aggregation results may also be represented in a

space efficient storage scheme.

To evaluate the performances of various storage schemes on the computation of multi-dimensional aggregation,

we designed and implemented aggregation algorithms for PTCS, xCRS, BxCRS, Hybrid and BESS. We took

the following approaches in the design of these algorithms.

1. We considered only one distributive aggregate function on summation.

2. For a k-dimensional sparse array, we assumed the dataset was organized and sorted in the dimension

order of dk−1, . . . , d1, d0. The algorithms aggregate on k − 1 group-bys in a single scan of the data.

The k− 1 group-bys are (dk−1), (dk−1, dk−2), . . . , (dk−1, . . . , d2), (dk−1, . . . , d2, d1) respectively. We

48

4.1 Aggregation Using PTCS and BESS

left out computing the group-by of (dk−1, . . . , d1, d0), since we assumed there were no duplicate array

elements in the MDSA data.

3. A top-down approach was applied to compute the multiple aggregations.

4. The intermediate aggregation results were stored as a list of key-value pairs in memory, where the key

was a BEI (Bit Encoded Index) representing the dimensional data. The final results were written into a

file using index-value pair representation.

5. For simplicity, we only considered the case where the entire data set can fit in memory.

In the following sections, we discuss the methods to compute the multi-dimensional aggregation using various

storage schemes. We also discuss our approach to compute the cube operator using BESS and PTCS.

4.1 Aggregation Using PTCS and BESS

Pre-order traversal of PATRICIA trie in PTCS visits the nodes in increasing order of their keys. Such an ordered

list of the elements is exactly the same as the list of elements in BESS. Let us assume the keys, which encode the

dimensional data, are sorted on the dimension order of (dk−1, . . . , d2, d1, d0). It implies the array elements are

grouped on the same dimension order. This fact enables us to compute multiple aggregations in one traversal

of the PATRICIA trie in PTCS, or one serial scan of the BESS arrays. The benefits of this approach include

reduced I/O, sharing the cost of sorting, and using the result of one aggregation to compute another. In a top-

down approach, we start aggregating at the finest level granularities, which is the group-by of (dk−1, . . . , d1)

in our case. In order to determine if the two neighburing array elements are in the same group on dimensions

(dk−1, . . . , di), we only need to mask off the bits on dimensions (di−1, . . . , d0), then compare the resulting

new keys. If they are the same, the two array elements are in the same group. We can conclude even further that

they will be in the same groups on the remaining group-bys of (dk−1, . . . , di+1), . . . , (dk−1, dk−2), (dk−1). If

the new keys are not the same, we aggregate the data into different groups.

To compute the aggregation for each array element (or node in the case of PTCS), we keep note of two elements

at the same time. They are the current element and the previous element, which were aggregated immediately

before the current one. We first mask off the bits for dimension d0 in both keys of the two elements. The result-

ing two new key values are then compared to determine whether the current data value should be aggregated

to an older value or a new key-value pair should be created. In the latter case, the key is the new key of the

current element with its bits on dimension d0 masked off. The same operation is then carried out iteratively to

the next level of aggregation, where the bits on the next dimension are masked off in the keys. For example, if

49

4.2 Aggregation Using xCRS and BxCRS

we masked off the dimension d0 in the previous iteration, then we mask off the d1 in the current iteration and

so on. The iteration stops when either we exhaust all the dimensions or the array elements are already in the

same group. That is to say the keys of the current element and previous element are the same. This procedure

is depicted for the 3-dimensional example data for Figure 2.1 on Page 11, in Figure 4.1. Note that in order to

compute k−1 aggregations in one scan, we need to create k−1 arrays to store the results. To save the memory

usage at runtime, we store the results as a list of key (PTCS key or BESS key) and value pairs.

Figure 4.1: Aggregating the data represented in PTCS or BESS. Note that we only considered those dimensional bits in

an integer here. The leading unused bits in PTCS and BESS keys are not shown. The keys and values in bold mark those

pairs which are part of the results. The operation ‘Mask off d1’ is not needed to be carried out where there is no arrow

between 2nd and 3rd column.

4.2 Aggregation Using xCRS and BxCRS

XCRS and BxCRS use the similar algorithms for the basic array operations we discussed in Chapter 3. This

is no exception for multi-dimensional aggregation as well. The difference between the two schemes lies in the

computation of the starting position, in the array cind, of a certain row (see Section 3.3.3). In this section, we

discuss computing multi-dimensional aggregation using xCRS. The methods we developed in this regard also

applies to BxCRS.

50

4.3 Aggregation Using Hybrid

Our approach to compute multiple aggregations in xCRS is to aggregate the array elements row by row. Within

each row, we compute multiple aggregations using the top-down approach. A row in xCRS has the finest level

of granularity, i.e., (dk−1, . . . , d1), among the aggregations we compute. The aggregation results of the rows

can be used to compute the other aggregations with coarser level of granularities. Visiting the array elements

row by row can be done by conducting a serial scan of the array rptr in xCRS. Recall that, in xCRS, an array

element is represented using index (row offset , n0), where row offset is computed using the array index as∑k−1
i=1 ni

∏i−1
j=1Dj , and n0 is the dimension value on d0. Once the range of a row in the array val (or cind)

is found, we aggregate all the values in val within this range to a single value. To compute the aggregations

on other levels, we need to recover the index values, 〈nk−1, . . . , n1〉, from the value of row offset . However,

computing the index values from the row offset requires a number of modulus and subtraction operations,

which are computationally expensive, especially the modulus operation. One way to avoid such a computation

is to increment the index values according to the difference in row offsets. For example, the index values

corresponds to row offset value 0 is 〈0, . . . , 0, 0〉 (in C language). If the next occupied row has the row offset

value 4, the corresponding index values can be computed by incrementing the index value 〈0, . . . , 0, 0〉 by 4,

which only needs a small number of additions. The k − 1 leading index values, i.e., 〈nk−1, . . . , n1〉, are then

stored as BEI (bit encoded index) instead of using k − 1 integers. Using BEI not only saves space, but also

simplifies the index comparisons. Comparing two indexes in its conventional array index form usually needs

more than one integer value comparisons. On the other hand, comparing two indexes represented in their BEIs

needs only one comparison.

From the aggregation result on a row, and the BEI for 〈nk−1, . . . , n1〉, we can compute the remaining k − 2

aggregations iteratively in the similar way as discussed in Section 4.1. During the process of aggregation, we

always aggregate the current value according to the previous one aggregated immediately before it using their

BEIs. At each level, we mask off, in the BEIs from the previous level, the bits on a certain dimension. We then

compare the two new BEIs to decide whether the current value is aggregated to an older group or a new one.

The aggregation results are stored as key-value pairs, where the key is the BEI of the corresponding dimension

values on each level of aggregation.

4.3 Aggregation Using Hybrid

Hybrid represents MDSAs using the combination of xCRS and BESS. Consequently, computing the multi-

dimensional aggregations for Hybrid takes the characteristics of both schemes into consideration. Given a

k-dimensional sparse array, Hybrid organizes the MDSA as a number of (r − 1)-dimensional (1 ≤ r ≤ k)

arrays in a linear address space. We address an (r − 1)-dimensional array in Hybrid using its block offset in

51

4.4 Comparative Analysis of Computing Aggregations Using Various Schemes

the linear address space. The array elements in each (r − 1)-dimensional array are represented using BESS,

and these (r−1)-dimensional arrays are represented using xCRS. Each array element in Hybrid is represented

using an index (block offset, BEI). To compute multiple aggregations in Hybrid, we aggregate within an

(r − 1)-dimensional array using the method for BESS, then using these results to compute other less detailed

aggregations using the same method for xCRS.

We compute multiple aggregations ‘block’ by ‘block’ in Hybrid, instead of aggregating row by row in xCRS.

A ‘block’ is an (r − 1)-dimensional array in Hybrid here. These (r − 1)-dimensional arrays are visited in the

increasing order of their block offsets, i.e., 0, 1, 2, 3, . . . ,
∏k−1
i=r−1Di− 1. An outline of computing multiple

aggregations for each (r − 1)-dimensional array or ‘block’ in Hybrid is described below.

1. Compute the array index (or block index), 〈nk−1, . . . , nr−1〉, of the (r − 1)-dimensional array. This

can be done by incrementing the block index, of previously visited (r − 1)-dimensional array, by the

difference in their block offsets. We then construct the bit encoded index, BEI for the block index.

2. Find the range of the (r − 1)-dimensional array in bei by visiting array bptr.

3. Compute the aggregations on r − 1 number of group-bys, (dk−1, . . . , d1), . . . , (dk−1, . . . , dr−1) using

the aggregation method for BESS.

4. Using the aggregation result on (dk−1, . . . , dr−1), compute the aggregations on the remaining k − r

number of group-bys, (dk−1, . . . , dr), . . . , (dk−1).

The aggregation results are stored as key-value pairs, where the key is the BEI of an aggregated group.

4.4 Comparative Analysis of Computing Aggregations Using Various Schemes

Table 4.1 summarizes the approximate computational costs (in the worst case scenario) of computing k − 1

aggregations in a single scan of the data represented in PTCS, BESS, xCRS, BxCRS and Hybrid respectively.

The nature of k−1 aggregations is given at the beginning of this chapter. In Table 4.1 Cbit ops is the cost of bit

operation; Cx row, Cbx row are the costs of finding the range of a row and computing the row index in xCRS

and BxCRS respectively; Chy blk is the cost of finding the range of a (r− 1)-dimensional array and computing

the ‘block’ index in Hybrid; Cpre ord is the cost of pre-order trie traversal in PTCS. Cpre ord is specific to

PTCS, because all the other storage schemes are array based. Finally, C(f) is the total cost of carrying out the

aggregation function f() multiple times. C(f) is the same for all the schemes considered here. Computing the

‘block’ index in Hybrid involves fewer number of dimensions than it is in computing the row index in xCRS

52

4.5 Computing the Cube

Scheme Cost

PTCS (k − 1)Cbit opsNnz + C(f) + Cpre ord

BESS (k − 1)Cbit opsNnz + C(f)

xCRS Cx row
∏k−1
i=1 Di + (k − 2)Cbit ops

∏k−1
i=1 Di + C(f)

BxCRS Cbx row
∏k−1
i=1 Di + (k − 2)Cbit ops

∏k−1
i=1 Di + C(f)

Hybrid Chy blk
∏k−1
i=r−1Di + (k − r)Cbit ops

∏k−1
i=r−1Di + (r − 2)Cbit opsNnz + C(f)

Table 4.1: The approximated costs of computing multiple aggregations using various storage schemes

or BxCRS. Further, finding the range of a row in BxCRS is slightly more expensive than that in xCRS. Hence

we have Chy blk ≤ Cx row ≤ Cbx row.

By comparing the approximate costs in Table 4.1, we can conclude the following. For computing multiple

aggregates in one scan of the multi-dimensional data, BESS is the most efficient storage scheme, followed by

Hybrid, xCRS, and then BxCRS in that order. Unlike other operations, such as sub-array retrieval in MDSA,

multi-dimensional aggregation requires visiting every non-zero values in the MDSA instead of only part of

the valid elements. BESS organizes an MDSA as one-dimensional arrays of all the non-zero values, and

their corresponding array indexes encoded in BEI. Moreover, BEI simplifies the array index comparisons to a

single, in most cases, integer value comparison. These characters make BESS very suitable for carrying out

multi-dimensional aggregations. Compared with BESS, PTCS incurs an overhead of traversing all the nodes

in PATRICIA trie to compute an aggregate function.

4.5 Computing the Cube

The cube computation supports an important class of decision support queries in data warehousing and OLAP

systems. Computing the cube for an MDSA of k dimensions involves the computation of aggregations at 2k dif-

ferent granularities, where each granularity is one of the 2k possible subsets of the dimension set {dk−1, . . . , d0}.

Clearly, this operation presents challenges on both space and speed. Our approach, in this research, to compute

the cube is based on the classical algorithm, PipeSort, which was proposed by Sarawagi et al. [1]. An overview

of the highlights in our approach is summarized as follows.

• Two storage schemes, PTCS and BESS, were used to represent the MDSA in computing the cube, and

the cube results were represented using BESS.

53

4.5 Computing the Cube

• In generating the paths in the search lattice, we applied the algorithm, Paths({d0, . . . , dk−1}), intro-

duced by Ross et al. [38]. The algorithm determines an optimal set of paths, hence minimum number of

sorts.

• Sorting the data in BESS was done by sorting the BEIs as single integers, which greatly simplified the

sorting process of multi-dimensional data. For PTCS, the sort operation was replaced by reconstruction

of a PATRICIA trie, and traversing the new trie in pre-order.

The comparative analyses in Section 4.4 show that BESS is the most efficient method for computing the multi-

dimensional aggregation. PTCS is similar to BESS except that it stores the same list of non-zero elements in

a PATRICIA trie. Considering this similarity, we only chose PTCS and BESS to represent the MDSA when

computing the cube.

It is not always that the entire data can fit into memory when performing complex operations, such as computing

the cube, over massive volume of data in data warehouses. Divide and conquer is an effective method that often

being applied in such circumstances. This requires that we partition the data into smaller fragments first, then

carry out the operation over the data fragments independently, and merge the results at the end. In this work,

however, we only aim at developing efficient methods to compute the cube over the data that can fit in memory.

4.5.1 Paths in the Search Lattice

In sort-based cube computing algorithm, a sort operation is performed at the root node of each path in the

search lattice. To minimize the cost of sorting operation, it is desirable to partition the search lattice into a

minimum number of paths that cover all the nodes in it. Ross et al. argued in [38] that
(

k
dk/2e

)
paths are the

minimum number of paths that cover all the nodes in a search lattice with k attributes. Based on their brief

argument, we prove this claim as follows.

For a search lattice with k attributes, there exists k+1 levels, i.e., level 0, level 1, . . . , level k. See the example

of Figure 2.4 on Page 19. At any level i (0 ≤ i ≤ k), there are exactly
(
k
i

)
nodes, and each node consists of i

attributes. The value
(
k
i

)
, 0 ≤ i ≤ k, attains its maximum at

(
k
k/2

)
when k is an even number, and

(
k
bk/2c

)
, or(

k
dk/2e

)
, when k is an odd number. Hence, at level bk/2c, or level dk/2e, the search lattice has the maximum

number of nodes. Moreover, no path in the search lattice passes more than one node at the same level. Thus

there must exist
(

k
bk/2c

)
, or
(

k
dk/2e

)
, paths in the search lattice to cover all the nodes.

The Algorithm 7, Paths({d0, . . . , dk−1}), presents a constructive procedure that generates an optimal set of

54

4.5 Computing the Cube

paths in the search lattice [38]. The optimal set consists of precisely
(

k
dk/2e

)
paths. The main idea of this

algorithm is based on the symmetry of the search lattice. For any level i (0 ≤ i ≤ k), there exist a level k − i,

that the two levels have the same number of nodes, i.e.,
(
k
i

)
=
(
k
k−i
)
. According to this property, we may

construct the paths in the following way. We start from level k, choose one node at each consecutive level (in

decreasing order), until we reach level 0. Next, we consider level k − 1. We construct paths that start at level

k − 1, and end at its symmetric level, i.e., level 1. One of the nodes on level k − 1 is already in the first path

we constructed. The same is also true for level 1. Thus, we can construct exactly
(
k
k−1
)
−
(
k
k

)
paths, each of

them starting at level k− 1 and ending at level 1. The same process is carried out level by level until we reach

the level dk/2e. The total number of paths constructed in this process will be(
k

k

)
+

(
k

k − 1

)
−
(
k

k

)
+

(
k

k − 2

)
−
(

k

k − 1

)
+ · · ·+

(
k

dk/2e

)
−
(

k

dk/2e − 1

)
=

(
k

dk/2e

)
(4.1)

Hence, the algorithm Paths({d0, . . . , dk−1}) constructs exactly
(

k
dk/2e

)
paths, which is the minimum number

of paths required in a search lattice to cover all the nodes. The paths generated by executing the algorithm

Paths({d0, . . . , dk−1}) on 4 attributes D,C,B,A (attribute D corresponds to d0, C to d1, and so on) are as

follows. There are 6 (
(
4
2

)
= 6) paths in G(4).

G(4) =A ·B · C ·D → A ·B · C → A ·B → A→ φ

A ·B ·D → A ·D → D

A · C ·D → A · C → C

B · C ·D → B · C → B

B ·D

C ·D

The attribute orders in G(k) are reordered to obey the prefix property. By prefix property, we mean the nodes

in a path share the maximum length of prefix attributes among them, as well as between each adjacent nodes.

Following the above example, the 6 paths in G(4) after prefix sorting become the following.

G(4)prefix−sorted =A ·B · C ·D → A ·B · C → A ·B → A→ φ (1)

D ·A ·B → D ·A→ D (2)

C ·A ·D → C ·A→ C (3)

B · C ·D → B · C → B (4)

B ·D (5)

C ·D (6)

To compute the cube in PipeSort, one sort operation is performed for each path according to the attribute order

in the root node. Then all the cuboids in a path are computed in a pipelined fashion.

55

4.5 Computing the Cube

Algorithm 7: Paths({d0, . . . , dk−1})
Input: Attribute set {d0, . . . , dk−1} of an MDSA.

Output: A set G(k) of
(

k
dk/2e

)
paths in the search lattice that cover all the nodes.

begin

if k = 0 then

Return a single node with an empty attribute list, φ

else

Let G(k − 1)← Paths({d0, . . . , dk−1})

Let Gl(k − 1) and Gr(k − 1) denote two replicas of G(k − 1)

Prefix the attribute list of each node of Gl(k − 1) with dk−1

for Each path N1 → . . .→ Np in Gr(k − 1) do

Remove node Np and the edge into Np (if any) from Gr(k − 1)

Add node Np to Gl(k − 1)

Add an edge from node dk−1.Np to node Np in Gl(k − 1)

Return the union of the resulting Gl(k − 1) and Gr(k − 1)

4.5.2 Computing the CUBE Using BESS

Efficient sorting plays an important role in the sort-based cube computation. In Section 4.5.1, we discussed

how to generate an optimal set of paths in the search lattice so that the number of sorts are minimized when

computing the cube. In order to compute the cube for an MDSA represented using BESS, we first address the

problem of how to perform the sort operation efficiently for the BESS data.

Recall that the array index of each non-zero element of an MDSA is represented using BEI in BESS. BEI

encodes each array index into a single integer value. To sort the MDSA data in a certain dimension order, we

need to sort the corresponding BESS data according to their BEIs. With regard to sorting the BESS data, we

can make the following claim.

Claim 4.1. Sorting the BEIs as integers sorts the BESS data correctly on the corresponding array indexes.

Proof. Inductive basis: If n = 1 (one-dimensional array), the value of BEI equals the corresponding array

index on dimension d0. Sorting on the BEIs is equivalent to sorting on the array indexes. The Claim 4.1 is true

for n = 1.

Inductive step: Assume the Claim 4.1 is true for n = k − 1, i.e., the BEIs are already correctly sorted on the

lower k − 1 index values. Let us prove the claim is also true for n = k. We concatenate the index values on

dimension dk−1 with the BEIs of the lower k − 1 dimensions at the leftmost valid bit position. Consider two

56

4.5 Computing the Cube

elements a = A〈pk−1, . . . , p0〉, b = A〈qk−1, . . . , q0〉, with their new BEIs on k dimensions denoted as abei

and bbei respectively. If pk−1 > qk−1, then abei > bbei, regardless of the order of the BEIs on the lower k − 1

dimensions. Similarly, if pk−1 < qk−1, then abei < bbei. If pk−1 = qk−1, the order of abei and bbei maintains its

original order on the lower k− 1 dimensions. Hence, Claim 4.1 is true for n = k. By mathematical induction,

sorting the BEIs as integers sorts the BESS data correctly on the corresponding array indexes.

Among the various efficient sorting algorithms, we chose radix sort to sort the BESS data. Radix sort is often

used to sort keys with multiple fields. In our implementation of radix sort, we used a stable sort, counting sort,

to sort the bit fields in BEIs in a number of passes. Given Nnz b-bit numbers and any positive integer r ≤ b,

radix sort sorts these numbers in Θ(b/r)(Nnz + 2r) time if the stable sort it uses takes Θ(Nnz + q) time for

inputs in the range of 0 to q [6]. We choose q < Nnz so that the counting sort in radix sort takes time Θ(Nnz).

Further, if we choose r ≈ logNnz , then the radix sort gives us a linear time sorting. The Algorithm 8 shows

the process of computing the cube for an MDSA represented using BESS. In Algorithm 8, Line 5 reorders

the attribute values in the BEIs. For example, assuming the BEIs are currently in dimension order of ABCD,

and the new order is of BCA; we extract the attribute values from a BEI in the current dimension order, then

rearrange them into a new BEI in the new dimension order. For Line 7, we use the method for computing

multiple aggregations introduced in Section 4.1. Line 8 writes the aggregation results of a path to the disk.

Algorithm 8: BESSCube(bei, val, {dk−1, . . . , d0})
Input: The BESS arrays, bei and val, representing A[Dk−1], . . . , [D0]; the attribute set,

{dk−1, . . . , d0}, of A.

Output: The cube results for A over {dk−1, . . . , d1}.

begin

/* Generate the set of paths, G(k), in the search lattice */

G(k)← Paths({d0, . . . , dk−1})

G(k)← PrefixSort(G(k))

for Each path, N1 → . . .→ Np, in G(k) do

5 Reset the attribute order of the BEIs in bei according to the dimension order in node N1

/* Sort bei and val */

6 Sort(bei, val)

7 Compute the multiple aggregations

8 Output the aggregation results

57

4.5 Computing the Cube

4.5.3 Computing the CUBE Using PTCS

In computing the cube for an MDSA represented using PTCS, we take a similar approach to the one in Algo-

rithm 8. The difference between these two procedures lies in the way we sort the valid elements in the MDSA.

For PTCS, we construct a new PATRICIA trie from an existing one by changing the dimension order in the

current key for each node. The pre-order traversal in the resulting PATRICIA trie gives us a sorted list of the

valid elements on the desired dimension order. In order to apply the Algorithm 8 to compute the cube using

PTCS, we need to replace the functions on Lines 5, and 6, with the ones for traversing the current PATRICIA

trie and constructing a new PATRICIA trie.

58

Chapter 5

Selected Array Operations on GPUs

5.1 Overview

The trends of multi-core and many-core microprocessor architectures, coupled with the compute- or data-

intensive computing, require parallelism in both system and application softwares. There are a number of

parallel programming models which span a wide range of hardware systems, from the supercomputing facilities

at the high end to the normal PCs and the mobile devices at the lower ends. Our focus, in this research, is on

the heterogeneous programming based on the multi-core CPU systems equipped with many-core GPUs as

accelerators. GPUs, as one of the most prominent type of accelerator, offer high performance, good energy

efficiency and low price. The main challenge with GPUs, however, is that they are only suitable for certain

type of problems, particularly problems with sufficient data parallelism, regularity in control flow and memory

access patterns. As we already indicated in the previous chapters, data warehousing and OLAP systems process

and analyze large volumes of data sets, and require fast response time. Parallelism plays an important role

in these type of applications. In this chapter, we investigate applying heterogeneous computing to some of

the operations and in particular, the problem of the cube computation in data warehousing and OLAP. More

specifically, based on the CPU-only implementations of various operations discussed throughout Chapters 3

and 4, we use GPUs to accelerate the data parallel tasks in the basic array operations, namely, large scale random

element access and sub-array retrieval, as well as in computing the cube. By large scale random element access

we mean accessing multiple array elements in large data set in a single operation (or function call). Our basic

approach, in this regard, is to utilize both CPU and GPU in a computing task so that the overall performance

can be improved.

We follow a design cycle, assess, parallelize, optimize [31], in the process of mapping the serial codes, or parts

of them, to GPU. Each part of this cycle is discussed in more detail as subsequently.

Assess: A problem, that is particularly suitable for GPU computing, usually has plenty of data level paral-

lelism, and the data can be processed independently on different processors for the same set of operations.

59

5.1 Overview

In this case, each thread in a GPU executes the operation on a small fraction of the data independently

and in any order. Control flow is also an important factor in successful GPU accelerations. The prob-

lems with regular control flows can be processed on GPUs more efficiently. Unlike CPUs, GPUs have

limited advanced processing capabilities, such as branch prediction and out-of-order execution. Such an

architectural feature also imposes restrictions on the types of data structure that can be implemented ef-

ficiently on GPUs. Irregular data structures, such as a trie, are difficult to share among the GPU threads.

Furthermore, recursion, which is needed to traverse a trie, is not supported on the GPU [11].

Parallelize: The tasks that are offloaded to GPUs are executed by CUDA kernels. A CUDA kernel is executed

in parallelN times if there areN threads. To invoke a CUDA kernel, the host CPU specifies the number

of threads to be created on GPUs in a hierarchical manner, i.e., the number of thread blocks, and the

number of threads in each block. The numbers of threads and blocks should be chosen carefully in order

to optimize the overall performance. A sufficient number of threads is necessary to saturate memory

bandwidth. However, the number of threads in a block is often limited and hardware dependent. Sim-

ilarly, a proper number of blocks is needed to keep all the streaming processors busy, and to achieve

a good load balance at the same time. In this regard, different configurations can be tested to find an

optimal one.

Optimize: There is a number of optimization rules frequently applied in CUDA C programming. The ones

that are of particular interest in this research are as follows.

Memory hierarchy: Understanding the memory hierarchy of GPUs is crucial in programming them.

Global memory access should be coalesced whenever possible to utilize the high memory band-

width the GPUs offer. For example, if the memory interface width is 256 bit, at a double rate a

total of 64 bytes are transferred with each memory block. When any amount of data, as little as one

byte, is requested, the whole 64 byte block the data belongs to is actually transferred. By coalescing

the memory access, we can increase the number of useful bytes in each memory block transferred.

Hence, memory bandwidth could be utilized more efficiently. Due to the high latency of global

memory, frequent access of it incurs heavy runtime penalty. Shared memory, on the other hand,

offers a much lower latency. Frequently accessed data should be kept in shared memory during

one kernel invocation. Constant and texture (read-only) memory in GPUs play the similar role as

the cache for CPUs. We can use them for the data that remain constant.

Data transfer between the host and device: The data movement between the host and device is usu-

ally via PCIe channels. The data transfer rate of PCIe bus is much lower than the GPU local memory

bandwidth, and similar to the rate of front side bus in the host system. To reduce the impact of data

transfer between CPU and GPU, we should reuse the data as much as possible among different

kernel invocations. Another way is to increase the amount of information within each transfer, i.e.,

60

5.2 Large Scale Random Element Access

transfer the data in a more compact form, such as using an efficient storage scheme to organize the

data, or using a data compression method.

In the following sections, we present the algorithms and their implementations for the selected array operations,

random element access and sub-array retrieval in large data sets, as well as the problem of the cube compution.

Three storage schemes, xCRS, Hybrid and BESS, are chosen to represent the data sets in CPU+GPU co-

processing. Due to the similarity of xCRS and BxCRS, we implement only one of them, xCRS on GPUs. In

particular, the PTCS is not going to be considered for GPU implementation due to the irregular data structure

of a trie.

5.2 Large Scale Random Element Access

Random element access is probably the most basic operation in data warehousing. Although it is theoretically

a very simple operation, efficient access of single element in a large data set is not only desirable in data ware-

housing, it could also lead to improved performances in other operations, such as selection. In the mapping

of CPU-only implementation to CPU+GPU co-processing, we consider the case where single or multiple ele-

ments can be retrieved in single operation, which means a single kernel invocation is needed. Note that random

element access is also considered as a search operation in this work.

For the MDSAs represented using BESS or Hybrid method, binary search is one of the key algorithms in the

operation of random array element access. Thus, a parallel search algorithm on large sorted data sets using

GPUs could improve the performance. For this, we applied the p-ary search [22], as the parallel counterpart of

binary search, for searching the large data sets on GPUs. An illustration of p-ary search is depicted in Figure 5.1.

In each iteration, all the threads in a thread block compare the searched key with the first and last elements in

one of the disjoint data segments. The segment which contains the key is again partitioned among the threads

in the next iteration. This process is repeated until the size of the data segment to be partitioned is less than the

number of threads in a block. The Algorithm 9 described in detail [22] gives the GPU implementation of p-ary

search. In Algorithm 9, each GPU thread block searches for a unique key, and the threads in a block cooperate

to search for the same key. Each thread in a block needs to access the global memory (see Line 9) once in each

iteration. These accesses within a thread block are hard to be coalesced for the data in array format, except for

the last data segment (see Line 14). To reduce the number of global memory accesses, once the data was read

in from the global memory, it was stored in the shared memory for reuse. Note that the last element of a data

segment is also the first element in the next data segment (see Figure 5.1). Hence, global memory access can

be reduced by half. If the number of threads is p, a key is found in O(logpN) time bound using p-ary search,

61

5.3 Sub-Array Retrieval

instead of O(log2N) using binary search.

Figure 5.1: An example of P-Ary search. The searched Key is 31 and 4 threads are used.

For the MDSAs represented using xCRS or BxCRS, a random element access is highly efficient on CPUs, even

for a large data set. However, in the case of accessing or searching large number of elements, GPUs can be

used to process such tasks in parallel. For this purpose, we applied GPUs as follows. Firstly, the row offset

of each searched element is computed by one GPU thread. Secondly, we use one thread or one thread block

to search for each element using their row offset. In the former case, the control flow within a single warp 1

diverges easily, and the threads within the same warp could end up waiting for the one which has the worst

case. In the latter case, we use only one thread in each block to compute the range of a row, then all the threads

participate in searching within that range. The drawback of this approach is that only one thread is active during

the computation of the range of a row. However, the global memory accesses are coalesced when searching

within a row. In our implementation of GPU accelerated searching in xCRS and BxCRS data, we chose the

first case considering the sparsity of the array data. For searching in the data represented using Hybrid, we

took the second approach.

5.3 Sub-Array Retrieval

Our approach to retrieve a sub-array in the MDSA, represented using one of the array based storage schemes,

is based on data parallel sequential scan. In a sequential scan, all the array elements within a range are checked

against a certain condition, e.g., index comparisons in sub-array retrieval. If the condition is satisfied, then

the element belongs to the results, otherwise it is filtered out. A detailed implementation of CUDA kernel, for

retrieving a sub-array in an MDSA represented using BESS, is given in Algorithm 10. At the host, i.e., CPU,

side, we first determine the range in the BESS array bei, then invoke the kernel. One of the advantages of

sequential scan on GPU is that the global memory access is easily coalesced. The comparisons of the indexes

(Lines 12 and 13) are done separately to keep the control flow more consistent within a single warp. To reduce

the usage of device memory, as well as the data transfer between the host and device, we store only indication
1A warp is the unit of thread scheduling in streaming multiprocessors [24]. The size of a warp is typically 32 threads.

62

5.3 Sub-Array Retrieval

Algorithm 9: ParySearch(data[0..length− 1], skeys[..]))
Input: A sorted list of data, data[0..length− 1], the keys, skeys[..], to be searched.

Output: The search results, results[..].

begin

/* threadIdx.x and blockIdx.x are the built in variables in CUDA, which are

used to identify a thread or thread block respectively. */

/* Allocate the space in shared memory */

shared int d[0..blocksize− 1]

shared int range length← length

shared int range offset← 0

int mykey ← skeys[blockIdx.x]

while range length > blocksize do

/* Compute the new range length */

range length← drange length/blocksizee

range start← range offset+ threadIdx.x ∗ range length

9 d[threadIdx.x]← data[range start]

syncthreads()

if mykey >= d[threadIdx.x] and mykey < d[threadIdx.x+ 1] then

range offset← range start

range start← range offset+ threadIdx.x

14 if mykey = data[range start] then

results[blockIdx.x]← range start

values, such as 1 for true, 0 for false, in the result array (see Line 15). The result is then transferred back to the

host for further processing.

The CPU+GPU co-processing of sub-array retrieval, in the MDSAs represented using xCRS, BxCRS, or Hy-

brid, are implemented in two steps. First, examine each ‘block’ to determine if it belongs to the sub-array to

be retrieved. A ‘block’ refers to a row in the case of xCRS or BxCRS, and an (r − 1)-dimensional array in

the case of Hybrid. For xCRS and BxCRS, we compare the row index, i.e., 〈nk−1, . . . , n1〉 with the boundary

row index of the sub-array defined by index L and H to determine if the row examined falls in the sub-array

or not. For Hybrid, we compare the ‘block’ index 〈nk−1, . . . , nr−1〉 with 〈lk−1, . . . , lr−1〉 of index L and

〈hk−1, . . . , hr−1〉 of indexH . Second, within each ‘block’ that falls in the boundary of the sub-array, scan the

array elements to select the ones that belong to the sub-array. Each of these two steps offer certain degree of

data parallelism. Hence, there are two options for implementing them on GPUs. One is to implement the two

63

5.4 Computing The Cube

Algorithm 10: gpuRetrieve bess(d bei, st ind, end ind, st offset, end offset)
Input: BESS array bei, starting and ending index of the sub-array, and their corresponding offsets.

Output: The retrieved keys d results[..]

begin

shared int maxSize

int myId = blockIdx.x ∗ blockDim.x+ threadIdx.x

int flag, ind[DIM], key

if threadIdx.x == 0 then

maxSize = end offset− st offset+ 1

/* Synchronize threads within a thread block */

syncthreads()

d results[myId] = 0

if myId < maxSize then

key = d bei[st bei+myId]

/* Call the function to compute the array index from a BEI */

11 gpuDeKey(key, ind)

/* Call the function to compare array indexes, returns TRUE if index is

greater than st ind */

12 flag = gpuIsGreater(index, st ind)

13 flag = flag&&gpuIsLess(index, end ind)

14 if flag then

15 d results[myId] = 1

steps in one kernel, and the other is to implement each step in one kernel. We adopted the first option for the

case of xCRS, or BxCRS, and the second option for Hybrid. The main concerns here are to gain better load

balance and ensure enough data parallelism, particularly for the second step. In the xCRS, or BxCRS, data, it is

possible to have not enough data parallelism within a single row when the array is sparse. Thus, we combined

the two steps into one kernel on the expense of load imbalance. In the case of Hybrid, we can expect enough

data parallelism within a ‘block’, especially when the dimensionality is high, so that using two kernels gives

us better load balance.

64

5.4 Computing The Cube

5.4 Computing The Cube

Based on the work of computing the cube in Section 4.5, we discuss in this section how to accelerate this

computation using GPUs. The problem of computing the cube not only demands speed and space, it also

requires data parallelism. Lots of work has been done on parallelizing the cube computation, especially on

multi-core and clusters [7, 8]. Our approach, to parallelize computing the cube for MDSAs in this research,

is to represent the MDSA using one of the storage schemes, and utilizing GPUs for co-processing with CPUs.

With regard to the storage scheme, we chose BESS due to its space efficiency, and suitability for computing

multi-dimensional aggregation. In the CPU+GPU co-processing, we offload some of the tasks in computing

the cube to GPUs for acceleration.

The algorithm given in Algorithm 8 on Page 57 for computing the cube consists of a number of independent

tasks. We revise the major tasks among them as follows and analyze their suitability for GPU processing.

1. Generate the paths in the search lattice. This task does not have enough data parallelism, and it is best

suited for CPU processing.

2. Reset the attribute order of the BEIs. We need to reset the attribute order in the BEIs for each path we

generate in the search lattice. For example, if the root node of a path is in attribute order ABCD, and

the one in the next path is BDC, we reset the order of the attributes for all the array elements in their

BEIs before we go on to the sorting step. We offload this part to the GPUs in our implementation.

3. Sort the data according to the attribute order in the root node of a path. This part actually takes up most

of the time in the sort-based cube computation. Accelerating the sort operation dramatically improves

the speed of the cube computation. We applied the highly efficient GPU sort function from the Thrust

library [20] to sort the data in our implementation.

4. Compute the multiple aggregations in one scan of the data. Although the aggregation operation offers

good parallelism, we compute multiple aggregations in a pipelined fashion, which are not data indepen-

dent. Hence, we chose to implement this task on CPUs.

5.4.1 Resetting the Attribute Order

In Section 4.5.1, we showed that for a k-dimensional sparse array,
(

k
dk/2e

)
paths are the minimum number of

paths that cover all the nodes of the search lattice with k attributes. Moreover, we discussed the Algorithm 7,

that generates the optimal set of paths that contain exactly
(

k
dk/2e

)
paths [38]. Consider the prefix sorted

65

5.4 Computing The Cube

paths G(4)prefix−sorted, for a 4-dimensional array generated by the Algorithm 7. The four dimensions are

represented by A,B,C,D respectively. For example, to reset the attribute order from A · B · C ·D in Path 1

of G(4)prefix−sorted to D · A · B(·C) in Path 2, we extract the dimension values in the order of D,A,B,C

from each BEI, then concatenate them into a new BEI. We replace the previous BEIs with the new BEIs, so

that no extra GPU memory space is required. In our implementation of CPU+GPU co-processing, the original

input data is represented using BESS, and the attribute order of the BEIs is the same as the order of the root

node in the first path of G(k)prefix−sorted, i.e., Path 1 of G(4)prefix−sorted in the case of k = 4. Note that the

input data needs to be transferred from the CPU memory to GPU memory only once, and no extra GPU global

memory is required beyond the input data. In the CUDA kernel invocation, we assign each thread to reset the

attribute order of one BEI, so that global memory access is coalesced.

5.4.2 Sorting

The array elements with new BEIs need to be sorted for grouping in order to compute multi-dimensional

aggregation. For this purpose, we applied the sorting function in the Thrust template library for CUDA [20].

The important aspects we exploited in Thrust include the following three abstract interfaces: container, iterator

and fundamental parallel sorting algorithm.

Container: Thrust provides two vector containers, host vector and device vector. The former resides on the

host memory, and the latter on the device memory. These two containers are both generic and they

hide the explicit memory allocation and deallocation. The Listing 5.1 shows the code snippets in our

implementation that defines the host and device vectors, and also copies data from the host to the device.

......

// allocate host vectors with no_nnzs elements

thrust :: host_vector <int > h_keys_vec(no_nnzs);

thrust :: host_vector <float > h_values_vec(no_nnzs);

// allocate device vectors with no_nnzs elements

thrust :: device_vector <int > d_keys_vec(no_nnzs);

thrust :: device_vector <float > d_values_vec(no_nnzs);

......

//copy data from host to device

d_keys_vec = h_keys_vec;

d_values_vec = h_values_vec;

......

Listing 5.1: The code snippets to define Thrust containers and copy data from the host to the device

66

5.4 Computing The Cube

Iterator: Thrust uses a pair of iterators to define the range in a sequence. Iterators act like pointers in C/C++

language, and they can be inter-operated with raw pointers such as C/C++ pointers. The Listing 5.2

shows the relevant code snippets in our implementation. The interoperability makes it possible to apply

Thrust algorithms for raw pointers or apply the results of Thrust algorithms in CUDA C algorithms.

int *keys; float *values , *d_keys;

......

// obtain raw pointer to host vector ’s memory

keys = thrust :: raw_pointer_cast(h_keys_vec.begin ());

values = thrust :: raw_pointer_cast(h_values_vec.begin ());

// obtain raw pointer to device vector ’s memory

d_keys = thrust :: raw_pointer_cast(d_keys_vec.begin ());

......

Listing 5.2: The code snippets showing the interoperability of Thrust iterators and raw pointers

Parallel Sorting Algorithm: We applied sorting function sort by key() in the Thrust to sort the data rep-

resented using BESS. Function sort by key() performs a key-value sort, i.e., the function sorts the

key-value pairs according to the key. Thrust statically selects one of the two sorting algorithms. One is

a highly optimized radix sort for the primitive data types, such as char, int, f loat in C, and the other is

a merge sort for all the other data types. It should be noted that the radix sort is considerably faster than

the merge sort in Thrust [21]. The BESS representation of an MDSA consists of two vector arrays. One

stores the integer keys and the other the measure data which is typically float or double data type in C.

Thus in our implementation, the data types being used are both primitive data types. Radix sort is the

algorithm selected in executing the sort by key() function. As a result, the sorting process is done very

efficiently, hence the performance of cube computing is greatly improved.

Finally, we use the multi-dimensional aggregation method presented in Section 4.1 to compute the aggregation

for each path on CPU. However, the length of each path differs. The aggregation process computes the same

number of aggregations as the length of each path in the implementation. For example, 4 aggregates are

computed for Path 1 in G(4)prefix−sorted, while only 1 aggregate needs to be computed for Path 5.

67

Chapter 6

Experimental Setup

6.1 Experimental Environment

All the serial computations in our experiments were implemented in the C programming language, and hybrid

computations in CUDA C. The compilers being used are GNU GCC 4.6.3 for C, and NVIDIA NVCC 4.0 with

the options “−arch = compute 30” and “−code = sm 30” for CUDA C. The Thrust library being used in

our experiment was the version released in the CUDA Toolkit 4.2.

The experiments were run on a PC with Intel(R) Core(TM) i7 − 3770 multi-core processor (with hyper-

threading enabled) at 3.40GHz and 8GB memory, running Ubuntu 64-bit Linux 12.04. The GPU used in

our system is Nvidia GeForce GTX 670 GPU at 1.08GHz and 1344 cores, with 2GB GDDR5 device memory

and 192GB/sec peak memory bandwidth.

6.2 Experimental Data

The following specifications are taken as the main factors of an MDSA that have impacts on the performance

of a storage scheme, for the selected operations. They are:

• The number of dimensions;

• The number of non-zero elements;

• The cardinality of each dimension;

• The sparsity;

• The distribution of those non-zero values within the array structure.

68

6.2 Experimental Data

To have better control of these specifications over the experimental data, and to fit the data in the main memory,

we generated a set of synthetic data. This leaves out the option of using the benchmark data of decision

support system from the Transaction Processing Performance Council (TPC) [45]. Synthetic data offers us

the flexibility of the control of the specifications of an MDSA, especially the dimensionality, the sparsity, the

number of non-zero elements and the cardinalities. The main drawback of using synthetic data is that it is

hard to simulate the distribution of the non-zero elements in the multi-dimensional array. In our experiment,

we mainly consider the case where the non-zero elements are distributed uniformly in an MDSA. Although

effort is made to generate the synthetic data so that the non-zero elements are uniformly distributed in their

corresponding arrays, this is not guaranteed. The distribution of the non-zero elements in an MDSA could

have significant impact on the performances of various array operations under a certain storage scheme. This

is exactly the reason why there are numerous storage formats for sparse matrices in the application of numeric

methods. They are designed to optimize certain types of matrix operations, such as multiplication, lower and

upper triangular decompositions etc., for matrices with certain structures. Certainly, we can take the similar

approaches in dealing with the MDSAs of higher dimensions (k > 2). However, this is beyond our current

project scope. In this dissertation, we only concentrate on some general data structures to represent MDSAs,

and hopefully this could lead us to more specific ones in the future.

The synthetic multi-dimensional data consists of dimensional data and measure data. For the dimensional data,

we generated them as integer values on four different dimensionalities of 2, 3, 4 and 8. The measure data is

generated as floating point values. The data sets are in the Matrix Market format [4], and stored as ASCII

files. For each of the 4 dimensionalities, we generated data files with 4 different sparsities. The sparsity levels

chosen are 90%, 95%, 99%, 99.9%. On each sparsity level, 5 data files with 2, 4, 6, 8 and 10 million valid

array elements are generated. The first line of a data file contains the cardinalities of each dimension followed

by the number of non-zero elements. Each line in the rest of the file represents one non-zero array element

using index-value pair format, and they are in the row-major order. As such, we generated two sets of data,

termed as data set A and data set B. Both the data set A and B consist of 80 data files. The data set A was used

for all the operations implemented in our experiment. The data set B was only used in the large scale random

element access operation as the data to be accessed. Each data file in data set B corresponds to one data file

in data set A. Every pair of such data files contain the array elements from the same sparse array, i.e., they

have the same specifications such as cardinality, sparsity, etc. Table 6.1 shows the cardinalities, the number

of non-zero elements and the size of the data files for a set of 4-dimensional experimental data (in data set A)

generated for the sparsity σ = 90%.

Once the dimensionality, the cardinalities and the sparsity of an MDSA are determined, we generate the array

elements in the following manner. We first divide the size of the array, i.e., the product of the cardinalities, by

the number of non-zero elements to get an average incremental value q. Then starting from an initial array index

69

6.2 Experimental Data

D3 D2 D1 D0 Nnz(million) Size(MB)

40 50 100 100 2 41.2

20 100 100 200 4 83.9

40 100 100 150 6 126.2

50 80 100 200 8 169.8

50 100 100 200 10 212.5

Table 6.1: The specifications of a set of experimental data with k= 4 and σ = 90%.

(randomly generated), we obtain a new array index by incrementing the initial array index by a random value,

which is less than or equal to q. Similarly, we generate the next index by incrementing the newly obtained array

index. The Algorithm 11 gives a detailed description of this process. A measure value is generated randomly

for each array index, and it ranges between the floating point values 1.0 and 100.0. Each measure value is

generated only at the time of writing an array index into the ASCII file. In this manner, we obtain an ASCII file

which contains a list of the desired number of index-value pairs. Note that for the data set B, which contains

the data files with the array elements to be searched, we only need to generate the dimensional data.

Algorithm 11: generateIndex(k, card, no nnzs)
Input: The dimensionality k, the array card[0..k − 1] for the cardinalities, the number of non-zero

values no nnzs.
Output: The array ind[0..no nnzs][0..k − 1] with no nnzs number of array indexes.
begin

Nk ←
∏k−1
j=0 card[j]

/* Compute the incremental value */

q ← Nk/no nnzs

for i = 0 to k − 1 do
ind[0][i]← 0

cnt← 1

while cnt < no nnzs do
/* Function rand() generates a random integer */

tmp2← rand()%q

for i = 0 to k − 1 do
tmp1← ind[cnt− 1][i] + tmp2

if tmp1 >= card[i] then
tmp2← tmp1/card[i]

tmp1← tmp1%card[i]

else
tmp2← 0

ind[cnt][i]← tmp1

cnt← cnt+ 1

70

Chapter 7

Performance Evaluation

Storage utilization and computational efficiency are the main performance criteria in the evaluation and com-

parisons of the different storage schemes for MDSAs. For storage utilization, we simply measure the storage

space usage of each storage scheme for a given MDSA, as this reflects the performance on this criterion. The

storage space usage of each scheme, namely, Sxcrs, Sbxcrs, Shybrid and Sptcs, was computed in Chapter 3.

More analyses and comparisons are given in this chapter. Computational efficiency, on the other hand, is

measured according to the time to construct the scheme, retrieve a random element, retrieve a sub-array and

compute multi-dimensional aggregation. We designed and implemented algorithms for these operations, and

tested them on large synthetic data sets. In the following sections we present the experimental results and give

some discussions.

7.1 Storage Utilization of Various Storage Schemes

To compare the storage utilizations of different storage schemes, we define a parameter storage ratio as the

ratio of storage space of a scheme to the storage space of multi-dimensional array, i.e. Sscheme/SMDSA. The

graphs in Figure 7.1 show the storage ratios of various storage schemes. The storage ratios decrease for all the

storage schemes when the sparsity increases. The storage ratios of PTCS and BESS are about 80% and 30%

respectively for MDSAs with σ = 90%, and decrease to 8% and 3% respectively for σ = 99%. This shows

that we save more space for MDSAs with higher sparsity. The reason for the higher storage ratio of PTCS

is that a PATRICIA trie node in PTCS includes two ‘pointers’, or memory addresses, for its two child nodes.

The storage space for the ‘pointers’, with a memory unit (or cell) address is usually represented using 8 bytes.

The storage space for for these ‘pointers’ becomes dominant when the number of trie nodes increases. By

setting hybrid ratio α = dαke+1
k and then r = αk, we can achieve storage ratios for Hybrid being very close

to those of BESS. In the cases of xCRS and BxCRS, their storage ratios are similar and comparable to those

of BESS and Hybrid when the sparsity is around 90% (see the left graph in Figure 7.1). However, when the

sparsity increases to about 99% as in Figure 7.1, the storage ratios of xCRS and BxCRS both become worse,

71

7.2 Experimental Results and Comparative Analyses

but BxCRS varies at a much slower rate than xCRS.

Figure 7.1: Storage ratios for the MDSAs with k = 8, σ = 90% (left) and σ = 99% (right).

7.2 Experimental Results and Comparative Analyses

The experiments are carried out in two parts, one is for the CPU only processing, and the other is for the

CPU+GPU co-processing. The results of these experiments together with additional analyses based on both

theoretical and experimental results are presented in the following sub-sections.

7.2.1 Results on CPU Only Processing

7.2.1.1 Performance of Storage Scheme Construction

Given an MDSA with Nnz non-zero elements, the complexities of constructing all the storage schemes con-

cerned in this research, namely xCRS, BxCRS, Hybrid, PTCS and BESS, are O(Nnz), which is linear with

respect to the number of non-zero elements in the sparse array. The running times for different methods differ

only by a constant factor. The reason for the construction of PTCS being slower than the others is that PTCS

is trie based and the other methods are array based. However, PTCS is insensitive to the order of input array

elements, while the other methods require the input data to be pre-processed into a certain order. The con-

struction time of various storage schemes are compared for 8-dimensional sparse arrays with varying sparsity

in Figure 7.2. When the sparsity increases, the construction time of all the storage schemes increases slightly.

72

7.2 Experimental Results and Comparative Analyses

Figure 7.2: The construction time for MDSAs with k = 8, σ = 90% (left) and σ = 95% (right).

This is due to the growing cardinalities of individual dimensions, even though the number of non-zero elements

being handled remains the same.

7.2.1.2 Performance of Large Scale Random Element Access

In random element access or searching operation, we either retrieve the measure data associated with an array

index if it exists, or determine that the array element does not exist. For this operation, we consider the case that

a large set of data is collectively searched for in one operation. To evaluate the efficiency of random element

access, we used the data sets that contain both existing and non-existing array elements in the original data sets.

There were much more number of non-existing elements than those that exist. The total time for searching all

the requested array elements in a data file is recorded, and the average time is taken. Figure 7.3 shows the

results of the performance of the random element accesses of various schemes. The random element access in

xCRS is the most efficient among all the methods compared. This is because the random array element access

time in xCRS isO(k)+O(log2D0). Since the array is sparse, the actual size of a row could be much less than

the cardinality D0 on dimension d0. A random element access in BxCRS has the same time complexity as in

xCRS. However, the performance of BxCRS is slightly worse than xCRS due to the fact that the computational

cost of accessing a row in BxCRS is more expensive than in xCRS.

For sparse matrices, the method Hybrid becomes xCRS if we choose r = 2 (or α = 1), which is the case

in our experiment. Thus, for matrices, the performances of Hybrid and xCRS are almost the same as shown

in both graphs in Figure 7.3. For 3-, 4- and 8-dimensional sparse arrays, the performance of Hybrid lies

between those of xCRS and BESS. The lower the value of r is, the more efficient Hybrid performs on random

73

7.2 Experimental Results and Comparative Analyses

element accesses. By varying the hybrid ratio α, we can choose a favorable balance between the space and

data manipulation efficiencies in Hybrid. In Figure 7.3, the results for Hybrid are for the cases where r is set

to 3, 3, 5 for 3-, 4-, 8-dimensional sparse arrays respectively.

The average time complexities of random element access in PTCS and BESS are bothO(logNnz). For BESS,

we use the binary search algorithm to access a random array element. However, the performance of PTCS,

shown in Figure 7.3, is worse than that of BESS. The main reason is that the traversal of a trie is more expensive

than visiting an element in an array. The performance of PTCS can aslo be negatively affected by an imbalanced

PATRICIA trie. The main advantage of the PTCS scheme is that it is the only one that tolerates insertions and

deletions after the representative structures are built.

It is also shown in the graphs how the random element access algorithms for various schemes are affected by

the different levels of sparsity. The PTCS and BESS are affected little by the sparsity because their random

element access performance is mainly determined by the number of non-zero elements in the array. When

the sparsity of the MDSA increases, there are some improvements in the performances of xCRS, BxCRS and

Hybrid. These are because there are more empty rows (for xCRS and BxCRS), or more empty ‘blocks’ (for

Hybrid), when the sparsity increases. It is very efficient to determine if a row, or ‘block’, is unoccupied in these

3 methods.

Figure 7.3: The average random element access time of various schemes for MDSAs with σ = 90% (left) and σ = 95%

(right).

74

7.2 Experimental Results and Comparative Analyses

7.2.1.3 Performance of Sub-Array Retrieval

To evaluate the performance of sub-array retrieval in the data structures of different storage schemes, three

sub-arrays were retrieved for each input data set. The starting and ending indexes of the sub-arrays are chosen

in a way so that different sub-spaces of the MDSA can be retrieved. The following three pairs of starting index

and ending index define the 3 sub-arrays being retrieved in our experiment.

1. L1 = 〈l1k−1, . . . , l10〉, l1i = 0 where 0 ≤ i ≤ k − 1; H1 = 〈h1k−1, . . . , h10〉, h10 = D0, h11 =

bD1 × 0.25c, bh1i = Di × 0.95c where 2 ≤ i ≤ k − 1.

2. L2 = 〈l2k−1, . . . , l20〉, l2i = 0 where 0 ≤ i ≤ k − 1; H2 = 〈h2k−1, . . . , h20〉, h20 = bD0 × 0.25c,

h21 = D1, bh2i = Di × 0.95c where 2 ≤ i ≤ k − 1.

3. L3 = 〈l3k−1, . . . , l30〉, l3i = bDi × 0.1c where 0 ≤ i ≤ k − 1; H3 = 〈h3k−1, . . . , h30〉, h3i =

bDi × 0.85c where 0 ≤ i ≤ k − 1.

The structures of these sub-arrays are further illustrated for a 3-dimensional array in Figure 7.4. The selected

sub-arrays in Figure 7.4 are the rectangles in dotted bold line, and they are bounded by three pairs of indexes,

(L1, H1), (L2, H2) and (L3, H3). The efficiency of a sub-array retrieval is dependent on the structure of

the sub-array. Given that the array elements are traversed in row-major order, i.e., the index values change the

fastest on dimension d0, then the retrieval of sub-array in (a) of Figure 7.4 is more efficient than the retrieval of

the one in (b). The structure of sub-array in (c) of Figure 7.4 is chosen to be general so that it is less affected by

the scan order of the array elements. In designing the sub-array retrieval algorithms for different schemes, we

Figure 7.4: The structures of the sub-arrays to be retrieved (k = 3)

explored the locality of array elements in the various sparse array representations to some extent. In particular,

the following properties were exploited.

1. Locating a ‘row’ in xCRS and BxCRS, or a ‘block’ in Hybrid, takes constant time;

75

7.2 Experimental Results and Comparative Analyses

2. The array elements in a particular row reside in the same branch of a PATRICIA trie.

For each MDSA, the average time of sub-array retrieval was taken as the total time to retrieve all the elements

in the three sub-arrays divided by the number of these elements. This process was repeated for 5 MDSAs with

2, 4, 6, 8 and 10 million non-zero elements on each sparsity. The final average time was obtained as the average

value of 5 average time obtained above. The results are compared in Figures 7.5 and 7.6. Figure 7.5 shows the

results for 2- and 3-dimensional sparse arrays, and Figure 7.6 for 4- and 8-dimensional sparse arrays.

The performances of PTCS and BESS are not affected by the different sparsity levels in general. The sparsity,

σ, increases when the occupancy ratio, ρ, decreases. Recall that ρ is defined as the ratio of the number of

non-zero elements to the product of the cardinalities of an MDSA. When the occupancy ratio is very low, the

number of non-zero array elements is far less than the product of the cardinalities (or the array space) of the

MDSA. The algorithms for sub-array retrievals in PTCS and BESS are based on either traversing the trie in

the case of PTCS, or scanning serially the vector arrays in the case of BESS. PTCS and BESS store only those

non-zero array elements in their data structures. Thus, their performances of sub-array retrieval are mainly

determined by the number of non-zero elements and affected little by the sparsity. Sub-array retrieval in xCRS

and BxCRS are very efficient. However, when the sparsity becomes extremely high, e.g., σ = 99.9%, their

performances tend to get worse for higher dimensions. The reason behind this is that the chances of an entire

row having very few or no valid elements increases rapidly with the growing sparsity. This results in the scan

of more rows to retrieve the wanted elements. By tuning the hybrid ratio α, (α = dk/2e+1
k and r = αk in

the results shown here), the Hybrid outperformed the other methods for sub-array retrievals considerably on

higher dimensions at all sparsity level.

7.2.1.4 Performance of Aggregation

Given the specifics in Chapter 4, for implementing multi-dimensional aggregation, we compute k − 1 aggre-

gations in one scan of the data. The total time, excluding the time to write the results, to compute k − 1

aggregations were recorded. Some of the results are shown in Figures 7.7, 7.8, and 7.9 for comparison. Note

that we did not include Hybrid for sparse matrices in Figure 7.7, since Hybrid method becomes either BESS

or xCRS in such cases. The results show that for lower dimensions, such as 2, 3 and 4, all the schemes except

PTCS perform within a close range. When the dimensionality increases to 8, the performances of xCRS and

BxCRS become worse, while BESS and Hybrid perform the best. The aggregation time increases linearly

with the growing sparsity for all the schemes on all dimensionalities (see Figure 7.9). In this case, BESS,

Hybrid and PTCS are less affected by the sparsity compared with xCRS and BxCRS. The aggregation time

of PTCS is slower than the other schemes on lower dimensions, but is stable with the varying dimensionality

76

7.2 Experimental Results and Comparative Analyses

Figure 7.5: The average sub-array retrieval time of various schemes for MDSAs with k = 2 (left) and k = 3 (right).

Figure 7.6: The average sub-array retrieval time of various schemes for MDSAs with k = 4 (left) and k = 8 (right).

and sparsity. The sudden decreases of aggregation time in Figures 7.8 and 7.9 for 8-dimensional sparse arrays

are mostly due to the varying sparsity of the aggregated results, which are also multi-dimensional arrays with

certain sparsities.

7.2.1.5 Performance of Computing the CUBE Using PTCS and BESS

We present in this section the experimental results on the computation of the cube using PTCS and BESS. PTCS

and BESS share the same approach in the encoding of the dimensional data of an MDSA. The difference is

that they store the resulting key-value pairs using different data structures. As a result, the key-value pairs

need to be sorted for BESS, while a PATRICIA trie needs to be constructed for PTCS to get the data sorted

77

7.2 Experimental Results and Comparative Analyses

when computing the cube. Figures 7.10 and 7.11 show the total time to compute the cube for MDSAs with

k = 2, 3, 4, 8, and σ = 90%. The BESS approach outperformed the PTCS by 3 to 6 times, which showed

that constructing a PATRICIA trie is computationally more expensive than sorting the BESS data in the cube

computation. Furthermore, PTCS has high demand for the runtime memory during the computation of the

cube. This is shown in the Figure 7.11 for the case of k = 8, where we were unable to finish the computation

due to the lack of memory.

7.2.2 Results on CPU+GPU Co-Processing

The results for CPU+GPU co-processing of the two selected array operations, and the cube computation are

presented in this section. The two selected array operations are large scale random array element access and

sub-array retrieval. For each array operation, the CPU+GPU co-processing is implemented for three storage

schemes, xCRS, Hybrid and BESS, respectively. Due to the similarity of xCRS and BxCRS, the implemen-

tation for BxCRS is omitted. Compared with the CPU only processing of these array operations, a minimum

of 2, up to over 20 times of speed-up is observed. The CPU+GPU co-processing of the cube computation is

implemented using only BESS. A minimum of 5 times of speed-up is achieved for the co-processing compared

with the CPU only processing.

7.2.2.1 Performance of Large Scale Random Element Access

For BESS, p-ary search was used to access multiple array elements in the combined CPU+GPU implemen-

tation. Recall that large scale random element access refers to accessing multiple array elements in a single

operation. Compared with the CPU only processing, of large scale random element access, our implementation

of CPU+GPU co-processing using BESS achieved an average of 2.3 times speed-up for different dimension-

alities and sparsities. The time to transfer the input data (the data to be searched) and the results between the

host and the device were included in the timing for all the GPU implementations of large scale random element

access. Figure 7.12 shows the results for 4- and 8-dimensional sparse arrays. For the implementation of p-ary

search discussed in Chapter 5, each CUDA block searches for a single element, and the threads within the

block cooperate to locate the element. The number of blocks was chosen as the number of all the elements

being searched, and the number of threads within a block as 32 in the CUDA kernel configuration. Note that 32

threads per block performs better than the other alternatives such as 64, 128, 256, and so on, in the experiment.

When the number of blocks is large (in millions in our experiment), increasing the number of threads in a block

does not improve the performance, since each block has limited resources shared among the threads.

78

7.2 Experimental Results and Comparative Analyses

In the CPU+GPU implementation of large scale random element access using xCRS, one thread was assigned to

each element to be accessed. If there areN elements to be searched, and the number of threads in a CUDA block

isBLOCKSIZE, the number of blocks we need in the kernel configuration is at least (N+BLOCKSIZE−

1)/BLOCKSIZE. Each thread finds the range of the corresponding row of the element being searched. A

serial scan of the elements within the row is then carried out to determine if the searched element exists or not.

Figure 7.13 shows the results of this implementation for 4- and 8-dimensional arrays with 4 different sparsities.

The average search time is at least 2 times faster than the CPU only processing for 4-dimensional sparse arrays,

and this is also true for 8-dimensional sparse arrays with σ ≤ 95%. When σ > 95% , the average GPU search

time gets worse due to the increase in the number of unoccupied rows. Hence increased time to determine the

range of a row in such cases, and other threads in the same block end up idling even the elements assigned

to them do not exist. On the contrary, CPU processing can take the advantage of increased number of empty

rows.

Figure 7.14 shows the results for CPU+GPU co-processing of large scale random element access using Hybrid.

We used the same approach as it was in xCRS in this implementation. The average speed-up for Hybrid using

GPU is approximately 2 except for a few cases. The slower average time in the case of σ = 90% is due to the

increased number of elements within a Hybrid block. We can improve the performance for lower sparsities by

using binary search within the block. Another feasible method to implement the same process for Hybrid is to

use the p-ary search following the implementation in BESS.

7.2.2.2 Performance of Sub-Array Retrieval

In Figures 7.15, 7.16 and 7.17, the average time of the sub-array retrieval using CPU+GPU was compared

with that of using only CPU, for each of the methods considered. The results in these figures are for retrieving

three sub-arrays within each data set. The details of these three sub-arrays were given in Section 7.2.1. The

average retrieval time is then obtained by dividing the total time by the number of elements retrieved. The time

to transfer the results from the device to the host is not included in the timing. The speed up of BESS ranges

from 2 to 10 times for differing dimensionality. For xCRS, the speed up is much higher, and is between 20

to 60 times. For Hybrid, the speed up is about 16 times for k = 4, and only 2.5 for k = 8, with improved

performance for higher sparsity of σ = 95%.

The problem we experienced in sub-array retrieval using GPU was the high demand for GPU global memory

space to store the results temporarily. This is especially the case when the retrieved sub-array is considerably

large. Since the dynamic memory allocation is inefficient on GPUs, memory is pre-allocated in the implemen-

tations. The size of the memory needs to be allocated differs for different storage schemes. For xCRS, the size

79

7.2 Experimental Results and Comparative Analyses

is determined by the product of the maximum number of rows and the size of each row. Similarly, for Hybrid,

we determine the required memory size according to the maximum number of blocks and the size of each

block. The size, for BESS, is the maximum number of elements to be retrieved. For very large sub-arrays, it is

not always possible to pre-allocate the required memory on GPUs. However, this could be solved by retrieving

the sub-array in smaller blocks.

7.2.2.3 Performance of Computing the CUBE Using BESS

Using CPU+GPU co-processing, the cube operator was computed for all the experimental data sets, with

different sparsities and dimensionalities. The results are compared with the ones using CPU only processing.

An approximate of 5 to 8 times of speed-up is obtained. Figures 7.18 and 7.19 show the results for MDSAs

with k = 4, 8, and σ = 90%, 95%. The time to write the output file was not included in the timing of the

cube computing. The much faster cube computation of CPU+GPU co-processing is as a result of accelerated

attribute resetting and sorting operations using GPUs. In Figures 7.20 and 7.21, the times in the total time

to compute the cube were compared for CPU and CPU+GPU processing. The time labeled as ‘sort’ in these

figures is the sum of the time for resetting the attribute and sorting. For each group of bars, the left bar is of

CPU only processing, and the right side one is of CPU+GPU processing. Although a speed up of over 20 times

was achieved for the sort and resetting attribute operations, the overall speed up is only 5 to 8 times due to the

serial processing part, the aggregation operation. This is clearly shown in the Figures 7.20 and 7.21, where

the total cube computation time is dominated by the time of computing the aggregations in the CPU+GPU

processing. The same reason also applies to the slow growth rate of the CPU+GPU time in the Figures 7.18

and 7.19. Compared with the highly efficient sort algorithm in the Thrust library, our CPU implementation of

the sort operation is not optimized.

80

7.2 Experimental Results and Comparative Analyses

Figure 7.7: The multi-dimensional aggregation time of various schemes for MDSAs with σ = 95%, k = 2 (left) and

k = 3 (right).

Figure 7.8: The multi-dimensional aggregation time of various schemes for MDSAs with σ = 90%, k = 4 (left) and

k = 8 (right).

Figure 7.9: The multi-dimensional aggregation time of various schemes for MDSAs with σ = 95%, k = 4 (left) and

k = 8 (right).

81

7.2 Experimental Results and Comparative Analyses

Figure 7.10: The time for computing the cube using PTCS and BESS for MDSAs with σ = 90%, k = 2 (left) and k = 3

(right).

Figure 7.11: The time for computing the cube using PTCS and BESS for MDSAs with σ = 90%, k = 4 (left) and k = 8

(right).

82

7.2 Experimental Results and Comparative Analyses

Figure 7.12: The average CPU+GPU random element access time using BESS for MDSAs with k = 4 (left) and k = 8

(right).

Figure 7.13: The average CPU+GPU random element access time using xCRS for MDSAs with k = 4 (left) and k = 8

(right).

Figure 7.14: The average CPU+GPU random element access time using Hybrid for MDSAs with k = 4 (left) and k = 8

(right).

83

7.2 Experimental Results and Comparative Analyses

Figure 7.15: The average CPU+GPU sub-array retrieval time using BESS for MDSAs with σ = 90% (left) and σ = 95%

(right).

Figure 7.16: The average CPU+GPU sub-array retrieval time using xCRS for MDSAs with σ = 90% (left) and σ = 95%

(right).

Figure 7.17: The average CPU+GPU sub-array retrieval time using Hybrid for MDSAs with σ = 90% (left) and σ = 95%

(right).

84

7.2 Experimental Results and Comparative Analyses

Figure 7.18: The time for computing the cube using BESS for MDSAs with k = 4, σ = 90% (left) and σ = 95% (right).

Figure 7.19: The time for computing the cube using BESS for MDSAs with k = 8, σ = 90% (left) and σ = 95% (right).

85

7.2 Experimental Results and Comparative Analyses

Figure 7.20: The CPU, GPU sort (includes attribute resetting) and aggregation time for computing the cube using BESS

for MDSAs with k = 4, σ = 90% (left) and σ = 95% (right).

Figure 7.21: The CPU, GPU sort (includes attribute resetting) and aggregation time for computing the cube using BESS

for MDSAs with k = 8, σ = 90% (left) and σ = 95% (right).

86

Chapter 8

Conclusion

8.1 Main Objectives

Our primary objective of this dissertation was to develop efficient storage schemes for multi-dimensional sparse

arrays which have their significance in data warehousing and On-Line Analytical Processing (OLAP) applica-

tions. The data in data warehousing and multi-dimensional OLAP (MOLAP) is characterized by large volume,

high dimensionality, and high sparsity. A multi-dimensional array is a desirable data structure to represent the

data in these systems. By designing storage schemes for multi-dimensional sparse arrays, we aim at handling

the sparsity of the multi-dimensional array structure in an efficient manner, so that the performance improve-

ments can be achieved in various array operations. The basic principles we followed in the design of new

storage schemes are storing only those valid non-zero array elements and applying dimensional mappings. We

proposed and accomplished evaluating, comparing the storage schemes including the new ones and a known

method, on a number of array operations using a set of synthetic large, sparse data sets.

The second objective of this dissertation was to parallelize selected array operations by utilizing GPUs. The

multi-dimensional sparse arrays in this regard were to be represented using some of the new storage schemes

developed in this research, as well as an existing method, BESS. GPUs provide massive computing power and

high memory bandwidth. We explored the feasibility and challenges of applying the GPUs to the problems

in data warehousing and OLAP applications. In particular, we proposed and accomplished, as part of the

second goal, applying GPUs to accelerate the computation of the cube, which is an important problem in data

warehousing and OLAP.

87

8.2 Main Contributions

8.2 Main Contributions

In this dissertation, we designed, implemented and evaluated four efficient schemes to store multi-dimensional

sparse arrays, and utilized massive parallelism of GPUs for some data warehousing operations. In the design

of the new storage schemes, we considered extending existing sparse matrix storage schemes to higher dimen-

sions and developed some new approaches that combine different storage schemes. Four new schemes were

introduced. These are:

1. The extended compressed row storage (xCRS) which extends CRS method for sparse matrix storage to

sparse arrays of higher dimensions;

2. The bit encoded xCRS (BxCRS) which optimizes the storage utilization of xCRS by applying data com-

pression methods with run length encoding;

3. Hybrid approach (Hybrid) combines the xCRS and a known method, BESS;

4. The Patricia trie compressed storage (PTCS) which uses PATRICIA trie to store the valid non-zero array

elements.

These schemes were evaluated on two basic array operations to reflect their data access efficiency. Storage

utilization was computed for each scheme and measured in the implementations as well. The results showed

that xCRS has the best data access efficiency among all the schemes. Its storage overhead increases linearly

with respect to the sparsity of the MDSA. BxCRS has the similar data access efficiency as xCRS, and is able to

reduce the storage overhead of xCRS considerably for highly sparse arrays. We observed in our experimental

results that both xCRS and BxCRS perform well for MDSAs with lower sparsity, but turn less efficient when

the sparsity becomes very high (σ > 99%). Hybrid achieves the best control of the balance between storage

utilization and data access efficiency. Both storage utilization and data access efficiency of PTCS are worse

than the other methods. However, its performance is least affected by the sparsity, and conveniently supports

update operations. The details of updates are not addressed in this dissertation.

We further evaluated the storage schemes on multi-dimensional aggregation. The experimental results show

that the known method, BESS outperforms the new methods. The performance of Hybrid method is very close

to that of BESS. XCRS and BxCRS perform well on lower dimensionality, but get worse for higher dimension-

ality and sparsity. The performances of PTCS and BESS are stable with respect to the changing dimensionality

and sparsity. We also studied computing the cube operator; a special problem of multi-dimensional aggrega-

tion, using PTCS and BESS. In this regard, we used sort-based method for the cube compution. We observed

88

8.3 Future Work

that sorting BESS data is more efficient than constructing PTCS. Hence, we conclude that among the schemes

we evaluated, the BESS is the most efficient storage scheme for the problem of computing the cube for MDSA.

We explored using GPUs as the co-processor for CPU to accelerate the two basic array operations, namely large

scale random element access and sub-array retrieval. For large scale random element access, a minimum of 2

times speed up was obtained for the three schemes of xCRS, Hybrid and BESS (including the data transfer time

between the host and the device), chosen to represent the data in the CPU+GPU co-processing. The speed ups

for sub-array retrieval were 2− 10, 16, 20− 60 times respectively for BESS, Hybrid and xCRS. This excludes

the data transfer time between the host and device. The challenges of using GPUs for these two operations are

the large GPU global memory space requirement, and difficulty in utilizing the high GPU memory bandwidth

fully.

We carried our work on computing the cube using BESS further to utilize GPUs for selected parts; namely for

sorting and attribute resetting. We applied the highly optimized sorting algorithm in the CUDA Thrust template

library for the sort operation, and implemented the attribute resetting process based on its CPU version. As a

result, the CPU+GPU co-processing accelerated the cube computation by 5−8 times, compared with the CPU

only version. More specifically, the cube computation time in the CPU+GPU co-processing is dominated by

the serial processing part, which is the aggregation. We did not implement the aggregation operation on GPUs

taking the following reasons into considerations. Firstly, the aggregation results are also multi-dimensional

array data. Hence, storing the results temporarily on GPUs demand large amount of global memory space.

Secondly, the time to transfer the results from device to the host becomes dominant for higher dimensionality,

such as k = 8.

8.3 Future Work

Extending the current work to very high dimensional data set when the data can not fit into main memory

is a research issue to be pursued in the future. An optimal chunking scheme can be applied to the multi-

dimensional sparse array. Within each chunk, the valid non-zero array elements are represented using some

suitable storage schemes. Applying a storage scheme to represent the MDSA data for problems such as nearest

neighbor queries, top-k query, and other related problems will also be addressed. Exploring hybrid computing

on heterogeneous systems, or different parallel computing models is another interesting research issue to be

pursued.

89

Appendix A

Additional Algorithms

A.1 The Sub-Array Retrieval Algorithm in XCRS

Algorithm 12: xcrsSubArrayRetrieval(val, cind, rptr, l, h)
Input: xCRS arrays val[..], cind[..] and rptr[..], an array dim[0..k − 1] contains the cardinalities for k

dimensions, a starting index l[0..k − 1] and an ending index h[0..k − 1].
Output: A list of non-zero elements and their indexes in the sub-array defined by l[..] and h[..].
begin

/* Find the row offsets of l[..] and h[..] */

lra ← computeRowOffset(l[1..k − 1])

hra ← computeRowOffset(h[1..k − 1])

tmp← h[1]− l[1] + 1

ra ← lra, i← 0

while ra ≤ hra do
ind[1..n− 1]← computeIndex (ra)

/* If ind[i] ≥ l[i], 2 ≤ i ≤ k − 1 then ind[2..k − 1] ≥ l[2..k − 1]. */

if ind[2..n− 1] ≥ l[2..n− 1] and ind[2..n− 1] ≤ h[2..n− 1] then
for j = 0 to tmp do

/* Find the starting position of the row ra in rptr[] */

p← rptr[ra]

if p 6= −1 then
Find the starting position q of the next row with non-zero elements
for j = p to q do

if cind[j] ≥ l[0] and cind[j] ≤ h[0] then
Add the indices and data val[j] to subArrayBlk

ra ← ra + 1

i← i+ 1

ra ← lra + i ∗ dim[1]

return subArrayBlk

90

A.2 The Algorithm to Search the Array compwrd

A.2 The Algorithm to Search the Array compwrd

The Algorithm 13 determines whether a row, given its row offset , has non-zero values or not in the array

compwrd of BxCRS.

Algorithm 13: searchCompWrd(compwrd, row offset , total row no, no reg wrds)
Input: An array of compressed words compwrd[..], a row offset row offset , the total row number

total row no, and the number of regular words no reg wrds.
Output: TRUE if row row offset has non-zero values, FALSE if not.
begin

/* The bit length of a word is W */

m← total row no / (W − 1)

m0← row offset / (W − 1)

r ← row offset % (W − 1)

/* Set the bit corresponds to the row offset to 1 */

mask r ← 1 << (W − 2− r)
Set fil mask with the most significant bit 1 and 0 for the rest
Set fil bit mask with the second most significant bit 1 and 0 for the rest
if row offset < m× (W − 1) then Check within regular words

if fil mask & compwrd[m0] = 0 then The word is literal word
if compwrd[m0] & mask r 6= 0 then The row has non-zero value

return TRUE
else

return FALSE
else

if fil bit mask & compwrd[m0] 6= 0 then Onefill word
return TRUE

else Zerofill word
return FALSE

else Check within active words
Set active mask corresponds to row offset

if active mask & compwrd[no reg wrds] 6= 0 then
return TRUE

else
return FALSE

91

A.3 The Sub-Array Retrieval Algorithm in PTCS

A.3 The Sub-Array Retrieval Algorithm in PTCS

Algorithm 14: ptcsSubArrayRetrieval(T, l, h)
Input: A PATRICIA trie T , the starting and ending indexes, l[0..k − 1] and h[0..k − 1] of a sub-array

in the given sparse array.
Output: A list of non-zero elements and their indexes in the sub-array defined by l[..] and h[..].
begin

root← T.rlink

pt← T , tmp← root

/* Find the PTCS keys for indexes l[..] and h[..] */

lKey ← ptcsKey(l[..])

hKey ← ptcsKey(h[..])

pos← firstDifferentBit(lKey , hKey)

while pt.bit pos < tmp.bit pos and tmp.bit pos ≤ pos do
pt← tmp

if getBit(lKey , tmp.bit pos) = 1 then
tmp← tmp.rlink

else
tmp← tmp.llink

if pt.bit pos < pos then
/* Traverse the left or right sub-trie */

if getBit(lKey , pt.bit pos) = 1 then
sub root← pt.rlink

else
sub root← pt.llink

subArrayBlk ← traverseTrie(sub root, l, h)
if pt.bit pos = pos then

/* Traverse the left and right subtrie */

subArrayBlk ← traverseTrie(pt.llink, l, h)
subArrayBlk ← traverseTrie(pt.rlink, l, h)

return subArrayBlk

92

Bibliography

[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi.

On the computation of multi-dimensional aggregates. In Proceedings of the 22nd VLDB Conference,

pages 506–521, Mumbai (Bombay), India, 1996.

[2] R. Barrett, M. Berry, T. F. Chan, J. Dammel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and

H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods.

Society for Industrial and Applied Mathematics, Philadelphia, PA, second edition, 1994.

[3] R. F. Boisvert, R. Pozo, and K. A. Remington. The matrix market exchange formats: Initial design.

Technical report, National Institute of Standards and Technology, 1996.

[4] R. F. Boisvert, R. Pozo, K. A. Remington, R. F. Barret, and J. J. Dongarra. Matrix market: A web resource

for test matrix collections. In Proceedings of the IFIP TC2/WG2.5 working conference on Quality of

numerical software: assessment and enhancement, pages 125–137, London, UK, 1997. Chapman &

Hall, Ltd.

[5] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD Rec.,

26(1):65–74, Mar. 1997.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,

Cambridge, Massachusetts, 3rd edition, 2009.

[7] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing data cube. Distributed and Parallel

Databases, 11:181–201, 2002.

[8] F. Dehne and H. Zaboli. Parallel construction of data cubes on multi-core multi-disk platforms. Parallel

Processing Letters, 23(1), 2013.

[9] L. Devroye. A note on the height of binary search trees. Journal of the Association for Computing

Machinery, 33(1):489–498, 1986.

[10] W. Fang, B. He, and Q. Luo. Database compression on graphics processors. Proc. VLDB Endow., 3(1-

2):670–680, Sept. 2010.

[11] W. Fang, K. K. Lau, and M. L. et al. Parallel data mining on graphics processors. Technical Report

HKUST-CS08-07, Hong Kong University of Science and Technology, Oct 2008.

93

[12] S. Goil and A. Choudhary. Sparse data storage of multi-dimensional data for OLAP and data mining.

Technical Report CPDC-TR-9801-005, Center for Parallel and Distributed Computing, Northwestern

University, 1997.

[13] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUterasort: High performance graphics co-

processor sorting for large database management. In Proceedings of the 2006 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’06, pages 325–336, Chicago, IL, USA, 2006.

ACM.

[14] G. Graefe. Query evaluation techniques for large databases. ACM Computing Survey, 25(2):73–170,

1993.

[15] G. Graefe. Implementing sorting in database systems. ACM Computing Survey., 38(3), Sept. 2006.

[16] J. Gray, S. Chaudhuri, and A. B. et al. Data cube, a relational aggregation operator generalizing group-by,

cross-tables and sub-totals. Data mining and knowledge discovery, 1(1):29–53, 1997.

[17] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In Proceedings of

the ACM-SIGMOD Conference, pages 205–216, Montreal, Canada, 1996.

[18] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query copro-

cessing on graphics processors. ACM Trans. Database Syst., 34(4):21:1–21:39, Dec. 2009.

[19] B. He and Q. Luo. Cache-oblivious databases: Limitations and opportunities. ACM Trans. Database

Syst., 33(2):8:1–8:42, June 2008.

[20] J. Hoberock and N. Bell. Thrust: A parallel template library. http://thrust.github.io/, 2010. Version 1.7.0.

[21] W. Hwu. GPU Computing Gems Jade Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1st edition, 2011.

[22] W. Hwu, editor. GPU Computing Gems, chapter Large Scale GPU Search. Morgan Kaufmann Publishers,

Wolftham, MA, 2012.

[23] Khronos Group. OpenCL: The open standard for parallel programming of heterogeneous systems. http:

//www.khronos.org. 2014-01-07.

[24] D. B. Kirk and W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2010.

[25] D. E. Knuth. The art of computer programming, volume 3. Addison-Wesley, Reading, Massachusetts,

1973.

94

http://www.khronos.org
http://www.khronos.org

[26] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching. Addison Wesley,

Reading, MA, 2nd edition, 1998.

[27] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chen-

nupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunking the 100x GPU vs. CPU myth: An eval-

uation of throughput computing on CPU and GPU. In Proceedings of the 37th Annual International

Symposium on Computer Architecture, ISCA ’10, pages 451–460, Saint-Malo, France, 2010. ACM.

[28] D. Merrill and A. S. Grimshaw. High performance and scalable radix sorting: a case study of imple-

menting dynamic parallelism for GPU computing. Parallel Processing Letters, 21(2):245–272, 2011.

[29] D. R. Morrison. Patricia-practical algorithm to retrieve information coded in alphanumeric. Journal of

the Association for Computing Machinery, 15(4):514–534, 1968.

[30] T. B. Nguyen, A. M. Tjoa, and R. Wagner. An object oriented multidimensional data model for OLAP.

In Proceedings of the First International Conference on Web-Age Information Management, WAIM ’00,

pages 69–82, Shanghai, China, 2000. Springer-Verlag.

[31] NVIDIA CUDA. CUDA C best practices guide. https://developer.nvidia.com/category/zone/

cuda-zone. 2013-07-12.

[32] NVIDIA CUDA. CUDA C programming guide. https://developer.nvidia.com/category/

zone/cuda-zone. 2013-07-12.

[33] NVIDIA OpenCL. OpenCL programming guide for CUDAarchitecture. https://developer.

nvidia.com/opencl. 2014-01-07.

[34] NVIDIA Tesla. NVIDIA tesla GPU computing processor ushers in the era of personal supercomputing.

http://www.nvidia.com/object/IO_43499.html. 2013-07-12.

[35] OpenACC. OpenACC: Directives for accelerators. http://www.openacc-standard.org. 2014-01-

07.

[36] J. D. Owens, D. Lubeke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. Purcell. A survey of

general-purpose computation on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[37] Y. Perl, A. Itai, and H. Avni. Interpolation search: a log logN search. Commun. ACM, 21(7):550–553,

July 1978.

[38] K. A. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proceedings of the 23rd VLDB

Conference, pages 116–125, Athens, Greece, 1997.

[39] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations. Technical Report CSRD-TR-1029,

University of Illinois, Urbana, IL, 1990.

95

https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
http://www.nvidia.com/object/IO_43499.html
http://www.openacc-standard.org

[40] H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.

[41] S. Samtani, M. K. Mohania, V. Kumar, and Y. Kambayashi. Recent advances and research problems in

data warehousing. In Proceedings of the Workshops on Data Warehousing and Data Mining: Advances

in Database Technologies, ER ’98, pages 81–92, Singapore, 1998. Springer-Verlag.

[42] S. Sarawagi. Indexing OLAP data. Data Engineering Bulletin, 20:36–43, 1996.

[43] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for manycore GPUs. In

Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing, IPDPS

’09, pages 1–10, Rome, Italy, 2009. IEEE Computer Society.

[44] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Systems Concepts. McGraw Hill, 6th edition,

2010.

[45] TPC. Transaction processing performance council. http://www.tpc.org. 2013-11-21.

[46] P. Trancoso, D. Othonos, and A. Artemiou. Data parallel acceleration of decision support queries using

cell/be and GPUs. In Proceedings of the 6th ACM Conference on Computing Frontiers, CF ’09, pages

117–126, Ischia, Italy, 2009. ACM.

[47] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure. On the limits of gpu

acceleration. In Proceedings of the 2nd USENIX Conference on Hot Topics in Parallelism, HotPar’10,

pages 13–13, Berkeley, CA, 2010. USENIX Association.

[48] H. Wang. Data warehouse operations on sparse multi-dimensional array storage. Wits University Honours

Research Report, 2012.

[49] H. Wu, G. Diamos, J. Wang, S. Cadambi, S. Yalamanchili, and S. Chakradhar. Optimizing data warehous-

ing applications for GPUs using kernel fusion/fission. In Proceedings of the 2012 IEEE 26th International

Parallel and Distributed Processing Symposium Workshops & PhD Forum, pages 2433–2442, Shanghai,

China, 2012. IEEE Computer Society.

[50] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient compression. ACM Trans-

actions on Database Systems, 31(1):1–38, 2006.

[51] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimen-

sional aggregates. In ACM-SIGMOD International Conference on Management of Data, pages 159–170,

Tucson, AZ, USA, 1997.

96

http://www.tpc.org

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Motivation
	Problem Statement
	Overview of Some Known Approaches
	Overview of Our Solution
	Main Contributions
	Organization of the Dissertation

	Background and Related Work
	Storage Schemes for Multi-Dimensional Sparse Arrays
	Index-Value Pair
	Offset-Value Pair
	Bit Encoded Sparse Storage
	Compressed Row or Column Storage

	Data Warehousing and OLAP
	Multi-Dimensional Aggregation
	The CUBE
	Search Lattice
	Algorithms for Computing the CUBE

	General Purpose Computing Using GPUs
	GPU Architecture
	CUDA Programming Model

	Application of GPUs to Data Warehousing

	Multi-Dimensional Sparse Array Representations
	Methodology
	Extended Compressed Row or Column Storage
	XCRS and Its Construction
	Random Element Access and Sub-Array Retrieval in xCRS
	Space Utilization of xCRS

	Bit Encoded Extended Compressed Row Storage
	Word-Aligned Hybrid Code
	BxCRS and Its Construction
	Random Element Access and Sub-Array Retrieval in BxCRS

	Hybrid Approach
	Hybrid and Its Construction
	Random Element Access and Sub-Array Retrieval in Hybrid
	Some Properties of Hybrid
	The Storage Overhead
	The Time Complexities of Random Element Access and Sub-Array Retrieval in Hybrid

	PATRICIA Trie Compressed Storage
	PATRICIA
	PTCS and Its Key
	PTCS Construction
	Random Element Access and Sub-Array Retrieval in PTCS
	Some Properties of PTCS

	Multi-Dimensional Aggregations of Sparse Array Elements
	Aggregation Using PTCS and BESS
	Aggregation Using xCRS and BxCRS
	Aggregation Using Hybrid
	Comparative Analysis of Computing Aggregations Using Various Schemes
	Computing the Cube
	Paths in the Search Lattice
	Computing the CUBE Using BESS
	Computing the CUBE Using PTCS

	Selected Array Operations on GPUs
	Overview
	Large Scale Random Element Access
	Sub-Array Retrieval
	Computing The Cube
	Resetting the Attribute Order
	Sorting

	Experimental Setup
	Experimental Environment
	Experimental Data

	Performance Evaluation
	Storage Utilization of Various Storage Schemes
	Experimental Results and Comparative Analyses
	Results on CPU Only Processing
	Performance of Storage Scheme Construction
	Performance of Large Scale Random Element Access
	Performance of Sub-Array Retrieval
	Performance of Aggregation
	Performance of Computing the CUBE Using PTCS and BESS

	Results on CPU+GPU Co-Processing
	Performance of Large Scale Random Element Access
	Performance of Sub-Array Retrieval
	Performance of Computing the CUBE Using BESS

	Conclusion
	Main Objectives
	Main Contributions
	Future Work

	Appendix
	Additional Algorithms
	The Sub-Array Retrieval Algorithm in XCRS
	The Algorithm to Search the Array compwrd
	The Sub-Array Retrieval Algorithm in PTCS

	Bibliography

