A FUNCTION-KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE

SYSTEMS DESIGN

Author: Angelo Paulo Bassanino

Student Number: 81-0321/3 ;) 7

Signed:

Project supervisor: Dr.A.J.Walker

Submitted January 1986

A Project Report submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg in partial «
fulfillment of the requirements for the degree of Haster of .
Science in Engineering.

a. £ p i bl frome

DECLARATION

I declare that this project report is my own, unaided work. It is
being submitted for the degree of IMaster of Science in
Bngineering in the University of the #itwatersrand, Johannesburg.
It has not been submitted before for any degree or examination in

any other University.

: vl
Signed: /}?_‘%74/: .
LA W qay of .3 Jamumr e . 198

wam L P

ABSTRACT

Program Description Language {PDL)} is a high-level design
language used for both hardware and software systems design. Due
to the clerical effort involved in creating such a structured
program, however, the PDL design is usually bypassed, and coding
performed directly. The syntax~directed PDL generator package
presented here, written in Pascal for the IBM-PC, is aimed at
providing a tool for producing syntactically correct PDL programs
with the minimum of effort. Function keys are used extensively
for specifying system inputs, and PDL keywords are inserted via
construct templates. Syntactical correctness is always enforced
while indentation or prettyprinting is automatic. This user-
friendly PDL editor thus encourages a top~down iterative design
approach while automatically performing syntax and partial
semantic error detection., It is bellaved that this much needed
tool will not only promote high-level design principles, but alco
serve as the basis for automatic code generation fer commonly
used programming languages.

N o g L s g

for my parents
Remo and Maria Bassani.

s

ACKNOWLEDGEMENTS

I would like to thank the following for tueir material and moral
suppert throughout the production of this thesis:

== Dr. A.J.Ralker for bris dedicated help and advice both
conceptually and materially,

-~ The Council for Scientific and Industrial Research (Foundation
for Research Developnent} for its finuncial assistance.

-~ Mr K,A.Jackson and ils D.E.tlosgelson for their assistance and
moral encouragenert in times of need.

- e v -1 it e,

CONTENTS OF THIS REPORT

-~ A& Syntax-directed PDL Generator for

Software Systems DeSicn ..v..evess0 14 Pages

A Function-key driven Syntax-directed Bditor for
Software Systems Desig,) - Literature Survey «s.ece.... 24 Pages

A Function-key driven Syntax-dirested Editor for

Software Systems Design - User's Manual ..

vesnsssess 69 Pages

A Function-key driven Syntax~directed Editor for
Software Systems Design - Designer's Reference 129 Pages

page 1

A_SYNIsX-DRIBECTED. EDL.GENERBIOR EQR.SOETWARE.SYSTENS DESIGN

by &.P.Bassaninc

Department of Electrical Engineering,
University of the Witwatersrand,
Johannesburg

December, 1985

Bhskrach

The need for a machine-independent language for design purposes
has been recognized, and Program Description Language (FDL) has
emerged as such a tool, The clerical effort {nvolved in pukting
together and editing a PDL program, however, has proved a
disincentive to using this powerful design language. This paper
describes the features, operatlon and basic design principles of
a PDL syntax-directed editor package. Indentation is
automatically performed; syntactical correctness is always
enforced; and extensive use of function keys is made to
facilitate program input. Th2 Qesigner is thus presented with a
specialized user~friendly euitor for rapidly developing a PDL
program in a convenient top-down, iterative manner, It is also
explained how expansion of the package will lead to automated
program code generation for commonly used programming languages.

Fr— £y -3 in e o

¢
1

Page 2

INIRODUCTION

The design and documentation of large software systems has always
proved a major challenge. Lately, it has become apparent that a
high level design language is a useful tool for developing
machine independent software. PDL (Program Description Larjuage)
is such a high level language. Its structured format and liberal
use of comments make PDL not only a designer's tool, but also an
effective documentation aid. Due to its descriptive nature, PDL
produces a well-defined model of the design of a project using
conventional programming concepts. PDL has already proved its
usefulness in the design of both hardware and software systems.
(Caine (1975), Walker (1985

Program Description Language is an important concept as it helps
the user to distance himself from language-specific details. PDL
therefore becomes a framework for both hardware and software
design. A high-level PDL may be used to describe complex system
operation via only a few comments,

A top-down design would be undertaken in high-level PDL using
general descriptive comments initially, and then gradually
expanded down into a low-level PDL program. This aids the
designer to view the system as a whole initially, and to slowly
expand the view to include more detail, until the required
implementation level is reached. The design can then be
implemented in the most suitable technology. This concept of
stepwise refinement iteration is convenient as it agrees to a
large extent with the manner in which most designs are created.
(somerville (1984), Vosbury (1984))

PDL in its lowest~level form is similar to any modern programming
language in that it makes use of assignment, decision and looping
construet s to carry out its function. Constants and variables
{collectively known as Data Items) are defined rigorously in the
Data Description segment which precedes the program or procedure
body. The Algorithm segment «ontains the = program bedy.
Indentation is maintained at all times to emphagise the program
structure. Thus PDL, when consistently used, produces a well-
documented, readable, top-down system design.

PDL does, however, have its prablems. The manual entry of a PDL
program is tedious due to the rigourous indentation requirements

of the 1e. The strict ordering of the Data Description
segmen* . deletion or insertion of embedded constructs are
examp. se consuming operations when editing a PDL routine
using o ~ntional editor. A tool is thus needed for

simplifya: .«e process of entering a PDL program. Such a tool is
known as a syntax-directed editor. (Bassanino (1985a))

THE_EURROSE.OF TEIS_EDL_GENERATOR.PACEAGE

The syntax-directed editor described here knows the syntax rules
of PDL. It combines &he text manipulation facilities of a

B e e

Page 3

general-purpose editor with the syntax or error~checking
functions of a compiler. (Allison (1983))

A syntax-directed function-key driven PDL generator can be used
to aid the designer by automating indentation requirements as
well as ensuring or enforcing syntactical correctness (and
partial semantic correctness in low-level PDL}. A user can thus
write a PDL program, being interactively warned if any language
structure errors are made. This leaves the designer more time to
concentrate on the true design of the system instead of being
constantly precccupied with clerical details,

This paper presents the features required of such & syntax-
directed editor package. Some design methods adopted in its
censtruction are also briefly discussed. This syntax-directed PDL
editor is intended to be used for teaching undergraduate
engineering students high level system design concepts. The
editor will prove useful in teaching programming constructs;
emphasizing good programming practices; and also allowing the
user to quickly learn the rules of DL, (Teitelbaum {1981),
Garlan {1964))

The experienced user will clearly find the editor an invaluable
tool for PDL generation. PDL programs can be entered with the
minimum of key strokes. Detailed programs produced by this system
will not only be correct syntactically but will also be in a
standard form, This, allied with the fact that indentation is
automatic, will aid both the student {in entering the program)
and the lecturer {for correcting submitted designs).

The syntax~directed editor package, due to its flexibility, will
encourage the development of structured designs using an
iterative process, Both high and low level PDL can be
interchanged in a program, with full editing faciiities (ie.
copy. move, delete and insert) being available at all times. The
user will be able toc separate the design thinking from
imple- :ntation detalls by iteratively refining this PDL program.
28 ¢.i indentation snd syntactical errors are dealt with by the
system, the wuser will £ind this PDL editor very convenient
compared to a conventional editor,

Ultimat«ly, due to the code produced, this PDL tool is intended
to be used as a translator, Thus, it will be possible to target a
BDL program into any one of a few commercially available
languages. ¥ascal, BASIC and FORTRAN are examples of such high-
level softwazs languages, while the assembler languages and
hardware sequential logic can also be made available as low-level
implementation taryet languages. Compilation and execution of the
translated PDL program van then be performed using any standard
language-specific compiler.

This PDL tool will therefore provide the missing link between
system designing and implementation. A designer will be able to
design i PDL and then decide on the most convenient
implementation language. An automated walkthrough facility is
also envisaged to dynamically enable the user to perform simple
but effective execution-error detection and efficiency
optimization analysis,

Page 4

BPBCKAGE..EPATURES

Ihe.basic.gbruginre

The designed system ls aimed at minimizing the effort required to
produce a syntactically <orrect PDL program. (Bassanino (1985b})
It is based on a dynamic set of ten function keys. Each set of
function keys defines a new system state. The user will move from
state to state depending on what function iz required.
Physically, the display screen is divided into four logical
screens: the Main Screen; the Window Screen; the Prompt Screen;
and the Function Key Definition Screen. (See Figure 1) This is
done 80 as to provide the user with a constant format. In this
way, as information is always presented in an orderly fashion,
the user will never be confused by the information displayed on
the screen.,

The concept of dividing the physical screen into a number of
logical screens greatly helps the user to operate the system with
the minimum of fuss. (Good (1981)) A particular type of system
response can always be expected in ‘e same physical location on
the sareen, A prompkt, £or example, will only ever appear in the
Prompt. Screen, and the user's attention will be drawn to this
line. sSimilarly, for editing any line, the focus of attention
will be on the Window Screen. Figure 1 shows a sample PDL program
being edited by the syntax-directed editor package. The logical
screen partitions are also distinguished.

Function keys save the user typiag time by replacing words,
phrases or even constructs. The alphanumeric keys are used only
when strictly necessary (ie. when entering text); otherwise , the
system is complately function key driven.

The Main Screer 45 a 20 line screen and is used to display a
portion of the formatted contents of the f£file. This screen
contains a cursor (Cursor 1) in the left margin with vertical
freedom only. Each line in the Main Screen is numbered
sequentially, «nd system placcholders and system~generated key
words are highlighted in various distinguishing video fonts.

The wWindow Screen 1s a one-line screen used to obtain responsges
£rom the user. All text lines are entered and modified via this
saond cursor {(Cursor 2) with only horizontal freedom
for this purpose. The user selects a line for
1n Screen. This line then appears in the Window
iioation purposes, After modifying this line, the
user can then :Yect to accept the new line, or revert to the old
line. If the line ig accepted, the line in the Window Screen
repl uces the vla line pointed to by Cursor 1 on the Main Screen.

Screen for mod

The Prompt Scrgen represents a one-line screen used for the
display of prumpt or error wessages to inform or warn the user.
The system also makes use of a terminal bell function to
differentiate between errors and prompts. Extensive error
checking ie performed by the PDL editor as its syntax-directed
nature requires, Prompts and messages are carefully worded so
that the novice user can be guided and helped along.

The fourth logical screen is used to display the definition of

L RV . L0 3 P N ok

Page 5

the ten function keys, and as such is known as the Function Key
Definition Screen. A single line is also needed for th’s purpose,
and function Kkeys which are undefined are not displayed. This
screen is updated every time a new state (with a new set of
function keys) is :ntered.

12 Single:
13 Global:

21 If (Move 1 = '0")
28 then:
29 *Castling*
Window 30 else:
Schen 31 #Check for other possibilities*

wmemem=d> |IE {Move) = '0')

Prompt
Screen -~~> | ** Editing Line 27 **

----- ~-> |L,PaB 2.Paf 3,ToF 4.Bof 5.ToL ...

|
Function Key
Definition
Screen
Figure.l: A Sample Bditing Situation
The four logical screens are shown in abbreviated form. The
two curgors are highlighted and underscored and can be seen
at Line 27 {Cursor 1)} and at column 10 {Cursor 2). There
are ten function keys and their Ffunction abbreviations are
digplayed in reverse video font in the Key Definitir:
Screen, Note also the highlighting of system~generated ke -+
words in the Main Screen.

At this gtage it is important to explain the various elements
available in a file. The syntax-directed PDL editor generates all
gtandard PDL key words auvtomatically. This is achieved by
allewing construct blocks {or templates) to be inserted only as
single entities. Where a user-entered teut condition or statement
is necessary, a placeholder is used. Thus, placeholders (enclosed
by < > brackets) must be expanded by the user for the program to
be complete.

For a syntax-directed editor to function as such, the template
approach described above is an attractive one. {Bassanino
(1985¢c)) The user is, however, limited to editing only the user-

A3 P 3 b,

7

Page 6

editable text lines and placeholders. Rey words cannot
individually be modified or deleted by the user, Only opsrations
on an entire construct are possible., This prevents the occurrence
or syntactical errors during an editing session. Key words on the
Main Screen are differentlated from user-editable text by
highlighting. (See Figure 1) Placeholders should be displayed in
a third font, as they essentially constitute an error of
omission.

Two versions of an edited file are available. There is a coded
version of the file which contains data pertaining to indentation
levels, key words, errors, etc. This version is used by the
system alone, and will not be intelligible to the user or any
other editor. This is the PDL system's operating file, and it
will always be necessary to retain it {f further editing of that
file may be required. This coded form of the PDL program is the
gile which will alsc be used for translation purposes in the
uture.

The PDL prettyprinted or formated file 1s the intelligible
version., It contains the user-designed program as it is displayed
on the Main Screen. This file need net be explicitly stored, as
the system does not make use of it, The formatted file may
therefore be edited using any conventional editor, This file
would usually be stored for printing or display purposes.

The PDL editor, as mentioned before, consists of a number of
states., After choosing the file to be edited, the user is
injtially placed in Base Level. Here, one has the possibility of
viewing the £ile by means of the scroll function key options.
More important, however, is the ability to be able to enter any
of the editing modes {or states) from Base Level. Xf, for
example, insertion of a construct is required, Insert mode must
be entered. It is also £rom Base Level that the PDL editor can be
exit. To date, only Insert functlons have been implemented.

Edikor.featuzes

Az already mentioned, the editing system operates using the Main
Screen for file viewing, while the Window Screen is used for
editing an individual line. If a line is to be modified, Cursor 1
is used in the Main Screep to choose the required 1line. This
cursor can be moved using the up and down cursor control keys.
Indicating the line to be modified is merely a matter of
depressing the pre-selected function key from Base Level,

If the chosen line is editable, it will now be duplicated in the
Window Screen. On displaying the line here, the line number
together with any associated indentation is omitted; these
atkributes only being visible on the Main Screen. The user is now
free to modify the editable text with the use of the Line REditor
features, Key words are not editable. Cursor 2 can be moved under
any editable character in the Window Screen by using the left and
right cursor control keys. When the user is satisfied with the
changes made to the line, the ENIER key is depressed. This
results in the new line overwriting the old line at Cursor 1 on
the Main Screen. If, however, the old line is to be retained
without any of the changes made te it in the Window Screen, then
the ESC key will be used. {Bassanino (1985b), Bassanino (1985c))

- oy

i
|

rage 7

The Line BEditor is used extensively for any user-entered text
input from the Window Screen. A summary of the functions
available together with their meanings is shown below:

-> Cursor 2 moves to the right by one position

<= Cursor 2 moves to the left by one position

HOME Cursor 2 moves to the beginning of the line

END Cursor 2 moves to the end of the line

CTRL K Brases from the cursor position to the end of the line
= Destructive backspace deleting function

DEL Another deleting function

INS Toggles Insert mede on/off

ENTER Bxits the Line Editor and accepts the new text

ESC Exits the Line Editor ignoring any modifications

Incividual line editing is performed using the above method. If,
however, an operation is required on a line or a block of lines,
then Cursor 1 is used in the Main Screen.

For the purposes of viewing any 20~line portion of the PDL file
o~ the Main Screen, extensive scrolling furctions are provided in
the Base Level, Cursor 1 can be moved up and down by using the up
and down cursor control keys. If the cursor is moved beyond the
#ain Screen limits, a half-page scroll will occur. Full page
forward and backward screlling is also available, The top and
bottom of a file can be accessed via a single function key
depression. The user can also choose a line number where Cursor 1
is required. A summary of the file scroll functions is given
below:

[-~ Cursor 1L up by one line
-- Cursor 1 down by one line
Pghn ~=- Page scroll forward

Pglp -~ Page scroll backward
Top of File ~- Cursor 1 to the top of the file
Bot of File -~ Cursor 1 to the bottom of the file
Cur to Line -~ Cursor 1 to a specified line number

Each of the file editing features of the package provides a new
mode from Rase Level. The four macro modes are:

-- Insert Mode
-~ Delete Mode
-~ Copy Mode
~~ Hove Mode

Each of these modes will allow for single line and block
operations. "Thus each mode will in turn have its sub-modes which
will give the user the necessary functions. fThese editing
features will be described later, '

Daka Desexiption. segment. facilities

Before describing the features available for the manipulation of
the Data Description segment, it is useful to understand how this
segment is comprised. In PDL, every data item (known in
programming terms as a constant or a variable) is defined
according to four characteristics. These characteristics together
with their possibilities are listed below:

i
Page 8 t
! .
Eupction Iype Structure Scope [
Constant Boole 1 Single Global I
vVariable Integer Array Permanent [
Real External [
Character Local !
Others 1
The various possibilities are almost self-explanatory, but it :
must be appreciated how data items are described in the Data
Description segment. Figure 2 shows an example of such a
description.
[
i
Variable: tfad
Integer: [
Single: HE
Local:]
INPUT A [
Array: «
Local: *
INPUT B {of size 10)
i : Example of a Data Description segment 1
The data item INPUT A is classified as a local, single "
integer variable, while INPUT B is a local array consisting 8
of ten integer variables. [N
B
#
&
It is clear that there is great scope for automation in the -
insertion and deletion of a data item. The FDL syntax-directed .
editor makes use of the ten function keys available to allow the
user to choose the posaibilities specific to a particular data w
item characteristic. Thus, insertion of a data item is performed :

as follows: {Bassanino (1985b))

Firstly, the user enters the data item name in the Window Screen.
Then, the Function characteristic possibilities are displayed as
function key options., When the user has chosen the desired
possibility ~{Constant or Variable}, the Type characteristic
possibilities (boolean, integer, real, etc.) are displayed. Thus,

the user van define the data item characteristic by
characteristic until finally the data Scope is defined.

The definition of a data item is flexible in that the user can
edit any chosen key word, and even abandon the definition
entirely before it is accepted by the system. During Data Item
Pefinition mode, all key words are temporarily displayed in the

Window Screen. Only when a data ltem has been fully defined and 3
accepted will it be positioned in the Data Description segment of I8
the PDL file.

item positioning is automatically performed by the
syste s0 that only the necessary key words are added to the
file. All standard indentation reguirements are also
automatically satisfied. Thus, the user need never be concerned
with the structure of the Data Description segment. Also, there
is no possibility of lncorrect eor ipcomplete data item
definition. This automated facility can be extended to store the

This data

Page 9

attributes associated with all data items in a data item table.
Thig table can then be used to check for type compatibility and
thus semantic errors in the Algorithm segment of the PDL program.

The user is only permitted three operations on 'the Data
Description segment: insertion, modification and deletion. The
Insert facility has been described above. The Modify function
enables the user to edit the data item name via the Line Editor
in the Window Screen., The Delete function restricts the user to
manipulating only data items and not their key words.

The Modify function has been described earlier. It is also wused
for editing any other user-editable text line individually. As
lines containing key words are not editable, only the user
entered data item name may be altered.

In deleting a data item, the user positions Cursor 1 in the Main
screen on the line containing the data item name which is to be
deleted and requests a line delete, Any associated key words are
then automatically deleted from the file together with the data
item name. Key words may not be tampered with: any attempt to
delete them will result in an error message,

A block of sequentially defined data items may be deleted using
the Block Delete function. This function will allow the deletion
of all data items which lie within the chosen block, The block to
be deleted must start and end on a data item name for it to be
accepted. The data item names included in the block, together
with any relevant key words are automatically removed from the
file; the remaining Data Description segment being arranged
accordingly.

Automation of Data Description segment manipulation can be seen
to be highly effective. A large amount of clerical effort |is
saved due to the function key definition method as.well as the
automatic placement feature, The user is thus able to define a
data item while In the Algorithm segment without having to move
to the Data Description segment. Finally, the basig for semantic
ervor checking is also provided by the automated system described
above.

Blgoxitbm segment facilities

The Algorithm segment contains the statements and constructs
which constitute the progrem body. The key to enforcing
syntactical correctness (ie, no end-of-constructs missing) is to
prevent or disallow syntactical errors. (Teitelbaum (1981}) Thus,
a great deal of chacking is done by the system to ascertain
whether any editing operation requested will still leave the
program syntactlcally correct if performed.

Besides the Modify function, four modes are defined here: Insert,
Delete, Copy and Move modes. (Bassanino (1985b)) fThe Modify
function has already been described in the section relating to
editor features. It gives the user the ability to modify the
user-editable section of any line. Thus, placeholders can be
expanded and lines modified in the Window Screen, raking full use
of the Line Editor facilities.

single line insertion is permitted at almost any location in the

Page 10

Algorithm segment. This facility is used for inserting PDL
statements or comments. Insert Line mode will allow the user to
enter a series of lines sequentially. This mode is exit using an
appropriate function key. when in this mode, lines on the MHain
Screen which appear after the line at which dinsertion is
occuring, will pot be displayed., Cursor 1 will also not be
prcsent on the Main Screen.

At this stage it should be pointed out that although this feature
is not yet implemented, parsing of each line entered via the Line
Editor should be performed. When parsing a line, the PDL grammar
can be checked dynamically and any semantic errors flagged. Among
the tests that can be performed are: type compatibility;
distinguishing between assignment statements and conditions; and
checking for illegal (ie. wuser-entered) key words. As all key
words are system generated, they may not be user~typed.

Constructs are inserted as a block or template. This ensures that
syntactical correctness is maintained. In all Insert modes,
indentation is automatic, An example of an If-then-else construct
template can be seen in figure 3. Placeholders represent portions
of the construct that must be filled in by the user. With the use
of a single construct function key, the user is able to choose
any construct template. The templates available are listed below:

== If-ther ~=- Case-else

~- If-the: -~ Cobegin-Coend
~~ While-d ~~ Get

~~ Repeak-uli... —= Put

-= Case

If <CONDITION>
en;
<STATEMENT>

elses
<STATEMENT>
End if:

Eigure 3: An If-then-else construct template
The template consists of key words {such as "else:") and
placeholders (such as <3TATEMENT>). Placeholders must be
expanded by the user, while key words are not user-
editable,

Deletion is also restricted to constructs, Single line deletion
is, however, allowed on lines which have been entirely user-
entered (ie., have no key words). Construct deletion occurs when
an entire construct 1is removed with the user indicating the
construct start line., Block deletion is also possible, but the
chosen block must not contain any unterminated constructs,

The user is able to choose a line by one of two methods. A line
can be pointed to on the Main Screen with Cursor 1 and a function
key used to choose it or a numerical line number in the Window
Screen can be specified. Before deletion, the lines chosen are
highlighted, and the user is asked to confirm the operation,
Plaveholders whick are cutstanding after any Delete operation

]

Page 11

will automatically be inserted.

The user has the ability to perform eitber a single line or a
block copy function while in Copy mode, Again, line choice is
carried out using one of the two methods described =bove., The
choice of copy block must comply with the persistent law of
maintaining the program syntactically correct at all times. In
this case, the destination line is alsc of importance and must be
checked £for acceptance. Here too indentation is automatic, and
any superfluous placehclders which remain after a Copy operation
vill be removed.

similarly, a Move function is available for single lines as well
as for blocks. With its automatic indentation and friendly user-
interface, the user will find the PDL syntax~directed editor an
invaluable tool for putting together and editing a PDL design in
as short as possible a time period.

It is envisaged that the following functions will eventually be
incorporated into the package. (Bassanino {1985b)} A function for
obtaining information regarding any particular error chosen on
the Main Screen can be provided together with an on-line help
facility for the novice. A&n ellipsis feature for elliding (or
temporarily removing) blocks of text so that the outer program
levels can be displayed together in the Main Screen, will prove
useful. This facility allows the user to effectively view more
than 20 lines at a time by removing program details in the form
of deeply nested constructs. An "undo” stack is 2lso a useful
feature when dealing with peculiarities of syntax-directed
template-based editors. {eg. converting a While~do construct into
a Repeat-until construct)

PACRAGE DESIGH.CONSIDERBIIONS

The functions described above have not all been implemented (only
Base Leyel and Insert mode are fully functional), but in building
the package, several sound design principles have been adopted
which will aid in rapidly expanding the package 'to its full
potential. (Bassanino (1985¢))

To make the system as ex.ernally programmable (or £lexible) as
possible, a series of tables have been used. These tables contain
specific system operation information such as lists of key words,
prompts and next state . It is thus possible, to a large extent,
to modify system beh:vior by modifying the system tables. These
tables are file based and are loaded on initialization. Although
this 1s not the objective, these features also make the system
adaptable to act as a syntax-directed editor For any other PDL~-
1ike language,

The packagt is designed with a high degree of software . design
discipline., The system tables are designed as modules, accessible
only via certain routine calls. These modules essentially consist
of a data structure (known as a resource) surrounded by
operators, (Walker (1984)} Separable package features are also
designed as modules in such a way that & sound program structure
emerges. {(Myers (1975), Shankaxr (1984)) The modules designed can
be separately tested via specially written test programs. This
allows the designer to test or experiment with any possible

page 12

operation on the resource before it is included in the package.
This also means that the routines are portable as they were
designed as stand-alone modules, Further, a terminal dependant
resource with a variety of access operators ensures that the rest
of the package is completely terminal independent.

Due to its high structural strength and modularity, the package
is easily expanded. Delete, Copy and Hove modes can simply be
decigned separately and integrated into the f£inal package.
Extended features are also easily incorporated, while changes in
the PDL language are accommodated by modifying the system tables.
{Bassanino (1984c¢))

CONCLUSIONS

Program Description Language (BDL) is a useful, flexible high~
level language for describing a design without commitment to any
particular implementation technology. A top-down approach is
enforced as comment statements can be expanded into algorithm
detail. Standard PDL constructs and strict indentation is
strongly relied upon to produce a readable PDL program. This very
feature of PDL, however, requires the user to spend much design
time for manual indentation, and this may detract from the
purpose of the language of providing an effective design tool.

A syntax-directed PDL generator is an effective solution to the
above problem. fThe package designed is template based, so that
all constructs and key words are system-generated. Syntactical
correctness is thus enforced by disallowing incomplete
constructs, The system is function key based, thus ensuring
maximum efficiency. All editor operations are subject to
acceptance testing so as to ensure that no syntactical exrors
occur. Limited semantic checking can be included for low-level
PDL programs. All indentation requirements are automatically
dealt with.

This syntax~directed PDL tool is seen as an indispensable tool
for the designer. The package can be put to good use in a
teaching environment: the student will quickly learn the rules of
PDL while the lecturer will be presented with consistent and
syntactically correct designs. The clerical effort of typing key
words; ensuring correct indentation; and for checking syntactical
correctness is eliminated with such a tool. This allows the user
more time for designing. The package fncourages structured design
development using an iterative approach and helps separate design
thinking from implersntation issues. Step by step top-down design
documentation is thi, also enforcer.

The package has been designed .o be as programmable as possible
by using a table-based function-key driven approach. Extensions
and modifications are easily accommodated due to the highly
modular package structure. The system may be modified to act as a
syntax~directed editor for a varievy of PDL-like languages. The
coded program produced by the PDL generator, however, 1is to be
used for translation purposes into the commonly known software
languages. The system 1is also seen as a basis for automated
walkthrough facilities. (Cheai (1984), Feiler (1961}) 1In
conclusion, this PDL syntax-directed editor system is destined to
become the major tool on the future system designer's work-bench,

g, - 0% B

S

Page 13

JBEEERENCES

Allison,L. (May 1983): “Syntax directed program editing”,
fggmustﬂiss_andjxuﬂi.emg.Jssm. Vol.13, No.5, pp.453~

Rassanino,A.P. {1985a): A_Eung.ci_om)ssx..dxix.en-sxntgx:.dims.tgd
Iditer.for software, Systems_ Design, ‘"Literature survey",
document submitted for an MSc {Eng) degree in the depa:tm@nt
of Electrical Engineering, University of the Witwatersrand,
Johannesburg, 1985-1936,

Bassanino,A.P. (19850): AFupction-key driven.Svptaz=dlirected
Editor for Software Systems. Desion, 'User's Manual’, Version
1.0, a document submitted for an MSc (Eng) degree in the
department of E£lectrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.

Bassanino,A.P. (1985¢c): A_Function=key driven Svntax=dirscted
Editor_for Sofiware Svstems_Depign, "Designer's Reference”,
Version 1.0, a document submitted for an MSc (Eng) degree in
the department of Blectrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.

Caine,S.H. and Gordon,E.R., (1975): "PDL -- a tool for
software design", Progceedings _of .the Natiopal . Computex
SConferepge, 1975, pp.271-276.

Chesi,H, ,Dameri,E. ,Pranceschi,M.P. ,et al (May 1984):
"ISDE: An interactive software development environment®, ACM
Slgplap..Dofigss, Vol.l9, No. (ACH Software Engineering
Hotes, Vol.9, No.3}, ACM SIGSOFT/SIGPLAN Software Engineering
Sympcuium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.100-200.

Garlan,D.B. and Miller,P.L, {May 1984): "GNOME: An
introductory programming environment based on a family of
structure edlitors", AGM_Signian.Netiges, Vol.l9, No.5, (ACM
Software Engineering Notes, ¥o0l.9, No,3), ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, Pittsburgh, Pennsylvania , April
23-25, 1984, pp.100-200,

Feller,P.H. and Medina~Mora,R. (September 1981): "An
Incremental Programming Environment®, IEBEE_ Trsnsactions...on
Seoftwaxe Engipesring, Vol.SE~7, No.S, pp.472-48)

Good M. (June 1981): "Btude and the folklore of user
interface design", BCM._Sigplan__Notlses, Vol,16, No.6,
SIGPLAN/SIGOA Symposjum on Text Manipulation, Portland,
Oregon, June §-16¢ , 1981, pp.34-43.

Myers,G.J, (1975): Bellable _software _through .composite
deslan, Pertocelli/charter, New York, 1575.

Shankar,K.5. (1984): "Data Types: Types, structures and
abstractions”, Chapter 12, Handbook of 5oftwaxe Fnginsering.
edited by Vvick,C.R., and Ramamoothy,C.V., Van Nosrand Reinold,

g

Page 13

REEEBENCES i

Allison,L. (May 1983): ¥Syntax directed program editing", ;
ﬁsggS;m:.e_fmgus.e_anﬁ_Ex.vsn.ensg_iQB.L, Vol,13, No,5, pp.453- o

Bassanino,A.P, (1985a): A_Eum:.tj.gn—Jsﬂy..d.:.tyﬂ..ﬁyntﬂx-.dir.es.te.d
Pdibor for.Software Systems_Design, “Literature survey” !
document submitted for an MSc (Eng) degree in the department |
of Electrical Engineering, University of the Witwatersrand, i
Johannesburg, 1985-1986, i

I

|

Bassanino,A.P. (1985b): A_Fupction-key.driven.Syntax=directed
ESitor. for Software Systems.Desian, 'Uset's Hanual®, version
1.0 a document submitted for an MSc (Eng) degree in the
department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.

Bassanino,A.P. (1985¢): A_Function=key driven.Synkax-directed .
E4itor for Software Sygtems_Design, "Designer’s Reference",
vVersion 1.0, a document submitted for an MSc (Eng) degree in !

the department of Electrical Engineering, University of the
Ji.watersrand, Johannesburg, 1985-1986.

Caine,8.H. and Gordon,E.K, (1978): "PDL =-- a tool for o
software design", Erogeedings _of. the .National _Conpuier ;
Sopference, 1975, pp.271-276.

Chesi,M, ,Dameri,E. ,Franceschi,M.P. ,et al (May 1984):
"ISDE: An interactive software development environment", ACM o
Sigplan__Notices, Vol.l9, No.5, (ACM Software Engineering
Notes, Vol.9, No,3), ACM SIGSOFT/SIGPLAN Software Engineering
Sympezium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.l100-200.

Garlan,D.B. and Miller,P.L. {May 1984): "GNOME: An
introductory programming environment based on a family of
structure editors®, ACM_Sigplan.Notices, Vol.l9, No.5, {ACM
Software Engineering Notes, Vol,9, Noa.3), ACM SIGSOFT/ SIGPLAN
Software Engineering symposium on Practical Software
Development Environments, Plttsburgh, Pennsylvania , April
23-25, 1984, pp.100-200,

reller,P.H. and Medina-Mora,R. (September 1981): "An
Incremental Programming Enviroanment®, JIEEE. z‘:_ansgg_ugnﬁ_._qn '
Software Bngineering, Vol.S8E-7, No.5, pp.472-481

Good M, (June 1981): "Etude and the folklore of user 3
interface design", ACM..Sigplap__Netiges, Vol.l6, No.6,

SIGPLAN/SIGOA Symposium on Text Manipulation, Portland, A
oregon, June 8~10 , 1981, pp.34-43. S

Myers,G.J. (1975): Relisble _software throush _composite
desian, Pertocelli/charter, New York, 1975.

Shankar,K.S. (1984): ¥*Data Types: Types, structures and
abstractions”, Chapter 12, Handbook of Software Epgipeering.,
edited by Vick C.R. and Ramamoothy,C.V., Van Nosrand Reinold,

Page 14

1984,

Sommerville,X. (1982): gSoftware Epgineering, Addison Wesley
International Computer Sclence veries, 19B2.

Teitelbaum,T. ,Reps,T. and Horwitz,S. (June 198l): "The why
and wherefore of the Cornell Program Synthesizet", ACH
Sigplan__Notices, Vol.16, No.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June B-10 , 1981, pp.8-
16.

Vesbury,N.A. (1984) : "pProcess Design", Chapter 25,
Handbook of Software.___Engineering, edited by Vick,C.R. and
Ramamoothy,C.V., Van Nosrand Reinold, 1984,

Walker,A.J. (1984): Structured informatiop_processing.sysien
desgign, Internal peblication of the Department of Electrical
Engineering, University of the Witwatersrand, Johannesburg,
1984,

O FE N T S pay

§
{

A FUNCTION~KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

LITERATUOURE SURVEY

December 19885

Author: a.P.Bassanino

Signed: W

» Project Report submitted to the Faculty of Engineering,
university of the Witwatersrand, Johannesburg in partial
fulfillment of the requirements for the degree of Master of
Science in £ngineering.

s g L e

A FUNCTION-KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

LYITERATURE SURVEY

December 1985

Author: A.P.Bassanino

Signed: W

A Project Report submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg in partial
fulfillment of the requirements for the degree of Master of
Science in Engineering.

CONTENTS
1 THE HISTORY AND DEFINITION OF EDITORS .eveesoseensse 1 = 2 !
2 FACTORS INVOLVED IN SYNTAX EDITOR DESIGH vevevsssser 3 = 10 .
¥
2.1 The general concepts 3 h
1
2.2 Editor functions [";
2.3 The user interface 7
3 A REVIEW OF RELATED PROJECTS .sacesvessvursnasrosees L1 =19 4
3.1 The Cornell Program Synthzsizer 11 r
3.2 The % editor 13
3.3 Other systems 15
i
4 REFERENCES AND BIBLIOGRAPHY soeevecssasenrenaancssss 20 = 24 ﬁ

Pty

Page 1

1 THE HISTORY AND DEFINITION OF EDITORS

The editor is one of the most used tools today on an interactive
computer system. Line criented editing is an early form (late
1950's) of text editing usuvally assoclated with punch-cards of
fixed or variable length., IBM's CMS editor is such an example,
Stream editors such as TECO solved the problems of truncation and
interline edit experienced by line editors by regarding the &

entire document as an infinitely long chain or string of e
characters, :

L
The 1960's saw the development of the first basic editors uvsing a A

TV monitor., Already in 1965, function keys were used in one of
the earliest time-sharing CRT based text editors known as TVEDIT.
this system, designed at Stanford University, California, offered H
control functions for inserting and deleting, with facilities for
text paging. Due to the high cost of CRT terminals, practical]
progress at this time was slow. %

oOne of the first classic surveys on text editing in general can
be found in Van Dam {1971). BHere, on-line editing is established
as useful and cost-effective in debugging. An example of an
ancient editor can be seen in Irons (1972). This is a line editor

N which uses the in-built terminal functions and it is interesting
[to note the curious names given to the most common operations. }3‘
&, {The f£ile is compared to a pack of cards, and operations such as

puil, plck and put can be performed.) A more recent and very
thorough survey on text editors can be found in Meyrowitz (1982},

In 1874 the first truly useful word processors started to appear.
Before this time, editors and word processors had a fuzzy
dividing 1line, A simple text editor is typically used to create

o or medify a computer program or text file via the use of basic
commands such as: delete; move; insert; etc.,. Text editors are
R generally divided into two categories: 1line editors; and screen FF
sl editors. The line editor aillows the user to edit only one line at
o a time, while the screen editor will permit the editing of a file f ¢

at any cursor pesition on the screen. A word processor however
can be defined as a sophisticated editor for the production of |
formatted documents. It includes such attributes as:

N highlighting; various size lettering; paragraphing; etc..
fe WordStar (MicrePro 198l1) is an example of a popular modern word

* processor,
Z Display editors based on the Irons conceptual model (Irons
(1972)) essentially constitute the majority of full-screen
. editors today. Among such editors, we find: PEN (Barach (1981));
S % {Wood (1981)}; sds (Fraser (198l) ; EMACS (Stallman (1980),

Stallman (1981)); and IBM's XBDIT (IBM (1980)), In Irons' model,
. text is concelved as a quarter-plane with the origin at the top
o leftmost character and extending infinitely in length and width.
The user travels through the file using the cursor keys and
changes characters by overtyping. At all times an accurate
representation of the @isplayed file portion is visible. The
environment is considered ‘'modeless’: all typing is considered as

P N fe 'S - -

Page 2

text; commands are given via function keys, control characters,
escape sequences or by typing in a specified command area in the
screen.

Graphics-based interactive editors such as Xerox PARC's Bravo
appeared in the mid 197¢'s, fThese editors (eg. ETUDE (Hanmer
{1981))) usuvally require a high resoiution CRT.

Structure editors are character orilented to exploit the natural
ordering of a document. (Fraser (1981) and Stromfors (1981)) A
Language Based Editor (LBE) makes use of the inherent laws of a
language to structure a document and detect any language related
errors. The document need not only be a program, but could also
represent a binary or graphics file, or a letter or manuscript
with subdivisions of chapters, sections, sub-sections and
paragraphs, The most common representation used by a language is
a hierarchical one.

Syntax-directed editors are used specifically for editing
computer programs. They aim to relieve the programmer of the
time-consuming task of eliminating syntax errors. Syntax editors
are sophisticated structure editors which ensure that on input,
syntactic integrity is preserved., Often, these editors will also
parse the input into an intermediate tree form that can be used
to generate code. Most syntax editors are table driven so that
potentially, several languages can be wmanipulated. Among the
first syntax-directed editors are Hansen's EMILY {Hansen {1971))
designed for PI/1; and LISPEDIT written for LISP programs. A
comprehensive summary of such edito~s is given in chapter 3.

-

Page 3

2 FACTORS INVOLVED IN SYNTAX EDITOR DESIGN

The first section of this chapter gives an idea of the terms used
in the literature as well as explaining the pros and cons of
using and designing syntax~directed editors., The second lists
some ideas and corventions of editors in general with particular
attention paid to syntax editors. In the third section the much-
spoken-of wuser interface is considered; many of the important
findings in the literature are discussed.

2.1 The general concepts

Syntax—directed editors are editors which know and use the syntax
of the language while a program is being edited, A language
directed editor combines the text manipulation functions of a
neneral purpose editor with the syntax-checking functions of a
compiler. These editors provide an environment which increases
the productivity of both beginning and experienced programmers.
Por the beginner, all the syntax of a language need not be
remembered when writing a program. All programmers benefit by the
typing time saved and the immediate detection of syntax errors,
As indentation and prettyprinting are automatic, programs written
using syntax-directed editors are well formatted, readable and
syntactically correct.

Many believe in the power of syntax-directed editors. A few such
arguments are detailed below. Teitelbaum (June 1981) states that
because the user is able to distance himself from the syntactic
details of a program, program conception at a high level of
abstraction is stimulated, and programming by stepwise refinement
is promoted. Meyrowitz {1982} claims that the specification of
target data as well connected, well defined units enhances the
user's powers of creativity and composition. Syntax-directed
editing may change the way that programming is taught and
described according to Notkin (1979). Frustrating details such as
the placement of statement delimiters {eqg. semicolons in Bascal)
can be eliminated entirely by the use of templates.

Syntax editors which parse the input into a tree structure are
used both as a tool for the programmer and a tool for the
compiler. The advantage to using the tree structure is that it is
easy to add and delete branches from the tree and when changes
are made, the entire tree does not have to be reparsed.

on the other hand, there are those who have not only pointed out

the difficulties with this type of editor, but in fact disagree-

with its basic concept. Wood (1981) for example claims that 95%
of editing can be done on a standard editor. He states that
syntax-directed editors constrain the user interface complicating
normally easy to understand operations. This approach promotes a
multitude of editors, He further argues that the representation
and editing of a program as a parse tree makes an editor more
difficult to implement.

Although many of his points are valid, it must not be forgotten

b e i

g

Page 4

that syntax editors can also create parse trees, and thus
eliminate the need for parsers and compilers. Program trees are
however very space intensive requiring on average hundreds of
bytes per source line as Fischer {1984) correctly points out.
Although parsing consumes processing power and parse trees devour
storage space (Morris (1981)), these resources are rapidly
becoming more powerful and cheaper today.

The above gave a general introduction to the motivation behind :
and the issues involved in syntax-directed editors, What follows R
is a comprehensive list of terms used in tne related literature

together with their explanations and some asceociated arguments. i

Template ~-- is the name given for a formatted syntactic skeleton Ce
that contains the keywords and punctuation marks of the given !
statement form. A template includes a placebgolder at each)
position where additional code is required to complete the
statement. These act as prompts to the user. FPhriases are
assignment statements, expressions and variable lists.

Syntax.__trses --- consist of terminal podes (leaves) representing
variables, constants, static language elements (eg. data type
names) and unexpanded program constructs. Figure 1 shows an
example of the tree structures adopted by the Cornell Program
Syntheslzer (CPS) as compared with that ~sed by SED (Allison
(1983)). The tree structure of SED contains phrases sc¢ that its
hierarchy stops at simple statement level, A parser_and deparser
is used to transform text into a syntax tree and vice versa.

ol ——

if then —— 3= e
1 { { if then ; y:=2
i I t I I | |
m—p e —e 3E e ¥ 2 I
1 | 1 1 adb xi=x+l
! a b * ol
1 | ol
o X 1 {b)
(a) ;
| fer
PR Eigure l: Examples of various Tree Structures
Lo Figure {a} shows the structure used by the CPS, while (b)
& shows the system used by SED. ¢

Nontermipal. . nodes ~--—- describe subtrees of a program
corresponding te control flow constructs and data definitions in
1 the language (eg. If-then-else construct in Pascal}. Information
l available at each node includes the type of language construct,
and references to the parent node and to its offspring. A node
can have a fixed or variable number of offsprings. Meta=-hodeg are
best described by fholes' in the program templates that have not i

- i g 2 e,

Page 5

been expanded.

Short. distapce SynEax --- is defined for error correction ability
by Allison (1983) as the syntax of a construct. Long .distance
2yntay involves variables or declarations which can have distant
effects on the program. (ie.the program semantics) This is the
most difficult error type to check for during editing, as a small
change to a declaration can have remote e“fects on type
compatibility. In incremental editing systems, long range errors
are left until execution time (eg, Pathcal (Wilander {1980)}). If
checking is done for long range errors during editing as with
CPS, validity needs to be relaxed in certain operations.

According to Allison (1983) changes to a program can be
implemented in three ways. Structyral commgnds as used in CPS
delete, copy, insert and move subtrees, Dgee .matching .and
Bubstitutlon looks like string replacements to the user and this
method 1is adopted iIn SED., Alternatively, arbitrary teztual
changes can be allowed to a program as in the CAPS system. This
method is known as texy editing.

Ellipsis_ox.bolopbrasting —-- is used to abbreviate long sections
of code so that they can be displayed on the 24-line VDU screen.
Thus a view of the entire program can be obtained and a zoom
function can be wused to display the details of a particular
section. The CPS for example allows the user to label a section
of)code with a comment before elliding it. (Teitelbaum (June
1621))

Pretivprinker --~- is tae name given to a software tool used to
output text in a structured format on a VDU or printer, Rubin
{1983) combines a prettyprinter and a syntax-directed editur to
form the jdea for a language-independent softwvare development
system, Por more details on prettyprinting, the following
references should be consulted: Mikelsons (1981); Oppen (1980).
Teitelbaum (June 1981) distinguishes between mobomorshic__and
polymerphis_prebsyprinting: the former automatically prettyprints
everything which is entered with no attempt made to keep all the
text onto the screen {eg., CPS); while the latter {eg. LISPEDIT)
prettyprints only in the vicinity of the cursor in an attempt to
keep text onto the screen,

Insegrated _systenmg --- constitute a set of tools that support
program creation, modification, executlon and debugging, This
means that a wuser does not have to perform mental context
switching between say modifying and debugging a program. Aan
Aibcremental _systen, however, is a system where immediate
execution is interleaved with editing so that, for example, a
user can run parts of a program editing any errors which occur;
after these errors have been corrected, running of the program
can be resamed.

If there is disagreement in the literature on a certain aspect of
syntax editors, it must be the generator versus recognizer
argument. A summary of both sides of the coin is given below:

The gepsrator...approach (sometimes known as programming by
gelection} usually makes use of templates so that only valid
programs can be generated. Programs are created top-down by
inserting new templates and phrases within the skeleton of
previously entered templates. Syntax error detection is

Page G

b
§
!
i

immediate. Correctness is maintained at all times by preventing i
the entry of syntactically incorrect programs. i
i
|
]

The generative or error prevention mode is best suited to
development environments and parsers are Usually not needed.
Typographical errors are possible in user-typed phrases and not
in system-supplied templates., Examples of systems based on this
method are: the Cornell Program Synthesizer (Teitelbaum(1981)),
EMILY (van Dam {1971)}, ISDE (Chesi (1984)), POE (Fischer
(1984)), and SUPPORT (Zelkowitz (1984}).

The recogpizer approach augments normal editing facilities with
lexical, syntactic and semantic analysis to detect any errors. In
thig way, the user is not constrained to the editor's templates.
Morris (1981) for example treats everything before the cursor as
syntactically correct so that an If-then statement say can be
changed to a while construct without much inconvenience. This
editing function presents a problem in the generative approach.
the recognizer method is consistent and permits arbitrary editing
operations on a program while program modification is greatly
simplified. Examples of systems which use this method are: Magpie
(Delisle {1984)), HENTOR {Donzeau~Gowge(l984)), SAGA (Campbell
(1984)}, Syned {Horgan (1984)), and % (Wood {1981)}.

The generative approach is perhaps more suited to program entry;
not program editing. Program by selection may appeal because of
its similarity to structured programming's stepwise refinement,
but stepwise refinement was developed for creating algorithms;
not for entering programs, It is a widely held view that it is P
bad practice to compose a program at a VDU. Allison therefore Do
concludes that it is doubtful whether programming by selection is R

& good thing, (Allison (1983}) ‘

2.2 Editor functions

i
Full-screen or display editors operate on the "what you see is {
what you get"™ concept with modifications made at the cursor b
position {cf. c¢hapter 1). These environments are by their nature i
very comfortable to use. An example of such a system where there
is "no text mode to enter or leave is given in the MINCE editor |
{Moore (1981)). A& powerful editor should include many of the i
followlng functions:

Cursor.movemepts :— up; down; left; right; to the start or the
end of the current line; to the beginning or end of the next line
oxr tab stop., Cursor movement should be possible by character,
word, line, sentence, construct, and by screen., Access to the top
or bottom of the £ile should also be readily possible. A t
horizontally and vertically scrolling screen is ideal, so that :
all the text can be viewed.

i
Backspace_apd_delete keys should be provided, and their functions J
clearly stated. (eg. Thompson {1981} defines the backspace as |
moving the cursor to the left and deleting the character, while !
the delete function will delete a character without moving the

guriozéi Settable tab_or indent_and_unindent attributes are also
lesirable,

The unde....0k. _restore function is very useful £for program

“F a B e ML e e

Page 7

protection, (It can be regarded as a stack: last-done~first-
undone), Move, _insert. _copv. and delete are standard editor
functions. Fischer (1983) uses a cursor to pass over the portion '

of the text that must be copied. Function keys can be assigned to ' ‘i
these operations, so that a delete key, say, will be depressed {
when the line pointed to by the cursor is to be deleted.

String._gearch..apd__string sybstlitution commands prove a time i
saving feature for the expert user. When a match is found, the y
cursor can appear at the first match, so that the user can return
for another match, or escape. Obviously, function keys could be
assigned to most if not all of the above functions, but this does
have its disadvantages as will be seen in the next section.

i ‘5 Zelkowitz (1904) states that about 80% of the time spent on an T

4 editor is used for editing or maintaining a program as opposed to
il entering it, This implies that a syntax editor is to be efficient T
- in performing changes to a program after it has been entered. B
e Desirable functions for this type of editor include: syntax error

detection or prevention; error correction (this point is
debatable); long range error detection by keeping track of data

i ,\‘ types and checking for incorrect assignments; ellipsis
. facilities; abbreviations for verbose constructs; prettyprinting;
N and parsing and deparsing.

oo

2.3 The user interface :

There have been a great deal of papers published on the issue of [
user~friendliness, and this can only be attributed to the 1low i
quality of commercial software packages avallable today. A good H
idea of the issues involved is presented below but for furkther
details, the following papers and their references should be
consulted: Jong (1982); Raduchel (1984) ; Good (198l); and
Meyrowitz (1982).

The user interface should present a well defined, consistent
conceptual model with the user being familiar and comfortable
with the philosophy behind the system. It should be clear and
concise, easy to learn and use, and it should provide consistency
ts across g@ifferent targets {Meyrowits (1982))., <Current technology
oL does a poor job of telllng the user what to do as opposed to how
A to do it. An inefficlent edito- with a smooth interface is better
received and more useful than an efficient editor with a badly |

designed user interface. Software should be designed and selected |
not on the basis of what is most machine efficient, but on how .

i
well people can use it. i
|

A method for determining user-friendiiness 1is described in ; 4
0 Raduchel (1984)., A system can be said to be user~friendly if i
F > E in the equation: i
Sy {
yort F o= Pn P" N
N where F, is the thresheld probability value
B, is the probability that a user will £ind a set of steps

to solve a problem

! p is the probability that a user can successfully execute
: each ste

n is the minimum number of steps in the solution

Page 8

P, falls as n increases, and p generally increases as each step
is made smaller. A user will eventually consider a system with
fewer but more complex steps to be the more user friendly. p has
an upper limit due to human error (of the order of 0.,995). If
problems to be solved are not simple, it is unlikely that any
general mass-market can be user-friendly.

A system that ls easy to learn may not be easy to use. As an
example, prompting for a sexies of steps in a standard operation
is easy to learn, but more time-consuming ta use. Conversely, a
macro system requiring only one command for the entire operation
may be easy to use, but not easy to learn. There is thus a trade-
off between the power offered by the environment and the ease of
learning the system.

The idea of "idiot proofing" found in Jong (1982) is a good one.
It is based on anticipating user errors such as: incorrect
entries; missing inputs; and inadvertent keystrokes. Deletions
larger than a single character should be stored in a stack to be
retrieved in case of error. This protects users from themselves.
To prevent inadvertent escape or abort routines, a combination of
two remote keys should be reserved (eg, CTL-X for quitting in
EMACS and MINCE).

For the commands which will have a drastic effect on the file
edited or which resvlt in irreversible procedures (eg. block
deletes and copies), user confirmation should be requested. A
cancel or reset key is a necessity so that long operations can be
aborted if so desired. While on this subject, it is important to
notice that system speed in interactive environments must be
maximized, Good (198l) states that execution time for all
operations should be kept below two seconds for acceptability. an
absolute maximum of 15 seconds should be imposed for the longest
computations.

According to Meyrowitz (1982), an "infinite" undo and redo
capability should be provided so that the user can experiment
with the system without loss or damage to a document. There are
several ways of achieving this. Peck (198l) gives the author
accese only to a copy of the original file. Alternatively, the
most recent keystrokes can be stored. When an undo operation {s
requested, the latest operation is retrieved from the stack and
its inverse operation (found in tabular form perhaps) is
performed on the file so as to leave the user with the file
before the undesired operation was executed, The ETUDE editor
{Good (1981)) displays a list of previous commands for the undo
function,

The choice of prompts and messages can greatly infiuence the
degree to which an editor will be accepted. Jong (1982) suggests
that messages should be : ¥polite not imperious; straight not
funny; neutral not personal". Although computers have been in use
for about thirty years, there are still those who feel threatened
by the computer, ~For this reason, a system should not give the
impression of the computer being the dominating person. The user
should always feel that he is the master of the computer and not
vice versa. FPFor example, a prompt for the next command should
ratherd“zead "Ready for next command" instead of "Enter next
command®.

Error messages should tell the user: what went wrong; what bhas

Page 9

happened as a 3 and how to correct the error. When the
system is busy and the user is waiting for a long process to be
completed, a message to this effect should be presented. Comments
should be brief, factual and informative without being
abbreviated, humorous or folksy {Good (1981)).

The use of various fonts such as highlighting, underlining and
reverse v' leo are very useful to the user in operations such as
moving, ¢ jying and deleting blocks. The Bank Street Writer
editor for example (Lewis (1984)) highlights one string match at
a time and asks the user for confirmation of a replace function,
The ETUDE editor lights up sections of a file which have been
selected for copying or erasing. Reverse video is quoted as the
best form of contrasting, while blinking should be used sparingly
as it is highly distracting, especially for long messages.
Mikelsons (198l) uses different fonts and colors to distinguish
keywords from identifiers.

Although the use of programmable function keys is an attractive
one, certain operations may be too important for only one
keystroke. Both Good {1981) and Jong (1982) agree that major
oparations or operations that are not always required but can be
inadvertently called via a single function key, should not be
assigned to function keys. The user should rather be prompted and
the whole command typed out.

For both the novice as well as the experienced user, a help
facility always proves useful. Documentation, both on-line (in a
system supplied help facility) and off-line (in manuals)
explaining the conceptual model, user interface and system
functions should be provided, The authors of MINCE (Moore {1981))
suggest the code~card approach: a two-sided card with a summary
of "the functions available and the commands to execute them is
given to the user, The experienced user will have a detailed
card, while the novice is provided only with a basic set of
cormands. Bank Street Writer uses an accompanying tutorial to the
novice with the functions available on the editor,

The designers of GNOMR (Garlan {1984)) have had extensive
feedback from students regarding their syntax-directed editor.
Difficulty was experlenced with the number of hierarchical
levels: too many levels lead to confusion as the user gets 'lost’
quicklys too few levels results in overcrowding of menus and also
proves confusing. The list below accounts for 90% of the errors
made by students.

undeclared variables

variable was declared but not used
uninitialized variable

= type mismatch

Good (1981) suggests that validation of data be done when the
data is entered; assuming data or attempting to correct errors
usually leads to incorrect results, so that it is best to let the
user correct his own mistakes; the editor simply being used .for
the detection of errors. The designers of EMILY (van Dam (1971))
report. from experlence that a light pen is not suitable as a
pointing device at engineering workstations, as it is tiring on
the arm and obscures vision. A tablet and stylus, wouse or just
cursor movements can replace thils problem.

page 10

The state of a system should always be displayed on the screen
{eg. file name, file type, and mode}., Screen subdivision (as used
in’ EMILY and GNOME) is a useful visual aid to the user, as it
refers him to a constant screen location for errors; prompts or
inputs. The concept of multiple overlapping screens 1s used
successfully in systems such as Magpie (Delisle {1984)),
Smalltalk (LRG (1976), Goldberg (1983)) , and PECAN (Reiss
(1985)), but these tricks require high resolution or graphics
VhUs {eg. the Apollo system).

It must, however, be pointed out that if the screen is subdivided
into too many seqments, or 1f too much information is presented
on a screen, this method looses its effectiveness. Meyrowitz
{1982) =lsc suguests that editors be able to offer users multiple
contexts on the same display surface, For example, if help is
needed, or amother file is to be changed while editing a
different file, the user should be able to gain access to the
relevant routine without having to change mode and return to the
original f£ile (ie. transparent access}.

Page 11

3 A REVIEW OF RELATED PROJECYTS

In this chapter a detailed summary is given of the available
structure editors today. Two case studies are described to
clarify the detail of such editors. The Cornell Program
Synthesizer is the subject of section }. This gives the concepts
involved in the design and implementation of a template-~driven
syntax-directed editor in an integrated environment. The Z editor
is chosen as the other case study because of itg revolutionary
ideas in regarding the language based editor as a simple full~
screen text editor. The last section here gives a few brief words
on most of the structure editors and incremental environments
found in the literature, presenting a f£inal summary i1 tabular
form.

3.1 The Cornell Program Synthesizer
enceg: Allison (1983); Meyrowitz (1982); fTeitelbaum (June

Befex!
1981); Teitelbaum (September 1981).

The Cornell Program Synthesizer running on both the Terak
personal computer and the VAX family of computers, presents a
syntax-directed editor and programming environment for PL/CS and
more recently, Pascal. Its aims included the provision of a
unified programming environment; allowing a high level of
abstraction; supporting top-down development; and encouraging
good documentation.

The synthesizer is designed for simple terminals which use the
cursor keys as the only locator device. A set of possible
expansion commands for the current nonterminal is displayed in an
optional window for reminding the user. In contrast to EMILY, the
CPS is a hybrid between the traditional structure editor and the
character-string text editor.

The user is presented with three types of high-level entities:
templates, placeholders and phrases. If the placeholder iz a
comment ©Or a statement, the user positions the cursor at the
appropriate position and types in the relevant phrase. A
nonterminal {enclosed in parentheses) requires a template
substitution for further expansion. Square brackets indicate that
the default value will be used. On depression of the carrlage
return Kkey, the cursor is moved automatically to the next
placeholder,

Variable names are typed in as text, not as structure. These are
parsed for syntactical correctness upon pressing carriage return,
and are stored and manipulated as text. Semantic checking is also
performed as an illegal variable name will be highlighted in
reverse video and flagged internally.

The ocursor keys enable the user to move through the program
structure. Right and down both move the cursor forward through
the program, while left and up move the cursor back, Rather than
moving character by character, the cursor moves one program

Page 12

element at & time. {ie., to the beginning of a template,
placeholder or phrase) Left and right additionally stop at each
character in a phrase. The long down and long up key sequences
move the cursor to the next or previous structural element of the
same level, Other kays move the cursor to the nearest enclosing
structure template and to the beginning of the program.

Insertion and deletion are based on the pick, put and delete
buffer P A delete will delete an entire template
with all its associated sub templates. Correcting mistakes can
only be done by preserving structural integrity. Thus, the END of
a construct for example, cannot be moved forward., Instead, the
relevant portion must be moved backwards, This is certainly a
more complicated procedure than that for a simple editor. A
cont sibuting factor to difficulty in this area is related to the
Sy. chesizer's primitive methods of selection: Meyrowitz (1982)
suggests that a pointing device would be more suitable. It must
be borne in mind, however, that the time wasted here makes up for
the time saved by ensuring that a p.ogram is syntactically
correct. The major time-wasting operation in simple editors {ig
the tracing and correction of compilation errors but this is not
a problem with CPS.

A method for compressing a long program is provided for in CPS.
The user can label via 2 comment statement a section of code, and
by using the ellipsis key, the coded statements will be replaced
by the comment. This method, besides enabling the user to view
the whole program from a high-level viewpoint, promotes good
documentation methedologies, Such information hiding still allows
single step viewing of a program in which the cursor jumps from
one visible high-level unit to the next. Uninitialized variables
are f£lagged, type checking iz enforced interactively and
duplicate declarations are prohibited, all at edit time, rather
than at compile tiuwe.

An important contribution of the Synthesizer project im the
integration cf its syntax-directed editor in a programming
environment, The CPS is not used to create text files that will
later be passed to a scandard compiler, but rather to create a
repregentation of a program suitable foz on-line interpretation.
The system interacts with an interpreter to allow the programmer
to gwitch between editing and execution in a truly integrated
manner.

In CP3, both editing and execution are guided by the syntactic
structure of the program. Programs are incrementally compiled,
This means that the user can re~edit and experiment with small
parts of the program, without having to run the entire program.
Whereas templates can only be input in a structurally sound
manner, phrases typed textually are allowed to be erroneous. Such
an erroneous program can be run at any time. The program will run
normally until an error or unfinished program construct is
encountered. At this point, an error message i8 generated
interactively, with the offending program component highlighted,
When this error is corrected, execution may continue.

During execution, the cursor traces a patin through the program,
As flow tracing can lead to an added overhead due to the
digplaying of confusing details on the VDU screen, the ellipsis
function proves very useful here. The light intensity gives an
indication of the time spent in each program section. Varlable

Page 13
monitoring, pacing and single stepping are also possible with
CPS.

The program is stored as a combination of a parse tree for the
templates, and as text for the phrases. The prettyprinted code
that is displayed is actually an interactively generated view of
the internal data structure.

The CP” has recently been implemented as a generator, so that it
is nuw possible to create synthesizers for different languages
using attribute grammars to describe the output and semantics for
each production of the abstract syntax. Reverse execution is also
being implemented.

3.2 The 2 editor
Referepceg: Allison (1983); Meyrowitz (1982); Wood (1981},

With a text-oriented medel of program structure, this editeor is
both a program editor and a document editor. The designers of 3
3t the Yale Computer Science Department believe that a text
orientation considerably simplifies the design of the editor and
presents the user with a simple but powerful modei of program
structure. This production editor was designed for and is used by
undergraduate and postgraduate students and staff at Yale
University. Many of the sxisting features of % are a result of an
iterative procedure involving suggestions from the users.

The quarter plane modsl for a full-screen editor is used here so
that a file ls envisaged as an infinite array of infinitely wide
lines, There are commands for positioning the display window
anywhere in the plane, and for positioning the cursor anywhere
within the display window. What the user sees at any moment is
precisely what is present in the corresponding section of the
file. As opposed to MIT EMACS which is a stream editor, 2 allows
the user to extend the file or line by simply typing past the
last entry. (ie. no end-of-line delimikters exist and the user has
complete freedom within the guarter-plane)

Cursor keys are used extensively, but function keys are avoided
as the implementers belleve that this causes the user to move his
hand away from the typewriter keyboard. Control characters and
the szhift key are used instead for entering predefined commands,
Commands are made up of any logical combination of certain key
words,

Cursor arguments in % allow the user to quickly select areas of
text to be deleted, moved or manipulated. This selection is Qone
in two ways: a box argument selects a rectangle of text defined
by its two opposite corners; and a stream argument selects a
stream of text defined from a starting location to an ending
location of the cursor.

1f the user executes an undegired command by mistake, he can
readily undo this command and recover the previous state. IE,
however, the unwanted command is a lengthy one to execute, the
fcancel' command "1 cleanly abort the oreration. The user is
also given the fau.lity to tailor certain - !itor functions to his
particular preference. A line counter whi.. is updated every one

A a3 Sl .

Page 14

hundred lines, is maintained in one corner of the screen to keep
the wuser informed on the state of a command which takes a long
time to execute.

The most recent seven window positions are remembered by the
system so that the user can flip back to a previous context
without losing the current one. A bookmark facility accepts a
number or a name as a label in any file. If a bookmark is in
another file, the editor will automatically switch to that file.

It is the program editing features of Z which present an
interesting change to many of the conventional syntax-directed
environments. For each line of text, the editor only knows about
quoted strings, an end of line comment, blank separated worda,
tab or backtab tckens, and balance tokens. A simple table-driven
lexer divides esach line of text into the categories. Each editor
conmand is responsible for using this information to impose any
additional structure, beyond the text representation, that is
necessary to suppert the program-editing features. For each
language supported by 3%, there is a modifiable table that
categorizes the tokens for the language. The editor currently
supports the following languages: LISP, BLISS, Pascal, RATFOR,
ami APL.

The 2 editor does not rigidly adhere to a set prettyprinting
format, but rather ‘suggests’ an indentation amount whenever the
newline command is used to enter a line. The indentation is
relative to the first non-blank character of the current line.
For block structured languages, the cursor position on the next
line is deterxmined as follows:

-~ Bach language type is associated with a table of tab/backtab
tokens. When a newline command is invoked, the editor examines
the Jlast token on the current line and using the table
performs the associated tab/backtab indentation. (This deals
with tokens that open and close blocks.)

-- 1f this token is not in the table, the last token of the
previous line is checked to see whether it is a tab token that
implicitly opens a block. If this is the case, a backtab
command is performed. (This deals with the case of a loop with
only one statement within it,)

-~ If none of the above are successful, the cursor is placed in
the same column as the first non-blank character of the
current line. (This deals with lists of statements, field
names, etc..)

The advantage of such a system is that it is extremely simple to
implement and gives correct results most of the time, By
digabling the automatic indentation feature, the user can effect
his own indentation style by hand or correct any errors made in
automatic mode,

A balanced expression is one that can be regarded as a block {eg.
An expression within parentheses or a Begin-end block) The
reason for the need for balanced expressions is twofold:

-- The editor must be able to close off the most recently opened
block, and indicate the location of the matching tokens.

Page 15

-~ The editor should allow cursor movements by blocks if
required.

The 2 editor provides both these functions via the use of its
balance facility.

Provided the programmer is consistent, the indentation of a
program provides all the information necessary for defining block
levels. In %, the indentation is interpreted in one of the
following ways:

~= The display level of the line 1s the number of tab stops from
the beginning of the line to the first non-blank character of
the line.

~= The display level must be an integral number of tab stops and
must differ £from the dis,lay level of the previous line by
plus or minus one tab stop. If this condition is not met, then
the display level is that of the preceding line.

The zoom command specifies the maximum level to display, An
infinite zoom parameter displays all lines, while a zero zoom
parameter displays only the top level declarations and procedure
definitions. Groups of lines that are not displayed are
represented collectively by a single dotted line. Selecting this
line with the cursor implies the selection of all the hidden
lines represented by that line.

Thug without the need for the user to understand a program in
terms of the complex semantics of a parse tree, the % editor
provides extensive structured program editing facilities with the
use of indentation and the balancing function.

The designers of % feel that the programmer is the best person to
decide whether his program is correct and ready for compilation.
Thus, no further syntactic or semantic error detection or
correction is performed. The designers tried to improve the
communication interface between the editor and the compiler so
that the user can display the error message after compilation by
moving the cursor to the location of the error in the file.

The provision of a link to Multiple User Forks (a program which
maintaing multiple user contexts in parallel) allows the user to
exit from Z and enter any of the other forks (perhaps to read
another document or check the execution of a program) with
transparent return to the % editor.

3.3 Other systems

AIQE (Feiler (1981)) is a general structure editor where semantic
correctness is not enforced. Program entry is by selection and a
tree structure is formed, but there is no parsing of text. Only
certain structures are allowed to be modified (eg.moved) as a
single block.

(Allison (19B83); Wilcox (1976)) is a teaching system w’*“h
integrated interpreter and debugger. It is aimed at the novice
and makes use of a full-screen editor. Changes are seen by the
user as textual and errors are rejected on entry for immediate

Page 16

correction.

Ledar ({Teiteiman (1985)) is a single programming environment
providing: a sophisticated editor, a document preparation
Efacility and a variety of tools for the programmer to use in
construction and debugging of programs. The Cedar programming
language is a strongly typed compiler~oriented Ppascal~like
language. This system makes use of high quality graphics
terminals.

COPE {Archer {1981)) is a COoperative Programming Environment
developed at Cornell University, Similar to POE, it is a text
editor with integrated execution £facilities. It uses an
intelligent parser and supports undo and redo commands.

EMBCS (Jong {(1982); Meyzowitz (1982); Stallman (1981)) is a large
well-established extensible, customizable and self-documenting
text editor. It can be used for the structured editing of any
text file. It is a display editor supporting many windows. It has
a primitive undo function: the entire history of commands can be
run and the user can stop this process where he sees fit.

Empily (Allison (1983); Meyrowitz {1982); Van Dam (1971})
developed at Argonne National Laboratory was one of the first
useful syntax-directed editors. The screen area is divided into
three logical screens : text, menu and message. The text area
containg the text under construction, with nonterminals
highlighted by underlining; the current nonterminal being
enclosed in a rectangle. The menu screen contains possible
replacements for the current nonterminal and the message screen
is used for enteriny identifiers and displaying status and error
messages. Prettyprinting is settable and all nonterminals must be
replaced before the program is completed. It also features a
limited undo function and ellipsis facilities.

ETURE (Good (1981); Meyrowitz {1982}) is a document production
gystem. Although it uses prefix notation, it provides many useful
functions: an infiaitely deep undo command; a cancel command to
abort a lengthy operatlon; and an again command to repeat the
command last executed. ETUDE's help facility is interesting in
that it displays the history of commands already executed. Its
adaptable interface supports inputs using any of the following
methods: menu selection; cursor movements: pointing device;
command recognition; or function keys.

G {Habermann {1982)) was one of the pioneering projects at
Carnegie~Mellon University for the design of an integrated
environment involving a syntax-directed editor. The use of
templates is encouraged in its generative approach. A series of
generators have emerged from this project, and ALOE is an example
of a syntax editor which stemmed directly from this system.

GBOME (Garlan {1984)) is the Gandalf NOvice Programming
Environment developed and in use at Carnegie~Mellon University.
The system consists of a family of four structure editors among
which are the FORTRAN and Pascal syntax-directed editors. A
program is entered by selection and no parsing of text is
performed. Changing a program is done explicitly by modifying the
parse tree directly. A form of ellipsis is provided via the use
of multiple views.

rage 17

Interlisp (Teitelman (1981)) is a fully integrated system with a
single command for editing, debugging and programming.

18D% (Chesi (1984)) 1is a language independent Interactive
Software Development Environment, It can be used for editing of
general text files. It supports the generator approach but does
not have an ellipsis function. It makes use of function keys and
multiple editing is possible because of the multi-window screen.
A type checker does static semantic error detection.

{Delisle (1984)) uses the same technique of overlapping
an integrated environment. It uses the recognizer
approach and 1limits syntax error occurrence by partitioning
segments of code. It provides information regarding any
highlighted errors, and execution cannot proceed before all
static errors have been removed,

Magple (D
screens 1n

Mentor (Allison (1983); Donzeau-Gouge (1980) and (1984)) is an
extensible editor wused as a structured document manipulation
system, It uses a generative approach with a tree representation
and provides ellipsis.

MINCE (Jong {1982); Moore (198l)) is a self-acknowledged spin-off
of EMACS: Mince Is Not Complete Emacs. It too makes use of a
full-screen editor and has facilitlies for viewing two files
simultaneously. It also provides an undo facility and conditional
and unconditional string replacement.

Pathea) (Allison (1983); wilander (1980)) was developed at
Cornell University with the same principles of CPS. It is an
integrated environment and semantic error correction is done at
execution tinme,

RECBN (Reiss (1984) and (1985)) is a program development system

generator for algebraic programming languages. The program
development systems it produces support multiple views of the
user‘s program, its semantics and its execution. The program

views include a syntax~directed editor, a declaration editor, and
a structured flow-graph editor. The semantic views include
expression trees, data type diagrams, f£low graphs and the symbol
table, Executlon views show the program in action and the stack
contents as the program executes, This system is currently
implemented on APOLLO workstations, and requires high-resolution
graphics for its re-targeting. 'The system is modelled on Cedar.
Parsing is done on reguest and it uses a keyboard and pointing
device as input resources. It gives the user the option of using
either templates or typing the constructs manually and provides
an extensive redo/undo capability. A program is modified by
explicit tree manipulation.

EBN {Barach (1981)) represents a Portable Editing Nucleus. It is
terminal independent but does not support the idea of a "free"
full~-screen editor as defined by the designers of %, Instead, it
uses special characters on the end of each line to show if more
text is to follow.

PQE (Pischer (1684)) is a full-screen Pascal Oriented Editor. It
was inspired by the Synthesizer, but is more similar to COPE. It
does not use templates, but has a set of required and optional
prompts that must and need not be expanded respectively. although
it is not part of an integrated system, semantic checking is done

Page 18

and errors are highlighted. Information on the errors can be
obtained on request by positioning the cursor at the relevant
error., Contrary to some views, this editor provides error
correction so that incorrect automatic corrections must be undone
and corrected manually by the user.

SAGD (Campbell (1984)) is an integrated Software Automation
Generation and Administration system, Although it makes use of
full-screen facilities, this editor involves many modes. Changing
of a file is by text manipulation, but a tree structure is used
internally. BEven though the recognizer approach is taken, ox
request, the user will be supplied for a list of tokens which can
be inserted at any cursor position.

s8de {Fraser (1981l); Meyrowitz (1982)) is a general structure
editor for graphics files, documents or programs. The user is
presented with a tree view of the file, and operations are done
explicitly on this tree. An ellipsis function is provided.

SED (Allison (1983) is a Syntax EDitor developed at the
University of Western Australia. It uses a higher level tree
structure than used by the like of CPS (See Figure 1). It takes a
recognizer approach and makes extensive use of error correcting
capabilities. One of its principal aims was to be able to use
files from any other editor and correct partially created
Programs, Prettyprinting is not enforced, and an ellipsis
function is provided.

5mpllialk (Goldberg (1983); Goldberg (February 1983); LRG (1876))
is an integrated software development environment. It makes use
cf extensive graphics facilities and uses a mouse as the input
device. The sgystem is menu-driven and mnodeless. It wakes
extensive use of overlapping screens to emphasize the idea of
papers on a work-desk.

SUPPORT (Zelkowitz (1984)) is a Still Unnamed Production
Programming Oriented Research Tool environment developed at the
University of Maryland. Editing is allowed for only one line at a
time. Function keys are used to expand nonterminals, and a high
level Program Design Language (PDL)} is being added to the system
so that a designer can produce fully documented programs in a
structured top~down way by interspersing PDL with the Pascal
c¢ode. The user can work on the data definition segment and in the
program itself simultaneously. A powerful string matching routine
enables the uger to £ind all the uses of a certain variable. As
the system is integrated, execution is completely interactive. An
ellipsis function is also provided.

Syned (Gansner (1983}; Horgan (1984}) is a language-based editor
which uses multiple entry parsing to give it its general .uxt
processing abilities. It makeas use of the concept of
transactions. It takes a recognizer approach and provides an undo
function, but makes no use of menus,

Many of the results above are summarized in the following table.

Page 19
|System +Languagel Incr. [Semantic|Generator/|Ellipsis [Errors |
Lglamel + Used ISysl’jl)!\iichecks? |Re??gr:izerIPunction?l?a:rected?l
lcaps +arious Yes Yes Generator | -—- The |
lCPs +PL/CS Yes Yes Generator Yes No §
lEmily +PL/) No -— Generator Yes No |
lGNOME +Various Yes No Generator Yes No { !
!LISDE +Various Yes Yes Generator No No |
IMagpie +Pascal Yes Yes Recognizer No No [.
i lMento: -?Vazious No No Recognizer Yes No | .
! “’ |PECAN +Various Yes Yes Generator No Yes I
[“.,‘f | POE +Pascal No Yes Generator Yes Yes |
: . ISAGA 4Various Yes Yes Recognizer No Mo lr i B
. {sds +Various No No Generator Yes No ; I8 Lﬂ
A !SED +Pascal No No Recognizer Yes Yes 1! B
[ISUPPORT;Pascal Yes Yes Generator Yes No | G
|syned ;-Va:i.ous No No Recognizer ~—— No | f :
e ﬂn
3 ¢ §

PR s L b, ’ e

10.

rage 20

REFERENCES AND BIBLIOGRAPHY

Allison,L. {(May 1983): "Syntax directed program editing",
Elsz:;.mgzﬂ_rmngc_anﬂ_Expsxigns.e_mm, Vol.13, No.5, pp.453~

Archer,J. and Conway,R. ({(June 198l): "COPE: A cooperative
progranming environment", Technical .. Report, Cornell
University, TR 81-458.

Barach,D.R. ,Taenzer,D.H. ,Wells,R.E. et al. (June 1981):
"The design of the PEN video editor display module”, ACH
Sigplan.._Notiges. WVol.16, No.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portiand, Oregon, June 8-10 , 1881,
PP.130-136.

Campbell,R.H. and Kirslis,P,A. (May 1984): "The SAGA project:
A system for software development", ACM..Sigplap..Notices,
Vol.l9, WNo.5, (ACM Software Engineering Notes, Vol.$, Ne.3},
ACM SIGSOFT/ SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh,
Penngylvania , April 23-25, 1984, pp.100-200.

Ches{,M. ,Dameri,E. ,Franceschi,M.P. ,et al (May 1984):
WISDE: An interactive scftware development environment", BCH
Sigplan._Netices, Vol.1%, No.S, (ACM Software Engineering
Notes, Vol.3, No.3}, ACM SIGSOPT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
rittsburgh, Pennsylvania , April 23-25, 1984, pp.l00-200.

Clowes,T. (July 1982): “Move and Copy commands £or text
processing systems", IBM Technigcal.Disclosure Bulletin. {UsSa),
Vol.25, No.2, p.869,.

pelisle,N.M. ,Menicosy,D.E, and Schwartz,M.D. (May 1984):
"yiaewing a programming environment as a single tool",
Sigplan. Netlces, Vol.19, No.5, (ACM Software Engineering
Notes, Vol.%, No.3), ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.100-200.

Donzeau-Gouge,V. (Huet,G. +Kabn,G. ,et al (May 1980):
"programming environments based on structured editors: The
Mentor experience”, Hoxkabop._opn.Programning.Foyviconments,
Ridgefield, CT, presented June 1980.

Donzeau-Gouqge,V, +Rahn,G. Lang,B. set al (xay 1984):
"Documents structure and modularity in Mentor", M8l
Notiges, Vvel,19, No.5, (ACM sSoftware BEngineering Notes,
Vol.9, No.3), ACM SIGSOFT/ SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23~25, 1984, pp.l00~200.

Feiler,P.H. and Medina-Mora,R. (September 1981): "an

Incremental Programming Bnvironment”, IEED Transackiens..on
Software Engineering, Vol.SE-7, No.5, pp.472-48L.

dosm i i e,

11,

12.

i3,

15.

16.

7.

is.

19,

20,

21,

22.

Page 21

Fischer,C.N. ,Johnson,G. sPal,A. et al. {1983): "An
introduction to editor Allan POE", SQFTEAIB B_copfierencs..On
softyars.. development togls...technologies and__alternatives,
Proceedings, Arlington, VA, USA, 25-28 July 1983 (Silver
Spring, MD, USA: IBEE Comput. Soc., Pres 1983) pp.245-250.

Fischer,C.N. ,Pal,A. ,Stock,D.L. ,et al (May 1984): “The POE
language-based editor project", ACH Sigplan. Notices, Vol.l9,
No.,5, (ACM Software Bngineering WNotes, Vol.9, No.3}, ACH
SIGSOF'Y/ SIGPLAN Software Engineering Sympesium on Practical
Software Development Environments, Pittsburgh, Pennsylvania ,
April 23-25, 1984, pp.100-200.

Fountain,A.M. and Hydes,A.F, (February 1981): "Extended
function programmable keys for display systems", IBM
Iechnical Risclosure Bulletin. (DSAL, Vol.23, No.9, p.4327.

Praser,C.W. (June 1981): "Syntax-directed editing of general
data structures", ACK__gigplap_.Netices, vol.l6, No.6,
SIGPLAN/ SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.17-21.

Gansner,B.R., ,Horgan,J.R. ,Moore,D.J. et al {1983): "SYNED -~
A language~based editor for an interactive programming
environment", Spring.COMPCON.83, Intellectual Leverage for
the Information Society, San Francisco, Callifornia, USA, 28
February - 3 March 1883, IEEE, New York, USA, pp.406~410,

Garlan,D.B. and Miller,P.L. {May 1984): "GNOME: an
introductory programming environment based on a family of
structure editors™, ACM_Sigplan.Notices, Vol.l9, No,5, (ACM
Software Bngineering Notes, Vol.9, No.3), ACM SIGSOFT/ SIGPLAN
Software Engineering gymposium on Practical Software
Development Bnvironments, Pittsburgh, Pennsylvania , april
23-25, 1984, pp.100-200.

Goldberg,A. {Pebruary 1983): "The influence of an object~
oriented language on the programming environment”,
Progeedings.of the BCM_Computer. Sclepge.Conference.

Goldberg,A., and Robson,D. {1983): Smallialk-80: The_ languags
and.its. iopliementation, Addisaon-Wesley, Reading, Mass..

Good,M, (June 1981): "Btude and the folklore of user
interface design", ACM..Sigplan._Botices, Vol.l6, No.6,
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.34~43,

Grappel,R,D. and Hemenway,J. (June 1980): "The CREDIT goes to
Intel”, Mini-Micro Systems {USAl, Vol.13, No.§, pp.119-122,

Habermann,A.N. ané Notkin,D. {January 1982): "The Gandalf
software development environment”, Technical.. Repoxk,
Carnegle~Mellon University, Computer Science Department.

Hammer,M. ,Ilson,R. ,Anderson,T. et al. (June 1981): "The
implementation of Etude, an integrated and interactive
document preparation system®, ACM_Sigplan..Notiges, Vol.l6,
No.6, SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.137-146.

" Ak S -

23.

24.

25,

26.

27.

28.

29

31,

32.

33.

34

36,

37.

Page 22

Hansen,W.J. (July 1971): "Creation of hierarchic text with a
computer display", Argonpe Natiepal.Laboxatory, Rep. ANL78LS,
Argonne, Illinois.

Hotgan,J.R. and Maore,D.J, (May 1984): “Technigues for
improving language-based editors", ACH__Sigplan__ Notices,
Vol,19, No.5, {ACM Software Engineering Notes, Vol.9, No.3},
ACM SIGSOPFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh,
Pennsylvania , April 73-25, 1984, pp.100~200.

Irons,E.T. and Djorup,F.M. (January 1972): "A CRT Editing
System", Communications.of the ACH, Vol.l5, No.l, pp.16~20.

Jong,S. (April 1982): "Designing a text editor? The wuser
comes first” , Byte (ysal, Vol.7, No.4, pp.50-53.

Learning Research Group (March 1976): "Personal dynamic
media®, Xexox Palo Blio Research Ceptre, Tech. Rep. SSL-76-1,
Palo Alto, California.

Lewis,T.G. (April 1984): "Word processing for the masses: A
review of bank street writer", IEEE_Sofiware, Vol.l, No.2,
Pp.B9-92.

Meyrowitz,N. and Van Dam,A. (September 1982): "Interactive
editing sSystems: Parts I and II", ACH Computing Surveys,
Vol.l4, No.3, pp.321-415,

MicroPro (1981): "WoyrdStar user's guide", MicIioPrg
International Corporation, San Rafael, California.

Mikelsons,M. (June 1981): "Prettyprinting in an interactive
programming environment®, ACM_Sigplap Notices. Vol.16, No.6,
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.108-116.

Moore,J. (Spring-summer 1981): "Mince -~ a product review",
SIGRC Notes.{USAL, Vol.4, No.l-2, pp.47-50.

Morris,J.M. and Schwartz,M.D. (June 1981): "The design of a
language-directed editor for block-structured languages®,
jotices, Vol,16, No.6, SIGPLAN/SIGOA Symposium on

Slaplap N
Text ¥anipulation, Portland, Oregon, June 8-10 , 1981, pp.28-

1.

Oppen,D.C. (October 1980): "Prettyprinting”, ACM. Trapnsactions
On_Progxramning. Languages And. Systenms, Vol.2, pp.465-483.

Peck,J E.L. and Maclean,M.A. (May 1981): "The construction of
a portable editor", Software Practice and.Bxperienge {GB).,
Vvol,ll, No.5, pp.479-489.

Raduchel,W.J, (May 1984): "B professional's perspective on
User-Friendliness", Byte.{USA), Vol.9, No.5, pp.l01~106.

Reiss,S.P. (May 1984): "Graphical program development with
PECAN program development system®, ACM__Sigplap. . N

Vol.19, No.5, (ACHM Software Engineerlng Notes, Vol 9, No. 3),
ACM SIGSOF7/SIGPLAN Software Englneering Symposium on
Practical Software Development Environments, Pittsburgh,

41,

42.

43.

44.

45,

46.

47,

48.

49,

50,

51.

Page 23

Pennsylvania , April 23-25, 1984, pp.100-200.

Reiss,S.P. {March 1985): "PECAN: Program development systems
that support multiple views", IEEE Trapsactions.on Sefiwarse
Engjpeeripg. Vol.SE-1l, No.3, pp.276-285,

Rubin,L.F. (March 1983): "Syntax-directed pretty printing --
a first step towards a syntax-directed editor®, JEEE
:lt‘ggnswunﬂ_nn_sgﬂwsu_snsmesnng, Vol.SE-9, No.2; pp.l1i9-

Stallman,R.M. (August 1980): "EMACS manual for TWENEX users”,

Brtificial .. Intelligence ___Laboratory, AL Hemo, 556,
Massachusetts Institute of Technology, Cambridge, Mass..

gtallman,R.M. {(June 1981) ¢ "EMACS, the extensible,

izable self ing display editor", BACM..8igplab
Notiges, Vol.l6, No.6, SIGPLAN/BIGOA Symposium on Text
Manipulation, Portland, Oregon, June 8-10 , 1981, pp.147-156.

Stromfors,0. and Jonesjo,L (June 1981): “The implementatiuns
and experiences of a structure-oriented text editor”, ACM
Sigplan Netiges, Vol.l6, No.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregnn, June 8-10 , 1981, pp.22~

27,

Teitelbaum,®, ,Peps,T. and Horwitz,S. (June 1981): "The why
and wherefore of the Cornell Program Synthesizer™, ACM
Sigplan._Boiices, Vol.16, No.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981, pp.8-

6.

Teitelbaum,?, and Reps,T. (September 1981): "The Cornell
Program Synthesizer: A syntax directed programming
environment”, Communications..ef..tbe BCH, Vol.24, No.9,
PpP.563-873.

Teitelman,W. {March 1885)}: "A tour through Cedar", JIEEE
Transactions. on Sefiwaxe Engingering, Vol.SE~1l, No.3, p.285.

Thompson,H.B, (March 1981): "Text editing with compuview's
VEDIT, Byke_ {USAL, Vol.7, No.3, p.262, 266, 268-270.

van Dam,A. and Rice,D.E. (September 1971): "On-Line Text
Editing: A Survey", ACM Computing..Suxyexzir Vol.3, No.3,
PP.93-114.

wilander,J. (1980): "An interactive programming system £or
Pascal®, BIT, Vol.20, pp.lr?~174.,

Wilcox,A.M. ,Davis,A,M. anu Tindall,M.H. (1976): "The design
and implementation of a table driven interactive diagnostic
programming system", Communiqations.-Qf..the..BCM, Vol.l9,
No.ll, pp.609-616.

Wood,S.R. (June 1981): "Z -- the 95% program editor", ACM
Sigplap_Netices, Vol,16, No.6, SIGPLAN/ SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981, pp.l~

Zelkowitz,M.V. {May 1984): "A small contribution to editing

s P N N - Lo,

Page 24

with a syntax directed editor", BACM.Sigplan._Notices, Vol.l9,
No.5, (ACM Software Engineering Notes, Vol.9, No.3), ACM
SIGSOFT/ SIGPLAN Software Engineering Symposium Practical
Software Development Bnvironments, Pittsburgh, Pennsylvania ,
April 23-25, 1984, pp.100-200,

4

_/q

o8

- - L e e e

A FUNCTION~KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

USER'S MANUAL

(Version 1.0)

December 1985

Author: A.P.Bassanino

signed: %

A Project Report submitted to the

University of the Witwatersrand, Johannesburg in partial
fulfillment of the requirements for the degree of Master of
Science in Engineering.

Faculty of Engineering,

CONTENTS .i

THTRODUCTION wvvesesvsscosvocncscnsosnsssvnersnannnose L = 4

1.1 A Brief Sumnary of the Features of PD: 1
1.2 A General Description of the Package 3
THE SYNTAX-EDITOR STRUCTURE <icceesnsssnessssnsssnacs 5 = 11
2.1 the Screen Divisions 5 %
2.2 Basic System Operation 8 B
2.3 The System Levels 9 °©
% 3 THE EDITING FACILITIES teveevavncncavanscensarcarasseas 12 = 38
< 3.1 The Line Editor 12
BTN * 3,2 The Front-end of the Package 14
EF 3.3 The System's Base Level 16 A
o 3.3.1 The Scrolling functions 16 .
5 3.3.2 The Aodify function 17 ’
3.3.3 The Insert facility 19 ®
o, 3.3.4 The Delete facility 19 i
N 3.3.5 The Copy facility 20
-t 3.3.6 The Nove facility 21
3.4 Insert Mode 21 R
3.4.1 8Single Line Insertion 21
o 3.4.2 Dats Description Definition 23
3.4.3 Construct Insertion 25 H
A [N
* 3.5 Delete Mode 27 18
. 3.5.1 Single Line Deletion 27 |
S g 3.5.2 Construct Deletion 28
3.5.3 Block Deletion 29 .
% 3.6 Copy Mode 32 "
3.6.1 Single Line Copy 32
= 3.6.2 Block Copy 33
* 3.7 HMove HMode 35
3.7.1 Single Line Move 35
3.7.2 Block Move 37
4 UNIMPLEMENTED AND EXTENDED FEATURES .cvveeecesaseess 39 = 41
4.1 Package Completion 39

*

4.2
4.3
1.

4.5

4.6

APPENDIX B:

APPEMNDIX C:

Semantic Checking Abilities
Ellipsis Facilities

The "undo" Stack

Standard Text Editor Cowpatibility

Language Translator Possibilities

APPENDIX A: Pregram Description Language (PDL) .essen

These system levels have not yet been implemented.

39
39
40

40
41

Summary of System Levels sueesrisveccrcsscass 58 = 67

Glossary of LeIMS USEd v.vseeseccocarnssnsces 68 = 69

3.26

LIST OF FIGURES

An example of low and high~level PDL descriptions

The Logical Screen Partitions

A Sample Editing Situation

An example of a predefined block construct
System Level Hierarchy

Using the Line Bditor's character delete functions
The Line Editor's Insert mode operation

The Front-end tree structure

The Base Level tree structure

The scrolling functions' tree structure

Using the Editln function

The Insert mode tree structure

1he Delete mode tree structure

The Copy mode tree structure

The Move mode tree structure

The tree structure for Line Insert mode

An example using the Insert Line facility

The tree structure of the Data Description Insert mode
The Window Screen in Data Description Insert mode
Inserting a block construct

The tree structure for Construct Insert mode

The tree structure for Line Delete mode

Using the Line Delete function

The tree structure for Construct Delete mode

The tree structusze for Block Delete mode

Using the Block Delete function

The tree structure for Line Copy mode

The tree structure for Block Copy mode

The tree structure for Line Hove mode

Using the Line Move function

The tree structure for Block MHove mode

Using the "undo® stack

Page 1

1 INTRODUCTION

In this chapter some of the important terms and concepts involved
in the package are introduced. The first section is introduced
mainly to give the user a feel for the structure of the Program
pescription Language (PDL) for which the package was designed.
Secondly, a broad descriptive account is given of the system,
paying particular attention to the definition of new terms. In
this second section, the advantages of using the package are also
emphasized.

1.1 A Brief Summary of the Features of PDL

PDL {Program Description Language) 1is a machine~independent
language written in a structured english format which is used to
express a design in a logical, high-level notation., Due to its
descriptive nature, a well~defined model of the design of a
project can be obtained using conventional programming concepts.
‘Phe use of comments in PDL is encouraged so that a design can be
developed in program form via a series of stepwise refinement
iterations.

This top-down design approach aids the designer to view the
system as a whole initially, and to slowly expand the view to
include more detail until the required implementation level is
reached. A design that is fully analyzed using a PDL approach
will result in a structured Pascal-like high~level program. This
can then be implemented using any suitable technology. Although
such an approach is useful in both hardware and software designs,
the full power of PDL can only be appreciated in the latter.

A very high~level description of a project can he written in a
few lines of PDL using a couple of descriptive comments. This {s
known as high-level PDL (See Fig.l.l (a)). PDL in its lowest
level form is similar to any medern programming language in
structural strength and integrity. As can be seen from Fig.l.l
{b}, a Llow-level PDL description is in many ways similar to a
computer program.

A PDL program is vsvally divided into a single program module and
an assoclated set of procedures or subroutines. The procedures
will 1list all their relevant input and output variables as well
as any external procedures accessed by them, Extensive use of
procedures can be made for the design of large systems, so that
program complexity can be controlled. This type of fragmentation
also alds in error detection and assists in system building by
providing reusable modules,

strong typing of the constants and variables is enforced in the
Data Description segment before the start of the program or
procedure body. The five characteristics used for this purpose
are known as: Function, Type, Structure, Scope and Name. A
detailed description of these terms can be found in Appendix &

w3

Page 2

which gives the formal specification for PDL. Rigid indentation
disciplines in the area of data description ensure ease of
creadability as is evident from Fig.l.l. .User-defined types may
also he specified; the familiar and useful "record" concept in
Pascal is also available in PDL.

{a) Program ROQTS
Begins
Get the variable co-efficient B
1f (Determinant is positive)
then:
*Determine the two roots®
output the two roots
else:
Qutput an error message
End if:
End:
End Program:

{b) Program ROOTS
Constants:
Real:
Single:
Loca
A

ey

nwm

Variables:

Begin:
Gets
Keyboard: B
End Get:
Determinant := BX*2 — 4%AXC
If {Determinant >= Q)

{-B + SQR (Determinant)) / {(2*a
{=B ~ SQR (Determinant)) / (2%a]

Consoles 'The two roots are', X1, 'and', X2
End Put:
else:
Put:
Congole: 'The roots are imaglnary,'
Bhd Puts
End 1if:

End:
End Programs

Fig.l.1: An example of low and high-level PDL descriptions
A high~level PDL description of a program for determining
the roots of a quadratic equation is shown in figure (a).
The corresponding low-level or detailed PDL for this same
program can be seon in figure (b),

P - L e e - .

Page 3

The BAlgorithm segment which comprises the program body makes use
of assignment, selection, and iteration constructs. The control
constructs which will be familiar to the programmer include the
following:

——— If - then - else
= Case
~~~  Repeat - until

==~ While -~ do

Get and Put routines are used for input and output purposes
respectively. Sections of code which run concurrently {or "in
parallel"}, as opposed to the conventional sequential order, can
be distinguished via the Co-begin and Co-end keywords. Comments,
enclosed by asterisks, are freely allowed at any point in the
program.

irdentation is vital vo the understanding of arv program, thus
¥7L should always be appropriately indented Fig.1.1 (b)).
Entering such a program manually thus involves “ge amount of
effort. This is especially true in the Data De....ption segment
or in the case of inserting or deleting an imbedded construct.
The clerical effort involved in producing a readable PDL program
may overshadow the use of PDL as an effective design aid. It is
mainly for this reason that this PDL generator package has been
produced,

1.2 A General bescription of the Package

The package presented here is aimed at producmg a tool for
simplifying the input of a program written in Program Description
Language ({PLL). A syntax-directed oditor package such as this,
knows the syntax rules for the language for which it will be
used. Such a gystem combines the text manipulation facilities of
a general-purpose editor with the syntax or exroz-checking
functions of a compiler, A user can thus write a program, bheing
éntergctively warned of any language structure errors that would
e made,

The aim of this editor package is to enable the user to put
together and edit a PDL design with the minimum of effort. The
uger should not be constantly preoccupied with pettv issues such
as indentation correction and program structure, out rather be
left with the actual task of designing the required system. This
package will thus ensure that programs written using this system
will emerge well formatted, readable, and syntactically correct.
The syntax-directed editor was built with many modern editor
improvement concepts in mind, so that the resulting system should
prove easy to learn and operate.

The entire system is function-key driven, saving the user
unnecessarily wasted time for typing (eg. The insertion of a
construct with associated indentation can be achieved by tbe
depression of a single function key.! The keyboard is used only




Page 4

w{:en necessary £for entering text lines or Ffor specifying
filenames or other required responses. Otherwise, the entire
iystem is driven with the use of a dynamic set of ten function
eys.

Indentation (or prettyprinting) is done automatically by the
editor, leaving the user more time to concentrate on the true

design rather than the program format. Also, a PDL program

produced using this editor will have a consistent format. In this -
way, the documentation layout can be standardized.

The editor can also perform syntax and limited semantic error e
detection. This means that compilation errors such as "missing
end of construct" or "undefined variable name" would be flagged I
as errors at edit time. Thus, a completed program, if it could be
run, would be free of the most common compilation errors.

Such an editor will prove to be useful as a teaching aid as it
emphasizes good programming practices and allows the user to
learn the rules of PDL quickly. Because of its time-saving 2
nature, such an editor is of great use as a design tool. Programs “
produced by this system will not only be correct syntactically d
and semantically, but will also be in a standard prettyprinted
format and thus readable form,

oy a > .o~




Page 5

2 THE SYNTAX-EDITOR STRUCTURE

This second chapter is aimed at introducing the user to the
system by elaborating on the available features of the package.
This chapter should give the user a global view of the package;
its interface to the outside world; and the basic mechanisms
involved behind it. The first section explains the existing
screen partitions and visual cues (or fonts), with a brief
description of the purpose of each window. The editor operation
is also clarified. The second section deals with a broad
description of system operation, while the last section gives the
reader & good idea of the hierarchical levels involved.

2,1 The Screen Divisions

To provide a standard interface which is simple to operate, the
physical VDU screen, which has space for 25 lines of text, is
divided into a number of logical screen partitions. A logical
screen partition is an area on the physical screen dedicated for
a specific function. Screen divisions, when used consistently,
are of great use to the user, as he will know where to expect,
say, prompts or errors, and thus never be confused with the
physical display of information.

Pour logical screens are defined in this package: the Main
Screen; the Window Screen; the Prompt Screen; and the Function
Screen, This arrangement is depicted in Figure 2.)l. Figure 2.2
gives an example of what the screen may look like during a
typical editing session.

The Main Screen (Screen 1) is the 20 line file display screen.
{An even number of lines can be selected ko suit the physical VDU
screen length.) Here, a 20 line section of the formatted program
is presented for editing with its corresponding line numbers. A
curser with vertical freedom only {Cursor 1) is available in this
screen in the form of a reverse videoed line number. Cursor
movement is effected via the use of the up and down, page forward
and page backward cursor control keys. A half screen scroll is
used when the cursor 1s moved beyond the screen limits., The fonts
which are used in this screen are as follows:

-== Reverse Videc line number to indicate the position of Cursor
1 along the left margin.

wew Brrors {semantic and unexpanded placeholders) will also be
highlighted in reverse video font. These errors are editable,

~== Highlighted text representing standard or system-defined key
words., These words are not direckly editable.

—== Non=highlighted, non-underlined text representing user

entered, editable ~=yntactically and semantically correct
statements.

e, D e R,




Page 6

1

2

3

4

5

6

7 SCREEN 1

8

. The File Display Screen

B Haxn Screen

16

17

18

18

20

21

§2 SCREEN 2: The Window Screen
23

24 SCREEN 3: The Prompt Screen
25 SCREEN 4: The Key Definition Screen

Fig.2.l: The Logical Screen Partitions
Physical screen line numbers are shuwn in the leftmost
celumn. The logical screen locations and names arxe also
given.

The Window Screen (Screen 2) is a one-line screen used for the
editing of text lines and for obtaining other responses from the
user., When editing is required, the true VDU cursor will at all
times be resident on this screen. This cursor (Cursor 2) is given
horizontal freedom only and cursor movement iz controlled by the
left and right cursor function keys. The Window Screen supplies
the user with powerful line editing functions az all entry and
editing is performed hare. This concentrates the user's attention
on Screea 2 for editing purposes, and on Screen 1 for viewing
purposes.

Available fonts on Screen 2 are similar to those of Screen ..
with the exception of reverse video which is reserved for more
emphatic¢ highlighting., If a line is to be edited, it is chosen on
the Main Screen using Cursor 1, & Line Rdit is then requested on
this 1line using a functicn key. If the 1line is individually
editable, a copy of the line is made in Screen 2. The line number
as well as any associated indentation is not shown in the Window
Screen so that the user 1s presented with the entire line extent.
Depending on the terminal type, the leng': of the screen will
determine the maximum length of any line (usually 80 characters).

The usual fontks will be used to distinguish key words from
editable text; the user then being able to edit the editable text
string, This Window Screen text is now editable using the Lige
Editor facilities. {See Section 3.1) After the line has been
entered, the Window Screen is cleared, and the old line
referenced by Cursor 1 iz replaced by the new edited version. In




Page 7

this way, parsing can be done at entry on a line by line basis.

12 dingles

13 Globals

14 KING

15 Locals:

16 ROOK 1

17 ROOK 2

18 Begin:

19 Rook 1 := 1

20 Rock 2 := 8

21 Knight 1 := 2

21 1f (Move 1 = 'C'")

28 ens

29 *Castling*

30 8es

31 *Check for other possibilities®
1f {Move 1 = '0%)

** pditing Line 27 #*

1.PaB 2.PaF 3.ToF 4.BoF 5.ToL ...

Fig.2.2: A Sample Editing Situnation
The four loyical screens are shown in abhreviated form, The
two cursors are highlighted and underscored and can be seen
at Line 27 (Cursor 1) and at column 10 (Cursor 2}, There
are ten function keys and their function abbreviations are
displayed in reverse video font in Screen 4.

The Prompt Screen (Screen 3) is a one line screen used to warn or
inform the user via errxor messages or prompts. Information on any
semantic error {which is highlighted in the Main Screen) can be
obtajined on this screen. The user can consistently expect to find
any form of system comment on this screen only. BRighlighted and
blink fonts are the only fonts needed for this logical screen.

The Function Screen (Screen 4) i{s another single line screen used
for the sole purpose of displaying the function key definitions.
As the entire system is function key driven, each of the 10
function keys is dynamically defined here. A number, 1 to 10,
{corresponding to the function key number) together with a six
character abbreviation of the associated function is used in
Screen 4 to define each function key. This scrasen uses only
highlighted and reverse video fonts to present a display in
censistent format.




Page 8
2.2 Basic System Operation

From the user's point of view, as explained previously, Cursor 1
is used for wmoving through the file line by line, while Cursor 2
brings the focus of attention on a single character in the line
chosen by <Cursor 1 on the Main Screen, A line on Screen 1 is
chosen for editing on Screen 2 by depressing a predefined Line
Edit function key. The system will allow only lines which contain
text that has been entered by the user, or construct placeholders
to be edited via the Window Screen. This line is released from
the editor after it is entered., It is important to note that a
line is shown in the Window Screen without indentation so that
line length restrictions can be accurately portrayed. Text
presented on the Main Screen is wdone s¢ in indented or
prettyprinted form.

Definition of data items in the data description segment is
largely automated. Besides deleting or medifying a specific data
item, the user is not permitted to tamper with this PDL segment.
A data itew definition can only he deleted by deleting its
corresponding data item name line, The system will essentially
take care of removing any assoclated definition Xey words. Any
error in system usage will we displayed as a warning in the
Prompt Screen.

The system is template-based. This means that a construct will be
inserted as a block, with placeholders (denoted by <> brackets}
to be expanded by the user. (See Fig.2.3) This method ensures
that syntactical correctness is maintained by preventing the
occutrence of any such error. (This eliminates the "missing end
of construck” compilation error.) Copy, delete and move
functions are thus restricted in that they can only be performed
on certain blocks of text defined by the constructs. This
choosing of a block during editing, is aided by the system's
feature of highlighting the line numbers of the defined block.
This helps the user visually to see the physical block which he
is about to modify. Block restrictions on the standard move,
copy, and delete functions have to be imposed if syntactical
correctness is to be maintained. This method may sesm slightly
inconvenient to the novice, but the instantaneous compilation
facilities coupled with the automatic indentavion features of
this syntax~directed editor will soon begin to show their
effectiveness.

Case {CONDITION> ofs
<STATEMENT>

else:
<STATEMENT>
End Casos

Fig.2.3: An example of a predefined block construct
The Case-~else construct caa kn inserted by the depression
of a single function key. The placeholders are identified
by the <> brackets, and highiighted in reverse video font.
Rey words are highlighted and are thus not directly
editable,




Page 9

The PDL program can be stored in formatted or coded form. A
program stored in coded form will be unintelligible to the user
when displayed, while a formatted program will represent the
prettyprinted program as generated by the syntax-~directed system
on the Main Screen.

The coded version of a program i: ::ed by the system and will be
unintelligible to any other edit. "his version is labelled with
a ",CcoD" extension, and it is -~iw.ys necessary to retain this
file 4if the program is to be re~wuited using this system. This
coded form of the program will also be used £for translation
purposes in the future.

The formatted version of a program can be stored in a file if o
desired by the user. This can be done for documentation or
printing purposes. This file will be a physical copy of what the
user has generated in Screen 1., Although this file is fully
comprehensible and can be modified with the use of wny
conventional text editor, it is of no use to the system unless a
coded version exists.

2.3 The System Levels

The PDL syntax-directed editor package is function-key driven,
and as such, operates from a hierarchical structure. At any time,
the user will be in a certain mode defined by the display of
funtion keys in Screen 4. Bach mede or level can be distinguished
from another by the significance assigned to the ten function
keyr, These levels have purpesefully been kept to a minimuw so as
to simplify usage of the editor.

The system consists of a principal Base Level, from which the
user would usually operate. This level is responsible for
providing:

-== File scrolling functions (such as Top of f£ile, Page
forward, etc.)

-~~~ The single line modification facility as referred to in
the previous section

--- A gateway into other file manipulation levels (eg. copy,
delete, etc.)

The baze level is thus mainly used for "browsing” through the
file. It should be noted that if the terminal keyboard has
explicit cursor control keys as well as page scroll keys, any
subsequent mode or level of operation in the system - 11 allow
the following file scroll movements without the need for
returning to base level:

’ Cursor up one line

¥ Cursor down one line
Pg Up Forward page scroll
Pg Dn Backward page scroll

Base mode is, however, the only level from which an editable line

Y




Page 10

can be modified, This level is described fully in section 3.3,

The so called Front-end of the package provides an interface into
the outside world by allowing the user to specify input and
output filenames and formats, This routine leads directly into
the system's Base Level. If the editor is exit, the Front-end
routine 1s again called on for external interfacing purposes.
Further detail of this level can be found in section 3.2.

The other four levels or modes which exist are: 1Insert, Delete,
Copy, and Move modes. (See sections 3.4 - 3.7 for details) In
these modes, the user has limited file scrolling abilities as
listed above, but can perform any of the defined functions
associated with that mode, Each of these modes may again have
their sub-levels, It can be said, in general, that a RETURN
function Kkey will move the user to a previous level, while the
CONTINUE Ffunction key will move him into the next level.

A sketch of the system's levels in hierarchical form is shown in
Figure 2.4 below. It should be noted that although the basic
package structure has been formulated, only the Base Level and
Insert Mode have been physically implemented as yet. {See the
highlighted blocks of Fig.2.4.) Addition of the other system
blocks is merely an expansion using principles which have already
been developed.

Front-end:

Input / Output files
Interface

| A
| i
v |

Base_leyel:

File Scrolling and
Line Editing

|
|
I
|
|
1

A |

| i

! v
:Jngg;_:,_mdg: I |Delete Mode: | l opy Mode: 5 | Move Mede: |
| | I |
{ Line, { | Line, Block,| | Line and | | Line and |
| pata Ttem | | Data Item | | Block Copy | | Block Move |
land Construct| [and Constiuct|{ | [ i
| Insertion | ] Deletion 11 [ !

Fig.2.4: System Level Hierarchy
A simplistic representation is given of the main system
levels togetber with their associated functions, The .
interconnections indicate the possible movements between
Jevels open to the user, The highlighted blocks and
underlined headings indicate existing system features.




Page 11

The 1levels and sub-levels are described in detail in the next
chapter, For this, extensive use is made of "tree structure
diagrams" (eg. Fig.3,3). These diagrams are a representation of
the modes which exist, and the transitions which are possible
between them. BEach mode corresponds to a unigue set of 10
function keys, and each of the keys can potentially lead to a new
mode. In the f£igures, all the defined keys of a mode are shown on
the same line, with arrows indicating transitions. For a detailed
walkthrough of one of these trees, section 3.3 should be studied.
For reasons of clarity, the tree structure diagrams are presented
in fragmented form., Appendix B, however, presents all these
diagrams in a detailed summary of the system's available levels.




Page 12

3 THE EDITING FACILITIES

This chapter is a detailed account of all the editor's funucions.
With the aid of suitable examples, the reader is lead through the
various modes and methods of the syntax-directed PDL generator,
Aftzr a look at the line editing facilities, the reader is
introduced to the various system levels in top-down order. It
will be useful to refer back to Pig.2.4 every now and then, so as
not to loose track of the overall picture.

3.1 The Line Editor

The Line BEditor plays an important part in the flexibility of the
system. It is ible for the t of text entered in
the Window Screen. It is easy ts note when the Line Editor is in
use: the cursor is positioned in the Window Screen. In this case,
a keyboard response is usually expected.

The user is presented with a line in the Window Screen which is
to be edited. Key words (ie. "reserved words" generated by the
package) are highlighted, and the user is not permitted to edit
these words in the Line Editor. All indentation is removed, and
the user is given a limited line length the size of the screen
width.

There are essentially two modes of operation: the Text-enter mode
and the Insert mode. The text-enter mode is the familiar mode
where the user can overtype existing characters or add extra
characters after the end of the line. Besides the character-by-
character horizontal cursor movements, the cursor can also be
moved to the beginning or end of the line by the depression of a
single predefined key. A function is also available to erase the
end of the line from the current cursor pesition,

The Delete function is available for deleting a single character
at a time. If the user is positioned say in the middle of a text
1ine, depression of the backspace key willl cause the character to
the left of the cursor to be deleted as the cursor moves back by
one position to the left together with the entire string on its
right, Thus the name "Gestructive backspace" assigned to this
key.

This type of deleting is used by some editors and amounts to the
following: the text to the right of the cursor including the
character on which the cursor is positioned is left intact but
moves to the left thus deleting the character immediately to the
left of the cursor. Although this method is difflcult to become
acgus inted with initially, it supplies the experienced user with
just. as wuch flexibility and power as do other methods {eg. that
use¢, by the IBM machines).

As a second delete key is found on TBM compatable keyboards, {the
DEL key) a second type of deleting could also be included, Here,

™




Page 13

the cursor remains stationary, while the character that was at
the cursor pogsition is deleted., At the same time, the string to
the right of the cursor moves one character to the left. The
operation of these two types of character deleting £untions is
shown graphically in Pig.3.1.

The cabif sits. The capit sits.,

The cabg sits. The cajt sits.

The caf sits. The caf sits.
{a) (b}

Fig.3.1: The Line Editor's character delete funtions
The two types of delete functions are shown to correct the
phrase "The cabit sits." to "The cat sits.". Hethod (a)
uges the destructive backspace, while method {b) uses the
DEL key. The highlighted, underscored character indicates
the cursor position.

An insert mode is also necessary and this osde can be toggled
using the INS key. On entering Insert mode, the text after the
cursor (including the character underx the cursor) will move to
the right by one pesition; a blank character being inserted at
the cursor position. The cursor therefore now lies under a blank
token and any text entered will be inserted here. The cursor will
move with the entered text, thus always remaining under the blank
token.

This insert token is used as a visual cue to remind the user that
he is in Insert mode. Even though this cue may not always be
evident, the cursor movement keys will give a definite indication
of the mode in use: moving the cursor while in Insert wmode will
result in the next character exchanging places with the blank
insert token, The Erase-end-of-line and Delete functions operate
in the same manner as in Text-entry mode. On exiting Insert mode
uging the INS key again, the text after the cursor is moved back
by one position and the blank insert token vanishes. Figure 3,2
gives an example of Insert mode operation.

Operation Viswal.Representation
The original line The cat sits.
Enter Insert mode The ca_t sits.
Yove cursor left The c_at sits.
Use destructive backspace key The _at sits,
Enter "g" The g_at sits.
Enter “o" The go.at sits.
Bxit insert mode The gogt sits.

Fig.3.2: The Line Editor’s Insert mode operation
Here, cursor movement, deleting and typing are demonstrated
in an exercise to change "The cat sits."™ to "The goat
sits.”.

The user is allowed to edit the entire unhighlighted text string
and if an attempt is made to type beyond the line limits, a
watning will appear in the Prompt Screen. The last character on




Page 14

the line will always be overtyped, with an audible warning to the

user that the end of the line has been reached. When the line has

been satisfactorily edited, the Enter key can be depressed for

the system to accept the new line. If the old version of the line

(still visible in Screen 1 at Cursor 1) is required, the ESC key

xlv.iill exit the line editor, dignoring any changes made to that
ne.

A summary of the function keys which are operational in the Line
Bditor, together with their associated meanings is presented
below:

-> Curser moves right by one position

<= Cursor moves left by one position

HOME Cursor moves to the beginning of the line

END Cursor moves to the end of (he line

CTRL K  Erases from cursor position to the end of the line
{== Destructive backspace deleting function

DEL Another deleting function

INS Toggles Insert mode on/off

ENTER Bxits the Line Editor and accepts new text

ESC Exits the Line Bditor ignoring any modifications

3.2 The Front End of the Package *Note: this level is as yet
unimplemented*

Rs explained in Chapter 2, the Front-end of the PDL generator
package is responsible for dealing with input and output to the
external world, With reference to Fig.3.3, the operation of this
interface will be clarified,

On entering the editor package, the system tables are loaded., The
user will initfally be placed on the level containing the
function key options EDIT, INFO and EXIT. This can be regarded as
the system's top state. The user may then choose a function key
te proceed further.

The EXIT key will exit the editor and return to the computer's
operating system. The INFO key can be used to obtain further
information on how to operate the system. On having obtained this
information, the user is returned to the package's top level.

The EDIT function key will lead the system into asking the user
to enter a filename which is to be edited, The cursor will be
positioned in the Window Screen, and using the Line Editor
facilities, a filename can be specified. (Note that as a ".COD®
extension is assumed, no extension must be specified here,) Once
the ENTER key is depressed, the package will load the required
file (if it exists), and mive on to Base Level.

The Base Level is characterized by the function keys: PageB,
pageF, TopP, BotF, ToLin, R4itin, End ¢nd More. It is thus a
simple procedure to enter the PDL generato: package. From here,
the file can be edited until the user is satisfied. When the user
wishes to exit the editor, or edit another file, Base Level must
be returnud to.

Here, the END key will cause the system to ask the user: "Do you
want to SAVE or ABANdon this file?". Simultaneously, the choices




Page 15

SAVE, ABAN and RETURN will appear as function key ophions. The
RETURN option will (as conventionally expected) return the user
to Base Level again, lgnoring the last gquestion.
|
| Bnter the Editor
--=> EBdit Info Bxit
——D e —— ——— Exit
| { A [ the editor
[ mwemeeese e s >
y
PageB PageF TopF BotF  ToLin EditLn End More
A | A
¥ I
save Return |
1
|

¥
Yes {Are you Sure?} No

|

|

|

[

! i |
\

Fig.3.3: The front-end tree structure
Bracketed gquestions show the display which appears in the
Prompt Screen, and to which the user must respond.

If the ABAN option is chogen, the =yr*em will asks "Are you sure
you want to ABANDON all the edits of wiue £ile?™. To this, the
user answers {etill using the functi~n keys) either YES or WO. ILf
abandoning ig not really required, the¢ user will be returned to
Base Level. If the user, however, confirms his desire to abandon

or gquit the file,

he is returned to the package's top level, and

any

edits

or changes he may have made to the

latest session,

will have been lost or ignored.

file during the
This abandon or

quit function is useful where unwanted or unintended edits have
been made to a file.

ig,
will
£ile?”,

option;

on the other hand,

the SAVE function is chosen,

the system

enquire: "Do

you want to save a copy of the formatted

The file alluded to here is the prettyprinted version of

the file which is actually presented to the user on Screen 1. If
a copy of this is required in a file for printing or
documentation purposes,

then the user would choose the YES
otherwise, the NO function key needs to be depressed,




Page 16

EBither decision will lead to the next question: "Do you want to
keep a BACKUP copy of the old £file?". For safety, it is suggested
that the novice user always keep backup copies of the old file
versions, Thig can prove useful if two slightly different
versions of a PDL design are to be kept. Whether a backup copy is
required or not, the user is then taken back to the system's top
level.

The package will write the newly edited file into a file with the
name given to it initially. The formatted file will have
extension ".PDL", while the coded version will be labelled
".cop". Eackup flles will end in the letters BU, and will be
labelled with their appropriate extensions.

The user is now again in the package's top level, and from here,
he can either choose to edit another file (or indeed the same
file}, or exit the PDL generator package. If the user chooses to
edit another file, the system tables need not be re-read f£rom
disk; only the new file to be edited needs to be loaded, This
saves much time and user frustration in the long~run.

3.3 The System's Base Level

Base Level has effectively a set of 20 function keys due to its
many functions. 'This is achieved by reserving one function key
{the MORE key) for the sole purpose of displaying the remaining
10 functions. It is important to understand that, while the
function key definitions are changed on depression of the MORE
key, the Base level is still effective. Pig.3.4 below defines the
system's Baze Level.

PageB Pagef TopF BotF Tolin End MORE ===

Edlth Insert De.ete Move Copy MORE

£ig.3.4: The Base Level tree structure

3.3,1 The Scrolling functinns

Approximately half - . & Level is essentially devoted to
the secrolling fun ae user will make use of these
facilities for view /DL £ile in Screen 1 (20 lines at a
time). It is in order to mention again that the cursor up,

cursor down, page forward and page backward keys, being separate
from the function keys, are operational in all major levels.

The cursor up and down keys will move Cursor 1 on Screen 1 up and

down respectively. If the cursor is moved beyond the limits of
the logical screen, Screen 1, a half page scroll (either forward

%, i -3 P~

et




Page 17

or backward) is performed, thus positioning the cursor centrally
on Screen 1. If it is attempted to move the cursor beyond the
first or last line of the file, an appropriate message will be
digplayed in the Prompt Screen.

The PageB and PagePF function Kkeys have the same assuvciated
functions as the explicit PgUp and PgDn keys available on the
keyboard. They will, where possible, scroll the file backward or
forward respectively by a page. Under normal circumstances (ie.
if the file is long enough) the page will be advanced by 19 lines
{ie. in scrolling forward, the bottom line on Screen 1 before the
scroll will become the top line after the scroll); the cursor
remaining at the previous screen position. If the file is toco
short, a page scroll is attempted, with the cursor being
positioned in the appropriate position.

The TopF and BotF keys will move Cursor 1 to the top or bokttom
lines of the file respectively. The ToLin function key will allow
the user to move Cursor 1 to any valid line number in the file,
The line nuwber required must be entered in the Window Screen.
Only the 1ine numbers between the current top and bottom 1line
numbers of the file will be accepted. Although <the user is
limited to a maximum of a 4 digit line number (a £ile longer
than 9999  lines is quite unlikely not to mention
counterproductive), the fuil line editing facilities are
available when in the Window Screen. A valid line humber which
requires a screen scroll will always (if possible) position
Cursor 1 at the centre of Screen 1.

As shown in Fig.3.5, after the execution of any of the scrolling
functions, the user is returned to Base Level again. The END key
is the only key in Base Level which could move the user to
another permanent level (as explained in section 3.2).

PageF

BotF ToLin End MORE

I S Y T -

v
To front~end

Fig.3.5: The .c¢rolling functions' tree structure

3.3.2 The Modify or Edit Line function

This §s one of the most important function keys for editing a
file on a line by line basis. Any line displayed on Screen 1 in
unhighlighted or reverse video fonts {correcktly user entered
text, placeholders and errors) can be edited using this function.
This 1s because highlighted, system-gencrated key words are not
editable. A line on Screen 1 which contains a key word only, is
thgs bnot editable. Any other line will be at least partially
editable,

If a line is editable, it will be loaded into the Window Screen,
from which the Line Editor can be used to modify its contents,
When the user is satisfied with the edited line, it is ENTERed,
and the new line will replace the old at Cursor 1 on the Main
Screen, If the edits performed on the line in the Window Screen,

A% ¥ P Y v




Page 18

however, are not reguired, the BSC key will return the user teo
Base Level without making any changes to the chosen 1line on
Screen 1.

21 Begin: 21 Begin.

Iz:=9 12 I 0
23 While <CONDITION> do: !23 While <CONDITION> do:
24 State := State + I 24 State := State + I
25 I =141 {25 T s= I +1
26 End While: 126 End While:
27 End: 127 End:

iwhile <CONDITION2

| This line is editable.,.
|1.BditLn 2.Insert ...

1.EditLn 2,.Ingett ...

While (I > Max State)_

Thisg line is editable,.:
1.Editln 2.Insert ...

(a) (b)
[ |
[ I
21 Beginx {121 Begin- I
22 1 0 1 122 i
23 while <CONDITION> dot 1123 While (T > Max state) doz |
24 State := State + I ] 124 State := State + I
25 Ii=1+1 | q25 Ti=T#1 |
26  E£nd While: { 126  End while: !
27 End: ]l 127 End: I
il |
[ |
[ |
[ i

l.Bditln  2,Insert ...

(c) (d)

Fig.3.6: Using the EditLn function

The highlighted, unde-senred character in the figures above
rapresant Cursor 2 in the Window Screen. In the Main
Screen, Cursor 1 is .. .wa ags a highlighted, underscored
line number, while niighted words represent system-
generated key words. . figure (a), the required line to be
modified 1s chosen wiin Cursor 1, Flgure {b) shows the
result aftev the Editln key has been depressed. It can be
seen that the Windovw Screen is loaded and the user is
prompted, Figure (c) shows the Window Screen after the user
has edited it using the Line Editor, and figure (d) is the
resuil after the new line has been ENTERed.

This function is typlcally used when expanding a <CONDITION>
placeholder or when editing an error., 1In the Data Description
segment, only the user-entered data items can be modified. ©On
exiting the Line Pditor, parsing of the new line is done by the




Page 19

system, and any errors introduced will be displayed on Screzn 1
in reverse video font. A sample editing procedure is shown in
Fig.3.6,

3.3,3 The Insert facility

From Base Level, Insert mode can be entered using the appropriate
function key. The Insert key is bessically a gateway into the
insert functions provided by the sy tem. (This also applies to
the Delete, Copy and Move keys.} As shown in Fig.3.7, returning
from 1Insert mode is simply achieved by depressing the RETURN
function key.

EditLn Insert Delete Copy Move MORE ~ <mm=
| f

; |

LineIn Data Des Construct RETURN !
|

|

Fig.3.7: The Insert mode tree structure

The necessary functions in Insert mode include:

--- the Line Insert facility for entering text or proyram lines
sequentially

~-=- the Data Item Insertion facility for automatic definition
and placement of data items used in the PDL program

--- the Construct Insertion facilities used for inserting
construct blocks (with associated placeholders) in the PDL
program's algorithm segment

These functions will be sufficient for the writing of any PDL
deaign, Placeholder deletion is automatic when required. The
congtruct facility will ensure that syntactical correctness is
maintained. If each defined data item is coded, and all lines of
text are parsed, full semantic error checking facilities will
become available. Section 3.4 gives the detalls of the functions
available in Insert mode.

3.3.4 The Delete facility

Fig,3.8 shows the tree structure relevant to the Delete mode.
Again, the Delete key in Base Level can be regarded as a gateway
to the delete functions available in the package. The Delete
functions include:

-ww= §ingle Line Deletion

. S Py




Page 20

=== Construct Deletion
~-= Block Deletion

ALl the delete functions require some type of user input to
indicate the lines which should be deleted, and extensive error
checking is performed to protect the user from himself.
Placeholder insertion is Automatically dene when necessary, Data
items can be deleted either by using the Single Line Deletion
facility directly on the appropriate line, orx by using the Block
Deleting facility.

Editin Insert Delete Copy Move MORE ¢==-—

o

Line Del Constr De.

|
|
Biock Del RETURN :
|

Fig.3.8: The Delete mode tree structure

Construct Deletion is useful when in the Algorithm segment, while
Block Deletion is more general. Here, the user is allowed to
enter a delete range; the system checking whether such a range
will affect the syntax of the remaining PDL program. If not, the
entire specified block will be removed. In this mode, extensive
visual cues are used to fagilitate block identification. Section
3.5 gf this manual will elaborate on the details of Delete wmode
functions.

3.3.5 The Copy facility

Another gateway facility is provided here for copying lines of a
PDL  program elsewhere in the program. Fig.3.9 depiets the
fungtion keys involved. Basically, only two types of copy
functions exist:

--- the Line Copy facillty
== the Block Copy facility

Bditin Ingert Delete Copy Move MORE  mme

Fig.3.9: The Copy mode tree structure

A




Page 21

No copy [(or move) operations are permitted in the Data
Description segment. The major criterion between distinguishing
between the two types of copy functions is convenience. A Block
Copy requires the user to define a legitimate block of PDL (which
is highl!ghted), and, if this is accepted by the system, a
destination can then be specified; this too being system—checked.
Section 3.6 gives a more detailed description of the Copy
functions.

3.3,6 The Move facility

The Move gateway is used from Base Level to access functions
which will enable the user to move lines of PDL around in the
program without disturbing the syntactical correctness of the PDL
structure, Fig,3,10 shows the tree structure adopted.

Again, similarly to the Copy functions, two functions have been
provided for user convenience. During a Move operation, the block
to be moved must be accepted {and highlighted) before a
destination (this alse being checked) can be specified. Extensive
system checking is reqguired to maintain the PDL program
syntactically ~orrect. Further details on these functic1s can be
obtained in section 3.7.

EditLn Insert Delete Copy Hove MORE o=
- ———— e |

i
¥

1

|

Line Move Block Move RETURN 1
- 1

I

Fig.3.10: The Move mode tree structure

3.4 Insert Mode

3.4.1 Single Line Insertion

This functior is indispensable when using any editor, It enables
the user to enter a number of text lines (not constructs)
sequentially. Fig.3.11 shows the tree structure of this
congtruct.

-=~> Data Des Construct Line Insert RETURN
|

P O —

[ ———
[}
=
B

Fig.3.11: The tree structure for Line Insert mode

ik S g P




Page 22

| es
{ eee
f2l I :=0 21 L:=20 4
{22 while (I > Max State) do: 22 Waile {I > Max State) dos .
123 £CONSTRUCT> 23 <CONSTRUCT> B
{24 BEnd while:
125 Put:
[26  Console: ‘state=',State "
|27 End put:

State := S_ L

Enter line; use END to exit.. B

1
|
|
{l.Datd 2.Con 3.Lineln ... 1.END

e (a) (b} R

|
|
121 =0 I:=0
122 While (I > Max State) do: 22 While (I > Max State} de:
S 123 State := State + T 23 State := State + I °
k ! 24 I+l
;. i
|
|
* 1 o
!
- :Entet line; use END to exit.. Bnter line; use END to exit.. v

1,END

(c} (4)

i

I

I =0 I

While (I > Max State) do: |

State := State + I 1

I =1+ |
End while: 1 )

|

|

t

I

|

|

Put:
Console: 'State=',State

e NE: NN
NGk N e

|
|
|
|
1
i
{e) |
|
|
1
|
|
I
[l.patD 2.Con 3.Lineln ...

Pig.3.12: An example using the Insert Line facility
Two lines of code are to be inserted at line 23 of figure
{a). Figure (b) shows the result after depressing the
LineIn key and typing part of the required line. Figure (c¢) Ty
shows the layout after the new line has been ENTERed.
Pigure (d) shows another user—entered line of text. The
last figure (f.;: re (e)) portrays the final product after
the BEND key has ..en depressed. &3




Page 23

Assume, as an example, that a placeholder is to be expanded to a
few lines of PDL code. Cursor 1 is placed on the line after which
insertion is required, and the Lineln key is depressed. This
results in Screen 1 being cleared of all lines after the line
indicated by Cursor 1. The cursor on this screen is also turned
off. {(Thus, if no cursor is present on Screen 1, then the user
can safely deduce to be in Line Insert mode.)

Cursor 2 appears in the Window Screen, and full line editing
facilities are available for entering the text line. When a line
is entered, it will be inserted (with correct indentation) after
the last line currently displayed on Screen 1. Each depression of
the ENTER key will cause whatever text is displayed in Screen 2
to be added to the last line of Screen 1. Once the ENTER key has
heen depressed, there is no way of editing the newly entered line
without leaving the present mode {Insert mode).

If instead of ENTER, the ESC key is used, the line present in the
Window Screen will be discarded, and no line will be added to
Sereen 1. The END function key is used for exiting this mode. It
should be remembered that all lines which are to be inserted,
must be ENTERed before the END key is used. The END Kkey will
return the user to Insert mode; restore Screen 1 to contain the
complete 20 lines; and return Cursor 1 to the last line which was
inserted.

While inserting, this mode is similar to the Construct Insert
mode in that indentation is automatic, and unnecessary
placeholders are removed. The pictorial example in Fig.3.12
should clear up any uncertainties in the above verbal
description,

3.4,2 Data Description definition

The Data Description segment is perhaps one of the areas vwhere
automation can be of major help in alleviating the designer's
clerical effort. This segment is usually present at the beginning
of a program, and it is here that all constants and variables are
defined. Due to the strict indentation and ordering laws which
apply to this segment, manual entry in this area is usually very
frustrating and time consuming. For this reason it can be
regarded as a prime candidate for automation.

When the DataD key is depressed, Data Description Inset mode is
entered, and here, the format of the Window Screen changes
somewhat (see Fig.3.14). A data item definition field is defined
in the Window Screen. The user is asked to enter or edit the data
item name here. A tree structure is presented layer by layer via
the Function Screen. The user makes use of the function keys to
choose the data function, data type, data structure and data
scope successively. This tree structute is seen in the diagram of
Fig.3.13.

The Window Screen is also used to display these various
classifications of the data item so that only once the user is
through wich defining the data item can it be accepted for
automatic indentation and positioning on the Main Screen. A
diaggax{\‘iof the Window Screen in Data Definition mode is shown in
rig.3.14.




Page 24

—--> Data Desc  Construct Lineln Return

\
Boolean Integer Real Character Others Continve Return
| ] I | Ao b
1 | | i [ [
¥ ¥ v I
Single Array Continue I Return <-- i
___________ et o 1 ————
! | 1 | I
1 | |
¥ y ¥ ;
Local Global gxternal Permanent Continue Return
| i | | |
v[[ \Iy ‘|’ | ¢/ ______
Yes (Accepu » definition?) No

Fig.3.13: The tree structure of the Data Descripticna Insert mode
Although all prompts and conditional branches have not been
labelled for the sake of clarity, bracketed qguestions
indizate prompts requiring user response.

In the Data Type level, choosing of the Others key option will
result in a new set (if any exists) of user-defined data types.
Pypes are defined by entering a text line; except where records
are defined, in which case a more structured approach is taken. L
The functions associated with these two related keys (Type and

Others} have not yet been implemented.

The Data Definiltion tree can be traversed in both the forward and t
backward directions for key word editing purposes using the
Continue and Return keys respectively. Visual representation of
the user's pogition in the tree is given by highlighting one of -
the fields of Fig.3.14 in reverse video font. Bach of these
fields is individually editable. Simultaneously, the user is able
to edit the data item in field 5 with the full power of the Line
Editor.

After the user has defined the data item, he is prompted for its N
acceptance or rejection. A newly defined data item will be
positioned correctly in the Data Description segment of the
program without Further user intervention, If the defined data




Page 25

item is to be i1zjected, no action occurs.

If Cursor 1 is currently in the Data Description segment of the
program on Screen 1, then the cursor is automatically positioned
at the newly inserted data item. If the cursor is in the
Algorithm segment of the program, then the cursor remains where
it is, with only the different line numbers showing that an
insertion has occured in the Data Description segment. Thus, a
uger can define any new variable while in the program body,
without having to return to the Data Description segment.

{variable: Boolean: Arxa¥: Local: [This array of size {1..100)

| Field 1 | Field 2 | Field 3| Field 4| Field 5

Pield 1 -~ The Data Function field

Field 2 ==~ The Data Type field {10 characters wide)
Field 3 -- The Data Structure field

Fjeld 4 -~ The Data Scope field

Field 5 -~ The editable Data Name field (40 characters wide)

Fig.3.14: The Window Screen in Data Description mode
The field written in boldface and underscored represents
the field highlighted in reverse video font. This field
will correspond to the level (See Fig.3,13) that the user
is on. The highlighted, underscored character in Field 5
indicates the position of Cursor 2.

An entered data item can only be deleted by deleting the line
containing the data item, or by redefining it. (The user is asked
whether he wishes to replace the old item definition with the
nevw.) This makes the Data Description segment fully automated as
the user never deals explicitly with its formatting.

3.4.3 Construct Insertion

The system is a template-driven syntax-directed editor so that
the Construct Insertfon facility nongists of the various
constructs available in PDL. When a construct template is chesen,
the gkeleton structure is displayed on Screen 1, with non-
terminals or placeholders highlighted in reverse video font. The
user can then choose to fill in the placeholders using the
ediftor's normal functions, or return to them at a later stage. A
list of the templates availabie is given below:

==~ If = Then

If - Then - BElse
While - Do
Repeat =~ Until
Case

Case ~ Else
Co-begin~Co~-end
Get

Put




Page 26

construct will occur after the line on which
Cursor 1 is positioned. The user is warned if Block Insertion is
not allowed in the chosen position. Indentation of the construct
block is automatic, and any unnecessary placeholders are removed.
Fig.3.15 below shows the steps involved in inserting a nested If-
then-else construct.

Insertion of &

21 ¥ =0 21 I 3=
22 While (I > Max State) do: 22 While (I > Max State) do:
23 KCONSTRUCT> 23 If <CONDITION>
24 BEnd whiles 24 then:

e 25 (CONSTRUCT>

veo 26 else

ces 27 <COHSTRUC'I‘>

if:

o 3% ana wniies

Use f-keys & choose construct
1.1f-t 2.If-t-e 3.While... l.Datbes 2.Con 3.Lineln...

(a} {b})

Fig.3.15: Inserting a block construet
Pogitioning Cursor 1 on line 22 or 23 will have the same
effect, as the unwanted placeholeder is removed. Figure (a)
is the screen layout before Construct Insertion, while
figure (b} shows the result after depressing the If-%-e

function key.

Return <

Data Desc  Construct Lineln

If~th If-t~e While Repeat Case Case~e Cobeg Get Put Return

N I N AN

Fig.3,16: The tree structure for Construct Irsert mode

It can be seen in Fig.3.15, that the indeutabion is automatically
maintained, while the existing <CONSTRUCT> placeholder is
removed; the If-then-else template (with its own placeholders)
being inserted. It can also be noted that the cursor is
positioned on the flrst line of the template which contains an
unexpanded placeholder. When the construct has been inserted, the
user is returned to Insert mode so that the Insert Line function
can then be used to expand the placeholders. This can also be




Page 27

seen from the tree strugture of Fig.3.16.

3.5 Delete Mode *Note: This level is as yet unimplemented*

3.5.1 single Line Deletion

This function forms one of the primitives of any conventional
file editor., Tn this PDL generator package, this function will
enable the user to delete the line on the Main Screen on which
Curgor 1 is positioned. Due to the nature of the syntax-directed
editor, however, not any line may be deleted individually. If a
line may not be deleted, an error message will appear in Screen 3
and the user will be returned to'Delete mode. Fig.3.17 shows the
relevant tree structure for this sub-mode.

Line Del Constr Del Block Del RETURN

Fig.3.17: The tree structure for Single Line Delete mode

If a line is deleted, reformating of the Main Screen and line
£ bering is tic, The scope of this function can be
divided into two categories: the lines in the Data Desription
segnent and those in the Algorithm segment.

In the Algorithm segment, after deleting a line, a placeholder
will be inserted if it is required. Also, Cursor 1 remains
physically in the same position in the Main Screen (ie. same line
number) while indicating the following line. (See Fig. 3.18) A
line containing any key word {(ie. a highlighted word in the Main
Screen) may not be deleted via the Line Delvte function. This
restriction is necessary so as to maintain the syntactical
correctness of the PDL program at all times. KXey words in the
Algorithm segment can only be deleted as they were inserted: via
special block manipulation functions. The Construct and Block
Delete modes serve this purpose. (See sections 3.5.2 and 3.5.3)

In the Data Description segment, two types of dJdeletion are
posgible: single and multiple data item deletion. The Line Delete
funckion can be used to delete a single data item at a time
(together with any relevant system-generated definition key
words), In the Data Description segment, the user has no direct
control over the data item definition structure: when an item is
to be deleted, all the relevant key words will be arranged
accordingly without further user intervention.

Similarly to the Algorithm segment, a system generated key word
cannot be directly deleted in the Data Description segment of a
PDL program, 'Thus, Cursor 1 must be on the line containing the
data item name when that data item is to be deleted via the Line
Delete function., After a data item is deleted, <Cursor 1 is




Page 28

positioned at the line following the deleted data item name., When
deletion of more than one adjacent data item is required, the
Block Delete function can be used {See section 3.5.3).

2ri=0 2 ra=0

22 While (I > Max State) do: 22 While (I > Max BState) do:

23 State = State + I 23 I:=1+1

24 I =141 24 End While:

25 End While: 25 but:

26 Puk: 26  Console: 'State=',State

27  Console: 'State=',State 27 End Put:

l.LineDel 2,ConstrDel ... l.LineDel 2.ConstrDel ...
(a) (b)

21 I := 0

22 While (I > Max State) do:
<CONSTRULCT>

24 End While:

25 Puts

26  Congole: 'State=',State
27 End Puts

B

1.LineDel 2.ConstrDel ...
(e)

Fig.3.18: Us.ing the Line Delete function

Lines 23 and 24 in figure (a) must be deleted, Delete mode
is thus entered. Depressing the LineDel <function key,
figure (b) results. After performing another line delete,
figure ({c) is obtaiped, It will be noted that the
<CONSTRUCT> placeholder was inserted for the purposes of
maintaindng syntactical correctness. Further line deletes
on line 23 will produce an error.

3.5.2 Construct Deletion

This function is supplied purely for the sake of convenience. It
allows the user to remove an entire construct from a PDL program
with the use of only two function key depressions. In so doing,




Page 29

the ‘emaining program will maintain its syntactical correctness.
The :-~2 stroucture for this function is shown in Fig,3.185.

Line Del Constr Del Block Del RETURN

I A

Fig.3.19: The tree structure for Construct Delete mode

This deletion moda can only be available in the Algorithm
segment. The user will position Cursor 1 in the Main Screen at a
particular line. After depressing the ConstrDel function key, the
line numbers of the group of lines, above and below the chosen
line, with an indentation equaling or exceeding the indentation
of the chosen line, will be highlighted in reverse video font. At
this point Cursor 1 vanishes.

The user is prompted for acceptance to delete the block which is
highlighted, If he rejects, Cursor 1 re-appears, while the block
line numbers are reverted to normal font. 1If the user accepts to
delete the block, the highlighted line numbers will be removed
from the file, and the cursor positioned at the line after the
deleted block.

This function thus enables one to delete blocks of text rapidly.
At all times, syntactical correctness is maintained and any
placeholders which are required will be automatically inserted.

3.5.3 Block Deletion

This is the more general delete function which is available in
most aimple editors, The function allows the user to delete a
specifiable block of text. In this PDL syntax-directed editor
much checking of the chosen block must be performed so that only
a deletion which will not affect the syntactical correctness of
the PDL program will be accepted. The tree structure for this
function is shown in Fig.3.20.

If a block of text is to be deleted, after the Block Delete
function key has been depressed, the user is prompted to use the
Begin Block key when Cursor 1 on Screen 1 indicates the beginning
of the block to be deleted.

The user has the choice to use either the cursor movements
coupled with the Begin Block function key to indicate the block
start line, or wuse the Line Editor to specify a numeric 1line
number. Thus, the Window Screen will contain the message: “Start
line number =",,,., A line number ig ENTERed for acceptance., Thus,
if the Begin Block key is used to enter the numerical line number

"~ oA g -3 P .




Page 30

in the Window Screen, an error will occur. This means that the
Begin Block function key chooses the line indicated by Cursor 1
on Screen 1 only when there is ne line number specified in the
Window Screen.

Line Del Constr Del Block Del RETURN

A | A
[ | |
I \2 |
Regin Block l' } RETURN
! I A l J
| I | e
A4 | |
End Block Abort Il 1 RETURN
| | I ! i A
[ mmmemee s I
14

Fig.3.20: The tree structure for Block Delete mode

Before a start line can be accepted, it must be checked. 1If any
error occurs {eg. trying to delete the first line in the program})
the user is warned and the level of operation remains unchanged.
If no error occurs, the next state is entered to allow the user
to specify the end of the block which is to be dJeleted. It is
worthy to note here that the RETURN function key will position
the user in the previous system state, thus implying an exit from
Block Delete mode.

In choosing a line to end the delete block, again the user can
make use of the cursor movements together with the End Block
function key, or the Line Bdit features for specifying a
numerical line number. The Window Screen prompt will now be:

"start line number = XX; End line number ="...
where XX 1s the numerical value of the previously ch’-yen line

A useful feature here is the dynamic highlighting of any lines
chosen for the delete block as Cursor 1 is moved.

Bt this level, the RETURN function key will move the user back to
the sgtage where an initial start line is still to be speclfied.
The Abort function key is useful <for cleanly aborting any
unwanted operation at this stage.

Once an end line has been chosen, extensive error checking occurs
to determine whether the chosen block can be deleted without
disrupting the PDL program's syntax. As an example, the If-then
part of an If-then-~else construct cannot be deleted, as it leaves
an incomplete (or syntactically incorrect) construct in the

g

f
-
!




Page 31
program.

11 variables: 11 Variables:

12 Boolean: 12 Boolean:
13 8ingle: i3 Single:
14 Local: 14 Local:
15 ABC 15 ABC
16 Array: 16 Array:
17 Global: 17 Global:
18 MODE 18 HMODE
19 Locals 19 Local:
20 PED 20 PED
21 Integer: 21 Integer:
22 Singles 22 Single:
23 Permanent: 23 Permanent:
24 RED 24 RED
25 BLUE 25 BLUE

Delete lines _

Delete lines 18 to _

Choose the start of block

Choose the end of block

1.BeginBLK 10.RETURN 1.EndBLK 2.Abort  10,RETURN
{a) {b)
11 Variablesx 11 Variables:
Boolean: Boolean:
13 Single: 13 Bingles
14 Locals: 14 Local:
18 ABC 15 ABC
16 Array: 16 Integer:
17 Glohal: 17 Single:
18 MODE 18 Permanent:
13 Locals 13 BLUE
20 PED e
23 Integer: e
22 single:
23 Permanent:
24 RED
25 BLUE

Delete lines 18 to 24

Accept to delete the block?
l.Accept 3.Rejec

l.LinePel 2.ConstrDel ...

(e)

(d)

Fig.3.21: Using the Block Delete function
An error-fres example of Block Deletion in the Data
Description segment ls shown above. FPigure (a} shows the
screen layout after the BlockDel function key has been
depressed in Delete mode. The Line Bditor features are used

to ENTER the line number “1g8%,

As chown in figure (b},

Cursior 1 moves to line 18 and the user is prompted for the
end line of the block. This time, the cursor movement keys

T e o P




Page 32

are used. As the cursor moves, the lines from line 18 to
tie current cursor position are highlighted dynamically,
and when the EndBLK function key is depressed, the display
screen will be as in figure (c¢). ©Note that in the Window
Screen, the end line number was automatically filled in.
Figure {d) shows the final result after the block from line
18 to line 24 has been deleted. Note that block limits
start and end at a data item name. Note also that, although
the block specifies lines 18 to 24, only the data items
included in that block have been deleted., (Any necessary
key words included in the block have been retained, while
unnecassary key words outside the block limits have been
deleted.} Key word ordering has also been dealt with
automatically.

It is Aimportant to note that a block with a start line in the
Data Description segment and an end line in the Algorithm segment
is not acceptable. Only a pure Data Description segment delete
block, or a pure Algorithm segment delete block will be accepted.

In the Data Pescription segment, the start and end lines of the
delete block may only contain a data item name. A block starting
or ending on a data definition key word will not be accepted. All
the deletion of intermediate key words will automatically be
caken care of by the system. Fig.3.21 will help to illustrate the
operation and power of the Block Delete function as applied to
the Data Description segment.

When an acceptable block has been defined, it will be
highlighted, and the user will be asked if he wishes to delete
the chosen block. Rejection will return the user to redefine the
end line. (From here, this mode can also be aborted.} Acceptance
will automatically delete the indicated block, with any necessary
placeholders inserted, In the Data Desecription segment, all
unnecessary key words will automatically be removed. The Main
Screen 1s reformatted; Cursor 1 is positioned on the line after
the deleted block; and the uger is returned to Delete mode.

3.6 Copy Mode *Note: This level is as yet unimplemented*

3.6.1 Single Line Copy

The Line Copy function enables the user to copy any line of text
to any destination, if in so doing the PDL program remains
gyntactically correct. Az shown in the tree structure of
rig.3.22, firast the line to be copled, and then the destination
need to be szpecified by the user.

Again, as in Delete mode, the user is given the ability to enter
the required inputs either pictorially (by using the cursor
movements together with the This Line or After This Line function
keys) or numerically (using the Line Editor facilities in the
window Screen).

After depressing the Line Copy function key, the Window Secreen

prompt will be: "Copy line ".... The user then either moves
Cor~or 1 to the required line and uses the This Line function key

- REPY N - N .-




Page 33

to choose it or ENTERS a line number in the Jindow Screen. The
chosen line number (corresponding to the line number which will
be copied) is displayed in reverse video font, and the user is
prompted for the destination. If instead of choosing a copy line,
the RETURN key is used, Line Copy mode will be abandoned,

Line Copy Block Copy RETURM
] —
|
¥

A
:
} This Line
|
I
|
|
|
I

o e e

Fig,3.22: The tree structure for Line Copy mode
Nete that no acknowledgement from the user is required. The
reason for this is twofold: the Line Copy function involves
the addition of only one extra line; and a copy process is
in any case easily reversed by deleting any extra lines
created.

When a copy line has been chosen, the Window Screen will display:

"Copy line XX after line "...
where XX is the line number of the copy line.

The line which us to be chosen is the line after which the copy
line will be copied. Use of the Abort function key at this stage
will cleanly abanion this Line Copy mode, whereas the RETURN key
will request that the user re-enter the copy line (ie. previous
state).

Both the copy line and the destination lines are checked £for
possible syntactical errors. For example, no line containing a
key word or a placeholder may be copied. Also, neither the copy
nor destination lines may occur in the Data Description segment.
Essentially, only a user-entered algorithm statement may be
copied. It is important to note that when copying is performed,
indentation of the copied line is calculated, and the new line
automatically formatted. After a copy line operation Cursor 1 is
positioned at the new copied line,

3.6.2 Block Copy

The Block Copy function is the more useful function where a block
of text can be copied to another section of the file. The user
will specify a block of text and its destination, If the required
copy operation will not affect the PDL program's syntactical

o P 3 PR SOPRT s -8




Page 34

correctness, then it will be performed. The tree structure for
this function is as shown in Fig,3.23.

Line Copy Block Copy RETURN
A
|
Begin Block | RETURN
........... | ——————
t A {
i R ———
\4 1
End Block I RETURN
_________ ' —————
| Ao
| [ mmemmmeee
N4 |
|
I
i

Fig,3,23: The tree structure for Block Copy mode
Again no acknowledgement from the user is required before
the operation can be executed; the reason being a
compromise between system user speed and usex friendliness,

The copy block is chosen in the usual way, with the Window Screen
presenting a numerical input alternative. The format used for
this purpose is:

"Copy lines XX to YY after line 22"
where XX = start of the copy block line
YY = end of the copy block line
%27 = destination line

The block is highlighted as it is chosen (ie. dynamically}. At
all times the RETURN function key will essentially undo the
previous choice, thus taking the user baeck one level. The Abort
key is available for cleanly exiting this Block Copy mode
ignoring any choices made.

When the copy block has been chosen and highlighted on the Main
Screen, an alternative Cursor 1 font is required so that the user
can choose the destination., A blinking line number in the margin
of the Main Screen is thus used for Cursor 1. As destination, the
user must indicate the line after which the copy block is to be

placed. Once a destination line has been chosen (either by using,

the After This Line fanction key, or the Line Editor facilities)

the copy operation will immediately (if it is legitimate) be’

performed.

Clearly, to maintain the program's syntactical order, checking is
done at every stage of user input. No copy function can be
performed (wholly or partially) on the Data Description segment.
Only entire constructs may be copied; part of a construct cannot




Page 35

be copied unless it contains no system generated key words.

On successfully copying a block of text, the new block will be
appropriately indented according to its location in the PDL
program. Any extra placelolder in the destination's vicinity will
e removed. Cursor 1 will be positioned at the beginning of the
newly inserted text block afer the copy operation is complete.

3.7 Move Mode  *Note: This level is as yet unimplemented*

Thig mode basically involves the use of a Copy function followed e
by a Delete function. {(Firstly the original lines are copied to
the destination; then the oriqinal lines are deleted.) Thus the .
ilove mode is not regarded as a _rimitive editor functioen, but a ~
derived function. Although this is the case, most modern editors N
include a llove facility as it greatly alleviates the user’'s -
editing burden. AN

3.7.1 8ingle Line liove

The user makes use of this function to move a single line to
another file position. In so doing, the PDL program's syntax must i
remain intact. From the tree structure of Fig.3.24 it can be seen
that no confirmation of the action is requested from the user. E
Again this is done so as to increase usage speed. The Hove 4
function is also easily reversed (particularly for a single .
line).

Line liove Block fove RETURN

I

RETURN e

This Line

|
|

Y
After This Line Abort

A
i
i
i
|
|
]
|

Fig.3.24: The tree structure for Line Move mode

The user is presented with an almost identical procedure as that
of Line Copy mode. Input lines are entered via the function keys
This Line and After This Line or using the Line Editor in ths
Window Screen to enter the line numbers directly. The Window
Screen prompt will be as follows:

"Hove line XX after line yy" Lo
where XX = the line number to be moved
¥Y = the line number after which line XX must be moved




Page 36
|
13 If (%X > Max sze) 13 If (X > Max Size) I
14 then. 14  then: [
15 X 1 15 X t=X 41 I
1§ 16  else:s |
17 17 X =0 I
18 P 18 Repeat: I
1 9 <CONSTRUCT> 19 <CONSTRUCT> I
Until (X = Max Size) 20 Until (X = Max Size) |
21 End If: 21 End If: {
Move line _ |
)
Choose the move line {
l.LineMov 2.BlockMov ... 1.7ThisLine 10.RETURN/|
(a) (b)
13 1f (X > Max Size) 13 X (X > Max 51ze)
14 then: 14  then:
15 X:=sX+1 15 X=X 41
16 else: 16 else:
17 X =0 17 X =0
18 Repeat: 18 Repeat:
i3 <CONSTRUCT> 12 <CONSTRUCT>
20 Until (X = Max Size) 20 Until (X = Max Size)
21 End If: 21 End If:
Move line 15 after line _ Move line 15 after line
Choose the destination line Choose the destination line
l.AfterTLn 2.Abort ... l.AfterTLn  2.Abort ...

{c} (a)

13 If (X > ax size}

14
15 <CONS’I‘RUCT>
16 else:
17 X =0
{e) 18 Repeat:
X s= X + 1
20 ntil (X = Max Size)
21 End Ifx

1.LineMov 2.BlockMov ...

Fig.3.25: Using the Line Move function
The screen layout in Move mode before the LineMov function
key is depressed is shown in figure (a) while figure (b)

\/“




Page 37

ghows the layout after the Line Move function has been
selected, At this stage, the Main Screen display is
unchanged. The user then moves Cursor 1 {now at line 1l6) to
line 15 and depresses the ThisLine function key. This
results in figure (ec}. A destination line is now chosen by
moving Curser 1 (now in blinking font) to line 19 as in
figure (d). After the AfterTLn function key has been
depressed, figure (e) results., Note that the destination
line number in the Window Screen is never displayed if the
user enters it pictorially wia Cursor 1 movements. Also, it
can be seen that a placeholder has been inserted at line 15
while one has been removed at line 19 to maintain the
program syntactically correct. The newly moved line (line
19) can be seen to have a new indentation to blend with its
new position.

RETURN and &bort function keys have their usual meanings and
provide the user with full £lexibility when in this mode. The
same restrictions for copying a line apply to the Move facility.
Thus the user may only move completely user-entered text lines in
the Algorithm segment.

when a line is moved, any necessary placeholders will be inserted
or deleted as required (see Fig.3.25). The line which is moved is
automatically indented to match its new surroundings. After a
move operation, Curser 1 will be positicned at the newly moved
line., Figure 3.25 shows an example of using the Move function
correctly with its associated features.

3.7.2 Block Move

Thig function is used to move a specified PDL block to a
specified location in the file. As in Block Copy mode, much
checking for legitimate inputs is needed to maintain syntactical
correctness. The ktr=e structure used in Block Move mode can be
seen in Fig.3.26.

Line Move Block Move RETURN
! A A
| 1 |
¥ I |
Begin Block { | RETURN
i - - ! ] ______
| | b
Y | |
End Block Abort [ | RETURN
—————————————— l I =t
! | I AI\ i I
\ I
After This Line Abort } RETURN
| t 1 |

Fig.3.26: The tree structure for Block Move mode




Page 38

Almost identical to the Block Copy mode operation, the user
enters the move block via the two alternative methods. The Window
Screen display is as follows:

"Move lines XX to YY after tine 22"

where XX = the start line for the move block
YY = the end line for the move block
2% = the line after which the move block will be placed

The usual Aabort and RETURN functions are available to enhance
flexibility., After the move blowk has been chosen and highlighted
on Screen L, Cursor 1 reverts to a blinking cursor thus enabling
the user to enter the destination line. The same restrivtions of
Block Copy mode apply here for maintaining syntactical order.

A successfully moved text block will be automatically indented to
suit its new location. Additional placeholders will be removed,
while necessary placeholders are inserted., After the operation,
Cursﬁ: 1 will be placed at the beginning of the newly wmoved
block.




Page 39

4 UNIMPLEMENTED AND EXTENDED FEATURES

4.1 Package Completion

Although the £ull package has been described in the chapters
above, many functions still have to be implemented. The present
version of the system has no Front-end. It makes use of the ESC
key from Base Level to c¢xit the editor. A primitive facility for
specifying the input and output files is provided in the main
program, but a more flexible interface is needed.

At this stage, errors and placeholders are not displayed on
Screen 1 in reverse video font. This is partially because there
is as yet no form of parsing of an entered line or semantic
detection such as checking for undefined variable names. The
Delete function has been investigated, but not included in the
package due to unforseen problems. The Move and Copy facilities
also have not yet been implemented. Although the above
shortcomings may seem restrictive, the skeleton structure and
principal concepts have been finalized and are functional.

4,2 Semantic Checking Abilities

As PDL can be written in a very verbal manner, it {s difficult to
try to incorporate a compiler facility to check for semantic
correctness into such a package. However, if the user is given a
cholce of whether parsing ls to be performed or not, then
designing down to any desired level 1s possible. A bottom level
design can thus be fully compiled on entry. This would involve a
parser to check each line for correctness after it has been
entered. In a similax manner, constants or variables which have
not been declared in the Data Descripticn segment will be flagged
as errors.

An interesting feature of the system is that information can be
obtained on any error in the program {highlighted in reverse
video font on Screen 1) by depressing a predefined key. A counter
value can also be kept on the number of errors so that the user
will know when the program is completely error-free,

4.3 Ellipsis Facility

An ellipsis function can easily be provided from the indentation
values of each line. This function will ellide {or temporarily
remove from view) blocks of the program on Screen 1 which are
indented beyond a certain ellipsis level. This will permit the
user to view the whole program on Screen 1, and then descend into
the lower levels of interest by selecting the appropriate




Page 40

ellipsis level.

4.4 The Undo Stack

An UNDO facility will prove useful to both the novice and the
experienced user. The user will be able to recover f£rom any
accidental editing operation that has been performed on the file.

Relatad to this function, a set of keys can also be made
avallable to store a block of program on the stack and bring it
back when required. This function would be especially useful when
performing tricky operations with the syntax-directed template~
based editor.

Fig.4.1 depicts an example where this function could be used. It
invelves the changing of a Repeat-until construct inte a While-do
construct., This procedure may seem more complex than the standard
text editor method, but it is the price which must be paid to
preserve syntactical correctness.

13T =0 13 I =0

14 Repeat: 14 Call POINTER MOVE (Line)
15 =141 v

16 Line :s Line + 1 “ee

17  Call FORMATTER (I, Line)

18 Untdl (I > Max Line)
19 Call POINTER MOVE (Line)

{a) {b)
131 :=0 13 I := 0
14 while <CONDITION> dos 14 While (I > Max Line) do:
15 <SCONSTRUCT> 15 I =141
16 End While: 16 Line := Line + 1
17 Call POINTER MOVE {Line)} 17 Call FORMATTER (I, Line)
e 18 BEnd While:
cor 19 Call POINTER MOVE (Line)

(e) (@)

Fig. 4.1t Using the "undo® stack

In figure {a), lines 15 to 17 have been saved on the stack, As
can be seen, the display is not affected. Lines 14 through 18
are now deleted using a Block Delete function. This is shown
in figure (b). With Cursor 1 positioned at line 13, a While-do
block is inserted as shown in figure (¢)., The condition is now
£illed in using the Line Modify function, after which, with
Cursor 1 on line 14 or 15, the stack contents is retrieved to
produce the result of figure (d).

. Ve Y PO - o




Page 41

4,5 Standard Text Editor Compatibility

As is, the PDL syntax editor uges a coded version of the file
(extension ".COD"} for its internal functions. It is not
currently possible to obtain a coded version of a text file. The
translating of a text file into a system-usable coded form is
regarded as an extra, as the design effort in the construction of
such a parsing program is onsiderable. The problem that arises
here is one of compatibilit , because 1f a text file is presented
to the system in a faulty <cate, a great deal of computation is
needed for each line to determine all the program faults.

If such a translator can be constructed, a program written with a
standard text editor can be coded and thus prettyprinted by the
system. In this way, such an externally created program can then
be accessed with this PDL syntax-directed edu.tor where all its
convenient features can be used for any subsequent editing.

4.6 Language Translator Possibilities

A major spin-off £from this system will come in the form of a
series of translators which will convert low-level PDL into any
one of a commeonly used language such as BASIC, FORTRAN, Pascal or
A8a. For this, the system would make use of the coded text output
file. The final user will thus be able to design in PDL, and then
decide on the best target language for the design. This is seen
as one of the ultimate uses of this package.




APPENDIX A Page 42

DREENDIX_As A _Program Description L

CONTENTS

1 Introduction sieresiscssievesircnarnancans
2 The Program BodY sesecscessensrssnsvesssstnsssnonsansssnnane 45

3 The Body Of & ProCeGUIR ,.esescovanssosnssasosssessansosars 45

4 Data Description Segment ,.ecveevesscansancas

4,1 Data Function 46
4.2 Data Type 46
4,3 Data Structure 47
4.4 Data Scope 47
4,5 Data Name 47

5 Data Segment CONSErRCLITI sumesvovovmmsvosnsorvansasesse

6 Algorithm Segment ...eesossssssserescsasssosnsoncssssscaass 48

6.1 Assignment 49
6.2 Selection 49
6.2.1 If-Taen~Else 49
6.2.2 Case 49
643 Iteration 50
6.3, Repeat-Until 50
6,3.2 While~do 50
6.4 Procedure 58
6.5 Machine~Environment Interface 52
6.5.1 bata Input 52
6.5,2 Data Output 59
6.5,3 Abbreviated form of Get and Put 53

7 Array References .evevsssas setvrenvase 53

8 Arithmetic and LOgIiC OPErators sesceservessscarensasvsassee 53

g




APPENDIX 2 Page 43

9 Comments ..

10 sequential and Parallel Construct EXecution veusevvessssee 54

11 Data Flow NOMENClatlrC .veesecessssceassesssarssancssssnnns 55 n ‘
11.1 Process Description 55 L e oy
11.2 Resource Description 55

11.2.1 Resource Data Aggregate Description 56 .
11.2.2 Resource Operations Description 56 .

sresrnasee 56

12 an Example of a PDL Application ....




APPENDIX A Page 44

1

Introduction

The primary purpose of a Program Description Language {PDL)
is that of a means of communication between people
concerning an information processing task to be undertaken.
It must not be seen as eguivalent to any particular high
level language whose primary function is to sgerve as a
means of commuulcation between people and a computing
machine. Low .nd high level software technologies (i.e.
langunages) have strict gyntax and are terse in
construction. These requirements serve the needs of program
compilers but not so effectively the needs of the program
reader. Certain high level languages serve the needs of the
program writer and the reader reasonably well (i.e. Pascal,
Algol, Ada)., Others serve the needs of the program writer
but leave the reader with a hard time trying to understand
the processing task (i.e. pLY, Portran, Apl, Forth,
Assembler). It must not be thought that it is not possible
to write programs in say, Fortran, that communicate
effectively to the reader, as well as to the compiler, but
this reguires a high order of self-discipline by the writer
to restrict himgelf to using features of the language which
emphasise design and lead to maintainable code.

The design and development of information processing tasks
reguires a high level of self-discipline, simply because in
the nature of things it is & human characteristic to be
woolly, unstructured and illogical in our thinking.

A challgnge which becomes readily apparent in any processing
task of note, is controlling the growth of program
complexity. It is remarkably simple to design programs which
are conceptunally complex, time consuming to implement, and
almost impossible to modify and extend. No program of
usefulness to a party other than the designer should be
considered as a static entity. Rather, it should be viewed
as a dynamic object, having an initial simple existence, and
then growing in complexity and size. The point 1s reached
where further evolution and growth is halted because the
degree of complexity becomes unmanageable and the structurs
too degenerate to redeem. There are effective methods for
managing complexity, and these will be examined in due
course,

The purpose of this document ls not to introduce a formal
notation. In a sense this would detract from its primary
purpose. Nevertheless, there is a well defined framework of
concepts which will need to be adhered to. A disciplined
approach to the design and implementation of program tasks
is introduced, as also are the essential tools which are
required to achieve this.

The subjection of oneself to a discipline is sometimes
construed as an attack on creativity. Bxperience, however,

AN > L s




APPENDIX A Page 45

has shown (not only in this field of endeavour) that the
voluntary subjection to a discipline in fact leads to
greater freedom in being able to concentrate on the task on
hand, and not having to concern oneself afresh with major
infrastructural decisions each time a program is developed.

The. Program.Body

A Program is *he name given to an information processing
task which ex.cutes Eor a limited time duration. The name
Task is used to refer to an information processing task,
which after initialisation, may execute indefinitely. It is
a particularly useful concept in the design of information
processing systems which may comprise many tasks executing
simultaneously.

The body of a program comprises well defined sections, as
set out below ~

Prograp . The Name_of this Program
* data description segment *

External_Procedures:
* the procedures are listed *

Beginr

* the algorithm segment *
End:
End Program:

The wajor segments of the program include the data
description, a 1listing of procedures (or subroutines)
external to this program madule, and the body of executable
statements introduced by Begin and terminated by End.
Ihe Body_ of a_ Progedure
In most respects this is similar to that listed for the body
of a program or task. It differs in that parameters which
are passed from the program (or ancther procedure} are
listed.
Procedure....._lhe Name. of Lbis Procedure

Inputs: Identifier A, Identifier B etc
Outputs: Identifier C, Identifier D etc

* data description segment *
External Proceduresi

* external procedures listed *
Begins

* the algorithm segment *

Ends
End  Procedure:

- Lo . o> o B

TG




APPERDIX A Page 46

4 Dakts Description Segment

The primary purpese of this segment is to unambiguously
communicate to the reader the characteristics of the data
structures which have been employed, The, five
characteristics are -

function
type
structure
scope
name

T

and are individually considered.

4.1 Data Function

The two data functions are -

a) Lopstants A data value which is set once and does not
change is termed a Constant,

b) Variasbles An item of data which may be changed at will
in the course of program execution.

4.2 Data Type

The type of an item of data describes its essential nature
and may be one of several possibilities, including a
Character, Boolean, Integer or Real, The nature of these
types are further considered.

a} Character The data word ie said to be able to represent
all printable (and quite a few non-printable) characters
j.e. from {A - 2}, f{a ~ 2z}, (0 -9}, to {18 ...%) }.
The ASCII (American Standard Code for Information
Interchange) c¢ode is one of the codes widely used to
represent these characters in a data word,

b) Boolean A data word with the type of Boolean (logical)
can only take on the values of TRUE or FALSE.

c¢) Ibkeger A data word with Integer representation implies
that the range of whole numbers which may be represented
is the range {~ 2%*n to + 2**n -1} where n represents
the number of bits per memory word.

d) Real A data item with Real representation implies that a
number is stored in scientific or floating point form.

Beyond these basic data types, a new type may be defined in

terms of these basic types or in terms of an enumerated set
of items. Aggregates of data (i.e. records and arrays) may
also be defined as basic data types. A list data structure
will, for example, require an array of records, where the
record may be defined as a basic type as

AR




APPENDIX A Page 47

List Entry = record:
Forward Pointer : integer
Symbol : char
End record:

4.3 Dpata_Structure ?

This refers to the number of data items forming the data
item. The two possibilities with which we will concern
ourselves are those of -

a) Single implies that a single data item is considered.

b) Aarray implies an aggregate of data items of the same
type is considered,

4.4 Data Scope

The scope of data refers to its degree of accessibility. In
some instances it is desirable that a data item be
accessible only te the immediate environment of that program
or procedure. On other occasions we require that a data item .
be accessible to a number of (or all) procedures. Four .
degrees of accessibility are defined - 2

a) Logal implies that the data item is accessible within
the present procedure only. When that procedure is not g
executing then that data item does not exist. .

b) [External When a data item is declared as external then
the implication is that it has been defined in a higher

level procedure. In this instance the data item must B

appear in the parameter list (input and/or output) of

the called procedure. &
¢} @lohkal As its name implies, a data item which is °

declared as global in scope 1s available to all °

procedures for manipulation. This breadth of

accessiblity is necegsary in many instances, but can
result in intractable problems e.g. in trying to
establish which procedure may be responsible for .
corrupting a data value, To limit the breadth of this i
accessibility 1t is useful to place such data items in
partitions. by

d) permanenk The concept of a permanent identifier is
particularly useful in information processing systems
which comprise multiple tasks. It is used in the sense

that once created it exists for the duration of the =,
system. A permanent identifier may he local or global i
in scope. |

4.5 Data_Nane

The name of a data item is most frequently referred to as an
identifier. The identifier may be as long as necessary to
clearly convey its purpose. Meaningless abbreviations do not
serve the reader and hinder comprehension.

- . o e - e




APPENDIX A

Page 48

Data_Segment_Construction

The five characteristics referred to in the Data Description
are linked together in the following order of precedence =~

{function} {type} {structure} {scope} {identifier(s}}

in a structured fashion beginning with the function. For the
sake of clarity each of the characteristics is placed on
separate lines with successive indentation, The resulting

graphical presentation of the data description enhances

reader's

comprehension,

the
The following example will help to

clarify these concepts,
JIypess

List Entry = Record:
Forward Pointer :
Symbol : Char
End Record:

integer

Sonskantss
Char:

Doublespace := ' '
Integet:
Single:
External:
Maximum Items
Maximum record length
Yarisbles:
Chars
Array:
Externals
Text record = of size(Maximum
record length)
Boolean:
8Single:
Local:
Condition
Integer:
Single:
External:
This record length
List Entry:

List = of size (Maximum Items)

2lgorithm_Seamenk

The constructs required to implement any processing task
include those of sequence, selectlon, and iteration. While it
is true that these are sufficient, used in isolation the
problem of complexity will rapidly become evident. The major
tool for controlling and reducing complexity is the procedure
facility, .

.




APPENDIX A Page 4%

In addition to those already mentioned, facilities are
required for the computing machine to communicate with its
enviroment.

6.1 Bssigpment

This construct will always feature the process of assignment e
i.e. ]

identifier := function of other identifiers

The expression - w,

Az=B +C

is a simple example of assignment

6.2 Selection

the simplest example of selection is the If-Then-Else e
construct with its two possibilities of choice. More s
generally useful is the Case construct, which allows a choice
from amongst any number of constructs,

"o, 6.2.1 If=Then=Else

= P A test is wade on a condition which must be a boolean &
[ variahle. =

If {Condition is true
Then:
Sequence A

Else

N éequence B o
g Bnd if:

For the true condltion Sequence A is executed, after which
execution continues after the End 1f: termination of the
o construct., For the not true condition Sequence B is executed,
whereafter  execution continues after the end of the
construct,

In many instances the else condition is not required. The
following simpler form sghould then be used,

If (Condition is true)
Thens
Sequence A

4 p End if: "
e
A 6.2.2 Cage
kﬂ In contrast to a conditlon which was tested, the Case §
Y construct allows the test item to be any one of a discrete -

nature i.e, character, boolean or integer. The form of this
construct is ~




APPENDIX A Page 50

Case Option of:
Option l: Sequence A
Option 2: Sequence B
M
B

Optien M: Sequence
Else: Sequence
End case:

If the wvariable Option does not match one of the stated
options (Options 1 to M) then control passes to the Else:
option and Sequence N is executed. In each instance, once the
appropriate Sequence has been executed, control passes to
the next statement following the End Case: statement.

1f the Else condition is not required, then it should not be
included in the construct.

6.3 Iteration

Two forms of iteration are considered, The Repeat-Until and
the While - Do constructs.

6.3.1 Repeat = Until

The primary feature of this construct is that the executable
steps hetween Repeat and Until are executed at least once.

Condition := false
Repeat:

Step A

Step B

étép'té modify test condition
Untils (Condition is true)

6.3.2 Wbile = Do
In contrast to the Repeat - Until, the executable steps
enclosed by this construct might not be executed at all,
depending on the initial value of the test condition. 1In the
example shown the statements will be executed at least once,
since the initial value of Condition is false.

Condition := false
While {condition is false)
dos

Step A
Step B

étép't; change the state of Condition
Bnd while:
6.4 Procedure
A procedure is invoked by the statement -

Call {procedurename}(input parameters) output parameters




APPENDIX A Page 51

The input parameters 1list is enclosed between ( ) to
unambiguously indicate the direction of the passed parameter.
If there are no input parameters then the ( )} simply appear
after the procedure name. A parameter that must be passed in
and out of a procedure will appear in both the input and
output lists,

Perhaps the most prevalent view of the use of the procedure
construct is that of simply replacing multiple instances of a
code sequence with a single statement which results in that
- replaced code sequence being executed. While this concept is
AN certainly valid, it takes no account of the power of the
: procedure concept from a coherent system building viewpoint.

: The most powerful conceptual use of the procedure which has
B emerged from recent research in software engineering is that
s of ‘'information hiding'. The concept here is that of
surrounding a data structure with all the necessary functions
{i.e. procedures) to access and modify that structure. Take,
. L for example, the data structure of a stack. The relevant
e oy operators to provide all required functions on the stack are:

Initialise stack { )} stack status

Push onto stack (data value) stack status
Pop off the stack ( ) data value, stack status
Top of stack ( ) data value, stack status

It is now quite irrelevant to the user of these operators
exactly how the stack is implemented. We bhave 'hidden' the
stack behind four operators, and at the same time provided
Lol for the benefit of the wuser four ‘abstractions' which
encompasg all meaningful operations on the stack.

This concept of 'Information hiding' is considered valuable
- for the following reasons -

- Managing system complexity
A Bet of operators which embody all required functions to

" : be performed on a data structure enables the designer to
T . build large and complex systems which are understandable.

Lo Unless determined steps are taken to control complexity,
the designer will lose appreciation of how the parts
affect the whole.

- BAssists system evolution

[ By surrounding all data structures with a relevant set of
. operators, the system may be allowed to evolve in a
systematic fashion.

=~ Alds in the location of errors

By restricting access of each data structure to a limited
set of operators, the locatlon of a source of data
N corruption is immediately traceable to that set of

o operators  responsible for manipulating that data
- aggregate.

-~ It provides reusable modules

- PRy N -y -




APPENDIX A Page 52

It has been suggested that the greatest enhancement in
software productivity has come from the concept of
‘modularisation' of software. Well-known examples of this
are the libraries of mathematical subroutines provided in
common high level languages, The concept here is that of
accumulating, with = time, modules comprising data
structures and their associated operators.

As in most instances where a course of action has substantial
B benefits, there are attendant costs. The principal cost in
5 this case is the additional effort that must be devoted to
; developing the reguired set of operators. A further penalty
is the possible loss in program execution efficiency and an Lo
increase in memory requirements. i

g 6.5 Machipe.=. Environment_lInteriace

Ly Experience shows that there is more disparity in the approach

. o to handling data input and output than in any other area of
e T language construction. In this PDL data input and output are
handled through the constructs of GET and PUT, respectively.
Unless the origin and destination of the data are specified, .
it will be assumed that the Keyboard and the Console are the o
input/output devices, respectively. -

6.5.1 Rata Inpuk ot
The general form of this construct is - -

Get

Source device: identifier(s) :
End get: i

For example, "y
Get: s
Diskfile: Texk record .
" End get:
] 6:5.2 Data_Outout :

o The general form of this construct is

ut:
output device: * identifier{s) and/or
text strings *
BEnd Put:

For example -

Put:
- "rext messages between quotes"
= Newline

"on this line";
"The gemi-colon implies stay on the same line"
Identifier 1
“aAnd another message"
Newline

End puts , "




APPENDIX A . Page 53

6.5

7

8

9

The above example shows the various elements of a Put
statement in a language independent fashion. Printable text
is enclosed between quotes, The Newline implies skip to the
next line. The semicolon is used to prevent skipping to the
next line on completion of the last task, whether 1t be
printing a message or the value of an indentifijer.

.3 2bbrevisted Forms.of Get and.Put

8ince the process of moving an item of data to or from a
device is conceptually equivalent to the process of
:ssigmge?t, the following form of device/identifier statement
s useful,

Device: := identifler or
identifier := device:

A device is distinguished from an identifier by the colon
following the device name.

Bbrray..Beferences

A simple array will require a single pointer to reference a
given location.

Array Name:Pointer := dat: item

The cclon indicates that Array Name is referenced by Pointer.
A field of a record in an array of records is referenced as
follows.

Array Name.Field Name:Pointer := data ltem

The name following the dot after the array name is the
referenced field.

Arifbmetic_and Logls. Operators

The £ollowing eymbols are used for common arithmetic and
logical operations

Operation Symbelis)
plus +
minus -
multiply *
divide /
Raise to power n *n
Modulo n operation MOD K
And AND
Or OR
Exclusive Or XOR
Complement NoT

comnents

Comments may be freely interspersed in the text, and are
indicated as such by placing the comment text between

- e P e fue




APPENDIX A Page 54

10

asterisks, For example -~

% this is an example of a comment ¥

Sequential_ aud Parallel Construct Execution

The need frequently arises to distinguish between constructs
intended for executlion in serial or parallel fashion. In some
instances the need arlses to allow for both forms of
construct execution in the context of a single task.

The PDL discipline already introduced assumes that an
information processing task can be represented by a series of
constructs, as follows.

Begin:
Construct A
Construct B
Construct C

Construct N
LH

The implicit assumption here is that executions begins with
the construct following the keyword 'Begin:'. The execution
of Construct A then proceeds to completion before continuing
to execnte Construct B, Execution will uitimctely be
terminated at the keyword 'End:'. Serial execution of the
constructs is implied.

when it is desired that the constructs execute in parallel,
the description may be viewed as

Begln:
dconstruct A; Construct B; .... ; Construct N
End:

where the semi-colon implies simultaneous construct
execution.

A significant textual problem arises in adopting such a
documentation convention in view of the obvious constraint on
page width. A useful expedient here is to retreat to the
alternative serial listing of constructs, with the condition
that alternaktive keywords be used to reflect the parallel
construct execution, as follows.

Cobegins
fonstruct A
Construct B
Construct C
Construct N

Coend:

All constructs between Cobegin: and Coend: are considered to
execute in parallel or concurrently.

When the occasion arises to distinguish between those
constructs executing in parallel and those executing in




APPENDIX A Page 55

serial fashion, the successive application of the relevant
keywords surrounding the constructs of interest will serve to
indicate the correct sense.

Begin:
Construct A
Construct B
Construct C
Cobegin:
Construct D
Construct E
Construct F
Coend:
Construct G
Construct H
End:

Constructs A to C first execute serially. Constructs D to F
then execute in parallel. Only when execution of this block
is completed is serial execution of the remaining statements
undertaken,

11 Dpata Elow Nomepclafure
bata Flow analysis partitions a system into processes and
resources. It is helpful to define the specific format of
program modules that use this form of system construction.

11.1 Progess.Rescription
A process as defined as an area of activit

consuming and processing instructions or
behaviour is described as

endlessly

Yy
data. This

Progess.....lthe name of tbis processt
{local data description}

Begin:
Repeat: forever
Begin:
* fetch an instruction (or data item) *
* process the instruction (or data item) *
End:
End:

End Process:

11.2 Resourge.Descripkion

A resource comprises a data aggregate and a series of
operations to be performed on that aggregate. The description
of the data aggregate is undertaken separately from &
description of the operations.

P - . o B . .

i




APPENDIX A Page 56

11.2.1 Resource Data Bgdregate Descripfion
The form of this description is as follows.
ResQUICE. ... {name_of this resoursel
Pernanspt.data_Pescription

{all aspects of the common data aggregate are described }
End Resource:

11.2.2 Resource Qperakiops. Resciiption

The form of description used for each operation on the common
Qata elements of the resource is described as

Operation..... IRssource NameliName of tbis. operationl

Inputs: {list as needed}
outputs: {Llist as needed}
Begin:

* the algorithmic description for this
operation *

End:
End Operation:

12 pp_Example_9f_2.RPL. Application

An example is given below of how a program using PDL notation
is presented. A vitally important aspect is the indentation

of the constructs as a graphical aid towards assisting reader
comprehension.

Z2rocedure. --Hove_Cuxsor
ARRARIRKE IR AR Ak kk kA RA Ak R Ak AR R R Rk kR nhhkdrd
* A Routine to move the cursor by an *

* externally defined number of moves and *
* in a given direction, *
KRRKARRERRRKERARRRRRARRKER AR AR RRRNRRARRRRIR RS

Inputs: Number of moves, Cursorfunction
Outputs: * None *
Constants:
Char:
Axray:
Permanent:
Vducodes
Integer:
8ingle:
Permanent:
Console
Keyboard
Diskfile




APPENDIX A

Page 57
Variables:
Char:
Single:
Locals
Cursorcode
Integer:
Single:
External:
Cursorfunction
Numberofmoves
Local:
Movecounter
Consolestatus
External Proceduresi
Putchar
Begin:
If (Numberofmoves exceeds zero)
Then:

Movecounter := Numberofmoves
Curgoxcode = Vducodes:Cursorfunction

Repeat:
Puts:
Console: Cursorcode
End Puls

ter := M, -1
Until: (Required number of moves are made)
End If:
End:

End Procedure:

---c00---~




APPENDIX B Page 58

APPENDIX B: SUMMARY OF SYSTEM LEVELS

From the System Level Hierarchy figure on the next page, the
system layout is presented in block format., The remainder of this
appendix details the tree structure dlagams of the syntax-—
directed editor package. The Front-end is regarded as a separate
system block, but Base Level is considered as the gateway into
#he subsequent editing modes, It is with this in mind that the
following figures have been organized. A list of the contents of
this appendix 1s given below:

Figure Heading Page

System Level Rierarchy 59

1 the Front-end tree structure 60
2 The Base Level tree structure ' 61
2.1 The scrolling functions® tree structure 61
2.2 The tree structure for Edit Line mode 61
2.3 The Insert mode tree structure 62
2.3.1 The tree structure of the Data Description Iniert mode 62
2.3,2 The tree structure for Constroct Insert mode 63
2.3.3 The tree structure for Line Insert mode 63
2,4 The Delete mode tree structure - 64
2.4,1 The tree structure for Single Line Delete mode 64
2,4.2 The tree structure for Construct Delete mode 64
2.4.3 The tree structure for Block Delete mode 65
2.5 The Copy mode tree structure 66
2.5.1 The tree structure for Line Copy mode 6%
2,5.2 The tree structure for Block Copy mode 66
2.6 The Move mode tree structure 67
2.6.1 The tree structure for Line Move mode 67
2.6.2 The tree structure £or Block Move mode 67

i




APPLNDIX B Page 59

{ Front-end: }
} Input / Output files ; [

Interface i
! A
[ |
A i
Bage Level: = ‘ . st
File scrolling and |- { )
Line Editing | !
o | [ | A 1 .
. i | | t |
\ . v o vl i |
] L - &
{ipsert_Mode: | |Delete Mode: | | Copy Mode: = } Move HMode: {
Yo | [ | o
« | Line, | | nine, Block,! | Line and | | Line and | &
{ pata Item | | Data Item | | Block Copy | | Block Move |
. land Construct] land Construct| | [ I
I | Insertion | | Deletion [ [ |
fnb
[
. R 8ystem Level Hierarchy
o s A simplistic representation is given of the main system
® levels together with &their associated functions. The

interconnections indicate the possible movements between
levels open to the user., The highlighted, underscored
blocks indicate existing system features.




APPENDIX B Page 60

|
| Enter the Editor

Edit Info Exit
-—-= ——-- ——  EBxit
; ] A ! the editor
!
\
PageB PageF TopF BotF ToLin EditLn
A | A
| ¥ !
Abandon 5 Save Return }
| i 1 | |
\ ! |
Yes {Ace you Sure?) No ; {
! t | }
Y .
fes {Save formatted file?) No
! |
v
Yes {(Keep a backup copy?) No

Fig.l: The Front-end tree structure

Bracketed ques.ions show the display which appears in the
Prompt Screen. and to which the user must respond,

PR




i
]

APPENDIX B Page 61

PageB PageF TopF BotF ToLin End MORE (===

[ |
| I
EditLn Insert Delete Move Copy MORE II
|

Fig.2: The Base Level tree structure

PageB PageF Topf BotF ToLin End MORE
NN |

v
To front-end

Fig.2.1: The scrolling functions' tree structure

EditLn Insert Delete Copy Move MORE

Pig.2.%t The tree structure for Edit Line mode




APPENDIX B Page 62

EditLn Insert Delete  Copy Move MORE <---l-

i

| |

Y . |

LineIn Data Des Construct RETURN {
1

Fig.2,3: The Insert mode tree structure

< - ae

1
Constant  Variable Type Continue { Return

Real Character Others Continue [ Return

N Continue
|
i
= v
External Permanent Continue
: | | -
! v v v
(Accept this definition?) No

Fig.2.3.1: The tree structure of the Data Description Insert mode

1 Although all prompts and conditional branches have not been
[ labelled for the sake of clarity, bracketed questions
] indicate prompts requiring nser response.

P [ . . N L



APPENDIX B

Data Desc

Congtruct

LineIn

Page 63

|
|
[ |
|
1

Y TN Y Ty

Fig.2.3.2: The tree structure for Construct Insert mode

=== Data Des Construct Line Insert RETURN

Fig.2.3.3: The tree structure for Line Insert mode

!
i




APPENDIX B Page 64
EditLn Insert Delete Copy Move : MORE <——T
I 1
| |
\ |
Line Del Constr Del Block Del RETURN :
o .4
........ &
Fig.2.4: The Delete mode tree structure LR
¢
: Line Del Conatr Del Block Del RETURN i
RIS | 4 °
: | I
B Fig.2.4.1: The tree structure for Single Line Delete mode i
- 1
2 E
1 o
) b i !
! Line Del Constr Del Block Del RETURN [EENEN
ot I
e | | i
[ | {
Y | ]
Acoept (Accept or reject to delete the given block?) Reject :
L0l 1 ‘# i N

Fige.2.4.2: The tree structure for Construct Delete mode Is.. |




APPENDIX B Page 65

Line Del Constr Del Block Del RETURN

f
v

Begin Block

(——

A
i
|
|
i
i

o Fig.2.4.3: The tree structure tor Block Delete mode

5,

CLANE,

- . Aoy PR




A
!
I
!

Page 66
Insert Delete Copy Hove HORE <--?
| !
I K |
A |
Block Copy RETURN E
t

Fig.2.5: The Copy mode tree structure

¢
\4 |
This Line I RETURN
} Pl
v o i
After This Line { RETURN
!

Fig.2.5.1: The tree structure for Line Copy mode

Line Copy Block Copy RETURN
! A A
I l !
A4 | t
Begin Block i |l RegURH
1 i A 1
{ | | e
\) | |
End Block aAbort { } RETURN
i l




APPENDIX B Page 67
EditLn Insert Delete Copy HMove MORE <~—-’- :
__________________ o J— :
| |
i |
: v . 1 .
Line Hove  Bloc- Move RETURN ! .
i |

Fig.2.6: The Move mode tree structure

Li RETURN
NN — e
- A A A
B | |
i | This Line ! | RETURN i
s o e s s e I ______
] | L
| ¥ i i IRy
| After This Line Abort = |I RETURN -
____________ i
! ! | | b
I R B Fig.2.6.1s The tree structure for Line Move mode
. Ea
¥
B Line Move Block Move .
e
: { 4
. | % .
- Begin Block | ¢
0 D pestciuisstits !
. | |
| |
\ | 5
Abort I &
] ! | \
> "k L
e e o 0 2 e e o
ﬁ,f Fig.2,6.21 The tree structure for Block Move mode ¢




PN 9

APPENDIX C Page 638

APPENDIX Ci GLOSSARY OF TERMS USED

gcongkruct ~-- a program block specific to the programming language
adopted ({uswally used to indicate decision or
looping).

dats_flow_gopcepts =- the design principles developed by
Pr.A.J.Walker using processes and resources
as the key ele .ents.

€llipsig -- (also known as bolophrasting) is the replacement of a
program block by an ellipsis symbol so as to be able
to see the major top levels ¢f a program with minimal
scrolling effort.

fopt -- a  terminal-specific video attribute (eg. blinking,
highlighting, ete.).

fungtion key -~ a  physical key on the keyboard which is
programmed to execute a certain functioen.

key_word -~ a system-generated, language dependent reserved word.
podg ~~ a system level in which the user can operate.

operator -- a routine used bv a process to access a resource.
Fach  operator has a specific function on the
resource.

parger -~ a process which analyzes an input line to determine if
ary semantic errors are present,

PDL -- Program Description Language: a terminal-independant high~
level structured design language used to describe both
hardware and software related designs.

plagebolder -~ a non-terminal in a program construct template
which must be expanded (usually into a condition
or statement) by the user.

pretbyprinting -- the formatting of a program so as to emphasize
its logical structure; this is usually
performed by indenting each program line
appropriately.

DLogess -~ an element used in design description to indicate an
activity. Processes are used for the management of
resources.

reserved. words —- language specific words which cannot be used in
a program other than for thelr predefined
purpose. .

Iesgurce -~ a passive element used in design descr{ption to
represent a data structure, Operators represent the




APPENDIX C Page 69

user's only access to a resource.

sepaptic_exrors -- long distance, compiler detectable errors
created by the user disobeying language rules
{eg. undefine! data item; type
incompatibility; v 1

8tate -- a stopping point in the proge.:~ wshere some action must be
taken for a tramsition to another state to occur.

EYotsx errors -- short-distance errors created due to incomplete
program constructs.

Lemplate -- the skeleton structure of an entire construct block
containing key words and placeholders.

Lree_structure -— a method used in this manwal to illustrate
system levels and their transitions {a system
level 1is recognized by a specific set of ten
function keys).

¥DU -- Visual Display Unit: (also known as a display terminal or
Cathode Ray Tube) is a screen used for visual output.

RS




A FUNCTION~KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

DESIGNER'S REFERENCE

(Version 1.0)

December 1985

Author: A.P.Bassanino

Signed: W

A Project Report submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg in  partial
fulfillment of the requirements for the degree of Master of
Science in Engineering.

R e g, o E e




:
i
3
!
CONTENTS "
|
i ;
1 INTRODUCTION «ovvvsrons eeena 1 =3 s
2 THE SYSTEM DESIGH tesvervorcruscrnconvennascanscares 4 = 12
o 2,1 Top Level Design 4 v
2.2 System Principles 5
@;‘ 2.3 Process Decomposition 8 °
. 3 THE RESOURCES <cvescvesassanuscorsssossnsnnnancraes 13 = 38
. 3.1 Terminal Resource 13 ‘
! 3.1.1 Resource function 13 |
. 3.1.2 The operators 14 {
3.1.3 Resource structure 20 J
3.2 Definition Table 20
3.2.1 Resource function 20
A 3.2.2 The operators 21
3.2.3 Resource structure 22
3.3 Key Code Table 24
3.3.1 Resource function 24
3.3.2 The operators 24 3
B 3.3.3 Resource structure 25
3.4 Prompt Table 26
3.4.1 Resource function 26
3.4.2 The operators 27
. 3.4.3 Resource structure 27
7] 3.5 Line Linked List 28 b
3.5.)1 Resource function 28 |
3.5.2 The operators 29 |
3.5.3 Resource structure 32 T
P 3.6 Pile Linked bist 34 |
3.6.1 Resource function 34 i
3.6.2 The operators 34 {
3.6.3 Resource structure 37 i
4 THE PROCESSES sveeesecseosnssossnenssasnsessnsasses 39 = 74 |
- |
4.1 The Line BEditor 39 =
4.1.1 Process function 39 !
® 4.1.2 Process structure 33 }
# 4.1.3 Process routines 43 J‘
|
N 8 S -3 P -




4.2

5.1
5.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

APPENDIX A: The Test Routines .....

Al
A2
A3
Al
3.5

The Forustter

4.2.1 Process function
2+2.2 Process structure

vysten Jase Level

1 Process Junction

2 Process structure
3 Process routines

ng: goue

«1 Process function
.2 Process structurs
«3 rrocess routines

Data Description segunent routins
Algoritihm seguent routine

Line Insertinsg routine

THI AYH PROGRAE ......
Operation

Structure

75
76

INPLENENTATION AUD PORTABILITY COWSIDERATIONS ..... 79 - 80

EURBNSINGS, NODIPICATIONS AUD
The Front-end
Delete Ilode
Capy lode
ldove Liode
Semantic Brror Detection
Bllipsis Facilities
The BHDO Stack
Pegsible Design Inprovemaents

Puture Package Expansion and

beiinition Tavle
Key Code Table
Promyt Table
Line Linked List

File Linked List

. LW

RAUNDOU THOUGHTS .....

Integration

- Lt~

81 - 93
81
82
86
86
87
88
89
89
92

84 ~116
924
98
100
102
112




A.6  Line Bditor 116

APPENDIX B: Filenawes and Docuwentation Details seses,ees 117-121

B.1 Dnesources 117
3.2 Processes 1
B.3 bocumentation 120 :
N
o i
APPENDIX C: Systen TaUle8 coevevevenrvvnvovsasnrenesvsesa 122-125 §
€.l Definition Table 122 r
€.2 Rey Code Table 124 i .
2 P
« o C.3  Prompt Table 125 i
i
C€.4  Construct Table 125 §
b APPENDIX D: Storage FileS ....sveeiessrnescscrennnovsaess 1272127

eeee 128-129

. REFERENCES .40




|
i
i
LIST OF FIGURES
! Procesg-resource fxample 2
Example of a State Diagram 2
. Top Level Desiyn using processes ami resources 4
. A PDL description of the Top Level Design 4
24 Process-reseurce diagram for tue Plle Dditor Process &
I 2.4 Process-resource diagram for the Line nditor Process 9
i 2.5 A PDL description of tae Line 3ditor Process 10 b
2.6 Process-resource diagram for tha Formatter Process 11 o
2.7 A PDL description of the Formatter Process 11 =
B 4.1 Using the Line Dditor package L3%
S 4.2 A PDL description of the Line aditor 42
TN 4.3 The PDL for the Line 3ditor Load routine 43
E 4.4 The PDL for the [love Cursor Forvard routine 44 e
4.5 ‘the PDL for tae ilove Cursor Backward routine 45 L
4.6 The pDL for the Line Daitor's flome routine 46 T
. 4,7 The PDL for the End of Line routine 46 g
‘! " 4.3 The PDL for the Line Editor's Enter Text routine 48
2 4.9 The PDL for the Line Bditor's Insert routine 49
P 4.10 The PpbDL for the Line Bditor's Delete routine 50
. 4.11 The PbL for the Brase End of Line routine 51
. 4.12 The PDL for the Line Editor's Dump routine 51
B & 4.13 b PDL description of the Formatter routine 52
K 4.14 The ppL structure for Base Level 35 |
4,15 The PDL for using any key or key combination 56 o
4.16 The PDL for tne Cursor Up routine 57 [
4,17 The PDL for updating the ilain Screen 58 S
! 4.18 The PpL for the Cursor Down routine 58 ‘
4,19 The PDL for the Page Backvard routine 59 [
- 4,20 The PDL for the Page Porward routine 60 >
4,21 The PDL for the Top of File routine 61
4.22 The PDL for the Dottom of File routine 62
4.23 The PbL for the Cursor to Line routine 63
4.24 The PDL for the Edit Line routine 64
4.25 The PDL for the Insert mode routine 66
4,26 The PDL for Data Description Insert mode 69
i 4,27 The PDL for the Placement routine 70
3 o 4.28 The PDL for Construct Insert mode 71
B 4.29 The PDL for the Get Construct routine 72
4.30 The PDL for the Indent routine 73
4.31 The PDL for the Insert Line routine 74
5.1 The structure for the PDL generator package 75 ¢
5.2 The PDL for the lain program 76 !
5.3 The PDL for the File Load routine 77
5.4 The PDL for the Formatted I'ile Dump routine 77
5.5 fThe PDL f£or the Unformatted File Dump rowcine 78
(i 7.1 The pPPL for Line Delete mode 33
}‘ 7.2 A PDL algorithm for Data Description Block Deletion 85
7.3 Indentation for Inputs, Qutputs and Case construct 91
7.4 A neater algorithm for updating the l[lain Screen 92 !
g
e g 2 Tl




Page 1

1 INTRODUCTION

Throughout this guide, constant reference will be made to such
terms as PDL, Processes, Resources, and States., It is the
intention of this introductory chapter to familiarize the user
with the above terms in the context of complex software systems
design. The concepts expressed here have been deviced by Di.
A.J.Walker of the Department of Blectrical Engineering at this
university, and for further information on any of the topics
mentioned here, the relevant departmental documents should be
consulted, (.~lker (1984}, Bassanino (1985b)

As the package described here s a syntax-directed PDL editor,
the reader should be familiar with the concept of a Program
Description Language (PDL). {Caine (1975}) ‘This high~level
program~like language is used tbroughout this manual to describe
any pertinent algorithm features of the system. The reader is
referred to Appendix A of the User's Manual for the formal PDL
specification. (Bassanino (1985b)

In information processing syster analysis, the data flow concept
is a useful one. For this, two elements, processes and resources,
are necessary. A process is essentially an active element which
is responsible for the management of resources. A resource, on
the other hand, is a passive entity responsible for the
management of data.

Rescurces are characterized by their detail management of data.
These resources are accessed (by processes) via operations
performed on them. The operations will vary depending on the
required logical behavior of tine resource. This can be compared
to an abstract data type, (Shankar (1984)) where the user knows
only of the operations and not of the internal implementation
details. Exanples of physical resources are printers, VbUs, and
disk drives, while software or memory-~based resources include
stacks, queues, and linked lists.

The resource concept exploits the prar~.rle of “information
hiding", in which the user is unaware of Lthe data structure
behind the operations presented to him sy the resource. This
concept Fforme the basis for a software component library, Thus,
resources can be compiled and tested separately Lo the system for
which they will be used. (Miller {(1984}) All that is required is
to test that the operations performed on the resource will
function correctly under all circumstances, This thorough testing
procedure will ensure that the rcsources are 1008 functional
before they are included for operation with the process, This
system of design lends itself to modular programming techniques.

Processes are machines used to transfer data between resources.
These are the entities which access the resources via their
operations in order to produce a working system. An example of a
process~resource diagram is given in Pig.l.l. fere, the Printer
process acce~ses the Buffer Queue resource, and transfers data to
the Printer resource at an acceptable rate.

. Xk o megaalirnis i




Page 2

|
[ |
i
I

I/ Buffer \ Read Printer

Process

Fig.l.1: A Process-resource Example
The process is represented by the rectangular box, while
the resources are shown as the oval shapes. The process
accesses the resources via operators which are written on
the connecting lines (eg. Read). The arrows indicate the
direction of data flow which is always from left to right.

Processes can be designed using a state approach. The activities
of a process can be categorized into a number of states. Each
state Is a "stopping point"” in an activity. From this state,
depending on the outcome of some particular test condition, a
transition will occur into another state. An example of a
graphical representation of a state diagram is shown in Fig.l.2.
The idea of a state concept to represent process behavior is a
key issue Iin this design.

=4
\ / =0/ /
N NLS N

Fig.1.2: Example of a State Diagram
States are written within the state bubble. The transitions
together with their associated conditions are drawn as
connecting lines,

The above methods, coupled ' process decomposition, have
proved an effective approac’ Je system design. BAmong the
merits of the process-resc Jology, we can recognize the
ease of comprehension o1 .hod becanse of its logical
nature; its simple graphica. iption of system behavior; its

power in terms of defining .eusable "components®; and its
independence of technology for lts implementation,

In the £irst level design, a single process is defined which
represents the entire system's capabilities. The resources used
by this only process, are those that represent inputs or outputs
to the environment external to the process.




Page 3

The second level of design would see the single system process
decomposed into its major constituing activities. Associated with
these new, smaller processes, the necessary internally accessed
resources will emerge. MNew resources may be redquired due to the
internal coupling ry botween sub-processes. Similarly, the
process decomposition described above can continue to a stage
where further fragmentation is either impossible, illogical, or
disadvantageous.

Phe method described above is jterative, in that subsequent
levels of deaslgn examine each of the constituent activities of
the first level process in terms of their behavior and demand for
local resources. This clearly reduces the problem of complexity,
as design boundaries are defined for each level; only the
specific operations required of a resource being investigated for
the building of that resocurce.

This iterative methodelogy also leads to effective documentation.
At each level of design, each proceas's behavior may be described
in terms of its usage of resources. FRach resourzce, in turn, may
be described in terms of its required behavior and the operations
to be performed on it. It is this approach which has been used in
the subsequent chapters of this manual.




Page 4

2 THE SYSTEM DESIGN

2.1 fop Level Design

From a superficial level, the system can be seen as in Fig.2.l1,
] The user is aware only of the keyboard and disk£il: as input
1 : devices or resources, while the outputs are routed either to the
| terminal display for visual inspection, or to the diskfile £for
backup documentation purposes. |

/ N\ Get |
DR | Keyboard [~--——->-~~] Syntax -
N\ e 1 directed
. i PDL
Read { EBditor

B

Process

S -
| Dpiskfile
..

Fig.2.1: Top Level Design using processes and resources

EI. The resources can clearly be subdivided. The keyboard will B

. contain the usual alphanumeric keys as well as the 10 funciicn
keys which are dynamically detined by the system. Diskfile is
used both as an input and as an output resource, On loading the
editor, diskfile is accessed fcr the system tables and the coded
PDL  f£ile, After an editing session, the new file is rewritten
into diskfille for future reference. The VDU display is divided
» into four logical screens whi:h will ald the user in operating
the system effectively.

I Process Syntax-directed PDL nditor |
Begin: {

‘: *Read the necessary system i1:23 to load the editor* Ly
' Repeats
B *Read the required coded fiie which corresponds to the £ile |
o which is to be edited* i 4
y Repeat: [

*Allow the user to modify the file using the keyboard as
the input d-vice, and the VDU sereen as the output device*
Until (The user wishes tc¢ twrminate the editing of this file)
: *Write the edited coded file back onto disk* ¢
: uUntil (The user wishes to exit the editor
End:
End Process:

I Fig.2.2: A PDL description of the Top Level Design




Page 5

rig.2.2 gives a very general description of the PDL syntax-
directed editor package. The system initially loads the required
files from disk, The user is then allowed to edit a PDL file
according to some complex algorithm; all logical representations
of the £ile being given on the VL' screen. when the user is
through with editing this file, it will be stored back onto disk.

2,2 System Principles

The second and subsequent levels of design, as explained in
Chapter 1, involve the decomposition of the single system process
into its constituent parts. Before delving into this problem, it
will lbe constructive to take a look at the principles involved
behind the system construction. In this section some past work in
this area 1s briefly mentioned; the resources and basic system
structure for efficient system operation also being discussed.

Work was first started on the syntax-directed PDL editor package
in 1984 (Bassanino (1984}, Master (1984)}. The groundwork was
laid for future development and expansion, even though by the end
of that year only a demonstration system was available, IXn 1985
this project was continued to provide facilities for program
storage. Many of the resources and concepts of the previous year
were incorporated into this design, and similarly, many new
features and design changes were also necessary.

The system was designed as a template-based editor. The choice of
a generator approach as opposed to a recognizer approach was
mainly because of user convenience in program entry. Using this
method, syntactical correctness is maintained at all times by
preventing any  syntactically incorrect operationa. This
programming by selection allows the user to choose a construct
for insertion. A construct is inserted with a placeholder
indicating any construct section which is to be user-entered.
{eg. the <CONDITION> in an If~then-else construct)

The generator approach has been used successfully as the basis
for syntax~directed editors such as the Cornell Program Synthesi-
zer. The llterature survey of Bassanino (1985a) gives a detailed
account of such projects. The recognizer approach is very simllar
to a conventional editor, and syntax errors are allowed. It is
believed that this approach, in giving the user almost unbounded
freedom, does not satisfactorily teach or aid the user when
writing or editing a syntactically correct PDL program.

Programming by selection is suitable for program entry and gives
the designer the power to enter a PDL program in a serles of
stepwise refinement iterations, This is one of the main
objectives of the package designed here, and with some
adjustment, the user will soon become accustomed to the different
method of operakion of a syntax-directed editor as opposed to a
conventional text editor.

There must of necessity be a difference between the operation of
these two types of editor because of the increased power of the
former. Limitations on i{llegal operations are automatically
performed so that editing (as opposed to entry of} a PDL program
i1s also a simple task., These limitations, due to the necessity to




Page 6

maintain syntactical correctness, is a price which must be paid
if the program is to emerye correct. The age-old problem of
converting an If-then-else construct into a While-do construct is
easily resolved by providing a temporary storage stack. {See
section 7.7}

From reading the User's panual (Bassanino (1985b)), it will be
clear that a variety of visval cues are used on the four logical
screens to differentiate between errors, system-generated key
words, placeholders and function key definitions. The management
of the logical screens (Mais Screen, Window Screen, Prompt Screen
and Key Definition Screen) requires a considerable amount of
effort if only primitive functions are to be used.

It is advantageous to group these screen-based functions into &
single meodule for convenience, This module, the Terminal
Resource, will have a set of high-level operations which will
nake the cystem, as seen from outside the module, terminal
indi ndent. Thus, the Terminal Resource will be responsible for
ter al or VDU based operations. All terminal dependence is
dealt with from within this module. The designer will have access
to this resource only via the specialized operations available
for each logical screen. This resource is thus used by processes
which require any f£orm of screen management. The Terminal
Resource is explained further in section 3.1.

The DPDL generator system has a set of standard PDL ‘“reserved
words" (such as the "If" or "End if:" of an If-then-else
construct), Bach of these key words can be associated with an
indentation code, This code is used by the system for positioning
the key words in a formatted form on the Main Screen. The Key
Code Table is a resource contalning any such key words together
with all the available placeholders. Bach of these words is
associated with a Kkey code for easy identification, and an
indentation code. This table allows the systom to combine the key
words in almost any desired order, and thus contributes to the
editor's f£lexibility. Further details of this resource can be
found in section 3.3,

Tha  Prompt Table is an obvious resource which emerges with the
need for a prompt screen. The messages displayed on this screen
are used to guide the user, As a full 80 character line of text
must be accounted for, any repeated prompts which are hard
programmed into the system will result in a large wastage of
memory space. The Prompt Table prevents this wastage by assigning
a unique integer code to each prompt line. Besides the obvious
memory space saving, all prompts will now be conveniently
situated in one location and can now become totally f£ile based.
This too aids in making the system flexible and adaptive to any
possible changes in prompt message wording. Detalls regarding the
Prompt Table can be found in section 3.4,

Again, to make the system's operation as flexible as possible,
instead of hard coding the logic into the system routines, a
tablie driven approach was opted for. Using the concept of states,
the Definition Table was devised. This table corresponds closely
in operation to the tree structure diagrams adopted in the User's
Manual to describe system operation. BHach state is associated
with a specific function key definition line. The depression of
any valid key will possibly lead to a new state, with a prompt
being dipplayed in the Prompt Screen, The Definition Table

[




Page 7

accounts for this by providing fields for a key code, next state
and prompt code for each key in the key definition line for that
state, This r2ans that the calling program will only specify a
starting state; all subsequent states being read from the
Definition fTable. Thus, a great deal of system behavicr can be
modified by changing the Definition Table data. This resource is
described fully in section 3.2.

The system uses a line-by-line editing concept as described
below. A line is chosen for editing from the file, and is edited
separately in the Window Screen., All line editing will be
performed using the Line Editor. When the line has been edited,
it can be inserted back into the file to replace the old line at
Cursor 1, Line operations, such as line delete or copy, are also
available., Thus, editing of the file is done using two editors:
one for horizontal, character editing; and the other for
vertical, 1line editing. All character editing is done on a line-
by-line basis in the Window Screen using Cursor 2, while file
editing (regarding a line of text as a single element) is
performed using Cursor 1 on the Main Screen.

The obvious choice of resource when dealing with extensive

manipulation of textual data is the linked list. This resource’

allows the user insertion, deletion, and pointer moving
facilities which form the basis of any editor, Due to the
specialized nature of the PDL generator system's editor, two
linked 1lists are needed. The Line Linked List is used in
conjunction with the horizontal Line Editor, and is responsible
for character (or microscopic)} manipulation within a text string.
The File Linked List instead, is used for the implementation of
the wvertical file editor which deals with the macroscopic
manipulation of 1lines of text. A more Getailed description of
these two resources is given in sections 3,5 and 3.6.

The coded form of a file produced by this syntax-directed PDL
editor is labelled with an extension of ".COD"., This file
contains the edited PDL description in coded form, and is
structured as follows: each line of PDL program cocrresponds to
two lines in the coded file, The file is coded line by line as it
is generated, and .cored in the File Linked List. Each line can
be coded by means of three integer codes and one text field. The
text field would contain any segment of user-entered code which
is editable, Placeholders would thus also fall into this
category.

The three integer fields contain the indentation code and two key
codes of the line in guestion. The indentation code is an integer
which corresponds to the level of indentation of that particular
line, This indentation code, multiplied by a certain constant
(usually 2} will give the absolute indentation of the line from
the left hand margin.

There are two key codes for the mere reason that there exist
cases where more than one key word can be present on one line
(eg., While <CONDITION> do:}, If two key words are present on the
same line, then it is assumed that the text 1line is placed
between the two key words, Similarly, if there is only a single
key word and a text line associated with a PDL line of program,
then it is assumed that the line is in the form of the key code
first, followed by the text line, A line containing a key word
only will have a null text line associated with it. These




Page 8

conditions hold true For PDL. 1In Appendix D, the coded and
formatted files are compared and explained.

It is with the above knowledge of the basic system operation that
the process decomposition can be performed meaningfully.

2.3 Process Decomposition

A second level design would essentially recognize the distinct
processes involved in the system. Thess can be seen to be: the
File Bditor; the Line Bditor; and the Formatter. At this stage
only these three main procosses will be considered, It will
become evident that they can be further decomposed.

Write / \
~-=->-=~=-|  Main Screen |
..
Write /
—-~-=>--~| Window Screen |
.
FILE
Prompt Screen |
EDITOR | e
/ \
Write / Function-key \
—m—e | Definition |
PROCESS A\, Screen
| N —

/ \ N
/ Construct \ Read Write / \
! [ --m=>=-~|  Diskfile |
\ Table / . —

-/

/ \, /

/ Prompt \ Read Write / File \
[m=mmdemm}p e b | Linked i

\ Table / \ List /

| — ! —— -/

Fig.2.3: Process~resource diagram for the File Editor Process

o

.




Page 9

The File Bditor process will essentially be responsible for the
management of the Definition Table and thus a large portion of
the total system operation. This process includes all the
functions of Base Level. Thus, Main Screen scrolling; Insert
mode; and Delete mode are all controlled by this process. It will
ensure that the user is moved from state to state., It is for this
reason that the File Editor process is the only process to access
the function Key Definition Screen. Fig,2.3 shows the process-
resource diagram of the File Editor process.

Due to the variety of functions performed by the File Editor
pre :ss, it is clear that most of the resources will be employed
by it. With reference to Fig.2.3, the input and output resources
are explained as follows. On initialization, the coded file is
read from diskfile and written into the File Linked List. The
system will accept user-entered input in the form of function key
depressions or a reqguested input value; thus the KReyboard
Resource.

For system value input purposes, the Window Screen is sometimes
used to display a permanent prompt. In Data Description Insert
mode, the Window Screen is used extensively for data item editing
purposes. The Main Screen is used to display the PDL program, and
as such will form a resource accessed by the File Editor process
whenever a screen scroll or Cursor 1 movement is required.

The Definition and Prompt Tables are a necessity in this process
so as to allow a user to be prompted as a state is changed. The
corresponding output resources are the Prompt Screen for
displaying error or prompt messages, and the Functicn Key
Definition Screen used to display the current system level in
terms of the ten function keys. The Construct Table is used for
Insert mode, and contains all the templates available. The File
Linked List is accessed both for reading and writing purposes
when the £ile needs to be modified after a block edit operation.
Diskfile 4is written to when the user is through with editing a
PDL file.

The Line Editor is an important part of the system design as it
stands alone as an autonomous process and is used vwhenever a
user-entered alphanumeric input is required. The process deals
with the manipulation of characters in a text line. A few
important functions such as delete, insert, etc. are provided.
Fig.2.5 shows a PDL high~level description of the editor's
behavior, while Fig.2.4 is a pictorial representation of the
process with its associated resources.

Inputs are taken from the keyboard. If a PDL text line is to be
modified, it 4is loaded {ntc the Line Linked List from the File
Linked List. This line can then be modified using the various
Line Edit functions. For modification purposes, constant access
is made to the Line Linked List. The Window Screen is used as the
visual display screen for the Line Editur, Any errors or warnings
that occur regarding line editing will be displayed in the Prompt
Screen. On exxtmg the Line Editor process, the contents of the
Line Linked List is vewritten in logical order in the File Linked
List via a Dump operation.




rage 10

\ LINE
Line \ Read
! Linked [
List EDITOR
PROCESS
ey
/ File \ Read
I Linked [remmd e
List /

Fig.2.4: Process-resource diagram for the Line BEditor Process

Process Line Editor

Begin:
If (Text line is to be modified)
then:
*Load the Line Linked List with the line in the File Linked
List*
se:
*Initialize the Line Linked List¥*
End 1f:
Repeats
*Get an input character f£rom the keyboard*
*Process the input according to whether it is a command or
data

if (1nput implies an error)
then

*Write out the error in the Prompk Screen*
els

*Petiorm the reguired operation in the Window Screen*
End 1£:
Until (Line Editor must be exit)
If (Text line is to be written in file
then:
*Dump the line in the Line Linked List into the File Linked
List*
End If:
Bnd:
End Process:

Fig.2.5: A PDL description of the Line Editor Process




Page 11

The FPormatter is a vital system component as it is responsible
for the formatting or prettyprinting of the coded file. Here, a
line 1is read from the File Linked List. This line iz in coded
form. The Key Code Table is used to convert the key codes into
key words. Indentation is calculated, and the prettyprinted line
ig written out to either diskfile for documentation purposeg, or
{more frequently) to the Main Screen to give the user a visual
representation of the true formatted file. Fig.2.6 shows the
process-resource diagram for the Formatter process, while Fig.2.7
gives a broad outline of the process behavior.

/ - —
/ File Yrite / \
| Dinked -w==>---| Hain Screen

List FORNIATTER

PROCESS

/
/ Key Code
\ Table

7 \
—emadm==|  Diskfile |
. -/

Fig.2.6: Process-resource diagram for the Formatter Process

Process Formatter

Begin:
*Rgad the coded line from the Pile Linked List¥
*Look up the key codes in the Key Code Table*
*Calculate the line's indentation*
If (output is directed to diskfile)

then:
*Write the formatted line to diskfile*

else:
*write the formatted line to the Main Screen*
End If:
End:
End Processt

Plg.2.7: A PDL description of th: Formatter process

Clearly, the File Editor process is easily decomposed into sub-
processes (ie. third level design). Bach of the Base Level;
Insert mode; Delete mode; etc. are individual processes, and each
of these in turn will have its own set of sub-processes. For
purposes of Compactness and convenience, the third level process-
resource diagrams are not included in thls document. As lower
levels of design are reached, more detall is involved. This type
of detailed decomposition for the File Editor process can be
found in sections 4.3 and 4.4.




Page 12

The Line Editor process too can he further subdivided into its
constituent functions., This detailed level can also be gseen in
section 4.1, The Formatter process, however, is almost at minimal
level as depicted above. Section 4.2 elaborates more explicitly
the functions which are needed for prettyprinting via this
process.

The Terminal Resource described earlier in this section is used
whenever any form of output is required to the display terminal.
Thus, all three majer processes will require access to this
resource, In the procesg-resource diagrams, however, it has been
omitted from the left hand side of the processes for the sake of
clarity.




vx

Page 13

3 THBE RESOURCES

In this chapter, the software resources described briefly in
sections 2.2 and 2.3 are discussed in detail., Each resource 1is
eaplained in terms of its function, operators and structure. The
Resource Function clarifies the use of the resource in the PDL
generator program, also listing its benefits. The Resource
Operators section in this chapter is a list of each routine
together with its relevant parameters which can be called to
operate on the resource. The routine calls are given in Pascal,
with all the parameters explained. The Resource Structure section
details the physical arrays necessary to maintain the resource.
The file-based rescurces have their tables detailed in
Appendix C,

3.1 Terminal Resource

3.1.1 Resource function

This resource is designed to deal with every kind of output which
is presented to the user by the system on the VDU terminal. Thus,
to write any output to the VDU, the system will use the operators
provided by the Terminal Resource. Typical examples of the
functions provided include the choosing of any of the terminal's
video fonts (such as reverse video, underscore, blink or
highlight) and the positioning of the cursor at any particular
point on the screen.

Screen management is also dealt with by the Terminal Resource.
The syntax~directed PDL generator makes extensive use of this
feature for its four special-purpose logical screens. To make the
Main Screen, Window Screen, Prompt Screen and Key Definition
Screen completely terminal independent, the necessary operations
have been devised in this resource.

Thus, without the need for the user to get involved with terminal
dependent ASCII or octal codes, which are specific only to a
particular system, the writing of a messege to the Prompt Screen,
for example, can be simply achieved by using the operator
PS_WRITE ('Message') from the Terminal Resource. The operator
will essentially deal with any cursor positioning, font selection
or line clearing functions reguired. The user need only make use
of the high-level routine calls available from the Terminal
ReSOUrce as operators.

The concept of a terminal resource is also attractive from a
goftware portability viewpoint., All terminal specific functions
are available in one resource, Thus, if the package is to be made
available under a new operating system which adopts a different
screen management approach, the designer need only wodify the
Terminal Resource, resting assured that the rest of the package
is completely terminal independent.




Page 14

3.1.2 The operators

The operators
their function.
output parameters
description of

are divided into groups to differentiate between
The routine names, together with their input and
are listed below in their Pascal format. A
the general behavior of each operator is also

given. (Walker (1985))

Keyboard accessing. operakions

KBD_GET (VAR SYMBOL: CHAR)

Function: To obtain a character symbol from the keyboard without
using the ENTER key and without echo to the screen.
Inputs: *none¥*
Outputs: SYMBOL ~- The character which has been read.
Screen. toprimitives
BELL
Function: Sounda ‘he *eriinal's bell once.
Inputs: *none*
Outputs: *none*
BLINK_ON
Function: Turns the bilink attribute on. Any  character
subsequently written to the screen will appear in
blinking font.
Inputss: *hone*
Outputs: *none*
BOLD, ON
Function: Turns the bold attribute on. Any character subsequently
written to the screen will appear in highlighted font.
Inputs: *none*
Outputs: *none*
RVID_ ON
Function: Turns the reverse video attribute on. Any character
subsequently written to the screen will appear in
reverse video font.
Inputss *none*
Outputs: #*none*
UDSC,_ON
Function: Turns the underscore attribute on. Any character

subgequently written to the screen will appear in

Vi




Inputs:
Ouiputss

Function:

Inputs:
outputs:

Page 15

~derscored font.
faae®
fronat

RESTORE

Turns off any Belected font or combination thereof. It
thus reverts to normal font. Any character subsequently
written to the screen will appear in unblinking,
unhighlighted, non reverse videoed, non underscored
font. (ie. normal fonkt)

*none¥

*none*

Surser.conkrol primitives

Funckion:

Function:

Inputs:
Qutputs:

Function:

Inputs:
outputs:

Function:

Inputs:
Outputs:

SET_CP (ROW: INTEGER;
COL: INTEGER)

Will set the cursor position corresponding to the

desired row and column coordinates. Row and column

values beyond the ranges set below will cause the

cursor to wrap around the screen,

ROW -- An  integer row number (1 to 25) where the
cursor is to be positioned.

COL -- An integer column number {1 to 80) where the
cursor is to be positioned,

*none*

READ_CP (VAR ROW: INTEGER;
VAR COL: INTEGER)

Reads the cursor position returning its row and column

coordinates.

*none¥

ROW -~ The integer row number where the ocursor is
positioned. {1 to 25)

COL ~~ The integer column number where the cursor is
positioned, (1 to 80}

HOME

Positions the cursor at the HOME position (ie. topmost
left hand corner) on the screen.

*none*

*none*

CLR_SCR

The entire screen is cleared and the cursor placed at
the HOME position,

*none*

*none*

e




Page 16

CLR_LINE

Function: The current line is cleared from the current cursor
pogition onward,

Inputs: *none*

Outputs: *none*

P UP_SCR (INC: INTEGER)

Function: Moves the cursor up the screen by the number of rows
specified by the increment, while maintaining the

5 current column position.

Inputs: INC -- An integer value which defines the number of

» rows to be moved up the screen. If the increment

M is too large to be accommodated, the cursor is

placed in the f£irst row.
Outputs: *none*

7 DN_SCR (INC: INTEGER)
Function: HMoves the cursor down the screen by the number of rows
. specified by the increment, while maintaining the Pa
\{ . current column position. i
g 1 Inputs: INC -~ An integer value which defines the number of

rows to be moved down the screen. If the
increment is too large to be accommodated, the
cursor is placed in the last row.

Outputs: *none*

CUR_RIGHT

Punction: Moves the cursor to the right by one position while
maintaining the current row. If this Ffunction is
performed when the cursor is in column 80, then no
action is taken.

“ Inputss *nong s

Outputs: *none*

CUR_LEFT Fo

Function: Moves the cursor to the left by one position <while
maintaining the current row. If this functiita is

I performed when the cursor is in column 1, then no
action is taken.

Inputss *none®

Outputs: ‘*none*

Leaical..sgreen_formatting

SCR_FORMAT

Function: Displays on the physical VDU screen the four logical




Page 17

screen partitions,
Inputs: *none*
Quiputs: ‘*none*

Operators_for tbe Main.Screen

MS_CLEAR

Function: Clears the logical Main Screen {ie. Screen 1)
Inputs: *none*
Outputs: *none¥

MS_CUR_ON (MS_CUR_POS: INTEGER;
MS_TOP_LINE: INTEGER)

Function: Turns on the cursor (Cursor 1) in the Main JCcreen by

reverse videoing the line number.

Inputss: MS_CUR_POS ~- The Main Screen CURsor POSition is an
integer value from 0 to 19 which
specifies (from the top of the screen)
the row of the Main Screen on which
Cursor 1 is to lle.

MS_TOP_LINE ~- The Main Screen TOP LINE is an integer
value specifying the actual line number
of the line displayed on the top line of
the Main Screen., Using the two above
inputs, the actual line number of
Cursor 1 can easily be calculated as
{MS_TOP_LINE + MS_CUR_POS).

Outputs: *none¥

MS_CUR_OFF (MS_CUR.POS: INTEGER;
MS_TOP_LINE: INTEGER)

Function: Turns off the cursor {Cuxsor 1) in the Maln Screen by
rewriting the actual line number in normal font,

Inputs: *ag above*

outputs: *none*

MS_WRITE { LINE_NUMBER: INTEGER;
MS_LINE_POS: INTEGER;
VAR STRING.ONE: STRING (81) OF CHAR;
VAR STRING_TWO: STRING (81) OF CRARy
VAR STRING_THREE: STRING (81) OF CHAR)

Function: Will write out a line of text (represented by the three
strings) at a specified row in Screen 1. A long text
line will be truncated to f£it on a single physical
screen line, so that no overwrapping is allowed,

Inputs: LINE _NUMBER -~ An integer variable giving the actual

line number to be displayed.
MS_LINE_POS -- &n integer variable {0 to 19

specifying the row number where the

line is to be displayed in Screen 1,
STRING_ONE ~- A text string which represents the

Pt




Page 18

first part of the line to be written.
This string 1s displayed in highlighted
font, (It is normally reserved for the
first key word.)

STRING_TWO == A text string which represents the
second part of the line to be written.
rhis string is displayed in normal
font. (It is normally reserved for the
user—entered text,)

STRING_THREE ~~ A text string which represents the
third part of the line to be written.
This string is displayed in highlighted
font. (It is normally reserved for the
second key word.)

Outputs: ‘*none*

Operators.for tbe Window Screen

WS_CLEAR

Function: Clears the logical Window Screen (ile. Screen 2).
Inputst *none*
Outputz:  *none*

WS_ASET_CP {COL: INTEGER)

Function: Sets the cursor position to the absoclute column
specified in the Window Screen.
Inputs: COL -~ An integer variable (1 to 80} used to specify
the column which the cursor is to be moved to.
If the number specified i{s beyond the given
range, the cursor will wrap around the screen,
Outputs: *none*

WS_RV_WRITE { START_.COL: INTEGER;
VAR TEXT_STRING: STRING {(80) OF CHAR)

Punction: Writes the text string in reverse video font in the
Window Screen starting at the specified starting
column. This function is used mainly for highlighting
fields in the Data Definition Insert mode.

Inputs: START._COL ~- An integer parameter used to specify the
position in the Window Screen from which
the text must be written.

TEXT_STRING ~~ The text string which nust be written
out.,

Outputs: *none¥

WS..HI_WRITE ( START_COL: INTEGER;
VAR 7EXT. STRING: STRING (80) OF CHAR)

Function: Writes the text string in highlighted font in the
Window Screen starting at the specified starting
nolumn, This function is used mainly for highlighting
fields in the Data Definition Insert mode.




Page 18

first part of the line to be written.
This string is displayed in highliighted
font. (it is normally reserved for the
first key word.)

STRING.TWO =-- A text string which represents the
second part of the line to be written.
This string is displayed in normal
font., (It is no:mally reserved for the
user-entered text.)

STRING_THREE ~- A text string which represents the
third part of the line to be written.
This string is displayed in highlighted
font. (It is nozmally reserved for the
second key word,)

Cutputs: *none¥*

Opersters Zor the Window. Screen

WS_CLEAR

Punction: Clears the logical Window Screen (ie. Screen 2).
Inputs: *none*
Outputs: *none*

WS_ASET_CP {COL: INTEGER)

Function: Sets the cursor position to the absolute column
specified in the Window Screen.
Inputs: COL -- An integer variable (1 to 80) used to specify
the column which the cursor is to be moved to.
If the number specified is beyond the given
range, the cursor will wrap around the screen.
outputs: *none*®

We_.

RV_WRITE ( ETART_COL: INTEGER
VAR TEXT,_BTRING: STRING (80) OF CHAR)

Function: Writes the text string in reverse video font in the
window Screen starting at the specified starting
column. This function is used mainly for highlighting
fields in the Data Definition Insert mode.

Inputs: START.COL ~~ An integer parameter used to specify the

position in the Window Screen from which
the text must be written.

TEXT_STRING -- The text string which must be written
out.

Cutputs: ‘*none*

WS_BRI_WRITE ( START_COL: INTEGER;
VAR TEXT_ STRING: STRING (80) OF CHAR)

Function: Writes the text string in highlighted font in the
window Screen starting at the specified starting
column, This Ffunction is used mainly for highlighting
fields in the Data Definition Insert mode.




Page 19

Inputs: *same as above¥
outputs: *none*

WS_LO.WRITE ( START_COL: INTEGER;
VAR TEXT_STRING: STRING (80) OF CHAR)

Function: Writes the text string in normal font in the Window
Screen starting at the specified starting column. This
function is used mainly for distinguishing <£fields in
the Data Definition Insert mode.

Inputs: *same as above*

Outputs: *nona*

Operators_for the Prompt Screen

PS_CLEAR

Function: Clears the logical Prompt Screen (ie. Screen 3).
Inpots: *none*
Outputs: *none*

PS_WRITE (MESSAGE: STRING {81) OF CHAR

Punction: Writes a message to the Prompt Screen in highlighted
font.
Inputs: MESSAGE =~ The message which is to be written ir the
Prompt Screen.
Outputs: *nons*

Operators. for_tbe Fupction Screen

FS_CLEAR
Function: Clears the logical Function or Rey Definition Screen
(Screen 4) .
Inputs: *none*

outputs: *none*

FS_WRITE {(XEY_STRING: STRING (61) OF CHAR;
FLAG.ARRAY: ARRAY {1,.10] OF BOOLEAN)

Function: Writes out the 10 function key options in the Function
Screen. Only the function keys which correspond to a
TRUE flag value (le. a valid function key) will be
displayed as dictated by the key string. Valid function
key options will be written in reverse video font at
the field position in Screen 4 corresponding to their
numbe
Inputss REY_, STRING -~ This is the text line containing the 10
function key definitlons which are to be
selectively displayed in Screen 4.
FLAG_ARRAY «- The boolean array indicating the valid




Page 20

function Kkeys which will be highlighted
in reverse video in Screen 4. There are
10 flags available; one for each function
key. A true flag will indicate a valid
function key.

OQutputs: *none*

3,1.3 Resource structure

The Terminal Resource is not a memory-based resource as ne common
data structure is needed., PBach operator is built as a procedure,
and is essentially irdependent of externai data structures. For
IBM-PC implementation, a common terminal display function
(DOSXQQ) is made generally available for use by the screen
management primitive operators. Gluba. constants include the
following:

ROWS_PER_PAGE
MS_SIZE
WINDOW_ROW
PROMPT..ROW
PUNCTION_ROW
HESSAGE_COLUMN

25 -- The number of lines in the physical screen
The number of lines in the Main Screen

The Window Screen row number

he Prompt Screen row number

The Function Screen row number

1 -~ The message column humber

(RN RN

Besides the constants above, an input and an output text file is
also specified. These two files (INP and OUP) are used
exclusively for all types of inputs and outputs which are not
directed to an external file.

It can be noted, when looking at the available operators, that a
few distinct categories exist. They are so divided for easy
reference to the designer, The screen management and cursor
control primitives are the backbone routines on which the other
operators depend, It is thus true to say that only these few
routines will need to be changed if the package is transported to
another VDU type system.

3.2 Definition Table

3.2.1 Resource function

This resource was constructed for the main purpose of making
system operation as flexible as possible. iInstead of hard-coding
system features into the gyntax-directed PDL generator, a means
of making the system as programmable as possible was sought.
wWorking with the idea that each new function key definition
screen represents a new system state, a definition or state table
solution emerged.

The Definition Table consists of system data for each function
key of each state present in the package. The data held for each
function key includes two Prompt Codes, two Next States and a Key
Code. The Prompt Code corresponds o a prompt which will be
displayed after the depression of that key, The Next State
determines the state to which control will be passed after that




Page 21

key is depressed. The Key Code is a code given to that particular
function key as defined in the present state, This code may be
used by the program for intelligent checking.

The two Prompt Codes and Next States are used, one, for normal
operation, and the other in case of the system trapping a user-
entered error. Thus, &two possible branches are provided for any
function Key in any state., Error detection is done external to
this resource, and the appropriate branch is then chosen. The
system will therefore access this resource to find its next
state. This makes the entire package programmable from the
Definition Table.

The Definition Table is one of the system tables which is 1loaded
from £ile on entering the syntax—di:ected editor. The file used
for this purpose is "DT.SYS", This facility for loading the
system files from disk makes the package easy to modify without
the need for recompilation or linking. Speed is greatly enhanced
by loading the table into memory. The detailed Definition Table
can be found in Appendix C.

3.2.2 The operators

There are three operators for this resource. The initialization
operator is used only when the table is to be loaded £from
diskfile, As there exist no operators for modifying the contents
of the Definition Table, the loading operation is performed only
once: on entering the PDL editor.

There are two read operations: A and B Reads., The A Read operator
is wused initially to obtain the function definition line, The
user is then presented with the appropriate state. When a
decision iz made using a valid function key, then the B Read
operator is used to obtain the subsequent Prompt Code and Next
State,

DT_INIT (VAR NO_OF_STATES: INTEGER)

Function: Initializes the Definition Table by loading the data
from diskfile. This operation is used on editor entry
to load the data into dynamic memory.

Inputss *none*

Outputs: NO_OF_STATES -~ An integer value indicating the number

of states avallable in the table,

DT A_READ ( THIS_STATE: INTEGER;
NO_OF_STATES: INTEGER;
VAR KEY_DEF_STRING: STRING (80) OF CHAR;
VAR KEY_FLAG_ARRAY: ARRAY [1..10] OF BOOLEAN;
VAR STATUS: INTEGER)}

Function: Reads the key definition line and its associated key
flag array from the Definition Table using a given
state. The status flag is set unsuccessful when the
input state does not exist.

Inputs: NO_OF_STATES ~- This number is usually taken directly

from the output of the DT_INIT routine

*w\_,i

|
!
|




THIS, STATE ==
Outputss KEY_DEF_STRING

KEY_FLAG_ARRAY

STATUS it

DT_B_READ

Function: This operator
the two Prompt
valid function

3.2,3 Resource structure

these are:

MAX_STATES = 20 -~ The

Page 22

and represents the number of states
available in the Definition Table,

The integer input state which is wused
to look up the key definition line. The
range is between 1 and NO_OF_STATES,

~= A line of text containing the

definition of the 10 function keys
for the particular state chosen.

-~ A boolean array of 10 (one for each

function key) to determine which keys
are valid. A TRUE flag will indicate
a valid function key.

An integer varjable which is set
unsuccessful if the input state is
not available in the table and
successful otherwise.

THIS_STATE: INTEGER;

THIS.KEY: INTEGER;
VAR NEXT_Sl: INTEGER;
VAR NEXT_.S2: INTEGER;
VAR KEY_CODE: INTEGER;

VAR PROM_Cl: INTEGER;
VAR PROM_C2: INTEGER)

is used to obtain the two Next States,

Codes and a Key Code associated with any
key, when it is depressed.

Inputs: THIS_STATE -- The state in which the vser was when the
function key was depressed.

THIS_KEY ~~ The number of the function key (1 to 10)

which was depressed
Outputs:s NEXT_S1 -~ The
occurred.

NEXT S§2 -~ The
ocourred.

KEY_CODE -~ A Key Code integer number assigned to each
function key for the purpose of program
segment identification. This key code may
be used in the calling program for further
calculations.

PROM_Cl ~~ The code of the prompt to be displayed
after the function key has been depressed,
and if no error has occurred.

PROM.C2 ~-- The
after the function key has been depressed,
and if an error has occurred.

Next State number if no error has

Next State number if an error has

code of the prompt to be displayed

There are &two global constants which are worthy of note, and

maximum number of states for which space
has been allocated in the Terminal Resource.
MAX_KEYS = 10 ~- The number of function keys per state.




Page 23

The memory based data structure is given below in PDL.

Types:
FX_KEY_RECORD = Record:
KEY_FLAG : Boolean
RBY_CODE : Integer
PROMPE_CL : Integer
PRONPT_C2 : Integer
NEXT_S1 : Integer
NEXT_ 52 : Integer
End Record:
FX_KEY_ARRAY = Array [l,.MAX_KEYS] of FX_KEY_RECORD
STATE_RECORD = Record:
PX_KEY 3 FX_KEY_ARRAY
A H KEY_DEF_EN : String (80) of Character
End Record:
o KEY_DEPFN_TABLE = Array [l..MAX_STATES] of STATE_RECOMD
Variables:
KEY_DEFN_TABLE:
. : 8ingle:
: . Permanent:

& DEFN_ARRAY

Thus, the key definition line of, say State S5, can be pointed to
= in pascal as shown below:

DEFN ARRAY {5}. KEY _DEF_LN

while the key code of the third function key in State 5 is
b referred to as:

DEFN_ARRAY [B}. FX_KEY [3], KEY_CODE

The data structure is available to all the operators of the
resource. It can be seen that this table requires a large section
of memory space. The Definition Table is loaded from the £file
“pr,8¥Ys*, and this file must be in the format shown below:

DD Seg Constr Ins Ln RETURN
50 1 1 3 3
60 8 8 8 8
70 10 10 10 10
0 1] [ 0 0
0 0 0 0 0
] 0 0 [¢] 0
N 0 0 1] 0 0
4000 0 [} 9 9
s 0 a ] 0 0
®, 0 0 o 0 bl

One state is shown above, The first line represents the key




Page 24

definition line: each of the 10 fields is 8 characters wide; the
first two of which are reserved for the function key number
(inserted by the PS_WRITE routine} thus leaving six characters to
define the function Kkey. The next 10 lines define the data
associated with the 10 function keys. The data defined is as
follows: Key Code; Prompt Code 1; Prompt Code 2y Next State 1;
Next State 2. A key code of zerc implies an invalid function key.

The ©Definition Table, 1like all resources, is built as a module
which is separately compilable. A test program is thus available
to test the three operators, In this test program, extensive
testing for erroneous inputs is performed, 50 that the designer
can experiment with all input combinations to determine the
resource's behavior before it is included in the program. &an
extra function is also available in the test program which
displays the logical structure of the Definition Table and its
related data in a convenlent form, The test program format used
by the designer can be found in Appendix A.

3.3 FRey Code Table

3.3.1 Resource function

This resource represents the system®s list of "reserved words".
The XKey Code Table consists of a list of key words or phrases
which can be identified by a unique key code. Each key word also
has an indentation and edit flag associated with it. The
indentation number, where applicable, will be an indication of
the relative indentation which must be added to the present
indentation to obtain the final prettyprinted key word. The
boolean edit £lag determines whether the line on which that
particular key word appears will be editable or not

211 words which will appear in Screen 1 in highlighted font (data
description and construct key words) can be found in this table.
All placeholders will also be found here because these words are
also system-generated. Null text key words are other types of
elements needed in this table. These key words consist of no key
words at all, buk only an indentation value. They represent a
relative indentation which must be assigned to a user-entered,
editable text line, This means that even a line of text which has
been entirely user-entered contains a key word which will
determine its extra indentation which is to be added to its
associated indentation level value,

The key codes are chosen carefully in all cases to ensure that
enough room is allowed for the purposes of system expansion. The
integer value of the Key code is used in the prdgram for
intelligent decision taking. The key code determines whether the
asgociated key word is placed in the pre-Data Description segment
{a negative key code); the Data Description segment (0 to 40); or
in the Algorithm segment { > 40).

The existence of a Key Code Table makes the syntax—directed PDL
generator package flexible, as new key words and placeholders can
easily be added, and o0)3 key words erased or modified Iif
required, Full relative indentation control is also offered via
this resource. This table too is loaded on inftialization <from




Page 25

diskfile so that system key words and indentation can be modified
without the necessity for re-compilation. Details of the KCT.S5YS
f£ile are given in Appendix C.

3.3.2 The operators

This resource does not have an operator facility for modifying
table contents, as it is assumed that any text editor can be used
to access and modify the data file KCT.SYS. For this reason, the
initialization operator should only be used once, and this on
entering the PDL editor. Only a single operator, besides the
initialization operator, 1is required to read the contents of the
Rey Code Table given a key code as input.

KCT_INIT (VAR KCT_SIZE: INTEGER)

Function: Used to load the file KCT.SYS into the memory-based Key
Code Table.
Inputs: *none*
outputs: KCT_SIZE -~ The number of key code entries loaded into
the Key Code Table.

KCT_READ { THIS_KEY_CODE: INTEGER;
VAR THIS_KEY_WORD: STRING (30) OF CHAR;
VAR THIS_INDEN: INTEGER;
VAR THIS_EPIT_FLAG: BOOLEAN;
KCT_SIZE:; INTEGER;
VAR STATUS: INTEGER}

Function: Reads the key word, relative indentation, and edit flag
from the Key Code 'Pable given an input key code, The
status flag is returned unsuccessful only if the input
key cannot be found.

Inputs: THIS_KEY_CODE =~ The input _key code which will be

searched for in the table. When a

match is  found, its associated
characteristics will be output.
KCT_SIZE - This integer variable is usually taken

directly from the output of the
initialization operator.

Qutputs: THIS_KEY_WORD =~- The key word corresponding to the key
code. Its  maximun length is 30
characters,

THIS_INDEN ~-- The relative indentation correspon-
ding to the key code.

THIS_EDIT.FLAG ~—= The boolean flag used to determine
whether the line consisting of the
given key code is editable or not. A
TRUE flag indicates editability. It
should be noted that only the " first
key code of a line will determine its
editability. The second key code's
edit flag is not used.

STATUS e Phis 1s an integer error flag which
will return unguccessful if the input
key code is not found in the table,
and successful otherwise.

~4




Page 26

3.3.3 Resource structure
Global constants used in this procedure include:

KCT_CaP = G0 =~ The capaclity of the Key Code Table., This is the
maximum number of key codes for which provision
has been made.

KW_CAP = 30 =-- The maximum allowible length for any key word in
the table.

A PDL description of the data structure used in dynamic memory
for the table is as follows:

Types:
RCT.FL = Record:
KEY_CODE : Integer
KEY_WORD String (KW_CAP) of Character
INDEN Integer
EDIT_FLAG : Boolean
End Record:
KCT_ARRAY = Array [1..KCT_CAP] of KCT_FL
Variables:
Singles:
Permanents
RCT_FILE

The £ile from which the Key Code Table is initialized (KCT.SYS
must be in the format shown below:

¥ 102 2 elser*

The first £ield specifies whether the key code implies an
editable line or not (Y=Yes; N=No). This is followed by a single
blank character. The Key code then follows. The third field is
the relative indentation, and is followed by a single blank
character. The key word then appears, with a "*" delimiter to
demarcate the end of the key word. Thus, the key word will be
identified as the last characters up to but excluding the last
"*" gymbol.

A menu-driven test program is available to investigate the
function of the operators of this table. PFull input variable
testing is performed. An extra routine is used to display the
logical contents of the Key Code Table. Appendix A shows how the
designer can investigate the operation of this resource via the
test program.




Page 27
3.4 Prompt Table

3.4.1 Resource function

This is the simplest resource but yet it is of importance, It is
a store of all the system prompts or error messages which are
available. A prompt code obtained from the Definition Table is
used to access the Prompt Table, The associated message is then
passed back to be displayed in the Prompt Screen.

The purpose of this table is twofold: firstly, error messages can
easily be modified; and secondly, spacs is saved when dealing
with duplicate messages. Prompts are not “hard programmed" within
the package and can thus easily be odit=d by changing the data
f£ile contents. This saves the dssigner time as no re-compilation
need be performed. Flexibility is added to the package in that it
is a simple matter to add extra prompts. Alsa, if the same prompt
is used twice in an algorithm, only the integer prompt code
rather than the entire eighty-character prompt line needs tc be
duplicated. ¢This accounts for a large saving in memory space at
the cost of a slightly slower response time,

The Prompt Table is loaded init:ally frqm diskfile (PT.SYS) and

thenceforth may not be modified. Appendix C contains the Prompt
Table for the PDL syntax-directed editor package.

3.4.2 The operators

ation is czly performed once

As in the Key Code Table, init
ry. Hereaifer, only the read

for loading the system file into =
operation may be requested. As ihz Frompt Takle does not have
operators to modify its contentz Jymamicall—. operations are
restricted to the two mentioned zdove.

PT_INIT (VAR PT_SIZE: INTEGER)

Function: Initializes the Prompt Tails by loading the system file
PT.SYS into memory.
Inputs: *none*
Outputs: PI_SIZE -~ The number of zrompts which have heen loaded
inte the Prompk Table.

PI_READ ( THIS_CODE: INTEGER;
VAR THIS_PROMPT: STRING (80) OF CHARz
PP_SIZE: INTEGER:
VAR STATUS: INTEGER)

Functlon: Reads the prompt associated with the input prompt code.
Inputa: THIS_CODE ~~ The input prompt code which corresponds in
line number to the required prompt.
PT_SIZE =-- The size of the Prompt Table which is
usually taken directly from the output of
the PP_INIT operation.
outputs: THIS_PROMPT -~ The prompt or message which corresponds
to the input prompt code. It has a
maximum length of 80 characters.
STATUS - An integer variable which will return




Page 28

successful if[ the prompt code exists,
and  unsuccessful otherwise. As the
prompt code corresponds to the entry
line number of the prowpt, if the prompt
code is greater than the PT_SIZE, then
the prompt code is beyond the allewable
range.

3.4.3 Resource structure
The global constants available in this resource are as follows:
PROM_TABLE_CAP = 20 -~ The space allowed f£for prompts in the

Prompt Table. (ie. a maximum of 20 prompts
are allowed)

PROMPT_CAP = 80 ~- The capacity of the prompt message to be
displayed in the Prompt Screen in terms of
characters.

The data structure adopted is as follows:
Types:
PROMPT_LINE = String (PROMPT_CAP} of Character

PROMPT_LN_ARRAY = Array [l..PROM_TABLE_CAP] of PROMPT_LINE

Variables:
PROMPT_LN_ARRAY:
Single:
Permanent:
PROMPT_ARRAY

The file PT.5Y$ which is to be loaded into memory initially
consists simply of a number of lines; each containing a prompt.
The prompt code assoclated with each prompt will correspond c
its line number. {eg. The third prompt: in the file will be
1ine 3 and will thus have a prompt code of 3,) A prompt must be
no longer than 80 characters and must be entered in the table as
it is to be displayed on Screen 3 on a single line.

A test program for the Prompt Table resource is also available
for the user to experiment with its functions. A logical display
routine is needed for the purpose of displaying the Prompt ‘Table
on the screen, Appendix A shows the layout of this test program.

3.5 Line Linked List

3.5.1 Resource function

The Line Linked List is used solely by the Line Editor process.
It enables a user to manipulate characters within a text 1line.
The linked list offers the basic editing primitives. With the use
of a list, it is possible to perform an endless amount of edits




Page 29

on a line with a fixed allocated memory Space, The linked list
ensures that a memory element which is deleted will remain on a
space list to be used whenever another memory location is needed.
The designer will access the linked list only by means of its
operators.

Operators are provided for: initializing the list to zero (ie.
emptying the Line Linked List) getting and returning a record for
the purposes of writing or deleting a character; reading and
writing a record; and moving the list pointer, Operators are also
available for returning the list pointer value and for returning
the edited line in order. With these primitive operators, any
text editing function can be constructed.

In the following paragraphs it will be explained how the basic
line editing functions cr be constructed by combining one or
more of the above operators. Linked list operation is explained
in section 3.5,3, but for further clarification, the notes of Dr.
A.J.Walker (1984) should be consulted, By following the
application examples below, however, a good idea of this
resource's behavicr should be obtained.

To start editing a new line, the list is initialized. This sets
the record pointers in consecutive order and effecitvely clears
all data records. Writing a character into the list £irstly
requires the retrieval of a record. Hereafter, the list pointer
will indicate the new record, and thug a character can ke writen
into it. It is imperative to note that if a new character is to
be added, a new record must be fetched before a Write operation
is performed.

The list pointer is initially at the zero pos1tion, and a Write

operation here will be ful. ¢ the pointer is
at an existing record in which a character is already written, a
Write operation here will cause overtyping (ie. replacing of the
old character by the new). After a Write operation, the pointer
remains at the newly edited character {ie. all pointer movements
must be performed explicitly).

An insert operation is also a Get~record operation followed by a
Write-record operation. It should, however, be noted that a
record is always inserted after the current pointer position, and
the pointer is then positioned at the newly inserted record.
Thus, the first record is inserted at character position 1 by
performing a Get-record operation when the list pointer is on the
zero position., If a series of characters is to be inserted
sequentially, the convention is favourable, as new records are
always inserted after the previously entered character.

The delete function of the Line Bditor is implemented by making
use of the Return-record operator in the Line Linked List. With
the list pointer on the character which is to be deleted, a
Return~record operation is performed. That record will then
effectively be deleted, and the pointer moved back by one
position. ~ Thus, if a series of characters is deleted
sequentially, 1t will become obvious that this function is
associated with the destructive backspace key.

By moving the list pointer, the 1lire editor cursor can
effectively be moved under any character. Pointer movement is,
however, incremental and not absolute, so that a function to




Page 30

determine the list pointer location is useful. The Read-record
operator will return the character at the current pointer
position. After a series of edits on a line, it is useful to have
an _ operator which will return the entire new 1line in logical
order. This is the Log-string operator.

The functions described above will be used in the Line Editor
process of section 4,1. This section should be consulted for
detailed PDL descriptions . the above line editing routines. The
linked 1ist is thus a powerful resource for any form of editor.
The Line Editor, as well as the File Editor of this PDL syntax-
directed editor package are based on the Line Linked List and
File Linked List respectively.

3.5.2 The operators
LIST INITIALISE

Function: Initlalizes the Line Linked List, setting all records
to the null character.

Inputs: *none*

Outputs: *none*

LIST_GET_RECORD (VAR STATUS: INTEGER)

Function: Fetches a record from the space list and inserts it
into the linked list.
Inputs: *none*
Outputs: STATUS ~- An integer error f£lag having one of the
following possible outcomes:
Successful -- record was successfully fetched
Empty.space_list -~- the 1list is full and no moxe
records can be inserted.

LIST_RETURN_RECORD (VAR STATUS: INTEGER)

Function: Returns a record to the space list, effectively
deleting it from the linked 1ist. 'The record returned
is the one pointed to by the list pointer. After the
operation, the pointer is moved back by one position.

Inputs: *none*

OQutputs: STATUS -~ The integer error flag. It has one of the

following outcomes for this operation:
Successful -- record was sucessfully returned
Empty_link_list -~ the 1list is empty and thus no
record can be returned
LLP_outside_list -~ with the Logical List Pointer
in the zero position, no record
can be returned.

LIST_READ_RECORD (VAR DATA_ITEM: CHAR;
VAR STATUS: INTEGER)

Function: Reads and returns the charac (or value of the dat~
item) present in the recore pointed to by the 1i
peinter.




Inputs:
OQutputs:

Function:
Inputs:

Outputs:

Function:

Inputs:

Qutputs:

Page 31

*none*
DAYA_ITEH -~ The character which is read from the
linked list
STATUS -- The integer error flag having one of the
following possible outcomes:
Successful -~ the operation was performed success—
fully
Bmpty_link_list -- no read operation can be
performed on an empty list
LLP_outside list -- no read operation can be
performed with the list pointer
at the zero position.

LIST_WRITE_RECORD { DATA_ITEM: CHAR;
VAR STATUS: (NTEGER}

Writes the input character in the record which is
pointed to by the list pointer.
DATA_ITEM -- The input character which is to be writhen
at the current list pointer position.
STATUS ~- The integer error f£lag having the Ffollowing
possible cutcomes:
Successful -~ the operation was performed success-

fully
Empty_link_list -- no records are available for
writing into
LLP_outside_list ~- no writing can be performed
with the 1list pointer in the
zero position.

LIST_MOVE_POINTER ( INCREMENT: INTEGER;
VAR STATUS: INTEGER

Moves the list pointer forward ox backward by a

positive or negative increment.

INCREMENT -- A posgitive, negative, or gzero integer
value which will move the 1list pointer
forward, backward, or not at all by the
specified amount from the current pointer
position. If too large an increment is
specified, the pointer is moved as far as
possible.

STATUS -~ The integer error f£lag having the following

possible outcomes:
Successful ~- the operation was performed success-
£fully
Empty_link_list -~ the pointer cannot be moved if
the list is empty
LLP_outside_list -~ the increment is too large or
too negative, so that the list
pointer would have to be moved
beyond the end of the 1list or
before the beginning of the
list. 1In this case, the pointer
is stiil moved to the relevant
list limit, but the STATUS flag
tells of the overshoot problem.




Page 32

LIST_LOG_INFQ (VAR LIST_POINTER: INTEGER}

Function: Returns the value of the logical link list pointer.
Inputs: *none*
Qutputs: LIST_POINTER -- The list pointer value.

LIST®_LOG_STRING (VAR T_STRING: STRING (80) OF CHAR;
VAR RETURN_LOOP_COUNT: INTEGER;
LIST_POINTER: INTEGER)

Function: Returns the linked list elements in logical order in a
single string variable from the specified input logical
list pointer value.

Inputs: LIST_POINTER -~ The logical list pointer position from
which the rest of the linked list is to
be returned.

Outputs: T_STRING - The linked 1list elements in logical
order listed from the specified list
pointer position,

RETURN_COUNT ~~ The number of characters contained in
the returned text string.

3.5.3 Resource structure

The Line Linked List data structure is as follows:

Constants:
Integer:
Single:
Local:
MR = Bl *Maximum Records -- the capacity of the
resource*
SUCCESSFUL
EMPTY_SPACE_LIST = 1 *possible outcomes of the
EMPTY_LINK_LIST = 2 status flag*
LLP_QUTSIDE LIST = 3
Types:
LIST_RECORD = Record:
FP: Integer *Forward Pointer®
BP: Integer *Backward Pointer%

DX: Character *Data Item*
End Record:

MY_LIST = Array [l..MR] of LIST_RECORD

Variables:
Integers
Single:
Local:

L_LLR *Line Link List Rock¥

L_SLR *Line Space List Rock*

L_PLP *Line Physical List Pointer#®
L_LLP *Line Logical List Pointer*
L_LLS *Line Link List Size¥®




Page 33

HY_LIST:
Single:
Permanent:
L.LIST

A brief explanation of linked list operation is given below:

The
efficiently without wasting memory space.
of text is regarded as a record or data item. (Por the Line
Linked List, a character is the data item, while for the File
Linked List a text line is regarded as a data item.) The linked
list will use the forward and backward pointers to link all the
data items in such a way as to form the text block. Data items
which are not used are stored in the space list, while records in
use are stored in the link list.

linked list is used for manipulating large blocks of text
To do so, each element

As all records are linked via their forward and backward
pointers, only a starting point is needed in the space and link
lists for reference. These two reference variables are called the
space and link list rocks respectively. They indicate the £irst
free or used record in the relevant list. There are two major
list pointers: the logical list pointer and the physical list
pointer. The logical list pointer relates +to the user's
viewpoint, whereas the physical list pointer corresponds to the
actual location of the data item in the linked list,

The following example should help to clarify the linked list
structure and opecgation. Assume that a linked 1list of 10
characters exists, with the word "MBSSGE" written sequentially in
it as shown below:

Location: 0 1 2 3 4 5 & 7 8 9 10

i34 lol I {E IS |s 16 1E | ! 1 1 |
FP t t2 |3 (4 15 16 to |8 |9 |}o
BP | to 11 t2 13 14 (5 |0 17 §8 8

i \ link list \e——.Space list___./
Looking at the forward pointer (FP} for the letter "M", a value

of 2 indicates that the next data item (DI) linked after "M" is
found in location 2. In location 2, the first "E" of "MESSGE" is
found, and its forward pointer points to the letter "S. This is
continued until all the letters of the word are linked. Note that
the last letter of the listed word has a forward pointer which
indicates the end of the list (Eol).

In this way it can be seen that the word "MESSGE" is linked
character by character both in the forward direction (by the
forward pointer) and in the backward direction {(by the backward
pointer (BP}). These charactars which exist in the list comprise
the link 1list, while? the remaining records constitute the space
iist. The space list elements are also linked via forward and
backward pointers.




Page 34

Let us now, for the sake of clarity, consider the list to have a
forward pointer only. The following can be said:

LLR = 1 -~ Link list rock indicates the location of the £irst
record of the list

SLR = 7 ~- Space list rock indicates the location of the first
free record

LLS = 6 == Link list size is of six characters: M,5,8,8,G,E.

Now, the word "MESSGE" is to be corrected to read "HESSAGE". This
requires an "A" to be inserted after the second "8", Thus, the
logical pointer is moved to position 4. (Note that this also
corresponds to the physical pointer position.) The Get-record
operation is now performed, This results in a blank record being
inserted after the second "S" of "MESSGY". Physically, this
invelves the increasing of the link list size by one, and a
corresponding decrease in size of the space list. After the "a"
has been written into the new record, the schematic
representation of the word in the list isg as £nllows:

-Location: 0 1 2 3 4 5 6 7 8 9 10

DI lgol | 18 |8 |s 16 B Ll I | i
2

FP t I i3 14 17 tse 10 15 [98 1100 |

It can be seen that at position 4, the forward pointer indicates
the character "A" at position 7. The letter "A" in turn indicates
position S so that the word "HESSAGE" results, The list
parameters are now as follows:

LLR = 1 ~- The start of the link list is still unchanged.

SLR = 8 -~ The first free record has been used 50 that the space
list size has decreased by one.

LLS = 7 =- The size of the link list has increased by one.

The pointer is now located at the letter “A" (as seen from the
underscoring in the previous figure). This position cerresponds
to ¢

PLP = 7 ~-~ Physical 1list pointer is the actual pointer location
in the data structure.

LLP = 5 -- Logical 1list pointer is the logical location of the
pointer in the word "MESSAGE" (ie. M=l; E=2; S=3; S=4;
A=5; G=6; E=T).

The above example illustrates both the power and the complexity
of the linked list. An interactive menu-driven test program with
full input condition testing is available For the designer to
become acquainted with Line Linked List operation. Appendix A
explains further the facilities of this resource using both a
ilogical and a physical model,




Page 35
3.6 Pile Linked List

3.6.1 Resource function

The FPile Linked List is similar in operation to the Line Linked
List described above, however, it deals with the manipulation of
text lines, This resource treats an entire PDL text line as a
record. This enables the designer to use this resource in the
File BEditor process for line manipulation purposes. Section 4.4
details how insertion is performed with the help of this
resource., It should also be noted that the coded version of the
PDL  file is stored in this resource, and not the formatted
version. This means that a record in the File Linked List will
contain the key codes, indentation and text line fields as well
as the necessary forward and backward pointers.

3.6.2 The operators

The operations which can be performed on the File Linked List are
identical to those for the Line Linked List, with one exception,
The LIS?_LOG_STRING operator in the Line Linked List is not used
for this resource, The PDL file stored in the Pile Linked List
need only be arranged when an editing session ls ended. Separate
routines for outputing formatted and unformatted f£iles are
provided in the front-end level of the package. {See FILE_UF_DUMP
in Chapter 5)

FLL_INITIALISE

Function: Initializes the File Linked List by resetting its
records to the null data item,

Inputs: *none*

Outputs: *none*

PLL_GET_RECORD (VAR STATUS: INTEGER)

Function: A record corresponding to a PDL line is obtained from
the space list and inserted in the link list after the
File Linked List pointer.
Inputs;: *none*
Outputs: STATUS -~ An integer error flag having one of the
following possible outcomes:
Successful -~ record was successfully fetched
Empty_space_list -- the 1list 1s full and no more
records can be inserted.

FLL_RETURN_RECORD (VAR STATUS: INTEGER)

Function: A text line (or record) is returned to the space list,
thus deleting it from the link list. The record pointed
to by the pointer is returned; after the operation the
pointer is moved to the previous record.

Inputs: *none*

Outputs: STATUS -- The integer error flag. It has one of the

following outcomes for this operation:




FLL_READ_RECORD (VAR INDEN_COD.

Page 36

Successful -~ record was sucessfully returned

Empty.link_list -~ the list is empty and thus no
recoxd can be returned

LLP_outgide_list -- with the Logical List Pointer
in the zero position, no record
can be returned.

INTEGER;
R KEY_CODE_ INTEGER;
VAR KEY_CODE_2: INTEGER;
VAR TEXT_LINE: STRING {81) OF CHAR;
VAR STATUS: INTEGER)

Punction: Reads the record fields agsociated with the record
pointed to Dby the list pointer (ie. the attributes
associated with that text line).

Inputs: *none*

Qutputs: INDEN_CODE -- The indentation code of the PDL line
which determines its absolute placement
from the left-hand margin when pretty-
printed.

KEY_CODE_1 -~ The first key code associated with a
system-generated key word which precedes
any user-entered text.

KEY_CODE.2 -~ The second key code associated with a
system—-generated key word which £Zollows
any user-entered text.

TEXT_LINE =- The variable string containing the user=-
entered text.

STATUS -~ The integer error flag having one of the
following possible outcomes:

successful -- the operation was performed success-
full;
Bmpty.link_list -- no Read operation can be
erformed on an empty list
LLP_outside_list -- no Read operation can be
performed with the list pointer
at the zero posltion.
FLL_WRITE,RECORD ( INDEN_CODE: INTEGER;
KEY_CODE_l: INTEGER;
KEY_CODE_2: INTEGER;
TEXT.LINE: STRING (8l) OF CHAR;
VAR STATUS: INTEGER)

Function: Writes the information associated with the File Linked
List record into the record pointed to by the 1list
pointer.

Inputs: * game as the field outputs for the FLL_READ_RECORD
operator above *

Outputs: STATUS -- The integer error flag having the following

possible outcomes:
Successful -~ the operation was performed success-

Empty_link_list ~- no records are available for
writing into
LLP_outside_list -- no writing can be performed
with the list pointer in the
zerxo position,

> ¢ o .




Page 37

PLL_MOVE_POINTER ( IWCREUENT: INTEGER:
VAR STATUS: INTEGER)

Function: Moves the 1list pointer forward or backward by a

positive or negative increment.

Inputs: INCREMENT -~ A positive, negative, or zero integer
value which wiil move the 1list pointer
forward, backward, or not at all by the
specified amount from the current pointer
position. If too large an increment isg
specified, the pointer is moved as far as
posaible.

OQutputs: STATUS -~ The integer exror flag having the Ffollowing

possible outcomes:
Successful ~- the operation was performed success-

fully
Empty.link_list -- the pointer cannot be moved if
the list is empty
LLP_outside_list -- the increment is too large or
too negative, 5o that the 1list
pointer would have to be moved
beyond the end of the list or
before the bkeginning of the
list. 1In this case, the pointer
is 3till moved to the relevant
list limit, but the STATUS flag
tells of the overshoot problem,

FLL_LOG_INFO (VAR LIST.POINTER: INTEGER)
Punction: Returns the value of the logical link list pointer.

Inputs: *none*
Outputs: LIST_POINTER ~~ The list pointer value.

3.6.3 Resource structure

The data structure for the File Linked List is as follows:

Constants:
Integer:
Single:
Locals
MR = 81 *Maximum Records -- the capacity of the
resoukce®

SUCCESSFUL =0
EMPTY_BPACE_LIST = 1 *possible outcomes of the
EMPTY_LINK_LIST = 2 status flag¥
LLP_OUTSIDE_LIST = 3

Types:

LIST_ RECORD = Record:
FP

Integer *Forward Pointer®
Integer *Backward Pointer¥
Integer *Indentation code*
Integer *Key code 1*

: Integer *Key code 2%




s

Page 38

FT s String (81) of Character *uger—
entered File Text line*
End Record:

MY_LIST = Array [l..MR} of LIST_RECORD

Variables:

Integer:
Single:
Locals
LLR *File Link List Rock*
SLR *File Space List Rock*
PLP *File Physical List Pointer®
LLP *File Logical List Pointer*
LLS *File Link List Size*
HY_LIST:
Single:
Permahent:

MY_LIST

The structure of the linked list is as described in section
3.5.3. The only point of interest here is the multiple fields
involved in describing a record. To define any PDL line in the
system, the codes and text line mentioned above are required.
with the edited file being list-based, extensive line
manipulation is thus possible via this resource.

A test program for this resource is provided (see Appendix A).
The dJesigner can thus become familiar with this resource due to
the extensive input error checking facilities available. A
physical and logical display of the stats of the resource is also
available via this test routine.




Page 39

THE PROCESSES

4,1 The Line Editor

4,1.1 Process function

The Line BEditor is designed to be a self-contained procedure for
use as a package when any user-entered response is expected in
the Window Screen. The Line Editor functions are needed when the
user is entering or modifying any line or entering a filename as
requested by the system. This process contains the usual editing
functions required of a line editor, The user can overtype,
insert, delete and move the cursor {Cursor 2) under any character
in the editable string,

The Line Editor is exit by one of three methods:

1, Using the ENTER key --~ The new edited text string is accepted
and the editor abandoned.
2, Using a valid Function RKey --- The valid set of function keys

is determined by the boolean
array. On depression of one of
these keys, the new line is
accepted, while a change of
states also occurs.,
3. Using the ESCAPE key --~ This key will exit the editor without
accepting the new edited line,

Complete error checking is performed within the Line Editor
package to trap errors such as line overflow and other illegal
operations, All errors display nessages in the Prompt Screen,
simultaneously sounding the terminal bell,

The editor functions are explained in section 4.1.3 with the use
of the subrouvtines which have been used to create the Line
Bditor. Each subroutine corresponds to a certain Line &ditor
function, Section 4.1.2 gives the Line Bditor program's structure
which is used in this package.

4.1,2 Process structure

The routine call which invokes the Line Editor is shown below,
together with lts external input and output parameters.

LINE_EDITOR { WS_WIDTH: INTEGER;
START_COL : INTEGER;
VAR KBY_TEXT: STRING (80) OF CHAR;
VAR IN_STRING: STRING (80) OF CHAR;
VAR W5P: INTEGER;
KEY_PLAG_ARRAY: ARRAY [1..10] OF BOOLEAN;
VAR OUT_STRING: STRING (80) OF CHAR:
VAR OUT_KEY: INTEGER)




Page 40

where the inputs are:

WS_WIDTH —— (Window Screen WIDTH) Defines the upper bound of
the editable line in the 7indow Screen, i

START_COL — (8TART COLumn} defines the lower bound of the 1
b editable line in the Window Screen. The Line B

R Bditor will only be concerned with text between ’

- : the two above limits.

KEY_TEXT -- The first key word in the Window Screen line.
Hote that this key word will be displayed in :
gt highlighted font and is not user-editable. :

IN_STRING ~-- The user-editable input text string. This string £

is written in normal font immediately after the -
4 key word in the Window Screen and is completely
1 ) user-editable.

TN wep - (Window Screen Position) The required starting
position of Cursor 2 in the Line Dditor. If this
variable is input out of range, a best attempt
is made at placing the cursor as close as H
possible to the required position. WSP can only !

. be set to a character in the IN_STRING (ie. the

M key word is not editable and thus the cursor

1 : cannot be placed here).

KEY_FLAG_ARRAY - An axray of flags for determining the function ;
i N keys which will exit the Line B=ditor, A TRUE .
flag indicates that the corresponding function
key will successfully exit the Line Bditor. This
array is usually obtained directly £rom the
e A Read operation on the Definition Table.

' and the outputs are:

v OUT._STRING ~ The user-editable text string which is output when
the Line Editor is exit.

OUT_KEY ~- An integer code which is passed back to the calling
& program to indicate what key combination terminated
the line editing session. The possible outcomes of

this variable are:
1 ~ 10 -~ depending on which function key was used
{any changes nade in the Line Editor

" ~1 =~ if the ENTER key was used for exiting

(all changes made in the Lipr. Sdi#-r are

: accepted)

~100 ~~ if the RSC key was used {any changes
made while in the Line Bditor are
ignored and OUT _STRING is set to the
IN_STRING value), :

This Line Editor package can thus be used as a module where
required, with the designer only being concerned with its
interfacing to the calliny program, This makes such a process
usable in many other applications where a line editor ls needed,




Page 41

aAn example of initializing the Line Rditor is given in Pig.4.l1.

Inputs: WS WIDTH = 20
START_COL = 2
KEY_TEXT = "Until ®
IN_STRING = "<COHDITION>"

usp
REY_FLAG_ARRAY = *all elements set to FALSE¥

g n ot i

| | ===
1 £ €0 NDITION?>

il

13
12

[
1 4]

5

| [
| b7 bt din|o I13f Jasp |37f 19l j21i
|61 1 81 1ol (121 {141 36l (180 [20] |

Fig.4.1s Using the Line Editor package
The figure shows a line in the Window Screen for a certain

set of Line

Editor input parameters., The numbers represent

the column position from the left-hand margin of the Window
Screen. The editable portion of the Window Screen is

restricted
WS_WIDTH,

to between characters 8 and 20 due to the

START_COL and KEY_.TEXT input values. The cursor

is not allowed outside these limits. The KEY_TEXT input is

highlighted
position.

and written starting at the specified START_COL

In this example, the <CONDITION> placeholder is

to be expanded via the Line Bditor., W8P was input as 1
which is clearly out of range. (Accep.able WSP inputs lie

from 8 to
character)

20.} The cursor (shown as an underscored
is thus positioned under the #£i.st editable

character (the "<"), For exiting, only the ENTER and ESC
keys will be effective.

The resources used in the Line Editor are:

Line Linked List =~ for character by character wanipulation
Terminal Resgurce -~ for output purposes in the Window Screen

Section 3.5.3

has already elaborated on how the Line Linked List

can be used to form the bagic features of a Line Editor., The
Terminal Resource iz used for the positioning of Cursor 2 in the

Window Screenj;

the highlighting of the key word; and the

displaying of the user-editable text line.

The Line Editor's routines are listed below:

LOAD
MOVE_CURF ~~

HOVE,CUR_ B  ~—
WS_HONE -

END_OF_LINE ~-
ENTER_TEXT --

INSERT -
DELETE -

initializes the Line Editor

moves the cursor (Cursor 2) forward by one
position

moves Cursor 2 backward by one position

positions the cursor at the start of the editable
text

positiona the cursor at the end of the existing
text line

allows the user to enter text one character at a
time both in Type and Insert modes

toggles the Character Insert mode

deletes a single character immediately to the left




Page 42

of the cursor

ERASE_EOL -~ deletes all characters from the current cursor
position to the end of the line

DUNP -=- dumps the resultant text line into the OUT_STRING
variable,

A general description of the Line Editor process is given in
Pig.4.2. The principal global variables used for this process are

listed below:

INSERT_STATUS --
LINE_LENGTH -

HBAX_LENGTH -

LLP -

WsP -

detects Insert mode {(can be either ON or OFF)
keeps track of the current length of the user-
editable text line

determines the maximum Jlength of the user-
editable text line

(Logical List Pointer) is the cutrent pointer
position in the user-editable text in the Line
Linked List

(Window Screen Position) is the logical cursor
position (measured in columns from the left-hand
margin) in Screen 2.

The STATUS variable indicates the statug of many of the
operations performed on the Line Linked List, but is used

sparingly.

Process Line Editor

Begin:
Repeat:
Call LOAD

If (Status <> Successful)
b

then:

Status := Suecessful

BEnd If:
Get:

Reyboard: Key

End Get:

Case {Key) Of:
Cur Forward : Call NOVE_CUR.F

Cux Backwar:

Home
End
ins
Del
Cntrl K

Call HOVE_CUR_B
Call WS_HOME
Call BND_OF_LINE
Call INSERT

: Call DELETE

: Call ERASE_EOL

else:
Call ENTER TEXT

End Case:

Until {Key implies termination}

Call DUNP

*Set QUT_KEY to appropriate value*®

End:
BEnd Process:

Fig.4.2: A PDL description of the Line Editor

Ty




Page 43

With reference to Fig.4.2, the Line Bditor operation is described
as follows, Initially, the LOAD routine is used to initialize the
editor to its initial state as set by the inputs (see Pig.4.l}. 2
Repeat-until block is entered until the key obtained from the
keyboard (a single character) implies termination. The Line
Editor can be exit by using a valid function key; the BNTER; or
the BSC key. An unsuccessful status is set to successfui before a
key is obtained from the keyboard.

A somewhat more complex Case construct than that shown in Fig.4.2
is used to perform key capture and identification. A simplified
version is given here, but the next section will elaborate on the
subtleties involved when describing a similar procedure in Base
Level. When the editor is exxt, the DUMP routine is called and
the OUT_KEY output variable is set. The DUNP routine is
responsible for producing an ocutput text string corresponding to i
the edited line.

T The Line Editor is built as a stand-alone module so that it can
BECEECERN be used in any line editing situation. A test program has been
constructed allowing the dJesigner to experiment with input
parameters and editor operation. If any modifjcations are made to
the Line Editor, the test program can be used to check 1f it
performs as expected before it is integrated into the PDL
generator package. The format of the test program can be seenr in
Appendix A, .

! 4.1.3 Process routines

Leoad
. The LOAD rowtine and its parameters s as shown below, while the [
S PDL descripiion of its behavior can be found in Fig.4.3.

2 LOAD { START_COL: INTEGER; i
VAR 1AX_LENGTH: INTEGER; |

VAR LINE_LENGTH: INTEGER; i

VAR WSP: INTEGER;

W KEY_TEXT: STRING (8C) OF CHAR; . H

IN_STRING: STRING (80) OF CHAR} i

Procedure Load

Begin:
. *Write KEY_TEXT in highlighed font in Screen 2%
k4 *yrite IN_STRING in normal font in Screen 2*

*Set the MAX_ LENGTH of the line¥
*get the LINE_LENGTH to the length of the IN_STRING*
i *Ini- ialize the Line Linked List
*Write the IN_STRING in the Line Linked List* H
*Check for any errors in the WSP input*
If (There are any errors in WSP
: then:
- *Correct WSP to beginning or end of line*
1 Bnd If:
*Set Cursor 2 to the WSP value*
*Hove list pointer to the position corresponding to WSP*
End:
3 L End Procedure:

Fig.4.3: The PDL for the Line Bditor Load routine




Pauge 44

This routine is used initially, each time the Line =nditor is
called. It is rasponsible for setting up tie Line E&ditor a8
specified by the iny,ut parameters. The AX_LBUGTI, LINE_ LENGTH
and W8P variables ar: set in this routine. The Line Linked List
will also be initializes and loaded with the INM_STRIIG; the list
pointer being positioned ..v the USP input value.

Lurser Forward

This routine moves Cursor 2 forward by one position on depression
of the Cursor Right key. It is possible to move the cursor beyond
the last character of the text line as long as the Window Screen
bounds are not exceeded, If it is attempted to move the cursor i
beyond the right Window Screen bound, an error will occur. The |
= calling routine is given below, while Fig.4.4 elaborates on the !
i procedure construction.

RN HOVE_CUR_F ( INSERT_STATUS: BOOLEAN;

: VAR LINE_LENGTH: INTEGER;
HAX_TENGTH: INTEGER;

LLP: INTEGER;

L VAR WSP: INTOGER; :

g VAR STATUS: INVEGER) H

Procedure Move Cursor Forward
Begin:

If (Cursor is moved beyond right bound in Window S¢reen)
’ en:
*Put out an error -~ cursor at end of line*

else:
*Check if last character is a blank*
1f (Cursor is moved beyond end of text line)
then:
*Get a record*
*Write a blank character in the new rccord*
Call CUR_RIGHT
b WSP = WSP + 1

R LINE_LENGTH LINE_LENGTH + 1 ;

. else: :
W If (Insert Status is ON)

¥ then:

*llove pointer forward by one position*

*Read the character at the pointer position*
i *Write the character followed by a blank*

4 RO Call CUR_LEPT

) W8P := WSP + 1

elset
*Nove pointer forward by one position®
“ Call CUR._RIGHT
ey WEP := F7P + 1 ‘
i End If:
g End If:
] End If: -
End:
* End Procedure:

Fig.4.4: The PDL for the Move Cursor Forward routine




Page 45

Cursex Backward

This routine is used to move the cursor in the Window Screen to
the left by one character., The Cursor Left key Is assigned to
this function. If the cursor is moved beyond the beginning of the
editable text line, an error will occur and the terminal bell
will sound. As in the Cursor Forward routine, when in Insert
mode, the cursor will always be under a blank token. Moving the
cursor either to the left or to the right will result in the
previous or following character being interchanged with the blank
token, again leaving the cursor under the blank insert token., The
procedure is called as shown below; Fig.4.5 giving its internal
structure.
MOVE_CUR_B ( INSERT_STATUS: BOOLEAN;
LLP: INTEGER;
VAR WSP: INTEGER;
VAR STATUS: INTEGER)

Procedure Move Cursor Backward
Begin:
If (Insert Status is ON)
hen:
If (List pointer is at the zero position}

then:

*put out an error message ~- cursor is at beginning of
line*

else:
*Read the character pointed to by the list pointer*
Call CUR_LEFT
*Write a blank to the screen*
*Hrite out the character obtained above*
Call CUR_LEFT
Call CUR_LEFT
WSP = WEP -~ 1
*Move the pointer back by one posiuion*

End If: -
elses
**(je. Insert Mode 1s OFF)+**
If (List pointer is at the start of the line)

then:
*put out an error message -~ cursor is at beginning of
line*

else;
Call CUR_LEFT

WSP = WSP - 1
*Move list pointer back by one position*

Bnd Procedure:

Fig.4.,5: The PDL for the Move Cursor Backward routine

Lurgor. Home

This routine will move Cursor 2 to the beginning of the user~ i
editable text line in the Window Screen., If in Insert mode, the
cursor 1is placed at the first editable character position, but




Page 46

the entire text string is shifted to the right by one character
to make space for the blank insert token under which the cursor
will 1lie. Fig.4.6 describes this simple procedure in PDL while
the routine call is shown below:

WS_HOME ( INSERT_STATUS: BOOLEAN;
. MAY_LENGTH: INTEGER:
LLY; INTEGER;
VAR WSP: INTEGER;
VAR STATUS: INTEGER)

Procedure Home
Begin:
*Set WSP to first editable character*
*Hove list pointer accordingly*
*8et Cursor 2 to the WSP value¥
If {(Insert Status is ON)
then:
*Move list pointer back by one position*
Call LIST_LOG_STRING
If {LINE_LENGTH = MAX_LENGTH)
then:
*Trim the above output string to its length minus one*
End If:
*Write out above output string¥®
End If:
End:
End Procedure:

Fig.4.6: The PDL for the Line Editor's Home routine

Sursez.t0.Epd. of Ling
Procedure End of File

Begin:
If ALINE_LENGTH = MAX_LENGTH) and {Insert Status is ON)
thens
*Put out an error*
else:
*Move list pointer to end of text string*
1f (LINE_LENGTH = 0)
then:
*Set WSP to first editable character®
else:
*Set WSP to end of text string*
Bnd If:
If {Insert Status is ON)
then:
Call LIST_LOG_STRING
*Write out the characters obtained above*
WEP = WSP + 1
Call CLR_LINE
else:
*Set Cursor 2 to WSP value*
End If:

End Procedure:

Fig.4.7: The PDL for the End of Line routine

i,
>
§
i




o

Page 47

This routine (described in Pig.4.7) will move the curser to the
last character of the user~editable text string in the Window
Screen. Por the purposes of logical conveaience, this operation
is not performed when the line is full and Insert mode is OH. The
routine call and parameters are given below.

END_OF_LINE ( INSERT_STATHS: BOOLEAN;
LINE_LENGTH: INTEGER;
LLP: INTEGER;
VAR WSP: INTEGER)

Epker Text

As this routine will be used most frequently in both typing and
Character Insert mode, it involves many testsz as can ba seen from
Fig.4.8, This function will concatenate any continuously user-~
entered characters into the text string. If overtyping is
performed, the old character is replaced by the new, while typing
beyond the last character of the line will add characters to the
text string. In Insert mode, characters entered will be inserted
sequentially at the blank insert token.

An error will result in normal Typing mode Lf it is attempted to
type beyond the right bound of the Window Screen. In this case,
the last character of the line is overtyped, and the user warned.
when in Character Insert mode, however, an error will occur once
the line length exceeds the MAX_LENGTH value. In checking for
line length, if the last character is a blank, it will be
discarded. The calling routine is presented below, while Fig.4.8
gives a more detailed PDL description of the Enter Text function.

ENTER_TEXT ( KEY: CHAR;
INSERT_STATUS: BOOLEAN:
VAR LINE_LENGTH: INTEGER:
MAX_LENGTH: INTEGER;
LLP: INTEGER;
VAR WSP: INTEGER;
VAR STATUS: INTEGER)

Procedure Enter Text
Variables:
Boolean:
8ingle:
Locals
POSSIBLE
Begin:
If {XInsert Status is ONW)
hent
POSSIBLE ¢= TRUE
If (LINE.LENGTH = MAX_LENGTH)
then:
*Check if last character is a blank*
If (Last character is not a blank
then:
#*Put out an error -~ line is full*
POSSIBLE := FALSE
else:




Page 48

*Return the last blank character*
LINE.LENGTH := LINE_LENGTH -~ 1
End If:

Bnd If:
If (PDSSIBLE = TRUE}
*Wnte the 1nput key to the screen%
WSP := WSP +
*Get a record fron t' e space list*
*Write the input key in the new record*
LINB_ LENGTH LINE_LENGTH + 1
If (Line length is a maximum and pointer is at end)
then:
Call CUR_LEFT
W8P 1= WSP - 1

ge:
Call LIST_LOG_STRING
*Put out a blank character to the screen*
If (LINE_LENGTH = HAX_LENGTH)
then:
*Prim output string to its length minus one*
Bnd if:
*put oui the output string*
*Set Cursor 2 to the WSP value*
Bnd 1f:
End If:
else:
**{ie, Insert Mode is OFP)*¥
*Write the input key to the screen*
WSP 3= WSP + 1
If éLINE_LENGTB =0)

*Get a record from the space list*
LINE_LENGTH := LINE_LENGTH + 1

End If:

*Write the input key in the list¥

*Hove list pointer forward by one position*

If (Status implies a Pointer—Qutside-List error

then:
If (LINE_LENGTH >= MAX_LERGTH
then:
*put out ar error -- overtyping last character*
else:
*Get a record from the space list*
*Write a blank character in the list*
LINE.LENGTH := LINE.LENGTH + 1
End X
#nd If:
End If:

End:
End Procedure:

Fig.4,8: The PDL for the Line Bditor’s Enter Text routine

Insert

This routine is used to toggle Character Insert mode ON or OFF,
Character Insert mode is used for inserting a character before
the character pointed to by Cursor 2. Under normal circumstances,




Page 49

this insert mode will produce a blank insert token under the
cursor as a visual reminder. This mwode cannot, however, be
entered if the line is full, The routine call is described below,
while Fig.4.9 shows its PDL description.

INSERT (VAR INSERT_STATUS: BOOLEAN;
VAR LINE_LENGTH: INTEGER;
HAY LENGTH: INTEGER;

GER;

VAR WSP' IHTEGER}

Procedure Insert
Variables:
Boolean:
8ingle:
Local:
POSSIBLE
Begin:
If (Insert Status is ON)
hen:
Call LIST_LOG_STRING
*Write output string from above operation*
If (LINE LENGTH <> MAX_LENGTH)

Call CLR_LINE

End If:
If (WSP is at the end of the file)
thens
WSP 3= WSP ~ 1
End Ifs

*Set Cursor 2 to the WSP value*
*Hove list pointer forward by one position*
*Set Inmert Status OFF*
elsges
POSSIBLE := TRUE
If (LINE_LENGTH = MAX_LENGTH)
then:
*Check if last character is a blank*
if éLast character is a blank)
ai s
*put out an error -- line is full¥
POSSIBLE := FALSE
else:
*Return the last character to the space list*
LINE_LUNGTH := LINE_ LENCTH -~ 1
End If:

End Ifs

If {POSSIBLE = TRUE)
hens
Call LIST_LOG. STRING
*Put out output string from above operation®
*Move list pointer back by one position*
*Set Insert Status ON*

End Ifs

BEnd Procedure:

Fig.4.9: The PDL for the Line Editor's Insert routine




Page 50

Relete

This routine will delete the character immediately to the left of
the cursor whether in Insert mode or otherwise; the remaining
text string to the right of the cursor moving to the left by a
single character position. Deleting beyond the beginning of the
user-editable text line is not permitted. Below, the routine call
is shown, while the PDL for the Delete routine is described in
Pig.4.10.
DELETE ( INSERT _STATUS: BOOLEAN;

VAR LINE_LENGTH: INTEGER;

LLP: INTuUGER;
VAR WSP: INTEGER;
VAR STATUS: INTEGER)

Procedure Delete
Begin:
If (Insert Status is ON)
t

ens
I1f (nist Pointer is at zero position)

hent
*Put out an error -- deleting beyond start of line not
allowed*

el:

se:
Call LIST_LOG_STRING
Call CUR_LEFT
*Write a blank character to the screen*
*WYrite out the string obtained above*
If (LINE_LBENGTH <> MAX_LENGTH

t

en:
Call CLR_LINE
BEnd If:
WSP 3= WSP + 1
*Set Cursor 2 to the WSP value*
#Return the record to the space list*
*LINE_LENGTH := LINE_LENGTH - 1
BEnd If:
elses
*%(ie, Insert Status is OFF)**
1f (List pointer is at the start of the line)
then:
*put ont an error -- deleting beyond start of line not
allowed*
else:
Call LIST_LOG_STRING
Call CUR.LEF?
#*Write out the string obtained above*
Call CLR_LINE
WSP 1= WSP - 1
*Set Cursor 2 to WSP value®
*Move list pointer backward by one position*
*Return the record to the space list*
*Move list pointer forward by one position®
g LINE.LENGTH := LINE_LENGTH - 1
End If:

End Procedure:

Fig.4.10: The PDL for Line Editor's Delete routine




s

i

Page 51

Exase. Bod of Lipg

This routine is responslble for erasing all characters from the
current cursor poslt1on to the end of the line., Fig.4,ll gives
the PRL for this routine while the calling procedure is shown
below.

ERASE_EOL ( INSERT_STATUS: BOOLEAN;
VAR LINE_LENGTH: INTEGER;
LLPs INTEGER}

Procedure Erase End of Line
Begin:

While {List pointer is less than LINE_LENGTH) Do:
*Move list pointer forward by one position*
*Return the character at the list pointer to the space list¥
LINE_LENGTH := LINE_LENGTH - 1

End While:

If (Insert Status is OFF)
then:

*Write a blank character at the end of the line*

Bnd If:

Call CLR_LINE

End
End Procedure:

Fig,4.11: The PDL for the Brase End of Line routine

Dunp

This routine deals with the outputting of the OUT_STRING
variabie. This string is obtained by reading the Line Linked List
in order of ascending forward pointer values. The LIST_LOG_STRING
routine is useful for this purpese (see section 3.5 2)., Any blank
characters at the end of the text line are ignored. The zoutine
call is shown below, while Fig.4.12 gives the PDL description of
the Dump routine.

DUMP ¢ JBX_LENGTH: INTEGER:
VAR OUT_STRING: STRING (80) OF CHAR)

Procedure Dump
Begin:
Call LIST_LOG_STRING
*Trim  the output string of any blank characters at the end of
the line*
End:
End Procedures

Fig.4.12: The POL for the Line Editor's Dump routine

-

H
i
i
1]
i




Page 52
4,2 Formatter

4.2,1 Process function

The Formatter process is a short routin2 which is used to format

a PDL program, line by line, 'This routine provides a methed for

converting the coded version of a PDL file into its logical H

equivalent. DBy accessing a 1line in the coded file (which is

s . resident in the File Linked List resource), the Formatter process i

2 is able to convert the variocus codes into a text line comprising i
three distinct text strings. These three strings form the output

; of the Formatter vroutine. The output strings, when strung

5 « together sequentially, will form the required text line.

K The three output strings thus represent the first, second and
I last parts of the prettyprinted line. The output was chosen in
this form to make the formatter a more generally usable routine.
on the Main Screen for example, the three strings represent the

sy first highlighted system~generated key word; the unhighlighted
. ke user-entered text; and the second system~generated highlighted =
key word.

3 The output routine which writes the file to disk in Eformatted
P form (see section 5.2) also uses the Formatter process, but does
. not make any distinction between the three strings (highlighted
1 : or not)., Here instead, the strings are combined into a single
line without distinguishing between key words. It will be
v apparent that not all lines will contain all three of these
output strings, but three strings are supplied for completeness.

o7 4.2.2 Process structure

A high-level PDIL description of the Formatter process operation
is given in Fig.4.13. Its operation is described below.

Process Formatter
Begin:
*Read the File Linked List at the current pointer position*
*pssign the user-editable text string to the second output
string*
*Read the Key Code Table for the first key code*
#Calculate the line's absolute indentation*
*String the absolute indentation space ond the key word
° together and assign to the first output string®
*Read the Key Code Table for the second Key code*
*assign the second key word to the third outpubt string*
End:
End Process:

Fig.4.13: The Formatter routine

§

ﬁ Firstly, the File Linked nist vs read corresponding to the
] current pointer position. Thus, the line which is to be formatted
l

will be the line referenced by the File Linked List pointer on

i
I
|
v
|
£
i
i
i
|
|
\
|
i
1}




ST

e

&

Page 53

entering the Formatter routine. From the Pile Linked List, the
indentation level; the first and second key codes; and the user-
editable text string are obtained.

Next, the Key Code Table is read, using the first key code to
determine its associated key word and relative indentation. The
indentation level, together with the relative indentation
obtained from the first key code, is then used to calculate the
line's absolute indentation measured frow the left hand margin,
It should be noted here, that only the first key code is used to
determine indentation. The relative indentation provided by the
second key code is meaningless, and thus not used.

The absolute indentation space is strung before the F£irst key
word to form the first output astring. The second output sktring
merely consists of the user-editable text string read f£rom the
File Linked List. The Key Code Table is then again accessed to
determine the second key word from the second key code. This key
word forms the third output string.

The Formatter routine has been structured in such a way that it
is easily usable. This routine is used wherever a formatted
version of tue coded file is reguired. This includes
prettyprinting for the Main Screen, as well as for the formatted
output file. The three strings are used sec as to be able to
display the formatted line on Screen 1 in its appropriate mixed
font style,

4.3 system Base Level

4.3.1 Process function

The Base Level is the system's foundation level from where all
its functions are accessible. In this level, the user is given
the ability to move around in the file via the scrolling
functions such as cursor up and down; page forward and backward;
top and bottom of £ile; etc.. It should be noted, however, that
the cursor movements and page scroll functions are also available
in most other modes. Also, the system is designed to scroll
correctly for a Main Screen with an even number of lines only.

Another important function of the Base Level is that of providing
a gateway into the system's sub-levels. Insert, Delete, Copy and
Move wmodes will all be accessible from Base Level. The
construction of this process is such that any number of functions
can be added by making use of the available function keys. A
gateway into a sub-level is easily achieved by performing a call
to the new level's procedure wnenever the relevant function Kkey
is depressed.

As thig process is somewhat specialized to suit the PDY, generator
package, Zurther details of the program structure can ve found in
section 4.3.2, while section 4.3.3 describes the scrolling
routines and the gateway into Insert Level in more detail.




S smegpng wom e e

Page 54

4,3.2 Process structure

The Base Level process is bui't in modular form and can be
addressed using the following corwvention:

INTEGER;

- aTES: INTEGER;
KCT_$I12B: INTEGER;
PT_SIZE: INTEGER;

VAR MS_CUR_POS: INTEGER;

VAR MS_TOP_LINB: INTEGER; :

VAR FILE_BOT_LINE: INTEGER) H

FILE_SCROLL ( TOP.

Where the inputs are:

TOP_STATE -~ The state from which Base L.evel operates.
NO_OF_STATES -- The number of states in the Definition Table.
KCT_SIZE ~= The number of key words in the Key Code Table.
PT_SIZE -~ The number of prompt lines in the Prompt Table.

and the outputs: 0

MS_CUR_POS -- (Main Screen CURsor POSition} the line number of
the Main Screen (0 = top line; 19 = 20th 1line)
on which the cursor is positioned.

MS_TOP_LINE ~~ {Main Screen TOP LINE) the actual number of the
line displayed at the top of the Main Screen.

FILE_BOT_LINE ~- (FILE BQTtom LINE} the actual number of the last
line in the file.

These last three varlables can be used exclusively to keep track
of any cursor movements or screen manipulation. The position of
Cursor 1 is at all times determined by MS_CUR_POS, while the line Lo
number which it is on can be found by (MS_TOP_LINE + MS_CUR_POS).
The FILE_BOT_LINE is used to monitor the length of the file.

The primary scrolling functions in Base Level will require the

use of the following

Terminal Resource —-
File Linked List
Key Code Table -
Formatter Process ~-—

Due to the presen
various gateways in

involve the use of every resource and process available. /

Besides the resourc

the Base Level:
CUR_UP
CUR_DOWN
PAGE_BWD
PAGE_FWD

TOP_OF_FILE -~ displays the top of the file
BOT_OF_FILE -~ displays the bottom of the file
CUR_TO_LINE ~- displays the requested file line

EDIT_LINE
INSERT

resources:

for screen management reasons

for reading and pointer manipulation

for displaying the key codes on Screen 1

for formatting prior to displaying on Screen 1

ce of the Line Edit facility as well as the
Base Level, it is necessary that this level

es, the following procedures are employed in

-~ moves Cursor 1 up the screen .
-- moves Cursor 1 down the screen
-- scrolls backward by a page
-~ scrolls forward by a page

~- used for modifying a single line
~= the Insert gateway




Page 55

These procedures are described in greater detail in section
4.3.3, It will be noted that the gateway into the Insert facility
is provided by the INSERT procedure. This procedure will then in
turn act as an entry point into the Imnsert sub-routines.

The PDL structure of the Base Level's main program is shown in
Fig.4.14. Referring to this figure, it can be seen that an A Read
operation is initially performed on the bDefinition Table, with
the TOP_STATE as input. This is done so that the Base Level's
function key set can be displayed in the Key Definition Screen. A
repeat~until loop is used, so that only if the user depresses the
ESC key will he exit the Base Level (and indeed the PDL editor}.

Procedure Base Level
Begin:
Call DT_A_READ
Call PS WRITE
Repeat:
Call KBD_GET
Case {ASCII key code) Of:
Special keys: KBD_GET
If (ASCII key implies a valid function key)
ens
Case {Function key) Of: N
Call PAGE_BWD
Call PAGE_FWD
Call TOP_OF_FILE
Call BOT_OF_FILE
Call CUR_TO_LINE
Call EDIT_LINE
Call DT_B_READ
Call INSERT
BEnd Case:

NG S W N

else:
If {ASCII key implies any used key) °
then: -
Case {Used key) Of:
Cursor up : Call CUR_UP
Cursor downs Call CUR_DOWN
Page u; : Call PAGE_BWD
Page down : Call PAGE_FWD
End Case:
End If:
BEnd If:

End Case:
Until (ASCII code implies ESCAPE)

End Procedure: A

Fig.4.14: The PDL structure for Base Level

The Case construct which is embedded within the loop forms a
standard structure for multiple function-key driven operations,
This method, although not completely externally programmable,
does have large scope for expandability. Extra functions can
merely be inserted as a separate Case option in the form of a
procedure call. Thus, the program will remain simple in basic
structure.




Page 56

The gateway fac:lity can easily be identified by the multiple
statements used for the function key 7 option. UHere, the
Definition Table is again accessed using the B Read operator so
that the next state can be obtained., It is this next state which
is used as the top state for the INSERT procedure. Details of
this procedure will be given in section #4.4.

The structure of Fig.4.14 also brings out the possibility of
using special keys on the keyboard (eg. the cursor control keys
or the Pg Dn and Pg Up keys) to execute an associated routine.
Thus, special~purpose function keys can easily be added. A
constant is assigned to the ASCII codes generated when a key is
depressed so as to make the system as portable as possible. The
system designer need only change the constant values at the
beginning of the program to suit the new keyboard, resting
assured that the program will run as expected without Ffurther
intervention.

A more general structure for being able to trap any key or key
combination of the keyboard is given in Fig.4.15. It is assumed
that function keys and special keys {including Cntrl keys) put
out two ASCII codes when depressed.

Call KBD_GBET
Case (PSCII code) of:
Groupl special keys: Call KBD_GET
Case {ASCII code) of:
Groupl £x keys: Case {fx key) of:
1z 4.
23 wes
else:
*do nothing*
**ie, £x key
invalig¥**
End Case:
else:
Case (ASCII key) of:
CUrsSor Up 3 eas
Cursor down;
else:
*do nothing*
**je,no other keys
are valid**
End Case:

End Case:
Group2 special keys:

Groupn special keys:
else:
*text is entered*
End Case:

Fig.4.15: The PDL structure for using any key or key combination




Page 57

4.3.3 Process routines

Luxsor.Up

This routine is responsible for moving the cursor in Screer up
by one line, This function is assigned to the Cursor Up key. The
procedure call can be seen below.

CUR.UP (VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER;
KCT_SIZE: INTEGER)

The variables MS_CUR_POS and MS_TOP_LINE are used entirely for
the management of the Wain Screen. As explained previously, given
the top line of the Main Screen and an absolute cursor position,
all other unknowns are easily calculated. The tasks which need to
be performed in this routine include the moving (or effective
switching off and on} of the cursor {Cuxsor 1) on the Main
Screen; the checking for scrolling corditions; and the checking
for an error.

Procedure Cursor Up
Begin:
If (cursor 1 is not at the top of Screen 1)
then:
*Move File Linked List Pointer Back by one line*
*Turn the old cursor OFF*
MS_CUR_POS = HS_CUR_POS - 1
*Turn the new cursor ON*
elses
**(ie. Cursor 1 is at the top of the screen)**
If {MS_TOP_LINE = 1)

then:
*pPut ouat an error message -~ top of file*®
else:
it éAn exact half screen scroll is possible)
en:

*Decrease MS_TOP_LINE by a half screen*
*Set MS_CUR_POS to the centre of Screen 1%

else:
*%({ie. An exact half screen scroll is not possible)**
*Set MS_CUR_POS to its appropriate value*
*Set MS_TOP.LINE ko 1*
End If:
*Rewrite the entire Main Screen*
*Turn the new cursor ON*
End If:
BEnd If:
d:

End Procedure:

Fig.4.,16: The PDL for the Cursor Up routine

An error will occur if the user tries to move the cursor above
the file's top line. Page scrolling is needed when the cursor
reaches the top of the logical Main Screen, but not the top of
the file, A half page backward scroll is performed when scrolling




Page 58

is required so that the cursor is positioned in the centre line
of Screen 1. This centre line is taken as the (MS_SIZB/ 2)th
line. A skeleton PDL structure of this routine is given in
Fig.4.16. The various condition checks are clearly depicted.

The comment "*Rewrite the entire Hain Screen*" involves moving
the pointer in the File Linked List to access the required 20
lines. Each line is formatted and written to the Main Screen
individually. This routine is used often when either part of or
the entire HMain Screen is to be updated. Thus, FPFig.4.17 is
included to demonstrate the 3teps involved.

*Move File Linked List pointer to the £irst line to be displayed*®
*Initialize the loop counter*®
Repeat:

Call FORNATTER

Call MS_WRITE

*Move the File Linked List pointer forward by 1%

*Increment the loop counter®
Until (The correct number of lines have been updated on Screen 1}
*Move File Linked List pointer back to the new cursor position*

Fig.4.17: PbL for updating the Main Screen

Cursor Down

Procedure Cursoxr Down

Begin:

If ((The cursor is currently not on the last line) and
{Scrolling is not required))
then:

*Move File Linked List pointer forward by 1*
*Turn the old cursor OFF
MS_CUR_POS := MS_CUR_POS + 1
*Torn the new cursor ON®

else:
If (The cursor is on the last line)
then:
*Put out an error message -- bottom of file*
else:

**(ie, Scrolling must be performed)*¥
If {An exact half screen scroll is possible
then:
*Increase MJ3_TOP_LINE by a half screen*
*Set MS_CUR_POS to the centre of Screen 1%
else:
*Set MS_CUR_POS to its appropriate value¥
*Set MS_TOP_LINE to one screen leas than the
FILE_BOT_LINE®
End If:
*Rewrite the entire Main Screen*
#Turn the new cursor ON*
End If:
Bnd 1f:
Bnd:
End Procedure:

Fig.4.18: The PDL for the Cursor Down routine

w




Page 59

This routine moves Cursor 1 on the MMain Screen down by one line.
This function is assigned to the Cursor Down key. The procedure
call can be described in Pascal as follows:

CUR.DOUN (VAR 1S_CUR_POS: INTEGER;
R HS_TOP_LINE: INTEGER;
FILE_BOT._LINE: INTEGER;
KCT_SIZE: INTEGER)

The usual variables are used, however, the FILE_BOT_LINE i.put is
the variable (globally accessible) used to denote the last line
of the file.

fgain, checking must be performed for scrolling and error
conditions. An error is detected when the user attempts to move
the cursor beyond the file's last line. A half page forward
scroll is performed when the cursor is moved beyond the last line
of the logical Main Screen. A scroll will position the cursor
{from the top of the physical screen) at the ((MS_SIZE/ 2) +
1)th4 iéne. The skeleton structure for this routine is shown in
Fig, 4,18,

Page_Backward
Procedure Page Backward
Begins

If (MS_"OP_LINE = 1)
then:
If (MS_CUR_POS = 0)
th

an:
*pPut out an errxor =~ Top of file*
else:
*Move file pointer to top of f£ile*
*Turn old cursor OFF*
MS_CUR_POS = 0
*Turn new cursor ON*
End If:
else:
*%(ie, scrolling is required)**
IE (exact page scroll is possible)
then:
*Move file pointer back by one page minus one*
*pecrement M8, TOP_ LINE by above amount*®

elze:
1f (Curaot 1 can be moved without overshooting)

the:
*Set MS.CUR_POS to its appropriate value*

MS CUR_POS i=
End If
End If:
*Rewrite entire Main Screen*
*Turn new cursor ON¥
End If:

End:
Bnd Procedure:

Fig.4.19: The PDL for the Page Backward routine




page 60

This routirs will meke every attempt to perform a full -page
scroll backward., If possible, MS_TOP_LINE is decreased by a full
screen size minus one while MS_CUR_POS remains unchanged., This
means that the f£irst line of the page displayed on Screen 1
before scrolling will become the last line of the page displayed
after scrolling. If the screen's top line cannot be decremented
by the complete ideal amount, then the cursor is moved the
equivalent of one screen backward., If no decrement of MS_TOP.LINE
ig possible, then the cursor is moved to the top line of the file
and screen.

This procedure, which is also assigned to the Pg Up key, can be
invoked using the following:

PAGE_BWD (VAR M8_CUR_POS: INTEGER;
S_TOP_LINE: INTEGER;
“ILE BOT_LINE: INTEGER;
KCT_8IZE: INTEGER)

The usual global parametery are passed for the sake of being
explicit, Besides the tests needed as mentioned above, an error
will occur if the user attempts a backward scroll when Cursor 1
is positioned at the top of the file. The skeleton PDL structure
is given in Fig.4.19.

Page_Eoryard
Procedure Page Forward
Begin:
1£ éNo scrolling 15 raguired)
then

If {Carsor 1 is already at the bottom of the file)
then:
*put out an etror -~ Bottom of file*
else:
*purn old cursor OFF¥
*Set MS_CUR_POS to app:opriate bottom line*
*furn new cursor ON¥
*Move File pointer to end of file*
End If:
else
If {Exact page sctoll is possible
the

nt
*Move f£ile pointer forward by « page minus one*
*Increment M8 TOP_LINE by the same amount*
else:
If (Cursor 1 can be moved without overshoot)
ent
*Set MS_CUR_POS to its correct value¥
et
*Set MS_TOP_LINE such that f£ile bottom line is at
end of Main Screen®

*Rewrite entire Main Screen*
*Tyrn new cursor ON*
End If:
End Procedures

¥ig.4.20: The PDL for the Page Forxward routine

|
Eﬂ
|
!
|
f
|
|
i’
1
i
|
I
i
|
i
!
b

_~f§ﬁwk5”@*nm~,a>




¥
b
I

Page 60

This routine will make every attempt to perform a full page
scroll backward. If possible, MB_TOP_LINE is decreased by a full
screen  size minus one while MS_CUR.POS remains unchanged. This
means that the first line of the page displayed on Screen 1
before scrolling will become the last line of the page displayed
after scrolling, If the screen's top line cannot be decremented
by the complete ideal amount, then the cursor is moved the
equivalent of one screen backward. If no decrement of MS_TOP_LINE
is possible, then the cursor is moved to the top line of the file
and screen.

This procedure, which is also assigned to the Pg Up key, can be
invoked using the following:

PAGE_BWD (VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER;
FILE_BOT_LINE: INTEGER;
KCT_SIZE: INTEGER)

The wusual global parameters are passed for the sake of being
explicit. Besides the tests needed as mentioned above, an error
will occur if the user attempts a backward scroll when Cursor 1
is positioned at the top of the file. The skeleton PDL structure
is given in Fig.4.19,

Page.Eorward
Procedure Page Forward
Begin:
If (No scrolling is required)
then:
If (Cursor } is already at the bottom of the file}
hen:
*Put out an error -- Bottom of file*
else:
*Turn old cursor OFF*
*Set MS_CUR.POS to appropriate bottom line*
*Purn new cursor ON¥*
*Move File pointer to end of file*
End If:
else:
If (Exact page scroll is possible}
then:
*Move file pointer forward by a page minus one¥®
*Increment MS_TOP_LINE by the same amount*
else:
If (Cursor 1 can be moved without overshoot

else:
*Set MS such that £ile bottom line is at
end of n*

*Rewrite entire Main oureen®
*Turn new cursor ON*

End If: -

ds

End Procedure:

Fig.4.20: The PDL for the Page Forward routine




Page 61

Similarly to the Page Backward routine, this routine attempts to
scroll the file on Screen 1 forward by a page minus one., This
means that the bottom line before scrolling becomes the top line
after scroiling. All the possibilities described in the PAGE_BWD
routine above are accounted for, with an error occuring if a
forward scroll is attempted with Cursor 1 on the last line.

This procedure is assigned to a Iunction key in Base Level, and
also to the permanently available Pg Dn key on the keybeoard., This
routine has the following parameters:

PAGE_FWD (VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER
PILE_BOT_LINE: INTEGER;
KCT_SIZE: INTEGER)

The parameters are again the usual global parameters and Fig.4.20
shows the structure of the routine in PDL form.

Top of File

This routine moves the cursor to the top line of the £file.
Cnecking is performed to determine if scrolling is needed and an
ervor will be detected if this function is attempted with the
cursor already on the top line. A better idea of the nature of
the procedure can be obtained by studying the PDL description of
Fig.4.,21. The routine name and parameters are as follows.

TOP_OF.FILE (VAR MS_CUR.POS: INTEGER;
VAR HS_TOP_LINE: INTHGER;
FILE_BOT.LINE: INTEGER;
KCT_8IZE: INTEGER)

Procedure Top of F. 1%
Begins
If (MS,TOP,LINE = 1}

en s
If (MS_CUR_POS = 1)
hen:
*Pat out an error -~ Top of file*
else:
¥yove File Linked List pointer to top of file¥
*Purn 0ld cursor OFF*
M8 CURLPOS := 0
*urn new cursor ON*
BEnd If:
else:
*%(ie, screlling is required)®x
#Rewrlte the entire Main Screen*
MS_CUR_POS := 0
MS_TOP. LINE 1
*Turn new cursor ON®
End Ifs
End:
End Procedure:

Fig.4.21: The PDL for the Top of File routine




Page 62

Botton. of Eile

Similar to the Top of File routine, this procedure will move the
cursor to the last line of the file. Again, checking is done to
determine whether scrolling is required or not. An error will
occur if this function is attempted when Cursor 1 is on the last
line of the file. The routine's parameters are shown below; the
PDL structure of this procedure is given in Fig.4.22.

BOT_OF_FILE {VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER;
FILE_BOT.LINE: INTEGER;
KCT_SIZE: INTEGER)

Procedure Bottom of File
Begin:
IE (8erolling is not required)
then:

If {Cursor 1 is already at the bottom of file)
then:
*Put out error message -~ Bottom of file*
elses
*Turn old cursor OFF¥
*Set MS_CUR_POS to new value*
*Turn new cursor ON®
*Move File Linked List pointer to end of list®
End If:
else:
**(je, scrolling is required)**
*Rewrite the entire Main Screen*
*Turn new cursor ON*
End If:
End:
End Procedure:;

Fig.4.22: The PDL for the Bottom of File routine

Surger.to.Ling

This function allows the u:er to choose a line number to which
Cursor 1 is to be moved. The line number is entered in the Window
Screen via the ILine Bdit~ An illegal line number is not
accepted and an error messsyut is dlsplayed in the Prompt Screen,
Only an integer number of fcu: digits or less which 1s between 1
and PILE_BOT_LINE will be zor-whad.

If the 1line number reque appears in the present Screen 1
display, the cursor is . . moved to this line. If the 1line
number is not on Screen 1, :nrolling occurs, with all attempts
being made to place the cursor with the required line in the
centre of the s¢reen. In this routine, the centre of the screen
is taken as the (MS_SIZE / 2)th line. The procedure is defined as
shown below, with Fig.4.23 giving the structure of the Cursor-to-
line routine in PDL.

CUR_TO LINB (VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER;
FILE_BOT_LINE: INTEGER;
KCT_SIZE: INTEGER)

Y




Proced
Begin:
*Pro
*Set
*Set
*Set
*Set
Call
Call
Call
If (
the

el,

Bnd
End:
Ené Pr

Page 63

ure Cursor to Line

mpt user for input line*
inputs for Line Bdito, *
WSP to start of line*
all function key flags to FALSE*
length of editor to aliow only a 4 digit number*
LINE_EDITOR
WS_CLEAR
PS_CLEAR
Input line number is not valid)
ens
*Put out an error*®
se:
**{ie, line number is valid)** .
If (Scrolling is not reguired)
then:
*Move pointer to correct value on Main Screen¥
*Turn old cursor OFF¥
*Bet MS_CUR_POS to new value*
elaes
**(ie., scrolling is required)w+
If (Requested line too near top of file to be placed in
centre of screen)
then:
*love file pointer to requested line number*
HS_TOP_LINE ;= 1
*Set MS.CUR_POS to value indicated by line number¥

else:
If (Requested line too near bottom of file to be
placed in centre of screen*
then:
*Move pointer to line number®*
*Set MS_TOP_LINE so that file bottom line is at
end of Main Screen*
*Set MS.CUR_POS to value lndicated by Lline
number*
elses
#%(le., Reguested line can be located at centre
of Hain Screan) %
*Hove £ile pointer to line number¥
*get MS_TOP_LINE such that line number is in
centre of Main Screen*
*Sat *MS_CUR_POS to half of the Main Screen

Bnd If:
Bnd If:
*Rewrite entire llain Screen*
End If:
*Purn new cursor ON*
If:

ocedure:

Fig.4.23; The PDL for the Curscr To Line routine

It will be noted that the Line Bditor package is used initially.
fthe length of the line is set so as to restrict the user to a
maximum of four digits. The highlighted prompt which is displayed

X,




R

Page 64

in the Window Screen ("Line Mumber =") is not editable.

Also worth noting is the task involved in dJisplaying the error
message “Line Number .... is out of range. Acceptable range = 1
to FILE_BOT_LINE." with the FILE_DOT_LINE and the "...." being
replaced by their appropriate values. Clearly, integer to string
conversions and string concatenation facilities are needed to
assemble this type of message in the form of a single string.

Edit.Line

This function allows the user to pick any line from the file with
Cursor 1 and edit it, if possible, with the Line Editor in the
wWindow Screen, Any line containing 2 key word only will not be
editable and an error message will be output in the Prompt
Screen. The user is able to edit the user-entered text or a
placeholder in the Window Screen, without affecting the system-
generated highlighted keywords. The accepted modified line is
ENTERed and will replace the old line in Screen 1. If the ESC key
is used, the line will remain as before and the Line Editor exit.

As no modification to the Screen 1 cursor position is performed
in this routine, the editor routine is invoked by the statement:-

EDIT.LINE

Procedure Edit Line
Begin:
*Read File Linked List at current pointer position*
*Read the Key Code Table using the first key code obtained from

above*
If (Bditing is allowed)
thens
*Initlalize settings for the Line Editor*
Call LINE_EDITOR
It éThe new line differs from the old line
then:
*Write the new text line in place of the old text iine
in the File Linked List¥
Cali FORMATTER
Call MS_WRITE
*Turn the cursor haek ON*
Fnd If:
elses
*put out an error message -- line not editable®
End If:

End Procedure:

Fig.4.24: The PDL for the Edit Line routine

Pig.4.24 shows a PDL structure of the procedure., This routine is
virtually self explanatory, but the Line Editor inputs can
perhaps be elaborated on. The user is given 30 columns of line to
edit {Inclusive of the key word), Only the first key word will be




Page 65

displayed. The key word is obtained by reading the Key Code
Table, while the editable text line is taken directly from the
File Lin" List. All function key flags are set to FALSE so that
only the ENTER and ESC keys will exit the Line Editor.

Insext _Gateway

See the main program in the next section (Section 4.4.2).

4.4 Insert Mode

4.4.1 Process function

Insert mode is used for the insertion of one or more lines of PDL
inte the PDL file. This process deals with data insextions
construct or block insertion and line insertion. Data items are
inserted by entering a specialized Data Description mode where,
via the use ~f function keys, a data item can be quick.y defined,
and automat.cally positioned in the program's Data Description
segment. Using this method the system provides a friendly user
interface, while constantly defining each entered data item for
future semantic error checking. The automatic placement of the
data ditem in the program with its required key words and
indentation is also of great help to the user.

The Construct or Block Insert function makes use of templates, A
template with associated placeholders will be inserted in the PDL
program below the current cursor position, with all indentation
considerations accounted for. This method of program generation
ensures syntactical correctness as all constructs are terminated
in the correct manner due to the templates used.

The Line Insert routine will allow multiple lines to be inserted
at certain permissible points in the PDL program. Again,
indentation is automatic, and insertion occurs after Cursor 1,
This function can be wused +to expand a placeholder or add
statement or comment lines, The Data Description segment of the
PDL program may not be accessed via this function and the user
will be warned if line insertion is not permitted.

The structure of Insert mode is such tbat a number of insert
routines (besides the ones listed above} can be added modularly
to the package by simply expanding the number of valid function
keys in this wmode. Cursor 1 can be moved up and down in Insert
mode with the use of the cursor control keys. The Pg Up and Pg Dn
keys for viewing the f£ile by pages, are also operational,
4.4.2 Process Structutre
The Insert process can be called using:

INSERT {TOP_STATE: INTEGER})

The TOP_STATE variable represents the state or mode from which




Page 66

any type of insertion can be chosen. This input is passed from
the calling program as the WEXT_STAT® which is obtained from the
Definition Table when the Insert [unction key is depressed in
Base Level. A PDL description of the pasic Insert program is
given in Fig,4.25, The familiar Case structure (also found in
Base Level) i ain apparent here. This gives the designer
greater flexibility in the adding to or modifying system
operation.

Procedure Insert
Begin:
Repeat:
Case (Input Rey)} Of+
special keys: Call KBD_GET
(Key implies a furstion key)
then:
If {Functicn key is valid)
then:
Call DT_B_READ
Call PT_READ
*Write prompt to the Prompt Screen*
Case {Function key)} Of:
1: Call DATA_DESCRIPTION
2: Call ALGORITHM
10: Call DT_A_READ
Call FPS_WRITE
BEnd Case:
End If:
else:
Case {Key) Of:
Cur Up: Call CUR_UP
Cur Dn: Call CUR_DOWN

Pg Up : Call PAGE_BWD
Pg Dn : Call PAGE_FWD
else:
*Do nothing*
End Case:
BEnd If:
else:
*Do nothing*
End Case:
Until (Key Code implies RETURN)

End:
End Procedure:

Fig.4.25: The PDL for the Insert mode routine

The procedure is similar to Base Level: an A Read operation is
performed on the Definition Table with the TOP_STATE as reference
so ag to obtain the function key definitions. Once a valid
function key has been depressed, a B Read operation is performed
on the Definition Table. From the codes obtained, a prompt is
displayed and the next state is obtained for use by the
subsequent routines.

The Case option * "1 then call the routine corresponding to the
function key numbe- {1 to 10) which is depressed. It can be seen

)




Page 67

that only one routine call is nceded each Ffor data item
ingertion, c¢onstruct insertion and line insertion. The variables
passed to these routines include the globals: NO_OF_STATES,
RCT_SIZE and PT.SIZE; the MHain Screen management variables:
HS_CUR_POS, WHS_TOP_LINE and FILE_BOT LINE; and the NEXT STATE
obtained above.

Only the RETURN function key {which is always assigned to
function key 10) does not make use of a separabe routine.
3 Instead, an A Read operation is performed on the NEXT_STATE, thus
e retu:nxng to the previous state and displaying a set of function
keys in Screen 4, This is also the only key (having a key code of
4000) which will terminate the program's Repeat-until loop.

The next section (section 4.4.3) describes more clearly the
implementation details involved in the design of the individual
ingert routines,

s

4.4.3 Process routines

gy ey

Data.Desoriptiop segment. routine

i

The defining routine name, together with its parameters is shown
below:

DATA_DESCRIPTION { TOP_STATE: INTEGER;
N_STATE: INTEGER;
: NO_OF_STATES: INTEGER;
1 KCT_SiZE: INTEGER;
T PT_SI2E: INTEGER;
o VAR US_CUR_POS: INTEGER;
H VAR M3_TOP_LINE: INTEGER;
VAR FILE.BOT.LINE: INTEGER)

i For editing of the data item definitlon which is being entered, a
%;' IE temporary data structure is necessary. The data structure adopted

is as follows:

DD_RECCORD = Record:

; KC: Integ: *Key Code*
1 i’ b H stting (10} of Character *Key Word*
P End Record:

D_ARRAY = Array 1l..4] of DD_RECORD

Variables:
D_ARRAY:
i 8ingle:
Local:
DD_ARRAY
! Characters:
Acrays:
Lo

cal:
DI_STRING {string of 80)

e E 2 Y




e

M S

i
i

Page 68

The DI_STRING containg the uscr-entered data item. The DD_ARRAY
represents the key codes {RC) and key words (KW} of each of the
four data descuiption fields (function, type, structure and
scope) used to define the data item. Both key codes and key words
are stored because of the convenience of not having to access the
key code table continuously to translate the key codes.

The resources used by this process involve:

Terminal Resource -- for the specialized formatting of the Window
Screen as well as for displaying inserted
data items on the Main Screen

File Linked List -~ for placement and positioning of the defined
data item in the PDL file

Definition Table -- for determining the next state, key code and
prompt codes associated with any £unction
key depression

Key Code Table -- used to find the key word and indentation
corresponding to the defiping key code for
visual display in Screens 1 and 2.

Prompt Table -~ used to translate the prompt code into a
prompt which can be written to the Pronpt
Screen when reguired

Formatter ~- ysed for the visual formatting of the newly
inserted data structure in Screen 1

Line BEditor -~ for edit’'-+ of the user-entered data item
name ir ... Yindow Screen

Fig.4.26 gives a high-lev #DL  description of the Data

Description Insert alcorithm. This routine makes extensive use of
the Definition table for determining the key codes, next states,
and prompt codes associated with any function key. 1In Fig.4.26 a
little detail is shown for the mechanism which moves the user
through all the Data Description levels. The func®ion of some of
the variables used is given below:

TOP_SYATE =~ the Insert mode state

THIS_STATE -~ the pregent state

NEXT_STATE -- the next state {obtained from the Definition Table)

PREV_LEVEL -- the previous level of data item definition (ie.
function=1, type=2, structure=3, scope=4)

The outermost While-do loop will enable the user to remain in
this routine until the NEXT_STATE equals the TOP_STATE, Within
the loop, if the NEXT_STATE is identical to the present state,
then nc system action is zequzzed. Otherwise, if a new field is
defined, the previous field is written in highlighted font, while
the next f£ield is highlighted in reverse video font. Also, if the
next and present states differ, then a new function key
definition line must be written to Screen 4.

The "*Test for an error*" procedure almost exclusively refers to
the error which occurs when the user tries to CONTINUE without
having defined the present field. In this error case, the second
next state and prompt code values obtained in the Definition
Table are used instead of the first.

After the top state has heen returned to, the key code is tested.
If abandonment of the defined data item is implied, no system




Page 69

action occurs (the user is returned to Insert mode ag if Data
Definition Insert mode had never been entered). If, on the other
hand, the defined data item is to be accepted, then the Placement
routine is called. This routine will insert the user—entered data
Jtem together with any relevant key words into the PDL file
automatically.

Procedure Data Description Insertion

Begins
*Initialize data structure*
THIS_STATE TOP_STATE
PREV_LEVEL 1

*¥nitialize the key code to a non-existant value*
While (NEXT_STATE <> TOP_STATE} Do:
If (NEXT.STATE <> THIS_.STATE)}
then:
Call RCT_READ
1f {Key code was found)
then:
*Ensure that key word is exactly 10 characters long*
DD_ARRAY [THIS_STATE-2}. KC Key Code
DD_ARRAY [THIS_STATE~2). KW Rey Word
End If:
WS_HI_WRITE {{PREV_LEVEL-1)*10, DD_ARRAY [PREV_LEVEL]. KW}
If (Next State implies one of the 4 definition modes)
then:
PREV_LEVEL *the definition mode in question*
WS_RV_WRITE{{PREV_LEVEL~1) *10,DD_ARRAY | PREV_LEVEL] . KW)
End If:
THIS_STATE := NEXT STATE
Call DT_A_READ
Call F5_WRITE
End If:
Repeat:
Call LINE_EDITOR
Until {There is no error in the user-entered Data Item)
Call DT.B_READ
*Pegt for an error*
Call PT_READ
Call Ps _WRITE
End While:
If {Key code implies abandonwent of the present data item
definition

then:
Call PLACEMENT
End Ifs
Call DT_A_READ
Call FS_WRITE

Bnd Procedure:

Fig.4.26: The Insert mode structure in PDL

A PDL skeleton of the complex PLACEMENT routine is described in
Fig.4.27. The key codes are used Ffor determining not only where
the user is situated in the PDL program, but also where the newly
defined data item is to be inserted. An integer search as opposed

%y . o




Page 70

to a string search makes key codes a very good solution to
automating the placement process.

Only the relevant key words {(in the set of four) are inserted
where necessary, together with the data item name. If the user is
in the Algorithm segnent, inserting a data item will be
transparent, The user is left at the same point in the Algorithm
3egment while only the line numbers in the Main Screen tell of a
data item insertion elsewnere. If in the Data Description segment
instead, Cursor 1 will be positioned at the new data item name;
any necessary scrolling being dealt with by this placement
routine.

Procedure Placement
Begin:
*gearch the Data Description segment by key codes to determine
where new data item should be placed*
*gege:mlne which key words (if any) are to be added to the
ile
*Insert the data item and any necessary key word in the Data
Description segment*
If (User is in the Algorithm segment)
then:
*Change only the line numbers on the Main Screen®
else:
*Attempt to place Cursor 1 and the data item in the centre
of the Main Screen*
End If:
End:
End Procedure:

Fig,4.27: The PDL structure for the Placement routine

Algerithm. segment roubing

Thig routine is responsible for Construct Insert mode. BHere the
user <an insert an entire construct template in the Algorithm
gegment by depressing a single function key. This template-based
system ensures that no syntactical errors occur. The routine is
called as shown below:

ALGORITHM { TOP_STATE: INTEGER;
NO_OF_STATES: INTEGER;
RCT_SIZE: INTEGER;
PT_SIZE: INTREGER;
VAR MS_,CUR_POS: INTEGER;
VAR M& TOP_LINE; INTEGE";
VAR P}l BOT_LINE: INTECER)

The Algorithm routine is buiit as a module and itz structure can
be seen in Fig.4.28. Construct insertion is not permitted in the
Data Description segment; between an "If" and a "then:" of an If-
then or If-then-else construct; or after the end of the file. The
chosen congtruct is inserted after the line indicated by
Cugsor 1.




Page 71

Procedure Construct Insert
Variables:

Boolean:
Single:
Local:
N EXIT. FLAG
Begins:

*Read the File Linked List at the current Cursor 1 position*
If (Key code obtained above implies error

an:
*but out an error -~ insertion is not permitted here*
elsé:
*Perform an A READ operation on the Definition Table*
*Write the key definition obtained above in Screen 4%
EXIT_PLAG := PALSE
Repeat:
Call KBD_GET
' Case (Key) Of:
B special keys: Call KBD_GEY
EREREREN If (KRey implies a valid function key)
: then:
| EXIT_FLAG := TRUE
! Call DT_B_READ
If (Key code does not imply RETURN)}

then:
Call GET_ CONSTRUCT

End 1f:
else:
case {Key) Of:

Cur Up: Call CUR_UP
Call CUR_DOWN
Call PAGE_BWD
Call PAGE_FWD

S ——

*Do nothing*

*Do nothing®

End Case:
Until (EXIT_FLAG = TRUE)
Call DT.A_READ
Call PS_WRITE
BEnd If:
End:
i End Procedures

#ig.4.28: The PDL structure for the Algorithm routine

The resources and routines used by this procedure are as follows:
~ Terminal Resource =~ for displaying in Screens 1, 3 and 4

iy rile Linked List -~ for insertion of the block construct inte
the PDL file

pefinition Table -~ for determining the next states, prompt
codes and Kkey codes cotrresponding to the
chosen template




Page 72

Key Code Table ~- for determining the relative indentation
associated with each key word in the cheosen
template

Frompt Table -~ for f£inding the prompt to display in the
Prompt Screen from the prompt code obtained
from the Definition Table

Construct Table -= for determining the structure of the
template chosen by the user

Pormatter -~ for reformatting the display of the Main
Screen whenever any part of it 1s to be
updated

The GET_CONSTRUCT routine is called upon when a construct is to
be inserted. Fig.4.29 shows the PDL structure for this routine.
The key code obtained from the Definition Table on depression of
a function key corresponds to a specific predefined template. The
GET_CONSTRUCT routine will search the system table CONBTR,SYS to
£ind the required template. The single line of data thus obtained
{see Appendix €} is decoded and inserted in the File Linked List
as a number of lines constituting the required template. The Main
Screen 1is arranged so as to attempt to place the newly inserted
constrict at the top of the page, with Cursor 1 being positioned
at the first llne ~f che construct which contains a placeholder.

Procedure Get Construct
Begin:
*Search CONSTR.SYS table for tne requested template*
*Decode the data obtained abcove*
*Write the template into the File Linked List*
*Arrange the Main Screen display so that Cursor 1 is on the
first template placeholder*

nds
End procedure:

Fig.4,29: The PDL for the Get Construct routine

Indentaktion is automatically calculated, and any supexfluous
placeholders removed by the INDENT routine of Fig.4.30. This
progedure compares the indentation of the line before and the
line after which insertion is te occur. The Line with the
greatest indentatlion determines the indentaticn of the inserted
construct.

Mo determine the indentation of the two lines mentioned above,
the absolute indentation stored in the File Linked List needs to
be added to the relative indentation obtained from the Key Code
Table (see also Appendix D}). A placeholder which is superfluous
is detected when the lina vhose indentation was followed consists
entirely of a "<CONSTRUCT>" placehclder. In this case, this line
is removed. This important routine is also used in the Line
Insert mode.

W




e

Page 73

Indent

< the Pile Linked List at the current pointer positlon¥
*Reat the File Linked List at the next pointer nosition*

*Read the Rey Code Table for the key code of the first line*
*Read the Key Code Table for the key code of the second line*
*Calculate the total absolute indentations for the lines by
using the indentation level and absolute indentations abtained
above*

If (Indentation of first line > Indentation of second line)

Indentation := Indentation of first line
If (The first line is a <CONSTRUCT> placeholder
then:
¥Return this line to the space list*
FILE_BOT, LINE :~ FILE_BOT_LINE ~ 1
MS_CUR_POS := tIS_CUR_POS - 1
End If:
else:
Indentation := Indentation of second line¥*
If (The second line is a <CONSTRUCT> placeholder)
then:
*Return this line to the space list¥*
FILBE BOT_LINE := FILE_BOT. . LINE - 1
Bnd Ifs :
Bng If:
a:

End Procedure:

Fig.4.30: The PDL for the Indent routine

Lipe_Ipserting.-rouking

this routine ig responsible for dealing with Line Insert moda,
Once entered, this mode allows the user to ingsert lines
sequentially using fthe Rhine Editor. The routine call and the
resources used are listed below:

INSERT_LINE ( TOP_STATE: INTEGER;
WO_OF_STATES: . INTEGER;
KCT_SIZE: INTEGER;
PT_SIZB: INTEGER;
VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER;
VAR FILE_BOT.LINE: INTEGER)

Terminal Resource -- for displaying purposes

File Linked List -~ for insertion into the PDL file

Definition Table -~ for determining the next state

Key Code Table -~ for use in the INDENT routine

Prompt Table -— for displaying prompts in the Prompt Screen

Again insertion is not permitted in the Data Description segment;
between an "If" and "then:" key word line; or after the end of
the program. On entering the Line Insert mode, all the lines on
the Main Screen from the current cursor positiun are cleared, and
Cursor 1 vanishes. The user is then placed in the Window Screen




Page 74

and usges the Line Bditor facilities to BNTER a line of text. Aas
the line is inserted, the INDENT routine mentioned previously is
called, s0 that indentation and superfluous placeholder
elimination are automatically dealt with. Yhen the user exits
this mode, the Main Screen is "closed up" and Cursor 1 reappears.
Pig.4.31 shows the PDL structure adopted.

Procedure Insert Line
Begin:
*Read the File Linked List at the current cursor position*
If éThe key code obtained above implies an error
then:
¥put out an error —-— insertion not permitted here¥*
else:
*Clear the Main Screen of lines after Cursor 1*
*Purn Cursor 1L OFF*
Repeat:
Call LINE_EDITOR
*Insert the new line into the Pile Linked List®
*Put out the new line to the Main Screen®
Until (Insert Line mode is exit
*Close~-up the Main Screen®
*Turn Cursor 1 back On*
End Ifs

End Procedure:

Fig.4.31: The PDL for the Insert Line routine

- . ) -




Page 75

THE MAIN PROGRAM

5.1 Operation

The Main program deals with the loading of the system tables; the
inputting and outputting of editor files; and the calling of the
Base Level. On entering the PDL-~editor, the system tables are
loaded into dynamic memory. The user is then prompted for the
input file. This is the file which is to be ediked. This file is
loaded into the editor and displayed on the lain Screen. At this
stage, the wuser is in Base Level and all the editing functions
described earlier can be accessed.

1 i [ |
[scrolling Functions| |Edit Line| [Insert Mode| ([Delete Hode
{

!
N 1
| | | }
| Constr Ins | | Data Item Ins i [ Line Ins |
|
| | t
| constr Del | | Block Del | | Line bel |

Fig.8,1: The structure of the PDL generator package
Delete mode is shown, but has not yet been implemenkted.
similarly, Copy and Move modes are easily added from Base
Level.

When the file has been satisfactorily edited, the ESC key will
move cthe user back to the Hain program. Here, the output filename




Page 76

is prompted for. This is the file in which oot\ the formatted and
unformatted versions of the PDL program will be stored.
(Extensions of ",PDL" and ",.COD" will distinguish between the
formatted and unformatted files.) The user is then able to edit
another file via the same procedure or exit the package entirely.

5.2 Structure

It should be clear now that a modular hierarchical approach has
been used for designing this PDL syntax-directed editor package.
It is for this reason that the lain program will call upon the
Base Level routine only, which in turn will call on the various
modes available on reguest, The structure of the system is shown
in Fig.5.1.

The Main program uses the ~Ffollowing variablewy as global

parameters:

-~ M5_CUR_POS : INTEGER -~ PT_SIZE ¢ INPEGER

=~ TOP_STATE 3 INTEGER == NO_OF_STATES: INTEGER

-~ MS_.TOP_LINE : INTEGER -~ STATUS + INTEGER

~~ PILE_BOT_LINE: INTEGER -~ PFILENAUE : STRING (8) OF CHAR

-~ KCT_SIZE INTEGER

All these variables have been described previously, with the
exception of FILENAME. This variable is provided to enable the
user to specify input and output f£ilenames from or to which data
is to be obtained or stored. Fig.5.2 shows the PDL structure of
the main program.

Program Main
Begins
*Initialize the TOP_STATE variable®
Call SCR_.FORMAT
Call RCT_INIT
Call DT_INIT
Call PT_INIT
Repeat:
*Get the input filename from the user®
Call FILE_LOAD
Call FILE_ SCROLL
*Get the output filemame from the user*
Call FILE_F_DUNP
Call FILE_UF.DUNP
“ *Determine whether the user wishes to exit the package¥
st Until (User wishes te exit the package
H Call CLR_SCR

i Ends:
5 End Program:

Fig.5.2: The PDL for the Main program




Page 77

It can be seen from Fig.5.2 that the screen is formatted into the
four logical screens and all the system tables are loaded before
the Repeat-until loop is entered. This looping construct enables
the user to edit a number of files without having to re-load the H
system tables continuously, Input and output filenames can De i
user~-specified, thus providing flexibility in this area. i

The FILE_SCROLL routine constitutes Base Level. The user will
remain in this routine until the ESC key is depressed from Base
Level. On exiting the package, the physical display screen is
cleared.

The FILE_LOAD, FILE_F_DUMP and FILE_UF_DUMP are routines used for
initialization and termination of any editing session. Figures
5.3, 5.4 and 5.5 give virtually self-explanatory PDL descriptisns i
of these routines. . .
|
i

S

. Procedure File Load

. 7 Begin: .
HS_TOP_LINE := 1

¥8_CUR_POS 0
Call FLL_INITIALISE
g *Read the input file and transfer it to the File Linked List* {
§ K *Set the FILE_BOT_LINE variable* L
#Display the first 20 lines of the input file in formatted form

on the Main Screen*

*Turn Cursor 1 in the Main Screen ON¥

- End:

End Proceduxe:

H
1
. |
I Fig.5.3: The PDL for the File Load procedure 5
Procedure FPormatked File Dump 5

Begin:
*Open an output file with the name specified and with a *,POL”
extension*
*Move the file list pointer to the beginning of the list*
Repeat:

Call FORMATTER
*Write the strings obtained above on a single line of the
text file*
*Move the ligt pointer forward by one position*
Until (RAll items in the File Linked List have been stored on

Pig.5.4: The PDL for the Formatted File Dump routine

i
}
1
|
|
i
I
ile

End:

Bnd Procedure: l
I
j

"o . P



Page 78
Procedure Unformatted File Dump
Begin: )
*Open an output f£ile with the name specified and with a ".COD"
extension®
*Move the list pointer to the beginning of the list*
Repeats

*Read a recorg*®
*Write the data into two lines in the text file: one for the
key codes; the other fur the text line*
*Hove the list pointer forward by one position*
Until (All items in the File Linked List have been writtern in
the file)
End:
End Procedure:

Fig.5.5: The PDL for the Unformatted File Dump routine




5

Page 79

IMPLEMENTATION AND PORTABILITY CONSIDERATIONS:

bue to limited facilities at the time, the package was iInitially
implemented on the Eclipse 5140 multiprocessing computer system
in MP/Pascal (Version 2,3} (DGC {1979%a, 1979, 1980)). The Dasher
Data General display terminals were used (DGC (1979c)) where
blinking, reverse video, underscoring and highlighting are all
possible,

The package had, however, severe limitations when implemented in
this environment. Curser pos.“"ioning on the screen is not
consistent, and this causes major problems when accurate cursor
positioning is constantly required, Being a multitasking system
supporting five terminals, compilation and linking is very slow.
The major disadvantage , however, was the limited memory space
available for executable program {64 KBytes)}. With such a large
package, these limits were soon exceeded.

Due to new facilities, the PDL generator package was moved to an
IBM Personal Computer, Here, all the problems mentioned above
vanished: cursor positioning is accurately and consistently
defined; compilation and 1inking are fast while 256 KBytes of
dynamic memory are available for program storage.

The Pascal routines were easily transported; the only variations
occuring in the areas of string manipulation and input and
output, 'The screen management differences, however, proved to be
vast. The compiler used 4is 1IBM Pascal version 1.0 (also
compatible with Microsoft Pascal version 3,2) under MS-DOS
version 2,0 (IBM (1981, 1983)),

The Terminal Resource is the resource which deals yith screen
management, thus leaving the rest of the package terminal
independent, On the IBM machines, the MS-DOS operating system
{IBM (1983)) is used for this purpose so that it is necessary for
the CONFIG.SYS file to contain the statement DEVICE = ANSI,SYS
when the computer system ls started up. Although it may be
initially difficult to adapt the Terminal Rescurce to a
particular system, once the primitives have been defined, the
rest ?E the package will be functional in this respect. (Walker
{1985))

As mentioned above, string manipulation and input and output
facilities are the only features of the package affected by
transporting it,

As the IBM~PC has set a new standard among personal computers,
the package implemented hereon 1s likely to be fully developed on
the IBM before belng transported to another system. Microsoft
pascal also makes use of modules to differentiate between systenm
biocks, A modular design approach is encobraged in many texts
{Myers (1975}, Parnas (1972}) as it makes a program separately
compilable and thus portable., ALl these features are supported by
Microsoft Pascal. .




Page 80

The resources are built as single data structures (eg. «CI_RES;
PT_RES; etc. (see Appendix B)) surrounded by the operators, These
operators are written as routines, and represent the only method
whereby the user may access any resource. The resource is
compiled as a separate module, Linking of this module to a
process 1is performed by including the OPS file (eg. KCI_OPS;
PT_OPS) in the process, This file contains all the operators
available for the specific resource together as external
procedures with any relevant input and output parameters. This
enables the system designer to use the operators £rom any
resource by including the OPS file.

Portability is further aided by the test programs which have been
written £or all the resources as well as the Line Editor. Uaing
the test programs, the designer can ensure that resource
operation 1is as expected. The Pascal used is also Kkept as
standard as possible (Jensen (1974)), and this is another
advantage if the package is to be transported.

[




page 51

EXTENSIONS, MODIFICATIONS AND RANDOM THQUGHTS

7.1 Tthe Front-end

At this stage, the front-end of the package is regarded as the
Hain program., WHere, on first entering the package, the system
tables are loaded., This loading from diskfile is only done once,
and this on entering the PDL editor package. Once the tables have
been stored in dynamic memory, the user is free to edit a number
of files.

Prom the Main program, before the FILE SCROLL routine is called,

the user is prompted for an input filename. This means that any

coded file can be called on for further editing at this stage. It

is assumed that the filename here has an extension of ".COD", as

these are the only file types which can be understood by the
package. If a new File is to be created, a set of function key

options should be provided giving the user a choice of the type

of program templates available, This choice should include:

== Program
-- Procedure
~=- Operation
~- Process
-- Pesourc .

The user should thus either type the name of an existing file
{with the use of the Line Editor in the Window Screen) which is
to be re-edited, or use a function key to define a new file. Any
new file must always be started with a template su as to give the
system a reference point from which to work, Clearly, using a
function-key template option for choosing a new £ile when a
filename has been specified in the Window Screen constitutes an
errot,

oOnce an input filename has been chosen the uger is placed in Base
tevel via the FILE_SCROLL routine. The User's Hanual {Bassanino
{1985b)) describes a level above Base Level ({ile. a pre-Base
level) where general package functions could be made available
{eg. Information on package operation; or facilities for setting
system parameters such as indentation settings or line length;
etc,). This idea is uged successfully in many editors (ey. IBH~
Wordstar and IBM-Professional Bditor) and greatly enhances the
Elexibility and power of the package,

When a file has been satisfactorily edited, a "Save" or "Abandon"
function key is used from Base Level, This should lead the system
through a series of questions so as to interactively determine
the exact needs of the user, Confirmation should always be
requested before an Rbandon operation is performed. If, however,
a file is to be saved, the user should be asked for an output
filename; if a formatted copy of the file is to be stored:; and if
a backup copy of the file is to be created.

e




Page B2

An alternative solution to output f£ile naming is that of
reguesting a filename initially., 7This filenans is then used as
the new filename, without having to specify an output filenawe,
Thus, if tae file entered in the Uindow Screen exists, it will be
loaded in the editor, while if it does not exist, a new file of
this name is created.

This method has the disadvantage that if a f£ile is to be used as
a skeleton for the production of a few routines, the first file
produced will take the name of the skeleton file. This means that
the remaining programs which were to be based on the skeleton
£ile cannot use it again. This problem can be resolved by
maintaining a backup copy of the old file {the skeleton file

after having edited the first new file, This backup file can then
be used again for the production of the outstanding routines.

It can be seen that the first method of naming input as well as
output files is not popular because of the added effort involved
in typing the wvarious filenames; while the second method of
specifying a single filename suffers from flexibility
limitations. & good compromise secems to be that of adopting the
first method, with automatic typing of the output and backup
filenames. Thus, under normal circumstances, the user is only
required to ENTER the filename displayed in the Window Screen. If
so desired, however, a new filename can be specified by
overtyping the existing filename in the Uindow Screen using the
Line Bditor facilities.

The user is now returned to the pre-Base system level where
another f£ile can be edited, or the package exited entirely. This
pre-Base level is thus useful as a point where system settings
can be adjusted before the next file is edited., 1In this level,
the Main Scrren may even acquire a new format. The present
package version includes only limited facilities for file naming
and astorage, but this front-end interface needs to be perfected
for the system to maintain its power and user-~friendliness.

7.2 Delete Mode

In the User's !Hanual, three types of delete functions are
described: Line Delete; Construct Delete: and Block Delete.

The Line Delete function has been implemented already (its PDL
structure is shown in Fig.7.1), but in so doing has raised a new
problem. In Line Delete mode, the line pointed ko by Cursor 1 is
deleted, while Cursor 1 remains at the same physical screen
position, This means that the bottom of the file will effectively
move up as deletion occurs. Thus, continuous deletion will delete
consecutive lines with Cursor 1 remaining in the same screen
position.

A screen scroll is thus never required in Line Delete mode. This
doeg, however, imply that the bottom line of the file will not
necessarily always lie in the last line of the Hain Screen whep a
Ffile is Jonger than I1S_SIZE and consecutive lines are deleted
near the end of the file. As the package scrolling routines were
designed to operate maintaining the lain Screen full at all
times, the delete function causes a problem. It is thus necessary




S

Page 83

to devise a system whereby the file bottom line can appear at any
position on the Main Screen before this delete function can be
implemented successfully.

Returning to Fig.7.1, it can be seen that, initially, tests are
performed to ensure that the line in question is not a line
containing a keyword or a placeholder., 1If this test is passed,
then the line may be deleted. Deletion is simply performed by
returning the record pointed to by the File Linked List pointer,
and decreasing the file length by one. Logically, only the
portion of the lain Screen below Cursor 1 is rewritten; the
curgor remaining in the same position.

Procedure Delete Line

Begins
If (Line is a placeholder) or (Line contains a keyword)
then:
*Put out an error -- deleting is not allowed*
else:

*Return the record pointed to by the list pointer®
PILE_BOT.LINS PILE_BOT_LINE ~ 1
*Rewrite the relevant portion of the HMain Screen*
*Turn new cursor ON at old position*

Bnd If:

End:
Bnd Procedure:

Fig.7.1: The PDL for Line Delete mode

The Construct Delete function operates only in the Algorithm
segment and is simply implemented by identifying the construct
immediately surrounding the chosen line. The construct block is
identified by its indentation level. any consecutive lines above
or below the chosen line which have an indentation level greater
than or equal to that of the chosen line, will be included in the
delete block, This block construct is to be highlighted so as to
give the user a chance to confirm the deletion. This thus
invoives the accessing of the Definition Table for changing the
function key definitions. The only challenge here (besides the
usual screen scrolling necessities) lies in the insertion of any
outstanding placeholder.

Determining whether a placeholder is to be inserted is a function
of the template surrounding the delete block. If the lines before
and after the delete block are both part of a system template,
then the placeholder which appears between these two lines in the
template is to be inserted. This reguires that the CONST.SYS
table be searched for a key code match. This method may seem time
consuming, but due to the search being for an integer value and
not a string, the Construct Table search is fast. The method is
powerful in its generality and is also used in the Block Delete
routine for insertion of outstanding placeholders.

The Block Delete function is divided into two parts: block
deletion in the Data Description segment and block deletion in
the BAlgorithm segment. Before discussing the implementation of




Page B34

any of these, it is necessary to understand that this function
requires the user to choose the block limits, and in so doing
offers unbounded freedom. This freedom must be checked so as to
protect the user from disrupting the syntactical correctness of
the PDL program.

An upper and lower line limit is to be chosen by the user, and at
every stage checking is performed. The upper line limit cannot be
chosen as a data definition keyword., If a line din the Data
Description segment is chosen as one block limit, the other limit
cannot be placed in the Algorithm segment. Block deletion can
thus not be performed across the Data Description - Algorithm
segment dividing line.

A delete block is chogen in one of two ways: using the function
keys or using line numbers, As explained in the User's Hanual
{Bassanino {1985b)), this dual wethod of choosing a block makes
the system flexible and convenient to the user, The function keys
are available to choose the line on which Cursor 1 is positioned.
Simultaneously, the user is allowed to ENTER a line number in the
window Screen via the Line Editor facilities.

This dual mode of entry is possible due to the Line Editor's
ability to be exit using & function key. The chosen block is
dynamically hlghllghted. This means that if only one limit has
been chosen, moving Cursor 1 will cause the line numbers from the
chosen 1limit to the cursor to be highlighted. Once the delete
hlock has been chosen, it is highlighted and the user prompted
for its acceptance, This highlighting is easily accomplished
using the WMS_CUR.ON and MS_CUR.OFF routines of the Terminal
Resource.

The deletion of a block in the Algorithm segment is a simple
matter as every line between the two limits must be deleted. The
only problem is to determine if the block may be deleted or not.
The only law necessary here is the following: a delete block
cannot contain any incomplete constructs. This requ;rement
implies that any construct keyword present in the delete block is
to have every other keyword associated with that construct
present within the block.

Thus, the Construct table is again to be referred to so as to
determine the keywords associated in a template with any other
construct keyword found in the delete block. Again this seems a
lengthy operation, but if a keyword search is performed from the
top line of the delete block, an error is easily detected, while
searching is greatly simplified. The indentation level of the
congtrucks coupled with the top down order of checking for
correctness ensures that this method functions correctly. It is,
however, possible that a stack will need to he kept if deeply
nested constructs exisc.

In the Data Description segment, deletion is a more complex
affair. A block is specified here by defining a begin and an end
data item. All the data items lying within these two limits
(including the two at the end points) will be deleted. The
difficulty lies in deleting all the corresponding keywords. An
algorithm has been devised for this purpose, but not yet
implemented. It seems to cater for all cases using a simple
procedure. The PDL algorithm is given in Fig.7.2. It is
respongible for deciding which keyword lines should remain after




e e

i
i

Page 85

deleting the required block.

Procedure Block Delete
Begin:
Function Pield := 0
Type Field = 0
Structure Field := 0
Scope Field := 0
*With the pointer at t.e start of the delete block ...*
*liove pointer back one position¥*
Repeat:
If éLine contains a key code implying a keyword)
en;:
*get the delete block's top limit to this line*
*love pointer back one position*
status := Continue

else:
gtatus := Terminate
End If:
Until (Status = Terminate)
Repeat:

*Move pointer forvard by one position¥®
Case (key code) implying:
Function : Function Field := Line Number
Type : Type Field := Line Number
Structure: Structure Field := Line Number

Scope : Scope Field := Line Number
Name : *Do Nothing¥
End Case:

Until (Last line of delete block has been reached)
*Move pointer forward by one position®
Case (Rkey code) implying:

Function : Functlon Field := 0
Type Field := 0§
Structure Field := 0
Scope Field := 0
Pype Pield := 0
structure Field := O
8cope Field := ¢
Structure: Structure Field := 0

Scope Field := 0

Type

Scope : Bcope Field := 0
Kame : *Do Nothing*
End Cases

*Delete all the linea in the delete block excepting the line
numbers stored in the four data definition field variables*

nd:
End Procedure:

Pig.7.2: A PDL algorithm for Data Description Block Deletion

The algorithm of Fig.7.2 uses the four data definition flelds as
running variables, It £ills the variables vith the line numbers
of any possible key codes which could be retained, Working top-
down, any newy key code lines found will be used as new line
numbers, replacing the old in the relevant field varlable. The
top and bottom Limits must also be taken into account if the line




Page 86

before or the line after the delete block is not a data item. On
termination of the routine, the four variables will contain
either a zerc or a line number. These line numbers will represent
the lines which are to remain after the delete block is deleted.

Clearly, lain Screen formatting and Cursor 1 positioning are also
issues, but the intelligent mechanism behind this type of Block
delete mode has been described awove,

7.3 Copy Mode

In Copy wode, Bleck ard Line Coapy functions should be provided.
Again the user should be preszented with the dual wmethod for
choosing a block as well as destination line. Here too, the copy
block is highlighted. After the copy block has been chosen,
however, Cursor 1 must be displayed in a different font so as to
allow the user to choose a destinakian line. A blinking cursor in
reverse video should ba conspicuous enough for this purpose. This
requires an additional function to the Terminal Resource, but
then this cursor display font can also be used for other purposes
such as Move mode.

The physical copy operation is a relatively simple task using the
linked 1list, but again, extensive checking of the syntactical
correctness of the oparation is necessary. No copying is
permitted in the Data T=scription segment a this section of the
PDL program is strictly controlled by “he PDL editor. Indentation
of the new copied line iz performed acwomatically by the system,
and this is simply ac 1ished usinT the INDENT routine adopted
in Insert mode., fThis rcitine will Ziso determine whether to
delete any superflupus plaegeholder ir the vicinity of the copied
line.

when in Line Copy mode. only entirely user-entered lines may be
copled. Thus, when zitempting to copy a single line, no line
containing a system-cenzzated keyword will be accepted. The
destination 1line is sukract only to the limitations of Line
Ingext wmode. Thus, a Lire cannot be copied after the "If
<CONDITION>" line, or aft=r the end of the file, or in the Data
Description segment, TheZe same linitations on destination line
apply to the Blagk Cony mcde,

In Block Copy made, the copy block may not zontain any incomplete
construct, Thiz is the same requirement used for Block Delete
mode. Thus, only entire construct biocks may be copied; part of a
construct may not be copied unless it contains no system-
generated keywords. Automatic indentation is accomplished by
uging the INDENT routine on the top line of the copied block.
The  indentation level thus obtained becowes the new base
indentation which is to be added to all the other lines in the
copied block.

It can thus be seen that Copy mode merely uses routines which
have already been developed above for a different purpose.
Besides the screen management, this mode is thus easily
implemented,




Page 87
7.4 Move Mode

In Move mode too, there are two possible functions: the single
line move operation; and the block move operation, The move
function is a combination of a Copy operation followed by a
Delete operation, Again the user is given the dual mode of
stipulating lines, with a blinking cursor in reverse video for
choosing the destination line where the move block is to be
placed.

As a Move operation is a combination of two of the functions
developed above, only some kind of integration is necessary.
Clearly, a 1line or block which may be copied, may also be
deleted, Thus, checking of the chosen copy and destination
line/(s) is performed using the Copy mode =zlgorithm described
above. The move block is then copied to the destination position.

The usual reguirements of deleting any superfluous placeholders
and automatic indentation are automatically dealt with by the
Copy operation. Now, without refreshing the Main Screen display
or prompting for the delete block, a Delete operation is
performed on the original move block, This delete function will
also deal with the insertion of any necessary placeholder as
discussed in section 7.2. After updating the Main Screen, an
effective Move operation will have been performed.

It can thus be seen that Move mode is a derivation of the other
modes discussed above. An initial interface almost identical to
the Copy mode must be used to enable the user to choose the
relevant’ move and destination lines, The Copy mode checking
requirements are then applied to the inputs to determine their
validity., A valid Move operation is performed by firstly copying
the move block after the destination line, and then Qdeleting the
original move block. The screen scrolling algorithm used is that
of the Copy mode, so that Cursor 1 is positioned at the beginnring
of the moved block after the operation has been completed.

7.5 Semantic Exrror Detection

As the package is built, syntactical errors are prevented due to
the generative approach adopted. The template based system and
all the functions described above, ensure syntactical correctness
at all times, Semantic errors, however, are more complex to
determine due to their long-range or far-reaching nature.

It must be realized when dealing with a PDL generator that it is
difficult to draw the line between a semantically correct and an
incorrect high-level program. Due to its high-level nature, a PDL
program can be written in terms of comments only and still be
correct, It 1is for this reason that tbe user ghould be able to
choose a level of error checking before entering a program. A low
level of error checking would be chosen if a high-level PDL
program is being generated, while a high degree of error checking
is desirable for a low-level PDL design. It is probably wise to
allow only two levels of error checking: syntactical error
checking only for high-level PDL; and semantic and syntactical
error checking for low-level PDL programs.




Page 87
7.4 Move Mode

In Move mode too, there are two possible functions: the single
line move operation; and the block move operation, -The move
function is a combination of a Copy operation followed by a
Delete operation., Again the user is given the dual mode of
stipulating lines, with a blinking cursor in reverse video for
choosing the destination line where the move block is to be
placed,

As a Move operation is a combination of two of the functions
developed above, only some kind of integration is necessary.
Clearly, a line or block which may be copied, may also be
deleted. fThus, checking of the chosen copy and destination
line/(s) 1is perfewmed using the Copy mode algorithm described
above. The move b1 ¢k is then copied to tne destination pesition.

The usual requirements of deleting any superfluous placeholders
and automatic indentation are avcomatically dealt wit* by the
Copy operation. Now, without refreshing the Main Screen display
or prompting for the delete block, a Delete operation is
performed on the original move block., This delete function will
also deal with the insertion of any necessary placeholder as
discussed in section 7.2. After updating the Main Screen, an
effective Move operation will have been performed.

It can thus be seen that Move mode is a derivation of the other
modes discussed above., An initial interface almost identical to
the Copy mode must be used to enable the user to choose the
relevant move and destination lines. The Copy mode checking
requirements are then applied to the inputs to determine their
validity. A valid Move operation is performed by firstly copying
the move block after the destination line, and then deleting the
original move block. The screen scrolling algorithm used is that
of the Copy mode, so that Cursor 1 is positioned at the beginning
of the moved block after the operation has been completed.

7.5 Semantic Error Detection

As the package is built, syntactical errors are prevented due to
the generative approach adopted. The template based system and
all the functions described above, ensure syntactical correctness
at all times. Semantic errors, however, are more complex to
determine due to thelr long~range or far-reaching nature.

it must be realized when dealing with a PDL generator that it is
difficult to draw the line between a semantically correct and an
incorrect high~level program. Due to its high-level nature, a PDL
program can be written in terms of comments only and still be
correct. It 1s for this reason that the user should be able to
choose a level of error checking before entering a program, A low
level of error checking would be chosen if a high-level PpDL
program is being generated, while a high degree of error checking
is desirable for a low-level PDL design. It is probably wise to
allow only two levels ¢f erpor checking: syntactical error
checking only for high-level PDI; and semantic and syntactical
error checking for low-level PDIL programs.




Page B8

Semantic error checking involves much computation as many
possible erfors exist., Tt is interesting toc note, however, that
the designers of GNONE (see Bassanino (1985a)) list the following
four errors as comprising 90% of all semantic errors made by
students.

undeclared variable uninitialized variable
~- unused but declared variable ~- type mismatch

It is clear that all the above errors deal with the relationship
between the Data Description and Algorithw segments. Thus, a
record must be kept of each variable which is either defined in
the Data Description segment or used in the Algorithm segment.
The concept of a Variable Table therefore emerges. Bach data item
appearing in the PDL program is stored in this table by name and
by code number. The code number is a unigue number used to
identify the type of the data item for easy reference purposes.
The Variable Table alsc needs to maintain a record of the
position of every occurrence of the data item in the PDL file.

The besk way for checklng errors is at input time. When any line
is edited {either by using the Line Edit function or Line Insert
mode} parsing <f that line should be performed after it has been
ENTERed. Thus, a line would have any errors highlighted on the
Main Screen in reverse video. These errors can then be re-edited
{the line being reparsed} for correction. Unexpanded placeholders
should also be regarded as errors (errors of omission) as a
program cannot be compiled if any placeholder is left unexpanded.

An EBError file is necessary to keep track of the position and
nature of all the errors present in a PDL file., This Error File
would also be used for reference when highlighting the errors on
the Main Screen. A field in this table can be set aside for
determining the type of error (eg. mismatched parentheses;
undeclared variable; etc.). According to the error type, the
corresponding error message would be displayed {perhaps via use
of the Prompt Table)} on reqguest.

In this way, a user can at any time request information regarding
a particular error as the editor maintains a record of all
current errors. This system will also enable the user to obtain a
breakdowa of all the errors and their types which have been
identified in the PDL £ile. When the system lists no errors, then
the user can with confidence deduce that the PDL file generated
is virtually 100% error-free,

In the Data Description Insert rrde, a newly defined data item
should also be checked for acceptance against all existent gdata
items. The user will therefore be warned if the defined data item
already exists, and will be asked if replacement is desired. The
Data Description segment also causes other problems, because if a
data item name is changed here, the rest of the file must be
checked (or reparsed) for any occurtence of this data item., This
will be by Ffar the most time consuming operation available
{especially if the f£ile is a long one), and thus time will be
well spent in the designing of an eff1c1ent batch parser.




Page 89
7.6 Ellipsis Facilities

The elliding or temporary removal of a program section is
useful feature if the entire PDL program is to be viewed on the
Main Screen without its internal details. This feature also helps
to 1dent1fy constructs. The ellipsis feature will replace a
section of PDL code with an ellipsis token {usually "...."). The
section of code to be ellided can be chosen in one of two ways.

An ellision level can be specified so that a zero ellision level
will display the program in full detail, while an infinite
ellision level will show only the outermost program level.
Another method for choosing ellision is to point to a line on the
level below and including which ellision must occur, By
depresgsing an Bllide key, this program block will temporarily be
removed from view on the Main Screen.

Besides the user-interface described above for choosing an
ellision block, the physical implementation of the function is
elementary. The "level® used for ellision purposes corresponds
exactly to the indentation level adopted for coding eackh PDL
iine. Thus, identification of an ellision block is simply
performed by searching for all lines in the file which have an
indentation level greater than or egqual to the ellision level.

7.7 The UNDO Stack

A stack needs to be maintained if multiple "undo®” operations are
to be allowed. The undo operation is a very convenient facility
for both the experienced and the novice user. With the help of
this function, a user can essentially return to a stage where the
last edits to the f£ile have not been performed. This helps
recover from accidental errors of deletion, also giving the user
a_chance to experiment with system features., The user can thus
edit a PDL file with the knowledge that any cperation which is
performed can be undone at any stage. This gives a system almost
unlimited power making it truly foolproof.

The Undo function can be implemented by maintaining a stack of
previous commands. When an Undo operation is requested, the last
command is popped from the stack and an opposite command
performed so as to reverse the previous operation. This will
effectively produce the file as it was before the last command
was performed., The depth of the stack will determine the depth of
the Undo function. A table is also necessary here so that the
inverse of any command can be found.

The Undo stack can also be used for inconvenient block editing
operations, Converting a While-do into a Repeat-until construct,
for example, is possible by merely pushing the relevant block
onto the stack; inserting the new construct; and popping back the
contents of the stack. In this way, the Elexlblllty removed from
a syntax~directed template-driven editor is regained. The
conversion of, say a Program, into a Procedure, poses a problem,
however, as the function keys must again offer the user the
choices given when a new PDL file is created.




s

Page 90
7.8 Possible Design Improvements

The Data Descr 1pt10n segment Insert mode is as yet incomplete,
due to the missing feature of allowing & user to define his own
data types. User-defined data types are a feature of many modern
programming languages, including PDL. When wanting to define a
data type, the user should be given a "Record" function key
option. This Ffunction key will enable a record type to be
defined. Associated with this function key there will, therefore,
also be a possible further set of function keys which will aid
the user in defining a record in an crderly manner.

The record fields must be stored by the system if extensive
semantic error checking is to be performed. A parser is
indispensable if data types are to be user—defined. The user has
the possibility of defining a type incorrectly due to the
flexible manner in which it may be defined. Thus, a parsing
algorithm would be responsible for checking the grammar of the
type definition.

An alternative solution to the problem of inagcuracy associated
with defining a new type, is the use of templates for type
Qefinition. The possible type definition frameworks must first be
decided upon so that the Data Description segment will be
completely standardized. Templates introduce the added problem
that functions such as Delete, Copy and Move allowed in the
Algorithm segment now need to be allowed in the Data Description
placeholders in the Data Description
segment will become a reality.

Thus, the problem of data type definition is to be considered
very carefully not only in terms of an elegant solution, but also
in terms of a solution which will not require majox system design
changes. When the "type" field of a data item is to be chosen,
the "Others" function key should lead into a state where all the
user~defined types are displayed 2s function key options. This
facility is clearly challenging to implement.

In the Data Description Insert mode, scrolling facilities may
also prove useful {especially when wanting to know the definition
of a new type while defining a data item). A fast abort function
key for exiting this mode is also a necessity for speeding-up
system operation,

BAs the package was designed, there are still some prompts which
are hard-programmed into the system routines. It should be
attempted to make the Prompt Table the sole dispenser of all
prompts, so that system flexibility is enhanced. The designer is
then able to change any prompt to suit the particular client.

Presently there is no facility for entering multiple lines for,
say, a CONDITION placeholder. This necessary feature is limited
by the 80 character line length of the Line Bditor. If the line
length is not to be made more flexible, then a method has to be
devised whereby a line can be extended on the following line;
indentation antomatically being taken care of.

The unusual indentation required when listing multiple external
procedure names, inputs or cutputs, requires that the items are
listed one under the other, relative to the first item. Fig.7.3




Page 91

shows the indentation required when defining input and output
parameters of a procedure. If a method is devised for extending a
line onto the next line while maintaining the same indentation of
the user-entered text portion of the line above, then this
problem, together with the problem mentioned above ig solved.

The Case construct also presents a problem, due to the single
placeholder present under the Cage line, Indentation of user~
entered lines must be alligned under the desired option's colon
and not, as the package dictates, directly under the optica. This
problem may Dbe solved by parsing the input lines s0 as to
determine if a line entered is an option or merely an algorithm
statement. The indentation can then be determined accordingly for
the lines following a Case option. (See Fig.7.3)

Procedure Test

Inputs: Inden Level
Cursor Position

Outputs: First String
Second String
Third String

Begin:

"Case {Cursor Position) of-

Home: First Strxng H
Second String := 'z'

End of Line: First String := 'A'

Second Stzxng

Third String

End Case:

ds

End Procedure:

Fig.7.3: Indentation for Inputs, Outputs and Case construct

Another problem associated with constructs involves the Get and
Put templates. In PDL, these two constructs are used exclusively
for dinput and output purposes only. Thus, it is not logical tn
ingert another construct within a Get or Put block. This problem
is solved by the system checking if the cursor lies within one of
the above constructs before any system-defined template is
inserted.

A parser is also required to check for allowable user-entered
text lines within any construct. The text within a Get construct,
for example, will differ £rom an algorithm line, and this in turn
will be different from a condition. The parser would thus
distinguish if a line is correct or not according to the key code
of the placeholder or surrounding text line. This parser rouhine
is thus seen to be a very critical item in the construccion of a
successful synax-directed editor package.

As already mentioned in sectlon 7.2 in this chapter, the
requirement that the Main Screen always be full when the bottom

e




Page 92

of a more than 20 line long file is reached is a severe
restriction. Both Line Delete and Line Insert modes suffer the
consequences of this law. The bettom of the £file should be
demarcated by an end of file line, and scrolling beyond this line
should not be permitted. This line should be allowed tec be
positioned at any point in the !lain Screen, as dictated by any
needy operation., This will solve a few problems as well as make
the system more general.

In Base Level, the Bdit Line facility retains the function key
definitions. These definltions should either be removed, or
alloved as exit options while in the Line Editor. It is doubtful
whether the scrolling functions should be allowed while editing a
line, as this will only serve to confuse the user. It is thus
probably wiser to erase the Function Key Definition Screen when
dealing with the Bdit Line function.

To avoid repetition of function key screens in the Definition
Table, a pointer could be used to the Prompt Table, This would
mean that the Prompt Table could become a more flexible Text Line
Table having fields for a line code and a text line of 80
characters long. The Definition Table takes up much space and
this method could serve as a system to decrease this large memory
requirement. Function keys in the Definition Table which are not
used could also be eliminated so as to maintain only the absoclute
minimum information required for system operation.

The conversion of a Program into a Procedure using the Undo stack
requires that the function key screen displayed on initializing a
new file be re-displayed for the user to choose the required
procedure type. This operation is by no means trivial and
more detailed thought must be give to this problem.

A neater method for re-displaying the whole of the Main Screen is
also necessary, so that the list pointer will never be pushed
beyond its limits. Asg the File Linked List resource used has a
zero position, the list pointer should be started from a higher
position and then incremented to the bottom of the Main Screen.
Thus, after displaying an entire screen, the list pointer will
always be on the last line of the Main Screen, whether the bottom
of the file has been reached or not., Fig.7.4 shows this algorithm
which can be compared to the old system used in Fig.4.l7.

*Move list pointer to one line before the first line to be
dlsplayea*
While (i < MS_512E)
;Moveipointer forward by one position¥
Call FORMATTER
MS_WRITE (MS_TOP_LINE + 1 - 3, i -1, ....)}
End While:

Fig.7.4: A neater algorithm for updating the Main Screen

It may also be an idea to create routines for the scrolling of
the Main Screen to give a particular line number at a particular




Page 93

screen position, so that the Insert, Delete, Copy and MNHove
£unctions will not be involved with explicit screen management
details,

7.9 Future Package Expansion and Integration

Most of the expansion features have been discussed above in this
chapter, however, there are greater plans for the syntax-directed
PDL generator. As may have been mentioned in this document, the
editor developed here is to become the basis for a language-
independent translator. With a powerful tool for BDL
construction, the user will be able to write an algorithm in
high-level description language and then reguest a compilable
version of the program in any of a variety of modern programming
languages.

This will thus enable the user to design on a high level, using
all the facilities of the syntax-directed editor which encourage
top-down design. When the algorithm has been refined down to low-
level PDL, the coded program can be used as input to one of a few
language translators. Thus, the user will finally become
independent of implementation language. This is seen as a major
breakthrough in design methodology.

If this ©PDL generator package proves a success, it may be a
worthy exercise to implement a coding algorithm to convert a
standard text file into a form usable by the package. This will
require, not only coding of the keywords and variables, but also
extensive parsing to trap and record any errors which may be
present in the PDL file.




§ e

APPENDIX A Prage 954

APPENDIX A: THE TEST ROUTINES

This appendix shows the menus produced by the resource test
prograns, All the major functions are performed; logical and
physical views of the resource structure also being given. The
Line Editor test format is a'so shown. The following figures are
true copies of the scroling display presented to the user on the
VDU when the test programs are run. They have been chesen to
convey the nature, flexibility and power of the individual test
routines, The menu will end with a "? :" to vhich the user must
zeply. Each time a menu is displayed, a menu choice user response
is required. All user responses are highliginted and underscored
for easy identification.

A.l Definition Table

Definition Table Structure And Access Operators

Table Initialise (1)
A_Read (a)
B_Read (B}

structure Display (8)

Quit this program Q) 2 :I

TABLE INITIALISED |

Table Initialise (1)
‘ A_Read (A)
T B_Read (B)
: . Structure Display (8)
! Quit this program Q) ? :2




APPENDIX A Page 95

This State (Range: 1., 9) = §

The operation was SUCCESSFUL

This Key Definition bine is :
Globl: Perma: Exter: Local:
1 4

CONT RET
9 10

Table Initialise (1)
A_Read ()
B_Read (B)

Structure Display (8)

Quit this program {Q) ? :B
This State (Range: 1.. 9) = §

This Rey (Range: 1,.10) = 2

This operation was Successful

Next State (1f no error) =

Next State (if error) = 7
2

Key Code =
Prompt Code (if no error) = 6
Prompt Code {if error) = 6
. wy g & o




APPENDIX A Page 96

Table Initialise (1)
A.Read {n)
B_Read (B)
Structure Display (8S)

Quit this program (Q) ? :8

STATE = 1

DD Seg Algo

KEY REY CODE HNEXT STATEL NEXT STATE2 PROMPT CODEL PRONPT CODE2
5 3
60

0
0
0
[
0
[

CENaW AW
vocoooooaw
voooocooco

coooocococonk
Coocococoaonr

Q
10 4000
The Key Flags are as follows:
T by P F P P F F
PRESS ANY KEY TO CONTINUE

XEY KEY CODE NEXT STATEL NEXT STATEZ PROMPT CODEL PROMPT CODEZ2
lo0l

1 i 1 5 5
2 0 0 0 [
3 2000 3 3 1 1
4 ¢ 0 0 0 [
5 Q 0 4 0 0
6 Q 0 [ 0 0
7 0 [ 1] 0 0
8 0 0 o [ 0
9 0 ] ] 0 0
10 Q 0 [ 0 0
The Key Flags are as follows:
T F T F R ¥ P r P

PRESS ANY XEY TO CONTINUE




APPENDIX A Page 97
STATE = 3
Const: Var:
cont RET
KEY REY CODE NEXT STATEl NEXT STATE2 PROIPT CODEL PROMPT CODE2 1
1 1 4 4 1 1
2 2 4 4 1 1
3 3 - 3 3 3 3
4 0 0 [ 0 0
5 4 0 a ] o
[ 0 4] 0 0 0
7 0 0 0 0 0
& 0 0 0 0 0
9 3000 4 3 1 4
10 4000 2 2 2 2
The Key Flags are as follows:
o T m T F F F F F T
PRESS ANY KEY TC CONTINUE
oxs BRC L0u
PRESS ANY KEY TO CONTIWUE
i
i
i Table Initialise (1) ‘
18 A_.Read {B)
b B_Read (B)
i Structure Display (S)
4 Quit this program Q) 2 :0




APPENDIX A

A.2 RKey Code Table

Page 98

Key Code Table Structure And Access Operators

Table Initialise

Rea

Structure Display
Quit this program

TABLE INITIALISED!

Table Initialise
ea
Structure Display

Quit this program

Key Code = 12

The operation was SUCCESSFUL

Key Word = Integer:
Rey Word Length = 8
Indentation = 5

Edit Flag = FALSE

(I}
(8}
{(Q) ? :B




Table Initialise
Structure Pisplay

Quit this program

Haximum Table Size = 52

Indentation

nHn

>

Edit Flag

Page 59

? g

Xey Word

Q FALSE
0 FALSE
5 FALST
5 FALSE
5 FALSE
5 FALSE
8 FALSE
8 FALSE
11 FALSE
11 FALSE
11 FALSE
11 FALSE
0 FALSE
14 TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
FALSE

POORANDOOOOO00OOONNG

ves BEC L0

Press any key to continue

Table Initialise
Structure Display

Quit this program

Constants:
Variables:
Boolean:
Integer:
Real:
Character:
Single:
Array:
Global:
Permanent:
External:
Local:

If
then:
else:
End If:
While

H
End While:
Repeat:
until
Case

Of:
Bnd Case:
<CONSTRUCT>
<CONSTRUCT>
<CONSTRUCT>
<CONDITION>
<VARIABLE>

? 0




APPENDIX A
A.3 Prompt Table

Prompt Table Styucture And Access Operators

Table Injtialise (1}
Read (R,
Structure Display (8)

Quit this program (Q) ? :I

TABLE INITIALISED}

Table Initialise (1)
ead (R)
Structure Display ({8)

Quit this program (Q) 7 :B

This Code =~ 3

The operation was SUCCESSFUL

Thig Prompt = This function key is as yet undefined...

Table Initialise {1)
Read {R;
Structure Display (8)

Quit this program (Q) ? :8

R Bttt

Page 100




P

APPENDIX A Page 101

Bazimom Table Size = 20

Code Prompt
o e - 1 2
1 Define the Data Item using the Line Editor and Function Reys.
Do you want to abandon this definigion ?

3 This function key is as yet undefined... ~

4 Use the function keys to define this field. %
5 Definition ABANDOMED !

6 Do you want to accept this definition ?

7 Definition Accepted.

8 Choose one of the following Templates using the Function Keys.
9 Remember to replace any outstanding Placeholders

Prags any key to continue

|
!
I
rahle Initialise (€3] {
ea (R} {
i Structure Display (S) r
.! Quit this program Q) 7 :0 V
‘l' i
i i
! !
i
I3
;
| [
i
!
i }
i
” % i -
S




e

APPENDIX A Page 102

A.4 Line Linked List

Due to the complexity of this resource, a comment is given when
each test operation is performed, These comments (displayed as
PDL comments) sheould lead the reader through a useful exercise in
linked list manipulation., For the sake of clarity the linked list
has a capacity of oniy 10 data items.

Line Linked List Data Structure and Access Operators

(Forward and Backward Pointers)

List Initjalise (1)
Get a Record {>)
Return a Record {<)
Write a Record (W)
Read a Recorl (R)
Move Pointer (M)
Display List {D}
List Structure {8)
Quit this Program Q) 2 %

*List is Initialized+

LIST INITIALISED!

List Initialise (1)
Get a Record {»
Return a Record (<)
Write a Record {W)
Read a Record (R)
Move Pointer {M)
bisplay List (D)
List Structure (8)
Quit this Program Q) 2?2

*A blank record is inserted into the link list*

STATUS = 0 RECORD INSERTED INTO LINK LIST!

Aa
L
X
]
4

5




APPENDIX A Page 103

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure

ZWEAVA

@y

aozmzZoxa

w
=

Quit this Program [+]
*An "I" is written in the new record*

DATA ITEM = I

STATUS = 0 DATA ITE{! WRITTEMN INTO LIST!

List Initialise (1)

Get a Record (>)

Return a Record {<)

,‘ Write a Record (W)

< - Read a Record (R)

Move Pointer ()

A bDisplay List (D}

N List Structure (s)
Quit this Program Q) 72

- ** p further two characers (a "T' and an "S") are written into
. the list *¥ i

& MR STATUS = 0 RECORD INSERTED INTO LINR LIST)

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
4 Move Pointer
Display List
List structure

§ 85E23IE

Quit this Program

o
=




BPPENDIX A

DATA ITFM = J

STATUS = 0 DATA ITEH WRITTEN INTO LIST!

List Initialise {
Get a Record {
Return a Record {
Write a Record (
Read a Record {R
Hove Pointer {
Digplay List {
List Structure (

Quit this Program ) 22

STATUS = 0 RECORD INSBRTED INTO LINK LIST!

List Initialise {
Get a Record (
Return a Reecrd 4
Yrite a Record {
Read a Record (
Hove Pointer {
Display List {
List Structure {

{

Quit this Program

DATA ITEM = §

STATUS = O DATA ITEM WRITTEN INTO LIST!

Page 104




APPENDIX A

List Initialise
Get a Record
Return a Record
Write a Record
Read a Recotd
Move Pointer
Display List
List Structure

Quit this Program

*the 1ist pointer (now at position 3) is

positionst

MOVE INCREMENT = =B

Ligt Bounds were OVERSHOT

CECENYE

(s}
o2

STATYS = 3 LLP IS OUTSIDE OF LISTI

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Polinter
Display List
List Structure

Quit this Program

*a logical display of the list is

Logical List Pointer =
= 10

Maximum Records

LOCATION : 1 2 3
DATA ITEM 1 I T 8

0

LE8EAZLEYR

Q) 22
requested*

Page 105

moved back by 8




MAXIMUM ITEMS
LINRE LIST ROCK
LOGICAL LIST POINTER

1
PORWARD POINTER : 2
BACKWARD POINTER:
1

List Initialise
Get 2 Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure

Quit this Program

Hiwn

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
bisplay List
List Structure

Quit this Program

{
{
{
(
{
(
(

CELEEAA]

{8)

Q) 2 8
*4 physical display of the list ls requested*

LINK LIST SIZE
SPACE LIST ROCK
PHYSICAL LIST

Q) ? B
*A record is read {bu: the pointer is stili at position zerol)*

STATUS = 3 LLP IS QUTSIDE OF LISTI

osw




APPEMDIX A

List Initialige
Get a Record
Return a Recoxd
Write a Record
Read a Record
Hove Pointer
Display List
List Structure

Quit this Program

*The list pointer is moved forward by

MOVE INCRENENT = 2

STATUS = 0 LIST POINTER NOW AT =

List Initialise
Get a Recor:
Return a Record
Write a Record
Read a Record
Hove Pointer
bDisplay List
List Structure

Quit this Program

*p  read operation is performed and it can be seen that the list
pointer ie now at position 2%

STAYDS = D READ DATA ITBN = T

e

AVH

=

=1

{8)
(o 28

2

CERERYS

(8)
) ?3R

two positions*

Page 107




APPENDIX A

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display nist
List Structure

Quit this Progran

[P

Page 108

*Confirmation of the above aperation is seen via the logical

display®

Logical List Pointer = 2
Maximum Records = 10

LOCATION : 1 2 3
DATA ITEM : I T s

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure

Quit this Program

Q) 22

¥+ with the pointer at position 2, a "'" character is inserted **

STATUS = 0 RECORD INSERTED INTO LINK LIST!

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Digplay List
Li~% Structure

Quit this Program




APPENDIX A Page 109

DATA ITEM = 1

STATUS = 0 DATA ITEM WRITTEN INTO LIST!

List Initialise {
Get a Record {
Return a Record {
Write a Record {
Read a Record {
Move Pointer (

Display List {D)
List structure (s}
Quit this Program () 2 p

*Again the logical display is reguested to observe the insert
operation {Note the position of the "'" inserted character and
the list pointer)#

Logical List Pointer = 3
Maximum Records = 10

LOCATION : 1 2 3 4
DATA ITEM : I T ! 8

List Initialise (1)
Get & Record (£4]
Return a Recotd {<}
Write a Record {W)
Read a Record (R)
Move Pointer (M)
Display List [¢))
List Btructure (8)
Quit this Program )7 g

*% Now, returning the record ghould delete the "'* character
{Note again the resulting list pelnter position) #**

STATUS = 0 RECORD RETURNED TG SPACE LIST!

{
{
|
|
{




APFENDIX A Page 110 i

List Initialise {1)
Get a Record (>} .
Return a Record (<}
Write a Record (W}
Read a Record (R)
Move Pointer (M)
by Display List (D)
/“ List Structure {8;
v Quit this Program [CI ]
Logical List Pointer = 2 i
3 Maximum Records = 10 :
LOCATION : 1 2 3 o
DATA ITEM 2 I T 8 i
N
' List Initialise (1)
Get a Record {>)
Return a Record (<)
Write a Record (W)
Read a Reco:rd (R)
i .- Move Pointer (M)
| pisplay List (D) i
I List Structure (8} H
. i
Jﬂ o Quit this Prugram Q) 21 h
. i

#% Initializing the list will empty the list logically, but not
physically, as the records are returned to the spuce list **

LIST INITIALISED(

i

List Initlalise (1) !

Get a Record (>} l
Return & Record (<) B

Write a Record (w) !

Read a Record 3] |

Move Pointer (M) i

Display List (D) t

List Structure {s) l

L Quit thils Program ey ?2p f
A H
P




APPENDIX A Page 111

LINK LIST I8 BMPTY!

List Initialise {1
Get a Record (>
Return a Record (<
write a Record (W
Read a Record (R
Hove Pointer (M
Display List {D
List Structure {s

3%

Guit this Program

MAXIMUM ITENMS = 16 LINK LIST SIGE
LINK LIST ROCK = 11 SPACE LIST ROCK
LOGICAL LIST POINTER = [ PHYSICAL LIST POINTER

BN
o

5 6 7 8 9 10

LOCATION = 4
5 6 7 8 98 1in 11
3
t

FORWARD POINTER : 2
BACKWARD POINTER: 0
DATA ITEY T

4 5 6 7 8 9

W
23RN

List Initialise [43]
Get a Record (>)
3 Return a Record (<)
- wWrite a Record {w)
Read a Record {R}
#ove Pointer (M)

pisplay List (D)
N List structure {8)
Quit this Program W e

*Exit the test program*

I — i = phocaeen ol -



APPENDIX A

A.5 File Linked List

A similar
with this

Page 112

exercise to the one of section A.4 can be performed
resource. The only difference is in the deiinition of
the multiple fields to idc.ify a PDL line.

File Linked List Data Sti:;tnve and dccess Operators

{Forvard and Backward Pointers

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
HMove Pointer
Display List
List Structure

Quit this Program

LIST IRITIALISED!

STATUS

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
HMove Pointer
Display List
List Structure

Quit this Program

2

= 0 RECORD INSERTED INTO LINK LIST!

List Initjalise
Get a Record
Return a Record
Write a Record
Read a Record
¥ove Pointer
Display List
List Structure

Quit this Program




APPENDIX A Page 113

INDENTATION CODE = 2
KEY CODE 1 = 900

REY CODE 2 = 301
- TEXT LINE = X_i= X.+.1

STATUS = 0 DATA ITEM WRITTEN INTO LIST!

ERERIEEN List Initialise
P Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List (D}
1 List Structure (8}

LI

Quit this Program (7 ? R

STATUS = 0 THE CODES AND TEXT LINE ARE 3
2 300 901

X =X+ 1

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Hove Pointer
Display List
List Structure

SERZLNE

0 nYRA

Quit this Program (

w
LY

STATUS = 0 RECORD INSERTED INTO LINK LISTI




APPENDIX A Page 114

List Initialise (1)

et a Record {>)

Return a Record (<} X
Write a Record () 4
Read a Record {R)

tiove Pointer {m |
Display List (D) !
List Structure (s}

Quit this Program Q@ 2y

INDENTATION CODE = § !
KEY CODE 1 = 100 i
KEY CODE 2 = 119

. TEXT LINE = Line Lenggh. := 0

. : STATUS = 0 DATA ITEM WRITTEN INTO LIST!

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
HMove Pointer
Display List
List Structure

© WUSZIAVH

Quit this Program

w
(=]

Logical List Pointer = 2

Maximum Records = 10
LOCATION: 1 2 :
INDEN CODE: 2 6

KEY CODE 1: 900 100 ‘
KEY CODE 2: 901 110
The Text Lines below are in order of location i

X=X + 1
Line Length := 0

Hit any Rey to Continue...




APPENDIX A

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
liove Pointer
Display List
List Structure

Quit this Program

MAXIMUM ITBHS
LINK LIST ROCK
LOGICAL LIST POINTER

LOCATION 3 1

FORWARD POINTER: 2 11
BACKWARD POINTER: 0 1
INDEN CODE: 2 6
REY_CODE 1: 900 100
KEY_CODE 2: g0l 11¢

»

X 1= X + 1
Line Length := 0

Hit any key to Continue...

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure

Quit this Program

-
BHo

coonew

Page 115

LINK LIST SIZE
SPACE LIST ROCK
PHYSICAL LIST POINTER =

coowmae
coomaun
coou~n
coomwm
cooNwvn
e
cocowow

Mwn

10
11

coow




APPENDIX A Page 116

A.6 Line Editor

The display of the Line Iditor test program is shown here. Only
the Window Screen (enclosed in a box) is editable. The prompts
preceding this point are required user responses needed for
initializing the Line Rditor. User responses are underscored and
highlighted. In the Window Screen, the key word is highlighted
and underscored here.

When the Line Editor is entered, the cursor is positioned under
the “T" of "CONDITION". In its place, a "v" is typed, and the
ENTER key is then depressed. {The cursor, Cursor 2, is shown as a
highlighted underscored character) The editor is then exit. The
lines following the Window Screen are outputs generated by the
test program to give the user an indication of the final value of
certain variables.

*Rk*PHE LINE EDITQR** %%

KEY_TEXT = Upkil_

gyu_s'rkms = SCONDITIONX
SP =

START_COL = 3

{
! Until <CONDIVION> 1

OUT_STRING = <{CONDIvVION>

LENGTH OUT STRING = 11

OUT_K.

WINDOW SCREEN CURSOR POSITION = 16




AFPENDIX B Page 117

APPENDIY B: FILENAMES AND DOCUMENTATION DETAILS

The package routines are stored on a number of diskettes. The
disk number, together with its directory (if relevant) is
specified below. Rach routine on the disk is listed, giving the
filename used; the routine name and the routine function. A list
of Filename extensions and their associated meanings follows:

«DIR ~~ A directory for the PDL generator routines

«PAS -~ A Pascal routine for the PDL generator

+8Y8 ~= A system table ‘for the PDL generator

+COD -~ A coded file used by the PDL generator

«PDL ~- A formatted file created by the PDL generator
.BAT ~= A batch £ile used by the Disk Operating System

«0BJ -- An object file created after compilation of a Pascal
module

JEXE -- An executable f£ile created after linking of a Pascal
module

.DOC ==~ A document file containing the documentation of the PDL
generator and created with IBW-Wordstar

«BAK -- A backup Ffile for the documentation also created by IBM-
Wordstar.

B.1 Resources

Termipal Resource Disk: Rl; Dikeghory: TERMINAL.DIR
Eile Name Reutine. Name Eunctign

TERM_RES, PAS TERUINAL_RESOURCE The, resource module
TERM_OPS.PAS Rt The resource operators
KEYBOARD. PAS KBD_GET Gets a character without echo
BELL +PAS BELL Sounds terminal bell
BLINK_ON.PAS BLINK.ON Turns blinking on

BOLD_ON .PAS BOLD_ON Turns highlighting on
RVID_ON ,PAS RVID_ON Turns reverse video on
UDSC_ON ,PAS UDSC_ON Turns underscoring on
RESTORE .PAS RESTORE Reverts attributes to normal
SET_CP JPAS SET_CP Sets cursor position

READ_CP ,PAS READ_CP Reads cursor position

HOME «~PAS BOME Sends cursor HOME

CLR_SCR .PAS CLR_SCR Clears screen

CLR_LINE,PAS CLR_LINE Clears line

UP_SCR ,PAS UP_SCR Curgor up screen

DN_SCR .PAS DN_SCR Curror down screen
CUR_RIGH.PAS CUR_RIGHT Cuutsor right

CUR._LEFT,.PAS CUR_LEFT Cursor left

SCR.FORM. PAS SCR_FORIAT Formats the screen
MS_CLEAR.PAS "s_CLEAR Clears Main Screen

MS_C_ON ,PaS H8_CUR_ON “ain Screen cursor on

H8_C_ OFF.PAS MS_CUR_OFF Main Screen cursor off
MS_WRITE,PAS HS_WRITE Main Sereen write
WS_CLEAR.PAS 5. CLEAR Clears Window Screen




i
APPENDIX B Page 118 i
Ysrminal_Resouice Disk: R1: Dirgctory: TERMIFAL.DIR 5
. Eile Nape Routine. Nane Eunction i
- WS_CPSET, PAS WS_ASET_CP \lindew S¢reen set cursor +
W8_RV_WR, PAS W8 RV _WRITE 7.8. reverse video write I
- W8 _HI_WR.PAS VS_HI_WRITE 8. highlighted write i
o~ W8_LO_WR,PAS WS, LO_VIRITE .S. normal write
PS_CLEAR.PAS B8_CLEAR Clears Prompt Screen
PS_VWRITE,. PAS PS_WRITE Prompt Sereen write
FS_CLEAR, PAS FS_CLEAR Clears Function Screen
3 F3_WRITE,PAS FS_URITE Function Screen write
Definitjon Table Disk: Rl: Directory: DEF_T.DIR !
Eil; Neme Routing Name Eupchion :
DT_Ri:' LPAS DT_RE SOURCE The resource module
DP_OPS .PAS - The rescurce operakprs
. DT_INIT .PAS DT_INIT Initializes Definition Table
L DL_A_RE ,PAS DI_A_LIAD A Reads the Definition Table
o DT_B_RE .PAS DT_B_READ B Reads the Definition Table
B DT_TEST .PAS DT_TEST Definition Table test program
DT STRUC. PAS BT, STRUCTURF D.T. test structure routine i
.5Y8 Definition Table file B
. |
XKey_Gode Table Disglk: R1; Directoxy: KEY_C_T.DIR
Eile Name Roptine Name Eunction
RCT_RES ,PAS KCT_RESQURCE The resousce module
. KCT_.0PS ,PAS - The resource operators
KCT_INIT.PAS RCT_INIT Initializes Key Code Table
KCT_READ.PAS KCT_READ Reads the Key Code Table
KCT_TEST, PAS RCP_ TEST Key Code Table test program
L RCT_STRU.PAS RCT_STRUCTURE K.C.T. test structure routine
" 8YS - Key Code Table f£ile
) Exompt.Takle Digk: Rl;  Directoxy: PROMPL.T.DIR i
Iile_Name Routine. Nane Eunckion &
. PT_RES ,PAS BT RBSOURCF The resource module :
PT_OPS .PAS The resource operators
PT_INIT .PAS P INIT Initializes Prompt Table
PT_READ .PAS PT_RFAD Feads the Prompt Table
PT_TEST ,PAS PT_TEST Prompt Table tast program
PT STRUC. PAS BT_STRUCTURE P.T. test structure routine
+8¥S - Prompt Table file
Lipe.Lipked List Disk: R2: Diregktory: LINE LL.DIR
Eile. Fape Routipe Name Lunction i
LIST_RES.PAS LINE_ LL_RESQURCE The resource module {
LIST_OPS.PAS -= The resource operators I
LSBAA  .PAS LIST_ INITIALISE Initializes Line Linked nist ‘;
LSBAB  ,PAS LYST_GET_RECORD Fetches record |
LSBAC +PAS LIST_RETURN_RECORD Returns record
LOBAD <PAS LIST_WRITE_RECORD %rites record |
LSRAR +PAS LIST_READ_RECORD Reads record !
LSBAF +PAS LIST_MOVE_POINTER Hoves list pointer }
- - —_— - 1 o gk .




APPENDIX 8 Page 119
Lipe_Lipked List Disk: R2; Riregtory: LINE_LL.DIR
Eile Name Boutine.Nane Egnckion

LSBAJ «PAS LIST. LOG_INFO Returns Logical List Pointer
LSBAK +PAS LIST_LOG_BTRING keturns the ordered list
LBBTST .PAS LSRTST List test program

LSBAK +PAS
LEBAL +PAS

LIST_DATA_DISPLAY Logical display test routine
LIST_STRUCTURE_DISPLAY Physical displ., test routine

Eile Lipked List Disk: Rr2; Dirgctory: FILE LL.DIR
Eile N Routipe.liame Llon

FLL_ RBS +PAS FLL_RESCURCE The rescurce module

FLL_OPS .PAS - The resource cperators
LBBAL «PAS FLL INITIALISE Initializes FPile Linked List
LSBAB +PAS PLL_GBT_RECORD Petches a record

LEBAC  .PAS FLL. RETGRN_RRCORD Returns a record

LBBAD +PAS FLL_WRITE_RECORD Uritas a record

LSBAE <PAS FLL.READ_RECORD Reade a record

LSBAP JPAS PLL_MOVE_POINTER Moves 1list pointer

LSBAJ +PAS PLL_LOG_INFO Returns Logical List Pointer
LSBTST .PAS LSBYST List test program

LSBAL +PAS

LIST_DATA_DISPLAY Logical display test routine
LIST_STRUCTURE_DISPLAY Physical displ. test routine

B.%Z Processes

Ldips_Editor

CUR.PWD .PAS
CUR_BWD .PAS
CUR_HOME.PAS
END_O_L .PAS
ENT_TEXT.PAR
INSERT .PAS
DELETE .PAS
DEL_EOL .PAS
DuMpP <PAS
TEST PAS

Base.Level

Ejle_Name

FL. SCROL, PAS
CUR_UP .PAS
CUR_DOWN. PAS
PAGE_BWD. PAS
PAGE_FWD.PAS
TOP_O_.FL.PAS
BOT_O_FL.PAS
CUR_T_LN.PAS
EDIT_LN .PAS
INSERT .PAS

Risk: ?1; Direckory: LINE_ED.DIR
Routine. Name ZFunction
LINE_EDITOR Line Editor Process module
Initializes the Line Editor
HOVE. CUR_F Moves Cursor 2 forward
HOVE_CUR_B Hoves Cursor 2 backward
WS_IIOME Hoves Cursor 2 HOME
L.D_OF_LINE Hoves Cursot 2 to end of ln
ENTER_TEXT Text enter mode
INSERT Character insert routine
DELETE Character delete routine
ERASE_EOL Brases to end of line
DUNP Dumps Line Editox contents
TEST Line Bditor test program

Disks Pl; Dirgcioxy: FILE_ED.DIR

F g Eupgtion
JLL Base Level Process module
Moves Cursor 1 up

N Moves Cursor L down
Po. WD Scrolls back one page
PAGE_FWD 8crolls forward one page
TOP_OF_FILE Hoves to top of file
BOT_OF_IILE Hoves to bottom of file
CUR.TO_LINE Hoves cursor to given line
EDIT_LINE Baiting via Line Bditor
INSERT Insert mode gateway




APPENDIX B Page 120

Bage. Level Risgk: Pl Diregtory: FILE_ED.DIR
Rile Nane Routins. Nane Eunetion
PORMATER.PAS FORMATTER Formatter process
Rata-item Insert mode Disk: P1: Diregtory: DATA_DES.DIR
Eile Name Routine Name Eyngtion
DATA_DES,PAS DATA_DESCRIPTION  Data Description Insert module
ARR_LOAD. PAS ARRAY_ LOAD Initializes definition array
TONDIT ,PAS CONDITIONS Conditions of Defn. T. choice
“ACEINT. PAS PLACEHENT Places new data item in file

FORMATER. PAS FORNATTER Formatter process

Construct Insert.nmode Disk: P1; Diregtory: ALGO.DIR
Eile_Name RBoutine_Name Pungtion
ALGORI'TH, PAS ALGORITHM Construct Insert module
GET_CON .PAS GBT_CONSTRUCT Fetches construct from table
INDENT .PAS INDENT Calculates indentation
PORMATER.PAS FORMATTER Formatter process

CUR_UP .PAS CUR_Up Hoves Cursor ] up
CUR_DOWN. PAS CUR_DOWH Hoves Cursor 1 down
PAGE_BWD.PAS PAGE_BWD Scrolls back one page
PAGE_FWD.PAS PAGE_FUD gcrolls forward one page
Lipe_Ipsert.mode Disk: ?1s Diregtory: INS LN.DIR
Eile_Name Robtine Name Eunstion

INS_LN .PAS INSERT_LINE Line Insert module

INDENT .PAS INDENT Calculates indentation
PORMATER. PAS FORMATTER Formatter process
Maip_Rrogram Disk: ml

Zile_Nane Poufing Name Eunction

MAIN <PAS MBAIN Main Program

FORMATER.PAS PORMATTER Formatter process
PIL_LOAD, PAS - YLE_LOAD File load routine
POR_DUMNP.PAS FILE_F_DUMP Formatted file dump
UWF_DUMP.PAS FILE_UF_ DUNP Unformatted f£ile dump

B.3 Documentation

LBreface Digks D1

Eils Name Eynction

FRONT +DOC The front pages of the document
PAPER +DOC A 14 page summary document




APPENDIX B Page 121

Literature Survey Digk: DL ;

Eile.Name EFungtion . 0
7 LIT .DOC A 26 page document surveying editors "
'/" Userls Mapual Digk: D2 f ﬂ
3 Eile Neme Funckiop i
‘ CHAP 1 .DOC Chapter 1 !
CHAP_ 2 .DOC Chapter 2 H
CHAP_3 ,DOC Chapter 3 !
CHAP_4 .DOC Chapter 4
APP.A  .DOC Appendiz A i
APP.B +BoC Appendix B . ¢
APPC  ,DOC Appendix C
s Designer's Reference Digh: D3
’ Eile_Name Fungtion
. CHAPL »DOC Chapter 1
{ CHAP2 .DOC Chapter 2
CHAP3 . DOC Chapter 3
CHAP4 .DOC Chapter 4
. CBAPS «DOC Chapter 5
5 CHAP6 +DOC Chapter 6 1
o CHAP? «DOC Chapter 7 i
APP_A .DOC Appendix A i
i APP_B +POC Appendix B
APP_C +DOC Appendix C
APP_D «DOC Appendix D
REPS «DOC References




APPENDIX C

Page 122

APPENDIX C: SYSTEM TABLES

C.l Definition Table

The 80~character key definition iine has been split into two

equal halves for the sake of convenience.
the method of ¢oding used helow.

DD Seg Constr Ins Ln

RET
56 1 1 3 3
60 8 8 8 8
70 10 10 10 10
2 [ 0 0 0
0 o 0 0 J
[ 0 0 ¢ 0
0 0 o 0 o]
0 '] 0 jl o
0 0 0 1} 0
4000 0 0 9 9
Yes No
1001 5 5 1 1
0 0 o 0
2000 1 1 3 3
0 [+] 0 Q o
o ] 0 0 ]
] 0 Q 0 0
o 0 0 0 0
0 ) 0 0 Q
0 0 0 0 ]
Y 0 Q 0 0
Congts Var: Type D
cony RET
1 1 1 4 4
2 1 1 4 4
3 3 3 3 3
0 0 [ 4 0
0 [ 0 [ 0
0 o 0 0 0
0 ] 0 0 0
0 0 Q [ 0
3000 1 4 4 3
4000 2 2 2 2
Boole: Integ: Real: Chara: Others
CONT RET
11 1 1 5 5
12 1 1 5 5
13 1 1 5 5
14 1 1 5 5
15 3 3 4 4
0 0 0 0 ]
] 0 0 0 0
[ 0 0 4 0

P hSEP)

Section 3.2.3 explains




APPEHDIX C

3000 1 4
4000 1 1
Singi: Array:

23 1 1
22

coooovoma
coocovomo~

1=t If~t-e
Cage—e Cobegn
5

@
&

ovuvowvow

wwLLYVYLLY

5
Page B Page F
Edit 1 Ingert

o
o

cocoosocoo

oococovooo

5 4
3
COoNT
[ 6
6 6
0 0
[ 1}
0 0
0 0
Q9 Q
[ Q
6 5
4 4
Exter: Local:
conr
7 7
7 7
7 7
7 7
0 0
'] 0
o 0
o 0
7 3
5 5
No
1 1
o 0
2 2
0 0
0 0
[ 0
Q 1}
0 [
0 0
[ 1}

RET

RET

While Repeat Case
BT

Get Put
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Top I Bot F
g g
9 9
9 9
92 g
9 9
9 9
1 1
[ [
[ 0

To lin

Page 123




APPENDIX C Page 124

0 0 0 0 [ i
End

- 70 0 0 1 1 {
- 0 0 [ 9 0
\_ 0 [ 0 [ 0

- ] o 0 0 ] i

e [ 0 0 0 9 i

o 0 o 0 0 !

0 0 0 0 0 N

0 0 0 o o i

o o 0 ¢ 0 |

0 0 0 0 0 i

C.2 Key Code Table

See Section 3.3.3 for the coding method used below.

N1l 0 Congtants:*
N2 b variabless*
N 1 S Boolean:¥
N 1z 5 Integer:*
N 13 5 Real:*

N 14 S Character:*
N 21 8 Single:*

N 22 8 Array:*

N 31 11 Global:*

B N 32 11 Permanent:;*
N 33 11 Bxternmals*
N 34 11 Local:*

N N O 0 *
Y 40 14 >
Y 100 Q 1f *
N 101 2 then:*
N 102 2 else:*
N 103 0 BEnd If:*
Y 200 0 While *
N 201 U Dos*
¥ 202 0 End While:*
N 300 0 Repeat:¥®
Y 301 0 until *
Y 400 0 Case *
N 401 0 Oi¥
N 402 0 End Case:¥®
¥ 900 Q@ <CONSTRUCT>*
Y 901 2 <CONSTRUCT>*
Y 902 4 <CONSTRUCT>*
¥ 910 0 <CONDITION>*
Y 920 0 <VARIABLE>*
Y 950 o *
Y 951 2 *
Yy 952 4 *
N 500 0 Cobegin:*
N 501 0 Coend:*
N 600 0 Gets* i
N 601 Q0 End Get:* H
N 700 @ Puts¥ :
N 701 0 End put:*




APPENDIX C Page 123
¥ -1 0 Program *

¥ -2 0 <PROGRAM NAME>*

¥ -11 0 Procedure *

v ~12 0 <PROCEDURE NAHE>*

Y -21 0 Inputs: *

Y -22 0 ODutputs: *

¥ ~30 J EBxternal Procedures: *
Y ~31 0 <PARAMETER/ {S) >*

N 814 0 Begin:¥®

N 815 0 End:*

H 816 0 * None **

N 817 0 End pProgram:*®

N 818 0 End Procedure:z®

C.3 Prompt Table

See Section 3,4.3 for the coding of the Prompt Table.

Define the Data Item using the Line Editor and Function Keys.
Do you want to abandon this definition ?

This function key is as yet upndefined...

Use the function keys to define this field,

Definition ABANDONED !

Do you want to accept this definition ?

Definition Accepted.

Choose one of the following Templates using the Function Keys.
Remember to replace any cutstanding Placeholders at a later stage
Insert reguired lines of text by successive Carriage Returns.
One line was deleted.

C.4 Construct Table

Two lines are used to represent a construct. The first Lline
containg & single key code which distinguishes a construct £rom
another. This is the code which is generated when the function
key corresponding to this template is depressed in Construct
Insert mode. The second line, used to describe the construct,
contains a seriles of key words which make up the template. An
asterisk betveen key words indicates a new line in the template.
A mayimum of three codes are permitted on a singls line {an
initial key word followed by a placeholder followed by a second
key word), To distinguish the end of a conskruct, a 9999 code is
used. In this way, any combination of key words can he put
together and new templates thus constructed. 1In the table shown
below, for example, the first template represents an If-then
construct,

ito 910*%101%802%103%9999

100 910%1.01*302%102%902%103*%9999
300 910 201%901#%202*2999
ggO*BDI*H 910%9993

ki e ] ISPV N -




APPENDIX C Page 126

230 920 401%3902%402%9999

400 920 401%902%102%202%402%9599

500%901%501%9959

600*301%601%9999

730*901*701*9999

fg ~2%=30 ~31%*814%901%815%817%09599

fil ~12%-2] =31%-22 ~31%~30 ~31%814%901%815%818%9599

In the Definition Table, State 8 is the Construct Insert mode,
Prom here, it can be seen that each construct has a key code
which corresponds to one of the key codes listed in the Construct

Table above. The last two templates, however, are used on startup
for a program and a procedure block respectively.




APPENDIX D Page 127

APPENDIX D: STORAGE FILES

Figure 2 shows a coded file (ie. with extension ".COD") output by
the PDIL, generator package, while figure 1 is the same file, but
in prettyprinted or formatted style. The coded file is always
twice as long as the formated file due to its use of two lines of
data to represent a single formatted text line.

The third line of the PDL program in figure 1 (also pointed to in
figure 2) is taken as an illustrative example, The coded file
containsg firstly an indentation level. This integer value, when
multiplied by the current tab setting (set in the program as two
places) yields a number of spaces, (ie. 1 x 2 = 2} The first key
code is searched for in the Key Code Table (see Appendix C). From
the Xey Code Table, it can be found that this line is editable
{due to the <CONDITION> placeholder); that a relative indentation
of izero is associated with it; and that the key word is
"While: ",

Now, the indentati - be calculated by adding the value
obtained from the i "+ lon level to the absolute indentation
found above. Thus, th. e must be indented by two spaces (ie. 2
+ 0 = 2), The key wora "While: " then follows. The <CONDITION>
placeholder is found in the second line of the coded file as a
text string. This string is user~editable and is written
alongside the "While: " key word. The final key word is Ffound by
searching the Key Code Table for the second key code. Editability
and indentation values obtained here are ignored. Only the key
word "do:" is used to complete the line in the formatted file.

0 ~12 4]
Test
0 814 a
Procedure Test
Begin: . htd 1 200 201
- While <CONDITION> Do: - <CONDITION>
<CONSTRUCT> 1 951 0
End While: <CONSTRUCT>
End: 1 202 0
End Procedure:
o 815 0
Pigure. l: A formatted PDL program
0 818 0

Figure_2: The coded PDL program




3.

9.

10.

11,

12,

13.

Page 128

REEERENCES

Bassanino,A.P. {1984): "Software System Design 2aid", A
Eungtion-key Driven PDL_Gepgxatox, a fourth year BSc (Dng)
design project (Project 3B/84) submitted for Course 19419 in
the Department of Electrical Engineering, University of the
Witwatersrard, Johannesburg, November 1384

Bassanino,A.P, (1985a)s B.Eunsj;ign.lssL.dxiysn_syn.tax:dixssmd
EQitor for Soffware Systems Design, "Literature survey"
document submitted for an M8c {Eng) Qegree in the department
of Rlectrical Engineering, University of the Witwatersrand,
Johannesburg, 1985-1986.

Bassanino,A.P. (1985b): A_Fupctionchey driven Syntsy-directed
Editor for Software Systems Design, "User's Manual®, version
1.0, a document submitted for an MSc (Eng) degree in the
department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.

Caine,S.H. and Gordon,E.R, (1975): "PDL -- a tool for
software design", Proceedings . of..the  National Computer
Copference, 1975, pp.271-276.

Capers,J.T. (1984}: “Reusability in Programming: A Sutrvey of
the sState of the Art" zmumnsasnms__gu.._sﬁuﬂg
Epgipeeripg, vol. SE-10, No.s, September 1984

Data General Corporation (197%a): "Command Line Interpreter
User's HMaunal®,  Advapced. Operating..System .(BOS). Third
Revigion, June 1979

Data General Corporation (1979b): MP/Pasgal__Programmer's
Reference, First Bdition, July 1978,

pata General Corporation {1979c}: "Dasher Display Terminals,
Models D100/D200", User _Reference.Series, First Edition,
October 1979.

Data General Corporation (1980). “SED Text Editor User's
Manual®,  AGyapced...Operarind..Syskem . /.. Virtual... sterage
xaaszy31, Revision 1,0, November 1980.

IBM (1981): ‘"pPascal Compiler" for the IBM Personal Computer,
Computer. Lapguage Series, by Microsoft Inc., First Edition,
August 1981,

IBM {1983): Disk.Opersting System {DOS) for the IBM Personal
Computer, by Microscft Inc., Version 2.0, May 1983.

Jensen,K. and #irth,N. (1974): PASCAL User Maousl and Report,
Springer~verlag, second Edition, November 1974.

Master,B.A. (1984): "Software System Besign Aid", Computer
Aspleted_Sofiware Systen.Design Ald, a fourth year BSc (Eng)
design project (Project 3A/84) submitted for Course 19419 in
the Department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, November 1984.




Page 129

Miller,E.F. {1984) s “Software Testing Technology: An
Overview®, Chapter 16, Bandhook of Software.Epnglnesring.
edited by Vick,C.R. and Ramamoothy,C.V., Van Nosrand Reinold,
1

Myers,G.J.  {1975): Enabl.e..mf&wg._:hxyush._gsmp.oaij:g
design, Pertocelli/charter, New York, 1975.

Parnas,D.L.  (1972): "On the Criteria to be used for in
Decomposing Systems into Modules", Communisationp. of tue BCH,
Vol.,15, No,12, December 1972.

Shankar,8.S, (1884}: "Data Types: Types, structures and
abstractions", Chapter 12, Handbook. of Seftware Engineeripd,
egéged by Vick C.R. and Ramamoothy,c V., Van Nosrand Reinold,

Sommerville,I. (1982): syf:uaxg_ﬁngingg;jng, Addison Wesley
International Coemputer Science Series, 1982

Vosbury,N.A. {1984): "Process pPesign”, Chapter 25
Handbook.of Software. _ Engineeribg, edited by Vick,C.R. and
Ramamoothy,C,V., Van Nosrand Reinold, 1584.

. Walker,A.J. (1984): s_m:g.tux_ed__tnfszmatipn_.\?m.c.essms_syﬂ;sm
Deslgn, Internal publication of the Department of Electrical
Engineer;ng, University of the Witwatersrand, Johannesbkurg,
19

Walker,A.J, (1985): A Screen Managed Eoviropmest. . for _the
Bapid__Exototyping. and Development. of In:sxas.tiys_wvurﬁmn
BIograms, Internal publication of the Departiment of
Electrical Engineering, University of the Witwatersrand,
Johannesburg, 1985.







Author Bassanino Angelo Paulo
Name of thesis A Function-key Driven Syntax-directed Editor For Software Systems Design. 1986

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.



