THE EFFECTS OF5-BROMODEOXYURIDINE AND 5-FLUORODLOXYURIDINE ON DIFFERENTIATION AND METAMORPHOSIS IN XENOPUS LAEVIS TADPOLES

Caroline Anne Christie

A Dissertation Submitted to the Faculty of Science, University of the Witwatersrand, Johamesburg for the Degree of Master of Science

March 1982

THE EFFECTS OF 5 BROMODEOXYURIDINE AND 5-FLUORODEOXYURIDINE ON DIFFERENTIATION AND METAMORPHOSIS IN XENOPUS LAEVIS TADPOLES

Caroline Anne Christie

A Dissertation Submitted to the Faculty of Science, University of the liftwatersrand, Johannesburg for the Degree of Master of Science

I hereby deciare that this project is my own work and that it has not been submitted to any other university
$\rightarrow \rightarrow+\cos +1, \ldots$
C. A. Christie

ABSTPACT

The effects of $5-F U d R$ and 5 -BUdR on differentiation and metanorphosis in Xenopus laevis tadpoles were studice. In particular, a detailed study was made of the effects of 5 -rlad on cellular patterning and tissue difforentiation during hindifins development. Xenepus laevis tadpoles grown in solutions of 5 -FUdR and 5-BUdR demonstrated hindlimb deformilies, which were analysed by staining for cartilage visibility. Furthermore a comparison of the uptake of exogenous radioactive thymidine in the presence and absence of 5-FUdR by Xenopus laevis tadpoles showed that 5-FUdR depressed exogenous thymidine untake.

A buoyant density gradient analysis of 5-BUdR-substituted Dita was under taken using the aralytical ultacentrifuge. The resulting ultraviolet abscrption photographs showed bands of heavy and nomel DNA.

A nodel is pronosed to explain the pattcrning of the Xenopus laevis hind imb in the presence or absence of 5 -FUaR.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Professor B.C. Fabian for his constant help and unswerving encouragement for the duration of this research project.

I would like to thank Professor B.I. Balinsky and Professor H.E. Paterson, former head and head of the Zoology Department of the University of the Witwatersrand, respectively, for providing me with the facilities to undertake, this project.

I would like to thank Mr. U.V. Thompson for his help in taking the photographs. I would especially like to thank Hally Maier, photographer in the Zoology Department of the University of the Witwatersrand, for ali the overtime she put in, in order to print the numerous photographs for this dissertation.

I would like to thatik the University of the Witwatersrand for the Senior Bursary granted to me and the CSIR for their bursary granted to me, to enable me to undertake this research project.

I would like to thank Roche Products Limited for their kind regular donations of $5-$ FUdR, a costly chemical essential to this research project. I would also like to thank Ciba-Geigy for their kind donation of Sarkosyl.

I would most especially like to thank Dr. J. Kessel of the Department of Zoolngy, University of the Witwatersrand, for her invaluable help, encouragement and advice in preparing and correcting this dissertation.

I would like to thank B. Geritg and I. Carragher for help in certain aspects of the research techniques.

I would like to thank Mr. S. Du Toit of the Department of Statistics of the University of the Uitwatererand, for his willing and helpfu? analysis of the statistics in this dissertation.

I would like to thank H. Womald for his help in proof.rouding and in the preparation of tables for this dissertalion. I womp also like to thank M. Chiristie for her help with the artwork and the tables.

The one person I would also like to thank most especially, is Maggie Astbury of Barlow Computer Services. Firstly, I would like to thank her for this beautifully typed dissertation and secondly, I would like to thank her for all her hard work and helpful advice in all aspects of the preparation of this dissertation.
I would like to thank Barlow Computer Service for the photocopying facilities freely allowed to me.

The one person I would also like to thank most especially, is Maggie Astbury of Barlow Computer Services. Firstly, I would like to thank her for this beautifully typed dissertation and secondly, I would like to thank her for all her hard work and helpful advice in all aspects of the preparation of this dissertation.
I would like to thank Barlow Computer Service for the photocopying facilities freely allowed to me.

ABSTRACT
ACKNOWLEDGEMENTS

1. INTRODUCTION

1.1 Aim 1
1.2 Metamorphosis and its relation to hindlimb development in the frug 1
1.3 Development of the hindlimb of Xenopus laevis 1
1.3.1. Detailed description of the hindimb development in Xenopus laevis 2
1.3.2. Structure of the adult frog 1 imb 11
1.4 The three axes of the hindlimb, with special reference to Xenopus Taevis 12
1.4.1. The proximo-distal axis 13
1.4.1.1. The experimental evidence for this axis 13
1.4.1.2. The apical ectodermal ridge 18
1.4.1.3. Final determination of the proximo-distal axis 19
1.4.2. The antero-posterior axis 20
1.4.3. The dorso-ventral axis 24
1.5 Theories involving cell patterning and its relation to limb development 24
1.6 How the cells in the 1 imb bud communicate with one another 33
1.7 Cytodifferentiation 34
1.7.1. A detailed discussion of a differentiated cell type namely, cartilage 36
1.8 How differentiation and cell division can be affected by the use of 5-FUdR and 5-BUdR 39
1.8.1. Structure of DHA 39
1.8.2. Replication of DNA 40
1.8.3. 5-Fluorodeoxyuridine 40
1.8.4. $\quad 5$-Bromodeoxyuridine 45
1.8.5. Effects of 5-BUdR and 5-FUdR on cells in culture 46
Page No
1.8.5.1. Effects of 5 -FUdr on cells and organisms when adninistered alone, with special reference to concentration 47
1.8.5.2. Effects of 5-BUdR on cells and organisms when administert alone, with special reference to concentralion 48
1.9 Analysis of DNA by density gradient ultracentrifugation 49
1.10 Objectives of this study 51
2. METHODS AND MATERIALS 52
2.1 Experiments investigating the effects of 5 -BUdR and 5-FUdR on the shape and patterning of the Xenopus
laevis hindlimb 52
2.1.1. Tadpole breeding and rearing 52
2.1.2. In vivo experiments in which Xenopus laevis tadpoles were swum in 5-BUdR and 5-FUdR and analysed for growth deformities 53
2.1.2.1. Pilot experiments 53
2.1.2.2. Further experiments using Xenopus laevis tadpoles summ in 5-FUdR 54
2.2 Radioactive thymidine uptake in the presence of 5-FUdR by Xenonus lacvis hindlimb 55
2.3 Buoyant density gradient analysis of 5-BUdR DNA 56
2.3.1. DNA extraction 57
2.3.2. Buoyant analytical density gradient ultra- contrifugation 59
2.3.2.1. Theory of analytical density gradient ultracentrifugation 59
2.3.2.2, Method used 60
2.4 Investigation into the growth of tadpoles under different methods of feeding 62
2.5 Details of the chemicals used and source list of suppliers 64
3. RESULTS 66
3.1 Results of pilot experiments in which Xenopus laevis tadpoles were sivum in solutions of 5 -FUdR and 5 -BUdR 66
3.2 Effect of 5-BUdR and 5-FUdR on tadpole hind 1 imb development - a detailed analysis 72
3.2.1. Adult hindlimb 73
3.2.2. Medium mature hindlimb 75
3.2.3. Inmature hindl imb 76
3.2.4. Analysis of normal hindlimbs 78
3.2.5. Detailed analysis of adult hindlimbs 82
3.2.6. Detailed analysis of medium mature hindlimbs 91
3.2.7. Detailed anaiysis of immature hindlimbs 97
3.3 Uptake of radioactive thymidine in the presence of 5-FIIdR 112
3.4 Buoyant density gradient analysis of DNA substituted with 5-BUdR in place of thymidine 114
3.5 Analysis of the effects of different foods on the yrowth of Xenopus Taevis tadpoles 118
3.6 Conclusion 133
4. DISCUSSION
4.1 The effects of 5-FUdR on the tadpoles in vivo 134
4.2 Effects of concentration and stage on the severity of the resulting dinformities 142
4.3 The use of $5-$ DUdR to produce deformities 143
4.4 The effect of 5-FUdR on the uptake of thymidine 143
4.5 Buoyant density analysis of DNA by analytical ultracentrifugation 143
4.6 Experiments on growth and feeding of tadpoles 144
4.7 Conclusion 145
REFERENCE LIST 146
APPENDIX A iAPPENDIX Bvil

3.2 Effect of 5-BUdR and 5-FUdR on tadpole hind7imb development - a detailed analys is
 72

3.2.1. Adult hindlimb 73
3.2.2. Medium mature hindfimb 75
3.2.3. Immature hindlimb 76
3.2.4. Analysis of normal hindlimbs 78
3.2.5. Detailed analysis of adult hindlimbs 82
3.2.6. Detailed anatysis of medium mature hindlimbs 91
3.2.7. Detailed analysis of inmature hindlimbs 97
3.3 Uptake of radioactive thymidine in the presence of 5 -FIUdR 112
3.4 Buoyant density gradient analys's of DNA substituted with 5-Bude in place of thynidine 114
3.5 Analysis of the effects of different foods on the growth of Kenopus laevis tadpoles 118
3.6 Conclusion 133
4. DISCUSSION
4.1 The effects of 5 -Flldi on the tadpoles in vivo 134
4.2 Effects of concentration and stage on the severity of the resulting deformities 142
4.3 The use of 5 -BUdR to produce deformities 143
4.4 The effect of 5 -FUdR on the uptake of thymidine 143
4.5 Buoyant density analysis of ONA by analytical ultracentrifugation 143
4.6 Experiments on growth and feeding of tadpoles 144
4.7 Conclusion 145
reference List 146
APPENDIX A i vii
APPENDTX B
APPENDTX B

Figure 1.1 Drawing showing the accumulation of the mesenchynice under the lateral plate epithelium.
Figure 1.2 Drawing showing the protrusion of the mesenchyme and the thickening of the overlying epidermis to form a limb bud.

Figure 1.3 Lateral view of stage 43 yenopus laevis
tadpole showing the location of the hindlimb
bud.

Figure 1.4 Lateral view of stage 48 tadpole showing

hindimb bud.
Figure 1.5 Lateral view of stage 49 tadpole showing the
location of the hiadl imb bud.
Figure 1.6 Lateral view of stage 50 tadpole. $\quad 5$
Figure 1.7 Lateral view of stage 51 tadpole. $\quad 5$
Figure 1.8 Lateral view of stage 52 tadpole. $\quad 6$
Figure 1.9 Lateral view of stage 53 tadpole. 6
Figure 1.10 Lateral view of stage 54 tadpole, abdomen onty. 7
Figure 1.11 Lateral view of stage 55 tadpole, abdonen only. 7
Figure 1.12 Lateral view of stage 56 tadpole. $\quad 8$
Figure 1.13 Lateral view of stage 57 tadpole. $\quad 8$
Figure 1.14 Lataral view of stage 58 tadpole. $\quad 8$
Figure 1.15 Remaininy stages of metamorphosis showing growth of the forelimb, formation of adult skin, shrivelling of the tentacles, regression of the tail and change of shape to adult form.
Table 1.1 Sequential formation of the elements of the 1 imb .
Figure 1.16 A diagram showing the arrangement of the skeletal elements of the normal adult amphibian hindimb.
Figure 1.17 The orientation of the three axes.
Figure 1.18 Results of a carbon-marking experiment showing the proximal clumping and distal spreading of the carbon particies.
Page No.
Figure 1.19 Tschumi's sketches of presumptive limb tissues. 15
Table 1.2 Sumnary of Tschumi's results. 16
Figure 1.20 Results of Dent's experiments in which hindlimb buds of Xenopus laevis were amputated at various stages of development. 17
Figure 1.21 Cross-section of an advanced chick 1 imb bud showing the apical ectodermal ridge. 8
Figure 1.22 Sketch showing the reversal of the proximo- distal axis in the chick ennbryo. 19
Figure 1.23 Distribution of the ZPA in the right wing bud of the chick embryo. 21
Figure 1.24 Experiment showing replacement of preaxial mesoderm with ZPA and the resulting mirror image symmetry. 22
Figure 1,25 sketch showing the rotation of the hindlimb bud by Cameron and Fallon. 23
Figure 1.26 Sketch showing the gradient theory of Slack. 23
Figure 1.27 Sketch indicating a monotonic gradient i.e. a gradient in one direction with a source at the high point and a sink at the low point. 25
Figure 1.28 The progress zone at various stages of 1 imb developnent. 26
Figure 1.29 The French flag. 27
Figure 1.30 Sketch showing the concentration threshold. 27
Figure 1.31 Transplantation between the French flag and the American flag. 28
Figure 1.32 Experiment by Faber illustrating intercalation. 29
Figure $x .33$ The radial (A to F) and circular sequences $(0$ to 12) from the model of French, Bryant and Bryant, 30
Figure 1.34 Sketch showing the transplant experiment of Iten and Bryant, and Stocum. 31
Figure 1.35 sketch showing Maden's model. 32
Figure 1.36 sketch showing the location of the limb buds in Tschumi's experiment. 33
Figure 1.37 Stages of differentiation of a cell. 36
Figure 1.38 The stages of cartilage development. 38
Figure 1.39 structure of the deaxyribonucleotides of DNA. 39
Figure 1.41 Comparison of thymine and fluorouracil. 41
Figure 1.42 Comparison of thymidine and 5-fluorodeoxyuridine. 41
Figure 1.43 Metabolism of thymidine showing the 5 -FUdR block at 1 .42

Figure 1.44 Reaction showing the binding of thymidyTate
synthetase to 5 -FUdR. 43
Figure 1.45 Transfer of CH_{3} from $\mathrm{CH}_{2} \mathrm{TF}$ to dUMP 44
Figure 1.46 Sketch showing the uptake of 5-FUdR and its further incorporation into the inhibition cycle. 45
Figure 1.47 Structure of 5-Bromodeoxyridine, 45
Figure 1.48 Entry of 5 -BUdR into DNA. 46
Figure 1.49 CsCl in the ultracentrifuge cell. 50
Figure 1,50 Sketch of ultraviolet photograph showing various DNA bands. 51
Figure 3.1 Dorsal view of stage 60 tadpole swum in$0,2 \mu \mathrm{~g} / \mathrm{m} 75$-FUdR.67
Figure 3,2 sketch of the hindlimbs of the tadpole inFigure 3.1 compared to that of the nomal stage60 hindlimb.67
Figure 3.3 Photograph of normal stage 60 tadpole. 68
Figure 3.4 Lateral view of stage 53 tadpole swum in 10$\mu \mathrm{g} / \mathrm{m7} 7$ 5-BUdR $+0,2 \mu \mathrm{~g} / \mathrm{ml}$ 5-FUdR.68
Figure 3.5 Abdominal region of stage 53 tadpole enlargedto show detail of bifurcated hindlimb.69
Figure 3.6 sketch of the above hindlimb with a normal limb for comparison.69
Figure 3.7 Pholograph of nomal stage 53 tadpole. 70
Figure 3.8 Lateral view of stage 57 tadpole swum in 100$\mu \mathrm{g} / \mathrm{m} 7 \mathrm{5}$-BUAR $+0,2 \mu \mathrm{~g} / \mathrm{m} 75$-FUdR.70
Figure 3.9 Enlargement of the hind inb region of the tadpole in Figure 3.8 on page 70.
Figure 3.10 Sketch showing the hindlimb from Figure 3.9 above compared to normal tadpole hind imb.
Figure 3.11 Enlarged hindlimb region of stage 57 tadpole to show normal hindlimb.
Figure 3.12 Graphical representation of normal adult hindlimb and a typical deformed hindlimb.
Figure 3.13 Graphical representation of the norimal medium mature hindlimb and a typical deformed hindlimb.76

Figure 3.14 Graphical representation of the normal immature
hindlimb and a typical deformed hindlimb.
77
Figure 3.15 Normal hindlimbs.
Figure 3.16 Adult hindtimbs.
Figure 3.17 Medium mature hind imbs.
Figure 3.18 Imnature hindlimbs
$\begin{array}{lll}\text { Table } 3.1 & \text { Results of the experiments showing the uptake } \\ & \text { of }{ }^{3} \mathrm{H} \text {-thymidine in the presence of } 5 \text {-BUdR. } & 112\end{array}$
Table 3.2 Analysis of variance for counts/min. 113
Table 3.3 Analysis for counts/min/mg. 114
Figure 3.19 Ultraviolet absorption photooraph of DNA from tadpoles swum in vater.
Figure 3.20 Densitometer trace of the photograph in Figure 3.19.

Figure 3.21 Ultraviolet absorption photograph of the DNA
from tadpoles swum in $0,1 \mathrm{mg} / \mathrm{m}] \quad 5$-BUdR for
5 hours.

Figure 3.22 Densitometer trace of the photograph in Figure
3.21.

Figure 3.23 Ultraviolet obsorption photograph of the DNA
from tadpoles swum in $0,1 \mathrm{mg} / \mathrm{ml} \quad 5$-BUdR and 0,2
$\mu \mathrm{g} / \mathrm{m} 7 \mathrm{~s}$-FUdR for 5 bours.

Figure 3.24 Densitometer trace of the photograph igure
3.23 above.
Table 3.4 Feeding experiment in 200 ml dishas. 119
Table 3.5 Feeding experiment in 2 lithe trays. 122
Table 3.6 Feeding experiment in 2 litre trays. 125
Figure 3.25 Graph of the rasults from experiment C. Number of tadpoles metamorphosed versus weeks for each food. 129

Figure 3.26 Graph of results from experiments A and B.
Number of tadpoles metamorphosed versus weeks
for each food.

Page No.

135
Figure 4.1 Normal stage 53 hindlimb of Xenopus Taevis. 135
Figure 4.2 Deformed stage 53 hindlimb of Xenopus Taevis.
Figure 4.3 Hind1imb of Xenopus laevis in various stages of development showing the progress zone.136

Figure 4.4 Model describing a possible shape deformity in
the hindlimb. 136

Figure 4.5 Model to explain the formation of a reduced
number of digits. 138

Figure 4.6 Formation of five digits according to the
sequential "differentiation inhibition"
hypothesis. 140
Figure 4.7 Formation of bent digits. 142

1. INTRODUCTION

1.1 Aim

The aim of this project was to study hind imb deve lopment during the netamorphosis of Xenopus laevis tadpoles. The aspects of hindlimb development focussed on were cell differentiation and cell patterning. Cell differentiation is affected by 5-BUdR (5-bromodeoxyuridine) which replaces thymidne in the DNA molecule. 5-FUdR (5-fluorodeoxyuridine) prevents the formation of thymidine, which thus prevents DNA replication, preventing cell division from taking place. These two drugs were therefore used to gain further insight into cell differentiation and cell patterning of the Xenopus laevis hindlimb during metamorphosis.

1.2 Metamorphosis and its relation to hindlimb development in the frog

The limbs of amphibian tadpoles develop during the process of metamorphosis. This is the process which involves the transition of the tadpole larva to the adult animal. In addition to the development of the limbs, the process of metamorphosis also involves other anatomical and physical changes to suit the frog's adult mode of life. Some of the more obvious external changes are : the loss of the tail, the widening of the mouth, a change of the skin to the adult pattern (Brown 1970). Furthermore, internal gills are replaced with Tungs, pronephros with mesonephros, urea cycle enzymes are induced in the liver (Cohen 1970), histological changes are induced in the pancreas, and the oxygen affinity of the haemoglobin is changed (Grisswold and Miller 1977). Xenopus laevis is unusual in that the adult animal remains aquatic. However, this is a secondary adaptation and the animal still undergoes the typical anuran pattern of metamorphosis outlined above.

1.3 Development of the hind imb of Xenopus 7aevis

As indicated above, one of the externally visible metamorphic changes which occurs during metanorphosis is the development of the limbs. The hindlimb develops first, beginning at stage 43 in Xenopus laevis, whereas the forelimb only starts to develop from stage 46 .
(AT) stages refored to in the foxt will bo Niomboon and Fober 1907 stages and will subsegmaly be retermed to as ar stare.)

1.3.1. Detailei deselttin of ind int develoment In Xemops Taeve

The firse trace of timb dovelopaent may be found in the loteral plate mosederm. The sonatic layer of the latemp plate becones thickood just mommath its upher edge. The cells of this thickening soon 70 e their epthelal consections and are transformed into a mass of masenclyme nthout the sometic luye having lost fin continuty. The mesenchyte accum "thes be tween the remaning latoral pate optheltw and the phemms soon becones at bached to the imor shen of the eplihelthe (see Fighe 1.1). The ppider is over the twesmehye mass beoces stightly thithened and bulges outhord sec thoure 1.2). In the regione where whe fore and hinllins are to devep, the pretrucion ensistang of a thickered opthetral covernos and of an inwmal woss of densely
 1.1 thors the mogenchos sccumbining untar the Taterat pate eptheltur whle fighe $1 . ?$ shor the fometion of tha protrusion,

Figure 1.2 Drawing ar ving the protmaion of the mesenchyme and the thiokesing of the overtying optidemis to form a timb bua (from Balinsty 1981)

For a detailed analysis of the tadpole development during the metamorphosis of Xenopus laevis refer to Appendix A. Below follows a detailed description of the subsequent development of the hindlimb as described in Nieuwkoop and Faber (1967). The mesenchyme cells proced with the formation of cartilage. The cells first clump together (although not very clearly described by D.R. Reuth in the above book; this seems to be what Reuth refers to as "indicated" cartilage formation). The aggregated mesenchyme cells then secrete "chondromucoproteins" and the aggregates i.e. clumps of cartilage cells, are noted; this stage is the procartilage stage. Meanwhile the extracellular matrix has now been laid down separating the chondroblasts and this association of cells and extracellular matrix is known as cartilage. The process during which it is formed is called chondrification. The cartilage is slowly replaced by bone from the outer radius inwards and this process is called perichondral ossification. This development is summarised in table 1.1 and discussed stage for stage on pages 4 to 9 .

At NF stãe 43 the hindimb bud is recognisable for the first time as a slight concentration of mesenchym cells, dorsa, and lateral to the anal tubu, under the epiciumis which thickens over them. Th's is the stage shown in detail in Figure 1.2. The mesenchyme then becomes concentrated lirectity under the epidermis in NF stages 44 and 45. By NF stage 46 the limb rudiments are represented by c^{1} early defined masses of mesenchyme. Up to stage 47 mesenchyme continues to migrate from the lateral plate nesoderm (Fig. 1.1), thereafter it condenses under the epidermis, which thickens over it and becomes a double layer of cells (Fig. 1.2), Subsequent to all this, growth takes place by mitosis of existing mesenclyme cells. The external location of the hindlimb bud in stage 43 is indicated below. (The hindlimb is not seen externally at this stage.) All setches taken from Nieuwkoop and Faber (1967).

Figure 1.3 Lateral view of stage 43 Xenome zacvis tadpole showing the Zocation of the hindl imb bud.

NF Stage 48

During this stage the hindlmb bud is visible for the first time as shown in Figure 1.4 below.

0

Hindlimb bud enlargod

Figure 1. 4 Lateral view of Stage 48 tadpole showing hindlimb bua

NF Stage 49

During this stage the limb bud increases in size and becomes vascularised.

Hindlimb bud entarged

Figure 1.5 Lateral wiw of Stage 49 tadpole showing the Zocation of the hindtimb bud

NF Stage 50

The future pelvic girdle now becomes "indicated" by a mass of mesenchyme at the base of the 1 mb bud. This stage 501 imb bud differs externally from the stage 49 bud by a constriction at the base. The bud ber ns to elongate distally.

D

Hindlimbbud enlarged

Figure 1.6 Lateral view of Stage 50 tadpote

NF Stage 51

At this stage the limb bud becomes innervated. The fenur is "indicated". The bud is distally elongated and referred to as the "cone" stage. During this stage the mesenchyme begins to condense preliminary to cartilage formation.

Figure 1.7 Lateral view of Stage 51 tadpole

NF Stage 52

At this sage the fomur is procartilage and the tibio-fibula is "indicated". The bud is externally recugnisable by a constriction in the ankle region. We refer th this stage as the "paddle stage",

Hindilmb bual colarged showing onkle. constriction

Figure 1.8 Latenal viow of Stage s? tadpoto

NF Stage 53

At this stage, the masses of mesenchyme begin chondrifying centrally in the pelvic girdle. The femur chondrifies while the tibio-fibula and the tibiale fibulare are procartilage. The beginnings of the digits are noticeable distal to the ankle constriction as a slight protrusion in the paddle region. The forerunners of digits 4 and 5 are seen.

Hindlimbbud

Hindlimbbud
enlarged showing
4 the and 5 th digits

Figure 1.9 Lateral view of Stago 53 tadpote

NF Stage 54

At stage 54 the femur and tibio-fibula are completely chondrified, while the tibiale fibulare is chondrifying and the metatarsals are procartilage. The beginnings of the digits are noticeable distal to the ankle constriction as a slight protrusion in the paddle region.

Hindlimb bud
endargod-a\|latgevisible

WF Stage 55
Durims this stane the femm unte goes perichondron ossification and the stage is recognised by the meener of 5 clearly demarcated digits.

MF Stoge 56
Doring this stage the tibio-fibula undergoes petichondral ossification. The tibiale fibulare ossiftes. The metebasals ressify while the phatinges are cartiloginous. The digits are longer than those in stane 55.

rigure 1.12 Latenal view of Stage 56 tadpole

NF Stage 57
During this stage the phalanges ossify and the claws becone visible as a result of the cornification of the epidermis at the tips of digits 1,2 and 3 to form the claws.

Figure 1.13 Laterat viow of 5 tage 57 tadiole.

NF Stuge 58
During this stage the tibiomfibula is enclosed in a bory sheath in the middle layer. The forelimb erupts from its pouch, $\{$ th this stage) indicating the beginning of the metamorphic citmax in which the final rapid changes occur to convert the tadpole into is frea.

Figure 1.14 Laterat view of Stage 58 tadpole

NF Stages 59 tr 60
During those final stages of metamorphosis the hind mb bud cont hues growtig, curtilage continues ossifying and the adult skin forms. Figure 1.15 below shows the remaining stages.

5tage 65

stano 66

 of the tontrete, wewneton of the ta"t ohe ohmono of ehem to athta fors

Table 1.1
As development of the hindithe or ghogs lacyis proceeds, the future proximal elerents develop before the distal elements. Fop example, the prowthal element such as the four alroady shows perichondral ossitcation befre the phatanges are "indicated". This seguential developach of cartilege alomg the proxino-distal axis of the Timb is shom in Tabie 1.1 helow (after Tschum 1957).

1.3.2. Structure of the adule rroy 1 ind

In this investigation, an analysis of the ponathe defomitier in the developing hind imb from oxperimentat treatments i.e. tho use of 5-BUdR and 5-FUJR, is carried out, by comparisen to the nomat adult amphibian hindlimb.

Figure 1.16 belon shows the arrangenent of twe skelotel elenents of the nomal adult amphibian hindlinb fafter A. fillosMarshal1 1947)

Distaitareals

$$
v(2+3)+
$$

second row of tarsals, the distal tarsals, which consist of tarsal number 1, tarsals 2 and 3 fused, the centrale and a prehallux which is a remint of what may have been an extra element in ancestral amphibians.
Level D consists of the five metatarsals which make up most of the foot.
Level E consists of the phalanges which ore present as the five digits. The phalanges are arranged in the digits as follows:
Digit Number Number of Plalanges

1	2
2	2
3	3
4	4
5	3

This is a total of fourteen phalanges. Digits 1,2 and 3 end in claws. (Nieuwkoop and Faber 1967.)
Balinsky (1981) uses other terms for various areas of the hindlimb.
These are also shown in Fig. 1.16 on page 11.
Stylopodium - femur
Zeugopodium - tibio-fibula
Autopodium - metatarsals, tarsals and phalanges.
According to Balinsky (1981) digits 1 and 2 form first, followed by digits 3, 4 and 5, while Tarin and Sturdee (1971) ciaim that digits 4 and 5 form first.

1.4 The three axes of the hindlimb, with special reference to Xenopus Taevis

There are three main axes in the hindlimb, the proximo-distal axis, the antero-posterior axis and the dorso-ventral axis. As illustrated in Figure 1.17 below, the proximo-distal axis is the axis from the thigh to the toes, where the thigh is proximal and the toes are distal. The antero-posterior axis is that from the first toe to the last toe with the first toe being at the anterior end, pointing towards the head. The dorso-ventral axis distinguishes the top of the foot from the bottom of the foot i.e. dorsal is the uppermost part.

1.A.1. The proxino-thata axis

1.4.1.1. The exgermental evidence for this axis

Samters (1908) found thet the wing but tef the chick embryo grovs mainly at its distal end. This comes from a sudy in which carbon particles wore inserted into all parts of an early wing bud where it wes foud that the distal porticles spread more widely than the proximal particles. At the extrene distal end no carbon particles were foums, wioh Ted him to the conclusion that the distal elenents are laid dom sucussively during limb devolopmont i.e. they are not present from the carliest stage. These experiments of Saunders were repeated and watended by Techumf (1957) on Xenous laevis. He inserted the carbon or camine particies into the meseachyne using the tin of a very fine stee needle. Arter a period of 1 imb growth. the larvae were fixed ans stained with methyl Grecn and cleared in Bengy Benconte to show un the cartilage skeleton. After two to thres days, the maris which were at first compact and vel1definted, spand into severat aggregtes of variable size as shown in ligure 1.18 onp,14.

Extensive spreading of the marks was noted in certain areas i.e. distal areas, while clumping of the marks or little growth occurred in the proximal areas This confirmed Saundors' findings of distal growth being greater than proximal growth.

Figure 1.18 Recubts of a carbon-marking experinont showing the proximat of amping and distat orreading of the carbon partioles.

As the 11 mb developed, Tschumi traced back the parts that developed to their presumptive areas in the original buds and from this constructed a series of fate maps. The results shown in figure 1.19 on page 15 show that, for example, in NF stage 48 only presumptive pelvis is present while at NF stage 50 presumptive pelvis, femur and tibio-fibula are present.

From Tschumi's fate maps Table 1.2 below has been constructed. It correlates well with the "indicated" stage of the cartilage in Table 1.1. on page 10.

Table 1.2 Sumary of Tsehumi's resulte

Stark and Searls (1973) conducted more sophisticated experiments on this aspect of limb development by means of autoradiography. They made maps of embryomic chick wing by implanting blocks of ${ }^{3} \mathrm{H}-$ thymidine-labelled cells into chick limbs. The final location of the cells was established by autoradiography of histological sections. Contrary to the findings of Tschumi (1957) the authors located prospective hand cells at the earliest stages. They argue that these cells would have been left unmarked by the cruder techniques of Tschumi (1957). They conclude that all the prospective cells are present from the earliest stages and although the dirtal and proximal cells grow at the same rate, the distal cells grow for a lenger period of time

Dent (1962) did studies on the regeneration of the Xenopus laevis hindlimb bud, by cutting it off at different proximo-distal levels. The same type of experiment was attempted chemically in the present dissertation using 5 -BUdR and 5-FUdR. For a detailed discussion of the effects of 5-BUAR and 5-FUdR see Section 1.8. Dent cut off the developing hindlimb at various stages from 51 to 60 (NF stages) and the resulting regensates are shown in Figure 1.20.

Figure 1.20 Resutto of Dent's experiments in which hinalimb buds of Xenoven Laevia were mmatated at various stajes of development.

The results of Dent's experiments are also summarised as follows : Amputated Stage Number of digits reformed

It will be noticed that the later in the development the limb is cut off, the less regeneration takes place.

Dent studied the gross morphology only of the limb. The author of this dissertation studied the cartilage development of the 7 imb before and after treatment with 5 -BUdR and 5-FUdR using stains and clearing the tissue for cartilage visibility.

The results correlated will with those of Dent in that after stage 53 chemical treatment did not cause limb abnormalities. Dent finds that at this stage nommal 1 imb does not regenerate i.e. all 7 imb parts are determined at this stage.

1.4.1.2. The apical ectodernal ridge (AER)

Saunders (1948) and Zwilling (1961) believe that the AER is indispensable to the proximoudistal outgrowth of the 1 imb . The $A t R$ is a thickening of the ectoderm along the edges of the flattened limb bud. See Figure 1,21 below. (It will be recalled that the limb is a core of mesoderm surrounded by ectoderm.)

Cross section(T.s.) of limbbud

Figure 1. 21 Crooa-section of an alvanced eniek limb bud showing the apical cetodemal ridge. (After Balinsky 1081.)

The cells of this ridge contain more RNA and glycogen than the surrounding epidermal cells and a high content of alkaline phos.phatase. These biochemical propertios indicate an active metabolism (Balinsky 1981). If the AER of a three day chick embryo is removed, the distal parts of the limb fail to develop (Saunders 1948). Likewise if the ectoderm covering the 1 imb bud in a chick embryo is removed and replaced by epidermis from another part of the body, an apical ridge does not form and proximo-distal outgrowth is inhibited.

Anphibians are not normally considered to have an AER, but Tarin and Sturdee (1971) found a structure at Ni stage 50 which they consider to be the counterpart of the AER, a narrow band of thickened epidermis which runs around the tip of the bud and extends a short distance proximally on both the dorsal and ventral sides of the bud. Histochemical studies revealed that RNA, glycogen and alkaline phosphatase which were characteristic of all the other AER's of other vertebrate groups were not present in significantly larger amounts in the "suspected ridge" of the Amphibia (Tarin and Sturdee 1973). Although histologically this appears to be a ridge it does not have the biochemical properties of a true AER.
1.4.1.3. Final deterinination of the proximo-distal axis The proximo-distal axis is capable of reversal, at Teast until the stages just prion to the appearanice of the li,ub bud, as shown by Hamburger (1938), Chaube (1959), Reuss and Saunders (1965) and Maccabe and Saunders (1971) that is in the prospective limb bud region. there is a proximo-distal aris which can be reversed to form a normal bud until the stage when the limb bud is visible. This was shown by experiments in which the mesodermal component of the left leg primordium (prospective bud) at stage 16 (seventeen to twenty somites) in the chick endryo was grafted to the right flank of a host chick embryo of the same age, but the proximo-distal axis was reversed i.e. the inside of the prospective limb bud now faced outwards. See Figure 1.22 below.

Figure 1.22 sketch showing reversat of the prowimo-distal axis in the ahick embryo. (For convenience the limb is shown as a bulge.)

The ectodem of the host's flank covered the graft and formed an ectodemai ridge which then induced proximo-distal outgrowth and the formation of a leg with right symmetry i.e. the original proximal tissue formed distal parts and the oniginal distal tissue formed proximal parts.

1.4.2. The antero-posterior axis (first toe to last toe)

This axis is finally determined early in development, unlike the proximo-distal axis. This can be shown in an experiment in which 1 imb ectoderm is removed and the mesoderm is rotated to change antero-posterior polarity. Prospective limb mesoderm is then allowed to develop in combination with flank ectoderm. (The flank is that region of the body wall between the forelimb and the hindimb.) The resulting appendages conform to the original antero-posterior polarity of the mesoderm, regardless of the orientation of the graft with respect to the major axes of the host. Thus even if the limb is back to front, the mesoderm which would have developed the first toe will still develop the first toe, but it will now point towards the rear of the animal. If the ectoderm is reversed through 180° the mesoderm develops according to its original orientation i.e, the first toe points fowards. This confirms the role of the mesoderm in determining the antero-posterior axis. It will be recalled that the proximo-distal axis is determined by the AER which is ectodermal (see section 1.4.1.3.) (Zwilling 1956). A major control in anteroposterior determination seems to be a zone of the mesoderm situated at the posterior end of the limb ud known as the ZPA (Zone of Polarising Activity), Saunders and Gasseling (1968), Balcuns et al (1970) in Saunders (1972). For the location of this area see Figure 1.23 on page 21.

Figure 1.23 Distribution of the ZEA in the might wing bud of the chick embryo (after Sownders 1972).

The properties of the ZPA were revealed by Gasseling (Saunders and Gasseling 1968) when mesoderm from the zone below the apical ridge in the ZPA was grafted to the preaxial apex of a host right wing bud. The portion of the apical ridge next to the graft (taken from the region where the ZPA is found) induced the outgrowth of a supernumerary limb (extra limb), in the preaxial mesoderm (mesoderm in front of the ZPA shown in Figure 1.24 below). In Figure 1.24 below an experiment is shown in which a section of the preaxial border of the wing bud at its junction with the body wall is replaced with a similarly sized implant from the ZPA. It was from this that a limb with mirror image symmetry was induced.

Figure 1.24 Enperinent showing neplacement of preaxial mesoderm with 2PA, and the nesulting minnor image symmetry. After Saunders (1972)

The activity of the ZPA is first detected in grafts from the tissues of the postaxial border of the limb bud (HH stage 17, Hamburger and Hamilton (1951) Appendix B). As the limb bud elongates, the polarising power of the ZPA becomes restricted to the posterior margin of the bud near its junction with the body wall. Thereafter it is found progressively more distally along the margin of the lengthening bud and it diminishes near the body wall. By HH stage 28 the polarising activity is shown with low frequency and is not detected after that.

Slack (1977a) confirmed the presence of a ZPA in the axolotl (Amphibian). He found that the flank tissue posterior to the prospective forelimb bud determines the antero-post. inr axis. He did a series of transplants, by moving the limt uche:s to a distinct site on the flank, where in most cases a firelimb is formed. When the same grafts were placed on the head, the forelimb did not grow. However, if a wide strip of flank tissue was grafted along with the anterior disc (presumptive limb tissue), limbs did form. As this flank tissue is the position of the ZPA, it must play a role in the onset of 1 inb formation.

Cameron and Fallon (1977) investigated the lindlimb of Xenopus laevis for the presence of a ZPA. They rotated hindlimb bud tips through 180° on the proximo-distal axis and returned them tr, the stump. (See Figure 1.25 on p23).

Figure 1.25 Sketeh showing the rotation of the hindlimb bud by tumeron and patlon.

Supernumerary 7 imbs (two limbs from one stump) were induced in the preaxial stump tissues and the most preaxial digit always formed next to the grafted postaxial tissue. When they removed the presumptive ZPA and did the same experiment, the incidence of supernumerary 7 imb formation was drastically reduced.

Slack (1977b) tries to explain the presence of this ZPA in tems of a monotonic gradient (one gradient only). According to his point of view the flank defines the high point of the gradient, thus determining the overall antero-posterior polarity, while the level of gradient determines the pattern of the Timb. A shallow gradient will suppress the pattern while a deeper gradient will evoke a double structure in the centre of the limb and an even deeper one will cause formation of two limbs. Fallon and Crosby (1977). See Figure 1.26 below.

Figure 1.26 sketch showing the Gradient Theary of slack (slack 1977b)
A. shows the model for the specificalion of the normal limb.
B. shows the suppression of the 1 imb in the case of a shallow gradient.
C. shows the double fusion in the centre of the limb.
D. shows formation of two mirror image limbs.

1.4.3. The dorso-vertral axis

The dorso-ventral axis distinguishes the top of the 1 imb from the botton of the limb. It seems to be the axis which is established first (Chaube 1959). It also seems to be under ectodermal control as, when the limb bud mesoderm of a chick forelimb is dissociated into a cell suspension, re-aggregated and placed in an ectodermal jacket, the resulting 1 imb shows no antero-posteriar polarity i.e. as would be expected, the different digits are not able to be distinguished in the correct order but the differences in feather distribution correspond to the dorso-ventrality of the ectodermal jacket (Saunders 1972).

Therefore, imposition of antero-posterior polarity by implantation of the ZPA in either anterior or posterior end of reconbinant does not alter dorso-ventrality which still conforms to that of ectoderm. Therefore, whereas the AER and proximo-distal and dorsoventral polarity are under ectodermal control the antero-posterior polarity is under mesodemal control.

1.5 Theories involving cell patterning and its relation to 1 imb development

Many theories have been proposed to account for cell patterning in the 1 imb . Sone of these theories explain cell patterning in the proximo-distal direction, while others explain cell patterning in the antero-posterior direction.

Of tnose theories which propose patterning in the proximodistal direction, the most well-known is that of Wolpert (1969), of which follows a detailed discussion. There are three important processes occurring during limb development, namely morphogenesis, pattern formation and differentiation. Wolpert (1969) distinguishes between pattern formation and morphogenesis.

During pattern formation, the spatial organisation of cellular differentiation is specified i.e. the muscle and cartilage are placed in their correct positions in the limb. During morphogenesis the shape of the limb is moulded i.e. the wing shape or the leg shape. It is obvious that pattern formation precedes morphogenesis.

A further process occurring, distinct from pattern formation and morphogenesis, is differentiation, which will be discussed in detail in section 1.7. During differentiation, an initial group of unspecialised cells changes to form specialised tissue i.e. muscle or cartilage.

A theory is proposed for pattern formation of the limb using the concept of "positional information" (Wolpert 1969, 1981). This theory proposes that the path of differentiation followed by the cell depends on its position in the 1 imb prior to differentiation. A good example illustrating this is an experiment in which a piece of proximal tissue from the hindlimb (near the thigh) is transferred to the distal tip of the wing bud in the chick embryo. It develops into a toe. It is still histologically hindlomb tissue, but its position causes it to form the more distal hindlimb structure i.e. the toe. The theory proposes that each cell has a positional value and interprets this accordingly.

Wolpert (1981) proposes three methods for specifying positional information:
As one method of informing each cell of its position, Wolpert suggests a monotonic gradient i.e. a gradient in one direction with a source at the high point and a sink at the low point as shown in Figure 1,27.

Figure 1.27 sketch indicating a monotonic gradient i.e. a gradient in one direction with a source at the high point and a sirk at the low point.

According to this theory the source releases a diffusible motecule and if this is broken down at a rate proportional to the concentration $1 . e$, the higher the concentration the greater the number of molecules are broken down, then the concentration provides a measure of the cell's distance from the source. The greater the number of molecules that are broken down, the nearer to the source the cell is. The sounce must be of constant concentration forming a boundary at the highest point of the gradient.

As a second method suggested by Wolpert, instead of using a chemical to form the gradient one could use a time zone. The cells could measure how long they spend in a certain area, which Wolpert calls the "progress zone". This is a zone near the tip of the limb bud which is 350μ wide. Its existence depends on the AER. The AER permits rather than directs the pattern (Wilby 1977), Cells proliferate in the progress zone by cell division and cells overflow from the progress zone becoming fixed in positional value as they cross its proximal boundary. The cells first emerging from the progress zone would differentiate the structural characteristics of the proximal limb levels. (Later cells having counted more time in the progress zone would generate more distal positional values.) If the AER i.e. progress zone, is removed only those cells already specified by their sojourn in the progress zone form the limb and the resulting limb is defective. When the cells leave the progress zone only then do they differentiate. Below is a sketch showing a cell in the progress zone at various stages of limb development.

Figure 1.28 The progress zone at vainous stages of limb deve Zopment (Summerbelt et al 1973)

The third way in which cells could determine their position is by direct transfer of positional value from we cell to another. This is shown during the pixess of induction diang devclopment of the embryo. The neural plate of the amphibian embryo is induced by the direct transfor of positional information from the underlying mesodem.

To illustrate his theory of positional information clearly, Wolpert (1969) uses the French flag (see Figure 1.29 below).

Figure 1.29 The rreneh flag

The blue zone could be regarded as the highest concentration while the white could be lower in concentration and the red could be the lowest. The concentrations have definite thresholds, i.e. there are no in between concentrations such as pink or light blue. (See sketch in Figure 1.30 below.)

Figure 1.30 Sketch showing the concentration threshotd

The cell could determine its position by means of the monotonic gradient already mentioned, or it could use a bipolar gradient or morphogen. One gradient could run from the blue to the red, and the other gradient could run from the top of the flag to the bottom, at right angles to the first gradient,

Where these two gradients cross would mark the position of the cell i.e. there would be a proximo-distel gradient and an anteroposterior gradjent. one other way in whith a cell could determine its position is suggested by Goodwin and Cohen (1969) in which each cell knows its position by measuring the difference in phase between two propagating events sent out from a source. These propagating events could be chomical morphogens.

Cells interpret their position and show a genetic rosponse as is show in Figure 1,31 below. The Figure is a sketch of the French and Anerican flags, whion can be used to illustrate further the experiment discussed in Holpert (1981) on page 25. (u) and (b) show the flags. A portion is removed from the middle of the French flag in (c) and transplanted to the front end of the Mnerican flag in (d) and vice versa. It will be noted that, while the flags remain genetically true in (c) and (f), American flag tissue remains American and French flag tissue reaains French, they behave according to their new postion by formity the portion of the flag they would have fomed at that position re their flas of origin.

Eigure 1.31 Tomplomation botwen the thoned ita and the Amoryon flat

The emperment on mere of, in which thigh tisste forpod a toe when tronsplanted to the wine bud of the chick enoryo, is a practical illustration of the theory discusced above.

The "positional" theory can also be used to dosiribe recovery of the homs after an injury. Two methods are suegested by wolpert i.e. mophellexis or eptmophosis. In morphallexis the Tmb renodets the remaining tissue and fome a snaller but complete limb, whereas in epinorphosis there is prollleration of the cells at the cut end to give rise te a now limb lud which forms the missing parts.

Searls (1907) illustated the phenmenon of "posicional infomation" by showiny that whon cells were placed in the centre of the limb they formed cartilage, but when cells vere placed on the periphery of the lim they formed busele.

Faber (1976) uses the bipolar gradient theory of Wolpent and apples it to amphibian limb de eloment. The boundrios of the grodient 1 ic at the ghtie sheleton proximally and at the digits distally. The distal end of the gredient is derined by the Aer. The high reint of the gradiont is distal and the low point proximat. If parte of the Thb which folt in the contre of the gradient are romove, the gradient becons too steep, as there is a shorter distance fro the proxint to the distal cud. The 1 imb thererore grows atain to sprad the ondiont over a lomer distance. This process is called interalation i.e. filling in the missing parts (norphationis). see figure 1.32 below.

α_{p} Miduram ioven
ox sin
ox Sole
α_{a} mite.

An elegant model for intercalation has been described by French, Bryant and Bryant (1976). According to the model the Timb is in the form of a cone, decreasing in diameter distally. At various points along the length of the cone a definite distance apart are circles, A, B, C, D, E and F. On each circle's diameter are twelve points. A to F represents the proximo-distal axis of the limb, while 0 to 12 represents the antero-posterior and dorso-ventral axes of the 7 imb . Figure 1.33 below illustrates this model.

Figute 1,33 the radiat (A to F) and ciroutar sequences (0 to 1a) from the modet of Freneh, Bryant and Exyant (1976) and Bryanl(1977)

There are two rules in the model for regeneration of the limb when tissue has been removed,

1. Shortest intercalation rule

When cells with normally non-adjacent positional values in either radial or circular sequence are brought together, growth occurs to intercalate the missing positional values i.e. if circular levels 4 , 5 and 6 are removed, the missing parts must be intercalated between them. The circular sequence is continuous, therefore there are two possible values which could develop between the two non-adjacent values i.e. the shortest set is $3(4,5) 6$ and the longest set is $3(2,1,12,11,10,8,8,7)$,6 .

2. Complete circle rule

From any given radial position, transform tion to form all the more central (distal) radi- 1 values can occur, novided that a complete set of positional values in the circular sequence (0 to 12) is either exposed by amputation or generated by intercalation i.e. if D, E are removed the levels left are A, B, C, F and the levels D and E must be intercalated betwe in them.

This intercalation theory has been illustrated experimentally by 1 ten and Bryant: (1975) and Stocum (1975) in the newts Notophthalmus viridiscens and Amblystoma maculata. The forearm bud was transplanted to the upper arm of the same antmal, omitting the middle section of the arm. See Figure 1.34 below. There was considerable dedifferentiation of the stump of each of the transplanted sections and intercalation occurred to replace all the missing proximo-distal levels.

1

Figure 1.34 Sketeh ahowing the tranophant experment of Iton and Bryant (1975) and Stocum (1975)

This experiment was also interpreted graphically by Faber (1976) as shown in Figure 1,31 on page 28.

Maden (1977) developed a theary along the lines of French, Bryant and Bryant (1976), incorporating the "positional information" theory of dolpert (1969), to explain regeneration in the amphibian limb. He gives the epithelium surrounding the limb a value of 0 and all the other cells inside the epithelium a value higher than 0 . See Figure 1.35 on p 32

According to this heory, based on mathomthal formulee, when the differene hetemen wo coll: is higher than 2.12 the cells will difforethate, On the other hand the cells dedfferentiate when their difference is lower than this value and this inftiates regeneration, bs qusing mitosis to occur. Hitosis usually ccares with the onset of infferontation. According to this thaory, cells display their posit tona values in ordr to comme them and this fies ip nth folpert's third thooy of cells commantating positional values to each other.

Macillians (1070) deviecs a theory usiog positional iniormation to try to explath the thape of the Fimu. He suggested that the patten fonneticn was controlltd by sevest yretients of "morphogens" and invores the pote of "allostexte protetns" wich bind the "mormogens". By compex materatical fomblae this model predicts the formation of a varieqy of simple shauss simply by varying the concentrations of the "morphegens". Some of the shapes produced by this methemiticat mulet resmathed lims. According to this model the concentration of the "allosteric proteins" varies with respect to their posttion in the limb. If one adds more protuins to the model the shares can be mode more complex. A modification of his model can be used to cxplain repeatimj structures.

Ede and Law (1969) attempted a computer simulation of the limb in order to describe pattern formation. This was improved upon by Willy and Eu (1975) using localised cell-cell interaction to give the cartildge pattern in ay limh shape. In the model, the colls modify their metabolish freversibly at critical threshold levels of diffusible nomphogen, which may be mate or destroyed by cells. Cartilage eloments aro intitated as single cetls and expand contrifugally to full-sfor developing sequentially along the anterom poetorion dxis. The final computer pattern gives a good apmoximation of the fint lemb patterin.
1.6 How the cells in the limb bue commicate nt th one another As discussed in section 1.5, it has been postulated that then mast be sone soit of signal which tells the Timb which structure to fom and what the final shope is ta be. In order to achiove the finat share, the cells must comminicate with one another.

One of the most well-studied cases of cell commulication in the Timb is the epthelialmesonuynal interaction.

Balinsk (${ }^{2} 929,1931,1933$) and Filator (1930 a and b, 1932), in a study on the libb development of nevts, found that the outgrowth of the mesodum was inbibited if it did not have contact with the limb eptdemis. This has been confinned by Tschum (1957). Whe showed that after the intital outgrowth of the limb, furcher development of the limh bud depersed on an epthelialmesenchymat interection, He placed the naled tibb tud nesenchyme i.e. with epidemats reroved, into the obrominal wall of the same or anuther tadpole. This abominal wall cotites of an epidermis and a pignented peritoneva with parallel bundes of macle fibres and sone comestive tissue lyint in betwet.

In one series of experiments, he placed the noled 1 imb bud nesenclyme between the ruscles and epidemis, so that it was in contact whth the ditrentiated mor- 1mb eptionais. In the second series of expermer, of placel the naked lind bud maserchyme between the pertwoms and the miscles so that it would be isolated from the epidernis. The controls were transplanted to the same sites with thetw lisb bud epithelium intact. The location of the buds in the experinent is shown in Figure 1.36 below.

MUSCLES \& PERITONEUM

> Figure 1.36 shoth ohemm the location of the tinh tule th hrenmat 6 cravimes.

The experimeatal limbs whont cpidernis, transplanked betweon tho epidemis + mosenchyne, did not establish a now epidernis and did not establich contact with the non-Timb eptommis in the wall. the abdomen. In the second case, as there was no epidemis between the peritoneum and muscles, the linh Lud also developed without epidemal contact. In these two cases, elements did not dovelop, that were more distel to those prosumptive regions already present in the nesemchere at the start of the experment i.e. according to the fate map, based on stze, see Figure 1.10. Ischam thas concluded that further dietal outgrowth of the mesenchyme deperded on the epithelial mesenchymal contact.

1.7 Cutodifferentiation

Difforentiation is the path the coll takes to final development in response to its positumal infomation. The lom begins its developmont as a multi-potential reserderal core which can form chondrohlasts, myobitcts of ftoroblasts (presumptive cartilage, musele or connective tissue). On way in which these equipotential cells colld devide whother to fom cartilage on muscle is sugges wad by Caplan (2977) in which he fou I that a high concentration of NRD (nicotinerite adenine dimacleotids) in chick limbs causes the cells to becone myoblasts while a low concentration of NAD causes cartiluge fonation. The internal pool size of NAD is regulated by the vascular systom. There are two types of vascular zone in the avian limb. The heevily vascularised zone foms myogenic cells white the lightly vascularised zone foms cartilage. Differentiation is characterised by the formation of troteins specitic to the specialised function of the cell. This is in addtion to the proteins that the cells need to survive, which are common to all cells. In a wellstudied case of a differentiating organ, the pancreas, Ruiter el al (1903) divide the frocess of differentiation into a series of welldefinet stages. The above authors worked on the pancreas of the chick tmbro, but as the present project is matily a study of cartilage in limb development the stages of differentiation in the pancreas will be compred to those of the cartilage whereve: possible.

The cells begin as undifferentiated cells when synthes is of "Tuxury" or cell-specific proteins, either for the pancreas or 7 imb cartilage, is zero. This is called the undifferentiated state, see Figure 1.37.

The cells are subsequentily converted to cells with "pancreatic potential" or "chondrogenic potential" in the primary regulatory event, see Figure 1.37. In the case of the pancreas, a though pancreasspecific proteins such as insulin and lipase are not now present, they are present at a concentration which is $10^{3}-10^{4}$ fold lower than that found in the fully differentiated pancreas cell. How ver, their level is significantly higher than that found in non-pancreatic cells. This state of pancreatic cell development is referred to by Rutter et al (1968) as the protodifferentiated state, see Figure 1.37. In the cartilage cell, the protodifferentiated state is characterised by the first appearance of chondroitin sulphate (which can be detected by alcian blue and chlorantine fast red with which it gives a distinct blue stain).

The conversion of the protodifferentiated cells to the fully differentiated state occurs as the second regulatory event, see Figure 1.37. This second regulatory event is preceded by a terminat cell division which is followed by a $10^{3}-10^{4}$ fold increase in specific pancreatic proteins i.e. lipase and insulin. In the cartilage there is an increase in the production of chondroitin sulphate as a result of a dramatic increase in the concentration of the chondrogenic enzymes. (A teminal cell division is not necessarily the last cell division as the fully differentiated catilage cells continue dividing to achieve growth of the cartilage.)

Rutter et al (1968) also describes a tertiary regulatory event in which the enzyme concentration in the pancreas can be modulated by external factors such as diet or hormones. This is the stage for the maintenance of the differentiated state.

Figure 1.37 stages of differentiation of a co $\geqslant 7$.
(futter at at 1968)

1.7.1. A detailed discussion of a differentiated cell type, namely sartilage

As seen in figure 1.38, cartilage consists of cells called chondrocytes and a matrix surrounding them. The matrix consists of collagenous fibres, chondroitin sulphate, chondromucoid, albumoid and 70% water. The cartilage is enclosed in a fibrous bag, the perichondrium consisting mainly of collagenous fibres. This layer is not immediately obvious after cartilage growth ceases. The chondrocytes found in the matrix tend towards a spherical shape in the centre of the cartilage. However, at the edges near the perichondrium, the cells are relatively young and flattened.

To mark the beginning of cartilage development, mesenchyme cells enlarge into crowded vesicular cells in a mucinoid fluid. (Procartilage stage.) Thin plates of matrix then appear between the cells and enclose them. The cells are now called chondrocytes. Mesenchyme surrounding this mass of cartilage becomes compressed and is known as the perichondrium. In the mature cartilage the chondrocytes are found singly or in groups in spaces in the matrix. The spaces are known as lacunae.

Cartilage grows in one of two nays :

1. Interstitial groven

This is the internal groxth of the cartlege, taking piace by the continued geceth of matrix between the chondrocyles, pushing them further apart.
2. Appositional growth

This type of growth takes place from the perichondrium. The imernost cells of the perichond un specintise into chondroblasts and deposit hatrix abont thensetves. These become overl. id by newer cells and matrix edded from the perichondriun. As the cells get buried deeper in the matio they undergo Interetitial growth. (Arey 1968.)

In the limb licelf, the first external sigh that cariflage is foming is the contenation of cortilase colls (chondrocytes at this stage hrom as chonfobtests). In the tauple this stene is referred to by Homkocp and Fator (196) as the procarthage slage. In the chick uing, these corensetions are ormmed in the patem of the future leab in when the prostctive humores ete are indicated. Inded fde and ngertet (1469) corgare wis to the Talpid chisle linb (a mutant of the chich thich exhibits the phemenon of polytubly). These euthors fond thet at the above stage many nore condenations then whtid tre foum, which go on to fom more than tho ustal number of digits, Acording to Fde and FTin (1972) the cartiluge condenctions expand by the inclusion of more and more undifferetated c. 11 at the reriphery. The condensations then merge to form areas of precattilage comresponding to the various elemate of the linh to be fomed. These authors clain that this is a good arguent for the increasing monility of the chondroutes changing the pattem formetion in the Talpid ${ }^{3}$ chick limb. Oue to the greater adhesfyeness, larger less separate condensations form, the breaditio the madle is larger thus more digits form.

r,

3. Chundroblasts hypertrophy inte chondrocytes
\& strgeh Intorcollular substanco

A.Semi-dtegrammati* thatch of uncalatiod byaline
certilege covored with pariohondriom
Figure 1.38 The abage of embtitao denelopnont (itam 1p\%)

1.8 How differentiation and cell division can bo

affected sy the ase of 5 -FUER and bobber
5 -Bronedexyuridine (5 -blat) is fumd to act a a replacemont for the hase thymdine, in the DNA molecule. As a result the difforentiation process of cells is affected (Wilt and Anderson 1972). 5-Fluorodeoxyuridine (5-Fude) wes first observed as an fimibitor of the mitosis of cells " n culture. The reason for this inhibition was that it prevented the preduction of thymdyle te synthetare, an enzme roquired for the production of endogenous thymidine. As this thymidine is required tor the replication of DNA, mitosis was imibited (Comrad and Rudele 1972). In the present study, the effects of thense twe drugs, 'oth singly and in combination, heve been analysed, to gith further understanding of early limb development in yonoms legis tadpoles.

1.8.1. Structrac of lim

 As both of these drugs affect the muteie botic han in some wey, it will be useful to look ot the strupture of DNA. The offects of the drugs wh be studied in sectom 1.3.3. and $1.8,4$.Dut is nade up of purine and primidim bases, deoxyribose sugar and phosp ic acid. (Sen fioure 1,39 betom.)

$4 x^{4}+\sqrt{4}$

var.

Figure 1.39 strotan of tho doombthentoothes of Dw

The purines are adenine and guenine, while the pyrimidines are cytosto and thamine. The pespective purine or pyrimidine is comensed with deoxymentosn sugar to rorm a nucleoside $1 . e$. guanosime, adenosine, cytidine, thymidine. The phosphoric ester of The muchooste is a deony ibomeleotide (see Figure 1.39 above) i.e. ademphte, cytidnate, thadylate, granylate.

These form phosphoric esters are twi ted onto two spiral strands Which intertwine to form the double he ix of DNA (s se Figure 1.40).

1.8.2. Replication of DNA

Each strand of DMA consists of a particular sequence of purines or pyrimidines, with a purine on the one chain pairing with the complementary pyrimidine on the other chain. The adenine pairs with the cytosine and tine guanine pairs with the thymine. During replication, the two strands dissociate and each one serves as a template for the synthesis of two new complementary chains of DNA. When the new chain is being synthesised, adenosine picks up its complementary nucleotide thymine and guanosine picks up its complementary nucleotide cytidine (davidson 1969).

Figure 1.40 Replication of DWA

1.8.3. 5-Fluorodeoxyuridine

E-Fluorodeoxyuridine has a similar structure to the nucleoside thymidine (pyrimidine + deoxyribose sugar), see Figures 1.41 and 1.42 on p. 41 The only difference is that the CH_{3} group of the thymidine molecule is replaced by a fluorine atom. 5-Fluorodeoxyuridine is referred to as 5 FUR.

Author Christie C A

Name of thesis The effect of 5-bromodeoxyuridine and 5-fluorodeoxyuridine on differentiation and metamorphosis in Xenopus Laevis Tadpoles 1982

PUBLISHER:

University of the Witwatersrand, Johannesburg © 2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

