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Abstract

In electrical power utilities, there is an ever-growing need for improved asset

management. Power transformers are identified as one of the most critical and

high impact items of plant within an electric network. For this reason, effective

management of transformers is required to reduce the risk to power transfer

due to unplanned outages, as well as the high consequential costs associated

with catastrophic failure.

The objectives of this work include the evaluation of effectiveness of the cur-

rent method implemented within Eskom, of evaluating transformers based on

their condition/Health Index (HI) to develop replacement strategies, as well

as identifying possible improvements to these methods and development of a

model that can be utilized for determining the probability of failure of a power

transformer based on its HI.

There are two components of the existing model for determining failure prob-

ability: the effects of age and HI. Historical failure data was collected for

the period 1996 - 2014, including both severe and intermediate failures in the

Eskom Transmission network. This included failure mode, demographic in-

formation, Dissolved Gas Analysis (DGA) results, oil quality test results and

predicted Degree of Polymerization (DP). A data sample of healthy transform-

ers was also collected. The failure data was fitted to a Weibull distribution,

and the probability of failure based on age determined. This was compared to

the existing distribution parameters and its effectiveness evaluated. Statistical

analysis was carried out on the complete data set. Since there are multiple,

continuous predictor variables and one dichotomous output variable, a mul-

tiple logistic regression model was fitted to the data. This was done for the

existing HI, as well as for new HI parameters that were identified as the most

significant in predicting the output.
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The existing Weibull distribution was found to be ineffective in describing the

existing failure data for ages <10 and >50 years. The average age predicted

by this model is also unrealistically high and no practical evidence of this is

found. An alternative Weibull distribution was found that better described

the data. The logistic regression model fitted to the failure data using the

existing HI parameters was found to be a poor predictor of probability of

failure. An alternative model was found enabling a more accurate prediction,

using fewer variables. Due to the large errors in measurements of the predictor

variables and in some cases, exponential tolerances, as with DP, inaccuracies

are expected within the model. The existing model is found to be ineffective

in determining the probability of failure of a power transformer. New HI

parameters, an age distribution and logistic regression model were determined,

enabling a higher accuracy in predicting failure events and can therefore be

utilized in various asset management initiatives and risk mitigation.
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porting structure [7] . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Relationship between different datasets and prediction model . . 44

5.1 Plot of gas concentrations vs failures . . . . . . . . . . . . . . . 52

5.2 Plot of gas rates of production vs failures . . . . . . . . . . . . . 54

xii



5.3 Plot of insulation parameters vs failures . . . . . . . . . . . . . 55

5.4 Plot of HI scores vs failures . . . . . . . . . . . . . . . . . . . . 56

5.5 DGA concentrations(left), including potential outliers(right) . . 58

5.6 DGA rate of production(left), including potential outliers(right) 59

5.7 Oil quality and DP(left), including potential outliers(right) . . . 60

5.8 HI parameters(left), including potential outliers(right) . . . . . . 61

6.1 Cumulative Density Function of failure data, CCRA and fitted

Weibull distributions . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Existing CCRA model bathtub curve based on a theoretical

Weibull distribution . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Bathtub curve based on a Weibull distribution developed from

empirical failure data . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 R output of logistic regression with HI parameters as IVs . . . . 68

6.5 Regression plots for HI parameters . . . . . . . . . . . . . . . . 69

6.6 R output of logistic regression with selected IVs . . . . . . . . . 71

6.7 Regression plots for raw data parameters . . . . . . . . . . . . . 72

6.8 ROC curves for HI and raw data models . . . . . . . . . . . . . 74

6.9 DP value and threshold with accuracy bandwidth versus time [8] 75

xiii



List of Tables

2.1 Diagnostic gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Overview of power transformer HI insulation parameters . . . . 33

3.2 Overview of power transformer HI electrical test parameters . . 34

3.3 Overview of power transformer HI visual inspection parameters 34

3.4 Overview of power transformer HI DGA parameters . . . . . . . 35

4.1 Confusion matrix for decision making . . . . . . . . . . . . . . . 39

5.1 Steven’s measurement system . . . . . . . . . . . . . . . . . . . 48

5.2 Percentile summary of DGA concentrations . . . . . . . . . . . 59

5.3 Percentile summary of DGA production rates . . . . . . . . . . 60

5.4 Percentile summary of Oil Quality and DP measurements . . . . 60

5.5 Percentile summary of HI parameters . . . . . . . . . . . . . . . 61

7.1 Example comparison of risk to business using different asset

management models . . . . . . . . . . . . . . . . . . . . . . . . 80

xiv



Abbreviations

2-FAL Furfural

AIC Akaike Information Criterion

ANN Artificial Neural Network

AUC Area Under the Curve

BIL Basic Insulation Level

CCRA Condition, Criticality and Risk Assessment

CDF Cumulative Distribution Function

DBDS DiBenzyl DiSulfide

DC Direct Current

DGA Dissolved Gas Analysis

DP Degree of Polymerisation

DV Dependant Variable

EAC Equivalent Annualised Cost

EPP Emergency Preparedness Plan

FN False Negative

FP False Positive

GLM Generalised Linear Model

HI Health Index

HMM Hidden Markov Models

HV High Voltage

IFT Inter-Facial Tension

IV Independent Variable

MAR Missing At Random

MCAR Missing Completely At Random

OEM Original Equipment Manufacturer

OLTC On Load Tap Changer

PDF Probability Density Function

ppm parts per million

xv



pu per unit

ROC Receiver Operating Characteristic

SFRA Sweep Frequency Response Analysis

TDCG Total Dissolved Combustible Gas

TN True Negative

TP True Positive

xvi



Chapter 1

Introduction

1.1 Power transformers in the electric utility

Transformers are considered the most crucial and expensive piece of plant

within a transmission system. Most transmission systems currently have large

populations of aging transformers. With the growing demand for electricity,

the loading of transformers is increasing. Current economic strategies call for

reduced maintenance as well as capital expenditure. These challenges, which

face utilities world-wide, necessitate improved management of transformers.

The impact of a power transformer failure can be catastrophic. It would there-

fore be beneficial to know the risk status of the transformer population in order

to facilitate better asset management, optimisation of maintenance, refurbish-

ment and replacement strategies which will ensure maximum asset utilisation

and minimise system risk. Statistical analysis on historical transformer fail-

ure data is therefore required, in order to obtain a model to determine the

probability of failure of the transformers currently in service.

1.2 Transformer population in Eskom

Currently, Eskom Transmission has over 550 power transformers in service.

It is of interest to see the age profile of the existing population, in terms of

years since manufacture, since reliability is often related to age. From an

1



analysis performed on insurance claims for transformers, it was found that the

average age of failure was approximately 15 years [9]. The expected design

life of a power transformer is 40 years. This figure is reduced, sometimes

substantially, depending on the utilisation of the transformer, i.e. its loading

or the environment to which it is exposed.

Figure 1.1: Breakdown of transformer age

The breakdown of age within the population of Eskom Transmission trans-

formers is shown in Figure 1.1. From this graph it is evident that the majority

(61%) of the population is above the age where probability of failure would be

expected to be high and 14% is beyond the expected design life. The average

age of transformers in Transmission is currently 29 years, showing an aging,

high risk fleet, according to traditional thinking.

With the increased age of the transformers and the following additional risk

factors [9]:

• Increased utilisation of equipment

• Deferred capital expenditure

• Reduced maintenance expenses

• Increased power consumption/load demand
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it seems inevitable that the transformer failure rate within Transmission can

be expected to increase rapidly in the near future. Therefore, it seems prudent

to investigate the development of a model that will enable determination of

probability of failure of these transformers, and hence improve asset manage-

ment.

1.3 Asset Management model

Eskom has adopted an asset management tool for optimising asset replacement

strategies. The Condition, Criticality and Risk Assessment (CCRA) model

enables the phasing and structuring of project plans based on suitable cost-to-

benefit ratios. A complete CCRA is required to avoid replacement strategies

based on age and condition alone, in an attempt to reduce failure rate. The

purpose of this model is to incorporate the consequence of failure as well as

the risk into the investment decision making process.

1.4 Previous work: Failure analysis models

There are currently three main methods for determining the probability of

failure of power transformers:

• Life estimation based on physical age

• Remaining life estimation based on Degree of Polymerisation (DP), hotspot

temperatures and loading

• Analysis of condition data

Various statistical and analytical methods are employed on these base data

sets. These methods also vary between considering performance of individual

transformers and performance of the transformer population as a whole [9] [10]

[11].
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The objectives of these models are to determine the number of failures ex-

pected per annum in order to determine the financial implications for insur-

ance claims [9] or for determining the necessity of spares [11]. They have also

been developed for the purpose of optimising maintenance strategies as well

as refurbishment/replacement strategies [12] [13] [14].

1.5 Research objectives

The abovementioned analyses are limited since each model focuses primarily

on one facet of the status of the transformer population in question. Each

method provides compelling results which can be used for maintenance, asset

management and strategic spares holding strategies. The methods that involve

detailed knowledge of the transformer’s loading, hotspot temperatures, mois-

ture content, etc. since the date of manufacture are unsuitable for the analysis

of the existing historical data currently available for the Eskom Transmission

population of power transformers.

Methods involving the analysis of age alone are also not considered effective for

Transmission’s population, since the environmental conditions and loading of

these transformers varies throughout the population and therefore, the aging

of the transformer, electrically and mechanically, also varies. Age alone cannot

be considered, since that would imply that a well-maintained transformer that

has been kept in stores since its manufacture will have the same probability

of failure as a fully loaded transformer that has been in service for the same

number of years. This is clearly not correct.

Methods combining a Bayesian approach and classical statistical analysis of

historical failure data are to be considered, since these methods correspond to

the methods already being employed in the CCRA model and require the use

of data that is readily available. The following analyses comprise the main

objectives of this research:

• Verification of the probability of failure based on age currently being

utilised in the CCRA model

• Evaluate the significance of the condition data currently being used to
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determine the HI in the existing CCRA model. This is to investigate the

impact of removing superfluous variables and simplify the HI

• Develop the probability of failure based on condition data to be used

as the HI modifier in the CCRA model, based on statistical analysis of

Eskom Transmission historical data

The probability of failure based on HI can then be utilised for both the CCRA

model, as well as the strategic spares management model.

1.6 Outline of dissertation

This dissertation is structured as follows:

• Chapter 2: Transformer life assessment

The various parameters used in assessing remaining life and condition of

a power transformer are outlined in this chapter. Existing methods of

ascertaining remaining life and health indexing are discussed.

• Chapter 3: Condition, Criticality and Risk Assessment Model

This chapter is concerned with outlining the existing asset management

model. Failure modes and mechanisms, as well as how the probability of

failure is related to risk is shown.

• Chapter 4: Data Management

The most important aspect of any statistical analysis is data integrity.

In this chapter the various methods used for processing and analysis of

the data set used in this study is outlined.

• Chapter 5: Statistical analysis

This chapter provides background into decision theory and the use of

statistical analysis, in particular multiple logistic regression, in decision

making. The various statistical assumptions and test methods are intro-

duced.

• Chapter 6: Prediction model

The results of the analysis performed on the empirical failure data are

discussed in this chapter.
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• Chapter 7: Conclusion and recommendations

This chapter summarises the main conclusions drawn from this research

work and makes recommendations for future work.

6



Chapter 2

Transformer life assessment

2.1 Life assessment methods

In the previous chapter the need for an accurate model to determine the prob-

ability of failure of a power transformer, relative to its condition was identified.

In order to do this, it will be necessary to investigate the various known meth-

ods for assessing transformer life and evaluating/monitoring its condition.

There are various ways in which the life of a power transformer is estimated.

These are linked to the aging mechanisms of the transformer. The main com-

ponent determining the remaining life of the transformer is its insulation sys-

tem. In a power transformer the insulation system is a combination of solid

(paper and pressboard) and liquid (insulating oil) insulation. The properties

of this insulation combination differs from the properties of the paper and oil

separately. The chemical composition of the paper insulation is as shown in

Figure 2.1.

Due to the construction of a power transformer, it is expected that once the

insulation has reached its end-of-life, so has the transformer. For this reason,

life assessment of the transformer becomes life assessment of its insulation

system. While there are regeneration methods available that can be used to

improve the quality of the oil, once the paper has deteriorated, it can neither

be regenerated nor replaced.

The insulating oil serves as a diagnostic tool, as well as an insulating medium.
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Figure 2.1: Chemical composition of paper insulation [1]

The analogy is often made between transformer oil and blood. Like the blood

that is continually flowing and in contact with all parts within a human body,

the insulating oil is also continually flowing and in contact with all components

within the transformer. A sample of blood can be taken and analysed for

pathogens and such a test can assist in the diagnosis of disease. Similarly, any

incipient fault within the transformer will result in a chemical breakdown of

the oil and/or paper, depending on the nature and severity of the fault, and

byproducts of these processes will become dissolved within the oil. The oil can

therefore be sampled and analysed to assist in the diagnosis of transformer

faults and aging of paper and oil quality. This is done through DGA, DP

prediction from Furanic analysis and oil quality measures. Oil sampling, if

done correctly, is a non-intrusive procedure and can be performed with the

transformer in service.

2.1.1 Aging mechanisms

There are three main factors influencing the aging of cellulose [15]:

• Thermolysis: the effect of temperature, usually temperatures > 120◦C

• Hydrolysis: the effect of moisture

• Oxidation: the effect of Oxygen
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These three factors form a cycle of deterioration as they are both initiators

and byproducts of the aging process. it is necessary to evaluate all currently

utilised life estimation methods to determine which parameters can be used in

predicting failure.

2.1.2 Life estimation

There are currently three main methods for estimating the remaining life or de-

pleted life of power transformers. These methods are then used in determining

the expected probability of failure. These methods include:

• Life estimation based on physical age

• Remaining life estimation based on Degree of Polymerisation (DP), hotspot

temperatures and loading

• Analysis of condition data

Each of these methods has its benefits and shortcomings.

2.2 Life estimation based on physical age

The simplest, crudest way of assessing the remaining life of a transformer is to

look at its age relative to its design life. This can be useful if the transformers

operating conditions are well known, however caution must be exercised when

making any conclusions based on age alone.

Various analyses have been carried out where a transformer’s reliability is

determined from the Probability Density Function (PDF), survival function

and hazard rates of transformers. The PDF is used to depict probability of

failure as a function of age. The survival function, also known as the reliability

function, is the probability of a percentage of transformers surviving at least

until a certain age. The hazard rate gives the failure rate distribution with age

and it is used in the determination of the bathtub curve as shown in Figure 3.2.
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One such method was carried out on the Eskom population of transformers in

order to determine the probability of failure based on age and historical failure

rate [16]. This analysis was then used to evaluate the effect that monitoring

the condition of these transformers had on the overall failure rate.

Another statistical analysis based on age is carried out in [11]. Here, three steps

in asset management are identified: risk analysis, condition assessment and life

cycle decisions: whether to repair, replace or retire the transformer. In this

method, the PDF is fitted to a Weibull distribution and analysed to determine

the B-lives of the various transformers in order to compare reliabilities. An

age at B-life B10 means that at this age 10% of the population will fail and

90% will survive, an age at life B50 is correspondingly the age at which 50%

of the population will fail, or the average expected life of the population.

The probability of failure based on age is a conditional probability, e.g. the

probability of a transformer failing at the age of 30, given that it has already

reached the age of 30.

Weibull distributions, fitted to empirical failure data are commonly used to

determine life expectancy. The difficulty with applying such a distribution to

power transformers is that often the root cause of failure is not related to the

normal aging of the insulation, but rather external factors. Very few failures

recorded per annum, resulting in limitations in available data.

2.3 Degree of polymerisation

DP is an estimation of the remaining life of the paper insulation. With a

breakdown of the cellulose molecules which make up the paper insulation, there

is a reduction in the paper’s tensile strength. This equates to a reduction in the

paper’s mechanical withstand and has very limited impact on its compressive

strength and dielectric strength [17]. This means that transformers with a low

DP are much more susceptible to failure during short circuit incidents than

those with higher DP numbers.

The remaining life of a transformer can be calculated from the temperature

and loading of a transformer [18], or by determining the aging rate from the
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moisture content in the paper [19]. A general rule-of-thumb is that for every

6◦C above 98◦C that the transformer is operated, the insulation life is halved

[18]. This is expected due to the aging/temperature relationship given by the

Arrehnius-Dakin equation [20].

A by-product of the aging process of the paper insulation is Furfural (2-FAL).

This compound becomes dissolved within the oil, since the paper is contin-

uously in contact with the oil. A sample of insulation oil can be taken and

analysed and the concentration of 2-FAL determined in order to approximate

the DP of the insulating paper [21]. This approximation of DP is commonly

used since direct measurement of DP requires a sample of the paper, which is

an intrusive test and in most situations impossible to obtain. Oil sampling is

non-intrusive and can be done while the transformer is in service. It is widely

accepted that a DP of 900 indicates new insulation, while a DP of 200 indicates

paper that is at the end of its life [21].

The expected remaining life can be calculated by taking the rate of change of

DP as well as the relative saturation and temperature into consideration [15].

Vashishtha et al [22] investigate methods of determining the remaining life of

a transformer based on the moisture content of the paper insulation and the

effect of moisture on the rate of decrease of DP, i.e. the mechanical strength,

of the paper insulation. This is a well-defined method and is also related to

the loading of the transformer as outlined in [18]. Both methods do however

require extensive knowledge and reliable history of the transformer to be kept.

It is necessary to capture measurements of these parameters from the day

of energisation of the transformer. This is a difficult task for a brand new

population and an impossible one for an aged one.

Another method being utilised entails determining the change in DP over time

by analysing transformer hotspot temperatures [8], as per [18]. In this method,

change in DP versus time is modelled, including the errors associated with the

uncertainties in measurements of both hotspot temperature and DP.

The actual DP value, as well as the cut-off threshold are known with limited

accuracy, since exact determination of DP is an intrusive test. The likeli-

hood of obtaining a representative sample of paper in order to perform the

test within the laboratory is also low. A drawback of DP measurements is
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the uncertain results they produce due to different structures, manufacturers,

loadings, and maintenance histories, as well as interference of measurements

[23]. This method is however focused on population reliability rather than in-

dividual transformer reliability and the decrease in probability of failure that

can be expected should some of the transformers within the population be

replaced with new ones.

In [23] a method is described where measurements of DP, and condition pa-

rameters are taken during scheduled maintenance activities. A conditional

probability of failure is then determined by using an Artificial Neural Net-

work (ANN) to correlate the insulation degradation with measurements taken

during maintenance activities.

A method used to optimise maintenance schedules is developed in [12], based

on the probability of failure of the components of a transformer, such as paper

insulation, bushings and tapchangers, etc. and the impact such a failure would

have on the system as a whole. Occasionally, the probability of failure of a

transformer is extremely low just before the failure occurs. This occurs when

a large deviation from the expected behaviour occurs towards the end of the

lifetime of the transformer. For this reason, the transformer health data is

based on extreme value distribution theory and Monte Carlo simulations are

used for this method. In this way, the probability of failure is the ratio of the

number of transformer failures and the number of simulations.

2.4 Oil quality

Various tests can be performed on the insulating oil to determine its condition.

The most commonly used methods include: moisture content, IFT, dielectric

strength, acidity, tanδ, colour/appearance and sludge.
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2.4.1 Moisture content

A relationship exists between moisture in oil and moisture in paper. Mois-

ture migrates between the paper insulation and the insulating oil. The trans-

former’s paper insulation is highly hygroscopic and as a result most of the

moisture within the transformer will be found within the paper. At higher

temperatures, the moisture tends to move out of the paper and into the oil.

For this reason, it is crucial to note the transformer oil temperature at the time

of sampling the oil in order to have any meaningful estimatation of the mois-

ture content in the paper. The relationship between moisture in oil, moisture

in paper and temperature is shown in Figure 2.2.

Moisture in the transformer is an important parameter to control. It is both an

initiator and a byproduct of the aging process. Care must be taken to ensure

the moisture levels within the transformer are kept at a minimum, with the

use of silicone breathers and online drying systems.

Figure 2.2: Equilibrium curve showing relationship between moisture content

in oil and paper at different temperatures [2]

Moisture in oil originates from both internal, aging processes and also from the

external environment. Moisture content in oil can be reduced by purification
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methods, such as: hot oil circulation, oil dehydration, degasification and filtra-

tion. These methods are however, not effective for the reduction of moisture

content of the cellulose insulation.

2.4.2 Interfacial tension

Dissipation factor is a measure of the physical properties of the oil and is

measured by measuring the surface tension of the oil against that of water.

A high value of IFT is expected for new oil, while a low IFT is indicative of

deterioration or oxidation of the oil.

An IFT of >35 mN/m is expected for new oil and should be monitored reg-

ularly if this value drops below 33 mN/m. Once IFT drops to <25 mN/m,

action should be taken.

2.4.3 Dielectric strength

The dielectric strength of the oil is the oil’s ability to withstand electrical

stress. Moisture and fine particles within the oil result in a decreased dielec-

tric strength. Dielectric strength is measured by applying a power frequency

voltage between two submerged electrodes, as shown in Figure 2.3.

Dielectric strength values > 60 kVrms are considered acceptable for in service

transformers. Dielectric strength can be improved by purification or filtration

processess.

2.4.4 Acidity

The presence of acidic compounds is an indication of oxidation of the oil.

High values of acidity will result in the oil becoming corrosive. New oil

should not contain acidic compounds and should have a neutralisation number

<0.01 mg KOH/g. Once the acidity increases to >0.2 mg KOH/g, then the

acid should be removed by regeneration processes, or replaced, depending on

other quality parameters.
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Figure 2.3: Laboratory measurement of dielectric strength

2.4.5 Dissipation factor

The dissipation factor is a measure of the loss angle, or the percentage leakage

current flowing through the oil under high voltage stress. New oil should have

a low tanδ, which increases with deterioration of the oil, due to impurities and

oxidation of the oil. A tanδ value of less than 0.005 is expected for new oil.

Oil with high tanδ values can only be improved by oil filtration or regeneration

processes.

2.4.6 Colour/appearance

This is not a critical test, but it is useful as a quick, comparative evaluation of

oil deterioration. An oil that is green colour indicates the presence of arcing,

as expected in a tapchanger sample. As the oil colour varies from clear to

yellow, to orange, to brown and black, the condition varies from new oil, to

extremely bad/deteriorated or contaminated oil. The presence of free water,

insuluble sludge, carbon, cellulose or fibres, dirt, etc. will usually give the oil

a cloudy appearance.
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Figure 2.4: Variations in insulating oil colour, for different oil conditions

2.4.7 Sludge

Sludge is a thick sediment or deposit which is primarily formed during the

oxidation of the transformer oil. It comprises an insoluble, resinous, polymeric

substance that is conductive, hygroscopic and is a heat insulator. The presence

of sludge reduces the oil’s dielectric strength and can aggressively increase the

aging rate of both the oil and the cellulose insulation. Sludge accumulates

on the cooling surfaces and between the windings which can restrict efficient

cooling of the transformer [1].

The presence of sludge is undesirable and can be removed with hot oil, filtration

and chemical processing of the oil.

2.5 Analysis of condition data

There are primarily three ways in which to assess the condition of a power

transformer. These include:
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• Dissolved Gas Analysis (DGA)

• Electrical testing

• Visual inspections

With these methods, incipient faults and defects can be identified.

2.6 Dissolved Gas Analysis

DGA is a well established diagnostic method, where oil samples are taken

routinely and the composition of the gases dissolved within the oil analysed.

There are mainly eight gases of interest for diagnostics, outlined in 2.1

Table 2.1: Diagnostic gases

Gas Chemical formula

Hydrogen H2

Methane CH4

Ethane C2H6

Ethylene C2H4

Acetylene C2H2

Carbon Monoxide CO

Carbon Dioxide CO2

Oxygen O2

Nitrogen N2

The gas concentrations are measured and a trend of gas production is recorded.

A developing fault within the transformer will lead to larger quantities of gases

being generated and dissolved within the oil. The speed at which the fault gases

are produced is an indication of the magnitude of the fault. For this reason,

the rate of production is often considered to be of greater importance than the

actual gas concentrations. The fault gases are also generated in small quantities

during normal operation, due to natural aging. For this reason, relatively high

concentrations of gas can also not be alarming if those concentrations are not

increasing rapidly.
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There are various methods of interpreting the gas results. These include well

known methods such as: Total Dissolved Combustible Gases (TDCG), Duval’s

triangle, Roger’s ratios, etc. [24] [25]. An additional method developed by

analysing the DGA signatures of failed transformers and relating the identified

patterns to gassing transformers in service to determine the fault cause and

potential failure mode has been developed in [26].

The fault gases are produced in different quantities over a range of tempera-

tures, due to the breakdown of the solid and oil insulation. An indication of

how the gases are produced relative to temperature is shown in Figure 2.5.

The temperature of the fault is an indication of the type of fault present. A

partial discharge fault will generate relatively low temperatures and therefore,

the main gases indicating this type of fault are Hydrogen and Methane. Arc-

ing will generate extremely high temperatures and therefore, Acetylene is the

prominent gas for this type of fault. Bare metal faults generate heat in the

range 300-700◦CṠo in this case, the gases that are expected to present would

be Ethane and Ethylene. Since the paper is made of cellulose molecules, it

is expected that any fault involving paper covered components would yield

higher concentrations of Carbon Monoxide and Carbon Dioxide. CO/CO2 is a

ratio that can be used to determine whether the fault is thermal or dielectric

[25]. Since these gases are naturally occurring within the atmosphere, some

caution must be exercised when interpreting these results.

Figure 2.5: Gas concentrations at different temperatures [3]
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Pathak et al [10] investigate failure probability and expected time to failure

using Hidden Markov Models (HMM) and TDCG of oil samples. The disad-

vantage of this method is that only TDCG condition data is considered. This

is of limited value in DGA since it accounts for the total concentration of all

combustible gases and the relative concentrations and rates of production are

not clearly visible and hence substantial detail required for a thorough analysis

is missing. In general TDCG is not considered a good indicator of condition.

In work done by Cigré working group A2-111 [27], it was found that reliable

statistical data is often difficult to get since relatively few failures of power

transformers are experienced over long periods of time. A method of life

determination based on measurements of condition data and mechanisms of

breakdown and failure, established from physics and chemistry tests, has been

developed. The condition data is obtained from forensic analysis of failed units

on site and a “Degradation Model” based on DGA and oil condition. A “Life

Model” developed using the influence of temperature on the degradation of

paper insulation and the model developed in [20] is then used. Failure rates

based on condition and service time are then determined.

Failure analysis using three tests: oil analysis, Furan derivatives analysis and

HMM analysis is described in [28]. Oil condition and diagnostic gases (used in

DGA, laboratory and online monitoring), as well as Furanic analysis (DP) are

used to determine performance while HMM are used to determine probability

of failure. In this method, similar to [10], the state within the HMM is hidden

and the outcome, which is dependent on state is visible. Hidden variables are

co-related through a Markov process to determine the outcome, rather than

independent of each other. In this way, the model is trained in a similar way

to an ANN.

2.7 Electrical testing

The main tests of interest are listed in Table 3.2. These are tests performed

to evaluate the components of the active part and identify defects.
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2.7.1 Sweep Frequency Response Analysis

Sweep Frequency Response Analysis (SFRA) is a method used to evaluate

the mechanical integrity of core, windings and clamping structures of power

transformers.

This test is performed by injecting a variable frequency, low voltage signal

over a wide frequency range, into each winding terminal of a transformer and

measuring its transfer function. The frequency response is unique for each

power transformer and is often referred to as a fingerprint due to the complex

resistances, self-inductances, ground capacitances, coupling inductances and

series capacitances that comprise the core/winding assembly. This fingerprint

is then used as reference data to be compared with future measurements to

identify possible faults [4]. An example showing a healthy transformer and

a transformer where the measurements do not correspond to the fingerprint,

indicating the presence of a fault is shown in Figure 2.6

Figure 2.6: SFRA results: Healthy transformer(left), faulty transformer(right)

[4]

Interpretation of results requires expertise and experience and results should

be reviewed with caution since this is a comparitive test and somewhat sub-

jective. It is also necessary for the tester to be experienced when performing

this test since the test procedure is very specific and various test conditions:

test leads, grounding, noise and interference, etc. can affect the results, and

hence repeatability can be jeopardised and lead to confusion when interpreting

results.
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2.7.2 DC resistance

DC resistance tests are performed in the factory, to determine the I2R losses

and end temperature in a temperature rise test, and in the field for assessing

possible damage. The purpose of this test is to identify faults that occur due

to poor design, assembly, handling, poor environments, overloading or poor

maintenance [1].

The resistances of different windings are calculated by injecting a DC current,

in the range of 10-20 A depending on transformer size, into the test winding

and measuring the volt drop across the winding. The results of the different

windings are then compared with each other to identify differences in the wind-

ings and any loose connections. If the transformer is fitted with a tapchanger,

tapchanger faults will also be identified.

Resistance measurements are made phase to phase and if the readings are

within 1% of each other, then the test results are considered acceptable.

2.7.3 Dissipation factor and winding capacitance

This test is performed to provide information about movement and leakage

losses within the power transformer. This test is used to check the integrity

of the insulation between windings and earth and check for the presence of

contaminants [1]. Ideal insulation will have only capacitive current but due to

aging and impurities in the insulation, leakage current will begin to flow. This

current has both capacitive and resistive components.

A test voltage is applied across the winding under test and the tanδ value is

calculated from the ratio of resistive to capacitive components of current as

shown in Equation 2.1. The test voltages are then increased to 1.2 and 2 pu.

The angle defined by δ is known as the loss angle.

tan δ =
IR
IC

(2.1)

The results are evaluated in two ways. The first method is the comparison of
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test results with previous test results to determine if deterioration of insulation

has occurred. The second is to examine the results over the range of test

voltages: deteriorated insulation will have a tanδ value that increases with

increasing voltage and good insulation will have approximately the same values

over the entire voltage range.

2.7.4 Insulation resistance

The insulation resistance test provides information about the core circulating

current and unintentional short circuits across the insulation. This test is

performed by short circuiting all untested terminals and applying a voltage in

the range of 500 V - 2.5 kV between the test terminal and earth for one minute

[1].

The exact insulation resistance value may vary depending on various factors

and two similar transformers can have completely different insulation resistance

values. For this reason, there is no standard value for acceptance of this test,

although it is commonly accepted that a value > 1 MΩ per kV is acceptable

for units in service. For new insulation, values in the GΩ range are expected.

2.7.5 Infrared scanning

Infrared scanning provides information about external connections, internal

connections, bushing oil levels, cooling system blockages and hot spots. This

test should only be performed by experienced operators since background tem-

peratures, emissivity values of different materials, etc. all play a crucial role

in interpretation of results.

It is not the absolute temperatures of different equipment that is concerning,

but often the differences between different components that is a strong indi-

cator of a fault. IR scanning should be carried out regularly but particularly

when equipment is heavily loaded.
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2.7.6 Magnetising current

The magnetisating current test provides information about the presence of

core faults, inter-turn faults or unintentional loops in the earthing structure.

This test is performed by applying the test winding with balanced three-phase

voltage while all other winding terminals are left open. The current in each

phase is measured when the voltage is applied to each phase. The measure-

ments are taken with three tapchanger positions: nominal, extreme positive

and extreme negative positions.

This is a comparative test that can be done in three ways:

• Measured values are compared to previous test results

• Measured values are compared with those of a sister unit, one with the

same design

• The measured values of each phase are compared with each other

The test is considered successful if the measured results are within 30% of the

reference results.

2.8 Visual inspections

Visual inspections are performed routinely by the operator on site and as part

of maintenance activities. These include checks and tests on the auxiliary

components of the transformer.

2.8.1 Bushings

All bushings routinely have tanδ and capacitance measurements taken. The

values of these measurements should be within acceptable limits as stipulated

by the OEM.
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The bushings are inspected for damage to the bushing bodies and insulator

sheds. They are checked to be free of chips/tears, radial cracks, flashover

burns, copper splash and copper wash. The cementing and fasteners of the

bushings are checked to be secure. The bushings are checked for evidence of oil

leaks and correct oil levels. Should any defect be identified, corrective action

is taken.

2.8.2 Tapchanger

All tapchangers have the following checks performed:

• Oil tests: moisture and dielectric strength are checked to be within limits

stipulated by the OEM

• Speed test: results are checked to be within the limits stipulated by the

OEM

• Contact thickness test: results are checked to be within the limits stip-

ulated by the OEM

• Transition resistance: results are checked to be within the limits stipu-

lated by the OEM

• Number of operations: number of operations determine the maintenance

intervals for the tapchanger

2.8.3 General inspections

The bushing-metal interfaces, gaskets, weld seals, flanges, valve fittings, gauges

and monitors are checked for oil leaks and moisture ingress. Should any of these

be identified, corrective action is taken.

The transformer tank, marshalling kiosk and tapchanger mechanism box are

checked for rust or corrosion. Cabinets are checked for evidence of conden-

sation, moisture or insect/rodent ingress. Weld seals, flanges, valve fittings,

gauges and monitors are checked for rust or corrosion. Seals, condensation

heaters and locking mechanisms are checked for damage.
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The conservator/Oil Preservation System is inspected for rust, corrosion and

paint damage on the tank body. The weld seals, flanges, valve fittings, gauges

and monitors are checked for rust, corrosion and evidence of moisture ingress.

The cooling system is inspected for rust, corrosion or oil leaks on the body

of the radiators or pipework. Fan and pump enclosures are checked to ensure

they are free of rust, corrosion and oil leaks and securely mounted in position

with no signs of vibration. Fan and pump bearings are inspected to ensure

they are in good condition and fan controls are operating as per design.

The overall physical condition of the transformer is inspected to ensure that

it is externally clean and corrosion free. The condition of all primary and

secondary connections is checked. The condition of all monitoring, protection

and control, pressure relief, gas accumulation and silica gel devices and auxil-

iary systems (including online DGA monitoring and drying systems) that are

mounted on the power transformer, is checked. External evidence of overheat-

ing or internal overpressure are inspected. Maintenance and service records

are checked.

2.9 Conclusion

In this chapter, the various methods currently in use for assessing transformer

life and evaluating its condition were introduced. These parameters will be

used in the development of a model for the determination of probability of

failure based on HI.
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Chapter 3

Condition, Criticality and Risk

Assessment Model

3.1 Asset management model

An asset management model (CCRA) has been adopted by Eskom for opti-

mising investment decisions. The outcome of this model is dependent on the

determination of probability of failure based on a HI that is developed using

the life assessment parameters discussed in the previous chapter. It is there-

fore necessary to evaluate the basis of this model, as well as the use of the HI

parameters.

3.2 Overview of methodology

Eskom has adopted an asset management tool for optimising asset refurbish-

ment/replacement/retirement strategies. The Condition, Criticality and Risk

Assessment (CCRA) model enables the phasing and structuring of project

plans based on suitable cost-to-benefit ratios.

The inputs to this model include plant age, condition/HI, probability of fail-

ure and consequences of failure. The output of the model is the overall risk

allowing analysis of cost/benefits of replacement/refurbishment. The timing
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of replacement is optimised according to the strategy shown in Figure 3.1.

Figure 3.1: Optimisation of asset replacements [5]

Bathtub curves, as shown in Figure 3.2, developed from Weibull distributions

depict the probability of failure of the plant as a function of age (P(age)).

There are three distinct regions in a bathtub curve:

1. Infant mortality: indicated by a high failure rate in the first few years

after manufacture, that decreases over time. These failures are generally

attributed to inherent design defects or manufacturing errors.

2. Random failures: indicated by a flat region (constant failure rate) over

the age range in the middle of the expected design life, where random

failures are expected throughout the population.

3. Wear out: indicated by an increasing failure rate with an increase in

age. This region has the highest failure rate. This area is related to wear

out and is the area of most interest in this study.

A HI for each plant type is determined, based on the condition of the plant,

relative to end-of-life. The HI is a quantification of condition measurements

that are taken on the transformer and an overall score is obtained. This is then

used to determine a probability of failure as a function of HI (P(HI)). Bathtub

curves, developed from Weibull distributions depict the probability of failure

of the plant as a function of age (P(age)). If P(HI) > P(age), then P(age) is

modified according to P(HI), i.e. the bathtub curve becomes steeper, indicating

an increased rate of aging, and a new probability of failure is determined as

a function of both age and HI (P(age, HI)). This final probability of failure is
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Figure 3.2: Example of equipment bathtub failure curve [5]

then used for further analysis. This then comprises the “Condition” portion

of the CCRA model.

Figure 3.3: Effect of Health Index modifier on probability of failure curve [6]

The consequence (or impact) of failure of the plant is then determined, to

ascertain the impact such a failure would have on the system, should it occur.

This is done by analysing:

• the position of the plant in the network
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• whether it has (N - 1) redundancy

• whether or not contingencies are available

• what consequential damage could occur or is expected should the failure

of the plant be catastrophic

• the impact of adjacent plant failing at the same time, or during the

outage of the initial failure

Different scenarios are drawn up for each failure event. These scenarios are

developed from the Emergency Preparedness Plans (EPP) of each substation

in which the transformers are installed. EPPs outline the processes to follow

in the case of an emergency or loss of plant, to recover load. The consequences

include the following:

• Replacement cost of failed plant

• Cost of emergency repairs, if applicable

• Cost of damage to adjacent plant

• Cost of unserved energy or customer interruption, should it occur

• Safety or environmental costs

Each scenario is then analysed, including its probability of occurrence. This

then comprises the “Criticality” portion of the CCRA model and is a monetary

value.

Risk is defined as the product of the probability of an event occurring and the

consequences associated with that incident or, the frequency and severity of

the losses [29].

A method similar to that employed in the CCRA model is that of a time-

dependent failure probability, based on available condition data [13]. The pri-

mary objective of this method is for the optimisation of required maintenance

interventions. A probability of failure based on the commonly used Weibull

distribution is used to determine equipment time-to-failure. A Bayesian ap-

proach is used with this model due to limitations in empirical data available.
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By using a Bayesian approach, uncertainties due to lack of information are

expressed via probability distributions. Unknown parameters, such as shape

β and scale η in the Weibull distribution are considered as random variables.

In this way, Baye’s theorem is used to determine the posterior probabilities

based on condition data. This acts as a modification of the expected prior

probability of failure that is assumed, based on age and failure rate, as done

in [16].

Risk = Probability × Consequence (3.1)

Risk is defined as the product of probability and consequence or, the frequency

and severity of the losses [29]. The risk of each item of plant is calculated from

the probability of failure that was calculated as a function of age and HI and

the consequence cost that was calculated from the impact of the failure. This

comprises the “Risk” portion of the CCRA model and is also a monetary value.

Due to limitations in financial resources, it is necessary to perform some pri-

oritisation in justifiable projects. This is done in order to justify spending

alternatives. The benefit versus the risk of implementing a project this year

rather than delaying it by a year or more is determined. In order to do this,

the benefit to cost ratio is evaluated. The risk value is compared to the cost

of refurbishment/replacement of the asset. If this ratio is very high, the refur-

bishment/replacement strategy is prioritised. If it is very low, the refurbish-

ment/replacement strategy will more than likely be deferred to a later time.

This is useful in determining the impact on the business of a decision to delay

projects.

An accurately defined probability of failure, relevant to the population of trans-

formers being analysed is critical, since it forms the basis of this calculation.

With a probability of failure that is not representative of the population being

analysed, the risk analysis is inaccurate and decision-making will be flawed and

unoptimised. This leads to an increased risk of wasteful expenditure and an

attempt to decrease the asset failure rate, rather than the real risk associated

with the impact of the failure, which is the ultimate goal.
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3.3 Failure definition

Asset management tools are refined based on probability and subsequent con-

sequences of failure. Failure can range from anything between a minor defect

which can be repaired on site, to a catastrophic event, necessitating the re-

placement of the failed transformer, as well as adjacent plant and possibly

interruption of supply. Failure of a power transformer is therefore defined as

per the definition of failure found in [30]:

“Failure: the termination of the ability of a circuit, bay or item

to perform a required function”

Failures are then separated into three levels which are defined as follows:

• Severe: The transformer requires replacement or removal from site to

facilitate repair within a factory. In both instances, a new transformer

will be installed to return the circuit to service.

• Intermediate: The transformer requires repair, but this can be imple-

mented on site. This is usually intrusive work to restore the transformer

to working condition and return it to service.

• Minor: these are trip events that remove the transformer from service

temporarily. No work is required in order to return to the plant to service,

since the transformer’s major components have not been affected.

Failures of components that are critical to the operation of the transformer are

also considered failures of the transformer. For example, the failure of an HV

bushing, or an OLTC will be considered failures of the transformer since the

transformer cannot operate in the absence of those components.

For the purpose of this study, only failures classified as severe or intermediate

are considered since the minor failures have no direct impact on the end-of-life

of the transformer, or the decision to refurbish/replace/retire it.
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3.4 Modes of failure

As outlined in Cigré working group 12.05 report [7], international surveys are

performed on failures of large power transformers and failure statistics are

reported with 10 year intervals. These statistics are based on standard modes

of failure with the following root causes:

• Core

• Windings

• Bushing

• Tapchangers

• Main tank and oil system

• Auxiliaries

• Other

The breakdown of failures, by cause, experienced within Eskom Transmission

during the period 1996 - 2014 is as shown in Figure 3.4. From this graph, it

can be seen that the vast majority (56%) of all failures experienced during this

period is related to external components such as bushings and tapchangers.

3.5 Model parameters

The existing HI model for power transformers consists of a number of mea-

surable condition parameters. These are separated into four categories, each

with different weightings. The high level composition of the HI is shown in

Tables 3.1, 3.2, 3.3 and 3.4.

Table 3.1 provides the parameters related to the most influential component

of the power transformer impacting the end-of-life and expected remaining

life. These parameters provide information about both the solid and liquid

insulation.
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Figure 3.4: Breakdown of failures in Eskom Transmission as per Cigré report-

ing structure [7]

Table 3.1: Overview of power transformer HI insulation parameters

Insulation Oil test

Furanic analysis DP

Oil quality Moisture

IFT

Dielectric strength

Acidity

Colour/appearance

tan δ

Sludge

Table 3.2 provides the electrical tests used to identify potential faults in var-

ious components of the active part of the transformer. Faults in any of these

components can lead to catastrophic failure of the transformer.

Table 3.3 outlines the various visual inspections, checks and tests that are

performed during routine inspections and maintenance activities. The purpose

of these checks is to identify deterioration that has the potential of developing

into a transformer fault. Any defects identified during these inspections can

be corrected with maintenance activities.
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Table 3.2: Overview of power transformer HI electrical test parameters

Electrical test Sub-test

SFRA N/A

DC resistance N/A

tan δ and winding capacitance N/A

Core insulation resistance N/A

Infrared scanning N/A

Magnetising current N/A

Table 3.3: Overview of power transformer HI visual inspection parameters

Component Visual inspection

Bushings tan δ and capacitance

Visual inspection

Tapchanger Oil test

Speed test

Contact thickness

Transition resistance

Number of operations

Visual inspections Oil leaks

Conservator condition

Cooling system condition

Tank & overall physical condition

Table 3.4 shows the DGA results that are used in condition assessment evalu-

ations. The combustible gas concentrations as well as the rates of production

are of interest and are included.

Of the four HI categories, only two are used in this study, namely: Insulation

and DGA. The reason is that this study is concerned with the determination

of probability of failure relative to end-of-life of the transformer and not all of

these components are related to end-of-life determination.

The primary purpose of the electrical tests is to diagnose faults once the trans-

former has been removed from service. A deviation in the test results is in-

dicative of an immediate threat to the transformer and would be repaired as

necessary and retested, prior to re-energisation. After such repair, the test

results would again be satisfactory. For this reason, the test results are not
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Table 3.4: Overview of power transformer HI DGA parameters

Parameter Gas

Concentrations H2 (Hydrogen)

CH4 (Methane)

C2H6 (Ethane)

C2H4 (Ethylene)

C2H2 (Acetylene)

CO (Carbon Monoxide)

CO2 (Carbon Dioxide)

Daily rate of production ∆H2

∆CH4

∆C2H6

∆C2H4

∆C2H2

∆CO

∆CO2

considered useful in terms of condition monitoring or indicative of long term

plant health deterioration. The requirement/reason for repair is more useful

for identification of potential faults and investigation of root cause of failure.

The visual inspections are related to maintenance activities and identified defi-

ciencies can be addressed relatively easily. Again, should any fault be identified

within the tapchanger or bushings, these will be repaired/replaced. Although

these components have a large impact on the failure of power transformers,

the routine condition monitoring/checks are not useful from a modeling per-

spective since they have binary condition values rather than the continuous

values which are indicative of slow deterioration.

3.6 Conclusion

In this chapter, the basis of the CCRA model was discussed. The condition

parameters to be included, as outlined in more detail in the previous chapter

were grouped into four categories for further evaluation and use in the deter-

mination of the probability of failure of power transformers. The probability
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of failure was identified as one of the critical inputs into the CCRA model,

required for determining overall risk and optimisation of refurbishment strate-

gies. In order to determine the probability of failure, a suitable statistical

method to achieve this needs to be identified.
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Chapter 4

Statistical analysis

4.1 Decision theory

All improvements and developments are made as a result of intelligent decision

making. Decision making is the process of arriving at a conclusion or resolution

based on the consideration of various alternatives. Decision making can only

be improved with better understanding of the problem.

Decision theory is defined as the study of principles and algorithms for making

correct decisions. While simple decisions can be made without a theory, often

complex decisions, ones involving high risk, levels of uncertainty and time de-

pendency, will require mathematical or statistical models to produce optimised

outcomes. This is a probabilistic approach which moves away from heuristic

decision making. The deficiency with this method is that uncertainty related

to known unknowns is taken into account and the extreme influences of the

unknown unknowns are ignored.

Although many robust statistical methods are available for mathematical ap-

proximation of real situations, the results should always be analysed critically.

Limitations within these models are ever-present and should not be relied upon

blindly or unquestioningly. This is unfortunately, common practice and is re-

ferred to as the Ludic Fallacy [31] and is advised against. Decisions should

therefore be made with the best possible information at hand, while minimising

risk (risk cannot be completely eliminated).
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4.1.1 Decision making

In Bayesian decision theory or Bayesianism [32],

“the aim is to reduce a Decision Maker’s incoherence, and to

make the Decision Maker approximate the behaviour of the hypo-

thetical Rational Agent, so that after aiding he should satisfy Max-

imizing Expected Utility”

Bayesian decision making is summarised by the following four principles [33]:

• The Bayesian subject has a coherent set of probabilistic beliefs and these

beliefs are in compliance with mathematical laws of probability

• The Bayesian subject has a complete set of probabilistic beliefs, all al-

ternatives have a degree of belief

• The Bayesian subject changes their beliefs in accordance with their con-

ditional probabilities, on presentation of new evidence

• The Rational Agent chooses the option with the highest expected utility

A statistical model is developed by gathering evidence and testing the model’s

effectiveness against a defined hypothesis. As new evidence is presented, belief

in the hypothesis changes accordingly, as per point 3 above and the decision

is potentially changed.

4.1.2 Decision classification

The purpose of the statistical model in this study is to assign various trans-

formers to two different classes: healthy and failed, and to define their degree

of belonging to each class. Each assignment is viewed as a decision and needs

to be evaluated accordingly. This is done by means of a confusion matrix, as

shown in Table 4.1. The risk associated with errors and misclassifications can

be more severe in some instances.
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In this case:

• a True Positive (TP) is a failed transformer correctly classified

• a False Positive (FP) is a healthy transformer classified as a failed one

• a False Negative (FN) is a failed transformer classified as a healthy one

• a True Negative (TN) is a healthy transformer classified correctly

Table 4.1: Confusion matrix for decision making

Predicted

Actual True False

True TP FP

Type I error

False FN TN

Type II error

The accuracy of the model is evaluated with Equations 4.1, 4.2 and 4.3 respec-

tively [34]. Equation 4.1 gives an indication of the accuracy of the model in

general.

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

The Fall-out or False Positive Rate is given by Equation 4.2. The implication

of a high Fall-out is a large number of healthy transformers being replaced

unnecessarily. With the high capital cost of a power transformer, this can

have a large negative financial impact on the power utility.

False Positive Rate =
FP

FP + TN
(4.2)

The Miss Rate or False Negative Rate is given by Equation 4.3. The im-

plication of a high Miss Rate, is not being able to pre-emptively replace the

failed transformers and avoid the potential damage to adjacent plant, safety

and environmental risks should the transformer fail catastrophically. Loss of

income and reputation should power outages result from the failure are also a

consequence.

39



False Negative Rate =
FN

TP + FN
(4.3)

Both Fall-out and Miss Rate have negative implications that cannot be ignored.

Analysis of the individual accuracies is however not conclusive in the final

decision making process. These error rates need to be evaluated in terms of

risk and not solely probability.

4.2 Methods of statistical analysis

Statistical analysis will be performed on a portion of the condition data set

only, in order to determine the weightings, and statistical significance of each

condition parameter. Once the significance of each parameter has been de-

termined from historical failure data, analysis will be carried out on the data

set containing relevant data about both failed transformers, as well as healthy

ones. A sensitivity analysis will be performed to determine whether or not the

model is better at predicting failure than simply predicting by chance.

Care must be exercised in determining the correct statistical test to use for a

specific analysis. Depending on the type and number of both the dependent

and independent variables in question, different tests and methods are used.

In this case, there is one dependent variable: transformer failure, which is a

categorical, dichotomous variable since the transformer can only be in one state

at a time. It can either be failed or healthy, not both simultaneously. There

are multiple dependent variables and these variables, as outlined in Table 3.1

and Table 3.4 of the condition data are all continuous variables.

According to the summary of statistical tests that can be performed for any

given analysis given in [35], there are two types of statistical models that can

be developed that fit the data to be analysed in this study. These are: multiple

logistic regression and discriminant analysis.
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4.3 Multiple logistic regression

Multiple logistic regression is much the same as regular logistic regression, but

with more than one independent variable used to determine the dependent

variable.

This method assumes that there are only two groups to which an individual

sample can belong. Each sample can only belong to one group at a time [36]. In

this study, there are only two groups, namely: failed transformers and healthy

transformers. A specific transformer can be classified as failed or healthy, not

both simultaneously.

The purpose of logistic regression is to determine the linear relationship be-

tween y and x. Where y is the natural logarithm of the odds ratio of the

probability of failure and x is the input vector x = (x1, x2, x3, ..., xn) which

contains different features of the individual [36]. The output y is not itself

a useful quantity, but is useful in determining p, which is the probability of

failure.

The logistic regression model equation is shown in Equation 4.4:

ln

(
p

1 − p

)
= β0 + β1x1 + β2x2 + ...+ βnxn (4.4)

and denotes the relationship between y and x. Where (β1, ..., βn) are weighted

coefficients that determine the magnitude of the influence each variable in x

has on the populations of each group [37] and β0 is the intercept.

Two probabilities are calculated:

• Prior probability: This is the probability that an individual is more

likely to belong to one group than another [37]. This is useful in reducing

the probability of misclassifying an individual. For example, at any point

in time there is a much higher percentage of the transformer population

that is healthy than has failed. Therefore, the probability of picking

a healthy transformer at random from the current population is much

greater than picking one that is about to fail.
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• Post probability: This is the probability that an individual belongs

to a specific group [37]. This is useful in determining the probability of

a transformer failing, since for the transformer to belong to the group

of failed transformers, the transformer would have had to have already

failed, in which case prediction is not necessary as the outcome is already

known.

The cost of misclassification can also be determined using this model. This

is important since the model is not assumed to be ideal and misclassifications

can be expected. The cost of misclassification will be different based on the

individual that is misclassified. For example, the cost of classifying a high risk

transformer as healthy will be far greater than the cost of classifying a healthy

transformer as high risk. Care must also be taken to not overstate risk, since,

while the cost of misclassifying a healthy transformer as high risk may be

higher than the opposite, if too many healthy transformers are missclassified,

the cost of any action taken to mitigate this risk could outweigh any potential

benfit.

The model should also be tested in order to determine whether or not the

classification based on p is more accurate/reliable than a classification that

was made based on chance alone.

4.4 Statistical assumptions

The following assumptions that are required for normal Linear Regression and

General Linear models, based on ordinary least squares algorithms are not

required for Logistic Regression models:

• Linearity: no linearity between IVs and DV is required

• Normality: there is no requirement for IVs to be multivariate normal

• Homoscedasticity: random variables need not have homogeneity of

variance

• Variable type: the logistic regression can handle nominal and ordinal

data as independent variables, not only interval and ratio
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For binary Logistic Regression, based on maximum likelihood estimates, the

following assumptions are required [38]:

• The dependent variable must be binary

• Independence of error terms is required. There should be independence

between data points

• No multicollinearity must be present, i.e. independent variables must be

independent of each other

• Linearity between the independent variables and log odds is required,

although it is not required between the independent variables and the

dependent variable

4.5 Model evaluation/Goodness of fit

Various methods exist for evaluating the goodness of fit of a statistical model.

The tests used for ordinary linear regression are different to those used for

logistic regression. Interpretation of the various test statistics is different for

both models. Goodness of fit of the models developed in this study is evaluated

by examining both likelihood ratio tests and pseudo-R2.

4.5.1 Data separation

The optimal evaluation of goodness of fit of a statistical model requires three

data sets, namely: training data, validation data and test data [39]. The

training and validation data sets comprise the data set used in developing the

final statistical model. With these data sets, both the model inputs and output

are known. The test data set is comprised of new data where only the inputs

are known and the outputs are determined using the statistical model. These

results are then analysed.

The training data is used with statistical methods to develop the prediction

model. The model is then tested using the validation test set, where the
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IV data are input into the prediction model and the output of the model is

compared with the known outputs in order to determine the degree of accuracy

of the model. Once the model has been found sufficiently accurate, the test

data is input into the model and the results are then analysed. This process

is outlined in Figure 4.1 below.

Figure 4.1: Relationship between different datasets and prediction model

This method is however used in the ideal case where a large data set is available.

In cases such as this study, the limited size of the data set this methodology

and other model goodness-of-fit methods will be utilised.

4.5.2 Deviance and likelihood ratio tests

The likelihood ratio test is shown in Equation 4.5 [38]. The deviance of the

model is the difference between the fitted values and the expected values. For
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this reason, the smaller the deviance of the fitted model compared to the

deviance of the null model, the better the model is at predicting the outcome.

Dfitted −Dnull = −2 ln
likelihood of fitted model

likelihood of null model
(4.5)

where:

Dfitted is the deviance of the fitted model

Dnull is the deviance of the null model

4.5.3 Pseudo-R2

In a linear model, R2 is used to evaluate goodness of fit of a model by the

proportion of variance in the dependent variable explained by the independent

variables. Since Logistic Regression is heteroscedastic, the proportionate re-

duction in error is not constant across the range of predicted outcomes. The

R2 statistic is therefore not interpreted in the same was as for linear regression

where very low values are expected. [40].

The pseudo-R2 statistic is the proportion of variance of the latent variable,

inferred from other variables but not directly observed which is explained by

the covariate, the variable affecting the relationship between the IVs and DV,

and is shown in Equation 4.6.

R2
L =

Dnull −Dfitted

Dnull

(4.6)

where Dfitted and Dnull are as defined for Equation 4.5.

4.5.4 Hosmer-Lemeshow test

The Hosmer-Lemeshow test [39] is a χ2 statistic that is calculated on data that

are grouped into groups with approximately the same number of observations

per group (usually 10 groups). This test statistic is given by Equation 4.7.
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H =
G∑
g=1

(Og − Eg)
2

Ngπg (1 − πg)
(4.7)

where:

Og are the observed events

Eg are the expected outcomes

Ng are the observations

πg is the expected risk

G is the number of groups

The disadvantages of this test are that is has a large dependence on the number

of observations grouped, as well as the number of groups. This test also has

reduced accuracy in predicting certain types of lack of model fit. For this

reason, this test is not implemented in this study.

4.6 Conclusion

In this chapter, the need for statistical analysis in the decision making process

required to implement the CCRA model, that was introduced in the previous

chapter, was discussed.

An outline of the statistical method of Multiple Logistic Regression which was

used for this study was outlined, along with the statistical assumptions made.

All models require testing and various goodness-of-fit tests are available for

evaluating logistic regressions. These methods are outlined in this chapter.

The use of the deviance and likelihood ratio tests, as well as pseudo-R2 tests

are used in this study.

Statistical analysis is often an iterative process that is highly dependent on

the integrity of the data used in the analysis. Methods of data processing are

therefore introduced and applied to the data used in this study.
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Chapter 5

Data Management

5.1 Source data

The source data to be used in this study was obtained from the Eskom databases

used for storing reliability and condition data. Since this study involves the

statistical analysis of power transformer failures, it was necessary to obtain

historical data for both failed transformers, as well as “healthy” ones.

Power transformers do not have a high failure rate, with a high average failure

rate being approximately only ten per annum. For this reason, failure data is

scarce and in order to obtain a reasonable data sample, it was necessary to use

data over an 18 year period (1996 - 2014).

Failure data was obtained from failure records and reports. Maintenance re-

ports and factory records were also interrogated to obtain maximum informa-

tion. Only failures satisfying the definition of failure as per Section 3.3 were

considered.

The definition of a healthy transformer follows the assumption: if the trans-

former has been in uninterrupted service since 1999, then in 1999 it was healthy.

All data for “healthy” transformers was therefore collected for transformers

within the existing population from 1999. This presents some limitations,

since complete historical condition data is not available for all transformers.
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A total of 512 transformers were obtained through this process comprising 193

failed and 319 healthy transformers.

A number of challenges arise when handling data for analysis. These include:

missing data, detection of outliers, transformation of data as well as sample

bias. Methods of overcoming these challenges are outlined below.

5.2 Data types

Data can be classified into four main types as proposed by Stevens [37], namely:

nominal, ordinal, interval and ratio. These are explained in Table 5.1 below.

Table 5.1: Steven’s measurement system

Type Explanation Example

Nominal
There are a number of distinct categories

that the variable can be classified into.

Names

Religion

Ordinal

There are a number of distinct categories

that the variable can be classified into,

and the categories have a known order.

Service ranking

Factory ratings

Interval This is an ordinal variable with an equal

distance between successive values.

Temperature

(discrete

/continuous)

Calender dates

Ratio

Interval variables with fixed zero

measurement points, hence preserving

ratios independent of the unit of

measurement.

Height

Difference in time

The data used in this study are comprised of three of these data types. These

include: nominal, interval and ratio. Each data type is handled differently

since different information is available from each variable.
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5.3 Missing data

When performing statistical analyses, the issue of missing data is always a

concern. Due to the fact that this study is based on historical data (18 years

old), it is apparent that some of the data required in this study will be miss-

ing. This may be due to a number of factors including: operating practices

changing, carelessness of data storage and inability to recover certain portions

of transformer records, etc.

There are three categories of missing data [41]: Missing Completely At Ran-

dom (MCAR) where the data are missing independently of the DV or IV,

Missing At Random (MAR) where the data are missing dependent on one or

more IVs but independently of the DV, and non-ignorable where the missing

data is dependent on both the IVs and DV. There are a number of ways of

handling the missing data. These are outlined below.

5.3.1 Listwise/Casewise deletion

This is the simplest method of dealing with missing data. Any record that con-

tains a missing variable is deleted from the sample. This can cause substantial

reduction in sample size and lead to large biases [42].

5.3.2 Pairwise data deletion

With this method, data records with missing data variables are used in the

analysis only when the analysis does not involve the missing variable. Again

this method can produce large biases and unequal sample sizes [42].

5.3.3 Mean substitution

Mean substitution involves substituting each missing variable with the mean

of all corresponding variables within the entire data set. This is problematic

since it reduces the variance of the variables substituted in this way, which can
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lead to underestimating the spread of the data [43].

5.3.4 Hot deck imputation

In this instance, the record that is most similar to that with a missing variable

is found and the value of the variable in this record that corresponds to the

missing variable is substituted for the missing value [44]. The difficulty that

arises is in defining similarity, since this is contextual and is therefore not a

simple task [45]. This method also does not account for uncertainty in the

approximation.

5.3.5 Regression methods

A missing variable is predicted using a regression model which is determined

from the other complete variables, i.e. the missing variable becomes the re-

sponse variable and the other variables become the predictor variables [38].

This leads to a complete data set with a reduced standard error.

5.3.6 Expectation maximisation and Raw maximum like-

lihood

These methods can be used to handle data that is MAR. In these methods

estimates are found of the most likely value that the missing variable might

have. A vector of means and a covariance matrix are developed that are supe-

rior to those that are developed from the previous methods of approximating

missing data that are mentioned above [41], [46]. The disadvantage of these

methods is that large sample sets are required.

5.3.7 Multiple imputation

Multiple imputation has a number of advantages over other methods of missing

data approximation. This method involves having more than one estimate for
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a given missing variable, computed using other values within the data set.

In this way, the variance between the estimates gives information about the

uncertainty of the imputation. In this way, biases in the data are also reduced.

Since there are a number of estimates for each missing variable, after multiple

imputation, there are a number of complete data sets instead of just one. Each

data set is analysed individually and the results are then compressed to form

only one final solution [41]. This method is also disadvantageous since large

data sets are required.

Since the data set available for this study exhibits non-ignorable missing data

and is of limited size, the prefered methods of handling the missing data are

not practical. For this reason, the listwise deletion method was utilised. This

leads to significant reduction in sample size and the data needs to be evaluated

for biasing.

5.4 Data visualisation

Visualisation of the raw data set is a simple method for determining the in-

tegrity of the data. By plotting the raw data, it is easy to visualise any dis-

crepancies within the data, for example, if you have a dichotomous variable,

but have values lying at points between 0 and 1, then it is obvious that the

data set contains bad data. It is prudent to perform this quick check, prior to

any data processing or analysis to confirm that the data is in fact as expected.

5.4.1 Gas concentrations and production rates

The concentrations of the different gases was plotted against the failures for the

data set to be used in this study. Since the data was collected for only failed

and healthy transformers, the failed variable can only have a value of either

“0” (indicating a healthy transformer) or “1” (indicating a failed transformer)

The data is examined to determine conformity to an expected pattern. In

this case, the data is expected to form two distinct groups, one at low concen-

trations of gas in healthy transformers and another at high concentrations in
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Figure 5.1: Plot of gas concentrations vs failures
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failed units.

From the results shown in 5.1 it can be seen that, with the exception of Carbon

Monoxide, the expected trend in gas concentrations is evident, with higher gas

concentrations present in the failed transformers and lower concentrations in

the healthy transformers. The opposite trend is present in the CO data, which

is not expected.

The daily rates of production of the different gases was plotted against the

failures for the data set to be used in this study. From the results shown in

Figure 5.2 it can be seen that, with the exceptions of Carbon Monoxide and

Ethylene, the expected production rates are evident, with higher production

rates in the failed transformers and lower production rates in the healthy ones.

Similarly to the gas concentration data, the daily rate of production data is

examined to determine conformity to an expected pattern. In this case, the

data is expected to form two distinct groups, one at low rates of gas production

in healthy transformers and another at high rates of gas production in failed

units.

The trends of CO and C2H4 show higher rates of decrease in concentrations

for failed transformers. This decrease in production rate of CO is congruent

with the concentrations of the gas in failed transformers.

5.4.2 DP and oil quality

The values of the DP and oil quality tests were plotted against the failures for

the data set to be used in this study.

The results shown in Figure 5.3 indicate that there are higher moisture and

lower dielectric strength measurements in the sample of failed transformers as

expected.

The measurements of acidity and DP indicate values that are fairly evenly

distributed across their ranges for failed and healthy transformers alike. Lower

DP values and higher acidity values in failed units would have been expected.
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Figure 5.2: Plot of gas rates of production vs failures
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Figure 5.3: Plot of insulation parameters vs failures

5.4.3 Health Index

The values of the DGA and Insulation HI scores were plotted against the

failures for the data set to be used in this study.

The results shown in Figure 5.4 indicate the expected trend in scores for failed

transformers is lower than for healthy ones in both insulation and oil quality.
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Figure 5.4: Plot of HI scores vs failures

5.5 Transformation of data

Data are usually normalised according to the min-max minimisation algorithm

into a range [0 1] according to equation Equation 5.1 below.

xnorm =
x− xmin

xmax − xmin
(5.1)

where:

xnorm is the normalised value in range [0 1]

x is the value to be normalised

xmax is the maximum possible value for a particular observation x

xmin is the minimum possible value for a particular observation x

Various other transformation techniques can be employed to normalise/linearise

the data as required by the specific statistical analysis being performed. Nor-

malisation is however not a requirement for logistic regression and such data

processing is therefore not required for this data set. The logit function used

in the Logistic Regression linearises the DV.
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5.6 Outliers

Box plots are then used to determine the skewness of the data, and identify

possible statistical outliers [47]. All identified outliers are included in the

sample analyses, unless they have been confirmed to be erroneous values.

This method uses examination of the statistical percentiles of the data set.

The statistics of interest in this analysis are: maximum, minimum, median,

mean, 1st quartile (25th percentile) and 3rd quartile (75th percentile). These

statistics are then plotted as follows:

• 1st and 3rd quadrant form the top and bottom of each box for each

variable. 50% of the data is represented within this box, with the length

of the box being the interquartile range.

• The median is represented by the horizontal line within the box. A line

that is not perfectly centered is an indication of skewness of the data

which is a measure of assymmetry about the sample mean. Skewness

in the data is an indication that the data are not normally distributed.

This is not of concern in this study since normality is not a requirement

of logistic regression.

• The maximum and minimum of the sample are represented by lines

(sometimes referred to as “whiskers”) extending from the top and the

bottom of the box.

A general assumption is that an outlier is a value that falls more than 1.5 times

the interquartile range away from either the top or the bottom of the box [47].

Therefore, if no outliers are present, the maximum value within the sample

falls on the top of the upper “whisker” and the minimum falls on the bottom

of the lower “whisker”. Potential outliers are indicated by the presence of data

points either above or below the upper and lower “whiskers” respectively.

While outliers may be identified statistically, the data samples need to be

evaluated critically since the “outliers” may in fact just be extreme values

that have a critical impact on the analysis and should not be removed without

just cause.
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5.6.1 Gas concentrations and production rates

Both Carbon Monoxide and Carbon Dioxide have higher concentrations and

daily rates of production than the hydrocarbon gases. For this reason, the

values of all gases were scaled to pu values for the purpose of graphical com-

parison. The boxplots in Figure 5.5 show the gas concentrations of the DGA

data both with and without identified outliers.

Figure 5.5: DGA concentrations(left), including potential outliers(right)

These plots indicate a number of potential outliers in the data by the points

above the top whisker. Table 5.2 shows the actual values of the percentile

statistics for each gas. From these values, it can be seen that none of the gases

have excessively high maximum values and in fact the maximums of each gas

are still considered low. Generally these values would be discarded as outliers,

however, the outliers that have been identified result from failed transformers’

data and can therefore not be excluded. In this case, valuable information

would be lost if these outliers were excluded from analysis. No obvious, real

outliers are evident.

The gas production rates were also scaled to per unit values for graphical

comparison. The boxplots in Figure 5.6 show the gas concentrations of the

DGA data both with and without identified outliers.

These plots indicate the presence of outliers in both the upper and lower re-

gions. On examination of the actual values of the percentile statistics shown
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Table 5.2: Percentile summary of DGA concentrations

H2 CH4 CO CO2 C2H4 C2H6 C2H2

Min 0.1 0.1 6 0.1 0.1 0.1 0.1

1st Quad 2 2 215.5 244 1 1 0.1

Median 9 6 409 1041 2 2 0.1

Mean 11.78 11.79 611 1384.6 6.2 8.3 2.7

3rd Quad 14 14.5 783.5 2040.5 5.5 6.5 1

Max 119 100 3912 11200 80 188 44

Figure 5.6: DGA rate of production(left), including potential outliers(right)

in Table 5.3, none of the values are unrealistic and consequently cannot be

eliminated as outliers.

Some uncertainty in interpretation of the production rate values is present

due to the method of calculation employed. Manual oil samples do not lend

themselves to reliable production rate calculations.

5.6.2 DP and oil quality

The measurements recorded for DP and oil quality were reduced to per unit

values for the purpose of graphical comparison. The boxplots indicating distri-

bution of the DP and oil quality data both with and without possible outliers

are shown in Figure 5.7.
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Table 5.3: Percentile summary of DGA production rates

H2 CH4 CO CO2 C2H4 C2H6 C2H2

Min -0.394 -0.583 -9.298 -137.4 -1.101 -0.432 -0.703

1st Quad -0.018 -0.009 -0.271 -0.520 -0.006 -0.006 0

Median 0 0 0.135 0.125 0 0 0

Mean 0.019 0.002 0.266 2.255 -0.014 0.001 0.004

3rd Quad 0.021 0.007 0.742 1.708 0.006 0.004 0

Max 2.212 0.892 36.838 273.9 0.199 1.174 0.788

Figure 5.7: Oil quality and DP(left), including potential outliers(right)

These plots indicate possible outliers in the positive extreme for moisture,

acidity and DP and in the negative extreme for dielectric strength.

Table 5.4: Percentile summary of Oil Quality and DP measurements

DP Acid kV H2O

Min 121 0.01 25 1

1st Quad 440 0.02 67 7

Median 550 0.04 74 9

Mean 578 0.05 72 11

3rd Quad 676 0.06 78 14

Max 1300 0.25 95 72

On examination of the actual values of the statistical percentile analysis shown

in Table 5.4, it can be seen that the range of data values is reasonable, with

the exception of the maximum value for DP.
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This value appears to be unrealistically high since the expected value of DP for

brand new paper is 1200 and once it has been processed during the manufacture

of a transformer it has reduced to approximately 900. This value is therefore

considered an outlier and removed from the dataset.

5.6.3 Health Index

The values of HI score are uniform for all components, in the range (0-5). For

this reason, it was not necessary to reduce the values to per unit equivalents.

The boxplots of the DGA and Insulation HI scores, both with and without

potential outliers are shown in Figure 5.8. These plots indicate a number of

potential outliers.

Figure 5.8: HI parameters(left), including potential outliers(right)

Table 5.5: Percentile summary of HI parameters

DGA Insulation

Min 0.9 0

1st Quad 0.9 2

Median 1 3

Mean 1.1 2.6

3rd Quad 1.1 3

Max 2.5 4

Examination of the statistical percentiles in Table 5.5, shows values that are

61



reasonable and cannot be eliminated as outliers. This is congruent with the

decision not to remove outliers in the base data used to calculate the HI scores.

5.7 Conclusion

In this chapter, the data set to be used in this study was defined. The data

was evaluated visually and found to display the expected trend. The data

set was found to contain records with missing data and these records were

then deleted, since the data set is too small to utilise methods of missing

data approximation. The data was examined graphically, using boxplots to

identify potential outliers. In this case, only the outliers identified in the

DP measurements were removed since there was no evidence supporting the

removal of the outliers identified in the other variables. The data set processed,

using the methods outlined in this chapter, will be used in the development of

the statistical model for probability of failure determination.

62



Chapter 6

Prediction model

6.1 Research objectives

As outlined in Chapters 1 and 3, there are two main components in determining

the probability of failure of a power transformer:

• Probability of failure based on age

• Probability of failure based on HI

Verification of the existing model parameters, as well as validation of the input

variables is performed.

6.2 Probability of failure based on age

As outlined in Chapter 3, bathtub curves are used to estimate the probability

of failure of a piece of equipment based on its physical age. This is commonly

done using a Weibull distribution shown in Equation 6.1.

f (t) =
β

η

(
t

η

)β−1

e−( tη )
β

(6.1)

where:
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β is the shape parameter (slope)

η is the scale parameter (characteristic life)

6.2.1 Distribution parameters

The Weibull distribution currently utilised in the CCRA model in Eskom is

using a shape parameter β = 3 and a scale parameter of η = 40, represen-

tative of the desired design life of 40 years. This distribution was determined

based on other models in use internationally for other equipment.

Statistical analysis was carried out to fit a Weibull distribution to Eskom’s

empirical failure data. This resulted in different distribution parameters. A

best fit distribution was found to have shape parameter β = 1.8 and a scale

parameter of η = 24.7.

A plot of the Cumulative Density Function (CDF) for the failure data, the

existing CCRA distribution and the new fitted distribution is shown in Fig-

ure 6.1.

Figure 6.1: Cumulative Density Function of failure data, CCRA and fitted

Weibull distributions
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6.2.2 Goodness of fit

A simple graphical method of determining goodness of fit of a theoretical

distribution is to examine a quantile-quantile (q-q) plot of two data sets. A

q-q plot is a plot of the quantiles of the first data set against the quantiles of

the second data set. This is useful in determining whether or not the two data

sets have common distributions.

Two q-q plots are generated:

1. Comparing the quantiles of the empirical failure data with the quantiles

of the CCRA Weibull distribution

2. Comparing the quantiles of the empirical failure data with the quantiles

of the fitted Weibull distribution

The quantiles are plotted with a 45◦ reference line. Two datasets from the

same distribution will fall uniformly around this line. A large deviation from

this line is evidence that the two data sets come from populations with different

distributions.

A 95% confidence envelope is also plotted. The q-q plots for the CCRA and

fitted Weibull distributions are shown in Figures 6.2 and 6.3 respectively.

From Figure 6.2, it can be seen that the Weibull distribution of the CCRA

model fits the empirical data in the age group (8-52) and is skewed, with the

45◦ reference line not passing through the origin. The average age of failure

for this distribution is 40 years, which is not evident in the empirical data.

The average age of failure is 24 years. This is indicative of a poor fit.

Figure 6.3 shows the empirical data fits the fitted Weibull distribution well for

the age group (0-42). This is expected since no data is available for failures of

transformers older than 45. The reference line passes through the origin and

the average age of failure for this distribution is 24.7 years, which is congruent

with the empirical data. This distribution is found to be a better representation

of the data.

Both q-q plots show evidence of distinct patterns where the data shifts above
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Figure 6.2: Existing CCRA model bathtub curve based on a theoretical

Weibull distribution

Figure 6.3: Bathtub curve based on a Weibull distribution developed from

empirical failure data

and below the reference line. This is indicative of a poor fit. An ideal fit would

show the data randomly distributed around the reference line across the entire

range.
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6.3 Probability of failure based on HI

The probability of failure based on HI is derived with a logistic regression

model. This regression was performed using the Generalised Linear Model

(GLM) function, with the binomial distribution linked by the logit function in

R. This analysis was performed with the existing HI scores, as well as the raw

data as IVs.

6.3.1 Methodology

The data set was processed to remove missing data and outliers, as outlined

in Chapter 5. A logistic regression model was then found to best fit the data

using the HI scores for DGA and Insulation as IVs.

An iterative process is then carried out with all the raw data to evaluate the

influence each input variable had on the overall output prediction.

Once the most significant variables have been identified, the logistic regression

is run again to find the best fit model for the data set.

Each model is then evaluated for goodness of fit and compared with each other

and the null model, which is the model with no predictors, i.e. an intercept

only.

6.3.2 Health Index model

A logistic regression was run with the HI DGA and Insulation parameters.

From the results shown in Figure 6.4, it can be seen that both the Insulation

score and DGA score are both statistically significant, with p-values lower than

0.05.

The mathematical function equation that results is shown in Equation 6.2.

The coefficients of this equation can be interpreted similarly to an ordinary

regression, as follows:
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Figure 6.4: R output of logistic regression with HI parameters as IVs

• For every one unit increase in DGA score, the log odds ratio of failure

increases by 2.07

• For every one unit increase in Insulation score, the log odds ratio of

failure decreases by 1.39

This in itself is not very useful and in order to obtain information regarding

the probability of failure itself, Equation 6.2 must be exponentiated.

ln

(
pfailure

1 − pfailure

)
= 0.557 + 2.07 (DGA) − 1.39 (Insulation) (6.2)

The next statistics that can be read from the output in Figure 6.4, are the

model and null deviances. The null model is the model including only the

intercept, i.e. no predictor variables included. Therefore, if the model deviance

is lower than the null deviance, the model is better at predicting the outcome

than an empty model.
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The deviances and degrees of freedom are analysed with likelihood ratio tests to

yield a result of 4.003×10−6, which is lower than 0.001 indicating a significantly

better prediction than the null model.

The regressions for the HI parameters: DGA and Insulation, are visualised

in Figure 6.5. The predicted probabilities for each HI parameter is plotted

for the developed logistic regression model. A failure probability is calculated

across the expected data range for each parameter, with the other parameter

constant at its sample mean. Each parameter is plotted with a 95% confidence

interval.

Figure 6.5: Regression plots for HI parameters

The plots show the expected trend for both parameters in predicting failure.

There is large uncertainty present in both parameters, particularly in DGA,

with > 40% uncertainty for scores above 2. This is to be expected since the

model was trained with low DGA scores.

6.3.3 Raw data

Logistic regressions were run for various predictor variables, using the raw

data instead of weighted averages, as was done for the HI parameters. This

was done in an iterative process in order to identify the statistically significant

variables and exclude all extraneous variables whose only contribution is in

making the model unnecessarily complicated and noisy.

Models were run for the following variable, in various combinations:
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• Gas concentrations

• Gas production rates

• Gas ratios (Duval, Roger’s, IEC, %TDCG)

• Oil quality

• Insulation

The models were run with only the raw data, except for the gas ratios. The gas

ratios were analysed since various relationships between the gases have been

identified and found to be useful in analysis of dissolved gases.

The results of the models using production rates and gas ratios, indicated that

none of these variables were statistically significant, with all variables having

p-values > 0.05. For this reason, these variables were excluded from further

study.

Regressions run with only gas concentrations indicated that of all the gases,

only CO and CH4 were statistically significant. Similarly with the oil quality

and DP variables, the regressions indicated the only variables of significance

were acidity and DP. Both regressions were then run again without the extra-

neous variables and the statistical relationship was found to increase.

A logistic regression was then run with the four variables that were identified

as significant: CO, CH4, DP and acidity. From the results shown in Figure 6.6,

it can be seen that both the CO concentration, CH4 concentration, acidity and

DP values are statistically significant, with p-values lower than 0.05.

The mathematical function equation that results is shown in Equation 6.3.

The coefficients of this equation can be interpreted similarly to an ordinary

regression, as follows:

• For every one unit increase in CO concentration, the log odds ratio of

failure decreases by 0.0037

• For every one unit increase in CH4 concentration, the log odds ratio of

failure increases by 0.046
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Figure 6.6: R output of logistic regression with selected IVs

• For every one unit increase in DP value, the log odds ratio of failure

decreases by 0.0033

• For every one unit increase in acidity, the log odds ratio of failure de-

creases by 18

This in itself is not very useful and in order to obtain information regarding

the probability of failure itself, Equation 6.3 must be exponentiated.

ln

(
pfailure

1 − pfailure

)
= 3.31+0.046 (CH4)−0.0037 (CO)−18 (Acid)−0.0033 (DP )

(6.3)

The next statistics that can be read from the output in Figure 6.6, are the

model and null deviances. The null model is the model including only the

intercept, i.e. no predictor variables included. Therefore, if the model deviance
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is lower than the null deviance, the model is better at predicting the outcome

than an empty model.

The deviances and degrees of freedom are analysed with likelihood ratio tests

to yield a result of 5.320×10−11, which is lower than 0.001 indicating a signif-

icantly better prediction than the null model.

The regressions for the raw data variables: CO, CH4, DP and acidity, are

visualised in Figure 6.7. The predicted probabilities for each variable is plotted

for the developed logistic regression model. A failure probability is calculated

across the expected data range for each variable, keeping all other variables

constant at their sample means. Each variable is plotted with a 95% confidence

interval.

Figure 6.7: Regression plots for raw data parameters
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The plots show the expected trend for the four variables in predicting failure.

There are large uncertainties present in all variables, which are expected due

to the nature of the variables being analysed and the limited data samples.

6.3.4 Model comparison

The two models can be compared to each other by performing the likelihood

ratio test, as was done with each model and the null model previously.

The results of a χ2 anova analysis, using the HI regression model as the null

hypothesis yields a p-value of 4.748×10−07. This would suggest that the new

model using the four raw data variables is substantially better at predicting

failure than the model using the existing HI parameters.

Another method of comparing the fit of two models is to compare their re-

spective Akaike Information Criteria (AIC) since it is used for reporting the

trade-off between fitting (likelihood) and parsimony (number of parameters)

of the model. The AIC values for both models are shown in Figures 6.4 and

6.6 respectively.

In this case the HI model AIC is 162.75 while the raw data model AIC is

137.63, indicating a substantial improvement in model fit using the raw data,

despite the increased parsimony.

The ROC curves for both the HI and raw data models are shown in Figure 6.8.

Analysis of the Area Under the Curve (AUC) is a common way of showing the

discrimination ability of a statistical model. The specificity and sensitivity are

calculated as per Equations 4.2 and 4.3.

A ROC curve which goes closer to the top left hand corner of the plot indicates

a model with ideal discrimination ability, whereas a ROC curve close to the

45◦ line indicates a model with no discrimination ability. The AUC has a range

of 0.5 (no discrimination) to 1 (perfect discrimination).

Analysis of the curves in Figure 6.8, shows the raw data model with an AUC

of 0.848 and the HI model with an AUC of 0.774. This again shows that the

raw data model is substantially better at predicting failure than the HI model.
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Figure 6.8: ROC curves for HI and raw data models

6.4 Error sources/uncertainty

No model will be perfect, due to the uncertainty that is introduced by the

known and unknown unknowns as well as errors in the variables utilised in the

study. In this study, there are a number of sources of error in the predictor

variables being considered. These errors translate to increased uncertainty and

tolerances in the output of the model and, as such, should be limited as far as

possible.

6.4.1 Degree of Polymerisation

The DP value has uncertainty introduced in mainly two ways: measurement/

approximation methods and by its exponential nature.

The rate at which DP changes with time, given a constant temperature, is

given by Equation 6.4 [18]. The aging rate of insulation is a function of time,

temperature, moisture, Oxygen and acid content. According to figures pub-

lished in [18], normal insulation life of a well-dried, oxygen-free, thermally
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upgraded insulation system at the reference temperature of 110 ◦C, the ex-

pected operating life of a transformer retaining DP of 200 is 150 000 hours or

17.12 years.

1

DPt
− 1

DPinitial
= A× exp

(−Ea
RT

)
t (6.4)

Figure 6.9 shows the relationship of DP with age in years, including the thresh-

olds for a 95% confidence interval, at an operating temperature of 98◦C, the

normal operating temperature for a fully loaded transformer. It can be seen

that for higher values of DP, new insulation, the tolerance on expected life

consumption is small. At lower DP values, old insulation, the tolerance on

expected life consumption is large. At 200 DP, the generally recognised value

for insulation end-of-life, the expected age ranges from 10 to 29 years. This is

a 19 year uncertainty. Therefore, this measure is of limited value at the lower

DP values, since a variance of 19 years on an age of 17 years is more than

100%.

Figure 6.9: DP value and threshold with accuracy bandwidth versus time [8]

This is congruent with the breakdown mechanisms of polymers. This level of

uncertainty at lower DP values could also be indicative of more leeway when

operating a transformer at these values since breakdown occurs much more

slowly than at higher values.
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Additional uncertainty is introduced in the measurement methods used for

determining DP. The optimum is to take a paper sample and test the tensile

strength in the laboratory. This is often not possible since it is an intrusive test.

Common practice is to take an oil sample and test for furanics and estimate

DP from the results. This measurement is prone to the error associated with

oil sampling, as well as the oil test. The test is often not repeatable with large

variances in the results of multiple tests on a single sample.

6.4.2 Design

Over the course of 18 years, there would have been substantial differences

in design philosophies, oil types used, maintenance philosophies, management

strategies, loading, etc. All these aspects affect the life expectancy and failure

probability of the power transformer.

• Design: Different internal structures, better understanding of design

leading to optimised design parameters, differences/improvements in trans-

former cooling systems.

• External components: Changes in types of bushings, design and in-

sulation and tapchangers, arc-quenching media, design and maintenance

activities required.

• Insulation: Improvements and changes in the type of insulation used

and its breakdown characteristics.

• Oil: Improvements in oil specifications, changes in additives which change

the aging characteristics of the transformer oil. Examples such as in-

hibitors which inhibit oxidation of the oil, but lead to accelerated degra-

dation on depletion and Dibenzyl Disulfide (DBDS), also known as cor-

rosive sulphur was previously added to the oil resulting in the breakdown

of the copper within the transformer.

• Online filtration: Various devices can be connected to the transformer

for monitoring or moisture filtration and control. These devices also

remove additives from the oil, as well as dissolved gases which will have

an implication on DGA and diagnosis of incipient faults.
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• Maintenance: Maintenance activities that are required vary. Any in-

trusive work to be performed on a transformer is a potential for changing

the condition of the transformer, ideally for the better, but occasionally

it can be detrimental to the health of the transformer due to human er-

ror. Compliance with required maintenance intervals and requirements

are also not always managed optimally.

• Loading: Transformers undergo various changes in loading patterns over

their lives, these can range from only 20% utilisation to overloading at the

design limits. In general the Transmission population of transformers are

loaded at 50% or less. Increases in loading due to failure of adjacent units

is also present. The loading is determined by management philosophies,

planning objectives, operational requirements, etc.

All these aspects will have an impact on the uncertainty in the predicted

probability of failure of a transformer.

6.4.3 DGA

Uncertainty is present in the DGA results for various reasons. These are

primarily due to the oil sampling methods and experience and competence of

the person taking the sample. Invalid results can be obtained for samples that

can have adverse impacts on the overall trend of the transformer’s gas profile.

The distribution of gases within the transformer is not uniform, samples from

different sample points on the transformer yield differing results and should

not be compared directly. Temperature and loading also have an impact on

the amount of gas that is dissolved within the oil. For these reasons, the results

of the samples taken need to be carefully analysed for validity. Some errors

in measurement, if performed repeatedly can lead to results that appear valid

and even alarming. Others can lead to results that appear stable when a fault

is present.

The method of computing daily rate of production is another source of er-

ror. With manual samples it is simply the average daily rate of production

over the time interval between two samples. This is not a robust calculation
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since any spikes in gas production within the sample interval can be masked.

Negative production rates can also be present, indicating a reduction in gas

concentration. This could also be attributed to a poor sample being taken or

measurement errors in the analysis process. This is the suspected reason for

the lack of statistical significance of this variable in the regression models.

A way in which this error can be reduced is by using more frequent samples,

such as obtained from an online analyser and calculating the rate of production

using mean squares or splines.

6.5 Discussion of results

The results obtained from the study show that, with the existing available data,

a statistical model can be developed that can be used to predict probability

of failure of a power transformer to some degree that is better than an empty

model.

The existing Weibull distribution for determining the probability of failure

based on age was found to be ineffective at describing the empirical failure

data that was available. Alternative shape and scale parameters were found

that better described the data. The model based on the HI parameters was

found to be less effective at predicting probability of failure than the model

based on the the four raw data variables.

Various factors were identified for reducing the accuracy of the model, includ-

ing: limitation of available failure data, unavailability of some condition data

and measurement uncertainties in some of the data that was used.

While both models were found to be statistically more significant than an

empty model, neither was concluded to be optimal. However, a model better

suited to the asset management model can be developed with various improve-

ments made with the availability of more data.
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Chapter 7

Conclusion and

recommendations

7.1 Conclusions

The current asset management model was reviewed and deficiencies in the

determination of the probability of failure were found, which could result in

incorrect risk calculations and potentially poor decision making. Deficiencies

were found in the determination of probability of failure based on both age

and HI.

Transformer life estimation and condition monitoring methods were investi-

gated and the optimum variables to be used in a statistical analysis were iden-

tified. These were limited by availability of these parameters in the empirical

failure data that was analysed.

The Weibull distribution currently being used for determination of probability

of failure based on age was found to be deficient in describing the existing

failure data and an alternative distribution with different shape and scale pa-

rameters was found. The alternative model was found to be effective in de-

scribing the data in the age group 0 - 42 with an average age of failure being

24, which is congruent with experience and significantly different to the 40

years suggested by the original distribution.

A model was developed based on the existing HI parameters and was found
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to be statistically more significant than an empty model. The data was then

interrogated to identify which of the measured variables held the most signif-

icance and if any extraneous variables were present. Results of this analysis

indicated that of all the variables, only four: CO concentration, CH4 concen-

tration, DP and acidity, held any significance. These variables were then used

in the development of an alternative model and found to be more effective at

predicting the probability of failure than the HI variables.

Although an alternative model was found that was better at predicting proba-

bility of failure than the model currently in use, this model is also not optimal.

Using either of these models will lead to undesired results, since a large num-

ber of transformers requiring replacement will not be replaced, while others

that are replaced could have remained in service for many years. In effect,

neither the risk that these transformer failures pose to the business, nor the

failure rate of the transformers within the existing population will be reduced

significantly using these models.

The limited data and large tolerances on each variable’s data, lead to signifi-

cantly reduced confidence in the conclusions that can be drawn from this data.

For this reason, these models are not optimised.

The risk to the business of having no model available for asset management

decisions can be lower than the risk of using an unoptimised model. This is

illustrated in Table 7.1 with a simple example.

Table 7.1: Example comparison of risk to business using different asset man-

agement models

No model Unoptimised model

Model accuracy (%) 0 50

Failure rate 10 / annum 5 / annum

Number of transfor-

ers replaced

10 (failed) 5 (failed) + 10 (pre-

dicted)

Equipment replace-

ment cost

10 × R 20 million 15 × R 20 million

Consequence cost 10 × R 5 million 5 × R 5 million

Total cost R 250 million R 325 million
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Although the actual problem is more complicated than indicated in the ex-

ample, the implication of overestimating the value of simply reducing failure

rate, not taking overall risk into consideration is illustrated. In the example,

the asset management model had a 50% accuracy on the prediction of failures.

In this research, neither model provided such a high accuracy, resulting in a

<50% improvement. In order to substantially reduce the overall cost to the

company, a model with a very high accuracy will be required.

It is therefore concluded that, if risk management is the objective, the existing

models should not be used as a basis for investment decisions.

The fact that the models discussed in this research are identified as being better

predictors of probability of failure than simply basing the decision on chance

alone is compelling evidence that an optimised model, capable of allowing

reliable predictions, can be developed in the future with the availability of

more reliable data. For this reason, further research should be performed to

develope a model with a prediction accuracy that can be used for risk reduction.

7.2 Recommendation for future work

Using the statistical methods outlined in this work, the failure data should

be analysed in terms of system data. This would include demographics as

well as location and operating/system conditions. While these factors are not

influencial in the decision for replacement/refurbishment of a transformer, they

do contribute to failures and their interactions should be noted. Interactions

of variables may be useful in specification and design of transformers in the

future.

Recently, within the past 5 years, a large number of online gas analysers have

been installed on a large percentage of the transformer population in Eskom.

It would be useful to utilise the online data in the analysis process. This data is

significantly more accurate in identifying trends in gas production. The errors

associated with human interaction and measurement are eliminated since the

devices operate online.

The calculation methods for determining the values of the variables to be used
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in the model should be investigated and improved to yield more reliable data

for analysis.

All Models are wrong, but some are useful

˜ George Box
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