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Abstract

Symmetries and conservation laws of partial differential equations (pdes) have been

instrumental in giving new approaches for reducing pdes. In this dissertation, we

study the symmetries and conservation laws of the two-dimensional Schrödinger-

type equation and the Benney-Luke equation, we use these quantities in the Double

Reduction method which is used as a way to reduce the equations into a workable

pdes or even an ordinary differential equations. The symmetries, conservation laws

and multipliers will be determined though different approaches. Some of the reduc-

tions of the Schrödinger equation produced some famous differential equations that

have been dealt with in detail in many texts.
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Introduction

In this dissertation we will be investigating soliton-type equations, in particular, the

nonlinear multidimensional Schrödinger-type equation and the Benney-Luke equa-

tion. These equations are characterized by their ability to govern the motion of

solitons which will be defined in detail. The main objective of the dissertation is to

use the double reduction method to reduce the given equations [18].

The Benney-Luke equation is a well-known Sobolev-type equation, which is used

in long wave asymptotic approximation of shallow water waves. The term Sobolev

equation is used in Russian literature to refer to any equation with spatial derivatives

on the highest order time derivatives [7].

Soliton theory is an attractive field of present day research in nonlinear physics

and mathematics [14]. An important component in soliton theory is the nonlinear

Schrödinger equation (NLSE) and its variants which appear in a vast spectrum of

problems (see [1, 11]). A soliton is a pulse-like nonlinear wave (solitary wave) which

emerges from a collision with a similar pulse having unchanged shape and speed

[17].The solitary wave or soliton was discovered by John Scott Russel in August

1834, he then pioneered the study of the wave and its equation of motion.
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The double reduction method will be employed to reduce the Schrödinger equation

[2] down to its final solution, this method involves the extensive use of symmetries,

conservation laws and multipliers to reduce multidimensional equations into first

or second order equations or even ordinary differential equations (odes), which are

simpler to handle.

Aims

The aims of the dissertation are as follows:

• investigate the symmetries, conservation laws, conserved vectors and solutions

of a NLSE and other soliton equations.

• extend the NSLE to three independent variables (x, y, t), i.e. two space vari-

ables and the time component as above. Thus we will be investigating the

two-dimensional nonlinear Schrödinger-type equation which is given by the

equation, [2, 16]

i
∂φ

∂t
= − 1

2m
∇2φ+ g |φ|2 φ. (0.0.1)

• use the multiplier method for systems in order to determine the conservation

laws of the NLSE.

• investigate the solutions of the two-dimensional NLSE using the double reduc-

tion method given in [4].
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This dissertation is structured as follows.

In the first chapter, we state definitions of concepts that will be required to perform

the calculations that are vital in this dissertation.

In the second chapter, we provide an illustrative example through the reduction of

the Benney-Luke equation. We will compute the symmetries, conserved vectors and

multipliers which will be then used to reduce the partial differential equation (pde)

in the double reduction method.

In the third chapter, we will apply the same technique we did in the second chapter

to the nonlinear multidimensional Schrödinger equation.
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Chapter 1

Definitions and Notation

This chapter contains definitions, notations and theorems required to analyze the

equations in this dissertation.

A function f(x, u, u(1), . . . , u(r)) of a finite number of variables is called a differential

function of order r [9, 19, 20].

We denote A to be the universal vector space of differential functions .

Consider an rth-order system of pdes of independent variables x = (x1, x2, . . . , xn)

and m dependent variables u = (u1, u2, . . . , um)

Gµ(x, u, u(1), . . . , u(r)) = 0, µ = 1, . . . , m̄, (1.0.1)
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where u(1), u(2), . . . , u(r) denote the collection of all first, second, . . . , rth-order partial

derivatives, that is, uαi = Di(u
α), uαij = DjDi(u

α), . . . respectively, with the total

differentiation operator with respect to xi given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ . . . , i = 1, . . . , n, (1.0.2)

where the summation convention is used whenever appropriate. A current

Φ = (Φ1, . . . ,Φn) is conserved if it satisfies

DiΦ
i = 0 (1.0.3)

along the solutions of (1.0.1). It can be shown that every admitted conservation law

arises from multipliers Qµ(x, u, u(1), . . .) such that

QµG
µ = DiΦ

i (1.0.4)

holds identically (i.e., off the solution space) for some current Φi [6]. The conserved

vector is then obtained by the homotopy operator [8, 12].

Definition 1. The Euler operator, for each α, is defined by

E =
δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 . . . Dis

∂

∂uαi1...is
, α = 1, . . . ,m. (1.0.5)

The Euler operator is also sometimes referred to as the Euler-Lagrange operator [5].

Definition 2. The Lie-Bäcklund or generalised operator is given by

X = ξi
∂

∂xi
+ ηα

∂

∂uα
, ξi, ηα ∈ A (1.0.6)
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The operator is an abbreviated form of the following infinite formal sum

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
∑
s≥1

ςαi1,...,is
∂

∂uαi1,...,is
, (1.0.7)

where the additional coefficients are determined uniquely by the prolongation for-

mulae

ςαi = Di(W
α) + ξjuαij,

ςαi1,...,is = Di1 . . . Dis(W
α) + ξjuαji1,...,is , s > 1.

(1.0.8)

In (1.0.8), Wα is the Lie characteristic function given by

Wα = ηα − ξjuαj . (1.0.9)

One can write the Lie-Bäcklund or generalised operator (1.0.7) in the characteristic

form

X = ξiDi +Wα ∂

∂uα
+
∑
s≥1

Di1 . . . Dis(W
α)

∂

∂uαi1...is
. (1.0.10)

We determine the conserved flows [23, 24] by first constructing the multipliers Qµ

which are obtained by noting that the Euler operator annihilates total divergences,

i.e., the defining equation would be

δ

δuα
[QµG

µ] = 0. (1.0.11)

8



Noether’s Theorem

The relationship between conservation laws and symmetries of differential equations

is a very popular topic which has sparked a lot of interest which eventually lead

to interesting concepts like Noether’s Theorem which was first proved by Emmy

Noether,[13] in 1915, and later published in 1918.

Stated below is the formal statement of Noether’s Theorem taken from a book by

D.E.Neuenschwander, entitled Emmy Noether’s Wonderful Theorem.

Theorem 1.0.1. Noether’s Theorem[13] If the functional

J =

∫ b

a

L(t, qµ, q̇µ)dt

is an extremal, and if under the infinitesimal transformation

t′ = t+ ετ + ...

qµ
′
= qµ + εζµ + ...

the functional is invariant according to the definition (allowing for the inhomoge-

neous case)

L′dt
′

dt
− L = ε

dF

dt
+O(ε3), wheres > 1,

then the following conservation law holds:

pµζ
µ −Hτ − F = const.
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Main Theorems

The following theorems will form the basis of much of this dissertation.

The first theorem will help us to determine whether there is a an association between

the symmetry X and a conserved vector T.

Theorem 1.0.2. [4] Suppose that X is any Lie-Bäcklund symmetry of a system of

differential equations and Ti, i = 1, ..., n, are the components of the conserved vector

of the system of differential equations. Then

T ∗i = [T i, X] = X(T i) + T iDjη
j − T jDjη

i, i = 1, ..n (1.0.12)

constitute the components of a conserved vector of a system of differential equations.

Theorem 1.0.3. [4] Suppose that DiT
i = 0 is a conservation law of a PDE system.

Then, under a contact transformation, there exists functions T̃ i such that J DiT
i =

D̃iT̃
i, where T̃ i is given as

.


T̃ 1

T̃ 2

...

T̃ n

 = J(A−1)T


T 1

T 2

...

T n

 , J


T 1

T 2

...

T n

 = AT


T̃ 1

T̃ 2

...

T̃ n

 (1.0.13)

in which

A =


D̃1x1 D̃1x2 · · · D̃1xn

D̃2x1 D̃2x2 · · · D̃2xn
...

...
...

...

D̃nx1 D̃nx2 · · · D̃nxn

 , A−1 =


D1x̃1 D1x̃2 · · · D1x̃n

D2x̃1 D2x̃2 · · · D2x̃n
...

...
...

...

Dnx̃1 Dnx̃2 · · · Dnx̃n


(1.0.14)
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and J = det(A).

Theorem 1.0.4. (fundamental theorem on double reduction) [4] Suppose

that DiT
i = 0 is a conservation law of a system of partial differential equations.

Then under a similarity transformation of a symmetry X of the form (.....) for the

pde, there exist functions T̃ i such that X is still a symmetry for the pde D̃iT̃
i = 0

and 
XT̃ 1

XT̃ 2

...

XT̃ n

 = J(A−1)T


[T 1, X]

[T 2, X]
...

[T n, X]

 , (1.0.15)

where

A =


D̃1x1 D̃1x2 · · · D̃1xn

D̃2x1 D̃2x2 · · · D̃2xn
...

...
...

...

D̃nx1 D̃nx2 · · · D̃nxn

 , A−1 =


D1x̃1 D1x̃2 · · · D1x̃n

D2x̃1 D2x̃2 · · · D2x̃n
...

...
...

...

Dnx̃1 Dnx̃2 · · · Dnx̃n


(1.0.16)

and J = det(A).

Our original system is equivalent to

sys1 =

 q1
1G1 + q1

2G2 = 0,

q1
1G1 − q12G2 = 0.

(1.0.17)

This system can be rewritten as

DtT1
t +DxT1

x +DyT1
y = 0,

q1
1G1 − q12G2 = 0. (1.0.18)
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Chapter 2

The Benney-Luke equation

In this chapter we will present an illustrative example via a version of the Benney-

Luke equation.

2.1 Introduction

The Benney-Luke equation is quite an established equation and has been researched

quite extensively over a long period of time. The Stability, Cauchy Problem , Exis-

tence and Analyticity of solutions have been researched widely [22].

The Benney-Luke equation is used to model the evolution of long water waves with

small amplitudes, in particular the equation below models three-dimensional water

waves with surface tension [15].
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The Benney-Luke equation reduces to the Kadomtesev-Petviashvil (KP) equation

for waveforms propagating predominantly in one direction, slowly evolving in time

and having weak transverse variation. Many works have been published about the

KP equations which are obtained under the assumption of quasi-two dimensionality

and undirectional propagation [15].

The Benney-Luke equation is given by,

utt − uxx − εuyy + αε(uxxxx + εuyyyy) + ε[∂t(u
2
x + εu2y) + ut(uxx + εuyy)] = 0. (2.1.1)

The work covered in this chapter has been submitted for publication, see [21].

2.2 Symmetries and Conservation Laws

The Lie point symmetry generators of (2.1.1) are

X1 = ∂x,

X2 = ∂y,

X3 = ∂t,

X4 = 1.

We consider a linear combination of X1, X2 and X3, viz.,

X = c∂x +m∂y + ∂t. (2.2.2)

We have chosen a linear combination of X1, X2 and X3 above because we aim to

obtain a non trivial solution to the equation (2.1.1).
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The multipliers and corresponding conserved vectors, which were computed using

the methods presented in Chapter 1 namely Definition 2, Equation (1.0.6) and

Equation (1.0.10) are,

(i) Q1 = 1

T x1 = (−1 + εut)ux + αεuxxx,

T y1 = ε ((−1 + εut)uy + αεuyyy) ,

T t1 = 1
2

(
2ut + ε

(
εu2y + u2x

))
.

(ii) Q2 = ux

T x2 = 1
6

((−3 + 4εut)u
2
x + u (3utt + ε (4εuyuyt + (−3 + 2εut)uyy + 3αεuyyyy + 2uxuxt)))

+1
6

(−3αεu2xx + 6αεuxuxxx) ,

T y2 = 1
6
ε (3αεuyyyux + 3uuxy − 2εuutuxy − 3αεuyyuxy)

+1
6

(uy ((−3 + 4εut)ux − 2εuuxt + 3αεuxyy)− 3αεuuxyyy) ,

T t2 = 1
6

(
3utux + 2ε2u2yux + 2εu3x − 3uuxt − 2ε2uuyuxy − 2εuuxuxx

)
.

(iii) Q3 = uy

T x3 = 1
6

(−3αεuxyuxx + 3αεuxuxxy)

+1
6

(uy ((−3 + 4εut)ux + 3αεuxxx)− u (2εuytux + (−3 + 2εut)uxy + 3αεuxxxy)) ,

T y3 = 1
6

(
ε
(
(−3 + 4εut)uy

2 − 3αεu2yy + 6αεuyuyyy
))

+1
6

(u (3utt + 2ε2uyuyt + 4εuxuxt − 3uxx + 2εutuxx + 3αεuxxxx)) ,

T t3 = 1
6

(
3utuy + 2ε2u3y + 2εuy (−εuuyy + u2x)− u (3uyt + 2εuxuxy)

)
.
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(iv) Q4 = ut

T x4 = 1
6

(4εu2tux − 3αεuxtuxx + 3αεuxuxxt + ut (−3ux − 2εuuxt + 3αεuxxx))

+1
6

(u (−2εuttux + 3uxt − 3αεuxxxt)) ,

T y4 = 1
6
ε (4εu2tuy − 3αεuytuyy + 3αεuyuyyt + ut (−3uy − 2εuuyt + 3αεuyyy))

+1
6
ε (u (−2εuttuy + 3uyt − 3αεuyyyt)) ,

T t4 = 1
6

(
3u2t + 2εut

(
εu2y + u2x + u (εuyy + uxx)

))
+1

6
(u (2ε2uyuyt − 3εuyy + 3αεεuyyyy + 2εuxuxt − 3uxx + 3αεuxxxx)) .

2.3 Double reduction

The association between X and T1 will be investigated by substituting the relevant

information into the association matrix in Theorem 1.0.2 from Chapter 1.

We get,

T ∗ = X


T t

T x

T y

−


Dtτ Dxτ Dyτ

Dtξ Dxξ Dyξ

Dtχ Dxχ Dyχ




T t

T x

T y

+ (0)


T t

T x

T y

 (2.3.3)

= X


T t

T x

T y

−


0 0 0

0 0 0

0 0 0




T t

T x

T y

+ (0)


T t

T x

T y

 =


0

0

0

 . (2.3.4)

Therefore X is associated with T1.

Since an association exists, a solution can be found by applying the double reduction
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method. Firstly, transform X to its canonical form Y = ∂
∂s

in (r, s, w, p). Then the

generator is of the form

Y = 0
∂

∂r
+

∂

∂s
+ 0

∂

∂w
+ 0

∂

∂p
.

Without loss of generality, we choose X(r) = 0, X(s) = 1, X(w) = 0 and X(p) = 0,

for which we obtain the following invariance condition,

dx

c
=
dy

m
=
dt

1
=
du

0
=
ds

1
=
dr

0
=
dw

0
=
dp

0
. (2.3.5)

We get the invariants

b1 = x− ct,

b2 = y −mt,

b3 = u,

b4 = r,

b5 = p,

b6 = w,

b7 = s− t.

A suitable combination of the above equations yields the canonical coordinates,

b6 = b3 ⇒ w = u,

b7 = 0 ⇒ s = t,

b4 = b1 ⇒ r = x− cs,

b5 = b2 ⇒ p = y −ms,

where w = w(r, p).
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The inverse canonical coordinates are given by

t = s, x = r + cs, y = p+ms, u = w. (2.3.6)

The A and A−1 matrices are constructed using the equations in (2.3.6) above,

A =


Drt Drx Dry

Dst Dsx Dsy

Dpt Dpx Dpy

 =


0 1 0

1 c m

0 0 1

 ,

A−1 =


Dtr Dts Dtp

Dxr Dxs Dxp

Dyr Dys Dyp

 =


−c 1 −m

1 0 0

0 0 1

 ,

and J = det(A) = −1.

The first, second and third derivatives of u in terms of the new dependent variable

w are,

ux = wr,

uy = wp,

ut = −cwr +mwp,

uxxx = wrrr,

uyyy = wppp.

(2.3.7)

The reduced conserved form is given below,
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T r

T s

T p

 = J(A−1)T


T t

T x

T y

 . (2.3.8)

Now by substituting (2.3.6) and (2.3.7) into (2.3.8) we obtain,


T r

T s

T p

 =


(1 + c2)wr + cmwp + 1

2
ε2cw2

p + 3
2
cεw2

r −mεwpwr − αεwrrr
cwr −mwp − 1

2
ε2w2

p − 1
2
εw2

r

−cmwr + (ε+m2)wp − 1
2
ε2mw2

p + 1
2
εmw2

r + cε2wpwr − αε2wppp

 ,

where the reduced conserved form is also given by DrT
r
1 = 0.

The second step of the double reduction method represented by T r = k which is

given as

(1− c2)wr + cmwp +
1

2
ε2cw2

p +
3

2
cεw2

r −mεwpwr − αεwrrr = k (2.3.9)

where k ∈ R is a constant. We will now solve equation (2.3.9) using its symmetries.

It is clear that Y1 = ∂p and Y2 = ∂r are symmetries of (2.3.9). We will consider a

linear combination of the two say,

Y = ∂r + β∂p.

We do this so we do not obtain a trivial solution to equation (2.1.1).

Whose invariant condition are given by

dr

1
=
dp

β
=
dw

0
.

18



That is, let

z = p− βr, (2.3.10)

where w=w(z).

The first, second and third order derivatives of w are,

wr = w′(−β),

wrr = w′′(−β)2,

wrrr = w′′′(−β)3,

wp = w′(1).

(2.3.11)

Substituting equations (2.3.11) into (2.3.9) we obtain,

(βc2 − β + cm)w′ + (
1

2
ε2c+

3

2
cεβ2 +mεβ)w′

2
+ αεβ3w′′′ = k. (2.3.12)

The above computation has now allowed us to transform the pde (2.3.9) into an ode

as seen in equation (2.3.12) above.

To further reduce the order of (2.3.12) from a third order ode to a second order ode,

let q = w′. Thus (2.3.12) becomes

(βc2 − β + cm)q + (
1

2
ε2c+

3

2
cεβ2 +mεβ)q2 + αεβ3q′′ = k. (2.3.13)

When computing the final solution to equation (2.3.13) we obtain a tedious solution.

An analysis of the coefficients of q and its derivatives will be made below.

Let the coefficient of q2 equal zero, that is

1

2
ε2c+

3

2
cεβ2 +mεβ = 0. (2.3.14)
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Solve equation (2.3.14) for both ε and β:

For β:

β =
−m±

√
m2ε2 − 43

2
cε1

2
ε2c

23
2
cε

, c 6= 0, ε 6= 0 (2.3.15)

=
−mε± ε

√
m2 − 3εc2

3cε
.

For ε:

ε =
3
2
β2c+mβ

−1
2
c

, c 6= 0 (2.3.16)

= −3β2 − 2

c
mβ.

Substitute the value obtained for ε in (2.3.16) into equation (2.3.13),

(ε was chosen for its simplicity as compared to β) to obtain

−αβ4(3β +
2

c
m)q′′ + (−β + βc2 + cm)q = 0. (2.3.17)

Note that (2.3.17) ha the same form of equation as that of a simple harmonic

operator.

When solving the ode in (2.3.17) we obtain a solution in z,

q = − ck

−c2m+ cβ − c3β
+c1 exp

(√
c z
√
cm− β + c2β

√
αβ2
√

2m+ 3cβ

)
+c2 exp

(
−
√
c z
√
cm− β + c2β

√
αβ2
√

2m+ 3cβ

)
.

(2.3.18)
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Since the solution to (2.3.17) must reside in the null space of the operator, it follows

that the constant term in (2.3.18) is zero, which implies that k = 0. Hence

q = c1Exp(A) + c2Exp(−A) (2.3.19)

where A =

√
c
√
cm− β + c2β

√
αβ2
√

2m+ 3cβ
.

If A > 0 then the answer can be written in terms of cosh and sinh. If A < 0 then

the solution can be expressed in terms of cos and sin functions.

u =
k(p− βr)

cm− β + c2β
+

exp

(√
c (p−βr)

√
cm−β+c2β

√
αβ2
√
2m+3cβ

)
c1
√
αβ2
√

2m+ 3cβ

√
c
√
cm− β + c2β

(2.3.20)

−
exp

(
−
√
c (p−βr)

√
cm−β+c2β

√
αβ2
√
2m+3cβ

)
c2
√
αβ2
√

2m+ 3cβ

√
c
√
cm− β + c2β

.

Note that if k=0, then the constant term vanishes. As above, the answer can be

expressed in terms of the trigonometric functions cosine and sine or the hypobolic

functions cosh and sinh, depending on the sign of A =
√
c
√
cm−β+c2β

√
αβ2
√
2m3cβ

.
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2.4 Conclusion

In this chapter we were able to solve the Benney-Like equation and obtain a non-

trivial solution. The symmetries of the Benney-Luke equation were obtained and

because of their trivial form we decided to consider a linear combination of the

symmetries hence giving us equation (2.2.2).

Next we utilised Theorem 1.0.4, the Fundamental Theorem on Double Reduction,

to reduce the Benney-Luke equation into an ode that would be easier to solve. We

then reduced the third order ode in equation (2.3.12) which was i.t.o. w into a

second order ode i.t.o. q which resulted in equation (2.3.13). We let the coefficient

of q2 in equation (2.3.13) equal zero and this resulted in equation (2.3.17) which is

an equation in the same form as a simple harmonic operator. We were then able to

solve the ode and found that the solution was in terms of the trigonometric functions

cosine and sine or the hypobolic functions cosh and sinh depending on the sign of

A.
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Chapter 3

Two-dimensional Schrödinger-type

equation

3.1 Introduction and Background

In this chapter we consider the two-dimensional NLSE

i
∂q

∂t
= − 1

2m
∇2q + g |q|2 q, (3.1.1)

where g = 1 and m = 1.

The equation in (3.1.1) above comes from [16], which is a paper about two-dimensional

dark solitions.

The Schrödinger equation is one of the cornerstone of quantum physics, which de-
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scribes what a system of quantum objects such as atoms and subatomic particles

will do in the future based on it’s current state [25].

The nonlinear Schrödinger equation has been studied extensively but the behavior

of its symmetries, conserved vectors and solutions given an increase in it’s dimen-

sions has not been studied yet. In this chapter we will compute the symmetries

and conservation laws of (3.1.1) and use them to reduce (3.1.1) through the double

reduction method.

To create a system of equations, substitute q = u + iv into equation (3.1.1) and

recall that u = u(x, y, t), v = v(x, y, t). Then separate into real and imaginary parts

to obtain

G1 = vt − 1
2
(uxx + uyy) + u(u2 + v2) = 0,

G2 = −ut − 1
2
(vxx + vyy) + v(u2 + v2) = 0.

(3.1.2)

3.2 Symmetries, conserved vectors and the Dou-

ble Reduction method

The symmetries and conservation laws were computed by using the Lagrangian

method and Noether’s theorem.

The Lagrangian is given by

L = −1

2
vut +

1

2
uvt +

1

4
(u2x + v2x + v2y + u2y) +

1

4
(u2 + v2)2. (3.2.3)
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3.2.1 Case 1: X1 = ∂t + k(u∂v − v∂u)

The first prolongation of X1 which is represented below,

X
[1]
1 = ∂t + k(u∂v − v∂u + ut∂vt + ux∂vx + uy∂vy − vt∂ut − vx∂ux − vy∂uy).

Through the use of Noether’s theorem we get the following conserved vector,


T t1

T x1

T y1

 =


−1

4
u2x − 1

4
v2x − 1

4
u2y − 1

4
v2y − 1

4
u4 − 1

2
u2v2 − 1

4
v4

1
2
vtvx + 1

2
utux

1
2
vtvy + 1

2
utuy

 . (3.2.4)

The association between X1 and T1 will be investigated by substituting the relevant

information into the association matrix in Theorem 1.0.2 from Chapter 1.

T ∗1 = X1


T t1

T x1

T y1

 =



k[u(−u2v − v3)− v(−u3 − v2u) + ux(−1
2
vx) + uy(−1

2
vy)− vx(−1

2
ux)

−vy(−1
2
uy)]

k[ut(
1
2
vx) + ux(

1
2
vt)− vt(12ux)− vx(

1
2
ut)]

k[ut(
1
2
vy) + uy(

1
2
vt)− vt(12uy)− vy(

1
2
ut)]



=


0

0

0

 . (3.2.5)
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Therefore, X1 and T1 are associated.

We now proceed to solve the system in (3.1.2) by the method of Double Reduction.

Double reduction

Firstly, transform X1 into its canonical form Y1 =
∂

∂s
in (r, s, l, p, w), then the

generator is of the form

Y1 = 0
∂

∂r
+

∂

∂s
+ 0

∂

∂p
+ 0

∂

∂w
+ 0

∂

∂l
, (3.2.6)

where X(r) = 0, X(s) = 1, X(p) = 0, X(w) = 0 and X(l) = 0.

From (3.2.6) above we obtain the following invariance condition,

dr

0
=
ds

1
=
dp

0
=
dw

0
=
dl

0
=
dt

1
=
dx

0
=
dy

0
=

du

−kv
=
dv

ku
. (3.2.7)

We get the invariants,
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b1 = r,

b2 = w,

b3 = p,

b4 = l,

b5 = x,

b6 = y,
ds

1
=
dt

1
⇒ s− b7 = t,

du

−kv
=
dv

ku
⇒ u2 − b8 = −v2,

dv

ku
=
dt

1
⇒ arctan

(v
u

)
− kt = b9.

(3.2.8)

A suitable combination of the equations in (3.2.8) yields,

b1 = b5 ⇒ r = x,

b4 = b6 ⇒ l = y,
√
b8 = b2 ⇒ w =

√
u2 + v2,

b7 = 0 ⇒ s = t,

b3 = b9 ⇒ p = arctan
(v
u

)
− kt.

(3.2.9)

So the canonical coordinates are,

r = x, l = y, s = t, w =
√
u2 + v2, p = arctan

(v
u

)
− kt, (3.2.10)

where p = p(r, l) and w = w(r, l).
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Using (3.2.10) above we compute A and (A−1)T ,

A =


Dst Dsx Dsy

Drt Drx Dry

Dlt Dlx Dly

 =


1 0 0

0 1 0

0 0 1

 = (A−1)T (3.2.11)

and J=det(A)=1.

The inverse canonical coordinates are presented below,

x = r, y = l, t = s, u = w(r, l) cos(p(r, l)+ks), v = w(r, l) sin(p(r, l)+ks).

(3.2.12)

The first and second partial derivatives of u and v in terms of the new dependent

variables w and p are,

ux = wr cos(p+ ks)− wpr sin(p+ ks),

uxx = wrr cos(p+ ks)− 2wrpr sin(p+ ks)− wp2r cos(p+ ks)− wprr sin(p+ ks),

uy = wl cos(p+ ks)− wpl sin(p+ ks),

uyy = wll cos(p+ ks)− 2wlpl sin(p+ ks)− wp2l cos(p+ ks)− wpll sin(p+ ks),

ut = −kw sin(p+ ks).

(3.2.13)
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vx = wr sin(p+ ks) + wpr cos(p+ ks),

vxx = wrr sin(p+ ks) + 2wrpr cos(p+ ks) + wprr cos(p+ ks)− wp2r sin(p+ ks),

vy = wl sin(p+ ks) + wpl cos(p+ ks),

vyy = wll sin(p+ ks) + 2wlpl cos(p+ ks) + wpll cos(p+ ks)− wp2l sin(p+ ks),

vt = kw cos(p+ ks).

(3.2.14)

The reduced conserved form is given below,
T s1

T r1

T l1

 = J(A−1)T


T t1

T x1

T y1

 . (3.2.15)

Substituting (3.2.11), (3.2.12), (3.2.13) and (3.2.14) into (3.2.15) we obtain,


1 0 0

0 1 0

0 0 1





−1
4
(wr cos(p+ ks)− wpr sin(p+ ks))2 − 1

4
(wr sin(p+ ks) + wpr cos(p+ ks))2

−1
4
(wl cos(p+ ks)− wpl sin(p+ ks))2 − 1

4
(wl sin(p+ ks)− wpl sin(p+ ks))2

−1
4
w4 cos4(p+ ks)− 1

2
w4 cos2(p+ ks) sin2(p+ ks)− 1

4
w4 sin4(p+ ks)

1
2
kw cos(p+ ks)[wr sin(p+ ks) + wpr cos(p+ ks)]

−1
2
kw sin(p+ ks)[wr cos(p+ ks)− wpr sin(p+ ks)]

1
2
kw cos(p+ ks)[wl sin(p+ ks) + wpl cos(p+ ks)]

−1
2
kw sin(p+ ks)[wl cos(p+ ks)− wpl sin(p+ ks)]
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=


−1

4
w2
r − 1

4
w2p2r − 1

4
w2
l − 1

4
w2p2l − 1

4
(w2 cos2(p+ ks) + w2 sin2(p+ ks))2

1
2
kw2pr

1
2
kw2pl



=


−1

4
w2
r − 1

4
w2p2r − 1

4
w2
l − 1

4
w2p2l − 1

4
w2

1
2
kw2pr

1
2
kw2pl

 , (3.2.16)

where the reduced conserved vectors are given by DrT
r
1 = 0 and DlT

l
1 = 0, for the

second and third entry in (3.2.16) respectively.

The second step of the double reduction method is given by the equations T l1 = j

and T l1 = f which are represented below,

1

2
kw2pl = j (3.2.17)

and
1

2
kw2pr = f. (3.2.18)

Differentiate (3.2.17) and (3.2.18) in terms of l and r respectively, which yields

1

2
k(2wwlpl + w2pll) = 0 ⇒ kwwlpl +

1

2
kw2pll = 0 (3.2.19)
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and

1

2
k(2wwrpr + w2prr) = 0 ⇒ kwwrpr +

1

2
kw2prr = 0. (3.2.20)

Compute the multipliers of (3.1.2), namely Q1 and Q2, using the following formula

Q1(G
1) +Q2(G

2) = DxT
x +DyT

y +DtT
t. (3.2.21)

Expanding the right-hand side (RHS) of (3.2.21) and substituting in the relevant

entries from the matrix given in (3.2.4) we get,

RHS = Dt(−
1

4
u2x −

1

4
v2x −

1

4
u2y −

1

4
v2y −

1

4
u4 − 1

2
u2v2 − 1

4
v4)

+Dx(
1

2
vtvx +

1

2
utux) +Dy(

1

2
vtvy +

1

2
utuy)

=
1

2
ut(uxx + uyy)− utu(u2 + v2)− utvt +

1

2
vt(vxx + vyy)− vtv(u2 + v2) + vtut

= ut[
1

2
(uxx + uyy)− u(u2 + v2)− vt] + vt[

1

2
(vxx + vyy)− v(u2 + v2) + ut]

= Q1(G
1) +Q2(G

2).

Therefore,

Q1 = ut,

Q2 = vt.
(3.2.22)

Substitute (3.2.9), (3.2.13) and (3.2.22) into Q1G
1−Q2G

2 = 0 from Theorem 1.0.4.
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− kw sin(p+ ks)[
1

2
(wrr cos(p+ ks)− 2wrpr sin(p+ ks)− wp2r cos(p+ ks)

− wprr sin(p+ ks) + wll cos(p+ ks)

− 2wlpl sin(p+ ks)− wp2l cos(p+ ks)− wpll sin(p+ ks))

− w cos(p+ ks)[w2 cos2(p+ ks) + w2 sin2(p+ ks)]− kw cos(p+ ks)]

− kw cos(p+ ks)[
1

2
(wrr sin(p+ ks) + 2wrpr cos(p+ ks) + wprr cos(p+ ks)

− wp2r sin(p+ ks) + wll sin(p+ ks) + 2plwl cos(p+ ks)

+ wpll cos(p+ ks)− wp2l sin(p+ ks))

− w sin(p+ ks)[w2 cos2(p+ ks) + w2 sin2(p+ ks)]− kw sin(p+ ks)] = 0

which implies that

− kwwrr sin(p+ ks) cos(p+ ks) + kw2p2r sin(p+ ks) cos(p+ ks)

− kwwll cos(p+ ks) + kw2p2l sin(p+ ks) cos(p+ ks) + 2k2w2 sin(p+ ks) cos(p+ ks)

+ 2kw4 cos(p+ ks) sin3(p+ ks) + 2kw4 sin(p+ ks) cos3(p+ ks) + kwwrpr sin2(p+ ks)

+
1

2
kw2prr sin2(p+ ks)

+ kwwlpl sin
2(p+ ks) +

1

2
kw2pll − kwwrpr cos2(p+ ks)

− 1

2
kw2prr − kwwlpl cos2(p+ ks)

− 1

2
kw2pll cos2(p+ ks) = 0
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and this, in turn, implies that

sin(p+ ks) cos(p+ ks)(−kwwrr + kw2p2r − kwwll + kw2p2l + 2k2w2)

− (−kwwrpr −
1

2
kw2prr − kwwlpl −

1

2
kw2pll)[cos2(p+ ks)− sin2(p+ ks)] = 0

and hence

kw sin(p+ ks) cos(p+ ks)[wp2l + 2kw + 2w3 − wrr − wp2r − wll]

−kw cos 2(p+ ks)[−wrpr −
1

2
wprr − wlpl −

1

2
wpll] = 0. (3.2.23)

Substituting (3.2.19) and (3.2.20) into (3.2.23) above we obtain the following result,

kw sin(p+ ks) cos(p+ ks)[wp2l + 2kw + 2w3 − wrr − wp2r − wll] = 0. (3.2.24)

Since k, w, sin(p+ ks) and cos(p+ ks) in (3.2.24) cannot equal zero, we let

wp2l + 2kw + 2w3 − wrr − wp2r − wll = 0. (3.2.25)

Let p be a constant, ie. p = A where A ∈ R such that pr = pl = 0.

So equation (3.2.25) now becomes,

2kw + 2w3 − wrr − wll = 0. (3.2.26)
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The equation above in (3.2.26) is a special case of the famous Klein-Gordon equa-

tion.

The Klein-Gordon equation was first proposed by Oskar Klein and Walter Gordon,

[3], in 1926 in an attempt to describe relativistic electrons, which was later proved

false. This equation is basically the relativistic version of the Schrödinger equation

or the Schrödinger equation for a quantum state.

Let α = r − cl, where c ∈ R.

The partial derivatives of w now become

wr = wα,

wl = −cwα,

wrr = wαα,

wll = c2wαα.

(3.2.27)

Let wα = w′ and wαα = w′′.

Substituting (3.2.27) into (3.2.26) the equation now becomes,

2kw + 2w3 − w′′ − c2w′′ = 0, (3.2.28)

which implies that,

w′′ − 2

1 + c2
(kw + w3) = 0. (3.2.29)

We use the Euler-Lagrange equation from Chapter 1 , which is stated below
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E =
∂

∂w
−Dα

∂

∂w′
. (3.2.30)

We know that E(L) = 0 on the solutions of (3.1.2), so we can compute L by inverse.

The Lagrangian of equation (3.2.29) above is given below,

L =
1

2
w′2 +

2

1 + c2

(
k

2
w2 +

1

4
w4

)
. (3.2.31)

Firstly we substitute the equation (3.2.31) into the different terms of the Euler-

Lagrange equation, (3.2.30) above which gives us,

∂L
∂w′

= w′ Dα

(
∂L
∂w′

)
= w′′ − ∂L

∂w
= −

[
2

1 + c2
(kw + w3)

]
.

When we add these two terms above we get the original equation of motion, i.e.

equation (3.2.29) so we have now verified that the Lagrangian in equation (3.2.31)

is the Lagrangian for equation (3.2.29).

One of the symmetries of equation (3.2.29) is X̄2 =
∂

∂α
.

Since X̄2 =
∂

∂α
is also a Noether symmetry we can use Noether’s Theorem, [13].

We will use the formula below [10],

X [1] L+ L dξ

dα
=
df

dα
. (3.2.32)

By using formula (3.2.32) above we can deduce that f = 0, where f is the gauge
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quantity.

Next compute the conserved quantity, I, in this case since we only have one inde-

pendent variable, α. The formula for I is given by,

I = Lξ + (η − w′ξ) ∂L
∂w′
− f. (3.2.33)

We know that ξ = 1, η = 0 and f = 0 from the information given above, therefore

I = −1

2
w′2 +

2

1 + c2

(
k

2
w2 +

1

4
w4

)
. (3.2.34)

By the Double Reduction method,
dI

dα
= 0 so therefore

−1

2
w′2 +

2

1 + c2

(
k

2
w2 +

1

4
w4

)
= k1, (3.2.35)

where k1 ∈ R.

Let k1 in equation (3.2.35) above equal zero (for simplicity of our solution), i.e.

k1 = 0 which yields,

−1

2
w′2 +

2

1 + c2

(
k

2
w2 +

1

4
w4

)
= 0, (3.2.36)

which implies that,
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dw

w
√

k
2

+ 1
4
w2

=
2√

1 + c2
dα. (3.2.37)

To solve the above equation (3.2.37) we will use Mathematica for ease of computa-

tion. So by integrating both sides of (3.2.37) respectively we get the final solution

below,

√
2
[
logw − log(2k −

√
2k
√

2k + w2)
]

√
k

=
2√

1 + c2
α +K∗, (3.2.38)

where K∗ is the integration constant.
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3.2.2 Case 2: X2 = −y∂x + x∂y

A Lie-point symmetry generator of (3.1.1) isX2 = −y∂x+x∂y. The first prolongation

is represented below,

X
[1]
2 = −y∂x + x∂y − uy

∂

∂ux
+ ux

∂

∂uy
− vy

∂

∂vx
+ vx

∂

∂vy
. (3.2.39)

The symmetry X2 yields the following conserved vector T2,


T t2

T x2

T y2

 =



−1
2
uxvy − 1

2
uyvx − 1

2
vxuy + 1

2
vyux

−1
4
yu2x − 1

4
yv2x + 1

4
yu2y + 1

4
yv2y − 1

2
yvut + 1

2
yuvt

+1
4
yu4 + 1

2
yu2v2 + 1

4
yv4 + 1

2
xvxvy + 1

2
xuxuy

−1
4
xu2x − 1

4
xv2x + 1

4
xu2y + 1

4
xv2y + 1

2
xvut − 1

2
xuvt

−1
4
xu4 − 1

2
xu2v2 − 1

4
xv4 − 1

2
yvxvy − 1

2
yuxuy


. (3.2.40)

The association between X2 and T2 will be investigated by substituting the relevant

information into the association matrix in Theorem 1.0.1 in Chapter1.

T ∗2 = X2


T t2

T x2

T y2

−


0 0 0

0 0 −1

0 1 0




T t2

T x2

T y2
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=


0

0

0

 . (3.2.41)

We have proven that X2 and T2 are associated so we may now proceed with the

double reduction method.

Double Reduction

Firstly, transform X2 into it’s canonical form Y2 =
∂

∂s
in (r, s, p, w, l). Then the

generator is of the form

Y2 = 0
∂

∂r
+

∂

∂s
+ 0

∂

∂p
+ 0

∂

∂w
+ 0

∂

∂l
, (3.2.42)

where X(r) = X(p) = X(w) = X(l) = 0 and X(s) = 1.

From (3.2.42) we obtain the following invariance condition,

dr

0
=
ds

1
=
dp

0
=
dw

0
=
dl

0
=
dt

0
=
dx

−y
=
dy

x
=
du

0
=
dv

0
. (3.2.43)

Solve (3.2.43) by method of invariance and obtain the invariants,
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r = b1,

p = b2,

w = b3,

l = b4,

u = b5,

v = b6,
ds

1
=
dy

x
⇒ xs = y + b7,

t = b8,
dx

−y
=
dy

x
⇒ x2 + y2 = b9.

(3.2.44)

By choosing different combinations of the equations in (3.2.44) above we obtain,

b1 = b8 ⇒ r = t,

b2 = b5 ⇒ p = u,

b3 = b6 ⇒ w = v,

b7 = 0 ⇒ s =
y

x
,

b4 = b9 ⇒ l = x2 + y2.

The canonical coordinates are,

r = t, s =
y

x
, l = x2 + y2, p = u, w = v. (3.2.45)

where p = p(r, l) and w = w(r, l).

We use l = x2 + y2 from (3.2.45) to reduce (3.1.2) to a one-dimensional pde.
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The partial derivatives of (3.1.2) are recalculated with l = x2 +y2 and are presented

below,

ux = 2xul,

uxx = 4x2ull + 2ul,

uy = 2yul,

uyy = 4y2uyy + 2ul,

vx = 2xvl,

vxx = 4x2vll + 2vl,

vy = 2yvl,

vyy = 4y2vll + 2vl.

(3.2.46)

Substitute the partial derivatives in (3.2.46) into (3.1.2) and we obtain,

−vt = −2(lull + ul) + u(u2 + v2),

ut = −2(lvll + vl) + v(u2 + v2).
(3.2.47)

The Lagrangian of (3.2.47) can be computed and verified with the use of the Euler-

Lagrange equation in Chapter 1.

The Lagrangian is given as,

L = −1

2
vut +

1

2
uvt + lu2l + lv2l +

1

4
(u2 + v2)2. (3.2.48)

Using the Lagrangian in equation (3.2.48) above we will now construct a symmetry
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of (3.2.47) which is given below,

X3 = 2l∂l + 2t∂t − u∂u − v∂v. (3.2.49)

The multipliers and corresponding conserved vectors are given below,

(i) Q1 = vt and Q2 = ut.

T l = l (−utul − vtvl + uult + vvlt) ,

T t = 1
4

(u4 + 2u2v2 − 4u (ul + lull) + v (v3 − 4 (vl + lvll))) .

(ii) Q1 = u and Q2 = −v.

T l = 2l (vul − uvl) ,

T t = 1
2

(−u2 − v2) .

(iii) Q1 = lvl + tvt + 1
2
v and Q2 = 1

2
u+ lul + tut.

T l = 1
4
l (u4 + 2u2v2 + v4 − 4 (tutul + lu2l + tvtvl + lv2l ) + 2u (vt + 2tult)− 2v (ut − 2tvlt)) ,

T t = 1
4

(tu4 + 2tu2v2 − 2u (2tul + l (vl + 2tull)) + v (tv3 + 2lul − 4t (vl + lvll))) .
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(iv) Q1 = ltvl − 1
4
lu+ 1

2
tv + 1

2
t2vt and Q2 = 1

2
tu+ ltul + 1

4
lv + 1

2
t2ut.

T l = 1
4
l (tu4 + 2tu2v2 + tv4 − 2t (tutul + 2lul

2 + tvtvl + 2lvl
2) + 2u (tvt + lvl + t2ult))

+1
4
l (2v (−tut − lul + t2vlt)) ,

T t = 1
8

(t2u4 + u2 (l + 2t2v2)− 4tu (tul + l (vl + tull)) + v (lv + t2v3 − 4t (−lul + tvl + tlvll))) .

We choose to use multiplier and conserved vector combination (ii). Since the con-

served vector in (ii) was constructed from the symmetry (3.2.49) we may assume

that they are associated automatically so showing the calculation is not necessary.

Now we can proceed with the Double Reduction.

The canonical form of X3 in (3.2.49) is given below,

Y3 = 0
∂

∂f
+

∂

∂g
+ 0

∂

∂m
+ 0

∂

∂n
, (3.2.50)

where X(f) = X(m) = X(n) = 0 and X(g) = 1 and from which we obtain the

following invariance condition,

df

0
=
dg

1
=
dm

0
=
dn

0
=
dl

2l
=
dt

2t
=

du

−u
=

dv

−v
. (3.2.51)

Solve (3.2.50) by the method of invariance and we obtain,
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df

0
⇒ f = b1,

dg

1
=
dt

2t
⇒ g = 1

2
ln t+ b2,

dm

0
⇒ m = b3,

dn

0
⇒ n = b4,

dt

2t
=
dl

2l
⇒ ln t = ln l + ln b5 ⇒ t = l b5,

du

−u
=
dv

v
⇒ lnu = ln v + b6 ⇒ u = v b6,

dl

2l
=

du

−u
⇒ 1

2
ln l = − lnu+ b7 ⇒

√
l =

b7
u
.

(3.2.52)

By choosing different combinations of the equations in (3.2.52) we obtain,

b1 = b5 ⇒ f =
t

l
,

b3 = b6 ⇒ m =
u

v
,

b4 = b7 ⇒ n =
√
l u,

b2 = 0 ⇒ g = ln(
√
t).

(3.2.53)

So the canonical coordinates are,
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f =
t

l
, g = ln(

√
t), m =

u

v
, n =

√
l u, (3.2.54)

where n = n(f) and m = m(f).

The inverse canonical coordinates are presented below,

t = e2g, l =
e2g

f
, u =

n
√
f

eg
, v =

n
√
f

meg
. (3.2.55)

Using the inverse canonical coordinates in (3.2.55) we compute A and (A−1)T below,

A =

 Df l Df t

Dgl Dgt

 =

 −
e2g

f 2
0

2e2g

f
2e2g

 , (3.2.56)

(A−1)T =

 − f
2

e2g
f

e2g

0
1

2e2g

 (3.2.57)

and J = det(A) = −2e4g

f 2
.

The partial derivatives of u and v in terms of the new independent variables g and

f are,

45



ul =
−2nff

5
2 − nf 3

2

2e3g
,

ull =
4nfff

9
2 + 12nff

7
2 + 3nf

5
2

4e5g
,

ut =
nff

3
2

e3g
.

(3.2.58)

vl = −2nff
5
2 + nf

3
2

2me3g
+

2mfnf
5
2

2m2e3g
,

vll =
2nfff

9
2 + 6nff

7
2 + 3nf

5
2

2me5g
− 2nmff

7
2 + nmfff

9
2

m2e5g
+

2m2
fnf

9
2

m3e5g
,

vt =
nff

3
2

me3g
− nmff

3
2

m2e3g
.

(3.2.59)

The reduced conserved form from Theorem 1.0.4 in Chapter1 is given below, T f2

T g2

 = J(A−1)T

 T l2

T t2

 . (3.2.60)

Therefore,

 T f2

T g2

 = −2e4g

f 2

 − f
2

e2g
f

e2g

0
1

2e2g




2e2g

f

[
−2nnff

3 − n2f 2

2me4g
+

2nmnff
3 + n2mf 2 − 2n2mff

3

2m2e4g

]
1

2

(
−n

2f

e2g
− n2f

m2e2g

)
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=


n2 +

n2

m2
− 4n2mff

2

m2

n2

2f
+

n2

2fm2

 (3.2.61)

where the conserved form is also given by DfT
f = 0.

The second step of the double reduction is given as

n2m2 + n2 − 4n2mff
2

m2
= K2, (3.2.62)

where K2 ∈ R.

Let K2 = 0, we will now simplify (3.2.62) which is represented below,

m2 + 1− 4f 2mf = 0. (3.2.63)

Equation (3.2.63) above is an ode, so we can proceed and solve for m,

4f 2mf = m2 + 1,

dy

m2 + 1
=

df

4f 2
,
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arctan(m) = − 4

f
+ α.

Then the solution of m is given below,

m = tan

(
α− 4

f

)
, (3.2.64)

where α is an integration constant.

The second equation of (1.0.17) from Theorem 1.0.4 in Chapter 1 is stated below,

Q1(de
1)−Q2(de

2) = 0,

which can be written as

−v[vt − 2(lull + ul) + u(u2 + v2)]− u[−ut − 2(lvll + vl) + v(u2 + v2)] = 0. (3.2.65)

In this case Q1 = −v and Q2 = u.

Substituting in the relevant entries from (3.2.55) and (3.2.58) into (3.2.65) above we

obtain,

−n
√
f

meg

[
−4nfff

7
2 − 12nff

5
2 − 3nf

3
2 + 4nff

5
2 + 2nf

3
2 + 2n3f

3
2

2e3g
+
nff

3
2

me3g
+
n3f

3
2 − nmff

3
2

m2e3g

]

−n
√
f

eg

[
−nff

3
2

e3g
+

2nff
5
2 + nf

3
2 + n3f

3
2 − 2nfff

7
2 − 6nff

5
2 − 3nf

3
2

me3g

]
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−n
√
f

eg

[
4nmff

5
2 + 2nmfff

7
2 − 2nmff

5
2

m2e3g
+
n3f

3
2 − 4nm2

ff
7
2

m3e3g

]
= 0

which implies that,

nmn
ff

2 + 8nm2nfff
4 + 16nm2nff

3 − 4n4m2f 2 + 5n2m2f 2 − 2n2mmfff
4

m3

+
4n2m2

ff
4 + n2mff

2 − 2n2mmff
3 − nmnff 2 − 2n4f 2

m3
= 0. (3.2.66)

Substitute (3.2.64), the solution of m, into (3.2.66), to solve for n, which would

yield a 2nd order differential equation. Thereafter we proceed to solve for u and v

by substituting the canonical and inverse canonical coordinates.
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3.3 Concluding Remarks

In this chapter we have used the double reduction method of solving multidimen-

sional equations to find a suitable solution for equation (3.1.1).

The level of difficulty has increased quite substantially with the introduction of a

second dependent variable, v. A lot of manipulation was required to finally come

out with a suitable solution for equation (3.1.1).

In Case 1 the symmetries and conserved vectors were computed and their associa-

tion was tested and it resulted in the null vector, thusdeeeming X1 and T 1 to be

associated. Therefore, we could continue to solve equation (3.1.1) using the double

reduction method. We were able to reduce the Schrödinger equation to a special case

of the famous Klein-Gordon equation due to our choice of trigonometric canonical

coordinates. Thereafter, we used the lagrangian to reduce (3.2.29), through some

more workings we were finally able to deduce a solution for (3.1.1).

In Case 2, the computation was rendered more complex with our choice of a rota-

tional canonical coordinate l in (3.2.45). We were able to calculate the symmetry in

(3.2.49) through the use of the lagrangian which gave rise to three sets of multipli-

ers and conserved vectors, we then went through the steps of the double reduction

method and we were able find a solution which was actually a very complex differ-

ential equation. through some careful substitution a final solution in terms of u and

v can be deduced.
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Chapter 4

Conclusion

In this dissertation, we dealt with the construction of solutions of the Benney-Luke

and nonlinear Schrödinger equations using the Double Reduction method. This

method was previously used on one-dimensional equations . To investigate further

we extended the number of independent variables from just two, namely (x, t), to

three independent variables those being (x, y, t), i.e a two-dimensional equation. We

were able to reduce some of our equations into special cases of some famous differ-

ential equations.

First we had to compute the symmetries, conservation laws and multipliers for

each equation through the approaches mentioned in Chapter 1. When using these

methods we would get more than one of each of these components above, so we

would have to choose one that would be more convenient to us. We then continued

to use the double reduction method to find the solutions.
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In Chapter 2, the Benney-Luke equation was investigated. The double reduction

method was used and we were able to reduce our equation into the form of a simple

harmonic operator.

Chapter 3 was divided into two cases, in the first case the following symmetry

was used; X1 = ∂t + k(u∂v − v∂u). We were able to reduce our equation in this

case into a special case of the famous Klein-Gordon equation which made further

computation of the equations trivial. In the second case the following symmetry

was used; X2 = −y∂x + x∂y and were able to get a complex equation in terms of n

and m.

52



Bibliography

[1] K. Abedi, V. Ahmadi, S. Gholmohammadi, E. Darabi and M.H. Yavari, Soliton

solution of nonlinear Schrödinger equation with applications to Bose-Einstein

condensation using the FD method, Unpublished paper

[2] J. Belmonte-Beitia and P.J. Torres, Existence of dark soliton solutions of the

cubic nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity,

Journal of Nonlinear Mathematical Physics, Volume 15, Supplement 3 (2008),

65-72.

[3] J. Bellazzini, V. Benci, C. Bonanno and A.M. Micheletti, Solitions for the non-

linear Klein-Gordon equation, http://arixiv.org/pde/0712.1103v1.pff.

[4] A. Biswas, P. Masemola, R. Morris and A.H. Kara, On the invariances,

conservation laws and conserved quantities of the damped-driven nonlinear

Schrödinger equation, Can.J.Phys 90 199-206 (2012).

[5] A.H. Bokhari, A.Y. Al-Dweik, A.H. Kara , F.M. Mahomed and F.D. Zaman,

Double reduction of the nonlinear (2+1) wave equation via conservation laws,

Commun Nonlinear Sci Numer Simulat 16 (2011) 1244-1253.

53



[6] P.G. Drazin and R.S. Johnson, Solitons: An introduction, Cambridge University

Press, (1989) pp89
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