

American Option Pricing Using Computational Intelligence

Methods

Michael Maio Pires

A research report submitted to the Faculty of Engineering and the Built Environment, of University of the
Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science in Engineering.

Johannesburg, April 2005

 i

Declaration

I declare that this is my own, unaided work, except where otherwise acknowledged. It is being submitted for the degree of
Master of Science in Engineering at the University of the Witwatersrand, Johannesburg, South Africa. It has not been submit-
ted before for any degree or examination at any other university.

Signed this __________ day of ______________________________ 2005

Michael Maio Pires

 ii

Summary

An option is the right to buy or sell an underlying asset at a future date by fixing the price now. The field of option pricing pro-
duces a challenge because of the complexity with pricing American styled options which cannot be done by the Black-Scholes
equations. Neural Networks and Machine Learning techniques are predictors based on past data and it is intuitive to believe
that they can model American options as they are non-linear instruments. Call option data on the South African All Share In-
dex (ALSI) was used for testing of the techniques. These two different techniques were compared. What was also done was the
comparison of Bayesian techniques applied to both the techniques. What this provided was confidence levels for the predic-
tions. The investigations showed that Machine Learning techniques out-performed Neural Networks. The investigations also
showed that there is scope for work to be done to improve the model.

 iii

Acknowledgements

I wish to thank the following person for his contributions to this project:

Prof. Tshilidzi Marwala, School of Electrical and information Engineering, University of the Witwatersrand. For his guidance

through the process, for his insight into computational intelligence and for his recommendations on the publications for the

conferences attended and the Journal submitted to.

I would also like to thank the National Research Foundation (NRF) for their financial support throughout the coding and writ-
ing up of the research.

 iv

Foreword

This dissertation is presented to the University of the Witwatersrand, Johannesburg, South Africa for the degree of Master of
Science in Engineering.

The dissertation is entitled “American Option Pricing Using Computational Intelligence Methods.” It is comprised of three
Sections (all of which were written as papers for submissions to conferences and journals), “American Option pricing Using
Multi-Layer Perceptron and Support Vector Machine”, “American Option Pricing Using Bayesian Multi-Layer Perceptrons
and Bayesian Support Vector Machines” and “Computational Intelligence Methods for American Option Pricing”. The first
paper was presented at the IEEE International Conference on Systems, Man and Cybernetics in 2004 at the Hague in the Neth-
erlands, the second paper has been presented at the IEEE 3

rd
 International Conference on Computational Cybernetics in 2005

in Mauritius and the third paper has been submitted to the Journal of Derivatives (a financial journal) for a journal publication.

The first two papers present two different topics and the third paper consolidates the first two topics and also delves into the
implications of the results from a financial point of view.

This document complies with the university’s so-called “paper model” format. The Appendices provide some financial back-
ground as well as an additional paper that was written for a conference. This fourth paper is included for the purposes of refer-
ence when consolidating results for all Bayesian techniques that were attempted with Neural Networks. There is also an Ap-
pendix explaining the software written which is on the attached CD.

Appendix A is a background Section on options and how they can be used to hedge against financial risk.

Appendix B is a paper written for the Fifteenth Annual Symposium of the Pattern Recognition Association of South Africa and
is entitled “Option Pricing Using Bayesian Neural Networks”. It was presented at this conference between the 25th and 26th of
November 2004 in Cape Town, South Africa.

Appendix C introduces the files written for all the implementations, the result files that were obtained and code that was written
to sort the data obtained into the form required. These are all stored on the attached CD. Included on the CD are the NETLAB
and SVM toolboxes used with MATLAB® and the raw data obtained off the South African Futures Exchange (SAFEX) web-
site.

 v

Table of Contents

DECLARATION ..I

SUMMARY... II

ACKNOWLEDGEMENTS ..III

FOREWORD ...IV

TABLE OF CONTENTS ... V

LIST OF FIGURES... VII

LIST OF TABLES..VIII

CHAPTER 1: INTRODUCTION... 1

REFERENCES .. 2

CHAPTER 2: AMERICAN OPTION PRICING USING MULTI-LAYER PERCEPTRON AND SUPPORT VECTOR

MACHINE.. 3

I. INTRODUCTION... 3
II. COMPUTATIONAL INTELLIGENCE METHODS .. 3

A. The Multi-Layer Perceptron .. 3
B. Support Vector Machines... 4

III. IMPLEMENTATION AND RESULTS... 5
A. The Multi-Layer Perceptron .. 5
B. Support Vector Machines... 6

IV. COMPARISON OF MLP AND SVM.. 7
V. CONCLUSION .. 7
REFERENCES .. 7

CHAPTER 3: AMERICAN OPTION PRICING USING BAYESIAN MULTI-LAYER PERCEPTRONS AND

BAYESIAN SUPPORT VECTOR MACHINES .. 9

I. INTRODUCTION... 9
II. COMPUTATIONAL INTELLIGENCE METHODS .. 10

A. The Multi-Layer Perceptron .. 10
B. Support Vector Machines... 10

III. BAYESIAN TECHNIQUES .. 10
A. Bayesian Techniques for Neural Networks .. 10
B. Bayesian Techniques for Support Vector Machines .. 11
C. The Metropolis-Hastings Algorithm .. 11

IV. IMPLEMENTATION AND RESULTS... 12
A. Bayesian Neural Networks... 12
B. Bayesian Support Vector Machines ... 13

V. COMPARISON OF BAYESIAN TECHNIQUES AND STAND-ARD COMPUTATIONAL INTELLIGENCE METHODS 13
VI. CONCLUSION ... 14
VII. ACKNOWLEDGEMENT .. 14
REFERENCES .. 14

CHAPTER 4: COMPUTATIONAL INTELLIGENCE METHODS FOR AMERICAN OPTION PRICING................ 15

I. INTRODUCTION... 15
II. PREVIOUS ATTEMPTS AT OPTION PRICING WITH PREDICTIVE TOOLS ... 15
III. THE BLACK-SCHOLES MODEL... 16
IV. COMPUTATIONAL INTELLIGENCE METHODS.. 16

A. The Multi-Layer Perceptron .. 16
B. Support Vector Machines... 17

V. BAYESIAN TECHNIQUES ... 18
A. Bayesian Techniques for Multi-Layer Perceptrons ... 18
B. Bayesian Techniques for Support Vector Machines .. 19
C. The Metropolis-Hastings Algorithm .. 19
D. The Confidence Levels Provided by Bayesian Inference... 20

VI. IMPLEMENTATION AND RESULTS... 20
A. The Multi-Layer Perceptron .. 20
B. Support Vector Machines... 21
C. Bayesian Multi-Layer Perceptrons.. 22

 vi

D. Bayesian Support Vector Machines... 23
VII. RECOMMENDATIONS ... 24
VIII. CONCLUSION ... 24
IX. ACKNOWLEDGEMENTS .. 25
REFERENCES .. 25

CHAPTER 5: CONCLUSION AND FURTHER WORK.. 26

REFERENCES .. 27

APPENDIX A: ... 28

HEDGING WITH OPTIONS AND OTHER CONTRACTS .. 28

I. INTRODUCTION... 28
II. FORWARDS, FUTURES AND OPTIONS .. 29

A. Forwards and Futures ... 29
B. Options... 29
C. Caps and Floors .. 30

III. CONCLUSION ... 31
REFERENCES .. 31

APPENDIX B:.. 32

PAPER FOR FIFTEENTH ANNUAL SYMPOSIUM OF THE PATTERN RECOGNITION ASSOCIATION OF SOUTH

AFRICA .. 32

OPTION PRICING USING BAYESIAN NEURAL NETWORKS .. 32

I. INTRODUCTION... 32
II. BAYESIAN NEURAL NETWORKS ... 32

A. Bayesian Techniques.. 32
B. Automatic Relevance Determination ... 33
C. Hybrid Monte Carlo Method ... 33

III. RESULTS OF BAYESIAN NEURAL NETWORKS .. 34
A. Automatic Relevance Determination Approach... 34
B. Monte Carlo Approach .. 35

IV. COMPARISON OF BAYESIAN TECHNIQUES WITH STANDARD MULTI-LAYER PERCEPTRONS AND SUPPORT VECTOR

MACHINES ... 36
V. CONCLUSION .. 36
REFERENCES .. 36

APPENDIX C: ... 37

SOFTWARE CODE, TOOLBOXES, DATA AND OUTPUT FILES .. 37

I. SOFTWARE CODE, TOOLBOXES AND DATA.. 37
A. Arranging the Raw Data.. 37
B. The Multi-Layer Perceptron .. 38
C. Support Vector Machines .. 39
D. Bayesian Multi-Layer Perceptrons.. 39
E. Bayesian Support Vector Machines ... 40

II. TEST OUTPUT FILES ... 40
A. The Multi-Layer Perceptron .. 40
B. Support Vector Machines... 40
C. Bayesian Multi-Layer Perceptrons.. 40
D. Bayesian Support Vector Machines... 41

III. CONCLUSION ... 41
REFERENCES .. 41

 vii

List of Figures

Figure 1: Architecture of the Multi-Layer Perceptron. ... 4
Figure 2: Linear SVM regression for a set of data (left) and the ε-insensitive loss function (right) [8]. 5
Figure 3: Outputs of the MLP NN and the actual target values used in the testing. ... 6
Figure 4: Outputs of the SVM and the actual target values used in the testing... 7
Figure 5: Interest Rates in South Africa .. 16
Figure 6: Two-Layer Architecture of the Multi-Layer Perceptron.. 17
Figure 7: Linear SVM Regression for a Set of Data (left) and the ε-insensitive Loss Function [17]. ... 18
Figure 8: Plots of Actual and Prediction Values for the MLP Trained ... 21
Figure 9: Plots of Actual and Prediction Values for the Best SVM Trained ... 22
Figure 10: Bounds, Predictions and Actual Values for Bayesian MLP’s.. 23
Figure 11: Bounds, Predictions and Actual Values for Bayesian SVM’s .. 24
Figure 12: Risk Profile for Commodity Price Change .. 28
Figure 13: Risk Profile for Rate Change ... 28
Figure 14: Hedged and Payoff Profile for Commodity Risk.. 29
Figure 15: Hedged and Payoff Profile for Rate Risk... 29
Figure 16: Hedged and Payoff Profiles for Options for Commodity Price Risk ... 30
Figure 17: Hedged and Payoff Profiles for Options for Rate Risk .. 30
Figure 18: Bayesian NN with ARD results. ... 35
Figure 19: Bayesian NN with HMC results. .. 35
Figure 20: Program Written to Sort the Raw Data ... 38

 viii

List of Tables

Table 1: MLP Results .. 5
Table 2: SVM Results... 6
Table 3: Bayesian Neural Networks Results.. 13
Table 4: Results of Bayesian Support Vector Machines .. 13
Table 5: Best MLP Parameters.. 21
Table 6: Best MLP Results... 21
Table 7: Best SVM Parameters.. 22
Table 8: Best SVM Results... 22
Table 9: Bayesian MLP Parameters.. 23
Table 10: Best Bayesian MLP Results ... 23
Table 11: Best Bayesian SVM Parameters .. 23
Table 12: Best Bayesian SVM Results ... 24
Table 13: ARD NN Results .. 34
Table 14: HMC NN Results ... 35
Table 15: Headings for SAFEX Option Data files... 37

 1

Chapter 1: Introduction

An option is a financial derivative of another financial security such as, a stock, an interest rate, a commodity or an exchange
rate. Either one of these four securities can be the underlying asset of an option. That is why options are known as derivatives
because they are derived from other financial securities [1]. An option gives the owner of the option the right, not the obliga-
tion, to buy or sell the underlying asset at a later date (known as the maturity date) but by agreeing on a price for the asset now
(known as the strike price). Options are very valuable and to have this right, of buy or sell, people have to pay a premium
known as the price of the option. If someone wishes to purchase the underlying asset then the option is known as a call option
and if he/she wishes to sell the underlying asset then this is known as a put option [2].

Options are used on a daily basis by large firms to hedge their financial risk and maybe save millions of rands. For example,
consider a firm with a large amount of long-term debt. This company’s financial risk is governed by the interest rate that the
bank charges the firm and in most cases this interest rate is governed by the prime rate. This prime rate changes according to
the financial policy of the Reserve Bank of South Africa and so if the interest rate increases then the firm will have to pay more
money in interest rate payments. What if the interest rate keeps climbing? The company will then carry on paying more and
more in interest payments. A firm can generally use an option to protect itself by purchasing a call option and thus giving the
firm the option of a lower interest rate. This also allows the company to not exercise the option if the interest rate drops below
current levels and thus allows the company to enjoy the benefits of the favourable situation in the market. This process is
known as hedging and makes options very valuable and thus companies have to pay a premium known as the price of the op-
tion. There are other financial instruments that can be used for hedging. These are forwards and futures [1].

There are two classes of options. There are European and American options. European options only allow the owner to exer-
cise them on the expiry date of the contract (the maturity date). American options allow the owners to exercise the option on
any date between accepting the contract and the expiry date of the contract. This makes American options much more valuable
and also this introduces a second random process into the model. The second random process comes about because it is not
known when it will be optimal to exercise the option [3].

In 1973, Fischer Black, Myron Scholes and Robert Merton formulated what is known as the Black-Scholes model for option
pricing. The paper launched the field of financial engineering and provided the original option pricing formula. The model has
one inherent assumption: it only holds for European options for dividend paying assets [4]. However, it did bring several in-
sights. Most importantly, it allowed people to see what it is that influences option prices and it is assumed in this work that the
same factors would influence American options. These factors are: price of the underlying asset at time zero, the option’s strike
price, the time to maturity from when the option is purchased, the volatility of the underlying asset and the continuously com-
pounded risk-free rate of interest [2]. The risk-free rate of interest is the return that investors can expect risk-free and is usually
denoted by the rate offered by government bonds. What was significant about the factors extracted is that the expected return
of the underlying asset does not affect the option’s price and this lead to the useful result known as risk-neutral valuation [2].
With these factors in mind, the model provided specific equations to price European put and call options. The Black-Scholes
model also provided a means of estimating the underlying asset’s volatility which can be estimated using the Black-Scholes
equations. Significantly the Black-Scholes model laid the foundation for future work and this was shown as now the model has
been extended for dividend paying assets [2]. Most importantly the model provided the first accurate options pricing formula
and made a huge influence on the way that traders price and hedge options all over the world even today. Option pricing fac-
tors and hedging theory are explained in more detail in Appendix A. American options are what are used mostly by traders in
South Africa and there is no standard for pricing them. In fact many traders use the Black-Scholes model together with a sam-
pling process (again showing the significance of the Black-Scholes model). This means that different options traders will pro-
vide different prices and this makes the price of American options susceptible to market forces.

Computational Intelligence has been used recently in many fields and is principally used in any field where there is a degree of
prediction required. For example, in an automated control environment, a controller may be required to perform some control
by knowing what may happen in the future and then controlling that, based on what is known. This is known as predictive con-
trol. It has been used extensively in pattern recognition especially in the imaging sector [5]. It has also been used extensively to
predict human behaviour such as predicting interstate conflict [6]. Computational Intelligence methods have a good ability to
model non-linear data and it has been stated by Hornick et. al. that neural networks are universal approximators under certain
conditions [7]. Computational Intelligence methods comprise machine learning techniques such as neural networks and other
machine learning techniques such as Support Vector Machines. Both techniques predict the future based on the past data that
they are fed and are thus able to make predictions based on past patterns.

What is proposed here is to use various computational intelligence methods in options pricing. This is a financial field that has
drawn much interest especially since pricing options can be very difficult given their nature and the fact that the data is very
non-linear and the fact that American options are susceptible to market forces and are not easily priced. Chapter 2 introduces
two computational intelligence methods used to price options (namely the Multi-Layer Perceptron and Support Vector Ma-
chines) and shows the results obtained. Chapter 3 introduces the Bayesian framework and its application to both the techniques
introduced in Chapter 2. Chapter 4 rounds up all the findings of the various techniques as well as the Bayesian framework and
also introduces the usefulness and advantages of the Bayesian framework. Chapters 2, 3 and 4 are written in paper format and

 2

have their own reference lists. Chapter 5 concludes with the techniques that showed the best results in terms of error analysis
and time to train the techniques. Appendix A provides some background for options and how they are used. Appendix B pro-
vides another paper that was written and presented and is included as a means of reference for Chapter 3. Appendix C provides
an explanation of the software written and how it can be used to produce the results obtained. From this thesis the following
papers were published or submitted for publication:

1. M. M. Pires and T. Marwala, “American Option Pricing Using Multi-Layer Perceptron and Support Vector Machine”,

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, October 10-13 2004, Amsterdam,
Netherlands, pp. 1279-1285.

2. M. M. Pires and T. Marwala, “American Option Pricing Using Bayesian Multi-Layer Perceptrons and Bayesian Support
Vector Machines”, Proceedings of the IEEE 3

rd
 International Conference on Computational Cybernetics, April 13-16

2005, Hotel Le Victoria, Mauritius, pp. 219-224.
3. M. M. Pires and T. Marwala, “American Option Pricing Using Bayesian Neural Networks”, Proceedings of the Fifteenth

Annual Symposium of the Pattern Recognition Association of South Africa, November 25-26 2004, Cape Town, South
Africa, pp. 161-166.

4. M. M. Pires and T. Marwala, “Computational Intelligence Methods for American Option Pricing”, Journal of Deriva-

tives, submitted December 2004.

REFERENCES

[1] S. Ross, R. W. Westerfield, B. D. Jordan and C. Firer, Fundamentals of Corporate Finance 2nd South African Edition, McGraw-Hill

Book Company, Sydney, Australia: 2001.
[2] J. C. Hull, Options, Futures and Other Derivatives, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.: 2003.
[3] R. A. Jarrow and S. M. Turnbull, Derivative Securities 2nd Edition, South-Western College Publishing, U.S.A.: 2000.
[4] F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, vol. 81, 1973, pp. 637-

659.
[5] B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press, 1996.
[6] T. Marwala and M. Lagazio, “Modelling and Controlling Interstate Conflict”, IEEE International Joint Conference on Neural Net-

works, July 25-29 2004, Budapest, Hungary, pp. 1233-1238.
[7] K. M. Hornick, M. Sticnhcombe and H. White, “Multilayer Feedforward Networks are Universal Approximators”, Neural Networks,

Vol. 2, No. 5, 1999, pp. 359-366.

 3

Chapter 2: American Option Pricing Using Multi-Layer Percep-

tron and Support Vector Machine

M. M. PIRES
School of Electrical and Information Engineering

University of the Witwatersrand, Johannesburg, South Africa
m.pires@ee.wits.ac.za

Abstract – An option is the right to buy or sell an underlying

asset at a future date. The field of option pricing produces a

challenge because of the complexity with pricing American

styled options which cannot be done by the Black-Scholes equa-

tions for option pricing. A Multi-Layer Perceptron neural net-

work has been used before to price these options with limited

success. In this paper we will compare the performance of a

Multi-Layer Perceptron neural network and a Support Vector

Machine in pricing American styled options. It was found that a

Support Vector Machine approach provided much better results

than that found with Multi-Layer Perceptrons.

I. INTRODUCTION

This paper deals with the application of a Multi-Layer Per-
ceptron (MLP) neural network and a Support Vector Machine
(SVM), trained using the maximum likelihood approach, for
pricing an American styled option.

Firstly what needs to be dealt with is what an option is. An
option is the right to buy or sell some underlying asset at a
later date (known as the maturity date) by fixing the price of
the asset now [5]. If the person is given the right to sell the
asset then the option is known as a put option and if the per-
son is given the right to buy the asset then the option is
known as a call option [5]. Thus a person can make or lose
money but that is the risk taken. To be able to have this op-
tion, the person must pay a fee and the price of the actual op-
tion is something that is not easily obtained. Black et. al. [1]
made a breakthrough in the options pricing field and estab-
lished what is known as the Black-Scholes model for option
pricing. They formulated the option price but certain assump-
tions were made, the most important of which is that the pric-
ing only holds for European styled options [5]. A European
option only allows the person to buy or sell the underlying
asset at the maturity date of the contract. An American option
allows the person to buy or sell the asset at any date up until
the maturity date [5]. Thus American options allow the buyer
or seller to have extra flexibility and thus are never worth less
than European options [7]. Because the date that may be cho-
sen to exercise the option, by the buyer or seller, is com-
pletely random, this introduces a second random process and
thus makes the pricing of American options difficult [5].

So what is proposed here is to compare the use of Multi-
Layer Perceptron neural network and Support Vector Ma-
chine approach to pricing American styled options. These
methods are formulated in the maximum likelihood frame-
work.

An MLP is a type of neural network (NN). Neural networks
are a form of prediction tools based on the trends that have
occurred in the past. For supervised learning the outputs of
the neural network are predicted from the inputs. The inputs

are chosen as variables that affect the outputs and this is con-
ducted by understanding the real world interrelationships. An
SVM is a machine learning technique that maps certain inputs
to outputs with the use of a function and its inputs and outputs
can be chosen to be the same as those for an MLP. The nature
of an MLP and an SVM make them useful for research in
pricing options because options rely on certain parameters
that influence their price.

Comparisons between SVM’s and MLP’s have been made in
other fields. One example is an application to financial fore-
casting [13]. The finding was that SVM provided a robust
technique for function approximation and results were more
promising than those found by Radial Basis Function (RBF)
and MLP networks [13]. Another comparison was made be-
tween MLP and SVM in Glaucoma diagnosis [3]. It was
found in this case that both SVM and MLP techniques gave
an improvement over traditional methods used to diagnose
Glaucoma.

Neural Networks have been used many times before in the
pricing of options. Hutchinson, et. al. [6] were one of the first
people to attempt the use of NN’s with options pricing but it
was attempted for European options only and it was found
that the prices predicted by the Black-Scholes equations could
be recovered with daily data going back two years. The model
types used were multi-layer perceptrons, radial basis func-
tions, projection pursuit and ordinary least squares. Morelli,
et. al. [11] also attempted pricing with NN’s and in particular
MLP’s and RBF’s. They tried pricing European and Ameri-
can styled options but only published there findings for the
European styled options thus indicating that their findings for
the American styled options were not as promising as hoped.
Kelly [10] attempted valuing American put options through
NN’s as well but the accuracy found was to be proportional to
the actual option price and it was found that there were errors
as high as 60% (which occurred at higher price values) but
the results were reported to be better than certain other mod-
els used [10]. Kelly did conclude that the NN approach was
able to approximate an American put option price. The pur-
pose of this work is to see if SVM can outperform MLP and if
so then it can be further researched for pricing American
styled options. It is conceivable to use SVM’s given their
success in other fields and the fact that they have not been
extensively used in the options pricing field.

II. COMPUTATIONAL INTELLIGENCE METHODS

A. The Multi-Layer Perceptron

MLP is the most widely used architecture for neural net-
works. In this paper a NETLAB toolbox that runs in MAT-
LAB® was used to implement the MLP neural network [12].

 4

In this paper two layers with full connectivity between hidden
units and inputs, and between hidden units and outputs [12]
were used. For the particular application, a network with three
inputs and one output was constructed as can be viewed in
Figure 1.

Input Nodes
Hidden
Nodes

Output Node

x0

x2

x1 y0

zn

z1

z0

.

.

.

.

Figure 1: Architecture of the Multi-Layer Perceptron.

As can be seen in Figure 1, the number of hidden nodes is
unknown and a few different amounts of hidden nodes were
tried. For the first layer of the network we have activation
parameters and bias variables (aj

(1) and bj
(1) respectively) as-

sociated with each hidden node. Each line (joining to different
nodes) in Figure 1 has a weight associated with it (wji

(1)) and
so we have:

∑
=

+=
3

1

)1()1()1(

i

jijij bxwa (1)

where j is the number of hidden units (n from Figure 1) and i
is the number of input units. Data is fed into the network in
terms of training inputs and training outputs. The activation
parameters are then transformed by the non-linear activation
functions of the hidden layer. There are many activation func-
tions that can be used and in this study the hyperbolic tangent
function is used for the hidden layer. The outputs of the hid-
den units (zj) can thus be written as follows:

)tanh(
)1(

j
az j = (2)

The zj are then transformed by the second layer of weights
(wkj

(2)) and biases (bk
(2)) to give the second layer activation

functions (ak
(2))

∑
=

+=
M

j

kjkjk bzwa
1

)2()2()2(
 (3)

where k is the number of output nodes (in this case k = 1).
The second layer activation functions are then transformed
through a linear function into the output and thus the output
is:

)2(

kk ay =
 (4).

The weights at each layer are chosen using some optimisation
method. The error function between the output predicted by

the neural network and the target vector is constructed as fol-
lows:

∑∑
= =

−=
1

1 1

2

arg,)(
k

N

g

ettkkg yyE (5)

where E is the error to be minimized and N is the number of
sets of training data given. The sets of outputs ykg are the out-
puts predicted by the network given the training inputs and
yk,target are the training outputs. The weights at each layer are
changed until the error shown in equation (5) is as low as
possible. Several optimisation techniques such as the conju-
gate gradient method, the scaled conjugate gradient method,
the Quasi-Newton method and the gradient descent method
may be used to minimize equation (5) [12]. Each of these
methods was tried and the results of each network with differ-
ent optimisation techniques were analysed.

B. Support Vector Machines

The basic idea behind support vector regression is to map the
input space to an output space. Suppose we have the training
data set with one input and one output being considered:

{(x1,y1),…,(xl,,yl)} ℜ⊂ xχ , where χ is the space of

the input parameters and ℜ denotes the real number set. We

wish to find a function f(x) that will map the training inputs to
the training outputs. In Support Vector (SV) regression we
wish to find this function that has at most ε deviation from the
actual training targets yl. We can fit several kinds of functions
f(x) to map training inputs to training outputs. These functions
are known as kernel functions but these cannot just be any
functions, kernel functions have to adhere to some criteria [8].
For the purposes of explanation we will consider a linear ker-
nel function

ℜ∈∈+= bwwithbxwxf ,,)(χ (6)

where .,. denotes the dot product.

We seek to find small values for w and one way to do this is
to minimize the Euclidean norm ||w||2 [8]. We then include
slack variables ξi, ξi

* so that certain infeasible constraints in
the minimization of the Euclidean norm can be used and the
minimization problem then becomes

)(Cw
2

1
imizemin

l

1i

*

ii

2

∑
=

++ ξξ









≥

+≤−+

+≤−−

0,

,

,

*

*

ii

iii

iii

ybxw

bxwy

tosubject

ξξ

ξε

ξε

 (7)

where l is the number of training points used. The constraints
above deal with an ε-insensitive loss function used to penalize
certain training points that are outside of the bound given by ε
which is a value chosen by the user. There are various other
loss functions such as the Huber loss function which can also
be used but the most common is the ε-insensitive loss func-
tion [4]. The loss function is given by

 5





−

≤
=

eothererwis

if

εξ

εξ
ξ ε

||

||0
|| (8).

The value for C in equation (7) is used as the amount to
which deviations from ε is tolerated [13]. It can be seen as a
measure of over fitting a function too well to its training
points. If the value of C is set too high then the function
found (f(x)) will be too well fitted to the training data and will
not predict very well on data that isn’t seen by the training of
the function. It means that points lying outside of the bounds
given by ε are not penalized enough and this results in the
function being too well fitted to the training points [2]. A
sketch of a linear function being fitted to training data can be
seen in Figure 2 with the bounds being shown.

Figure 2: Linear SVM regression for a set of data (left) and the

ε-insensitive loss function (right) [8].

The function on the right in Figure 2 is used to penalize those
points that lie outside of the bounds shown on the left. The
more a point lies outside of one of the bounds (either below or
above), the more the point is penalized and thus plays less of
a role in the determination of the function. Those points that
fall within the bounds of the function are not penalized at all
and their corresponding slack variable values (ξi, ξi

*) are
given zero and thus these points will play a major contribu-
tion in the determination of the function f(x).

The optimisation problem of equation (7) is then set up to be
a quadratic programming problem by first finding the La-
grangian multiplier and applying the Karush-Kuhn Tucker
(KKT) conditions [8]. Then the values for w and b can be
found so that the linear function to fit the training data of
equation (6) can be explicitly found. Note that this example
using the constrained optimisation problem of equation (7) is
for a linear kernel function and the constrained optimisation
problem of equation (7) is different for different kernel func-
tions.

III. IMPLEMENTATION AND RESULTS

A. The Multi-Layer Perceptron

Historical data was obtained from the JSE securities exchange
of South Africa [9]. Call, put and future option data were ob-
tained for the period January 2001 to December 2003. The
inputs used into the network were the stock volatility, the
time in days to maturity and the strike price for the option. All
these factors affect European option prices [5] and so it was
felt that these three parameters will also affect American
styled option prices. Therefore this is the justification for

these parameters being chosen as inputs to the NN remember-
ing that inputs to a NN have to be that which affect what is
trying to be predicted (see Section I). The average of the high
and low prices for the option was set as the output for the
network. It was decided to only consider the call option data
for a particular stock as there was much data available over
the three year period and not all of it was needed.

Certain parameters were changed during the training of the
MLP network so that the best results could be obtained. These
were: the number of training cycles (because if a network is
allowed to train for too long then the network may be over
trained and thus not predict outputs very well because the
network will be too tuned to the training data, at the same
time if too few cycles were used then the network may be
under trained), the number of hidden nodes (if too few nodes
or too many nodes are used then outputs are also affected
because the number of nodes is an indication of the network’s
ability to learn but if there are too many then the NN may not
learn too well) and the number of training data points used
(the more data used the better but if there is too much data
then training of the network can be very slow because of the
optimisation process). Different optimisation techniques can
also be used and the weight decay value can also be changed.

It was found that training a network with 400 data points was
suitable given that the number of inputs was only 3 (if more
training data was used then the training of the network
seemed to produce a high error due to the optimisation not
being able to handle a training set that is too big) and it was
found that 10 hidden nodes sufficed for the implementation. If
the number of hidden nodes was made too high then it pro-
duced quite high errors in the pricing. The number of training
cycles used (to produce the best results) was found to be 300.
The optimisation technique that produced the best results was
the Scaled Conjugate Gradient technique [12]. The other tech-
niques all required more iterations to obtain a network that
converged to a minimum in the error function and the worst
performing technique was the Gradient Descent method be-
cause it didn’t converge to a result and the outputs, given out
by the network trained, were not numbers at times. The
weight decay value was kept at 0.05 as the network was found
to perform the best with it at this value.

The results for the network trained using MLP can be seen in
Table 1. As can be seen from Table 1, the maximum error and
mean error parameters are quite high and may not be good
measures of performance and thus the last two parameters are
much more encouraging with 46% of the outputs having an
error of less than 10% and 25% of the outputs having an error
less than 5%. A plot of the targets and predicted values can be
seen in Figure 3 but for only 100 of the test points used.

Table 1: MLP Results

TP
Max
Error
(%)

Mean Error
(%)

Error less than
10%

Error less
than 5%

300 2585 52 139 76

TP = no. of test points used, Max Error = Maximum error between the actual
output and that predicted by the network in the TP point test set used, Mean
Error = average error of the size of the test set used (TP), Error less than 10%
= amount of outputs given by the network that fell within an error of 10%,
Error less than 5% = amount of outputs given by the network that fell within
an error of 5%.

 6

Figure 3 shows that the exact trends (i.e. if the target value
goes up then so does the predicted value) are followed and
that the maximum error (in terms of price) was R1409.00 or
$216.77 (at R6.50 to the U.S $). Compared to the actual price
of R54.50 for the option, this error is high (but the low price
for the option can be considered to be an outlier and thus the
actual price of the option may also be too low) but as can be
seen in Figure 3 the biggest errors occur at the peaks of the
plots otherwise the trends are followed almost exactly.

Figure 3: Outputs of the MLP NN and the actual target values

used in the testing.

It was also found that due to the initial values for the weights
of each layer and the initial values for the bias parameters for
each layer being chosen purely randomly, the algorithm to
train the network had to be run a few times with the same
parameters before the solution in Table 1 was found. Initially
the results were worse than that shown in Table 1 but once the
algorithm was run a few times the results were found to be
better.

B. Support Vector Machines

The same historical data was used as that for the MLP train-
ing. With regards to SVM there are different parameters that
can be changed namely the capacity and the e-insensitivity (ε,
see Section II.B), the amount of training inputs and the func-
tion to be used for the kernel.

It was found that due to the computational power needed by
the SVM network training, 400 points of data sufficed for the
network training otherwise it took too long to train the net-
work. At first a polynomial kernel of degree 2 was used with
1000 data points being used to train the data but this caused
the network to take 1 hour and 40 minutes to train (on a Pen-
tium 4 1.8GHz laptop with no other software running) and the
results were poorer than with only 400 training points used
(with the same values for capacity and ε being used with 400
and 1000 training points). At 500 training points, the time to
train the network was double that at 400 points and the results
were also poorer than at 400 points.

To find the most appropriate kernel function for this problem,
all the kernel functions with the same values for capacity and
ε were used and the best performing kernel function was cho-
sen.

As was stated in Section II.B, the value for capacity had to be
chosen carefully so as not to over-train or under train the
SVM. Various values for the capacity and for ε were experi-
mented with and the results for the different values can be
seen in Table 2.

Table 2: SVM Results

TP
Max
Error (%)

Me-
an
Error
(%)

Error
less
than
10%

Error
less
than
5%

C

ε

300 3353 61 135 80 1 0.1

300 1282 35.7 135 92 10 0.01

300 1152 34.4 138 94 10 0.005

300 1356 35 140 91 10 0.001

300 1339 34.9 141 93 10 0.0005

300 1540 38.16 137 92 15 0.01

300 1338 36.2 134 95 15 0.005

300 1518 36.4 133 93 15 0.001

300 1524 36.5 131 94 15 0.0005

300 1707 38.8 128 92 20 0.001

TP = no. of test points used, Max Error = Maximum error between the actual
output and that predicted by the network in the TP point test set used, Mean
Error = average error of the size of the test set used (TP), Error less than 10%
= amount of outputs given by the network that fell within an error of 10%,
Error less than 5% = amount of outputs given by the network that fell within
an error of 5%, C = capacity, ε = e-insensitivity.

From Table 2 there are many deductions that can be made:

1. With the capacity at 1, the network was under trained.
2. With the capacity at 20, the network was over trained.
3. The network performed the best with the capacity at 10.
4. If we consider the measure of ‘mean error’ (to measure

performance), then the e-insensitivity should be set to
0.005.

5. If we consider the number of predicted outputs that are
less than 10% and 5% (to measure performance) then the
value for the e-insensitivity should be 0.0005.

When the data was normalised, the results of Table 2 were
obtained. The data normalizing approach used may be repre-
sented as follows:

σ

µ−
=

data
data (9)

where data is the training data set to be normalized, µ is the
mean of the training data set and σ is the standard deviation of
the training data set. This is done for each input and output
data sets.

This normalizing approach was the same approach that was
used with the training of the MLP network. The average error
was found to be 34.4% at best with 400 training inputs. There
were significant improvements with the use of SVM’s over
MLP’s as will be discussed.

A plot of the SVM outputs against actual outputs (for the
third network in Table 2) can be seen in Figure 4. The plot

 7

shown in Figure 4 can show that the predictions obtained can
be quite impressive. These errors are clear from Table 2.

As can be seen form Figure 4 the trends of the actual prices
are followed accurately by the SVM.

Figure 4: Outputs of the SVM and the actual target values used

in the testing.

IV. COMPARISON OF MLP AND SVM

As can be seen from Table 1 and Table 2 the SVM network
out-performed the MLP network because the average error
was brought down to 34.4% with SVM and the number of
outputs predicted that were within 5% were more than the that
found with the best MLP network found. The maximum error
found by the SVM for the data set was also less than that
found by the MLP. The same test and training points were
used for both the MLP and the SVM. Therefore the SVM
outperformed the MLP even with the same data used. The
MLP network took only 5 seconds to train whereas all the
networks trained for SVM (from Table 2) took on average
about 6 minutes and 40 seconds. This is a small price to pay
for obtaining a better pricing model. Thus SVM is said to out-
perform MLP in the case of pricing stock options as has been
shown here.

As with MLP, the outputs predicted by the SVM network also
followed the exact trends of that of the actual outputs but at
times some of the peaks didn’t correspond and that is the rea-
son for there being an error at times.

To improve the performance of SVM, what can be done is to
use an optimisation technique to find the best possible values
for capacity (C) and ε-insensitivity (ε). Due to the computa-
tional time needed to find a solution using SVM, it might be
feasible to use less training points to find the best values for C
and ε and then try to use SVM with more training points. To
use optimisation methods with MLP (to find the best values
for the number of hidden nodes and possibly some other pa-
rameters) may cause a bit of a problem because the MLP has
to be trained a few times to give its best predictions given
certain parameters because of its random nature (as stated in
Section III.A). Therefore to use optimisation with MLP, some
means of training the NN a few times and then taking its best
prediction (for each set of parameters tried in the optimisa-
tion) will have to be devised thus making the problem more
complicated.

Given the fact that Kelly concluded that a NN approach was
successful in approximating American put options [10], it is
conceivable that SVM would approximate the put option
more accurately than the NN approach used by Kelly (if it
were used the same way as Kelly used the NN approach).
Therefore the results show that SVM can more accurately
price American styled options.

V. CONCLUSION

In conclusion it can be stated that SVM networks out-perform
MLP networks in the problem of American options pricing. If
more data could be incorporated with the training of the net-
work and then values for capacity and ε-insensitivity could be
found (by training more networks) then the results of the net-
work training would be more satisfactory. This can be very
computationally intensive and so a more computational power
may be needed. What can also be done is to use some optimi-
sation technique with SVM to optimise the values for capac-
ity and ε-insensitivity. This will be very computationally in-
tensive as well but will produce better results. Another sug-
gestion is to use more inputs in the training of an SVM. With
European options, other parameters that affect price are the
risk free rate of interest and the underlying asset price at the
outset of purchasing the option. These two could be added as
inputs to an SVM to try improve the results found but data for
this would also have to be found. If other parameters could
also be obtained (other than these extra two) that affect the
option’s price then these could also be incorporated as inputs
but studies would have to be done to find extra parameters
that affect American option prices.

REFERENCES

[1] F. Black, and M. Scholes, “The Pricing of Options and Cor-

porate Liabilities”, Journal of Political Economy, Vol 81, pp.
637-659, 1973.

[2] C. J. C. Burges. A Tutorial on Support Vector Machines for

Pattern Recognition, Kluwer Academic Publishers, Boston,
pp 1-43.

[3] K. Chan, T. Lee, P. A. Sample, M. H. Goldbaum, R. N.
Weinreb, and T. J. Sejnowski, “Comparison of Machine
Learning and Traditional Classifiers in Glaucoma Diagnosis”,
IEEE Transaction on Biomedical Engineering, Vol 49, No. 9,
pp. 963-974, Sep. 2002.

[4] S. R. Gunn, Support Vector Machines for Classification and

Regression. Faculty of Engineering, Science and Mathemat-
ics, School of Electronics and Computer Science, University
of Southampton, U.K., 1998.

[5] J. C. Hull, Options, Futures and Other Derivatives, 5th Edi-

tion. Prentice Hall, Upper Saddle River, New Jersey, U.S.A.,
2003.

[6] J. M. Hutchinson, A. W. Lo, and T. Poggio, “A Nonparamet-
ric Approach to Pricing and Hedging Derivative Securities
Via Learning Networks,” Journal of Finance, Vol 9, No. 3,
pp. 851-889, 1994.

[7] R. A. Jarrow, and S. M. Turnbull, Derivative Securities, 2nd

Edition. South-Western College Publishing, U.S.A, 2000.
[8] J. Joachims, “Making large-scale SVM learning practical” In

B. Scholkopf, C.J.C. Burges and A.J. Smola, editors, Ad-

vances in Kernel Methods-Support Vector Learning, pp. 169-
184, Cambridge, MA, 1999, MIT Press.

[9] South African Futures Exchange, Available:
http://www.safex.co.za.

[10] D. L. Kelly, “Valuing and Hedging American Put Options
Using Neural Networks,” Working Paper, Carnegie Mellon
University, PA, December 1994.

 8

[11] M. J. Morelli, G. Montagna, O. Nicrosini, M. Treccani, M.
Farina, and P. Amato, “Pricing Financial Derivatives with
Neural Networks,” Physica A: Statistical Mechanics and Its

Applications, 1 July 2004, Vol. 338, Issues 1-2, pp. 160-165.
[12] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition,

Springer-Verlag, London, Great Britain, 2003.

[13] T. B. Trafalis, and H. Ince, “Support Vector Machine for
Regression and Applications to Financial Forecasting,” IEEE-
INNS-ENNS International Joint Conference on Neural Net-
works, Como, Italy, July 24-27, 2000.

 9

Chapter 3: American Option Pricing Using Bayesian Multi-Layer

Perceptrons and Bayesian Support Vector Machines

M. M. PIRES
School of Electrical and Information Engineering

University of the Witwatersrand, Johannesburg, South Africa
m.pires@ee.wits.ac.za

Abstract – An option is the right, not the obligation, to buy or sell

an underlying asset at a later date but by fixing the price of the

asset now. There are European and American styled options.

European styled options can be priced using the Black-Scholes

equations but American options are more complex and valuable

due to the second random process they introduce. Multi-Layer

Perceptrons and Support Vector Machines (formulated in the

maximum likelihood framework) have been used previously to

price American options and what is introduced here is Bayesian

Techniques to both these approaches. Bayesian techniques used

with both these approaches are compared in terms of pricing

accuracy and time to train each of the learning algorithms. It

was found that Bayesian SVM’s out-performed Bayesian MLP’s

and that there is scope for further work. However, Bayesian

SVM’s took much longer to train than Bayesian MLP’s even

though they produced better error results.

I. INTRODUCTION

This paper deals with the problem of American option pricing
using Bayesian techniques applied to Neural Networks
(NN’s) and Support Vector Machines (SVM’s). Firstly what
needs to be done is to introduce options and their use.

Around the world, companies are exposed to risk in a number
of ways. If a company exports then they are exposed to the
volatility of the exchange rate. For example, a gold mining
company in South Africa is exposed to risk from the gold
price because if the gold price drops then the mining company
may lose money. In addition most of the gold production in
South Africa is exported and so if the Rand strengthens
against the dollar then the mining company will receive less
Rand for the gold sold and so it is exposed to exchange rate
risk as well. Mining companies wish to protect themselves
against this risk and so what they do is have an agreement to
sell gold at a particular fixed exchange rate and gold price for
the future months. This contract is fixed and the company will
not make any extra money or lose any extra money. The two
contracts the company undertakes are known as futures con-
tracts. Since the contract doesn’t allow the owner to make any
additional money (if the gold price increases or the Rand
weakens) then the company doesn’t pay a premium for the
contracts. This reduction of risk is known as hedging [1]. An-
other way in which companies hedge against this risk is by
using options.

An option is the right, not the obligation, to buy or sell an
underlying asset at a later date (known as the maturity date)
by fixing the price of the asset now [2]. When the option
gives the owner the right to buy the asset then the option is
known as a call option and when option gives the owner the
right to sell the asset then the option is known as a put option.
There are two kinds of options. They are European and
American styled options. European options only allow exer-
cise of the option on the maturity date and American options

allow exercise on any date leading up to the maturity date. In
the example above, with the gold mining company, the com-
pany could buy a commodity put option (allowing the com-
pany to sell gold at a particular price form a fixed time) and
purchase an exchange rate call option (allowing the company
to trade at a particular exchange rate at a later date) [3].

Options are different from futures in that the owner of the
option is given the right, and not the obligation, to exercise
and thus make them valuable and so companies can benefit
from desirable situations in the market and still protect them-
selves from undesirable effects in the market [3]. The main
difference from futures is that if an undesirable situation does
occur then the owner will lose the premium that he/she paid
to have the option. Because of this, options are bought with a
premium and there is a difficulty with finding the value of
this premium. Black et. al. [4] formulated pricing options and
obtained equations for pricing options in 1973 and this was a
very significant finding in finance. The problem with their
model was that one of the assumptions was that the model
only was appropriate for pricing European options [2].
American options are more difficult to price [2] because there
is a second random process in the contract (as we do not
know when it will be optimal to exercise the option) and they
give the owner of the option an extra flexibility and are thus
more valuable than European options [5].

Multi-Layer Perceptrons (MLP’s) are a type of NN. NN’s are
a prediction tool and predict based on trends that are found
from past data. It learns the trends form the information it is
given and then tries and predict on data that it hasn’t seen
before (unseen data) based on the information it is fed. The
inputs to the network are chosen as variables that could possi-
bly affect what it is that is to be predicted (in this case what is
trying to be predicted is the option price). An SVM is a ma-
chine learning technique different from NN’s. It predicts also
based on inputs but is rather done by finding a function that
maps the inputs to the outputs. Their inputs can be chosen in
the same way as that from NN’s. MLP’s and SVM’s are an
appropriate method for pricing options because as option
prices depend on several factors that influence them and these
can be used as inputs to the NN’s and SVM’s. A comparison
has been made between MLP’s and SVM’s and it was found
that SVM’s performed better, for the pricing problem, than
MLP’s [6].

Bayesian techniques provide confidence levels in the predic-
tions made by either NN’s or SVM’s so that the predictions
are known to be within a certain confidence interval (68%
sure if the interval is one standard deviation away form the
mean (i.e. 68% sure that the actual value is within this inter-
val), 95% sure if the interval is taken as two standard devia-
tions from the mean and 99.7% sure for three standard devia-

 10

tions from the mean [7]). Bayesian techniques applied to
MLP’s have been used in many other fields but applying the
techniques to SVM’s is new and has mainly been used in
general applications more to test the application of the Bayes-
ian framework to SVM’s rather than actually using them for
the application [8]. The sampling technique used for the
Bayesian inference is the Metropolis-Hastings algorithm. An
introduction to MLP’s and SVM’s is given and how Bayesian
techniques can be applied to them is explained. The findings
are then provided with the comparison between the tech-
niques.

II. COMPUTATIONAL INTELLIGENCE METHODS

A. The Multi-Layer Perceptron

The MLP is the most widely used architecture for NN’s. In
this paper a toolbox was used to implement the MLP architec-
ture. The toolbox used was the NETLAB toolbox developed
by Ian Nabney [9] and was a toolbox developed for use in
MATLAB®. In this toolbox the NN has two layers with full
connectivity between both layers. For this particular applica-
tion there were three inputs used and one output.

The number of hidden nodes to be used can vary and the per-
formance of the network is dependent on how many are used.
Therefore different amounts of hidden nodes were used until
the best performing network was found.

The process of training a network is very mathematical and
involves random values being given two first layer weights
and bias variables. First layer activation parameters are then
found from these variables and then transformed to the sec-
ond layer through an activation function (in this case it was a
hyperbolic tangent function). The second layer activation
parameters are then found from a function of second layer
bias parameters, second layer weights and the values from the
activation function. These second layer activation parameters
are then transformed to the output in terms of an output acti-
vation function. In this toolbox the output activation function
was linear and it just involved making the output equal to the
second layer activation parameters. The training of the net-
work involves a minimization of an error function by finding
the best weight values so that the predicted value of the net-
work is close to the actual values being fed to the network as
training data. The error function to be minimized is [9]:

∑∑
= =

−=
1

1 1

2

arg,)(
k

N

g

ettkkg yyE (1)

where E is the error to be minimized and N is the number of
sets training data given. The sets of outputs ykg are the outputs
predicted by the network when it is given the training inputs
and yk,target are the actual values for the training outputs fed
into the network.

B. Support Vector Machines

SVM’s are a machine learning technique that attempt to map
the inputs of the training data to the outputs of the training
data. In this problem we wish to find the function f(x) that has
at most ε deviation form the training targets. There are several

functions that can be fitted to map the inputs to the outputs
but the functions used have to fit to certain criteria [10]. The
function used is a function of two or more variables and the
training inputs. One of the variables is w. It is important to
seek the smallest possible values for w and we then wish to
minimize the Euclidean norm ||w||2 [10]. If we say wished to
use a linear function to fit the data as follows [10]:

ℜ∈∈+= bwwithbxwxf ,,)(χ (2)

where .,. denotes the dot product. A constrained optimisa-

tion problem is then set up so that by the inclusion of certain
slack variables ξi, ξi

*. The constrained optimisation problem is
[10]:

)(Cw
2

1
imizemin

l

1i

*

ii

2

∑
=

++ ξξ









≥

+≤−+

+≤−−

0,

,

,

*

*

ii

iii

iii

ybxw

bxwy

tosubject

ξξ

ξε

ξε

 (3)

where l is the number of training points. Equation (3) is
solved by using quadratic programming, finding the Lagran-
gian Multiplier and applying the Karush-Kuhn Tucker (KKT)
conditions [10]. The variable C is known as the capacity
value and is used so that the function found does not over fit
to the training data and is used as the amount to which devia-
tions from ε are tolerated [11]. The higher the value of C the
worse the algorithm will perform on unseen data. The slack
variables are introduced also to prevent over training. They
are given values according to a loss function. There are dif-
ferent loss functions used and the one most popular is the ε-
insensitive loss function. Basically, if certain training inputs
map to outputs that are more than ε deviation from the func-
tion (trying to be found) then those points are penalized and
the more they exceed ε the more those points are penalized
and considered less important by the optimisation when trying
to find f(x). It must be remembered that the problem provided
by (3) if is a linear function (as in (2)) is used to fit the data
and that (3) would be different if a different function is used
to fit the data.

III. BAYESIAN TECHNIQUES

A. Bayesian Techniques for Neural Networks

With NN’s there is always an error in the predictions made
and we thus have [9]:

ε+=);(wxfy (4)

where y is the actual output desired, f is the output predicted
by the network, ε is the error, w are the weights [9] and x is a
vector of inputs. Even if we are given ε and the same network
is run twice with the same parameters, we will obtain differ-
ent weights w both times and thus there is an uncertainty in
the training of the networks [9] and this can be attributed to
the randomness in the assignment of weights. Generally some
complex models try to fit the noise into the predictions which

 11

cause problems when trying to predict with unseen inputs (the
problem of over training) and thus cause there to be even
more error in the predictions [9].

The parameter p(.) wherever used from now on denotes the
probability function from statistics. In the Bayesian approach,
the uncertainty in the parameters estimated when training a
network is assumed to follow a particular distribution. We
first start with a prior distribution p(w) which gives us an idea
of the parameters before the data is used [9] but this only give
us a vague idea as the distribution is quite broad. The prior
distribution can be of any kind, for example Poisson or Geo-
metric. In this case we will only use a Geometric distribution.
We then wish to narrow this distribution down by finding the
posterior probability density of the parameters w given a par-
ticular dataset D, p(w|D) where [9]:

)(

)()|(
)|(

Dp

wpwDp
Dwp = (5)

and p(D|w) is the dataset likelihood and p(D) is the evidence
and ensures that the posterior integrates to 1 and is calculated
by an integral over the parameter space. Once the posterior:

∫= ')'()'|()(dwwpwDpDp (6)

is calculated we can then make a prediction for a new input
by first calculating the prediction distribution [9]:

∫= dwDwpwxypDxyp)|(),|(),|(**
 (7)

where y is the predicted values and then the actual prediction
is found by [9]:

∫= dwDwpwxyypDxyE)|(),|(),|(**
 (8).

Here E(.) is the expected value in statistical terms. As can be
seen from equations (6) and (8), there is an integral involved
and the dimensionality of the integral is given by the number
of network parameters (weights) and this is not analytically
possible and simple numerical algorithms break down [9].
Therefore approximations to the posterior distribution are
made (the toolbox used to train Bayesian Neural Networks is
the NETLAB toolbox used with MATLAB®) and in the tool-
box there are various different methods that can be used to
approximate this integral [9]. There is the Metropolis-
Hastings algorithm, the Hybrid Monte Carlo (HMC) algo-
rithm and Gibbs sampling [9].

The main reason for the use of Bayesian techniques is simply
to reduce the uncertainty in the weights and thus try to reduce
the problem of over-fitting (i.e. over-fitting occurs when a
network predicts badly because it is trained too much to its
training data and predicts badly with unseen inputs [9]) and to
ensure confidence intervals. Bayesian techniques do reduce
the problem of over-fitting as has been proved by Nabney [9].
In NN’s there is a need to optimise the network and thus re-
duce the error function [9]. In Bayesian techniques this is
done by obtaining a posterior distribution for the weights so
that they can only be found within a particular distribution
thus narrowing the search for the optimal weight values [9].

Bayes’ theorem helps us to do this but there are large inte-
grals and there are several ways of evaluating these integrals
as stated before. The sampling method that was used to ap-
proximate the integral is the Metropolis-Hastings Algorithm.
It is not clear how the Bayesian framework can be used for
SVM’s and this is discussed next with a description of the
Metropolis-Hastings Algorithm following that.

B. Bayesian Techniques for Support Vector Machines

It may not be clear as to why Bayesian Inference would be
needed with SVM’s. SVM’s do produce a unique solution
and are thus not exposed to errors resulting from the same
randomness as NN’s where the first layer weights and biases
are assigned random values. However, the fact remains that
with support vector machines the best parameters are not al-
ways found when trying to fit a curve to the data and there are
still errors inherent in the predictions they provide. The pa-
rameters found are Beta, Bias and the number of support vec-
tors (NSV) and are found from the quadratic programming
optimisation problem. In NN’s the bias values and weights
(collectively referred to as weights in Section III.A.) are what
are sampled for so that a distribution of NN’s can be found
and so that error bars can be established. With SVM’s the
same can be done and what will be sampled for is the Beta
values. What could also be sampled for in SVM’s is the bias
value. Many support vectors have been trained in a previous
implementation [6] and in each of the findings the bias values
were found to be zero. Therefore it was decided to keep the
bias at this value and only sample for the beta values. The
number of support vectors is found from these values and so
will not be sampled for [12]. In conclusion what is sampled
for in both processes are the variables that are found from the
optimisation processes either for NN’s or SVM’s and so these
variables will be collectively called optimisation variables
from now on.

C. The Metropolis-Hastings Algorithm

As stated before, Monte Carlo methods can be used to ap-
proximate the integrals involved in Bayesian techniques
rather than using a Gaussian approximation [9].

Since there is an uncertainty in the process, we need to find
the predictive distribution, i.e. the distribution that represents
the possible outcomes of the MLP or SVM due to the uncer-
tainty in the optimisation variables [9]. This distribution is an
integral but in Monte Carlo methods it is approximated to be
[9]:

∑
=

=
N

n

nwxyp
N

Dxyp
1

),|(
1

),|((9)

where N is the number of samples chosen by the trainer of the
network and wn is the sample of optimisation variable vectors.
These samples of optimisation variables can be chosen
through different methods. A Hybrid Monte Carlo (HMC)
method can be used to sample for these weights. HMC makes
use of gradient information in its sampling and so may be
very computationally intensive if the Hessian matrix (the de-
rivative matrix) is difficult to compute. In addition to this, the
derivative of the SVM is very difficult to find analytically and
in fact the loss function used by the toolbox (the ε-insensitive

 12

loss function) cannot be differentiated [8]. In light of this
what is needed is to use the Metropolis-Hastings algorithm as
it doesn’t require any derivative information in its sampling.
One drawback of this approach is that many more samples are
required to gain an accurate distribution when compared to
the HMC algorithm.

The principle behind the Metropolis-Hastings algorithm
method is to generate a new state x(n+1) (in this problem it is a
vector of the optimisation variables) from the old state x(n) by
first generating a candidate state from a particular statistical
distribution and then deciding whether or not to accept the
candidate state. The procedure follows the following steps
[9]:
1) Generate the Candidate State x*: The candidate state is

generated with proposal distribution S(x*,x
(n)

) and an ex-
ample distribution is a Boltzmann distribution.

2) Acceptance and Rejection: E is defined as the error or

cost function. In this case it is an error function and is the

objective function of the optimisation. If

)()()(* n
xExE < then accept x*, else accept x* with

probability
),(

),(
))()((

)(*

*)(
*)(

n

n
n

xxS

xxS
xExE

e
−

. The ‘else’ part is

done by generating a random number from the distribu-

tion chosen and this is the number to compare with the

probability given by the ‘else’ part. If the random number

is less than the probability given then accept x*.

3) If x* is accepted then let x(n+1)
 = x* otherwise x(n+1)

 = x
(n).

This process is repeated for a certain number of samples
which is chosen by the user. These three steps, in essence,
describe how the sampling is done so that the summation of
equation (9) can be accomplished and so that the posterior
distribution can be found and thus allowing the optimisation
of the NN or SVM. The sets of optimisation variables are thus
selected or rejected according to the three steps above and the
numbers of samples that are retained are the number of sets of
optimisation variables accepted. For each set of optimisation
variables there is a corresponding NN or SVM output. The
prediction of the NN or SVM is the average of the outputs.

The usefulness of the Bayesian approach is that the prediction
comes with certain confidence levels (upper and lower
bounds). In fact the prediction mathematically is the same as
that of the standard MLP or SVM. If we plot the prediction
and upper and lower bounds (where the upper bound is the
prediction plus the standard deviation of the outputs and the
lower bound is the prediction minus the standard deviation of
the outputs of the NN or SVM) then we say that the predic-
tion is known to be within a certainty of 68% (because in the
normal distribution 1 standard deviation form the mean con-
stitutes 68% of the possible outcomes [7]).

IV. IMPLEMENTATION AND RESULTS

The data used for the option pricing problem was obtained
form the South African Futures Exchange (SAFEX) website
[13]. SAFEX is the body in South Africa that deals with fu-
tures and options and guarantees the integrity of the contracts
entered on a daily basis. Data was obtained for futures and
options from January 2001 to December 2003 for options and
futures on the All Share Index (ALSI) of South Africa. What
was attempted was to price the call options on the index.

There were high and low prices available on the options con-
tracts and what was decided was to use the average of these
two and this would be the variable try and predict.

There are various factors that influence options prices. In the
Black-Scholes equations, there are five variables that are used
in pricing the options. Even though these equations only hold
for European options, it was still felt that the same factors
would influence the American version of the options prices.
The five factors are strike price (price that the owner can ex-
ercise the contract), the time to maturity (the date at which the
contract expires), the risk-free rate of interest (the return that
investors can obtain risk free in the market), the spot price
(the price of the underlying asset today) and the volatility of
the underlying asset. The spot price was not used as one of
the inputs for the prediction as it was felt that the strike price
is close to this value and so would not help in the training of
the MLP’s or SVM’s. The risk free rate was also not used as
an input as it was found that this would be fairly constant in
the period of the data and so wouldn’t help with the predic-
tions. The other three factors were used as inputs in the train-
ing of the MLP’s and SVM’s. In both implementations 300
test points were used to evaluate the errors in the predictions
and the bounds.

A. Bayesian Neural Networks

The NETLAB toolbox was used with MATLAB®. There
were several examples that came with the toolbox but mainly
for use of the HMC algorithm in the sampling for the Bayes-
ian Neural Networks. One of these examples was edited and
modified for the option pricing problem and the sampling
method used was the Metropolis-Hastings algorithm de-
scribed in Section III.C.

What was attempted with the NN’s was to obtain the bounds
from the data as this is the most useful application of Bayes-
ian techniques. This would then give us the price predicted
and within certain confidence levels. Factors in the training
algorithms that would influence this were the number of sam-
ples omitted at the start of the chain and accepted and the step
size used by the algorithm. It was found that the best step size
to use when sampling was 0.0005. If a step size less than this
was used then there were too many samples being accepted
(the bounds were too small showing that they were not an
accurate reflection of what they should be) and if the step size
was made larger then it was found that there weren’t enough
samples being accepted and so too wide a search space was
being explored. The number of hidden units in the MLP was
also experimented with but this was just so that we could get
the average prediction error to be as low as possible. The re-
sults of the algorithm can be seen in Table 3.

 13

Table 3: Bayesian Neural Networks Results

Omit Max Mean Samples Time Dev Hid

500 10234 95 1000 25 442 10
500 12229 122 1000 33 327 20
500 3855 64 1000 44 281 40

1000 7933 79 1000 31 289 10
1000 7921 85 1000 42 265 20
1000 4730 90 1000 57 271 40
500 14960 110 2000 64 363 10
500 12250 109 2000 74 385 20
500 9896 102 2000 93 441 40

1000 9615 89 2000 65 233 10
1000 7334 88 2000 79 260 20
1000 8962 119 2000 104 339 40
2500 6076 99 5000 276 211 10
2500 7759 102 5000 310 163 20
2500 8805 95 5000 369 221 40

Omit = number of samples omitted at the start of the chain, Max = the maxi-
mum error found in %, Mean = the average error found in %, Samples = the
number of samples not omitted in the chain, Time = the time taken for train-
ing in seconds, Dev = the average deviation and thus the magnitude of the
bounds above and below the prediction, Hid = the number of hidden units
used in the MLP.

The algorithm makes use of an omitted amount of samples at
the start of the chain because the initial values for the sam-
pling are set to random values. Therefore the initial samples
will in fact be way out of where the optimal weight values
should be. The predictions are found from the average values
of all the predictions given by the samples and if the first
samples produce big error values then it is desirable to omit
these initial samples until more optimal weight values are
sampled for. There are several conclusions that can be drawn
from Table 3. Firstly, intuitively it was thought that the more
samples there were then the better the predictions would be.
This was not the case and the average error was lower with
1000 samples than with 2000 or 5000 samples. As the number
of samples grew it was also found that the bounds were
smaller which was desired but the average error was too high.
Smaller bounds are desired because it would mean that the
price is known to be with a smaller range with a particular
certainty [7] (68% certainty if one standard deviation is used).
In conclusion we can say that 1000 samples sufficed for this
algorithm with 500 omitted samples at the start of the chain.

B. Bayesian Support Vector Machines

The same data that was used to test the Bayesian NN imple-
mentation was also used to test the Bayesian SVM implemen-
tation and the exact same test points were used to evaluate the
implementation. There was a SVM toolbox obtained and it
had to be used in conjunction with the NETLAB toolbox (be-
cause this toolbox provided the Metropolis-Hastings algo-
rithm) and so some coding had to be done to incorporate the
two toolboxes in MATLAB®.

With Bayesian MLP’s, random values were initially set to the
weights and then the Metropolis-Hastings algorithm sampled
with this as the starting point. This was attempted with
SVM’s as well but it was found that with as much as 5000
samples the average error was about 100% which is much too
high. It was therefore felt that many more samples (say
30000) were needed but this would take the algorithm ap-
proximately 7.5 hours to finish. It was rather decided to pro-
vide a starting point to the Metropolis-Hastings algorithm
rather than randomly generating one. What was done was thus
to actually train an SVM and these values were used as the

starting value for the sampling. With SVM’s there are optimal
values for capacity and ε-insensitivity when training the
SVM. The best values were found before [6] and were set at
10 for capacity and 0.005 for ε-insensitivity and these were
the values used to train the SVM so that the starting values for
the betas could be found and used in the Metropolis-Hastings
algorithm.

In light of this, when too high a step value was used then no
samples were accepted and so there was no value for the
bounds which thus doesn’t help in the analysis. Also if too
few samples were used with too high a step value then the
average error was raised and so the number of samples and
step value were experimented with. The number of omitted
samples was always set at zero because the initial sample
value given to the Metropolis-Hastings algorithm produced
good predictions and so samples around this point would be
useful and it was thus not desired to omit these. It was felt
that as many new samples that were retained produced more
realistic values in terms of finding the values for the bounds.
The results of the implementation can be seen in Table 4.

It must be stated, firstly, that we would like the deviation to
be low but if the deviation was too low then it can be argued
that not enough of the search space has been sampled for the
deviation to be indicative.

From Table 4 it can be seen that at 10000 samples the predic-
tion did improve if the step was larger. It is believed that if
more samples were used, that the eventual 34% [6] error mark
would be reached and with the step value at this large value,
that sufficient search space would be explored to gain an in-
dicative value for the bounds. The value for the bounds at this
point was still lower than that found by the Bayesian MLP
and the average error found was also much lower than that
found by the Bayesian MLP.

Table 4: Results of Bayesian Support Vector Machines

Max Mean Samples Time Dev Step

3607 62 1000 849 348 0.01
3177 53 1000 863 167 0.001
486 36 1000 861 77 0.0001
865 35 1000 853 41 0.00001
959 35 1000 854 32 0.000001

1091 53 10000 8729 238 0.01
5425 71 10000 8811 131 0.001
649 35 10000 8889 88 0.0001
955 35 10000 8811 37 0.00001

1036 37 10000 8811 24 0.000001

Max = the maximum error found in %, Mean = the average error found in %,
Samples = the number of samples not omitted in the chain, Time = the time
taken for training in seconds, Dev = the average deviation and thus the mag-
nitude of the bounds above and below the prediction, Step = the step size
used by the Metropolis-Hastings algorithm to search for new samples.

V. COMPARISON OF BAYESIAN TECHNIQUES AND STAND-

ARD COMPUTATIONAL INTELLIGENCE METHODS

A comparison has been made between MLP’s and SVM’s
without Bayesian techniques and it was found that SVM’s
out-performed MLP’s [6]. The MLP’s achieved, at best, an
average error of 52% and the SVM’ achieved an average error
of 34%. The MLP error levels were not achieved here and at
best the error was 64% but these levels would be achieved if
many more samples were used. With the SVM’s, a 35% error
level was achieved which is very similar to that found before

 14

[6]. However at this level, the error bound values were very
small and were thus not very indicative of what they stand
for. Again if more than 10000 samples were used then the
34% error mark would be reached again and this would pro-
duce bounds more reflective as is given by the 6th entry in
Table 4. In conclusion, SVM’s out-performed MLP’s both in
the Bayesian framework and with standard training methods,
in terms of error performance.

VI. CONCLUSION

Bayesian MLP’s and Bayesian SVM’s were implemented and
tested in MATLAB® using the necessary toolboxes and cod-
ing needed. It was found that Bayesian MLP’s with the Me-
tropolis-Hastings algorithm outperformed other Bayesian
techniques such as the Hybrid Monte Carlo and Gaussian
approximation sampling functions [14]. These algorithms
produced bounds that were quite larger than that found by the
Metropolis-Hastings algorithm with MLP’s. The HMC algo-
rithm took much longer to run and was found to produce
bounds larger and the Gaussian approximation algorithm pro-
duced much larger bounds although it took much less time to
train. Error values were also better with the Metropolis-
Hastings algorithm but it must be said that all Bayesian NN’s
will tend to produce the same prediction as the normal NN if
enough samples are used. The Bayesian framework obtains its
usefulness by the bounds that it can produce and thus the con-
fidence levels it provides with the predictions.

In terms of Bayesian SVM’s, SVM’s have been found to pro-
vide more accurate predictions [6] than NN’s in the option
pricing problem and it produced bounds, in the Bayesian
framework, that were smaller than that provided by their NN
counterparts. This however comes at an expense as it takes
much longer for the Bayesian framework to be implemented
with SVM’s than NN’s. It could take as long as 2.5 hours
compared to 44 seconds for Bayesian NN’s. Although this
time is much longer it must be said that Bayesian SVM’s still
outperformed Bayesian MLP’s as the error in the predictions
and the bounds were much smaller.

With implementing Bayesian SVM’s, it seems that there is
more scope for work that can still be done to further improve
the bounds found. Instead of training an SVM first and using
these beta values as the starting point for the Metropolis-
Hastings algorithm, what can rather be done is to only sample
for some of the beta values as it was found that some of the
beta values were better kept at the value of the capacity (as
beta values range between negative and positive capacity) and
then some of the other beta values could then be sampled for.

This may make the sampling faster and also this would allow
more search space to be explored in the pursuit of trying to
find more samples.

VII. ACKNOWLEDGEMENT

I would like to thank the National Research Fund (NRF) for
their financial contribution in making this research possible.

REFERENCES

[1] S. Ross, R. W. Westerfield, B. D. Jordan and C. Firer, Fun-

damentals of Corporate Finance 2nd South African Edition,
McGraw-Hill Book Company, Sydney, Australia: 2001.

[2] J. C. Hull, Options, Futures and Other Derivatives, Prentice
Hall, Upper Saddle River, New Jersey, U.S.A.: 2003.

[3] M. M. Pires, Masters Thesis, School of Electrical and Infor-
mation Engineering, University of the Witwatersrand, 2005,
Appendix A: Hedging with Options and Other Contracts.

[4] F. Black and M. Scholes, “The Pricing of Options and Corpo-
rate Liabilities”, Journal of Political Economy, vol. 81, 1973,
pp. 637-659.

[5] R. A. Jarrow and S. M. Turnbull, Derivative Securities 2nd

Edition, South-Western College Publishing, U.S.A.: 2000.
[6] M. M. Pires and T. Marwala, “American Option Pricing Us-

ing Multi-Layer Perceptron and Support Vector Machine”, in
Proceedings of the IEEE Conference in Systems, Man and

Cybernetics, The Hague, October 10-13 2004, pp. 1279-1285.
[7] T. H. Mirer, Economic Statistics and Econometrics 3rd Edi-

tion, Prentice Hall, U.S.A.: 1995, pp. 209-218.
[8] W. Chu, S. S. Keerthi and C. J. Ong, “Bayesian Support Vec-

tor Regression Using a Unified Loss Function”, IEEE Trans-

actions on Neural Networks, vol. 15, no. 1, 2004, pp. 29-44.
[9] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition,

Springer-Verlag, London, Great Britain: 2003.
[10] J. Joachims, “Making large-scale SVM learning practical” in

B. Scholkopf, C. J. C. Burges and A. J. Smola, editors, Ad-

vances in Kernel Methods-Support Vector Learning, MIT
Press, Cambridge, MA: 1999, pp. 169-184.

[11] T. B. Trafalis and H. Ince, “Support Vector Machine for Re-
gression and Applications to Financial Forecasting”, IEEE-

INNS-ENNS International Joint Conference on Neural Net-

works, Como, Italy, July 24-27, 2000.
[12] S. R. Gunn, Support Vector Machines for Classification and

Regression, Faculty of Engineering, Science and Mathemat-
ics, School of Electronics and Computer Science, University
of South Hampton, United Kingdom, 1998.

[13] South African Futures Exchange, Available:
http://www.safex.co.za.

[14] M. M. Pires, Masters Thesis, School of Electrical and Infor-
mation Engineering, University of the Witwatersrand, 2005,
Appendix B: Paper for Fifteenth Annual Symposium of the

Pattern Recognition Association of South Africa.

 15

Chapter 4: Computational Intelligence Methods for American

Option Pricing

M. M. PIRES
School of Electrical and Information Engineering

University of the Witwatersrand, Johannesburg, South Africa
m.pires@ee.wits.ac.za

Abstract – An option is used, by many firms, to hedge their fi-

nancial risk. Black and Scholes introduced an option pricing

model but there were several underlying assumptions. The most

important of which is that the model only holds for European

options. In South Africa, options are all American type and so

various option brokers use different methods to price the op-

tions. What is used here is computational intelligence predictive

tools to price the options by inputting past data. There are vari-

ous predictive tools used and it was found that support vector

machines out-performed the neural network techniques in terms

of error but not computational time when the maximum-

likelihood framework is used. The Bayesian frameworks is also

applied to both predictive tools and this introduced a new para-

digm in option pricing as the Bayesian frameworks has not been

applied in the option pricing field before. It was found that

Bayesian Support Vector Machines out-performed Bayesian

Multi-Layer Perceptrons in terms of error analysis but Bayesian

Support Vector Machines took much longer to train.

I. INTRODUCTION

Options are used extensively in South Africa by many large
firms to hedge their financial risk and thus keep their profit
margins at certain levels. An option gives the owner of the
option the right, not the obligation, to buy (a call option) or
sell (a put option) an underlying asset at a later date (known
as the maturity date) but by deciding on the price of the asset
now (known as the strike price). Owners of options don’t
have to exercise their options if a more favourable situation
occurs in the market and this makes them more valuable than
futures meaning that a premium has to be paid to have these
options [1].

There have been many attempts in the past to price options
and Black and Scholes [2] came up with what is known today
as the Black-Scholes option pricing model. In this model
there were several underlying assumptions and most impor-
tantly the pricing model only held for European type options.
A European type option only allows the owner of the option
to exercise the option on the expiry date of the contract. There
are also American type options and these contracts can be
exercised on any date from when they are taken up until the
maturity date. This extra flexibility makes American type
options either the same value or more valuable than European
type options [3]. American options also have a second ran-
dom process inherent in their model (as it is not known when
it will be optimal to exercise the option) and thus makes them
more difficult to price.

In South Africa, only American type options are used. There
is no standard for pricing these options on the South African
Futures Exchange (SAFEX). SAFEX is the body in South
Africa that provides the market for the trading of derivatives
and ensures the integrity of all derivative contracts. The vari-
ous option brokers in the South African market use different

techniques to price these options and what this means is that
different prices can be obtained from different options bro-
kers. As a result the actual option premium are susceptible to
market forces. With this in mind, it seems intuitive to believe
that a predictive tool can be used to price American type op-
tions.

Predictive tools are used in Computational Intelligence meth-
ods since the theory of Computational Intelligence was intro-
duced. The first method of interest is Neural Networks (NN’s)
and these have been used in many fields such as pattern rec-
ognition (Ripley [4]), biomedical applications (Hudson and
Cohen [5]) and even in predicting inter-state conflict (see
Marwala and Lagazio [6]). Predictive tools can be used for
classification and regression applications. Classification prob-
lems deals with the placing of classes of objects in specific
categories and classifiers predict which class certain objects
will fall under. Regression problems deal with finding an ac-
tual number output based on the inputs that the predictive tool
is given. Predictive tools base their predictions on what has
happened in the past and so typically they require a training
dataset to train them appropriately and then produce predic-
tions based on the test dataset. Here we attempt to use Sup-
port Vector Machines (SVM’s) as well as Neural Networks.
What is also presented here is the introduction of the Bayes-
ian framework to both NN’s and SVM’s. What the Bayesian
framework does is allow the predictions to be provided with
certain confidence levels (more reasons for the use of the
framework are outlined in Section V.).

II. PREVIOUS ATTEMPTS AT OPTION PRICING WITH PREDIC-

TIVE TOOLS

NN’s have been used before to price options. Hutchinson et.
al. [7] were one of the first people to attempt to price options
using NN’s but this was only attempted for European options.
It was also attempted by Morelli et. al. [8] for American and
European options but with little success with the American
option pricing portion of the research. In fact their findings
were only published for European options. Kelly [9] at-
tempted American option pricing with NN’s but found that
the error in the predictions was proportional to the actual op-
tion price and error values as high as 60% were found at
higher option prices.

SVM’s have not been used before in the option pricing field
and so what is illustrated here is their performance against
MLP’s (which have been used before) as well as their per-
formance in the Bayesian framework. SVM’s have produced
satisfactory results in other fields. Trafalis and Ince [10] ap-
plied them to financial forecasting and Chan et. al. [11] ap-
plied them to Glaucoma diagnosis and found that they outper-
formed the NN architectures used.

 16

Bayesian techniques have not been used in the option pricing
field either with NN’s or SVM’s and they have only been
recently applied to SVM’s by Chu et. al [12].

III. THE BLACK-SCHOLES MODEL

With all predictive tools there is a need to distinguish between
what will be used as inputs and what will be used as outputs.
The inputs are chosen as those factors that would affect the
outputs in the real world. In the option pricing problem we are
attempting to price options and so the option price will be the
only output of the network. We need to then decide to what to
use as inputs and thus decide what affects option prices.

The Black-Scholes model is used together with some form of
Markov chain sampling by many option brokers to price
American type options. We can thus deduce that the same
factors that affect European options may also affect American
option prices. It must be noted that there are other factors that
may affect American option prices but for these purposes we
will only choose those found by the Black-Scholes model.

The Black-Scholes equations for put and call options can be
found from Hull [13] and are stated as follows:

)()(210 dNKedNSc
rT−−= (1)

and

)()(102 dNSdNKep
rT −−−= −

 (2)

where

T

TrKS
d

σ

σ)2/()/ln(2

0
1

++
= (3)

and

T

TrKS
d

σ

σ)2/()/ln(2

0
2

−+
= (4)

N() is the cumulative probability distribution function, S0 is
the spot price (current price today) of the underlying asset, K
is the strike price agreed upon, r is the risk-free rate of inter-
est (this interest rate is usually that denoted by government
bonds in a politically stable country, see Ross et. al [1]), T is
the time to maturity in number of years and σ is the volatility
of the underlying asset (volatility implies how much the un-
derlying asset has deviated in the past, see Ross et. al. [1]).

From Equations (1) to (4) we can see that there are five fac-
tors that influence options prices. They are: spot price, strike
price, the risk-free rate of interest, the time to maturity of the
contract (the time difference between when the contract is
taken and when the contract expires) and the volatility of the
underlying asset. All these can be used as inputs to the predic-
tive tools but it was chosen to eliminate two of these five fac-
tors. Firstly, the risk-free rate of interest was excluded. The
risk-free rate of interest was excluded because it doesn’t seem
to vary too much with time in South Africa. In fact from

January 2004 to December 2005 (projections were used for
the period that hasn’t occurred yet by the Standard Bank
Group of South Africa) the interest rate was only found to
fluctuate between 12% and 11%. A plot of interest rate can be
seen in Figure 5 below:

Figure 5: Interest Rates in South Africa

Therefore since the interest rates were fairly constant, includ-
ing it would be equivalent to not having included it as an in-
put, because it will not play a role in determining the predic-
tions. Secondly, the spot price was not included. The quoted
spot price (from the data provided) was always very close to
the strike price provided and so the effect would have been
the same as having two inputs that are similar. Therefore the
spot price was also not included.

We can now discuss the mathematics behind the techniques
used and show how predictions are obtained from raw data in
each of the predictive techniques.

IV. COMPUTATIONAL INTELLIGENCE METHODS

A. The Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is the most widely used
architecture for neural networks (Nabney [14]). In this paper
two layers with full connectivity between hidden units and
inputs, and between hidden units and outputs were used. Hor-
nick et. al. [15] have shown that two-layer networks, with
sigmoidal type activation functions in the hidden layer and
linear activation functions in the output layer, are universal
approximators, provided that there are a sufficient number of
hidden layer neurons (Polycarpou [16]). This means that a
simple two layer network is sufficient and that more hidden
layers are not required. For the particular application, a net-
work with three inputs and one output was constructed as can
be viewed in Figure 6 and from now on we will only consider
a network with three inputs and one output.

 17

Input Nodes
Hidden

Nodes

Output Node

x0

x2

x1 y0

zn

z1

z0

.

.

.

.

Figure 6: Two-Layer Architecture of the Multi-Layer Percep-

tron

As can be seen in Figure 6, the number of hidden nodes is
unknown and a few different amounts of hidden nodes were
tried. For the first layer of the network we have activation
parameters and bias variables (aj

(1) and bj
(1) respectively) as-

sociated with each hidden node. Each line (joining to different
nodes) in Figure 6 has a weight associated with it (wji

(1)) and
so we have:

∑
=

+=
3

1

)1()1()1(

i

jijij bxwa (5)

where j is the number of hidden units (n from Figure 6) and i
is the number of input units. Data is fed into the network in
terms of training inputs and training outputs. The activation
parameters are then transformed by the non-linear activation
functions of the hidden layer. There are many activation func-
tions that can be used and in this study the hyperbolic tangent
function is used for the hidden layer. The outputs of the hid-
den units (zj) can thus be written as follows and thus making
the activation function sigmoidal and in keeping with Hornick
et. al. [15]:

)tanh(
)1(

j
az j = (6)

The zj are then transformed by the second layer of weights
(wkj

(2)) and biases (bk
(2)) to give the second layer activation

functions (ak
(2))

∑
=

+=
M

j

kjkjk bzwa
1

)2()2()2(
 (7)

where k is the number of output nodes (in this case k = 1).
The second layer activation functions are then transformed
through a linear function into the output in keeping with Hor-
nick et. al. [15]:

)2(

kk ay =
 (8)

The weights at each layer are chosen using some optimisation
method. The error function between the output predicted by
the neural network and the target vector is constructed as fol-
lows:

∑∑
= =

−=
1

1 1

2

arg,)(
k

N

g

ettkkg yyE (9)

where E is the error to be minimized and N is the number of
sets of training data given. The sets of outputs ykg are the out-
puts predicted by the network given the training inputs and
yk,target are the training outputs. The weights at each layer are
changed until the error shown in equation (9) is as low as
possible. The weights in each layer are initially set to random
values. Several optimisation techniques such as the conjugate
gradient method, the scaled conjugate gradient method, the
Quasi-Newton method and the gradient descent method may
be used to minimize equation (9) (see Nabney [14]). Each of
these methods was tried and the results of each network with
different optimisation techniques were analysed.

B. Support Vector Machines

The basic idea behind support vector regression is to map the
input space to an output space. Suppose we have the training
data set with one input and one output being considered:

{(x1,y1),…,(xl,,yl)} ℜ⊂ xχ , where χ is the space of

the input parameters and ℜ denotes the real number set. We

wish to find a function f(x) that will map the training inputs to
the training outputs. In Support Vector (SV) regression we
wish to find this function that has at most ε deviation from the
actual training targets yl. We can fit several kinds of functions
f(x) to map training inputs to training outputs. These functions
are known as kernel functions but these cannot just be any
functions, kernel functions have to adhere to some criteria as
was stated by Joachims [17]. For the purposes of explanation
we will consider a linear kernel function

ℜ∈∈+= bwwithbxwxf ,,)(χ (10)

where .,. denotes the dot product.

We seek to find small values for w (w is known as the Beta
parameter and b is the bias parameter from equation (10)) and
one way to do this is to minimize the Euclidean norm ||w||2 as
shown by Joachims [17]. We then include slack variables ξi,
ξi

* so that certain infeasible constraints in the minimization of
the Euclidean norm can be used and the minimization prob-
lem then becomes

)(Cw
2

1
imizemin

l

1i

*

ii

2

∑
=

++ ξξ









≥

+≤−+

+≤−−

0,

,

,

*

*

ii

iii

iii

ybxw

bxwy

tosubject

ξξ

ξε

ξε

 (11)

where l is the number of training points used. The constraints
above deal with an ε-insensitive loss function used to penalize
certain training points that are outside of the bound given by ε
which is a value chosen by the user. There are various other
loss functions such as the Huber loss function which can also
be used but the most common is the ε-insensitive loss func-
tion as stated by Gunn [18].

 18

 The loss function is given by





−

≤
=

eothererwis

if

εξ

εξ
ξ ε

||

||0
|| (12)

The value for C in equation (11) is used as the amount to
which deviations from ε is tolerated (see Trafalis and Ince
[10]). It can be seen as a measure of over-fitting a function
too well to its training points. If the value of C is set too high
then the function found (f(x)) will be too well fitted to the
training data and will not predict very well on data that isn’t
seen by the training of the function. It means that points lying
outside of the bounds given by ε are not penalized enough and
this results in the function being too well fitted to the training
points (see Burges [19]). A sketch of a linear function being
fitted to training data can be seen in Figure 7 with the bounds
being shown.

Figure 7: Linear SVM Regression for a Set of Data (left) and the

ε-insensitive Loss Function [17].

The function on the right in Figure 7 is used to penalize those
points that lie outside of the bounds shown on the left. The
more a point lies outside of one of the bounds (either below or
above), the more the point is penalized and thus plays less of
a role in the determination of the function. Those points that
fall within the bounds of the function are not penalized at all
and their corresponding slack variable values (ξi, ξi

*) are
given zero and thus these points will play a major contribu-
tion in the determination of the function f(x).

The optimisation problem of equation (11) is then set up to be
a quadratic programming problem by first finding the La-
grangian multiplier and applying the Karush-Kuhn Tucker
(KKT) conditions (see Joachims [17]). Then the values for w

and b can be found so that the linear function to fit the train-
ing data of equation (10) can be explicitly found. Note that
this example using the constrained optimisation problem of
equation (11) is for a linear kernel function and the con-
strained optimisation problem of equation (11) is different for
different kernel functions.

V. BAYESIAN TECHNIQUES

We will first discuss Bayesian techniques applied to Neural
Networks as this is what the purpose of the techniques were
originally intended for. Section V.B then discusses how the
Bayesian framework can be applied to SVM’s.

A. Bayesian Techniques for Multi-Layer Perceptrons

Bayesian techniques are derived from Bayes’ theorem from
probabilistic mathematics. With NN’s there is always an error
in the predictions made and we thus have (see Nabney [14]):

ε+=);(wxfy (13)

where y is the actual output desired, f is the output predicted
by the network, ε is the error, w are the weights and x is a
vector of inputs. Even if we are given ε and the same network
is run twice with the same parameters, we will obtain differ-
ent weights w both times and thus there is an uncertainty in
the training of the networks and this can be attributed to the
randomness in the assignment of weights. Generally some
complex models try to fit the noise into the predictions which
cause problems when trying to predict with unseen inputs (the
problem of over training) and thus cause there to be even
more error in the predictions.

The parameter p(.) wherever used from now on denotes the
probability function. In the Bayesian approach, the uncer-
tainty in the parameters estimated when training a network is
assumed to follow a particular distribution. We first start with
a prior distribution p(w) which gives us an idea of the pa-
rameters before the data is used but this only give us a vague
idea as the distribution is quite broad. The prior distribution
can be of any kind, for example Poisson or Geometric. In this
case we will only use a Geometric distribution. We then wish
to narrow this distribution down by finding the posterior
probability density of the parameters w given a particular
dataset D, p(w|D) where:

)(

)()|(
)|(

Dp

wpwDp
Dwp = (14)

and p(D|w) is the dataset likelihood and p(D) is the evidence
and ensures that the posterior integrates to 1 and is calculated
by an integral over the parameter space. Once the posterior:

∫= ')'()'|()(dwwpwDpDp (15)

is calculated we can then make a prediction for a new input
by first calculating the prediction distribution:

∫= dwDwpwxypDxyp)|(),|(),|(**
 (16)

where y is the predicted values and then the actual prediction
is found by:

∫= dwDwpwxyypDxyE)|(),|(),|(**
 (17)

Here E(.) is the expected value in statistical terms. As can be
seen from equations (15) and (17), there is an integral in-
volved and the dimensionality of the integral is given by the
number of network parameters (weights) and this is not ana-
lytically possible and simple numerical algorithms break
down. Therefore approximations to the posterior distribution
are made. There are various different methods that can be
used to approximate this integral such as the Metropolis-

 19

Hastings algorithm, the Hybrid Monte Carlo (HMC) algo-
rithm (together known as Monte Carlo methods) and Gibbs
sampling.

The main reason for the use of Bayesian techniques is simply
to reduce the uncertainty in the weights and thus try to reduce
the problem of over-fitting (i.e. over-fitting occurs when a
network predicts badly because it is trained too much to its
training data and predicts badly with unseen inputs) and to
ensure confidence intervals. Bayesian techniques do reduce
the problem of over-fitting as has been proved by Nabney
[14]. In NN’s there is a need to optimise the network and thus
reduce the error function shown in equation (9). In Bayesian
techniques this is done by obtaining a posterior distribution
for the weights so that they can only be found within a par-
ticular distribution thus narrowing the search for the optimal
weight values. Bayes’ theorem helps us to do this but there
are large integrals and there are several ways of evaluating
these integrals as stated before. The sampling method that
was used to approximate the integral is the Metropolis-
Hastings Algorithm. It is not clear how the Bayesian frame-
work can be used for SVM’s and this is discussed next with a
description of the Metropolis-Hastings Algorithm following
that.

B. Bayesian Techniques for Support Vector Machines

It may not be clear as to why Bayesian Inference would be
needed with SVM’s. SVM’s do produce a unique solution
and are thus not exposed to errors resulting from the same
randomness as NN’s where the first layer weights and biases
are assigned random values. However the fact remains that
with support vector machines the best parameters are not al-
ways found when trying to fit a curve to the data and there are
still errors inherent in the predictions they provide. The pa-
rameters found are Beta, Bias and the number of support vec-
tors (NSV) and are found from the quadratic programming
optimisation problem. In NN’s the bias values and weights
(collectively referred to as weights in Section V.A.) are sam-
pled for so that a distribution of NN’s can be found and so
that error bars can be established (see Section V.D). The
number of support vectors is found from these values and so
will not be sampled for. In conclusion what is sampled for in
both processes are the variables that are found from the opti-
misation processes either for NN’s or SVM’s and so these
variables will be collectively called optimisation variables
from now on.

C. The Metropolis-Hastings Algorithm

As stated before, Monte Carlo methods can be used to ap-
proximate the integrals involved in Bayesian techniques.

Since there is an uncertainty in the process, we need to find
the predictive distribution, i.e. the distribution that represents
the possible outcomes of the MLP or SVM due to the uncer-
tainty in the optimisation variables. This distribution is an
integral but in Monte Carlo methods it is approximated to be:

∑
=

=
N

n

nwxyp
N

Dxyp
1

),|(
1

),|((18)

where N is the number of samples chosen by the trainer of the
MLP or SVM and wn is the sample of optimisation variable
vectors. These samples of optimisation variables can be cho-
sen through different methods. A Hybrid Monte Carlo (HMC)
method can be used to sample for these weights. HMC makes
use of gradient information (the gradient of the error function
in equation (9)) in its sampling and so may be very computa-
tionally intensive if the Hessian matrix (the derivative matrix)
is difficult to compute. In addition to this, the derivative of
the SVM is very difficult to find analytically and in fact the
loss function used by the toolbox (the ε-insensitive loss func-
tion) cannot be differentiated (see Chu et. al. [12]). In light of
this what is needed is to use the Metropolis-Hastings algo-
rithm as it doesn’t require any derivative information in its
sampling. One drawback of this approach is that many more
samples are required to gain an accurate distribution when
compared to the HMC algorithm.

The principle behind the Metropolis-Hastings algorithm
method is to generate a new state x(n+1) (in this problem it is a
vector of the optimisation variables) from the old state x(n) by
first generating a candidate state from a particular statistical
distribution and then deciding whether or not to accept the
candidate state. The procedure follows the following steps:

1. Generate the Candidate State x*: The candidate state is

generated with proposal distribution S(x*,x
(n)

) and an
example distribution is a Boltzmann distribution.

2. Acceptance and Rejection: E is defined as the error or
cost function (equation (9)). In this case it is an error
function and is the objective function of the optimisa-

tion. If)()()(* nxExE < then accept x*, else accept

x* with probability
),(

),(
))()((

)(*

*)(
*)(

n

n
n

xxS

xxS
xExE

e
−

. The ‘else’

part is done by generating a random number from the
distribution chosen and this is the number to compare
with the probability given by the ‘else’ part. If the ran-
dom number is less than the probability given then ac-
cept x*.

3. If x* is accepted then let x(n+1)
 = x* otherwise x(n+1)

 =

x
(n).

This process is repeated for a certain number of samples
which is chosen by the user. These three steps, in essence,
describe how the sampling is done so that the summation of
equation (18) can be accomplished and so that the posterior
distribution can be found and thus allowing the optimisation
of the MLP or SVM. The sets of optimisation variables are
thus selected or rejected according to the three steps above
and the numbers of samples that are retained are the number
of sets of optimisation variables accepted. For each set of
optimisation variables there is a corresponding MLP or SVM
output. The prediction of the MLP or SVM is the average of
all the predictions.

There are still several questions that may be unexplained thus
far but one main question is why the Bayesian framework is
useful. It does prevent over-fitting of the MLP’s and SVM’s
but there is another main reason and that is the confidence
levels that it provides.

 20

D. The Confidence Levels Provided by Bayesian Inference

The sampling done by the Metropolis-Hastings Algorithm
provides the predictions from the MLP’s or SVM’s with cer-
tain confidence levels. Each sample for the optimisation vari-
ables will produce a different MLP or SVM. For each sample
generated, for the MLP sampling, there is a corresponding
MLP that will provide a prediction and the same is true when
sampling Metropolis-Hastings sampling is applied to SVM’s.
The predictions for both MLP’s and SVM’s will follow a
normal distribution of enough samples are generated.

Let us first consider the Normal Distribution. A normal dis-
tribution is a bell shaped distribution that can be totally de-
fined by its average and standard deviation (see Mirer [20]).
The average value for the distribution is in the centre of the
bell shape where the Peak occurs.

Let us just consider MLP’s for now just for clarification. If
we choose to have, say, 5000 samples in our Metropolis-
Hastings algorithm for MLP’s then there will be 5000 differ-
ent predictions for each test input. If the predictions are to
follow a normal distribution then we can say that the actual
prediction is the average of all the predictions. We can then
also find the standard deviation of the predictions. For a nor-
mal distribution, one standard deviation from the mean con-
stitutes 68% of all possibilities for the predictions. In conclu-
sion, what can be found is a prediction and the bounds that
show a confidence level on the prediction. If one standard
deviation is plotted above and below the average, then it is
said that in this region we are 68% certain that the actual
value lies between this band and therefore giving us more
confidence in the predictions.

The same procedure is done for SVM’s and we can see that if
the bounds are smaller then the more confident we will be in
our predictions as we will know the actual value to be within
a smaller range. This is the added advantage of using Bayes-
ian techniques for MLP’s and SVM’s. It must be stated, how-
ever, that the algorithm requires enough samples to be used so
that the predictions given by the samples can actually follow a
normal distribution.

VI. IMPLEMENTATION AND RESULTS

Data had to be obtained to test the procedures described by
Sections VI and V. SAFEX [21] has a website with all its
historical data. Data was obtained for all options for the pe-
riod of January 2001 to December 2003. This resulted in there
being too much data and it was decided to use a particular
option. If MLP’s or SVM’s were trained using too much data
it would result in the techniques having to learn too much
information and could result in poor performance at the test-
ing stage due to over-fitting. It was decided to use call options
on the All Share Index (ALSI). This resulted still in much
data but at least the data wasn’t very different with strike
prices as it would be if many different options were used. In
conclusion it resulted in the MLP’s and SVM’s having to
learn less information and make them less susceptible to for-
getting. Each technique requires training and test data. The
inputs used have been discussed in Section III. The output
used will be the call price of the option. Since option prices
are susceptible to market forces, there are high and low prices
and the average of these was used as the actual call price.

Training data is used to minimize equation (9) and so that the
algorithms learned from this data. The test data (consisting of
inputs and outputs) is fed into the trained algorithm (only
inputs are fed in) and then predictions are obtained. These
output predictions are then measured against the actual values
so that certain error analyses can be done.

For both MLP’s and SVM’s and for the Bayesian techniques
applied to both, the data fed into the techniques has to be
normalized. This is because some of the inputs will have
higher values than others. For example, asset volatility was
usually in the 20 to 30 range and some of the strike prices
used was in the R8000 range. To MLP’s and SVM’s, this
would mean that the training algorithms would see certain
inputs as more important than others and so it was desirable
to get all the inputs within a certain range.

There are several normalization techniques that can be used
and many were tried. The one that resulted in the most accu-
rate predictions is given by:

σ

µ−
=

data
data (19)

where data is the data set to be normalized, µ is the mean of
the data set and σ is the standard deviation of the data set.
This is done for both test and training data because normal-
ised data must be fed into the trained algorithms if predictions
are to be obtained. Each input data set will have a mean and
standard deviation associated with it and each output will
have a mean and standard deviation associated with it.

This normalisation technique was done for all the training
algorithms including Bayesian techniques applied to MLP’
and SVM’s. It was then just a matter of testing the actual al-
gorithms and choosing the best parameters for each algo-
rithm. For example it is not known how many hidden units to
use for standard MLP’s and so different amounts had to be
used for this training algorithm. It must be stated the same test
data (test data is known as unseen data as the techniques are
not exposed to this data in the training and this is desired
when trying to gain predictions and there were always 300
test points) was used for both techniques but different training
data was used for each technique as some techniques required
more training data to provide better predictions than others.

Both MLP’s and SVM’s were trained using a machine with a
1.8GHz processor and 256MB of RAM with no other pro-
grams running but the Bayesian techniques were run using a
machine with a 2.8GHz processor and 512MB of RAM with
no other programs running. This is included as times are
given for the algorithms used The reason for stating the proc-
essing power used is because times for the algorithms trained
are stated and so these times can be put into context.

A. The Multi-Layer Perceptron

To implement MLP’s a toolbox was used, called the NET-
LAB toolbox which provided several functions and examples
that could be edited so that the algorithms could be applied to
particular problems [14]. This toolbox was constructed for

 21

use with MATLAB® which is a mathematically intensive
computer software package.

With MLP’s there are several factors that can be experi-
mented with so that the algorithm will perform at its best and
provide predictions with the lowest average error. Firstly, the
number of training cycles can be experimented with. If the
algorithm is allowed to train for too many cycles then equa-
tion (9) will be at too low a value. This would mean that the
MLP would be too well trained to its training data and would
not predict well on data that it hasn’t seen. The opposite is
also true as what is not desired is for the error value of equa-
tion (9) to be too high as this would mean that the MLP
trained would not have learnt enough information and this
would result in poor predictions again. There is a fine balance
between under training an MLP and over-training an MLP.

Secondly, there is an optimum number of hidden units (neu-
rons) in the hidden layer. This number of units also influences
the training of an MLP as if too few neurons are used then the
networks’ ability too learn information is reduced and thus its
predictions will not be as accurate as they can be. Again, if
too many neurons are used then the network would retain too
much information about the training data and again the net-
work would be over-trained resulting in the network produc-
ing very erroneous predictions again.

Thirdly, the number of training points used also had to be
experimented with. If too many training points were used then
it would mean that the MLP would have too much informa-
tion to learn and this would make it very susceptible to forget-
ting information and produce poor predictions. Again, if too
few training points are used then the MLP would not have
learnt enough information and again it would produce poor
predictions. There are different optimisation techniques that
could also be used to minimize equation (9) and there is also a
weight decay value and these could also be experimented
with although it must be stated that the weight decay value
didn’t have as much an impact on the predictions as would be
expected.

The parameters were experimented with at various different
values and the best values for the parameters can be seen in
Table 5.

Table 5: Best MLP Parameters

Parameter Value or Approach

Number of Training Points 400

Number of Hidden Units 10

Number of Training Cycles 300

Optimisation Technique for Equa-
tion (10)

Scaled Conjugate Gradients
(see Nabney [14] for details)

Weight Decay Value 0.05

The MLP was trained using these parameters and results were
obtained. The results can be seen in Table 6 with a plot of the
predictions and with the actual values for 100 of the test
points can be seen in Figure 8.

Table 6: Best MLP Results

TP
Max
Error
(%)

Mean Error
(%)

Error less than
10%

Error less
than 5%

300 2585 52 139 76

TP = no. of test points used, Max Error = Maximum error between the actual
output and that predicted by the network in the TP point test set used, Mean
Error = average error of the size of the test set used (TP), Error less than 10%
= amount of outputs given by the network that fell within an error of 10%,
Error less than 5% = amount of outputs given by the network that fell within
an error of 5%.

Figure 8: Plots of Actual and Prediction Values for the MLP

Trained

What the results show is that the maximum error was 2582%
but this translated to a price of R1409.00 when the price of
the option should only have been R54.50 (the exchange rate is
about R6/$1) but this is not necessarily reflective as this point
of data could be considered an anomaly (the data point is an
outlier meaning it wasn’t in keeping with the training data)
and these points were not removed from the data set. Since
American option prices are susceptible to market forces, some
options that are not in demand (for call options it would mean
that the strike price is too low) would have low prices and it
would be difficult to predict the price of these options and so
very low option price can be considered to be anomalies.
What is encouraging is that almost 50% of the test points used
produced errors of 10% or less and just over a quarter of the
test data produced an error pf 5% or less and the average was
pushed up by the error produced by these anomalies.

B. Support Vector Machines

There was also a toolbox obtained for the testing of this train-
ing algorithm (see Gunn [18]) and it could also be used with
MATLAB®.

As with MLP’s, there are also several factors that influenced
the predictions that SVM’s produce. There is firstly the ca-
pacity value which tries and control over training of the algo-
rithm (see Section VI.B). There is also ε-insensitivity (ε)
which controls the deviation of certain points (see Section
VI.B). There are also several kernel functions offered by the
toolbox. Various were tried until the best was found. The
number of training points is also a factor in this algorithm for
the same reason as that for MLP’s.

 22

It was found that due to the computational power needed by
the SVM network training, 400 points of data sufficed for the
network training otherwise it took too long to train the net-
work. At first a polynomial kernel of degree 2 was used with
1000 data points was used to train the data but this caused the
network to take 1 hour and 40 minutes to train (on a Pentium
4 1.8GHz laptop with no other software running) and the re-
sults were poorer than with only 400 training points used
(with the same values for capacity and ε being used with 400
and 1000 training points). At 500 training points, the time to
train the network was double than at 400 points and the re-
sults were also poorer than at 400 points.

The best SVM parameters were found and the values for the
parameters and the kernel function used can be seen in Table
7.

Table 7: Best SVM Parameters

Parameter Value or Approach

Number of Training Points 400

Capacity 10

ε-insensitivity 0.005

Kernel Function rbf with sigma at 1 (see Gunn
[18] for details)

The results of the SVM algorithm with these parameters can
be seen in Table 8 with the plot of 100 of the test points with
actual values and prediction plotted in Figure 9.

Table 8: Best SVM Results

TP
Max
Error
(%)

Mean Error
(%)

Error less than
10%

Error less
than 5%

300 1152 34.4 138 94

TP = no. of test points used, Max Error = Maximum error between the actual
output and that predicted by the network in the TP point test set used, Mean
Error = average error of the size of the test set used (TP), Error less than 10%
= amount of outputs given by the network that fell within an error of 10%,
Error less than 5% = amount of outputs given by the network that fell within
an error of 5%.

Figure 9: Plots of Actual and Prediction Values for the Best

SVM Trained

We can see that the SVM algorithm produced a much lower
average error and a much lower maximum error as well. The

number of predictions with 5% or less error was also in-
creased from a quarter to almost a third of the data with 94 of
the test points now having an error of 5% or less.

In conclusion we can see that the SVM algorithm outper-
formed the MLP NN but this comes at a bit of a price. The
SVM took about 6 minutes to train and the MLP took only 5
seconds to train. However, this is a small price to pay for ob-
taining a more accurate pricing model. In fact the algorithms
only require training once and once they have been trained
subsequent prices can then be produced. However, for future
studies time does play a role as more studies can be attempted
on algorithms that take less time to run.

C. Bayesian Multi-Layer Perceptrons

The NETLAB toolbox provides a function which implements
Metropolis-Hastings sampling and this was the function used
to sample for the weights and bias values for the MLP algo-
rithm. There were example files that demonstrated this in the
toolbox and one of these was edited and modified to fit the
option pricing problem at hand.

In addition to the parameters for MLP’s, there are also certain
parameters that come with Bayesian techniques. The number
of hidden units was also experimented with an optimal num-
ber of weights was found, however, the number of training
cycles was not experimented with as Bayesian techniques
offer the optimisation routine through their sampling and so
no scaled conjugate gradient or other method is needed to
optimise equation (9). This is done by the sampling algorithm
used (in this case the Metropolis-Hastings algorithm). With
Bayesian techniques there is the number of samples to ex-
periment with as well. In reality, the more samples the better
the predictions will be but too few would result in very erro-
neous predictions. There is also an amount of rejected sam-
ples. This also had to be experimented with and is the number
of samples that are rejected and not considered by the algo-
rithm to find predictions and bounds. This is usually required
(especially if too few samples are used) because the average
of the predictions is the actual prediction and since the sam-
pling starts at random values for weights and biases then the
average will be very far from the actual if the initial samples
in the chain are considered. This is because the initial samples
may take the average very far away from the actual outputs as
they are initially randomly generated and there is no criteria
for finding these values other than they must be close to zero
(see Nabney [14]).

What was also experimented with, for the Metropolis-
Hastings sampling method, is the step size. This is the size of
the step taken to generate a new sample and so it is intuitive
to note that if the step size is made too large then samples in
between the current sample plus the step size, may be missed
out and so it is desired not to have too large a step size. How-
ever, it is also not desirable to have too small a step size as
then not enough of the search space is explored unless many
thousands or even hundreds of thousands of samples are used
but this would result in the sampling taking too long if too
many samples are required. Therefore there is a balance be-
tween the step size and the number of samples.

The parameters used to gain results can be seen in Table 9.

 23

Table 9: Bayesian MLP Parameters

Parameter Value or Approach

Number of Training Points 300

Number of Hidden Units 40

Weight Decay Value 0.05

Number of Samples 1000

Number of Omitted Samples at
Start of Chain

500

Step Size 0.0005

The results for the trained Bayesian MLP can be seen in
Table 10 with the plots of 50 of the test points of actual val-
ues, predictions and bounds in Figure 10.

Table 10: Best Bayesian MLP Results

TP
Max
Error
(%)

Mean
Error (%)

Error less
than 10%

Error less
than 5%

Ave.
Dev.

300 3855 64 112 56 281

TP = no. of test points used, Max Error = Maximum error between the actual
output and that predicted by the network in the TP point test set used, Mean
Error = average error of the size of the test set used (TP), Error less than 10%
= amount of outputs given by the network that fell within an error of 10%,
Error less than 5% = amount of outputs given by the network that fell within
an error of 5%, Ave. Dev. = the average deviation and thus the magnitude of
the bounds above and below the prediction.

Figure 10: Bounds, Predictions and Actual Values for Bayesian

MLP’s

We can see that the bounds are quite small thus making the
technique quite successful but the average and maximum er-
rors were increased when compared to standard MLP’s. This
however is not too concerning as Bayesian techniques have
been shown to converge to their standard counterparts if
enough samples are used. What is attempted here is to show
that the bounds are quite small. That is the true test of the
Bayesian inference as now we can see whether a certain
amount should be added or subtracted from the prediction to
make the prediction more accurate. We will now see if the
bounds for Bayesian SVM’s were less broad than that for
Bayesian MLP’s.

D. Bayesian Support Vector Machines

In the SVM toolbox, there was no Metropolis-Hastings algo-
rithm and so what had to be done was to integrate the SVM
toolbox and the NETLAB toolbox [22]. For Bayesian MLP’s
the error function (optimisation function of equation (9)) was
included in the toolbox and so the Metropolis-Hastings algo-
rithm could be easily used to sample for weights. However
the SVM toolbox provided no such error algorithm and so
one had to be coded in MATLAB®.

For SVM’s the parameters that were to be found were only
the beta values. The bias values found from the training of
standard SVM’s, found that the bias values were always
found to be zero and so there was no need to sample for the
bias values. The bias values were just kept at zero.

Bayesian techniques were applied a bit differently to SVM’s
than to MLP’s. With MLP’s, random values were assigned to
the optimisation variables (weights and biases) but with
SVM’s if random values were assigned then many more sam-
ples would have to be obtained for the optimisation variables.
So what was decided was to train a standard SVM and then
use the values for the optimisation variables obtained (beta
values) as the first sample for the Metropolis-Hastings algo-
rithm. What this meant was that there were no omitted sam-
ples needed as the samples were fairly close to the starting
point provided by the initial SVM trained.

As with Bayesian MLP’s, the number of samples also had to
be experimented with especially since it can take very long to
train SVM’s and obtain an output from an SVM using its out-
put function. The step size also had to be experimented with
for the same reasons as that for Bayesian MLP’s. The capac-
ity value and the ε-insensitivity value used is that shown in
Table 7. Otherwise the parameters used can be seen in Table
11.

Table 11: Best Bayesian SVM Parameters

Parameter Value or Approach

Number of Training Points 50

Samples 10000

Step Size 0.05

It must be noted that only 50 training points were used as
opposed to 400 from standard SVM’s. This is the case be-
cause if 400 points were used then the Bayesian SVM algo-
rithm would take 8 times as long as with 50 points and the
results were only marginally better.

The results of the Bayesian SVM approach can be seen in
Table 12 with a plot of 50 of the test points used for predic-
tions, actual values and bounds in Figure 11.

 24

Table 12: Best Bayesian SVM Results

TP
Max
Error
(%)

Mean
Error (%)

Error less
than 10%

Error less
than 5%

Ave.
Dev.

300 1091 53 82 42 238

TP = no. of test points used, Max Error = Maximum error between the actual
output and that predicted by the network in the TP point test set used, Mean
Error = average error of the size of the test set used (TP), Error less than 10%
= amount of outputs given by the network that fell within an error of 10%,
Error less than 5% = amount of outputs given by the network that fell within
an error of 5%, Ave. Dev. = the average deviation and thus the magnitude of
the bounds above and below the prediction.

Figure 11: Bounds, Predictions and Actual Values for Bayesian

SVM’s

From the results for Bayesian SVM’s we can see that the av-
erage error has been raised (when compared with standard
SVM’s) but again the usefulness of the Bayesian framework
is for use of the bounds to add or subtract some value to the
price and obtain a more accurate price. In fact if more than
10000 samples were used then the 34.4% average error mark
(the level for standard SVM’s) could be achieved.

Better error values were obtained with smaller step sizes but
then the bounds were too small and weren’t indicative of what
they should actually be.

In conclusion, Bayesian SVM’s out-performed Bayesian
MLP’s with regards to average error and due to the fact that
the bounds were smaller for Bayesian SVM’s than Bayesian
MLP’s. However, again, this came at a price because the
Bayesian MLP trained took only 44 seconds to produce re-
sults where as the Bayesian SVM took 2.5 hours.

VII. RECOMMENDATIONS

From all the results obtained, it can be seen that the models
cannot be used, yet, to accurately price American options but
the new method of SVM’s has provided a good grounding for
further research so that a more accurate pricing model can be
obtained. Here, some recommendations are outlined so that
further work can be done using both MLP’s and SVM’s:

1. In the training algorithms for both SVM’s and MLP’s

there are certain parameters that were found by trial and
error (see Sections VI.A and VI.B), an optimisation
technique (such as Particle Swarm Optimisation or Ge-
netic Algorithms) could be used to better find these pa-

rameters by minimizing the error on the unseen data.
This may provide a problem with SVM’s because of
the time it takes to train them but as computational
speed increases, this will make the process faster and
more probable.

2. For the Bayesian framework, add one standard devia-

tion on top of the predictions and subtract one standard
deviation form the predictions and then note if this has
improved the errors found or if it hasn’t. This should be
done once more samples are generated for both Bayes-
ian MLP’s and Bayesian SVM’s so that better initial
predictions can be found (i.e. closer to the average er-
rors found by the standard MLP’s and SVM’s).

3. Use an optimisation technique to find the best value for

the step size (used for both Bayesian MLP’s and Bayes-
ian SVM’s) according to some error function so that the
most indicative bounds can be found and so that the av-
erage error can be minimized.

4. For SVM’s, beta values are always between the capac-

ity value and the negative of the capacity value (for the
capacity at 10, beta values range between -10 and 10)
and it was found by many of the standard SVM’ trained
that many of the beta values were either -10 or 10. In
the Bayesian framework, when sampling it meant that
these values were then deviated form 10 or -10 for
many of the samples. It may be very interesting to note
the results if only some of the beta values are sampled
for and not all thus leaving the ones at the extremes at
either -10 or 10 and only sampling for the other Beta
values. This may produce SVM results with better error
results and smaller values for the bounds as well.

5. Remove all data points to be considered anomalies

from the data set. This would allow the techniques to
provide better average error results and make the train-
ing algorithms learn the data much better.

6. Use more inputs to all training techniques. Extra inputs

could have been the spot price and the risk-free rate of
interest. Although it was chosen to exclude these, it
may be interesting to see if these inputs actually would
improve error performance. Another input could be the
actual Black-Scholes price for the option. This may aid
the techniques and aid in the predictions. Another ex-
ample of an input could be liquidity of the option.
Some options are more liquid than others (are traded
more thus making them easier to sell) and these make
the price of these options slightly higher. This liquidity
factor could be added as an input to further improve the
predictions.

All these recommendations can be attempted and it is be-
lieved that an accurate option pricing model can eventually be
achieved and used in the market.

VIII. CONCLUSION

When considering everything that has been implemented, we
can conclude that the new technique of SVM’s has out-
performed the more traditional predictive tool of the MLP.
This was the case found in both the Bayesian framework and

 25

external to the Bayesian framework. This did come at a price
of computational time but it must be said that this is a small
price to pay to obtain a more accurate pricing model. In fact
this time factor only comes into play for future studies be-
cause once an accurate pricing model is obtained the tech-
nique is only needed to be trained once and then subsequent
predictions can be obtained with very little computational
cost. There are several recommendations made and these em-
phasize the usefulness of computational intelligence methods
in this field and that an accurate model is attainable with fur-
ther research.

IX. ACKNOWLEDGEMENTS

The authors would like to thank the National Research Fund
(NRF) in South Africa for their financial support and making
this research possible.

The authors would also like to thank the University of the
Witwatersrand, Johannesburg for allowing the use of com-
puter facilities and licenses for the software needed.

REFERENCES

[1] S. Ross, R. W. Westerfield, B. D. Jordan and C. Firer, Fun-

damentals of Corporate Finance 2nd South African Edition,
McGraw-Hill Book Company, Sydney, Australia: 2001.

[2] F. Black and M. Scholes, “The Pricing of Options and Corpo-
rate Liabilities”, Journal of Political Economy, vol. 81, 1973,
pp. 637-659.

[3] R. A. Jarrow and S. M. Turnbull, Derivative Securities 2nd

Edition, South-Western College Publishing, U.S.A.: 2000.
[4] B. D. Ripley, Pattern Recognition and Neural Networks,

Cambridge University Press, 1996.
[5] D. L. Hudson and M. E. Cohen, Neural Networks and Artifi-

cial Intelligence for Biomedical Engineering, Wiley-IEEE
Press, Sep. 1999.

[6] T. Marwala and M. Lagazio, “Modelling and Controlling
Interstate Conflict”, IEEE International Joint Conference on

Neural Networks, July 25-29 2004, Budapest, Hungary, pp.
1233-1238.

[7] J. M. Hutchinson, A. W. Lo, and T. Poggio, “A Nonparamet-
ric Approach to Pricing and Hedging Derivative Securities
Via Learning Networks,” Journal of Finance, Vol 9, No. 3,
pp. 851-889, 1994.

[8] M. J. Morelli, G. Montagna, O. Nicrosini, M. Treccani, M.
Farina, and P. Amato, “Pricing Financial Derivatives with

Neural Networks,” Physica A: Statistical Mechanics and its

Applications, 1 July 2004, Vol. 338, Issues 1-2, pp. 160-165.
[9] D. L. Kelly, “Valuing and Hedging American Put Options

Using Neural Networks,” Working Paper, Carnegie Mellon
University, PA, December 1994.

[10] T. B. Trafalis, and H. Ince, “Support Vector Machine for
Regression and Applications to Financial Forecasting,”
IEEE-INNS-ENNS International Joint Conference on Neural
Networks, Como, Italy, July 24-27, 2000.

[11] K. Chan, T. Lee, P. A. Sample, M. H. Goldbaum, R. N.
Weinreb, and T. J. Sejnowski, “Comparison of Machine
Learning and Traditional Classifiers in Glaucoma Diagno-
sis”, IEEE Transaction on Biomedical Engineering, Vol 49,
No. 9, pp. 963-974, Sep. 2002.

[12] W. Chu, S. S. Keerthi and C. J. Ong, “Bayesian Support Vec-
tor Regression Using a Unified Loss Function”, IEEE Trans-

actions on Neural Networks, vol. 15, no. 1, 2004, pp. 29-44.
[13] J. C. Hull, Options, Futures and Other Derivatives, Prentice

Hall, Upper Saddle River, New Jersey, U.S.A.: 2003.
[14] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition,

Springer-Verlag, London, Great Britain: 2003.
[15] K. M. Hornick, M. Sticnhcombe and H. White, “Multilayer

Feedforward Networks are Universal Approximators”, Neu-

ral Networks, Vol. 2, No. 5, 1999, pp. 359-366.
[16] M. M. Polycarpou, “Online Approximators for Nonlinear

System Identification: A Unified Approach”, in C. Leondes,
Neural Network Systems, Techniques and Applications, Vol-

ume 7: Control and Dynamic Systems, Academic Press, Cali-
fornia, 1998.

[17] J. Joachims, “Making large-scale SVM learning practical” In
B. Scholkopf, C.J.C. Burges and A.J. Smola, editors, Ad-

vances in Kernel Methods-Support Vector Learning, pp. 169-
184, Cambridge, MA, 1999, MIT Press.

[18] S. R. Gunn, Support Vector Machines for Classification and

Regression. Faculty of Engineering, Science and Mathemat-
ics, School of Electronics and Computer Science, University
of Southampton, U.K. 1998.

[19] C. J. C. Burges. A Tutorial on Support Vector Machines for

Pattern Recognition, Kluwer Academic Publishers, Boston,
pp 1-43.

[20] T. H. Mirer, Economic Statistics and Econometric, Third

Edition. U.S.A: Prentice Hall, Inc., 1995, pp. 209-218.
[21] South African Futures Exchange, Available:

http://www.safex.co.za.
[22] M. M. Pires, Masters Thesis, School of Electrical and Infor-

mation Engineering, University of the Witwatersrand, 2005,
Appendix C: Software Code, Toolboxes, Data and Output
Files.

 26

Chapter 5: Conclusion and Further Work

In conclusion, it can be said that Support Vector Machines (SVM’s) out-performed the Multi-Layer Perceptron (MLP) in terms
of error analysis. This was found both using the maximum-likelihood framework and the Bayesian framework. Without the
Bayesian framework, SVM’s had an almost 20% better accuracy when pricing the call options even though they took much
longer to train. Within the Bayesian framework, SVM’s still produced better accuracy than Bayesian MLP’s even though the
time to train was much longer. Time to train certain algorithms may not be seen as a problem because the algorithms only need
to be trained once to produce subsequent prices and so accuracy is much more important than the time needed to train the dif-
ferent algorithms.

What can also be said is that Computational Intelligence is a field that needs to be explored much more in the options pricing
field. Even though an accuracy close to 70% with SVM’s was achieved, the accuracy level needs to be somewhere near the
95% mark for the model to be used by the South African Futures Exchange (SAFEX). There are several steps that can be taken
next so that the model can be further improved. A list of suggestions are as follows:

1. Many of the MLP’s and SVM’s trained were done by choosing certain parameters (such as capacity and number of train-

ing points for SVM and number of hidden units and number of training points for MLP’s) by trial and error. What would
be better would be to use some optimisation technique to do this and set up an error function so that the optimal parame-
ters could be found. It is suggested that an optimisation techniques such as Particle Swarm Optimisation (PSO) or Ge-
netic Algorithms (GA) be used.

2. Within the Bayesian framework, what can be done is subtract or add one standard deviation to the actual predicted price

and then do some error analysis to see if the predictions have been improved.

3. Within the Bayesian framework, generate more samples for both Bayesian MLP’s and Bayesian SVM’s so that the pre-

dictions that are found can have average error values close to that found by standard MLP’s and SVM’s. This would
make the Bayesian framework more useful. This may take much time but can be attempted by setting up the algorithms
to run for a long period of time.

4. Within the Bayesian framework, an optimisation technique can be used again to find the best value for the step size.

Again PSO or GA can be used by setting up an appropriate error function.

5. For SVM’s, beta values are always between the capacity value and the negative of the capacity value (for the capacity at

10, beta values range between -10 and 10) and it was found by many of the standard SVM’s trained that many of the
beta values were either at the extremes of -10 or 10. In the Bayesian framework, when samples were obtained, it meant
that these values then changed from these extremes and were thus not at their optimal values. It may be very interesting
to note the results if only some of the beta values are sampled for thus leaving the ones at the extremes at either -10 or 10
and only sampling for the certain Beta values. This may produce SVM results with better error results and smaller values
for the bounds as well.

6. The data could be analysed closer so that anomalies can be removed and so that only relevant data can then be used in

the training and testing of the algorithms. Anomalies are those data points that are different to normality and thus cause
the networks to not be able to learn these points very easily and thus cause large errors in the predictions. Some work on
the detection of outliers (anomalies) has been done [1].

7. Use more inputs to all training techniques. Extra inputs could have been the spot price and the risk-free rate of interest.

Although it was chosen to exclude these, it may be interesting to see if these inputs actually would improve error per-
formance. Another input could be the actual Black-Scholes price for the option. This may aid the techniques and aid in
the predictions. Another example of an input could be liquidity of the option. Some options are more liquid than others
(are traded more thus making them easier to sell) and these make the price of these options slightly higher. This liquidity
factor could be added as an input to further improve the predictions.

8. A different stopping criteria for SVM’s may make the SVM’s train faster (as the number of support vector required is

reduced) and thus provide more scope for work with SVM’s in this field. A different stopping criterion has been used
before [2] with a classification problem but what can be done is to see whether the same criterion can be applied to this
regression problem.

Therefore there are many suggestions as to future work and how the models can be improved to gain a more accurate pricing
model. Overall, the research was successful in determining which methods should be used over others and an idea of the range
of parameters that should be used when training the different algorithms. This work shows insights into pricing options and
what affects the prices of American options and also shows insights into which Computational Intelligence methods perform
better than others.

 27

REFERENCES

[1] J. R. Greene, “A Simple Method for Visualising Labelled and Unlabelled Data in High-Dimensional Spaces”, Proceedings of the

Fifteenth Annual Symposium of the Pattern Recognition Association of South Africa, November 25-26 2004, Cape Town, South Af-
rica, pp. 45-49.

[2] N. Muller, “Fast Stopping in Support Vector Machine Classifiers”, Proceedings of the Fifteenth Annual Symposium of the Pattern

Recognition Association of South Africa, November 25-26 2004, Cape Town, South Africa, pp. 41-43.

 28

Appendix A:

Hedging with Options and Other Contracts

Abstract

Companies around the world are exposed to certain kinds of risk and they are always looking for ways to protect themselves against

this risk (hedging). For example a gold mining company in South Africa is exposed to changing gold prices and usually in South Af-

rica, most of the gold is exported and so gold mining companies are exposed to risk due to the Rand exchange rate with the Dollar.

Hedging with forwards, futures and options is presented with emphasis on the use of options for hedging. This Appendix shows how

useful options can be and indicates how important it is to obtain an accurate price for an option.

I. INTRODUCTION

In recent times, the world has seen a tremendous increase in the volatility of interest rates, exchange rates and commodity
prices. Commodity prices were stable up until the 1960’s but since then there has been a rapid increase in commodity prices
[1]. Exchange rates in South Africa have been even more volatile. The Rand was only allowed to float against the U.S Dollar
after 1979 and the 1990’s and early 2000’s has seen a very volatile Rand/Dollar exchange rate. For example, in late 2001 and
early 2002, the Rand was as weak as R12/$1 and in 2004 it hovered around the R7/$1 mark, an almost doubling in strength
against the Dollar. Interest rates have also been very volatile in South Africa. For example, 1998 saw an increase of over 250
basis points in the interest rate and 1999 saw a decrease of 150 basis points (1 basis point equals 1 hundredth of 1%).

Therefore companies can be exposed to these volatilities. For example, a gold mining company is exposed to changes in the
gold price (if the gold price increases then the company will make more money and if it decreases then it will make less
money). Most gold mining companies in South Africa export the ounces mined. In this case then they would prefer a weaker
Rand because the gold price is usually (if the Rand is weak against the dollar then the gold mining company will receive more
Rands per ounce of gold sold). Also if the company has substantial loans from banks in South Africa then they will also prefer
a lower interest rate as then the company will pay less interest over to the lender. From this example we can see that the gold
mining company is thus a seller of the commodity and a buyer of particular exchange and interest rates. We can now construct
risk profiles for the gold mining company. The risk profiles show how the company is exposed to risk from these three volatile
measures. There is a separate risk profile for each of these measures. The profiles for the gold mining company can be seen in
Figure 12 and Figure 13 below:

Figure 12: Risk Profile for Commodity Price Change
Figure 13: Risk Profile for Rate Change

Figure 13 is the risk profile for the gold mining company for both exchange rate and interest rate risk. Therefore a gold mining
company in South Africa with some long term debt will have three different risk profiles, one as in Figure 12 and two as in
Figure 13. Note that a buyer of a commodity will have a risk profile as in Figure 13 and a seller of rates will have a risk profile
as in Figure 12 because buying and selling risk profiles are the same no matter the asset that is being bought or sold.

In essence what these profiles tell us is that an increase in commodity price (in the case of our example, gold is the commodity)
will result in the company making money and thus a positive increase in value and a decrease in either rate (either the Rand
weakens against the Dollar or the interest rate drops) will result in the firm making money. Of course the problem is not when
the firm makes more money the problem is when the firm loses money and thus decreases in value. From the profiles we can
see that this happens when the commodity price drops or the Rand strengthens against the Dollar or the interest rate rises.
Companies hedge (protect) against this risk through the use of forwards, futures or options.

 29

II. FORWARDS, FUTURES AND OPTIONS

A. Forwards and Futures

A forward contract is a legally binding contract between two parties calling for the sale of an asset or product in the future at a
price agreed upon today [1]. In terms of the gold mining company, what this means is that they could agree to sell gold at a
particular price to their customers (a price low enough to be attractive to the customer but not too low so that they can still
make a profit on the gold sold). They could also then agree with the bank providing the loan and the exchange rate to fix the
rates slightly higher than currently offered (again, just high enough to seem attractive to the bank but not too high otherwise
the gold mining company may be put out of business). These contracts would be desirable to the gold mining company if it
foresaw an increase in rates and a decrease in gold price. There is a downside to having these contracts though. If say commod-
ity prices rise and rates fall (thus favourable situations occur in the market) and the contracts have already been agreed upon,
then the gold mining company will not benefit from this and as a result the net gain of the company in taking forward contracts
is always zero. Therefore the firm’s value, with the contracts, will remain the same whether a favourable situation or unfavour-
able situation occurs in the market. The payoff that the company will experience is shown by payoff profiles. The payoff pro-
files for these forward contracts and the hedged profiles (the sum of the risk and payoff profiles thus showing net company
gains) can be seen in Figure 14 and Figure 15 below:

Figure 14: Hedged and Payoff Profile for Commodity Risk

Figure 15: Hedged and Payoff Profile for Rate Risk

Futures are very similar to forward contracts. The difference with Futures is that the gains and losses of the contracts are real-
ised on a daily basis and with forwards they are only realised on a certain later date.

B. Options

Options are slightly different contracts. Options give the owner the right, not the obligation, to buy (a call option) or sell (a put
option) an underlying asset for a fixed price (the strike price) for a certain period of time [1]. What this means, in terns of for-
wards and futures, is that companies can still hedge against financial risk as with forwards and futures but can also benefit
from favourable market situations (if the gold price increases and rates drop for our gold mining company example) by not
exercising the right that they have. This makes options valuable assets to companies and companies have to pay to have this
right. This price that they pay is known as the option price.

There are American and European options. European options only allow the exercise of the option on a later date (known as
the maturity date) and American options allow the exercise of the option on any date leading up to the maturity date. A Euro-
pean option pricing model has been developed by Fischer Black, Myron Scholes and Robert Merton and they developed what
is known as the Black-Scholes model [2]. Their equations for call and put options are seen below [3]:

)()(210 dNKedNSc rT−−= (1)

and

)()(102 dNSdNKep
rT −−−= −

 (2)

where

 30

T

TrKS
d

σ

σ)2/()/ln(2

0
1

++
= (3)

and

Td
T

TrKS
d σ

σ

σ
−=

−+
= 1

2

0

2

)2/()/ln(
 (4)

N() is the cumulative probability distribution function, S0 is the spot price (current price today) of the underlying asset, K is the
strike price agreed upon, r is the risk-free rate of interest (this interest rate is usually that denoted by government bonds in a
politically stable country [1]), T is the time to maturity in number of years and σ is the volatility of the underlying asset (vola-
tility implies how much the underlying asset has deviated in the past).

The problem is that American options cannot be priced with these formulas and American options are used in South Africa.
American options introduce a second random process as it is not known when it will be optimal for the owner of the contract to
exercise it. Intuitively we can say that American option prices would be a function of the same factors that are used for Euro-
pean options. American options are more valuable than European options [4] as they give the owner more flexibility with re-
gards to when to exercise. Companies all over the world use options to hedge against financial risk. Since options give the
owner the right, not the obligation, to exercise the contract, it makes options very valuable and they will have different payoff
and hedged profiles from forwards and futures. In the case of our example, a gold mining company would purchase a commod-
ity put option (allowing the company to sell gold for a fixed price), purchase an exchange rate call option (allowing the com-
pany to purchase a particular exchange rate) and purchase an interest rate call option (so that they can purchase a particular
interest rate). The payoff and hedged profiles for the gold mining company example for options can be seen in Figure 16 (for
gold price fluctuation risk) and Figure 17 (for exchange rate and interest rate risk):

Figure 16: Hedged and Payoff Profiles for Options for Com-

modity Price Risk

Figure 17: Hedged and Payoff Profiles for Options for Rate

Risk

What is not taken into account in Figure 16 and Figure 17 is the option premium (price). This is lost to the owner of the option
contract whether or not the option is exercised. Therefore the options will only be exercised if the gains that they provide com-
pensate for this loss and more In fact this will be the only time that the options will be exercised. Therefore pricing of these
options is very important to companies all over the world. A question still looms though, if options are not exercised then it
means that someone will lose out and lose money because it means that a favourable situation has occurred in the market. For
our gold mining example, if the gold price put option is not exercised then it means that the gold mining company is selling
gold for more than that stipulated by the option contract and it means that the customer is losing out on a lower gold price
stipulated by the option contract. The same thought process is used for the two rate options. If rates decrease to levels below
that stipulated by the call options then the company will not exercise the options and it would mean that the bank is losing out
on the higher rates stipulated by the call options. What the losing parties can do is buy options themselves. This can be done
for interest rates with caps and floors [1].

C. Caps and Floors

For the bank not to lose out on a higher interest rate stipulated by the call option (for our gold mining example) then what is
done by the mining company is usually to buy a cap and sell a floor. A cap is an interest rate call option and a floor is an inter-
est rate put option. What this effectively does is give the mining company the right to lower interest rate but it also gives the

 31

bank the right to enforce an interest rate of at least a certain level. This means that the interest rate paid by the mining company
will always be between the floor and cap price and never lower or higher. The same can be done for exchange rates by buying
an exchange rate call option and selling an exchange rate put option. The same can also be done with commodities. The gold
mining company would buy a gold put option and sell a gold call option thus allowing their customers to not pay above a cer-
tain price and allowing the gold mining company to never sell below a certain price. This effectively makes the rates and prices
trade between a certain ranges.

III. CONCLUSION

What has been outlined is the usefulness of options and how they are used all over the world to hedge against financial risk.
The important issue to note is that option prices are very important to companies as they will not want to pay too much for an
option and the seller of the option will not want to receive too little for the option. American options are the ones used in South
Africa and since there is not standard to pricing them, their prices are a function of market forces as well. Therefore the option
pricing problem is one that has brought much attention and work in the past and is a field that still requires much more work.

REFERENCES

[1] S. Ross, R. W. Westerfield, B. D. Jordan, and C. Firer, Fundamentals of Corporate Finance 2nd South African Edition. McGraw-Hill

Book Company, Sydney, Australia, 2001.
[2] F. Black, and M. Scholes, “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, Vol 81, pp. 637-659,

1973.
[3] J. C. Hull, Options, Futures and Other Derivatives, 5th Edition. Prentice Hall, Upper Saddle River, New Jersey, U.S.A., 2003.
[4] R. A. Jarrow, and S. M. Turnbull, Derivative Securities, 2nd Edition. South-Western College Publishing, U.S.A, 2000.

 32

Appendix B:

Paper for Fifteenth Annual Symposium of the Pattern Recognition

Association of South Africa

Option Pricing Using Bayesian Neural Networks

M. M. PIRES
School of Electrical and Information Engineering

University of the Witwatersrand, Johannesburg, South Africa
m.pires@ee.wits.ac.za

Abstract – Options have provided a field of much study because

of the complexity involved in pricing them. The Black-Scholes

equations were developed to price options but they are only valid

for European styled options. There is added complexity when

trying to price American styled options and this is why the use of

neural networks has been proposed. Neural Networks are able to

predict outcomes based on past data. The inputs to the networks

here are stock volatility, strike price and time to maturity with

the output of the network being the call option price. There are

two techniques for Bayesian neural networks used. One is

Automatic Relevance Determination (for Gaussian Approxima-

tion) and one is a Hybrid Monte Carlo method, both used with

Multi-Layer Perceptrons.

I. INTRODUCTION

This document deals with the use of two kinds of Bayesian
neural networks applied to the American options pricing
problem. Both Bayesian techniques used were used with
Mult-Layer Perceptron (MLP) networks. The techniques can
also be used with Radial Basis Function (RBF) networks [1]
but they were only used with MLP networks here. The two
Bayesian techniques used are Automatic Relevance Determi-
nation (ARD) (for Gaussian Approximation) and the Hybrid
Monte Carlo method (HMC) which will be discussed.

Firstly we need to introduce the notion of an option. An op-
tion is the right (not the obligation) to buy or sell some under-
lying asset at a later date but by fixing the price of the asset
now [2]. For someone to have this option, he/she has to pay a
fee known as the option price. There are two kinds of options,
namely a call and a put option. A call option gives the person
the right to buy the underlying asset and a put option gives the
person the right to sell the underlying asset [2]. The pricing of
either call or put options is equally difficult and something
that has brought much research interest.

Black et al. [3] provided equations in 1973 that provided a
pricing formula for call and put options. To obtain these equa-
tions, several assumptions had to be made. The most impor-
tant assumption made is that the formulas only held for Euro-
pean styled options [4]. European styled options only allow
the exercise of the option on the maturity date (which is the
later date that the person is allowed to buy or sell the underly-
ing asset) [5]. What are used extensively worldwide, though,
are American styled options where the person is allowed to
buy or sell the underlying asset at any date leading up to the
maturity date. This introduces another random process into
the pricing of the option (because it cannot be predicted when

the exercise of the option will occur) and so the pricing of
these kind of options is much more complex than European
styled options [6].

Neural Networks (NN’s) are a form of prediction based on
trends that have occurred in the past. The outputs of the net-
work are that which are to be predicted and the inputs are
chosen as variables that affect the outputs in the real world
and whose trends can be used to predict the output variables.
MLP and Support Vector Machines (SVM’s) have been used
to price American options [7] and here what will be tested is
the effectiveness of Bayesian Neural Networks.

II. BAYESIAN NEURAL NETWORKS

A. Bayesian Techniques

With NN’s there is always an error in the predictions made
and we thus have

ε+=);(wxfy (1)

where y is the actual output desired, f is the output predicted
by the network, ε is the error, w are the weights [1] and x is a
vector of inputs. Even if we are given ε and the same network
is run twice with the same parameters, we will obtain differ-
ent weights w both times and thus there is an uncertainty in
the training of the networks [1] and this can be attributed to
the randomness in the assignment of weights. Generally some
complex models try to fit the noise into the predictions which
cause problems when trying to predict with unseen inputs (the
problem of over training) and thus cause there to be even
more error in the predictions [1].

p(.) wherever used from now on is used to denote the prob-
ability function from statistics. In the Bayesian approach, the
uncertainty in the parameters estimated when training a net-
work is assumed to follow a particular distribution. We first
start with a prior distribution p(w) which gives us an idea of
the parameters before the data is used [1] but this only give us
a vague idea as the distribution is quite broad. The prior dis-
tribution can be of any kind for example Poisson or Geomet-
ric. In this case we will only use a Geometric distribution. We
then wish to narrow this distribution down by finding the pos-
terior probability density of the parameters w given a particu-
lar dataset D, p(w|D) where

 33

)(

)()|(
)|(

Dp

wpwDp
Dwp = (2)

and p(D|w) is the dataset likelihood and p(D) is the evidence
and ensures that the posterior integrates to 1 and is calculated
by an integral over the parameter space. Once the posterior

∫= ')'()'|()(dwwpwDpDp (3)

is calculated we can then make a prediction at a new input by
first calculating the prediction distribution

∫= dwDwpwxypDxyp)|(),|(),|(**
 (4)

where y is the predicted values and then the actual prediction
is found by

∫= dwDwpwxyypDxyE)|(),|(),|(**
 (5).

E(.) is the expected value in statistical terms. As can be seen
from equations (3) and (5), there is an integral involved and
the dimensionality of the integral is given by the number of
network parameters (weights) and this is not analytically pos-
sible and simple numerical algorithms break down [1]. There-
fore approximations to the posterior are made (the toolbox
used to train Bayesian Neural Networks is the NETLAB tool-
box used with MATLAB®) and this is known as the evidence
function in NETLAB and is used together with a Gaussian
Approximation and ARD (see Section IIB). What can also be
used is Hybrid Monte Carlo (HMC) methods combined with
Monte Carlo sampling used for integral approximation [1]
(see Section IIC).

The main reason for the use of Bayesian techniques is simply
to reduce the uncertainty in the weights and thus try to reduce
the problem of over fitting (i.e. over fitting occurs when a
network predicts badly because it is trained too much to its
training data and predicts badly with unseen inputs [1]).
Bayesian techniques do reduce the problem of over fitting as
has been proved by Nabney [1]. In NN’s there is a need to
optimise the network and thus reduce the error function [8].
In Bayesian techniques this is done by obtaining a posterior
distribution for the weights so that they can only be found
within a particular distribution thus narrowing the search for
the optimal weight values [1]. Bayes’ theorem helps us do
this but there are large integrals and there are several ways of
evaluating these integrals. There are Gaussian Approxima-
tions and HMC.

B. Automatic Relevance Determination

The prior distribution is chosen to be Gaussian [1] and thus is
of the form

∑
= =

−
W

i iw

W

e
Z

wp
1

2

2

)(

1
)(

α

α
 (6)

where the normalization constant ZW(α) is

2/
2

)(

W

WZ 







=

α

π
α (7).

α is known as the hyperparameter because it is a parameter
for the distribution of other parameters. It is then helpful to
have different hyperparamaters, one for each set of the weight
sets W1…, Wg. The way to choose these different hyper-
parameters is to have values for them associated to how im-
portant each input variable is. This is known as Automatic
Relevance Determination (ARD).

ARD is used because there is often the need to find the rele-
vance of certain input variables. This is not easily done if
there are hundreds of input variables. In Bayesian NN’s we
associate each hyperparameter with an input variable. Each
hyperparameter represents the inverse variance of the weights
and so the lower the value for a hyperparameter associated
with a particular input, the more important that input is in the
prediction process because it means that large weights are
allowed [1].

C. Hybrid Monte Carlo Method

As stated before, Monte Carlo methods can be used to ap-
proximate the integrals involved in Bayesian techniques
rather than using a Gaussian approximation with ARD and an
evidence procedure [1].

Since there is an uncertainty in the process, we need to find
the predictive distribution, i.e. the distribution that represents
the possible outcomes of the network due to the uncertainty in
the weights [1]. This distribution is an integral but in Monte
Carlo methods it is approximated to a sum

∑
=

=
N

n

nwxyp
N

Dxyp
1

),|(
1

),|((8).

where N is the number of samples chosen by the trainer of the
network and wn is the sample of weight vectors. These sam-
ples of weights can be chosen through different methods. A
Metropolis-Hastings algorithm can be used to sample these
weights but has proved to be very slow. This is because the
method makes no use of gradient information and for NN’s
the method of error back-propagation provides an algorithm
for evaluating the derivative of an error function and thus
optimizing the network more computationally efficiently [1].
Another method that can be used is the Hybrid Monte Carlo
(HMC) algorithm for sampling which is the one that is used
in this application and makes use of the gradient information.

The HMC algorithm is a sampling algorithm that takes into
consideration certain gradient information. The algorithm
follows the following sequence of steps once a step size ε and
the number of iterations L has been decided upon:
1. Randomly Choose a Direction λ: λ can be either -1 or +1

with the probability of either being chosen being equal.
2. Carry Out the Iterations: Starting with the current state

))0(ˆ),0(ˆ(),(pwpw = randomly selected, where p is a

momentum term which is evaluated at each step, we then
perform L steps with a step size of λε resulting in the can-

didate state),())(ˆ),(ˆ(** pwLpLw =λελε .

 34

3. The candidate state is accepted with probability

),1min(),(),((**
pwHpwHe −−

 where H(.) is the Hessian

matrix. If the candidate state is rejected then the new
state will be the old state.

These three steps, in essence, describe how the sampling is
done so that the summation of equation (8) can be accom-
plished and so that the posterior distribution can be found and
thus allowing the optimisation of the NN. The momentum
term p can be randomly generated or it can be changed dy-
namically at each step and there are different ways of doing
this [9]. The sets of weights are thus selected or rejected ac-
cording to the three steps above and the number of samples
that are wished to be retained are the number of weights re-
tained. For each set of weights there is a corresponding NN
output. The prediction of the network is the average of the
outputs.

The usefulness of the Bayesian approach comes into the fact
that the prediction comes with certain confidence levels. In
fact the prediction mathematically is the same as that of the
standard MLP. If we plot the prediction and upper and lower
bounds (where the upper bound is the prediction plus the
standard deviation of the outputs and the lower bound is the
prediction minus the standard deviation of the outputs of the
network) then we say that the prediction is known to within a
certainty of 68% (because in the normal distribution 1 stan-
dard deviation from the mean constitutes 68% of the possible
outcomes [10]). This is done for the Gaussian and HMC ap-
proaches.

III. RESULTS OF BAYESIAN NEURAL NETWORKS

A. Automatic Relevance Determination Approach

Data was obtained from the JSE Securities Exchange of South
Africa. It was obtained for a particular stock option for the
period January 2001 to December 2003. This resulted in there
being 3051 points of data that could be used for training and
testing of the networks. The inputs to the network were stock
volatility, strike price and time to maturity (in days). The out-
put of the network would simply be the call price of an op-
tion. Call prices were obtained for different options with there
being both high and low prices. What was decided was to use
the average of the high and low prices as the actual call price
and these are the values used to train and test the network.

There are demos available in the NETLAB toolbox that show
the procedure of training Bayesian NN’s with the Gaussian
Approximation and ARD, and HMC. These demos were ed-
ited so that the procedures could be experimented with on the
options pricing problem. In the Gaussian Approximation with
ARD, it was found that 500 training cycles showed the best
results with 1000 data points being used to train the network.
The network was tested with 300 data points so that the plots
could be easily seen when viewing the error bars. The evi-
dence procedure utilized in the toolbox has a certain amount
of cycles associated with it as well and it was found that 10
cycles for this sufficed for the training of the Bayesian NN.
The parameters changed were the number of hidden units, the
number of loops used to find better hyperparameter values
and the value for β that is associated with MLP NN’s and is
the coefficient of data error associated with the MLP. The

results of the Gaussian Approximation approach with ARD
can be seen in Table 13.

Table 13: ARD NN Results

β
Hid.
Uni-
ts

Mean
Error
(%)

Ti-
me
(s)

n

σ

Alphas

1 25 64.7 52 1 1516 [1.2177 1.2036 0.6417]

10 25 53.16 52 1 1512 [0.8366 0.9051 0.5723]

100 25 61.94 49 1 1354 [1.0101 0.9760 0.4525]

1 50 57.44 104 1 1541 [1.2231 0.9342 1.1528]

10 50 52.72 103 1 1505 [1.5385 0.8931 0.8203]

100 50 61.16 102 1 1485 [0.7763 1.2248 0.9373]

1 25 62.1 105 2 1390 [1.7646 0.9891 1.1858]

10 25 70.49 97 2 1520 [1.8534 0.7471 0.9004]

100 25 58.95 102 2 1433 [1.1214 1.5703 0.4662]

1 50 78.49 191 2 1521 [2.0210 1.5175 0.7859]

10 50 76.56 177 2 1409 [1.7518 1.2180 0.6775]

100 50 61.85 175 2 1456 [1.9264 1.3430 0.7552]

β = coefficient of data error for the MLP, Hid. Units = number of hidden
units used in the training of the MLP, Mean Error = average error found by
subtracting each prediction from the actual value and multiplying by 100
over the size of the test set used (300), Time = time taken to train the net-
work, n = number of loops used to find the best hyperparameter values, σ =
the average size of the bounds for all the outputs (average of standard devia-
tions of output samples), Alphas = hyperparameter values found for the cor-
responding input to hidden unit weights thus showing the importance of the
different inputs.

There was a problem when trying to find the standard devia-
tions of the outputs for the Bayesian NN’s using the ARD
approach. The function that provides the standard deviations,
at times, produced some imaginary numbers so what was
done was to search through the standard deviations and re-
place the imaginary numbers with the first standard deviation
value in the array. This got rid of the errors in MATLAB® but
showed that the ARD approach does have some bugs. In fact
it is said that the Gaussian approximation is the same as the
HMC under certain conditions but these conditions are not
known and in fact the only reason that Gaussian approxima-
tions are used in Bayesian techniques is because they are
more mathematically neat than other Bayesian approaches.

As can be seen from Table 13, the network performed the best
with the coefficient of data error at 10, with 50 hidden units
and the number of loops to find different hyperparameter val-
ues only set to 1. The values found for the different hyper-
parameters show that each input was important in the deter-
mination of call prices because each hyperparameter was in
the same order of magnitude and there isn’t one that is sig-
nificantly smaller or larger than the others. The time column
indicates that the networks didn’t take too long to train and
that if the number of hidden units was doubled so the time to
produce a result also doubled (give or take a few seconds).
Other values were tried for hidden units and what was also
tried was to use more training data to improve the accuracy of
the pricing model. It was found that with 1500 training points
and 100 hidden units the mean error was much higher than
the values found in Table 13 and also took up to 30 minutes
to train. Note that to obtain these results the algorithm had to
be run several times with the same parameters so that the best
results for these parameters could be obtained, this is due to

 35

the random nature inherent in the algorithm for training the
NN as was found with standard MLP’s [7]. The standard de-
viations found for each network trained are quite large and
thus the predictions found by the network are known to be
within a range of about R3000 with a certainty of only 68%.
Therefore we can only say that we know the price to be
within quite a large range (of R3000) and only with a confi-
dence of 68%. The outputs for 50 of the 300 test points used
and with the corresponding confidence levels for the 2nd
network in Table 13 can be seen in Figure 18.

Figure 18: Bayesian NN with ARD results.

* Note the upper and lower bounds are solid and notice they are quite broad.

B. Monte Carlo Approach

The data used to train and test the HMC Bayesian NN was the
same data as that used for the ARD approach. Here the coef-
ficient of data error value was not experimented with and was
rather kept at a value of 10. The number of hidden units was
experimented with as well as the number of initial samples
rejected and the number of samples in the HMC procedure.
The step size was kept constant at 0.002 because it was found
that if it was changed to other values bigger or smaller then
the threshold (probability used in the rejection criteria) was
not a number (NaN in MATLAB®) and so the procedure
didn’t work very well in these cases. The number of training
points used was also 1000 and the number of points used to
test the network was 300. The results for the HMC Bayesian
NN approach can be seen in Table 14.

Table 14: HMC NN Results

Rej.
Max
Error
(%)

Mean
Error
(%)

Samp.

Time

(s)

σ

Hidden
Units

100 5241 76.07 100 259 445.95 10

100 5990 95.68 100 444 502.72 20

100 4372 82.76 100 816 699.36 40

100 4378 98.31 400 648 468.71 10

100 5212 77.92 400 1114 575.67 20

100 6719 98.26 400 2104 814.61 40

200 5662 79.21 100 390 401.42 10

200 7618 103.42 100 665 684.75 20

200 4021 91.80 100 1227 680.83 40

200 3849 92.04 400 777 472.08 10

200 4093 78.29 400 1322 591.20 20

200 5836 78.53 400 2451 722.30 40

Rej. = number of samples to be rejected initially (at the start of the Markov
chain), Max Error = Maximum error between the actual output and that pre-
dicted by the network in the 300 point test set used, Mean Error = average
error of the size of the test set used (300), Samp. = number of samples in the
HMC method, Time = time taken to train the network, σ = the average size of
the bounds for all the outputs (average of standard deviations of output sam-
ples), Hidden Units = number of hidden units used in the MLP.

As can be seen from Table 14, the networks took quite some-
time to train with 1000 training points. It was attempted to try
fewer points for training but just reduced the performance of
the network significantly. What was also attempted was to use
more hidden units to train the network but this proved to in-
crease the amount of time required to train the network with
no improvement in the error analysis. Note that the algorithm
for each result in Table 14 was found by training the same
network only once. It didn’t have to be run several times. The
process of training networks in this was still random but the
seed used for the random number generator was the same
every time and so there was no difference between the results
of two networks that were trained with the same parameters.
The standard deviations found by each network trained are
significantly smaller than that found by the Gaussian ap-
proach with ARD. Therefore the predictions of the network
are known with a confidence of also 68% to be within a cer-
tain range but the range is much smaller and at best the range
was R802.84. The outputs for 50 of the 300 test points used
and with the corresponding confidence levels for the 1st Net-
work in Table 14 can be seen in Figure 19.

Figure 19: Bayesian NN with HMC results.

* Note the upper and lower bounds are solid and notice that they are much
less broad than the bounds for the ARD approach.

 36

IV. COMPARISON OF BAYESIAN TECHNIQUES WITH STAN-

DARD MULTI-LAYER PERCEPTRONS AND SUPPORT VECTOR

MACHINES

From the results obtained for the standard MLP and SVM [7],
it must be said that the Bayesian techniques applied to NN’s
didn’t provide any improvements. In fact mathematically they
are said to be the same as standard NN’s but the advantage
they bring is the actual confidence levels. With regards to the
ARD approach, the best level of mean error was found to be
53% which is very close to the 51% found by the standard
MLP trained before. The amount of time taken to train the
network was much more than that found by the standard MLP
as was to be expected due to the extra functions being utilized
in the Bayesian approach due to the approximations inherent
in the technique. Compared to SVM it was faster than the 7
minutes taken to train an SVM network but the results were
significantly poorer because the average error found by the
SVM network at best was 34.4%.

With regards to the HMC approach the best value found for
average error over the test set was found to be 76.07%. HMC
is mathematically supposed to provide the same results as
standard MLP’s but it didn’t in this case. This is probably
because not enough samples were taken when obtaining a
prediction. With there being 400 samples the network took up
to 40 minutes to train and so for the purposes of this study
what was considered to be more interesting is the fact that
HMC provided a much narrower band of confidence than that
found by the Gaussian approach with ARD. The band pro-
duced by the HMC approach was R804.84 which is signifi-
cantly better than the R3000 found by the ARD approach.
Therefore even though the error found by the HMC approach
was found to have at best an average of 76.07% we know that
the price given by the network is known to be within a band
of R804.84 with a confidence of 68%. A drawback is of
course the time taken to train the network using HMC. It
takes very long but is still more useful than standard MLP’s
and MLP’s with the ARD approach.

In conclusion the best NN method was found to be the SVM
method because it produced the best error analysis results and
even though it took 7 minutes to train it is worth using in the
future. But it must be said that Bayesian NN’s do produce
confidence levels for the outputs which is still a serious ad-
vantage over standard NN’s when pricing options. This is
because what can be done is to say that a price is provided
with this degree of confidence and thus we can then see the
implications of adding a bit to the price because we know the
confidence or subtracting from the price. Based on this we
can see that optimally a Bayesian SVM approach would be
favourable and this could be further researched.

V. CONCLUSION

The algorithm that worked the best for the option pricing
problem is the SVM algorithm. It produced the best error
analysis results even though it takes a bit longer to train than
standard MLP NN’s and Bayesian MLP NN’s with ARD.
What can be attempted in the future is to use some optimisa-
tion approach (such as Particle Swarm Optimisation or Ge-
netic Algorithms) to obtain the optimum number of weights
and values for other parameters so that the best Bayesian NN
can be found. This may prove to be very computationally

intensive and may take a very long time especially with the
HMC approach with Bayesian NN’s. Bayesian techniques can
be very powerful and should be experimented with further so
that the best parameters for them can be found but at first
hand it has been found that the best performing NN is the
SVM. The HMC Bayesian approach provides the best confi-
dence levels and maybe a combination of these confidence
levels with SVM can be attempted in some manner.

REFERENCES

[1] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition.

London, Great Britain: Springer-Verlag, 2003, pp. 325-365.
[2] J. C. Hull, Options, Futures and Other Derivatives, 5th Edi-

tion. Upper Saddle River, New Jersey, U.S.A.: Prentice Hall,
2003, pp. 6-10.

[3] F. Black and M. Scholes, “The Pricing of Options and Corpo-
rate Liabilities,” Journal Political Economy, vol. 81, pp. 637–
659, 1973.

[4] J. C. Hull, Options, Futures and Other Derivatives, 5th Edi-

tion. Upper Saddle River, New Jersey, U.S.A.: Prentice Hall,
2003, pp. 234-257.

[5] R. A. Jarrow, and S. M. Turnbull, Derivative Securities, 2nd

Edition. U.S.A.: South-Western College Publishing, 2000, pp.
15-20.

[6] R. A. Jarrow, and S. M. Turnbull, Derivative Securities, 2nd

Edition. U.S.A.: South-Western College Publishing, 2000, pp.
175-202.

[7] M. M. Pires and T. Marwala, “American Option Pricing Us-
ing Multi-Layer Perceptron and Support Vector Machine”, in
Proc. IEEE Conference on Systems, Man and Cybernetics,
The Hague, October 10-13 2004, pp. 1279-1285.

[8] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition.
London, Great Britain: Springer-Verlag, 2003, pp. 156-157.

[9] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition.
London, Great Britain: Springer-Verlag, 2003, pp. 300-307.

[10] T. H. Mirer, Economic Statistics and Econometric, Third

Edition. U.S.A: Prentice Hall, Inc., 1995, pp. 209-218.

 37

Appendix C:

Software Code, Toolboxes, Data and Output Files

Abstract

This document deals with the software written for the implementation of the various computational intelligence methods used

throughout the research period undertaken. It details the steps taken as well as the format used for the output files for each kind of

techniques used. What was also done was to write a piece of code to organise the data that was needed and remove what was not

needed from the raw data files.

I. SOFTWARE CODE, TOOLBOXES AND DATA

A. Arranging the Raw Data

The data needed was American option data and it was decided to pick a particular underlying asset and then use the options on
this asset as the data to be used for training and testing of the different methods. There was data available for all options for the
period January 2001 to December 2003. The raw data used was obtained from the South African Futures Exchange (SAFEX)
website [1] and it was decided to use the All Share Index options as the data to be used. It was then decided to use the call op-
tion data only. It was felt that if call options could be priced then the techniques used could be used in a similar way to price
put options.

Neural Networks (NN’s) and Support Vector Machines (SVM’s) predict outputs based on inputs and thus these inputs need to
be chosen according to what would affect the option price [2]. What was then needed to be decided was what to use as inputs
and outputs to each of the techniques. From the Black-Scholes equations it can be seen that there are five factors that affect
European options [3]. It was then decided that each of these factors would also influence American option prices. Spot price
was very close, usually, to the strike price and thus it wouldn’t aid the NN’s or SVM’s trained. Thus spot price was excluded
as an input to each of the techniques used. Another factor excluded was the risk-free rate of interest. This interest rate is very
constant over a certain period (especially over the last 3 years) and so if it was used as an input the NN’s or SVM’s would not
be able to see its significance (as it wouldn’t vary for any of the different option data) and thus if it was included, it would not
improve the performance of either of the techniques. The other three factors were decided to be used as inputs, namely the as-
set volatility, the strike price and the time to maturity (in days).

The output of the network then needed to be decided upon. It can be seen from the data that there is high and low prices. This
is due to the fact that there is no standard pricing method for American options and so their prices are a factor of certain market
forces [3]. Several brokers use different methods for pricing these options resulting in potential owners of options being able to
gain different prices for American options from different brokers. What was decided was to use the average of the high and
low prices as the actual option price and this was used as the output of the different techniques used.

The raw data downloaded form the SAFEX website was downloadable in .CSV format to be used with Microsoft® Excel.
However it was necessary to transform these files to .XLS files so that the files could be exported to MATLAB®. There are
files for every trading day between January 2001 and December 2003. There were no headings for the data entries in the files
but the headings could be obtained off the SAFEX website. The Headings can be seen in the correct order in Table 15.

Table 15: Headings for SAFEX Option Data files

Contract
Expiry Date
Strike Price

Marked-to-Market Price
Volatility
Spot Price
High Price
Low Price

Last Traded Price
Volume Traded

Open Interest (No. of Contracts still in Existence)

A program was written in Microsoft® Visual Studio .NET (using Visual C# .NET) so that the relevant information could be
extracted from the downloaded files. There are various steps in getting the data into the format required. The screen for the
program written can be seen in Figure 20.

 38

Figure 20: Program Written to Sort the Raw Data

Firstly it must be noted that the data files must be stored in the correct directories for the program to work. On the attached CD,
there are three data folders called: “2001_data”, “2002_data” and “2003_data”. These files contain the daily data for the re-
spective years. All three folders must be copied to the machine’s “C:\\” directory for the program to work. As can be seen from
Figure 20, there are six steps that must be followed to get the data into the right format so that it can be viewed and then edited
in Microsoft® Excel. Step one involves changing each file to a .XLS file (the folders on the CD already contain .XLS files and
so this step is not necessary but it can still be done). The user (of the program) must first enter “2001” in the textbox provided
and then run through steps 1-4. The user then does the same for “2002” and “2003”. The user then doesn’t need anything en-
tered in the textbox and he/she then runs steps 5 and 6. The program will create a directory under “C:\\data” and in this direc-
tory the file of interest is “data.xls”. When this file is opened it will not be in a useful format. The user then selects the file and
Microsoft® Excel will open. The “data” tab in Microsoft® Excel must then be clicked and then the “Text to Columns…” option
selected. The user must then follow the steps and the data will now be in the columns that he/she needs them in (note that the
last column will contain the date at which the data was quoted and so time to maturity can be found by subtracting this date
form the expiry date).

This was the procedure followed. The columns not needed were then removed and columns for time to maturity and the aver-
age of the high and low prices were inserted (the average of the high and low prices was done by a simple formula in Micro-
soft® Excel). Time to maturity was found by converting the two date columns (expiry date and the date the data was quoted)
into numbers (this can be done in Microsoft® Excel by changing the cell properties) in Microsoft® Excel and then creating a
new column and subtracting these two date numbers. The data could then be imported into MATLAB® by selecting the “File”
menu and then its “Import Data…” feature. This was done and the data in MATLAB® format is also stored on the CD as
“proj1_data.mat”. This MATLAB® data file must be copied into MATLAB®’s “work” directory found where MATLAB® is
installed for any of the training algorithms programmed to work (the training algorithms are explained in Sections I.B, I.C, I.D
and I.E).

The program of Figure 20 is stored on the CD as well. The source code is stored as the “change_file_type” directory. In the
directory the project file is included so that the code can be edited, if need be, by future users. If this is not desired then the
executable file is also included on the CD as “change_file_type.exe” and can be used in the procedure explained above. Once
the data was placed in the format desired then the various techniques could be implemented in MATLAB® using the different
toolboxes and functions. There was code written for the four different techniques used, namely, the Multi-Layer Perceptron,
the Support Vector Machine and Bayesian techniques applied to both of these and the code written was done in MATLAB®.

B. The Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a Neural Network (NN) architecture. There is a toolbox available by Ian Nabney [2] and
the toolbox is for use with MATLAB® and is called the NETLAB toolbox. The NETLAB toolbox is included on the attached
CD and is named as the “NETLAB” folder. It must be copied to MATLAB®’s “toolbox” directory and then it must be added to
the path by selecting the “File” menu in MATLAB® and then the “Set Path…” feature and selecting the “NETLAB” folder
copied. The MLP architecture in this toolbox is a two-layer architecture. Two layers with sigmoidal activation functions in the
hidden layer and linear activation functions in the output layer have been found to be universal approximators [4] provided that
there are a sufficient amount of neurons in the hidden layer [5]. This meant that the toolbox could be used and more hidden

 39

layers would not improve the predictions. That is why it was decided to use the NETLAB and in addition a sigmoidal function
is used in the hidden layer (a hyperbolic tangent function) and a linear function is used in the output layer [1].

In the NETLAB toolbox there are examples that show the training and implementing of the architecture using the various func-
tions. One of these examples was edited and used for the American option pricing problem.

The data arranged produced 3051 points of data and various amounts of training points could be used. This was done by intro-
ducing a “train_up” and “train_low” variable which shows the section of data that is to be used as the training data (so if the
first 50 data points are to be used as training data then “train_low” is set to 1 and “train_up” is set to 50). The same is done for
the test data and the same test data was tried to be used throughout all the techniques used so that relevant comparisons be-
tween the different techniques could be made.

There are also various normalisation techniques that can be used for normalising the data. Several were tried and it was de-
cided to use the following normalisation technique:

σ

µ−
=

data
data (1)

where data is the data point to be normalised, µ is the average of the data set being normalised (and so an average is needed for
every input and each output) and σ is the standard deviation of the data set being normalised (and so the standard deviation for
each input and each output is required). This normalising procedure was thus the procedure used for all the techniques at-
tempted including Support Vector Machines and Bayesian techniques applied to NN’s and Support Vector Machines.

The file to be run must be copied to MATLAB®’s “work directory. The file can be found on the CD in the MLP directory
called “nettrainmlp.m”. This can be run in MATLAB® at the prompt by just typing “nettrainmlp” once the file has copied to
the “work” directory.

C. Support Vector Machines

To implement Support Vector Machines (SVM’s) a toolbox was also obtained. It was created at the University of Southampton
in the U.K [6]. The SVM toolbox is included on the attached CD and is named as the “SVM_toolbox” folder. It must be copied
to MATLAB®’s “toolbox” directory and then it must be added to the path by selecting the “File” menu in MATLAB® and then
the “Set Path…” feature and selecting the “SVM_toolbox” folder copied. It is a toolbox to be used with MATLAB®. There are
several functions that are contained in the toolbox for support vector regression and classification. Support vector regression
was used with the same normalisation algorithm as that for MLP’s (see Section I.B). There were also variables created for
“train_up” and “train_low” so that a particular number of points of data can be used for the training. It must be noted that there
are two variables that needed to be created as global variables in MATLAB® (“p1”and “p2”) and these are two of the variables
used for the training of the SVM’s. The file created in MATLAB® is called “trainSVM.m” and is found in the “SVM” direc-
tory on the attached CD. This file must be copied to MATLAB®’s “work” directory so that it can be run from the MATLAB®
prompt.

D. Bayesian Multi-Layer Perceptrons

The NETLAB toolbox also contained examples for all Bayesian techniques. There were three techniques used with MLP’s,
namely the Automatic Relevance Determination (ARD) approach (used with Gaussian sampling), the Hybrid Monte Carlo
(HMC) sampling method and the Metropolis-Hastings sampling method. Only the Metropolis-Hastings Algorithm is presented
in the main body of this dissertation but the other two approaches are presented in a paper for a conference [6]. For Bayesian
inference, there is an error function that must be created. The error function for NN’s is the error found by the NN trained and
it can be found from:

∑∑
= =

−=
1

1 1

2

arg,)(
k

N

g

ettkkg yyE (2)

where E is the error to be minimized and N is the number of sets of training data given. The sets of outputs ykg are the outputs
predicted by the network given the training inputs and yk,target are the training outputs. This error can be found by using the
“neterr” function provided by the NETLAB toolbox.

For the ARD approach, an example in the NETLAB toolbox was edited and applied to the option pricing problem. The same
normalisation technique was used as that for the MLP and SVM approaches. Upper and lower bounds are also found for this
approach (as this is the usefulness of the Bayesian framework [7]) and this is done using the NETLAB toolbox and its
“netevfwd” function. The file written to implement Bayesian MLP’s using the ARD approach is on the CD in the “Bayesian
MLP” folder. The name of the file is “bayes_ard.m” and must be copied to MATLAB®’s “work” directory and it can then be

 40

run from the MATLAB® prompt. For this approach there is no “train_up” and “train_low” variables and what is rather used is
a “train_amount” variable and so the first number of these points (set by the “train_amount” variable”) is used for testing and
the subsequent number of points (the number assigned to “test_amount”) is used in the testing of the data. This is also done for
the HMC approach but for every other approach there is the “train_up” and “train_low” variables used to select the training
data (there is also “test_up” and “test_low” to select the test data).

For the HMC sampling method, an example in MATLAB® was also edited and then implemented for the option pricing prob-
lem. The normalisation function was the same as that used for all the other approaches. The bounds had to be found intuitively
as there was no function in the NETLAB toolbox to do this. With Bayesian techniques what happens is that there are several
MLP’s (there are as many MLP’s as there are number of samples) and therefore each output will have the sample number of
predictions. The average of each output for all the networks is the prediction provided. The standard deviation could then be
found for each output prediction and the bounds are found by adding the deviation to the prediction (for the upper bound) and
subtracting the deviation from the prediction (for the lower bound). With HMC there is also the gradient of the error function
required but there is a function in the NETLAB toolbox for this as well and it is called “netgrad”. The training was done and
the MATLAB® file for this is “bayes_hmc.m”. This file can be found on the CD in the “Bayesian MLP” folder and can be run
in the MATLAB® prompt by copying the m-file to MATLAB®’s “work” directory.

For the Metropolis-Hastings sampling method, the same file as for the HMC approach can be used. The only difference is that
instead of using the ‘hmc” function form the toolbox, the “metrop” function must be used and this resulted in only one line of
code needing to be changed. In this “metrop” function no gradient function is needed and so instead of passing “netgrad” to the
function, this can be replaced with “[]”. The file of interest for this approach is “bayes_met.m” and can be found on the CD in
the “Bayesian MLP” folder. It must also be copied to MATLAB®’s “work” directory and it can then be run from the prompt in
MATLAB®.

E. Bayesian Support Vector Machines

To implement Bayesian SVM’s was more difficult than with MLP’s. The SVM toolbox was separate from the NETLAB tool-
box and so some code had to be written. With SVM’s the gradient of the error function cannot be found explicitly because the
loss function used is the ε-insensitive loss function which is not differentiable [8]. Therefore the only Bayesian technique used
was the Metropolis-Hastings sampling method and what needed to be coded was the error function. Two files were written
namely “SVMerr.m” and “macherr.m”. The “metrop” function form the NETLAB toolbox calls the “macherr” function written
and the “macherr” function calls the “SVMerr” function written. The “SVMerr” function computes the error as in equation (2)
but for SVM’s. These two files written are included on the CD in the “Bayesian SVM” folder along with the function used to
train the Bayesian SVM’s called “bayes_metSVM.m”. All three files must be copied to MATLAB®’s “work” directory. The
“bayes_metSVM.m” file is written as a function and can be run from the MATLAB® prompt as follows:

[mean_err,max_err,min_err,count10,count5,time,ave_dev,upperbound,lowerbound,test_outputs,test_outputs_actual] = bayes_metSVM(step,samples,rejected)

The user can then select the step size, the number of samples and the number of rejected samples at the start of the chain.

All the files that were run created workspaces and this meant that the outputs of the testing could be saved in MATLAB®. The
format for these files is now explained so that future researchers can use the results found for future research.

II. TEST OUTPUT FILES

A. The Multi-Layer Perceptron

The results of the MLP’s trained can be seen in Table 1 and the first entry in the table has an output file called “mlpex1.mat”
found on the CD in the MLP folder. This workspace can be opened ion MATLAB®. To plot the outputs against the actual out-
puts the variables of interest are “test_outputs” and “test_outputs_actual” respectively.

B. Support Vector Machines

The results of SVM’s trained can be seen in Table 2 and the first entry in the table has a workspace associated with it called
“SVMex1.mat” and can be opened in MATLAB®. All the entries have a workspace associated with them and can be found on
the CD in the “SVM” directory. Graphs of actual and predicted outputs can also be done in MATLAB® and the variables to use
in each workspace are “Y_test” and “Y_test_actual” for predicted and actual outputs respectively.

C. Bayesian Multi-Layer Perceptrons

The results for Bayesian MLP’s with the ARD approach can be seen in Table 13. Each entry has a workspace associated with it
and stored on the CD in the “Bayesian MLP” folder. For example, the first entry in the table is labelled as “ardex1.mat” in the
directory on the CD. To plot the predicted outputs, actual outputs, upper bounds and lower bounds, the variables of interest are

 41

“test_outputs”, “test_outputs_actual”, “upperbound” and “lowerbound” respectively. Each workspace can be opened in MAT-
LAB®. The same variables are of interest for the HMC and Metropolis-Hastings sampling methods. There is a workspace
saved for each entry in Table 14 where the first is labelled “hmcex1.mat” in the “Bayesian MLP” directory on the CD. There is
also a workspace saved for each entry in Table 3 where the first is labelled “metex1.mat” in the “Bayesian MLP” directory on
the CD.

D. Bayesian Support Vector Machines

The results of the Bayesian SVM’s can be seen in Table 4. Every entry in the table has a workspace associated with it and can
be accessed on the CD. All the workspaces are in the “Bayesian SVM” directory. For example, the first entry in the table has a
workspace associated with it called “bayes_SVM_ex1.mat” stored on the CD and can be opened in MATLAB®. The variables
for predicted outputs, actual outputs, upper bounds and lower bounds are “test_outputs”, “test_outputs_actual”, “upperbound”
and “lowerbound” respectively. These can then be plotted once the respective workspace is opened.

III. CONCLUSION

All the software written and how it can be used has been shown in detail. Also the findings for each of the methods have been
provided and how to replicate the graphs has also been explained in detail. All the software and output files are provided on the
attached CD. For more details on each m-file written the comments in the m-files can be consulted. The necessary toolboxes
required have also been included on the CD. Included on the CD is a copy of this thesis in both .doc (to be viewed with Micro-
soft® Word) and .pdf (to be viewed with Adobe Acrobat Reader) formats. These files can be found on the CD in the “disserta-
tion” folder and are saved as “MPires_dissertation.doc” and “MPires_dissertation.pdf” respectively.

REFERENCES
[1] South African Futures Exchange, Available: http://www.safex.co.za.
[2] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition, Springer-Verlag, London, Great Britain, 2003.
[3] M. M. Pires, Masters Thesis, School of Electrical and Information Engineering, University of the Witwatersrand, 2005, Appendix A:

Hedging with Options and Other Contracts.
[4] K. M. Hornick, M. Stinchcombe and H. White, “Multilayer Feedforward Networks are Universal Approximators”, Neural Networks,

vol.2, no. 5, 1989, pp. 359-366.
[5] M. M. Polycarpou, “On-Line Approximations for Nonlinear System Identification: A Unified Approach” In C. Leondes, editor, Neu-

ral Network Systems, Techniques and Applications, vol. 7: Control and Dynamic Systems, California, 1998, Academic Press.
[6] S. R. Gunn, Support Vector Machines for Classification and Regression. Faculty of Engineering, Science and Mathematics, School of

Electronics and Computer Science, 1998.
[7] M. M. Pires, Masters Thesis, School of Electrical and Information Engineering, University of the Witwatersrand, 2005, Appendix B:

Paper for Fifteenth Annual Symposium of the Pattern Recognition Association of South Africa.
[8] W. Chu, S. S. Keerthi and C. J. Ong, “Bayesian Support Vector Regression Using a Unified Loss Function”, IEEE Transactions on

Neural Networks, vol. 15, no. 1, 2004, pp. 29-44.

