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                                           Abstract 

Background 

Malaria remains one of the most devastating vector-borne parasitic diseases in tropical and 

subtropical regions. Approximately 40% of the world’s population lives in malaria 

endemic areas mostly in developing countries. The estimated global incidence is about 225 

million cases and 80% of these cases occur in sub-Saharan Africa. The approximated 

global deaths due to malaria every year is about 700,000 people and 90% occur in Africa. 

In South Africa, parts of Mpumalanga, Limpopo and KwaZulu-Natal have endemic 

malaria. The incidence of malaria in South Africa by province is 56, 2 cases per 100,000 

population at risk; 31,1 cases per 100,000 population at risk and 3,3 cases per 100,000 

population at risk for Mpumalanga; Limpopo and KwaZulu-Natal, respectively. 

Approximately 80% of the cases are imported from malaria endemic countries and 

diagnosed in the South African health facilities. It is therefore important that these cases 

are disentangled from local cases using environmental or climatic conditions as proxy 

measures especially in light of South Africa eradication goal.  

Methodology 

Secondary data used in this study were obtained from Mpumalanga Department of Health, 

South African Weather Services, Statistics South Africa and Global Climatic Research 

Units. These data were analysed from 2001 to 2010 to determine the correlation between 

surrounding climatic or environmental conditions and malaria incidence in Mpumalanga 

Province. The Pearson correlation was used to assess for significant correlations between 

malaria incidence and environmental or climatic conditions. A negative binomial 

regression model was used to identify and quantify factors significantly association with 
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malaria risk. The Kulldorff spatial and space-time scan statistic was used to detect 

significant clustering of malaria cases in space and space-time. 

Results 

The incidence of malaria has decreased significantly since 2001 to 2010 in Mpumalanga 

Province. The decline has been observed from 1,304 cases per 100,000 population at risk 

in 2001 to less than 200 cases per 100,000 population at risk in 2010. About 96% of 

malaria cases were reported from Ehlanzeni District and less than 4% were reported from 

Gert Sibande and Nkangala Districts. The temperature, rainfall and humidity were 

statistically significant in all months from all years (p<0.05). The temperature, rainfall and 

humidity had a significant positive correlation with malaria cases. An excess of 1,752 and 

104 malaria cases were detected in May and June over time when using weather stations 

data. When using remote sensed data, an excess of 1,131; 3,036; 4,009; 994 and 235 cases 

were observed from March, April, May, June and July, respectively.      

Discussion and conclusion 

The significant positive correlations between malaria cases and temperature, rainfall and 

humidity suggested that for an increase in each unit factor, malaria cases also increases. 

The excess number of cases observed especially during the winter season, suggested the 

likelihood of the importation of those cases. These results were in accordance with results 

from previous studies. 
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CHAPTER ONE 

 

INTRODUCTION AND LITERATURE REVIEW 

 

Overview of the Chapter 

This Chapter will provide the background information about malaria in South Africa with 

special emphasis on the epidemiological aspects. These epidemiological aspects will focus 

on the distribution of malaria globally, in sub-Saharan Africa, in South Africa and in 

Mpumalanga province. The concept of infectious disease epidemiology and determinants 

of malaria transmission particularly in South Africa will be dealt with. The issue of 

imported cases from other malaria endemic countries will be highlighted. The biology and 

control intervention strategies for malaria as recommended by WHO and SADOH will be 

explained. The published current literature on the effects of climatic or environmental 

conditions on malaria prevalence will be reviewed. At the end of this Chapter, the research 

question, objectives and hypothesis of the study are given. 

 

1.1 Background information 

According to WHO (2012), malaria remains one of the most devastating vector-borne 

parasitic diseases in the tropical and subtropical regions of the world. This disease is one of 

the primary public health problems in sub-Saharan Africa (Mabaso et al., 2007). 

Approximately 40% of the world population lives in malaria endemic areas mostly in 

developing countries (Suh et al., 2004; RBM/WHO/UNICEF, 2005). Reports by WHO 
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(2009, 2010, 2011, 2012) indicate that in developing countries malaria is the fourth leading 

cause of childhood mortality resulting in 8% of deaths worldwide.     

 

Kim et al. (2012) reported that the estimated global incidence of malaria in 2009 was 225 

million cases. In 2010, there were an estimated 216 million cases of malaria and 

approximately 81% were estimated to occur in African region (WHO, 2011). The reports 

from the World Malaria Reports indicate that approximately 700,000 people die every year 

from malaria infection (WHO, 2012). In 2010, an estimated 655,000 malaria deaths were 

reported and 91% occurred in Africa (WHO, 2012). About three-quarters of all malaria 

related deaths are affecting African children (Breman, 2001). However, since 2000, the 

global malaria incidence has declined by 17% and malaria-specific mortality rates by 26% 

(WHO, 2012).     

 

The incidence of malaria as reported to the South African National Department of Health 

in 2012 was: Mpumalanga Province, 56.2 cases per 100,000 population at risk; Limpopo 

Province 31.1 cases per 100,000 population at risk; and KwaZulu-Natal Province 3.3 cases 

per 100,000 population at risk (source: Heath System Trust website 

http://www.hst.org.za/content/health-indicators accessed 12 October 2013). Nevertheless, 

these are subject to increase due to the issue of imported cases from malaria endemic 

African countries.  

 

Malaria is a parasitic vector-borne disease caused by the parasite species Plasmodium 

falciparum, P. vivax, P. ovale and P. malariae (Jackson et al., 2010). However, P. 

falciparum is the one that leads to severe cases and malaria deaths and is the most common 

species in Africa (Jackson et al., 2010). The species P. vivax is primarily the cause of 

http://www.hst.org.za/content/health-indicators
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malaria in densely populated areas of Asia (Jackson et al., 2010). The species of P. ovale 

and P. malariae are less common and cause less severe malaria (RBM/WHO/UNICEF, 

2005).  

 

Malaria parasites are transmitted by female mosquito vectors of the genus Anopheles. In 

Africa, there are approximately 140 species of anopheline mosquitoes but only four are 

major vector species. These species are Anopheles funestus, An. arabiensis, An. coluzzii 

and An. gambiae  (Gillies & Coetzee, 1987; Coetzee et al., 2013).    

 

In countries where malaria has been reported to be endemic, climatic factors (temperature, 

rainfall and humidity) have been reported to contribute to the high number of mosquito 

populations (Jackson et al., 2010). This makes the transmission more favourable for the 

malaria parasites. Mabaso et al. (2006) conducted a study that quantified and predicted the 

effect of rainfall, vapour pressure and temperature on the incidence of malaria in 

Zimbabwe. The findings indicated that rainfall and vapour pressure coincided with 

increased malaria incidence (Mabaso et al., 2006). 

 

1.2 The life cycle of malaria  

The life cycle of malaria involves the human host and mosquito vector. The mosquito 

vector injects parasite sporozoites into the blood stream of a human host during feeding. 

The sporozoites invade the liver (hepatocytes) and this is where they develop into 

preerythrocytic schizonts. The preerythrocytic schizonts contain 10,000 to 30,000 

merozoites which get released into the blood circulation and invade erythrocytes.  The 

merozoites within the erythrocytes develop through the process of erythrocytic schizogony 
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to ring, trophozoite and schizont stages. The erythrocyte harbouring schizonts (containing 

newly formed merozoites) ruptures and release more merozoites that invade more new 

erythrocytes.  

 

Concurrently, some of the merozoites within the newly invaded erythrocyte differentiate 

into sexual macrogametocyte (females) and microgametocyte (males) forms. During the 

blood feeding by Anopheles mosquitoes, the mature macrogametocytes leave the 

erythrocytes (taken into the gut) to form macrogametes. Microgametocytes on the other 

hand develop flagella and migrate quickly to fertilize the macrogamete forming a zygote. 

The zygotes then transform into ookinetes that move to reach the extracellular space in the 

midgut epithelium of the mosquito. This is where the ookinetes transform into oocysts that 

contain sporozoites which migrate to the salivary gland and the transmission goes on 

(Hisashi & Masamichi, 2002).  

 

1.3. Description of the malaria epidemiology in South Africa 

According to Blumberg & Frean (2007), approximately 4.3 million people are at risk of 

contracting malaria in South Africa. From the year 2000 to 2009, there was a drastic 

reduction in malaria case notifications from 61,934 to 6040 due to good malaria control 

initiatives (Kift et al., 2011). The KwaZulu-Natal province was noted to have the largest 

decline in the number of malaria cases in 2010 (Maharaj et al., 2012). The malaria-

associated mortality was also observed to have declined from 247 deaths in 2009 to 72 

deaths in 2010 (Maharaj et al., 2012). However, Limpopo Province is still the largest 

contributor of high malaria incidence and mortality among the three endemic provinces 
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(Maharaj et al., 2012). The malaria cases were reported to have decreased by 82.3% 

(12390 versus 2187) from 2000 to 2010 in Mpumalanga Province (Moonasar et al., 2012).  

 

When these figures were studied at the level of the sub-district of each province, 

considerable reduction in malaria cases were also observed (Moonasar et al., 2012). The 

Umkhanyakude, Utungulu and Zululand sub-districts of KwaZulu-Natal were recorded to, 

have a 99% reduction of malaria cases (Moonasar et al., 2012). The percentage of deaths 

was also seen to dramatically decrease by a range of 75% to 96.4% (Moonasar et al., 

2012).  

 

While malaria cases in the Bushbuckridge sub-district of Mpumalanga was seen declining, 

deaths were reported to increase (Moonasar et al., 2012). This was mainly attributed to late 

reporting to health facilities by patients. Nevertheless, Nkomazi sub-district in this 

province was reported to have 89.1% reduction in malaria cases from 2000 to 2010 

(Moonasar et al., 2012). The lowest declines in malaria cases of 53.1% and 48% were also 

reported for Vhembe and Mopani sub-districts of Limpopo Province, respectively 

(Moonasar et al., 2012).     

 

The incidence of malaria in South Africa currently is 0.71 cases per 1,000 population at 

risk (Kift et al., 2011). This has allowed South Africa to successfully move from control to 

the elimination stage of malaria (Kift et al., 2011). Nevertheless, the case fatality rate still 

remains at 0.76% for over a decade now and this is above the 0.5% WHO target for 

elimination (Weber et al., 2010).   
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1.3.1 Determinants of malaria transmission 

Since malaria is a vector-borne infectious disease, environmental factors affecting 

mosquitoes remain the major determinant of transmission (Texier et al., 2013). The 

combination of three factors is required for malaria transmission: the presence of female 

mosquito vectors, human host and the plasmodial parasites (Lawpoolsri, 2009). This 

triangular relationship demonstrates the contribution of each stage to the transmission of 

the diseases. In other words, there are factors that relate to each organism individually in 

order for the transmission to occur (Ehrlich et al., 2007).  At the level of the human host, 

the intrinsic factors that could lead to high malaria transmission involve host susceptibility, 

immune system or socio-economic status (Lawpoolsri, 2009). The parasites always need to 

be present to cause the malaria disease. The factors that could increase its existence include 

genetic modification and resistance to medication (Lawpoolsri, 2009).           

 

The mosquito vector is favoured by climatic or environmental factors which speed up its 

reproduction and growth. These could be factors like rainfall, temperature, humidity, 

vegetation, soil quality, altitude, surface water pooling (irrigation) and hydrology 

(Lawpoolsri, 2009). All these factors favour the increase in mosquito density, longevity 

and vectorial capacity. For example, rainfall and temperature determines humidity which 

increases mosquito survival (Craig et al., 2004).  

 

Rainfall and agricultural irrigation provide surface water pools which are very good 

breeding sites for mosquitoes (Craig et al., 2004). The vegetation provides suitable habitats 

for mosquitoes thus increasing their life span/survival (Craig et al., 2004). The warmer 

temperatures increase the development of both the Anopheles mosquito and Plasmodium 

parasites (Jackson et al., 2010). The fast development of the Plasmodium parasites 
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harboured by infected Anopheles reduces the duration of the extrinsic cycle of malaria 

(www.cdc.gov cited in Jackson et al., 2010). Thus, in essence, all these factors affect the 

mosquito vectorial capacity (i.e. the number of new infections produced by a mosquito per 

person per day). This, therefore, determines the high transmission of malaria and an 

increased malaria incidence. 

 

1.3.2 Malaria distribution   

The transmission of malaria differs greatly with time (Craig et al., 2004). The malaria 

incidence rates are strongly affected by environmental factors that tend to differ from time 

to time through the year (Zacarias & Andersson, 2011). The changing seasons with their 

concomitant changes in rainfall and temperature lead to the change in vector populations, 

development of the parasites and thus malaria transmission. The transmission also differs 

with respect to spatial scales (Craig et al., 2004) and is not the same across all geographical 

regions showing variation in malaria incidence (Zhou et al., 2007).  

 

The epidemiology of malaria could be described according to person exposed, place and 

time of high occurrence.  

(i) Place 

Malaria is endemic in low-altitude areas of eastern and northern parts of South Africa 

along borders of Mozambique and Zimbabwe (Blumberg & Frean, 2007). Therefore, the 

transmission occurs mainly in Limpopo, Mpumalanga and north-eastern KwaZulu-Natal 

Provinces (Blumberg & Frean, 2007). There are occasional cases that have been reported 

in the North West Province along the Molopo River (SADOH, 2010). Mpumalanga 



20 
 

Province alone has been reported to contribute about 44% of malaria notifications in the 

whole country (Ngomane & de Jager, 2012).  

(ii) Time  

The transmission of malaria is seasonal in South Africa with transmission occurring during 

the summer season (between September to May) and the greatest transmission peak 

observed around March of every year (SADOH, 2010). 

     (iii)  Person at risk 

About 4.9 million of the South African population live in malaria risk areas (SADOH, 

2010). South African residents are not immune to malaria and therefore at high risk of 

developing severe malaria (SADOH, 2010). In malaria occurring areas in South Africa, all 

age groups, travellers and immigrants are susceptible to malaria (Blumberg & Frean, 

2007). It has been indicated that children under five years of age and pregnant women are 

more at risk of getting complications from malaria (SADOH, 2010). The increased 

prevalence of severe malaria has been documented among HIV-positive patients with CD4 

counts less than 200 x 10
6
 cells/l in South Africa (Cohen et al., 2005; Grimwade et al., 

2004). This suggests that HIV/AIDS patients are also a high risk group of getting severe 

malaria.  

 

1.4. The control of malaria in South Africa  

The important control intervention strategies in South Africa include vector control, case 

management, disease surveillance, epidemic preparedness and response, malaria advocacy 

and information, education and communication (Blumberg & Frean, 2007). Cross-border 
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initiatives are also very important for the control of malaria in South Africa, for example 

the Lubombo Spatial Development Initiative (LSDI). 

1.4.1 Vector control  

This intervention strategy involves the indoor spraying of houses (IRS) with residual 

insecticide such as DDT, long lasting insecticide treated nets (LLINs) and larval control in 

malaria affected areas (WHO, 2012). According to WHO (2012), vector control remains 

one of the most efficient strategies for decreasing malaria and interrupting transmission.  

(i) IRS 

The success of indoor residual spraying strongly depends on mosquitoes biting humans 

when resting/asleep indoors (Blumberg & Frean, 2007). After taking a blood meal, some of 

these vectors settle and rest on the inner walls of the house. This is particularly true for An. 

funestus and An. gambiae (Coetzee, 2005; Blumberg & Frean, 2007). Anopheles arabiensis 

however, has a wide range of behaviours that does not necessarily include indoor resting 

(Blumberg & Frean, 2007). This species feeds on humans and rests indoors but will also 

feed on cattle and rest outdoors making it far hard to control using conventional means 

(Coetzee, 2005). The IRS reduces the survival time of mosquitoes and reducing the 

number of infectious mosquito bites each person received per unit time (WHO, 2008). This 

results in a decrease of the number of malaria transmitting mosquitoes and therefore 

reduces transmission.     

(ii) LLINs  

Long-lasting insecticide treated nets (LLINs) cover resting or sleeping people and as such 

provide personal protection so that they don’t get bitten by mosquitoes (WHO, 2008). This 
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reduces the rate at which humans are bitten by infective mosquitoes (WHO, 2008) and thus 

reduces the transmission of malaria. 

 

(iii) Larval control 

The IRS and LLINs are very effective for indoor resting mosquitoes (WHO, 2008). 

However, for the most effective malaria control, it is important that outdoor resting and 

biting mosquitoes are also controlled. Reports indicate that the reduction in An. funestus 

and An. gambiae raises concerns that there might be a statistically significant increase in 

An. arabiensis (Blumberg & Frean, 2007). The larval control is more effective for 

exophilic and exophagic (outside resting and feeding) An. arabiensis (Devine & Killeen, 

2010). Larval control involves applying chemicals to immature mosquito breeding habitats 

(Devine & Killeen, 2010). This technique assists by reducing the mosquito abundance in 

the environment. Reduction in these factors leads to reduction in the number of surviving 

mosquitoes thus reducing the entomological inoculation rates and malaria infection.  

 

1.4.2 Case management 

This arm of the intervention strategy involves accurate diagnosis of the disease and the use 

of effective antimalarial medicine to clinically cure and reduce malaria transmission 

(Blumberg & Frean, 2007). However, the selection of the chemotherapy strongly depends 

on disease severity, suspicion of drug resistance, parasite species and patient characteristics 

(Blumberg & Frean, 2007). In South Africa, for the acquired uncomplicated malaria, the 

artemether-lumefantrine (Coartem
R
) or the alternative of quinine plus doxycycline or 

clindamycin are recommended for treatment. The quinine treatment with the addition of 
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doxycycline or clindamycin for severe malaria is also recommended (South African 

National Department of Health malaria treatment guidelines, 2007). These medicines when 

used at the early stage of malaria are very effective in case management (Blumberg & 

Frean, 2007).  

 

1.4.3 Malaria disease surveillance in South Africa  

Malaria has been a notifiable disease in South Africa since 1956 with all cases detected 

legally required to be reported to health authorities (Moonasar et al., 2012). This means 

that an accurate sensitive well-validated surveillance system is very important to keep track 

of transmission trends and predict unusual increase in malaria confirmed cases 

(Teklehaimanot et al., 2004). The notified case reports are sent to the District Health 

Department where analysis is performed through the District Health Information System 

(DHIS) (Moonasar et al., 2012). However, the DHIS data entry is slow so a Malaria 

Information System is used in South Africa in each of the malaria endemic provinces 

(Moonasar et al., 2012). In order to optimally perform key functions, the surveillance 

programme must possess specific attributes.  

 

The surveillance system needs to provide active case detection and early alerts about any 

substantial increase in malaria cases (Teklehaimanot et al., 2004). Secondly, surveillance 

system needs to be timely (immediate reports), sensitive (reliable report of excess malaria 

cases) and specific (few false positive reports) (Teklehaimanot et al., 2004). Thirdly, the 

system needs to reflect continuous monitoring of malaria cases. Finally, the system needs 

to be involved in malaria case investigation and clear case definition, malaria surveys and 
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meteorological monitoring (Barclay et al., 2012). These attributes enable malaria control 

and elimination workers and public health officials to effectively control malaria through 

screening of cases and monitoring epidemics.  

 

1.4.4 Epidemic preparedness and response (EPR) 

This aspect of control is very important for enabling the health system to be fully prepared 

for malaria outbreaks and epidemics (SADOH, 2010). This will assist because prompt and 

fast effective interventions would be available in case of malaria epidemics (SADOH, 

2010). 

 

1.4.5 Health Promotion/Malaria Advocacy  

The early presentation of malaria cases to the health facility has been reported as the best 

way to significantly reduce malaria morbidity and mortality in South Africa (Blumberg & 

Frean, 2007). The health promotion strategy supports the main malaria control 

interventions and involves the encouragement of health-seeking behaviour, treatment 

adherence and use of malaria prevention methods (Moonasar et al., 2012). This strategy 

also assists communities to recognize malaria signs and symptoms and encouraging them 

to seek medical attention immediately (Moonasar et al., 2012). The use of counselling 

sessions in health facilities about malaria complications, use of mass media campaigns, 

community outreach and education could be of assistance (Moonasar et al., 2012).   
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1.4.6 Information, education and management (IEC) 

Early effective malaria case diagnosis and treatment is one of the most important 

cornerstones of malaria control (Blumberg & Frean, 2007), so the dissemination of 

information to the public is very critical to attain effective control. The IEC makes certain 

that the early important information reaches the public. This can be done through radio 

broadcasting or health workers malaria communications to the public (Hlongwana et al., 

2011). Studies have reported that improved community knowledge regarding malaria and 

its mode of transmission improves malaria prevention (Hlongwana et al., 2011). Further 

studies have demonstrated that lack of community education, particularly on malaria signs, 

symptoms and control could threaten interventions (Hlongwana et al., 2011). The seeking 

of medical attention immediately by patients when suspecting malaria could reduce the 

period of infectiousness.  

 

1.5 Historical progress on malaria elimination in Africa 

The impact of malaria control since 2000 in some African countries has shown a 

significant reduction in malaria confirmed cases and deaths (WHO, 2011). Algeria, 

Botswana, Cape Verde, Namibia, Rwanda, Sao Tome and Principe, South Africa, 

Swaziland and United Republic of Tanzania have all shown a greater than 50% reduction 

in malaria confirmed cases and deaths (WHO, 2011).  The above countries including South 

Africa, passed the stage of malaria control and have entered the stage of malaria 

elimination by 2020 (known as Malaria Elimination 8 (E8) (WHO, 2011)).  
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1.6 Imported malaria cases  

Reports have shown an increase in the number of travellers between non-endemic and 

endemic malaria regions (Weber et al., 2010). In 2005, an estimated 1,256,000 nationals 

from mainland Africa entered South Africa (WHO, 2008). The majority were reported to 

come from 45 malaria endemic countries that are within the WHO-AFRO region (WHO, 

2008). Labour-related opportunities and vulnerable population displacements through wars 

or impoverishment are major causes (Weber et al., 2010).  

 

The influx of malaria-infected travellers from high transmission to low transmission areas 

each month or year determines the vulnerability of that place (Le Manach et al., 2011; 

WHO, 2007). It is also reported that each case imported presents a high risk of epidemics, 

outbreak initiation or local transmission in high receptivity areas (WHO, 2007). In South 

Africa, Mpumalanga Province reported that imported cases were at least double the local 

cases (Maharaj et al., 2012). The proportion of imported malaria cases in South Africa has 

been recorded as increasing (80% in 2011) (Maharaj et al., 2012).  

 

1.7 Spatial and spatio-temporal detection of disease clusters in epidemiology 

The use of spatial and spatio-temporal analysis in epidemiology has been increasingly 

applied in recent years (Elliot et al., 2000). The detection of significant clusters in space 

and/or time is also one of the most important exploratory methods employed in 

epidemiology and public health (Alexander et al., 1996; Hjalmars et al., 1996). The spatial, 

temporal and space-time scan statistics are nowadays mostly used tools in epidemiology to 

detect and evaluate statistically significant clusters of diseases (Sartorius et al., 2010). The 

space-time scan statistic software called SaTScan
TM

 can be used to analyse these methods 
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(Kulldorff et al., 1998). This software is widely used in many applications that include 

epidemiology and many other research disciplines (Sartorius et al., 2010).  

 

1.8. Statement of the problem  

The biological relationship discussed above regarding malaria transmission and 

environmental conditions led to numerous studies being conducted. Many of these have 

been done to model the spatio-temporal relationship between the environmental conditions 

and malaria incidence at the continental level (e.g. Mabaso et al., 2007). Others have been 

done at the country, provincial and district level (Ngomane & de Jager, 2012; Jackson et 

al., 2010; Coleman et al., 2009; Mabaso et al., 2006). In South Africa, however, there is 

cross-border movement of workers and tourists to and from malaria endemic countries like 

Mozambique that complicates the malaria picture. 

 

The definition of malaria elimination states that the local mosquito-borne transmission has 

been interrupted such that the incidence of malaria infection caused by human malaria 

parasites in a defined geographical area as a result of deliberate efforts is reduced to zero. 

Nevertheless, the continued effort measures to prevent any possible re-establishment of the 

transmission still need to be strictly considered (WHO, 2011). While South Africa would 

like to become a WHO certified “malaria free” country, there is still the problem of failing 

to differentiate between imported and local malaria cases reported. It is fundamentally 

important that a clear distinction between local and imported cases is made.  
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1.9 Justification for the study 

Studies that include mapping of malaria incidence have been conducted in malaria endemic 

provinces of South Africa. However, almost none investigated the correlation between 

environmental conditions and malaria incidence around a particular health facility. None 

has also investigated whether the observed malaria cases are due to environmental 

surroundings or are imported cases from other malaria endemic areas. This study therefore 

provides a relationship between malaria cases per health facility and environmental 

condition surrounding that facility. It also attempts to disentangle the local and likely 

imported cases around a particular health facility using environmental conditions as proxy 

measures.  

 

This is fundamental to E8 and public health policy makers because a clear understanding 

of the distinction between local and likely imported cases is imperative. Sometimes the 

observed malaria cases might be mistakenly considered as local cases while they are 

imported cases. Studies indicate that local cases in South Africa could be attributed to 

changes in weather conditions (e.g. increased rainfall and temperature). This suggests that 

occurrence of cases discordant to changes in weather conditions might indicate likely 

imported cases. So, this will assist South African health system authorities to be able to 

distinguish between local and imported cases. Therefore, policy planning regarding malaria 

elimination could be directed either to passing strict migration laws or environmental 

monitoring. 
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1.10 Literature review 

In the current literature, a lot of studies that assess the effect of climatic change or 

environmental conditions on the prevalence of malaria in Africa have been reported. 

Jackson et al. (2010) conducted a study to model the effect that climate change has on the 

prevalence of malaria in western Africa. They used rainfall, temperature and humidity as 

their variables for modelling and determining correlation. The correlation was obtained and 

the conclusion was that the climate change had an effect on malaria prevalence (Jackson et 

al., 2010). This was one of the studies that were conducted in malaria endemic areas. 

Nevertheless, the correlation obtained was at the country level not at the health facility 

level.   

 

It has also been indicated that climatic changes are positively associated with increased 

risk of vector-borne diseases that includes malaria (Kearney et al., 2009). Other studies 

associated increase mosquitoes with malaria rates (CDC, 2004). Rogers & Randolph 

(2000) conducted a study that modelled the distribution of P. falciparum and climate 

change. Their model was highly sensitive to detecting the relationship between climate 

variables and their impact on malaria transmission. Their findings indicated remarkably 

few changes and strong relationship between these two variables. This study only focused 

on the transmission of the parasite in new places at the global level and again not at health 

facility level.    

 

Mabaso et al. (2006) conducted a study of the spatio-temporal analysis and the role climate 

played in inter-annual variation in malaria incidence in Zimbabwe. The mean average 

temperature, rainfall and vapour pressure were strong positive predictors of increased 

annual malaria incidence (Mabaso et al., 2006). In other words, these environmental 
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variables increased the incidence of malaria. This study was conducted among children 

under the age of five years positive for malaria disease in 58 districts in Zimbabwe. This 

study demonstrated a very good relationship between malaria occurrence and climatic 

conditions. However, the authors did not demonstrate this relationship at the level of the 

health facility. According to Mabaso et al. (2006), in southern Africa very few studies that 

assess the relationship between malaria and climatic factors have been published.      

 

Zacarias & Andersson (2010) conducted a study to investigate an association between 

malaria incidence and weather parameters in tropical Maputo province, Mozambique. This 

study was conducted to compare malaria incidence in dry and wet seasons. In wet seasons, 

malaria transmission was shown to be high and in winter seasons no association was 

observed. Nevertheless, these scholars did not attempt to take into consideration health 

facilities as well.  

 

Coleman et al. (2009) conducted a study using the SaTScan method to detect local malaria 

clusters to guide malaria control programmes in Mpumalanga Province, South Africa. This 

was a very good malaria case cluster study at the level of the district and using cases 

collected from local health facilities. However, Coleman and colleagues did not consider 

the issue of imported cases due to immigration from neighbouring malaria endemic 

countries. 

 

All these studies demonstrated a positive relationship between malaria 

incidence/occurrence and climatic/environmental conditions and that is not surprising. 

Authors in these studies looked at this relationship at the country, province, districts and 

some health facility level. However, none of the authors attempted to disentangle imported 
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malaria cases from endemic ones using environmental conditions as proxy measures. This 

study is not only particularly important to South Africa but also for many other southern 

African countries that are considering malaria elimination.  

 

1.11 Research question, objectives and hypothesis  

1.11.1 Research question 

There was a noticeable gap that included the lack of studies addressing malaria occurrence 

and climatic conditions at health facility level to disentangle imported cases from endemic 

cases. This gap led to the development of the research question to be answered by this 

study. This study assessed the correlation between environmental conditions and malaria 

incidence in a given health facility from each of the selected sub-districts of Mpumalanga 

Province. It also determined whether the reported malaria cases were attributed to migrants 

from other malaria endemic areas or not, using environmental factors as a proxy measures. 

Therefore, the research question was that is there a correlation between malaria incidence 

and environmental conditions around particular health facilities from each sub-district in 

this province.  

 

1.11.2 Overall objective 

The overall objective was to determine whether malaria incidence at given health facilities 

could be ascribed to local transmission (using rainfall and other environmental factors as 

proxy measures) or was likely to be imported.  
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Specific objectives: 

- To describe the socio-demographic characteristics of the underlying population at 

risk by sub-district of Mpumalanga Province, South Africa, between 2001 and 2010  

- To assess malaria annual incidence and trends at selected sub-districts in 

Mpumalanga Province between 2001 and 2010 

- To summarize and construct maps of selected environmental conditions in the 

affected selected sub-district by month and year between 2001 and 2010  

- To assess correlation between malaria incidence due to endemic cases and 

surrounding selected environmental conditions at selected sub-districts between 

2001 and 2010 

- To identify and quantify the relationship between malaria cases and environmental 

or climatic conditions between 2001 and 2010 to disentangle imported from local 

cases     

- To identify any spatial and space-time clustering of malaria cases at the sub-district 

level between 2001 and 2010   

1.11.3 Research hypothesis  

It was hypothesized that there is a correlation between malaria incidence and 

environmental conditions around particular health facilities from each sub-district in 

Mpumalanga Province. Thus, any excess of malaria cases without an increase on 

temperature, rainfall and humidity would be considered as imported cases.     
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CHAPTER TWO 

 

METHODOLOGY 

 

Overview of the Chapter 

In this Chapter, the description of Mpumalanga Province is provided. The type of the study 

design that was employed to answer the research question is presented. The study 

population of Mpumalanga Province where malaria data were obtained and study 

outcomes is discussed. Study procedures which included data collection, measurements of 

variables and data sources together with study limitations are reviewed. Data management, 

processing and statistical analysis techniques employed to answer the research question are 

presented. The Chapter ends by giving ethical considerations involved in the project.  

 

2.1 Study setting 

Mpumalanga Province is one of nine South African provinces. It lies in the eastern part of 

the country with an area of 76,495 km
2
 (Figure 2.1). The population of Mpumalanga as 

reported by Stats SA census 2011 was at 4,039,939. The most spoken language is IsiSwati 

(27.7% of the population) followed by IsiZulu with 24.1% and 10.1% IsiNdebele (StatsSA, 

2011). The black population forms the majority in the population of Mpumalanga. This 

province borders Mozambique in the east and Swaziland in the south. Mpumalanga 

Province is divided into high-lying grassland Highveld and subtropical Lowveld regions 

(http://www.sa-venues.com/weather/mpumalanga.htm, accessed 31 October 2012). The 

http://www.sa-venues.com/weather/mpumalanga.htm
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Highveld experiences rains during the summer period (October to February/March) and 

winter from May to August. The temperatures average around 26
o
C in summer and 8

o
C in 

winter. The Lowveld subtropical regions have a rainy summer season from September to 

March (http://www.sa-venues.com/weather/mpumalanga.htm, accessed 31 October 2012).  

The rainfall averages at 620 mm between September and March and temperatures range 

from 17 – 30
o
C in summer and 8 – 17

o
C in winter (http://www.sa-

venues.com/weather/mpumalanga.htm, accessed 31 October 2012). The relative humidity 

of the Lowveld region is about 80% in summer. The two regions of Mpumalanga Province 

are divided into three districts known as Ehlanzeni, Nkangala and Gert Sibande. These 

districts are also divided into eighteen local municipalities (sub-districts). The estimated 

number of health facilities from which malaria cases data were used in this study was ten 

per region.  

                                   

 

Figure 2.1. Map of South Africa with Mpumalanga Province (shaded in grey) 

(source: http://www.info.gov.za/aboutsa/provinces.htm accessed 8 July 2013). 

http://www.sa-venues.com/weather/mpumalanga.htm
http://www.sa-venues.com/weather/mpumalanga.htm
http://www.sa-venues.com/weather/mpumalanga.htm
http://www.info.gov.za/aboutsa/provinces.htm
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2.2 Study design 

The study is a retrospective ecological correlation study design. This study assessed the 

correlation between environmental exposures and health facility based malaria incidence at 

the sub-district level. The study utilized secondary data for South African health facility 

based sub-district population estimates from Stats SA, Mpumalanga Provincial Department 

of Health (SADOH) (malaria cases), nearest weather stations and remote sense (satellite) 

data for Mpumalanga Province. The population risk estimates were calculated using 

malaria cases as a numerator and Statistics SA data or year census total population data for 

each sub-district as a denominator over ten years (2001 - 2010). The daily records of 

rainfall and temperature from nearest weather stations were added to calculate monthly 

records. The monthly records were aggregated according to specific months making the 

season. For example, from mid-October to mid-February was considered a summer season. 

The rainfall, temperature and relative humidity data obtained were collected from 

Nelspruit, Lydenburg, Witbank and Ermelo weather stations. The time at which these data 

were measured was from 8:00 am till late in the afternoon daily. Remotely sensed data 

were extracted from CRU - TS 3.0 for nearest satellites information to health facilities. The 

remotely sensed satellite data were based on satellite information and not on physical 

measurements. These data were extracted for regions of Mpumalanga Province of South 

Africa.  

 

2.3 Study population 

The study populations comprised residents of Ehlanzeni, Gert Sibande and Nkangala 

Districts staying in the vicinity of selected health facilities. The Sekhukhune District was 

put under Limpopo Province in 2004 and moved from Mpumalanga Province. It is 
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therefore not included in all the analysis and it only appear on descriptive summary of 

demographics. The total population of Ehlanzeni, Gert Sibande and Nkangala Districts in 

2001 according to 2007 community survey census data was estimated to be 1,447,053; 

900,007 and 1,018,826, respectively (StatsSA, 2007). At Ehlanzeni and Nkangala, it was 

reported to have increased to ±1,526,200 and 1,226,500 respectively in 2007 (StatsSA, 

2007). The population of Gert Sibande was shown to have decreased to 890,700 in 2007. 

These data were obtained from Stats SA Community Surveys data for the period between 

2001 and 2007. However, the population data used in this study was linearly adjusted to 

account for demographic changes in the province.  

 

2.4 Study outcomes 

The primary outcomes of this study were malaria incidence/intensity in the selected sub-

districts around a particular health facility. The potential explanatory climatic variables that 

were used to answer the objectives were the rainfall, temperature and relative humidity 

over a ten year period of 2001 to 2010. 

 

Explanatory variables and data sources 

- Health facility – Mpumalanga Provincial DOH 

- Month and year when cases were diagnosed – Mpumalanga Provincial DOH 

- Monthly rainfall – South African Weather Services 

- Monthly temperature – South African Weather Services 

- Monthly relative humidity – South African Weather Services 

- Mpumalanga District Population data as a denominator – Statistics South Africa 
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Outcome variable 

- Malaria cases – Mpumalanga Provincial DOH 

 

2.5 Study procedures 

2.5.1 Data collection 

The study utilized secondary data obtained from Mpumalanga Provincial Health 

Department, Stats SA, Nelspruit weather stations and remotely sensed satellite data. No 

primary data collection was done by the investigator in this study since this is a secondary 

data analysis study.  

 

(i) Malaria data 

Malaria data were received and contained case numbers, age, diagnosis date, death status, 

place of residents, gender, country, district, health facility name and date of diagnosis 

grouped by month and year. These data were then process, cleaned and merged using 

STATA IC 12.0.    

 

(ii) Climatic data 

The climatic records data for the period 2001 to 2010 were obtained from the South 

African Weather Service. The records consisted of individual monthly rainfall (mm), 

individual monthly temperature (
o
C) (both minimum and maximum) and individual 

monthly relative humidity (%) in months and grouped by year. The monthly rainfall must 

be bigger than 80 mm to be suitable for malaria transmission. The mean temperature must 
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range between 18 and 32
o
C and monthly relative humidity greater than 60% (Bruce-

Chwatt 1988).   

(iii)  Remotely sensed satellite data  

The remotely sensed data were extracted from the global Climatic Research Unit (CRU) -

TS 3.0 time series data (http://www.cgiar-csi.org/data/uea-cru-ts-v3-10-01-historic-

climate-database) using R 2.15.3 software. The extracted data were mean monthly 

minimum and maximum temperature (
o
C), precipitation/rainfall (mm) and vapour pressure 

(hecta-Pascals). These are gridded data set that has been collected and available by month 

of each year since 1901 to 2009. The spatial resolution that was used for the data set 

extracted for this project was estimated to be approximately 30 km.  

 

2.5.2 Measurements and data sources 

Data that were utilized were health facility based malaria case data for the past 10 years 

(2001 - 2010). Explanatory variables of interest that were used were average monthly 

rainfall, temperature and humidity. All these variables were numerical. The denominator 

used was the total population of each district of Mpumalanga Province. These data were 

obtained from the Statistics South Africa Community surveys of 2001 and 2007. The 

monthly average rainfall measurements, maximum and minimum temperatures and 

humidity were used to estimate seasonal time measurements. Seasonality was addressed by 

creating one dummy variable for a year and one for a month over a ten year period.  

 

Malaria symptoms in adult patients included cases that presented with fever, headache, 

rigors, myalgia, dizziness and weakness, loss of appetite, diarrhoea sore throat and 

http://www.cgiar-csi.org/data/uea-cru-ts-v3-10-01-historic-climate-database
http://www.cgiar-csi.org/data/uea-cru-ts-v3-10-01-historic-climate-database
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vomiting. Among children, fever, vomiting, weakness, lethargy, diarrhoea, cough and poor 

feeding were symptoms of malaria. The clinical signs in adults and young patients were 

fever, splenomegaly and/or hepatomegaly for uncomplicated malaria. Fever, severe 

prostration, splenomegaly and/or hepatomegaly, pallor, jaundice, increased respiratory 

rate, change in the level of consciousness, reduced urine output, bleeding and shock were 

symptoms for severe malaria (South African National Department of Health malaria 

treatment guidelines, 2007). Malaria could not be diagnosed solely on the basis of clinical 

findings so laboratory diagnosis was performed to confirm cases. Malaria confirmed cases 

included cases that were positive for RDTs and/or laboratory confirmed microscopic 

examination.  

2.6 Data processing methods and analysis plans  

2.6.1 Data management and processing 

The statistical software STATA IC version 12.0 was used for all data management, 

processing and analysis. Data from primary sources were converted to STATA IC 12.0 

format for processing and analysis. The remotely sensed data were extracted using R 

2.15.3 computer software. The extracted data were then written or exported to excel from 

R format. The malaria cases, rainfall and temperature data were expressed as monthly unit 

of time to capture annual unit. The merging of malaria cases data with weather data was 

done using the district, year and month variables as unique identifiers. The management 

and processing of data included cleaning and generation of variables. The cleaning of data 

was done by combining data sets that were separated. The data sets were separated by year 

and month and were all combined into one dataset.   
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2.6.2. Data analysis 

The analysis comprised descriptive summary statistics for socio-demographic details 

(means or medians, standard deviations or inter-quartile ranges for numerical data and 

proportions and percentages for categorical data). Analysis of variance for 

continuous/numerical variables was used to determine the differences in mean rainfall, 

temperature and humidity across all the months. The Kruskal Wallis non-parametric test 

was used in case ANOVA was not suitable for the analysis. The Chi-square test of 

associations was used to determine associations among categorical variables. The Fisher’s 

exact test was used in cases where the Chi-squared was not suitable for the analysis. The 

cumulative malaria incidence was computed by dividing the number of health facility-

based malaria cases per year by total population at risk around the health facility. The 95% 

confidence interval was computed using exact Poisson limits to estimate the baseline 

incidence of malaria in the selected sub-districts. The Chi-square test of trends of 

cumulative incidence over time was performed to assess linear temporal trends by year.  

 

MapInfo Professional 9.5 software was used to develop maps of malaria incidence over 

time by sub-district selected and health facility. The Pearson correlation co-efficient was 

used to assess for significant correlations between malaria cases and environmental 

conditions at the district and monthly level.  

 

A negative binomial was used for all risk factor analysis and re-run for the year dummy 

model. The significance level was assessed at the 5% level (where alpha is equal to 0.05). 

The univariate and multivariate Poisson regression model was used to identify and quantify 

factors significantly associated with malaria risk. The model assumptions were assessed 

and if there was evidence of over dispersion (variance bigger than the mean), thus the 
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negative binomial approach was used. In case where the variables were collinear (r bigger 

that 0.60), they were removed from the model. A univariate and multivariable modelling 

approach was used. This was performed to assess the relationship between malaria 

incidence and climatic conditions when other potential confounders are controlled for. 

Those factors that were significant at a 0.15 level in the univariate analysis were included 

in the multivariable model. The general of form of the Negative Binomial regression takes 

the formula: LogeY = β0 + X1β1 + X2β2…Xpβp. This then translate to Y = (e
β0

) (e
X1β1

) 

(e
X2β2

)…(e
Xpβp

). The incidence risk in the exposed divided by the incidence risk in the non-

exposed defined the estimated incidence risk ratio (IRR). It is calculated using the formula: 

IRR = Incidence Risk in the exposed (R1)/Incidence Risk in the unexposed (Ro). The 

model goodness-of-fit was checked using suitable diagnostic methods (i.e. fitstat).  Local 

and imported malaria cases were disentangled by assessing malaria distribution by season 

and related climatic data. The increase in the number of cases for a particular season 

unrelated to climatic conditions surroundings meant that the increase was more likely to be 

imported. 

 

The Kulldorff spatial and space-time scan statistic was used to identify significant clusters 

of malaria overall and by year (month) (Kulldorff, 1997). This statistical technique places 

circular windows on the map which their centres move across the study districts. These 

circles could contain different sets and number of sub-districts. Each of these circles 

represents a potential cluster of overall malaria by year around a particular health facility. 

This spatial scan statistics calculates the probability/likelihood of observing the number of 

malaria cases inside and outside each circle. The circle with the maximum likelihood 

represents most likely cluster that did not occur by chance (Kulldorff, 1997). The Poisson 

based model was used in this analysis. The SaTScan provides the most likely cluster 
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together with its p-value and the significant level was set at 5%. The other clusters (i.e. 

secondary, tertiary etc.) that did not overlap with the most likely cluster were also indicated 

if obtained. The software SaTScan was used to perform the spatial clustering analysis 

(http://www.satscan.org). The computer software ArcMap 10 (ArcGIS 10) was used to 

draw maps of significant clusters identified by SaTScan software.    

 

2.7 Ethical considerations  

The study was reviewed and approved by the School of Public Health assessor groups and 

the Faculty of Health Sciences of University of the Witwatersrand (approved on: 

21/08/12).The ethical clearance was sought from and granted by Human Research Ethics 

Committee of the University of the Witwatersrand. The ethical clearance was granted on 

31/08/12, the reference number was R14/49 and clearance certificate was M120853. The 

project protocol and ethical clearance certificate were sent to Mpumalanga Provincial 

Department of Health to apply for ethical clearance to use malaria data. Access to the DoH 

malaria case data was authorized by the Malaria Programme Managers for each sub-district 

and the ethical approval was sought from the HREC of the University of the 

Witwatersrand, South Africa. The DoH malaria case data did not have any patients’ names 

therefore it was anonymous and confidentiality was maintained as confirmed by Malaria 

Programme Managers. The data security was ensured by the use of access password. 

 

 

 

http://www.satscan.org/
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CHAPTER THREE 

 

RESULTS 

 

Overview of the Chapter 

This chapter will present the findings obtained from the analysis performed with the data 

used. This section will be separated into two parts, the first part demonstrating findings of 

the relationship between malaria incidence and climatic conditions utilizing weather 

stations data and the second part showing the findings of the relationship between malaria 

incidence and climatic conditions utilizing remotely sensed data. The description of the 

study population, trends in annual incidences and spatial analysis in the form of a map will 

be presented. The correlation between incidences and environmental or climatic conditions 

will also be shown. Disentangling of imported and local cases and the inferential statistical 

analysis (univariate and multivariate approach) will be presented. At the end of the chapter, 

the space and space-time analysis of data will be illustrated.     

3.1 Part 1: Analysis using weather stations climatic data 

3.1.1 Description of socio-demographic characteristics of the study population  

The socio-demographic characteristics of the study population by district are presented in 

Table 3.1. The mean (standard deviation) age was 25.63 (15.67), 30.15 (14.03), 29.06 

(17.06) and 29.06 (16.17) years for Ehlanzeni, Gert Sibande, Nkangala and Sekhukhune 

Cross Boundary Districts, respectively. In a total of 21,586 males, 98.47% were from 

Ehlanzeni, 0.75% from Gert Sibande, 0.38% from Nkangala and 0.40% from Sekhukhune 
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Cross Boundary. The total number of females was 15,651 and 99.07%, 0.48%, 0.21% and 

0.24% were from Ehlanzeni, Gert Sibande, Nkangala and Sekhukhune Cross Boundary, 

respectively. The number of reported malaria cases for 2001 to 2010 was 37,237 and about 

99% comes from Ehlanzeni District. There were 245 health facilities that were involved in 

reporting malaria cases during the period 2001 to 2010. Approximately 88.57% were from 

Ehlanzeni, 6.12% from Gert Sibande, and 5.31% from Nkangala Districts. The Ehlanzeni 

District reported a high number of malaria deaths (about 96%) as compared to other two 

districts (Table 3.1).  

 

Table 3.1. Description of socio-demographic characteristics of malaria reported cases 

by district in Mpumalanga Province, South Africa between 2001 and 2010 

    
                  
Districts       

  Variable  Ehlanzeni Gert Sibande Nkangala 
Sekhukhune 
Cross P-value 

        Boundary   

 Population size           

2001 944700 900014 1020590 221710   

2007 1526236 890699 1226500 221710   

Age           

N (%) 36761 (98.84%) 237 (0.64%) 107 (0.29%) 89 (0.24%)   

Mean (SD) 25.63 (15.67) 30.15 (14.03) 29.06 (17.06) 29.06 (16.17)   0.001
i
 

Gender            

Males (%) 21256 (98.47%) 162 (0.75%) 82 (0.38%) 86 (0.40%)   0.001
j
 

Females (%) 15505 (99.07%) 75 (0.48%) 34 (0.22%) 37 (0.24%)   0.001
j
 

Number of health 
facilities           

N (%) 205 (83.67%) 15 (6.12%) 13 (5.31%) 12 (4.90%)   
Reported malaria 
cases           

N (%) 36761 (98.72%) 237 (0.64%) 116 (0.31%) 123 (0.33%)   
Reported malaria 
deaths           

Yes 184 (96.34%) 1 (0.52%) 3 (1.57%) 3 (1.57%)      0.003
h
 

No 36577 (98.73%) 236 (0.64%) 113 (0.31%) 120 (0.32%)      0.003
j
 

        Statistical test used: i – ANOVA, j – Chi-squared test, h – Fisher Exact chi-squared test.   
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3.1.2 Assessing annual incidence and trends due to endemic cases in Mpumalanga 

over ten years  

The annual incidence and trends of malaria cases reported in Mpumalanga Province over 

10 years is shown in Table 3.2 and Figure 3.1. There is a reduction in the incidence of 

malaria from 2001 to 2010. The incidence of malaria decreased from 1,304 per 100,000 

population at risk in 2001 to 136 per 100,000 population at risk in 2009 (Table 3.2). 

However, there was a small rise in incidence from 136 per 100,000 population at risk in 

2009 to 201 per 100,000 population at risk in 2010.  The trend of malaria incidence by 

month is also shown in Figure 3.2 below. In every month of each year, the incidence of 

malaria was always up at around 800 per 100,000 population at risk in January and 

decreased to 400 per 100,000 population at risk in February. The incidence levelled off 

between February and May. From May to September, the malaria incidence decreased 

noticeably from 500 per 100,000 population at risk to less than 100 per 100,000 population 

at risk. It started increasing again at the beginning of September and was around 250 per 

100,000 population at risk in October.       

 

Table 3.2. The annual cumulative incidence in Mpumalanga Province over 

time   between 2001 and 2010.   

Year Incidence per 100, 000 95% CI 

 
population at risk 

 2001 1304 1278 – 1330 

2002                            886 865 – 908 

2003 483 467 – 498 

2004 477 462 – 493 

2005 227 216 – 238 

2006  499 484 – 515 

2007 212 203 – 221 

2008 174 166 – 182 

2009 136 130 – 143 

2010 201 192 – 210 
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Figure 3.1. Cummulative incidence of malaria by year between 2001 

and 2010,   Mpumalanga Province.   

 

                             

 Figure 3.2. Cummulative incidence of malaria by month between 2001     

and 2010, Mpumalanga Province.   

3.1.3 The summary of selected environmental/climatic conditions 

The summary of environmental conditions by month between 2001 and 2010 from 

Mpumalanga Province is shown in Table 3.3. The median maximum and minimum 

monthly temperature decrease from 26.2
o
C and 15.5

o
C in January to 18.8

o
C and 5.1

o
C in 

July, respectively. The median rainfall decreased from 4.2 mm in January to 1 mm in 
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September in all study years. The rainfall started increasing in October from 2.3 mm to 4.4 

mm in December for all study years. The median monthly humidity exhibited a different 

trend. It started low at 82% in January, increased in March and April to 84%. The month of 

September had the lowest humidity of 64% as compared to other months in all study years. 

The minimum and maximum temperature, rainfall and humidity were significantly 

different in all months of the study period of Mpumalanga (p<0.005).  

 

Table 3.3. The summary of selected environmental/climatic conditions in the 

affected selected sub-districts of Mpumalanga Province by month between 2001 

and 2010. 

 Maximum  Minimum  Daily             Daily  

Month Temperature (
o
C) Temperature (

o
C) rainfall (mm) Humidity (%) 

  N  N  N  N  

  Median (IQR)
ψ,k

 Median (IQR)
ψ,k

 Median  (IQR)
ψ,k

 Median (IQR)
ψ,k

 

January 1138   1138 471 1048 

  26.2 (23.9 - 27.9)  15.5 (14.2 - 16.9) 4.2 (1.2 - 11.8) 82 (73 - 90) 

February 1077  1079 371 961 

  26.1 (24 - 27.9) 15.1 (13.6 - 16.6) 3.6 (0.8 - 10.8) 81 (73 - 89) 

March 1176  1174 353 1058 

  25.2 (22.9 - 27.2) 13.6 (11.9 - 15.3) 3.2 (0.6 - 8.4) 84 (75 - 91) 

April 1186  1186 275 1065 

  23.5 (21.3 - 25.4) 11.2 (9.5 - 13.2) 2 (0.4 - 4.8) 84 (75 - 92) 

May 1229  1230 114 1104 

  21.5 (19.4 - 23.3) 7.7 (5.7 - 9.8) 1.5 (0.4 - 6) 76 (61 - 88) 

June 1177  1177 84 1059 

  18.8 (16.7 - 21.1) 5.1 (3.2 - 5.1) 1.4 (0.25 - 5.4) 76 (61 - 87) 

July 1185  1187 47 1064 

  19 (16.6 - 21.3) 4.6 (2.2 - 6.4) 1.4 (0.2 - 5.8) 71  (55 - 83) 

August 1178  1178 61 1048 

  21.7 (19.1 - 24.4) 7 (4.8 - 9.3) 1.4 (0.6 - 6) 71 (49 - 84) 

September 1183  1183 90 1061 

  25 (21.6 - 27.7) 9.6 (7.6 - 11.7) 1 (0.2 - 2.8) 64 (44 - 78) 

October 1232  1232 380 1098 

  25.7 (22.3 - 28.4) 12.3 (10.7 - 14.1) 2.3 (0.4 - 9.3) 72 (59 - 83) 

November 1120  1122 445 988 

  25.4 (22.5 - 27.6) 13.7 (12.1 - 15.2) 3.7 (1 - 11.4) 77 (67 - 86) 

December 1184  1185 489 1111 

  26.1 (23.8 - 27.9) 14.8 (13.3 - 16.4) 4.4 (1 - 11) 77 (68 - 85) 

         ψ, k – Statistically significant at p<0.05 with Kruskal-Wallis test   
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3.1.4 Spatial analysis of the distribution of malaria cases  

The spatial analysis for the distribution of malaria cases by sub-district of Mpumalanga is 

shown in Figure 3.3. The sub-district of high malaria risk was Nkomazi sub-district 

municipality. It was followed by Mbombela, Bushbuckridge and Umjindi sub-district 

municipalities. These are sub-districts located in the Lowveld regions bordering 

Mozambique and Swaziland and Mozambique is a known malaria endemic country.      

 

Figure 3.3. Spatial distribution of malaria cases by sub-district of 

Mpumalanga Province between 2001 and 2010.  

3.1.5 Correlation analysis 

The assessment of correlation analysis between malaria cumulative incidence and 

climatic/environmental conditions, district, month, year and seasonality is depicted in 

Table 3.4. All factors were statistically significant at 0.05 except for seasonality (p>0.05). 
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The minimum and maximum temperature, rainfall and humidity showed a positive 

correlation with malaria cases. Therefore, the increase in each factor led to an increase in 

the number of malaria cases. The variables district, month, year and season showed a 

negative correlation so the change in each factor led to a decrease in the number of malaria 

cases.    

 

Table 3.4. Pearson correlation co-efficients for the correlation between monthly 

malaria cases and monthly climatic/environmental conditions for Mpumalanga 

Province between 2001 and 2010.   

Variable Cases   

                 Correlation co-efficient (r)             P-value 

Minimum temperature  0.2630 0.001 

Maximum temperature  0.1916 0.003 

Rainfall  0.1426 0.028 

Humidity  0.4288 0.001 

 

3.1.6 Disentangling imported cases from local cases 

3.1.6.1 Disentangling imported cases from local malaria cases using the curves 

The incidence risk ratio (IRR) for malaria in Mpumalanga Province between 2001 and 

2010 is shown in Figure 3.4. The IRR fluctuated markedly between seasons from 0.89 in 

May to 0.38, 0.22 and 0.19 in June, July and August, respectively. The IRR started to 

increase from 0.29 to 0.45 between September and November during the study period.         
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Figure 3.4. The Incidence Risk Ratio (IRR) of malaria by month in 

Mpumalanga Province between 2001 and 2010. 

 

When disentangling local from imported malaria cases, the actual number of cases of 

malaria were also plotted by months over time in Figure 3.5. It was observed that from 

March to the end of June, the number of malaria cases exceeded the expected number 

(fitted line). The number of cases started to increase in August and exceeded the expected 

around September and October over time.       
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Figure 3.5. The number of malaria cases by month in Mpumalanga Province 

between 2001 and 2010 

 

3.1.6.2 Disentangling local cases from imported malaria cases using the model 

prediction.  

Given temperature, rainfall and humidity, the model computed the expected numbers of 

cases. In other words, these are theoretical cases that would have been seen under the 

conditions of the above mentioned variables over time. The positive numbers in the last 

column of Table 3.5 suggest excess from expected and the negative suggests less from 

expected. The Ehlanzeni District demonstrated an excess number of cases in three months. 

In January, May and June, 194, 1,752 and 104 cases were in excess of case expected, 

respectively.     
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Table 3.5. The observed and modelled expected number of malaria cases by 

District and month of Mpumalanga Province over time between 2001 and 

2010.   

District Month 

Actual 

observed 

malaria cases 

Modelled 

expected 

number of 

malaria cases 

Difference 

between observed 

and expected 

O – E* 

EHLANZENI January 7218 7024 194 

EHLANZENI February 3661 3998 -337 

EHLANZENI March 4612 8150 -3538 

EHLANZENI April 4382 6438 -2056 

EHLANZENI May 5166 3414 1752 

EHLANZENI June 1718 1614 104 

EHLANZENI July 981 1112 -131 

EHLANZENI August 749 2039 -1290 

EHLANZENI September 1542 1861 -319 

EHLANZENI October 2283 3543 -1260 

EHLANZENI November 2251 2962 -711 

EHLANZENI December 2198 5943 -3745 

GERT SIBANDE January 75 333 -258 

GERT SIBANDE February 34 269 -235 

GERT SIBANDE March 16 80 -64 

GERT SIBANDE April 30 214 -184 

GERT SIBANDE May 20 62 -42 

GERT SIBANDE June 16 37 -21 

GERT SIBANDE July 7 10 -3 

GERT SIBANDE August 3 7 -4 

GERT SIBANDE September 5 28 -23 

GERT SIBANDE October 14 86 -72 

GERT SIBANDE November 8 35 -27 

GERT SIBANDE December 9 41 -32 

NKANGALA January 32 92 -60 

NKANGALA February 11 90 -79 

NKANGALA March 4 25 -21 

NKANGALA April 15 33 -18 

NKANGALA May 10 24 14 

NKANGALA June 2 6 -4 

NKANGALA July 4 4 0 

NKANGALA August 1 5 -4 

NKANGALA September 11 24 -13 

NKANGALA October 10 50 -40 

NKANGALA November 11 40 -29 

NKANGALA December 5 64 -59 

                  *The positive numbers indicate excess and negative numbers indicate less from expected 
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3.1.7 Regression or modeling analysis 

3.1.7.1 Univariate negative binomial regression analysis 

The unadjusted univariate Incidence Risk Ratios are shown in Table 3.6. When the effect 

of other factors was ignored, the minimum and maximum daily temperatures were 

significantly associated with malaria cases. For every 1
o
C increase in minimum monthly 

temperature, there was a 14% increase in the risk of malaria infection and when maximum 

monthly temperature increase by 1
o
C, there was a 20% increase in malaria risk. As the 

difference between maximum and minimum temperature widen, there was a 0.79 times 

less likely risk of malaria.    

 

The monthly rainfall and monthly humidity were both marginally significantly associated 

with malaria cases when the effect of other variables was ignored. These factors 

demonstrated that for every 1 mm and 1% increase in each one factor respectively, the risk 

of malaria increase by 1% for rainfall and 2% for the humidity, respectively (IRR = 1.01, 

95%CI = 0.99 – 1.02; IRR = 1.02, 95%CI = 1.01 – 1.03). There was a 99% reduction in 

malaria risk at both Gert Sibande and Nkangala Districts as compared to Ehlanzeni 

District. Finally, when the time of the year was winter season, there was a 31% reduction 

in the risk of malaria as compared to summer season (Table 3.6). The risk of malaria was 

observed decreasing as the month and year variables changed (Table 3.6).            

 

3.1.7.2 Multivariate Negative Binomial regression analysis  

The variables minimum temperature, district, season and month were removed from the 

model due to multicollinearity. This means that these explanatory variables in the model 

are linearly related to each other, in other words, the combination of two or more 
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explanatory variables put together in a model have a strong positive or negative 

relationship or same effect.  This is a phenomenon that is not required in all statistical 

regression analysis. The minimum temperature collinear with maximum temperature (r = 

0.89), rainfall (r=0.66) and season (r= -0.81). The variable humidity collinear with the 

variable district (r= -0.83). The variable season collinear with the variable maximum 

temperature (r= -0.74). The adjusted IRR for factors associated with malaria cases in 

Mpumalanga are shown in Table 3.6. When the effect of other factors was adjusted for, the 

maximum temperature, temperature range and rainfall were associated with malaria cases. 

Therefore, for every 1
o
C increase in maximum temperature, there was a 21% increase in 

the risk of malaria (IRR = 1.21, 95% CI=1.13 - 1.29). As the range between maximum and 

minimum temperature was increasing, there was a 0.86 less likely risk of malaria when 

adjusting for other factors.      

 

For the rainfall variable, for every 1 mm increase, there was a 5% increase in the risk of 

malaria when other factors are controlled for (IRR = 1.05, 95%CI = 0.99 – 1.08). This 

variable was marginally significantly associated with malaria risk. For every 1% increase 

in humidity, there was a 1% increase in the risk of malaria (IRR = 1.01, 95%CI = 1.00 – 

1.02). This variable did not reach any statistical significance when adjusting for other 

factors. The risk of getting malaria decreased from 2001 to 2010 when adjusting for other 

factors.     
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Table 3.6. The univariate and multivariate negative binomial regression analysis 

model for the relationship between malaria incidence and climatic/environmental 

conditions in Mpumalanga Province between 2001 and 2010  

Variable      IRR    95% CI P-value     IRR 95% CI P-value 

Minimum temperature 
(oC) 1.14   1.08 - 1.20 <0.001 -         -         - 
Maximum temperature 
(oC) 1.20    1.10 - 1.31 <0.001 1.21 1.13 - 1.29   0.001 

Temperature range (oC) 0.79    0.71 - 0.88 <0.001     0.86 0.78 – 0.94    0.003 

Rainfall (mm) 1.01    0.99 - 1.02 0.072 1.05 0.99 - 1.08   0.081 

Humidity (%) 1.02    1.01 - 1.03  <0.090       1.01       1.00 – 1.02        0.102  

District              

Ehlanzeni    1 (Ref)            -         -        - 

Gert Sibande 0.01 0.01 - 0.02 <0.001               -         -    - 

Nkangala 0.01 0.004 - 0.009 <0.001        -         -    -  
Sikhukhune Cross 
Boundary 0.03 0.003 - 0.27 0.002        - -            -  

Season              

Summer 1 (Ref)            -        -        - 

Winter  0.79 0.48 - 1.29 0.347        -        -    - 

Month             

January    1  (Ref)                

February 0.54 0.22 - 1.35 0.185 -        - - 

March 0.98 0.36 - 2.71 0.968 -        - - 

April  0.73 0.28 - 1.88 0.517 -        - - 

May  0.96 0.36 - 2.52 0.928 -        - - 

June 0.41 0.14 - 1.17 0.097 -        - - 

July 0.22 0.08 - 0.63 0.005 -        - - 

August 0.19 0.06 - 0.56 0.003        -        -       - 

September 0.30 0.11 - 0.82 0.018 -        - - 

October 0.41 0.15 - 1.11 0.079 -        - - 

November 0.47 0.17 - 1.30 0.147 -        - - 

December 0.41 0.15 - 1.09 0.073 -        - - 

Year              

1   1 (Ref)         1 (Ref)     

2 0.78 0.30 - 1.98 0.599 0.81 0.59 - 1.10 0.181 

3 0.49 0.19 - 1.31 0.157 0.56 0.40 - 0.78 <0.001 

4 0.55 0.19 - 1.51 0.243 0.55 0.39 - 0.76 <0.001 

5 0.13 0.05 - 0.30 <0.001 0.43 0.31 - 0.59 <0.001 

6 0.31 0.13 - 0.73 0.007 0.58 0.43 - 0.79 <0.001 

7 0.10 0.04 - 0.22 <0.001 0.32 0.23 - 0.45 <0.001 

8 0.11 0.04 - 0.28 <0.001 0.21 0.15 - 0.29 <0.001 

9 0.11 0.04 - 0.28 <0.001 0.18 0.13 - 0.25 <0.001 

10 0.14 0.06 - 0.37 <0.001 0.21 0.15 - 0.29 <0.001 
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3.1.8. Spatial and spatio-temporal scan statistics analysis  

3.1.8.1 Spatial only analysis 

The most likely and secondary clusters observed for the purely spatial analysis are shown 

in Table 3.7. A statistically significant (at 5% level) most likely cluster of high malaria risk 

comprised two sub-districts for the period 2001 – 2010 (observed cases = 28,193, expected 

cases = 4,194.10, RR = 24.57, p<0.001). The secondary cluster, statistically significant, 

comprised two sub-districts for the period 2001 – 2010 (observed cases = 7,006, expected 

cases = 6352.14, RR = 1.12, p<0.001). All these sub-districts were located in the Lowveld 

region of Mpumalanga adjacent to borders of Mozambique and Swaziland (see also Figure 

3.3).   

 

3.1.8.2 Space-time analysis 

The most likely and secondary clusters of high malaria risk obtained from space-time scan 

analysis are shown in Table 3.7. The statistically significant most likely cluster comprised 

of only one sub-district for the period 2001 – 2004 (observed cases = 19,139, expected 

cases = 2,094.22, RR = 17.77, p<0.001). The secondary cluster comprised two sub-districts 

for the period 2001 – 2002 (observed cases = 3,098, expected cases = 1,671.63, RR = 1.93, 

p<0.001). These clusters were also located in the Lowveld region of Mpumalanga 

bordering Mozambique.      
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Table 3.7. Clusters of malaria cases using purely spatial and space-time scan 

analysis for high rates over ten years for Mpumalanga Province between 2001 

and 2010 

Analysis 
type Years 

Type of 
cluster 

Number 
of sub-
districts 

Observed 
cases 

Expected 
cases 

Relative 
risk (RR) P-values 

Purely 
spatial 2001 - 2010 Most likely 2 28193 4194.10 24.57 <0.001 

  2001 - 2010 Secondary  2 7006 6362.14 1.12 <0.001 
Space-
Time 2001 - 2004 Most likely 1 19139 2094.22 17.77 <0.001 

  2001 - 2002 Secondary  2 3098 1671.63 1.93 <0.001 

 

3.1.9 Significant clusters of high malaria risk in Mpumalanga Province 

Significant clusters of malaria by sub-district were pictorially shown in Figure 3.6. The 

lowveld region sub-districts of Mpumalanga bordering Mozambique were found to be 

significant using SaTScan statistical analysis. The appropriate significant p-values by sub-

district in the map were shown for each malaria high risk cluster detected. The Nkomazi, 

Bushbuckridge, Mbombela, Govan Mbheki and Umjindi sub-districts had significant p-

values at p=0.05 (p<0.001).  
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Figure 3.6. Significant clusters of malaria by sub-district detected in 

Mpumalanga Province between 2001 and 2010 (significant p-values of 

significant clusters indicated in the sub-district).   

 

3.2 Part 2: Analysis using remote sensed data 

3.2.1 The summary of selected environmental/climatic conditions for remote sensed 

data 

The summary of environmental or climatic conditions by month between 2001 and 2009 

from Mpumalanga Province using remote sensed data is shown in Table 3.8. The median 

maximum and minimum monthly temperature decrease from 30.3
o
C and 19.2

o
C in January 

to 24.2
o
C and 6.6

o
C in July, respectively. The median precipitation (related to rainfall in 

weather stations data) decreased from 102 mm in February to 2.8 mm in August in all 

study years. The monthly precipitation starts increasing in October from 44.3 mm to 117.6 
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mm in December for all study years. The median monthly vapour pressure (related to 

humidity in weather stations data) decreased from 225hPa in January to 107hPa in July. It 

started increasing in August to December. The minimum and maximum temperature, 

rainfall and humidity were significantly different in all months of the study period of 

Mpumalanga (p<0.05).  

 

Table 3.8. The summary of selected environmental/climatic conditions in the 

affected selected sub-districts of Mpumalanga Province by month between 

2001 and 2009 for the remote sensed data 

 Maximum  Minimum  Monthly            Monthly  

Month Temperature (
o
C) Temperature (

o
C) rainfall (mm) 

Vapour Pressure 
(hPa) 

  N  N  N  N 

  Median (IQR)
ψ,k

 Median (IQR)
ψ,k

 Median  (IQR)
ψ,k

 Median (IQR)
ψ,k

 

January 1548   1548 1548 1548 

  30.3 (27.7 - 31.8)  19.2 (16.4 - 20.4) 87.2 (60.6 - 121.8) 218 (186 - 234) 

February 1548  1548 1548 1548 

  30.3 (27.7 - 31.8) 19.5 (16.4 - 20.8) 102.5 (66.9 - 160) 225 (191 - 235) 

March 1548  1548 1548 1548 

  29.0 (26.9 – 30.2) 18.1 (14.45 - 18.9) 71.4 (45.6 – 101.9) 216 (177 - 227) 

April 1548  1548 1548 1548 

  27.8 (25.2 - 29.2) 15.0 (12.1 - 16.2) 28.8 (18.3 - 42.7) 177 (152 - 195) 

May 1548  1548 1548 1548 

  26.4 (23.2 - 27.9) 10.4 (7.5 - 11.5) 7.3 (4.1 – 18.1) 136 (110.5 - 154) 

June 1548  1548 1548 1548 

  24.3 (20.8 – 25.3) 7.2 (4.8 - 8.6) 12.2 (4.3 - 18) 114 (89 - 127) 

July 1548  1548 1548 1548 

  24.2 (20.9 - 25.2) 6.6 (3.8 - 8.0) 3.7 (1.9 – 10.2) 107  (82 - 116) 

August 1548  1548 1548 1548 

  26.1 (23.6 – 27.4) 9.5 (7.0 - 10.8) 2.8 (1.6 – 9.3) 125 (99 - 133) 

September 1548  1548 1548 1548 

  27.5 (25.4 - 28.8) 12.1 (9.7 - 13.5) 12.2 (4.7 – 19.8) 142 (113.5 - 154) 

October 1548  1548 1548 1548 

  28.4 (26.4 - 29.5) 15.2 (12.2 - 16.2) 44.3 (30.6 – 75.6) 175 (144 - 183) 

November 1548  1548 1548 1548 

  28.7 (26.6 - 29.9) 17.2 (14.45 - 18.45) 104 (77.2 – 144.5) 197 (167 - 207) 

December 1548  1548 1548 1548 

  29.7 (27.5 – 31.4) 18.9 (15.9 - 20.1) 117.6 (82.3 –169.4) 220 (187 - 232) 
               ψ, k – Statistically significant at p<0.05 with Kruskal-Wallis test   
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3.2.2 Correlation analysis using remote sensed data 

The Pearson correlation co-efficients for the assessment of correlation between malaria 

cumulative incidence and climatic conditions from extracted satellite data was shown in 

Table 3.9. All factors were statistically significant at 0.05 except for seasonality (p>0.05). 

The minimum and maximum temperature, precipitation (rainfall) and vapour pressure 

(humidity) showed a positive correlation with malaria cases. Therefore, the increase in 

each factor led to an increase in the number of malaria cases.  

 

Table 3.9. Pearson correlation co-efficients for the correlation between 

malaria cases and climatic/environmental conditions using remote sensed data 

for Mpumalanga Province, 2001 – 2009.  

Variable Cases   

                 Correlation co-efficient (r)             P-value 

Minimum temperature  0.3207 <0.001 

Maximum temperature  0.3232 <0.001 

Precipitation  0.4070 <0.001 

Vapour pressure  0.5772 <0.001 

 

3.2.3 Disentangling imported from local cases  

3.2.3.1 Disentangling imported cases from local cases using remote sensed data from 

the fitted curve analysis 

The IRR for malaria in Mpumalanga Province between 2001 and 2009 using remote sense 

data is shown in Figure 3.7. Between January and May, the IRR was fluctuating (i.e. 

decreasing and increasing) and a sharp decrease from 1.12, 0.45, 0.27, and 0.22 is observed 

in May, June, July and August, respectively. The IRR started to increase from 0.31 to 0.50 

between September and November during the study period.          
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Figure 3.7. The Incidence Risk Ratio (IRR) of malaria by month in 

Mpumalanga Province between 2001 and 2009 using remote sense data.  

 

3.2.3.2 Disentangling imported malaria cases from local cases using remote sensed 

data from the modelled data analysis 

The results to disentangle imported malaria cases from local cases were shown in Table 

3.10. When using remote sensed data, Ehlanzeni District is still the district that is 

experiencing a lot of excess cases from observed. Starting from March to the end of July, 

excess cases were observed. From March, April, May, June and July, about 1,131; 3,036; 

4,009; 994 and 235 excess cases were observed, respectively. These are winter months and 

an excess during this period is more likely to indicate imported cases. 

 

 

 

 

 



62 
 

Table 3.10. The observed and modelled expected number of malaria cases by 

District and month of Mpumalanga Province over time between 2001 and 2009 

using remote sensed data   

District Month  
Number of 
observed cases 

Number of 
modelled 
expected cases 

Difference between 
observed and expected 
cases* 

EHLANZENI January 7218 84820 -77602 

EHLANZENI February 3661 10619 -6958 

EHLANZENI March 4612 3481 1131 

EHLANZENI April 4382 1346 3036 

EHLANZENI May 5166 1157 4009 

EHLANZENI June 1718 724 994 

EHLANZENI July 981 746 235 

EHLANZENI August 749 1189 - 440 

EHLANZENI September 1542 1567 -25 

EHLANZENI October 2283 2657 -374 

EHLANZENI November 2251 5032 -2781 

EHLANZENI December 2198 11436 -9238 

GERT SIBANDE January 75 344 -269 

GERT SIBANDE February 34 252 -218 

GERT SIBANDE March 16 78 -62 

GERT SIBANDE April 30 165 -135 

GERT SIBANDE May 20 73 -53 

GERT SIBANDE June 16 43 -27 

GERT SIBANDE July 7 15 -8 

GERT SIBANDE August 3 45 -42 

GERT SIBANDE September 5 148 -143 

GERT SIBANDE October 14 136 -122 

GERT SIBANDE November 8 108 -100 

GERT SIBANDE December 9 75 -66 

NKANGALA January 32 707 -675 

NKANGALA February 11 587 -576 

NKANGALA March 4 403 -399 

NKANGALA April 15 329 -314 

NKANGALA May 10 87 -77 

NKANGALA June 2 32 -30 

NKANGALA July 4 60 -56 

NKANGALA August 1 11 -10 

NKANGALA September 11 490 -479 

NKANGALA October 10 239 -229 

NKANGALA November 11 274 -263 

NKANGALA December 5 394 -389 
                *The positive numbers indicate excess and negative numbers indicate less from expected 
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3.2.4 Univariate negative binomial regression model 

The univariate negative binomial regression model to assess the relationship between 

malaria cases and climatic conditions around health facilities reporting malaria using 

remote sensed data was shown in Table 3.11. When the effect of other climatic factors is 

ignored, most variables were significantly associated with malaria incidence. The risk of 

malaria increased with increasing temperature, precipitation and vapour pressure. It was 

decreasing with district changing and season changing from summer to winter. The 

minimum temperature variable showed that for every 1
o
C increase, the risk of malaria 

increase by 16% (IRR = 1.16, 95%CI= 1.10 – 1.22). The maximum Temperature 

demonstrated a 37% increase in the risk of malaria for every 1
o
C increase (IRR = 1.37, 

95%CI = 1.24 – 1.50). The precipitation variable also showed that for every 1 mm 

increase, an 8% increase in the risk of malaria was observed (IRR = 1.08, 95%CI = 1.02 – 

1.12) (Table 3.10). Those patients who were staying at Gert Sibande and Nkangala 

Districts were at 0.02 and 0.007 respectively less likely to be at risk of malaria infection 

compared to those who were staying at Ehlanzeni District (Table 3.11). Finally, for the 

change in a season from summer to winter, the risk of malaria decreased by 11% (IRR = 

0.89, 95%CI = 0.56 – 1.42). The risk of malaria was observed decreasing across all months 

except March and May.     

 

 3.2.5 Negative Binomial multivariate regression model using remote sense data 

The negative binomial multivariate regression model to assess the relationship between 

malaria cases and climatic conditions around health facilities reporting malaria using 

remote sensed data is shown in Table 3.11. The variables maximum and minimum 

temperature, vapour pressure, district and season were removed due to collinearity. The 
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minimum temperature collinears with maximum temperature (r=0.92) and temperature 

range (r=-0.84). The vapour pressure collinears with rainfall (r=0.75). The variable district 

collinears with rainfall (r=-0.59) and vapour pressure (r=0.82). The variable season 

collinears with the variable maximum temperature (r=0.62).  

 

When the effect of other climatic factors was taken into account, maximum temperature, 

precipitation and year were significantly associated with malaria incidence. The maximum 

temperature indicated that for every 1
o
C increase, there is a 35% increase in the risk of 

malaria infection (IRR = 1.35, 95%CI = 1.22 –1.50). Similarly, monthly precipitation 

(rainfall) demonstrated that for every 1 mm increase, the risk of malaria increased by 3% 

(IRR = 1.03, 95%CI = 1.01–1.06).     
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Table 3.11. The univariate and multivariate negative binomial regression 

model for the association between malaria incidence and 

climatic/environmental conditions using remote sensed data in Mpumalanga 

Province, 2001 – 2009.   

Variable  IRR 95% CI P-value     IRR 95% CI P-value 

Minimum temperature 
(

o
C) 1.16 1.10 - 1.22 <0.001 -       -  - 

Maximum temperature 
(

o
C) 1.37 1.24 - 1.50 <0.001 1.35 1.22 - 1.50 <0.001 

Temperature range (
o
C) 0.84 0.76 - 0.92 <0.001     1.28 1.15 – 1.43    <0.001 

Precipitation (mm) 1.08 1.02 – 1.12 <0.001 1.03 1.01 - 1.06 <0.001 

Vapour pressure (hPa) 1.02 1.01 – 1.04  <0.001          -             -            -  

District              

Ehlanzeni  1 (Ref)            

Gert Sibande 0.02 0.01 - 0.03 <0.001          -            -           - 

Nkangala 0.007 0.005 - 0.009 <0.001     -            -           - 
Sikhukhune Cross 
Boundary          -            -  

 
         -            -           -  

Season              

Summer 1 (Ref)              -            -          - 

Winter  0.89 0.56 - 1.42 0.626     -            -   - 

Month             

January  1  (Ref)                   -            -           -  

February 0.62 0.27 - 1.44 0.266            -            -     - 

March 1.01 0.41 - 2.48 0.987            -            -     - 

April  0.85 0.35 – 2.03 0.719                       -            -      - 

May  1.12 0.45 - 2.72 0.805                       -             -      - 

June 0.45 0.17 - 1.18 0.104            -             -            - 

July 0.27 0.10 - 0.74 0.011         -             -      - 

August 0.22 0.08 - 0.64 0.005            -             -            - 

September 0.31 0.13 - 0.74 0.009            -             -     - 

October 0.41 0.18 - 0.98 0.044        -             -     - 

November 0.50 0.20 - 1.23 0.132             -             -                           - 

December 0.42 0.17 - 0.99 0.049            -             -     - 

Year              

2001 1 (Ref)         1 (Ref)     

2002 0.66 0.29 - 1.47 0.308 0.81 0.59 - 1.11 0.192 

2003 0.44 0.18 - 1.04 0.061 0.52 0.40 - 0.78 <0.001 

2004 0.40 0.17 - 0.96 0.040 0.42 0.39 - 0.76 <0.001 

2005 0.11 0.05 - 0.24 <0.001 0.33 0.31 - 0.59 <0.001 

2006 0.25 0.11 - 0.56 <0.001 0.42 0.43 - 0.79 <0.001 

2007 0.11 0.05 - 0.24 <0.001 0.32 0.23 - 0.45 <0.001 

2008 0.12 0.05 - 0.28 <0.001 0.21 0.15 - 0.29 <0.001 

2009 0.13 0.05 - 0.30 <0.001 0.18 0.13 - 0.25 <0.001 
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CHAPTER FOUR 

 

DISCUSSION AND CONCLUSSIONS 

 

The findings in this study indicated the significance of disentangling imported cases from 

local cases. The results in this study were consistent with the findings of other studies in 

Mpumalanga Province (Ngomane, 2012). In both studies, the highest number of malaria 

cases was reported from Ehlanzeni District as were the number of deaths reported. These 

high numbers could be attributed to the close proximity of the district to the Kruger 

National Park and Mozambique and to the fact that it is a low-altitude area (Blumberg & 

Frean, 2007).       

 

There was a significant reduction in malaria prevalence later in year 2000 following a 

major malaria epidemic in 1999/2000. During the epidemic, more than 60,000 malaria 

cases were reported (Coetzee, 2005) and between 11% and 50% of resistance to pyrethroid 

in An. funestus were reported (Hargreaves et al., 2000). The reduction could be attributed 

to re-introduction of DDT replacing pyrethroid later in year 2000. The successful 

programmes on vector control, drug policy change to fight drug resistance and cross-

border malaria control initiatives also contributed to the malaria reduction. These 

sustainable well-structured and effective control strategies resulted in malaria reductions 

seen even today.         
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A positive correlation obtained between malaria cases and temperature, rainfall and 

humidity is consistent with previous studies. The study done by Taylor & Mutambu (1986) 

in Zimbabwe; Craig et al. (2004) in KwaZulu-Natal, South Africa; and Kearney et al. 

(2009) depicted the positive correlation between malaria incidence and climatic factors. 

Mabaso et al. (2006) in Zimbabwe conducted a study exploring and studying malaria 

incidence and relationship with climatic factors in the past 30 years. This author’s findings 

showed that annual mean temperature, rainfall and vapour pressure were strong positive 

predictors of increased malaria incidence. This positive correlation suggested that as the 

increase in these factors occurs, the number of malaria cases also increase. This is what 

would be expected in every study involved on studying malaria and climatic conditions.  

 

The observed malaria cases exceeded the expected number of malaria cases from March to 

June in the period of ten years. This suggests an increase in the number of malaria cases 

inconsistent with the given climatic conditions around health facilities. During the 

beginning of May to June, the climatic conditions (i.e. temperature, rainfall and humidity) 

are normally low. In other words, this is the time of the year when the temperature and 

humidity are starting to drop drastically and cold conditions are experienced in the country. 

The rainfall also is drastically reduced during these times of the year. Therefore, the excess 

malaria cases reported are most likely imported cases from areas north of South Africa. 

This supports the recent study by Maharaj et al. (2012) where it was revealed that up to 

80% of the cases reported from 2005 – 2011 are imported. Most importantly, the local 

cases reported from 2005 – 2011 has decreased from 31% – 20%.                                                                                                       

 

The previous studies by Zhou et al. (2004) in the East African highlands further 

emphasized the known epidemiological understanding of the relationship between climate 
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and malaria. They clearly determined that every one unit increase in minimum or 

maximum temperature, rainfall or humidity led to an increase in the risk of malaria. These 

findings were in accordance with the findings from the present study. The synergistic 

effects of a combination of temperature and rainfall to increase malaria incidence was also 

observed in this study.   

 

The high malaria risk areas identified in space and space-time were the areas already 

mentioned by Maharaj et al. (2012) as areas that require urgent intervention. These are the 

areas that were also detected when doing malaria spatial analysis. Therefore, a close 

monitoring and evaluation of the malaria control programmes in these areas to achieve 

elimination is strongly recommended.    

 

Limitations of the data involved health facility-based case data that did not distinguish the 

imported and local cases. It only assumes that people did not cross borders and go to use 

other health facilities from other district. The Stats SA population data did not separate 

between the migrating and non-migrating nationals as it sample everybody in the district. 

The issue of population undercount as not everyone get counted during census also 

identified. The weather stations data had a lot of missing values. It was not a best 

representation of the climatic conditions surrounding health facilities. For example, some 

of the facilities are many kilometres away from the weather station recording data. The 

unit of analysis was health facility and the conclusions were based at the individual case 

thus creating ecological bias. 

 

From the findings in the present study it was clear that the occurrence of malaria cases 

around a particular health facility were not particularly due to the surrounding climatic 
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conditions. These were most likely imported cases from malaria endemic countries. So, it 

is strongly recommended that sensitive surveillance systems applicable to the elimination 

phase are instituted.  

 

Secondly, it is absolutely imperative that cross-border movement with neighbouring 

countries needs urgent attention and that cross-border malaria control programmes 

initiatives need to be strongly supported to minimize case importation. Thirdly, research 

studies that focus on mosquito vectors and insecticide resistance distribution are 

encouraged. Finally, strategic elimination planning that quantifies population movement 

patterns to and from our country needs to be established.                 
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