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Abstract 

 

Traditional medicine plays a vital role in the cultural heritage of many South Africans, with at 

least 80% of the population relying on medicinal plants for their primary source of 

healthcare. It has been acknowledged that even in some of the finest hospitals in South 

Africa, people are often found to be using traditional medicine in combination with 

conventional treatment regimens. Despite the substantial use of medicinal plants in South 

Africa, limited information is available on the interactive properties between commercially 

relevant, southern African medicinal plants and conventional drugs. Furthermore, the 

potential for toxicity of these combinations has been sorely neglected. In orthodox medicine, 

antimicrobials such as antibiotics and antifungals are amongst the most commonly prescribed 

group of drugs. Therefore, there is a high probability for the concurrent use of these two 

forms of healthcare.  

The aim of this study was to evaluate the interactive antimicrobial and toxicity profiles, when 

seven conventional antimicrobial agents (amphotericin B, ciprofloxacin, erythromycin, 

gentamicin, nystatin, penicillin G and tetracycline) were combined with the essential oils, 

aqueous and organic extracts of seven medicinal plants (Agathosma betulina, Aloe ferox, 

Artemisia afra, Aspalathus linearis, Lippia javanica, Pelargonium sidoides and Sutherlandia 

frutescens).  

The antimicrobial activity of the plant samples and conventional antimicrobials were 

evaluated, alone and in combination, using the minimum inhibitory concentration (MIC) 

assay against two yeasts, three Gram-positive and three Gram-negative bacteria. The 

combinations were further evaluated using the fractional inhibitory concentration (∑FIC) 

assessment. Combinations demonstrating notable synergistic or antagonistic interactions were 

studied in various ratios (isobolograms).  

Toxicity of the antimicrobials and plant samples were assessed, individually and in 

combination, using the brine-shrimp lethality assay (BSLA) and the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay on human kidney 

epithelial cells (Graham or HEK-293 cell line). 
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A total of 476 combinations were assessed for interactive antimicrobial potential. Of these 

combinations, 14.29% were synergistic, 7.56% antagonistic, 35.71% additive and 42.44% 

indifferent in nature. Some notable interactions were identified, such as the combination of    

A. linearis (aqueous and organic extract) with penicillin G, where a synergistic profile was 

most often seen against the three tested Gram-positive micro-organisms (Staphylococcus 

aureus, Bacillus cereus and Enterococcus faecalis), with ∑FIC values ranging from 0.01 

(synergistic) to 0.94 (additive). Further notable interactions included A. betulina and S. 

frutescens, when combined with ciprofloxacin and tested against E. coli, which demonstrated 

a favourable synergistic profile, and could be of importance in the treatment of urinary tract 

infections.  

In the BSLA, the notable interactions that were tested demonstrated no toxic effect. In the 

MTT cellular viability assay, the only combination demonstrating possible toxicity was that 

of A. linearis (aqueous and organic extract) in combination with nystatin (inhibitory effects of 

73.76 ± 3.36% and 56.88 ± 6.61%, respectively). Therefore, concurrent use should be 

cautioned and further in vivo studies warranted. 

In conclusion, most combinations were found to be non-interactive, alleviating some of the 

concern related to the concurrent use of the two forms of healthcare. However, some notable 

combinations were identified, which could possibly have an impact on conventional 

treatment regimens. Therefore, further in vivo testing is warranted to support the in vitro 

findings.   
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Chapter 1 

 Introduction 

 

1.1. History of traditional medicine and plant use 

Traditional medicine is practised throughout the world, with its existence far before that of 

modern scientific medicine, and comprises of the accumulated knowledge and skills acquired 

over generations, which allows for the maintenance of health, along with the treatment of 

illness (WHO, 2008). There are four types of existing herbal medicine, namely Asian, 

European, Neo-Western and Indigenous herbalism. European herbalism originated mostly 

from the Mediterranean populations. Asian herbalism originated primarily from India 

(Aryuvedic, Unani and Siddha), China (Wu-Hsing) and Japan (Kampo). Neo-Western 

herbalism is the combination of European and American herbalism and Indigenous herbalism 

can be described as that which is practiced by a specific ethnic or cultural group, where most 

often the knowledge and skills lie with a traditional healer (Elvin-Lewis, 2001).  

Traditional medicine very often makes use of medicinal plants and herbs in the healing 

practice. The use of natural remedies in the treatment of various diseases originates from the 

ancient Greek, Egyptian and Chinese civilisations. These remedies were in use far before the 

existence of chemists synthesizing bioactive drugs (Ioannides, 2002). The Greeks and 

Romans were mainly responsible for the initial documentation of medicinal plant use. During 

the renaissance, the use of medicinal plants in holistic treatment regimens became a common 

practice, after which the science of “pharmacognosy” was identified (Kinghorn, 2001). 

Medicinal plants have always been highly valued by the various medical systems and are 

central in many traditional healing practices (Heinrich et al., 2004; Van Wyk et al., 2009; 

Silva and Júnior, 2010). Plants are regarded as being medicinal in nature if any part of the 

plant contains a substance or substances that can provide therapeutic effects (Sofowora, 

1982).  

1.2. Global perspective of traditional medicine and plant use 

It has been estimated that at least 28% of plants existing on earth have been used medicinally 

(Akerele et al., 1991) and the World Health Organisation (WHO) has estimated that at least 
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80% of the population worldwide, makes use of medicinal plants as a primary source of 

medicine. Developing countries contribute mostly to this statistic (Evans, 1997; Cordell and 

Colvard, 2005). Plants have provided a source of some well-known medicines, such as 

quinine, atropine, opioids and taxol, to mention only a few. These drugs were very often the 

only treatments available for specific illnesses and are consumed worldwide, demonstrating 

the global importance of medicinal plants (Van Wyk et al., 2009).  

The use of medicinal plants and herbal remedies for the treatment of diseases has rapidly 

gained popularity throughout the world over the last few decades (Elvin-Lewis, 2001; 

Ioannides, 2002; Chinyama, 2009) and very often, is the only source of healthcare 

(Chinyama, 2009). This increased popularity can be attributed to various factors, including 

affordability and accessibility. The use of herbal remedies also allows a person to exercise 

control of their own healthcare (Elvin-Lewis, 2001) and hence provides people with a sense 

of autonomy and empowerment. Many people are also often disappointed by orthodox 

medicine, due to adverse effects experienced or a lack of effectiveness. This is often seen in 

the treatment of infections, where resistant microbes render conventional antimicrobials 

ineffective. Patients, who have lost faith in the conventional treatment options often turn to 

traditional remedies as an alternative (WHO, 2002). Plants have been considered safer and 

more affordable than synthetic drugs by many people (Iwu et al., 1999). These perceptions 

have thus led to an increase in use of medicinal plants, in place of consulting conventional 

healthcare providers for conventional medication.   

In Brazil, it was estimated that only 37% of the population makes use of commercial, 

conventional drugs. Therefore, more than half the population depend on natural products for 

their healthcare (Funari and Fero, 2005). In Germany, 80% of medical physicians have been 

found to prescribe herbal treatments (Gilani and Rahman, 2005). In Africa, traditionally used 

medicinal plants play a vital part in the cultural heritage, with an estimated 60% of the 

population consulting traditional healers (Chinyama, 2009; Van Wyk et al., 2009).   

1.3. South African perspective of traditional medicine and plant use 

South Africa has a rich cultural heritage and the medicinal systems practised among the 

different cultures can vary considerably. Medicinal plants and herbs are widely used in 

traditional healing practices throughout South Africa, along with the rest of Africa. The use 

of medicinal plants as a means of treating disease is extremely pertinent among the 

indigenous populations in South Africa (Bhat and Moskovitz, 2009). These plants are often 
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the primary source of medicine in traditional healing practices and are therefore, a central 

part of many South Africans’ daily lives. These plants are not only used for their medicinal 

properties, but for cosmetic and hygienic purposes too (Van Wyk et al., 2009). It has been 

estimated that 12 to 15 million South Africans are reliant on traditional herbal medicines, 

which are prepared from over 700 indigenous plant species (Brandt et al., 1995; Meyer et al., 

1996). In South Africa alone, there are over 200,000 traditional healers, with approximately 

3,000 plants used in traditional healing practices. A massive informal and commercial market 

exists for medicinal plants in South Africa, with many people still mainly relying on these 

medicinal plants for their everyday healthcare needs (Van Wyk et al., 2009).  

Traditional healers kept no records pertaining to their knowledge of the medicinal plants 

used. The traditional healing remedies were mostly passed on from generation to generation, 

via word of mouth; resulting in very limited availability of information pertaining to 

traditional remedies (Van Wyk et al., 2009). As such, collecting and recording of 

ethnomedical data on medicinal plants received major attention. The first published report on 

South African medicinal plants was by Pappe (1847). The publication included information 

on the medicinal plants that were most commonly used at the time. Another important 

publication on medicinal plants was that of Watt and Breyer-Brandwijk (1932), which 

provided a comprehensive report of medicinal plants used at the time. Hutchings et al. (1996) 

also contributed greatly toward the documentation of medicinal plants most commonly used 

by the Zulu nation. Van Wyk et al. (1997) and Van Wyk et al. (2009) further highlighted the 

field of medicinal plant research in South Africa.  

It has been acknowledged on numerous occasions, that there is a need for further validation 

of these traditional medicinal plants, via scientific investigation, with priorities lying in the 

antimicrobial, antiviral, antihelmintic, antimalarial, anticancer potential and cardiac activity 

of medicinal plants (Sofowora, 1993).   

1.4. Role of medicinal plants in westernised medicine 

Plants have been used for the development of new modern medicines for decades (Hermann 

and Von Richter, 2012). Many well-known conventional drugs have been derived from plant 

sources, such as aspirin, quinine, morphine, codeine and atropine (Van Wyk et al., 2009). 

According to Phillipson (2001), worldwide over 50% of the top 20 drugs most commonly 

used clinically, are derived from plants. To date, new conventional drugs are still being 

derived from plants. As quoted by Van Wyk et al. (2009), “medicinal plants are something of 
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the future, not the past”. There has been an increase in the number of phytomedicines which 

are entering the market throughout the world and this is not only limited to developing 

countries (Cordell and Colvard, 2005).  

1.5. Commercialisation of medicinal plants 

In South Africa, medicinal plants are most commonly sold in the informal traditional markets 

as crude, unprocessed plant material. Even though there is a considerable demand for these 

plants in the informal sector, very few have reached commercial success in the formal sector, 

such as in pharmacies. Even though plant use has not been fully accepted in orthodox 

medicine, plant and herbal remedy use has escalated and these remedies are becoming 

important commercial products, in their own capacity. Only sixteen South African medicinal 

plants have been partly or fully developed for commercial products. These include 

Agathosma betulina, Aloe ferox, Artemisia afra, Aspalathus linearis, Bulbine frutescens, 

Cyclopia genistoides, Harpagophytum procumbens, Hoodia gordonii, Hypoxis 

hemerocallidea, Lippia javanica, Mesembryanthemum tortuosum, Pelargonium sidoides, 

Siphonochilus aethiopicus, Sutherlandia frutescens, Warburgia salutaris and Xysmalobium 

undulatum. Of these plants, Aloe ferox (Cape aloe), Agathosma betulina (buchu) and 

Harpagophytum procumbens (devil’s claw) have acquired the most international success 

(Van Wyk et al., 2009; Van Wyk, 2011).   

1.6. Infectious diseases 

Bacteria, fungi and parasites are responsible for causing infectious diseases, which have 

become a major health concern. Infectious diseases are one of the main causes of morbidity 

and mortality among humans, particularly in areas of low economic status (Adwan et al., 

2009).  

Even though numerous anti-infective agents have been discovered, infectious diseases still 

cause millions of deaths around the world. More than 25% of the 57 million deaths per year 

worldwide are as a result of infectious diseases. Lower respiratory tract infections, human 

immunodeficiency virus/acquired immunodeficiency virus (HIV/AIDS), diarrhoeal diseases, 

tuberculosis, malaria and measles are the infections most responsible for these deaths 

(Kolodziej, 2011). The threat is even higher in developing countries. This is due to the 

limited availability of medicines, the living environments that can be crowded and unsanitary, 

along with the increase in drug resistance (Okeke et al., 2005). The increase in microbial 
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infections in recent years can also be attributed to the increase in the HIV/AIDS infection 

numbers, which renders those infected, more susceptible to other microbial infections 

(Chinyama, 2009).  

1.7. Nosocomial infections 

A nosocomial infection is a major complication associated with hospitalisation (Gaynes, 

1997). It is also known as a hospital acquired infection or healthcare-associated infection 

(HAI). In 2002 it was found that 1.7 million HAI’s occurred and was the sixth leading cause 

of death in America. The data similarly reflects that in Europe (Klevens et al., 2007; Chopra 

et al., 2008; Kung et al., 2008). There are various contributing factors, such as the age of the 

patient, frequent use of antimicrobials and the type of surgical procedure undertaken (Swartz, 

1994). The emergence of antimicrobial resistant microbes has limited the progress in the 

prevention and control of nosocomial infections (Emori and Gaynes, 1993). It is a major 

health concern, which needs to be addressed with the introduction of rational antimicrobial 

prescribing and use, along with the identification of new, more effective antimicrobial agents, 

to which no resistance has developed.   

1.8. Conventional antimicrobial agents 

A conventional antimicrobial agent is a substance, which can either be synthesised or 

naturally produced, and is capable of inhibiting the growth of (bacteriostatic) or killing 

(bactericidal) a microbe (Pelczar et al., 1993; Brock et al., 1994). Antimicrobial agents were 

discovered during the twentieth century and were central in curbing the increasing threat 

posed by infectious diseases on morbidity and mortality rates (WHO, 2002). Antimicrobial 

agents have, without a doubt, been one of the most important therapeutic agents in 

conventional medicine. Even though antimicrobials were an invaluable addition to modern 

healthcare, the success is increasingly being threatened by microbes developing resistance to 

them; which renders them ineffective (Clark, 1996). 

1.9. The emergence of antimicrobial resistance 

The increase in infectious diseases has led to increased antimicrobial use. The reliance on 

antimicrobial agents ultimately leads to increased antimicrobial resistance, which has resulted 

in more untreatable infections and higher morbidity and mortality rates (Cordell and Colvard, 

2005; Van Vuuren, 2007). The overuse of antimicrobials is not solely responsible for the 

emergence of resistance, since the misuse of these agents has also aided in hindering 
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antimicrobial effectiveness. Due to this escalation in resistance, many patients are being left 

untreated. Disappointed with orthodox medicine, people often turn to traditional remedies 

(WHO, 2002).    

There are three main categories for antimicrobial resistance, namely intrinsic (primary), 

acquired (secondary) and clinical resistance. Intrinsic or primary resistance occurs among the 

micro-organisms that have not even been exposed to the antibiotic or antifungal. Acquired or 

secondary resistance is seen when the microbes have been exposed to the antibiotic or 

antifungal during the therapeutic management of the infection, and is often due to a genetic 

mutation. Clinical resistance develops when there has been a failure in treatment, which 

could be affected by various factors, such as the immune status of the patients, the 

pharmacokinetics of the drug or the species of microbe being treated (O’Shaughnessy et al., 

2009).  

The emergence of resistance toward conventional antimicrobials has become a major public 

health concern (Livermore, 2000), since previously treatable infections are now resulting in 

prolonged infections and higher mortality rates (Van Vuuren, 2007). This global concern has 

led to efforts being directed to finding solutions to the problem of antimicrobial resistant. One 

of the strategies to overcome this problem is the identification of new, more effective 

antimicrobial alternatives. Many studies are thus, being directed towards discovering new 

antimicrobials, to which no resistance has developed. Medicinal plants are one of the sources 

from which scientists are hoping to find new, more effective agents (Adwan et al., 2009).  

1.10. Natural products as antimicrobial agents 

In order to find new, more effective alternatives for antimicrobial therapy, studies have been 

directed toward traditionally used medicinal plants (Van Vuuren, 2007). Medicinal plants, 

which over centuries, have proven to be successful in the treatment of infections among our 

ancestors, provide a promising source of new antimicrobial agents (Rabe and Van Staden, 

1997; Cowan, 1999; Darwish et al., 2002). The frequent traditional use of medicinal plants by 

a large proportion of people, for the treatment of infections, provides proof of the efficacy of 

plants as antimicrobial agents (Van Vuuren, 2007). It has even been acknowledged that 

antimicrobials derived from plants are rarely associated with side effects, and also have the 

ability to eliminate many types of infections (Chanda and Rakholiya, 2011).  
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Plant use in antimicrobial treatment was first reported in 3,300 BC in Europe, with the 

discovery of the “iceman”, a human body that had been preserved by the presence of a 

bracket fungus (Capasso, 1998). Plants, for centuries, have provided a source of treatment 

against microbial infections, with their use being well documented. Rios and Recio (2005) 

have even commented on the increased number of articles being published on the use of 

medicinal plants in antimicrobial therapies.  

In order to validate the traditional use of medicinal plants in infection treatment, many studies 

have focused on determining the antimicrobial efficacy of plants throughout the world, and 

have included antimicrobial screening of plant extracts and essential oils (Rabe and Van 

Staden, 1997; Fabry et al., 1998; Cowan, 1999; Dorman and Deans, 2000; McGaw et al., 

2000; Nascimento et al., 2000; Huffman et al, 2002; Duarte et al., 2005; Eldeen et al., 2005; 

Rios and Recio, 2005; Buwa and Van Staden, 2006; Van Vuuren, 2008; Chinyama, 2009). 

Some studies have even gone as far as testing isolated antimicrobial compounds from plants 

against various pathogens, with many of these studies being listed in a review by Cowan 

(1999) and later by Van Vuuren (2008). The antimicrobial properties of plants indigenous to 

South Africa have, however, been sorely neglected, in comparison to ethnobotanical research 

data available on plants from other continents and countries (Van Vuuren, 2007). Research 

focusing on discovering new antimicrobial alternatives of botanical origin and the scientific 

validation of effectiveness, could possibly lead to the acceptance of medicinal plants in 

western medicine. Even though research to identify natural products of botanical origin, that 

have the same or comparable antimicrobial efficacy as conventional antimicrobial agents, has 

become important; there is general consensus among the various studies that plant based 

antimicrobials possess a lower potency than conventional antimicrobials (Van Vuuren and 

Viljoen, 2011).   

1.11. The concept of synergy 

Another strategy to overcome antimicrobial resistance includes combination therapy. Various 

combinations have shown promising therapeutic outcomes in enhancing antimicrobial 

effectiveness of existing antimicrobials. This concept is known as synergy or potentiation. 

Synergy is a word derived from the Greek, synergos, which means to work together. It can be 

defined as a cumulative effect produced by an interaction between two different agents 

(Biavatti, 2009), where the cumulative effect is far greater than the effect of the individual 

agents (Berenbaum, 1978).  
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Pharmacologically, it has been known that combining drugs can often be beneficial. 

Therefore, multitherapy has gained popularity, as opposed to monotherapy, especially in the 

treatment of hypertension, cancer, malaria, HIV/AIDS and infectious diseases. The 

combination of conventional antimicrobials has been found to reduce the development of 

resistance of microbes toward the antimicrobials (Biavatti, 2009). This theory of combination 

therapy is not only common practice in conventional medicine, but in phytomedicine too. 

Plants have a very complex composition and the large diversity of secondary metabolites 

increases the likelihood for interactions. Plant combinations have been used for centuries, due 

to the beneficial effects of a combination (Biavatti, 2009).  

As such, the concept could extend itself to the combining of conventional drugs with 

botanical products, for an enhanced effect. Synergy between combinations of conventional 

antimicrobials and plant extracts is a concept that has only recently been investigated in 

depth. Synergy could result in enhanced efficacy, reduced toxicity, decreased adverse effects, 

increased bioavailability, lower dose administration and reduced or delayed antimicrobial 

resistance (Cottarel and Wierzbowski, 2007; Inui et al., 2007).   

1.12. Combination studies of agents with antimicrobial properties 

Many methods can be employed to formulate new alternatives with enhanced antimicrobial 

activity in order to combat antimicrobial resistance, such as using multiple antibiotics 

concurrently, or to combine already available antibiotics with phytochemicals in order to 

create a potentiating or synergistic effect (Sibanda and Okoh, 2007; Adwan et al., 2010).  

1.13. Combinations of natural products 

Combinations of natural products, to provide an enhanced effect, have been common practice 

in traditional healing. Essential oils are commonly used in combination and have shown an 

enhanced effect (Van Vuuren and Viljoen, 2006; Suliman et al., 2010). It has been 

acknowledged that essential oils, when used in combination, have been found to be much 

higher in inhibitory activity than standard antibiotics (Al-Bayati, 2008). Plant extracts have 

also been found to be used in combination. A study by Mabone (2013) identified various 

combinations of plant extracts which are used for the treatment of skin ailments, in traditional 

healing practices in South Africa. Often, these combinations were found to have an enhanced 

efficacy.  
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1.14. Combinations of natural products with conventional antimicrobial agents 

Compounds in various plants have been found to be synergistic enhancers for conventional 

antimicrobials, even if the plant compounds do not possess antimicrobial activity themselves 

(Aiyegoro and Okoh, 2009). Many studies have evaluated the effects of combining natural 

products (essential oils or plant extracts) with conventional antimicrobials (cefuroxime, 

tetracycline, tobramycin, nystatin, amphotericin B and many more). These have been tested 

on a range of micro-organisms, including resistant microbes, such as methicillin-resistant 

Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In most cases, a synergistic 

interaction has been identified. Most of these studies have, however, focused on antibiotic 

combinations with common herbs, such as Rosmarinus officinalis, Origanum vulgare, 

Thymus vulgaris, Mentha piperita and Melaleuca alternifolia (Shin, 2003; Sato et al., 2004; 

Braga et al., 2005; Betoni et al., 2006; Rosato et al., 2007; Rosato et al., 2008; Adwan et al., 

2009; Rosato et al., 2009; Van Vuuren et al., 2009; D’Arrigo et al., 2010; Jarrar et al., 2010; 

Silva and Júnior, 2010). The synergistic effect is represented by a reduced minimum 

inhibitory concentration (MIC) for the antimicrobial. The reduced MIC signifies an enhanced 

antimicrobial effect, which could ultimately render an ineffective antimicrobial, effective 

once again. This interaction has resulted in some plant extracts being defined as resistance 

modifying agents (Sibanda and Okoh, 2007). Both Adwan et al. (2010) and Van Vuuren and 

Viljoen (2011) proposed that the potentiating effect of plant extracts on conventional 

antimicrobials has been neglected and requires further investigation. 

A study by Van Vuuren and Viljoen (2011) has summarized some combinations of plants 

with conventional antibiotics and the interactions which were noted. A review by 

Hemaiswarya et al. (2008) also provides a number of synergistic interactions that have been 

identified between natural products and antibiotics in the treatment of bacterial infections. A 

recent South African study on the combination of the ethanolic extract of Ziziphus mucronata 

with conventional antibiotics (tetracycline, chloramphenicol, amoxicillin and ciprofloxacin) 

found that more synergistic interactions (54.17%) occurred between the combinations than 

those of antagonism (1.39%) against clinically relevant bacteria (Bacillus cereus, P. 

aeruginosa, Eneterococcus faecalis and Escherichia coli) (Olajuyigbe and Afolayan, 2013). 

Palaniappan and Holley (2010) also discovered the synergistic interactions between 

conventional antibiotics (ampicillin, tetracycline, penicillin, bacitracin, erythromycin and 

novobiocin) and natural antimicrobials (eugenol, thymol, carvacrol, cinnamaldehyde and 

allylisothiocyanate) when testing against resistant strains of Salmonella typhimurium, S. 
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aureus, E. coli and Streptococcus pyogenes, and it was acknowledged that some 

phytochemicals have the potential to reduce antimicrobial resistance. A few combination 

studies have investigated antimicrobials in combination with isolated phytochemicals, such as 

phenols, tannins and flavonoids (Sibanda and Okoh, 2007; Hemaiswarya et al., 2008; 

Jayaraman et al., 2010; Palaniappan and Holley, 2010), where again, many synergistic 

combinations were identified and attributed to the potentiating effect of natural products on 

conventional antimicrobials. No antagonistic interactions were identified in this study. Others 

have investigated the combination of conventional antimicrobial combinations with non-

conventional antibiotics, such as tricyclic neuroleptics and antidepressants (Gunics et al., 

2000).  

After conducting an intensive search of published literature, no studies were found that 

appeared to have investigated interactions between the southern African medicinal plants 

selected for this study and conventional antimicrobials when used in combination. These 

plants have been studied for their antimicrobial activity, as well as in polyherbal formulations 

(Suliman et al., 2010); however, no evidence is available on their effects when in 

combination with conventional antimicrobials.  

1.15. Prevalence of concurrent use of natural and conventional medicine 

In southern Africa, traditional African medicine coexists with conventional medicine, as well 

as other alternative types of medicine, such as homeopathy, Ayurvedic and Traditional 

Chinese medicine (Van Wyk and Gericke, 2000). It has been acknowledged that the 60% of 

South Africans consulting traditional healers, very often use modern medical services 

concurrently (Van Wyk et al., 2009). Even if western healthcare is available, traditional 

medicine still exists side by side with conventional medicine (Sindiga, 1994). Many people in 

southern Africa have been found to use both traditional and conventional medications 

concurrently (Van Wyk et al., 2009), without knowledge of the potential interactions which 

may occur. It has also been acknowledged that even in some of the finest hospitals in South 

Africa, traditional medicine is found to be used by patients in conjunction with conventional 

therapies [personal communication, Dr M.G. Matsabisa, Director of the Indigenous 

Knowledge Systems (IKS) Health Unit, Medical Research Council (MRC)]. The practice of 

combining traditional or herbal remedies with conventional medicine has been found to be 

prevalent not only in southern Africa, but also elsewhere. In Israel, it was found that 49.40% 

of natural product consumers were also concurrently using conventional drugs (Giveon et al., 
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2004). A national survey performed in the United States of America, indicated that 72% of 

patients using herbal remedies were found to be using prescription drugs and 84% using over-

the-counter medication in combination. It was also found that some patients preferentially 

combined these two forms of healthcare, with the belief that there would be a synergistic 

effect (Maizes and Dog, 2010). The major concern with concurrent use of these two forms of 

healthcare is the potential for natural product/herb-conventional drug interactions and the 

clinical consequences of these interactions (Fasinu et al., 2012). This provides the basis to 

study southern African medicinal plants in combination with conventional medication, in 

order to identify any interactions which may potentiate or compromise a patients’ therapy.   

Many people believe that traditional medicines are safe for consumption due to the history of 

their use; however, that notion can no longer be valid. It has been found that many 

phytomedicines that are used in conjunction with over-the-counter or prescription drugs, 

result in many undesirable interactions and effects (Maizes and Dog, 2010). 

1.16. Interactions between natural products and conventional drugs 

The potential for the interaction between these two forms of therapy is worrisome and has 

become a major concern. Natural products are taken not only for the treatment of some 

diseases, but also for the prevention thereof. Hence, long-term consumption of natural 

products often occurs. This leads to an increased frequency of simultaneous consumption 

with prescription or over-the-counter conventional medicines and the likelihood for 

interactions. The concern escalates among the elderly, where natural products are a popular 

choice for the treatment of ailments and where conventional prescription medication is also in 

use. The general public is usually unaware of the possibility for interactions and their adverse 

effects, which further exacerbates the problem (Ioannides, 2002). 

Natural products are very often poorly defined and may have variable ingredients to that 

stated on the packaging, which further contributes to possible interactions. Multiple drugs are 

very often used in combination, particularly in the elderly and chronically ill, where 

interactions very commonly occur. This situation could further be complicated by the 

concurrent use of natural products. Often, patients do not disclose the use of natural products 

to their healthcare providers, as they are not considered to be of any harm, but rather of 

nutritional value (Butterweck and Derendorf, 2012). A study by Klepser et al. (2000) 

revealed that no less than 40% of natural product users disclose their use of these medicines 

to their healthcare providers. The continuous practice of using commercial drugs along with 
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natural products has been attributed to the lack of knowledge of interactions, which becomes 

a major safety concern. The lack of reporting also contributes to the lack of information 

available on the interactions occurring (Eisenberg et al., 1998; Barrett et al., 1999; 

Butterweck and Derendorf, 2012; De Lima Toccafondo Vieira and Huang, 2012). The 

occurrence of these interactions has also been attributed to physicians and their limited 

knowledge pertaining to natural or herbal medicines and their potential for drug interactions 

and the impact thereof on the health of their patients. Another issue is the lack of proactively 

enquiring natural product or traditional medicinal use by the healthcare provider upon their 

consultation with patients (Clement, 2005; Ozcakir et al., 2007; Fakeye and Onyemadu, 

2008). The possibility of interactions between the two forms of healthcare has been identified 

as a serious healthcare concern in many hospitals throughout the world, with new regulations 

being implemented to ensure the full disclosure of traditional medicinal use during a 

consultation, before any conventional medicines are prescribed (Murphy, 1999). This, 

however, has not become common practice in South Africa yet.  

Natural products have been found to interact with conventional drugs in a variety of ways. 

Sometimes the natural products interact at the site of absorption, thereby affecting the rate or 

extent of absorption of conventional drugs. Natural products can also interact with protein 

transporters and compete with conventional drugs for transporters or can interact with the 

liver enzymes responsible for metabolism of conventional drugs (Ioannides, 2002). Not only 

are herbal remedies active on their own, but they are also capable of potentiating or 

diminishing the therapeutic effects of conventional medication (Catania, 1998).  

The interaction between conventional drugs and natural preparations or dietary supplements 

was first reported in the 1970s. There have been many reports on herb-drug interactions and it 

has been acknowledged that the ability of natural products to interfere with conventional 

drugs needs to be addressed in detail. The increased use of these products throughout the 

world, has led to an increased number of interactions being identified; where some have been 

fatal (Ioannides, 2002). A few of these interactions have been reviewed by Elvin-Lewis 

(2001), Ioannides (2002) and Fasinu et al. (2012). St. John’s wort is a natural product that is 

commonly associated with herb-drug interactions, some of which have been mentioned in 

Table 1.1. 

It has been acknowledged that future interactions can only be avoided if attention is drawn to 

research conducted in the area of pharmacology of drug interactions (Ernst, 2000).   
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Table 1.1. Common interactions between St. John’s wort and conventional drugs (Ioannides, 

2002). 

Conventional drug Interaction/effect of combination 

Warfarin 
Loss of anticoagulant activity, due to up-regulation of 

CYP450 liver enzymes. 

Cyclosporin 
Tissue rejection in organ transplants, due to up-regulation of 

CYP450 liver enzymes. 

Indinivar/Nevirapine 
Treatment failure in HIV/AIDS patients, due to up-

regulation of CYP450 liver enzymes.  

Oral contraceptives 
Reduced efficacy leading to unwanted pregnancy, due to up-

regulation of CYP450 liver enzymes. 

Tricyclic antidepressants  
Reduced efficacy leading to untreated depression, due to up-

regulation of CYP450 liver enzymes. 

CYP450 = cytochrome P450 

 

The potential for interactions needs serious acknowledgment and requires scientific studies 

for confirmation on the presence or absence of such interactions. These findings also need to 

be relayed to the general public to ensure their safety.  

Antimicrobial interactions are classified as synergistic, antagonistic, additive or non-

interactive (indifferent) in nature. The implications of a synergistic interaction between 

traditional plants and conventional antimicrobials includes enhanced efficacy, thereby 

allowing lower dose administration, with reduced side effects and possibly reduced 

antimicrobial resistance (Van Vuuren and Viljoen, 2011). Phytochemical synergy could also 

assist in protecting the drugs from degradation, increased solubility or possibly increased 

membrane transport of conventional agents (Gurley, 2012). 

In contrast, antagonistic interactions could, however, severely reduce the efficacy of 

conventional antimicrobials, thereby increasing the burden placed on healthcare systems. 

There have been many instances where natural products have been used concurrently with 

conventional medicine and severe reactions have been reported. Well characterised 

interactions have been summarised by Vickers et al. (2001), who emphasized that several 

interactions remain undefined and that if patients are taking conventional medication, that 
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natural products should be used with caution. Antagonistic interactions result in more of an 

agent being required to produce a particular effect when used in combination, than what is 

needed when used separately (Berenbaum, 1978).  

Additive interactions provide an effect that is exactly equivalent to the effect of the individual 

agents when added together, that is no less nor greater in combination than when tested 

separately. Therefore, there is no advantage or disadvantage in combining them. Additive 

interactions usually occur between agents with similar mechanisms or sites of action. 

Interactions are classified as indifferent when no interaction occurs at all between the two 

agents within the combination and are thus known as non-interactive effects. The constituents 

of the combination have no effect on one another and therefore the effect of an indifferent 

interaction is one that is no greater than the effectiveness of the most active agent in the 

combination. Interactions are most often indifferent when the agents in the combination have 

different mechanisms or sites of action (Berenbaum, 1978, Odds, 2003). No advantage or 

disadvantage occurs due to the combination. Therefore, additive and indifferent interactions 

provide some relief for the concern related to concurrent use.  

1.17. Toxicity of South African medicinal plants 

Toxicology involves studying the adverse effects or toxic effects that chemicals have on 

living organisms (Katzung et al., 2011). Toxic substances can have an effect on various 

organs (Botha and Penrith, 2008), such as the liver (hepatotoxicity) and kidneys 

(nephrotoxicity) (Larrey, 1994). Various other types of toxicity also exist, such as cardiac 

toxicity, reproductive toxicity and phototoxicity, along with carcinogenic, mutagenic and 

teratogenic effects. Toxicity is usually divided into topical and/or systemic effects (Burfield, 

2000).  

Surprisingly, a large number of plants that exist in the world contain toxic substances 

(Dowden, 1994). Toxins are usually a by-product or a mechanism developed whereby 

chemical substances provide a defensive system to deter insects and animals (Van Wyk et al., 

2002). Poisonous plants are commonly found in South Africa’s indigenous flora and were 

found to be responsible for 6.5% of poisoning cases at the Poison Unit of the Charlotte 

Maxeke Johannesburg Academic Hospital, formerly known as Johannesburg General 

Hospital (Van Wyk et al., 2002). Poisonings due to plants are mostly intentional, in the case 

of a suicide attempt, or accidental, mostly in the case of curious children. Medicinal plant use 

in traditional healing practises rarely cause poisonings (Van Wyk et al., 2002). However, all 
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plants are known to be toxic if consumed in large enough quantities or if the plants have been 

misidentified (Van Wyk et al., 2002; Liu, 2005). The chemical constituents vary greatly 

between the different parts of the plant, such as the leaves, roots, seeds, bark or fruit. This 

variation in chemical constituency can result in one part of the plant being safe for human 

consumption, whereas another part highly toxic, which can also contribute towards 

unintentional poisoning. Often, methods are employed during the preparation of the 

traditional remedy for the neutralizing of toxins, such as burning until a certain colour is 

apparent, or boiling the preparation (Van Wyk et al., 2009). Plants that are poisonous at high 

doses can still be used therapeutically at lower doses, but must be administered with extreme 

caution to prevent any toxic effects (Botha and Penrith, 2008).  

There is a general misconception amongst people that natural products are safe and far less 

toxic than pharmaceutical formulations. In the Western populations there is a definite notion 

that ‘natural’ is better than ‘chemical’ or ‘synthetic’. The belief that traditional remedies are 

devoid of risk further prompts the consumer to use these remedies rather than conventional 

drugs (Ioannides, 2002). Natural products still have the potential for severe interactions and 

are not at all devoid of toxicity (Hermann and Von Richter, 2012; Markowitz and Zhu, 2012). 

Traditionally used, medicinal plants on their own are potentially toxic, as demonstrated in a 

review by Fennel et al. (2004). It has also been acknowledged that the toxicity of plants could 

be exacerbated when used in combination with conventional medicines (Fasinu et al., 2012).  

Since it is known that many plants produce toxic substances as a defence mechanism, it is 

necessary for toxicological evaluation of medicinal plants during the scientific investigative 

process, in order to ensure the safe use of medicinal plants (Moolla, 2005; Cavalcanti et al., 

2006; Bussmann et al., 2011). Most herbalists have written about toxic plants (Thompson, 

1931). However, scientific documentation of adverse effects and toxic levels of plants is 

lacking (Elgorashi et al., 2003; Fasinu et al., 2012).  

With most of the studies to date focusing only on the testing of the antimicrobial activity of 

combinations, the identification of possible toxicity of these combinations has been 

neglected. Many studies have, however, acknowledged the need for extensive toxicological 

studies, not only of the combinations, but of the individual plants too (Fennel et al., 2004; 

Adwan et al., 2009). 
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1.18. Toxicity of conventional antimicrobials 

All conventional drugs are also considered to possess some adverse or toxic effects. These 

unwanted effects often result in the general public being dissatisfied by conventional drugs 

and hence turning to traditional remedies (Ioannides, 2002). Antimicrobial agents within the 

same class share common adverse or toxic effects. Since these agents are mostly metabolized 

and removed from the body via the liver and kidneys, often hepatotoxicity and nephrotoxicity 

occur. Some other common adverse or toxic effects caused by antimicrobial therapy include 

gastrointestinal (GI) effects, neurotoxicity, cardiotoxicity, bone marrow toxicity, 

photosensitivity, ototoxicity and hypersensitivity effects. The extent of toxicity is most often 

dependant on the size of the dose, route of administration and the duration of therapy. Larger 

doses and longer durations of use have the potential risk to result in increased toxic effects 

(Merck Manual, 2006; SAMF, 2012).  

1.19. Overview of the study 

1.19.1. Aim and objectives of the study 

Very limited scientific information is available on the interactions that may occur when 

conventional antimicrobial agents are combined with some of southern Africa’s most 

commonly consumed medicinal plants. Interactive profiles could have a considerable effect 

on conventional treatment regimens, particularly since most patients do not report traditional 

medicinal use to healthcare providers. Therefore, the purpose of this study was to evaluate the 

interactive antimicrobial profiles (synergistic, additive, non-interactive and antagonistic 

interactions), when six commercially relevant, southern African medicinal plant samples 

(Agathosma betulina, Aloe ferox, Artemisia afra, Aspalathus linearis, Lippia javanica, 

Pelargonium sidoides and Sutherlandia frutescens) (Appendix F.1 – F.7) were combined 

with seven conventional antimicrobial agents (amphotericin B, ciprofloxacin, erythromycin, 

gentamicin, nystatin, penicillin G and tetracycline) (Appendix G.1 – G.7) and tested against 

various pathogens.  

The seven medicinal plants selected for analysis in this study are included in the list of the 

sixteen commercialised South African medicinal plants. These plants are also included in the 

350 medicinal plants classified as the most commonly used and traded medicinal plants in the 

informal markets of South Africa (Van Wyk et al., 2009).  
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Most studies on South African medicinal plants mainly focus on the antimicrobial activities 

of individual plants and very few studies have been undertaken (in respective comparison) on 

plants in combination. Furthermore, the toxicity of these plants and combinations with 

conventional drugs has been sorely neglected. Therefore, selected plants for this study were 

also assessed for toxicity, individually and in combination. A schematic representation for the 

outline of the project has been provided (Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. A schematic representation of the outline of the investigation.   
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To achieve these aims, the following objectives have been fulfilled: 

1) Preparation of the plant samples: 

 

 Sourced relevant plant material to be studied. 

 Distilled the essential oils from selected aromatic plants. 

 Prepared the aqueous and dichloromethane: methanol (1:1) plant extracts. 

  

2) Determined the antimicrobial activity of samples using the MIC assay: 

 

 Determined the antimicrobial activity of the selected plant samples (essential oils, 

aqueous extracts and organic solvent extracts) and conventional antimicrobial agents 

individually, against eight pathogens. 

 Determined the antimicrobial activity of the selected plant samples in combination 

with conventional antimicrobial agents, against eight pathogens. 

 Assessed the interactions by determining the sum of the fractional inhibitory 

concentration (∑FIC). 

 Where synergy or antagonism was observed in the ∑FIC assessment, various ratios of 

plant and conventional antimicrobial in combination were further evaluated for 

interactive antimicrobial effects (isobologram analysis), against the specific pathogen. 

  

3) Determined the toxicity of the plant samples, as well as their combinations with 

    conventional antimicrobials, using both the brine-shrimp lethality assay (BSLA) and the  

    human kidney epithelial (Graham or HEK-293) cells in the 3-(4,5-dimethylthiazol-2-yl)- 

    2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. 
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Chapter 2 

Materials and methodology 

 

2.1. Plant selection 

In order to identify the most commonly used southern African medicinal plants, a literature 

review was conducted (Watt and Breyer-Brandwijk, 1962; Van Wyk, 2008; Van Wyk et al., 

2009; Van Wyk, 2011). Two reviews by Van Wyk (2008; 2011) outlined the most 

commercially relevant southern African medicinal plants and their potential use in the 

development of new medicinal products. As such, these reviews were used as a primary guide 

for this study for the plant selection process. All plants selected are included in the 350 

species classified as the most commonly used and traded medicinal plants (Van Wyk et al., 

2009) and are therefore considered among some of the most important southern African 

medicinal plants for commercialisation (Van Wyk, 2008). The plants selected for analysis in 

the study included Agathosma betulina, Aloe ferox, Artemisia afra, Aspalathus linearis, 

Lippia javanica, Pelargonium sidoides and Sutherlandia frutescens. These plants have 

already been partly or fully commercialised (Van Wyk, 2011), which could ultimately result 

in the practice of combining these remedies with conventional medicine, due to the 

accessibility and availability.  

2.2. Plant material collection 

Aloe ferox (voucher SVV-173) and A. afra (voucher SVV-172) were collected from the 

Walter Sisulu National Botanical Gardens, Gauteng. These plants were identified and 

harvested under the guidance of Andrew Hankey, Associate Curator, South African National 

Biodiversity Institute. Agathosma betulina (batch VV 01/13/02/12) was purchased from the 

commercial trader, S Chicken Naturals, Cape Town. Aspalathus linearis (4 kg super grade, 

pasteurised, fermented leaves) was donated by Rooibos (Pty) Ltd, from the Clanwilliam 

region of Cape Town. The leaves were provided in the form in which the tea is commercially 

sold, ensuring that the plant samples were as closely related to that which is used by 

consumers. Lippia javanica (voucher SVV-174) was identified and collected by Associate 

Professor S.F. Van Vuuren from the wild population in Fairlands, Johannesburg. 
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Pelargonium sidoides (batch 0212105) and S. frutescens (batch 0312010) were purchased 

from Parceval (Pty) Ltd Pharmaceuticals, Cape Town. Certificates of analysis were received 

from Parceval (Pty) Ltd Pharmaceuticals for these two plants, providing proof of their purity. 

All plant harvesting occurred during the warm summer months and the plant material was 

received at the University of the Witwatersrand (WITS) in March 2012. The plant parts to be 

analysed for the study were selected to be most closely related to the parts traditionally used. 

2.3. Preparation of plant samples 

Traditional medicinal plants are prepared and consumed in a variety of ways. For example, 

infusions (herbal teas), decoctions and alcoholic tinctures usually for oral consumption; 

boiling of aromatic plant material for the inhalation of volatile substances; and then poultices, 

or even infusions and decoctions, for topical application (Van Wyk et al., 2009).  

Infusions are prepared by submerging macerated plant material in cold or boiling water. 

The water is then administered orally, which is believed to contain the active ingredients 

of the plant (Van Wyk et al., 2009). Decoctions are similar to infusions, however, are 

prepared from harder plant material, like the roots of a plant, and so require longer 

durations of boiling for the extraction of the active substances to occur. The plant material 

is most commonly boiled in water, but can also be boiled in any other solvent (Von 

Koenen, 1996). Tinctures are also a liquid preparation which would be administered 

orally. Tinctures are prepared by submerging macerated plant material in an alcoholic 

liquid, which differentiates it from an infusion or decoction, where water is most often the 

solvent. Some medicinal plants, particularly if used for respiratory complaints, are 

administered via inhalation methods. Plant material is boiled and the steam inhaled, 

allowing for the volatile ingredients to be inhaled, coming directly into contact with the 

respiratory tract lining. Sometimes the plants can also be burnt and the smoke inhaled 

(Van Wyk et al., 2009). A poultice is a heated, macerated mass of plant material, softened 

by water, and applied directly on the affected area of the skin as either a hot or cold 

compress (Hutchings, 1996; Van Wyk et al., 2009). 

In order to mimic the antimicrobial effects that an aromatic plant could exhibit when the 

volatile substances are administered via inhalation, this study undertook to distil the essential 

oils from the aromatic plants. Similarly the effects provided by a tincture of the plant were 

mimicked in this study by preparing organic extracts. Aqueous extracts were also tested to 
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mimic the antimicrobial effects of a plant when consumed as an infusion or decoction or 

when applied topically as a poultice. 

2.3.1. Preparation of essential oils (hydro-distillation)  

Essential oils were distilled from the aromatic plants, which included three of the seven 

selected plants, namely A. betulina, A. afra and L. javanica. The aerial parts of P. sidoides 

also possess essential oils, however, the roots (tubers) were only analysed in this study, from 

which insufficient essential oil could be distilled. The tubers of the root of P. sidoides are the 

most commonly used part of the plant in medicinal preparations, therefore, only this part of 

the plant was analysed in the study.  

The method of steam distillation (hydro-distillation) was employed, using a Clevenger-type 

apparatus (Figure 2.1). Round bottom flasks, with a five litre capacity, were packed tightly 

with fresh, aerial plant material (approximately 1 – 2.5 kg per flask) and approximately     

800 ml of distilled water was added to the flask. The plant material and water was then heated 

using a heating mantel, which allowed for the release of essential oils in the vapour form. The 

steam and essential oil vapour was then cooled and returned to liquid state, using a condenser 

with cool water running through it. The distillation process continued for three hours at      

100 ºC. The condensed essential oils naturally separated from the condensed water due to 

differences in density with the essential oil layer above the water. This allowed for easy 

collection of the essential oil once the water had been siphoned off. The essential oils were 

collected in amber, glass gas-chromatography (GC) specific vials with tight sealing lids 

(Macherey-Nagel) to prevent evaporation, and stored at 4 ºC until further analysis (Van 

Vuuren, 2007). 

 

 

 

 

 

 

  

 

 

Figure 2.1. Essential oil distillation for A. afra, using a Clevenger-type apparatus.  
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2.3.2. Organic extract preparation 

Organic extracts were prepared for all seven selected plants. Plant material was left to 

completely dry at room temperature for approximately seven days, after which it was ground 

into a fine powder using the high speed Fritsch Pulverisette grinder (Labotec). The ground 

plant material (approximately 20 g per 250 ml bottle) was submerged in a solvent system 

consisting of methanol and dichloromethane, which were combined in equal ratios (1:1). 

Methanol ensured the extraction of non-polar compounds, whereas dichloromethane ensured 

the extraction of polar compounds within the plant material. The ground plant material, 

submerged in the solvent system was left for 24 hours at 37 ºC, in a platform shaker/incubator 

(Labcon), to allow for the extraction of compounds. Thereafter, the liquid was filtered and the 

filtrate left in open glass bottles, in a fume hood for the complete evaporation of solvent, 

leaving behind the solid extract. After evaporation, the organic extracts were stored in sealed, 

sterile glass bottles at room temperature until further analysis. 

2.3.3. Aqueous extract preparation 

Aqueous extracts were prepared for all seven selected plants. The aqueous extracts were 

prepared by submerging the ground plant material in warm, sterile distilled water, which was 

left in a platform shaker/incubator for 24 hours at 25 ºC. The liquid was then filtered and the 

filtrate stored at -80 ºC before lyophilisation (Virtis). Lyophilised aqueous extracts were left 

under ultra-violet light overnight to ensure the elimination of any microbial contamination. 

The aqueous extracts were then stored in sealed, sterile plastic bottles at room temperature 

and protected from light until further analysis. 

2.4. Percentage yield of plant samples 

The percentage yield was calculated for all the aqueous and organic extracts, as well as for 

the essential oils. The percentage yield was calculated by dividing the total weight of extract 

or essential oil obtained by the total weight of plant material used in the preparation of the 

extract or essential oil, which is known as the biomass. This value was then multiplied by one 

hundred to obtain a percentage weight per weight (w/w) (Table 2.1).  
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Table 2.1. Percentage yield values for all the plant samples investigated. 

NA = plant not aromatic in nature and hence no essential oil could be distilled; * = Even 

though P. sidoides is classified as an aromatic plant, the aerial parts possess majority of the 

essential oil, and thus insufficient essential oil could be distilled from the roots of the plant 

for analysis in this study. 

 

2.5. Antimicrobial analysis 

The minimum inhibitory concentration (MIC) assay was used to evaluate the antimicrobial 

activity of the plant samples and the conventional antimicrobials independently, followed by 

evaluation in combination. The guidelines for the micro-titre plate method, to determine the 

antibacterial activity of plant samples were in accordance with methods by Eloff (1998). The 

Clinical and Laboratory Standards Institute (CLSI) guidelines (2012) were followed when 

analysing antimicrobial (antibiotic and antifungal) samples. 

2.5.1. Microbes used for analysis 

To represent the three main classes of micro-organisms, three Gram-positive bacteria; 

Staphylococcus aureus (American Type Culture Collection (ATCC) 25923), Enterococcus 

faecalis (ATCC 29212) and Bacillus cereus (ATCC 11778), three Gram-negative bacteria; 

Klebsiella pneumoniae (ATCC 13883), Escherichia coli (ATCC 25922) and Pseudomonas 

aeruginosa (ATCC 27858), and two yeasts; Candida albicans (ATCC 10231) and 

Cryptococcus neoformans (ATCC 14116) were included for analysis. The pathogens were 

selected on the basis of their prevalence in nosocomial infections or otherwise known as HAI. 

The ten most common pathogens that are responsible for 84% of all HAI’s include coagulase-

Plant 
Plant part used in 

analysis 

Percentage yield (% w/w) 

Essential 

oil 

Aqueous 

extract 

Organic 

extract 

Agathosma betulina       Leaves 1.54 1.43 4.80 

Aloe ferox       Leaves NA 4.14 2.99 

Artemisia afra       Leaves and twigs 0.32 9.91 8.16 

Aspalathus linearis       Leaves NA 1.37 1.98 

Lippia javanica       Leaves 0.69 8.31 11.16 

Pelargonium sidoides       Roots (tubers)
* 

NA 7.84 3.18 

Sutherlandia frutescens       Leaves NA 11.42 5.89 
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negative staphylococci (15%), S. aureus (15%), Enterococcus species (12%), Candida 

species (11%), E. coli (10%), P. aeruginosa (8%), K. pneumoniae (6%), Enterobacter species 

(5%), Acinetobacter baumannii (3%) and K. oxytoca (2%) (Hidron et al., 2008). Six of the 

eight pathogens selected for testing in this study appear in this list. The sites of most 

nosocomial infections include the urinary tract, lower respiratory tract, surgical wounds, the 

bloodstream and other areas, such as the gastrointestinal tract (GIT) and skin (Weinstein, 

1998). The medicinal plants selected for analysis are very often used traditionally for the 

treatment of infections at these particular sites (Appendix F.1 to F.7). All micro-organisms 

were cultured in Tryptone Soya broth (TSB) (Oxoid), which was prepared to the required 

concentration (30 g/l), in accordance with the instructions from the manufacturer (dissolving 

weighed media powder in distilled water). The media, after autoclaving (Butterworth) at 121 

°C for 15 minutes was left at room temperature to ensure sterility. Once sterility had been 

confirmed by the absence of turbidity, the media was stored at 4 °C, until needed. The micro-

organisms were kept viable by sub-culturing on a weekly basis. Streak plates were prepared 

to ensure the purity of the culture, as well as for isolation of pure colonies for sub-culturing. 

The bacteria were incubated at 37 ºC for 24 hours and the yeasts at 25 ºC for 48 hours. A 

waiver for the use of these micro-organisms was granted by the WITS Human Research 

Ethics Committee (Reference W-CJ-130726-1) (Appendix H). 

2.5.2. Antimicrobial and plant sample preparation  

The selected conventional antimicrobials included erythromycin (potency of ≥ 850 μg/mg), 

gentamicin (potency of 600 μg/mg),  nystatin (potency of ≥ 4,400 United States 

Pharmacopeia (USP) units/mg), penicillin G (potency of 1440 – 1680 units/mg), tetracycline 

[≥ 95% High-performance liquid chromatography (HPLC)], ciprofloxacin (≥ 98% HPLC) 

and amphotericin B (80% HPLC), which were all purchased from Sigma-Aldrich (South 

Africa). The antibiotics and antifungals were prepared in sterile distilled water, to a 

concentration of 0.01 mg/ml and 0.1 mg/ml, respectively. The antifungal, amphotericin B, 

was dissolved in 1% (v/v) dimethyl sulphoxide (DMSO) in sterile water, to aid dissolution. 

The plant samples (essential oils, aqueous and organic extracts) were all prepared to a 

concentration of 32 mg/ml. The essential oils and organic extracts were re-suspended in 

acetone, whereas the aqueous extracts were re-suspended in warm sterile distilled water. 

Water, heated to 30 – 40 °C, was used to aid the dissolution process of the aqueous extracts.  
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2.5.3. Minimum inhibitory concentration plate preparation 

Each well of the micro-titre plate was filled with 100 μl of sterilized distilled water. The 

individual plant samples (32 mg/ml) and conventional antimicrobials (0.01 mg/ml for 

antibiotics and 0.1 mg/ml for antifungals) were then introduced into the wells of the first row 

(A), as 100 μl for individual samples. All samples and their combinations were tested in 

duplicate for accuracy or in triplicate where variance was observed.  

The serial doubling dilution method was employed after all the necessary samples had been 

added to the first row of wells. The prepared micro-titre plates were then inoculated with the 

relevant pathogens, with each inoculum having a size of approximately 1x10
6
 colony forming 

units (CFU)/ml (Van Vuuren et al., 2008). Plates, sealed with a sterile adhesive sealer, were 

then incubated at 25 ºC for 48 hours and 37 ºC for 24 hours for yeasts and bacteria, 

respectively. Figure 2.2 provides a graphical representation of a completed MIC plate and the 

steps involved in the plate preparation, together with the interpretation of results.  

After incubation, 40 μl of the colour indicator, 0.40 mg/ml ρ-iodonitrotetrazolium violet 

(INT; Sigma-Aldrich), was added to each well, which turned purple-pink in the presence of 

microbial growth (Figure 2.2). The MIC was therefore defined as the lowest concentration of 

a test substance with antimicrobial activity needed to inhibit the growth of a test micro-

organism. Therefore, the first well within a column of dilutions (reading from the bottom of 

the plate upward), absent of the pinkish-purple colour (Figure 2.2), was taken as the MIC 

(Eloff, 1998). It is important to note that the colour change was not always easily apparent 

and results needed to be read with an additional light source to identify wells with a very pale 

pink colouring, indicating limited microbial growth (Figure 2.2). The antimicrobial activity of 

a sample could then be classified according to the MIC value. A summary of classifications 

seen in previous antimicrobial studies was compiled (Table 2.2), in order to determine an 

appropriate scheme for classification in the current study (Table 2.3).  

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Graphical representation of an MIC plate, where the pink area indicates the wells with microbial growth. Reading of the MIC plate: 

Columns 1-6 have an MIC value of 2 mg/ml; Columns 7-8 an MIC value of 1 mg/ml; Columns 9-10 an MIC value of 0.5 mg/ml; Column 11 of 

TSB, no MIC is calculated; Column 12 of antimicrobial an MIC value of 0.313 µg/ml (antibiotic) or 3.13 µg/ml (antifungal). 2
6
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Table 2.2. A summary of classifications for antimicrobial activity, according to MIC values. 

Plant 

sample  

MIC 

(mg/ml) 

Classification of antimicrobial 

activity 
Reference 

Plant        ≥ 8 Very low antimicrobial activity Fabry et al., 1998 

Extract 

     < 8 Some antimicrobial activity 

Fabry et al., 1998; 

Padayachee, 2011;  

Suliman, 2011 

      < 2 Potential antimicrobial activity Duarte et al., 2005 

      ≥ 1.6 Weak inhibition Aligiannis et al., 2001 

      > 1 No antimicrobial activity Rios and Recio, 2005 

      < 1 Good antimicrobial activity Ncube et al., 2012 

      <1 Promising antimicrobial activity McGaw et al., 2007 

 

     < 1 Noteworthy antimicrobial activity 

Rios and Recio, 2005; 

Padayachee, 2011;  

Suliman, 2011; 

Van Vuuren, 2008 

      0.6 – 1.5 Moderate inhibition Aligiannis et al., 2001 

      ≤ 0.5 Strong inhibition Aligiannis et al., 2001 

Essential oil      ≤ 2 Noteworthy antimicrobial activity 

Duarte et al., 2005; 

Van Vuuren, 2008; 

Padayachee, 2011; 

Suliman, 2011 

 

Table 2.3. Classification of antimicrobial activity used in the current study. 

Plant sample MIC (mg/ml) 
Classification of antimicrobial 

activity 

Plant extract < 1.00   Noteworthy 

 1.00 – 3.00  Moderate 

 > 3.00 – < 8.00   Weak or low 

 ≥ 8.00  Very low  

Essential oil ≤ 2.00  Noteworthy 

 

The relevant controls were included in each assay, which consisted of a positive control, 

along with three negative controls. The positive control was included in the assay to confirm 

antimicrobial susceptibility and consisted of:  

 Ciprofloxacin (0.01 mg/ml) added as 100 µl, when testing against bacteria, or  

 Amphotericin B (0.1 mg/ml) added as 100 µl, when testing against yeasts.  
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The two negative controls included in the plating process was a culture and solvent control:  

 The culture control consisted of only TSB (100 µl), along with the microbial culture 

(i.e. sample-free).  

 The solvent control consisted of 100 µl acetone/water solution (32 mg/ml), when 

testing organic extracts or essential oils. 

The culture control was included in each plate to ascertain whether the media was capable of 

supporting microbial growth and also served as a means of determining when MIC results 

could be read. The culture control was absent of test sample, therefore the micro-organism 

would grow in all the wells, allowing for a purple-pink colour change in the presence of INT. 

Once the colour change was observed, the results for the entire plate could be read. The 

solvent control was included to ascertain whether the solvent exhibited any of its’ own 

antimicrobial effects.  

A further negative control, known as the media control was used, but not included in the 

plating process. The media control was used in order to determine whether the media used to 

support the growth of the micro-organisms in the micro-titre plate was sterile. The media 

control consisted of a sealed bottle containing some of the TSB media used in the plating 

process. The bottle of media was left out at room temperature overnight to check for the 

presence of any turbidity, which would indicate contamination of all the wells in the plate. If 

the TSB was found to be contaminated, the experiment would be repeated.  

2.6. Fractional inhibitory concentration assessment  

Interactions between the combinations of plant samples and conventional antimicrobials were 

further investigated using the sum of the fractional inhibitory concentration (∑FIC) 

calculation, which would allow for the classification of the type of interaction occurring.  

The MIC values obtained when the antimicrobial and plant sample when combined in equal 

volumes (50 μl antimicrobial at a starting concentration of 0.1 mg/ml or 0.01 mg/ml and 50 

μl plant sample at a starting concentration of 32 mg/ml), were used for the ∑FIC calculation.  
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The ∑FIC was calculated using the following equation, where (a) represents the plant sample 

and (b) the conventional antimicrobial sample (Van Vuuren and Viljoen, 2011): 

   

MIC (a) in combination with (b)            

                                                 MIC (a) independently 

 

 MIC (b) in combination with (a) 

                                                 MIC (b) independently  

 

The FIC index is then calculated using the following equation: ∑FIC = FIC
(i)

 + FIC
(ii)

. 

Depending on the value obtained for the combination, the interactions could be classified as 

synergistic for a ∑FIC value of ≤ 0.5, additive (> 0.5 – 1.0), non-interactive (indifferent) (> 

1.0 – ≤ 4.0) or antagonistic (> 4.0) (Van Vuuren and Viljoen, 2011). 

 

Tentative interpretations were included, where the MIC value of one of the individual agents 

in the combination was greater than the highest concentration tested (> 8 mg/ml). Tentative 

interpretations provided an indication of the possible interactive profile for the combination; 

however, were not given an ∑FIC value since the calculation could only be undertaken on 

absolute values and ‘greater than’ values could not be considered in the calculation. 

2.7. Varied ratio combination studies (isobolograms) 

For notable interactions (synergistic or antagonistic interactions), nine different ratios of the 

combination were prepared and the MIC values determined. The samples were prepared at 

fixed concentrations of 0.01 or 0.1 mg/ml for antibiotic or antifungal respectively, and         

32 mg/ml for the plant sample, as in the MIC analysis (Section 1.8.2). The relevant plants 

samples and antimicrobials were then combined in various volumes, which resulted in ratios 

of varying concentrations (Table 2.4). The combinations, prepared in various ratios, were 

then tested using the MIC assay.  

FIC 
(i) 

= 

FIC 
(ii) 

= 
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Table 2.4. The concentration ratios used for antimicrobial and plant sample combination 

studies. 

Volume ratio of 

antimicrobial: 

plant sample 

(µl) 

Concentration of 

antibacterial
a
 in 

combination 

(mg/ml) 

Concentration of 

antifungal
b
 in 

combination 

(mg/ml) 

Concentration of 

plant sample in 

combination 

(mg/ml) 

90:10 0.009 0.09 3.2 

80:20 0.008 0.08 6.4 

70:30 0.007 0.07 9.6 

60:40 0.006 0.06 12.8 

50:50 0.005 0.05 16.0 

40:60 0.004 0.04 19.2 

30:70 0.003 0.03 22.4 

20:80 0.002 0.02 25.6 

10:90 0.001 0.01 28.8 
a
 = ciprofloxacin / erythromycin / gentamicin / penicillin G / tetracycline; 

b
 = amphotericin B 

/ nystatin 

Data points for each ratio studied were plotted on an isobologram generated with GraphPad 

Prism
®
 software (Version 5), after which the interactions for the various ratios of a 

combination could be classified as being synergistic, additive, non-interactive or antagonistic, 

based on the location of the data point on the isobologram (Figure 2.3). Data points falling 

below and on the 0.5:0.5 line (quadrant A) indicated synergy, while those above the 0.5:0.5 

line, but below and including the 1.0:1.0 line (quadrant B) indicated an additive effect. Data 

points above the 1.0:1.0 line, but below and including the 4.0:4.0 line (quadrant C) indicated 

a non-interactive (indifferent) effect and those falling above the 4.0:4.0 line (quadrant D) 

indicated antagonism (Figure 2.3) (Van Vuuren and Viljoen, 2011). The construction of 

isobolograms allowed for the identification of the agent (plant or antimicrobial sample) most 

responsible for the synergistic or antagonistic effects within the combination.  

 

Figure 2.3. Isobologram used in the interpretation of a varied ratio combination study. 

MICa in combination/MICa 

independently of sample b 

MICb in combination/MICb 

independently of sample a 
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2.8. Toxicity studies 

Two assays, namely the brine-shrimp lethality assay (BSLA) and the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay, were employed in 

order to determine possible toxicity of the plant samples and antimicrobials individually. 

Some combinations demonstrating notable interactions were also assessed for toxicity. The 

BSLA was used as a preliminary screening of the samples and combinations for possible 

toxicity. The MTT assay was used for a more in-depth cellular toxicological analysis.  

Testing of samples for toxicity on a cell line also served as a means of eliminating the 

possibility of a false-positive in the antimicrobial analysis, allowing for the differentiation 

between an antimicrobial effect and a toxic effect (Cos et al., 2006). Performing both toxicity 

assays allowed for a comparison, to determine whether toxicity results were consistent over 

both assays.  

2.8.1. Brine-shrimp lethality assay 

The BSLA is a rapid bioassay which allows for the screening of toxicity of natural products 

(McLaughlin et al., 1998). This simple tool was used to screen for toxicity of all the plant 

samples and antimicrobial agents, independently as well as in combination. Methods 

followed were those proposed by Michael et al. (1956), which were later modified by 

Vanhaecke et al. (1981) and Sleet and Brendel (1983).  

The BSLA was carried out using Artemia franciscana (Figure 2.4). In the presence of a toxic 

sample, the brine-shrimp would cease to survive, which would be observed by an absence of 

internal or external movement during a period of ten seconds (Carballo et al., 2002). During 

the assay, brine-shrimp are not fed, as they are able to survive for 48 hours on the nutrients 

from the yolk-sac (Figure 2.4.c) (Lewis, 1995; Pelka et al., 2000).    

2.8.1.1. Brine-shrimp egg hatching 

Artificial salt water was prepared by dissolving 32 g of Tropic Marine
®
 sea salt in one litre of 

distilled water. An inverted, bottomless, transparent plastic bottle was filled with 500 ml of 

prepared artificial salt water, to which 0.5 g of dried, brine-shrimp (A. franciscana) eggs 

(Ocean Nutrition
TM

) were added. To ensure a high hatch rate, a rotary pump (Kiho) was used 

for the aeration of salt water and the dispersion of eggs; and the eggs exposed to constant 

light with the use of a lamp. The eggs were incubated at 25 °C for 18 – 24 hours.   
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Figure 2.4. Artemia franciscana nauplius when viewed under an inverted microscope 

(Nikon) (a = hatching of brine-shrimp at 40x magnification; b = brine-shrimp after 24 hours 

at 100x magnification, demonstrating the yolk sac; c = brine-shrimp after 48 hours at 100x 

magnification). 

2.8.1.2. Sample preparation 

All samples were tested for toxicity at a concentration of 1 mg/ml. If higher concentrations 

(above 1 mg/ml) were necessary to exhibit a toxic effect against the brine-shrimp, then the 

sample could not be considered toxic in nature (Bussmann et al., 2011). Therefore, for this 

study, samples were screened at a maximum concentration of 1 mg/ml. Samples (plant or 

antimicrobial), were prepared to a concentration of 2 mg/ml, to take into account the dilution 

factor of two when plating out. Where possible, samples were dissolved using distilled water. 

In the case where samples were insoluble in water, an organic solvent, such as DMSO, was 

used to dissolve the samples. The concentration of solvent used was always kept below 1%, 

to ensure that the solvent itself did not exert any toxic effect. Samples to be tested in 

combination were prepared in the same manner, except to a concentration of 4 mg/ml, to take 

into account the dilution factor of four when plating out.  

2.8.1.3. Method for the brine-shrimp lethality assay 

The artificial salt water containing the brine-shrimp was transferred to a shallow rectangular 

container, which was placed at an angle, and exposed to a concentrated light source for 30 

minutes, which attracted the brine-shrimp, allowing for the withdrawal of high quantities of 

brine-shrimp. A volume of 400 μl salt water containing on average 40 – 60 brine-shrimp, was 

withdrawn and added to each well of a 48 well micro-titre plate. For the testing of individual 

samples, 400 μl plant sample or antimicrobial were added to a well, with samples being 

tested in triplicate per plate and repeated in two independent experiments, so that samples are 

tested in six separate wells (n = 6). For the screening of combinations, 200 µl plant samples 

a. b. c. 
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and 200 µl antimicrobial sample was added to a well and tested in triplicate per plate, with at 

least two independent experiments undertaken (n = 6).  

The negative, toxic-free control consisted of 32 g/l salt water and was used to mimic the 

natural environment of the brine-shrimp, thereby supporting their survival and growth. The 

positive control consisted of 1.6 mg/ml potassium dichromate (Sigma-Aldrich), which would 

ensure the mortality of all brine-shrimp present in the well, as it is known to be a highly toxic 

compound. Quinine (Sigma-Aldrich) and camptothecin (Sigma-Aldrich) were also screened 

for toxicity, at a concentration of 1 mg/ml, for comparison with the MTT assay, where these 

two agents were used as a positive control.  

The plates were observed under a light microscope (Olympus) (magnification of 40x) 

immediately after sample addition (at time 0) for any dead brine-shrimp, which would be 

excluded from the total mortality calculation. Dead brine-shrimp were then counted after 24 

and 48 hours of exposure to the test samples. After the dead brine-shrimp count at 48 hours, a 

lethal dose of 50 μl of glacial acetic acid (100% v/v, Saarchem) was added to each well for a 

total dead brine-shrimp count to be undertaken, such as to calculate the percentage mortality. 

Samples that induced a percentage mortality greater than 50% were considered biologically 

toxic (Bussmann et al., 2011). These samples were then tested at concentrations of 1, 0.5, 

0.25, 0.125, 0.063 and 0.031 mg/ml to generate a log-sigmoid dose response curve, using 

GraphPad Prism
®
 software (Version 5), from which the LC50 value was determined. The 

LC50 value represents the concentration of a test substance necessary to have a lethal effect on 

50% of the brine-shrimp. In the current study, LC50 values below 249 µg/ml were considered 

highly toxic, 250 – 499 µg/ml considered as moderate in toxicity, 500 – 999 µg/ml were 

considered weak or low in toxicity and LC50 values ≥ 1000 were considered non-toxic 

(Bussmann et al., 2011). 

2.8.2. The tetrazolium cellular viability assay 

The MTT assay was used to determine the toxicity profile of the extracts and essential oils 

studied. The human kidney epithelial cell line, also known as the Graham or HEK-293 cell 

line, was used for this toxicity assay. A waiver for the use of the human kidney epithelial 

(Graham) cell line was granted by the WITS Human Research Ethics Committee (Reference 

W-CJ-120309-3) (Appendix I). 
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2.8.2.1. Cell culturing 

The human kidney epithelial cells were cultured in media consisting of 13.5 g/l of Dulbeco’s 

Modified Eagles Medium (DMEM) (Sigma-Aldrich) and 1.5 g/l of sodium bicarbonate 

(Sigma-Aldrich), dissolved in sterile Milli-Q
® 

(double distilled) water. The media was 

sterilized through 0.2 µm filters (Masterflex) and placed in an incubator at 37 °C for four 

days to check for any turbidity, which would indicate contamination. Once sterility had been 

confirmed, the media was stored at 4 °C until needed.  Before use, the media would be 

allowed to warm to ambient temperature before coming into contact with the cells. Before 

addition to the cells, the DMEM was supplemented with 10% (v/v) foetal bovine serum 

(FBS) (Thermo Scientific), 1% (v/v) non-essential amino acids (Sigma-Aldrich) and 1% (v/v) 

penicillin/streptomycin/fungizone mixture, consisting of 10,000 units penicillin/ml, 10,000 

μg streptomycin/ml and 25 μg fungizone/ml (Sigma- Aldrich), providing a solution known as 

complete culture media. The FBS was inactivated prior to use, by thawing it out in the 

refrigerator at 4 °C and then allowing it to warm to room temperature, after which it was 

placed in a water bath at 56 °C for 30 minutes. 

The cells were maintained at 37 ºC in an incubator (Thermo Scientific) providing 5% carbon 

dioxide gas (CO2), in accordance with methods by Mosmann (1983) and Van Zyl et al. 

(2006). The culture media was replaced every 48 hours, until confluency was achieved. 

2.8.2.2. Trypsinisation of cells 

Once confluency of the cells had been achieved, the spent media was discarded and the flasks 

washed with phosphate buffered saline (PBS). The PBS (pH 7.2) consisting of 8 g/l sodium 

chloride (Saarchem), 0.3 g/l potassium chloride (Sigma-Aldrich), 0.73 g/l sodium phosphate 

dibasic dihydrate (Reidel-de-Häen) and 0.2 g/l potassium phosphate monobasic (Fluka) was 

autoclave sterilized. Trypsin-EDTA solution (4 ml; Sigma-Aldrich) was added to each flask 

and left for three minutes at room temperature. Complete culture media (6 ml) was then 

added to the flasks to deactivate the trypsin. The cell suspension was centrifuged (Hettich 

Zentrifugen) at 1500 rpm for five minutes. Thereafter, the cells were re-suspended in fresh 

culture media (2 ml complete culture media for re-seeding of culture or 10 ml experimental 

culture media for use in an MTT assay) (Section 2.8.2.3). Experimental culture media was 

prepared by adding 10% (v/v) FBS to the DMEM. The non-essential amino acids and 

penicillin/streptomycin/fungizone mixture were not included in this media.  
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2.8.2.3. Method for the tetrazolium cellular viability assay 

A volume of 50 µl of the re-suspended trypsinised cells was added to 50 µl of 0.2% (w/v) 

Trypan blue (Sigma-Aldrich), to create a 1:1 ratio. This solution was then used to count the 

number of cells/ml at a 100x magnification (Nikon), using a haemocytometer (Marienfeld). 

The cell suspension (> 95% cell viability) was then adjusted with experimental culture media, 

to ensure a concentration of 0.5 million cells/ml. The adjusted cell suspension (180 µl) was 

then added to each well of a sterile, 96 well micro-titre plate (VWR International). To ensure 

that the cells had adhered to the well surface, the plates were incubated at 37 °C for 6 hours, 

in a humidified environment, with 5% CO2 before the addition of test sample.  

Stock solutions of extracts and essential oils, all prepared to a concentration of 10 mg/ml in 

DMSO, were then serially diluted to obtain the required starting concentration, taking into 

account the dilution factors. Plant extracts and essential oils were screened at 100 µg/ml. 

Samples were further tested at a concentration of 1 mg/ml for comparison with the BSLA. 

However, the colour of the plant samples often resulted in numerous washing steps to prevent 

interference of sample colour with the absorbance readings. Excessive washing lead to 

compromised cells; therefore these results were not taken into account. The samples were 

then further tested at a concentration of 500 µg/ml, however, cells were compromised again, 

and thus results were inaccurate and the data were not taken into account for the toxicity 

analysis of samples in this study. 

The appropriately diluted samples (20 µl of extract and 2 µl of essential oil) were then plated 

out. Each sample was tested in triplicate per plate, along with a colour control (absence of 

cell suspension) for each sample, which consisted of 180 µl experimental culture media and a 

total volume of 20 µl of sample when testing plants extracts or antimicrobials, or 2 µl 

essential oil with 18 µl of culture media. Included in each plate were two wells of a cell-free, 

sample-free control, consisting only of 200 µl experimental culture media; three wells of the 

positive control, quinine (Sigma-Aldrich) or camptothecin (Sigma-Aldrich), for comparison 

to the untreated wells of 100% cell suspension control (Figure 2.5). The two positive controls 

have been described in detail in Appendix J. The plates were then incubated at 37 ºC for a 

further 44 hours in the same humidified conditions. 
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Figure 2.5. Plating out for a MTT assay. ECM = experimental culture media. 

A washing step was then undertaken, by removing 150 µl of supernatant and replacing it with 

PBS. This process was undertaken three times, or a maximum of five times, depending on the 

colour of the sample. The washing step was to ensure no interference of plant sample colour 

in the absorbance readings and to prevent any potential interaction with of the samples with 

the MTT. Thereafter, 40 μl sterile filtered MTT (5.00 mg/ml; Sigma-Aldrich) solution 

prepared in PBS, was added to each well and the plates re-incubated for a further four hours. 

Thereafter, a volume of 170 μl of the supernatant was then removed from each well, ensuring 

no disruption of the adherent cells, and replaced with DMSO (Rochelle Chemicals), to stop 

the reaction and to solubilise the purple formazan crystals, which formed in the presence of 

active mitochondria of viable cells (Figure 2.6). 

The absorbance of the dissolved crystals were read at a test wavelength of 540 nm and 

reference wavelength of 690 nm, using the Labsystems iEMS MF reader connected to a 

computer with Ascent
®
 software. The absorbance values of the formazan product reflected 

the amount of live cells present, since a linear relationship exists between absorbance and live 

cells (Mosmann, 1983). 

  

 

100% sample 

free suspension 

(180 µl) + 20 µl 

ECM 

Cell free, 

sample free 

control          

(200 µl ECM) 

Samples added in 

triplicate 180 µl cells 

+ 20 µl extract or 

antimicrobial / 2 µl 

essential oil with    

18 µl ECM 

Colour control 180 µl 

ECM + 20 µl extract 

or antimicrobial / 2 µl 

essential oil + 18 µl 

ECM 

Colour control 180 µl 

ECM + 20 µl extract 

or antimicrobial /             

2 µl essential oil +   

18 µl ECM 
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Figure 2.6. The colour change which occurred once the formazan crystals were dissolved in 

DMSO. 

The results were then expressed as a percentage cell viability, using the following equation: 

                                         Abs test sample – (Mean Abs control – Mean Abs blank) 

     

Where “Abs” represents absorbance. All absorbance values used in the calculation were 

derived from deducting the reference absorbance value at 690 nm from the test absorbance 

value at 540 nm (Abs540 – Abs690) (Kamatou, 2006).  

Samples, individually or in combination, showing a toxic effect were then further evaluated 

at various concentrations to generate a log-sigmoid dose response curve, using GraphPad 

Prism
®
 software (Version 5) for the determination of an IC50 value. The IC50 value represents 

the concentration of test substance necessary to cause the inhibition of 50% of cells. A one in 

two dilution was used, such that at least five dilutions were used for the construction of a log-

sigmoid dose response curve. A percentage cellular viability less than 50% was considered 

toxic in this study, when testing samples at a concentration of 100 µg/ml (Naidoo, 2013). 

 

 

%  Cell death = 100 -  
(Mean Abs control – Mean Abs blank) 

%  Cell viability = 

x 100 
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Chapter 3 

The antimicrobial activity of plant samples and 

conventional antimicrobials when tested individually 

 

3.1. Introduction 

Medicinal plants have been used for centuries as a primary source for fighting infections and 

this long history of use provides some support for the antimicrobial activity of these 

medicinal plants (Rabe and Van Staden, 1997). However, in order for the medicinal plants to 

be accepted into conventional healthcare, as an alternative to conventional drugs, scientific 

data is necessary to support the traditional claims that have been made. Some of the 

medicinal plants selected for analysis in this study have been claimed to be effective in the 

traditional treatment of some infections, particularly those of the respiratory tract and of the 

skin. However, some are known to have very weak or no antimicrobial activity. The plants 

were still included in this study based on their commercial relevance and popularity in 

traditional healing practices, which would contribute to the possibility of concurrent use with 

conventional drugs. In order to determine the interactive antimicrobial profiles when the 

selected medicinal plants and conventional antimicrobials are combined, these agents needed 

to be assessed individually for antimicrobial activity. Therefore, in this chapter, the aim of the 

study was to firstly validate the susceptibility of the selected micro-organisms towards the 

conventional antimicrobials to be studied. The antimicrobial efficacy of the conventional 

antimicrobials have already been well characterised. However, for this study, it was 

necessary to test the antimicrobial activity of the conventional antimicrobials individually, to 

obtain the necessary data for determining the interactive effects of the selection of 

antimicrobials with the medicinal plants. The aim of this chapter was also to ascertain 

whether the tested conventional antimicrobials had MIC values that fell within the expected 

breakpoint ranges, which was needed to guarantee the accuracy and reliability of results. 

Lastly, the antimicrobial activity of the independent plant samples had to be assessed for 

antimicrobial activity, to obtain the necessary data for the combination studies. 
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3.2. Results and discussion 

3.2.1. Antimicrobial activity of conventional antimicrobials 

The MIC values obtained for the individual antimicrobial agents when tested against the 

selected pathogens have been recorded in Table 3.1. Results obtained in this study were 

compared with breakpoint expectations (Table 3.2) derived from previous antimicrobial 

studies, which are a range of expected MIC values of an antimicrobial when tested against a 

specific micro-organism. Ciprofloxacin was most effective against E. coli (MIC of 0.08 

µg/ml) and erythromycin against S. aureus and B. cereus, equally (MIC of 0.32 µg/ml). 

Gentamicin was most effective against the Gram-negative micro-organism, P. aeruginosa 

(MIC of 0.32 µg/ml). Penicillin G, showed equal efficacy against all three tested Gram-

positive pathogens (MIC of ≥ 2.50 µg/ml) and tetracycline was most active against B. cereus 

(MIC of 0.16 µg/ml). The antifungals, amphotericin B and nystatin, were both found to be 

more active against C. neoformans (MIC of 0.39 µg/ml and 1.56 µg/ml, respectively) than 

against C. albicans (Table 3.1). 

Table 3.1. MIC values (µg/ml) for all conventional antimicrobial agents, when tested 

individually.  

 Antibiotics Antifungals 

 Cip Ery Gen Pen Tet Amp Nys 

S. aureus (ATCC 25923) 0.47 0.32 1.88 ≥ 2.50 0.23 NS NS 

B. cereus (ATCC 11778) 0.63 0.32 ≥ 2.50 ≥ 2.50 0.16 NS NS 

E. faecalis (ATCC 29212) 1.25 1.25 ≥ 2.50 ≥ 2.50 ≥ 2.50 NS NS 

E. coli (ATCC 25922) 0.08 NS ≥ 2.50 NS 1.25 NS NS 

K. pneumoniae (ATCC 13883) 0.63 NS ≥2.50 NS 1.25 NS NS 

P. aeruginosa (ATCC 27853) 0.16 NS 0.32 NS ≥ 2.50 NS NS 

C. albicans (ATCC 10231) NS NS NS NS NS 1.56 2.34 

C. neoformans (ATCC 14116) NS NS NS NS NS 0.39 1.56 

Cip = ciprofloxacin; Ery = erythromycin; Gen = gentamicin; Pen = penicillin G; Tet = 

tetracycline; Amp = amphotericin B; Nys = nystatin; NS = micro-organism is not susceptible 

to the antimicrobial; ≥ 2.50 = antimicrobial samples were not tested at higher concentrations 

for the determination of a MIC value. 



 

Table 3.2. Breakpoint ranges for commercial antimicrobial agents (MIC values in μg/ml).  

a. = CLSI guidelines, 2012; b. = Andrews, 2004; c. = KnowledgeBase antimicrobial index; d. = Van Vuuren, 2007; e. NCCLS guidelines, 1997; 

f. = O’Shaughnessy, 2009; NS = micro-organism not susceptible to antimicrobial; ? = end point is unspecified; – = no MIC breakpoint values 

available.  

 
S. aureus 

(ATCC 25923) 

B. cereus 

(ATCC 11778) 

E. faecalis  

(ATCC 29212) 

E. coli  

(ATCC 25922) 

K. pneumoniae 

(ATCC 13883) 

P. aeruginosa  

(ATCC 27853) 

C. albicans 

(ATCC 10231) 

C. neoformans 

(ATCC 14116) 

Ciprofloxacin  

 

a. 0.12 – 0.5 

b. 0.06 – 128 

c. 0.5 – ? 
d. 0.12 – 0.50 

a. – 

b. – 

c. 0.2 – ? 
d. 0.20 – 1.00 

a. 0.25 – 2 

b. 0.25 – 128 

c. 1 – ? 
d. 0.25 – 2.00 

a. 0.004 – 0.015 

b. 0.004 – 128 

c. 0.004 – 0.016 
d. 0.004 – 0.016 

a. – 

b. 0.004 – 128 

c. – 
d. 0.12 – 0.80 

a. 0.25 – 1 
b. 0.015 – 128 

c. 0.6 – ? 

NS NS 

Erythromycin 

 

a. 0.25 – 1 
b. 0.06 – 128 

c. 0.25 – ? 

a. – 
b. – 

c. – 

a. 1 – 4 
b. 0.25 – 128 

c. 1 – ? 

a. – 
b. – 

c. – 

a. – 
b. – 

c. – 

a. – 

b. – 

c. – 
 

NS NS 

Gentamicin 

 

a. 0.12 – 1 
b. 0.008 – 128 

c. 0.12 – ? 

a. – 
b. – 

c. 3.12 – ? 

a. 4 – 16 
b. 0.5 – 2048 

c. ? – 12.5 

a. 0.25 – 1 
b. 0.03 – 128 

c. 0.12 – 2 

a. – 
b. 0.03 – 128 

c. – 

a. 0.5 – 2 
b. 0.06 – 128 

c. – 

NS NS 

Penicillin G 
 

a. 0.25 – 2 

b. 0.015 – 128 

c. 0.015 – ? 

a. – 

b. – 

c. – 

a. 1 – 4 

b. 0.5 – 128 

c. 2 – ? 

a. – 

b. – 

c. > 8 – ? 

a. – 

b. – 

c. – 

a. – 

b. – 
c. – 

 

NS NS 

Tetracycline 

 

a. 0.12 – 1 

b. 0.06 – 128 

c. 0.125 – ? 

a. – 

b. – 

c. – 

a. 8 – 32 

b. – 

c. 16 – ? 

a. 0.5 – 2 

b. 0.25 – 128 

c. 0.2 – ? 

a. – 

b. 0.25 – 128 

c. – 
 

a. 8 – 32 

b. – 

c. – 

d. – 

e. 4000 

NS NS 

Amphotericin B 
 

NS NS NS NS NS NS 

a. – 

b. – 

c. 0.125 – ? 
d. 1.25 – 2.50 

e. – 

f. 0.06 – 2 

a. – 

b. – 

c. 39 – ? 

Nystatin 

 
NS NS NS NS NS NS 

a. – 

b. – 
c. 0.49 – ? 

a. – 

b. – 
c. – 

4
0
 



41 
 

3.2.1.1. Ciprofloxacin 

Ciprofloxacin is a broad-spectrum antimicrobial agent, expected to have activity against both 

Gram-negative and Gram-positive bacteria, and shows no activity toward yeasts (Merck 

Manual, 2006; SAMF, 2012). Against the selected pathogens, the antimicrobial efficacy of 

ciprofloxacin was expected to be between 0.004 µg/ml and 128 µg/ml, with respect to the 

breakpoint ranges. Results obtained in this study for ciprofloxacin, show MIC values between 

0.08 µg/ml (lowest MIC value and found against E. coli) and 1.25 µg/ml (highest MIC value 

and found against E. faecalis) (Table 3.1). Ciprofloxacin, prepared at a concentration of 0.01 

mg/ml, exhibited MIC values in this study, that were all within the breakpoint ranges against 

all the tested pathogens.   

3.2.1.2. Erythromycin 

Erythromycin is a narrow-spectrum antimicrobial agent, with activity expected mostly 

against Gram-positive bacteria (Merck Manual, 2006; SAMF, 2012). Erythromycin, when 

tested against the appropriate pathogens, was expected to have MIC values between 0.06 

µg/ml and 128 µg/ml, according to breakpoint ranges. In this study, erythromycin showed 

MIC values between 0.32 µg/ml (lowest MIC value and found against S. aureus and B. 

cereus) and 1.25 µg/ml (highest MIC value and found against E. faecalis) (Table 3.1). 

Therefore, when prepared at a concentration of 0.01 mg/ml, erythromycin demonstrated MIC 

values that were well within the breakpoint ranges against all the tested pathogens.  

3.2.1.3. Gentamicin 

Gentamicin is a narrow-spectrum antimicrobial agent, with activity expected mostly against 

Gram-negative micro-organisms, but can show some Gram-positive activity (Merck Manual, 

2006; SAMF, 2012). Gentamicin, when prepared at 0.01 mg/ml and tested against the 

appropriate pathogens and was expected to have antimicrobial efficacy ranging between 

0.008 µg/ml and 2048 µg/ml. Results obtained in this study show MIC values for gentamicin 

between 0.32 µg/ml (lowest MIC value and against P. aeruginosa) and values greater than 

2.50 µg/ml (highest MIC value and against B. cereus and E. faecalis), between all the tested 

pathogens (Table 3.1). When looking at the activity against the individual pathogens, MIC 

values for gentamicin were all well within the breakpoint ranges.  
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3.2.1.4. Penicillin G 

Penicillin G is a narrow-spectrum antibiotic, with activity focused on Gram-positive micro-

organisms (Merck Manual, 2006; SAMF, 2012). The antimicrobial efficacy for penicillin G 

was expected at breakpoint ranges between 0.015 µg/ml and 128 µg/ml. When penicillin G 

was prepared at a concentration of 0.01 mg/ml, an MIC value of 2.50 µg/ml was obtained 

against the tested pathogens (Table 3.1). When evaluating the activity of penicillin G against 

the individual tested pathogens, the MIC values were all found to be within the breakpoint 

ranges for each particular pathogen.  

3.2.1.5. Tetracycline 

Tetracycline is a broad-spectrum antibiotic, demonstrating activity against both Gram-

positive and Gram-negative micro-organisms (Merck Manual, 2006; SAMF, 2012). 

Tetracycline was expected to show antimicrobial efficacy between 0.06 µg/ml and 4000 

µg/ml, according to breakpoint ranges (Table 3.2). The MIC values for tetracycline, obtained 

in this study, ranged from 0.16 µg/ml (lowest MIC values and against B. cereus) to 2.50 

µg/ml (highest MIC value and against E. faecalis and P. aeruginosa) (Table 3.1). When 

evaluating the activity of tetracycline against the appropriate pathogens, the MIC values were 

mostly found to be within the breakpoint ranges for each particular pathogen, except where 

tetracycline was tested against E. faecalis and P. aeruginosa (Table 3.1). The breakpoint 

expectation against E. faecalis ranges between 8 µg/ml and 32 µg/ml (Table 3.2) and the 

MIC value obtained in this study against E. faecalis was 2.50 µg/ml (Table 3.1), which is 

below the expected range. The breakpoint expectation against P. aeruginosa ranges between 

8 µg/ml and 4000 µg/ml, and the MIC value obtained in this study against P. aeruginosa was 

2.50 µg/ml (Table 3.1), which again, is below the expected range. Tetracycline was tested 

again, in triplicate, to verify the MIC values against E. faecalis and P. aeruginosa and the 

same MIC values were obtained with each repeat experiment. The lower MIC values against 

tetracycline, in comparison to the breakpoint expectations could be attributed to an unusual 

susceptibility of the E. faecalis and P. aeruginosa strains used in this study, which would not 

be of concern in the study, since MIC values below the breakpoint still demonstrate 

sensitivity of the pathogen towards the antimicrobial, as opposed to being above the 

breakpoint, which would indicate resistance of strains towards the antimicrobial (Levison, 

2004).  
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3.2.1.6. Amphotericin B 

Amphotericin B is an antifungal agent, with activity against candidal and cryptococcal 

species (Merck Manual, 2006; SAMF, 2012). The antimicrobial efficacy of this agent is 

expected between ranges of 0.06 µg/ml and 39.00 µg/ml (Table 3.2). The MIC values 

obtained for amphotericin B in this study (Table 3.1), when prepared at 0.10 mg/ml, ranged 

between 0.39 µg/ml (lowest MIC value against C. albicans) and 1.56 µg/ml (highest MIC 

value against C. neoformans). Breakpoint ranges for antifungal agents are not readily 

available, however, the MIC value of amphotericin B against C. albicans was found to be 

within the available breakpoint range. Breakpoint ranges for C. neoformans could not be 

taken into account, due to the lack of references available regarding breakpoint ranges against 

C. neoformans.  

3.2.1.7. Nystatin 

Nystatin is an antifungal agent, with activity against candidal and cryptococcal species 

(Merck Manual, 2006; SAMF, 2012). The breakpoint ranges for this agent were not readily 

available, therefore, could not be compared to breakpoints. However, nystatin was tested in 

triplicate on separate days, in order to ensure accuracy of obtained MIC values and 

demonstrated the same MIC value with each repetition, when prepared at a concentration of 

0.10 mg/ml. Results obtained in this study provided a mean MIC value of 2.34 µg/ml against 

C. albicans and 1.56 µg/ml against C. neoformans (Table 3.1). 

3.2.2. Antimicrobial activity of medicinal plants 

The medicinal plants selected for the study were not necessarily selected on the basis of their 

use as an antimicrobial, but rather that these plants are amongst those classified as the most 

popularly used medicinal plants in South Africa. The antimicrobial activities of all the 

selected plants have already been examined to some extent (Appendix F). For this study, the 

plant samples were still assessed for antimicrobial activity, in order to provide the necessary 

data required for the combination studies. The MIC results for the plant samples were 

recorded graphically (Figure 3.1 for the aqueous extracts, Figure 3.2 for the organic extracts 

and Figure 3.3 for the essential oils) and summarised in Table 3.3. In general, most of the 

plants tested demonstrated poor antimicrobial activity, which was expected. A few exceptions 

have, however, been noted where noteworthy antimicrobial activity was identified. The 

medicinal plants that showed the most promising antimicrobial activity was A. betulina,        
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Figure 3.1. The aqueous extracts of all the selected plants and their MIC values against the tested pathogens (    = S. aureus;     = B. cereus;      

     = E. faecalis;     = E. coli;     = K. pneumoniae;     = P. aeruginosa;      = C. albicans;     = C. neoformans). 
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Figure 3.2. The organic extracts of all the selected plants and their MIC values against the tested pathogens (    = S. aureus;     = B. cereus;      

     = E. faecalis;     = E. coli;     = K. pneumoniae;     = P. aeruginosa;     = C. albicans;     = C. neoformans). 
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Figure 3.3. The essential oils of the aromatic plants and their MIC values against the tested 

pathogens (     = S. aureus;     = B. cereus;     = E. faecalis;     = E. coli;      = K. pneumoniae;                                                                   

= P. aeruginosa;      = C. albicans;     = C. neoformans). 

 

A. afra and L. javanica, where the organic extracts and essential oils mostly provided 

noteworthy activity, as opposed to the aqueous extracts. It was evident from the MIC values 

that the conventional antimicrobials (Table 3.1) exhibited a far greater antimicrobial activity 

than the medicinal plants (Table 3.3).  

For the aqueous extracts (Figure 3.1), A. afra, L. javanica and P. sidoides were the only 

plants to demonstrate noteworthy antimicrobial activity, where most often, the noteworthy 

activity was seen against the yeasts (Figure 3.1). It is apparent from Figure 3.1 that overall, A. 

betulina, A. ferox and S. frutescens aqueous extracts demonstrated the least broad-spectrum 

antimicrobial activity against all the tested pathogens, whereas A. afra, A. linearis, L. 

javanica and P. sidoides demonstrated more broad-spectrum activity (Figure 3.1). The 

aqueous extract of P. sidoides demonstrated the broadest spectrum of activity, with the lowest 

mean MIC value of 3.19 mg/ml (Table 3.3). However, the aqueous extract of L. javanica 

displayed the lowest MIC value (strongest antimicrobial activity) among the aqueous plant 

extracts tested, which was seen against C. albicans (MIC of 0.75 mg/ml) (Table 3.3) and was 

the only noteworthy antimicrobial activity demonstrated by an aqueous extract. The aqueous 

extract of S. frutescens demonstrated the least antimicrobial activity across the eight tested 

pathogens, with the highest mean MIC value of 8.00 mg/ml (Table 3.3). It has been stated  
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Table 3.3. Summary of the MIC values (mg/ml) for all plant samples, when tested individually. 

 S. aureus 

(ATCC 25923) 

B. cereus 

(ATCC 11778) 

E. faecalis  

(ATCC 29212) 

E. coli  

(ATCC 25922) 

K. pneumoniae 

(ATCC 13883) 

P. aeruginosa  

(ATCC 27853) 

C. albicans 

(ATCC 10231) 

C. neoformans 

(ATCC 14116) 
Mean MIC* 

 Aq Org EO Aq Org EO Aq Org EO Aq Org EO Aq Org EO Aq Org EO Aq Org EO Aq Org EO Aq Org EO 

A. betulina ≥8.00 2.00 2.00 ≥8.00 0.75 0.63 ≥8.00 2.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 4.00 4.00 6.00 3.00 2.00 3.00 0.75 0.75 7.13 3.56 4.17 

A. ferox ≥8.00 4.00 NA ≥8.00 3.00 NA ≥8.00 ≥8.00 NA ≥8.00 ≥8.00 NA ≥8.00 ≥8.00 NA 6.00 6.00 NA ≥8.00 2.00 NA ≥8.00 ≥8.00 NA 7.75 4.88 NA 

A. afra 2.00 0.50 2.00 ≥8.00 0.38 2.00 ≥8.00 2.00 ≥8.00 3.00 3.00 3.00 4.00 2.00 ≥8.00 2.00 1.50 4.00 4.00 1.50 1.00 1.00 0.75 0.75 4.00 1.45 3.59 

A. linearis ≥8.00 3.00 NA ≥8.00 2.00 NA 3.00 2.00 NA 1.50 1.50 NA 4.00 3.00 NA ≥8.00 3.00 NA ≥8.00 3.00 NA ≥8.00 1.50 NA 6.06 2.38 NA 

L. javanica 4.00 0.25 1.50 ≥8.00 ≥8.00 1.50 ≥8.00 1.00 3.00 2.00 1.00 2.00 ≥8.00 1.00 3.00 2.00 4.00 2.00 0.75 1.00 1.50 1.00 0.38 0.38 4.22 2.08 1.86 

P. sidoides 2.00 1.50 NA 2.00 1.50 NA 1.00 2.00 NA ≥8.00 ≥8.00 NA ≥8.00 ≥8.00 NA 2.00 1.50 NA 1.50 2.00 NA 1.00 1.50 NA 3.19 3.25 NA 

S. frutescens ≥8.00 2.00 NA ≥8.00 0.75 NA ≥8.00 4.00 NA ≥8.00 2.00 NA ≥8.00 ≥8.00 NA ≥8.00 4.00 NA >8.00 3.00 NA ≥8.00 1.00 NA 8.00 3.09 NA 

Cip control 
0.00047 0.00063 0.00125 0.00008 0.00063 0.00016 NS NS  _  

Amp control 
NS NS NS NS NS NS 0.00156 0.00039  _  

S/M control 
≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00 ≥8.00  _  

 

All values of ≥ 8.00 mg/ml were taken as 8.00 mg/ml for the calculation of the mean MIC value for each plant;  Aq = Aqueous extract; Org = 

Organic extract; EO = Essential oil; NA = Not applicable as no/insufficient essential oil evident in the species or part of plant tested; NS = 

control not tested, since the particular micro-organism is not susceptible to the antimicrobial; bold highlight = noteworthy antimicrobial activity; 

Cip = ciprofloxacin; Amp = amphotericin B; S/M = solvent or media control. 
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that aqueous extracts of plants usually show little or no antimicrobial activity (Meyer and 

Afoloyan, 1995; Masika and Afoloyan, 2002), hence it is not surprising to find poor activity 

for the aqueous extracts of the plants studied here. The inclusion of aqueous extracts, even 

with their poor activity, was important in this study, since medicinal plants are most 

commonly prepared for consumption using water. Therefore, the aqueous extract mimics the 

traditional use of the medicinal plant most accurately. 

For the organic extracts (Figure 3.2), it is apparent that A. ferox demonstrated the least broad-

spectrum antimicrobial activity, with the highest mean MIC value of 4.88 mg/ml (Table 3.3). 

Noteworthy antimicrobial activity was seen for the organic extracts of A. betulina, A. afra, L. 

javanica and S. frutescens (Table 3.3). The organic extracts of A. afra, L. javanica and P. 

sidoides demonstrated the most broad-spectrum activity, with A. afra demonstrating the 

broadest spectrum of activity (lowest mean MIC value of 1.45 mg/ml). The organic extract of 

A. linearis also showed some promising broad-spectrum activity. As with the aqueous 

extracts, the organic extract of L. javanica again, displayed the lowest MIC value (strongest 

antimicrobial activity) among the selected organic plant extracts; however, it is against S. 

aureus and not C. albicans, as seen with the aqueous extract of L. javanica. The yeasts (C. 

albicans and C. neoformans), as well as most of the Gram-positive micro-organisms showed 

the most susceptibility towards the organic extracts of the medicinal plants, whereas the 

Gram-negative pathogens, particularly E. coli and K. pneumoniae, tended to be less 

susceptible to the organic extracts (Figure 3.2).  

The essential oils for the three aromatic plants (A. betulina, A. afra and L. javanica) were also 

tested for antimicrobial activity and it was apparent (Figure 3.3), that the essential oil of L. 

javanica definitely showed the broadest spectrum of antimicrobial activity against all the 

tested pathogens, with the lowest mean MIC value of 1.86 mg/ml (Table 3.3). All three 

essential oils tested did, however, show some noteworthy antimicrobial activity. Again, it was 

found that L. javanica showed the lowest MIC value (strongest antimicrobial activity), when 

the essential oil was tested against the yeast, C. neoformans (Table 3.3). Generally for the 

three essential oils, the least activity was seen against E. faecalis and K. pneumoniae. 

Agathosma betulina and A. afra essential oils were very similar in activity, except against E. 

coli, where A. afra had a greater activity than A. betulina essential oil (Figure 3.3). 

When testing the antimicrobial activity of plant samples in the micro-dilution assay, various 

controls were included. The MIC values obtained for the positive controls of ciprofloxacin 
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for bacteria and amphotericin B for yeasts (Table 3.3) were compared with the breakpoint 

ranges (Table 3.2) and were found to be within these ranges. The MIC values obtained for the 

controls are included in Table 3.3, but have been left out of the bar graphs in Figure 3.1, 

Figure 3.2 and Figure 3.3, due to the differential scales.  

3.2.2.1. Agathosma betulina 

In this study, the aqueous extract of A. betulina demonstrated no noteworthy antimicrobial 

activity against all the eight tested pathogens. The best antimicrobial activity exhibited by the 

aqueous extract of A. betulina was against the yeast, C. neoformans (MIC of 3.00 mg/ml) 

(Table 3.3), which was considered moderate in antimicrobial activity for this study (Table 

2.3).  

The organic extract of A. betulina showed noteworthy antimicrobial activity against the 

Gram-positive micro-organism, B. cereus (MIC of 0.75 mg/ml) and the yeast, C. neoformans 

(MIC of 0.75 mg/ml) (Table 3.3). In a study by Moolla (2005), an organic extract (methanol: 

dichloromethane, 1:1), prepared from the leaves of A. betulina was tested against B. cereus 

(MIC of 4.00 mg/ml), S. aureus (MIC of 4.00 mg/ml), K. pneumoniae (MIC of 4.00 mg/ml) 

and C. albicans (2.00 mg/ml), using the micro-dilution assay. No noteworthy antimicrobial 

activity was found. This is congruent with the current study, except when the organic extract 

was tested against B. cereus, where a noteworthy MIC value of 0.75 mg/ml was found in this 

study (Table 3.3). The strains of B. cereus and C. albicans used were the same as in this 

current study, whereas the strains of S. aureus and K. pneumoniae differed, which could 

contribute towards the varied MIC values obtained.  

The essential oil of A. betulina, when tested in this study, showed noteworthy antimicrobial 

activity (MIC of ≤ 2.00 mg/ml) against four of the eight tested pathogens, namely the Gram-

positive micro-organisms, S. aureus (MIC of 2.00 mg/ml) and B. cereus, having the most 

antimicrobial activity (MIC of 0.63 mg/ml), along with both the yeasts tested, C. albicans 

(MIC of 2.00 mg/ml) and C. neoformans (MIC of 0.75 mg/ml) (Table 3.3). Lis-Balchin et al. 

(2001) tested the antimicrobial activity of the essential oil (10 µl of undiluted oil) of A. 

betulina, against S. aureus, E. coli and P. aeruginosa, using the agar diffusion assay. The 

antimicrobial activity was classified as being virtually non-existent against P. aeruginosa 

(4.00 mm zone of inhibition) and very low against S. aureus (5.80 mm zone of inhibition) 

and E. coli (6.00 mm zone of inhibition). These antimicrobial classifications against S. aureus 

and P. aeruginosa were not supported by the current study (Table 3.3). In contrast, 
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noteworthy antimicrobial activity (MIC of ≤ 2.00 mg/ml) was seen against S. aureus and 

against P. aeruginosa (MIC of 4.00 mg/ml) the antimicrobial activity was classified as being 

low or weak (Table 2.3), rather than very low, as seen in the study by Lis-Balchin et al. 

(2001). The variation in results between this current study and results found by Lis-Balchin et 

al. (2001) could be attributed to the different testing techniques undertaken. It has been 

acknowledged that many problems arise when testing antimicrobial activity of essential oils 

using the diffusion method. This is due to the lipophilic nature of the oil samples, which 

makes diffusion through the agar difficult, resulting in a false negative (Hewitt and Vincent, 

2003; Van Vuuren, 2008). Evaporation of the essential oil from the discs upon incubation can 

also result in a false negative, particularly with the yeasts, where incubation periods are 

longer (Janssen et al., 1987).  The classification of “very low” antimicrobial activity against 

E. coli by Lis-Balchin et al. (2001) was in congruence with the current study, where an MIC 

of greater than 8.00 mg/ml was obtained, demonstrating very low antimicrobial activity for 

this study. Moolla (2005) tested the essential oil of A. betulina against B. cereus (MIC of 4.00 

mg/ml), S. aureus (MIC of 4.00 mg/ml), K. pneumoniae (MIC of 4.00 mg/ml) and C. 

albicans (2.00 mg/ml), using the micro-dilution assay. Noteworthy antimicrobial activity 

(MIC of ≤ 2.00 mg/ml) was also found against C. albicans (MIC of 2.00 mg/ml). The 

findings by Moolla (2005) regarding C. albicans are in accordance with results from this 

study. However, the findings by Moolla (2005) concerning S. aureus, B. cereus and K. 

pneumoniae are not similar to those found in the current study (Table 3.3), since noteworthy 

antimicrobial activity was seen against B. cereus (MIC of 0.63 mg/ml) and S. aureus (2.00 

mg/ml) and the MIC obtained against K. pneumoniae was ≥ 8.00 mg/ml, indicating very low 

antimicrobial activity (Table 2.3). This variance could be due to the different strains of S. 

aureus and K. pneumoniae that were used in each study. 

3.2.2.2. Aloe ferox 

In the current study, the aqueous extract of A. ferox demonstrated no noteworthy 

antimicrobial activity against the tested pathogens (Table 3.3). The extract was most active 

against P. aeruginosa (MIC of 6.00 mg/ml) (Table 3.3), which was considered as weak or 

low antimicrobial activity in this study (Table 2.3). A study by Van Vuuren and Naidoo 

(2010) investigated the antimicrobial activity of A. ferox aqueous extract, prepared from the 

leaves of the plant, against C. albicans, using the micro-dilution assay. An MIC value of 4.00 

mg/ml was obtained, thereby demonstrating no noteworthy antimicrobial activity against C. 

albicans. The lack of noteworthy antimicrobial activity was also evident in the current study 
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(Table 3.3). Kambizi et al. (2007) also found no antimicrobial activity of the aqueous extract 

of A. ferox against C. albicans.  

The organic extract, when tested in this current study, exhibited no noteworthy antimicrobial 

activity against any of the tested pathogens (Table 3.3). It was most active against the yeast, 

C. albicans (MIC of 2.00 mg/ml), which was considered moderate in antimicrobial activity 

(Table 2.3). Kambizi et al. (2007) found that a methanol extract of A. ferox was not active 

against C. albicans. Van Vuuren and Naidoo (2010) investigated the organic extract 

(dichloromethane: methanol; 1:1) of A. ferox against C. albicans (MIC of 3.00 mg/ml) and 

found that again, no noteworthy antimicrobial activity was exhibited, as seen with the 

aqueous extract of A. ferox. 

3.2.2.3. Artemisia afra 

In the current study, the aqueous extract of A. afra demonstrated no MIC values below     

1.00 mg/ml, therefore, no noteworthy antimicrobial activity was identified (Table 3.3). The 

aqueous extract of A. afra was found to be most active against the yeast, C. neoformans (MIC 

of 1.00 mg/ml) (Table 3.3), where moderate antimicrobial activity was exhibited (Table 2.3). 

In a study by McGaw et al. (2000), aqueous extracts of A. afra were tested against S. aureus, 

K. pneumoniae and E. coli, using the micro-dilution assays. No noteworthy antimicrobial 

activity was identified against these pathogens, which is in accordance with the current study.  

The organic extract, when tested in the current study, demonstrated noteworthy antimicrobial 

activity against S. aureus (MIC of 0.50 mg/ml), B. cereus (0.38 mg/ml) and C. neoformans 

(MIC of 0.75 mg/ml) (Table 3.3). The organic extract was therefore found to be most active 

against the Gram-positive micro-organism, B. cereus (MIC of 0.38 mg/ml) (Table 3.3). 

Against the remaining tested pathogens, the organic extract showed MIC values between 1.50 

mg/ml and 3.00 mg/ml, which were considered moderate in activity (Table 2.3). In a study by 

McGaw et al. (2000), organic extracts (hexane and ethanol extracts) of A. afra were tested 

against S. aureus, K. pneumoniae and E. coli, using the micro-dilution assay. The hexane 

extract demonstrated no noteworthy antimicrobial activity, whilst the ethanol extract had an 

MIC value of 0.39 mg/ml against S. aureus, thereby demonstrating noteworthy antimicrobial 

activity. No noteworthy antimicrobial activity was found against the other two pathogens. In 

the current study, noteworthy activity was also found against S. aureus (MIC of 0.50 mg/ml) 

for the organic extract (dichloromethane: methanol, 1:1) (Table 3.3). The variance in MIC 
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values could be due to the different solvent systems used for extraction purposes (ethanol 

versus dichloromethane: methanol).   

In the current study, the essential oil of A. afra exhibited noteworthy antimicrobial activity 

(MIC of ≤ 2.00 mg/ml), against four of the eight tested pathogens, namely S. aureus and B. 

cereus (MIC of 2.00 mg/ml), C. albicans (MIC of 1.00 mg/ml) and C. neoformans (MIC of 

0.75 mg/ml) (Table 3.3). The essential oil was therefore found to be most active against C. 

neoformans (MIC of 0.75 mg/ml). Suliman et al. (2010) investigated the essential oil of A. 

afra, against K. pneumoniae, E. faecalis and C. neoformans, using the micro-dilution assay. 

No noteworthy antimicrobial activity was identified for the essential oil against these three 

tested pathogens in the investigation, as the MIC values ranged from 6.00 mg/ml to 16.00 

mg/ml. These findings by Suliman et al. (2010) are congruent with the current study findings, 

except against C. neoformans, where in this study the essential oil did in fact demonstrate 

noteworthy antimicrobial activity. Huffman et al. (2002) tested the essential oil of A. afra 

against S. aureus (minimum inhibitory percentage (MIP) of > 1%), P. aeruginosa (MIP of > 

9%), C. albicans (MIP of 0.25%) and C. neoformans (MIP of 0.5%), using the micro-dilution 

assay. Van Vuuren and Viljoen (2006) tested the antimicrobial activity of A. afra essential oil 

on S. aureus, B. cereus, E. faecalis, E. coli, K. pneumoniae, P. aeruginosa, C. albicans and C. 

neoformans, using the micro-dilution assay. According to the classifications used in the 

current study (Table 2.3), no noteworthy antimicrobial activity was identified for the essential 

oil, since MIC values ranged from 4.50 mg/ml to 11.90 mg/ml. These results are incongruent 

with the findings in the current study (Table 3.3), where the essential oil of A. afra 

demonstrated noteworthy antimicrobial activity against four of the pathogens. The variation 

in results is most likely due to inter-population variation in the essential oil composition, 

which has been noted in a study by Viljoen et al. (2006).  

3.2.2.4. Aspalathus linearis 

In the current study, the aqueous extract of A. linearis did not demonstrate any noteworthy 

antimicrobial activity (MIC < 1.00 mg/ml) against any of the eight tested pathogens (Table 

3.3). The lack of noteworthy antimicrobial is expected since A. linearis is more well-known 

for its antimutagenic and anti-oxidant activity, rather than for its antimicrobial activity (Van 

Wyk et al., 2009). Many studies have investigated the antimicrobial activity of green and 

black teas (Toda et al., 1989; Diker et al., 1991; Fukai et al., 1991; Diker and Hascelik, 1994; 

Yeo et al., 1995), however, A. linearis has not been extensively investigated. Two studies 
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found on the antimicrobial activity of A. linearis were conducted by Schepers (2001) and 

Coetzee et al. (2008). Schepers (2001) identified the inhibitory effects of the soluble solids of 

unfermented and fermented aqueous extract of A. linearis at concentrations varying from 0.50 

g/l to 5.00 g/l, against a range of pathogens. The growth of the pathogens when exposed to 

the extracts was determined spectrophotometrically, to obtain optical densities for broths 

containing culture and sample. It was found that rooibos had an inhibitory effect on S. aureus, 

B. cereus and E. coli after 12 hours of exposure. The growth profiles, when the aqueous 

extract was tested at 5.00 mg/ml, demonstrated a reduced final cell concentration (Nmax) and 

maximum specific growth rate (µmax). The growth of S. aureus was reduced by 90.80% 

(fermented) and 50.10% (unfermented) and the growth of B. cereus was reduced by 80.30% 

(fermented) and 47.2% (unfermented). The growth of E. coli was reduced by 69.00% 

(fermented) and 35.10% (unfermented). The strongest inhibitory effect in the study by 

Schepers (2001) was found against S. aureus, which is incongruent with findings in the 

current study, since it was found that the aqueous rooibos extract displayed the best 

antimicrobial activity against E. coli (MIC value of 1.50 mg/ml) (Table 3.3). Coetzee et al. 

(2008) also identified the inhibitory effects of aqueous rooibos extracts against E. coli, but the 

extracts were tested at very high concentrations and the inhibitory effect only seen at 10 

mg/ml, therefore cannot be considered noteworthy in antimicrobial activity. 

The organic extract of A. linearis tested in the current study exhibited no noteworthy 

antimicrobial activity against any of the tested pathogens (Table 3.3). The organic extract had 

the lowest MIC value against E. coli (MIC of 1.50 mg/ml), which were similar to the aqueous 

extract, and also against C. neoformans (MIC of 1.50 mg/ml), which are considered moderate 

in activity (Table 2.3). The results obtained in this study, where the organic extract 

(dichloromethane: methanol, 1:1) demonstrated somewhat better antimicrobial activity 

towards all tested pathogens than the aqueous extract (Table 3.3) are incongruent with 

findings by Schepers (2001). It was reported that the aqueous extract was more potent than 

the ethyl acetate extract. This variation may be due to the use of different solvents (ethyl 

acetate versus dichloromethane: methanol) for the preparation of the organic extract. 

Different solvent systems extract different compounds, resulting in the different activities. 

Schepers (2001) identified that rooibos organic extract, prepared using ethyl acetate, had an 

inhibitory effect against E. coli at 5 mg/ml, during growth profile studies. The growth of E. 

coli was reduced by 42.60% (fermented) and 5.20% (unfermented) by the ethyl acetate 

extract of rooibos. The inhibitory effects of the organic extract on E. coli was also seen in the 
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current study (Table 3.3), where an MIC of 1.50 mg/ml was obtained against E. coli, when a 

dichloromethane: methanol extract was tested.  

3.2.2.5. Lippia javanica 

In the current study, L. javanica aqueous extract demonstrated the most noteworthy 

antimicrobial activity against C. albicans (MIC of 0.75 mg/ml) (Table 3.3). It was also found 

to have moderate activity (Table 2.3) against the other tested yeast species, C. neoformans 

(MIC of 1.00 mg/ml) (Table 3.3).   

The organic extract of L. javanica showed noteworthy antimicrobial activity against S. aureus 

(MIC of 0.25 mg/ml) and against the yeast, C. neoformans (MIC of 0.38 mg/ml) (Table 3.3). 

The organic extract was found to be most active against S. aureus (MIC of 0.25 mg/ml). 

Moderate antimicrobial activity (MIC of 1.00 mg/ml) was seen against four of the remaining 

tested pathogens, namely E. faecalis, E. coli, K. pneumoniae and C. albicans. Shikanga et al. 

(2010) found that the methanolic extracts of L. javanica showed noteworthy activity against 

S. aureus, E. faecalis, E. coli and P. aeruginosa, during a micro-dilution assay, with MIC 

ranges between 0.13 mg/ml and 0.42 mg/ml. These findings are only congruent with the 

current study with regards to S. aureus. Variations in results could be due to varied strains of 

micro-organisms that were used and also different solvent use for extraction purposes 

(methanol versus dichloromethane: methanol in this study).  

The essential oil of L. javanica demonstrated noteworthy antimicrobial activity, against six of 

the eight tested pathogens (Table 3.3), namely S. aureus (MIC of 1.50 mg/ml), B. cereus 

(MIC of 1.50 mg/ml), E. coli (MIC of 2.00 mg/ml), P. aeruginosa (MIC of 2.00 mg/ml), C. 

albicans (MIC of 1.50 mg/ml) and C. neoformans (MIC of 0.38 mg/ml). Huffman et al. 

(2002) found that L. javanica essential oil also demonstrated activity against S. aureus (MIP 

of 1%), C. albicans (MIP of 0.25%) and C. neoformans (MIP of 0.25%), however, not 

against P. aeruginosa (MIP of > 9%). Van Vuuren and Viljoen (2006) tested the essential oil 

of L. javanica against S. aureus, B. cereus, E. faecalis, E. coli, K. pneumoniae, P. aeruginosa, 

C. albicans and C. neoformans, and found mostly moderate to poor antimicrobial activity 

against the pathogens. Noteworthy antimicrobial activity was only seen against E. coli (MIC 

of 1.60 mg/ml), which was also observed in the current study, with an MIC of 2.00 mg/ml 

(Table 3.3).  
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3.2.2.6. Pelargonium sidoides 

In the current study, the aqueous extract of P. sidoides demonstrated no noteworthy 

antimicrobial activity (Table 3.3). Moderate antimicrobial activity (Table 2.3) was, however, 

seen against S. aureus, B. cereus and P. aeruginosa (MIC of 2.00 mg/ml), along with E. 

faecalis and C. neoformans (MIC of 1.00 mg/ml) and C. albicans (MIC of 1.50 mg/ml). 

Kayser and Kolodziej (1997), tested the aqueous extract of P. sidoides against three Gram-

positive bacteria, including S. aureus, and five Gram-negative bacteria, including E. coli, K. 

pneumoniae and P. aeruginosa. MIC values were found to range from 0.6 mg/ml for the 

aqueous phases to 10 mg/ml for crude extracts.  

The organic extract of P. sidoides exhibited no noteworthy antimicrobial activity against any 

of the tested pathogens in the current study (Table 3.3). However, moderate antimicrobial 

activity (Table 2.3) was seen against six of the tested pathogens, namely S. aureus, B. cereus, 

E. faecalis, P. aeruginosa, C. albicans and C. neoformans, with an MIC range of 1.50 mg/ml 

to 2.00 mg/ml (Table 3.3). Kolodziej (2011) tested organic extracts of the plant, which 

displayed MIC values ranging from 600 – 7500 µg/ml against S. aureus, Streptococcus 

pneumoniae, E. coli, K. pneumoniae, P. aeruginosa and Haemophilus influenzae. Lewu et al. 

(2006) investigated the antimicrobial activity of P. sidoides acetone and methanol extracts 

prepared from the roots collected from various locations in the Eastern Cape, against B. 

cereus (MIC of 2.50 – 5.00 mg/ml for acetone extract, MIC of 5.00 mg/ml for methanol 

extract) and S. aureus (MIC of 1.00 – 2.50 mg/ml for acetone extract, MIC of 2.50 – 7.50 

mg/ml for methanol extract). In the current study, MIC values of the organic 

dichloromethane: methanol extract against B. cereus (MIC of 1.50 mg/ml) and S. aureus 

(MIC of 1.50 mg/ml) were most similar with the MIC values of the acetone extracts obtained 

in the latter study and not the methanol extracts. In the study by Lewu et al. (2006), the 

extracts were also tested against the Gram-negative, E. coli, K. pneumoniae and P. 

aeruginosa and no noteworthy antimicrobial activity was found. Similarly, in the current 

study, no noteworthy antimicrobial activity was seen against E. coli (MIC of ≥ 8.00 mg/ml) 

and K. pneumoniae (MIC of ≥ 8.00 mg/ml). However, inhibitory effects were seen against P. 

aeruginosa (MIC of 1.50 mg/ml) (Table 3.3).  

3.2.2.7. Sutherlandia frutescens 

In the current study, the aqueous extract of S. frutescens showed no noteworthy antimicrobial 

activity against any of the eight tested pathogens, with MIC values all ≥ 8.00 mg/ml (Table 
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3.3). In a study by Katerere and Eloff (2005), an aqueous extract of S. frutescens was tested 

against S. aureus, E. faecalis, E. coli and P. aeruginosa, where an MIC of 10.00 mg/ml was 

reported against each pathogen. The lack of noteworthy antimicrobial activity in the study by 

Katerere and Eloff (2005) is in accordance with findings in the current study.   

In the current study, the organic extract of S. frutescens showed noteworthy antimicrobial 

activity against B. cereus (MIC of 0.75 mg/ml), whilst against the other pathogens, MIC 

values ranged from 1.00 mg/ml (moderate antimicrobial activity) to ≥ 8.00 mg/ml (very low 

antimicrobial activity) (Table 3.3). In a study by Katerere and Eloff (2005), various organic 

extracts of S. frutescens were tested against S. aureus, E. faecalis, E. coli and P. aeruginosa. 

A dichloromethane extract was tested and an MIC value of 2.50 mg/ml was observed against    

S. aureus and 5.00 mg/ml against E. faecalis, E. coli and P. aeruginosa. Very similar MIC 

values (MIC of 2.00 – 4.00 mg/ml) were obtained in the current study (Table 3.3).  

3.3. Conclusions 

 All antimicrobials tested were within breakpoint ranges; however, studies with 

tetracycline demonstrated an enhanced susceptibility against E. faecalis and P. 

aeruginosa.  

 

 When comparing the aqueous extracts of all the selected plants, A. afra demonstrated 

the best antimicrobial activity, with the lowest mean MIC of 3.19 mg/ml. 

 

 The aqueous extract of S. frutescens demonstrated the lowest spectrum of 

antimicrobial activity (highest mean MIC value of 8.00 mg/ml) against the eight 

tested pathogens, in comparison with all other plant samples. 

 

 When comparing the organic extracts of all plant samples with one another, the 

organic extract of A. ferox exhibited the least activity against the tested pathogens, 

with the highest mean MIC value of 4.88 mg/ml.  

 

 The organic extract of A. afra exhibited the broadest spectrum of antimicrobial 

activity (lowest mean MIC value of 1.45 mg/ml) across the eight tested pathogens. 
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 The organic extract of L. javanica demonstrated the MIC value most noteworthy in 

nature, amongst all the tested plants, with a MIC value of 0.25 mg/ml against S. 

aureus. 

 

 When comparing the antimicrobial activity of the essential oils from the three 

aromatic medicinal plants, L. javanica demonstrated the broadest spectrum of 

antimicrobial activity (lowest mean MIC of 1.86 mg/ml), whereas A. betulina 

demonstrated the least (highest mean MIC of 4.17 mg/ml). 
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Chapter 4 

Combination antimicrobial studies

 

4.1. Introduction 

Pharmaceutical drug-drug interactions have been a well-known factor for years. These 

interactions have often been found to be fatal and are therefore taken very seriously in the 

pharmaceutical industry and pharmacy practice. All pharmaceutical reference books (SAMF, 

Merck Manual, along with many others) and even patient leaflets provide a list of the 

possible interactions that a drug may have with other pharmaceutical preparations. However, 

very rarely, are the interactions with natural products specified in these sources of 

information. The only natural products that are usually specified for their interactions in these 

books and leaflets are those with St. John’s wort (Hypericum perforatum) and grapefruit 

juice, which are well-known for their induction of hepatic CYP450 enzymes (SAMF, 2012). 

Proper consultation with a healthcare provider should be emphasized when planning to use 

natural products in combination with orthodox medicine. Healthcare providers are familiar 

with the common herb-drug interactions, such as that between warfarin and Ginkgo biloba 

(ginkgo), resulting in excessive bleeding or the interaction between selective-serotonin re-

uptake inhibitors and St. John’s wort, resulting in serotonin syndrome. Another common 

herb-drug interaction is that between corticosteroids and Glycyrrhiza glabra (liquorice), 

resulting in the potentiation of the corticosteroids (Street and Prinsloo, 2012). There are 

websites dedicated to herb-drug interactions, such as www.prescribeguide.com. However, 

very little is known about the interactions between medicinal plants commonly used in South 

African traditional healing practices, and conventional drugs.  

Therefore, in this chapter, the study aimed to determine the antimicrobial efficacy and 

interactive profile when a selection of well-known South African medicinal plants were 

combined with seven conventional antimicrobials.  
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4.2. Results and discussion 

A total of 476 combinations were evaluated. These were made up of a combination of seven 

South African medicinal plants (essential oil, aqueous and organic extract) with seven 

conventional antimicrobials, which were then tested against eight different pathogens. In 

order to examine the vast amount of data in more detail, results have been presented for each 

medicinal plant separately against the Gram-positive bacteria, Gram-negative bacteria and 

then the yeasts (Tables 4.1 – 4.21). The results have also been summarized in a general 

discussion.   

4.2.1. Combinations containing Agathosma betulina 

The essential oil, aqueous and organic extracts of A. betulina in combination with the 

conventional antimicrobials and tested against the Gram-positive micro-organisms (Table 

4.1), demonstrated mostly additive and indifferent interactive profiles. No antagonistic 

interactions were identified against the Gram-positive pathogens. Three combinations (A. 

betulina aqueous and organic extract with gentamicin; A. betulina essential oil with 

tetracycline) were found to be synergistic, when tested against B. cereus (Table 4.1).  

When testing all the combinations containing A. betulina, against the Gram-negative 

pathogens (Table 4.2), a mostly additive and indifferent interactive profile was observed, 

with no antagonism noted. Seven synergistic interactions were identified (A. betulina organic 

extract and essential oil with ciprofloxacin against E. coli; A. betulina aqueous and organic 

extract with gentamicin against K. pneumoniae), with no synergy found against P. 

aeruginosa (Table 4.2).  

The combination of A. betulina with ciprofloxacin provided a notable interactive profile, 

when tested against E. coli, which is most often the cause of urinary tract infections (UTI’s), 

causing approximately 75% of community-acquired UTI’s (Merck Manual, 2006). UTI’s 

present with symptoms of urinary frequency, urgency, dysuria and lower abdominal and flank 

pain. Similarly, in traditional medicine, A. betulina is commonly used for the treatment of 

UTI’s (Appendix F.1). In orthodox medicine, the fluoroquinolones, such as ciprofloxacin, 

have been the first line therapy for UTI’s for many years (Appendix G.1; Merck Manual, 

2006).  
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Table 4.1. MIC (µg/ml) and ∑FIC values for the combination of A. betulina with the various antibiotics, against the Gram-positive pathogens.  

  S. aureus (ATCC 25923) B. cereus (ATCC 11778) E. faecalis (ATCC 29212) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. betulina + 

ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.47 

2000 

0.63 
1.59 IND 

≥ 8000 

0.63 

1000 

0.32 
NA ADD 

≥ 8000 

1.25 

3000 

0.94 
NA IND 

Org 

Cip 

2000 

0.47 

2000 

0.63 
2.34 IND 

750 

0.63 

500 

0.16 
0.92 ADD 

2000 

1.25 

2000 

0.63 
1.50 IND 

EO 

Cip 

2000 

0.47 

1000 

0.32 
1.18 IND 

630 

0.63 

1000 

0.32 
2.10 IND 

≥ 8000 

1.25 

1500 

0.47 
NA IND 

A. betulina + 

erythromycin 

Aq 

Ery 

≥ 8000 

0.32 

1000 

0.32 
1.16 IND 

≥ 8000 

0.32 

1000 

0.32 
NA IND 

≥ 8000 

1.25 

3000 

0.94 
NA IND 

Org 

Ery 

2000 

0.32 

2000 

0.63 
3.03 IND 

750 

0.32 

500 

0.16 
1.19 IND 

2000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

EO 

Ery 

2000 

0.32 

1000 

0.32 
1.53 IND 

630 

0.32 

380 

0.12 
0.99 ADD 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

A. betulina + 

gentamicin 

Aq 

Gen 

≥ 8000 

1.88 

≥ 4000 

≥ 1.25 
1.17 IND 

≥ 8000 

≥ 2.50 

2000 

0.63 
NA SYN 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Gen 

2000 

1.88 

1500 

0.47 
1.00 ADD 

750 

≥ 2.50 

2000 

0.63 
NA SYN 

2000 

≥ 2.50 

1000 

0.32 
NA ADD 

EO 

Gen 

2000 

1.88 

1000 

0.32 
0.67 ADD 

630 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

A. betulina + 

penicillin G 

Aq 

Pen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Pen 

2000 

≥ 2.50 

2000 

0.63 
1.25 IND 

750 

≥ 2.50 

1000 

0.32 
1.46 IND 

2000 

≥ 2.50 

1500 

0.47 
0.94 ADD 

EO 

Pen 

2000 

≥ 2.50 

1000 

0.32 
0.63 ADD 

630 

≥ 2.50 

750 

0.23 
1.29 IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

A. betulina + 

tetracycline 

Aq 

Tet 

≥ 8000 

0.23 

500 

0.16 
0.76 ADD 

≥ 8000 

0.16 

190 

0.12 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Tet 

2000 

0.23 

500 

0.16 
0.95 ADD 

750 

0.16 

190 

0.06 
0.63 ADD 

2000 

≥ 2.50 

1000 

0.32 
NA ADD 

EO 

Tet 

2000 

0.23 

500 

0.16 
0.95 ADD 

630 

0.16 

130 

0.04 
0.46 SYN 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA =  where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 

6
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Table 4.2. MIC (µg/ml) and ∑FIC values for the combination of A. betulina with the various antibiotics, against the Gram-negative pathogens.  

  E. coli (ATCC 25922) K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. betulina + 

ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.08 

90 

0.03 
NA SYN 

≥ 8000 

0.63 

1500 

0.47 
NA ADD 

≥ 8000 

0.16 

500 

0.16 
NA IND 

Org 

Cip 

≥ 8000 

0.08 

50 

0.02 
NA SYN 

≥ 8000 

0.63 

750 

0.23 
NA SYN 

4000 

0.16 

250 

0.08 
0.56 ADD 

EO 

Cip 

≥ 8000 

0.08 

70 

0.02 
NA SYN 

≥ 8000 

0.63 

190 

0.06 
NA SYN 

4000 

0.16 

500 

0.16 
1.13 IND 

A. betulina + 

gentamicin 

Aq 

Gen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

1000 

0.32 
NA SYN 

≥ 8000 

0.32 

750 

0.23 
NA ADD 

Org 

Gen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

2000 

0.63 
NA SYN 

4000 

0.32 

500 

0.16 
0.65 ADD 

EO 

Gen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 2.50 
NA ADD 

4000 

0.32 

500 

0.16 
0.65 ADD 

A. betulina + 

tetracycline 

Aq 

Tet 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Tet 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

3000 

0.94 
NA IND 

4000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

EO 

Tet 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

4000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 
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Agathosma betulina is usually either ingested orally as an aqueous infusion or an alcoholic 

tincture, for the treatment of UTI’s (Appendix F.1). Therefore, the aqueous and organic 

extract would most closely depict the results seen with the traditional forms of consumption 

of the plant.  

Interestingly, when tested individually, the plant extracts showed MIC values of ≥ 8.00 

mg/ml (Table 4.2), thereby demonstrating very weak antimicrobial activity against E. coli, 

which does not support the traditional claims of the effectiveness of A. betulina in UTI 

treatment. This finding is, however, in accordance with other studies, where the aqueous and 

organic extract, as well as the essential oil of A. betulina, demonstrated weak antimicrobial 

activity against common UTI-causing pathogens, including E. coli (Lis-Balchin et al., 2001; 

Scott and Springfield, 2004a).  

When in combination with ciprofloxacin, the extracts both exhibited noteworthy 

antimicrobial activity, thereby demonstrating synergy. The essential oil also demonstrated a 

synergistic effect, but is not used traditionally for the treatment of UTI’s (Table 4.2).  

The aqueous extract of A. betulina showed a promising synergistic effect in combination with 

ciprofloxacin, when tested against E. coli. The MIC values of the aqueous extract (90 µg/ml) 

and ciprofloxacin (0.03 µg/ml) in combination were well below the MIC values for the agents 

when tested individually (≥ 8.00 mg/ml for the aqueous extract and 0.08 µg/ml for 

ciprofloxacin), thereby demonstrating a tentative ∑FIC interpretation of synergy (Table 4.2). 

When the organic extract of A. betulina was combined with ciprofloxacin and tested against      

E. coli, a tentative ∑FIC interpretation of synergy was identified (Table 4.2). The MIC values 

for the individual agents were ≥ 8.00 mg/ml and 0.08 µg/ml for the organic extract and 

antibiotic, respectively. In combination, the MIC values were reduced to 50 µg/ml and 0.02 

µg/ml for the organic extract and antibiotic, respectively. Therefore, the MIC values for the 

agents in combination were well below the MIC values of the agents when tested 

individually, thereby demonstrating a synergistic effect (Table 4.2).  

The essential oil of A. betulina in combination with ciprofloxacin, when tested against E. coli, 

demonstrated a tentative synergistic interaction, since the MIC values of the agents in 

combination (70 µg/ml for the essential oil and 0.02 µg/ml for ciprofloxacin) were well 

below the MIC values for the agents when tested individually (≥ 8.00 mg/ml for the essential 

oil and 0.08 µg/ml for ciprofloxacin) (Table 4.2). However, this interaction would not be 
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relevant for the treatment of UTI’s, since the essential oil is not used traditionally for this 

infection (Appendix F.1).     

Since the combination between A. betulina (essential oil, aqueous and organic extract) and 

ciprofloxacin against E. coli provided such a notable synergistic profile, the combinations 

were tested at varying ratios to determine the effects of varied concentrations of the 

combination. The graphical representation (isobolograms) of the interactive profiles for each 

ratio provides an understanding as to whether the synergistic effect is dose-dependent. The 

construction of an isobologram also allows for the determining of the agent within a 

combination that is most responsible for the favourable interaction.  

Most ratios were found in the synergistic or additive region of the isobologram (Figure 4.1), 

with only four combination ratios (ciprofloxacin: A. betulina 90:10; 80:20; 70:30 and 30:70 

µl) of the organic extract and one ratio (70:30 µl) of the essential oil, found in the region 

indicating an indifferent interaction (refer to Table 2.4 for ratio concentrations).  

Six ratios (ciprofloxacin: A. betulina 90:10; 80:20; 60:40; 50:50; 30:70 and 20:80 µl) for the 

aqueous extract combination and four ratios (90:10; 80:20; 50:50 and 40:60 µl) for the 

essential oil combination were found in the synergistic region (refer to Table 2.4 for ratio 

concentrations); however, no ratios for the organic extract combination were found to be 

synergistic (Figure 4.1). The varied ratio studies were therefore mostly in accordance with the 

∑FIC evaluations which indicated a synergistic interaction for these combinations. However, 

this is not true for the organic extract combination with ciprofloxacin when tested in varied 

ratios, where the synergistic profile in ∑FIC evaluation was not depicted in the isobologram 

(Table 4.2; Figure 4.1).  

Resistance of E. coli toward ciprofloxacin is an increasing concern throughout the world, 

particularly with reference to UTI’s. The resistance of E. coli is also spreading to other 

antimicrobial treatments for UTI’s and therefore there is an urgent need to identify an 

alternative treatment for these infections (Karlowsky et al., 2002; Arslan et al., 2005).  

The identified synergistic interactions between the traditional and conventional form of UTI 

treatment could ultimately lead to more effective results for UTI infections, by enhancing the 

efficacy of the antibiotic and possibly assist in preventing the resistance of E. coli towards 

ciprofloxacin. This possible alternative treatment for UTI’s caused by resistant E. coli 

requires further in vivo testing, to support the in vitro results observed here.  
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Figure 4.1. Isobologram for A. betulina (  = aqueous extract;    = organic extract;   = essential 

oil) in combination with ciprofloxacin, when tested at various ratios, against E. coli. 

 

When the combinations were tested against the two yeasts (Table 4.3), no synergistic 

interactions were identified and three antagonistic interactions (A. betulina essential oil, 

aqueous and organic extract combined with amphotericin B) were noted against C. albicans. 

Therefore, the possibility for an antagonistic interaction is higher when combining antifungal 

agents with A. betulina. The noted antagonism could reduce the efficacy of the conventional 

antifungal agent and therefore the concurrent use of these combinations should be cautioned 

until further in vivo testing. The majority of the combinations were, however, found to be 

indifferent or additive in nature, when tested against the two yeasts (Table 4.3).  
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Table 4.3. MIC (µg/ml) and ∑FIC values for the combination of A. betulina with the 

antifungal agents, against the yeasts.  

  C. albicans (ATCC 10231) C. neoformans (ATCC 14116) 

Combination Sample 

type 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

A. betulina + 

amphotericin  

Aq 

Amp 

6000 

1.56 

≥ 4000 

≥ 12.50 
NA ANT 

3000 

0.39 

130 

0.39 
1.04 IND 

Org 

Amp 

3000 

1.56 

1500 

4.69 
3.51 ANT 

750 

0.39 

250 

0.78 
2.33 IND 

EO 

Amp 

2000 

1.56 

2000 

6.25 
5.01 ANT 

750 

0.39 

139 

0.39 
1.17 IND 

A. betulina + 

nystatin 

Aq 

Nys 

6000 

2.34 

380 

1.17 
0.56 ADD 

3000 

1.56 

380 

1.17 
0.88 ADD 

Org 

Nys 

3000 

2.34 

1000 

3.13 
1.67 IND 

750 

1.56 

500 

1.56 
1.67 IND 

EO 

Nys 

2000 

2.34 

1000 

3.13 
1.84 IND 

750 

1.56 

380 

1.17 
1.26 IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of 

reference (Ind. = individual); Combo. = MIC of agents in combination; Aq = aqueous extract; Org = organic extract;           

EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot 

be attained and are therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent 

interaction; ANT = antagonistic interaction. 

 

4.2.2. Combinations containing Aloe ferox 

The combination of A. ferox (aqueous and organic extract) with the conventional antibiotics 

provided a mostly additive interactive profile against the tested Gram-positive pathogens 

(Table 4.4). Two synergistic interactions were identified, both against B. cereus, when the 

organic extract of A. ferox was combined with erythromycin and penicillin G (∑FIC of 0.34 

and 0.35, respectively). Two tentative antagonistic interactions were identified, namely for    

A. ferox aqueous extract in combination with tetracycline, when tested against S. aureus and              

B. cereus. All the A. ferox: antibiotic combinations tested against E. faecalis provided 

additive interactions (Table 4.4). 

Against the tested Gram-negative micro-organisms (Table 4.5), the combination of A. ferox 

(aqueous and organic extract) with the conventional antibiotics exhibited a mostly additive 

and indifferent profile, with only one synergistic interaction identified (A. ferox organic 

extract with ciprofloxacin against E. coli), which was a tentative interpretation. Three 

antagonistic interactions were found (A. ferox aqueous extract and ciprofloxacin against       

E. coli; A. ferox aqueous and organic extract together with gentamicin against P. aeruginosa) 

(Table 4.5).  
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Table 4.4. MIC (µg/ml) and ∑FIC values for the combination of A. ferox with the various antibiotics, against the Gram-positive pathogens.  

  S. aureus (ATCC 25923) B. cereus (ATCC 11778) E. faecalis (ATCC 29212) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. ferox + 

ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.47 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

0.63 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

Org 

Cip 

4000 

0.47 

1000 

0.32 
0.93 ADD 

3000 

0.63 

2000 

0.63 
1.67 IND 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

A. ferox + 

erythromycin 

Aq 

Ery 

≥ 8000 

0.32 

1000 

0.32 
NA IND 

≥ 8000 

0.32 

500 

0.16 
NA ADD 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

Org 

Ery 

4000 

0.32 

1000 

0.32 
1.28 IND 

3000 

0.32 

500 

0.16 
0.34 SYN 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

A. ferox + 

gentamicin 

Aq 

Gen 

≥ 8000 

1.88 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

3000 

0.94 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Gen 

4000 

1.88 

1500 

0.47 
1.00 ADD 

3000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

A. ferox + 

penicillin G 

Aq 

Pen 

≥ 8000 

≥ 2.50 

2000 

0.63 
NA ADD 

≥ 8000 

≥ 2.50 

2000 

0.63 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Pen 

4000 

≥ 2.50 

2000 

0.63 
0.75 ADD 

3000 

≥ 2.50 

750 

0.24 
0.35 SYN 

≥ 8000 

≥ 2.50 

15000 

0.47 
0.94 ADD 

A. ferox + 

tetracycline 

Aq 

Tet 

≥ 8000 

0.23 

≥ 4000 

≥ 1.25 
NA ANT 

≥ 8000 

0.16 

≥ 4000 

≥ 1.25 
NA ANT 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Tet 

4000 

0.23 

750 

0.24 
1.23 IND 

3000 

0.16 

190 

0.06 
0.63 ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 

6
6
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Table 4.5. MIC (µg/ml) and ∑FIC values for the combination of A. ferox with the various antibiotics, against the Gram-negative pathogens.  

  E. coli (ATCC 25922) K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. ferox + 

ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.08 

2000 

0.63 
NA ANT 

≥ 8000 

0.63 

≥ 4000 

≥1.25 
NA IND 

6000 

0.16 

1500 

0.47 
3.19 IND 

Org 

Cip 

≥ 8000 

0.08 

50 

0.02 
NA SYN 

≥ 8000 

0.63 

3000 

0.94 
NA IND 

6000 

0.16 

750 

0.23 
1.57 IND 

A. ferox + 

gentamicin 

Aq 

Gen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥1.25 
NA ADD 

≥ 8000 

≥ 2.50 

3000 

0.94 
NA ADD 

6000 

0.32 

≥ 4000 

≥1.25 
NA ANT 

Org 

Gen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥1.25 
NA IND 

6000 

0.32 

≥ 4000 

≥1.25 
NA ANT 

A. ferox + 

tetracycline 

Aq 

Tet 

≥ 8000 

1.25 

≥ 4000 

≥1.25 
NA IND 

≥ 8000 

1.25 

≥ 4000 

≥1.25 
NA IND 

6000 

≥ 2.50 

2000 

0.63 
NA ADD 

Org 

Tet 

≥ 8000 

1.25 

≥ 4000 

≥1.25 
NA IND 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

6000 

≥ 2.50 

≥ 4000 

≥1.25 
NA IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 

6
7
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Interestingly, the aqueous extract when tested in combination with ciprofloxacin against       

E. coli, exhibited a tentative synergistic interaction; however, the organic extract combination 

against E. coli showed a tentative antagonistic interaction (Table 4.5). 

When the combinations of A. ferox (aqueous and organic extract) with the conventional 

antifungals were tested against the yeasts (Table 4.6), no synergy was noted for any of the 

combinations. However, four combinations were found to be antagonistic in nature (A. ferox 

aqueous extract with amphotericin B against C. albicans and C. neoformans; A. ferox 

aqueous extract with nystatin against C. albicans and C. neoformans). The antagonism was 

only noted for the aqueous extract combinations, with the organic extract combinations 

demonstrating either an additive or indifferent profile (Table 4.6).  

Table 4.6. MIC (µg/ml) and ∑FIC values for the combination of A. ferox with the various 

antifungal agents, against the yeasts.  

  C. albicans (ATCC 10231) C. neoformans (ATCC 14116) 

Combination Sample 

type 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

A. ferox + 

amphotericin 

Aq 

Amp 

≥ 8000 

1.56 

3000 

9.38 
NA ANT 

≥ 8000 

0.39 

≥ 4000 

≥ 1.25 
NA ANT 

Org 

Amp 

2000 

1.56 

1500 

4.69 
3.51 IND 

≥ 8000 

0.39 

130 

0.39 
1.02 IND 

A. ferox + 

nystatin 

Aq 

Nys 

≥ 8000 

2.34 

≥ 4000 

≥ 12.50 
NA ANT 

≥ 8000 

1.56 

≥ 4000 

≥ 12.50 
NA ANT 

Org 

Nys 

2000 

2.34 

1000 

3.13 
1.84 IND 

≥ 8000 

1.56 

250 

0.78 
0.53 ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of 

reference (Ind. = individual); Combo. = MIC of agents in combination; Aq = aqueous extract; Org = organic extract; EO = 

essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be 

attained and are therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; 

SYN = synergistic interaction; ANT = antagonistic interaction. 

 

4.2.3. Combinations containing Artemisia afra 

The combination of A. afra (essential oil, aqueous and organic extract) with the conventional 

antibiotics demonstrated a mostly additive or indifferent interactive profile, when tested 

against the Gram-positive micro-organisms (Table 4.7). Three antagonistic interactions were 

identified, which was seen with the aqueous extract of A. afra when combined with 

ciprofloxacin and tested against S. aureus (tentative antagonistic interaction) and when the 

organic extract of A. afra was combined with penicillin G and tested against S. aureus (∑FIC 

of 4.25) and B. cereus (∑FIC of 4.40) (Table 4.7).   
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Table 4.7. MIC (µg/ml) and ∑FIC values for the combination of A. afra with the various antibiotics, against the Gram-positive pathogens.  

  S. aureus (ATCC 25923) B. cereus (ATCC 11778) E. faecalis (ATCC 29212) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. afra + 

ciprofloxacin 

Aq 

Cip 

2000 

0.47 

≥ 4000 

≥ 1.25 
NA ANT 

≥ 8000 

0.63 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

Org 

Cip 

500 

0.47 

500 

0.16 
1.34 IND 

380 

0.63 

500 

0.16 
1.57 IND 

2000 

1.25 

2000 

0.63 
1.50 IND 

EO 

Cip 

2000 

0.47 

2000 

0.63 
2.34 IND 

2000 

0.63 

1000 

0.32 
1.01 IND 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

A. afra+ 

erythromycin 

Aq 

Ery 

2000 

0.32 

1000 

0.32 
1.53 IND 

≥ 8000 

0.32 

750 

0.23 
NA ADD 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

Org 

Ery 

500 

0.32 

500 

0.16 
1.52 IND 

380 

0.32 

250 

0.08 
0.92 ADD 

2000 

1.25 

2000 

0.63 
1.50 IND 

EO 

Ery 

2000 

0.32 

1000 

0.32 
1.53 IND 

2000 

0.32 

500 

0.16 
0.77 ADD 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

A. afra + 

gentamicin 

Aq 

Gen 

2000 

1.88 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Gen 

500 

1.88 

1000 

0.32 
2.17 IND 

380 

≥ 2.50 

1000 

0.32 
NA SYN 

2000 

≥ 2.50 

1000 

0.32 
NA ADD 

EO 

Gen 

2000 

1.88 

1000 

0.32 
0.67 ADD 

2000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

A. afra + 

penicillin G 

Aq 

Pen 

2000 

≥ 2.50 

1500 

0.47 
0.94 ADD 

≥ 8000 

≥ 2.50 

750 

0.24 
NA SYN 

≥ 8000 

≥ 2.50 

1000 

0.32 
NA SYN 

Org 

Pen 

500 

≥ 2.50 

2000 

0.63 
4.25 ANT 

380 

≥ 2.50 

1500 

0.47 
4.40 ANT 

2000 

≥ 2.50 

2000 

0.63 
1.25 IND 

EO 

Pen 

2000 

≥ 2.50 

2000 

0.63 
1.25 IND 

2000 

≥ 2.50 

1000 

0.32 
0.63 ADD 

≥ 8000 

≥ 2.50 

2000 

0.63 
NA ADD 

A. afra + 

tetracycline 

Aq 

Tet 

2000 

0.23 

1000 

0.32 
1.89 IND 

≥ 8000 

0.16 

190 

0.06 
NA SYN 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Tet 

500 

0.23 

500 

0.16 
1.70 IND 

380 

0.16 

130 

0.04 
0.59 ADD 

2000 

≥ 2.50 

1000 

0.32 
NA ADD 

EO 

Tet 

2000 

0.23 

500 

0.16 
0.95 ADD 

2000 

0.16 

190 

0.06 
0.48 SYN 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 

6
9
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Five synergistic combinations were seen when A. afra (essential oil, aqueous and organic 

extract) was combined with the conventional antibiotics and tested against the selected Gram-

positive pathogens. Four of these interactions (A. afra aqueous extract with penicillin G 

against B. cereus and E. faecalis; A. afra organic extract and gentamicin against B. cereus 

and the combination of A. afra aqueous extract and tetracycline against B. cereus) were 

tentative interpretations. The final synergistic interaction was found with the combination of 

the essential oil of A. afra and tetracycline, against B. cereus, with a ∑FIC of 0.48 (Table 

4.7). 

When the combinations with A. afra were tested against the Gram-negative pathogens (Table 

4.8), a mostly additive and indifferent interactive profile was noted. Three synergistic 

interactions were identified, namely A. afra organic extract and essential oil in combination 

with ciprofloxacin against E. coli (∑FIC of 0.27 for both combinations) and the combination 

of A. afra organic extract with tetracycline against P. aeruginosa, with a tentative 

interpretation of synergy. One antagonistic interaction was noted between the aqueous extract 

of A. afra and ciprofloxacin, against E. coli (∑FIC of 8.55), which is interesting, since the 

organic extract and essential oil combinations with ciprofloxacin demonstrated a synergistic 

interaction against E. coli. This variation was studied further by examining varied ratios of 

the combination. Escherichia coli commonly causes infectious GI complaints, which could 

arise from eating or drinking contaminated food or water (Merck Manual, 2006). In rural 

areas, these GI complaints are commonly treated with A. afra (Appendix F.3) in comparison 

to ciprofloxacin usage in orthodox medicine (Merck Manual, 2006). There is, therefore, a 

high probability for concurrent use of these two forms of healthcare. Artemisia afra is 

commonly consumed orally as an aqueous infusion (herbal tea) for GI complaints. The MIC 

value for the aqueous extract (2.00 mg/ml) in combination with ciprofloxacin was below the 

MIC value when tested individually (3.00 mg/ml); however, the MIC value for ciprofloxacin 

(0.63 µg/ml) in combination was far greater than when tested individually (0.08 µg/ml), 

resulting in an antagonistic profile for the combination (Table 4.8). Therefore, it is likely that 

the aqueous extract of A. afra interacted with ciprofloxacin, making it less active against E. 

coli (Table 4.8). Therefore concurrent use should be cautioned and further pharmacokinetic 

studies undertaken to investigate the mechanism of the interaction. These studies would most 

likely involve animal studies, where absorption is analysed through plasma/blood curve-time 

data; metabolism analysed through metabolite plasma profile studies; and excretion analysed 

through urine or faecal sample data (Japanese Ministry of Health, Labour and Welfare, 2001). 
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Table 4.8. MIC (µg/ml) and ∑FIC values for the combination of A. afra with the various antibiotics, against the Gram-negative pathogens.  

  E. coli (ATCC 25922) K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. afra + 

ciprofloxacin 

Aq 

Cip 

3000 

0.08 

2000 

0.63 
8.55 ANT 

4000 

0.63 

3000 

0.94 
2.24 IND 

2000 

0.16 

1500 

0.47 
3.69 IND 

Org 

Cip 

3000 

0.08 

70 

0.02 
0.27 SYN 

2000 

0.63 

750 

0.23 
0.75 ADD 

1500 

0.16 

250 

0.08 
0.67 ADD 

EO 

Cip 

3000 

0.08 

70 

0.02 
0.27 SYN 

≥ 8000 

0.63 

1000 

0.32 
NA ADD 

4000 

0.16 

500 

0.16 
1.13 IND 

A. afra + 

gentamicin 

Aq 

Gen 

3000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

4000 

≥ 2.50 

2000 

0.63 
NA ADD 

2000 

0.32 

1500 

0.47 
2.27 IND 

Org 

Gen 

3000 

≥ 2.50 

2000 

0.63 
0.92 ADD 

2000 

≥ 2.50 

1000 

0.32 
NA ADD 

1500 

0.32 

500 

0.16 
0.85 ADD 

EO 

Gen 

3000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

4000 

0.32 

500 

0.16 
0.65 ADD 

A. afra + 

tetracycline 

Aq 

Tet 

3000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

4000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

2000 

≥ 2.50 

2000 

0.63 
NA IND 

Org 

Tet 

3000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

2000 

1.25 

3000 

0.94 
2.25 IND 

1500 

≥ 2.50 

1000 

0.32 
NA SYN 

EO 

Tet 

3000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

4000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 

7
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The combination of essential oil, aqueous or organic extract with ciprofloxacin, was tested in 

various ratios against E. coli, since these combinations showed variance in interactive 

profiles, ranging from synergistic to highly antagonistic. In the varied ratio studies (Figure 

4.2), the ∑FIC evaluation of antagonism (Table 4.8) for the aqueous extract combination was 

supported by the ratio containing the equal volumes (50:50 µl). 
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Figure 4.2. Isobologram for A. afra (  = aqueous extract;    = organic extract;   = essential oil) 

in combination with ciprofloxacin, when tested at various ratios, against E. coli (     = 50:50 

µl ratio for aqueous extract;     = 50:50 µl ratio for organic extract;     = 50:50 µl ratio for 

essential oil).  

 

The ∑FIC evaluation of synergy (Table 4.8) for the organic extract combination was again 

supported in the varied ratio study (Figure 4.2) by the ratio containing equal volumes of each 

agent in the combination (50:50 µl). However, the synergistic profile for the essential oil as 

seen in the ∑FIC evaluation (Table 4.8) was not supported in the varied ratio study, where all 

ratio points were either found in the indifferent or antagonistic region (Figure 4.2). 

Interestingly, the ratio 30:70 µl (ciprofloxacin: A. afra) was found in the antagonistic region, 
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for all three plant sample types (essential oil, aqueous and organic extract) prepared from A. 

afra (refer to Table 2.4 for ratio concentrations).  

The combination of the essential oil, aqueous and organic extract of A. afra together with the 

conventional antifungal agents, when tested against the yeasts (Table 4.9), demonstrated no 

synergistic interactions. Three antagonistic interactions were identified, all of which 

contained amphotericin B and when tested against C. albicans (∑FIC of 4.51, 6.76 and 5.34 

for the essential oil, aqueous and organic extract combination, respectively) (Table 4.9). 

Table 4.9. MIC (µg/ml) and ∑FIC values for the combination of A. afra with the various 

antifungal agents, against the yeasts.  

  C. albicans (ATCC 10231) C. neoformans (ATCC 14116) 

Combination Sample 

type 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

A. afra + 

amphotericin  

Aq 

Amp 

4000 

1.56 

3000 

9.38 
6.76 ANT 

1000 

0.39 

190 

0.59 
1.69 IND 

Org 

Amp 

1500 

1.56 

2000 

6.25 
5.34 ANT 

750 

0.39 

190 

0.59 
1.75 IND 

EO 

Amp 

1000 

1.56 

1500 

4.69 
4.51 ANT 

750 

0.39 

250 

0.78 
2.33 IND 

A. afra + 

nystatin 

Aq 

Nys 

4000 

2.34 

750 

2.35 
1.19 IND 

1000 

1.56 

190 

0.59 
0.57 ADD 

Org 

Nys 

1500 

2.34 

380 

1.17 
0.75 ADD 

750 

1.56 

500 

1.56 
1.67 IND 

EO 

Nys 

1000 

2.34 

1000 

3.13 
2.34 IND 

750 

1.56 

500 

1.56 
1.67 IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of 

reference (Ind. = individual); Combo. = MIC of agents in combination; Aq = aqueous extract; Org = organic extract;           

EO = essential oil; Int. = interaction classification; ADD = additive interaction; IND = indifferent interaction; ANT = 

antagonistic interaction. 

 

4.2.4. Combinations containing Aspalathus linearis 

The combinations of the aqueous and organic extracts of A. linearis with the conventional 

antibiotics, when tested against the Gram-positive pathogens (Table 4.10), demonstrated no 

antagonistic interactions. There were, however, ten identified synergistic interactions. The 

organic extract of A. linearis in combination with gentamicin demonstrated synergy against 

all three of the tested Gram-positive pathogens (∑FIC of 0.50 against S. aureus and a 

tentative interpretation of synergy against B. cereus and E. faecalis). The aqueous extract of 

A. linearis in combination with penicillin G also demonstrated synergy against all three tested 

Gram-positive pathogens (tentative interpretations of synergy against S. aureus and B. cereus 

and a ∑FIC value of 0.46 against E. faecalis). The organic extract of A. linearis in 



74 
 

 

 

Table 4.10. MIC (µg/ml) and ∑FIC values for the combination of A. linearis with the various antibiotics, against the Gram-positive pathogens.  

  S. aureus (ATCC 25923) B. cereus (ATCC 11778) E. faecalis (ATCC 29212) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. linearis + 

ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.47 

2000 

0.63 
NA IND 

≥ 8000 

0.63 

2000 

0.63 
NA IND 

3000 

1.25 

2000 

0.63 
1.17 IND 

Org 

Cip 

3000 

0.47 

500 

0.16 
0.51 ADD 

2000 

0.63 

1000 

0.32 
1.01 IND 

2000 

1.25 

1500 

0.47 
1.13 IND 

A. linearis + 

erythromycin 

Aq 

Ery 

≥ 8000 

0.32 

2000 

0.63 
NA IND 

≥ 8000 

0.32 

1000 

0.32 
NA IND 

3000 

1.25 

4000 

1.25 
NA IND 

Org 

Ery 

3000 

0.32 

2000 

0.63 
2.70 IND 

2000 

0.32 

500 

0.16 
0.77 ADD 

2000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

A. linearis + 

gentamicin 

Aq 

Gen 

≥ 8000 

1.88 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

3000 

0.94 
NA IND 

3000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

Org 

Gen 

3000 

1.88 

1000 

0.32 
0.50 SYN 

2000 

≥ 2.50 

500 

0.16 
NA SYN 

2000 

≥ 2.50 

500 

0.16 
NA SYN 

A. linearis + 

penicillin G 

Aq 

Pen 

≥ 8000 

≥ 2.50 

30 

0.01 
NA SYN 

≥ 8000 

≥ 2.50 

250 

0.08 
NA SYN 

3000 

≥ 2.50 

1000 

0.32 
0.46 SYN 

Org 

Pen 

3000 

≥ 2.50 

30 

0.01 
0.01 SYN 

2000 

≥ 2.50 

130 

0.04 
0.08 SYN 

2000 

≥ 2.50 

1500 

0.47 
0.94 ADD 

A. linearis + 

tetracycline 

Aq 

Tet 

≥ 8000 

0.23 

1000 

0.32 
NA IND 

≥ 8000 

0.16 

250 

0.08 
NA ADD 

3000 

≥ 2.50 

3000 

0.94 
NA IND 

Org 

Tet 

3000 

0.23 

500 

0.16 
0.87 ADD 

2000 

0.16 

190 

0.06 
0.48 SYN 

2000 

≥ 2.50 

2000 

0.63 
NA IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction. 
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combination with penicillin G demonstrated synergy, however, only against S. aureus (∑FIC 

of 0.01) and B. cereus (∑FIC of 0.08). Tiwari et al. (2005) also investigated the combination 

of other green and black teas with antimicrobials, chloramphenicol, gentamicin, methicillin 

and nalidixic acid, where a mostly synergistic profile was also seen against 

enteropathogens.Against E. faecalis, the combination demonstrated an additive effect (∑FIC 

of 0.94). Another synergistic interaction was identified between the organic extract of A. 

linearis and tetracycline, against B cereus (∑FIC of 0.48) (Table 4.10). 

Aspalathus linearis is the plant from which the popular beverage, rooibos tea, is derived. This 

beverage is consumed by many people throughout the world, not only for the aroma and 

pleasant taste, but for its medicinal properties too (Joubert et al., 2008; Van Wyk et al., 

2009). Therefore, the concurrent consumption with conventional antimicrobials has been 

considered in this study. The common form of consumption of A. linearis is via the 

preparation of a herbal tea, where water is used for the extraction process. Therefore, the 

interactions with the aqueous extract of A. linearis would be most relevant. Since the 

combination of the aqueous and organic extract of A. linearis with penicillin G demonstrated 

the most synergistic profile against the Gram-positive pathogens, it is highly likely that one 

of the constituents of the extracts could have potentiated the uptake and antimicrobial effect 

of the antibiotic. Since this combination was so notable, a varied ratio study was undertaken 

for these two combinations. Rooibos is not consumed in fixed concentrations, since people 

vary the number of cups of tea that they drink. Also, the concentration can vary depending on 

the time that the tea bag is left to draw. The active ingredients of the tea leaves can also be 

affected by variations in the season, cultivation, harvesting and leaf preparation. Therefore, 

the varied ratio studies would provide one with an indication of the effect of varied 

concentrations on the interactive profile and whether the synergistic effect is dose-dependent. 

During the varied ratio studies (Figure 4.3), the synergistic interactions found in the ∑FIC 

evaluation (Table 4.10) were mostly supported. For the combination of A. linearis aqueous 

extract and penicillin G (Figure 4.3.a), all ratios were found to be either synergistic or 

additive in nature, with no ratios falling above the 1.0:1.0 line. The penicillin G: A. linearis 

aqueous extract ratio, consisting of equal volumes of each agent in the combination (5:5), 

corresponding to a concentration of 0.005 mg/ml:16.00 mg/ml (Table 2.4) was found to be 

synergistic against all three Gram-positive pathogens. The combination was most synergistic 

against S. aureus, with six of the nine ratios demonstrating synergy (Figure 4.3.a). The three  
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Figure 4.3. Isobologram for A. linearis aqueous (a) and organic (b) extract in combination 

with penicillin G, when tested at various ratios, against the Gram-positive micro-organisms                

(    = S. aureus;     = B. cereus;     = E. faecalis;      = 50:50 µl ratio against S. aureus;      = 

50:50 µl ratio against B. cereus;      = 50:50 µl ratio against E. faecalis).  

a. 

b 
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penicillin G: A. linearis ratios for the aqueous extract combination that were not found to be 

synergistic against S. aureus, were the 30:70; 20:80 and 10:90 µl ratios, which were highest 

in A. linearis aqueous extract volume, as opposed to penicillin G, with concentrations of 

0.003 mg/ml:22.40 mg/ml; 0.002 mg/ml:25.60 mg/ml and 0.001 mg/ml:28.80 mg/ml, for the 

three ratios, respectively (Table 2.4). 

For the varied ratio combinations of the organic extract of A. linearis and penicillin G, all 

ratios were found to be either synergistic or additive, except for two penicillin G: A. linearis 

ratios, namely the 90:10 and 80:20 µl ratios against B. cereus, which corresponds to 

concentrations of 0.009 mg/ml:3.20 mg/ml and 0.008 mg/ml:6.40 mg/ml, respectively, and 

were identified as being indifferent in nature (Table 4.10). Similar to the aqueous extract 

combination, the penicillin G: A. linearis organic extract ratio, consisting of equal volumes of 

each agent in the combination (50:50 µl), which corresponds to a concentration of 0.005 

mg/ml:16.00 mg/ml (Table 2.4), was found to be synergistic against all three Gram-positive 

pathogens. Similarly to the aqueous extract, the organic extract combination with penicillin G 

in varied ratios, was most synergistic against S. aureus, where all nine of the tested ratios 

were found below the 0.5:0.5 line (Figure 4.3.b). One cup of rooibos tea has been estimated 

to have an average concentration of 2 mg/ml (Schepers, 2001), therefore, the ratio containing 

equal volumes of extract and penicillin would require about eight cups of tea to be consumed 

with 0.005 mg/ml of penicillin G (Table 2.4) for the strong synergistic interaction to occur.  

Studies have found that epigallocatechin-3-gallate (EGEG), a compound found in many teas, 

has a synergistic effect with β-lactam antibiotics, such as penicillin and its derivatives, when 

tested against MRSA. EGEG is not present in rooibos tea (Almajano et al., 2008), but it does 

support further studies to identify the compound and mechanism of action by which this 

strong synergistic interaction is facilitated. Many studies reviewed by Van Vuuren and 

Viljoen (2011) reported that penicillin G possessed a potentiating or synergistic effect with 

other plants, such as Catha edulis, where a 4-fold potentiation of penicillin G against 

Fusobacterium nucleatum was seen (Al-hebshi et al., 2006). Rhus coriaria, Sacropoterium 

spinosum and Rosa damasecena were also found to be synergistic in combination with 

penicillin G, when tested against three clinical strains of P. aeruginosa (Adwan et al., 2010). 

Penicillin G has also shown strong potentiating activity when in combination with some plant 

compounds, such as eugenol, thymol and carvacrol, when tested against E. coli, S. aureus, 

Streptococcus pyogenes and Salmonella typhimurium. The strongest synergistic effect was 

seen against S. aureus (∑FIC of 0.11) when carvacrol and penicillin G were combined 
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Table 4.11. MIC (µg/ml) and ∑FIC values for the combination of A. linearis with the various antibiotics, against the Gram-negative pathogens.  

  E. coli (ATCC 25922) K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

A. linearis + 

ciprofloxacin 

Aq 

Cip 

1500 

0.08 

1000 

0.32 
4.67 ANT 

4000 

0.63 

500 

0.16 
0.64 ADD 

≥ 8000 

0.16 

1500 

0.47 
3.13 IND 

Org 

Cip 

1500 

0.08 

500 

0.16 
2.33 IND 

3000 

0.63 

190 

0.06 
0.16 SYN 

3000 

0.16 

500 

0.16 
1.17 IND 

A. linearis + gentamicin 

Aq 

Gen 

1500 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

4000 

≥ 2.50 

2000 

0.63 
NA ADD 

≥ 8000 

0.32 

1500 

0.47 
1.71 IND 

Org 

Gen 

1500 

≥ 2.50 

3000 

0.94 
2.38 IND 

3000 

≥ 2.50 

2000 

0.63 
NA ADD 

3000 

0.32 

≥ 4000 

≥ 1.25 
NA ANT 

A. linearis + 

tetracycline 

Aq 

Tet 

1500 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

4000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

1500 

0.47 
NA SYN 

Org 

Tet 

1500 

1.25 

3000 

0.94 
2.75 IND 

3000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

3000 

≥ 2.50 

1500 

0.47 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 
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(Palaniappan and Holley, 2010). The combination of A. linearis (aqueous and organic 

extract) with the antibiotics against the Gram-negative pathogens (Table 4.11), demonstrated 

two antagonistic interactions (A. linearis aqueous extract with ciprofloxacin against E. coli 

with a ∑FIC of 4.67 and A. linearis organic extract with gentamicin against P. aeruginosa 

with a tentative antagonistic interpretation) (Table 4.11). 

Two synergistic interactions were identified (A. linearis organic extract with ciprofloxacin 

against K. pneumoniae with a ∑FIC of 0.16 and A. linearis aqueous extract with tetracycline 

against P. aeruginosa with a tentative synergistic interpretation) (Table 4.11). Therefore, 

against the Gram-negative pathogens tested there was an equal potential for either synergistic 

or antagonistic interactions. 

The combinations of A. linearis (aqueous and organic extract) with the conventional 

antifungal agents, when tested against the two yeasts (Table 4.12), demonstrated no 

synergistic interactions and two tentative antagonistic interactions (A. linearis aqueous 

extract and amphotericin B when tested against C. albicans and C. neoformans) (Table 4.12).  

Table 4.12. MIC (µg/ml) and ∑FIC values for the combination of A. linearis with the various 

antifungal agents, against the yeasts.  

  C. albicans (ATCC 10231) C. neoformans (ATCC 14116) 

Combination Sample 

type 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

A. linearis + 

amphotericin  

Aq 

Amp 

≥ 8000 

1.56 

≥ 4000 

≥ 12.50 
NA ANT 

≥ 8000 

0.39 

750 

2.35 
NA ANT 

Org 

Amp 

3000 

1.56 

1500 

4.69 
3.51 IND 

1500 

0.39 

130 

0.39 
1.09 IND 

A. linearis + 

nystatin 

Aq 

Nys 

≥ 8000 

2.34 

1500 

4.69 
NA IND 

≥ 8000 

1.56 

1500 

4.70 
NA IND 

Org 

Nys 

3000 

2.34 

1000 

3.13 
1.67 IND 

1500 

1.56 

190 

0.59 
0.51 ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of 

reference (Ind. = individual); Combo. = MIC of agents in combination; Aq = aqueous extract; Org = organic extract; EO = 

essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be 

attained and are therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; 

ANT = antagonistic interaction. 

 

4.2.5. Combinations containing Lippia javanica 

The combination of L. javanica (essential oil, aqueous and organic extract) with the 

antibiotics against the Gram-positive pathogens (Table 4.13), demonstrated no antagonistic 
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Table 4.13. MIC (µg/ml) and ∑FIC values for the combination of L. javanica with the various antibiotics, against the Gram-positive pathogens.  

  S. aureus (ATCC 25923) B. cereus (ATCC 11778) E. faecalis (ATCC 29212) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

L. javanica + 

ciprofloxacin 

Aq 

Cip 

4000 

0.47 

2000 

0.63 
1.84 IND 

≥ 8000 

0.63 

2000 

0.63 
NA IND 

≥8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

Org 

Cip 

250 

0.47 

100 

0.05 
0.51 ADD 

≥ 8000 

0.63 

130 

0.04 
NA SYN 

1000 

1.25 

1000 

0.32 
1.26 IND 

EO 

Cip 

1500 

0.47 

500 

0.16 
0.67 ADD 

1500 

0.63 

500 

0.16 
0.58 ADD 

3000 

1.25 

750 

0.24 
0.44 SYN 

L. javanica + 

erythromycin 

Aq 

Ery 

4000 

0.32 

1000 

0.32 
1.28 IND 

≥ 8000 

0.32 

500 

0.16 
NA ADD 

≥8000 

1.25 

2000 

0.63 
NA ADD 

Org 

Ery 

250 

0.32 

500 

0.16 
2.52 IND 

≥ 8000 

0.32 

20 

0.005 
NA SYN 

1000 

1.25 

250 

0.08 
0.32 SYN 

EO 

Ery 

1500 

0.32 

1000 

0.32 
1.70 IND 

1500 

0.32 

190 

0.06 
0.32 SYN 

3000 

1.25 

3000 

0.94 
1.75 IND 

L. javanica + 

gentamicin 

Aq 

Gen 

4000 

1.88 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Gen 

250 

1.88 

130 

0.04 
0.54 ADD 

≥ 8000 

≥ 2.50 

130 

0.04 
NA SYN 

1000 

≥ 2.50 

130 

0.04 
NA  SYN 

EO 

Gen 

1500 

1.88 

750 

0.24 
0.63 ADD 

1500 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

3000 

≥ 2.50 

2000 

0.63 
NA ADD 

L. javanica + 

penicillin G 

Aq 

Pen 

4000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

2000 

0.63 
NA ADD 

≥8000 

≥ 2.50 

2000 

0.63 
NA ADD 

Org 

Pen 

250 

≥ 2.50 

750 

0.23 
3.09 IND 

≥ 8000 

≥ 2.50 

750 

0.24 
NA SYN 

1000 

≥ 2.50 

2000 

0.63 
2.25 IND 

EO 

Pen 

1500 

≥ 2.50 

1000 

0.32 
0.80 ADD 

1500 

≥ 2.50 

1000 

0.32 
0.80 ADD 

3000 

≥ 2.50 

2000 

0.63 
0.92 ADD 

L. javanica + 

tetracycline 

Aq 

Tet 

4000 

0.23 

1000 

0.32 
1.64 IND 

≥ 8000 

0.16 

250 

0.08 
NA ADD 

≥8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Tet 

250 

0.23 

380 

0.12 
2.04 IND 

≥ 8000 

0.16 

20 

0.005 
NA SYN 

1000 

≥ 2.50 

500 

0.16 
NA ADD 

EO 

Tet 

1500 

0.23 

500 

0.16 
1.03 IND 

1500 

0.16 

130 

0.04 
0.34 SYN 

3000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 
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interactions, but ten synergistic interactions were identified. Seven of the ten interactions, 

namely L. javanica organic extract with ciprofloxacin (tentative synergy), erythromycin 

(tentative synergy), gentamicin (tentative synergy), penicillin G (tentative synergy) and 

tetracycline (∑FIC of 0.34), along with the essential oil of L. javanica with erythromycin 

(∑FIC of 0.32) and tetracycline (∑FIC of 0.34), were against B. cereus. Whilst the remaining 

three synergistic interactions were seen against E. faecalis, namely L. javanica essential oil 

with ciprofloxacin (∑FIC 0.44), L. javanica organic extract with erythromycin (∑FIC of 0.32) 

and the organic extract with gentamicin (tentative synergistic interaction) (Table 4.13).  

The combination of L. javanica (essential oil, aqueous and organic extract) with the 

conventional antibiotics, when tested against the Gram-negative pathogens (Table 4.14), 

resulted in only one tentative antagonistic interaction, between the aqueous extract and 

gentamicin against P. aeruginosa (Table 4.14). 

Six synergistic interactions were identified (Table 4.14). Both the organic extract and 

essential oil, when combined with ciprofloxacin and tested against E. coli, demonstrated a 

synergistic interaction (∑FIC of 0.32 and 0.14, respectively). The organic extract with 

ciprofloxacin also showed synergy against K. pneumoniae (∑FIC of 0.19). When the organic 

extract of L. javanica was combined with gentamicin, synergy was seen against K. 

pneumoniae (tentative synergy) and P. aeruginosa (∑FIC of 0.32). The organic extract 

combination with tetracycline, also showed synergy against P. aeruginosa (tentative synergy) 

(Table 4.14).  

The combination of L. javanica, commonly used traditionally for intestinal complaints, with 

ciprofloxacin provided a notable interactive profile, when tested against E. coli. Lippia 

javanica is frequently prepared as a herbal tea for oral ingestion using water for the extraction 

process, for the treatment of GI complaints (Appendix F.5). Therefore, the aqueous extract 

results would depict most closely the effects seen with traditional use of the plant and was 

found to display an indifferent interaction in the current study, with an ∑FIC value of 2.25 

against E. coli (Table 4.14). The MIC value for the aqueous extract in combination (0.50 

mg/ml) was lower than the MIC value when tested individually (2.00 mg/ml) (Table 3.3). 

However, the MIC value for ciprofloxacin in combination (0.16 µg/ml) was higher than when 

tested individually (0.08 µg/ml). Therefore, an indifferent interaction was noted for this 

combination, which alleviates some of the concern related to the concurrent use of these two 

forms of healthcare for GI complaints. 
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Table 4.14. MIC (µg/ml) and ∑FIC values for the combination of L. javanica with the various antibiotics, against the Gram-negative pathogens.  

  E. coli (ATCC 25922) K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

L. javanica + 

ciprofloxacin 

Aq 

Cip 

2000 

0.08 

500 

0.16 
2.25 IND 

≥ 8000 

0.63 

3000 

0.94 
NA ADD 

2000 

0.16 

1000 

0.32 
2.50 IND 

Org 

Cip 

1000 

0.08 

70 

0.02 
0.32 SYN 

1000 

0.63 

130 

0.04 
0.19 SYN 

4000 

0.16 

250 

0.08 
0.56 ADD 

EO 

Cip 

2000 

0.08 

30 

0.01 
0.14 SYN 

3000 

0.63 

1500 

0.47 
1.25 IND 

2000 

0.16 

750 

0.23 
1.82 IND 

L. javanica + 

gentamicin 

Aq 

Gen 

2000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

2000 

0.32 

≥ 4000 

≥ 1.25 
NA ANT 

Org 

Gen 

1000 

≥ 2.50 

3000 

0.94 
2.38 IND 

1000 

≥ 2.50 

250 

0.08 
NA SYN 

4000 

0.32 

250 

0.08 
0.32 SYN 

EO 

Gen 

2000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

3000 

≥ 2.50 

2000 

0.63 
NA ADD 

2000 

0.32 

500 

0.16 
0.77 ADD 

L. javanica + 

tetracycline 

Aq 

Tet 

2000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

3000 

0.94 
NA IND 

2000 

≥ 2.50 

3000 

0.94 
NA IND 

Org 

Tet 

1000 

1.25 

2000 

0.63 
2.50 IND 

1000 

1.25 

1500 

0.47 
1.88 IND 

4000 

≥ 2.50 

500 

0.16 
NA SYN 

EO 

Tet 

2000 

1.25 

2000 

0.63 
1.50 IND 

3000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

2000 

≥ 2.50 

1500 

0.47 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 
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The organic extract and essential oil combinations with ciprofloxacin when tested against E. 

coli, demonstrated a very different interaction to that of the aqueous extract, where a 

synergistic interactive profile was observed, with ∑FIC values of 0.32 and 0.14, respectively 

(Table 4.14).  

The combination of L. javanica (essential oil, aqueous and organic extract) with the 

conventional antifungal agents (Table 4.15), demonstrated only one antagonistic (L. javanica 

essential oil with amphotericin B against C. albicans with a ∑FIC of 5.34) and one 

synergistic interaction (L. javanica aqueous extract with nystatin against C. albicans with a 

∑FIC of 0.50) (Table 4.15). 

Table 4.15. MIC (µg/ml) and ∑FIC values for the combination of L. javanica with the 

various antifungal agents, against the yeasts.  

  C. albicans (ATCC 10231) C. neoformans (ATCC 14116) 

Combination Sample 

type 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

L. javanica + 

amphotericin 

Aq 

Amp 

750 

1.56 

500 

1.56 
1.67 IND 

1000 

0.39 

130 

0.39 
1.13 IND 

Org 

Amp 

1000 

1.56 

750 

2.35 
2.25 IND 

380 

0.39 

190 

0.59 
2.00 IND 

EO 

Amp 

1500 

1.56 

2000 

6.25 
5.34 ANT 

380 

0.39 

100 

0.30 
1.02 IND 

L. javanica + 

nystatin 

Aq 

Nys 

750 

2.34 

190 

0.59 
0.50 SYN 

1000 

1.56 

250 

0.78 
0.75 ADD 

Org 

Nys 

1000 

2.34 

380 

1.17 
0.88 ADD 

380 

1.56 

190 

0.59 
0.88 ADD 

EO 

Nys 

1500 

2.34 

2000 

6.25 
4.00 IND 

380 

1.56 

250 

0.78 
1.16 IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of 

reference (Ind. = individual); Combo. = MIC of agents in combination; Aq = aqueous extract; Org = organic extract;          

EO = essential oil; Int. = interaction classification; ADD = additive interaction; IND = indifferent interaction; ANT = 

antagonistic interaction. 

 

4.3.6. Combinations containing Pelargonium sidoides 

The combination of P. sidoides (aqueous and organic extract) with the conventional 

antibiotics, demonstrated no antagonistic interactions against the Gram-positive pathogens 

(Table 4.16). However, 12 synergistic interactions were identified against these pathogens, 

which were observed against B. cereus (∑FIC of 0.32 – 0.50) and S. aureus (∑FIC of 0.20 – 
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Table 4.16. MIC (µg/ml) and ∑FIC values for the combination of P. sidoides with the various antibiotics, against the Gram-positive pathogens.  

  S. aureus (ATCC 25923) B. cereus (ATCC 11778) E. faecalis (ATCC 29212) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

P. sidoides + 

ciprofloxacin 

Aq 

Cip 

2000 

0.47 

750 

0.24 
0.89 ADD 

2000 

0.63 

500 

0.16 
0.50 SYN 

1000 

1.25 

1500 

0.47 
1.88 IND 

Org 

Cip 

1500 

0.47 

750 

0.24 
1.01 IND 

1500 

0.63 

380 

0.12 
0.44 SYN 

2000 

1.25 

1000 

0.32 
0.76 ADD 

P. sidoides + 

erythromycin 

Aq 

Ery 

2000 

0.32 

500 

0.16 
0.77 ADD 

2000 

0.32 

250 

0.08 
0.39 SYN 

1000 

1.25 

1500 

0.47 
1.88 IND 

Org 

Ery 

1500 

0.32 

500 

0.16 
0.85 ADD 

1500 

0.32 

190 

0.06 
0.32 SYN 

2000 

1.25 

1500 

0.47 
1.13 IND 

P. sidoides + 

gentamicin 

Aq 

Gen 

2000 

1.88 

500 

0.16 
0.34 SYN 

2000 

≥ 2.50 

1000 

0.32 
NA SYN 

1000 

≥ 2.50 

2000 

0.63 
NA IND 

Org 

Gen 

1500 

1.88 

500 

0.16 
0.42 SYN 

1500 

≥ 2.50 

1000 

0.32 
NA SYN 

2000 

≥ 2.50 

1500 

0.47 
NA ADD 

P. sidoides + 

penicillin G 

Aq 

Pen 

2000 

≥ 2.50 

500 

0.16 
0.32 SYN 

2000 

≥ 2.50 

2000 

0.63 
1.25 IND 

1000 

≥ 2.50 

1000 

0.32 
1.13 IND 

Org 

Pen 

1500 

≥ 2.50 

250 

0.08 
0.20 SYN 

1500 

≥ 2.50 

750 

0.24 
0.60 ADD 

2000 

≥ 2.50 

380 

0.12 
0.24 SYN 

P. sidoides + 

tetracycline 

Aq 

Tet 

2000 

0.23 

250 

0.08 
0.48 SYN 

2000 

0.16 

250 

0.08 
0.63 ADD 

1000 

≥ 2.50 

1000 

0.32 
NA IND 

Org 

Tet 

1500 

0.23 

500 

0.16 
1.03 IND 

1500 

0.16 

190 

0.06 
0.51 ADD 

2000 

≥ 2.50 

1000 

0.32 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction. 
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0.42). Only the aqueous extract of P. sidoides, and not the organic extract, was synergistic 

against S. aureus (∑FIC of 0.48) when in combination with tetracycline (Table 4.16).   

The combination of P. sidoides (aqueous and organic extract) with the conventional 

antibiotics, when tested against the Gram-negative pathogens (Table 4.17), demonstrated five 

antagonistic interactions, which includes P. sidoides aqueous extract with ciprofloxacin 

against E. coli (tentative antagonism), P. sidoides aqueous and organic extract with 

ciprofloxacin against P. aeruginosa (tentative antagonism) and lastly, P. sidoides aqueous 

and organic extract with gentamicin against P. aeruginosa (tentative antagonism) and three 

synergistic interactions, which includes P. sidoides organic extract with ciprofloxacin against 

E. coli (tentative synergy), P. sidoides aqueous and organic extract with gentamicin against 

K. pneumoniae, also showing tentative synergy (Table 4.17).  

The combination of P. sidoides (aqueous and organic extract) with the conventional 

antifungals (Table 4.18), demonstrated no synergistic or antagonistic interactions against C. 

albicans and C. neoformans.   

4.2.7. Combinations containing Sutherlandia frutescens 

The combination of S. frutescens (aqueous and organic extract) with the conventional 

antibiotics, demonstrated no antagonism when tested against the Gram-positive pathogens 

(Table 4.19). Three synergistic interactions (S. frutescens organic extract with gentamicin 

against S. aureus (∑FIC of 0.17), S. frutescens aqueous extract with tetracycline against        

B. cereus (tentative synergy) and the organic extract with penicillin G against E. faecalis, 

with a ∑FIC of 0.38) were identified against the Gram-positive pathogens tested (Table 4.19). 

The combination of S. frutescens with the conventional antibiotics, demonstrated two 

tentative antagonistic interactions (S. frutescens aqueous extract with ciprofloxacin and then 

gentamicin against P. aeruginosa), when tested against the Gram-negative pathogens. One 

synergistic interaction was identified, which was that of the organic extract of S. frutescens 

with ciprofloxacin against E. coli (∑FIC of 0.28) (Table 4.20). 
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Table 4.17. MIC (µg/ml) and ∑FIC values for the combination of P. sidoides with the various antibiotics, against the Gram-negative pathogens.  

  E. coli (ATCC 25922) K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

P. sidoides + 
ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.08 

1000 

0.32 
NA ANT 

≥ 8000 

0.63 
3000 

0.94 
NA ADD 

2000 

0.16 

≥ 4000 

≥ 1.25 
NA ANT 

Org 

Cip 

≥ 8000 

0.08 
50 

0.02 
NA SYN 

≥ 8000 

0.63 
2000 

0.63 
NA IND 

1500 

0.16 

≥ 4000 

≥ 1.25 
NA ANT 

P. sidoides + 

gentamicin 

Aq 

Gen 

≥ 8000 

≥ 2.50 
≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 
1000 

0.32 
NA SYN 

2000 

0.32 

≥ 4000 

≥ 1.25 
NA ANT 

Org 

Gen 

≥ 8000 

≥ 2.50 
≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 
500 

0.16 
NA SYN 

1500 

0.32 

≥ 4000 

≥ 1.25 
NA ANT 

P. sidoides + 

tetracycline 

Aq 

Tet 

≥ 8000 

1.25 
≥ 4000 

≥1.25 
NA IND 

≥ 8000 

1.25 
≥ 4000 

≥1.25 
NA IND 

2000 

≥ 2.50 

1000 

0.32 
NA ADD 

Org 

Tet 

≥ 8000 

1.25 
≥ 4000 

≥1.25 
NA IND 

≥ 8000 

1.25 
≥ 4000 

≥1.25 
NA IND 

1500 

≥ 2.50 

1500 

0.47 
NA IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction; bold highlight = 

synergistic interaction. 
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Table 4.18. MIC (µg/ml) and ∑FIC values for the combination of P. sidoides with the 

various antifungal agents, against the yeasts.  

  C. albicans (ATCC 10231) C. neoformans (ATCC 14116) 

Combination Sample 

type 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

P. sidoides + 

amphotericin 

Aq 

Amp 

1500 

1.56 

750 

2.34 
2.00 IND 

1000 

0.39 

130 

0.39 
1.13 IND 

Org 

Amp 

2000 

1.56 

1500 

4.69 
3.76 IND 

1500 

0.39 

190 

0.59 
1.63 IND 

P. sidoides + 

nystatin 

Aq 

Nys 

1500 

2.34 

500 

1.56 
1.00 ADD 

1000 

1.56 

250 

0.78 
0.75 ADD 

Org 

Nys 

2000 

2.34 

750 

2.35 
1.38 IND 

1500 

1.56 

190 

0.59 
0.51 ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of 

reference (Ind. = individual); Combo. = MIC of agents in combination; Aq = aqueous extract; Org = organic extract; EO = 

essential oil; Int. = interaction classification; ADD = additive interaction; IND = indifferent interaction. 

 

Sutherlandia frutescens is commonly ingested orally as an alcoholic tincture for the 

traditional treatment of UTI’s (Appendix F.7), whereas ciprofloxacin is a common 

conventional treatment for UTI’s. Therefore, testing the organic extract in combination would 

most closely depict the possible interactions between ciprofloxacin and S. frutescens, when 

consumed in the traditional form. The combination of S. frutescens (organic extract) with 

ciprofloxacin demonstrated a synergistic profile (∑FIC of 0.28) (Table 4.20) against E. coli, 

which is the most common causative micro-organism of UTI’s, and therefore the 

combination was studied further in various ratios. Sutherlandia frutescens can also be 

consumed as a herbal tea, therefore the combination of ciprofloxacin with the aqueous extract 

was also evaluated in various ratios, even though an indifferent interaction was identified in 

the ∑FIC evaluation (Table 4.20). In the varied ratio studies, most ratios for both the aqueous 

and organic extract combinations with ciprofloxacin were found in the additive region 

(Figure 4.4). Three ciprofloxacin: S. frutescens organic extract ratios (60:40; 50:50 and 30:70 

µl) (Table 2.4) combinations were found below or on the 0.5:0.5 line, thereby demonstrating 

a synergistic interaction, which supports the ∑FIC evaluation (Table 4.20). Only one 

ciprofloxacin: S. frutescens organic extract ratio (10:90 µl) was found in the indifferent 

region, however, four of the ratios (70:30; 30:70; 20:80; 10:90 µl) for the aqueous extract 

combination were found in the indifferent region of the isobologram (Figure 4.4), which also 

supports the ∑FIC evaluation (Table 4.20). 
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Table 4.19. MIC (µg/ml) and ∑FIC values for the combination of S. frutescens with the various antibiotics, against the Gram-positive pathogens.  

  S. aureus (ATCC 25923) B. cereus (ATCC 11778) E. faecalis (ATCC 29212) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

S. frutescens  + 

ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.47 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

0.63 

1000 

0.32 
NA ADD 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

Org 

Cip 

2000 

0.47 

1000 

0.32 
1.18 IND 

750 

0.63 

750 

0.24 
1.38 IND 

4000 

1.25 

1000 

0.32 
0.51 ADD 

S. frutescens + 

erythromycin 

Aq 

Ery 

≥ 8000 

0.32 

1500 

0.47 
NA IND 

≥ 8000 

0.32 

500 

0.16 
NA ADD 

≥ 8000 

1.25 

2000 

0.63 
NA ADD 

Org 

Ery 

2000 

0.32 

1000 

0.32 
1.53 IND 

750 

0.32 

250 

0.08 
0.59 ADD 

4000 

1.25 

1000 

0.32 
0.51 ADD 

S. frutescens + 

gentamicin 

Aq 

Gen 

≥ 8000 

1.88 

2000 

0.63 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Gen 

2000 

1.88 

250 

0.08 
0.17 SYN 

750 

≥ 2.50 

2000 

0.63 
NA IND 

4000 

≥ 2.50 

2000 

0.63 
NA ADD 

S. frutescens + 

penicillin G 

Aq 

Pen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

3000 

0.94 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Pen 

2000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

750 

≥ 2.50 

750 

0.24 
1.10 IND 

4000 

≥ 2.50 

1000 

0.32 
0.38 SYN 

S. frutescens + 

tetracycline 

Aq 

Tet 

≥ 8000 

0.23 

1000 

0.32 
NA IND 

≥ 8000 

0.16 

190 

0.06 
NA SYN 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Tet 

2000 

0.23 

500 

0.16 
0.95 ADD 

750 

0.16 

190 

0.06 
0.63 ADD 

4000 

≥ 2.50 

2000 

0.63 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction. 
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Table 4.20. MIC (µg/ml) and ∑FIC values for the combination of S. frutescens with the various antibiotics, against the Gram-negative 

pathogens.  

  E. coli (ATCC 25922) K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) 

Combination Sample 

type 
Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. Ind. MIC 

Combo. 

MIC 
∑FIC Int. 

S. frutescens  + 

ciprofloxacin 

Aq 

Cip 

≥ 8000 

0.08 

500 

0.16 
NA IND 

≥ 8000 

0.63 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

0.16 

2000 

0.63 
NA ANT 

Org 

Cip 

2000 

0.08 

50 

0.02 
0.28 SYN 

≥ 8000 

0.63 

2000 

0.63 
NA IND 

4000 

0.16 

250 

0.08 
0.56 ADD 

S. frutescens + 

gentamicin 

Aq 

Gen 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

≥ 8000 

0.32 

≥ 4000 

≥ 1.25 
NA ANT 

Org 

Gen 

2000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

4000 

0.32 

380 

0.23 
0.84 ADD 

S. frutescens + 

tetracycline 

Aq 

Tet 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

1.25 

≥ 4000 

≥ 1.25 
NA IND 

≥ 8000 

≥ 2.50 

≥ 4000 

≥ 1.25 
NA ADD 

Org 

Tet 

2000 

1.25 

3000 

0.94 
2.25 IND 

≥ 8000 

1.25 

3000 

0.94 
NA IND 

4000 

≥ 2.50 

1500 

0.47 
NA ADD 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of reference (Ind. = individual); Combo. = MIC of agents in combination; 

Aq = aqueous extract; Org = organic extract; EO = essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be attained and are 

therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; SYN = synergistic interaction; ANT = antagonistic interaction. 

8
9
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Figure 4.4. Isobologram for S. frutescens (  = aqueous extract;   = organic extract) in 

combination with ciprofloxacin, when tested at various ratios, against E. coli. 

 

Against the yeasts (Table 4.21), the combination of S. frutescens (aqueous and organic 

extract) with the conventional antifungal agents, demonstrated a mostly antagonistic 

interactive profile, with five antagonistic interactions identified. These interactions were 

mostly seen with the aqueous extract combinations (S. frutescens aqueous extract with 

amphotericin B and nystatin against C. albicans and C. neoformans, all exhibiting tentative 

antagonism). One combination containing the organic extract, when in combination with 

amphotericin B, was found to be antagonistic against C. neoformans (∑FIC of 6.76) (Table 

4.21).  
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Table 4.21. MIC (µg/ml) and ∑FIC values for the combination of S. frutescens with the 

various antifungal agents, against the yeasts.  

  C. albicans (ATCC 10231) C. neoformans (ATCC 14116) 

Combination Sample 

type 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

Ind. 

MIC 

Combo. 

MIC 
∑FIC Int. 

S. frutescens + 

amphotericin 

Aq 

Amp 

≥ 8000 

 

≥ 4000 

≥ 12.50 
NA ANT 

≥ 8000 ≥ 4000 

≥ 12.50 
NA ANT 

Or 

Amp 

3000 100 

0.30 
0.22 SYN 

1000 750 

2.35 
6.76 ANT 

S. frutescens + 

nystatin 

Aq 

Nys 

≥ 8000 ≥ 4000 

≥ 12.50 
NA ANT 

≥ 8000 ≥ 4000 

≥ 12.50 
NA ANT 

Org 

Nys 

3000 1000 

3.13 
1.67 IND 

1000 500 

1.56 
1.50 IND 

Shaded areas indicate the MIC values as determined for the individual samples, which have been given here as a point of 

reference (Ind. = individual); Combo. = MIC of agents in combination; Aq = aqueous extract; Org = organic extract; EO = 

essential oil; Int. = interaction classification; NA = where ≥ MIC values are observed, an absolute ∑FIC value cannot be 

attained and are therefore referred to as a tentative interpretation; ADD = additive interaction; IND = indifferent interaction; 

SYN = synergistic interaction; ANT = antagonistic interaction. 

 

4.3. General discussion and summary of results 

A summary of the percentage of each interaction (synergistic, additive, indifferent and 

antagonistic) that was observed when 476 plant: antimicrobial sample combinations were 

tested in the current study has been provided in Figure 4.5. The majority of the combinations 

were indifferent in nature (202 of the 476 combinations tested) (Figure 4.5). Additive 

interactions were also prevelant (170 of the 476 combinations tested). The identification of 

indifferent and additive interactions alleviates some concern related to the concurrent use of 

these two forms of healthcare, since no advantage or disadvantage is associated with these 

types of interactions. However, as discussed in this chapter, notable synergistic (68 of the 476 

combinations tested) and antagonistic (36 of the 476 combinations tested) interactions 

(Figure 4.5) were also identified, which could have an impact on treatment regimens. The 

data was further assessed to determine which medicinal plant and which conventional 

antimicrobial demonstrated the most synergistic and antagonistic interactions when placed in 

combination, for which the results have been recorded in Table 4.22. 

Some South African medicinal plants have already been extensively investigated and have 

demonstrated the potential for interactions with conventional drugs. For example, Hypoxis 

hemerocallidea (African potatoe) has been shown to modulate the CYP3A4 enzyme (Mills et 

al., 2005). Fasinu et al. (2013a) found that the aqueous extract of H. hemerocallidea has the 

potential to modulate other CYP450 enzymes too. 
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Figure 4.5. A summary of the interactions for all 476 combinations tested. 

 

Table 4.22. A summary of the interactive profiles for each medicinal plant and conventional 

antimicrobial, when tested in combination.  

  Synergistic 

(%) 

Antagonistic 

(%) 

Additive 

(%) 

Indifferent 

(%) 

Medicinal 

plants 

combined with 

antimicrobials 

A. betulina 10.71 2.38 44.05 42.86 

A. ferox 5.36 16.07 48.21 30.36 

A. afra 9.52 8.33 33.33 48.81 

A. linearis 19.64 7.14 19.64 53.57 

L. javanica 20.24 2.38 32.14 45.24 

P. sidoides 26.79 8.93 30.36 33.93 

S. frutescens 8.93 12.50 44.64 33.93 

Antimicrobials 

combined with 

medicinal 

plants  

Ciprofloxacin 16.67 7.84 25.49 50.00 

Erythromycin 11.77 0.00 35.49 52.94 

Gentamicin 18.63 6.86 53.92 20.59 

Penicillin G 25.49 3.92 47.06 23.53 

Tetracycline 10.78 1.96 27.45 59.80 

Amphotericin B 2.94 38.24 0.00 58.82 

Nystatin 2.94 11.77 35.29 50.00 

Synergistic 

14% 

Antagonistic 

8% 

Additive 

36% 

Indifferent 

42% 
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Some of the plants that have been investigated in this current study have also shown an 

interactive potential with conventional drugs, other than conventional antibiotics and 

antifungals. Sutherlandia frutescens in combination with antiretroviral medication has shown 

the ability to reduce treatment efficacy of the antiretroviral drugs (Mills et al., 2005). Fasinu 

et al. (2003b) found that S. frutescens had the ability to delay the production of midazolam 

metabolites, resulting in a 40% reduction in clearance. The South African plants, A. linearis 

and Cyclopia intermedia, from which rooibos and honeybush tea are prepared, respectively, 

have been found to induce CYP3A4 enzymes, resulting in reduced efficacy of conventional 

drugs that are metabolised by the enzyme (Matsuda et al., 2007). Another South African 

medicinal plant showing interactive potential, is Harpagophytum procumbens (devil’s claw), 

which again has been found to have an effect on the CYP3A4 enzyme. Instead of the enzyme 

induction as seen with the previously mentioned examples, devil’s claw inhibits the enzyme, 

thereby resulting in prolonged activity of conventional drugs metabolised by this enzyme, 

which could result in an increased risk of adverse effects and toxicity. An example is the 

combination of devil’s claw together with warfarin, resulting in purpura (Fugh-Berman, 

2000; Van den Bout-Van den Beukel et al., 2006). The identification of these interactions 

with South African medicinal plants emphasizes the need to address the lack of information 

pertaining to interactions between traditional remedies and conventional drugs, particularly 

since so many South Africans make use of traditional medicine, where medicinal plants play 

a central role. 

A review by Van Vuuren and Viljoen (2011), documented numerous combinations of plants 

with conventional antimicrobials. A summary of the results for many combination studies 

were given, where most often, synergy had been reported. In the review, no studies were 

found where conventional antimicrobials were investigated in combination with the South 

African medicinal plants selected for analysis in this study. This further demonstrates the lack 

of information pertaining to interactive South African medicinal plant: antimicrobial 

combinations and thus highlighting the urgent need for the scientific investigation of these 

combinations. In most of the studies reviewed by Van Vuuren and Viljoen (2011), the 

conventional antimicrobials selected for analysis in combination were ciprofloxacin, 

penicillin G, gentamicin, tetracycline, erythromycin, amphotericin B and nystatin. These are 

also the antimicrobials investigated in the current study (Table 3.1). Even though direct 

comparisons between the results from the review and those obtained in this current study 

cannot be drawn, a familiar pattern could possibly be identified, pertaining to the specific 
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conventional antimicrobials when in combination with plants. The review also acknowledged 

that synergistic effects are mostly reported in antimicrobial combination studies, and 

antagonistic interactions are often not reported. Antagonistic interaction documentation and 

reporting is of equal importance, due to the adverse effect that the interaction could have on 

conventional treatment outcomes. Therefore, the current study also aimed at reporting not 

only the synergistic interactions, but those of antagonism too. 

The herb-drug interaction website, www.prescribeguide.com, provided no search results for 

any of the medicinal plants investigated in this study, except for A. betulina (buchu), which 

was shown to have no identified interactions, even though this current study has 

demonstrated its interactive potential (Table 4.1, 4.2 and 4.3). As the plants from this study 

are indigenous to South Africa, it is not surprising to find a lack of information pertaining to 

plant: drug interactions using this website. Ideally, a similar website for African traditional 

medicine interactions would be advantageous. The antimicrobial interactions available on the 

website included some of the antimicrobials investigated in this study, which are discussed.  

Even though no interactions of combinations containing the selected medicinal plants in this 

study could be found in other literature, the selected conventional antimicrobials were 

extensively studied in combination with other medicinal plants and herbs. On the herb-drug 

interaction website, www.prescribeguide.com, ciprofloxacin was contraindicated in 

combination with Berberis aquifolium, Berberis vulgaris and Hydrastis canadensis, which 

are plants native to North America, Europe and the United States, respectively. Ahmad and 

Aqil (2006) tested ciprofloxacin in combination with crude extracts of 15 Indian medicinal 

plants, where the combinations showed synergistic effects when tested against enteric 

bacteria. Rosato et al. (2007) investigated the interaction between the fluoroquinolone, 

norfloxacin, and the essential oil of P. graveolens against B. cereus, B. subtilis, E. coli and S. 

aureus, using the agar dilution method. Synergistic interactions were identified for the 

combinations against the tested microbes, with a ∑FIC range of 0.37 – 0.50. Adwan et al. 

(2009) investigated the combination of the fluoroquinolone, enrofloxacin, with ethanolic 

plant extracts (Rhus coriaria, Psidium guajava, Lawsonia inermis and Sacropoterium 

spinosum) against MRSA, using the well diffusion method. Combinations with enrofloxacin 

showed an antagonistic interaction, where the inhibition zones were decreased when tested in 

combination. Since enrofloxacin and ciprofloxacin are both from the class of 

fluoroquinolones, similar results could be expected with both, however, this would need to be 

confirmed with further antimicrobial testing. Van Vuuren et al. (2009) evaluated the 
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interactions between ciprofloxacin and the essential oils of M. alternifolia, T. vulgaris, M. 

piperita and R. officinalis, using the micro-dilution assay, against various pathogens. In the 

study, a ∑FIC of < 1 was taken as synergistic and a ∑FIC of > 1 demonstrated antagonism. 

Therefore, using the given interpretations, the combination of ciprofloxacin with the various 

essential oils demonstrated mainly antagonistic profiles against S. aureus. However, using the 

interpretations as per the current study (Table 2.3), the only antagonism (∑FIC of > 4) would 

be seen for the combination of M. alternifolia and ciprofloxacin, when tested against S. 

aureus. When the combinations were tested against K. pneumoniae, there was a varied 

interactive profile, which included synergistic, antagonistic and additive interactions. It was 

found that the interactions were very much dependant on the ratios in which the agents were 

combined and ultimately dependent on the final concentrations used. The combination of 

ciprofloxacin with R. officinalis against K. pneumoniae demonstrated a synergistic 

interaction. Adwan et al. (2010) studied the combination of enrofloxacin with the ethanolic 

extracts of R. coriaria, S. spinosum and R. damascene against P. aeruginosa, using the micro-

dilution method. The combinations mostly demonstrated a reduced MIC value, thereby 

showing a synergistic effect against P. aeruginosa. Therefore, the results obtained from 

previous studies show that ciprofloxacin: plant containing combinations mostly demonstrated 

synergistic profiles, however, some antagonism was also noted. From the 102 combinations 

tested in the current study, where ciprofloxacin was combined with the seven selected 

medicinal plants and tested against the appropriate pathogens, 17 combinations were 

synergistic (16.67%) and eight combinations were antagonistic (7.84%). Most of the 

combinations containing ciprofloxacin, were found to be either additive (25.49%) or 

indifferent (50.00%) in nature (Table 4.22), which does not support the mostly synergistic 

effects seen in previous studies when ciprofloxacin was combined with other plants.  

On the herb-drug interaction website, www.prescribeguide.com, erythromycin was 

contraindicated in combination with H. perforatum (St. John’s wort), H. canadensis 

(goldenseal) and Citrus paradisi (grapefruit) juice. Darwish et al. (2002) tested the 

combination of erythromycin with ethanolic extracts of 19 Jordanian plants against both 

sensitive and resistant strains of S. aureus. It was found that the antimicrobial activity of 

erythromycin was enhanced when in combination with the extracts; however, the effect was 

more pronounced against the sensitive strain of S. aureus, rather than the resistant strain. 

Oluwatuyi et al. (2004) investigated the combination of R. officinalis compounds, carsonic 

acid and carnosol, with erythromycin against a resistant strain of S. aureus, where a 32- and 
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16-fold antimicrobial potentiation was noted for each combination, respectively. Adikwu et 

al. (2010) found that erythromycin, when in combination with the methanolic extract of 

Euphorbia hirta showed synergy against S. aureus. In a varied ratio study, seven of the nine 

tested ratios showed a synergistic interaction, in the checkerboard method. Indifference was 

found for the other two ratios (5:5; 4:6). Soutu de Oliveira et al. (2011) tested erythromycin 

in combination with the ethanolic extract of the peel of Mangifera indica against S. aureus, 

where the extract was found to reduce the MIC of erythromycin 4-fold, thereby 

demonstrating a strong synergistic interaction. Therefore, the results found in previous 

studies demonstrate that erythromycin: plant containing combinations are mostly synergistic 

in nature. From the 51 combinations tested in this study where erythromycin was combined 

with the seven medicinal plants and tested against the appropriate pathogens, only six 

combinations were found to synergistic (11.77%). No antagonism was identified for any 

combinations containing erythromycin (Table 4.22), which is supported by the previously 

mentioned studies. Erythromycin was thus the antibiotic that demonstrated the least 

antagonism when combined with the medicinal plants. The plant: erythromycin combinations 

tested in this study demonstrated mostly indifferent interactive profiles (52.94%) (Table 

4.22). 

Darwish et al. (2002) found that when gentamicin was combined with ethanolic extracts 19 

Jordanian plants, an enhanced antimicrobial activity was observed when tested against S. 

aureus. Braga et al. (2005) tested gentamicin in combination with the methanolic extract of 

Punia granatum (pomegranate) against 30 clinical isolates of MRSA and methicillin-

sensitive S. aureus (MSSA)., and a 38.10% synergy was observed for the combination 

against the 30 isolates. Adwan et al. (2009) studied the combination of gentamicin with plant 

extracts (R. coriaria, P. guajava, L. inermis and S. spinosum) against MRSA, using the agar 

diffusion method. The combinations mostly resulted in an increased zone of inhibition, 

thereby demonstrating a synergistic interaction. However, an antagonistic interaction between 

gentamicin and P. guajava was identified. Toroglu (2011) tested gentamicin in combination 

with the essential oils of some herbs (R. officinalis, M. piperita, Coriandrum sativum, 

Micromeria frutiscosa and Cumium cyminum), against 13 microbes. The only essential oil 

that did not demonstrate a synergistic effect when in combination with gentamicin was C. 

sativum. All other herb essential oils demonstrated synergistic interactions, with the 

combination of M. fruticosa and gentamicin displaying synergy against all 13 tested 

pathogens. Therefore, the results observed from the previous studies pertaining to 
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combinations of gentamicin with plants, demonstrated a mostly synergistic profile. From the 

102 combinations tested in this study, where gentamicin was combined with the seven 

selected medicinal plants and tested against the appropriate pathogens, only 19 combinations 

were found to be synergistic (18.63%), whilst seven combinations were found to be 

antagonistic (6.86%). The majority of the plant: gentamicin combinations tested 

demonstrated an additive profile (53.92%) (Table 4.22).   

Darwish et al. (2002) investigated the combination of penicillin with ethanolic extracts of 19 

Jordanian plants against both sensitive and resistant strains of S. aureus and found that the 

antimicrobial activity of penicillin was enhanced when in combination, with the effect more 

pronounced against the sensitive strain rather than the resistant strain. Braga et al. (2005) 

tested ampicillin, a derivative of penicillin, in combination with the methanolic extract of P. 

granatum against 30 isolates of MRSA and MSSA, and synergistic interactions were found 

against 71.40% of the isolates. Al-hebshi et al. (2006) investigated penicillin G in 

combination with aqueous extract of C. edulis and found a synergistic interaction, since the 

MIC value of the conventional antimicrobial was reduced when tested in combination, 

against 33 resistant oral pathogens. From the 51 combinations tested in this current study, 

where penicillin G was combined with the seven medicinal plants and tested against the 

appropriate pathogens, 13 were found to be synergistic (25.49%), whilst two combinations 

were antagonistic (3.92%). Penicillin G was thus the antibiotic which demonstrated the most 

synergistic interactions with the selected medicinal plants. The majority of the plant: 

penicillin G combinations tested demonstrated an additive profile (47.06%), as observed with 

many other conventional antimicrobial combinations in this study (Table 4.22).    

Darwish et al. (2002) tested tetracycline with ethanolic extracts of Jordanian plants and found 

that there was an increased antimicrobial activity against both resistant and sensitive strains 

of S. aureus, with the effect being more pronounced for the resistant strain, as opposed to the 

sensitive strain. Oluwatuyi et al. (2004) investigated the combination of R. officinalis derived 

compounds, carsonic acid and carnosol, with tetracycline, where a 2- and 4-fold antimicrobial 

potentiation was observed against a resistant strain of S. aureus, respectively. Braga et al. 

(2005) tested tetracycline in combination with the methanolic extract of P. granatum 

(pomegranate) against 30 isolates of MRSA and MSSA, and synergy was noted against 

70.00% of the 30 tested isolates. Ahmad and Aqil (2006), studied tetracycline in combination 

with crude extracts of 15 Indian medicinal plants, where the combinations showed synergistic 

effects when tested against enteric bacteria. Al-hebshi et al. (2006) found that tetracycline in 



98 
 

combination with the aqueous extract of C. edulis displayed a synergistic interaction, since 

the MIC value of tetracycline against 33 resistant oral pathogens was reduced when in 

combination. Adwan et al. (2009) studied the combination of oxytetracycline with the 

ethanolic plant extracts of R. coriaria, P. guajava, L. inermis and S. spinosum against MRSA, 

using the well diffusion method. Mostly synergistic interactions were identified for the 

combination, due to the increased zones of inhibition of the combination. Adwan et al. (2010) 

also investigated the combination of oxytetracycline with the ethanolic extracts of R. 

coriaria, S. spinosum and R. damascene against P. aeruginosa, using the micro-dilution 

assay. Synergistic interactions were most often seen, with reduced MIC values for the 

combination. Soutu de Oliveira et al. (2011) tested tetracycline in combination with the 

ethanolic extracts of the peel of M. indica against S. aureus. The extract was found to reduce 

the MIC of tetracycline four-fold, demonstrating a strong synergistic combination. Therefore, 

from these previous studies of tetracycline in combination with natural products, mostly 

synergistic interactions were identified and reported. From the 102 combinations tested in 

this current study, where tetracycline was combined with the seven medicinal plant samples 

and tested against the appropriate pathogens, only 11 combinations were found to be 

synergistic (10.78%) and only two combinations demonstrated antagonism (1.96%). The 

majority of the plant: tetracycline combinations were found to be indifferent (59.80%) in 

nature (Table 4.22).  

On the herb-drug interaction website, www.prescribeguide.com, amphotericin B was 

indicated as having a synergistic interaction with curcumin against Candida species, which 

was supported in a study by Sharma et al. (2010). Shin (2003) tested amphotericin B in 

combination with the essential oil of P. graveolens and its main components and found 

additive effects against Aspergillus niger and A. flavus, with a ∑FIC range of 0.52 to 1.00. 

Rosato et al. (2008) tested amphotericin B in combination with the essential oils of M. 

alternifolia, Origanum vulgare and P. graveolens, against various Candida species, using the 

micro-dilution and diffusion assays. Synergistic interactions were identified, with the 

combination of P. graveolens and amphotericin B showing the most synergy. Van Vuuren et 

al. (2009) evaluated the interactions between amphotericin B and the essential oils of M. 

alternifolia, T. vulgaris, M. piperita and R. officinalis, using the micro-dilution assay against 

C. albicans. In the study, antagonism was demonstrated for ∑FIC values of > 1 and therefore 

most of the combinations of the four essential oils with amphotericin B showed antagonism 

against C. albicans, in various ratios. However, for this current study, interactions were 
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classified at antagonistic for ∑FIC values > 4 (Table 2.3), and using this interaction 

interpretation, none of the combinations tested by Van Vuuren et al. (2009) were antagonistic 

against C. albicans. Therefore, from these latter combination studies with amphotericin B, it 

was found that interactive profiles varied between synergistic, additive and antagonistic 

interactions when tested against yeasts or moulds. In the current study, a large proportion (13 

of the 34 amphotericin B containing combinations) demonstrated antagonistic profiles 

(38.24%) when tested against C. albicans and C. neoformans. Amphotericin B was thus the 

antimicrobial which demonstrated the most antagonistic interactions when combined with the 

seven selected medicinal plants. Only one of the combinations containing amphotericin B 

was found to be synergistic (2.94%). Therefore, amphotericin B was the antimicrobial which 

demonstrated the least synergistic interactions when combined with the medicinal plants. The 

majority of the plant: amphotericin B combinations were found to be indifferent in nature 

(58.82%) (Table 4.22).      

Rosato et al. (2009) evaluated the combination of nystatin with the essential oils of               

M. alternifolia, O. vulgare and P. graveolens against five different Candida strains, using the 

micro-dilution assay. Synergistic interactions were identified when combined with O. vulgare 

and P. graveolens, however, only additive effects were identified for the combination of      

M. alternifolia and nystatin. The combination of O. vulgare and nystatin demonstrated the 

most synergy against the strains of the yeast, with a ∑FIC range of 0.11 to 0.17. Therefore, 

from the previous study of combinations of nystatin with plants, it was found that only 

synergistic additive interactions were noted. In the current study, the majority of the 

combinations demonstrated additive interactions (35.29%) and more antagonistic interactions 

(11.77%) were noted for the nystatin combinations, than synergistic interactions (2.94%). 

Nystatin was thus, along with amphotericin B, the antimicrobial demonstrating the least 

synergistic interactions (Table 4.22).  

4.4. Conclusions 

 Of the 476 conventional antimicrobial: medicinal plant combinations studied, 14% of 

all the combinations were synergistic, 8% were antagonistic, 36% were additive and 

42% were indifferent in nature.  

 

 Agathosma betulina aqueous and organic extract combined with ciprofloxacin against 

E. coli provided tentative synergistic interactions, which should be further 
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investigated for in vivo effects, since the concurrent use of the traditional and 

conventional form of UTI treatment could have a considerably positive impact on the 

treatment outcome. 

 

 Artemisia afra aqueous extract in combination with ciprofloxacin provided a notable 

antagonistic interaction (∑FIC of 8.55) when tested against E. coli. Unexpectedly, the 

organic extract and essential oil demonstrated a synergistic interaction (∑FIC of 0.27 

for both combinations). 

 

 The combination of A. linearis (aqueous and organic extract) and penicillin G is a 

notable combination, since a mostly synergistic profile was seen against all three of 

the Gram-positive pathogens tested. 

 

 Sutherlandia frutescens organic extract with ciprofloxacin provided a notable 

synergistic interaction (∑FIC of 0.28) against E. coli, which again should be further 

investigated for in vivo effects, since the combination could have an impact on UTI 

treatment. 

 

 When P. sidoides was combined with all seven of the conventional antimicrobials and 

tested against the various pathogens, synergistic interactions (26.79%) were 

frequently encountered, more so than seen with any of the other medicinal plants in 

combination. 

 

 Aloe ferox combinations with the conventional antimicrobials demonstrated 

antagonistic interactions (16.07%) frequently, more so than seen with any of the other 

combinations. 

 

 The antimicrobial, penicillin G, in combination with the selected plants and when 

tested against the Gram-positive pathogens, frequently demonstrated a synergistic 

interactive profile (25.49%), more so than any other antimicrobial when in 

combination with the plant samples. 
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 The antimicrobial, amphotericin B, in combination with the selected plants and when 

tested against the two yeasts, frequently demonstrated an antagonistic interactive 

profile (38.24%), more so than any other antimicrobial when combined with the plant 

samples. 
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Chapter 5 

Toxicity analysis of individual samples and some notable 

combinations

 

5.1. Introduction 

Natural medicinal products, often prepared from medicinal plants, have gained popularity due 

to the belief that they are safe and free of toxicity (Bateman et al., 1998). This belief is, 

however, not always true, as demonstrated by the many poisonous plants in existence. 

Poisonous plants are commonly found, even in ones’ garden. These plants form a very 

important part of the indigenous flora of South Africa and some are known to exert toxicity 

as a defence mechanism against plant-eating animals, to either deter them or to kill them. 

Some plants that are most commonly associated with human poisoning include Melia 

azedarach (syringa berries), Zantedeschia aethiopica (arum lily leaves), Solanum 

pseudocapsicum (Jerusalem cherry fruits) and Ricinus communis (castor oil seeds) (Van Wyk 

et al., 2002).  

It is said that in order for both medicinal plants and conventional medicine to have a 

therapeutic effect, they require biological activity. This allows for toxicity to occur when 

these agents are taken in large doses (Van Wyk et al., 2002). In traditional medicine, it has 

been acknowledged that very little is known of the difference between a therapeutic and 

lethal dose. A common medicinal plant that is therapeutic at low doses, but lethal at high 

doses is Digitalis purpurea (digitalis), from which the cardiac glycoside, digoxin, is derived 

(Botha and Penrith, 2008). An interesting finding is that poisoning due to plants is a less 

common occurrence than poisoning related to the misuse of orthodox medicine (Van Wyk et 

al., 2002); however, this may be due to under reporting. A study by Du Plooy et al. (2001), 

found that from all the poisoning cases reported at Ga-Rankuwa Hospital in one particular 

year, 4.7% were attributed to traditional medicine poisoning, with 6.4% due to orthodox 

medicine.  
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Traditional remedies are not subject to the in-depth scrutiny of safety and efficacy studies, as 

with conventional drugs, since registration of traditional remedies with the Medicines Control 

Council has not yet been enforced in South Africa (Padayachee, 2011). Therefore, very little 

scientific information is usually available on the safety and toxicity profiles of many 

medicinal plants. The safety of plants for human consumption in traditional healing practices 

was discovered through a trial and error process and the use of medicinal plants for hundreds 

of years has resulted in the assumption that these plants are safe and free of toxicity. It has 

been acknowledged, however, that subtle and chronic forms of toxicity may not have been 

identified by previous generations. This notion is worrisome, since safety should be of utmost 

importance, especially since such a large proportion of the population makes use of medicinal 

plants. Many safety concerns are related to natural product use. Some of these concerns are 

extrinsic, such as the exposure of plant material to contaminants, or intrinsic, such as a plant 

naturally containing toxic substances. A further safety concern is the possibility for 

interactions between natural products and synthetic, conventional drugs (Tomlinson and 

Akerele, 1998). The lack of evidence pertaining to the toxicological profiles of medicinal 

plants, when used individually, as well as in combination with conventional medicine is a 

major problem, which needs to be addressed (Fennel et al., 2004). The effects of 

combinations between medicinal plants and conventional drugs has not been extensively 

investigated, however, a few assumptions have been made. In reviews by Aiyegoro and Okoh 

(2009), as well as by Van Vuuren and Viljoen (2011) it has been noted that combinations 

may have the ability to reduce the possibility of toxicity, due to reduced dose administration. 

Therefore, the aim of this chapter was to evaluate the toxicity of the individual plant and 

antimicrobial samples, as well as some notable plant: antimicrobial combinations that were 

identified.    

5.2. Results and discussion 

5.2.1. Toxicity analysis of individual plant and antimicrobial samples 

The individual plant samples and antimicrobials were investigated for toxicity, using both the 

BSLA and the MTT assay and the results for both assays have been recorded in Table 5.1. 

Increased formazan production was noted for some of the samples, which could have been 

either due to increased mitochondrial activity or increased cell numbers.  
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Table 5.1. Mortality ± S.D (%) and cell death ± S.D (%) results (n=6) of individual samples. 

 

Sample 

BSLA study MTT study 

Mortality ± S.D (%)
a Cell death ± S.D (%)

b
 

After 24 hrs: After 48 hrs: After 48 hrs: 

Antimicrobials 

Ciprofloxacin 0.00 0.00 0.10 ± 0.01 

Erythromycin 0.00 0.00 0.10 ± 0.01 

Gentamicin 1.12 ± 0.58 8.99 ± 0.33 0.10 ± 0.01 

Penicillin G 0.00 0.00 0.10 ± 0.01 

Tetracycline 0.00 6.67 ± 1.16 0.10 ± 0.01 

Amphotericin B 0.00 0.00 5.93 ± 3.41 

Nystatin 0.00 0.00 0.10 ± 0.01 

Essential oils 

A. betulina 100.00 ± 0.00 100.00 ± 0.00 35.90 ± 6.29 

A. afra 0.00 1.39 ± 0.58 31.72 ± 4.64
 

L. javanica 0.58 ± 0.52 1.17 ± 0.71 0.10 ± 0.01 

Aqueous 

extracts 

A. betulina 0.00 0.00 0.10 ± 0.01 

A. ferox 0.00 0.00 0.10 ± 0.01 

A. afra 0.00 0.00 0.10 ± 0.01 

A. linearis 0.00 0.00 0.10 ± 0.01 

L. javanica 0.00 1.43 ± 0.58 0.10 ± 0.01 

P. sidoides 0.00 3.45 ± 0.58 0.10 ± 0.01 

S. frutescens 0.00 0.00 0.10 ± 0.01 

Organic 

extracts 

A. betulina 0.00 0.00 0.10 ± 0.01 

A. ferox 0.00 0.00 0.10 ± 0.01 

A. afra 0.00 0.00 0.10 ± 0.01 

A. linearis 0.00 0.00 0.10 ± 0.01 

L. javanica 0.00 70.13 ± 5.29 0.10 ± 0.01 

P. sidoides 0.00 0.00 0.10 ± 0.01 

S. frutescens 13.46 ± 0.58 82.69 ± 4.51 0.10 ± 0.01 

Controls 

Quinine 
0.00 

a 
0.00

a
 71.38 ± 4.73 

a 

0.00 
b 

11.76 ± 1.00 
b
 0.10 ± 0.01 

b
 

Camptothecin 
0.00

a
 

30.00 ± 2.00 
b 

2.08 ± 0.58 
a
 

100.00 ± 0.00 
b 

76.07 ± 2.94 
a 

0.10 ± 0.01 
b 

Potassium dichromate 100.00 ± 0.00  
c 

NT 

a
 = Tested at a concentration of 1 mg/ml; 

b
 = Tested at a concentration of 100 µg/ml; 

c
 = Tested at a 

concentration of 1.60 mg/ml; S.D. = standard deviation; NT = control not tested in assay. 
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5.2.1.1. Controls 

In the BSLA, the negative control consisted of artificial salt water, with no addition of 

sample, and demonstrated a 0.00% mortality in every plate. The positive control consisted of 

potassium dichromate (1.60 mg/ml), which resulted in 100% mortality of the brine-shrimp. 

The highly toxic nature of the inorganic chemical reagent has also been noted in rabbits and 

rodents, where concentrations as low as 14 mg/kg have a 50% fatality rate (Sigma-Aldrich 

MSDS, 2012; Tikare et al., 2012). Whilst in humans it has been reported to cause allergic 

dermatitis, carcinogenesis and ocular toxicity (Merck Manual, 2006; Sigma-Aldrich MSDS, 

2012). 

Quinine and camptothecin, used as the positive controls in the MTT assay, were also tested in 

the BSLA for toxicity, for comparison with results seen in the MTT assay (Table 5.1). 

Quinine did not demonstrate toxicity; however, camptothecin demonstrated a 100% mortality 

after 48 hours, when tested at 1 mg/ml. This is an expected result since camptothecin is a 

commonly used chemotherapeutic agent inhibiting cell growth by inhibiting the 

deoxyribonucleic acid (DNA) topoisomerase I enzyme (Merck Manual, 2006). 

In the MTT assay, before plating out of the cells, a cell viability of 95% or greater was 

always ensured by using the Trypan blue exclusion assay to account for the blue-stained non-

viable cells. The sample-free cell suspension control always exhibited a cellular viability of 

100%, ensuring the cells were grown under optimal conditions. The positive controls used 

included quinine (100 µg/ml and 1 mg/ml) and camptothecin (100 µg/ml and 1 mg/ml). Both 

quinine and camptothecin demonstrated cell death (73.38 ± 4.73% and 76.07 ± 2.94%, 

respectively) at 1 mg/ml (Table 5.1). Therefore, some toxicity was demonstrated at 1 mg/ml 

only. Flaks (1978) found that in the early stages of chronic 0.1% quinine sulphate 

administration in drinking water, minimal tubular cell necrosis occurred in the renal cortex of 

rats. Worden et al. (1987) found that 100 – 120 mg of quinine hydrochloride consumed in 

tonic water on a daily basis for 14 days showed no adverse effect in humans. Colley et al. 

(1989) discovered the kidney as a target organ for quinine hydrochloride induced toxicity, 

since there were increased levels of plasma urea and inorganic phosphorus in rats. It was also 

found that there was an increase in kidney weight in male rats when 85 – 120 mg/kg quinine 

hydrochloride was administered for a three month period. However, no morphological 

changes were identified.  
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5.2.1.2. Conventional antimicrobials 

5.2.1.2.1. Ciprofloxacin 

Ciprofloxacin when tested individually in the BSLA, demonstrated no toxicity, with a 

mortality of 0.00% after 24 and 48 hours. In the MTT assay, ciprofloxacin also demonstrated 

no toxicity, with a cellular viability greater than 100% at a concentration of 100 µg/ml after 

48 hours of continuous exposure (Table 5.1).  

In the literature, ciprofloxacin has been found to rarely demonstrate toxic effects, however, 

the most common adverse reactions included GI effects, central nervous system (CNS) 

toxicity, along with damaging effects on cartilage and cardiovascular (CV) toxicity by 

prolonging the QT interval (Merck Manual, 2006; Appendix G.1). Therefore, no renal 

toxicity has been documented, which is supported by the findings in this study. Similarly, 

ciprofloxacin has been shown to not affect Caco-2 colon and bronchial lung epithelial cells in 

vitro (Griffiths et al., 1993; Ong et al., 2013), indicating that ciprofloxacin is relatively non-

toxic to certain cell types.  

5.2.1.2.2. Erythromycin 

Erythromycin when tested individually in the BSLA demonstrated no toxicity, with a 

mortality of 0.00% after 24 and 48 hours. In the MTT assay, erythromycin also demonstrated 

no toxic effects on the human kidney epithelial cells (Table 5.1). Similarly, erythromycin was 

considered non-toxic to primary hepatocytes or other epithelial cell lines (Viluksela et al., 

1996; Inoue et al., 2004).  

In literature, erythromycin has been found to cause GI effects, cardiotoxicity, along with 

hepatotoxicity and auditory toxicity (Merck Manual, 2006). No renal toxicity has been 

reported with erythromycin use, which is supported by the findings in the current study.  

5.2.1.2.3. Gentamicin 

Gentamicin when tested individually in the BSLA, showed a mortality of 1.12 ± 0.58% and 

8.99 ± 0.33% after 24 and 48 hours, respectively. However, it is still considered non-toxic, 

since the mortality is well below 50%. In the MTT assay, gentamicin did not affect cellular 

viability of the human kidney epithelial cells, therefore showing no toxicity (Table 5.1). 

These findings contrast with those by Alfonso et al. (1990), who observed that 250 µg/ml and 

1 mg/ml gentamicin increased cellular granularity in rabbit corneal epithelial cells after 48 
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hours of exposure. All aminoglycoside antibiotics are generally accepted to accumulate in 

renal proximal tubule cells from the luminal surface and show toxic effects on the cells 

(Kiyomiya et al., 2000), which are usually reversible, compared to auditory toxicity which 

can often be irreversible. The risk for toxicity is increased with larger doses, longer durations 

of therapy and more frequent dosing, all resulting in higher blood levels (Merck Manual, 

2006). The renal toxicity of gentamicin was not supported by the in vitro tests conducted in 

this study (Table 5.1) due to the concentrations that were tested and the duration of testing. 

5.2.1.2.4. Penicillin G 

Penicillin G was tested individually for toxicity in the BSLA and demonstrated a 0.00% 

mortality after 24 and 48 hours. In the MTT assay, penicillin demonstrated a cellular viability 

of 107.15 ± 9.01%, thereby demonstrating no toxicity (Table 5.1). This favourable safety 

profile was also observed in mice where a LC50 value was reported to be in the range of 2 

g/kg (Doerr et al., 1980). 

Penicillin most commonly causes hypersensitivity effects, including anaphylaxis. The 

antibiotic is known to be neurotoxic at high doses and all penicillins have been found to cause 

nephritis and sometimes severe nephrotoxicity, along with some toxic effects on the blood 

components (Merck Manual, 2006; Granowitz and Brown, 2008).   

5.2.1.2.5. Tetracycline 

As with the other antibiotics, the individual tetracycline did not lethal to the brine-shrimp 

after 24 hours of continuous exposure, however, after 48 hours, a mortality of 6.67 ± 1.16% 

was observed, which is still considered non-toxic. Similarly, in the MTT assay, tetracycline 

did not adversely affect the human kidney epithelial cell line (Table 5.1). Although it is 

known that 100 – 500 µg/ml of several tetracyclines, of which doxycycline showed the 

strongest effect, led to a significant inhibition of cytoplasmic protein synthesis without 

affecting the rate of glycolysis and respiration or the energy charge in epithelial cells (De 

Jonge, 1973). This effect would not have been observed over the 48 hours in the MTT assay. 

It has also been reported that high concentrations of oxytetracycline caused severe damage of 

structure and function of the small intestinal epithelium in rats (Babich and Tipton, 2002).   

Tetracyclines have been found to demonstrate hepatotoxicity, GI effects and damaging 

effects on bone and teeth in children (Merck Manual, 2006). No renal toxicity has been 

reported, and therefore the absence of toxicity in this current study supports this. 
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5.2.1.2.6. Amphotericin B 

Amphotericin B showed no significant toxicity in either the BSLA or MTT assay. In the latter 

assay, amphotericin B killed 5.93 ± 3.41% of the human kidney epithelial cells (Table 5.1). 

Amphotericin B has been known to have a very high level of toxicity with renal toxicity the 

most common toxic effect (Merck Manual, 2006). This toxicity was not observed in this 

current study in the MTT assay, due to the concentrations and durations of testing. The 

cellular viability observed for amphotericin B was, however, the lowest seen in comparison 

with the other antimicrobials and it was the only antimicrobial that demonstrated a cellular 

viability below 100%. Amphotericin B is known to significantly reduce trans-epithelial 

potential difference in human nasal epithelial cells, but not by generalized cellular toxicity as 

determined by mitochondrial activity, but was related to inhibitory effects of amphotericin B 

on ion transport proteins (Jornot et al., 2005). 

5.2.1.2.7. Nystatin 

Nystatin showed no toxic effect when tested individually in the BSLA and MTT assay over 

24 and/or 48 hours of continuous exposure (Table 5.1). 

Nystatin is known to rarely demonstrate any potential for toxicity, as this agent is usually for 

topical application to mucous membranes. However, some hypersensitivity reactions have 

occurred, resulting in a facial rash, swelling and bronchospasm. Nystatin, even if orally 

ingested for a GI infection, shows negligible absorption from the GIT into the bloodstream. 

However, if large doses were to enter circulation, cardiac toxicity could occur (Merck 

Manual, 2006; Katzung et al., 2009). Nystatin is known to increase cell permeability by 

disrupting ion transport and to affect glucose transport in human airway epithelial cells at a 

concentration of 50 µg/ml (Ito et al., 2001). Nystatin has been shown to cause cellular 

toxicity towards J774 macrophages and lyse red blood cells, and at a concentration of 100 

fold lower than tested in this study, did not affect the viability of the RAW 264.7 mouse 

macrophage cell line (Tzimogianni et al., 1989). The possibility for nystatin causing toxicity 

against human kidney epithelial cells is highly unlikely, since nystatin has negligible 

absorption into the systemic circulation, thus passing the renal excretory pathway (SAMF, 

2012). Intravenously administered nystatin is known to possess toxicity and as such is now 

only administered topically, where the drug penetrates the surface layer (epidermis), but does 

not transverse intact skin to the blood stream (Sheppard and Lampiris, 2012; LIFE, 2013). 
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Topical adverse effects have been reported to include hypersensitivity, skin irritation and 

pruritis (Sheppard and Lampiris, 2012).  

5.2.1.3. Medicinal plants 

The plants selected for this study have been found to be relatively safe and free of toxicity at 

therapeutic doses according to literature. The book “Poisonous Plants of South Africa” by 

Van Wyk et al. (2002) is a comprehensive review of all poisonous plants in the country and 

the only plant from the seven selected for analysis in this study to make an appearance in the 

book is L. javanica. 

5.2.1.3.1. Agathosma betulina 

Agathosma betulina, when tested individually in the BSLA demonstrated no toxicity for the 

aqueous and organic extract, however, the essential oil induced 100.00 ± 0.00% mortality of 

the brine-shrimp, within the first 24 hours of exposure (Table 5.1). This was an irreversible 

effect as after 48 hours, there was still no movement observed and therefore the essential oil 

did not act as a reversible neuromuscular blocker, which could have given the appearance 

that the brine-shrimp had died within the first 24 hours. Upon testing a number of dilutions of 

the essential oil in the BSLA, an LC50 value of 0.31 ± 0.03 mg/ml was obtained from a log-

sigmoid dose response curve. For the BSLA, results were interpreted and classifications were 

all in accordance with the study by Bussmann et al. (2011). Therefore, according to the 

classifications of toxicity for the BSLA, the essential oil of A. betulina demonstrated 

moderate toxicity (Section 2.8.1.3). Essential oils are usually used for inhalation or external 

application only. Oral ingestion needs to be very closely monitored due to the high possibility 

of toxicity, where the highly lipophilic nature of the oil could disrupt cell membranes 

(Wormwood, 1990).  

Similarly, in the MTT assay, the aqueous and organic extract of A. betulina did not inhibit 

cellular growth (Table 5.1). However, as in the BSLA, the essential oil did demonstrate 

potential for toxicity toward the human kidney epithelial cells, with 35.90 ± 6.21% cell death 

being observed. In the MTT assay, a percentage cellular viability less than 50% was 

considered toxic in nature at 100 µg/ml (Naidoo, 2013), therefore, an IC50 was not calculated 

for the essential oil of A. betulina, since cellular viability was still greater than 50% (Table 

5.1).  
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In previous studies, A. betulina demonstrated no toxic effect on human kidney epithelial cells 

(IC50 > 100 μg/ml). The only adverse effects seen with consumption of the plant have been 

allergic reactions, which is attributed to the high eugenol content of the plant (Moolla, 2005). 

In a review by Cowan (1999), it was found that the essential oil of A. betulina demonstrated a 

relative toxicity of 2.0, where 0.0 was considered very safe and 3.0 was considered very 

toxic. Therefore, the identification of moderate toxicity in the current study supports the 

findings in the earlier review. 

5.2.1.3.2. Aloe ferox 

The aqueous and organic extract of Aloe ferox when tested individually in both the BSLA and 

MTT assays demonstrated no toxicity at 1 mg/ml and 100 µg/ml after 48 hours of continuous 

exposure, respectively (Table 5.1). 

There is no evidence of cytotoxicity when A. ferox is consumed in low doses (Kambizi and 

Afolayan, 2008; Wintola et al., 2011), however, in large quantities, toxicity has been 

reported. The toxic effects include joint weakness and partial paralysis. Overdoses can also 

lead to nephritis, gastritis and pelvic congestion (Watt and Breyer-Brandwijk, 1962; 

Hutchings et al., 1996). Since the extracts were tested at low concentrations (100 µg/ml in the 

MTT assay), effects on the human kidney epithelial cells were not found to be evident. 

Concentrations greater than 100 µg/ml could not be tested due to the interference of the plant 

sample colour with absorbance readings. 

5.2.1.3.3. Artemisia afra 

Artemisia afra essential oil, aqueous and organic extracts were tested individually in the 

BSLA. The essential oil did not affect the brine-shrimp within the first 24 hours of exposure, 

with only a low 1.39 ± 0.58% mortality occurring after 48 hours. Both the aqueous and 

organic extracts of A. afra, when tested individually, had no inhibitory effects on brine-

shrimp viability. As such, the essential oil, aqueous and organic extract of A. afra were all 

non-toxic in the BSLA. This was also true for the aqueous and organic extract of A. afra, 

when tested individually in the MTT assay, but the essential oil demonstrated a potential for 

toxicity, with a cellular viability of 68.28 ± 4.64% at 100 µg/ml (Table 5.1). This lack of 

toxicity has also been demonstrated following acute intra-peritoneal and oral doses, where the 

LC50 values were 2.45 and 8.96 g/kg, respectively. In addition, when administered acutely, it 
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has low chronic toxicity potential, and in high doses, was shown to have a hepatoprotective 

effect (Mukinda and Syce, 2007). 

It has been acknowledged in previous studies that toxicity only occurs when large doses of A. 

afra are consumed. The toxic effects include pulmonary oedema, haemorrhagic nephritis and 

degenerative liver changes. The most commonly known toxic effects are the CNS effects 

including hallucinations and confusion, which are proposed to be due to the thujone content 

of the plant (Watt and Breyer-Brandwijk, 1962; Hutchings et al., 1996; Mukinda and Syce, 

2007; Van Wyk et al., 2009). It has been acknowledged by Dube (2006), that information on 

the safety and efficacy of A. afra derived from clinical trials is lacking or under reported. 

Therefore, there is a definite need for further in vivo studies and better reporting from clinical 

trials and doctors/healers.  

5.2.1.3.4. Aspalathus linearis 

In the current study, when tested individually, the aqueous and organic extract of A. linearis 

were found to be non-toxic in both the BSLA and MTT assay (Table 5.1).  

The lack of toxicity for A. linearis is supported in a previous study, where no toxic effects on 

the kidneys or liver of rats were displayed with chronic consumption of A. linearis, where the 

tea was provided as the sole drinking fluid for the rats over a 10 week period (Marnewick et 

al., 2003). Later, Marnewick et al. (2011) also found that fermented rooibos had no adverse 

effects on kidney function in 83 human male and female participants, when six cups of 

rooibos tea were consumed per day for six weeks. Even though some of the kidney function 

indicators were increased after the test period, all were still within reference ranges, therefore 

supporting the safety of short term rooibos consumption.  

5.2.1.3.5. Lippia javanica 

In the BSLA, the essential oil and aqueous extract of L. javanica displayed minimal 

inhibitory effects on brine-shrimp viability; which was supported by the lack of inhibition of 

cellular mitochondria activity in the MTT assay. However, after 48 hours the toxic effects of 

the organic extract was greatly potentiated in the BSLA with the mortality rate increasing 49-

fold, where a LC50 of 0.51 ± 0.03 mg/ml was obtained (Table 5.1). According to the 

classification of toxicity by Bussmann et al. (2011) based on the LC50 value obtained in this 

study, L. javanica organic extract is considered low or weak in toxicity (Section 2.8.1.3). A 

toxic profile was also observed in mice when the aqueous extracts of L. javanica leaves were 
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evaluated for toxicity. While evidence suggested that L. javanica has low mammalian 

toxicity, within 48 hours all mice fed with 12.5 – 37.5% (v/v) extract were lethargic, and the 

overall mortality was 37.5% (Madzimure et al., 2011). Thus, despite the apparent safety, the 

aqueous extracts of L. javanica leaves may have health implications on humans and animals 

if consumed at very high doses. But the therapeutic range needs to be determined in 

pharmacokinetic studies to better advise patients and traditional healers on the quantities safe 

for consumption. In literature, photosensitivity is commonly reported as an adverse effect and 

is seen when this plant is consumed in large quantities (Watt and Breyer-Brandwijk, 1962; 

Hutchings et al., 1996). The triterpenoids found in the Lippia species are toxic compounds 

which can cause liver damage, with prolonged use (Van Wyk et al., 2002). No renal toxicity 

has been reported in previous literature, which is supported by findings in the current study.  

5.2.1.3.6. Pelargonium sidoides 

In both assays, the aqueous and organic extracts of P. sidoides were considered non-toxic 

after 24 and 48 hours of continuous exposure (Table 5.1). 

In previous studies, P. sidoides has been considered safe for consumption (Teschke et al., 

2012). There were reports on possible hepatotoxicity caused by the use of P. sidoides, 

however, the P. sidoides causality was ruled out soon after (Teschke et al., 2012). It has been 

reported that consumption of P. sidoides has no toxic effect on the liver or any other organs 

in animals. Furthermore, P. sidoides has an excellent safety profile in both adults and 

children (Afrigetics, 2013). Patients are advised, however, not to take P. sidoides if they have 

serious kidney or liver disease (Van Wyk, 2005). It has also been reported that P. sidoides 

extract exhibits significant effects on nasal epithelial cells (Neugebauer et al., 2005).  

5.2.1.3.7. Sutherlandia frutescens 

The aqueous and organic extracts of S. frutescens were tested individually in the BSLA for 

toxic properties and the aqueous extract demonstrated a 0.00% mortality. The organic extract, 

however, demonstrated a mortality of 13.46 ± 0.58% and 82.69 ± 4.51% after 24 and 48 

hours, respectively, with an LC50 value of 0.45 ± 0.05 mg/ml for the latter period. According 

to the classification of toxicity by Bussmann et al. (2011) for the BSLA, S. frutescens organic 

extract demonstrated moderate toxicity in the current study, since the LC50 value fell within 

the range of 250 – 499 µg/ml (Section 2.8.1.3). In the MTT assay, the aqueous and organic 

extract of S. frutescens demonstrated no toxicity (Table 5.1). This lack of inhibitory effect 

was also observed in vitro on proximal and distal tubule epithelial cells, LLC-PK1 and 
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MDBK, where the IC50 values were 15 mg/ml and 7 mg/ml, respectively. The mechanism by 

which the cells were affected by high concentrations of extract appear to be due to the 

increased oxidative stress, altered mitochondrial membrane integrity, and ability to promote 

apoptosis in renal tubule epithelia (Phulukdaree et al., 2010). 

The plant has been considered safe due to the long history of use in South Africa without 

reports of any toxicity (Teschke et al., 2012) and there have been no reports on toxic effects 

affecting healthy adults (Fu et al., 2008). The study by Seier et al. (2002), which was co-

ordinated by Dr. Matsabisa (IKS/MRC) was the first toxicity study of Sutherlandia. The 

study involved testing leaf extracts of Sutherlandia microphylla on vervet monkeys for three 

months to observe the changes in parameters such as haemotogical, biochemistry, 

physiological variables and urine analysis. It was found that even at nine times the 

recommended daily dose (9.0 mg/kg) for an adult human, no toxic effects or adverse effects 

on the observed parameters had occurred. No toxic effects on the liver, kidney, muscles, 

lungs, bone or biochemical parameters were identified, thereby supporting the safety profile 

of the plant, which was not fully supported by the findings in this study and therefore effects 

could be species-dependent. 

5.2.2. Toxicity analysis of some notable combinations 

Eight plant: antimicrobial combinations were found to be notable in the antimicrobial studies, 

as interactions occurred between the traditional and conventional treatments of the same 

types of infections (Chapter 4). As such, these combinations were assessed for toxicity, using 

both the BSLA and the MTT assay, with the results obtained for both assays recorded in 

Table 5.2. 

5.2.2.1. Agathosma betulina in combination with ciprofloxacin 

In the current study, the essential oil, aqueous and organic extract of A. betulina were tested 

in combination with ciprofloxacin for toxicity. In the BSLA, none of these combinations 

demonstrated toxicity after 24 and 48 hours of exposure of the brine-shrimp to the samples. It 

is interesting to note, that the essential oil of A. betulina, when tested individually, 

demonstrated 100% mortality in the BSLA, however, when in combination with 

ciprofloxacin, no toxicity against the brine-shrimp was seen. In the MTT assay, none of the 

three combinations demonstrated toxicity toward the human kidney epithelial cells (Table 

5.2).  
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Table 5.2. Mortality ± S.D (%) and cell death (%) ± S.D results (n = 6) for the notable plant: 

antimicrobial combinations. 

 

Sample or combination 

BSLA study MTT study 

 Mortality ± S.D (%)
a
 Cell death ± S.D (%)

b 

 After 24 hrs: After 48 hrs: After 48 hrs: 

Essential 

oils 

A. betulina + ciprofloxacin 0.00 0.00 0.10 ± 0.01 

A. afra + ciprofloxacin 2.13 ± 0.58 2.13 ± 0.58 0.10 ± 0.01 

Aqueous 

extract 

A. betulina + ciprofloxacin 0.00 0.00 0.10 ± 0.01 

A. afra + ciprofloxacin 0.00 0.00 0.10 ± 0.01 

A. linearis + ciprofloxacin 0.00 31.58 ± 1.53 0.10 ± 0.01 

A. linearis + erythromycin 0.00 0.00 0.10 ± 0.01 

A. linearis + gentamicin 0.00 4.35 ± 0.58 0.10 ± 0.01 

A. linearis + penicillin 0.00 0.00 0.10 ± 0.01 

A. linearis + tetracycline 0.00 0.00 0.10 ± 0.01 

A. linearis + amphotericin 0.00 0.00 0.10 ± 0.01 

A. linearis + nystatin 0.00 0.00 73.76 ± 3.36 

S. frutescens + ciprofloxacin 0.00 0.00 0.10 ± 0.01 

Organic 

extract 

A. betulina + ciprofloxacin 0.00 0.00 0.10 ± 0.01 

A. afra + ciprofloxacin 0.00 1.25 ± 1.00 0.10 ± 0.01 

A. linearis + ciprofloxacin 0.00 0.00 0.10 ± 0.01 

A. linearis + erythromycin 0.00 6.67 ± 0.58 0.10 ± 0.01 

A. linearis + gentamicin 0.00 0.00 0.10 ± 0.01 

A. linearis + penicillin 0.00 0.00 0.10 ± 0.01 

A. linearis + tetracycline 0.00 0.00 0.10 ± 0.01 

A. linearis + amphotericin  0.00 0.00 0.10 ± 0.01 

A. linearis + nystatin 0.00 0.00 56.88 ± 6.61 

S. frutescens + ciprofloxacin 2.55 ± 0.58 39.49 ± 2.08 0.10 ± 0.01 

a
 = Tested at a concentration of 1 mg/ml; 

b
 = Tested at a concentration of 100 µg/ml; S.D = standard 

deviation.  

 

5.2.2.2. Artemisia afra in combination with ciprofloxacin 

In the current study, A. afra essential oil, aqueous and organic extract were tested for toxicity 

in combination with ciprofloxacin. In the BSLA, the essential oil combination demonstrated a 

2.31 ± 0.58% mortality of brine-shrimp within the first 24 hours of exposure to the 
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combination, after which, no further mortalities occurred. Both the aqueous and organic 

extract: ciprofloxacin combinations resulted in a percentage mortality well below 50%, 

indicating a favourable safety profile. In the MTT assay, no toxicity was seen for these three 

combinations of A. afra with ciprofloxacin towards the human kidney epithelial cells (Table 

5.2). 

5.2.2.3. Aspalathus linearis in combination with all seven antimicrobials 

In the current study, A. linearis was tested in combination with all seven of the selected 

conventional antimicrobials, since it is such a commonly consumed plant and is not only 

consumed by users of traditional medicine, but the rest of the population in South Africa too.  

In the BSLA, all combinations with the aqueous extract were found to have a 0.00% 

mortality against the brine-shrimp, except for the combinations of the aqueous extract with 

ciprofloxacin (31.58 ± 1.53% mortality) and gentamicin (4.35 ± 0.58% mortality), where the 

toxicity was only seen after 48 hours of exposure to the combinations. The organic extract 

combinations with the seven antimicrobials also showed a 0.00% mortality in the BSLA, 

except for the combination with erythromycin, where a 6.67 ± 0.58% mortality was seen after 

48 hours. However, the degree of mortality observed for all three of these combinations does 

not warrant classifying the interactions as toxic and should not have had an influence on the 

antimicrobial inhibitory effect observed with these interactions. In the MTT assay, none of 

the combinations of the aqueous and organic extract of A. linearis in combination with the 

antimicrobials were found to be toxic against the human kidney epithelial cells, except for the 

combination with the antifungal, nystatin, where the aqueous and organic extract of A. 

linearis with nystatin demonstrated a cellular inhibition of 73.76 ± 3.36% and 56.88 ± 6.61% 

towards the human kidney epithelial cells, respectively (Table 5.2).  

Nystatin entering the GIT is excreted unchanged, however, the possibility for other cellular 

interactions on the GIT should be considered. The possibility of rooibos facilitating increased 

uptake of nystatin through the GI wall into the systemic circulation should also be 

considered. An in vitro study by Tarirai et al. (2012) using Caco-2 cell monolayers and 

excised porcine jejunum tissue, has already shown that rooibos tea can have an effect on the 

intestinal absorptive profile of the conventional drug, cimetidine. Rooibos could also 

facilitate the transport of nystatin across membranes to increase the risk of toxicity. As such 

extended in vivo studies on the pharmacokinetic and pharmacodynamic properties of the 

combinations are warranted. 
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Since a cell inhibition greater than 50% was observed for the A. linearis: nystatin 

combinations, they were examined in more detail using a varied ratio study. From these 

studies, it was evident that the only ratio that was found to be toxic was the ratio consisting of 

equal volumes of each agent in the combination (50:50 µl) ratio for both the aqueous and 

organic extract combination with nystatin, which corresponds to 0.05mg/ml of nystatin and 

16.00 mg/ml of A. linearis extract. From the varied ratio study, it is also evident that the 

closer the ratios approach the 50:50 µl ratio, the lower the cellular viability (Figure 5.1).                                  
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Figure 5.1. Varied ratios of A. linearis aqueous (a) and organic (b) extract: nystatin, and the 

corresponding cellular viability (n = 6). 
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In the antimicrobial combination studies (Chapter 4), the combination of A. linearis (aqueous 

and organic extract) with penicillin G demonstrated a mostly synergistic profile against the 

three tested pathogens (Table 4.10). In the toxicity screening of these two combinations, no 

toxic effect was seen in the BSLA or the MTT assay (Table 5.2), therefore the synergistic 

profile observed in the antimicrobial studies cannot be as a result of non-specific toxicity of 

the combination, but rather due to a more specific action against the microbe.  

5.2.2.4 Sutherlandia frutescens in combination with ciprofloxacin 

In the current study, the aqueous and organic extract of S. frutescens was tested for toxicity in 

combination with ciprofloxacin. In the BSLA, the aqueous extract combination demonstrated 

no toxicity, with a 0.00% mortality after 24 and 48 hours. However, the organic extract 

combination demonstrated a mortality of 2.55 ± 0.58% and 39.49 ± 8.17%, after 24 and 48 

hours, respectively. This combination was still not considered to be of significant toxicity, as 

the calculated mortality was below 50%. In the MTT assay, no toxicity was seen against the 

human kidney epithelial cells (Table 5.2).   

5.3. Conclusions 

 In the BSLA, the only toxicity seen for the medicinal plants was the essential oil of A. 

betulina (100% mortality, LC50 of 0.31 ± 0.03 mg/ml), the organic extract of L. 

javanica (70.13 ± 5.29% mortality, LC50 of 0.51 ± 0.03 mg/ml) and the organic 

extract of S. frutescens (82.69 ± 4.51% mortality, LC50 of 0.45 ± 0.05 mg/ml). 

 

 In the whole-organism BSLA, no antimicrobials demonstrated toxicity, when tested at 

a concentration of 1.00 mg/ml and no plant: conventional antimicrobial combinations 

were found to be toxic either.  

 

 In the cellular viability (MTT) assay, none of the plant and antimicrobial samples 

demonstrated toxicity when tested independently was found notable enough for IC50 

determination. 
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 The only combination found to show toxicity in the MTT assay was between A. 

linearis (aqueous and organic extract) and nystatin, with cell inhibitions of 73.76 ± 

3.36% and 56.88 ± 6.61% for the aqueous and organic extract combination with 

nystatin, respectively.  

 

 In the varied ratio study of A. linearis (aqueous and organic extract) with nystatin, it 

was found that only the 50:50 µl ratio was found to be toxic. It was also noted that as 

the ratios approached the 50:50 µl ratio more closely, the cellular viabilities were 

reduced. 
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Chapter 6 

Conclusion and future recommendations

 

6.1. Summary of dissertation 

Many studies arising from the concern for interactions between orthodox drugs and natural 

products have provided evidence that interactions do most certainly occur between natural 

and conventional therapies, which is a major public health concern. Therefore, the aim of this 

study was to investigate the interactions between conventional antimicrobials and medicinal 

plants, in order to evaluate the effect that medicinal plants pose on the overall antimicrobial 

therapeutic effect of conventional antimicrobials. Combination therapy is a very popular line 

of investigation, since it provides a potential new avenue for the identification of more 

effective antimicrobials, in order to address antimicrobial resistance.  

The current study varies from previous investigations, in that no combination studies have 

evaluated the effects of commercially relevant southern African medicinal plants on 

conventional antimicrobial therapies. The identification of interactions can be advantageous 

(synergistic) by providing new alternatives to combat resistance, but can also be harmful, by 

reducing the efficacy of current antimicrobials (antagonistic interactions), thereby 

contributing to an increase in resistance. Not only could there be an effect on efficacy, but 

possible toxicity could also arise.  

Therefore, this study evaluated the potential for toxicity of the combinations that were found 

to be notable in the antimicrobial analysis. Figure 6.1 illustrates an overview of the study, 

where certain results have been highlighted. The objectives that were achieved in order to 

fulfil the aim of the study have also been discussed in more detail. 
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Figure 6.1. Outline of study with highlighted results for selected aspects. 

Varied ratio 

combination studies 

BSLA:  

 Three plant samples toxic: 

A. betulina essential oil 

L. javanica organic extract 

S. frutescens organic extract 

 No antimicrobials toxic. 

MTT assay: 

 No individual plants or 

antimicrobials toxic. 

Toxicity analysis of 
individual samples 

Notable ratio study results: 

 A. afra has a high dose and sample dependent interactive profile. 

 A. linearis aqueous and organic extract most synergistic against S. aureus. 

Interactive antimicrobial 

studies of plant: antimicrobial 

combinations 

476 combinations: 

 14.29% synergistic 

 7.56% antagonistic 

 35.71% additive 

 42.44% indifferent 

Antimicrobial activity of the 

individual samples 

Notable synergistic (S) and 

antagonistic (A) 
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 A. betulina with 

ciprofloxacin + E. coli (S) 

 A. afra with ciprofloxacin 

+ E. coli (S + A) 

 A. linearis with penicillin 

G + Gram-positive 

pathogens (S). 

 S. frutescens with 

ciprofloxacin + E. coli (S). 

 

BSLA: 

 No combinations toxic. 

MTT assay: 

 Two combinations 

toxic: 

A. linearis aqueous extract 

with nystatin 

A. linearis organic extract 

with nystatin 

Toxicity analysis of 

notable combinations 

Plant samples: 

 A. afra organic extract 

showed the broadest 

spectrum of activity (lowest 

mean MIC of 1.45 mg/ml). 

 S. frutescens aqueous 

extract demonstrated the 

least activity (MICs of ≥ 

8.00 mg/ml). 

Antimicrobials: 

 Mostly within breakpoint 

ranges. 
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6.1.1. Antimicrobial activity of the individual plant and antimicrobial samples 

As expected, the antimicrobial activities of the conventional antimicrobials (Table 3.1) were 

found to be far superior to the medicinal plants (Table 3.3), when tested against a series of 

pathogens. Most of the medicinal plants demonstrated weak antimicrobial activity (Table 3.3) 

against the tested pathogens, which is in accordance with literature (Appendix F.1 – F.7). 

The MIC results obtained for the conventional antimicrobials (Table 3.1) were compared 

with breakpoint expectation ranges (Table 3.2), to ensure that the antimicrobials were 

performing against the test micro-organisms as expected. All the antimicrobials were found 

to have MIC values within these breakpoint ranges, except for tetracycline, when tested 

against E. faecalis and P. aeruginosa, where these two strains were found to show an 

enhanced susceptibility towards tetracycline. 

The aqueous and organic extracts of each medicinal plant, as well as the essential oil of the 

aromatic plants were tested for antimicrobial activity. The organic extract of L. javanica 

when tested against S. aureus (lowest MIC of 0.25 mg/ml), demonstrated the MIC value most 

noteworthy amongst all the medicinal plants when tested against the selected pathogens. The 

organic extract of A. afra was found to exhibit the broadest spectrum of antimicrobial 

activity, across the eight tested pathogens, with the lowest mean MIC of 1.45 mg/ml. The 

aqueous extract of S. frutescens, however, demonstrated the least antimicrobial activity, with 

a MIC value of ≥ 8.00 mg/ml against all eight test pathogens (Table 3.3).  

6.1.2. Antimicrobial combination studies 

All the plant samples were tested in combination with the conventional antimicrobials against 

the relevant pathogens, which resulted in the testing of a total of 476 combinations. Of these 

combinations, 14.29% were found to be synergistic, 7.56% were antagonistic, 35.71% were 

additive and 42.44% were found to be indifferent in nature (Figure 4.5). Therefore, the 

majority of the combinations tested were indifferent. Furthermore, many combinations were 

also additive in nature. This alleviates some of the concern related to the concurrent use of 

these agents, since no advantage or disadvantage is associated with these two types of 

interactions. However, a few notable synergistic and antagonistic interactions were identified, 

which could have an impact on conventional treatment regimens.  

The combination of the conventional agent, ciprofloxacin, was found to be synergistic against 

the common causative micro-organism of UTI’s, E. coli, in combination with two medicinal 
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plants (A. betulina and S. frutescens). The aqueous and organic extract of A. betulina, which 

are the traditional forms for consumption of the plant for UTI’s, demonstrated a tentative 

synergistic interaction in combination with ciprofloxacin, when tested against E. coli (Table 

4.2). The organic extract of S. frutescens, which is the traditional form for consumption for 

UTI’s, demonstrated a favourable ∑FIC of 0.28 (synergistic interaction) when in combination 

with ciprofloxacin and tested against E. coli (Table 4.20). 

Artemisia afra and ciprofloxacin are common traditional and conventional treatments for GI 

infections, respectively. These infections are very often caused by the consumption of food or 

water contaminated with E. coli. In this study, the combination of A. afra with ciprofloxacin 

demonstrated a varied interactive profile against E. coli, ranging from synergistic to 

antagonistic, depending on the dose, as well as the sample type (essential oil, aqueous or 

organic extract). Artemisia afra aqueous extract in combination with ciprofloxacin provided a 

notable antagonistic interaction (∑FIC of 8.55) when tested against E. coli, strangely though, 

the organic extract and essential oil demonstrated a synergistic interaction (∑FIC of 0.27 for 

both combinations) (Table 4.8). The combination with the essential oil is not as 

therapeutically relevant as that of the aqueous and organic extract combination, since the 

essential oil is not orally ingested for GI complaints. 

The combination of A. linearis (rooibos) with penicillin G provided a mostly synergistic 

interactive profile against the three tested Gram-positive micro-organisms (S. aureus,            

B. cereus and E. faecalis), with ∑FIC values ranging from 0.01 (synergistic) to 0.94 (additive) 

(Table 4.10).  In a varied ratio study, A. linearis combined with penicillin G was found to be 

mostly synergistic against S. aureus, with six of the nine ratios showing synergy for the 

aqueous extract: conventional antimicrobial combination and all nine of the ratios showing 

synergy for the organic extract: conventional antimicrobial combination (Figure 4.3). 

However, large quantities of rooibos would need to be consumed in order to provide the 

synergistic effect. For example, the ratio containing equal volumes of rooibos and penicillin 

would require approximately eight cups of rooibos to be consumed (Table 2.4).   

As a healthcare professional, the results from this current study provide relief related to the 

concurrent use of traditional and conventional treatments for infections, however, the few 

notable interactions could impact on the efficacy of the conventional antimicrobials. This 

would need to be confirmed by in vivo testing, before these findings could be considered 

relevant in clinical practice. 
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6.1.3. Toxicity analysis of individual samples and notable combinations 

In the whole-organism, brine-shrimp assay, none of the notable combinations that were tested 

demonstrated toxicity. However, some of the individual plant samples exhibited toxicity, 

namely A. betulina essential oil (100% mortality, LC50 of 0.31 ± 0.03 mg/ml) and the organic 

extract of L. javanica (70.13% ± 5.29% mortality, LC50 of 0.51 ± 0.03 mg/ml) and S. 

frutescens (82.69% ± 4.51% mortality, LC50 of 0.45 ± 0.05 mg/ml) (Table 5.2).  

In the cellular viability assay, the individual plant and antimicrobial samples demonstrated no 

toxic effects. When evaluating the toxicity of the notable combinations, only two 

combinations were found to be toxic, which was seen with A. linearis (aqueous and organic 

extract) in combination with nystatin, with a cell inhibition of 73.76 ± 3.36% and 56.88 ± 

6.61%, respectively (Table 5.2). 

Therefore, the majority of the individual samples, as well as the notable plant: antimicrobial 

combinations were found to be non-toxic, except for the combination of A. linearis with 

nystatin, which would need further in vivo testing before the findings can be taken into 

account in clinical practice.    

6.2. Future recommendations  

The findings in this study are the first to provide in vitro scientific information pertaining to 

the combination of some of the South African traditional medicinal plants with conventional 

antimicrobials. There is still much research needed to further support these findings, as well 

as to contribute further to fill this void. Therefore, a few recommendations have been 

provided for future studies.  

6.2.1. Mechanism of action studies 

The concept of how plant extracts enhance the antimicrobial effect of available antibiotics 

and antifungals has not been explored in great depth (Adwan et al., 2010), therefore, 

mechanism of actions studies are warranted. The mechanism of action of the various 

conventional antimicrobials have already been well investigated (Appendix G.1 – G.7). 

Cowan (1999) has provided a brief review of some of the most popular natural products that 

possess antimicrobial activity and their proposed mechanisms of action. The mechanism of 

action which allows for antimicrobial activity is often not as well defined for plants as it is for 

conventional antimicrobials. However, some studies have identified and isolated the chemical 
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compounds within the complex plant mixtures, which possess antimicrobial activity, for 

example phenols, terpenoids and alkaloids, where mechanisms of action have already been 

defined (Cowan, 1999). From the review by Cowan (1999), it is evident that the plant 

compounds exert antimicrobial activity in a very similar way to that of conventional 

antimicrobials. For example, via the disruption of the bacterial cell membrane or cell wall, 

inhibiting protein synthesis or even inactivating bacterial enzymes. The mechanism of action 

for antimicrobial activity of the individual conventional antimicrobials and medicinal plants 

are relatively well-known. However, the mechanism of action providing the interactions 

exhibited by the combinations needs to be investigated further, as it cannot be assumed that 

since the mechanism of action information is available for both the plants and antimicrobials, 

that one can postulate the outcome. If it is found in in vivo testing that plant and 

antimicrobials with similar mechanisms of actions (individually) provide a synergistic effect, 

it will then only allow for the postulation as to why the interactions are occurring and can aid 

in future herb-drug interaction interpretations. This may assist in preventing similar 

interactions from occurring. Synergistic interactions may also occur between agents which do 

not possess the same mechanism of action. A common example of this is seen with the 

conventional aminoglycosides and penicillins. The penicillin is responsible for perforating 

the bacterial cell wall, which then allows for a higher concentration of aminoglycoside to 

enter the bacterial cell, to target the intra-bacterial site of action, namely protein synthesis 

(SAMF, 2012).  

In another study investigating combinations of conventional antimicrobials with natural 

products, it has been found that protein synthesis inhibitors, such as the aminoglycosides and 

macrolides, have strong synergistic interactions with plant extracts, whereas the nucleic acid 

synthesis inhibitors have been found to show very weak synergistic interactions with plant 

products (Betoni et al., 2006). In this current study, the protein synthesis inhibitors 

(erythromycin, gentamicin and tetracycline) did show some synergy in combination with the 

plant samples; however, the cell wall synthesis inhibitor, penicillin G, demonstrated the 

highest synergy. Ciprofloxacin, which can be classified as a nucleic acid synthesis inhibitor 

due to its inhibition of DNA gyrase, did not follow the above assessment, since 16.67% of the 

interactions were found to be synergistic in nature. Ciprofloxacin, however, showed a higher 

synergy in comparison to some of the protein synthesis inhibitors. Therefore, this concept 

needs to be addressed with further mechanism of action studies for the combinations 

evaluated in this study. 
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6.2.2. Combinations of South African medicinal plants with other conventional drugs 

From the results obtained in this current study, it is clear that medicinal plants can have an 

effect on conventional therapies, when used concurrently. It has already been found that some 

South African medicinal plants (S. frutescens, A. linearis and H. hemerocallidea) have 

interactions with other antimicrobials, such as antivirals, due to their ability to regulate 

hepatic CYP450 enzymes (Mills et al., 2005; Matsuda et al., 2007). Since plants have the 

ability to provide an array of effects on the human biological systems, it is necessary to not 

only focus on combinations with antimicrobials, but with other classes of conventional drugs 

too. 

6.2.3. In vivo studies 

Since this study focused on the in vitro activity for plant: conventional antimicrobial 

combinations, the interactive profile cannot be assumed to be the same when within the 

human body. Therefore, further in vivo studies are necessary, to confirm the in vitro 

interactive profiles of the combinations. Since plants have such a complex composition, they 

are able to have numerous biological effects, allowing for a holistic approach to treatment 

(Van Vuuren, 2007). These concomitant effects are not all portrayed within the in vitro model 

of testing and therefore further animal and human studies are necessary to account for all the 

modes of action which a plant mixture can have in the human body (Van Vuuren, 2007). This 

study has, however, provided a good starting point using preliminary in vitro screening, as a 

means to determine which combinations may be advantageous or not recommended in 

combination. Also, in vivo animal studies would not be feasible in the testing of all 476 

combinations. Whereas the in vitro screening approach, as studied here, provides an excellent 

overview of the different interactive profiles, and provides a starting point for further follow-

up in vivo studies. 

 

6.2.4. Formulation studies 

The final step to ensure a comprehensive approach to the concept of medicinal plant: 

conventional antimicrobial combinations would be to include formulation studies, since 

synergistic combinations could assist in overcoming the problem of antimicrobial resistance. 

Therefore, it would be ideal to be able to create a formulation, preferably in tablet form, 

containing both plant and conventional antimicrobial. The problems that could arise in 

combining these two forms of medicine include stability and standardisation issues. 
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However, the benefits of such combinations include a more natural approach to antimicrobial 

therapies and could also result in less toxicity and side effects due to dose reductions. 

6.2.5. Healthcare professional and public awareness 

Healthcare professionals are mostly only aware of a few natural products that can affect 

conventional therapies, such as St. John’s wort and grapefruit juice. However, very little is 

known on the interactions between traditional medicinal plants and conventional therapies, 

which is worrisome, since many South Africans use these two forms of healthcare 

concurrently. Therefore, the undergraduate programmes for medical and pharmacy students 

should ideally contain some coursework on interactions that may occur with traditional and 

conventional medicine combinations, and not only focus on the interactive profiles of 

common herbal preparations with conventional drugs. The public also needs to be made 

aware of the possibility of interactions between natural products and conventional drugs, 

since very often, the assumption is that natural products are safe and free from harm. Due to 

this assumption, very few patients think it necessary to mention natural product or traditional 

medicine use when consulting with a healthcare provider (Ioannides, 2002), which further 

increases the possibility for interactions to occur. Therefore, to overcome this problem, it 

should always be recommended that when recording patient information, that natural product 

or traditional medicinal use is queried and recorded. This should be as important in the 

history taking process as when asking the patient if they use any other medication or if they 

have any allergies.  

6.2.6. Regulations regarding traditional medicine 

Regulations in most countries have not placed emphasis on the scientific demonstration of 

efficacy, safety and quality of natural products due to the way in which these natural products 

are promoted as safe and harmless (Homsy et al., 2004). Government legislation and 

regulations regarding natural product and traditional remedies are necessary, in order to avoid 

future adverse interactions. These regulations may include more comprehensive labelling of 

natural product remedies to include warnings of interactions with conventional drugs; or 

informing and educating traditional healers on these interactions, so that the information can 

be relayed to the patients (Ioannides, 2002).  
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6.3. Conclusions  

The majority of the plant: antimicrobial combinations tested in the current study 

demonstrated indifferent interactions, which alleviates concern related to concurrent use. 

However, a few notable synergistic and antagonistic interactions were also identified, which 

could have a considerable impact on treatment regimens related to infection control. The 

possibility for interactions between conventional and traditional or herbal medicines has not 

only been emphasized in this study, but in others too (Ioannides, 2002; Fasinu et al., 2012). 

Therefore, there is definitely a need for more detailed research this field, since there is 

insufficient information available for clinical applications. It is also necessary for findings to 

be relayed to healthcare professionals and the public (Fasinu et al., 2012). 

Further scientific research directed at traditional medicine can also allow for recognition of 

the efficacy of this type of medicine, which could further result in the acceptance of 

medicinal plants into orthodox medicine (Van Vuuren, 2007). Combination studies have also 

resulted in the identification of new alternatives to current conventional antimicrobials, to 

which resistance has developed. This concept has extended to natural products and medicinal 

plants in combination with conventional therapies, which supports the claim by Tyler (1999), 

that phytomedicines should be integrated into orthodox medicine, where these agents can be 

prescribed or recommended by a healthcare practitioner, to be used solely on its own, or in 

combination with conventional drugs. Some of the plants investigated in this study have 

certainly shown their ability in potentiating the antimicrobial activity of conventional 

antibiotics and antifungals, and this is the first step in future endeavours within this field of 

research. 
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Appendix A 

Abstract for oral presentation at APSSA conference 

 

Antimicrobial efficacy of conventional antimicrobial agents in combination with 

commercially relevant southern African medicinal plants. 

Zelna Hübsch, Sandy van Vuuren  

Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the 

Witwatersrand, 7 York Rd, Parktown, Johannesburg, 2193, South Africa 

Purpose: 

Antimicrobial agents are one of the most commonly prescribed drugs. Furthermore, in South 

Africa, at least 60% of the population consult traditional healers. There is thus a considerable 

possibility for the concomitant use of antimicrobial agents and traditional medicine. The 

purpose of this study was to evaluate the interactive antimicrobial profiles against a range of 

pathogens, when seven antimicrobial agents were combined with the essential oils, aqueous 

and organic extracts of seven plants, classified as the most commonly used and traded in 

South Africa.  

Methods: 

The antimicrobial activity of the plant samples and conventional antimicrobials were 

evaluated, alone and in combination, using the minimum inhibitory concentration (MIC) 

assay against two yeasts, three Gram positive and three Gram negative bacteria. The 

combinations were further assessed using the fractional inhibitory concentration (∑FIC) 

calculation. Combinations demonstrating significant synergistic or antagonistic interactions 

were further evaluated in varying concentrations, for isobologram construction. 

Results: 

Additive (25.0%) and non-interactive (50.8%) effects were observed, but most importantly, 

synergistic (14.3%) and antagonistic (9.8%) interactions were also noted when the 

antimicrobials were combined with the medicinal plants. For all combinations containing 

penicillin, synergistic interactions were mostly noted (38.8%). However, combinations 
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containing gentamicin, showed the most antagonism (25.9%). For therapeutic purposes, a few 

significant interactions were identified. Ciprofloxacin, commonly used for urinary tract 

infections (UTI’s) demonstrated synergy against Escherichia coli, when in combination with 

Agathosma betulina as well as Sutherlandia frutescens (∑FIC 0.26 and 0.28 respectively), 

where both plants are commonly used in the treatment of UTI’s. Conversely, tetracycline, 

which is commonly used for skin infections, demonstrated antagonism against Pseudomonas 

aeruginosa, when in combination with A. betulina and Aloe ferox (∑FIC 8.81 and 8.84 

respectively), which are plants often used to treat skin conditions. 

Conclusion: 

No specific pattern (synergistic or antagonistic) exists when the two forms of healthcare are 

used concurrently. However, a few significant interactions were identified, which could have 

a noteworthy impact on conventional treatment regimens and thus further in vivo 

investigations and toxicity profiling for these combinations are warranted. 
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Appendix B 

Abstract for oral presentation at the School of Therapeutic 

Sciences (STS) 2013 research day 

 

What are the implications of combining conventional antimicrobials with traditional 

medicinal plants? 

Zelna Hübsch, Sandy Van Vuuren*, Robyn Van Zyl 

Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the 

Witwatersrand, 7 York Rd, Parktown, Johannesburg, 2193, South Africa 

* Correspondence: Sandy.vanvuuren@wits.ac.za 

Purpose: 

In South Africa, at least 60% of the population consult traditional healers for their primary 

healthcare needs, where very often, medicinal plants are provided as a treatment option. It has 

been acknowledged that in some of the finest hospitals in South Africa, concurrent use of 

conventional and traditional medicine still occurs. There is a considerable possibility for the 

concurrent use of antimicrobial agents and traditional medicine. The purpose of this study 

was to evaluate the interactive antimicrobial and toxicity profiles against a range of 

pathogens, when seven conventional antimicrobial agents (amphotericin B, ciprofloxacin, 

erythromycin, gentamicin, nystatin, penicillin G and tetracycline) were combined with the 

essential oils, aqueous and organic extracts of seven medicinal plants (Agathosma betulina, 

Aloe ferox, Artemisia afra, Aspalathus linearis, Lippia javanica, Pelargonium sidoides and 

Sutherlandia frutescens).  

Methods: 

The antimicrobial activity of the plant samples and conventional antimicrobials were 

evaluated, alone and in combination, using the minimum inhibitory concentration (MIC) 

assay against two yeasts, three Gram-positive and three Gram-negative bacteria. The 

combinations were further evaluated using the fractional inhibitory concentration (∑FIC) 

assessment. Combinations demonstrating notable synergistic or antagonistic interactions were 
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further evaluated in various ratios (isobolograms). Toxicity of the antimicrobials and plant 

samples were assessed individually and in combination using the brine-shrimp lethality assay 

(BSLA) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell 

proliferation assay on human kidney epithelial cells (Graham or HEK-293 cell line).  

Results: 

A total of 476 combinations were assessed for interactive antimicrobial potential. Of these 

combinations, 14.29% were synergistic, 7.56% were antagonistic, 35.71% were additive and 

42.44% were indifferent in nature. The most notable interactions were that of A. linearis 

(aqueous and organic extract) with penicillin G, where synergy was most often seen against 

the Gram-positive micro-organisms, Staphylococcus aureus (∑FIC of 0.01 for the organic 

extract and a tentative synergistic interpretation for the aqueous extract), Bacillus cereus 

(∑FIC of 0.08 for the organic extract and a tentative synergistic interpretation for the aqueous 

extract) and Enterococcus faecalis (∑FIC of 0.94 (additive) for the organic extract and 0.46 

for the aqueous extract). In the BSLA, the notable interactions that were tested demonstrated 

no toxic effect. In the MTT cell proliferation assay, the only combination demonstrating a 

possible toxic effect was that of A. linearis (aqueous and organic extract) in combination with 

nystatin (cell inhibition of 73.76% and 56.88% respectively). 

Conclusion: 

Most interactions were found to be indifferent (42.44%), providing some relief for concerned 

concurrent users. However, synergistic and antagonistic interactions were also identified, 

which could have a considerable impact on treatment regimens. Antagonistic interactions 

could reduce the efficacy of the conventional antimicrobials. Synergistic interactions could 

enhance the effect of the conventional antimicrobials, and so, possible dose reductions would 

be necessary. The concurrent use of rooibos tea and conventional antimicrobials should be 

cautioned. The only combination found to be toxic, in the MTT assay, was that of A. linearis 

(aqueous and organic extract) in combination with nystatin. 
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Appendix C 

Abstract for oral presentation at the Postgraduate 

Symposium at the University of Johannesburg (UJ) 

 

Can traditional medicinal plants have an effect on conventional antimicrobial 

therapies?  

 

Zelna Hübsch
 a
, S.F. Van Vuuren

 a,
*, R.L. Van Zyl

 a
 and I.E. Cock

 b,c
 

a
 Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the 

Witwatersrand, 7 York Rd, Parktown, Johannesburg, 2193, South Africa. 

b 
Environmental Futures Centre, Nathan Campus, Griffith University, 170 Kessels Rd, 

Nathan, Queensland, 4111, Australia 
c
 Biomolecular and Physical Sciences, Nathan Campus, Griffith University, 170 Kessels Rd, 

Nathan, Queensland, 4111, Australia 

 

* Correspondence: Sandy.vanvuuren@wits.ac.za 

 

The use of medicinal plants as a source of healthcare plays a significant role in the cultural 

heritage of many South Africans, with at least 60% of the population consulting traditional 

healers. It has been acknowledged that in some of the finest hospitals in South Africa, 

concurrent use of conventional and traditional medicine still occurs. In orthodox medicine, 

antimicrobials such as antibiotics and antifungals, are amongst the most commonly 

prescribed groups of drugs. Therefore, there is a considerable possibility for the concurrent 

use of these two forms of healthcare. The aim of this study was to evaluate the interactive 

antimicrobial profiles, against a range of pathogens, as well as the toxicity profiles, when 

seven conventional antimicrobial agents (amphotericin B, ciprofloxacin, erythromycin, 

gentamicin, nystatin, penicillin G and tetracycline) were combined with the essential oils, 

aqueous and organic extracts of seven medicinal plants (Agathosma betulina, Aloe ferox, 

Artemisia afra, Aspalathus linearis, Lippia javanica, Pelargonium sidoides and Sutherlandia 

frutescens). The antimicrobial activity of the plant samples and conventional antimicrobials 

were evaluated, alone and in combination, using the minimum inhibitory concentration 

(MIC) assay against two yeasts, three Gram-positive and three Gram-negative bacteria. The 

combinations were further evaluated using the fractional inhibitory concentration (∑FIC) 
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assessment. Combinations demonstrating notable synergistic or antagonistic interactions were 

further evaluated in various ratios (isobolograms). Toxicity of the antimicrobials and plant 

samples were assessed, individually and in combination, using the brine-shrimp lethality 

assay (BSLA) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

cell proliferation assay on human kidney epithelial cells (Graham or HEK-293 cell line). A 

total of 476 combinations were assessed for interactive antimicrobial potential. Of these 

combinations, 14.29% were synergistic, 7.56% antagonistic, 35.71% additive and 42.44% 

indifferent in nature. The most notable interactions were that of A. linearis (aqueous and 

organic extract) with penicillin G, where a synergistic profile was most often seen against the 

three tested Gram-positive micro-organisms (Staphylococcus aureus, Bacillus cereus and 

Enterococcus faecalis), with ∑FIC values ranging from 0.01 to 0.94 (additive).  The 

synergistic and antagonistic interactions identified in this study could have a considerable 

impact on conventional treatment regimens. Antagonistic interactions could reduce the 

efficacy of the conventional antimicrobials. Synergistic interactions could enhance the effect 

of the conventional antimicrobials, and so, possible dose reductions would be necessary. In 

the BSLA, the notable interactions that were tested demonstrated no toxic effect. In the MTT 

cell proliferation assay, the only combination demonstrating possible toxicity was that of      

A. linearis (aqueous and organic extract) in combination with nystatin (cell inhibition of 

73.76% and 56.88% respectively), therefore concurrent use should be cautioned.   
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Appendix D 

Abstract for publication submitted to the South African 

Journal of Botany 

 

Can rooibos (Aspalathus linearis) tea have an effect on conventional antimicrobial 

therapies? 

Z. Hübsch, S.F. Van Vuuren, R.L. Van Zyl
 

Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the 

Witwatersrand, 7 York Road, Parktown, 2193, South Africa 

_________________________________________________________________________________________ 

 

ABSTRACT 

One of the most commonly consumed and commercially relevant herbal teas in South Africa 

is rooibos tea, prepared from the plant, Aspalathus linearis (Burm. F.) Dahlg. In orthodox 

medicine, antimicrobial agents are amongst the most commonly prescribed groups of drugs 

and thus there is a considerable possibility for the concurrent use of these drugs with the 

highly popular beverage, rooibos tea. Therefore, the aim of this study was to investigate the 

interactive antimicrobial and toxicity profiles of A. linearis (aqueous and organic extract), 

when combined with seven conventional antimicrobials (ciprofloxacin, erythromycin, 

gentamicin, penicillin G, tetracycline, amphotericin B and nystatin). The antimicrobial 

activity of A. linearis was evaluated, independently and in combination, using the minimum 

inhibitory concentration (MIC) assay against two yeasts, three Gram-positive and three 

Gram-negative bacteria. The interactions were further evaluated using the sum of the 

fractional inhibitory concentration (∑FIC) assessment. Combinations demonstrating notable 

synergistic or antagonistic interactions were investigated in various ratios (isobolograms). 

The toxicity of A. linearis extracts and antimicrobials, were assessed independently and in 

combination, using the brine shrimp lethality assay (BSLA), and the 3-(4,5 dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay on the human HEK-

293 cell line. Aspalathus linearis (aqueous and organic extract) with penicillin G 

demonstrated the most notable interactions, when tested against the Gram-positive bacteria, 
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with ∑FIC values ranging from 0.01 (synergistic) to 0.94 (additive). Varied ratio studies of 

this combination were most synergistic against Staphylococcus aureus. Four antagonistic 

combinations were identified, and were found against the Gram-negative bacteria and yeasts. 

In the BSLA, no toxic combinations were identified. However, in the MTT assay, two 

combinations were found to demonstrate a possible toxic effect (A. linearis aqueous and 

organic extract with nystatin), with inhibitory effects of 73.76 ± 3.36% and 56.88 ± 6.61%, 

respectively, thus warranting further in vivo studies.   
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Interactive antimicrobial and toxicity profiles of conventional antimicrobials with 

southern African medicinal plants. 
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a
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___________________________________________________________________________ 

 

ABSTRACT 

Medicinal plant use plays an important role in the healthcare of many South Africans. 

Furthermore, in orthodox medicine, conventional antimicrobial agents are amongst the most 

commonly prescribed groups of drugs. Therefore, due to the prevalence of use of these two 

forms of healthcare, there is a high probability for their concurrent use. Thus, the aim of this 

study was to evaluate the interactive antimicrobial and toxicity profiles of six southern 

African medicinal plants (Agathosma betulina, Aloe ferox, Artemisia afra, Lippia javanica, 

Pelargonium sidoides and Sutherlandia frutescens) when combined with seven conventional 

antimicrobials (ciprofloxacin, erythromycin, gentamicin, penicillin G, tetracycline, 

amphotericin B and nystatin). Antimicrobial activity was assessed using the minimum 

inhibitory concentration (MIC) assay against a range of pathogens and interactions were 

further classified using the sum of the fractional inhibitory concentration (∑FIC). Notable 

synergistic or antagonistic interactions were studied at various ratios (isobolograms). The 

toxicity of the individual samples, as well as the notable combinations, were assessed using 

the brine-shrimp lethality assay (BSLA) and the 3-(4,5 dimethylthiazol-2-yl)-2,5-
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diphenyltetrazolium bromide (MTT) assay on the HEK-293 human cell line. Of the 420 

antimicrobial: plant combinations studied, 14.29% showed synergistic interactions, 7.56% 

antagonistic, 35.71% additive and 42.44% indifferent interactions. Some notable synergistic 

interactions (ciprofloxacin with Agathosma betulina and Sutherlandia frutescens against 

Escherichia coli) and antagonistic interactions (ciprofloxacin with Artemisia afra organic 

extract against Escherichia coli) were identified. None of the notable combinations were 

found to show toxicity in the BSLA or MTT assays. In conclusion, the majority of 

combinations were found to have no notable interaction, alleviating some concern related to 

the concurrent use of these two forms of healthcare.  
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Appendix F 

Medicinal plants investigated in this study 

 

Appendix F.1. 

Agathosma betulina (Berg.) Pillans 

 

       Family name 

Rutaceae 

       Vernacular names 

Round leaf buchu (English) 

boegoe, bergboegoe (Afrikaans) 

ibuchu (Xhosa) 

buchu (Khoi)   

 

 

Figure F.1.1. Agathosma betulina [Photograph by Prof. A.M. Viljoen from Tshwane 

University of Technology (TUT)]. 

Botanical description 

It is a shrub that grows approximately two metres in height. The leaves are usually broad, 

with a rounded apex. Flowers are small, white and star-shaped (Van Wyk et al., 2009). 

Geographical distribution  

The plant occurs naturally in the mountains of the Western Cape (Van Wyk et al., 2009). 

Traditional medicinal use 

Health tonic, diuretic, urinary tract infections (UTI’s), haematuria, prostatitis, colds and flu, 

coughs, gout, fever, rheumatism, wounds, boils, rashes, bruises, burns, gastrointestinal (GI) 
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complaints, cholera, and the antibiotic protection of corpses (Pillans, 1950; Watt and Breyer-

Brandwijk, 1962; Simpson, 1998, Van Wyk et al., 2009; Van Wyk, 2011). The San also used 

the aromatic plant mixed with fat as a skin lubricant in the desert. Topically, the plant acted 

as an antibacterial, antifungal, insect repellent and deodorant (Van Wyk et al., 1997).  

Plant parts used 

Dried leaves (Van Wyk et al., 2009). 

Dosage form and route of administration 

It is usually administered orally as an aqueous infusion prepared from the leaves, which can 

sometimes be sweetened with the addition of brown sugar (Scott and Springfield, 2004a). 

Decoctions or alcoholic tinctures prepared in brandy (“boegoebrandewyn”) are also ingested 

orally. Buchu vinegar (“boegoe-asyn”), prepared from the leaves of the plant, is used 

topically for cleaning wounds (Watt and Breyer-Brandwijk, 1962; Van Wyk et al., 2009). 

Products available on the market include buchu tea leaves and essential oil from 

Skimmelberg, as well as a kidney tonic and pancreas spray from Medico Herbs, Western 

Cape (Figure F.1.2). 

    

 

 

 

 

 

 

 

 

Figure F.1.2. Commercial products containing A. betulina. A = Buchu tea leaves 

(Skimmelberg, 2011a); B = Buchu oil (Skimmelberg, 2011a); C = Buchu kidney tonic 

(Medico Herbs, 2009a); D = Buchu pancreas spray (Medico Herbs, 2009b). 

Adverse reactions or toxic effects 

Consumption of the plant has been associated with allergic reactions, which is due to the high 

eugenol content of the plant (Murakami et al., 2005). GI disturbances if administered orally 

have also been reported. Prolonged use is not advised. Use in pregnancy and lactation is 

A B C D 
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contraindicated (Scott and Springfield, 2004a). No cytotoxicity was seen when the aqueous 

extract of A. betulina was tested on HeLa cells, derived from cervical cancer cells (May and 

Willuhn, 1978). The plant has demonstrated no toxic effect on human kidney cells (IC50 >100 

μg/ml) (Moolla, 2005).  

Antimicrobial activity 

Agathosma betulina has been described as having a general antimicrobial activity, which 

extends over a variety of micro-organisms. The antimicrobial efficacy has been accredited to 

the terpenoid content of the plant (Cowan, 1999). Agathosma betulina has shown no activity 

toward the Gram-negative bacterium, Pseudomonas aeruginosa. Low activity has been 

documented against other Gram-negative pathogens, such as Escherichia coli and Klebsiella 

pneumoniae, as well as against three Gram-positive pathogens, namely Bacillus cereus, 

Enterococcus faecalis and Staphylococcus aureus and the yeast, Cryptococcus neoformans 

(Lis-Balchin et al, 2001; Moolla, 2005; Moolla and Viljoen, 2008). 

History and commercialisation of the plant 

Agathosma betulina was first used by the San and Khoi people and is an important plant in 

their cultural heritage. It was wild-harvested from 1820 and cultivated since 1970 (Van Wyk, 

2011). The plant only became a well-known Cape medicine once the medicinal properties of 

the plant were discovered by the Dutch colonists. It has been considered as one of South 

Africa’s most popular medicinal plants and is still widely used by many South Africans (Van 

Wyk et al., 2009). Buchu was first introduced into Britain in 1790 and was soon considered 

an official remedy, where it was even published in British Pharmacopoeia (BP) (Scott and 

Springfield, 2004a). In Europe, there are numerous patented remedies containing buchu, such 

as teas and drops, which are available without a prescription for self-medication. It is now 

commonly available worldwide as a commercial product, in various forms such as a 

concentrated buchu infusion, liquid extract or buchu tincture, buchu oil, dried buchu leaves, 

buchu water and powdered buchu, all used for either the medicinal value or as a cosmetic or 

flavouring agent (Van Wyk et al., 1997). In South Africa, the British Pharmaceutical Codex 

(BPC) quality buchu is found in many pharmacies. The unstandardised leaves of A. betulina 

can also sometimes be found in supermarkets (Scott and Springfield, 2004a). 
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Appendix F.2. 

Aloe ferox Mill. 

         

                         Family name 

Asphodelaceae 

       Vernacular names  

bitter aloe (English) 

bitteraalwyn, Kaapse alwyn (Afrikaans) 

umhlaba (Xhosa, Zulu, Sotho) 

 

 

Figure F.2.1. Aloe ferox [Photograph by Prof. A.M. Viljoen (TUT)]. 

Botanical description 

The plant has broad, fleshy leaves, usually pale green in colour, with a red tinge sometimes. 

Flowers are red or orange in colour and are found vertically erect from the base of leaves 

(Van Wyk et al., 2009).  

Geographical distribution  

The plant is located along the eastern parts of South Africa (Van Wyk et al., 2009). 

Traditional medicinal use  

Sexually transmitted infections (STI’s), wounds, burns, sinusitis, conjunctivitis, constipation, 

hypertension, stress. The leaf is used for skin and hair treatments (Watt and Breyer-

Brandwijk, 1962; Hutchings et al., 1996; Van Wyk et al., 2009; Van Wyk, 2011). The leaves 

are cut and applied directly to burns, insect bites, sores and sunburn. The plant has also been 

used for arthritis, toothache and stomach complaints (Crouch et al., 2006). Leaf and stem 

decoctions are used as an emetic and the leaves and roots boiled in water are used for 

hypertension and stress (Pujol, 1990).  
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Plant parts used 

Leaves, roots, juice or gel (Van Wyk et al., 2009). 

Dosage form and route of administration  

Fresh juice from leaves or decoctions and powders from leaves or roots can be applied 

topically or sniffed (Hutchings et al., 1996). Fresh bitter sap is also often instilled directly 

into the eye or nose (Van Wyk et al., 2009). Products available on the market include a heel 

balm and a regenerating gel from Nature’s Health Products South Africa and a health drink 

from Docsemur (Figure F.2.2). 

   

 

 

 

 

 

Figure F.2.2. Commercial products containing A. ferox. A = A. ferox heel balm (Nature’s 

Health, 2012a); B = Aloe regenerating gel (Nature’s Health, 2012b); C = Aloe health drink 

(Docsemur, 2012). 

Adverse reactions or toxic effects 

There is no evidence of cytotoxicity when the plant is consumed in low doses (Kambizi and 

Afolayan, 2008; Wintola et al., 2011). However, in overdose, toxicity occurs, demonstrated 

by similar effects seen in curare poisoning, which include joint weakness and partial 

paralysis. Overdose can also lead to nephritis and gastritis (Watt and Breyer-Brandwijk, 

1962; Hutchings et al., 1996). Aloe ferox has been considered generally safe, except for 

possible hypersensitivity, and should not be used during pregnancy (Van Wyk et al., 2009). 

Aqueous extracts of A. ferox administered to constipated rats did not enlarge the liver or 

elevate liver enzymes and had no effect on haematological parameters (Wintola et al., 2011). 

At 500 mg/kg, there was a lack of bacterial and mammalian cell genotoxicity (Andersen, 

2007).  

A B C 
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Antimicrobial activity 

Aloe ferox has been found to be active against Candida albicans, Neisseria gonorrhoea and 

the Herpes simplex virus (Kambizi et al., 2007; Van Wyk, 2011). Aloe ferox aqueous extract 

demonstrated no activity toward against C. albicans, whereas the methanol extract exhibited 

low activity at a concentration of 20 mg/ml. One of the major compounds in A. ferox is aloin, 

which was found to be poorly active against C. albicans at a concentration of 5 mg/ml 

(Kambizi and Afolayan, 2008).   

History and commercialisation of the plant 

The use of A. ferox for medicinal purposes has been illustrated in San rock paintings 

(Reynolds, 1950). However, plantations for commercial production of A. ferox only began in 

1976. It is still a very important, widely used commercial medicine used in South Africa for 

the treatment of constipation (Van Wyk et al., 2009). There is a large international market for 

A. ferox remedies. Exporting to Europe began as early as 1761. Locally, the remedies are 

marketed as Aloe lump or a tincture prepared from the Aloe lump (Van Wyk, 2011) and is 

most commonly sold on the South African market as a laxative by Lewensessens and Lennon 

(Van Wyk et al., 2009). Many dermatological products containing A. ferox are available on 

the market, in the form of creams or cosmetics. Today, in South Africa, it is one of South 

Africa’s main wild-harvested commercially traded species. The increase in demand for the 

plant has also resulted in increased economic gain for people in the rural areas, where the 

plant is most often harvested by these people (Chen et al., 2012).  
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Appendix F.3. 

Artemisia afra Jacq. ex Willd. 

 

Family name 

Asteraceae 

Vernacular names  

African wormwood (English) 

wilde als (Afrikaans) 

unhlonyane (Xhosa, Zulu)  

lengana (Sotho) 

 

Figure F.3.1. Artemisia afra [Photograph by Prof. S.F. Van Vuuren (WITS)]. 

Botanical description 

It is a shrub growing up to two metres in height. The leaves are finely divided, providing a 

feathery appearance and are greenish-grey in colour. Flowers occur at the ends of the 

branches and are pale yellow (Van Wyk et al., 2009).  

Geographical distribution  

The plant is found throughout all areas of South Africa and can even extend up northward 

towards Ethiopia (Van Wyk et al., 2009).  

Traditional medicinal use  

Respiratory infections (coughs, colds, pneumonia, croup, whooping cough), asthma, hay 

fever, GI disorders, colic, heartburn, flatulence, gout, influenza, fever, diabetes, malaria, 

intestinal worms, haemorrhoids, headaches, bladder and kidney disorders, convulsions, loss 

of appetite, heart inflammation, rheumatism, stings and bites, wounds, mouth ulcers, gum 

problems, earache, blood purifier for the treatment of acne, boils and measles (Watt and 

Breyer-Brandwijk, 1962; Hutchings et al., 1996; Felhaber, 1997; Thring and Weitz, 2006; 

Van Wyk et al., 2009; Van Wyk, 2011).  
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Plant parts used 

Leaves and sometimes roots (Van Wyk et al., 2009). 

Dosage form and route of administration  

Aqueous infusions prepared from the leaves or decoctions prepared from the roots are orally 

administered. Aqueous preparations are also used as enemas (Dube, 2006). The bitter taste 

can be masked with the addition of sugar or honey. A poultice of leaves is often used for 

topical application (Watt and Breyer-Brandwijk, 1962). Vapour released from boiled leaves 

can also be inhaled (Van Wyk et al., 2009). Products available on the market include tea 

leaves from Nature’s Health Products South Africa and A. afra drops from Medico Herbs, 

Western Cape (Figure F.3.2). 

  

 

 

 

 

 

 

Figure F.3.2. Commercial products containing A. afra. A = A. afra tea leaves (Nature’s 

Health, 2012c); B = A. afra drops (Medico Herbs, 2009c). 

Adverse reactions or toxic effects 

The essential oil has been said to cause haemorrhagic nephritis, degenerative liver changes, 

pulmonary oedema and sometimes abortions in rabbits (Watt and Breyer-Brandwijk, 1962). 

Hallucinogenic effects have also been reported (Van Wyk et al., 2002). Adverse effects and 

toxicity are mainly due to thujone poisoning when excessive amounts are consumed or if the 

plant is used for a prolonged period of time. Effects of thujone poisoning include vomiting, 

vertigo, convulsions, restlessness and hepatotoxicity (Van Wyk et al., 2009). Aqueous 

extracts of A. afra have been found to be cytotoxic at high concentrations when tested against 

various cancer cells lines, such as cervical cancer cells (HeLa) and T-lymphoblastic 

A B 
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leukaemia cells (Jurkat E6-1, AA-2 and CEM-SS) (Treurnicht, 1997). Mativandlela et al. 

(2008) found cytotoxicity of the ethanolic extract of A. afra in Vero cells (kidney epithelial 

cells extracted from a monkey) (IC50 value of 113.0 ± 2.05 µg/ml). It has been stated that the 

solubility of the toxic compound, thujone, in water is, however, very low and so the 

possibility of poisoning due to an aqueous extract is unlikely at recommended dosages 

(McGaw et al., 2000). Mukinda and Syce (2007) studied the acute toxic effects of an aqueous 

extract of A. afra in rats, and observed a dose-dependent increase in mortalities. When 

evaluating the toxicity with chronic oral administration of low concentrations, no deaths 

occurred after three months and the rats appeared healthy. However, once concentrations 

started to exceed 1000 mg/kg, minor symptoms of toxicity were observed, such as diarrhoea. 

There was no effect seen on the kidney and liver function of the rats and it was even proposed 

that A. afra aqueous extract could have a hepatoprotective effect (Mukinda and Syce, 2007).  

 

Antimicrobial activity 

Antimicrobial activity extends over a range of bacteria and fungi (Graven et al., 1992). 

Ethanolic extracts of A. afra were found to be active against S. aureus and Bacillus subtilis, 

but not against E. coli and K. pneumoniae. Aqueous and hexane extracts were not found to be 

active against any of the micro-organisms studied (McGaw et al., 2000). Artemisia afra has 

also shown activity against P. aeruginosa and C. albicans. Weak activity has been 

documented against C. neoformans and E. faecalis. MIC values have ranged from 4.5 – 32 

mg/ml against S. aureus, Staphylococcus epidermidis, B. cereus, E. coli, P. aeruginosa,       

E. faecalis, K. pneumoniae, C. albicans and C. neoformans (Huffman et al., 2002; Van 

Vuuren and Viljoen, 2006; Suliman et al., 2010). 

History and commercialisation of the plant 

Artemisia afra is one of the most popular, oldest known, and widely used medicinal plants in 

South Africa (Watt and Breyer-Brandwijk, 1962; Dube, 2006; Van Wyk et al., 2009). It is 

known by many different names, due to the wide use throughout various ethnic groups (Watt 

and Breyer-Brandwijk, 1932) and is used in the treatment of numerous ailments. This plant is 

very often grown in home gardens and used for its medicinal properties. The plant is also sold 

as cuttings in some nurseries in South Africa. The first commercial plantation of the plant 

occurred in Gouda, in the Western Cape of South Africa in 1995 (Van Wyk, 2011). The fresh 

leaves of the plant are sold, but more commonly, a tea infusion made from the leaves is sold 
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as “wildeals” or “wild wormwood” (Van Wyk et al., 2009). The first low-thujone content 

product came onto the market in 1996 as a tincture and was under the brand of Healer’s 

Choice (Van Wyk, 2011).  
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Appendix F.4. 

Aspalathus linearis (Burm. F.) Dahlg.
 

       

Family name 

Fabaceae  

Vernacular names 

rooibos tea (English) 

rooibostee (Afrikaans) 

 

 

Figure F.4.1. The flower of A. linearis [Photograph by Prof. A.M. Viljoen (TUT)]. 

Botanical description 

It is a shrub that grows up to two metres in height. The leaves are bright green and are needle-

shaped. The flowers are small, yellow and pea-shaped (Van Wyk et al., 2009).  

Geographical distribution  

The plant is endemic to the Western Cape, particularly the western parts of the province, such 

as the Cape Peninsula and the Cederburg area (Joubert et al., 2008; Van Wyk et al., 2009). 

Traditional medicinal use  

It is used as a milk substitute for infants suffering from colic and a health beverage in adults 

for its’ anti-oxidant and anti-ageing activity (Van Wyk et al., 2009). It is also commonly used 

for GI complaints (antispasmodic) and dermatological problems, such as eczema (Joubert et 

al., 2008). African women drink the tea during pregnancy to reduce heartburn and nausea and 

also for its iron content. The plant can also reduce cholesterol levels, and is therefore of 

benefit in heart disease (Van Wyk et al., 1997; Marnewick et al., 2011).  

Plant parts used 

Leaves and twigs (Van Wyk et al., 2009). 
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Dosage form and route of administration 

It is consumed orally as a tea (leaves and twigs boiled in water), sometimes together with 

sugar and milk (Van Wyk et al., 2009). It can also sometimes be applied topically as a 

cosmetic or manufactured cream (Van Wyk, 2011). Products available on the market include 

Goudkop rooibos tea from Phytogreen and rooibos tea from Skimmelberg (Figure F.4.2). 

   

 

 

  

 

 

Figure F.4.2. Commercial products containing A. linearis. A = Rooibos tea (Phytogreen, 

2011); B = Rooibos tea (Skimmelberg, 2011b). 

Adverse reactions or toxic effects 

No adverse effects were found when six cups of rooibos were consumed per day for six 

weeks (Marnewick et al., 2011). An aqueous extract of fermented and unfermented A. 

linearis was tested on rats over a 10 week period, and no toxic effects were noted against the 

kidney and liver (Marnewick et al., 2003). 

Antimicrobial activity 

Aspalathus linearis has been found to have anti-spore and antiviral activity, including anti-

HIV activity. The plant also shows activity against E. coli, S. aureus, Listeria 

monocytogenes, Streptococcus mutans and Saccharomyces cerevisiae (Schepers, 2001; 

Almajano et al., 2008; Coetzee et al., 2008). 

History and commercialisation of the plant 

Aspalathus linearis is a beverage that was discovered by the Khoi-descended people in the 

Cape and has become a popular health beverage, enjoyed throughout the world. It has been 

one of South Africa’s most successful plants for commercialisation. Rooibos is currently 

B A 
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produced in volumes of 20, 000 tonnes per year. It was first commercialised by Benjamin 

Ginsberg in 1904 and was first marketed as Eleven O’Clock tea (Joubert et al., 2008). Its’ 

medicinal properties were only later discovered. The red type or rocklands type is the only 

one that is cultivated for commercial purposes. The plant is harvested, fermented and sold as 

the well-known “rooibos tea”. It is now also commonly used in the preparation of iced teas 

(Van Wyk et al., 2009). The tea has a large international market, including Germany, Japan, 

the United States of America and the Netherlands (Joubert et al., 2008); with the international 

market far outgrowing the local market (Van Wyk, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 



170 
 

Appendix F.5. 

Lippia javanica (Burm. F.) Spreng.
 

       Family name 

Verbenaceae  

Vernacular names 

fever tea, lemon bush (English) 

koorsbossie (Afrikaans) 

musukudu, bokhukhwane (Tswana) 

inzinziniba (Xhosa) 

umsuzwane (Zulu) 

mumara (Shona) 

 

Figure F.5.1. Lippia javanica [Photograph by Prof. A.M., Viljoen (TUT)]. 

Botanical description  

It is a woody shrub standing up to two metres in height. The leaves are hairy and very 

aromatic, possessing a lemon scent. Flowers appear in dense round clusters and are yellowish 

in colour (Van Wyk et al., 2009).  

Geographical distribution  

The plant is found throughout South Africa, more commonly along the eastern and northern 

parts. It is also found in the northern tropical parts of Africa (Van Wyk et al., 2009). 

Traditional medicinal use  

Respiratory infections (coughs, colds, bronchitis, influenza), skin infections, GI complaints 

(dysentery and diarrhoea), sore eyes, fever, malaria, measles, rashes, scabies, lice, skin 

infections, food poisoning, intestinal worms and disinfecting anthrax-infected meat (Watt and 

Breyer-Brandwijk, 1962; Hutchings et al., 1996; Van Wyk et al., 1997; Van Wyk et al., 

2009; Van Wyk, 2011). 
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Plant parts used 

Leaves, twigs and sometimes roots (Van Wyk et al., 2009). 

Dosage form and route of administration 

Weak infusions prepared from leaves, twigs and roots made with milk or water (Van Wyk et 

al., 2009). Leaves of the plant are also burnt and the smoke inhaled for respiratory 

complaints. A poultice is also sometimes prepared from the leaves for direct topical 

application (Watt and Breyer-Brandwijk, 1962). Products available on the market include 

fever-tree fly and mosquito repellent from CSIR and an essential oil blend from Floracopeia 

(Figure F.5.2). 

  

 

 

 

 

 

Figure F.5.2. Commercial products containing L. javanica. A = L. javanica fly and mosquito 

repellent (CSIR, 2012); B = Essential oil blend containing L. javanica (Floracopeia, 2012).  

Adverse reactions or toxic effects 

Toxicity of the Lippia species is due to the presence of icterogenins, which very often causes 

animal poisoning. Photosensitivity reactions have also been noted (Van Wyk et al., 2009). It 

was acknowledged that some anecdotal evidence suggests that L. javanica has a very low 

level of toxicity in mammals (Madzimure et al., 2011). However, in the study by Madzimure 

et al. (2011) it was found that high doses of L. javanica could have adverse implications on 

the health of humans. 

Aqueous extracts of L. javanica were tested in mice and within 48 hours of administration, 

12.5 – 37.5% of mice became lethargic and 37.5% of the mice died. The post-mortem 

revealed organ haemorrhage and congestion. It was stated that this could have been due to the 

B A 
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high concentration of xanthine and that this compound is found in many other plant extracts 

consumed by humans (Madzimure et al., 2011).  

Antimicrobial activity 

Lippia javanica has shown activity against S. aureus, P. aeruginosa, C. albicans and            

C. neoformans (Huffman et al., 2002). MIC values of 1.6 – 32 mg/ml have been found when 

the plant was tested against S. aureus, S. epidermidis, B. cereus, E. coli, P. aeruginosa,         

E. faecalis, K. pneumoniae, C. albicans and C. neoformans (Van Vuuren and Viljoen, 2006).  

History and commercialisation of the plant 

Lippia javanica is well-known for its medicinal properties in African traditional healing. It is 

also a very popular plant among avid herbalists and herb gardeners (Le Roux, 2004). The 

wild harvested leaves have been used since the 1990s in the preparation of herbal teas (Van 

Wyk, 2011). Lippia javanica has not enjoyed as much commercial success as some other 

southern African medicinal plants, as it is more commonly prepared as a herbal tea from fresh 

leaves that have been picked from the garden (Van Wyk et al., 2009). 
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Appendix F.6. 

Pelargonium sidoides DC. 

       

Family name 

Geraniaceae  

Vernacular names  

silverleaf geranium (English) 

kalwerbossie (Afrikaans)  

umckaloabo (Zulu) 

 

 

 

 

Figure F.6.1. The flower of P. sidoides (http://nprcdb.com/blog/?p=106) and the roots of P. 

sidoides [Photograph by Prof. A.M. Viljoen (TUT)]. 

Botanical description  

It is a short plant with crowded leaves that are heart-shaped and velvety. Flowers are reddish-

purple, almost black in colour (Lawrence, 2001). 

Geographical distribution 

The plant is found throughout the Eastern Cape, Lesotho, Free State and southern parts of 

Gauteng (Lawrence, 2001). 

Traditional medicinal use  

Respiratory infections (bronchitis, sinusitis, influenza, pneumonia, pharyngitis, common cold, 

tonsillitis), STI’s, GI complaints (diarrhoea and dysentery), wounds and worm infestations in 

cattle (Watt and Breyer-Brandwijk, 1996; Hutchings et al., 1996; Brendler and Van Wyk, 
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2008; Van Wyk et al., 2009; Kolodziej, 2011, Van Wyk, 2011). The crushed roots are mixed 

in water and given to infants for an upset stomach (Matsiliza and Barker, 2001). 

Plant parts used 

Roots (tubers) (Van Wyk et al., 2009). 

Dosage form and route of administration 

Aqueous root decoctions or infusions made with milk or water are orally administered, but 

can also be used as a topical preparation. Roots can be chewed or powdered for ingestion 

with food (Watt and Breyer-Brandwijk, 1996). Products available on the market include 

Umcka cough mixture from Nature’s Way and drops from Medico Herbs (Figure F.6.2). 

   

 

 

 

 

 

 

 

 

Figure F.6.2. Commercial products containing P. sidoides. A = Umcka cough mixture 

(Nature’s Way Products, 2008); B = Pelargonium sidoides drops (Medico Herbs, 2009d). 

Adverse reactions or toxic effects 

Some common adverse effects include GI disorders, central nervous system (CNS) disorders, 

ear and labyrinth disorders and at very high concentrations, liver toxicity due to coumarin and 

tannin content (Carmela et al., 2012). Eighteen clinical trials have been conducted, with most 

being randomized, double-blind and placebo controlled. It was found that there was an 

overall safety and very low adverse effect profile (Brendler and Van Wyk, 2008). There were 

fifteen reports that P. sidoides had caused hepatotoxicity, however, these claims were queried 

by authors Carmela et al. (2012) and Teschke et al. (2012).  
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Antimicrobial activity 

Pelargonium sidoides has shown activity against Mycobacterium tuberculosis (Mukinda and 

Syce, 2007). The organic extracts of the plant also show activity against S. aureus,                

Streptococcus pneumoniae, E. coli, K. pneumoniae, P. aeruginosa and Haemophilus 

influenzae, with MIC values ranging from 600 – 7,500 µg/ml (Kolodziej, 2011). 

History and commercialisation of the plant 

Pelargonium sidoides was first commercialised in 1898, after which the plant has 

experienced great commercial success throughout the world (Brendler and Van Wyk, 2008). 

Pelargonium sidoides has been central in the treatment in GI and respiratory illnesses for 

decades in a large population of southern Africa (Kolodziej, 2011). It is a highly valued plant 

in traditional healing practices, not only for its’ curative properties, but for its’ palliative 

effects too (Kolodziej, 2011). The plant was initially marketed as a treatment in tuberculosis 

infections. Currently, the plant is mainly used in the treatment of the respiratory infection, 

bronchitis, as well as for GI complaints. It has been marketed as a tincture of the roots (Van 

Wyk, 2011). The plant has not only gained popularity in southern Africa, but in European 

countries too (Kolodziej, 2011).  

 

 

 

 

 

 

 

 

 

 



176 
 

Appendix F.7. 

Sutherlandia frutescens (L.) R. Br. 

          

Family name 

Fabaceae 

Vernacular names 

cancer bush (English) 

kankerbos (Afrikaans) 

 

 

 

Figure F.7.1. Sutherlandia frutescens [Photograph by Prof. S.F. Van Vuuren (WITS)]. 

Botanical description  

It is a small shrub growing up to a metre in height. The leaves are hairy, with a silvery 

appearance. Flowers are large and bright red in colour (Van Wyk et al., 2009). 

Geographical distribution 

The plant only occurs naturally in the southern parts of Africa (Van Wyk et al., 2009).  

Traditional medicinal use 

General health tonic and immunity booster (Crouch et al., 2006), respiratory infections 

(chronic bronchitis, colds, influenza), UTI’s, wounds, eye infections, GI complaints, 

gynaecological problems, rheumatism, backache, fever, oedema, diabetes, stress, internal 

cancer and septicaemia
 
(Watt and Breyer-Brandwijk, 1962; Drewes et al., 2006; Van Wyk 

and Albrecht, 2008; Van Wyk et al., 2009; Van Wyk, 2011). 

Plant parts used 

Leaves (Van Wyk et al., 2009). 
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Dosage form and route of administration 

Strong decoctions or alcoholic tinctures made from leaves are used internally as well as 

externally
 
(Van Wyk et al., 2009). Aqueous infusions are also prepared and used as an 

antiseptic wash, eye wash or douche. Whole fruit are also sometimes consumed for GI 

complaints (Scott and Springfield, 2004b). Products available on the market include cancer 

bush capsules and tea from Medico Herbs, Western Cape (Figure F.7.2). 

 

 

 

 

 

 

 

Figure F.7.2. Commercial products containing S. frutescens. A = Cancer bush capsules 

(Medico Herbs, 2009e); B = Cancer bush tea bags (Medico Herbs, 2009f). 

Adverse reactions or toxic effects 

The long history of traditional use, with no reports on any serious adverse effects has led to 

the belief that S. frutescens is generally safe (Van Wyk and Albrecht, 2008). The South 

African Ministry of Health stated that S. frutescens was safe to use, based on primate safety 

studies (Mills et al., 2005). Excessive amounts of plant consumption can cause emesis. 

Moderate use can result in sweating and mild purgation (Scott and Springfield, 2004b). No 

cytotoxicity was observed when S. frutescens ethanolic extracts were tested against CA-9KB 

cell lines at a concentration of 20 µg/ml (Charlson, 1980). When S. frutescens aqueous 

extract was tested at 100 µg/ml for cytotoxicity against three human cancer cell lines, namely 

DU-145 (prostate cancer cells), MDA-MB-231 (breast cancer cells) and MCF-7 (breast 

cancer cells), no pronounced cytotoxicity was exhibited (Steenkamp and Gouws, 2006).  

 

A 

B 
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Antimicrobial activity 

Sutherlandia frutescens hexane extract shows activity against S. aureus (MIC of 300 µg/ml), 

E. faecalis (1.25 mg/ml) and E. coli (2.50 mg/ml) (Katerere and Eloff, 2005). Activity also 

extends to other staphylococcal species. Anti-HIV activity has also been documented (Fu et 

al., 2008). No activity has been seen against P. aeruginosa and C. albicans (Scott and 

Springfield, 2004b).  

History and commercialisation of the plant 

Sutherlandia frutescens is a very old Cape remedy. The medicinal properties were initially 

discovered by the Khoi and Nama people (Van Wyk et al., 2009). It has been used by the 

Khoi-San and Cape Dutch people since 1895 for internal cancers (Van Wyk and Albrecht, 

2008). Plantations were initially established in the late 1990s (Van Wyk, 2011), where only 

small-scale cultivation and commercialisation took place in the Cape Province (Drewes, 

2012). The first branded products available were tablets prepared from powdered leaves. 

Phyto Nova (Pty) was responsible for the large-scale cultivation of S. frutescens (Van Wyk, 

2011; Drewes, 2012). The plant is usually sold commercially as dried leaves or as a strong 

tincture, known as “cancer bush” or “kankerbos” (Van Wyk et al., 2009) and has recently 

gained popularity due to its’ beneficial effects seen in HIV/AIDS patients in South Africa 

(Katerere and Eloff, 2005).  
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Appendix G 

Antimicrobial agents investigated in this study 

 

Appendix G.1. 

Ciprofloxacin 

 

Figure G.1. Ciprofloxacin chemical structure (Katzung et al., 2009). 

Class of antimicrobial  

Fluoroquinolone (Katzung et al., 2009; SAMF, 2012). 

Mechanism of action 

The antibiotic inhibits DNA gyrase, thereby interfering with DNA reproduction of the 

microbe (Merck Manual, 2006). 

Medicinal uses 

UTI’s, respiratory tract infections, GIT infections, STI’s, skin, bone and soft tissue infections. 

It is also the drug of choice for typhoid fever (SAMF, 2012).  

 



180 
 

Dosage form and route of administration 

Ciprofloxacin can be administered orally, intravenously (IV), parenterally or topically in eye 

preparations (Merck Manual, 2006). 

Products available on the market 

Ciprobay
®

 tablets or IV formulations by Bayer Schering. Aspen Ciprofloxacin
®
 tablets, 

Cipro-Hexal
®
 tablets by Arrow Pharma, Cliploxx

®
 tablets by Cipla Medpro, Cifloc

®
 tablets 

by Dr Reddy’s and Sabax Ciprofloxacin
®
 IV from Specpharm (SAMF, 2012).    

Adverse reactions or toxic effects 

Ciprofloxacin rarely demonstrates toxic effects, however, the most common effects include 

GI effects, CNS toxicity, along with damaging effects on cartilage, and cardiovascular system 

(CVS) toxicity, via the prolonging of the QT interval (Merck Manual, 2006). It can also cause 

damage to cartilage in the foetus and should be avoided in pregnancy (SAMF, 2012).  

Antimicrobial spectrum 

It is highly active against Gram-negative micro-organisms, particularly against Pseudomonas 

aeruginosa, Enterobacteriaceae, Haemophilus species, Legionella and Neisseria species 

(Merck Manual, 2006), with moderate to good activity against Gram-positive bacteria 

(Katzung et al., 2009).  

Resistance toward antimicrobial 

In the 1980s, resistance of microbes toward fluoroquinolones increased rapidly. It was 

estimated that in a New York City tertiary hospital, that more than 80% of MRSA strains 

were resistant toward the fluoroquinolones (Swartz, 1994). Resistance to this antibiotic has 

developed among the Gonococcus species, rendering this antibiotic ineffective in the 

treatment of gonorrhoea (SAMF, 2012). There has also been the emergence of 

fluoroquinolone-resistant S. aureus, where the microbe has developed a reduced sensitivity of 

the DNA gyrase toward the antibiotic or via a reduced permeability of the microbe toward 

ciprofloxacin. Another mechanism by which the bacteria develop resistance toward 

ciprofloxacin is via an increased efflux of the antibiotic. Point mutations in the quinolone 

binding areas result in high-level resistance (Merck Manual, 2006; Katzung et al., 2009). 
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Appendix G.2. 

Erythromycin 

 

Figure G.2. Erythromycin chemical structure (Katzung et al., 2009).  

Class of antimicrobial 

Macrolide (Katzung et al., 2009; SAMF, 2012). 

Mechanism of action 

The antibiotic inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit 

(Merck Manual, 2006).  

Medicinal uses 

Sexually transmitted infections, respiratory tract infections caused by Gram-positive bacteria, 

including whooping cough and pneumonia caused by Legionella species. It is also used as an 
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alternative to penicillin, in the treatment of Gram-positive infections, where a penicillin 

allergy exists (Merck Manual, 2006; SAMF, 2012). 

Dosage form and route of administration 

The antibiotic can be administered orally, parenterally or IV (Merck Manual, 2006; SAMF, 

2012). 

Products available on the market 

Purmycin
®
 capsules and suspension by Aspen Pharmacare, Adco-Erythromycin

®
 capsules or 

suspension, Betamycin
®

 suspension from Ranbaxy, Erymycin
®
 suspension or capsules by 

Aspen Pharmacare and lastly Erythrocin
®
 IV from Pharmaco (SAMF, 2012).  

Adverse reactions or toxic effects 

Erythromycin can show GI effects, CVS toxicity, along with hepatotoxicity and auditory 

toxicity (Merck Manual, 2006; Katzung et al., 2009).  

Antimicrobial spectrum 

It is active against Gram-positive microbes, particularly pneumococci, streptococci, 

staphylococci and corynebacteria (Katzung et al., 2009). It has some anaerobic activity and 

has a very limited Gram-negative activity. It is active against Bordatella pertussis, Legionella 

species, Chlamydia species, Campylobacter species, Rickettsia species, as well as some 

Mycobacteria species (Merck Manual, 2006; Katzung et al., 2009).  

Resistance toward antimicrobial 

Resistance toward this agent has become common among streptococcal species (SAMF, 

2012). Resistance has also been seen among staphylococcal species, where for example, S. 

aureus is capable of developing resistance via increased antibiotic efflux activity (Merck 

Manual, 2006). Resistance has been found to be mainly plasmid-mediated and also inducible, 

where the binding site for the antibiotic is altered (Swartz, 1994; Katzung et al., 2009).  
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Appendix G.3. 

Gentamicin

 

Figure G.3. Gentamicin chemical structure (Katzung et al., 2009). 

Class of antimicrobial 

Aminoglycoside (Katzung et al., 2009; SAMF, 2012).     

Mechanism of action 

The antibiotic inhibits bacterial protein synthesis by binding to the 30S ribosomal subunit 

(Merck Manual, 2012).  

Medicinal uses 

It is used for the treatment of serious Gram-negative infections, such as sepsis and 

pneumonia. It is mainly used in combination with another antimicrobial agent (Katzung et al., 

2009). 
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Dosage form and route of administration 

Aminoglycosides are usually given IV at a very slow rate. These agents can also be injected 

directly into the eye or brain (Merck Manual, 2006). Gentamicin has also been used 

intramuscularly and topically for wounds and eye infections (Katzung et al., 2009).  

Products available on the market 

Garamycin
®
 for injection by Schering-Plough, Aspen Gentamicin

®
 and Sandoz Gentamicin

®
 

for injection, Gentamycin-Fresenius
®

 for injection by Fresenius Karbi and Sabax Gentamix
®
 

IV by AI Critical Care (SAMF, 2012).  

Adverse reactions or toxic effects 

All aminoglycosides produce renal toxicity, which is usually reversible, and ototoxicity 

which can often be irreversible. The risk for toxicity is increased with larger doses, longer 

durations of therapy, more frequent dosing, all resulting in higher blood levels (Merck 

Manual, 2006). Aminoglycosides can also cross the placenta and cause toxicity in the foetus, 

therefore should be avoided during pregnancy. CNS toxicity and blood component toxicity 

has also been noted (SAMF, 2012).  

Antimicrobial spectrum 

This agent is active against most Gram-negative aerobic micro-organisms and is therefore 

very often first line treatment for serious Gram-negative infections, especially those caused 

by P. aeruginosa. It is, however, ineffective against anaerobes (Merck Manual, 2006). It is 

active against some Gram-positive microbes, which is limited to strains of staphylococci 

(Katzung et al., 2009).  

Resistance toward antimicrobial 

Resistance of nosocomial infections toward gentamicin has become common, since it has 

been used in many hospitals and clinics as the standard aminoglycoside (SAMF, 2012). Some 

Gram-negative Bacilli species and methicillin-resistant staphyloccoci have shown resistance. 

Resistance of the Enterococcus species toward gentamicin has also resulted, due to the 

production of inactivating enzymes (Merck Manual, 2006).  
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Appendix G.4. 

Penicillin G (Benzylpenicillin) 

 

Figure G.4. Penicillin G potassium chemical structure (Katzung et al., 2009).  

Class of antimicrobial 

Beta-lactam (Katzung et al., 2009; SAMF, 2012).  

Mechanism of action 

The antibiotic inhibits bacterial cell wall synthesis (SAMF, 2012). 

Medicinal use 

It is used in the treatment of streptococcal tonsillitis or pharyngitis and other respiratory tract 

infections, endocarditis and meningitis, caused by sensitive micro-organisms, syphilis and 

gangrene (Merck Manual, 2006; SAMF, 2012).  

Dosage form and route of administration 

Benzylpenicillin is administered as a deep intramuscular injection (Merck Manual, 2006) and 

intravenously (SAMF, 2012).  

Products available on the market 

Benzyl Penicillin-Fresenius
®
 by Bodene, and Bio-Pen

®
 by Biotech (SAMF, 2012). 
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Adverse reactions or toxic effects 

Penicillin most commonly causes hypersensitivity effects, including anaphylaxis. The 

antibiotic causes CNS toxicity at high doses and all penicillins cause nephritis and have some 

toxic effects on the blood components (Merck Manual, 2006). 

Antimicrobial spectrum 

Penicillin has a very narrow-spectrum of activity, which is mainly limited to Gram-positive 

micro-organisms. It is still the first choice for the treatment of Gram-positive infections, as 

well as anaerobes. Enterococci are less susceptible to penicillin G, thus a combination with an 

aminoglycoside is often needed to enhance its efficacy, for example, in the treatment of 

enterococcal endocarditis (SAMF, 2012). It is also active against Gram-negative cocci, 

however, it is less active against Gram-negative rods (Katzung et al., 2009).    

Resistance toward antimicrobial 

Resistance to penicillin is a common occurrence. Resistance is due to either the inactivation 

of the antibiotic by the β-lactamases produced by the microbes, or by modification of the 

target site, impaired penetration of the drug or via the increased efflux of the antibiotic 

(Katzung et al., 2009; Merck Manual, 2006). Around 90 – 95% of S. aureus strains have been 

found to be resistant toward penicillin (Hemaiswarya et al., 2008).  
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Appendix G.5. 

Tetracycline 

 

Figure G.5. Tetracycline chemical structure (Katzung et al., 2009).  

Class of antimicrobial 

Tetracycline (Katzung et al., 2009; SAMF, 2012).  

Mechanism of action 

The antibiotic is a bacterial protein synthesis inhibitor and binds to the 30S ribosomal subunit 

(Merck Manual, 2006).  

Medicinal use 

Tetracycline is used in the treatment of Rickettsia and Chlamydia infections and also in 

chronic bronchitis, acne and infections caused by spirochetes (SAMF, 2012). It is used in 

combination regimens against Helicobacter pylori. It is also active against bacterial Vibrio-

related infections (Katzung et al., 2009).  

Dosage form and route of administration 

Tetracyclines are orally administered (Merck Manual, 2006).  
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Products available on the market 

There are no products available in South Africa containing tetracycline, but only products 

containing its derivatives. Elsewhere though, Hostacycline
®
 capsules by Aventis and 

Tetracycline HCL
®
 capsules by IVAX are available. 

Adverse reactions or toxic effects 

Tetracyclines can demonstrate hepatotoxicity, GI effects, photosensitivity and damaging 

effects on bone and teeth in children (Merck Manual, 2006). Renal toxicity can occur with 

the use of out-dated tetracycline preparations (Katzung et al., 2009).  

Antimicrobial spectrum 

Tetracyclines have a broad-spectrum activity, with activity ranging from Gram-positive and 

Gram-negative micro-organisms, to atypical pathogens and parasites (Chopra and Roberts, 

2001). It is first line therapy for Chlamydia infections, and is also used in the treatment of 

Propionibacterium acnes, rickettsiae, H. pylori and Vibrio cholerae (Katzung et al., 2009).  

Resistance toward antimicrobial 

Tetracyclines were used extensively, due to their low adverse effects and desirable 

antimicrobial activity. However, their extensive use has led to development of resistance. 

There has been increased resistance toward this agent, for example, S. aureus has been found 

to develop resistance toward tetracycline via increased efflux pump activity (Merck Manual, 

2006). The identification of the resistance mechanism allowed for the development of newer 

tetracyclines to which no resistance has developed. Tetracyclines have also been combined 

with agents which demonstrate an inhibitory effect toward the resistance mechanisms of 

micro-organisms, which has rendered the old tetracyclines active once more (Chopra and 

Roberts, 2001). Resistance of staphyloccoci toward tetracyclines has been attributed to the 

mechanism by which microbes are able to synthesise new membrane protein, which then 

prevents the accumulation of the antibiotic in the microbial cell (Swartz, 1994). Katzung et 

al. (2009) describes three mechanisms by which tetracyclines develop resistance, which 

includes increased efflux or impaired influx, ribosome protection due to proteins interfering 

with binding to the ribosomes and lastly enzymatic inactivation of the antibiotic.  
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Appendix G.6. 

Amphotericin B 

 

Figure G.6. Amphotericin B chemical structure (Katzung et al., 2009). 

Class of antimicrobial 

Polyene antifungal (Katzung et al., 2009; SAMF, 2012).  

Mechanism of action 

The antifungal binds to sterols, such as ergosterol, in the cell membrane of the fungal species 

and affects the fungal cell membrane integrity (SAMF, 2012). 

Medicinal use 

It is used for treating opportunistic micro-organisms such as mycoses which has spread 

systemically, for example, candidiasis, cryptococcosis and histoplasmosis (SAMF, 2012). It 

can be used in the treatment of most fungal infections (Merck Manual, 2006).  

Dosage form and route of administration 

Amphotericin B is administered intravenously or sometimes even intrathecal therapy for 

meningitis (Merck Manual, 2006). Local and topical administration has also shown success 

for the treatment of eye infections (Katzung et al., 2009).  
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Products available on the market 

Fungizone
®
 IV from BM Squibb and Ambisone

®
 IV from Key Oncologics (SAMF, 2012). 

Adverse reactions or toxic effects 

Amphotericin B has a very high level of toxicity, however, it is still the standard treatment for 

severe systemic mycoses. Renal toxicity is the most common toxic effect and renal 

functioning needs to be monitored throughout treatment. GI effects, hepatotoxicity, CVS 

toxicity and auditory and visual effects have also been noted (Merck Manual, 2006). 

Infusion-related reactions include headache, vomiting, fever, chills, muscle spasms and 

hypotension (Katzung et al., 2009).  

Antimicrobial spectrum 

Cryptococcus species, Candida species, Histoplasma capsulatum, Aspergillus species, 

Blastomyces dermatitidis. It is also used for sporotrichosis and leishmaniasis (Merck Manual, 

2006; Katzung et al., 2009).  

Resistance toward antimicrobial 

Resistance toward amphotericin B is rare; however, an increase in resistance has occurred 

recently. This may be due to the large proportion of the population being 

immunocompromised, mainly due to the prevalence of HIV/AIDS, but also due to 

chemotherapy. The resistance has been reported against Candida and Cryptococcus species 

(O’Shaughnessy et al., 2009). The mechanism of resistance toward amphotericin B is mainly 

via the alteration of membrane lipids, particularly ergosterol, of the fungal species (Vanden 

Bossche et al., 1998). The result of impaired ergosterol binding can be due to a decreased 

membrane concentration of ergosterol or via the modification of the sterol target causing a 

reduced affinity for amphotericin B (Katzung et al., 2009).   
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Appendix G.7. 

Nystatin 

 

Figure G.7. Nystatin chemical structure (Katzung et al., 2009).  

Class of antimicrobial 

Polyene antifungal (Katzung et al., 2009; SAMF, 2012).  

Mechanism of action 

The antifungal binds to sterols, such as ergosterol, in the cell membrane of the fungal species 

and affects the fungal cell membrane integrity (SAMF, 2012). 

Medicinal use 

It is only used for cutaneous and mucocutaneous candidal infections and is not effective for 

systemic infections or infections caused by dermatophytes (Merck Manual, 2006). 

Dosage form and route of administration 

Nystatin can be administered vaginally and also has a mouth rinse, however, cannot be 

administered IV due to the toxicity profile (Katzung et al., 2009; SAMF, 2012). Suspensions 

can also be orally ingested for GI infections, however, is often limited due to the unpleasant 

taste (Katzung et al., 2009).  
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Products available on the market 

Canstat
®
 cream or vaginal tablets from Aspen Pharmacare, Nystacid

®
 ointment or suspension 

from Aspen Pharmacare, Mycostatin
®

 suspension from BM Squibb and Candacide
®
 from 

Ranbaxy (SAMF, 2012). 

Adverse reactions or toxic effects 

Nystatin can cause GI effects, skin rashes, facial swelling, myalgia and bronchospasm. Some 

cardiotoxicity has also been noted (Merck Manual, 2006). It cannot be used for parenteral 

administration due to its toxicity. Little toxicity would occur with oral ingestion due to the 

minimal absorption from the GIT (Katzung et al., 2009).  

Antimicrobial spectrum 

It is active against most Candida species (Katzung et al, 2009). 

Resistance toward antimicrobial 

Resistance toward nystatin has also only recently developed, similarly as seen with 

amphotericin B. The mechanism of action, as with amphotericin B, is related to the alteration 

of the membrane lipids, such as ergosterol, which is the binding site for polyenes (Dick et al., 

1980).   
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Appendix H 

Ethics clearance certificate for microbial cultures
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Appendix I 

Ethics clearance certificate for HEK-293 cell line
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Appendix J 

Chemotherapeutic agents in toxicity studies     

 

Appendix J.1. 

Quinine 

 

Figure J.1.  Chemical structure of quinine (Katzung et al., 2009).  

Class of drug 

Antiprotozoal (antimalarial) (Katzung et al., 2009).  

Mechanism of action 

The mechanism of action is unknown, however, it is known to have effective blood 

schizonticide activity against the four species if malarial parasites affecting humans. It is also 

gametocidal against Plasmodium vivax and Plasmodium ovale (Katzung et al., 2009). 
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Medicinal uses or spectrum of activity 

Quinine is active against all four species causing malaria in humans, namely Plasmodium 

falciparum, P. vivax, P. ovale and Plasmodium malariae. It has been used as first-line 

treatment for P. falciparum malaria, and is highly effective in the treatment of severe disease. 

It is also used in the treatment of babesial infections, particularly infections caused by 

Babesia microti (Katzung et al., 2009). 

Dosage form and route of administration 

Quinine can be administered orally as tablets for uncomplicated malaria, or as an IV infusion 

for severe malaria. It is also administered intramuscularly (SAMF, 2012).  

 Products available on the market 

Quinine Dihydrochloride-Fresenius
®
 for IV administration and Lennon-Quinine Sulphate

®
 

tablets by Aspen Pharmacare (SAMF, 2012). 

Adverse reactions or toxic effects 

Adverse effects that commonly occur at therapeutic dosages, known as cinchonism, include 

tinnitus, headache, nausea, dizziness, flushing and visual disturbances. Hypersensitivity 

reactions have also occurred, such as skin rashes, urticarial, angioedema and bronchospasm. 

Hypoglycaemia is also common with therapeutic doses. Severe hypotension has also resulted 

from rapid IV infusion of the drug. Toxic haematological effects include haemolysis, 

leukopenia, agranulocytosis and thrombocytopenia. Quinine can also cause uterine 

contractions, particularly in the third trimester. Even so, it is still the drug of choice for severe 

P. falciparum malaria in pregnancy. The toxicity related to the quinine therapy has been said 

to complicate therapy (Katzung et al., 2009). Use is cautioned in renal and hepatic 

impairment (SAMF, 2012).   

Resistance toward the drug 

Resistance toward quinine is uncommon in South Africa, however, may be on the increase. In 

South-east Asia, resistance has developed in many areas (Katzung et al., 2009).   
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Appendix J.2. 

Camptothecin 

 

Figure J.2. Chemical structure of camptothecin (Katzung et al., 2009).  

Class of drug 

Topoisomerase inhibitor (antineoplastic) (SAMF, 2012). 

Mechanism of action 

It inhibits the activity of topoisomerase I and II, resulting in the damage of DNA which 

inhibits replication (Merck Manual, 2006; Katzung et al., 2009).  

Medicinal use 

This agent is used as second-line treatment of advanced ovarian cancer and small cell lung 

cancer. Its prodrug is used as first-line therapy for metastatic colorectal cancer, when 

combined with 5-fluoruracil and leucovorin (Katzung et al., 2009).  

Dosage forms and route of administration 

The drug is only available for IV administration, as either a concentrate or a powder to be 

reconstituted (SAMF, 2012). 
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Products available on the market 

Campto
®
 by Pfizer, Accord-Irinotecan

®
 by Mylan and Sandoz Irinotecan

®
 are all IV 

preparations containing irinotecan. Hycamtin
®
 by GlaxoSmithKline is a powder of topotecan, 

which is reconstituted for IV infusion (SAMF, 2012). 

Adverse reactions or toxic effects 

Myelosuppresion and diarrhoea are the common adverse effects associated with this drug. 

Delayed diarrhoea can be life-threatening, especially in neutropenic patients. Therefore, 

careful monitoring and hydration is needed (Katzung et al., 2009; SAMF, 2012). Alopecia is 

also associated with irinotecan use (Merck Manual, 2006).  


