Investigating the effect of gold-palladium bimetallic nanoparticles on TiO₂ and the catalytic activity in CO oxidation.

By

Nthabiseng Ntholeng

Submitted in fulfilment of the requirements for the degree of Master of Science in the Faculty of science

> Department of Chemistry University of the Witwatersrand Private Bag X03 Wits 2050

DECLARATION

I declare that the study titled "Investigating the effect of gold-palladium bimetallic nanoparticles on TiO_2 and the catalytic activity in CO oxidation is my own, unaided work submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted for any degree or examination in any other University, and all sources used or quoted here have been indicated and acknowledged by means of references.

Name: Nthabiseng Ntholeng (Ms)

Date:30 May 2012

Signature:

Abstract

In recent years, studies have shown that supported Au catalysts have high activity for CO oxidation at low or ambient temperatures. However, the activity of these catalysts is dependent on a lot of synthesis conditions as reproducibility of small sized gold particles is hard. In this study supported Au catalysts were prepared via deposition precipitation-method (DP). The small sized Au particles were supported on TiO₂ (P25). The suitable synthesis conditions such as pH, aging, metal loading and catalyst pre-treatment were investigated in order to obtain optimum synthesis conditions. The catalysts were characterized with TEM, XRD, and HRTEM. It was found that 3.7 nm Au particles were best synthesized when Au metal loading is 3% at pH 8 and aged for 72 h. The suitable calcination temperature was 200 °C. It was found that the Au particle size was 4.5 nm when Au was supported on SiO₂ thus making TiO₂ a suitable support.

Bimetallic catalyst was synthesized via DP where Pd metal was incorporated as the second metal. It was found that the type of bimetallic formed was heterostructed where both metals where separately attached on the support. The interatomic distance measured from HRTEM results confirmed that both metal were individually attached on the support. XRD results showed that there was no Au-Pd alloy phase or PdO confirming that the Pd metal on the support was indeed in metallic form.

Carbon monoxide (CO) oxidation reactions were undertaken in a tubular glass flow reactor. The monometallic Au catalyst showed superior activity at 200 °C with almost 100% CO conversion. It was also observed that the activity of these catalyst decreased as temperature increased. The CO-TPD studies showed that as temperature increased there was a low CO adsorption due to a decrease in adsorption sites. Varying Pd composition in the bimetallic catalyst did not enhance catalytic activity. However, 25Au75Pd catalyst showed a better conversion as compared to other Au-Pd catalysts. Temperatures studies on bimetallic catalysts showed that as temperature increased there was a decrease in activity. The observed decrease could be attributed to catalyst formation of large particle aggregates. It was also

assumed that the low activity was due to how these catalysts were prepared as there was no surfactant utilized during preparation.

DEDICATION

TO MY LATE MOTHER THAKANE SHEILA NTHOLENG

Acknowledgements

I would like to thank my supervisors Professor Michael Scurrell and Dr P. Franklyn for their advice and guidance in this research. I am grateful to Mintek and NRF for funding the project. I also thank the department of chemistry, University of the Witwatersrand for giving me the opportunity to conduct this research in their premises.

A special thanks to Ahmed Shaikjee, Mahalieo Kao and Themba Tshabala, you guys were a great help. To Basil Chassaullous, thank you for your help, you taught me a lot. Special thanks to my co-researchers in CATOMAT. Last but not least God Almighty.

Table of contents

Declaration	ii
Abstract	iii
Dedication	iv
Acknowledgements	V
Table of contents	vi
List of figures	ix
List of tables	xii
Abbreviations	xiii
Acknowledgements	XV
Chapter 1	1
1.1 Introduction	1
1.2 Intrinsic properties of gold nano-particle	2
1.2.1 Crystal structure and morphology	2
1.2.2 Electronic structure	5
1.2.3 Melting Point	7
1.3 Mechanism of Catalysis	9
1.3.1 The active perimeter model	11
1.3.2 The geometric model	14
1.3.3 Active electronic model	16
1.4 Factors affecting catalytic activity	
1.4.1 Quantum size effects	
1.4.2 Cluster size effects	20
1.4.3 Moistures effects	21
1.4.4 Support effects	22
1.4.4.1 Effect of the particle size of the support	22
1.4.4.2 Effect of the particle morphology of the support	24

1.4.4.3.1 Pre-modification of the support	26
1.4.4.3.2 Post-modification of the supported catalysts	29
1.4 Deactivation of gold catalysts	31
1.5 Bimetallic systems	32
1.5.1 Platinum Group Metals	34
1.6 Motivation	35
1.7 The objective of the study	36
1.8 References	37

Chapter 2	46
2.1 Catalyst preparation	46
2.1.1 Experimental materials	47
2.1.2 Preparation of Au/TiO ₂	47
2.1.3 Preparation of Au-Pd/TiO ₂	48
2.2 Characterization Techniques	48
2.2.1 TEM and HRTEM	49
2.2.2 XRD analysis	49
2.2.3 ICP-OES analysis	49
2.2.4 Nitrogen Adsorption (BET) analysis	50
2.2.5 TPD analysis	50
2.3 Catalytic evaluation	50
2.4 Calculations	51
2.5 References	

Chapter 3	53
3.1 Introduction	53
3.2 Catalyst synthesis	55
3.3 Catalyst characterization	55
3.3.1 The effect of Au content	55
3.3.2 The effect of pH	60
3.3.3 The effect of calcination temperature	64
3.3.4 The effect of aging	68
3.3.5 The effect of support on particle size	71
3.4 Bimetallic Au-Pd/TiO ₂ catalysts	76
3.5 References	86

Chapter 4	90
4.1 Introduction	90
4.2 Catalytic measurements	
4.3 Results and discussion	93
4.3.1 Temperature studies of Au/TiO ₂	93
4.3.2 CO oxidation over Au-Pd/TiO ₂	100
4.3.2.1 CO oxidation over Au-Pd/TiO ₂ with various Au and Pd loading	101
4.3 2.2 Temperature studies of 25Au75Pd catalyst	105
4.4 Conclusion	106
4.5 References	107

Chapter 5	
5.1 Conclusions	
5.2 Future work	

List of figures

Figure	Figure title	Page
1.1	Schematic presentation truncated octahedron, icosahedron, Marks	3
	decahedron and cuboctahedron	
1.2	Approximate size of nominally spherical and hemispherical clusters	5
1.3	Reduction of melting point with a decrease in size of gold nanoparticles	8
1.4	Schematic geometry of TiO ₂ (110) surfaces	10
1.5	CO oxidation reaction pathways of the Au on TiO ₂ catalyst	12
1.6	A representation of the oxidation of carbon monoxide at the periphery of an	14
	active gold particle on metal oxide support	
1.7	Binding energy of different oxygen species plotted against coordination	16
	number of the Au atoms	
1.8	Activity for CO oxidation at room temperature as a function of Au	19
	coverage above the monolayer TiO_x on Mo (112)	
1.9	Structure of the peroxo-type CO-O ₂ complex and final state for CO	20
	oxidation	
1.10	Size dependence of CO oxidation activity	20
1.11	Atomic configurations displaying several stages in the simulation of the	21
	coadsorption of H_2O and O_2 on the top facet of a Au ₈ cluster supported on	
	MgO(100)	
1.12	The modification of mesoporous SiO_2 by TiO_2 using a surface-sol-gel	27
1.10	approach	20
1.13	Schematic representation of the ALD of amorphous SiO_2 onto Au/ IiO_2	30
1.14	Bimetallic Nano Crystals with different structures	33
2.1	Schematic representation of the reactor used for CO oxidation	51
3.1	Relative equilibrium concentration of gold complexes as a function of the	54
2.0	pH of the solution	67
5.2a	1 EW images and average particles size distribution of Au/11O ₂ catalysts with 10° catalysts	57
2.26	With 1% gold loading.	57
5.20	vith 3% gold loading	57
3.30	TEM images and average particles size distribution of Au/TiO, catalysts	58
5.50	with 5% gold loadings	50
3.2d	TEM images and average particles size distribution of Au/TiO_{2} catalysts	58
J.20	with 8% gold loadings	50
3.2e	TEM images and average particles size distribution of Au/TiO ₂ catalysts	59
0.20	with 10% gold loadings	
3.3	XRD patterns of Au/TiO ₂ catalysts with various Au loading	61
2 4 0	TEM images and every so particles size distribution of Au/TiO activity of	62
5.4a	1 EIVI images and average particles size distribution of Au/11O ₂ catalysts at	05

3.4b

3.4c

3.4d

3.5

3.6a

3.6b

3.6c

3.6d

3.7

3.8a

3.8b

3.8c

3.9 3.10a

3.10b

	with pH 9	
3.11a	HRTEM image and XRD pattern of Au/SiO ₂ catalyst of pH 7	76
3.11b	HRTEM image and XRD pattern of Au/SiO ₂ catalysts of pH 9	76
3.12	XRD analysis of Au-Pd/TiO ₂ catalysts with various metal loading	79
3.13a	TEM micrograph and particle size distribution of 90Au10Pd catalyst	81
3.13b	TEM micrograph and particle size distribution of 75Au25Pd catalyst	81
3.13c	TEM micrograph and particle size distribution of 50Au50Pd catalyst	82
3.13d	TEM micrograph and particle size distribution of 25Au75Pd catalyst	82
3.14	HRTEM micrographs of a) 69Au20Pd b) 48Au47Pd c) 22Au71Pd	83
3.15a	EDX spectra and HRTEM image of a 75Au25Pd catalyst	84
3.15b	EDX spectra and HRTEM image of a 50Au50Pd catalyst	84
3 15c	EDX spectra and HRTEM image of a 25Au75Pd catalyst	85

3.16	HRTEM image of a top half truncated octahedron particle with lattice	86
	spacing of 3.84 A	
3.17	HRTEM image of a particle spherically attached onto the support with	87
	lattice spacing of 2.68 Å	
3.18	HRTEM image of coagulating particles	88
4.1	CO oxidation activity as a function of time on stream on Au-TiO ₂ catalyst	96
	at various temperatures.	
4.2	CO-TPD profile of Au/TiO ₂ catalyst	97
4.3a	TEM image and particle size distribution of Au/TiO ₂ catalyst prior catalytic	99
	evaluation	
4.3b	TEM image and particle size distribution of Au/TiO ₂ catalyst after catalytic	99
	evaluation at temperature 300 °C	
4.3c	TEM image and particle size distribution of Au/TiO ₂ catalyst after catalytic	100
	evaluation at temperature 400 °C	
4.3d	TEM image and particle size distribution of Au/TiO ₂ catalyst after catalytic	100
	evaluation at temperature 500 °C	
4.3e	TEM image and particle size distribution of Au/TiO ₂ catalyst after catalytic	101
	evaluation at temperature 600 °C	
4.4	Graph of % CO Conversion vs particles size at 300 min	101
4.5	CO oxidation activity as a function of time on stream on Au-Pd/TiO ₂	104
4.6	CO-TPD profiles of Au/TiO ₂ and Au-Pd/TiO ₂ catalysts	105
4.7a	TEM image and particle size distribution of 75Au25Pd catalyst after	106
	catalytic evaluation at temperature 200 °C	
4.7b	TEM image and particle size distribution of 25Au75Pd catalyst after	106
	catalytic evaluation at temperature 200 °C	
4.8	CO oxidation activity as a function of time on stream on 25Au-75Pd/TiO ₂	108
	at various temperatures	
1		

List of tables

Table	Table title	Page
2.1	The conditions studied for optimum preparation of supported gold catalysts	47
3.1	Properties of prepared catalysts of various Au wt% with experimentally	59
	determined surface areas and average particle size	
3.2	Properties of prepared catalysts with 3% (theoretical loading) showing	62
	experimentally determined surface areas and average particle size	
3.3	Properties of the catalysts calcined at various temperatures	69
3.4	Properties of catalysts with various aging period	73
3.5	Properties of the Au/SiO ₂ prepared catalysts of various pH	77

ABBREVIATIONS

UNFCCC	united nations framework convention on climate change
GHG	greenhouse gases
TWC	three-way catalyst
DOC	diesel oxidation catalyst
СО	carbon monoxide
CO ₂	carbon dioxide
PGM	platinum group metal
TCD	thermal conductivity detector
TPD	temperature programmed desorption
TEM	transmission electron microscopy
MTPs	multiply twinned particles
STM	scanning tunnelling miscrosopy
LBH	local barrier height
ER	eley rideal
DFT	density functional theory
НОМО	high occupied molecular orbital
XPS	x-ray photoelectron spectroscopy
TPR	temperature programmed reduction
IEP	isoeletric point
ALD	atomic layer deposition
HAuCl ₄	chloroauric acid; hydrogen tetrachloroaurate
WGS	water gas shift
VA	vinyl acaetate
DP	deposition precipitation method
HRTEM	high resolution electron microscopy
ICP-OES	inductively coupled plasma-optical emission spectrometer
XRD	x-ray diffraction
CVD	chemical vapour deposition
Wt %	weight percentage

GC gas chromatography