ADAPTIVE CONTROL AND PARAMETER IDENTIFICATION

Basil P Rabınowitz

A thesis submitted to the Faculty of Engineering, University
of. Witwatersrand, Johannesburg, in partial fulfillment
of the requirements for the degree of Master of science in Engineering

Johannesbuxg

May 1983

```
R<11 on, thou deep and dark blue Ocean - rol1:
Ten thousand f eets sweep over thee in vain;
Man marss the earth with ruin - his control
StODS with the shore.
```

Lord Eyron
Chille Haroli's nilgrimage cixxax

ABSTRACT

```
The broad theory of adaptive control is introduced, with
mot:vation for using such techniques. The two most popular
techniques, the Model Reference Adaptive controllers (MRAC)
Ind the Self Tuning Controllers (STC) are studied in more
detail.
The MRAC and the STC often lead to identical solutions. The conditions for which these two techniques are equivalent are discussed.
Parameter Adaptation Algorithms (PAA) are required by both the MRA and the STC. For this reason the PAA is examined in some detait. This is initiated by deriving an off-line least-squares PAA. This is then converted into a recursive on-ilne estimator. Using intuitive arguments, the various choices of gain parameter as well as the variations of the baslc form of the algorit'rm are discussed. This includes a warning as to where the pitfalls of such algorithms may lie.
In order to examine the stability of these algorithms, the Hyperstability theorem is introduccd. This requires knowledge of the ropor inequality and strictly positive Real (SPR) furctions. This is introduced initially using intuitive
```

```
energy concepts after which the rigorous mathematical
representa.ion is derived.
```

The Hyperstability Theorem is then used to examine the stability condition for various forms of the paA.

DECLARATION

```
I declare th. this disserta*ion is my own unaided work.
It is being suhmitted for the degree of Mzster of science
in Elecirical Engineering at the univeisiry of the
Witwatersrar.i, Johannesburg. It has not been submitted
jefore for any degree or examination in any other University.
```

R.P.Relmanct

This dissertation is dedicated to my wife suri and to my parents, Nathan and Lorna Rabinowitz with grateful
appreciation for thesr contil sed support and encouragement.
This dissertation is also dedicated to my parents-in-law, Or and Mrs Arnold wo f. with gra eful thanks for Suri.

The author gratefully acknowledges the motivation given by Prol Yoan Lan'au of the Laboratoire d'Automatique, Grenoble, France. Most of the concepts contained in this dissertation were first sommunicated to the author by Prof Landau.
The advice and supervision given by Mr I M Macteod is qratefully acknowledgeu.
The author would lik to thank the CSIR for supporting this researct.
The au'nor would like to express sincere thanks anc
apt tation to Mr. Grace Proudfc those excellent typing speak for 1 tielf.

TABLE OF CONTENTS
CHAPTER PAGE
1 INTRODUCTION TO ADAPTIVE CONTROL 1
1.1 Reasons for Adaptive Control 1
1.2 Com axison of Conventional control 4and Adaptive Coutrol

1. 3 BasıC Adaptive Control Techniques 7
1.3.1 Open-1oop adaptive control 7
1.3.2 Closed-loop adaptive costrol 9
2 MODEL REFERENCE ADAPTIVE CONTROLLERS AND 12
SELF TUNING REGULATORS
2.1 Basi Principles 12
2.1.i On-1ine plant estimation 14
2.1 .2 control 20
2.2 Stochastic Envixonments 23
2.3 Analysis and Design of Adaptive 27
Control Schemes
2.4 Conclusions 28
3 PARAMETER ADAPTATYON ALGORITHMS 29
3.1 The Dff-1ine Least Squares Estimation 29
Algorithm
3.2 Recursive Least Squares (RLS) Parameter 34
Estimation
3.2.1 The RLS algorithm 34
3.2.2 A recursion formula for the 36adaptation gain
3.2.3 Retormulation of the RLS 37 algorithm in terms of a posteriori "rror
CHAPTER PAGE
3.3 The Adaptation Gain $F(k)$ 40
3.4 The Equivalent Feedback System for 47 Representing parameter Adaptation Algorithms
3.5 Conclusion 51
4 STABILITY ANALYSIS 52
4.1 Positive systems 52
4.2 Positivity in Terms of Transfer 58Function
4.3 Discrete Time Positive Systems 62
4.3.1 Definition 62
4.3.2 Discrete linear time invariant 63systems
4.4 Combining SPR Systems 67
4.4.1 Pirallel systems 68
4.4.2 Feedback systems 69
4.4.3 Cascade systems 71
4.5 The Hyp. rstability Theorem of popor 73
4.6 conclusions 74
5 STABILITY OF THE PAA 75
5.1 PAA with $F(k)=I$ 75
5.2 PAA with $E(k)=F$ 83
5.3 Stability of the Gencralized System 86
6 CONCLUSION 92
REFERENCES 93
```
Wh e doing post-doctoral research in the united states of
America, the auti:or attended a workshop in adaptive processina
at Yale U|iversity in May 1J81. Having been involved in
research in Idantiv" filters at the CSIR in Pretoria, it was
thought that this workshop would be most beneficial.
While attending this work hop the author was fortunate to
make the acquaintance of Prof Yoan Landau from France, who
whet the author's apmetite for adaptive contro..
The author was privileged to attend a short course given by
Prof Landau at the University of Callfornia in June 1992.
This dillartation w.u; undertalen in an effort to investigate
```



```
spni:ificillh, the problem of proving stability in non-linear
time varying feedback loopl was to be investigated. This
same probl-m occurs in many ireas, including that of
adaptive filters.
The author expressed sincere thanks to prof Landau for this
inspiration and the introduction to this fascinating field.
Most of the concepts eypressed herein wore introduced to
the author by Prof Landau either at the course or during
```



```
texature, that the author began to see
nathomatical beauty of this ïleld
    1HFHy on Hx,iten along a single theme. It begins
    10 adaptive control and a motivation
        This is followed by a discussion of the Model
    LIve Controllers (MRAC) and the Self Tuning
    Which ire the most commorly used in
        milarities and condit; s of equivalence
```



```
                NH**GAN Adaptation Algoritinm (IAA) this
                il. including various permutations
            Hy al is made to intuitlve thinking
                        |l the mathemmtical prooEs are
\approxigOzGu:
Hy famlin Fhw gtability of thes, algorithms the Hyperstability
Introduced. All the necessary backgrour.d
7. mitha includung tho popov inequality and the stricely
#thl (SPR) condition are developed from the basic
mocr again, an intuitive approach allows for ea.e
compl hension.
```

The Hyperstability theorem is then usfa to ten $2=0$. 9

the PAA from an off-line algorithm to a
algorithm, and then shows under what cond
guarintee 厄unvergence.

LIST OF TABLES

1.1 Conventional control compared to

Adaptive Control
2.1 Duality of MRAC anc Adaptive Estimation

17

IIST OF EGGURES

FIGURE1.1 Generalized Adaptive control Mechanism3
1.2 Conventional versus Adaptive Control 5
1.3 An open Loop Adaptive control 8
1.4 Dual Stoshastic Control 9
2.1 Explicit MRAC 13
2.2 Self Tuning control Princifle 14
2.3 On Line Parameter Estimation 15
2.4 A Sufficiently Rich Input Spectrum is 16required to Distinguish between systems
2.5 General Configuration of the STC 18
2.6 Implicit MRAC 22
2.7 The ARMAX Process 23
2.8 Linear Controller Design in a stochastic 24Environment using an Explicit PredictionReference Model
3.1 Equivalent Feedback Representation for the 49PAA
3.2 Simplified Feedback Block Diagram 50
4.1 Input and Output Definition for the Passive 52system
4.2 Interconnection of Two Passive Systems 54
4.3 Nftgative Feedback Representation of the Two 55Connected Passive systems
4.4 Input and Output for the Generalized System H 57

4. 5	Nyquist Diagram. H_{1} is SPR while H_{2} is not	61
4.6	SPR Input/Output Relationship	61
4.7	Input and Output for the Discrete system	62
4.8	Parallel Configuration of Two passive Systems	68
4.9	Feedoack Confiquration of Two Passive Systems	79
4.10	Cascade Configuration of Two Passive Systems	71
4.11	Second Order Nyquist Plot	72
4.12	Generalized Feedback System	73
5.1	PAA with $F(k)=I$	29
5.2	PAA with $F(k)=F$	83
5.3	Generalized Feedback System	97
5.4	Generalized System with $\lambda^{\prime},(k)=\lambda$	88
5.5	Generallzed system for λ, (k) time varying	99

CHAPTER

INTRODUCTION TO ADAPTIVE CONTROL

```
1.1 Reasons for Adaptive Control
High performance control systems require precis tuning of
the controller. However, in most practi situctions, the
```



```
may occur either because environmental conditinns change or
are unknown, or because we have considered a simplified linear
model for a non-linear system.
An adap ive controller automatically adjusts its parameters
on-llne in such a manner so as to achl ve and maintain an
acceftus7l luvel of p.rformance under the above conditions.
Th, concept of alap=ive control seems to be old, however,
interest in these sygtems has arisen only as recently as the
fifties with significant ievelopment starting in the late
sixties {!}, {!1].
```

```
The "Model Refererce Adaptive Systems" (MRAS) approach will
be considered in detail. This techniq"e may be used for il
adaptive model following control, 2) on-line and real-time
```



```
In the last two methods, the plant being identified or
observed forms the reference molel.
Defini*ion (Iandau (3]) "An adaptive control system measures
a certain index of performance (IP) of the control system
using the inputs, the state. anj the outputs of the adjustable
system. From the comparison of the measured index of
performance ana a set of given ones, the adaptation mechanism
modifies the parameter of the adjustabln system or generates
an aux,l-ary input, in order to malntain the IP close to the
```


FIGURE 1.1 : Gener 11 ized Adaptive Control Mechanism
1.2 Comparisan uf Conventional Control and Adaptive Control
A sonventional controller monitors lise controlled variables
under the effect of disturbances acting on them. Since it
is designed a*siming constant pr ess parameters, its
performance will vary under parameter di turbances.
In adaptiva control, the system contains a feedbeck control
With adjustable parameters. A supplementary loof monitors
the systim performance and adjust the controller parameters
in the presence of parameter disturbances so as to maintain
acceptzble performance (e.g. to maintain a specific damping
ratio.
Figure 1.? 111 ustrates the two systemti. From this figure
Wf can make one-'o-one correspondence betwien the system,
as shown in Thle 1.1.

OBJECTIV: Control of Physical Variables
(a) CONVENTIONAL CONTROL


```
OBJECTIVE: Control of Performance
(b) ADAPTIVE CONTROL
```

TABLE 1.1 : Conventional Control compired to Adaptiv.
control

CONVENTIONAL CONTROL	ADAPTIVE CONTROL
PLANT	ADJUSTABLE SYSTEM
TRANSDUCER	IP MEASUREMENT
REFERENCE INPUT	DESIRED IP
CO:!PARAT OR	COMFARISON = DEEISION
CONTROLLER	

```
TABLE 1.1 : Conventional Control compared to Adaptive
```

control

CONVENTIONAL CONTROL	ADAPTIVE CONTROL
PLANT	ADJUSTABLE SYSTEM
TRANSDUCER	IP MEASUREMENT
REFEREACE INPUT	DESIRED IP
COMPAPATOR	COMPARISON - DECISION
COATROLLEP.	ADAPTATION MECHAN 7

```
1.3 Basic Adaptive Control I'echniques
    Open-loop adaptive control
"hrunatle is alsy known as "gain-scheduling" and is
ten d in aircraft autopilots. It assumes there is a
"rly| zeluctonsh1p" between the environment and the system
par me: The system controller then adapts accordina to
h n renment withour mz.isuring the actual system
```

performance.
His technique will fail if the "environment-system"
5-h onship changes. The system is illustrated in Figure

1. Ihe system is no truly adaptive in terms of our
definition.
it hould bi noted that this method is not necessarily
= hathel.ment than a closed loop system, as transducers
fir vir costly. Plosed loop adaptive systems merely
requil additional computer capabilities.
he liagn. siould nlso br careful not to use adaptive
techniques in situation where a conveniional feedback.
ol troller woulu uEEfr" (where the controller is designed

Uth Hat ny not toosensitive to parameter variations)

1.3.2 Closed-loop adaptive control

(Dual Stochastic Control In dual stochastic control [4], [5], the own parameters are considered as additional states to be estimated. This technique simultaneously tries to reduce b th the control and the estimation error. This is illustrated in Figure 1.4.


```
xe}=\mathrm{ T extended state
n}\mp@subsup{\textrm{n}}{}{T}=\mathrm{ parameter vector
* * state vector
T
FIGURE 1.4 : Dual Stochast 1% Control
```

```
Due mainly to computation requirements, even the
simplified approximations to this technique are ex*remely
complicated and difficult to implement. A simple linear
control problem with one unknown parameter becomes a
stochastic non-linear control problem. Consider the
following example:
    x =ax+u
                                    (1.1)
Suppose a is unknown
Let * = *
    *)
Then the system is charactermzed by
    x = x ( x (1.2)
    k}=f(\mp@subsup{x}{1}{}\cdot\mp@subsup{x}{2}{}
                                    (1.3)
Equition (1.2) is non-11near and the form of f(...) in
equation (1.3) may also be urknown.
The dual approach is of theoretical interest for obtaining performance bounds for the simpler and more feas-ble sub-optimal techniques.
```

```
(b) Self-Tuning Control (STC) and Model Reference Adaptive
control (MRAC)
Self-tuning controllers, proposed by Kalman (1958)
Were originally developed for th. stochastic discrete
time requlation problem.
The MRAC techniques were initially leveloped for
deterministic tracking problems by whitaker (1958).
Botr techniques were developed indepandently and both
have been successfull, implemented. The two are strongly
connected, and for a variety of IP and process models
the two techn!ques can lead to identical solutions if
the desired response is specified in terms of a transfer
function in a deterininistic environment, or an ARMA
model in a stochastic environment.
```


CHAPTER 2

MODEL REFERENCE ADAPTIVE CONTROLLERS AND SELF TUNING REGULATORS

```
2.1 Basic Principles
Both the MRAC and the STR techniques give approximations for
the solution of the non-linear control problem. They are
based on the hypothesis that "for any possible value of the
process parafi ters there exists a linear controller with a
fixed complexity such that the closed loop control system
(process ind controller) can achipve pre-specified (desircd)
performances": [1]
Thu* on asiume that for varying plant parameters, only the
controller parameters (rot the controller structlire) need be
chang : achreve the desired performance.
The configurition of an MRAC with explicit reference model is
given in figure 2.1. The reference model characterizes the
desired plant structure. The controller is adjusted by the
adaptation mechanism so as to give a closed loop response that
is as close as possible to that of the reference model. The
adaptation mechanism uses the error siqnal as well as the
plant inputs and outputs in its adaptation algorithm.
```


FIGURE 2.1 : EXPLicit MRAC

A model of the plant is estimated on-line using the available
input and output data of the plant. The model is then used
for the design of a suitable controller. The model, and
therefore the controller, is continuously updated as more
intormation become avallable. The technique of on-line
estimation of the plant model will now be investiaated in detail.

FIGURE 2.2 : Self Tuning Control principle

2.1.1 1ire plant esimation

The basic principle for on-line parameter estimation is to build up an adjustable predictor for the plant output. This scheme is illustrated in Figure 2.3.

FIGURE 2.3 : On Line Parameter Estimation

The prediction error (e(k)) is used by a recursive estimation
algorithm to a ijust the parameter of the model predictor.
The objact in a deterministic environment ic to force e(k)
asymptotically to zero. The stochastic environment is
discussed in Suction 2.2 .

```
This schemeconsists of an adaptivepredictor thatasymptotically
gives an estimated model whose output agrees with the plant
output for the given input. This is not an identification
of the plant mouel, which would give the correct input
output relationship for all possible input sequences.
```

In order to identify the plant, we would reed a "sufficiently
rich" input (one that has a rich enough spectrum) so as to
excite all the modes of the plant. Figure 2.4 illustrates the Bode plot of two systems that are indistinguishable if one has an input with a single frequency f_{1}. However, when the input contains f, as well, the difference in the systems become apparent.

(a) First order system

(b) Second order system

> FIGUPE 2.4 \quad A sufficiently rich Input spectrum is required to distinguish betwoen systems

```
The controller is deslgned on the parameters of the
predictor which, as we have seen, need not be ihe same as
the true plant parameter. Tlis complicates the analysis of
these schemes
The estimation scheme of Figure 2. 3 is the dual of the MRAC
shown in Figure 2.1. Th basic configuration is the same if
we interchange the blocks as shown in Table 2.1.
Tr.BLE 2.1 : Duality of MRAC and Adaptive Estimation
```


The Parameter Estimation shown in Figure 2.3 is inserted into Figure 2.2 to obtain the general configuration of the S shown in Figure 2.5 .

FIGURE 2.5 Genneal Confiauration of the STC

```
A largu variety of schemes can be obtained by combining
various recu*sive parameter estimat fon schemes (Adaptation
Mechanism I) with various controller design stratagies
```



```
As we have seen, the estimates of the plant paraneters are
```



```
Thus one needs to do careful analysis to determine if a
specific scueme will work. "Analytical results describing
the behaviour of such adaptive control schemes are available
oniy for very limited choice of parameter estimation
algorithms and control strategies". [!]
Whan the desired performance is given in terms of a specified
transfer function and the plant is minimum phase, the
k suitinf STC cla| is equivalent with the explicit MRAC
shown In Eigure 2.l and theoretical results for this class
is avallable.
```


2.1.2 Direct and indirect adaptive control

In the explicit MRAC shown in Figure 2.1. the controller parameters are directly updated by the adaptation mechanis. This is cailec "Direct Adaptive control". The stc shown in Figure 1.5 on the other hand uses adaptation mechan sm I tr adapt the ustable predictor parameters. These parameters are then used by the adaptive mechanism II to compute the controller parameters. This is known as indirect adaptive concrol.
in many instances, by re-parametrization, one can directly estimate the controller parameter in the adaptive mechanisr I. The adaptive mechanism II then falls away ana the connection of STC and explicit MRAC is then even more obvious.

The following is an example of re-parameterization [1].

Let the plant model be

$$
y(k+1)=-\quad-y(k)+u(k)
$$

where y is the ou'put, 11 is the 1 nput and a' is an unknown parameter.

The objective is to find u, such that

of Figure 2.1. The implicit MRNC is shown in Figure 2.6 .
It should be noted that the explieit reference more is not part of the scheme, but $i s$ merely inserted for illustrative purposes.

FIGURE 2.6 : Implicit MRAC

2.2 Stochast \perp Environments

In a stochastic environment, in addition to the plant model one needs to corisider a disturbance model. We will assume that the disturbance can be modelled as an ARMA process Consider the general structure shown in Figure 2.?. The output process yikl, is called an A PMAX process.

$$
\text { EIGURE } 2.7 \text { : The ARPAX Process }
$$

If the contro? law $u(k)$ is a linear feedback sf the output
$y(k)$ then $y(k)$ is alsu an ARMA process, and we Ean specify
 the plant and disturbance models are known, we formulate the control struteqy as shown in Figure 2.9. As the only unpredictatle process is e(k), the output error $\left(y_{k}-y_{y}\right)$ should be only in terms of e(k). The termse(k - 1), e(k-2),...have been taken into account by the previous
output errors which were fed back. Thus the output error should he a white noise process. This process is called an i novation sequence and its "whiteness" is a good measure of the performalce of the controller.

$$
\begin{equation*}
y(k+1)=-a y(k)+u(k)+c e(k+e(k+1) \tag{2.6}
\end{equation*}
$$

where $y(k)$ is the output, $u(k)$ the input and e(k) is a sequence of identically distributed Gaussian random varlables.

Assume the desired output it

$$
\begin{equation*}
y(k+1)-d y(k)+f e(k)+e(k+1) \tag{2.7}
\end{equation*}
$$

As we have no knowledge at time k of $e(k+1)$ we can
formulate the optimum predictor as

```
        y(k+1/k)=-dy(k)+Ee(k)
                                    (2.8)
and the required control would be
    y ( k + 1 ) - y ( k + 1 / k ) = e ( k + 1 )
    (2.9)
(This would qive min(mum cutput error).
The optimum control is then
    u(k) = - (d-a) y(k)-(c-f)e(k)
    (2.10)
and tine output error will be a white noise sequence
```

```
When the plant parameters and the disturbance model are
unknown or vary these schemes can be transformed into the
type shown in Figure 2.1 or Eigure 2.5 with additional
parameters. The deterninistic reference model in Figure 2.1
is replaced by an explicit stochastic prediction reference
mod }1.
In the explicit prediction reference model, the algorithm
will adapt so as to obtain (asymptotically) a prediction
error that. is an innovation sequence.
For the STC structure where the design object is gaven in
terms of an ARMA model, the predlctor and controller will
form an inplicit predi, son ref rence model and the objective
will be to achleve a prediction error that is an innovation
process.
Under thuio circumstances, the same similarlties exist between
the stochastic MRAC and the stochastic STC as were indicated
in the deterministic case in Section 2.1.
```

```
2.3 Analysis and Design of Adaptive control Schemes
Since the adaptive control scheme is non-linear the analysis
of these systems is non~trivial. N basic prope ty required
in the deterministic case is global stability, while global
convergence is requireu in the stochastic case. In both cases
one may reformulate the problem in terms of a stability
analysis for a system disturbed from equilibrium. This
approach works for analysis and deslgn of MRAC and STC with
dire=t adaptation. For lndirect adaptation sTC the problem
is more compiex [!].
The problem of direct adaptation of the controller parameters can be approached as a recursive estimation problem. This suggests the use of recursive parameter estimation techniques. In Chapter 3. parameter adaptition algorithms will be discussed in detail.
```

The MRAC and STC structures have been discussed hoth in deterministic and in stochastic environments. The similarities of both methods have been pointed out and the difference between implicit and xplicit as well as direct and indirect adaptive control have been discussed. It has also been indicated that the analysis and design of these systems can be analysed in the framework of a stability problem.

CHAPTER 3

PARAMETER ADAPTATION ALGORITHME

```
3.1 The Off-line Leasi Squares Estimation Algorithm
Consider a system characterize' by the transfer function
H(q-q})=\frac{\mp@subsup{q}{}{-1}B(\mp@subsup{q}{}{-1})}{A(\mp@subsup{q}{}{-1})
    (3.1)
The letter q-1 is used to denote a unit delay instead of
z
We will coniliur the case of a unit delay (d m 1),
It is assumed that }A\mathrm{ and }B\mathrm{ are monic polynomials with the
    Eirst term o* A normalized to 1.
```


$$
A^{*}=a_{1}+a_{2} q^{-1}+\ldots+a_{n} q^{-n+1}
$$

and

$$
\begin{equation*}
B=b_{4}+b_{1} q^{-1}+\ldots+b_{a n} q^{-1} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
=b_{0}+q^{-1} B^{N} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
B^{\dot{*}}=b_{1}+b_{i} q^{-1}+\ldots+b_{m} q^{-m+1} \tag{3.7}
\end{equation*}
$$

For a given input $u(k)$, the output $y(k+1)$ is given by the difference equation:

$$
\begin{equation*}
A\left(q^{-1}\right) y(k+1)=B\left(q^{-1}\right) u(k) \tag{3.8}
\end{equation*}
$$

```
Note that the output his inlex k + i instead of k, due to the
unit delay. Equation (3.8) can now be reformulated usinq
equations (3.3) and (3.6)
    [1+q-q}\mp@subsup{|}{}{-1}(\mp@subsup{q}{}{-1})]y(k+1)=B(\mp@subsup{q}{}{-1})u(k
                                    (3.9)
i.e. y(k+1)=-A*(\mp@subsup{q}{}{-1})y(k)+B(\mp@subsup{q}{}{-1})u(k)(3.10)
Using equations (3.4) and (3.6) in equati n (3.10) we get
```

$$
y(k+1)=-\sum_{i=1}^{n} a_{i} y(k+1-1)+\sum_{i=0}^{m} b_{i} u(k \cdot i) \quad \text { (3.11) }
$$

The parameter vector θ is defired by

$$
\begin{equation*}
A^{T}=\left.\right|_{a_{1}} \ldots a_{n} \cdot b_{0} \ldots b_{m} \mid \tag{3.12}
\end{equation*}
$$

and the measurement vector $\phi(k)$ by

$$
\$|x|^{Y}=[-y(k) \ldots-y(k-n+1), u(k) \ldots u(k-m)\rfloor
$$

$$
\begin{align*}
& \text { Equation (3.11) can now be written as } \tag{3.13}\\
& y(k+1)=\theta \phi(k) \\
& \text { (3.14) } \\
& \text { Th problem } 3 \text { to find the best estimate } \bar{\theta}(k) \text { for } \theta \text { (in the } \\
& \text { l., sq.iris sens.) given the } k \text { sets of measurements } \\
& y(1)=\theta^{\top}+(i-1)=-12 \cdots-\cdots \\
& \text { (3.15) } \\
& \text { i.e. find } \theta(k) \text { that minimizes the IP } \\
& J()=\sum_{i=1}^{k}\left[y(i)-\theta(k)^{T} \phi(i-1)\right]^{\prime} \\
& \text { (3.16) }
\end{align*}
$$

Since $k \geq i$

$$
\bar{y}(i / \theta(k))=\dot{\theta}(k)^{T} \phi(i-1)
$$

```
is called the a posteriori prediction
```

$E(i / j)=y(i)-y[i / g(j)]$
is the a posteriori prediction error
We can thus rewrite $(.16)$ as
$J(k)=\sum_{i=1}^{k} E^{2}(i / k)$
(3.19)
To find the optimum $\bar{\theta}(k)$, wi set
$\frac{H 1 H}{d(k)}=0$

This yilifs

$$
-2 \sum_{i=1}^{k}\left[y(i)-\hat{\theta}^{T}(k) \phi(i-1)\right] \phi(i-1)=0
$$

Since $\hat{\theta}^{T}(k) \neq(i-1)$ is a scalar,

$$
\begin{align*}
& \text { - } 33- \\
& \sum_{i=1}^{k} y(i) \phi(i-1)=\sum_{i=1}^{k} \phi(i-1) \hat{\theta}^{T}(k) \neq(i-1) \\
& \sum_{i=1}^{k} \phi(1-1) \phi(i-1)^{T} \hat{\theta}(k) \tag{3.23}\\
& \text { since a scalar is its own transpose } \\
& \text { Now let } \\
& F(k)^{-1}=\sum_{i=1}^{E} \phi(i-1) \oplus(i-:)^{T} \tag{3.24}
\end{align*}
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{k} y(i) y(i-1)=F(k)^{-1} \dot{G}(k) \tag{3.25}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\theta(k)=F(k) \sum_{i=1}^{k} Y(i) \phi(i-1) \tag{3.26}
\end{equation*}
$$

The off-line solution is given by equations (3.24) and (3.26). One first computes $F(k)^{-1}$ using (3.24). The inverse $F(k)$ is then computed and used to solve for $\hat{o}(k)$ in (3.26). Due to the matrix inversion at each step, this is extremely time consuming. A recursive, on-11ne method is presented in the next section.

```
3.2 Recursive Least Squares (RLS) Parameter Estimation
3.2.1 The RLS algorithm
From equation (3.24), we have
    F(k+1)
    = i \sum 
    a vi(hy a pib)+rk,T
    (2.27)
A.150
    k+1
i.e.
    F(k+1)}\mp@subsup{)}{}{-1}0(k+1)=F(k\mp@subsup{)}{}{-1}0(k)+y(k+1)\phi(k
    (3.29)
Adding and subtracilng }p(k){(k\mp@subsup{)}{}{T}\dot{0}(k)\mathrm{ to the left hand side of
(3.29) yields
```



```
                                    -\phi(k)\phi(k)}\mp@subsup{}{}{T}0(k
                                    - |F(k) - + + 
                                    -0(k)T\varphi(k)] (3.30)
Define the a priori prediction error, \varepsilon
    \varepsilon
                                    (3.31)
Substituting equations (3.27) and (3.31) into equation
(3.30) gives
F(k+1\mp@subsup{)}{}{-!}0(k+1)=F(k+1\mp@subsup{)}{}{-1-}(k)+\phi(k)\mp@subsup{\varepsilon}{}{\circ}(k+1)
\therefore }0(k+1)=\overline{A}(k)+F(k+1),:{)\varepsilon(k+1) (3.33
F(k) is called the adaptatiun gain. The estimate 0(k) is
corrected in the direction (k) modified by the matrix F(k)
according to the error term & (k+1).
```

3.2.2 A recursion formula for the adaptation gain

To find a recursive formula for $F(k)$, we make use of the Matrix Inversion Lemma (6). Given three matrices, F(nxn), $R\left(m x m_{1}\right)$ and $H(m \times n)$ and assuming all the necessary inverses exist, then

$$
\begin{equation*}
\left(F^{-1}+H^{-1} H^{\top}\right)=F-F H\left(R+H^{\top} F H\right)^{-1} H^{\top} F \tag{3.34}
\end{equation*}
$$

Now let $R=1$ (which implies that $H^{T} E H$ is also a scalar)

$$
P=F(k)
$$

and
$H=\phi(k)$

Then (3.34) yields
$\left[E(k)^{-1}+\phi(k) \phi(k)^{T}\right]^{-1}=F(k)-\frac{F(k) \phi(k) \frac{5(k)^{T}}{1+\phi(k)} \frac{F(k)}{F(k) \phi(k)}, ~(k)}{1+\phi(k)}$
i.e. $\quad\left[(k+i)=F(k)-\frac{F(k) \phi(k) \phi(k)^{T} F(k)}{1+\phi(k)^{T} F(k)+(k)}\right.$
(3.35)

This gives the required recur ive algorithm for the adaptive gain $F(k)$.
3.2.3 Reformulation of the RLS algorithm in terms of a posteriori error

The system of equations developed thu: far is summarized as follow: :

If we multiply equation $(3.36 c)$ by $h(k)$ on both sides, and
place the left hand side over common denominator we get
thi followines

$$
\begin{equation*}
F(k+1) \phi(k)=\frac{F(k)(k)}{1+\phi(k)^{F} F(k) \phi(k)} \tag{3.37}
\end{equation*}
$$

This is then substituted into equation (3.36a) to get
$\dot{\theta}(k+1)=\theta(k)+F(k) \phi(k) \frac{\varepsilon(k+1)}{1+\phi(k) F(k) \phi(k)}$
We now define the a posteriori prediction error $E(k+1)$ as
follows
$\varepsilon(k+1) \triangleq y(k+1)-E(k+1)^{7} \oplus(k)$
Using equation (3.3te) in equation (3.39) yields
$\varepsilon(k+1)=\varepsilon^{0}(k+1)-[\theta(k+1)-\bar{\theta}(k)]^{T} \phi(k)$
(3.40)
Noting that this is a scalir we can take the transpose of
the last term without affecting the equation
$\varepsilon(k+1)=\varepsilon^{-1}(k+1)-\phi(k)^{T}[\theta(k+1)-\bar{\theta}(k)]$
(3.41)
Substituting from equation (3.36a) we get
$\varepsilon(k+1)=\varepsilon^{\circ}(k+1)+\phi(k)^{T}\left\lceil\frac{F(k) \phi(k)}{1+\phi(k) F(k) \phi(k)}\right\rceil$ (3.42)
$\frac{\varepsilon(k+1)}{1+\phi(k)^{T} F(k) \phi(k)}$
(3.43)

We see from equation (3.43) that the a posteriori error is always smaller than the a priori error. The adaptation mechanism acts 50 as to reduce the error.

We can now reformulate the system of equations given in
(3.36) in termil of the a posteriori error

This system of equations is far more convenient for analysis purposet. It shoula bee noted that this is a structure for recursiy parameter laptation algorithms. The LS algerithm shown i not the only possibility. The differences in the various algor:'hms will occur in the paramters that appear

```
In the \phi vector and in the form of the prediction error.
Differences may also occur if an error criterion other than
the LS is used. This change wlll be manifested in the uodate
equation fur F(k).
3.3 The Adaptation Gain F(k)
There are a number of different choices for tho update
algorithm for F(k). Each of these w111 correspond to a
different off-line criterion. Ne will now briefly discuss
the merits and failings of some of these.
1FF(k+1\mp@subsup{)}{}{-1}=F(k\mp@subsup{)}{}{-1}+\phi(k)\geqslant(k\mp@subsup{)}{}{T}
(3.45)
where F(0)>0
This corresponds to a quadratig off-line criterion
\[
F(k)=\sum_{i=1}^{k}\left[y(i)-\hat{\theta}(k)^{T} \hat{\psi}(1-1)\right]^{2} \quad \text { (3.46) }
\]
```

In this case $F(k)$ is a positive definite mat.rix for all k.
Since $F^{-1}(k)$ is always increasing, $F(k)$ will be decreasing
(if it is not a scalar, then we refor to the norm of the matrix). This means that the new information gets less and less welght. However, if we wish to track a varying parameter this is

```
undesirable. In fact as time goes on, F(x) will tend to zero.
To overcome this we can introduce a forgetting factor, which
llads to the following algorithm.
2
F ( k + 1 ) ^ { - 1 } = \lambda F ( k ) ^ { - 1 } + \phi ( k ) \phi ( k ) ^ { T }
(3.47)
where 0< < < 1
This corresporis to a quadratic off-&ire criterion, with a
forgetcing factor.
F(k)=\mp@subsup{\sum}{i={}{k}\mp@subsup{k}{}{k-1}[j(i)-\hat{0}(k\mp@subsup{)}{}{T}\phi(i-1)\mp@subsup{]}{}{2}
Typically \lambda is between ,95 anc 0,99. One difficulty with
this, is that if $(k) (k\mp@subsup{)}{}{\top}\mathrm{ is equal to zero for sume time, then}\\mp@code{#}
F(k) will tend to blow up. This will not happen in the
following algorithm.
3
This corresponds to the simple gradient off line criterion
J(k)={y(k+1)-A(k)\phi(k)|
(3.50)
```

```
undesireblg. In fact as time goes on, F(k) will tend to zero.
To overcomu this we can introduce a forgetting factor, which
leais to tne following algorithm.
2F(k+1\mp@subsup{)}{}{-1}=\mp@subsup{\lambda}{F}{}(k\mp@subsup{)}{}{-1}+\phi(k)\phi(k\mp@subsup{)}{}{T}
                                    (3.47)
    where 0< 人 < 1
This corresponds to a quadratic off-line criterion, with a
forgetting factor.
                                    F(k)=\mp@subsup{\sum}{i=1}{k}\mp@subsup{\lambda}{}{k-1}[y(1)-0(k\mp@subsup{)}{}{T}\phi(i-1)\mp@subsup{]}{}{2}\quad\mathrm{ (3.48)}
Typucally }\lambda\mathrm{ is between 0.95 and 0,99. One difficulty with
this, is that if \phi(k)\phi(k)}\mp@subsup{}{}{T}\mathrm{ is equal to zero for some time, then
F(k) will tend to blow up. This will not happen in the
following algorithm.
3 F(k+1)=F(k)=F(0)
This corresponds to the simple gradient off line criterion
J(k)=[y(k+1)-A(k)\emptyset(k)].
(3.50)
```



```
    Mi=rem
```



```
                i=1
```



```
                                    84\times59)
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
```

$\lambda_{1}(k)>0$ implies $F(k+1)$ decreases. Thus one has a $-1 r$ amount of control over $F(k)$ Obviously al the prev algorithms are special cases of this one with specific valu assigned to the λ parameter.
 inversion lemma to give

$$
\begin{equation*}
F(k+1)=\frac{1}{\lambda_{1}(k)}\left[F(k)-\frac{F(k) \phi(k) \phi(k)^{T} F(k)}{\alpha(k)+\phi(k)^{F} F(k) \phi(k)}\right] \tag{3.54}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } \quad a(k)=\frac{i_{1}(k)}{\lambda_{2}(k)} \tag{3.55}
\end{equation*}
$$

The trace of $F(k+1)$ is given by

$$
\operatorname{trF}(k+1)=\frac{1}{\lambda_{1}(k)} \operatorname{tr}\left[F(k)-\frac{F(k) \phi(k) \phi(k)^{\top} F(k)}{\alpha(k)+\phi(k)^{T} F(k) \phi(k)}\right](3.56)
$$

By fixing a value for a (typically $0,5<a \leq 1$) we can choose $\left.\lambda_{1} k\right)$ so as to keep the trace of $F(k)$ constant for all k. Sirce α is fixed, we can now calculate $\delta_{2}|\mathcal{R}|$.

The fixed trace algorithm performs far better than the constanl gain algorithm. At each step both algorithms move in the direction of least squares minimization. However, l.lı slef. size in the constant tracc algorithm is constant, whil that

```
Of the constant galn algorithm decreases.
```

$5 \quad F(k)=\frac{1}{p(k)} 1 \quad(3.57)$
This is known as a scalar adaptation gain. Depenaing on the
form of $p(k)$ we can get different algovithins.

```
i) p(k)=constant
This means that \(F\left(Y_{1}\right)\) will ue constant, givir.g a gradient Eype
algorithm.
\[
\text { ii) } p(k)=\beta
\]
\[
(3.59)
\]

This gives
\[
F(k)=\frac{t}{k} I
\]
\[
\text { iii) } p(k+1)=p(k)+\phi(k)^{7} \phi(k)
\]
\[
\text { where } p(0)>0
\]

The algorithms arising from (ii) and (iii) fa:l into the category of stochastic approximation algorithms [1]. [8]. The convergence analysis of these algorithms is simpler but their performance is lower. However, techniques do exist for
increasing convergence rates quite dramatically [1].

A word of caution is appropriate at this point. In going from the off-line algorithm to an on-line recursive algorithm certain problems arise.

Firstly, in the initialization of the algorithm we need to wait \(n\) steps to calculate ofrilne, an initial \(\bar{F}(n)\).
Alternately we may use an arbitrary initialization for \(k(k)\). For example we may choose
\[
F(k)=\frac{1}{0} I
\]
where \(0 \ll 1\)
instead of
\[
\begin{equation*}
F(n)=\sum_{i=1}^{n} \phi(i-1) \phi(i-1)^{T} \tag{3.62}
\end{equation*}
\]
where \(n\) is the number of parameters.

This gives the following form for \(\mathrm{F}^{-1}\)
\[
\begin{equation*}
F(k+1)^{-1}=\delta I+\sum_{i=0}^{k} \phi(i-1) \phi(i-1)^{T} \tag{3.63}
\end{equation*}
\]

As \(k\) increases, the first term becomes negligible compared to the summation. However, strictly speaking it is not the. same as tine off-line procedure

Furthermore, we listed a number of possible alternatives for updating \(F(k)\) and these will need to be examined analytically to determine the effects on the overall alqorithm.

One Einal point of considexation is that in the on-line algorithm we are using a large number of samples \((k \rightarrow \rightarrow i)\).

In the light of the above. ore ne. 3 s to show that in spite of these cianges, the prediction error ( \()\) will tend to zero as \(k \rightarrow+\).

A note of interest, is that the \(F\) matrix is related to the covariance matxix of the input, ani is also related to the Kal in gain matrix \{G]. If the eigen-vilues of the F matrix are small then the input may be insufficiently yich.
3.4 The Eluivalent Feedback system for Representing ParameterAdaptation Algorithms
By reformulating the PAA in terms of a feedback system, the analysis is greatly simplifled. If the feedback system can be shown to be asymptoticaliy stable, then the corresponding PAA will be algebraically stable. This allows us to use control technique for the desicn and analysis of stable p\&A's.


indicatea.
The parameter update vector is given by
    \(\bar{\theta}(k+1)=\theta(k)+F(k) \phi(k) \varepsilon(k+1)\)
                                    13.641
The rameter error vector is defined as
    \(\bar{\theta}(k) \Delta \bar{\theta}(k)-\theta \quad\) (3.65)
Substituting (3.63) into (3.62) for \(\dot{\theta}(k)\) and \(\dot{\theta}(k+1)\) yields
\(\theta(k+1)=\theta(k)+F(k) \phi(k) \varepsilon(k+1) \quad(3.66)\)
```

The a posteriori prediction error is qiven by
\varepsilon(k+1)=y(k+1)-\hat{0}(k+1)\overline{T}(k)\quad\mathrm{ (3.67)}
where
y(k+1)=\mp@subsup{0}{}{T}\phi(k)
(5.68)
Substituting (3.68) into (3.67) ylelds
\varepsilon(k+1)=-[\overline{0}(k+1)-0\mp@subsup{]}{}{\overline{L}}+(k)
(3.69)
Using equation (3.65) in (3.69) gives
\varepsilon(k+1)=-\overline{0}(k+2\mp@subsup{)}{}{2}\phi(k)
(3.70)

```

The equivalent feedback system can now be drawn using equations (3.66) and (3.70). This is given in Fiqure 3.1.
```

The feedforward part of the loop is merely a straight connection.
However. it has been represented as a klonk of transfer function
one, since thls will change if algorithms other than the RLS
algorithm is used. The feedforward path is a linear time
Invariant (LTI) syst m, while that of the leedback path
(indicated by broken lines in Figure 3.1) is a monlinuli time.
varying (NLTV) system.

```

LINEAR TIME INVARIANT


This system may be represented by the simplified diagram shown in Figure 3.2 .


FIGURE 3.2 : Simplified Feedback Block Diagram

We thus need to examine the stability of such a system. If
this system is stable then the prediction error will go to zero as \(k \rightarrow \infty\) which is what we require. This aralysis is non-trivial and will be dealt with in the following chapter.

\subsection*{3.5 Conclusion}

Th PAA was introduced and the RLS algorithm was developed For on line recursive estimation.

Various changes lo the algorithms for updating the \(F\) matrix were suggested giving intuitive reasoning for these. However, possible problems with these changes were noted and one should proceed cautiously.

The equivalent feedback representation for PAA was introduced for the purpose of stability analysis. This is discussed in
t.he following chapter.

\section*{CHAPTER 4}

\section*{STABILITY ANALYSIS}
4.1 Positive Systems

We begin the study of stability properties of the system discussed in Chapter 3, by looking at positive systems. A positive dynamic system is just the mathematical term used to describe a passive dynamic system. That is, a system which dissipates energy.

Consider the system: shawn in Figure 4.1.


FIGURE: 4.1 : Input and output Definition Io= thar \(P x a s i v e\) systems \(\mathcal{S}\)
\[
\begin{aligned}
& \text { The system will be strictly passive if the energy of the } \\
& \text { system at time t is less than the indtial energy plus the } \\
& \text { nergy supplied. }
\end{aligned}
\]
\[
E(t)<E(0)+E_{S}(0, t!
\]
\[
(4.1)
\]
 Chme 5
\[
E_{v}(0, t]=\int_{i}^{\pi} i(t) u(t) d t
\]

If the ioster is 11 . 1 in
\[
\begin{equation*}
\left.E_{s}(0, k T)=\sum_{j=0}^{k} i+11\right) \tag{4.3}
\end{equation*}
\]

Note in Figure 4.1 that if 8 were an active system, 1 would be in the opposite direction, so that \(\mathrm{E}_{\mathrm{s}}\) would be negative ant nor puitive.


IGU 4.2 : Irtirconnection of Two passive systews
(4.4)
(4.5)
em an be drawn as a feedback system as illustrated
\[
\begin{align*}
& \text { (4.8) } \\
& E_{s, 1}=-E_{s, 2} \\
& \text { Since both systems are passive we: know from (4.1) that } \\
& E_{s_{s} L}+F_{q} Y E I-E_{1} \mid M 1 \\
& \text { (4.9) } \\
& \text { and } \\
& E_{S, Z}>E_{2}(t)-E_{1}(0)  \tag{4.10}\\
& \text { Aduing these two eguations and using equation (4.8) gives } \\
& 0>\left[E_{1}(t)+E_{2}(t)\right]-\left[E_{1}(0)+E_{2}(0,]\right. \\
& \text { Wo define the total energy of the system at time } t \text { as } \\
& E(t)=E_{1}(t)+E_{2}(t) \quad \text { (4.12) } \\
& \text { Similarly for the initial energy } \\
& \text { (4.13) } \\
& E(0)=E_{1}(0)+E_{2}(0)
\end{align*}
\]

Thus
\[
\begin{equation*}
0>E(t)-E(0) \tag{4.14}
\end{equation*}
\]
or \(E(t)<E(0)\)


 monotonically decreasing. Since this is strictly
moruztorkhoally Gackuablot
\[
E(t) \rightarrow 0
\]


Thus the "strictly positive" condition on our systems is a suseicient conation (altbungh not a necessary oriel so gnu: e asymptotic stability.
 be a positive system if for \(\% 0=0\) we have
\[
\text { where } \underline{x}_{0}^{t} \text { is the initial state vector: }
\]

FIGURE. 4.4 : Input and output for the Generalized system H
```

If H is such that
|}\mp@subsup{|}{0}{t}\mp@subsup{Y}{}{T}=dt>
(4.17)
then H is said to be a strictly positive system. It should
be noted that if the strictly passive systems in the previous
discussion were replaced by passive systems (i.e. the strict
condition is removed) then we could not conclude that it
woula be asymptotically stable. However, the system would
still be stable in the sense that the output is bounded and
will not grow.
a.2 Botituvity [n F%kghagi Geanmi=r Fanction
Consider the system defined by the equation
y=F
(4.18)
where P is a matrix
P is said to be positive definite (written P > 0) if
u}\mp@subsup{|}{}{T}P|u>
(4.19)
< 15 10

```
```

Now 吕T
Thus if P > 0
then }\mp@subsup{u}{}{2}y>
and }\mp@subsup{\int}{0}{t}\mp@subsup{u}{}{T}Ldt>
and +he system is *herefore strictly positive. Note that
P> gives }\mp@subsup{u}{}{T}Y>0 at all times, noi just the average value
Which is more than required.
Thus a positive definite matrix is a sufficicnt condition to give a strictly pi ltive system.
The class of transfer function which satisfies the inequality

$$
\begin{equation*}
\int_{0}^{t} \underline{a}^{T} x i z \geq 0 \tag{4.21}
\end{equation*}
$$

is known as the cla!s of positive real transfer function. If
the inequality is strict (i.e. >) then this class is called
the =trict positive real transfer function (SPR).

```

Intuitively, if we multiply two sinusoids of similar
frequency, then the product of their average is dependent
on the phase lag
\[
\text { e.q. } u=\sin (\omega t)
\]
\[
y=\sin (\omega t+\phi)
\]
\[
\begin{equation*}
\int_{0}^{2 \pi} u y d \omega t=f(\phi) \tag{4.22}
\end{equation*}
\]
\[
f(\phi)=0
\]
\[
\phi=0^{\circ}
\]
\[
E(i)<0>90^{\circ}
\]
\[
E(\beta)>0 \quad<0^{\circ}
\]

Thus if \(0<\phi<90^{\circ}\) then the system is SPR. In terms of a Nyquist diagram, this requires the plot to lie in the fourth quadrant.

In Figure \(4.5 H_{1}\) is a first order system and satisfies the SPR condition. However, \(H\), which is a third order system does not Eulfil this condition.


FIGURE 4.5 : Nyquist Diagram if, is \(S P R\) while \(H_{\text {, }}\) is not

In some ron-linear cases the \(S P R\) condition is very easy to prove. Consider the innut output relationship shown in Figure 4.6


FIGURE 4.6 : SPR Input/Output relationship

Since the curve is confined to the first and third quadrants it is triviaı to show that the SPR condition is satisfied.
4.3 Discrete Tirie Positive Systems
4.3.1 Definition

Consider the discrete system shown in Figure 4.7 where
\(\operatorname{dim} u_{k}=\operatorname{dim} y_{k}\)


FIGURE 4.7 : Input and Output for the Disciete System \(H\)

The "energy" equation used in the provious sections now becomes
\[
E_{\operatorname{SUPPLIED}}\left(k_{1}\right)=E\left(k_{1}+1\right)-E(0)+E_{\text {LOSSES }}\left[0, k_{1}\right]
\]
where \(k\), is the discrete time index.

If we let \({\underset{\sim}{x}}\) be the vector defining the system states at time k, then equation (4.20) can be expressed mathematically 08
\[
\sum_{k=0}^{k} \sum_{k}^{T}-u_{k}=\pi\left(k_{i}+1 \cdot x_{k_{1}+1}\right)-x\left(0,2_{7}\right)+\sum_{k=0}^{k} B\left(\underline{x}_{k} \cdot \underline{u}_{k}\right)
\]
where \(\alpha\) is the system energy function ard 8 is the energy loss function.

The system \(H\) is called a strictly positive dynamic system 1 I
\[
\begin{equation*}
\exists \alpha(k, x,)>0 \tag{4.22}
\end{equation*}
\]
\[
\forall k
\]
and
\(3 B\left(x_{k} \cdot u_{k}\right)>0\)
\(\forall k\)
(4.23)
4.3.2 Discrete linear time invarient systems

Consider the following system
\[
\begin{aligned}
{\underset{x}{x}}^{-}+1 & =A \underline{-}_{k}+B \underline{u}_{k} \\
\underline{y}_{k} & =C \underline{x}_{k}+D \underline{u}_{k}
\end{aligned} \quad(4.24)
\]

We assume tint \((A, B)\) is completely controllable and that (C.A) is completely observable. Under such circumstances there is a one-to-olle correspondence between equations \((4.24)\) and \((4.25)\), and the discrete square transfer matrix


The transfer matrix \(H(z)\) is said to be SPR if one of he Eollowing threき conditions can be proved [2]

1 All the elements \(1 H z\) y are analytic on and outside the unit circle i.e. all poles lie within the unit circle).

An equivalent desinition is
\(2 H(z)\) is SPR if

I \(P>0\) and \(M>0\)
where \(M\) is of the form
\[
25=\left[\begin{array}{ll}
0 & \pi \\
5^{T} & R
\end{array}\right]
\]

\section*{such tnat}

\[
\left.+\sum_{k=0}^{x} 1 x^{T} \cdot x^{2}|M| \begin{align*}
& -x  \tag{4.27}\\
& -k \\
& -k
\end{align*} \right\rvert\,
\]

Thus the \(p\) matrix is used to construct the i funcmion. and \(t h=M\) matrix is used for the B function.

Since the only negative term is the constant \(2 x_{0}^{\text {P }} \mathrm{P}_{0} \mathrm{x}_{0}\), then for all bounded \(x\) and \(P\), a sup system will satisfy
the inequality
\[
n\left(0, k_{L}\right)=\sum_{k=0^{\varepsilon_{j}} \dot{y}_{k}^{7}>-\gamma_{0}^{2}}^{\square}
\]
where \(\gamma_{0}^{2}<\infty\).

This is the popov innaiality.

For contiruous systems, thi Popov inequality is given
b) \(y\)
```

yudt>- Y0

```
```

In th. Initial development, we assumed x, to be 0.
Thls would give an upper bound on ro of 0 and equation
(4.29) would re ice to the SPR condition given in
equation (4.17). For any arbitrary xo, the SPR condition
Will be given by equation (4.28) for discrete system
and (4.23) for continuous systems, with
Thus the SPR condition is a sufficient condition for a
system to satisfy the popov inequallty, but it is not
a nec*ssary conjition
The most commonly used definition is

\square
systems that are not discrete LTI systems are sini]
and can be found in reference [2].

```
4.4.1 Parallel systems
The general configuration is shown in Figure 4.8.
```


FIGURE 4.8: Parallel configuration of Two Passive systems

We need to demonstrate that the combination is also SPR.

Let the initial energy in system I be y_{i} and the energy in
sys*em II be γ_{2}^{2}.

Then the t tal system energy is

$$
\begin{equation*}
r^{2}=r_{1}^{2}+r_{2}^{2} \tag{4.35}
\end{equation*}
$$

```
                                    Es
    \int
        |}uy,dt+\mp@subsup{|}{i}{t}\mp@subsup{u}{2}{\prime}d
Since both individual systems are SPR, they each satisfy
equation (4.24), Therefore
    |}uydt>(-\mp@subsup{\gamma}{1}{2})+(-\mp@subsup{\gamma}{2}{2}
                                    (4.37)
Thus
and the combination is SPR
4.4.2 Eeedback systel s
Conslder the feedback configuration shown in Figure 4.9,
where both individual systems are SRR with initial energies
ri and re, as above. The combination will still have an
(nttial untrily as defined b: equation (4.35) above.
```


FIGURE 4.9

Feedback Configuration of Two
Passive Systems

From the figure
(4.39)

Thus

Also
(4.41)
(4.42)


```
We shall show that the combined sytem is not necessarily a
SPR system by a counterexample.
Let
    H1 = }\frac{1}{1+ST
and
    H
Both systems are first order, and have Nyquist plots confined
to the fourth quadrant, and are therefore SPR.
The combined system however, has a transfer function given
by
\[
\begin{equation*}
\overline{\left(1+s T_{1}\right)\left(1+s T_{2}\right)} \tag{4,49}
\end{equation*}
\]
This the second order and has a Nyquist plot of the form shown in Figure 4.11.
```


The Nyquist plot crosses the 90° line and is therefore not SPR. Thus in qeneral cascading of spk systems does not necessarily yield a SPR system.
4. 5 The Hyperstability Theorem of popov

Having developed the necessary mathematical background in the preceding sections. We are now able to examine the stability problem posed at the end of chapter 3 .

That is, under what conditions will the system shown in
Figure 4.12 be globally asymptotically stable?

FIGURE 4.12 : Generalized Feedback System

The answer to this question is given by the hyperstability theorem (which will not be proven here) which states that if the Popor inequality is satisfied by the NLTV feedback path, i.e.

```
and if H(z) is SPR, ther the system will be glowally
asymptotically stable.
This will be applied to the Param|ter Adeptation Algorithm
to prove convergence, in th following chapter.
4.6 Conclusions
In this chapter the concepts of SPR, popov inequality and
Hyperstability wre selopel. Emphasis was given to the
intuitive approach of these concepts. The ideas developed
were ustB to st,te th HYper tability Theorem. This will
be used in the followlng chapter to prove the stability of
the PA
```


FIGURE 5.1 : PAA with $F(k)=I$

The LTI feedforward path i just unity, i.e.
\qquad
To verify the popov inequality we will rpquire tne following
Leruma \{1〕

Lemma:

Given a sequen of real vect $s x(k$ and a conctant vector c.
the following ralationship hold

P:OOF:

This will be done by induction.

Assume the relationship holds for $k_{1}-1$

(5.4)

Since thi relationship is assumed to be true for $k_{1}-1$ we
get

$$
\begin{aligned}
& \left.\sum_{k=0}^{k} x(k)^{T}\left[\sum_{i=0}^{k} x(i)+c\right]=\frac{1}{1} \sum_{k=0}^{k} x(k)+c\right]_{1}^{T}\left[1_{k=0}^{k} x(k)+c\right] \\
& +\frac{1}{k} \sum_{k=0}^{k} x(k)^{T} x(k)-\frac{1}{2} c^{T} c \\
& +x\left(k_{1}\right)^{T}\left[\sum_{k=0}^{k} x(k)+c\right] \quad(5.5)
\end{aligned}
$$

However

$$
\left.\left.\frac{1}{z} \sum_{k=0}^{k} x(k)+c\right]^{p} \sum_{k=0}^{x_{j}} x(k)+c\right]=\frac{1}{2}\left[\sum_{k=0}^{k_{1}^{-1}} x(k)+c\right]^{T}\left[\sum_{k=0}^{k_{1}-1} x(k)+c\right]
$$

$$
+\frac{1}{2} x(k,)^{T} x(k,)+x(k,)^{T}\left[\sum_{k=0}^{k,-1} x(k)+c\right]
$$

Also

$$
\begin{align*}
& \left.\frac{1}{2} x\left(k_{1}\right)^{2} x\left(k_{1}\right)-x\left(k_{1}\right) \sum_{k=0}^{k} \sum_{1}^{-1} x(k)+c\right] \\
& x\left(k_{L}\right)^{T}\left[\frac{1}{2} x\left(k_{1}\right)+\sum_{k=0}^{k_{1}-1} x(k)+c\right] \\
& =x(k,)^{T}\left[\sum_{k=0}^{k} x(k)+c\right]-\frac{1}{2} x\left(k_{1}\right)^{T} x,\left(k_{;}\right) \tag{5.7}
\end{align*}
$$

Thus the lemma is proven to be true for k, if we assume it true for k_{1}^{-1}. To complete our oroof by induction, we must still show that it holds for the first value which is $k_{1}=0$. - r this value (5.2) becomes

$$
\begin{align*}
x(0)^{T}[x(0)+c]= & \frac{1}{2}[x(0)+c]^{T}[x(0)+c] \\
& +\frac{1}{2} x(0)^{T} x(0)-\frac{1}{2} c^{T} c \tag{5.10}
\end{align*}
$$

Expanding the Eight hand side of (5.10) yields

$$
\frac{1}{2} \times(0)^{T} x(0)+\frac{1}{4} c^{T} c+x(0)^{T} c+\frac{1}{7} \times(0)^{T} x(0)-\frac{1}{2} c^{T} c
$$

$$
=x(0)^{\mathrm{T}} \times(0)+x(0)^{\mathrm{T}} \mathrm{c}
$$

$$
\begin{equation*}
=x(0)^{T}[x(0)+c] \tag{5.11}
\end{equation*}
$$

which is the left hand side of (5.10). Thrrefore the expression
is true for $k_{1}=0$ and thus by induction, it holds for all k_{1}.

This will now be used to verify that the feedback path
satisfies the popor inequality.

From the block diagram we have:

```
0(k+1)\quad0(k)+\phi(k)\varepsilon(k+1)
(5.12)
Iterating back gives
```


The input and output variables u and y are given by
(5.14)
and }\mp@subsup{y}{k}{}=\phi(k\mp@subsup{)}{}{T}0(k+1
(since y is a scalar, i. equals its tran=pose).
Thus the left hand side of the Popov inequality is given by
n(0,k,)= { < = E(k+1)中(k)

```

    (5.17)
Now let \(x(k)\) \(=\phi(k) \varepsilon(k+1)\)(5.18)and\(\theta(0)\)(5.19)
Thus (5.17) becomes
\[
n(0, k,)=\sum_{k=0}^{k j} x(k)^{1}\left[\sum_{i=0} x(i)+c\right] \quad(5.20)
\]
By our Lemma
\[
n\left(0, k_{1}\right) \geqslant--\frac{1}{2}
\]
Thus the Popov inequality is satisried with
\[
r_{0}^{2}=\frac{g(0)^{\mathrm{T}} \theta(0)}{2}
\]
```

5.2 PAA with F(k)=F

```

The feedback representation is given in 巨igure 5.2.


FIGURE
? :
PAA with \(F(k)=\) -

From the diagram we have
```

Iterating back gives
\vec{0},k+1) = }\mp@subsup{\sum}{i=0}{k}F\phi(i)\varepsilon(i+1)+0(0

```

The equation (5.17) of the previous case now becomes:
\[
\begin{equation*}
n\left(0, k_{1}\right)=\sum_{k=0}^{k} \varepsilon(k+1) \phi(k)^{T}\left[\sum_{=0}^{k} F \phi(1) \varepsilon(i+1)+A(0)\right] \tag{5.25}
\end{equation*}
\]

Since \(F\) is a positive definite matrix, it can be factorizea as
\begin{tabular}{|c|c|c|c|}
\hline F & \(L^{T} L^{\text {L }}\) & & (5.26) \\
\hline \multicolumn{4}{|l|}{where \(L\) fis a reqular square matrix (L exists)[:-} \\
\hline \multicolumn{4}{|l|}{Define} \\
\hline \(\phi(k)\) & L \(\dagger(k)\) & & (5.27) \\
\hline \multicolumn{4}{|l|}{Substituting this into (c. \(\mathrm{N}^{\prime \prime}\) ) one gets} \\
\hline
\end{tabular}
\(n\left(0, k_{1}\right)=\sum_{k=0}^{k} \varepsilon(k+1) \phi(k)^{T}\left(L^{-1}\right)^{T}\left[\sum_{i=0}^{k} L^{T} L\left(L^{-1} \phi(k)\right) \varepsilon(i+1)+\dot{\theta}(0)\right]\)
(5.29)
\[
\left.\sum_{k=0}^{k} \varepsilon(k+1) \tilde{\phi}(k)^{T} \sum_{i=0}^{k} \tilde{\phi}(k) \varepsilon(i+1)+\left(L^{T}\right)^{-1} \tilde{\theta}(0)\right]
\]
(5.29)

If we now define
and
\[
\begin{equation*}
c=\left(L^{I}, \quad \theta(0)\right. \tag{5.31}
\end{equation*}
\]
we get
\[
\begin{equation*}
\left.n(C, k,)=\sum_{k=0}^{k} x(k): \sum_{1=0}^{k} x(k)+c\right] \tag{5.32}
\end{equation*}
\]
as belfi, we apply the Lemma to yield
\(n \cos , x, \quad ;-\frac{c^{T} c}{2}\)
with
\[
\begin{align*}
r^{2} & =\frac{c^{\Gamma} c}{2} \\
& =\frac{\theta(0)^{T} L^{-1}\left(L^{T}\right)^{-1} \theta(0)}{2} \tag{5.35}
\end{align*}
\]
\[
(5.34)
\]

Now if \(A\) and \(B\) are non-singular matrices, then [13]
\[
(A B)^{-1}=B^{-1} A^{-1}
\]

This yields
\[
\gamma_{0}^{2}=\frac{\bar{\theta}(0)^{T}\left(L^{\top} L\right)^{-1} \theta(0)}{2} \quad(5,37)
\]
\(=\underline{\bar{\theta}(0)^{T} F^{-1} \bar{\theta}(0)}\)

Thus this system is stable and will converge


We will now consider a system with
\[
\begin{equation*}
F(k+1)^{-1}=\lambda_{1}(k) F(k)^{-1}+\lambda_{2}(k) \phi(k) \phi(k)^{T} \tag{5.32}
\end{equation*}
\]

We will aslo generalize the feedforward path to be a transfer function \(H\left(q^{-\cdots}\right)\) instead of unity. We assume that \(H\left(q^{-1}\right)\) is a
ratio of two monic polynomials.
\[
\begin{equation*}
H\left(q^{-1}\right)=\frac{\left.H_{1}: q^{-1}\right)}{H_{2}\left(q^{1}\right)} \tag{5.40}
\end{equation*}
\]


EYGURE 5.4 : Guneralized system with \(\lambda,(k)=\lambda\)
```

This system will be stauie if H(}\mp@subsup{q}{}{-1})-\frac{2}{2}\mathrm{ is SPR.
For a time varying }\mp@subsup{\lambda}{2}{}(k)\mathrm{ we cannot incorporate the }\mp@subsup{\lambda}{2}{}(k)\mathrm{ into
the feedforward loop since it is time varying.
Define }\lambda=\mp@subsup{\operatorname{sup}}{k}{~}\lambda,(k
Then }\lambda-\mp@subsup{\lambda}{j,}{\prime}(k) is non negative
Now, if }\lambda<
(5.42)
(this is necessary since H(q) is a ratio of monic
polynom-als [2]}
and H.}(\mp@subsup{z}{}{-1})=H(\mp@subsup{z}{}{-1})-\frac{1}{2
(5.43)
is SPR, then the system will converge since we can introduce
an additional feedback path of
\lambda - \lambda, (k)
as shown in Figure 5. r. The feedback of $\frac{\lambda_{2}(k)}{2}$ causes the feedhack path to satisfy the popov innquality and this is Unaffected by adding the ietedback path of equation (5.44). The fredforward path mow has the a,dतitional feedforward path of $\frac{\lambda}{2}$ whicin is time Jnvariant. This system is shown in Figure; 5.

```


Under surh conditions, the system will converge, since the feedforward block is SPR, and the feedback path satisfies
the Popov inequality.

\section*{CHAPTER 6}

\section*{CONCLUSION}

This thesis began with the motivation for using adaptive control techniques. Different techniques were presented and their differences and similarities were discussed superficially.

The MRAC and the STC were then discussea in some detail and the PAA was introduced. To anatyse the stabi ity of this, the theory of the hyp tability theorem was developed and subsequently applied to the pAA.

The theory behind these techniques is this well developed and the techniques are certainly applicabie to real time adaptive control. The increasing speed of microcomptuers is steadily broading the areas of applicability of these tecliniques.

It is the author's opinion that these controllers will oon be incorporated in most fields of control.

REFERENCES
[1] Landau, I D : Adaptive Control - Theory and Application Course Notes from Berkeley, June 1982.
[2] Landau, Y D : Adaptive Control - The Model Reference Approach, Marcel Dekker, 1979.
[3] Landau, I D : A Survey of Model Reference Adaptive Techniques - Theory ind Applications, Automatica, Vol 10, No 3, op 353-379, July 1975.
[4] Fitzgerial, \(R\) : A Gradient Methcd for optimizins Stochastic Sy tems, PhD Thesis, MIT, May 1964.
[5] Eeldbaum, A : Optilal Control System, Academic Press, New York, 1965.
[6] Anderson, \(B\) D \(O\) and Moore, J B : Optim, filtering, Pr ntice Hall, N..w Jersey, 1979.
[7] Albert, \(A\) E and Gardner, L A : Stochastic Approximations and Non-Linear Regression, MIT Press, Mass, 1967 .
[8] Wasan, M : Stochastic Approximation, University Press, Cambridge. 1969 .
[9] Rabinıwitz. B P : Partitior. Statistics in Image Processing, PhD Dissertation, Polytechnic Institute of Nev. \(\quad \mathrm{N} k, 191\).
[101 Monopo , \(V\) : Model Reference Adaptive Control From Theory to Practice, Proceedings of the workshop on Applications of Adaptive Systems Theory, Yale Universjty, May 1981.
[11] Ástrom, \(K J\) and Wıtenmark, \(B\) : On Se!e-turing Regulator, Automatica, \(V c\) 9, pp 1 5-193, 1973.
[12] Gantmac er, F R The Theory of Matrices, Chelsea, New YCr:, 1977.
[13] Nering, E \(D\) : Lineal Algedra and Matrix Theory, Wiley, 1963.

Author Rabinowitz B P
Name of thesis Adaptive control and parameter identification 1983

\section*{PUBLISHER:}

University of the Witwatersrand, Johannesburg
©2013

\section*{LEGAL NOTICES:}

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.```

