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ABSTRACT

The broad theory of adaptive control is introduced, with 

motivation for using such techniques. The two most popular 

techniques, the Model Reference Adaptive Controllers (MRAC) 

and the Self Tuning Controllers (STC) are studied in more 

d e t a i l .

The MRAC and the STC often lead to identical solutions.

The conditions for which these two techniques are equivalent 

are discussed.

Parameter Adaptation Algorithms (PAA) are required by both 

the MRA a n : the STC. For this reason the PAA is examined 

in some det.ai . This is initiated by deriving an off-line 

lea; -squares PAA. This is then converted into a recursive 

on-line estimator. Using intuitive arguments, the various 

choices of gain parameter as well as the variations of the 

nasic form of the algorithm are discussed. This includes a 

warning as to where the pitfalls of such algorithms may lie.

In order to examine the stability of these algorithms, the 

Hyperstability theorem is introduced. This requires knowledge 

of the Popov inequality and Strictly Positive Real (SPR) 

functions. This is introduced initially using intuitive

i i



eneigy concepts after which the rigorous mathematical 

representa* ion is d e r i v e d .

The Hyperstability Theorem is then used to examine the 

stability condition for various forms of the PAA.
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PREFACE

Wh e doing post-doctoral rvsearch in the United States of 

America, the author attended a workshop in adaptive nroces ̂ inc 

at Yale University in May 1191, Having been involved in 

research in idantiv' filters at the CSIR in Pretoria, it was 

thought that this workshop would be most ben e f i c i a l .

While attending this work hop the author was fortunate to 

make the acquaintance of Prof Yoan Landau from France, who 

whet the author 1i a p : tite for adaptive contro..

The author was privileged to attend a short course given by 

Prof Landau at the University of California in June 19 9 2.

This di r tit ion w.i s undertaken in an effort to investigate

•

sp“ :i f ic < 1 , the probl em of proving stability in non-linear

time varying feedback 1oop was to be investigated. This 

same p r o b 1 m occurs in many i r e a s , including that o t 

adaptive filters.

The author expressed sincere thanks to Prof Landau for this 

inspiration and the introduction to this fascinating field. 

Most o 1 the concepts expressed herein were introduced to 

the author by Prof Landau either at the course or during
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son a 3. d i < ;us •ions. It was on] ' ,

• C'.lnfj t.h <• Literature, that the a u t h o > began to see 

nathemat.ica 1 beauty of this field.

on r • : ten along a single theme . It begins

i o • adaptive control and a motivation

'his is folloved by a discussion of the Model 

i.vo Controllers (MRAC) and the Self Tuning 

which ire the most commonly used in

milarities and condi*-< s of equivalence 

at also g i v e n .

Adaptation Algorithm (I A A ) this 

LI, including various permutations 

a 1 is made to intuitive thinking 

1 the mathematical proofs are

r i g d r o u : .

■ stability of thes, algorithms the Hyperstability 

introduced. All the necessary background 

m including th" Popov inequality and the Strictly

11 (SPR) condition are developed from the basic

)nc<• again, an intuitive approach allows for ea. a 

comp) hension.



The Hyperstabi 11 ty theorem is then us to . g

for different PA A scheems. Thus th r- i

the PAA from an off-line algorithm to a fee. 1

algorithm, and then shows unde t what con ti t ; 

guarantee convergence.



LIST OF TABLES

TABLE 

1 . 1 Conventional Control compared to 
Adaptive Control

2 . 1 Duality of MRAC and Adaptive Estimation



LIST OF FIGURES

FIGURE PAGE

1.1 Generalized Adaptive Control Mechanism 3

1.2 Conventional versus Adaptive Control 5

1.3 An Open Loop Adaptive Control 8

1.4 Dual Stochastic Control 9

2.1 Explicit MRAC 1 3

2.2 Self Tuning Control Principle 14

2.3 On Line Parameter Estimation lb

2.4 A Sufficiently Rich Input Spectrum is 16
required to Distinguish between Systems

2.5 General Configuration of the STC 18

2.6 Implicit MRAC 22

2.7 The ARMAX Procrss 23

2.8 Linear Controller Design in a Stochastic 24
Environment using an Explicit Prediction 
Reference Model

j.l Equivalent Feedback Representation for the 49
PAA

3.2 Simplified Feedback Block Diagram 50

4.1 Input and Output Definition for the Passive 52
System

4.2 Interconnection of Two Passive Systems 54

4.3 Negative Feedback Representation of the Two 55
Connected Passive Systems

4.4 Input and Output for the Generalized System H 57

xiii



FIGURE

4.5 Nyquist Diagram. H, is SPR while H n is not

4.6 SPR Input/Output Relationship

4.7 Input ana Output for the Discrete System H

4.8 Parallel Configuration of Two Passive 
Systems

4.9 Feedoack Configuration of Two Passive 
Systems

4.10 Cascade Configuration of Two Passive 
Systems

4.11 Second Order Nyquist Plot

4.12 Generalized Feedback System

5.1 PAA with F(k) = I

5.2 PAA with F <k) = F

5.3 Generalized Feedback System

5.4 Generalized System with > i(k) = X

5.5 Generalized System for X , (k) time varying



CHAPTER 1

INTRODUCTION TO ADAPTIVE CONTROL

1.1 Reasons for Adaptive Control

High performance control systems require precir tuning of

the controller. How e v e r , in most practi situations, the

'

may occur either because environmental conditions change or 

are unknown, or because we have considered a simplified linear 

model for a non-linear system.

An adaptive controller automatically adjusts its parameters 

on -1 inr- in such a manner so as to achi ve and maintain an 

accv; t-i: 1 - ve 1 of p- rformance under the above conditions.

Th concept of a lap ive control seems to be old, however, 

interest in these systems has arisen only as recently as the 

fifties with significant ievelopme n t starting in the late 

sixties f1 ], [ 1 1 ].



The "Model Reference Adaptive Systems" (M R A S ) approach will

be considered in detail. This techniq"e may be used for 2)

adaptive model following c o n t r o l , 2 ) on-line and real-time

■

In the last two methods, the plant being identified or 

observed forms the reference model.

Defir.: - ion (landau [3]) "An adaptive control system measures

a certain index of performance (IP) of the control system

using the inputs, the state, an 1 the outputs of the adjustable

system. From the compar ison of the measured index of

performance anu a set of given ones, the adaptation mechanism

modifies the parameter of the adjustable system or generates

an aux^l. iry input, in order to maintain the IP close to the 

•



Unknown Unknown 
Disturbnnces Disturbances

Inputs

Desired
IP COMPARISON

ADJUSTABLE
SYSTEM

IP
MEASUREMENT

ADAPTATION
MECHANISM

FIGURE 1 .1 : Gener i 1 ized Adaptive Control Mechanism



1.2 C o m p a r i s o n  of C o n v e n t i o n a l  C o n t r o l  and A d a p t i v e  C o n t r o l

A conventional controller monitors the controlled variables 

under the effect of disturbances acting on t h e m . Since it 

is designed a iming constant pi ess parameters, its 

performance will vary under parameter di turbances.

In a d a p t i v e  control, the system contains a feedback control 

with adjustable parameters. A supplementary loop monitors 

the syst< m performance and adjust the controller parameters 

in the presence of parameter disturbances so as to maintain 

acceptable performance (e.g. to maintain a specific damping 

ratio.

Figure 1.2 illustrates the two systems. From this figure 

wr- can make one - • o -one correspondence betw<?n the system, 

as shown in T v 1e 1 .I .



CO N T R O L L E R PLANT

T R A N S D U C E R

OB J ECT I ; Control of Ph ysi cal Variables

(a) C O N V E N T I O N A L  C O N T R O L

IP
ME A S U R E M E N T

C O MPAR IS ON
DECISION

ADJUSTABLE
SYSTEM

ADA PT IVE
M E C H A N I S M

OB JECT I V E : Control of Performance

(b) ADAPTIVE  CONT R O L

FI ~URK \ : Conventional versus Adaptive Control



T/'BLE 1.1 : Conventional Control comp t red to Ad apt i v -

Con tr o 1

CONVENTIONAL CONTROL ADAPTIVE CONTROL

PLANT

TRANSDUCER 

REFERENCE INPUT 

C O ‘IP A RAT 3R 

CONTROLLER

ADJUSTABLE SYSTEM 

IP MEASUREMENT 

DESIRED IP

COMPARISON - DECISION 

ADAPTATION MECHANISM



TABLE 1.1 : Conventional Control compared to Adaptive

Control

CONVENTIONAL CONTROL ADAPTIVE CONTROL

PLANT

TRANSDUCER 

REFERENCE INPUT 

COMPARATOR 

CONTROLLER

ADJUSTABLE SYSTEM 

IP MEASUREMENT 

DESIRED IP

COMPARISON - DECISION 

ADAPTATION MECHAN M



1.3 Basic Adaptive Control Techniques

. .1 Open-loop adaptive control

ini' 10 is also known as "gain-scheduling" and is 

ten d in aircraft autopilots. It assumes there is a

" i on ship" between the environment and the system

par me, . The system controller then adapts accordina to 

h ■ n rc nment without m.- : s u r i n g the actual system 

p e r f o r m a n c e .

•his technique will fail if the "environment-system"

onship changes. The system is illustrated in Figure 

. . I he system is no* truly adaptive in terms of our

definition.

f t hou 3 b -- noted that this method is not necessarily

i m p 1•men t than a closed loop system, as transducers

v  r\ costly. Closed loop adaptive systems merely

equi additional computer capabilities.

he ign. should also b< careful not to use adaptive

technIqui j in a situation where a conventional feedback 

o; t roller wou Id uf f i !•>• (where the controller is designed 

u hat nr i not teo sensitive to parameter

variations).
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ENVIRONMENT

Gain Scheduling

PLANTCONTROLLER

ENVIRONMENT
PLANT

R E L A T I O N S H I P
ADAPTATION
M E C HA NISM

ENVIRONMENT
MEASUREMENTS

L _ J

FIG': RE 1.3 : An Opvn Loci- Adagt ; r . •,
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1.3.2 Closed-loop adaptive control

( Dual Stochastic Control

In dual stochastic control [ 4 ], [ 5 ], the own

parameters are considered as additional states to be 

estimated. This technique simultaneously tries to 

reduce b th the control and the estimation e r r o r . This 

is illustrated in Figure 1.4.

Disturbances

NON-LINFAR 
ESTIMATOR

PLANT
NON-LINEAR
CONTROLLER

x = extended state e

parameter vector

State vector

FIGURE 1.4 Dual Stochus! : Control



Due mainly to computation requirements, even the 

simplified approximations to this technique are extremely 

complicated and difficult to implement. A simple linear 

control problem with one unknown parameter becomes a 

stochastic non-linear control pro b l e m . Consider the 

following example:

x = ax + u (1 . 1)

Suppose a is unknown

Le t

Then the system is characterized by

X 2 X 1

f (x, V

(1 .2 )

(1.3)

Equition (1.2) is non-linear and the form of f (.,.) in

equation (1.3) may also be unknown.

The dual approach is of theoretical interest for

obtaining performance bounds for the simpler and more

feas'ble sub-optimal techniques.



Self-Tuning Control (STC) and Model Reference Adaptive 

Control (MRAC)

Self-tuning controllers, proposed by Kalman ( 19 53) 

were originally developed for th- stochastic discrete 

time regulation problem.

The MRAC techniques were initially ieveloped for 

deterministic tracking problems by Whitaker (1958).

Both techniques were developed independently and both 

have been successfully implemented. The two are strongly 

connected, and for a variety of IP and process models 

the two techniques can lead to identical solutions if 

the desired response is specified in terms of a transfer 

function in a deterministic environment, or an ARMA 

model in a stochastic e n v i ronment.

i W I
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CHAPTER 2

MODEL REFERENCE ADAPTIVE CONTROLLERS AND SELF TUNING

REGULATORS

2.1 Basic Principles

Both the MRAC and the STR techniques give approximations for 

the solution of the non-linear control problem. They ire 

based on the hypothesis that "for any possible value of the 

process para;; -tors there exists a linear controller with a 

fixed complexity such that the closed loop control system 

(process ind controller) can achieve pre-specified (desired) 

performance.;". [1 ]

Thu on a r it;ne that for varying plant parameters , only the 

controller parameters (not the controller structure) need be 

chang : * achieve the desired p e r f ormance.

The configur <tion of an MRAC with explicit reference model is 

given in Figure 2.1. The reference model characterizes the 

desired plant structure. The controller is adjusted by the 

adaptation mechanism so as to give a closed loop response that 

is as close as possible to that of the reference model. The 

adaptation mechanism uses the error signal as well as the 

plant inputs and outputs in its adaptation algorithm.
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u (k)
y (k)

+' -

e (k)

PLANT

EXPLICIT
REFERENCE

MODEL

ADJUSTABLE
CONTROLLER

ADAPTATION
MECHANISM

FIGURE 2.1 : Explicit MRAC

•

A model of the plant is estimated on-line using the available 

input and output data of the plant. The model is then used 

for the design of a suitable controller. The mode 1, and 

therefore the controller, is continuously updated as more 

information become available. The technique of on-line 

estimation of the plant model will now be investiaated in 

detail .
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Performance

u (k) PLANTADJUSTABLE
CONTROLLER

CONTROLLER
DESIGN

PLANT MODEL 
ESTIMATION

FIGURE 2.2 : Self Tuning Control Principle

2 .1.1 line plant estimation

The basic principle for on-line parameter estimation is 

build up an adjustable predictor for the plant output, 

scheme is illustrated in Figure 2.3.

y (k)

to

This



u (k)

e (k ) II----

(Prediction
error)L.

PLANT

ADAPTATION
M E C H A M S M

ADJUSTABLE
M O D E L

PREDICTOR

F I G U R E  2.3 : On L i nv Parameter Estimation

The prediction error (< ■ (k ) ) is used by a recursive estimation 

algorithm to a ijust the parameter of the model p r e d i c t o r .

The object in a deterministic environment i = to force e (k ) 

asymptotically to zero. The stochastic environment is 

discussed in Section 2 .2 .
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This scheme consists of an adaptive predictor that asymptotically 

gives an estimated model whose output agrees with the plant 

output for the given input. This is not an identification 

of the plant mo^el, which would give the correct input 

output relationship for all possible input sequences.

In order to identify the plant, we would need a "sufficiently 

rich" input (one that has a rich enough spectrum) so as to 

excite all the modes of the plant. Figure 2.4 illustrates 

the Bode plot of two systems that are indistinguishable if 

one has an input with a single frequency f ̂ . However, when 

the input contains f , as well, the difference in the systems 

become apparent.

A 2

X

f f
f f 1 f

21 2

(a) First order system (b) Second order system

FIGURE 2.4 A sufficiently rich Input Spectrum is

required to distinguish betw.en systems
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The controller is designed on the parameters of the 

predictor which, as we have seen, need not be the same as 

the true plant parameter. This complicates the analysis of 

these s chemes.

The estimation scheme of Figure 2.3 is the dual of the MRAC 

shown in Figure 2.1. T h basic configuration is the same if 

we interchange the blocks as shown in Table 2.1.

T/.BLE 2.1 : Duality of M RAC and Adaptive Estimation

EXPLICIT M RAC ADAPTIVE ESTIMATOR

REFERENCE
MODEL --- PLANT

ADJUSTABLE
SYSTEM
(PLANT
AND

CONTROLLER)

— ►

ADJUSTABLE
PREDICTOR
(PLANT
MODEL)



The Parameter Estimation shown in Figure 2.3 is inserted 

into Figure 2.2 to obtain the general configuration of the 

S shown in Figure 2.5.

Parameter Estimates

PLANTADJUSTABLE
CONTROLLER

ADAPTATION
MECHANISM

ADJUSTABLE
PREDICTOR

ADAPTATION
MECHANISM

Adapt i ve Pre :1 i c t or

FIGURE 2.5 General Con f inur at. ion of the STC
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A large variety of schemes can be obtained by combining 

various recursive parameter estimation schemes (Adaptation 

Mechanism I) with various controller design strategies

1 1 ) .

As we have seen, the estimates of the plant parameters are 

!

Thus one needs to do careful analysis to determine if a 

specific, scueme will work. "Analytical results describing 

the beh aviou r of such adaptive control schemes are available 

only for very limited choice of parameter estimation 

algorithm:, and control strategies". [1 ]

W h r n  the desired performance is given in terms of a specified 

transfer function and the plant is minimum phase, the 

r s u ' t ' S T C  cl a., is equivalent with the explicit M RAC 

shown n Figure 2.1 and theoretical results for this class 

is available.
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2.1.2 Direct and indirect adaptive control

In the explicit MRAC shown in Figure 2.1, the controller 

parameters are directly updated by the adaptation mechanis . 

This is called "Direct Adaptive Control". The STC shown ii 

Figure 1.5 on the other hand uses adaptation mechanism I t< 

adapt the ,ustable predictor parameters. These parameters 

are then used by the adaptive mechanism II to compute the 

controller parameters. This is known as indirect adaptive 

co n t r o l.

In many instances, by re-parametrization, one can directly 

estimate the controller parameter in the adaptive mechanisr I. 

The adaptive mechanism II then falls away anu the connection 

of STC and explicit MRAC is then even more o b v i o u s .

The following is an example of re-parameterization [ 1 ].

Let the plant model be

y (k + 1 ) = - a y (k ) + u (k ) (2 .1 )

where y is the output, u is the input and 1 a 1 is an unknown 

parameter.
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The objective is to find u , such that

y(k + 1 ) = - c y( k ) |c|< 1 (2 .2 )

when a is k n o w n , the appi Sprint control is

u (k ) = - r y (k ) (2.3)

with r = c - a (2.4)

Equation (2.1) can now be rewritten as

y (k + 1) = - c y ( k ) + r y ( k ) + u ( k )  (2.5)

and : is t only unknown para mot-' r . By usina (2.5) as the

model, the j ir meter r is estimated by the adaptive 

m I , an: i i z •..>c 1 1 y : n e ; . -1 1 ■ . ( 2 . 3 )  to get the

c ntr . i: *- ; o: i. i r y a i ir * i ve m- ' - ; n i r, n is needed .

For a STC scheme who re the desired performance is expressed 

in term' of i d • sire i dynami c system, the controller is 

adjusted such that at each instant, the output of the 

adaptiV" predictor is equal to the 3esi red system (i.e. the 

reference model) output. The controller and the predictor 

thus form an "implicit" reference m o d e . The error in such a 

scheme has the same meaning as the error in the explicit M RAC



- 22 -

of Figure 2.1. The implicit MRAC is shown in Figure 2.6.

It should be noted that the explicit reference mo;e1 is not 

part of  the scheme, but ls merely inserted for illustrative 

p u r p o s e s .

I_________________
Implici t
Rt : cr• n c » Mode 1

I_____

PLANT

ADAPTIVE 
ME CH AN ISM 

I I

ADJUSTABL E
C O N T R O L L E R

EXPLICIT
REFERENCE

MODEL

ADAPT I V E
P R EDIC TO R

ADAPTIVE
MECHANISM

FICURE 2.6 : Implicit MRAC
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2.2 Stochastic Environments

In a stochastic environment, in addition to the plant model 

one needs to consider a disturbance model. We will assume 

that the disturbance can be modelled as an ARMA p r o c e s s . 

Consider the general structure shown in Figure 2.7. The 

output process y {k ) , is called an A *MAX process.

e (k)
White Noise

u (k )

F IGURE 2_. 7 : The ARKAX Process

If the contro? law u (k ) is a linear feedback of the output

y (k ) then y (k ) is also an A RMA process, and we can specify 

•

the plant and disturbance models are known, we formulate the 

control strategy as shown in Figure 2.9. As the only 

unpredictable process is e (k ), the output error (y^ - y , ) 

should be only in terms of e (k ). The terms e(k - 1),

e (k - 2 },.... have been taken into account by the previous



■

output errors which were fed b a c k . Thus the output error 

should he a white noise process. This process is called an 

i novation sequence and its "whiteness" is a good measure of 

the performaice of the controller.

PLANT AND
d i s t u r b a n c e :

MODELS

CONTROILER 
DESIGN

e (k )

PLANTCONTROLLER

PREDICTION
REFERENCE

MODEL

FIGURE 7 .8 : Linear Controller Desiqn in i Stochastic

Environment using an Explicit Prediction 

Reference Model

c 
43



As an example consider the following simple ARMAX process.

y (k + 1 ) = - a y (k ) + u (k } + c e (k + e f k + 1 ) (2 .6 )

where y(k) is the o u t p u t , u (k ) the input and e(k) is a

sequence of identically distributed Gaussian random variables.

Assume the desired output it

y(k + 1) - d y ( k ) + f e (k) + e (k + 1 ) (2.7)

As we have no knowledge at time k of e (k + 1) we can

formulate the optimum predictor as

y ik * 1/k) = - d y(k) + f e (k ) (2 .8 )

and the required control would be

y (k + 1) - y (k + 1/k) = e (k + 1) (2.9)

(This would give minimum output error) .

The optimum control is then

u (k ) (d - a) y (k) - (c - f) e (k) (2.10)

and the output error will be a white noise sequence
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When the plant parameters and the disturbance model are 

unknown or vary these schemes can be transformed into the 

type shown in Figure 2.1 or Figure 2.5 with additional 

parameters. The deterministic reference model in Figure 2 . ’ 

is replaced by an explicit stochastic prediction reference 

mod a 1 .

In the explicit prediction reference mode 1, the algorithm 

will adapt so as to obtain (asymptotically) a prediction 

error that is an innovation sequence.

For the STC structure where the design object is given in 

terms of an ARMA mode 1, the predictor and controller will 

form an implicit predii ion ref rence mode 1 and the objective 

will be to achieve a prediction error that is an innovation 

pro c e s s .

Under tin ;e circumstances, the same similarities exist between 

the stochastic MRAC and the stochastic STC as were indicated 

in the deterministic case in Section 2.1.



2.3 Analysis and Design of Adaptive Control Schemes

S nee the adaptive control scheme is non-linear the analysis 

of these systems is non-tr ivial. A basic propo ty required 

in the deterministic case is global stability, while global 

convergence is required in the stochastic case. In both cases 

one may reformulate the problem in terms of a stability 

analysis for a system disturbed from equilibrium. This 

approach works for analysis and design of MRAC and STC with 

direct adaptation. For indirect adaptation STC the problem 

is more complex [1 ].

The problem of direct adaptation of the controller parameters 

can be approached as a recursive estimation p r o b l e m . This 

suggests the use of recursive parameter estimation techniques . 

In Chapter 3, parameter adapt it ion algorithms will be discussed 

in detail.



2.4 Co nel usion s

The MRAC snd STC structures have been discussed both in 

deterministic and in stochastic environments. The 

similarities of both methods have been pointed out and the 

difference between implicit and xplicit as well as direct 

and indirect adaptive control have been discussed. It has 

also been indicated that the analysis and design of these 

systems can be analysed in the framework of a stability 

problem.
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CHAPTER 3

PAR A M E T E R  A D APTATION ALGORITHM!'

3.1 The Off-line Least Squares Estimation Al g o r i t h m

Consider a system cha r a c t e r i z e ’ by the transfer function

H (q ""1) = aLl!M3lLL (3.1)
A(q l )

The letter q is used to denote a unit delay instead of

z  ̂, since z i ; u • d to denote a complex n u m b e r .

We will con ii''r the case of a unit delay (d = 1 )

It is assumed that A and B are moniu polynomials with the 

first term o' A normalized to 1.

1 + a 1 q 1 + ... t a ^ q 1' (3.2)

_ i ft1 + q A (3.3)



* -1 - n + 1  t ̂  a \where A = a , + a ,, q + . . . + q 1 ’ • 41

and b = + b i q + ... + b q [3 . ->)

b + q ' B (3.6)o

* -1 - m + 1  _ _.where B + b,, q + ... + b^ q (3.7)

For a given input u ( k ), the output y ( k + l )  is given by the 

difference equation

A ( q ~ !' y ( k + 1 )  * B ( q ~ ’)u(k) (3.8)

tJote that the output h ■ s in lex k + 1 instead of k , due to the 

unit delay. Equation (3.8) can now be reformulated using 

equations (3.3) and (3.6)

[1 + q 1 A* (q ~ 1) ] y (k r 1 ) * B(q ')u(k) (3.9)

i.e. y (k + 1) = -A * (q ')y(k) + B(q ')u(k) (3.10)

Using equations (3.4) and (3.6) in equatl n (3.10) we get
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y(k + 1 )
n m
I a . y (k + 1 - i ) + £ b . u (k - i)

i = 1 1 i = 0 1

The parameter vector 6 is defined by

(3.11)

a ... a i b bI n o  m (3.12)

and the measurement vector <J>(k) by

f-y(k) ... - y ( k - n + l ) ,  u(k) ... u ( k - m ) ]

Equation (3.11) can now be written as

(3.13)

y(k + 1) = 8 <&(k) (3.1-1)

Th - problem : j to find the best estimate 9(k) for 9 (in the 

1 <- I sq . in s sens -) given the k sets of measurements

y ( ) 6 j>( i - 1)

i.e. find 9(k) that minimizes the TP

(3.15)

J ( ) = i: [ y ( i ) - 9 ( k ) ̂  ji ( i - 1 ) ] ’
i » 1

(3.16)

Since k j i



y (1/9(k } ) = 6 (k ) $ ( i - 1) (3.17)

is called the a posteriori prediction

E (i/ j) = y (i) - y[i/9(j)] (3.18)

is tne a posteriori prediction error

We can thus rewrite ( .16) as

k 2
J (k) - I E* (i/k) (3.19)

i = 1

To find the optimum 9 (k), wt set

= o (3.20)
(k)

This yi is

k «T
-2 Z [y ( i ) - 9 (k)4,(i - l)]*(i -1) ~ 0 (3.21)

i = I

- TSince 0 (k)+»(i - 1 ) is a scalar,



k k ,T
Z y(i)<J)(i-l) = I M i  -1)6 ( k ) M i - l )  (3.22)

i = 1 i = 1

k t -
I 4,(1 -1)4(1 -1) 6 (k) (3.23)

1 = 1

since a scalar is its own transpose

Now let

F (k) ' 1 = Z t t i - n t u - l ) 1 (3.24)
i = 1

Then

- 1  -
Z y (i) (.(i - 1) - F (k ) 6 (k) (3.25)

i « 1

which gives

k
6 (k) = F (k) T. y (i) 4, ( i - 1) (3.26)

i = 1

The off-line solution is given by equations (3.24) and (3.26).
— 1

One first computes F (k ) using (3.24) . The inverse F (k ) is 

then computed and used to solve for 6 (k ) in (3.26). Due to 

the matrix inversion at each step, this is extremely time 

consuming. A recursive, on-line method is presented in the 

next section.



/
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3.2 Recursive Least Squares (R L S ) Parameter Estimation

3.2.1 The RLS algorithm

From equation (3.24), we have

- 1 k + 1
F(k 4 1 ) = z *(i -l)f(i - 1 )

i = 1

T TE 4>(i - l)^(i - 1 ) + $ (k ) $ (k )
i = 1

Also

k + 1 k
E y (i) <j>(i - 1) = E y (1) »(i - 1) + y(k + l)*(k) (3.28)

i » 1 i = 1

i.e.

F(k + l ) ~ !0(k +1) = F(k) ’e(k) + y(k +l)$(k) (3.29)

T •Adding and subtracting ()(k) )(k) 0 (k ) to the left hand side of

(3.29) yields
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F (k + 1 ) ~ 1 6 (k + 1 ) = F (k) ™ 1 9 (k) + y (k + 1 ) <6 (k) + k ) 4> (k ) 1 9 (k )

4> (k) » (k) T 9 (k)

fF (k) " 1 +*(k)$(k) ‘l 9 (k ) + <j> (k) [y (k +1)

- 6 (k) *(k)] (3.30)

Define the a priori prediction error , e (k + 1) by

e° (k + 1 ) = y (k + 1 ) - 9 ( k ) T {> (k ) (3.31)

Substituting equations (3.27) and (3.31) into equation

(3.30) gives

F(k + 1) ‘ ' 9 (k +1) = F (k + 1 ) “ 1 9 (k ) + ̂ (k )c ° (k + 1) (3.32)

Q(k +1) - 9(k ) + F (k+1), :)c (k + 1 ) (3.33)

F (k ) is called the adaptation gain. The estimate 9(k ) is 

corrected in the direction (k ) modified by the matrix F (k ) 

according to the error term (°(k + 1).



3.2.2 A recursion formula for the adaptation gain

To find a recursive formula for F (k ), we make use of the 

Matrix Inversion Lemma f 6 ]. Given three matrices, F(nxn), 

R(mxm) and H(mxn) and assuming all the necessary inverses 

exist, then

(F~ + HR" H ) = F - FH ( R + H 1 FH) " ’ !l " F (3.34)

TNow let R = 1 (which implies that H FH is also a scalar)

F (k)

and H ■ ♦ (k )

Then (3.34) yields

[FU,-' . M k H i k i V  - f (k) -
1 +$(k) F (k) *(k)

i . e .  r t k  * 1)  -  F ( k |  „ n k H l k U l j u Z m L  , 3 . 3 5 ,
1 * # (k! F (k 1 .* ( k ]

This gives the required recur ive algorithm for the adaptive

gain F (k )



3.2.3 Reformulation of the RLS algorithm in terms of a 

posteriori error

The system of equations develop'd thru far is summarized as 

followi:

o
0 (k + 1) - 9 (k) + F (k - 1) * ( k ) e (k + 1) (a)

—  % 1 TF(k + 1 ) = F (k) ** + M k )  * (k) (b)

F(k + 1 ) = F (k) F(k)$(k)$(k) rF(k) 
T (c )

1 + *(k) F(k)$(k)

c ( k + 1 ) = y(k + 1 ) - y (k + ! / k ) (d)

= y(k + 1 ) - 6 (k)*(k) (e) (3.36)

If we multiply equation (3.36c) by +,(k) on both sides , and 

place the left hand side over i common denominator we get 

t. h ‘ followin'!

F ( k + 1) M  k ) = ------f' —  ' - (.k > -------  (3.37)
1 + *(k) F (k) 'Hk )



This is then substituted into equation (3.36a) to get

0 (k + 1 ) - 6 (k) + F (k ) $(k ) e (k + 1 )
1 + *(k) F (k ) <j> (k )

(3.38)

Wo now define the a posteriori prediction error c (k +1) as 

f o 1 lows

e (k + 1) A y (k + 1) - (k + 1 )  *(k) (3.39)

Using equation ( 3 . 3i u ) in e<; ; 11 ion (3.39) yields

e( k + 1) = e° (k + 1) - [ 0 (k + 1) - 9(k)]T 4>(k) (3.40)

Noting that this is a scalar we can take the transpose of 

the last term without affecting the equation

e (k + 1 ) = t 1 (k + 1 ) - $ ( k ) T [0 ( k + l )  - 0 (k )] (3.41)

Substituting from equation (3.36a) we get

t: (k + 1) c°(k + 1 ) + t(k)T F ( k ) » (k ) ■ (k + 1 ) 
1 + *(k)F(k)*(k)

(3.42)

c (k fl)
T. (3.43)

1 + M  k ) F(k)*(k)
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We see from equation (3.43) that the a posteriori error is 

always smaller than the a priori error. The adaptation 

mechanism acts so as to reduce the error.

We can now reformulate the system of equations given in 

(3.36) in terr of the a posteriori error

6 (k + 1 ) 6 (k ) + F ( k ) $ ( k ) e ( k + 1 )  (a)

F (k + 1) “ 1 = F (k) 1 + $ ( k ) k )

F ( k + 1 )

c(k > 1 ) y(k + 1) - 6 (k + 1 ) *(k)

y (k + I) - 0 (k) *ik)
1 + $(k) F(k)*(k)

r (k + 1)
1 + 4(k) F(k) 4> (k)

( M

„,. . F(k) *(k) *(k) F (k) , .F ( x )  --------- —-------------(c )
1 + $(k) F(k)$(k)

<d)

(e)

(f) (3.44)

This system of equations is far more convenient for analysis 

purpose:. It should be noted that this is a structure for 

recurs i v ■ parameter . iapta t Lon algorithms. The LS algorithm 

shown i n o t  the only possibility. The differences in the 

various algor 1 ' hms will occur in the pa r aim ters that appear



in t h e  4> v e c t o r  a n d  in t h e  f o r m  o f  t h e  p r e d i c t i o n  e r r o r .  

D i f f e r e n c e s  m a y  a l s o  o c c u r  if an e r r o r  c r i t e r i o n  o t h e r  t h a n  

t h e  LS is u s e d .  T h i s  c h a n g e  w i l l  be m a n i f e s t e d  in t h e  u p d a t e  

e q u a t i o n  f o r  F (k ).

3.3 The Adaptation Gain F (k )

There are a number of different choices for the update 

algorithm for F(k). Each of these will correspond to a 

different off-line criterion. We will now briefly discuss 

the merits and failings of some of these.

1 F (k + 1) ~ 1 = F (k > ~ ‘ + » ( k H  (k) T (3.45)

where F (0 ) > 0

This corresponds to a quadratic off-line criterion

k „ t 2
F(k) - I (y(i) - 6 (k) * (i -1)1 (3.46)

1 = 1

In this case F(k) is a positive definite matrix for all k.

Since F ’(k ) is always increasing, F( k ) will b e  d e c r e a s i n g  

(if it is not a scalar, then we r e f e r  to the norm o f  the m a t r i x ) .  

This means that the new information gets loss and less weight. 

However, if we wish to track a varying parameter this is



undesirable. In fact as time goes on, F U ) will tend to zero.

To overcome this we can introduce a forgetting factor, which

1 ads to the following algorithm.

2 F ( k + 1 )  ‘ = *F(k) ' + t H k H t k ) 1 (3.47)

where 0 < X < 1

This correspor Is to a quadratic off-line criterion, with a 

forgetting factor.

F (k ) = E [ y (i) - 5(k)T iJ>(i - D ]  (3.48)
i = I

Typically X is between ,95 and 0,99. One difficulty with 

this, is that if $ (k ) ■?■ (k ) 1 Is equal to zero for sume ti m e , then 

F(k) will tend to blow up. This will not happen in the 

following algorithm.

3 F(k +1 ) = F (k ) * F(0) (3.49)

This corresponds to the simple gradient off line criterion

J (k) = [y (k > 1 ) - A (k) <Hk) ] ' (3.50)
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undesirable. In fact as time goes on, F( k ) will tend to zero. 

To overcom-' this we can introduce a for getting factor, which

leads to t ne following algorithm.

2 F (k + 1) ” ' = XF (k) ~ 1 + <t> (k ) <|> (k ) T (3.47)

where 0 < 1 < 1

This corresponds to a quadratic off-line criterion, with a 

forgetting factor.

%
F (k ) = E Ak - 1 [y(i) - 8 ( k ) % ( i - l ) ] 2 (3.48)

i = 1

Typically \ is between 0,95 and 0,99. One difficulty with
Tthis, is that if <£(k)<f>(k) is equal to zero for some time, then 

F (k ) will tend to blow up. This will not happen in the 

following algorithm.

3 F(k +1) = F(k) = F(0) (3.49)

This corresponds to the simple gradient off line criterion

J (k) = [y (k + 1 ) - R (k) <j> (k ) ]' (3.50)





(k) > 0 implies F(k f 1) decreases. Thus one has a ‘ rr

amount of control over F (k ) . O b vious ly  a 1 the prev 

algorithms are special cases of this one with spe ci fic val u 

assigned to the 1 parameter.

The update algorithm may be manipv Lat 1

inversion lemma to give

F (k + 1 [ r ( k , . ruujKy^M-m)_ , (3.
X 1 ( k a(k) +*(k) F(k) <ji(k)

54)

w h e r e  a (k) (k:'. (3.55)
\,(k)

T h e  t r a c e  o f  F ( k  + ! )  is g i v e n  by

tr F U  .11 - x-ijy t r [ F (It 1 - F'k ' *<% ' JEJiL- , (3.56)
A ! (kl a(k, + * ( k )  F ( k ) * ( k )

By fixing a value for a (typically 0,5 < a - D  we can choos e 

Xj k ) so as to keep the trace of F(k) constant for all k.

Sii.ce a is fixed, we can now calculate

The fixed trace algorithm performs far better than the constant 

gain algorithm. At each step both algorithms move in the 

direction of least squares minimization. However, t.i, s e ;. 

size in the constant trace algorithm is constant, whil that
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o f  t h e  c o n s t a n t  g a i n  a l g o r i t h m  d e c r e a s e s

F (k) p (k)
(3.57)

This is known as a scalar adaptation gain. Depending on the 

form of p (k ) we can get different algorithms.

i) p (k ) = constant (3.53)

This means that F(k) will be constant, giving a gradien- type 

algori t h m .

ii) p ( k )

This gives

(3.59)

F (k)

i i i ) p (k ♦ 1 ) p ( k ) + tj) ( k ) i(i(k) (3.60)

where p ( 0 ) > 0

The algorithms arising from (ii) and (iii) fall into the 

category of stochastic approximation a l g orithms[/), [0]. The

convergence analysis of these algorithms is simpler but their 

performance is lower. However, techniques do exist for



increasing convergence rates quite dramatically [’■'!•

A word of caution is appropriate at this point. In going 

from the off-line algorithm to an on-line recursive algorithm 

certain problems arise.

Firstly, in the initialization of the algorithm we need to

wait n steps to calculate of::- line, an initial t {n j .

Alternately we may use an arbitrary initialization for !(.<).

For example we may choose

F (k ) = 4 I (3.61)
0

where 0 < ' < 1

instead of

^ TF (n ) = £ $(i - l)<j>(i -1) ( j . 6 2)
i = 1

where n is the number of p a r a meters.

- 1
This gives the following form for F

-1 k TF (k + 1) = 6 1 + Z <t>(i-l)$(i-l) (3.63)
1 = 0
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As k i n c r e a s e s , t h e  f i r s t  t e r m  b e c o m e s  n e g l i g i b l e  c o m p a r e d  

to t h e  s u m m a t i o n . H o w e v e r , s t r i c t l y  s p e a k i n g  it is not t h e  

s a m e  as t h e  o f f - l i n e  p r o c e d u r e

F u r t h e r m o r e , we l i s t e d  a n u m b e r  of p o s s i b l e  a l t e r n a t i v e s  f o r  

u p d a t i n g  F ( k ) a n d  t h e s e  w i l l  n e e d  t o be e x a m i n e d  a n a l y t i c a l l y  

to d e t e r m i n e  t h e  e f f e c t s  o n  t h e  o v e r a l l  a l g o r i t h m .

O n e  f i n a l  p o i n t  o f  c o n s i d e r a t i o n  is t h a t  in t h e  o n - l i n e  

a l g o r i t h m  w e  a r e  u s i n g  a l a r g e  n u m b e r  of s a m p l e s  (k - .

In t h e  l i g h t  o f t h e  a b o v e , o n e  n e • d s to s h o w  t h a t  in s p i t e  

of t h e s e  c h a n g e s , t h e  p r e d i c t i o n  e r r o r  ( e) w i l l  t e n d  to z e r o

as k -*•

A n o t e  of i n t e r e s t  , is t h a t  t h e  F m a t r i x  is r e l a t e d  to t h e

c o v a r i a n c e  m a t r i x  o f  t h e  i n p u t ,  an i is a l s o  r e l a t e d  to th e

Kal n g a i n  m a t r i x  [6 I . If t h e  e i g c n - v a l u e s  o f  t h e  F m a t r i x

a r e  s m a l l  t h e n  t h e i n p u t  m a y  be i n s u f f i c i e n t l y  r i c h .
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3.4 The E [ u i v a l e n t  F e e d b a c k  System f or  R e p r e s e n t i n g  P a r a m e t e r

Adaptation Algorithms :■ |

By reformulating the PAA in terms of a feedback system, the 

analysis is greatly simplified. If the feedback system can

be shown to be asymptotically stable, then the corresponding ^
I

PAA will be algebraically stable. This allows us to use 

control technique- for the desiun and analysis or stable PAA's.

1
i

indicateo.

The parameter update vector is given by j

8 (k+l) = 9 (k) + F(k)(*i(k)e(k+1}

The : ra meter error vector is defined as

6 (k) & @(k) - 8 (3.65)

Substituting (3.63) into (3.62) for 9(k) and 9 (k +1) yields 

9 (k+l) = 6 (k) + F (k) <Hk) e (k + 1) (3.6 6 )
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T h e  a p o s t e r i o r i  p r e d i c t i o n  e r r o r  is g i v e n  by

E (k + 1 ) = y ( k + l ) - 6 ( k + l ) ‘<Mk) (3.67)

where

y (k + 1 ) = PT 4> (k } ( - • w 8 )

Substituting (3.63) into (3.67) yields

e (k + 1) = - [6 (k + 1) - 6 V ) (k) (3.69)

Using e q u a t i o n  (3.65) in (3.69) g i v e s

e ( k + l )  - 9( k  + 1 )  4>(k) (3.7 0)

T h e  e q u i v a l e n t  f e e d b a c k  s y s t e m  c a n  n o w  b e  d r a w n  u s i n g  e q u a t i o n s  

(3.66) m d  (3.70) . T h i s  is g i v e n  in F i g u r e  3.1.

T h e  f e e d f o r w a r d  p a r t  o f  t h e  l o o p  is m e r e l y  a s t r a i g h t  c o n n e c t i o n  

H o w e v e r , it h a s  b e e n  r e p r e s e n t e d  as a b l o o k  ot t r a n s f e r  ,u n c t i o n  

o n e  , s i n c e  t h i s  wi l l change if a l g o r i t h m s  o t h e r  t h a n  t h e  R L S 

a l g o r i t h m  is u s e d . T h e  f e e d f o r w a r d  p a t h  is a l i n e a r  t i m e  

i n v a r i a n t  (LTI) syst m , w h i l e  t h a t  o f t he ;e e d b a c k  p a t h  

(i n d i c a t e d  b y  b r o k e n  l i n e s  in F i g u r e  3.1) is a n o n  line it t i un­

v a r y i n g  (N L T V ) s y s t e m .

\

A



l i n e a r  t i m e  i n v a r i a n t

G>
- 6 (k + 1 ) <Mk)

r

6 (k + 1) <|> (k)

6 (k + 1 ) J(k + 1 )

— s

-1q
6 (k)

F (k)

*(k) N O N L I N E A R  T I M E  V A R Y I N G

FIGURE 3.1 : E q u i v a l e n t  F e e d b a c k  R e p r e s e n t a t i o n  for the PAA

._ $
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This system may be represented by the simplified diagram 

shown in Figure 3.2.

NLTV

LTI

FIGURE 3.2 : Simplified Feedback Block Diagram

We thus need to examine the stability of such a system. If 

this system is stable then the prediction error will go to 

zero as k -* ® which is whit we require . This analysis is 

non-trivia 1 and will be dealt with in the following chapter.



3.5 C on cl usion

Th PAA was introduced and the RLS algorithm was developed 

for or line recursive estimation.

Various changes to the algorithms for updating the F matrix 

were suggested giving intuitive reasoning for these. However, 

possible problems with these changes were noted and one should

p r o c e e d  c a u t i o u s l y .

The equivalent feedback representation for PAA was introduced 

for the purpose of stability analysis. This is discussed in 

the following ch a p t e r .



CHAPTER 4

STABILITY ANALYSIS

4,1 Positive Systems

we begin the study of stability properties of the system 

discussed In Chapter 3, by looting at positive systems. A 

positive dynamic system is just the mathematical term used 

ro describe a passive dynamic system. That Is. a system 

which dissipates energy.

Consider the syster: sh wn in Figure 4.1.

i

FIGURE 4_J_ : Input and Output D e f i n i t i o n



The system will be strictly passive if the energy of the 

system at time t is less than the initial energy plus the

nergy supplled.

„ . ( 4 . 1 )
E (t) < E (0 ) + E s (0,t ,

where E I s  the energy supplied from time zero up to
s

E (0 , t ] = j 1 (t ) u (t ) dr

If the y s te r is 11 ■

k . (4.3)
E (0 ,kT) = I 1 V't
s 3 = 0

Note in F i g u r e  4.1 that i f i  were an active system, 1 would

he in the opposite direction, so that F.g would be negative 

, „ .1 t n •, i t i v e ,

Now consider th" system defined in Figure 4.2.



PASSIVE
IMPEDANCEPASSIVE 

.-'DMITTANC :

11

E _ (0)(0)

uy 4 .2 : Interconnection of Two Passive Systems

(4.4)

(4.5)

:m an be drawn as a feedback system as illustrated

. our! 4.3.

■
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11

FIGURE 4 . 3 Negative Feedback Representation o. 
the Two Connected Passive S y s t e m

The questi on again arises, Will this system be stable? 

To answer this we consider the energy equations.

The energy su pplled to each system is gi'en by

's, 1
u 1 (t)i t (t)dt (4.6)

and

s,2
2 (t)i2 (t)dt (4.7)

r, from e q uat io ns (4.4) and (4.5) we see that (4.6)Howe ve 

and (4.7) imply "hat

<
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(4.8)

s,l ^ " " s , 2
E = - E

Since bcth eyeteme are pa eaive we know from ( 4 . U  that

E s
(4.9)

and

(4 .1 0 )
e > e (tu - n 1 P
5 * Z *'

R aa in» these two e g aa t.cn, and using = ^ , t i o n  ,4.S, gives

o > [E1tty + E 2 (t)l - [ E ! (0) + E 2 t0,] 

define the total energy of the system at time t as

E(t) = E jIt) + E 2 (t)

Similarly for the initial energy 

E (0 ) = E 1 (0 ) + E 2 (0 )

T h u s

0 > E (t) - E (0)

(4.11)

(4 .12)

(4.13)

(4.14)



or
t > 0

E(t) < E(0)

„ o „ o t o n i c a , W  a.creasin,. sine. t M s  U  = « !  = , ,

E (t) ■* 0

. ,atrlct ly p c i t a v , -  condition on our syutems is ,

Z j n t L n d i t i o :   ..........................................   '

a s y m p t o t i c  stability.

, , fnr , = 0 we have
be a positive system if f»f i0

t (4.16)
y 1 1.1 d t - 0

0

t ial state vector.where x Q is the ini'

, Input and Output for the G e n e r a l i z e d  

System H



If H is such that 

t
y d t > 0 (4.17)

0

then H is said to be a strictly positive system. It should 

be noted that if the strictly passive systems in the previous 

discussion were replaced by passive systems (i.e. the strict 

condition is removed) then we could not conclude that it 

would be asymptotically stable. Ho w e v e r , the system would 

still be stable in the sense that the output is bounded and 

will not g r o w .

.

Consider the system defined by the equation

y = F u (4.18)

where P is a matrix

P is said to be positive definite (written P > 0) if

Tu P u > 0 (4.19)
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TN o w  u P u (4.20)

Thus if P > 0

t h e n  u y > 0 

t
f t

a n d  u v d t > 0
J - 
0

a n d  ♦ h e  s y s t e m  is ♦ h e r e f o r e  s t r i c t l y  p o s i t i v e .  N o t e  t h a t

w h i c h  is m o r e  t h a n  r e q u i r e d .

T h u s  a p o s i t i v e  d e f i n i t e  m a t r i x  is a s u f f i c i e n t  c o n d i t i o n  

to g i v e  a s t r i c t l y  p< L t i v e  s y s t e m .

T h e  c l a s s  of t r a n s f e r  f u n c t i o n  w h i c h  s a t i s f i e s  t he i n e q u a l i t y  

t

is k n o w n  as t h e  cl a : ; o f  p o s i t  i v e  r e a l  t r a n s f e r  function. If 

the i n e q u a l i t y  is s t r i c t  (i.e. >) t h e n  this class is called

t he  r t r i c t  p o s i t i v e  r ea l  t r a n s f e r  f u n c t i o n  (SP R) .

TP > g i v e s  u y > 0 at a l l  t i m e s ,  not j u s t  t h e  a v e r a g e  v a l u e ,

0

(4.21)



Intuitively, if we multiply two sinusoids of similar 

frequency, then the product of their average is dependent 

on the phase lag

e.g. u = sin(o)t)

y = sin (u>t + <$i)

271

uy dmt = f(4) (4.22)

0

f ($) = 0 * = 0 °

f (*) < 0  $ > 90°

f($) > 0  $ < 90*

Thus if 0 < O < 90° then the system is SPR. In terms of a

Nyq : 1st diagram, this requires the plot to lie in the fourth

quadrant.

In Figure 4.5 H [ is a first order system and satisfies the 

SPR condition. However, H, which is a third order system 

does not fulfil thir condition.



FIGURE 4.5 : Nyquist Diagram
H, is SPR while H 9 is not

In some non-linear cases the SPR condition is very easy to 

pr o v e . Consider the m n u t  output relationship shown in 

Figure 4 . 6

FIGURE' 4.6 : SPR Input/Output relationship
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Since the curve is confined to the first and third quadrants 

it is trivial to show that the SPR condition is satisfied.

4.3 Discrete rime Positive Systems

4.3.1 De f inition

Consider the discrete system shown in Figure 4.7 where

dim u, = dim y. k k

-  ?k

FIGURE 4.7 : Input and Output for the Disciete
System H

The "energy" equation used in the previous sections now 

becomes

ESUPPI.IED (V  - E , k , ♦ "  - E < 0 ' ♦ ELOS S E S I°’k l'

(4.20)

where k ̂ is the discrete time index.
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If we let x be the vector defining the system states at -k
time k, then equation (4.20) can be expressed mathematically

T
1 ,?k Sk - * k E= o 6l $ k '"kl

(4.2 1)

where a is the system energy function and 8 is the energy 

loss function.

The system H is called a strictly positive dynamic system 

If

3 a ('<, x , ) > 0 V k  (4.22)

and 3 8 (*k ,uk ) > 0 V k (4.23)

4.3.2 Discrete Linear time invariant systems

Consider the following system

x, = A x  + B u  (4.24)-k + 1 -k -k

y , « C x . + D u  (4.25)I k -k -k

X



W e  a s s u m e  t h a t  ( A , B )  is c o m p l e t e l y  c o n t r o l l a b l e  a n d t h a t  

(C ,A ) is c o m p l e t e l y  o b s e r v a b l e . U n d e r  s u c h  c i r c u m s t a n c e s  

t h e r e  is a o n e - t o - o n e  c o r r e s p o n d e n c e  b e t w e e n  e q u a t i o n s  

(4.24) a n d  (4.25), a n d  the d i s c r e t e  s q u a r e  t r a n s f e r  matrix

H (Z) * D + C (z I - A) 1 B (4 . *

T h e  t r a n s f e r  m a t r i x  H (z ) is s a i d  to be S P R  it o n e  of .he 

f o l l o w i n g  t h r e  s c o n d i t i o n s  c a n  b e p r o v e d  12]

1 A l l  t h e  e l e m e n t s  o H z )  a r e  a n a l y t i c  o n a n d  o u t s i d e  

t h e u n i t  c i r c l e  (i.e. all p o l e s  lie w i t h i n  the u n i t  

c i r c l e ) .

An equivalent definition is

2 H (z ) is SPR if

3 p > 0 and M > 0

where M is of the form



- 6 5 -

such tnat

-1 T 
k - -k

1 T
2 -k + 1

+ % M
k = 0

?k
-k

(4.27)

Thus the P matrix is used to construct the .» function, 

and th" M matrix is used for the 6 function.

«
Since the only negative term is the constant ^  xq p xq ' 

then for a I x bounded x.. and P, a SPP. system will satisfy

the inequality

n(0 ,k ) - i y% > - Yq
k = 0

2where y ( < ” .

This is the Popov inequality.

For continuous systems , th. Popov inequality is given

by



/
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y u d t > - 'Y f (4.29)

In the- initial development, we assumed x ̂  to be 0.

This would give an upper bound on y q of 0 and equation 

(4.29) would rt ice to the SPR con dition given in 

equation (4.17). For any arb it rary xQ , the SPR condition 

will be given by equation (4.28) for discrete system 

and (4.23) for conti nuous s y s t e m s , with

Thus the SPR condit ion is a sufficient co ndi tio n for a 

system to satisfy the Popov inequality, but it is not 

a nec's sary condition.

The most common 1y used d ef in ition is 

[' ( z) is SPR if 

3 P > 0 

3 Q , R > 0

and a s s j c h that



A PA - P = fi

n'B PA + S = C

D + D - B PB - R

(4.31)

(4.32)

and
Q S 

S T R

systems that are not discrete LTI s y s t e m s  a r a  s i r i : :• 

and can be found in reference [2 ].

4 . 4  comb ining SPR System

Th-re are three general ways of comb in ing two S P R  s y s t e m s .  

However, a combin ati on of SPR systems will n o t  n e e  s s a n - 

yield an SPR system. Each com bi nation  will now be examine::



4.4.1 Parallel s y s t e m s

The general con figu ra tion is shown in Figure 4.3.

u

11

FIGURE 4.8 : P a r a l l e l  C o n f i g u r a t i o n  of Two
P a s s i v e  S y s t e m s

we need to d e m o n s t r a t e  that the c ombin at ion is also SPR.

Let the initial energy  in system I be and the energy in
2s y s t e m  II be y 1.

T h e n  the t tal s y s t e m  e n e r g y  is

2 2 2 (4.35)
Y “ Y, + Y 2



uy d' u (y 1 + Y 2)dt (4.36)

t t
uy , dt + u / 2 d t

Since both individual systems ate SPR, they each satisfy

equation ( 4 . 2 ) .  T h e r e f o r e

2 2 
uy dt > (- Y j) + ( - Y 2 )

(4.37)

Thus

uy dt > - Y

and the combinat io n is SPR,

4.4.2 Feedback systei 3

Consider the feedback config uratio n shown in Figure 4.9, 

where both Individual systems are SPR with initial energies 

and y] as above. The combina ti on will still have an 

as define d by equati on (4.35) above.
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11

F I G U R E  4.9 : F e e d b a c k  C o n f i g u r a t i o n  of Two
P a s s i v e  S y s t e m s

From the figure

= u - y .
(4.39)

Thus

U 1 + Y 2
(4.40)

Also

y, = y
(4.41)

and

u^ = y
(4.42)

Using these equations one get .
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t t
uy dt =

i 0

(u 1 + y ,)y dt (4.43)

i

= | " l Y / t  + j u 2 Y 2 dt
(4.44)

Since both systems ete SPR. they both satisfy equation 

(4.29) giving

uy dt >
(4.45)

Thore fore

(4.46)

and the combination is .

4 .4 . 3  Cascade systems

'

U 1 y l ... u 2 y ^ _
_______1__ *, 2

FIGURE 4.10 : cas cade C o n f ig ur ation of Two Passive Systems



We shall show that the combined sytem is not necessarily a 

SPR system by a counterexample.

Let

H . = -— - ( 4 . 4 7 )1 1 + sT

and

*2 " T - T 4 ? :

Both systems are first o r d e r , and have Nyquist plots confined 

to the fourth quadrant, and are therefore S P R .

The combined system however, has a transfer function given 

by

(1 + sT . M  1 + sT ) (4.49)

Thi s the second order and has a Nyquist plot of the form

shown in Figure 4.11.

FIGURE 4.11 Second Order Nyquist Plot
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The Nyquist plot crosses the 90° line and is therefore not 

S p r . Thus in general cas cading of SPK  systems does not 

necessarily yield a SPR system.

4 5  The H y p e rstab il ity Theorem of Popov

Having developed the n e cessa ry  ma themat ic al bac k g r o u n d  in the 

preceding s e c t i o n s . we are now able to examine the stability  

problem posed at the end oi Chapter

That is, under what con ditio ns  will the system shown in 

Figure 4.12 be global ly a s y m p t o t i c a l l y  stable?

H (z)j LTI

Y NLTV U

FIGURE 4.12 : Ge n e r a l i z e d  Feedback System

The answer to this q u e st io n is given by the h y p ers ta bility  

theorem (which will not be proven here) which states that if 

the Popov inequality is satisfied by the NLTV feedback path,

i.e.



and if H (z ) is S P R , t h e r  the system will be globally 

asymptotically stable.

This will be applied to the Paranv ter Adaptation Algorithm 

to prove convergence, in th following chapter.

4.6 Conelus ions

In this chapter the concepts of S P R , Popov inequality and 

Hyperstability w re /elopei. Emphasis was given to the

intuitive approach of these concepts. The ideas developed 

were us* 3 to : H -to th Hyper tability T heorem. This will 

be used in the following chapter to prove the stability of 

the PA'.
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CHAPTER 5

STABILITY OF THE PAA

5 . 1 PAA with F ( k ) = I

Wo begin our analysis with the simple case of F(k) = I. The 

PAA has the fetJback representation as shown in ligure 5.1.

6 (k f 1 ) * V  k )

E(k+ 1)

*(k)

FIGURE 5.1 : PAA with F (k ) = I
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The LTI feedforward path i j u s t  unity, i.e.

and thus o b v i o u  ly s a t i s f i e s  the SP R  c o n d i t i o n .

To v e r i f y  the P o p o v  i n e q u a l i t y  we will r e q u i r e  tne f o l l o w i n g  

L e m m a  [ 1 ]

L e m m a :

G i v e n  a s e q u e n " ■ of real vert ■s x (k anl a c o n t a n t  vecuOi c , 

the f o l l o w i n g  r e l a t i o n s h i p  h o l d

1
I x (k) 

k = 0
f £ x ( i ) +
i = 0

"T f
1
I x (k)
= 0

c] [
1
I X (k) 
= 0

+ c]

k
1

+ 2
£ x (k) 

k = 0
x ( k ) - 1 Tq c c (5.2)

T
O b v i o u s l y  this expression i ; - — —  - since all the o t h e r  terms 

arc n o n - n o -! 11 i v> .
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Proof

This will be done by induction

Assume the relationship holds for k ̂ - '

k v - 1
1 1 T
I x(k)-1 [ t X {i) + c] - Z X(k) [ Z x (i ) + c ]

k = 0 1 = 0  k = 0 i = 0

T ^+ x ( k 1) [ I f k j + c ]  (5.4)
k = 0

Since th< relationship is assumed to be true for k^ -1 we 

get

k i k , k i"‘ T “ r 1
r X (k ) 1 [ Z x ( i ) + C ] = —  [ z X (k ) + c 1 [ x ( s ) + c ]

k = 0  i = 0 k = 0  k = 0

I : 
k = 0

1 1 T I T+ —  E x (k ) x (k ) - —  c c

T k >+ x (k ,) [ Z x (k ) + c ] (5.5)1 k = 0
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However

, "i
—  [Z x(k) + c 1 f E X (k) +c] = 7 f E x (k ) +r] f E x(k) +c]

k = 0 k = 0 k -=0 k = 0

_ k r 1
+ • x (k ) r X (k ) + x {k ) 1 [ I X (k ) + c

k = 0

(5.6)

Also

k l-1
" x (k ) " x (k ) - x (k ) " [ r x (k ) + c]
 ̂ 1 1 1 k = 0

kr1
x (k ) [—  x (k ) + T, X (k) + c ]

k = 0

T 1 x ( k . ) [ I x k )
k = 0

p- x (k t ) + c

T 'x(k ) [ I x(k) + c ]
k = 0

(5.7)

1 *'
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Substituting (5.7) into (5.6) gives

kr11 1 T  ̂ 1 *
Z x(k) +c] [ I X (k) +c] = -f E X (k)

k = 0 k = 0 k = 0

T ki"‘
cl [ Z x (k) + c ] 

k=0

+ x ( k ) T [ I x (k) + c ] - ^ x ( k )  ' x ( k )  
k=0

(5.8)

Substituting (5.8) i n t o  (5.5) y i e l d s

k l k k l _ k i
Z x (k) T [ Z x ( i ) + c ] = - [ Z x (k) + c ] ; [ Z x(k) +c] +• x (k , ) x (k , )

‘ - - k*0k=0 i=r k =0

1 T I T+ —  Z x(k) x(k) - — e c
k=0

[ Z x (k ) + c ]  [ Z x (k ) +c]
k = 0 k = 0

1 1 T I T—  Z x ( k ) x ( k ) - — c c
2 k -0

(5.9)
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Thus the Lemma is proven to be true for if we assume it

true for k^-1. To complete our proof by induction, we must 

still show that it holds for the first value which is k^ = 0 .

: r this value (5.2) becomes

x (0 ) 1 [x(0 ) + c ] = ^ [*(0 ) + c ] [x ( 0 ) + c ]

+ | x (0)Tx (0) - y cT c (5.10)

Expanding the right hand side of (5.10) yields

1 x (0 ) 1 x (0 ) + c 1 c + x (0 ) T c + x (0 ) x(0 ) - -j c c

T Tx (0 ) x (0 ) + x (0 ) c

= x(0)T [x(0) + cl (5.U)

which is the left hand side of (5.10). Therefore the expression 

is true for k ] = 0 and thus by induction, it holds for all k ̂ .

This will now be used to verify that the feedback path 

satisfies the Popov inequality.
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From the block diagram we have:

(5 .1 2 )
0 (k + 1 ) 0 (k ) + <H k) e (k ♦ 1)

Iterating back gives

e|k * II - I ♦(l)cli * 1) * 0 (0 , (5-131
i =0

The input and output variables u and y are given by

( 5 . 1 4 )
u = e (k + 1 )k

and y = <fr(k)T 6(k + 1 >k

(since y is a sea lar, i ' equals its transpose).

Thus the left hand side of the Popov inequality is given by

h,0.v> . ' c i k  * i ) » ( k ) T  i ( k  * n  ( 5 - ' 6 >
k = 0

I e (k + 1) <Mk)T t I M i )  e (i + 1) + 8(0) ]
k =0 i =0

(5.17)
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Now let x (k) = 4>(k)e(k + 1)

and 0 (0 ) = c

Thus (5.17) becomes

k

T h u s  the P o p o v  i n e q u a l i t y  is satisr ied w i t h

(5.18)

(5.19)

n (0,k ) = I X (k ) 1 [ I X(i) + C] (5.20)
k = 0 i = 0

By our Lemma

n(0,k|) >, - - 2—  (5.21)

n , 0 . V  >. - ^ 4 ^ -

2 9(0)T Q (01 (5.23)
Yo - —  2 *

and the system is stable and will converge.
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The

o
0 (k + n  1 :
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PAA with F(k) = F

feedback representation is given in Figure 5.2.

- 0 (k + n  1 (k )

e(k + i)

*(k)

FIGURE 2 : PAA with F(k) = "

From the diagram we have

0(k + 1) = 0 (k) + F* (k) - (k + 1) (5.24)
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Iterating back gives

k
0 \ k + 1 ) * Z F*(i)c(i + 1) + 8(0)

i = 0

The equation (5.17) of the previous case now b ecomes:

k k
n (0 ,k ) = I e (k + 1 ) ■{! (k ) 1 [ I F<J>(i)e(i+n + fi(0 )]

1 k = 0 = 0

(5.25)

Since F is a positive definite m a t r i x , it can be factorized

as

where L

Define

F , LT L l5'26’

is a regular square matrix (L exists) f . - ] .

$(k) = L#(k) (5.2)

Substituting this into (r. .7'i) one gets

\
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k 1 k 
n(0,k ) = 2: M k  + 1) *(k)T (L'1)T [ z LT L(L M k H M i  + D  +0(0)1

1 k = 0  i = 0

(5.23)

k l k T 1 -
I e(k + l)i(k)T [ Z $(k) e(i + 1) + <LT ) ^ ( O )  ] 

k = 0 i = 0

If we now d e f i n e

x (k ) = # ( k ) c ( k  +1)

and

c = (L ) 6(0)

we get

n(C,k ) = E x(k) [ I x(k) + c ]
k * 0 1 = 0

as be r‘ , we apply the Lemma to yield

with

Y >

(5.29)

(5.30)

(5.31)

k l , k
* r r x f k 1 + c 1 (5.32)

T
£ £ (5.33)

2 = £L^£ (5.34)

T - 1 T - 19(0) L (L ) 6(0) (5.35)
2
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Now if A and B are non-singular matrices, then [13]

(AS) " 1 = b" lA -1 (5.36)

This yields

2 e(0)T (L 1L) 1 6(0) / c T7\
>o ”  " T "  1

e(0)TF ^9(0) (5.38)

Thus this system is stable and will converge

.

We will now consider a system with

F (k + 1 ) ~ 1 = > 1 (k)F(k) - 1 + a ,, ( k )  ̂( k ) 4, (k ) T (5.39)

We will aslo generalize the feedforward path to be a transfer
, - 1

function H(q~ ) instead of unity. We assume that H(q ) is a

ratio of two non ic polynomials.

i V - f 1'
H( q " 1) - -!---- T- (5-40)

H 2 (q )
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This system is shown in Figure 5.3

F (k)

$(k)

|

For Ik) / 0, the NLT\ feedback path does not satisry the

Popov inequality. However, if one introduces a local feedback

bath of X2 (k) around this loop, then the Popov i n e q u a l i t y  is

satisfied [2). To leave the system unchanged one needs a local
(k)

feedforward loop of - — — . For the case X ^ k )  = X2 (i.e. 

constant), thi . loop is obviousl y time Invariant and ran be 

incorporated into the LTI feedforward path. This system is 

shown in Figure 5.4.



-L0 .

 L T I _ F E E D F O R W A R D  J B L O CKJ

2

F(k)

$(k)

*— (l H

NT,TV F E E D B A C K  B L O C K

C U R E  S . 4 : G e n e r a l i z e d  s y s t e m  w i t h  ) (k ) = X

Pi
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This system will be stable if H(q ) ^ ^5 S t3 R .

For a time varying X (k) we cannot incorporate the X2 (k) into 

the feedforward loop since it is time varying.

D e f i n e  X = S JJP X ,, (k ) (5.41)

Then X - X.,(k) is non negative

Now, if X < 2 (5.42)

(this is necessary since H (q ) is a ratio of monic

polynomials [2 ])

and H'(z ') = H ( z  ') - y  (5.43)

is S P R , then the system will converge since we can introduce 

an additional feedback path of

X - X ̂  (k )
(5.44)

X 2 ( k )
as shown in Figure 5.5. The feedback of  ̂ causes the 

feedback path to satisfy the Popov inequality and this is 

unaffected by adding the feedback path of equation (5.44). 

The feedforward path now has the additional feedforward path

>
2

Figure 3.5.

af - w h i c h  is t i m e  i n v a r i a n t .  T h i s  s y s t e m  is s h o w n  in



LTI FEEDFO R W A R D  BLOCK

X2 (k)

6(k > 1)
F(k)

NLTV FEEDBACK BLOCK



5
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under snrh conditions, the system will converge, since the

f e e d f o r w a r d  b l o c k  is S P R ,  a n d  t h e  f e e d b a c k  p i t h  s a t i s f i e s  

the Popov inequality.
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C H A P T E R  6

C O N C L U S I O N

T h i s  t h e s i s  b e g a n  w i t h  t he m o t i v a t i o n  f o r  u s i n g  a d a p t i v e  

c o n t r o l  t e c h n i q u e s . D i f f e r e n t  t e c h n i q u e s  w e r e  p r e s e n t e d  

a n d  t h e i r  d i f f e r e n c e s  a n d  s i m i l a r i t i e s  w e r e  d i s c u s s e d  

s u p e r f i c i a l l y .

T h e  M R A C  a n d  t h e  S T C  w e r e  t h e n  d i s c u s s e o  in s o m e  d e t a i l  and 

t h e  P A A  w a s  i n t r o d u c e d . T o  a n a . y s e  t he  s t a b i  :ty of t hi s,  

th e  t h e o r y  o f  th e  h y p  L a b i l i t y  t h e o r e m  w a s  d e v e l o p e d  and 

s u b s e q u e n t l y  a p p l i e d  to t h e PAA .

T h e  t h e o r y  b e h i n d  t h e s e  t e c h n i q u e s  is t h u s  w e l l  d e v e l o p e d  

a n d  the t e c h n i q u e s  a r e  c e r t a i n l y  a p p l i c a b l e  to r e a l  ti m e 

a d a p t i v e  c o n t r o l . T h e  i n c r e a s i n g  s p e e d  o f m i c r o c o m p t u e r s  

is s t e a d i l y  b r o a d i n g  t h e  a r e a s  o f a p p l i c a b i l i t y  of t h e s e  

t e c h n i q u e s .

It i s the a u t h o r ' s  o p i n i o n  t h a t  t h e s e  c o n t r o l l e r s  w i t 1 o o n  

be  i n c o r p o r a t e d  in m o s t  f i e l d s  of c o n t r o l .
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