
An efficient algorithm for nonlinear integer
programming

Stephen Obakeng Moepya

A Dissertation submitted for the degree of
Masters of Science in

the field of global optimization.

School of Computational and Applied Mathematics,
University of the Witwatersrand,

Johannesburg, South Africa.

July 4, 2011

Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree

of Master of Science to the University of the Witwatersrand, Johannesburg. It has not been

submitted before for any degree or examination to any other university.

July 4, 2011

Abstract

This dissertation is concerned with discrete global optimization of nonlinear problems. These

problems are constrained and unconstrained and are not easily solvable since there exists multi-

plicity of local and global minima. In this dissertation, we study the current methods for solving

such problems and highlight their inefficiencies. We introduce a new local search procedure. We

study the rapidly-exploring random tree (RRT) method, found mostly in the research area of

robotics. We then design two global optimization algorithms based on RRT. RRT has never been

used in the field of global optimization. We exploit its attractive properties to develop two new

algorithms for solving the discrete nonlinear optimization problems. The first method is called

RRT-Optimizer and is denoted as RRTOpt. RRTOpt is then modified to include probabilistic

elements within the RRT. We have denoted this method by RRTOptv1. Results are generated

for both methods and numerical comparisons are made with a number of recent methods.

Keywords: Global optimization, nonlinear integer programming, local search, multi-start,

rapidly-exploring random trees.

Acknowledgements

First and foremost, I give my whole-hearted acknowledgment to my Heavenly Father, the

Lord of lords, ruler of my universe, Alpha and Omega. He has shone a light unto my path and

has showered me with countless blessings. Without him I am nothing.

In reference to my academic endeavors, I would like to extend my sincere appreciation and

gratitude to my supervisor, Prof. M.M Ali. He has put a tremendous amount of time and effort

to supervise this dissertation. He has not only taught me the relevant materials in this field,

but has also shown me crucial research skills that were necessary to complete this document.

His insightful suggestions and knowledge in this field have shaped not only the way I view this

topic, but my view of research as a whole. Without him, this dissertation would not have been

possible.

I cannot fail to mention the love and support from my family. They have given me all that I

could ever need and want. Many thanks goes to my Mum, Dad, my brother Reabetswe, uncles

and aunts that have always wished the best for me. I would also like to mention Busi and

Reggie Skhosana who have given me support and guidance for the past four years. Thank you

for letting me be a part of your lives.

My special gratitude goes to the School of Computational & Applied Mathematics and

National Research foundation (NRF) for their financial support towards my research.

A special thanks goes out to my friends and colleagues who have helped me at every of the

way. Thanks to Dario for the lots of insightful discussions. Thank you to Tumelo for the advice

and encouragement he gave me. Thank you to Kakanyo, Naval, Charles, Morgan, Viren, Asha,

Franklin, Gideon, Terry, Tanya, Elimpoto, Innocent, Serge, Guo-Dong, Ricky and Carrie.

Last but not least, I thank my Bontle. I thank her for all the love and support she has given

me. Her patients has had no boundaries. She has been an integral part of life for the past four

years. This dissertation could not have happened without you.

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Problem formulation . 2

1.3 Classification of global optimization algorithms 3

1.4 The structure of the dissertation . 6

2 The multi-start technique and local search procedures 8

2.1 Introduction . 8

2.2 Discrete local search (DLS) . 10

2.3 Model-based local search (MBLS) . 11

2.3.1 MBLS for bound constrained problems . 11

2.3.2 MBLS for constrained problems . 13

2.3.3 A refined MBLS . 15

2.4 Multi-start . 16

2.5 Topographical clustering . 18

2.6 Summary . 20

3 Approximation algorithms for nonlinear integer programming (NIP) 21

3.1 Introduction . 21

3.2 Reformulation-based algorithms for NIP . 22

3.2.1 Filled function methods . 22

3.2.2 Auxiliary function methods . 28

3.3 Darwin and Boltzmann mixed strategy . 37

i

CONTENTS ii

3.3.1 Nonlinear integer programming by Darwin and Boltzmann mixed strategy 37

4 Voronoi diagrams and the RRT algorithm 40

4.1 Voronoi diagrams . 40

4.1.1 Computing Voronoi diagrams . 41

4.2 Rapidly-exploring random trees (RRT) . 43

4.2.1 Introduction . 43

4.2.2 Problem formulation . 43

4.2.3 Properties of the RRT . 45

4.2.4 Analysis of RRT’s . 47

4.3 RRT-based optimizer . 49

4.4 The RRTOptv1 algorithm . 51

5 Numerical results 55

5.1 Results of MBLS . 55

5.2 Results of the topographical clustering . 57

5.3 Results of the RRT-Optimizer . 58

5.4 Results of the RRTOptv1 algorithm . 62

5.5 Summary . 65

6 Conclusion 66

A Test problems 68

B Tables of paramters 78

C Table of RRTOptV1 using biasing towards 3 best points found 81

D Table of RRTOptV1 using biasing towards a combination of 1 local minimizer

and 2 best points in the RRT tree 83

List of Figures

1.1 Simple taxonomy of optimization algorithms . 4

1.2 The structure of the dissertation . 7

2.1 Drawback of DLS . 11

2.2 Topographical illustration . 19

3.1 An example of the function G(t) used in equation (3.2) 33

3.2 Effects of increasing the parameter k in T (x, k) 34

4.1 The Voronoi diagram of a random set of points S in the plane. 41

4.2 An example of an RRT extension. 43

4.3 RRT algorithm at 3 different stages . 46

4.4 The effect of biasing . 52

iii

List of Tables

5.1 Performance of MBLS on Problem 5, n = 5. 56

5.2 Comparison of methods . 59

5.3 Performances and comparisons of algorithms on problems 60

5.4 Performances and comparisons of algorithms on problems (RRTOptv1) 64

B.1 Parameters for RRTOpt . 79

B.2 Parameters for RRTOptv1 . 80

C.1 Performances and comparisons of algorithms on problems 82

D.1 Performances and comparisons of algorithms on problems 84

iv

Chapter 1

Introduction

1.1 Introduction

The field of global optimization is well-known and widely researched into. The aim of global

optimization is to minimize (or maximize) an objective function within a given space, with

or without constraints. Global optimization can be divided into two main classes: continuous

and discrete. Continuous optimization involves minimizing a function on the real space Rn,

i.e. the optimizing variables in the given space are real. However, minimizing a function in a

discrete optimization problem requires the optimizing variables to take integer values (i.e. in

the set Zn ⊂ Rn). The structure of these two classes may be linear or nonlinear. A structure

is classified to be linear if both the objective function and the constraints are linear. If either

the objective function or one of the given constraints is nonlinear, then the structure is termed

nonlinear.

In a nonlinear optimization problem, multiple optimal solutions may exist. These solutions

are termed local optima. Local optima are found using greedy/local search methods. The

‘best’ local optima is called the global optimum. Finding the global optimum can be a very

difficult task. Generally, nonlinear optimization problems are considered to be NP-hard [2].

Apart from being an interesting and difficult mathematical problem, nonlinear optimization

has many applications. Applications of nonlinear optimization can be found in various areas

of scientific computing, engineering, management science and operations research. Many real-

world applications include portfolio selection, capital budgeting, process engineering, production

1

1.2. PROBLEM FORMULATION 2

planning, computer networks and flexible manufacturing systems [4, 10].

Any global optimization problem can be classified by the properties of the objective function

and the constraints. Problems that do not contain constraints, and are bounded by upper

and lower bounds, are considered as unconstrained problems. A problem that does contain

constraints and is bounded below and above is said to be constrained. Solving constrained

problems usually requires that a constrained problem be converted to an unconstrained one by

means of a penalty function method [9].

The aim of this research is to design an algorithm that can solve both constrained and

unconstrained nonlinear integer optimization problems. The algorithm should:

• work for a wide range of constrained and unconstrained problems of any dimension,

• not depend on the properties of the objective function and constraints,

• be easy to implement,

• be efficient and robust.

Finding an algorithm that satisfies all the criteria above can prove to be difficult. However

some progress has been made in recent years to develop such an algorithm. We shall review

these algorithms in the literature. In the following section, we present the formal problem for

nonlinear integer programming.

1.2 Problem formulation

We want to attain the global optimum for any nonlinear integer programming problems.

A nonlinear integer programming (NIP) problem can be defined mathematically as follows:

(P)



min f(x),

s.t. gi(x) ≤ 0 i ∈ K,

hj(x) = 0 j ∈ J,

x ∈ X
⋂
Zn,

where K and J are finite index sets, Zn is the set of integer points in Rn, and f(x), gi(x) and

hj(x) are all real valued. X is a polyhedral set i.e. X = [a, b]n. Some functions in problem (P)

1.3. CLASSIFICATION OF GLOBAL OPTIMIZATION ALGORITHMS 3

are nonlinear. We define the feasible set S by

S =
{
x ∈ X

⋂
Zn|gi(x) ≤ 0, i ∈ K,hj(x) = 0, j ∈ J

}
. (1.1)

Without loss of generality, we consider only the global minimization problem since the global

maximum can be found in the same way by reversing the sign of the objective function f(x),

i.e.,

max
S

f(x) = min
S

(−f(x)). (1.2)

An integer point x0 ∈ X
⋂
Zn is called a discrete global minimizer of problem (P), if f(x) ≥

f(x0), for all x ∈ S.

An integer point x0 ∈ S is called a discrete local minimizer of the problem (P), if f(x) ≥

f(x0), for all x ∈ N(x0)
⋂
S. 1

1.3 Classification of global optimization algorithms

Global optimization algorithms can be classified into two basic classes: deterministic and prob-

abilistic. Figure 1.1 shows a simple taxonomy of global optimization algorithms. Deterministic

algorithms utilize the structure of the objective function f(x), the constraints gi(x) and hj(x),

and the feasible structure S. If the dimension of the problem is too high, deterministic algorithms

cannot find the solution in a reasonable amount of time.

By contrast, probabilistic methods do not utilize any structure of (P) and the feasible set S.

This makes probabilistic algorithms more applicable for finding global optima of general NIP

problems. These algorithms are based on the Monte Carlo approach and were initially introduced

about 55 years ago. Probabilistic methods rely on repeated random sampling to compute their

results. For this very reason, this dissertation focuses on probabilistic algorithms, in particular

multi-start (MS) combined with some heuristics 2. We briefly present some deterministic and

probabilistic algorithms.
1For any x ∈ Zn, a set of integer points N(x) ⊆ Zn is called a neighbourhood of the integer point x, if

{x, x + ei, x− ei, i = 1, 2, · · · , n} ⊆ N(x), where ei is a Standard Basis Vector.
2Heuristics is a part of optimization that uses information currently gathered by the algorithm to help decide

which candidate solution should be tested next or how the next individual can be produced.

1.3. CLASSIFICATION OF GLOBAL OPTIMIZATION ALGORITHMS 4

Figure 1.1: Simple taxonomy of optimization algorithms

The most commonly used deterministic algorithms is the branch and bound [1]. The idea

of the branch-and-bound is to successively split (or branch) the problem into smaller problems,

known as subproblems, which are easier to solve. Branching occurs at the nodes. A complete

enumeration or solution of the subproblems that may arise during the branching process is not

necessary. The branch-and-bound method has a special feature called fathoming, which consist

of eliminating subtrees of the branch-and-bound tree from further consideration by pruning the

corresponding root node. Another deterministic algorithm that is used is known as cutting

plane. Cutting plane methods iteratively solve (P) by successively adding a linearization of the

1.3. CLASSIFICATION OF GLOBAL OPTIMIZATION ALGORITHMS 5

most violated constraint at the predicted (current) solution3. If such a linearized constraint is

found, then it is called a cut. The cut is added to the relaxation of (P). The cutting process is

continued until an optimal solution is found. In another line of research, Srivastava and Fahim

[7] presented a deterministic approximate method for solving (P). In the proposed optimization

procedure, the minimization of f(x) is carried out as usual along the function gradient, and

a move back into the feasible region is achieved every time the constraints are violated. The

search for the desired optimum, thus remains close to the constraint boundaries inside the

feasible region. The results of the algorithm are, however, reported for problems of dimensions

less than ten only [7].

Probabilistic algorithms can be classified into two groups: single-point based and population-

based. Single-point based algorithms include tabu search [26], pure random search [24], multi-

start [24], trajectory-based algorithms [4] and simulated annealing [8]. The multi-start type

algorithms are also known as two-phase methods: global and local phase. In the global phase,

the function is evaluated at a number of randomly sampled points (uniform distribution). In

the local phase, the sample points are manipulated e.g., by means of local search, to yield a

candidate global optimum.

Population based methods include differential evolution (DE) [5], particle swarm optimiza-

tion (PSO) [3], ant colony optimization and genetic algorithm (GA) [23]. These methods start

with many individual solutions which are randomly generated in the search space X
⋂
Zn to

form an initial population. Then a proportion of the existing population is selected to breed a

new generation by means of genetic operators: crossover and mutation or a combination thereof.

Then, a better population set is obtained by replacing some (or all) the members of the initial

population. The mechanism used to create the new population depends on the method being

used. For example, in genetic algorithm, trail points (new generation) are generated by selecting

successively a subset of the population and then applying mutation and crossover operations

to the set. In differential evolution, trail points are also generated using crossover operations

and mutation. In particle swarm optimization [3], individuals (called particles) change their

position with time. Each particle adjusts its flying position according to its own experience,

and according to flying experience of neighbouring particles, making use of the best position
3When (P) is a linear integer programming problem, a valid cutting plane is introduced at each iteration.

1.4. THE STRUCTURE OF THE DISSERTATION 6

encountered by itself and its neighbours. This is how the new generation is formed.

1.4 The structure of the dissertation

The dissertation is divided into seven chapters as shown in Figure 1.2.

In Chapter two, we present a basic local (greedy-type) search algorithm that has been pro-

posed for NIP [2]. We highlight the advantages and disadvantages of this local search algo-

rithm. Moreover, we propose a local search of our own, called model-based local search (MBLS),

which counters these disadvantages. We also present an overview of the topographical clustering

method and show its usefulness in solving problem (P).

In Chapter three, we introduce approximate algorithms and reveal their strengths and weak-

nesses. We first review one of the most recent algorithms introduced by Zhu and Fan [2]. A

lengthy and in-depth discussion is presented on it. The same is done for a variation of this

algorithm proposed by Zhu and Ali [6].

In Chapter four, we give a brief introduction into Voronoi diagrams. We also give an in

depth analysis on the rapidly-exploring random tree (RRT) method and highlight some of its

key features. We propose the RRT-optimizer algorithm (RRTOpt) which combines RRT and

topographical clustering in order to find the global optimum of (P). We also propose the prob-

abilistic RRTOptv1 which is a modification of RRTOpt.

In Chapter five we test the new algorithms on some well known test problems, and compare

them with recently developed algorithms. We also show that RRT-Opt is robust and more effi-

cient than recently developed algorithms.

In Chapter six, we summarize the work done in this dissertation and propose further advances

to extend and enhance the research. Finally, we present a collection of 20 benchmark nonlinear

integer programming test problems in Appendix A.

1.4. THE STRUCTURE OF THE DISSERTATION 7

Figure 1.2: The structure of the dissertation

Chapter 2

The multi-start technique and local

search procedures

In this chapter, we first discuss the local search procedure that has been used to find a local

minimizer say, xL, from a randomly selected point x0 ∈ X
⋂
Zn. Secondly, we will shift our

focus to the Multi-start (MS) procedure for solving the global optimization problem. Since

the most promising NIP algorithms appear to use the Multi-start technique as their building

block, we thought it was worthwhile to discuss it in some depth. Lastly, we discuss a clustering

method called topographical clustering which has some desirable properties in solving global

optimization problems.

2.1 Introduction

In computer science, local search is a meta-heuristic1 for solving computationally hard opti-

mization problems. Local search algorithms are widely applied to numerous problems (other

than computer science) from mathematics, operations research, engineering and bioinformatics.

Local search algorithms move from solution to solution in the search space, X, of candidate

solutions until a solution that is deemed optimal is found or a time bound is elapsed.

A local search algorithm starts from a candidate solution and then iteratively moves to a
1In the field of computer science, meta-heuristic designates a computational method that optimizes a problem

by iteratively trying to improve a candidate solution with regard to a given measure of quality.

8

2.1. INTRODUCTION 9

neighbour solution. This is only possible if a neighbourhood relation is defined on the search

space X. Local optimization with neighbourhoods that involve changing up to k components of

the solution is often referred to as k-opt.

Typically, every candidate solution has more than one neighbour solution; the choice of which

one to move to is taken using only information about the solutions in the neighbouhood of the

current one, hence the name local search. Given a candidate solution, neighbours are repeatedly

generated until a better solution is found.

The generation of neighbours can be accomplished in different ways, namely [12]:

• best improvement, where all the neighbours are generated in lexicographic order and the

best one, if better than the currrent solution, is chosen as the next solution.

• first improvement with lexicographic generation, where the neighbours are generated in

lexicographic order and the first generated solution, that is better than the current one, is

chosen as the next solution.

• first improvement with random generation, where the neighbours are generated randomly

and the first generated solution, that is better than the current one, is chosen as the next

solution.

• Metropolis. Given a solution s, its neigbours are explored randomly and a solution s′ is al-

ways accepted if f(s′) < f(s), otherwise it is accepted with the probability exp(f(s)−f(s′)
t),

where t is a parameter called temperature.

There are a number of ways to terminate a local search algorithm. The termination of a

local search algorithm can be based on time bound. Another common choice is to terminate

when the best solution found by the algorithm has not been improved in a given number of

steps. Local search algorithms are typically incomplete algorithms, as the search may stop even

if the best solution found by the algorithm is not optimal.

We now turn our focus to the discrete local search popularly used in nonlinear integer

programming (NIP).

2.2. DISCRETE LOCAL SEARCH (DLS) 10

2.2 Discrete local search (DLS)

We begin this section with a brief discussion of the existing discrete local search techniques used

in NIP [2, 25, 27, 6]. Thereafter we will follow up with a model-based local search that we have

developed.

For any given initial starting point x0, DLS creates a point xi = x0 + di (i = 1, 2, · · · , 2n) in

the neighbourhood of x0, di ∈
{
d1, d2, · · · , d2n

}
where

{
d1, d2, · · · , d2n

}
= {e1, e2, · · · , en,−e1, · · · ,−en} , (2.1)

and ei is a Standard Basis Vector. If f(xi) > f(x0) then the next direction, di+1, is chosen to

create xi+1 = x0 + di+1 and the process is repeated for all di if f(xi + di) ≥ f(x0) for all i. In

this case x0 is treated as a discrete local minimizer. On the other hand, if f(xi + di) < f(x0)

for some direction di, then x0 is updated as x0 = xi + di and the process restarts again at x0.

The DLS algorithm is presented below.

The DLS algorithm [2, 27, 6]

Step 1. Take an initial integer point x0 ∈ X
⋂
Zn.

Step 2. If x0 is a discrete local minimizer of f(x) over X
⋂
Zn, then stop; else take an integer

point x ∈ N(x0)
⋂
X such that f(x) ≤ f(x0).

Step 3. Let x0 : = x , and go to Step 2.

A drawback of DSL lies in the way it searches around the neighbourhood of the starting point

x0 in Step 2 in the above algorithm. We use the Figure 2.1 to illustrate the drawback. Suppose a

better local minimizer lies along the direction dj = −ei from x0, that is along direction numbered

three in Figure 2.1, and a worse local minimizer lies along di = ei, along direction 7, where i < j.

The worst local minimizer along the direction of di = ei will be found if f(x0 +di) < f(x0). This

could lead to the global minimizer, x∗, of (P) being missed by a particular iteration of the local

search. Another variation of Step 2 is that the search direction can be random around N(x0),

instead of co-ordinate-wise. To remedy the drawbacks of DLS, we propose a model-based local

search and motivate its usefulness.

2.3. MODEL-BASED LOCAL SEARCH (MBLS) 11

Figure 2.1: Drawback of DLS

2.3 Model-based local search (MBLS)

The model-based local search introduced here can be applied to (P) as well as to the bound

constrained version of (P), i.e. minimize f(x) subject to x ∈ X
⋂
Zn. Implementation of MBLS

to both versions are discussed. We begin with the implementation of MBLS to the bound

constrained version of (P).

2.3.1 MBLS for bound constrained problems

MBLS approximates f(x) by a quadratic function q(x) in the vicinity of an initial starting point,

say x0. The steps of MBLS can be summarized as follows:

• Select a point x0 to start the local search MBLS.

• Compute n neighbouring points, in the vicinity of x0, and construct the quadratic q(x)

using n points around x0.

• Use the information found by the approximated quadratic to select an appropriate search

direction and compute a local minimizer of f(x).

Given the point x0, MBLS creates a set of n points

{x1, x2, · · · , xn} =
{
x0 + d1, · · · , x0 + dn

}
, (2.2)

2.3. MODEL-BASED LOCAL SEARCH (MBLS) 12

where the directions di are not necessarily the same as in DLS (where unit coordinate vectors

are used as direction vectors, see (2.1)). In MBLS, out of the n direction vectors, n−h direction

vectors are taken as the unit coordinate vectors. The remaining h direction vectors, e.g. h = 2,

are calculated by using any linear combination of the unit coordinate vectors. This serves for

creating some flexibility in the local search. Each di ∈
{
dn−h+1, dn−h+2, · · · , dn

}
is given by

di =
r∑

j=1

Dj , d
i 6= 0, (2.3)

where r is a random integer in {2, · · · , n} and {D1, D2, · · · , Dr} are distinct vectors in
{
d1, d2, · · · , d2n

}
given in (2.3).

In the quadratic approximation, the linear and constant term are not considered. That is,

we write q(x) = 1
2x

TQx, where Q is a n × n diagonal coefficient matrix whose elements are

determined using the n points created close to x0. We then obtain all descent2 directions of

q(x) at x0. Without loss of generality, assume that
{
d1, d2, · · · , dp

}
and

{
d̄1, d̄2, · · · , d̄n−p

}
,

respectively, are the set of descent and non-descent directions at x0, obtained from the set of

direction vectors
{
d1, d2, · · · , dn

}
.

During the construction process of q(x), n neighbouring points, {x1, x2, · · · , xn}, of x0 are

calculated as in (2.2). Hence, for each dj ∈
{
d1, d2, · · · , dp

}
there exists a corresponding x ∈

{x1, x2, · · · , xp} such that x = x0 + dj . Without the loss of generality, we denote the point by

xj , i.e. xj = x0 + dj . Hence dj ∈
{
d1, d2, · · · , dp

}
corresponds to xj ∈ {x1, x2, · · · , xp}. MBLS

algorithm further investigates each xj ∈ {x1, x2, · · · , xp} along the direction dj . In particular,

for each xj , starting with yk = xj , k = 0, we calculate yk+1 = yk + dj and compare f(yk) with

f(yk+1). If f(yk+1) < f(yk) then the next point yk+2 (yk+2 = yk+1 + dj) along dj is obtained

and the process is repeated until a point yk+l, along dj , is found for which f(yk+l) ≥ f(yk+l−1).

Then we set yj = yk+l−1 and continue the procedure for all remaining xj ∈ {x1, x2, · · · , xp}.

Notice that if f(yk+1) > f(yk), f(yk) = f(xj), then yj = xj .

Once the procedure is complete then we stop the MBLS algorithm and output the point

xL = arg min
{
f(y1), f(y2), · · · , f(yp), f(x0), f(x1), · · · , f(xn−p)

}
(2.4)

as the local minimizer. In (2.4), {x1, x2, · · · , xn−p} is the set of points corresponding to the

set of non-descent directions
{
d̄1, d̄2, · · · , d̄n−p

}
, i.e. xj = x0 + d̄j . We now present the MBLS

2A direction d is descent at some point x0 if dT∇q(x0) < 0.

2.3. MODEL-BASED LOCAL SEARCH (MBLS) 13

algorithm.

The MBLS algorithm

Step 1. Take an initial integer point x0 ∈ X
⋂
Zn.

Step 2. Compute a set of n integer points {xi, i = 1, 2, · · · , n} using (2.2), and determine the

coefficients of q(x).

Step 3. Calculate the steepest descent directions, from x0, using d(i)T∇q(x0), ∀i. Let R ={
j ∈ {1, 2, · · · , n} |d(j)T∇q(x0) < 0

}
be the set of indices corresponding to all descent directions

from the starting point x0. Denote the corresponding set of descent directions by
{
d1, d2, · · · , dp

}
.

3.1 If R = φ (where φ denotes the empty set) go to Step 5, otherwise set j = 1 and go to Step

4.

Step 4. For j ∈ R (or dj) set k = 0, yk = xj , and calculate yk+1 = yk + dj .

4.1 If f(yk+1) < f(yk), go to Step 4.2. Otherwise go to Step 4.3.

4.2 Update yk = yk+1, set k = k + 1, compute yk+1 = yk + dj and go to Step 4.1.

4.3 Let yj = yk and go to Step 4.4.

4.4 Increase j by 1, i.e. j = j + 1. If j ≤ p then go to Step 4, else go to Step 6.

Step 5. Set xL = arg min {f(x0), f(x1), · · · , f(xn)} and stop the algorithm.

Step 6. Set xL = arg min
{
f(y1), f(y2), · · · , f(yp), f(x0), f(x1), · · · , f(xn−p)

}
and stop the al-

gorithm.

Remark 1. A property of MBLS is that when q(x) closely approximates the function f(x), the

descent directions of q(x) at x0 will be the descent directions of f(x) at x0.

2.3.2 MBLS for constrained problems

When solving the problem (P), we construct the penalty function [9]:

F (x; c) = f(x) + cφ(x), (2.5)

2.3. MODEL-BASED LOCAL SEARCH (MBLS) 14

where c is a penalty parameter, and

φ(x) =
∑
i∈K

max {0, gi(x), i ∈ K}+
∑
j∈J

|hj(x)| (2.6)

measures the constraint violations. MBLS for constrained (P) works exactly the same way it

works for the unconstrained problem (P). However, due to the presence of constrained violations,

φ(x), some adjustments are made. In particular, the quadratic q(x) is found using the values of

F (x; c) instead of f(x) as in the unconstrained problem.

As in Section 2.3.1, we have the set of points

{x1, x2, · · · , xp} (2.7)

close to x0 along the set of directions
{
d1, d2, · · · , dp

}
. For each dj ∈

{
d1, d2, · · · , dp

}
, we set

yk = xj and two comparisons are made. In particular, F (yk; c) is compared with F (yk+1; c),

and φ(yk) is compared with φ(yk+1), where the points yk and yk+1 are such that yk = xj and

yk+1 = yk + dj . From this comparison, four cases arise.

Case 1:

If F (yk+1; c) > F (yk; c) and φ(yk+1) ≥ φ(yk) then let yj = yk and end the search along dj .

Case 2:

If F (yk+1; c) < F (yk; c) and φ(yk+1) ≥ φ(yk) then

(i) If φ(yk+1) 6= 0 then let yj = yk and end the search along dj .

(ii) If φ(yk+1) = 0 then increase k by one i.e. k = k + 1 (calculate the next point along

dj) and consider the appropriate case amongst 1,2,3 and 4 (between two consecutive

points calculated).

Case 3:

If F (yk+1; c) > F (yk; c) and φ(yk+1) ≤ φ(yk) then

(i) If φ(yk+1) 6= 0 then let ȳj = yk+1 and end the search along dj .

(ii) If φ(yk+1) = 0 then let ȳj = yk and end the search along dj .

2.3. MODEL-BASED LOCAL SEARCH (MBLS) 15

Case 4:

If F (yk+1; c) ≤ F (yk; c) and φ(yk+1) < φ(yk) then increase k by one i.e. k = k+1 (calculate

the next point along dj) and consider the appropriate case amongst 1,2,3 and 4 (between

two consecutive points calculated).

After MBLS has stopped, we identify the number of feasible points in the set

{ȳ1, ȳ2, · · · , ȳp, x0, x1, · · · , xn−p} and treat the best feasible point as the local minimizer, xL. If

there are no feasible points in {ȳ1, ȳ2, · · · , ȳp, x0, x1, · · · , xn−p} then xL is found by

xL = arg min {F (ȳ1; c), F (ȳ2; c), · · · , F (ȳp; c), F (x0; c), F (x1; c), · · · , F (xn−p; c)} . (2.8)

A refined version of the MBLS algorithm is presented in the following subsection.

Remark 2. Various cases are considered in MBLS to counter the wrong choice of the penalty

parameter c (the optimal choice of c is a difficult issue).

2.3.3 A refined MBLS

In the refined version of MBLS (denoted MBLSr), we consider the quadratic approximation

function q(x) = 1
2x

TQx and calculate the n × n symmetric coefficient matrix Q. Since Q is

symmetric, it has n(n+1)
2 distinct entries. Therefore n(n+1)

2 number of points, around x0, are

required to calculate the matrix Q. Thus we use the set{
d1, d2, · · · , dl

}
, l =

n(n+ 1)
2

, (2.9)

as the set of direction vectors to create the set of points {x1, x2, · · · , xl}, using (2.2), from a

starting point x0.

During the construction of the set in (2.9), two cases are considered. If n ≤ 3 then the subset

of direction vectors
{
d1, d2, · · · , dl−h

}
comprises of unit coordinate vectors (for some integer

h < l), and the remaining subset of direction vectors
{
dl−h+1, · · · , dl

}
is constructed using (2.3),

section 2.3.1. When n > 3, however, the subset of direction vectors
{
d1, d2, · · · , d2n

}
comprises

of unit coordinate vectors only. The remaining subset of direction vectors
{
d2n+1, d2n+2, · · · , dl

}
is constructed using (2.3), subsection 2.3.1.

Motivation for using MBLS is shown in a later section. We now turn our attention to the

multi-start algorithm which has a local search procedure embedded in it.

2.4. MULTI-START 16

2.4 Multi-start

Before our discussion of the multi-start technique [24] begins , we first briefly discuss the most

basic stochastic method for global optimization known as Pure Random Search. Pure random

search involves no more than a single step. Despite being a very simple method, it offers an

asymptotic guarantee in a probabilistic sense. The method iteratively samples points in the

sample space, X ∩ Zn, and evaluates them until a stopping criterion is satisfied. Then, the

algorithm approximates the point with the lowest function value found as the global minimizer

of the problem.

However, pure random search is not taken seriously as a computational proposal. Several

extensions of this method have been proposed that also start from a uniform sample over X,

but that at the same time involve local searches from some or all points in the sample. One of

these extensions is indeed the multi-start technique.

Multi-start is a technique where points are sampled iteratively from a uniform distribution

over X (global phase), after which local minima will be found by applying a local search pro-

cedure to these points (local phase). Thereafter, if some stopping rule is met, the multi-start

algorithm is terminated. We state the formal multi-start algorithm:

Multi-start [24]

Step 1. Draw a sample point, x0, from a uniform distribution over the search space X.

Step 2. Apply a local search technique to the sample point.

Step 3. A termination criterion indicates whether to stop or to return to Step 1. The local

minimizer with the smallest function value found is the candidate for the global minimizer.

The stopping rule termination criterion in Step 3 of the above algorithm is based on a Bayesian

estimate of the number of local minima Wi and the relative size, Θ , of each region of attraction3,

Rx∗ , of the local minimum, x∗, say. The relative size of the region of attraction is given by

Θi = m(Rx∗)
m(X) , where i = 1, · · · ,W and m(·) is the Lebesgue measure. If the values of these

parameters were given, then it would be possible to determine the possibility that W different

local minima are found during the N local searches. This probability can be used in a Bayesian
3This is the set of points in X starting from which a local search technique will converge to x∗

2.4. MULTI-START 17

approach in which the unknowns W , Θ1,Θ2, · · · ,ΘW are assumed to be themselves random

variables for which a prior distribution can be specified. Given the outcome of an application

of the multi-start algorithm, Bayes’ rule is used to compute the posterior distribution4, which

incorporates both the prior beliefs and the sample information. Simple expressions emerge for

the posterior distribution and posterior expectation of several interesting parameters, some of

which are stated in the following Theorem.

Proposition 1. [24] If w different local minima have been found as the result of N local searches

started in uniformly distributed points, if we assume a prior for a number of local minima W

that each integer of [1,∞) is equally probable, and if we assume that the given W = W the

relative sizes of the regions of attraction Θ1,Θ2, · · · ,ΘW following a uniform distribution on the

(W − 1)-dimension unit simplex, then

(i) the posterior probability that there are K local minima is equal to

(K − 1)!K!(N − 1)!(N − 2)!
(N +K − 1)!(K − w)!w!(w − 1)!(N − w − 2)!

(2.10)

(ii) the posterior expectation of the number of local minima is

w(N − 1)
N − w − 2

(2.11)

provided that N > w + 2

(iii) the posterior expected relative size of the non-observed regions of attraction is

w(w + 1)
N(N − 1)

. (2.12)

This theoretical framework proposed by the authors is quite an attractive one, the more so

since it can be easily extended to yield optimal Bayesian stopping rules. Such rules incorporate

an assumption about the cost and potential benefits of further experiments and weigh these

against each other probabilistically to calculate the optimal stopping point. Two observations

conclude this Bayesian analysis. First, note that the posterior distributions and expectations

do not depend on the dimension of the problem. The number of local searches that has to be
4In Bayesian statistics, the posterior probability of a random event or an uncertain proposition is the conditional

probability that is assigned after the relevant evidence is taken into account.

2.5. TOPOGRAPHICAL CLUSTERING 18

performed only depends on the number of minima located. Secondly, the a priori assumption

that every number of local minima is equally probable may appear to be very pessimistic.

Although multi-start is obviously better than pure random search, there are several ineffi-

ciencies that remain. The main inefficiency is that multi-start will inevitably cause each local

minimizer to be found several times. To avoid all these time consuming local searches, the local

search should ideally be invoked no more than once in every region of attraction.

There have been some attempts to modify the multi-start technique. One such attempt

involved invoking a local search to the point that is drawn (in Step 1) that has a smaller function

evaluation than the smallest minimum that has been found. It should be obvious that under

this rule, the global minimum may not be found even if a point is sampled in Rx∗ . Another

adaptation of the Multi-start has however been more successful and is provided by clustering

methods [24]. One such clustering method was presented by Törn [20].

2.5 Topographical clustering

Topographical clustering [20] is a clustering technique whereby the centres of each cluster are

identified. These centres are known as the graph minimizers. The concept was suggested in the

context of global optimization involving continuous variable [20]. Given a number of points, say

N , generated uniformly in the search space, graph minimizers are calculated to perform local

search from them. Topographical clustering has never been applied to integer programming.

We explain the concept with the aid of a simple one-dimensional function f(x), x ∈ [a, b].

Suppose the function f(x) in Figure 2.2 has three local minimizers in the interval [a, b]. In order

to obtain the graph minimizers, we randomly select N points (N = 10) in [a, b]. These points are

numbered in Figure 2.2 and are denoted by the set {xi = i, i = 1, 2, · · · , N}. Their corresponding

f(xi) are presented in the y-axis. Central to the calculation of the graph minimizers is the

number gm of nearest neighbouring points of each xi, i = 1, 2, · · · , N . For each point, xi, we

consider a number of nearest neighbours, say gm = 2. We now study each point and identify the

points, xi, for which each of its gm (gm << N) nearest neighbour has a higher function value

than f(xi). This may be done by calculating a distance matrix D for the N points as well as

2.5. TOPOGRAPHICAL CLUSTERING 19

Figure 2.2: Topographical illustration

checking whether the gm nearest neigbouring points have a higher function value for each xi. For

example, if we take x6 = 6, its two nearest neighbours are x1 = 1 and x7 = 7, but f(x7) < f(x6).

Hence, x6 is not a graph minimizer. If however, we take x7 = 7, its two nearest neighbours are

x6 and x9 but f(x7) < f(x9) and f(x7) < f(x6). Hence x7 is a graph minimizer. Applying this

procedure, we can see that graph minimizers are at x8, x7 and x4. We have presented these

graph minimizers in Figure 2.2 within the boxes. These points are separated from each other

and they are also close to the minimizers of f(x) in [a, b]. For the constrained (P), the penalty

function F (x; c) is used in obtaining the graph minimizers.

The multi-start algorithm proposed in this section is then used in conjunction with a local

search routine, but this local search routine is applied to the graph minimizers only. Since, the

graph minimizers are points with lower function values as well as they are separated from each

other, applying local search from these points has the following advantages. Firstly, the local

minimizers are detected with less efforts and secondly, the probability of a repetition of the same

2.6. SUMMARY 20

local minimizers will be less.

2.6 Summary

In this chapter, we have discussed local search techniques and the multi-start method in some

depth. We have proposed our own local search procedure (MBLS) that counters the inefficiencies

of the commonly used DLS. The topographical clustering has been reviewed. Local search is only

invoked on the graph minimizers, which seems to be more efficient than applying local search

on any random point found. We now shift our focus to approximate stochastic algorithms that

attempt to solve problem (P) using the multi-start and DLS as their foundation.

Chapter 3

Approximation algorithms for

nonlinear integer programming

(NIP)

Approximation algorithms have been used to solve general nonlinear integer programming (NIP)

problems with some degree of success [2, 6]. The difficulty for searching for a global optimum

value presents two sides: how to leave from a local minimizer to a better local minimizer (one

whose function evaluation is lesser than the previous one) and how to judge if the current

minimizer is a global one [22]. In this chapter, we describe the approximation algorithms that

have been used to solve problem (P) and highlight some of their advantages and disadvantages.

3.1 Introduction

In computer science and operations research, approximation algorithms are algorithms that are

used to find approximate solutions to global optimization problems. Approximation algorithms

are often associated with NP-hard problems [27] (since it is very unlikely that there can ever

be an efficient polynomial time exact algorithm for solving NP-hard problems). So approximate

algorithms or heuristic methods are particularly important for nonlinear integer programming

problems, especially for high-dimensional cases [2]. The goal of approximation algorithms is

21

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 22

to find the optimum solution, or get to it as close as possible, in a reasonable amount of time

(which is at most polynomial time).

All exact algorithms that aim to solve (P) have computational complexity [27]. Because

of this reason, approximation algorithms have been developed to solve the different classes of

NIP problems. Approximate algorithms or heuristic methods developed for nonlinear integer

programming are very limited, and often have few computational experiments [2]. These algo-

rithms can be classified into two classes: probabilistic (stochastic) and deterministic. These two

classes were mentioned in the introductory chapter of this dissertation. Next we present some

probabilistic approximation algorithms that have shown some limited success in solving (P).

3.2 Reformulation-based algorithms for NIP

Reformulation-based algorithms minimize auxiliary and filled functions instead of f(x) in prob-

lem (P) [27, 2, 6, 25]. This clearly implies that the filled and auxiliary functions have the same

global optimum as f(x). We present some algorithms that use the filled functions in order to

solve (P).

3.2.1 Filled function methods

A filled function is a function that has the same discrete local minimizer, x∗, as f(x) in the

region near x∗. The first filled function method we will outline was created by Zhu [27]. This

method is the discrete case of the method presented by Ge [22]. The method tries to improve

a current local minimum solution by minimizing a filled function. Suppose that a discrete local

minimizer x∗1 has been found by using discrete local search (DLS). In order to find a global

optimum solution, another discrete local minimizer is found, x∗2, such that f(x∗2) < f(x∗1), which

can be fulfilled by minimizing a filled function. We now see how Zhu defined the filled function

he used in this particular method where D = {ei,−ei, i = 1, 2, · · · , n}.

Definition 1. [27] An integer point x0 ∈ X ∩Zn is a discrete local maximal solution to problem

(P) if f(x0 + d) ≤ f(x0), for all d ∈ D such that x0 + d ∈ X ∈ Zn. The filled function is

constructed by:

P (x, r, ρ) =
1

r + f(x)
exp(−‖x− x

∗
1‖2

ρ2
) (3.1)

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 23

where ρ 6= 0, r are parameters to be adjusted, ‖ · ‖ denotes the Euclidean norm.

We state the following theorems and lemma without any loss of generality where h is a

parameter such that h > 0. The proofs can be found in [27]. These theorems and lemma will

be used later in the explanation of Zhu’s algorithm.

Theorem 1. Let r, ρ satisfy 0 < r + f(x∗1) < h and ρ2 ln r+f
r+f(x∗1) < 1.

For x1 ∈ X ∩ Zn, x1 6= x∗1, and f(x1) ≥ f(x∗1),

1. if there exist d ∈ D such that x1 + d ∈ X ∩ Zn and P (x1 + d, r, ρ) < 0 or

2. if | {d ∈ D : x1 + d ∈ X ∩ Zn} | = n, and there exists d ∈ {d ∈ D : x1 + d ∈ X ∩ Zn} such

that P (x1 + d, r, ρ) < P (x1, r, ρ) or

3. if | {d ∈ D : x1 + d ∈ X ∩ Zn} | > n,

then there exists some d ∈ D, such that x1 + d ∈ X ∩ Zn and P (x1 + d, r, ρ) < P (x1, r, ρ) <

P (x∗1, r, ρ).

Theorem 2. Let r, ρ satisfy the conditions of Theorem 1. Then any one of the discrete lo-

cal minimal solutions of the filled function P (x, r, ρ) over X ∩ Zn must be in the set S =

{x ∈ X ∩ Zn : P (x, r, ρ) < 0} or a vertex of the bounded box X.

Lemma 3. Suppose that 0 < r + f(x∗1) < h. x ∈ X ∩ Zn. For any d ∈ D, such that x1 + d ∈

X ∩ Zn, we have:

1. P (x1 + d, r, ρ) < 0⇔ f(x1 + d) < f(x∗1).

2. P (x1 + d, r, ρ) > 0⇔ f(x1 + d) ≥ f(x∗1).

We next present the formal algorithm, which is called the Approximate Algorithm, intro-

duced by Zhu to find the global optimum of problem (P).

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 24

Algorithm 1: The approximate algorithm [27]

Step 0 Take an initial point x0 ∈ X ∩ Zn.

Step 1 From x0, start DLS to minimize f(x) over X ∩ Zn. Denote by x∗1 a found discrete local

minimal solution.

Step 2 Let D = {ei,−ei, i = 1 · · ·n}.

Step 3 Construct a filled function

P (x, r, ρ) =
1

r + f(x)
exp

(
−‖x− x

∗
1‖2

ρ2

)
where

0 < r + f(x∗1) < h, ρ2 ln
r + f̄

r + f(x∗1)
< 1.

Let x1 = x∗1.

Step 4 From x1, use DLS to minimize P (x, r, ρ) over X ∩Zn. Denote by x∗2 a found discrete local

minimal solution.

Step 5 If P (x∗2, r, ρ) < 0, let x0 := x∗2, go to Step 1.

Step 6 If D = ∅, go to Step 7; otherwise choose an element d ∈ D, let D = D\ {d}. If x1 + d ∈

X ∩ Zn, x1 + d 6= x∗1, then let x1 = x1 + d and go to Step 4; else repeat Step 6.

Step 7 Stop, x∗1 is an approximate discrete global minimal solution to problem (P).

We explain the above algorithm. Taking an initial point x0 ∈ X ∈ Zn, from which DLS is

started to find a discrete local minimal solution of problem (P), say x∗1. Then a filled function

P (x, r, t) is constructed, where r, p satisfy the conditions of Theorem 1. Thus taking x∗1 as

an initial point, the approximate algorithm is initialized to minimize P (x, r, t) over X ∩ Zn.

If a discrete local minimal solution of P (x, r, t), say x∗2, is found such that P (x, r, t) < 0. i.e.

f(x∗2) < f(x∗1), by Lemma 3, x∗2 is used as a new initial point and go to the next iteration of the

algorithm; otherwise by Theorem 2, x∗2 is a vertex of X and P (x, r, t) > 0. This kind of x∗2 is

not needed, another initial point must be taken, instead of x∗1, to minimize P (x, r, t) again.

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 25

In Step 1 of the above algorithm, if x∗1 is a discrete global optimal solution to the problem

(P), then by Theorem 2, x∗2 found in Step 4 must be a vertex of the bounded box X. Further

more, in Step 3 of the algorithm, parameters r, p must be determined at first. If f(x) is a

polynomial function with integer coefficients, then h = 1 is set and parameters r, p are easy to

determine. If the value of parameter h is not known at hand, then h is set to be sufficiently

small, then r, p are also determined.

When testing the algorithm above, the authors set parameters p and r as:

r =
h

2
− f(x∗1)

and
1
p2

= 1 + ln

(
f̄ − f(x∗1) + h

2
h
2

)
where h, f̄ are determined according to different problems.

This method for solving problem (P) does not seem to be very general. Firstly, the author

tested his algorithm on two problems that were unconstrained. Secondly, the dimensions of

these two problems are less than 151. Some test problems of the form (P) are of dimension up

to two hundred. Lastly, the author had to prescribe initial points to initialize his algorithm.

This can lead to a biased analysis on the performance of the method . We now outline a method

that seems to show better results than the Approximate Algorithm.

Wang et.al. [25] proposed a stochastic approximate algorithm which uses a filled function

P (x, x∗) to solve discrete general bound constrained minimization problems, i.e. g(x) and h(x),

in (P), are zero. The function is called a T-F function, it is both filled and tunnel. The definition

of a filled function and a tunnel function are as follows:

Definition 2. P (x, x∗) is called a discrete filled function of f(x) at a discrete local minimizer

x∗ if P (x, x∗) has the following properties:

1. x∗ is a strict discrete local maximizer of P (x, x∗) over X ∩ Zn.

2. P (x, x∗) has no discrete local minimizers on the set

{x|f(x) ≥ f(x∗), x ∈ A\ {x∗}}, where A = X ∩ Zn.
1The author tested the algorithm on two problems which are of dimensions four and ten. The initial points

were prescribed and set to be equal to the zero vector for each problem.

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 26

3. If x∗ is not a discrete global minimizer of f(x), then P (x, x∗) does not have a discrete

minimizer in the set {x|f(x) < f(x∗), x ∈ A}.

Definition 3. P (x, x∗) is called a discrete tunnel function of f(x) at a discrete local minimizer

x∗ if, for any x0 ∈ A with a parameter r > 0, P (x, x∗) = 0 if and only if f(x0)− f(x∗) + r ≤ 0.

Wang and et.al.[25] define a function T (x, x∗, r, q) of f at a given point x∗ ∈ X with r > 0

and q > 0 as follows

T (x, x∗, r, q) =
1

1 + ‖x− x∗‖
hr(f(x)− f(x∗) + r + 1) + qmax(0, f(x)− f(x∗))

where 0 < r < min
f(x1) 6=f(x2)

x1,x2∈X

|f(x1)− f(x2)|. The function hr(t) is given by

hr(t) =


1, t ≥ 1 + r

φr(t), 1 ≤ t ≤ 1 + r

0, t ≤ 1

where φr(t) satisfies the following conditions:

For 1 < t < 1+r, 1 ≥ φr(t) ≥ 0, φr(1) = 0, φr(r+1) = 1. It is easy to conclude that T (x, x∗, r, q)

is a tunnel function and Wang et.al. proved that it is also a filled function, thus making it a

T-F function.

The algorithm developed by Wang and et.al. [25] constructs a T-F function at a local mini-

mizer of the objective function such that it achieves local maximum at the current solution. A

local minimizer of the T-F function leads to a new solution of the original problem with a lower

function value. Iterations follow in this manner to reach a global minimizer. The discrete local

search (DLS) technique is used in this algorithm to find local minimizers. We present the formal

algorithm for this method called the Discrete T-F function method.

Algorithm 2 : Discrete T-F function method [25]

Step 1. Input the lower bound of r, namely rL = 10−8. Input an initial point x(0)
0 ∈ X. Let

D = {±ei, i = 1, 2, · · · , n}.

Step 2. Starting from an initial point x(0)
0 ∈ X, minimize f(x) and obtain the first local minimizer

x∗0 of f(x). Set k : = 0, q = 1 and r = 1.

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 27

Step 3. Step x
(0)i
k = x∗k + di, di ∈ D, i = 1, 2, · · · , 2n, J = [1, 2, · · · , 2n] and j = 1.

Step 4. Set i = Jj and x = x
(0)i
k .

Step 5. If f(x) < f(x∗k), then use x as an initial point for discrete local minimization method to

find x∗k+1 such that f(x∗k+1) < f(x∗k). Set k = k + 1, go to Step 3.

Step 6. Let D0 = {d ∈ D : x+ d ∈ X}. If there exists d ∈ D0 such that f(x + d) < f(x∗k), then

use x + d∗, where d∗ = arg mind∈D0 {f(x+ d)}, as an initial point for a discrete local

minimization method to find x∗k+1 such that f(x∗k+1) < f(x∗k). Set k : = k + 1 and go to

Step 3.

Step 7. Let D1 = {d ∈ D0 : ‖x+ d− x∗‖ > ‖x− x∗‖}. If D1 = ∅ then go to Step 10.

Step 8. If there exists d ∈ D1 such that T (x + d, x∗k, r, q) ≥ T (x, x∗k, r, q), then set q = 0.1q,

J = [Jj , · · · , J2n, J1, · · · , Jj−1], j = 1 go to Step 4.

Step 9. Let D2 : = {d ∈ D1 : f(x+ d) < f(x), T (x+ d, x∗k, r, q) < T (x, x∗k, r, q)}. If D2 6= ∅, then

set d∗ : = arg mind∈D2 {f(x+ d) + T (x+ d, x∗k, r, q)}; Otherwise set

d∗ : = arg mind∈D1 {T (x+ d, x∗k, r, q)}. After that set x = x+ d∗ and go to Step 6.

Step 10. If i < 2n, then set i = i+ 1 and go to Step 4.

Step 11. Set r = 0.1r. If r ≥ rL, go to Step 3; otherwise, the algorithm is incapable of finding a

better minimizer starting from the initial points
{
x

(0)i
k : i = 1, 2, · · · , 2n

}
. The algorithm

stops and x∗k is taken as a global minimizer.

We give a brief explanation of the above mentioned algorithm. A random point, x(0)
0 , and the

stopping parameter, rL, is inputted in step one. From this point DLS (with best improvement)

is invoked, using the objective function f(x), to obtain a local minimizer x∗0. The parameters

k,q and r are set. Steps 3,4,5 and 6 attempt to find the k-th discrete local minimizer for the

i-th iteration (in the i-th direction). From Step 8, we see the introduction of the T-F function.

If there exists a point around x such that T (x + d, x∗k, r, q) ≥ T (x, x∗k, r, q) then the parameter

q is reduced, then i = i + 1 and Step 4 is invoked. Otherwise, if no point around x satisfies

the criterion f(x + d) < f(x) and T (x + d, x∗k, r, q) < T (x, x∗k, r, q), the direction d∗, from x,

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 28

which minimizes f(x) + T (x + d, x∗k, r, q) is chosen and x = x + d∗ is set and the algorithm

goes back to Step 6. If however there exists a point(s) around x such that f(x + d) < f(x)

and T (x + d, x∗k, r, q) < T (x, x∗k, r, q) then, take direction d∗ that minimizes T (x, x∗k, r, q) then

set x = x + d∗ and the algorithm goes to Step 6. If D1 is the empty set in Step 7 then the

algorithm has reached the boundary point, hence the algorithm goes to Step 10 and the iteration

is changed to i = i+ 1 and the algorithm goes to Step 4 if i < 2n, otherwise the algorithm goes

to Step 11 where the stopping parameter, r, is reduced. If the stopping criterion is met then

the algorithm is incapable of finding a better discrete local minimizer from the initial points{
x

(0)i
k : i = 1, 2, · · · , 2n

}
. The algorithm is terminated and x∗k is taken as the global minimizer

of problem (P).

We were not able to compare the method of Zhu [27] and the method presented in [25] since a

complementary set of problems were used. The one distinct advantage of Discrete T-F function

method is that the initial point is randomly chosen and not inputed by the user. The author

tested this algorithm on four unconstrained problems.

We now give an overview on methods that have shown a significant improvement from the

filled function methods (see 3.2.1) . These methods solve more problems and are more efficient

than filled function methods. These methods are called auxiliary function methods.

3.2.2 Auxiliary function methods

We now outline two developed auxiliary function methods. These methods minimize an auxiliary

function T (x, k) instead of f(x). We state some definitions that are useful to refer to in this

section.

Definition 4. For any x ∈ Zn, a set of integer points N(x) ⊂ Zn is called a neighbourhood

of the integer point x, if {x, x+ ei, x− ei, i = 1, · · · , n} ⊂ N(x), where ei is an n-dimensional

Standard Basis Vector.

Definition 5. An integer point x0 ∈ X ∩ Zn is called a discrete local minimizer of f(x) over

X ∩ Zn, if f(x) ≥ f(x0), for all x ∈ N(x0) ∩X.

Definition 6. An integer point x0 ∈ X ∩ Zn is called a discrete global minimizer of f(x) over

X ∩ Zn, if f(x) ≥ f(x0), for all x ∈ X ∩ Zn.

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 29

Definition 7. An integer point x0 ∈ S is called a constrained discrete local minimizer of problem

(P), if f(x) ≥ f(x0) for all N(x0) ∩ S.

Definition 8. An integer point x0 ∈ S is called a constrained discrete global minimizer of

problem (P), if f(x) ≥ f(x0) for all x ∈ S.

The first auxiliary function based stochastic approximate method for finding a global mini-

mum value of (P) is presented by Zhu and Fan [2]. This method presents an auxiliary function

T (x, k) with a parameter k > 0, which has the same discrete global minimizers as the original

problem (P). Assuming that x∗1 is the current best optimal solution and G(t) is any monotoni-

cally increasing function, the auxiliary function can be defined as:

T (x, k) =

 f(x) + kG(‖x− x0‖) if f(x) ≥ f(x∗1),

f(x) if f(x) ≤ f(x∗1).
(3.2)

where ‖ · ‖ designates the p-norm, p = 1, 2 or ∞, G(0) = 0 and x0 ∈ X ∩ Zn is a discrete local

minimizer of the problem (P). The following nonlinear integer programming problem

(AP)

 min T (x, k)

s.t. x ∈ X ∩ Zn

is constructed. The main step of this method is solving problem (AP) to find a discrete local

minimizer of problem (P) lower than its current best one x∗1. Some of the properties of T (x, k)

are stated below without proof:

Theorem 4. If x0 is a discrete local minimizer of the problem (P) with f(x0) ≥ f(x∗1), then x0

is a discrete local minimizer of the problem (AP).

Lemma 5. For all x ∈ S = {x ∈ X ∩ Zn : f(x) < f(x∗1)}, and for all

y ∈ (X − S) ∩ Zn = {x ∈ X ∩ Zn : f(x) ≥ f(x∗1)}, it holds that T (x, k) < T (y, k).

Corollary 6. If x∗1 is not a discrete global minimizer of problem (P), then

{x ∈ X ∩ Zn : f(x) < f(x∗1)} 6= φ, and all discrete global minimizers of problem (AP) are in the

set {x ∈ X ∩ Zn : f(x) < f(x∗1)}.

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 30

Theorem 7. Suppose that x∗1 is not a discrete global minimizer of the problem (P). For y ∈

{x ∈ X ∩ Zn : f(x) < f(x∗1)}, if y is a discrete local minimizer of problem (AP), then y is a

discrete local minimizer of problem (P), and vice versa.

So by Corollary 6 and Theorem 7, if x∗1 is not a discrete global minimizer of problem (P),

then problems (P) and (AP) have the same global minimizers and global minimal values.

It can be clearly seen that the landscape of T (x, k) on {x ∈ X ∩ Zn : f(x) < f(x∗1)} is

not dependent on parameter k, since by equation (3.2), for all {x ∈ X ∩ Zn : f(x) < f(x∗1)},

T (x, k) = f(x). However, the landscape of T (x, k) on {x ∈ X ∩ Zn : f(x) ≥ f(x∗1)} is depen-

dent on k and G(‖x− x0‖).

Some of the properties of T (x, k) dependent on k are :

Lemma 8. For any x = (x1, · · · , xn)T ∈ X ∩ Zn, if x 6= (x01, · · · , x0n)T ∈ X ∩ Zn, then there

exists y = (y1, · · · , yn) ∈ N(x) ∩X such that G(‖y − x0‖) < G(‖x− x0‖).

Theorem 9. For the function T (x, k), we have the following results.

1. For any x ∈ S1 = {x ∈ X ∩ Zn : f(x) ≥ f(x∗1)}, if there exists y ∈ N(x) ∩ X such that

f(y) < f(x∗1), then x is not a discrete local minimizer of problem (AP).

2. For any x1 ∈ S1 = {x ∈ X ∩ Zn : f(x) ≥ f(x∗1)}, x 6= x0, let

A(x) = max

0, min
z∈N(x)∩X

‖z−x0‖<‖x−x0‖

f(z)−f(x)
G(‖x−x0‖)−G(‖z−x0‖)

.

If k > A(x), then x is not a discrete local minimizer of the problem (AP).

3. Especially, if

k > max
x∈X∩Zn

A(x), (3.3)

then for all x ∈ S1 = {x ∈ X ∩ Zn : f(x) ≥ f(x∗1)}, x 6= x0, x is not a discrete local

minimizer of problem (AP).

Assertions 2 and 3 of Theorem 9 suggests that if minimization of T (x, k) gets stuck at a

discrete local minimizer in the set {x ∈ X ∩ Zn : f(x) ≥ f(x∗1)}, then by increasing the value of

k sufficiently, minimization of T (x, k) can escape from the discrete local minimizer.

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 31

Moreover, by the proof of Theorem 9 (see [2]), it is concluded if k satisfies the third assertion

of Theorem 9, then T (y, k) < T (x, k) for all y ∈ N(x) ∩X such that ‖y − x0‖ < ‖x− x0‖. This

implies that if k satisfies (3.3), then while minimizing T (x, k) from any initial point in X ∩ Zn,

the minimization sequence will converge to the prefixed discrete local minimizer x0, or converge

to a discrete local minimizer in the set {x ∈ X ∩ Zn : f(x) ≤ f(x∗1)}.

Definition 9. Suppose that x is a discrete local minimizer of f(x) over X∩Zn. R(x) ⊂ X∩Zn

is called a discrete attraction region of x, if starting from any initial point in R(x) to minimize

f(x) on X ∩ Zn using the local search method, i.e., DLS, will converge to x.

If any point y is a discrete local minimizer of problem (P), then, by Theorem 9, to escape

from the discrete attraction region of y by minimizing T (x, k), k should be large enough.

Suppose there exists an arbitrary case such that the following conditions are satisfied: x ∈

X ∩ Zn, f(x) > f(x∗1) and f(y) ≥ f(x∗1) for all y ∈ N(x) ∩ X. Also, suppose there exists

z ∈ N(x) ∩X such that ‖z − x0‖ > ‖x − x0‖, f(z) < f(x), and z is in the discrete attraction

region of a point lower than x∗1. In such a case, if the value of k is too big such that equation

(3.3) holds, then Theorem 9 implies that T (z, k) > T (x, k). Using DLS to solve problem (AP)

starting from x will leave z to an integer point nearer to x0, but not into the discrete attraction

region.

So there is one question : whether or not the minimization of T (x, k) on X ∩ Zn starting

from x could move to z. That is, how do we choose the value of k such that T (z, k) < T (x, k)

if f(z) < f(x) ?. In fact, the following result was presented.

Theorem 10. Suppose that z ∈ N(x) ∩X, and f(x) > f(z) ≥ f(x∗1). Then T (z, k) < T (x, k)

if and only if one of the following conditions holds:

1. k = 0.

2. k > 0 and ‖z − x0‖ ≤ ‖x− x0‖.

3. k > 0, ‖z − x0‖ > ‖x− x0‖, and k < f(x)−f(z)
G(‖z−x0‖)−G(‖x−x0‖) .

Theorem 10 implies that in some cases T (x, k) could not keep the descent points of f(x)

in the region {x ∈ X ∩ Zn : f(x) ≥ f(x∗1)}, if k is too large. This implies that while minimizing

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 32

the auxiliary function T (x, k) from an initial point in the discrete attraction region of a discrete

local minimizer of f(x) lower than x∗1 (the current best local minimizer), if one wants to find a

discrete local minimizer lower than x∗1, k must not be too large.

There now seems to be a contradiction since, by Theorem 9, in order to bypass a previously

converged discrete local minimizer, the value of k should be large enough. So in the algorithm

that is presented next, while minimizing T (x, k) on X∩Zn, we take k = 0 initially, and increased

the value of k sequentially. The formal algorithm is called Dynamic convexized method and is

given as follows:

Algorithm 3: Dynamic convexized method (DC) [2]

Step 1. Select randomly a point x ∈ X∩In, and start from which to minimize f(x) on X∩Zn using

Algorithm 1 to get a discrete local minimizer x∗1 of problem (P). Let NL be a sufficiently

large integer, and let δk be a positive number. Set N = 0.

Step 2. Select a point x0 ∈ X ∩ In, such that x0 is a discrete local minimizer of problem (P) and

f(x0) ≥ f(x∗1). Construct a function T (x, k) with k, x∗1 and x0.

Step 3. Set k = 0, and N = N + 1. If N ≥ NL, then go to Step 6; otherwise draw randomly an

initial point y ∈ X ∩ In and go to Step 4.

Step 4. Minimize T (x, k) on X ∩ In from y using DLS. Suppose that x′ is an obtained discrete

local minimizer.

If x′ 6= x0 and f(x′) ≥ f(x∗1), then set k = k + δk, y = x′, and repeat Step 4.

If x′ = x0, then go to Step 3.

If f(x′) < f(x∗1), then go to Step 5.

Step 5. Let x∗1 = x′, and go to Step 2.

Step 6. Stop the algorithm, output x∗1 and f(x∗1) as an approximate global minimal solution and

global minimal value of problem (P) respectively.

The explanation of the above mentioned algorithm is as follows: Take k = 0 initially, and a

starting point in X ∩Zn is taken randomly to minimize T (x, k) using DLS. If the minimization

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 33

sequence converges to a point x′ 6= x0 and f(x′) ≥ f(x∗1), then the value of k is increased, and

T (x, k) is minimized on X ∩Zn from x′. If at this time the minimization sequence converges to

a point x′′ 6= x0 and f(x′′) ≥ f(x∗1), then by Theorem 9, the value of k is too small, hence the

value of k is increased and T (x, k) is minimized on X ∩Zn from x′′ again, till the minimization

sequence converges to x0 or a point in {x ∈ X ∩ Zn : f(x) < f(x∗1)}.

Figure 3.1: An example of the function G(t) used in equation (3.2)

If the minimization sequence converges to x0, then the process above is repeated. If the

minimization sequence converges to a point in {x ∈ X ∩ Zn : f(x) < f(x∗1)}, then by Theorem

7, a discrete local minimizer of (P) lower than x∗1 has been found. The point x∗1 is reset, and the

above process is repeated. This may be clarified by the following graphical explanation. Suppose

that G(x) = ‖x − x0‖2 represents G in equation (3.2), where x = [x1, x2], x1, x2 ∈ [0, 10] and

x0 = [4, 4]. The function G is the cone given in Figure 3.1. Suppose that the objective function

f(x) is the top-left diagram in Figure 3.2 marked k = 0. By iteratively increasing k in steps of

δk, we can see how the function f(x) changes its landscape. When k = 20 we still see that there

exists many local minima so this means that the value of k is too small and hence it must be

increased. When the value of k is 40, we see that the landscape of the function T has a definite

bias towards the point [4, 4]. And finally, when k has reached the value of 80, we see that doing

a local search routine would lead to the point of interest x0 = [4, 4].

If problem (P) is constrained, it is converted into an equivalent unconstrained NIP problem

by using a penalty function approach presented by Sinclair [9], thereafter the auxiliary function

method is applied to the unconstrained problem. The method minimizes T (x, k) using a discrete

local search from randomly generated starting points. The minimization of T (x, k) using a

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 34

Figure 3.2: Effects of increasing the parameter k in T (x, k)

discrete local search method can successfully escape from previously converged discrete local

minimizers. Zhu and Fan [2] have proved that this method converges asymptotically with

probability one and they have tested it on a wide range of test problems. Next, we discuss

an extension of this approach which was proposed by Zhu and Ali [6].

The extension suggested by Zhu and Ali [6] (for constrained problems) is a change in the

auxiliary function as follows:

Let x∗1 be the current best minimal solution of problem (P), and let f∗1 be a finite number such

that if x∗1 is a feasible integer point of (P) then f∗1 = f(x∗1); otherwise f∗1 is an upper bound on

the global minimal value of (P). Take

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 35

p(x) = α[max {0, gi(x), i ∈ K}+
∑
j∈J

|hj(x)|] (3.4)

where α is any positive number. Obviously, x ∈ X ∩Zn is a feasible solution of the problem (P)

if and only if p(x) = 0. The auxiliary function is given by

T (x, k) =

 max {0, f(x)− f∗1 }+ p(x) + k‖x− x∗1‖ if f(x) ≥ f∗1 or p(x) > 0,

f(x)− f∗1 otherwise,
(3.5)

where k is a nonnegative parameter, ‖.‖ designates the Euclidean norm, e.g. the 2-norm.

Let S be the set of feasible integer points of the problem (P), i.e.

S = {x ∈ X ∩ Zn : gi(x) ≤ 0, i ∈ K,hj(x) = 0, j ∈ J}. This leads to the following definitions:

Definition 10. An integer point x0 ∈ S is called a constrained discrete local minimizer of

problem (P), if f(x) ≥ f(x0), for all x ∈ N(x0) ∩ S.

Definition 11. An integer point x0 ∈ S is called a constrained discrete global minimizer of

problem (P), if f(x) ≥ f(x0), for all x ∈ S.

It is easy to conclude that a constrained discrete global minimizer of problem (P) is a con-

strained discrete local minimizer of problem (P). The following constrained local search method

for problem (P) was presented.

Constrained local search (CLS) [6]

Step 1. Given an initial feasible integer point x0 of problem (P).

Step 2. If x0 is a constrained discrete local minimizer of problem (P), then stop; else take an

integer point x ∈ N(x0) ∩ S such that f(x) < f(x0).

Step 3. Let x0 := x, and go to step 2.

It is generally known that finding a constrained discrete local minimizer of problem (P) is

difficult. A constrained discrete local minimizer of problem (P) is a feasible solution, which

satisfies that gi(x) ≤ 0, i ∈ K,hj(x) = 0, j ∈ J, x ∈ X ∩Zn. It has been found to be NP-hard to

find feasible solution of this inequality system. The formal algorithm for this method is called

3.2. REFORMULATION-BASED ALGORITHMS FOR NIP 36

Dynamic Convexized Method [6] and is stated as follows:

Algorithm 4: Discrete dynamic convexized method for constrained problems [6]

Step 1. Let f∗1 be a large number such that it is an upper bound on the global minimal value

of problem (P). Select randomly a point x ∈ X ∈ Zn, and start minimization of

max {0, f(x)− f∗1 } + p(x) from x over X ∩ Zn using DLS to get a discrete local mini-

mizer x′. If p(x′) > 0, then let x∗1 = x′; otherwise use CLS to minimize f(x) over S from

x′ to get a constrained discrete local minimizer of problem (P), denote it as x∗1, and let

f∗1 = f(x∗1). Let NL be a sufficiently large integer, and let δk be a positive number. Set

N = 0.

Step 2. Set k = 0, and N = N + 1. If N ≥ NL, then go to Step 5; otherwise draw uniformly at

random an initial point y ∈ X ∩ Zn and go to Step 3.

Step 3. Minimize T (x, k) over X ∩ Zn from y using DLS. Suppose that x′ is an obtained discrete

local minimizer.

If x′ 6= x∗1 and f(x′) ≥ f∗1 or p(x′) > 0, then set k = k + δk, y = x′, and repeat Step 3.

If x′ = x∗1, then go to Step 2.

If f(x′) < f∗1 and p(x′) = 0, then go to Step 4.

Step 4. Let x∗1 = x′, and go to Step 2.

Step 5. Stop the algorithm, if p(x∗1) = 0, then output x∗1 and f(x∗1) as an approximate global

minimal solution and global minimal value of problem (P), respectively.

The basic idea of this algorithm is as follows: Initially, k is taken to be zero and a starting point

is randomly selected in X ∩ Zn to minimize T (x, k) on X ∩ Zn using DLS. If the minimization

sequence converges to a point x′ 6= x∗1, and f(x′) ≥ f∗1 or p(x′) > 0, then the value of k is

increased, and T (x, k) is minimized on X∩Zn from x′. If at this time the minimization sequence

to a point x′′ 6= x∗1, and f(x′′) ≥ f∗1 or p(x′′) > 0, then the value of k is deemed too small, then

the value of k is increased and T (x, k) on X∩Zn is minimized from x′′ again, till the minimization

sequence converges either to x∗1 or to a point in {x ∈ X ∩ Zn : f(x) < f∗1 , and p(x) = 0}.

3.3. DARWIN AND BOLTZMANN MIXED STRATEGY 37

If the minimization sequence converges to x∗1, then the above process is repeated. If the min-

imization sequence converges in {x ∈ X ∩ Zn : f(x) < f∗1 , and p(x) = 0}, then a constrained

discrete local minimizer of (P) better than x∗1 exists. The authors let x∗1 be the better con-

strained discrete local minimizer found, and then the above process is again repeated.

Two reformulation-based methods, presented in [2] and [6], seem to be able to solve (P) for

a variety of problems. One of the strengths of the reformulation-based approach presented in

[2, 6] is that they solve a wide range of bound constrained and nonlinearly constrained nonlinear

problems. However, these methods are inefficient due to the local search procedure and multi-

start method mentioned in an earlier chapter. Furthermore, we think that Step 4 of the ’Discrete

dynamic method’ [2] may seem to waste its effort by trying to escape a local minimum by biasing

the search to a previously converged local minimum x0. In this research, we aim to improve the

local search as well as the way an algorithm navigates the search space X instead of using the

multi-start procedure.

3.3 Darwin and Boltzmann mixed strategy

Tian et.al [29] introduced an interesting method based on the Darwin and Boltzmann strategies

for solving unconstrained NIP problems which we present next.

3.3.1 Nonlinear integer programming by Darwin and Boltzmann mixed strat-

egy

This section presents a general stochastic iterative algorithm for NIP problems. The algorithm

synthesizes the advantages of the Darwin strategy and the Boltzmann annealing strategy [29].

Most complex systems observed in nature and society are the results of an evolutionary

process. The two well-known evolutionary processes are Darwinian processes and irreversible

thermodynamic processes. It is believed that the strategies developed in these evolutionary

processes have important values for the theory and practice of modem science and technology.

The first strategy used in this method is the Darwin strategy which contains the following

elements:

1. self-reproduction of good species that shows maximal fitness;

3.3. DARWIN AND BOLTZMANN MIXED STRATEGY 38

2. mutation processes that change the phenotypic properties of the species;

3. increase of the precision of self-reproduction and mutation in time.

The second strategy used was the Boltzmann annealing strategy, which includes the following

elements:

1. motion along gradients to reach steepest descent;

2. stochastic thermal motion to avoid locking in local minima;

3. decrease of the temperature to increase the precision of the search.

The method presented by Tian et.al [29] is based on the simulated annealing method [8].

The main reason for this is because simulated annealing escapes from local minima while it still

maintains the favorable features of simplicity and general applicability for the local search al-

gorithms. Given the problem (P) without any constraints, we next present the DBMS (Darwin

and Boltzmann Strategy) algorithm [29]:

Algorithm 5: Darwin and Boltzmann mixed strategy for NIP problem (DBMS)

Step 1. Given an initial solution x ∈ S;

Setting an iterative counter k = 0 for Mk.

Given simulation mutation parameters M0 > 0;

Step 2. Mutation process: performing the following Boltzmann strategy.

Step 2.1. Generating a random solution x′ ∈ N(x); Evaluating ∆f = f(x′)− f(x).

Step 2.2. If ‘Metropolis criterion’ is satisfied, i.e.,min {1, exp(−∆f/Mk)} > η ∈ [0, 1), then x = x′.

Step 2.3. If ‘Metropolis equilibrium’ under Mk is realized, then go to Step 3; else go to Step 2.1.

Step 3. Self-reproduction process: doing the following self-reproduction evolution steps.

Step 3.1. Evaluating f(x).

Step 3.2. Giving a temporary set V = {x}, and setting fpre = f(x).

3.3. DARWIN AND BOLTZMANN MIXED STRATEGY 39

Step 3.3. Picking a solution x′ ∈ (N(x) \ V), and V = V
⋃
{x′}; Evaluating ∆f = f(x′)− f(x) .

Step 3.4. If ∆f < 0, then x = x′.

Step 3.5. If (N(x) \ V) = Φ (null set), then go to Step 3.6; else go to Step 3.3.

Step 3.6. If f(x) < fpre, then go to Step 3.2; else go to Step 4.

Step 4. Annealing process: reducing simulation mutation parameter Mk+1 = Mk −∆Mk,∆Mk >

0.

Step 5. If ‘stop criterion’ is not satisfied, i.e. Mk > M , then setting k = k + 1, go to Step 2; else

outputting xopt = x.

The above algorithm combines the Boltzmann annealing process with the mutation process

and mutation parameter adjustment of the Darwin strategy. An optimal search process is

then performed repeatedly by the self-reproduction processes of the Darwin strategy and the

Boltzmann annealing strategy. The self-reproduction processes use steepest descent searching

for local minima. The mutation process performs the ‘climbing hill’ courses of the Boltzmann

strategy. It always starts with some local minimums, and then escape from local optimal ‘traps’.

The annealing process constantly decreases the mutation parameters until it reaches the global

optimum.

The authors proved that the DBMS algorithm converges and runs in a polynomial time.

This analysis was achieved using the theory of finite Markov chains since DBMS is a stochastic

iterative algorithm. The algorithm was tested on three test problems of a dimension 5, 6, 7

respectively.

We conclude by stating that this method still needs rigorous testing on more test problems

before commenting on its robustness and efficiency. Now that we have given an extensive review

on algorithms that solve problem (P) and highlighted their disadvantages, we now move on to the

following chapter in which we will present a new algorithm that will counter these disadvantages.

Chapter 4

Voronoi diagrams and the RRT

algorithm

In this chapter, we present a rapidly-exploring random tree (RRT) based algorithm. Central

to the RRT algorithm is the voronoi diagram. We begin with a discussion of Voronoi diagrams

before presenting the detailed RRT algorithm.

4.1 Voronoi diagrams

A Voronoi diagram is a decomposition of a metric space determined by distances to a specified

discrete set of points in the space. A Voronoi diagram of a set of points partition the space into

a set of convex polygons so that each polygon contains exactly one point of the set [14, 19].

The Russian mathematician Georgy Fedoseevich was the first to define and study the general

n-dimensional case of Voronoi diagrams in 1908. However, the informal use of the diagram can

be traced as far back as 1664 where they were utilized by Descartes [19]. Thereafter, Dirichlet

used 2-D and 3-D Voronoi diagrams in his study of quadratic forms. An illustration of how the

majority of people who died in the Soho cholera epidemic was showcased by the use of a Voronoi

diagram in 1854 by a British physician called John Snow.

Voronoi diagrams have been used across many scientific fields. Applications go as far wide

as town planning, climatology, computer graphics, autonomous robot navigation and computa-

tional chemistry to name a few. We will give an in-depth analysis of Voronoi diagrams in this

40

4.1. VORONOI DIAGRAMS 41

section and attempt to find a use for them in our quest to solve global optimization problems.

4.1.1 Computing Voronoi diagrams

Without loss of generality, given a set S of n points in Rd (called sites), the Voronoi diagram

of S is a partition of space into cells, such that each cell is in the region of space consisting of

all points that are closer to a particular site than any other [17]. To clarify this concept, we use

a diagram to aid the explanation. Each site s ∈ S in Figure 4.1 has a Voronoi cell, also called

Figure 4.1: The Voronoi diagram of a random set of points S in the plane.

a Dirichlet cell, consisting of all points closer to s than to any other site. The segments of the

Voronoi diagram in Figure 4.1 are all the points in the plane (line in two dimensions) that are

equidistant to the two nearest sites. If the set S only contains two points (sites), say x and

y, then the set of all points equidistant from x and y is a hyperplane. The hyperplane is the

boundary between the set of all points closer to x than to y, and the set of all points closer to

y than to x. Some basic properties of Voronoi diagrams are listed below:

• The closest pair of points corresponds to two adjacent cells in the Voronoi diagram (see

Figure 4.1).

4.1. VORONOI DIAGRAMS 42

• The dual graph for a Voronoi diagram corresponds to the Delaunay triangulation1 for the

same set of points in S.

• Two points are adjacent on the convex hull if and only if their Voronoi cells share an

infinitely long side.

Using the concpet of Voronoi diagrams to solve problem (P) does not seem far-fetched

in our initial observation. Using the multi-start technique (see Chapter 2), one can generate

Voronoi diagrams in every iteration and set a stopping criterion based on the largest Voronoi

cell. Points that were ‘promising’ would be minimized by applying a local search technique then

an approximate global minimizer could be found. But some crucial information was unearthed

which led to this idea’s downfall. First, Voronoi diagrams work considerably well for two and

three dimensional data sets only but unfortunately many applications are of higher dimensions.

The complexity of Voronoi diagrams can be as high as N
n
2 (n being the dimension of the points

in the set) [17]. Also, constructing Voronoi diagrams can be complicated due to either numerical

inaccuracies or degeneracies as a result of cocircular points. And finally, finding the size of a

Voronoi cell proved to be challenging and tedious (especially in large dimensions). Intuitively,

Voronoi diagrams implicitly encode information of what site (point) is closest to a given point.

This implies that the speed of computing Voronoi diagrams depends on the nearest neighbour

algorithm being used.

The shortcomings of the previous paragraph have led to a great deal of research in order to

implement simpler structures that can be used in place of Voronoi diagrams [14, 17]. One such

structure is named approximate voronoi [11]. The readers may read further about approximate

voronoi if they wish. Although approximate voronoi improves the original idea substantially, we

also encounter the problem of computing the size of each Voronoi cell. Hence this leads us away

from the idea of using the Voronoi diagrams to solve problem (P). This conclusion leads us to

rapidly-exploring random trees commonly know as RRTs.
1A Delaunay triangulation for a set S of points in the plane is a triangulation such that no point in S is inside

the circumcircle of any triangle in the Delaunay triangulation. Delaunay triangulations maximize the minimum

angle of all the angles of the triangles in the triangulation, they tend to avoid skinny triangles. This concept is

widely applied in computational geometry.

4.2. RAPIDLY-EXPLORING RANDOM TREES (RRT) 43

4.2 Rapidly-exploring random trees (RRT)

4.2.1 Introduction

Rapidly-exploring random tree is a method that incrementally constructs a search tree that

attempts to rapidly and uniformly explore any search space. The method was developed by

LaValle and Kuffner [13]. The tree is constructed in such a way that any sample in the space is

added by connecting it to the closest sample already in the tree. RRT’s are widely used in the

field of robotics for motion planning [13, 16, 21]. We now discuss the problem formulation for

general RRTs for motion planning.

4.2.2 Problem formulation

The RRT algorithm is a randomized algorithm useful for exploring large state spaces that cannot

be searched exhaustively.

We now explain how the general RRT algorithm works with the aid of Figure 4.2. The RRT

Figure 4.2: An example of an RRT extension.

algorithm iteratively chooses a random point p in the state space and attempts to extend, by

some distance ∆, the current search toward that point. The iterative random points can be

4.2. RAPIDLY-EXPLORING RANDOM TREES (RRT) 44

generated using a distribution2 over the state space, but would include some bias toward a goal
3. Considering the random point p, the extension of the RRT algorithm is performed from the

node q to x only if the q is the nearest neighbour of p. So this intuitively means that p must

lie in the Voronoi region of q and the nodes on the frontier of the search tree generally have the

largest Voronoi regions. Now, in the context of motion planning, an action u must observe any

dynamic constraints on the robot. So when the action u is applied to the robot at state q, if all

the dynamic constraints are satisfied, then this results in some new state x 4. Then once exten-

sion has been made to point x, without violating any of the constraints, the new state x and the

action u are added to the tree. The pseudo codes of the supporting functions are presented below.

Algorithm 6: The RRT algorithm

Procedure 1: to generate a random point p and add it to the tree.

BUILD RRT(xinit)

1. T.init(xinit)

2. while (xgoal /∈ T) do

3. {p, q} ← SELECT EXTENSION(T);

4. EXTEND(T, p, q)

5. Return T

2The distribution of the random function may not necessarily be normal.
3In motion planning, a robot navigates through a space towards a pre-defined destination (goal)
4It is important to note that x is in the direction of p from the state q, but x and p are not expected to

coincide.

4.2. RAPIDLY-EXPLORING RANDOM TREES (RRT) 45

Procedure 2: to generate a random point p and calculate the nearest neighbour (q) to p on the

tree T .

SELECT EXTENSION(T)

1. p← RANDOM STATE();

2. q ← NEAREST NEIGHBOUR(p, T);

3. Return T

Procedure 3: to add the vertex x to the tree T .

EXTEND(T, p, q)

1. if (NEW STATE(p, q, x, u)) then

2. T .add vertex(x)

3. T .add edge(q, x, u);

Remark 3. Procedure 1 is the main function of the RRT algorithm. It uses both procedure 2

and 3 to create and extend the RRT tree T where an initial random point xinit is used as the

input. Procedure 2 selects a random point p and finds the nearest neighbour (q) of point p in the

tree T . Procedure 3 extends the tree T from node q towards p by ∆ to find a new node x.

4.2.3 Properties of the RRT

This section highlights some key properties presented by LaValle and Kuffner [13] and LaValle

[18] that suggest why the RRT algorithm is an effective tool in search space exploration. The

key advantages of RRT’s are:

1. the expansion of an RRT is heavily biased toward unexplored portions of the state space;

4.2. RAPIDLY-EXPLORING RANDOM TREES (RRT) 46

2. the distribution of the vertices in an RRT approaches the sampling distribution, leading

to consistent behavior;

3. an RRT is probabilistically complete under very general conditions;

4. the RRT algorithm is relatively simple, which facilitates performance analysis;

5. an RRT always remains connected, even though the number of edges are minimal;

6. an RRT can be considered as a path planning module, which can be adapted and incor-

porated into a wide variety of planning systems;

7. entire path-planning algorithms can be constructed without requiring the ability to steer

the system between two prescribed states (e.g. the initial state and final state), which

greatly broadens the applicability of RRT’s.

To visualize the RRT algorithm in work, we consider the case where X = [0, 105]× [0, 105] is

the bounded search space in the plane. Let ρ represent the Euclidean metric. Figure 4.3 below

illustrates an RRT at different stages in its implementation when the RRT starts at an initial

point xinit = [50000, 50000].

Figure 4.3: RRT algorithm at 3 different stages

The first diagram in Figure 4.3 shows how the RRT quickly expands in a few directions

after 50 iterations of the algorithm, to explore the four corners of the search space. The second

diagram in Figure 4.3 shows how the tree has grown by searching the state space uniformly.

Unlike a random walk, the RRT works by being biased towards places that have not yet been

visited. This may be observed when the Voronoi diagram of the RRT vertices are computed.

4.2. RAPIDLY-EXPLORING RANDOM TREES (RRT) 47

Suppose the Voronoi diagram of the RRT tree is the one depicted in Figure 4.2 (see section

4.1). Some Voronoi cells are larger than others. If a point is chosen randomly in the search

space, it is more likely to fall inside the larger Voronoi cells than in the smaller ones. Hence,

the larger cells will have a greater probability of being subdivided. This case is shown by the

third diagram of Figure 4.3 after 2000 iterations. Usually, an RRT is constructed by iteratively

breaking up larger Voronoi regions into smaller ones. Note that the probability that a vertex is

selected for extension is proportional to the area of its Voronoi region. This biases the RRT to

rapidly explore the search space.

4.2.4 Analysis of RRT’s

Some analysis on RRTs have been shown by authors LaValle and Kuffner [13] and LaValle [18].

Suppose that Xfree is the space that a robot can navigate the search space X without colliding

into any objects, and xgoal is a target (pre-defined) for which the robot is headed towards. Let

Dk(x) denote a random variable whose value is the distance of x to the closest vertex G, in

which k is the number of vertices in an RRT. Futhermore, let dk denote the value of Dk and ε

denote the incremental distance travelled in the ‘EXTEND’ procedure (in other words the step

size ∆ of the RRT). The following lemmas and the theorem below are presented without proofs.

The proofs of these lemmas and theorem can be found in [18].

Lemma 11. Suppose that Xfree is a convex, bounded, open, n-dimensional subset of an n-

dimensional state space. For any x ∈ Xfree and positive constant ε > 0, limk→∞ P [dk(x) < ε] =

1.

Lemma 12. Suppose that Xfree is a nonconvex, bounded, open, n-dimensional connected com-

ponent of an n-dimensional state space. For any x ∈ Xfree and positive real number ε > 0, then

limn→∞ P [dn(x) < ε] = 1.

Theorem 13. Suppose that xinit and xgoal lie in the same connected component of a noncon-

vex, bounded, open, n-dimensional connected component of an n-dimensional state space. The

probability that an RRT constructed from xinit will find a path to xgoal approaches one as the

number of RRT vertices approaches infinity.

4.2. RAPIDLY-EXPLORING RANDOM TREES (RRT) 48

Lemma 11 establishes that the RRT will (converge in probability) come arbitrarily close to

any point in a convex space. The above lemmas and the theorem establish the probabilistic

completeness of the RRT algoithm [13].

Many journal articles have been written on improving the basic RRT algorithm by the way

of biasing. Urmson and Simmons [15] provided a method for biasing the growth of an RRT

based on cost discovered through exploration of the search space. They claim that doing so

provides information to the algorithm that allows it to operate in more than just an exploratory

manner. LaValle and Kuffner [13] developed an improved version of RRT called RRT-GoalBias.

The authors pointed out that without any bias toward the goal, convergence is often slow. The

RANDOM STATE function in the basic RRT algorithm (see Algorithm 6 on page 44) is replaced

with a function that tosses a biased coin to determine what should be returned. This function

biases the RRT as follows:

• If the coin toss results in a ‘heads’, the point p (in Procedure 2 of the RRT algorithm) is

assigned the value xgoal.

• Otherwise, if the coin toss results in a ‘tails’, the point p (in Procedure 2 of the RRT

algorithm) is assigned a random value.

It was concluded that in general, it is better to replace the RANDOM STATE function with a

sampling scheme that draws states from a nonuniform probability density function that has a

‘gradual’ bias toward the goal.

LaValle and Kuffner [13] also suggested the approach of having bidirectional planners which

was inspired by some research on bidirectional search techniques. This involves growing two

RRTs, one from xinit and the other from xgoal. In each iteration, one tree is extended, and an

attempt is made to connect the nearest vertex of the other tree to the new vertex. Intuitively,

a solution is found if the two RRTs meet. Through many experiments and a wide range of

examples, it was concluded that, when applicable, the bidirectional approach is much more

efficient than a single RRT and hence an improved performance is obtained by growing two trees.

Henceforth a natural question arose: if growing two trees is better than one, how about growing

three or more RRTs? Having more trees brings about a complicated decision problem. The

computational time must be divided between attempting to explore the space and attempting

4.3. RRT-BASED OPTIMIZER 49

to connect RRTs to each other. It is also not clear which connections should be attempted.

Many research issues remain in the development of this and other RRT-based planners.

Having considered all the information in this section, based on the advantages of the RRT

algorithm as a search space exploration tool, we think that it can be used as part of a global

optimization algorithm to solve problem (P). Instead of using the multi-start technique as a

base to an optimization algorithm (such as in [2, 6]), we see it more appropriate to use an

RRT to explore new regions of the space X. This will ensure that the search has a structure

which is significantly better that a random walk. The idea of using RRTs as a search space

exploration tool has never been introduced in the field of global optimization. We think that

this will assist the search to efficiently find the global minimum, x∗, of problem (P). The results

of the RRT-based global optimization algorithms are presented in chapter 5.

4.3 RRT-based optimizer

The algorithm we now present implements the concept of RRT together with the topographical

clustering technique to find the global minimum value of problem (P). We call the algorithm

RRT-optimizer and denote it by RRTOpt. An overview of RRTOpt algorithm is as follows:

• Select a point p ∈ X
⋂
Zn to find a point x to add the vertex to the RRT tree (as in Figure

4.2).

• If the number of nodes in the RRT tree (T) are greater than a specified value, keep track

of the last six ∆ values (in Procedure 3 of the RRT algorithm) in an array dt.

• If the average of dt, denoted v, is less than (SC), perform topographical clustering on the

best k nodes using the parameters N and gm
5.

• Perform a local search routine on all the graph minimizers6.

• Output the best local minimizer, xL, found.
5For the description of N and gm, see chapter 2.5 page 18.
6For each of the k nodes N neighbouring points are formed. Graph minimizers are found using N + 1 points

and local searches are performed from each graph minimizer.

4.3. RRT-BASED OPTIMIZER 50

At each iteration the random starting point p implements a nearest neighbour search of all the

vertices in the RRT tree. Then the point in the tree which is closest to p is extended towards p

by some distance ∆ to give x which is then added to the RRT tree (T) (see Figure 4.2). For the

purpose of stopping RRTOpt, we keep record of the last six extension distances (∆’s) in array dt.

If the average, v, of dt is less that some pre-defined stopping parameter SC, then the algorithm

is stopped and the best point or local minimizer found so far, x∗, is given as the approximate

global minimizer to problem (P). One must note at this point that at each iteration, the RRT

algorithm may produce two points, p and x (see Figure 4.2). If the extension distance ∆ is

greater than the distance between x and p, then x = p otherwise; x is an extension from the

nearest point in the tree. This makes Dk(x) random (see subsection 4.2.4). The point p is saved

in the array xbest if it has yielded a lower function value than any of the best k nodes in xbest.

The RRTOpt algorithm is stopped when v reaches some given value, e.g. v ≤ SC.

We now present the formal RRTOpt algorithm.

Algorithm 7: The RRTOpt algorithm

Step 1 . Set parameters N ,gm, k, r, init points and ∆. Initialize counters i = 1 and v to zero, and

input the value SC.

Step 2. Select randomly a point p ∈ X
⋂
Zn and set this as the root of the RRT by calling the

function BUILD RRT(P).

Step 3. Select randomly a point p ∈ X
⋂
Zn and extend the RRT tree using the

SELECT EXTENSION(T) function to add the point x to the RRT tree.

Step 3.1 If i < init points, go to repeat Step 3. Otherwise go to Step 4.

Step 4. If v < SC, then go to Step 5 otherwise set i = i+ 1 and go to Step 3.

Step 5. Select k best points found so far. For each point, select N points randomly around x and

determine the graph minimizers using theN+1 points. Perform a local search routine on all

graph minimizers found and let the best solution found be xL. If f(xL) < min {f(xbest)}

the set x∗ ← xL; otherwise set x∗ ← arg min {f(xbest)}.

4.4. THE RRTOPTV1 ALGORITHM 51

Step 6. Stop the algorithm and output x∗ and f(x∗) as the approximate global minimizer and

minimum value of problem (P) respectively.

The RRTOpt algorithm uses the parameters ∆, N, gm, k, r, init points and v to solve problem

(P). The parametersN and gm are used for topographical clustering. The parameters init point,

k, r and v are used in the RRTOpt algorithm to solve problem (P). The value init point

represents the number of points in the RRT tree T we must have before implementing the

stopping criterion v ≤ SC. The parameter k is the number of points the algorithm performs

topographical clustering on. These parameters are adjusted from problem to problem to yield

the best results possible. We note that the greater the value of N and k, the more effort the

algorithm requires to find the global minimum value. Also, the smaller the value of v then more

points in the RRT tree are added to find the global minimum value. The results of the RRTOpt

algorithm are presented in chapter 5.

In our analysis of the RRT, we have concluded that it is more efficient to bias the search

toward some goal. When solving (P), we assume that we do not know what the global minimum

of the problem is. Hence we modify the RRTOpt algorithm presented in this section by biasing

the generation of the random point p. In particular, we modify RRTOpt to bias the search

towards the best 3 points found in the tree T . In addition, we set a paramter init points to be

the number of points to add to the RRT tree before biasing towards the best 3 points begins.

The modification is presented in the next section.

4.4 The RRTOptv1 algorithm

RRTOptv1 omits topographical clustering and performs a local search routine periodically. The

overview of it is given below. At every iteration the RRTOptv1 algorithm,

• selects a point p ∈ X ∩ Zn to find a point x to add the vertex of the RRT tree.

• performs local search on the best z points and save the local minimizers in a array xbest,

after every l iterations.

• uses the best local minimizers as biasing points, once the iteration counter has reached

the value init points. In every subsequent iteration, the random point, p, selected will

4.4. THE RRTOPTV1 ALGORITHM 52

be biased toward these 3 best points in the RRT (3 best minimizers) in xbest with some

probability.

• updates the z best local minimizers in the matrix xbest, if necessary, and keeps iterating

until the stopping criterion v < SC is met.

In this algorithm, local search is performed after every l iterations. The local minimizers from

the best z points are saved and the iteration continues until i = i + l. At this stage, the local

minimization is performed on the best z starting from i + 1 to i + l. The process is continued

until the stopping criterion is met.

To demonstrate the effectiveness of the RRTOptv1 we use Figure 4.4.

Figure 4.4: The effect of biasing

We generated three points randomly, denoted by the array {xbest1, xbest2, xbest3}, from the

search space. The subsequent points were selected in the following manner:

• Select a random point pr.

4.4. THE RRTOPTV1 ALGORITHM 53

• Generate a biased point p using the equation

p = pr + (xbest1− pr) ∗ p1 + (xbest2− pr) ∗ p2 + (xbest3− pr) ∗ p3, (4.1)

where (p1, p2, p3) is a probability vector.

• Round p and add it to the RRT tree. If the function value of p is better than any point

in the array {xbest1, xbest2, xbest3}, it replaces the worst point in that array. Otherwise,

swop p1 and p2 in the following iteration when using equation (4.1).

Using the above mentioned procedure of adding points to the RRT tree creates points that are

biased closer towards the best point found thus far. This is depicted in Figure 4.4 where most

of the points are clustered around the two minimizers.

The points in the array {xbest1, xbest2, xbest3} may be comprised of:

1. the three best local minimizers found,

2. the three best points found in the RRT tree or

3. a combination of the best local minimizers and best points found in the RRT tree.

It is a worth experimenting with these three possibilities when implementing the RRTOptv1

algorithm. The results using these the three variations will be presented in the following chapter.

Before we begin the step by step description of the RRTOptv1 algorithm, we describe the

parameters. The parameter init points indicates how many points must be in the RRT tree T

in order for biasing towards the 3 best point (3 best local minimizers) begins. The parameters

z and l represent how many points must be used for local search and after how many iterations

must these local searches begin respectively. SC represents the value which the average of the

last six ∆s (v) must be greater than or equal to for the RRTOptv1 algorithm to stop. We now

present a step by step description of the RRTOptv1 algorithm.

Algorithm 8: The RRTOptv1 algorithm

Step 1. Set parameters init points,∆, l and z. Initialize counters i = 1 and v to zero, and input

the value SC.

4.4. THE RRTOPTV1 ALGORITHM 54

Step 2. Select randomly a point p ∈ X ∩ Zn and set this as the root of the RRT by calling the

function BUILD RRT(P).

Step 3. Select randomly a point p ∈ X∩Zn and the extend the RRT tree using SELECT EXTENSION(T)

function to add the point x to the RRT tree. Update i = i+ 1.

3.1 If i <= init points and gcd(i, i+ l) = l, then perform local search at each of the best

z points and save the local minimizers in xbest. Go to Step 4.

3.2 The random selection of the point p is biased towards xbest with some probability

using probability vector (p1, p2, p3) using equation (4.1).

3.2.1 If gcd(i, i+ l) = l then perform local search at each of the best z points found in

the previous l iterations. Save the local minimizers and update xbest if necessary.

Go to Step 4.

3.2.1 Otherwise if the function value of random point p is less than any of the best 3

local minimizers in xbest, then replace the xbest3 with p in the xbest array. Go

to Step 4.

Step 4. If v < SC, then go to Step 3. Otherwise go to Step 5.

Step 5. Stop the algorithm and output x∗ = arg min {f(xbest)} and f(xbest) as the approximate

global minimizer and minimum value of problem (P) respectively.

The RRTOptv1 algorithm uses parameters init points, SC, ∆, z and l to solve problem (P).

The RRTOpt algorithm was modified in this way to increase the probability of finding the global

minimizer x∗ of problem (P). If we update the matrix of the 3 best points found so far (xbest),

then the biasing takes effect on the best possible points found thus far. Results of this algorithm

tested on the 20 benchmark problems in NIP are presented in chapter 5.

Chapter 5

Numerical results

In this chapter, we present the computational results of the proposed MBLS and RRT-based

algorithms. The benchmark test cases contains 8 unconstrained problems and 12 constrained

problems. For the constrained problems we considered a penalty function approach (F (x; c) =

f(x) + cφ(x)) where the penalty parameter c (see Chapter 2.3.2) in [2, 6] has been used as

suggested in [9]. We have done this in our implementation of all the algorithms for a fair

comparison. All tests were performed on a personal computer with CPU Pentium 2.39 GHz

and 1.95 GB of RAM. All the algorithms were programmed using MATLAB 7.3. In the first

section, we present the results of MBLS and justify some of its effectiveness as a local search

algorithm. In the second section, we present the results of the topographical clustering and

show its strength in nonlinear integer programming. Finally, our newly developed RRTOpt and

RRTOptv1 algorithms are compared with recently developed algorithms given in [2, 6, 28] for

nonlinear integer programming in Sections 5.3 and 5.4 respectively.

5.1 Results of MBLS

To show the effectiveness of the local search MBLS, we tested it on problem 5 listed in the

Appendix. We use ten random starting points, i.e. x0, and calculated the corresponding xL (the

local minimizer). We present the results in Table 5.1.

In Table 5.1, columns 1 and 2 respectively contain the random starting points and the

function values at these points; column 3 contains the number of descent directions of q(x) from

55

5.1. RESULTS OF MBLS 56

x0, i.e. |
{
d1, d2, · · · , dp

}
|; column 4 presents the direction vector di at x0 that lead to xL. If

the non-descent direction vector at x0 produces xL then this has been indicated by a ‘0’ in the

column 5. The entry ‘1’ indicates that a descent direction of q(x), at x0, produces xL of f(x).

The number of function calls required to reach xL is presented in the last column vector under

‘f-call’.

Table 5.1: Performance of MBLS on Problem 5, n = 5.

x0 f(x0) # dj : Best di Success xL f(xL) f-call

d(j)T∇q(x0) < 0

(1,-4,-1,-5,-1) 3307 7 (0,1,-1,1,1) 1 (1,-2,-3,-3,1) 175 38

(3,1,2,4,3) 628 7 (0,1,0,-1,0) 1 (3,3,2,2,3) 108 30

(0,4,0,3,0) 2037 6 (0,-1,1,-1,0) 1 (0,2,2,1,0) 85 36

(3,0,-4,-3,-5) 1486 8 (0,-1,0,0,-1) 1 (3,-3,-4,-3,-5) 541 35

(-1,2,-2,1,-3) 138 5 (0,0,0,0,1) 1 (-1,2,-2,1,1) 58 35

(4,0,-3,-3,3) 1280 7 (0,-1,0,0,0) 1 (4,-4,-3,-3,3) 160 51

(1,2,2,-4,5) 421 9 (1,0,1,0,0) 0 (2,2,3,-4,5) 271 40

(-1,5,0,1,-5) 4797 10 (-1,0,1,-1,0) 1 (-5,5,5,-5,-5) 72 28

(0,-5,-1,-1,-2) 4247 7 (0,1,0,0,0) 1 (0,0,-1,-1,-2) 22 31

(3,4,-2,-3,-4) 756 6 (0,-1,0,0,0) 0 (3,3,-2,-3,-4) 203 32

As seen in Table 5.1, the quadratic approximation in the MBLS algorithm, for this particular

problem, has a success rate1 of 80% (there are eight successes in the column under ‘Success’ out

of 10 independent runs). That is, we were able to obtain a local minimizer by taking successive

steps in a particular descent direction di. We also see in column 4 that the directions di, that

have lead to a local minimizer, xL, are not neccessarily unit coordinate vectors (as is the case

when using DLS). This is due to the flexiblity of the MBLS algorithm, see Chapter 2.3.1.

These results, in some sense, justify the use of a quadratic approximation in a local search

technique. But one has to note that this is very much a function-dependent method. If f(x) has

plateau in many regions then one can just resort to using DLS instead (see Chapter 2.2). We

now present the results obtained by using multi-start and topographical clustering technique
1 We ran the MBLS algorithm 100 times with 100 starting points (for the same problem) and found that the

success rate, of the quadratic approximation in the MBLS algorithm, is 78%.

5.2. RESULTS OF THE TOPOGRAPHICAL CLUSTERING 57

together with two different local search procedures.

5.2 Results of the topographical clustering

In this section, we present the justification of the use of topographical clustering to aid in solving

problem (P). Given the framework of multi-start (MS) (see Chapter 2.4), any local search can

be incorporated with it. Hence, to see the effectiveness of the MS with local search, we have used

three local searches with MS. In each instance we do not only look at the approximate global

minimizer x∗ obtained by the respective methods, but we also look at the median function

values of each method given by xmed and the maximum function evaluation xmax. To give a fair

account of the investigation, all four implementations of MS are stopped after the same number

of function calls.

Table 5.2 shows the resulfts of this experiment. The second column in Table 5.2, labeled ‘MS

+ DLS’, shows the results of the multi-start and DLS used in conjunction; column three shows

the results of multi-start embedded with our own MBLSr (see Chapter 2.3.3); the third column

shows the results of multi-start combined together with topographical clustering and DLS; and

the last column shows the results of multi-start combined with topographical clustering and

MBLSr. Each row in the table contains the approximate global minimizer x∗, the median

point xmed and the maximum point xmax that have been found by each method. The function

evaluations’ limit that we have set for test problems 4, 6, 7, 10 and 11 are 1000, 200000, 35000,

1500000, 15000000 respectively. The parameters of the topographical clustering method are as

follows: N = 12 and gm = 3.

Table 5.2 shows that MS combined with MBLSr, MS combined with DLS and topographical

clustering combined with MBLSr failed to find the correct global minimizer once. The only

method which was successful in finding the correct global minimum for all these test problems

was topographical clustering combined with DLS. If we look at the median function values of

all test problems in Table 5.2, we see that the topographical clustering method (combined with

either local search routines) is generally superior than MS combine with DLS. For instance, if

we look at problem 6 we see that both the median xmed function values for the topographical

clustering method is lower than that of MS combined with any local search. This is a direct

5.3. RESULTS OF THE RRT-OPTIMIZER 58

result of performing local search on only the graph minimizers of each problem. We see that for

all the test problems, the points xmed that correspond to the topographical clustering method,

have lower function values. This implies that topographical clustering is better equipped to find

to global minimum of the problem (P).

One can conclude from this observation that, in general, DLS combined with topographical

clustering is superior to all the other methods. Topographical clustering combined with DLS

seems to have an edge over topographical clustering combined with MBLSr. Hence, MBLS is

not embedded in the newly proposed RRT-based optimizers. With this consideration, we now

present the results of the RRTOpt algorithm in the following section.

5.3 Results of the RRT-Optimizer

In this section, we present the results of the RRTOpt algorithm. Since global efficiency is

usually defined as the effort the algorithm needs to be successful [2], we record the number of

function calls to reach a global minimizer. These results are summarized in Table 5.3. The key

parameters used in the RRTOpt algorithm can be found in Table B.1 (see Appendix B). Full

descriptions of these parameters are given in Section 4.3 (see page 51). We have compared the

results obtained by the RRTOpt algorithm with the results by the discrete dynamic convexized

(DC) method [2, 6]. We have used the results prescibed in [2, 6]. Furthermore, we compared

the results of the RRTOpt algorithm to those of a discrete filled function method by Ng and

Zhang [28]. These results are taken from [28].

Upon attempting to implement the DC method [2, 6] we encountered a few problems. If

we look at Step 1 of the formal DS algorithm (see Chapter 3.2.2), the parameter NL was not

prescribed by the author in his presentation of results found in [2]. Also, upon our attempted

implementation, we encountered a problem in Step 4, particularly the case x′ 6= x0 and f(x′) >

f(x∗). If k is increased by δk, y is assigned x′ and Step 4 is repeated, then there seems to be an

infinite loop that occurs. Due to this flaw, we were not able to verify the results presented in

[2] and [6].

In Table 5.3, every number in the column ‘min’ is the minimal number of function calls

to reach a discrete global minimizer among twenty-five runs of the RRTOpt algorithm; every

5.3. RESULTS OF THE RRT-OPTIMIZER 59

T
ab

le
5.

2:
C

om
pa

ri
so

n
of

m
et

ho
ds

P
r
o
b
le

m
M

S
+

D
L
S

M
S

+
M

B
L
S
r

T
o
p

+
D

L
S

T
o
p

+
M

B
L
S
r

x
∗

=
[5

0
2
5

1
.5

0
]

x
∗

=
[5

3
2
4

3
0
.0

0
0
0
0
6
3
]

x
∗

=
[5

0
2
5

1
.5

0
]

x
∗

=
[5

6
2
3

1
.5

0
.0

0
0
0
2
2
]

4
x

m
e

d
=

[1
4

6
3
.5

0
.0

2
8
5
]

x
m

a
x

=
[5

5
7

4
.5

0
.0

2
8
5
]

x
m

e
d

=
[8

0
1
5

1
.5

0
.0

0
0
2
9
5
5
]

x
m

e
d

=
[6

6
2
0

1
.5

0
.0

0
0
1
8
4
7
]

x
m

a
x

=
[2

2
3
.5

0
.0

2
8
5
]

x
m

e
d

=
[8

9
0

1
2
.1

9
9
4
]

x
m

a
x

=
[1

0
0

2
5

2
0
.0

2
7
4
7
]

x
m

a
x

=
[8

2
7

3
0
.0

0
9
9
9
9
]

x
∗

=
[0

−
1

3
]

x
∗

=
[0

−
1

3
]

x
∗

=
[0

−
1

3
]

x
∗

=
[0

−
1

3
]

6
x

m
e

d
=

[1
−

2
5
2
7
8
]

x
m

e
d

=
[2

1
2
2
7
5
]

x
m

e
d

=
[−

1
0

2
7
8
]

x
m

e
d

=
[2

0
1
7
3
6
]

x
m

a
x

=
[−

2
1

1
3
6
0
3
]

x
m

a
x

=
[2

−
2

3
1
6
6
0
0
]

x
m

a
x

=
[−

1
0

2
7
8
]

x
m

a
x

=
[2

0
1
7
3
6
]

x
∗

=
[1

5
3

6
2
.9

6
2
7
]

x
∗

=
[1

6
4

4
2
.8

1
7
5
]

x
∗

=
[1

6
4

4
2
.8

1
7
5
]

x
∗

=
[1

6
4

4
2
.8

1
7
5
]

7
x

m
e

d
=

[4
6

1
4

8
.7

7
8
2
]

x
m

e
d

=
[4

6
1
4

8
.7

7
8
2
]

x
m

e
d

=
[8

6
1
0

4
.5

9
8
6
]

x
m

e
d

=
[1

1
8

5
3
.5

2
6
6
]

x
m

a
x

=
[1

1
2
2

3
5
.2

6
0
0
]

x
m

a
x

=
[9

1
2
7

4
6
0
.2

4
4
9
]

x
m

a
x

=
[2

8
1
4

1
7
.1

5
6
5
]

x
m

a
x

=
[6

1
4

4
6
.0

7
5
8
]

x
∗

=
[3

0
.5

0
]

x
∗

=
[3

0
.5

0
]

x
∗

=
[3

0
.5

0
]

x
∗

=
[3

0
.5

0
]

1
0

x
m

e
d

=
[0

−
1
0

1
4
.2

0
3
1
]

x
m

e
d

=
[0

4
.5

1
4
.2

0
3
1
]

x
m

e
d

=
[0

8
1
4
.2

0
3
1
]

x
m

e
d

=
[2

−
0
.5

2
.9

5
3
2
1
2
5
]

x
m

a
x

=
[0

6
1
4
.2

0
3
1
]

x
m

a
x

=
[1

0
−

8
2
6
6
9
7
5
4
6
.7

]
x
m

a
x

=
[0

−
9
.5

1
4
.2

0
3
1
]

x
m

a
x

=
[0

9
.5

1
4
.2

0
3
1
]

x
∗

=
[1

1
0
]

x
∗

=
[1

1
0
]

x
∗

=
[1

1
0
]

x
∗

=
[1

1
0
]

1
1

x
m

e
d

=
[2

4
1
]

x
m

e
d

=
[0

6
3
6
0
1
]

x
m

e
d

=
[2

4
1
]

x
m

e
d

=
[3

9
4
]

x
m

a
x

=
[3

9
4
]

x
m

a
x

=
[1

0
2

9
6
1
9
1
4
.3

]
x
m

a
x

=
[3

9
4
]

x
m

a
x

=
[2

5
1
0
1
]

5.3. RESULTS OF THE RRT-OPTIMIZER 60

Table 5.3: Performances and comparisons of algorithms on problems

Problem Our algorithm’s results Results by [2] Results by [6] Results by [28]

min max med fail med fail med fail

1 52900 76453 71749 1 24679.2 0 60360.6 0 4474

2 33276 46231 38357 0 13655.1 0 - - 621

3 255 973 405.2 0 658.1 0 599.2 0 7887

4 1876 4271 2927.1 1 689.7 0 - - 1574.2

5 2713 3428 3070.6 0 752.8 0 - - -

6 5235 9268 6170.1 0 55685.9 0 - - -

7 4922 8181 6336.1 2 7055.2 0 11568.7 0 -

8 70658 70878 70762.7 1 77112.8 0 - 0 -

9 30500 78061 69065.7 0 52000.9 0 31162.1 0 -

10 143498 354638 239731.7 0 756941.2 0 - - 607880.7

11 355102 1004754 642435.9 0 12780839 0 10982038.6 0 1608067.3

12(n = 25) 3361 47321 37444.8 0 14485 0 - - 102883.2

12(n = 50) 65389 89556 83889.2 0 69510 0 - - 9840.7

12(n = 100) 350970 421162 385348.5 0 273840 0 - - 6704633

12(n = 150) 482852 532611 518149 0 373620 0 - - -

13(n = 25) 22470 39844 35582.7 1 6530 0 - - 90568.1

13(n = 50) 97703 138651 125535.2 1 24740 0 - - 727641.2

13(n = 100) 122464 209732 179627.7 2 88640 0 - - 5861265.4

13(n = 150) 409142 644734 447452.9 2 235840 0 - - -

13(n = 200) 873931 1230024 995140 2 373620 0 - - -

14(n = 25) 22518 31204 30256 0 19675 0 - - 116765.5

14(n = 50) 105727 183214 168823 0 157900 0 - - 997241.3

14(n = 100) 931834 1682374 1114609 0 1203480 0 - - 7770218.8

15(n = 25) 22803 30201 27481 0 28089.6 0 25553.9 0 45158.5

15(n = 50) 65814 104521 86982.8 0 180368.3 0 204070.5 0 323156.5

15(n = 100) 526807 946718 730622.9 1 1559704 0 1249832.2 0 2734844.5

15(n = 200) 988167 1978235 1780499 1 10234584 0 - - 22585087.68

16(n = 4) 33952 374264 173388 0 16622286 0 - - 5105399.5

17 (n = 25) 5608 46416 15574.8 0 44050 0 - - -

17(n = 50) 24891 141988 52995.5 0 161600 0 - - -

17(n = 100) 131604 643069 243487 0 567984 0 - - -

18(n = 25) 871196 1799556 1002918 1 538368 0 - - -

18(n = 50) 651063 2233046 1904322.6 1 873828 0 - - -

18(n = 100) 1048398 25044019 21423783.7 2 594520 0 - - -

19 (n = 25) 27173 64003 43018 0 17878 0 - - -

19 (n = 50) 73780 816628 139391 1 72640 0 - - -

19 (n = 100) 309743 536843 447804.7 1 255312 0 - - -

20 (n = 25) 1340 18462 8673 0 5146 0 - - -

20 (n = 50) 6139 49268 22657.1 0 19960 0 - - -

20 (n = 100) 8123 54923 23640.6 0 85200 0 - - -

5.3. RESULTS OF THE RRT-OPTIMIZER 61

number in the column ‘max’ is the maximal number of function calls to reach a discrete global

minimizer among the runs of the RRTOpt algorithm; every number in the column ‘med’ is the

average number of function calls of twenty-five runs of the RRTOpt algorithm (irrespective of

failure to reach the global minimizer); every number in the column ‘fail’ is the number of runs

that the optimum has not been reached among 25 runs.

From the ‘fail’ column, we see that the RRTOpt algorithm is not always 100% successful

in solving all twenty test problems. However, it has a success rate of 90 % and above for all

of the test problems. It can also be seen that the RRTOpt algorithm out performs the results

given by the discrete function filled method found in [28] on problems 10-15. These problems

are constrained and unconstrained problems with the search space, X, being very large in size.

Eventhough the discrete function filled method was not tested using randomly generated initial

points, the RRTOpt algorithm shows a lower average number of function calls.

Our algorithm also compares reasonably well with Zhu’s DC algorithm [2]. It outperforms

DC in test problems 3, 5, 7, 8, 10, 11, 14, 15 and 20. All these problems are diverse in nature

with dimensions ranging from two up to 200 and also being constrained or unconstrained. This

shows the versatility of the RRTOpt algorithm. For example, comparing the specific results of

problem 11, we see that the average function call for the RRTOpt algorithm is 642435.9 while the

DC algorithm could only manage to achieve 12780839. This is a huge difference of 12138403.1

function evaluations. This is attributed to how the RRT searches unexplored regions of the

space and the topographical clustering method which searches efficiently around k ‘potential’

points.

When one observes the parameters used in the RRTOpt algorithm (see Table B.1 in Appendix

B), we can arrive at some initial conclusions for this particular algorithm.

1. The parameter init points is proportional to the search space X. This means that the

bigger the search space, the more points the algorithm needs to put into the tree before

biasing of the search begins.

2. In general, the bigger the dimension of the problem, the larger N must be. This makes

sense when considering the topographical clustering method.

3. The parameter ∆ needs to increase with the size of the search space X. If ∆ is too small,

5.4. RESULTS OF THE RRTOPTV1 ALGORITHM 62

the search becomes too fine and the number of points generated by the algorithm increases

too much and the search becomes exhaustive.

4. The paramter k is very much function dependent. If a function has many plateau regions

then this parameter is increased since the global minimal value cannot be easily found.

The results given in this section show the great promise that the RRT-Opt algorithm pro-

posed can compete with recently developed algorithms for nonlinear integer programming. Thus,

we can conclude that RRTOpt algorithm is competitive when we compare its results to recently

developed algorithms. It also seems to be a very stable2 in its quest to solve problem (P).

5.4 Results of the RRTOptv1 algorithm

We now present the results of the RRTOptv1 algorithm in Table 5.4 below. There are five

parameters for the RRTOpv1 algorithm. The parameters used for this algorithm can be found

in Table B.2 in Appendix B. Full description of these parameters can be found in Subsection 4.4.

In addition to these parameters, the probability vector (p1, p2, p3) = [0.6, 0.24, 0.15] is used for

all the test problems. With regard to the array {xbest1, xbest2, xbest3} (See Chapter 4.4) used

in equation (4.1), all the points in this array are the best local minimizers found so far. The

results when this array contains the best points found in the RRT tree or contains a combination

of the best local minimizer together with the two best points in the RRT tree, are tabulated in

the Appendix C and Appendix D respecitvely 3. For the particular case in Appendix D, we used

a representative set of problems to see the trend. We did not test the algorithm on all twenty

test problems.

Analyzing the results given in Table 5.4, we immediately notice that the RRTOptv1 algo-

rithm converges to the correct solution for all the 20 test problems. This is in star contrast to the

RRTOpt algorithm of the previous section. The RRTOptv1 algorithm has a 100% success rate.

We suspect that performing z local searches every l iterations and biasing the search towards
2If one looks at the columns ‘min’, ‘max’ and ‘med’ in Table 5.3 , we see that the function evaluations of our

method do not greatly vary.
3The results presented in Appendix C and Appendix D were derived using the table of parameters in Appendix

B.

5.4. RESULTS OF THE RRTOPTV1 ALGORITHM 63

the best possible points in the matrix xbest have increased the probability of finding the global

minimizer dramatically. Also the parameter values for init points and ∆ were changed for most

test problems in comparison to the RRTOpt. This was done to assist the RRTOptv1 algorithm

to converge to the correct solution. All the paramter values may be found in the Appendix A.

The alterations to the RRTOpt algorithm has made the RRTOptv1 algorithm more robust.

The RRTOptv1 has proven to be more efficient than the discrete dynamic convexized method

[2] when looking at problems 2, 3, 6-11, 12(n = 50), 16, 17, 19 and 204. The RRTOptv1

algorithm consistently produced on average lower function evaluations than the result presented

in [2]. This can be seen by comparing columns 4 and 6 of Table 5.4. It can also be seen that when

the dimension of any problem is increased, the average function evaluations increases. However,

the discrete dynamic convexized method uses less average function evaluations on problems 1,

4, 5, 12(n = 25, 100, 150)-15 and 18. It can be seen that the RRTOptv1 algorithm solves more

variety of problems than DC.

Comparing columns 4 and 7 of Table 5.4, the RRTOptv1 has shown some superiority by

having lower average function evaluations on problems 7, 9, 11 and 15(n = 100) when compared

to new version of DC (see Algorithm 4 in Chapter 3.2.2) [6]. This algorithm has not yet been

shown to be robust since it was only tested on 6 test problems.

When comparing the RRTOptv1 algorithm to the discrete filled function method [28], we

observe that our algorithm uses less function evaluations for problems 3, 10, 12, 13, 14, 15

(n = 100, 200) and 16. This algorithm could only solve 10 test problems and the results for

problems 12(n = 150), 13(n = 150, 200) were not provided. However, discrete filled function

method obtained lower average function evaluations for the constrained problems 1, 2 and 4.

Again, this algorithm does not seem to be robust since it can solve only a limited number of

problems.

The DS algorithm presented in [2, 6] reported a 100% success for all the problems. However,

in addition to the implementation difficulties we have presented earlier, no discussions on pa-

rameter telling were presented by Zhu [2, 6]. It is therefore not clear if these results are based on

different values of the same parameter. Under these circumstances, we believe that the results

obtained by the RRTOptv1 algorithm are comparable to DC for some problems while for the
4For the unconstrained problems, the RRTOptv1 achieved lower function evaluations for all the dimensions.

5.4. RESULTS OF THE RRTOPTV1 ALGORITHM 64

Table 5.4: Performances and comparisons of algorithms on problems (RRTOptv1)

Problem Our algorithm’s results Results by [2] Results by [6] Results by [28]

min max med fail med fail med fail

1 231605 322142 283280.3 0 24679.2 0 60360.6 0 4474

2 11703 12928 12242 0 13655.1 0 - - 621

3 480 793 616.2 0 658.1 0 599.2 0 7887

4 1222 2511 1898.1 0 689.7 0 - - 1574.2

5 1150 3431 2259.4 0 752.8 0 - - -

6 9498 18283 12311.1 0 55685.9 0 - - -

7 4017 4222 4150.6 0 7055.2 0 11568.7 0 -

8 34637 39974 37448.2 0 77112.8 0 - 0 -

9 23943 31865 26648 0 52000.9 0 31162.1 0 -

10 126006 188018 1619100.4 0 756941.2 0 - - 607880.7

11 1135463 2202946 1767100 0 12780839 0 10982038.6 0 1608067.3

12(n = 25) 14285 16456 15506 0 14485 0 - - 102883.2

12(n = 50) 57189 66163 63907 0 69510 0 - - 9840.7

12(n = 100) 329747 352600 345670 0 273840 0 - - 6704633

12(n = 150) 741137 854423 783090 0 373620 0 - - -

13(n = 25) 67792 72173 70010 0 6530 0 - - 90568.1

13(n = 50) 175905 194602 184770 0 24740 0 - - 727641.2

13(n = 100) 768138 798675 781640 0 88640 0 - - 5861265.4

13(n = 150) 1782822 1973133 1869500 0 235840 0 - - -

13(n = 200) 3147465 3280667 3216800.8 0 373620 0 - - -

14(n = 25) 92256 110467 10090 0 19675 0 - - 116765.5

14(n = 50) 521101 590530 541120 0 157900 0 - - 997241.3

14(n = 100) 1680494 1910344 1797700 0 1203480 0 - - 7770218.8

15(n = 25) 107150 190899 143630 0 28089.6 0 25553.9 0 45158.5

15(n = 50) 403618 490134 454210 0 180368.3 0 204070.5 0 323156.5

15(n = 100) 1611402 1980104 1835100 0 1559704 0 1249832.2 0 2734844.5

15(n = 200) 6290512 7571290 6854200.7 0 10234584 0 - - 22585087.68

16(n = 4) 1762234 2377452 2003349 0 16622286 0 - - 5105399.5

17 (n = 25) 16251 20054 18269 0 44050 0 - - -

17(n = 50) 71602 84345 71171 0 161600 0 - - -

17(n = 100) 300507 356260 327590 0 567984 0 - - -

18(n = 25) 5933117 9549681 8124051 0 538368 0 - - -

18(n = 50) 29790298 33318157 32219000 0 873828 0 - - -

18(n = 100) 123921720 131421550 127238490.6 0 594520 0 - - -

19 (n = 25) 19945 23374 21242 0 17878 0 - - -

19 (n = 50) 92062 103414 98499 0 72640 0 - - -

19 (n = 100) 200318 218164 208769 0 255312 0 - - -

20 (n = 25) 3863 4316 4071.2 0 5146 0 - - -

20 (n = 50) 6516 8605 7511 0 19960 0 - - -

20 (n = 100) 22082 27056 24141 0 85200 0 - - -

5.5. SUMMARY 65

other problems RRTOptv1 is superior.

5.5 Summary

Although the MBLS algorithm has shown some promise, it cannot be regarded as a robust local

search procedure. It is too dependent on the nature of the landscape of the objective function

f(x). If the function has too many plateau regions then in general it is more efficient to use

DLS since the effort of performing a quadratic approximation from x0, the point in question, is

wasted. We conclude that it is best, for now, to use DLS as a local search procedure.

A comparison of RRTOpt and RRTOptv1 shows that the RRTOptv1 algorithm is superior.

It is also superior to the recent methods [2, 6, 28] due to its iterative nature and its probabilistic

choice of the random point p.

Chapter 6

Conclusion

The objective of this dissertation was devoted to design an efficient and robust algorithm for

nonlinear integer programming (NIP). In order to achieve this objective, we have proposed an

algorithm that uses rapidly-exploring random tree (RRT) as a search space exploration tool

rather than the commonly used multi-start. The use of RRT algorithm in the field of global

optimization has never been investigated before. We have developed two algorithms. These are

RRTOpt and RRTOptv1.

We have done an extensive review of the most recently developed algorithms for NIP. These

algorithms use multi-start technique as their search space navigation tool along with an auxiliary

function. These were shown to navigate through the search space inefficiently and hence have

poor global efficiency.

We have proposed a new local search technique called the model-based local search (MBLS).

It was found that this local search gives an indication of which is the most descent direction

from the point in question. We attempted to introduce the concept of Voronoi diagrams in our

quest to solve the NIP problems but found a major flaw of computing the Voronoi cell sizes and

the inefficiency of computing a Voronoi diagram at each iteration of the algorithm.

The RRT algorithm was found to be a better search space algorithm provided some bias is

introduced. The news algorithms faired well against recently developed algorithms to solve the

NIP problems. We have presented extensive numerical results and have shown that the new

algorithms have a role to play in solving nonlinear integer programming problems.

A possible extension to this research is to develop theory to calibrate the parameters used

66

67

in both the RRTOpt and RRTOptv1 algorithms. Furthermore, one may seek to test different

biasing methods in the RRTOptv1 algorithm.

Appendix A

Test problems

In this appendix, we present twenty known problems which are often used by nonlinear integer

programming researchers. These problems represent various characteristic terrain found in real-

world problems,.e.g., unimodal or multimodal, with or without plateaus and ridges, and high or

low dimensional. Some of these test problems can be found in textbooks, in individual research

articles, or at different websites. Please note that in several cases, the global minimizer x∗ and

the corresponding global minimum f(x∗) are known only as a numerical approximation.

68

69

Problem 1.



min x2
1 + x2

2 + 3x2
3 + 4x2

4 + 2x2
5 − 8x1 − 2x2 − 3x3 − x4 − 2x5,

s.t. x1 + 2x2 + 2x3 + x4 + 6x5 ≤ 800

2x1 + x2 + 6x3 ≤ 200

x3 + x4 + 5x5 ≤ 200

x1 + x2 + x3 + x4 ≥ 48

x2 + x4 + x5 ≥ 34

6x1 + 7x5 ≥ 104

55 ≤ x1 + x2 + x3 + x4 + x5 ≤ 400

0 ≤ xi ≤ 99, xi : integer, i = 1, 2, 3, 4, 5.

A discrete global minimizer is (16, 22, 5, 5, 7)T, and the global minimal value is 807. We take a penalty p(x) =

max {0, x1 + 2x2 + 2x3 + x4 + 6x5 − 800, 2x1 + x2 + 6x3 − 200, x3 + x4 + 5x5 − 200,−x1 − x2 − x3 − x4 − 48,

−x2 − x4 − x5 + 34,−6x1 − 7x5 + 104, x1 + x2 + x3 + x4 + x5 − 400, 55− x1 − x2 − x3 − x4 − x5}, and a penalty

parameter c = 1000 to convert this problem to an equivalent box constrained nonlinear integer programming prob-

lem.

Problem 2.


max x2

1 + x1x2 − x2
2 + x1x3 − x2

3 + 8x2
4 − 17x2

5 + 6x3
6

+ x4x5x6x7 + x3
8 + x4

9 − x5
10 − x5x10 + 18x3x6x7

s.t 0 ≤ xi ≤ 99, xi : integer, i = 1, 2, · · · , 10.

A discrete global minimizer is (99, 49, 99, 99, 99, 99, 99, 99, 99, 0)T, and the global minimal value is 216300719.

70

Problem 3.



min 5u1 + 5u2 + 5u3 + 5u4 − 5u2
1 − 5u2

2−

5u2
3 − 5u4 − (v1 + v2 + · · ·+ v9)

s.t 2u1 + 2u2 + v6 + v7 ≤ 10

2u1 + 2u3 + v6 + v8 ≤ 10

2u2 + 2u3 + v7 + v8 ≤ 10

− 2u4 − v1 + v6 ≤ 10

− 2v2 − v3 + v7 ≤ 0

− 2v4 − v5 + v8 ≤ 0

− 8ui + vi+5 ≤ 0 i = 1, 2, 3

uj , vk ∈ 0, 1, j = 1, 2, 3, 4, k = 1, 2, 3, 4, 5, 9

vk ∈ 0, 1, 2, 3, k = 6, 7, 8.

A discrete global minimizer is (u1, u2, u3, u4, 1, 1, 1, 1, 1, 3, 3, 3, 1)T, for all ui ∈ {0, 1},i = 1, 2, 3, 4, and the global

minimal value is −15. We take a penalty p(x) = max {0, 2u1 + 2u2 + v6 + v7 − 10, 2u1 + 2u3 + v6 + v8 − 10,

2u2 + 2u3 + v7 + v8 − 10,−2u4 − v1 + v6 − 10,−2v2 − v3 + v7,−2v4 − v5 + v8,−8u1 + v6,−8u2 + v7,−8u3 + v8},

and a penalty parameter c = 1000 to convert this problem to an equivalent box constrained nonlinear integer

programming problem.

Problem 4.



min
9∑

i=1

(
exp−

(ui−x2)x3

x1 − i

100

)2

s.t. 1 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 25

xi : integer, i = 1, 2.

x3 =
j

2
, 0 ≤ j ≤ 10j : integer

ui = 25 +
(
−50 ˙log

i

100

) 2
3

71

This problem is a discrete counterpart of Problem 1 in [26]. A discrete global minimizer is (50, 25, 1.5)T, and the

global minimal value is approximately 0.0.

Problem 5.


min 100(x2 − x2

1) + (1− x1)2 + 90(x4 − x2
3)2 + (1− x3)2

+ 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

s.t. − 10 ≤ xi ≤ 10, integer, i = 1, 2, 3, 4.

A discrete global minimizer is (1, 1, 1, 1)T, and the global minimal value is 0.0.

Problem 6.


min [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]

× [30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

s.t. xi = 0.001j,−2000 ≤ j ≤ 2000, j : integer.

A discrete global minimizer is (0,−1)T, and the global minimal value is 3.

Problem 7.



min
33.7539
x1

+
1.4430
x2

+
1.3885
x3

s.t. x1 + x2 + x3 = 24

1 ≤ x1 ≤ 16

1 ≤ x2 ≤ 20

1 ≤ x3 ≤ 28

xi : integer, i = 1, 2, 3.

A discrete global minimizer is (16, 4, 4)T, and the global minimal value of this problem is 2.817494. We take a

penalty p(x) = ‖x1 + x2 + x3 − 24‖ and the penalty parameter c = 35 to convert this problem to an equivalent

72

box constrained nonlinear integer programming problem.

Problem 8.



min − x3 − x4 − x5

s.t. 20x1 + 30x2 + x3 + 2x4 + 2x5 ≤ 180

30x1 + 20x2 + 2x3 + x4 + 2x5 ≤ 150

− 60x1 + x3 ≤ 0

− 75x2 + x4 ≤ 0

0 ≤ xi ≤ 1, i = 1, 2

0 ≤ xi ≤ 75, i = 3, 4, 5

xi : integer, i = 1, 2, 3, 4, 5.

A discrete global minimizer is (1, 1, 24, 52, 0)T, and the global minimal value of this problem is −76. We take a

penalty p(x) = max {0, 20x1 + 30x2 + x3 + 2x4 + 2x5 − 180, 30x1 + 20x2 + 2x3 + x4 + 2x5 − 150,−60x1 + x3,

−75x2 + x4} and the penalty parameter c = 200 to convert this problem to an equivalent box constrained non-

linear integer programming problem.

73

Problem 9.



min x1x2x3 + x1x4x5 + x2x4x6 + x6x7x8 + x2x5x7

s.t. 2x1 + 2x4 + 8x8 ≥ 12

11x1 + 7x4 + 13x6 ≥ 41

6x2 + 9x4x6 + 5x7 ≥ 60

3x2 + 5x5 + 7x8 ≥ 42

6x2x7 + 9x3 + 5x5 ≥ 53

4x3x7 + x5 ≥ 13

2x1 + 4x2 + 7x4 + 3x5 + x7 ≤ 69

9x1x8 + 6x3x5 + 4x3x7 ≤ 47

12x2 + 8x2x8 + 2x3x6 ≤ 73

x3 + 4x5 + 2x6 + 9x8 ≤ 31

0 ≤ xi ≤ 7, i = 3, 4, 6, 8

0 ≤ xi ≤ 15, i = 2, 5, 7

xi : integer, i = 1, 2, · · · , 8.

A discrete global minimizer is (5, 4, 1, 1, 6, 3, 2, 0)T, and the global minimal value of this problem is 110. We take a

penalty p(x) = max {0,−2x1 − 2x4 − 8x8 + 12,−11x1 − 7x4 − 13x6 + 41,−6x2 − 9x4x6 − 5x7 + 60,−3x2 − 5x5

−7x8 + 42,−6x2x7 − 9x3 − 5x5 + 53,−4x3x7 − x5 + 13, 2x1 + 4x2 + 7x4 + 3x5 + x7 − 69, 9x1x8+

6x3x5 + 4x3x7 − 47, 12x2 + 8x2x8 + 2x3x6 − 73, x3 + 4x5 + 2x6 + 9x8 − 31} and the penalty parameter c = 200

to convert this problem to an equivalent box constrained nonlinear integer programming problem.

Problem 10.


min [1.5− x1(1− x2)]2 + [2.25− x1(1− x2

2)]2 + [2.625− x1(1− x3
2)]2

s.t. xi = 0.001j,−104 ≤ j ≤ 104, j : integer, i = 1, 2.

A discrete global minimizer is (3, 0.5)T, and the global minimal value is 0.0.

74

Problem 11.



min f(x) = 100(x2 − x2
1)2 + (1− x1)2

s.t. x2
1 + x2

2 ≥ 0.25

− 1
3
x1 + x2 ≥ 0.1

xi = ji × 10−4

0 ≤ ji ≤ 105, ji : integer, i = 1, 2.

A discrete global minimizer is (1, 1)T, and the global minimal value is 0. We take a penalty p(x) = max
{

0, 0.25− x2
1 − x2

2,

0.1 + 1
3
x1 − x2

}
and the penalty parameter c = 1000 to convert this problem to an equivalent box constrained

nonlinear integer programming problem.

Problem 12.


min (x1 − 1)2 + (xn − 1)2 + n

n∑
i=1

(n− i)(x2
i − xi+1)2

s.t. − 5 ≤ xi ≤ 5, xi : integer, i = 1, 2, · · · , n.

A discrete global minimizer is (1, 1, · · · , 1)T, and the global minimal value is 0.0.

Problem 13.


min

n−1∑
i=1

[100(xi+1 − x2
i)2 + (1− xi)2]

s.t. − 5 ≤ xi ≤ 5, xi : integer, i = 1, 2, · · · , n.

A discrete global minimizer is (1, 1, · · · , 1)T, and the global minimal value is 0.0.

75

Problem 14.


min

n∑
i=1

x4
i +

(
n∑

i=1

xi

)2

s.t. − 5 ≤ xi ≤ 5, xi : integer, i = 1, 2, · · · , n.

A discrete global minimizer is (0, 0, · · · , 0)T, and the global minimal value is 0.0.

Problem 15.



min f(x) = xTQx

s.t.
n∑

i=1

x2
i

9n+ i
≤ 1

n∑
i=1

ixi ≥
n

2

− 5 ≤ xi ≤ 5, xi : integer, i = 1, 2, · · · , n.

Q = [Qij], Qi,j = 1 for i 6= j.

The global minimal value of this problem is 2. We take penalty p(x) = max
{

0,
∑n

i=1

x2
i

9n+i
− 1, n

2
−∑n

i=1 ixi

}
, and penalty parameter c = 10000 to convert this problem to an equivalent box constrained nonlinear

integer programming problem.

Problem 16.


min f(x) = (x1 + 10x1)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4

s.t. xi = 0.001j,−104 ≤ xi ≤ 104, j : integer, i = 1, 2, 3, 4.

The only discrete global minimizer is (0, 0, 0, 0)T, and the global minimal value is 0.0.

76

Problem 17.


min f(x) = −20 exp

−0.02

√√√√ 1
n

n∑
i=1

x2
i

+ exp

(
1
n

n∑
i=1

cos(2πxi)

)
+ 20 + e

s.t. − 30 ≤ xi ≤ 30, xi : integer, i = 1, 2, · · · , n.

This problem is a discrete counterpart of Ackley’s problem. The number of discrete local minima is not known.

The global minimum is located at the origin with the global minimal value 0.0.

Problem 18.


min f(x) = 1 +

1
4000

n∑
i=1

x2
i −

n∏
i=1

cos
(
xi√
i

)
s.t. − 600 ≤ xi ≤ 600, xi : integer, i = 1, 2, · · · , n.

This problem is a discrete counterpart of Griewank’s problem. The number of discrete local minima is not known.

The global minimum is located at the origin with the global minimal value 0.0.

Problem 19.



min f(x) =
π

n

{
10 sin2(πy1) +

n∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2
}

s.t. yi = 1 +
1
4

(xi + 1), i = 1, 2, · · · , n

− 10 ≤ xi ≤ 10, xi : integer, i = 1, 2, · · · , n.

This problem is a discrete counterpart of Levy and Montalvo’s problem . The number of discrete local minima is

not known. The global minimum is located at (−1,−1,−1, · · · ,−1)T with the global minimal value 0.0.

77

Problem 20.


min f(x) = 10n+

n∑
i=1

[x2
i − 10 cos(2πxi)]

s.t. − 5 ≤ xi ≤ 5, xi : integer, i = 1, 2, · · · , n.

This problem is a discrete counterpart of Rastrigin’s problem. The number of discrete local

minima is not known. The global minimum is located at the origin with the global minimal

value 0.0.

Appendix B

Tables of paramters

78

79

Problem N gm ∆ SC init points k r

1 30 10 88 22 12000 60 5

1 30 10 88 22 12000 60 5

3 11 3 2.4 1.8 50 1 5

4 20 7 41 1.5 1300 5 5

5 30 7 16 4 1000 5 5

6 11 3 2262 1000 2300 5 5

7 11 3 14 3.5 2300 5 5

8 11 3 45 12 25000 10 5

9 11 3 12 3 30000 50 5

10 11 3 1300 28 25000 30 5

11 11 3 2500 800 25000 30 5

12 100-300 50 25 10 5000-9000 3-5 5

13 100-300 50 25 13 5000-7000 3 5

14 100 20 25 13 5000-6000 3 5

15 100 20 25 13 5000-8000 3 5

16 11 3 3000 800 5000 2 5

17 11 5 25 12 1000-8000 3 5

18 100-300 50 2000 700 10000-30000 50 5

19 11 3 30 12 1000-3000 2 5

20 11 3 20 12 100-500 2 5

Table B.1: Parameters for RRTOpt

80

Problem init points SC ∆ l z

1 900 110.6 11.068 15 3

2 300 156.5 31.3 10 3

3 50 3.041 1.2165 15 1

4 100 51.29 1.025 10 2

5 500 20 8 40 5

6 100 2828.42 1131.37 20 3

7 2000 18.131 7.25 30 3

8 5000 64.9 1.29 50 4

9 600 15.1 1.02 15 2

10 5000 1414.2 5656.8 500 3

11 5000 70710.6 28284.2 500 3

12 800-1250 25-62 10-25 200-250 3

13 600-11000 25-70 10-80 70-1000 5

14 700 25-50 3-5 35 4

15 600 25-70 2-70 15-25 3

16 600 20000 4000 60 3

17 50 15-300 90-180 20 1

18 600 3000-6000 150-306 15 1

19 300-450 50-100 30-60 100 2

20 3000 35 35 2999 1

Table B.2: Parameters for RRTOptv1

Appendix C

Table of RRTOptV1 using biasing

towards 3 best points found

81

82

Table C.1: Performances and comparisons of algorithms on problems

Problem Our algorithm’s results Results by [2] Results by [6] Results by [28]

min max med fail med fail med fail

1 174873 249629 204220 3 24679.2 0 60360.6 0 4474

2 11835 14013 12807 0 13655.1 0 - - 621

3 313 481 381 0 658.1 0 599.2 0 7887

4 1373 5207 2679.2 5 689.7 0 - - 1574.2

5 2604 2939 2790.4 0 752.8 0 - - -

6 13760 28509 20486 0 55685.9 0 - - -

7 5281 9423 7329.4 5 7055.2 0 11568.7 0 -

8 3491 3841 3693.6 0 77112.8 0 - 0 -

9 27335 45982 39321.5 4 52000.9 0 31162.1 0 -

10 109198 235812 183291.7 0 756941.2 0 - - 607880.7

11 1367223 2229499 1847631.4 0 12780839 0 10982038.6 0 1608067.3

12(n = 25) 13748 15217 17342.9 1 14485 0 - - 102883.2

12(n = 50) 59135 73198 68912.3 1 69510 0 - - 9840.7

12(n = 100) 331942 397184 355348.8 0 273840 0 - - 6704633

12(n = 150) 772912 837297 803581.4 0 373620 0 - - -

13(n = 25) 45219 65924 53201.6 3 6530 0 - - 90568.1

13(n = 50) 169532 200321 174285 2 24740 0 - - 727641.2

13(n = 100) 792145 821349 802553.5 2 88640 0 - - 5861265.4

13(n = 150) 1878964 3525530 224439.2 2 235840 0 - - -

13(n = 200) 2929037 4709302 3821004.3 4 373620 0 - - -

14(n = 25) 94333 117323 109249.1 0 19675 0 - - 116765.5

14(n = 50) 500248 582111 569613 6 157900 0 - - 997241.3

14(n = 100) 1773128 187658 2051040 1 1203480 0 - - 7770218.8

15(n = 25) 136932 183218 163879.9 0 28089.6 0 25553.9 0 45158.5

15(n = 50) 403956 510016 485634 0 180368.3 0 204070.5 0 323156.5

15(n = 100) 1756590 2199605 201976.3 1 1559704 0 1249832.2 0 2734844.5

15(n = 200) 6401361 8594235 7923741 1 10234584 0 - - 22585087.68

16(n = 4) 1540342 2211137 2037721.2 0 16622286 0 - - 5105399.5

17 (n = 25) 15707 24295 19472.2 0 161600 0 - - -

17(n = 50) 74592 88327 83885.3 0 161600 0 - - -

17(n = 100) 313875 326325 319733.2 0 567984 0 - - -

18(n = 25) 653981 9174432 7342218.3 0 538368 0 - - -

18(n = 50) 32774318 38664971 36432997.1 0 873828 0 - - -

18(n = 100) 187398216 274733265 200234775.2 0 594520 0 - - -

19 (n = 25) 19751 22831 21993.2 0 17878 0 - - -

19 (n = 50) 102639 108554 106882 0 72640 0 - - -

19 (n = 100) 198332 208624 203755.7 0 255312 0 - - -

20 (n = 25) 3936 5821 4129.6 0 5146 0 - - -

20 (n = 50) 7210 9106 7821 0 19960 0 - - -

20 (n = 100) 24723 29672 27331.6 0 85200 0 - - -

Appendix D

Table of RRTOptV1 using biasing

towards a combination of 1 local

minimizer and 2 best points in the

RRT tree

83

84

Table D.1: Performances and comparisons of algorithms on problems

Problem Our algorithm’s results Results by [2] Results by [6] Results by [28]

min max med fail med fail med fail

1 177268 255127 216840.5 4 24679.2 0 60360.6 0 4474

4 1352 2569 1996.5 6 689.7 0 - - 1574.2

5 404 555 494.1 6 752.8 0 - - -

8 4366 13043 7716.3 7 77112.8 0 - 0 -

12(n = 25) 13818 17193 15068.3 3 14485 0 - - 102883.2

12(n = 50) 58994 65842 62826 0 69510 0 - - 9840.7

12(n = 100) 299097 362587 334460.1 0 273840 0 - - 6704633

12(n = 150) 750245 895732 800707.3 2 373620 0 - - -

14(n = 25) 136753 152202 144476.3 3 19675 0 - - 116765.5

14(n = 50) 535854 582028 551363.8 5 157900 0 - - 997241.3

14(n = 100) 174882 204997 198231.7 3 1203480 0 - - 7770218.8

16(n = 4) 835066 1697589 1325680 0 16622286 0 - - 5105399.5

19 (n = 25) 20058 27445 25008.6 0 17878 0 - - -

19 (n = 50) 96771 107992 103231.3 0 72640 0 - - -

19 (n = 100) 204196 2103743 207985.2 0 255312 0 - - -

Bibliography

[1] Horst, R., Pardalos, P., Handbook of Global Optimization, Kluwer Academic Publishers,

London, 1995.

[2] Zhu, W., Fan, H., A discrete dynamic convexized method for nonlinear integer program-

ming, Journal of Computational and Applied Mathematics, Vol.223, pp. 356-373, 2009.

[3] Ali, M.M., Kaelo P., Improved particle swarm algorithms for global optimization, Applied

Mathematics and Computation, Vol.196, pp. 578-593, 2008.

[4] Sugden, S., A class of direct search methods for nonlinear integer programming, Ph.D

Thesis, Bond University, 1992.

[5] R. Storn and K. Price, Differential Evolution – A simple and efficient heuristic for global

optimization over continuous spaces, Journal of Global Optimization, Vol.11, pp. 341-359,

1997

[6] Zhu, W., Ali, M.M., Discrete dynamic convexized method for nonlinearly constrained non-

linear programming, Computers and Operations Research, Vol.36, pp. 2723-2728, 2009.

[7] Srivastava, V., Fahim, A., A two-phase optimization procedure for integer programming

problems, Computers and Mathematics with Applications, Vol.42, pp. 1585-1595, 2001.

[8] Bertsimas, D., Tsitsiklis, J., Simulated Annealing, Statistical Science, Vol.8, pp. 10-15,

1993.

[9] Sinclair, M., An exact penalty function approach for nonlinear integer programming prob-

lems, European Journal of Operations Research, Vol.27, pp. 50-56, 1986.

85

BIBLIOGRAPHY 86

[10] Li, D., Sun, X., Nonlinear Integer Programming, Springer + Business Media, New York,

2006.

[11] Roque, W., Doering, D., Constructing approximate diagrams from digital images of gener-

alized polygons and circular objects, WSG, Feb.3-7, Plezen Czech Republic, 2003.

[12] Ceppi, S., Gatti, N., Patrini, G., Rocco, M., Local search techniques for computing equilib-

ria in two-player general-sum strategic-form games (Extended Abstract), Proc. of 9th Int.

Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), vand der Hoek,

Kaminka, Lesperance, Luck and Sen (eds.), May, 10-14, 2010, Toronto, Canada, pp. 1469-

1470.

[13] LaValle, S., Kuffner, J., Rapidly-exploring Random Trees: Progress and prospects, In B.

Donald, K.Lynch and D.Rus, editors, Algorithmic and computational robotics: new direc-

tions, pp. 293-308, A.K. Peters, Wellesley, MA, 2001.

[14] Sharifzadeh, M., Shahabi, C., Approximate Voronoi cell computation on geometric data

streams, Technical report, Computer Science Department, University of Southern Califor-

nia, 2004. No. 04-835.

[15] Urmson, C., Simmons, R., Approaches for heuristically biasing RRT growth. In IEEE/RSJ

Int. Conf. on Intelligent Robots & Systems, 2003.

[16] Radtke, P., Wong, T., Sabourin, R., Classification system optimization with multi-objective

genetic algorithms, in Proceedings of the l0th International Workshop on Frontiers in Hand-

writen Recognition (IWFHR 2006). IAPR, 2006, pp. 331-336.

[17] Arya, S., Malamatos, T., Mount, D., Space-efficient approximate Voronoi diagrams, in:

Proc. 34th ACM Sympos. Theory Comput., 2002, pp. 721730.

[18] LaValle, S., Rapidly-exploring random trees: A new tool for path planning, TR 98-11, Com-

puter Science Dept., Iowa State University. http://janowiec.cs.iastate.edu/papers/rrt.ps,

Oct. 1998.

[19] Aurenhammer, F., Voronoi diagrams- A survey of a fundamental geometric data structure,

ACM Computing Surveys (CSUR). 23, 345405.

BIBLIOGRAPHY 87

[20] Törn, A., Viitanen, S., Topographical global optimization using pre-sampled points, Journal

of Global Optimization, Vol.5, pp. 267-276, 1994.

[21] Kim, J., Esposito, J., Kumar, V., An RRT-Based algorithm for testing and validating

multi-robot controllers, In: RSS, Boston, MA, pp. 249256, 2005.

[22] Ge, R.,A filled function method for finding a global minimizer of a function of several

variables, Math.Program, Vol.46, pp. 191-204, 1994.

[23] Michalewicz, Z., Genetic Algorithms + DataStructures = Evolution Programs, Springer-

Verlag, Berlin, 1996.

[24] Rinnoy Kan, A.H.G., Timmer, G.T., Stochastic global optimization methods; Part-I: Clus-

tering methods, Mathematical programming, Vol.39, pp. 27-56, 1987.

[25] Wang, W., Shang, Y., Zhang, L., A new T-F Function and algorithm for nonlinear integer

programming, The First International Symposium on Optimization and Systems Biology

(OSB’07) Beijing, China, August 8-10, 2007.

[26] Weise, T., Global Optimization Algorithms-Theory and Applications 2nd edition,

http://www.it-weise.de/.

[27] Zhu, W., An approximate algorithm for nonlinear integer programming, Journal of Applied

Mathematics and Computation, Vol. 98, pp. 183-193, 1998.

[28] Ng, C., Zhang, L., A filled function method for discrete global optimization, Computational

Optimization and Applications, Vol. 31, pp. 87-115, 2005.

[29] Tian, P., Ma, J., Zhang, D., Non-linear integer programming by Darwin and Boltzmann

mixed strategy, European Journal of Operations Research, Vol.105, pp. 224-235, 1998.

	Introduction
	Introduction
	Problem formulation
	Classification of global optimization algorithms
	The structure of the dissertation

	The multi-start technique and local search procedures
	Introduction
	Discrete local search (DLS)
	Model-based local search (MBLS)
	MBLS for bound constrained problems
	MBLS for constrained problems
	A refined MBLS

	Multi-start
	Topographical clustering
	Summary

	Approximation algorithms for nonlinear integer programming (NIP)
	Introduction
	Reformulation-based algorithms for NIP
	Filled function methods
	Auxiliary function methods

	Darwin and Boltzmann mixed strategy
	Nonlinear integer programming by Darwin and Boltzmann mixed strategy

	Voronoi diagrams and the RRT algorithm
	Voronoi diagrams
	Computing Voronoi diagrams

	Rapidly-exploring random trees (RRT)
	Introduction
	Problem formulation
	Properties of the RRT
	Analysis of RRT's

	RRT-based optimizer
	The RRTOptv1 algorithm

	Numerical results
	Results of MBLS
	Results of the topographical clustering
	Results of the RRT-Optimizer
	Results of the RRTOptv1 algorithm
	Summary

	Conclusion
	Test problems
	Tables of paramters
	Table of RRTOptV1 using biasing towards 3 best points found
	Table of RRTOptV1 using biasing towards a combination of 1 local minimizer and 2 best points in the RRT tree

