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ABSTRACT 

This study investigated the shock induced transient separation of compressible flows over 

convex walls using both numerical and experimental analysis. The numerical simulations 

solved the Reynolds Averaged form of the Navier–Stokes equations, using unstructured 

quadrilateral cells. Some results are presented in numerical schlieren images for analysis. 

Experiments were conducted in a purpose built shock tube that allows for a large scale 

testing an order of magnitude greater than previously examined. The images of the 

interactions were captured with schlieren arrangement and later compared to the pictures 

from numerical schlieren analysis.  

Three flow situations were examined: 30  corner in which the presence of the wall 

influences the flow; a 90
 
corner in which the internal flow features were not affected by 

the wall downstream; and a convex circular wall with flow influenced by the wall radius.  

The development of instabilities and the break-up of shear layer into vortices are evident 

in both experimental and numerical images especially on a 90  corner wall.  The flow 

over the 30  corner wall developed instability at very low incident shock Mach numbers. 

At incident shock Mach 1.5 series of lambda shocks formed above the shear layer with 

strong instability under it.  The instability developed into a homogenous turbulent flow 

after long times of the diffraction process. 

The flow behind the diffracting shock Mach number of 1.5 on curved walls did not 

separate at small times but separated after long time of diffraction process. A three-shock 

configuration was observed in the perturbed region from incident Mach number 1.5 while 

two were observed at higher Mach numbers but the upper triple point faded away with 

time when the Mach number is approaching 3.0.  Both the secondary and recompression 
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shocks exist for the range of incident shock Mach numbers between 1.5 and 2.0. 

However, the secondary shock could not be sustained at higher Mach numbers and the 

recompression shock was fading away as the diffraction process progresses downstream 

before finally disappearing at a later time.  

The movement of separation point increases with time for high incident shock Mach 

numbers but decreases with time for low incident shock Mach numbers. Separation and 

shear angle are independent of the wall radius for high Mach number incident shocks. A 

kink that is formed at the lower extremity of the contact surface is proposed to be due to 

sudden change in radial velocity as a result of near wall effects which enhanced an 

increase in tangential momentum. 

For high Mach number incident shocks the flow features are similar for the three 

geometries except that two triple points are formed on curved walls. Many flow features 

that only appeared at high incident shock Mach numbers in the conventionally sized 

shock tubes were observed at low Mach numbers in the present large scale tests.   

The final analysis showed that the global flow behaviour behind a diffracted shock wave 

is well captured in large scale experimentations and the detailed flow behaviour is 

predicted better using SST k-  turbulent model. 
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