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ABSTRACT 
 

Water is an essential and scarce resource that must be protected. Greywater reuse (GWR) 

presents a promising option to the growing pressure on fresh water resources. In spite of 

government and public interest and opportunities for water conservation, the potential for GWR 

has not been fully exploited in many countries, including South Africa. The limiting factors 

hindering GWR have been the potential risks of failure due to several factors including negative 

perceptions, selecting inappropriate GWR technology, economic non-viability, and hazards to 

beneficiaries’ health due to cross-connection between a greywater pipe and a potable water pipe. 

If holistically and adequately addressed, these risks can be mitigated. 

 

This thesis develops and implements integrated risk management in the implementation of dual 

grey and potable water reticulation systems in South Africa. This aim was achieved by 

undertaking research targeted at addressing five objectives i.e. (i) to monitor the evolving 

perceptions of users towards GWR for toilet flushing in high-density urban buildings before and 

after GWR implementation; (ii) to measure toilet flushing water consumption in high density 

urban buildings and develop a model for estimating historical toilet flushing demand; (iii) to 

develop and apply a robust framework for evaluating available package plants for GWR for toilet 

flushing; (iv) to investigate the economic viability of the implemented pilot GWR systems; and 

(v) to model and simulate the transport of contaminants (specifically nitrate and phosphorus) 

within a dual grey and potable water reticulation system. This last objective was carried out to 

investigate the degree of human exposure to these contaminants at various times of the day, due 

to varying contaminant quantities, and at different injection points. 

 

A detailed literature survey was carried out and this provided extensive knowledge, and 

experience of water resources in South Africa, motivations for GWR, greywater characteristics, 

success and controversial GWR case studies, and lessons learnt. In addition, the literature survey 

focused on identifying, assessing, and quantifying potential health risks associated with the 

implementation of GWR for toilet flushing. The literature survey thus assisted in the 

development of an integrated risk management framework which was employed in this study 

based on various frameworks published in the literature.  
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The original contributions of this thesis were focused on certain technical and economic, social, 

and environmental risk management measures investigated, developed and/or implemented. The 

social measures implemented to manage and therefore mitigate the risks of failure associated 

with the implementation of GWR for toilet flushing at the pilot sites were the evaluation of 

perception surveys carried out on potential and actual beneficiaries of GWR for toilet flushing, 

public awareness and involvement, and an analysis of the attributes that are important to 

beneficiaries regarding GWR and understanding the willingness of beneficiaries to pay for some 

of these attributes. The above measures involved designing, administering, collecting and coding 

the questionnaires used to determine perceptions; regular community engagement; a review of 

the analytical methods available to analyse perceptions and selection of a suitable method; and 

modelling the factors that influence respondents’ attitudes to some attributes of greywater using 

conjoint analysis. Levels of respondents’ trust and confidence in the GWR implementing team, 

and the importance attributed to a pleasant smell of the greywater in comparison to colour and 

tariff emerged as the critical areas requiring attention. 

  

The technical measures implemented to manage and therefore mitigate the risks of failure 

associated with the implementation of GWR for toilet flushing at the pilot sites includedthe 

development of a framework for evaluating locally available GWR systems using sustainability 

criteria and thus mitigating the risks associated with choosing inappropriate systems for a 

specific reuse application; measuring and modelling toilet flushing demand; and the analysis of 

the economical viability of the pilot GWR systems using cost benefit analyses. The framework 

developed was valuable in holistically evaluating locally available GWR technologies, although 

it became more evident that there were no simple formulas for selecting a technology due to the 

trade-offs that had to be made between the three key evaluation criteria i.e. technical, economics 

and public health. The model developed for estimating toilet flushing demand within a non-

residential (specifically academic) building was based on 4 factors (i.e. bulk water demand, 

rainfall, maximum and minimum temperature) and was proven to be reliable. Economically, the 

cheapest of the locally available GWR systems which were implemented at WITS and UJ were 

not viable with payback periods at WITS and UJ computed at 18 yrs and longer than 20 yrs 

respectively. 
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The environmental measure implemented to mitigate the risks of failure associated with the 

implementation of GWR for toilet flushing at the pilot sites involved the modelling of greywater 

contaminant transport within a residential (UJ) potable water network due to accidental or 

deliberate ingress. Some key results that emerged from the modelling and simulation exercise 

were (i) the degree of human exposure to the contaminants was directly dependent on the 

demand occurring adjacent to the period of ingress; (ii) based on the typical quantities of nitrate 

and phosphorus in shower and bath greywater which has been sieved and disinfected with 

chlorine, there is an insignificant immediate risk to human health from ingestion of these 

contaminants as specified in the South African National Standards for Drinking Water; (iii) the 

risk of contaminant ingestion is directly proportional to the distance from the point of injection; 

and (iv) the movement of contaminants is affected by the demand pattern of the users and thus, if 

a contaminant is injected prior to or during a peak period, the contaminant is certain to reach all 

the water use fixtures and at a shorter space of time i.e. in minutes or seconds depending on the 

size of the network. Despite the low risks to human health that emerged from the contaminant 

analysis, it is recommended in the thesis that standard precautions be observed in the use of the 

greywater toilets and in the maintenance of the GWR system. For example, the use of more 

natural soap products that contain less chemical constituents, hand washing after toilet use, 

dropping the greywater toilet seat cover before flushing, and proper labelling of the greywater 

system.  

 

In conclusion therefore, the planning and sustainability of GWR initiatives in South Africa will 

immensely benefit from addressing the above measures which have been shown to mitigate the 

risks of failure associated with GWR. 
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CHAPTER 1 

 INTRODUCTION AND BACKGROUND TO THE STUDY 
 
1.1 Introduction 
There is increasing interest in the reuse of greywater in many parts of the world, most especially 

in urban residential areas of industrialized and developing countries (Friedler and Hadari, 2006). 

This is as a result of the rapid increase in urban populations. Some other factors include climate 

change, which has resulted in diminishing natural water resources, changing lifestyle patterns 

which require increased water supplies, the requirement to reduce environmental pollution, and 

political and economic instability in neighbouring countries resulting in significant immigration. 

Today, many urban areas, even in regions that were traditionally considered as water ample (e.g. 

Japan and Europe), suffer from water scarcity (Friedler and Hadari, 2006). 

 

In addition to the above, South Africa is a water scarce country with a highly skewed rainfall 

distribution pattern and mean annual precipitation of 464mm. This is low compared to the world 

average of 860 mm per annum (DEAT, 2011). Sixty five percent of South Africa’s land area 

receives less than 500 mm per annum while 21% receives less than 200 mm of precipitation per 

annum (Mukheibir, 2005).  

 

Table 1.1 depicts the six sectors of water demand totalling 12 871 x 106 m3/a in the different 

water management areas of South Africa (DWAF, 2004). Of the six sectors, the largest 

proportion of water demand (62%) occurs in irrigation (DWAF 2004). In principle, not all 

irrigation requirements need fresh water and some non-conventional water resources, such as 

greywater, may suffice. Another major consumer of high quality water is toilet flushing. In the 

developing world such as South Africa, toilet flushing can consume 20-40 percent of the 

domestic water resources used in a sewered city (Sanio et al., 1998). Internationally, these 

figures are 30% in England (Hall et al., 1998; Butler et al, 1995; and Edward and Martin, 1995), 

29% in Germany (Kresig, 1991), and 28% in the USA (Konent, 1989 and Sanders and Thurow, 

1983). In office and hotel developments, 35-43% of the total municipal water supply is typically 

used for toilet flushing while 15-20% is used for urinal flushing in the UK (Mann, 1979 and 

DOE, 1992). A range of 39-54% was reported by Surendran and Wheatley (1998) for water 
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usage for toilet flushing at Loughborough University, UK. In principle also, similar to irrigation 

requirements, toilet flushing does not require high quality water. Any savings that can therefore 

be achieved from irrigation and toilet flushing will certainly make a significant difference in the 

reallocation of scarce fresh and potable water to other dire water needs. 

 
Table 1.1: Water requirements (million m³/a) in the various water sectors of South Africa in 2000 (DWAF, 

2004) 

Water 
management area 

Irrigation Urban Rural Mining 
& 
Industry 

Power 

Generation 

Afforestation Total 
requirement 

Limpopo 238 34 28 14 7 1 322 

Luvuvhu/Letaba 248 10 31 1 0 432 333 

Crocodile West and 
Marico 

445 547 37 127 28 0 1 184 

Olifants 557 88 44 94 181 3 967 

Inkomati 593 63 26 24 0 138 844 

Usutu to Mhlatuze 432 50 40 91 0 104 717 

Thukela 204 52 31 46 1 0 334 

Upper Vaal 114 635 43 173 80 0 1 045 

Middle Vaal 159 93 32 85 0 0 369 

Lower Vaal  525 68 44 6 0 0 643 

Mvoti to 
Umzimkulu 

207 408 44 74 0 65 798 

Mzimvubu to 
Keiskamma 

190 99 39 0 0 46 374 

Upper Orange 780 126 60 2 0 0 968 

Lower Orange  977 25 17 9 0 0 1 028 

Fish to 
Tsitsikamma 

763 112 16 0 0 7 898 

Gouritz 254 52 11 6 0 14 337 

Olifants/Doring 356 7 6 3 0 1 373 

Breede 577 39 11 0 0 6 633 

Berg 301 389 14 0 0 0 704 

Total for Country 7 920 

62% 

2 897 

23% 

574 

4% 

755 

6% 

297 

2% 

428 

3% 

12 871 

100% 
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Several water management strategies have been proposed around the world. These strategies 

either require the reduction of water demand or water supplementation. One area of water 

supplementation is the reuse of wastewater. Wastewater represents return flows from domestic 

and non-domestic sources. In several locations around the world, many local authorities have 

implemented wastewater reuse and this has been possible for several reasons including: 

 the availability of reliable treatment technologies to remove contaminants (Bixio et 

al.,2006; Angelakis and Durham, 2008); 

 growing demands by consumers for ‘greener’ strategies (Bixio et al.,2006); 

 the aridity of a region (Jeppesen and Solley, 1994; Prathapar et al., 2005); 

 significantly lower costs for recycled effluent in comparison to potable water (Prathapar 

et al., 2005); 

 the opportunity to provide reliable water services in remote or environmentally sensitive 

locations; 

 relieving overburdened traditional water sources; 

 subsidies for households that wish to implement greywater reuse such as in Cyprus 

(Kambanellas 2007); and 

 enforcement of greywater reuse in buildings with an area over 30,000 square meters or 

with potential of 100 cubic meters/day such as in Tokyo (Hanson 1997). 

 

Greywater refers to waste water originating from showers, baths, bathroom sinks, laundry tubs 

and washing machines and does not includes water from toilets and urinals.  In South Africa, 

Greywater reuse (GWR) has the potential to reduce urban potable water demand used for toilet 

flushing, fire fighting and irrigation by between 30 - 70% (Radcliffe, 2003). The replacement of 

potable water with water of a lower quality to perform these functions will help, in addition to 

some of the above listed motivations, towards the supply of potable water to un-serviced South 

African areas/populations.  

 

Despite the several benefits of greywater reuse listed above, several risks and barriers hinder the 

successful implementation of greywater reuse (Mustow et al, 1998 and Ilemobade et al, 2008) 

e.g.: 

 Economic issues such as long pay back periods and difficulties in obtaining historical 
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operation cost data during the planning of proposed greywater reuse; 

 Technical issues such as (i) insufficient information and experience on the uses and 

challenges (economic, technical and environmental) of various treatment plants within 

the South African context, thus making it difficult to select an appropriate treatment unit; 

and  (ii) poor estimation of potable water savings that could accrue from reuse and thus 

under-or over-design of greywater reuse systems. 

 Public health hazards that may result from the exposure to certain pathogenic organisms 

and/or chemical constituents in greywater; 

 The lack of regulations and guidelines to steer GWR planning, implementation, operation 

and management; and 

 Social issues such as the unwillingness of potential users to participate in GWR. 

 

Amongst the list above, the possible hazards to public health due to pathogenic organisms (e.g. 

bacteria, protozoa and viruses) is the most important concern to users. The accidental ingestion 

of greywater containing pathogens, in particular rotaviruses, could cause severe gastrointestinal 

illness (Gerba et al., 1995). In dual (grey and potable) water reticulation systems, this risk of 

exposure to greywater can proceed from cross contamination. It can also occur through 

compromised components of the water mains including broken or leaking pipes, corroded 

corrosion pinholes, and faulty or deteriorated gaskets. Compromised sewers in close vicinity of 

potable water supply pipes can also become a source of contamination (Sadiq et al., 2006).  

 

The degree of exposure to contaminants in greywater is predominantly a function of the intended 

application (Anda et al. 1996; Mustows et al. 1998). Harm to human health may occur through 

ingestion (voluntary or involuntary), skin contact or inhalation (Grayman and Buchberger, 2006). 

It is this risk to human health that has contributed to the limited interest in implementing 

greywater reuse all around the world. Therefore, in attempting to provide a safe, conducive, and 

sustainable environment for reuse, a risk management framework has to be developed using a 

triple bottom line (TBL) approach. Triple bottom line approach is an “accounting framework” 

that incorporates three dimensions of performance: social, environmental and financial. This 

differs from traditional reporting frameworks as it includes ecological (or environmental) and 

social measures that can be difficult to assign appropriate means of measurement. The TBL 



 5 

dimensions are also commonly called the three Ps: people, planet and profits. We will refer to 

these as the 3Ps (Slaper, 2011). Therefore in implementing the measures to reduce the risks 

associated with greywater reuse, there is a need to ensure that GWR is:  

 Socially sustainable by ensuring that potential users and decision-makers are fully in 

support of the reuse project and willing to participate in its implementation; 

 Technically and economically sustainable by ensuring that:  

i.) there will be sufficient generation of greywater from the different sources which 

will be adequate for the potential uses;  

ii.) reuse demand is accurately estimated in order to determine the potential savings 

in potable water that can be achieved and to optimally design the greywater reuse 

system(s); 

iii.) the most appropriate treatment technologies for GWR (e.g. for toilet flushing) in 

terms of cost, reliability, and footprint is selected; and 

iv.) the reuse of greywater is economically viable and attractive when compared with 

potable water; 

 Environmentally sustainable by ensuring that: 

i.) the possibility of health hazards due to exposure to greywater is minimized or 

adequately contained in the event of potable water contamination; and 

ii.) the possibility of other types of contamination (e.g. ground water contamination) 

are minimised. 

 

1.2 Research Problems in Greywater Reuse (GWR) 
The research problems discussed below employ the same framework presented immediately 

above i.e. the triple bottom aspects of sustainability.  

 

1.2.1 The social aspects of sustainability requiring investigation 

Perceptions towards GWR 

The successful implementation of GWR depends not only on engineering and environmental 

parameters but also on other factors such as the perceptions of health, safety and hygiene and 

therefore, willingness of potential users. Several reuse schemes have failed because decision-

makers underestimated or ignored the importance of potential users’ perceptions to reuse 
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(Lundqvist and Gleick 1997; May-Le 2004; Po et al., 2004). It is therefore critical that prior to 

detailed planning/implementation, perceptions of decision-makers and potential users are 

investigated. Although waste water reuse in South Africa has gained prominence in recent times, 

information on people’s perceptions to GWR have not been specifically targeted and 

documented. The studies which have been undertaken in this subject area are Ilemobade et al. 

(2009a), Wilson and Pfaff (2008) and Adewumi et al. (2008). 

 

By employing some of the factors influencing perceptions in the model presented by Po et al. 

(2005), Ilemobade et al. (2009a) carried out perception surveys across a spectrum of technical 

and non-technical water decision-makers and potential users of non-potable water in Emahlaleni, 

Mpumalanga Province. The surveys were carried out to determine perceptions regarding direct 

potable reuse of acid mine water, the use of fully or partially treated acid mine water and sewage 

effluent for some domestic non-potable uses, and the implementation of dual reticulation 

systems. In their study, the highest proportions of respondents (69%) were willing to rather use 

fully or partially treated sewage effluent for toilet flushing than other domestic non-potable water 

uses e.g. car washing (65%), landscape irrigation (54%), laundry (40%) and vegetable/crop/fruit 

irrigation (29%). The study also reported that the extent of the aridity of an area was a major 

driver for non-potable water reuse and the implementation of dual systems in South Africa, and 

that when tariffs for non-potable water conveyed via a piped reticulation system were lower than 

potable water tariffs, this encouraged non-potable water reuse.  

 

Similarly, Adewumi et al. (2008) investigated the perceptions of institutional non-potable water 

consumers in the City of Cape Town where treated wastewater effluent was implemented. 

Adewumi (ibid) specifically investigated the major factors governing intention to use non-

potable water. The authors confirmed that information played a vital role in maintaining public 

trust and confidence in service providers and as well as the vehicle for information sharing. 

 

Wilson and Pfaff (2008) carried out surveys to determine if there were religious or philosophical 

objections to the direct potable reuse of wastewater at eThekwini Municipality. One of the 

objectives of their study was to determine if objections were likely to emerge amongst potential 

users should the municipality embark upon direct potable reuse of wastewater. The study showed 
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that there was no fundamental religious objection to potable wastewater reuse and that the 

awareness about sustainability had made people to have a re-think towards greywater recycling. 

However, 2 major concerns identified in the study were emotional (people considered direct 

potable reuse as disgusting) and concerns about the technical competency of potential water 

service providers. The authors concluded that in general, people were not comfortable with the 

idea of recycling treated wastewater for potable uses.  

 

None of the South African studies on perceptions towards GWR mentioned above specifically 

investigated perceptions towards greywater as a distinct non-potable water resource and toilet 

flushing as the preferred end use. In addition, these studies focused on reuse from a centralised 

municipal scale and not onsite scale which from literature obtained from other countries, 

predominates greywater reuse initiatives. High-density residential buildings (including halls of 

residence in educational institutions) generate significant volumes of greywater daily. Rather 

than the traditional practice of channelling greywater to wastewater treatment works, which is 

often a significant distance from sources of generation, onsite  GWR for toilet flushing can 

provide tangible benefits in reducing wastewater treatment costs and encouraging appropriate 

use. Thus, an investigation into the perceptions of potential and actual users in relation to GWR 

for toilet flushing in high density urban buildings would be beneficial. If undertaken, the 

investigation would be valuable for decision-makers faced with managing scarce water resources 

for competing uses in similar high density communities. 

 

1.2.2 The technical and economic aspects of sustainability requiring investigation 

a) Estimating and modelling toilet flushing demand 

As mentioned earlier, domestic toilet flushing typically consumes between 20-40% of total urban 

water demand (DWAF, 2007), while commercial and public institutions typically consume 

between 39-63% of bulk potable water supplied (Surendran and Wheatley, 1998; Lazarova et al., 

2003). Hence, in designing a dual greywater reticulation system for toilet flushing, it is important 

to accurately estimate the toilet flushing demand and to understand its variability due to factors 

such as climate, culture, water tariffs, individual preferences, status and gender. In residences, 

toilet flushing demand is usually estimated by multiplying the number of people using a facility 

by the estimated number of flushes per person per unit of time (Jacobs, 2004; Wong, 2005; Ghisi 
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et al., 2007). This conventional and crude approach can however lead to the over- or under-

design of plumbing infrastructure. In commercial or public buildings, toilet flushing demand is 

even more difficult to estimate due to the diversity of factors influencing demand and the varying 

number of people using the facility at any given time. 

 

Some studies (e.g. Froukh, 2001; Zhou et al., 2002; and van Zyl et al., 2008) show that water use 

can be estimated by using multiple regression analysis. In regression models, water use 

relationships are expressed in the form of mathematical equations showing water use as a 

mathematical function of one or more independent variables. The factors commonly assumed to 

influence water use include temperature, precipitation, marginal price, and median income. 

Considering the fact that non–residential buildings are a different category to residential 

buildings, other factors such as academic calendar (for an education institution), educational 

status, and gender may have an influence on toilet flushing demand. In order therefore to 

estimate toilet flushing demand for GWR, modelling and estimation of toilet flushing demand is 

imperative. 

 

b) Evaluating the suitability of available greywater reuse technologies 

Despite the general successes achieved in treating sewage at a large scale (i.e. centralised sewage 

treatment plants), treatment generally tends to be less effective as the volume treated decreases. 

Small scale treatment plants ranging in capacity from 4PE to 1000PE (PE = Population 

Equivalent = ±120l/day) typically fail to successfully treat sewage influent as a result of (i) small 

buffering capacities (ii) small plants are much more prone to treatment problems due to changes 

in the quality of their influent, and (iii) their small capacities, and often treatment range 

inflexibilities, results in them being subjected to a far greater range of hydraulic loads during a 

normal diurnal fluctuation inflow than do their larger counterparts (Gaydon et al., 2006). The 

heterogeneity of greywater composition further complicates treatment processes (Rose et al, 

1991).  

 

Three factors significantly affect greywater composition (Eriksson et al., 2002): (i) the potable 

water supply quality; (ii) the type of pipe materials within the piped distribution network which 

determine the potential for pipe leaching, and the chemical and biological processes within the 
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biofilm on the piping walls; and (iii) the water use activities within the building generating the 

wastewater. 

 

With the growth of on-site greywater reuse, the evaluation of available and appropriate  

greywater treatment package plants is imperative, especially with the increasing availability of 

novel, emerging or imported package plants for which little information and experience under 

local conditions are known. There are a number of decision support systems (DSS) in the field of 

water and wastewater treatment such as WASDA (Sairan, 2004) which assesses the technical 

suitability of a treatment system, and WADO and WTRNet (Hamouda et al., 2009) which assess 

only the technical and economical aspects of selecting treatment technologies. These DSS are 

limited in holistically addressing the complex dimensions of determining a suitable technology. 

Hence, the need for sustainability based assessment approaches (Balkema et al., 2001; Loetscher 

and Keller, 2002; Comas et al., 2003, Memon et al., 2007) that will incorporate technical and 

economic, social, and environmental criteria in the determination of appropriate package plants 

for specific end uses.  

 

c) Determining the economic viability of greywater reuse 

Cost benefit analysis is an economic assessment tool that can be used to assess whether an 

investment will provide satisfactory returns. It forms a major part of feasibility studies and 

provides decision makers with a tool to guide judgment on the implementation of reuse projects 

by evaluating the benefits and costs of a project over a determined planning horizon (Biagtan 

2008, Adewumi 2011). Faruqui and Al-jayyousi (2002) published a benefit–cost ratio ranging 

from 2.8 to 9.4 for four household irrigation with greywater projects in Jordan. Booker (2000) 

demonstrated that the cost of reclaiming greywater is about 30-40% cheaper than potable water 

supplied to houses in Melbourne, Australia. Surendran and Wheatley (1999), March et al. (2004), 

and Ghisi and Ferreira (2007) determined payback periods ranging from 8 to 14years based on 

greywater reuse for toilet flushing in hotels and high rise buildings. Some reasons for these 

results include the high price of potable water and incentives from government. 

 

In South Africa, the economic viability of GWR for toilet flushing in high density residential and 

non-residential buildings has not been studied. It is therefore an important area to be 
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investigated. The economic viability of GWR depends on the costs of the treatment required to 

generate an effluent that is fit for use, the pipe and associated infrastructure, pumping/operations 

and externalities (e.g. greenhouse gas production). A detailed cost benefit analysis which 

includes different toilet flushing arrangements will provide a proper estimate of economic 

viability.  

 

1.2.3  The environmental aspects of sustainability requiring investigation 

Predicting human exposure to greywater contaminants in potable water reticulation. 

With the increase in urban water reuse using dual reticulation systems, there is potential for 

accidental (or deliberate) injection of contaminants into potable water distribution systems. This 

could occur from a cross-connection between a grey and potable water pipe or from a broken or 

leaking greywater pipe, pinhole or gasket. For this reason, understanding the transport of specific 

contaminants (which pose a hazard to human health) within potable water distribution systems, 

so as to predict human exposure to these contaminants, is critical. Contaminant transport is 

complex because different contaminants display different characteristics under different 

conditions and contaminant transport is dependent on the potable water end uses at the time of 

and shortly after contamination. Contaminant transport is therefore dependent on variables such 

as day of contamination (weekday versus weekend), time of contamination (peak versus off-peak 

periods), and the number, type and volume of end-uses (e.g. toilet and shower) within the 

building.  

 

Several models have been developed that address the chemical and biological reactions of 

contaminants in potable water distribution systems e.g. SANCHO, PICCOBIO and Chloramine 

Decomposition models which is also referred to as the Comprehensive Disinfection and Water 

Quality Model (CDWQ). The SANCHO model (Servais et al., 1995) contains a mass balance 

equation incorporating microbial synthesis, biodegradable organic matter utilization and the 

reaction of organic matters with chlorine. It predicts steady-state concentrations of heterotrophic 

plate count (HPC), chlorine, biodegradable organic carbon (BDOC), and fixed bacteria as a 

function of water residence time in pipes and reservoirs. It can also calculate biomass 

concentration in bulk water and service pipes. It is however limited to the analysis of straight 

pipes of decreasing diameter and it is not commercially available. PICCOBIO (Dukan et al., 
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1996) addresses the re-growth of bacteria and is based on well-known concepts in biofilm 

modelling of water and wastewater treatment processes.  PICCOBIO is similar to SANCHO 

except that it contains a multi-level biofilm growth and disinfection sub-model. It accounts for 

chlorine loss through reaction with the pipe and it is commercially available with a user friendly 

graphical interface. The CDWQ was developed to address special issues within treatment 

systems where chloramines are used for disinfection. CDWQ contains detailed chloramine and 

free chlorine chemistry that accurately model chloramines, chlorine decay and heterotrophic and 

nitrifying bacterial processes (Woolschlager et al., 2000). CDWQ is a complex chemical reaction 

system involving both kinetic rate expressions and nonlinear equilibrium relationships and it 

addresses the auto decomposition of monochloramine to ammonia in the presence of natural 

organic matter (Vikesland et al., 2001; Duirk et al., 2005; and Shang et al., 2008). The general 

limitation of SANCHO, PICCOBIO and CDWQ is that they study the reaction of 

chlorine/chloramine with organic matters in drinking water.  None of the above can model the 

interaction of chemical contaminants in greywater such as nitrates and phosphorus within 

drinking water. Also, earlier models could not be modified to suit other purposes as they were 

developed solely to solve a specified problem. This is unlike the EPANET_MSX model which is 

a platform for writing codes that be used to solve different problems relating to water quality in 

distribution systems.  

 

At present, the transport of chemical contaminants such as nitrates and total phosphorus in dual 

grey and potable water distribution systems has not been studied. The study of these two water 

quality parameters are critical considering the negative impact they pose on health if ingested i.e. 

nitrates may cause methaemoglobinaemia in infants while high levels of phosphorus may result 

in algae growth within the pipe network leading to unpleasant smells. These contaminants could 

occur through the chemical degradation of greywater introduced into a potable water supply 

system. It is therefore imperative that such contaminant transport and the associated risks to 

human health be studied.  
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1.3 Research Aim and Objectives 
Based on the above areas of investigation, the aim of this study is to develop and implement 

integrated risk management in the implementation of dual grey and potable water reticulation 

systems in South Africa. 

 

Specific objectives are:  
1. To monitor the evolving perceptions of users towards GWR for toilet flushing in high-

density urban buildings before and after the implementation of GWR.  

2. To estimate toilet flushing water consumption in high density urban buildings and 

consequently, develop a model for this purpose. 

3. To develop and apply a robust framework for evaluating available package plants for 

GWR for toilet flushing.  

4. To investigate the economic viability of the implemented pilot GWR systems. 

5. To model and simulate the transport of contaminants (specifically nitrates and 

phosphorus) within a dual grey and potable water reticulation system. In doing so, to 

investigate the degree of human exposure to these contaminants at various times of the 

day, due to varying contaminant quantities, and at different injection points. 

1.4 Layout of thesis 
This thesis contains 7 chapters. Figure 1.1 depicts the layout of the thesis. 
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• water resources  in South 
Africa and greywater reuse 

• greywater characteristics, 
generation and  case studies 

• lessons learnt  

• Identification of risks associated 
with GWR 

• Classification of risk  associated 
with GWR 

• Integrated risk management 
framework for GWR and its 
application in this project 

• introduction 
• research problem in greywater reuse 
• research aim & objectives 
• layout of dissertation 

Chapter 1 

Chapter 3 

Chapter 2 

Summary, conclusions 
and recommendations Chapter 7 

Th
e 

di
ffe

re
nt

 a
re

as
 o

f c
on

tri
bu

tio
n 

in
 th

is 
st

ud
y 

Social measures to risk 
management:   
• Monitoring evolving 

perceptions to GWR 
• Public awareness and 

involvement 
• Analysis of the attributes 

that are important to 
GWR and understanding 
the willingness of 
beneficiaries to pay for 
some of these attributes. 

Technical and economic measures to risk 
management:   
• Estimating and modelling toilet flushing 

demand 
• Developing and applying a framework 

for GWR systems evaluation 
• Investigating the economic viability of 

GWR 

Chapter 6 

Chapter 4 

Chapter 5 

Environmental ( i.e public 
health and safety) measures to 
risk management:  
• Model and simulate the 

transport of contaminants in 
potable water and human 
exposure  



 14 

The first chapter contains the introduction and background to the study, risks/barriers associated 

with GWR, and objectives addressed in this thesis. The second chapter expatiates on the current 

South African water resources situation and motivation/need for GWR. It provides a literature 

survey of greywater generation and characteristics. Success and controversial case studies of 

GWR around the world, and lessons learnt about some of the GWR projects are discussed in this 

chapter.  

 

The third chapter focuses on the technical and economic, social and environmental risks of and 

objectives for sustainable wastewater reuse. The chapter also provides an integrated management 

framework for managing the risks identified above and other risk management frameworks as 

reported by the World Health Organisation, Canada Health and the Australian guidelines.   

 

Chapter four discusses the social measures that were implemented within the pilot projects. The 

chapter reports on the factors that affected users perceptions to GWR; the process involved in 

designing, administering, collecting and coding the questionnaires used to determine perceptions; 

a review of the analytical methods available to analyse perceptions;, and justification for the 

method chosen. Lastly, factors that influence the attitudes of respondents to some attributes of 

greywater are modelled using conjoint analysis.  

 

Chapter five focuses on the technical and economic risks of GWR. The chapter documents the 

development a framework for evaluating locally available GWR systems using sustainability 

criteria and thus mitigating the risk of choosing the wrong system for a specific reuse 

application.  The chapter also documents the process of estimating and modelling toilet flushing 

demand, and the analysis of the economical viability of the pilot GWR systems using cost benefit 

analysis.  

 

Chapter six reports on the measure employed to mitigate risks associated with public health and 

safety i.e. the hydraulic and water quality modelling of greywater contaminate transport within 

potable water networks due to accidental or deliberate ingress. Chapter seven summarises the 

highlights and contributions of this thesis and provides recommendations for future research.  
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CHAPTER 2 

WATER RESOURCES IN SOUTH AFRICA AND GREYWATER REUSE 
 
2.1 Background and motivation 
South Africa is an arid to semi-arid country with its climate varying from desert and semi-desert 

in the west to sub-humid along the eastern coastal area. The country is highly water stressed 

(Figure 2.1) due to its low mean annual precipitation of about 450 mm per year, which is 

significantly below the world average of about 860 mm per year with evaporation comparatively 

high (approximately 85 percent of mean annual precipitation). The highly variable and spatial 

distribution of rainfall across the country as shown in Figure 2.2, adds to the sparse availability 

of fresh water. This is compounded by the seasonality of rainfall over virtually the entire country 

as well as the high within-season variability of rainfall and consequently runoff (DWAF 2004). 

 

Groundwater plays an important role in most rural water supplies in the country. However, due 

to the predominant rocky nature of the South African geology, few major groundwater aquifers 

exist that could be utilised on a large scale (Mukheibir and Sparks, 2005). Stream flows in most 

South African rivers are at relatively low levels for most of the year, and the infrequent high 

flows that do occur, happen over limited and often, unpredictable periods. The country has no 

navigable rivers, and the combined flow of all the rivers in the country amounts to approximately 

49 000 million m3 per year (DWAF, 2004, Adewumi 2011). Also with several rivers already 

exceeding their natural availability, it was projected in 1996 that the water resources supply in 

South Africa may be unable to cater for anticipated overall demands by 2030 if unchecked 

(Basson et al., 1997, Ilemobade et al., 2008). 

 

South Africa depends on surface water for most of its urban, industrial, and agricultural 

requirements with about 320 dams providing a total capacity of approximately 1 000, 000 m3 

(DWAF, 2004). To manage existing water resources, the country’s hydrological basins are 

divided into 19  water management areas with mean annual runoff of approximately 49 000 

million m3/a. This includes water inflows of about 4 800 million m3/a and 700 million m3/a 

originating from Lesotho and Swaziland respectively (DWAF, 2004). The available yield from 

each water management area is shown in Table 1.1. 
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Figure 2.1: Map showing the water stress level of countries in the world.  
(Source: Alcamo et al. 2000). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2:  Map of South Africa showing its mean annual rainfall distribution.  Source: http:// www.  
gis.mapsofworld.com/government/government-agencies/csir-environmentek-south-africa.html. 
  



 17 

According to Ilemobade et al. (2008), many of the metropolitan and industrial centres of South 

Africa (e.g. Johannesburg, Kimberley, Rustenburg, Mokopane, Durban and Cape Town) 

developed around mineral deposits and harbour sites, and are located a significant distance away 

from major freshwater sources. Some irrigation developments in the country are also located in sub-

optimal regions with respect to water use efficiency, having been established in times of relative 

water abundance and lower demand for water in upstream reaches. Thus, the location of several 

South African metropolis, industrial and agricultural areas has added to the challenges of 

freshwater availability. 

 

Going by the above water situation, it is therefore important that supply and demand be 

efficiently managed in areas of surplus as well as deficit. Consideration has in the past, been 

given to other options and less conventional sources in order to augment water supplies in South 

Africa. These include the importation of water from the Zambezi River; rainfall augmentation by 

cloud seeding; shipping of fresh water from the mouths of large rivers; and towing of ice bergs. 

Although most are technically feasible, there are various degrees of environmental, political and 

legal considerations attached to them (DWAF 2004). Some water demand management 

initiatives have also been implemented such as leakage management, metering management, use 

of efficient plumbing fittings and non-potable water reuse. 

 

The use of appropriate qualities of non potable water (i.e. greywater, rainwater, and sewage) has 

become an area of interest in recent times. Non-potable water may be suitable after undergoing 

some level of treatment for some water requirements (e.g. toilet and urinal flushing, car washing, 

fire-fighting, landscape irrigation, dust suppression and a variety of industrial and commercial 

water requirements). This process is called water reuse. Non-potable water conveyed within dual 

water reticulation systems presents a viable option for supplementing existing water supplies. 

This option is promising especially for South African settlements with limited access to 

freshwater sources (Mukheibir, 2005). 
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2.2  What is Greywater? 
Domestic wastewater can be characteristically divided into three sub-categories relating to the 

organic strength or level of contaminants typically contained in the water i.e. (i) black water (ii) 

light greywater and (iii) dark greywater. Table 2.1 highlights some of the characteristics of the 

different wastewater types. 

 

i. Black water is effluent from toilets and urinals and contains high concentrations of bacteria 

(including disease causing microorganisms), organic contaminants and ingested chemicals 

(e.g. pharmaceuticals). 

ii. Light greywater is effluent from bathroom sinks, bath tubs, showers, and laundry. Light 

greywater generally has lower concentrations of contaminants than black water and dark 

greywater. 

iii. Dark greywater includes both light greywater sources plus effluent from kitchen sinks, 

dishwashers, or other sinks involving food preparation. Food waste, grease/oils and cleaning 

products contribute to increased contaminant loading, including disease causing 

microorganisms. 

 

Thus, greywater can be defined as urban wastewater that proceeds from baths tubs, showers, 

bathroom sinks, washing machines, dishwashers and kitchen sinks, but excludes effluent from 

toilets (Al-jayyousi, 2003, Ilemobade et al., 2009b). Some communities exclude kitchen effluent 

from its definition of greywater e.g. Jordan (Al-Joyyousi, 2003); Australia (Christova-Boal et al., 

1996); Arizona, US (Little, 2002); Germany (Wilderer, 2004). 

 

 Greywater constitutes 50–80% of total household wastewater (Eriksson et al., 2002; Friedler and 

Hadari, 2006).  
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Table 2.1: Characteristics of different wastewaters 

 Source: Lazarova et al., (2003) 
 

2.3.  Greywater generation 
The amount of greywater generated varies and is dependent on the unique dynamics of each 

household. Greywater generation is influenced by factors such as existing water supply service 

and infrastructure, number of household members, age distribution of household members, 

lifestyle characteristics, and water use pattern (Morel and Diener, 2006). Greywater volume in 

low-income areas with water scarcity and rudimentary forms of water supply (e.g. community 

taps or wells) can be as low as 20-30 litres per person while high-income households with piped 

reticulation may generate several hundred litres per day (see Table 2.2). Greywater volumes are 

Parameter Metcalf 
and 
Eddy(1991) 

Lazarova 
(2001) 

Smith 
et al 
(2001) 

Surrendran 
and Wheatley 
(1998) 

Rose et 
al 
(1991) 

Laine 
(2001) 

Christova-
Boal et al 
(1996) 

Wastewater type Black Dark V.light1 Light and dark Light Light Light 

BOD5 (mg/L) 110-400 275-530 33 216-252(light)                 
472-536(dark) 

* 129-155 76-200 

COD (mg/L) 250-1000 471-915 95 424-433(light)                 
725-936(dark) 

* 367-587  * 

SS (mg/L) 100-350 71-215 36 40-78(light)                
8.8(dark)          

* 58-153 48-120 

NH3H (mg/L) 12-50 0.6-18.8 * 0.5-1.6(light)                                        
4.6-10-7(dark) 

0.15-3.2 * <0.1-15 

TKN (mg/L) * 8.9-22.8 4 * 0.6-5.2 6.6-10.4 4.6-20 

TP (mg/L) 4-15 5-26.7 * 1.6-45.5(light)                                        
15.6-101(dark) 

4-35 * 0.11-1.8 

TC (CFU/100ml) 104-105 1.8x103                   

1.8x108 
2.4x103                   

2.4x108 
5x104-6x106                   
7x105 

6.1x108 6.8x103                  
9.4x103 

500-24x107 

FC (CFU/100ml) * 3.0x105                   

1.6x108 
* 32-600(light)                                        

728(dark) 
1.8x104                  

7.9x108 
* 170-33x103 

E coli 
(CFU/100ml) 

 * 7.6x105                   

2.04x107 
0                   

2.4x108 
 *  * 10-15x103  * 

*=not stated in the study; 1=collected only from “bathroom sinks” or “hand basins” 
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even lower in regions where rivers or lakes are used for personal hygiene. Literature indicates a 

typical greywater generation of 90-120 l/p/d in houses with piped water (Morel and Diener, 

2006, Li et al., 2009). This range corresponds with a recent report by Mandal (2011) which states 

an average greywater generation of 110 l/p/d, out of which 80 l/p/d was generated from bathing, 

cloth washing and wash basins, and 30 l/p/d from kitchen greywater. 

 
Table 2.2: Domestic greywater generation in selected countries. 

 Vietnam 

1 
Mali 2 South 

Africa 3 
Jordan 4 Isreal 5 Nepal 6 Switzerlan

d 7 
Australia 

8 
Malaysia 

9 
 l/p/d l/p/d l/p/d l/p/d l/p/d l/p/d l/p/d l/p/d l/p/d 
Total  80-110 30 20 50 98 72 110 113 225 
Kitchen 15-20    30  28 17  
Shower, 
bath 

30-60    55  52 62  

Laundry 15-30    13  30 34  
Water 
source 

In house 
taps 

Single 
taps 

Communit
y tap/well 

In house 
taps 

In house 
taps 

In 
house 
taps 

In house 
taps 

In house 
taps 

In house 
taps 

Note: These figures do not reflect national averages but relates to specific cases with specific settings. Type of water 
supply and living standards appears to be more decisive that the location. 
1: Bussser(2006); 2:Aderlieste and langeveld (2005); 3: Adendorff and Stimie(2005); 4: Faruqui and Al-jayyousi (2002); 
5:Friedler (200); 6:Sresha (1999) 7:helvetas (2005); 8: www.greenhouse.gov.au; 9:martin(2005) 

Source: Morel and Diener, (2006) 

 

 Research on domestic wastewater inflows (Butler, 1991: Butler et al., 1995; Edwards and 

Martin, 1995; Surrendran and Wheatley, 1998) has shown that a morning peak discharge is 

followed by two other major peaks, one in the afternoon and the other in the late evening. A 

minimum flow period of 4 hours occurs late at night, corresponding to occupants’ sleeping 

hours. The distribution of appliance greywater discharges shows that the smallest contribution 

comes from the bathroom sinks (Butler et al., 1995). In the south east of England (Butler, 1993), 

appliance usage patterns were more frequent in households with more occupants than in those 

with less occupants. On weekends, the morning appliance usage peak is extended but lesser than 

during the week. Butler et al. (1995) noted that the discharge from the bath and shower 

constitutes about 66% of the total instantaneous discharge in the morning (4-8 am) and evening 

periods (6-10 pm). The most significant single wastewater generating appliance of the day is the 
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toilet and this contributes about 40% to the total instantaneous flow during the day and up to 

90% at nights. 

 

2.4.  Characteristics of Greywater 
The characteristics of greywater vary considerably over time and space. Three factors influence 

greywater composition i.e. (i) the potable water supply quality, (ii) the type of distribution 

network for both non-potable and potable water, and (iii) the water related activities within the 

building generating the wastewater (Eriksson et al. 2002). Cooking habits (if kitchen effluent is 

included in the greywater), as well as the amount and type of soaps and detergents used, 

significantly determine the level of greywater quality. The heterogeneity of greywater and the 

effect of storage therefore complicate both its treatment and the risks associated with its reuse 

(Rose et al, 1991; Liu et al, 2010). There have been several studies conducted on the 

characteristics of greywater owing to the fact that there is increasing interest in reuse in 

industrialised and developing countries. However, it is only recently that some data has emerged 

on the typical characteristics of greywater in low and middle income communities of South 

Africa.  

 

In confirmation of the heterogeneity of greywater, Carden et al. (2007a), Engelbrecht and 

Murphy (2006), Salukazana et al. (2005) and Jackson et al. (2006) identify a high variability in 

greywater quality as can be seen in Table 2.3. Carden et al., (2007a) assessed the quality of 

greywater from 39 settlements in 6 of the 9 provinces of South Africa using field test kits for 

water quality analysis in most cases. Results from the limited testing reveal a varying 

concentration of total nitrogen, TKN (ranging between 0.6-488 mg/l), ortho phosphate (ranging 

between 0.7-769 mg/l) and COD (ranging between 32-11451 mg/l). In the study, Carden et al., 

(2007a) documented the different relationships between source water qualities, cleaning habits, 

and detergent use. For example, the temperature and hardness of the wash water affected the 

amount of soap or detergent required for laundry and in the absence of hot water, residents of 

low-income settlements tended to leave their detergent bars in the laundry water for long periods, 

thus resulting in large amounts of detergent dissolving in the greywater.  

 



 22 

Engelbrecht & Murphy (2006) studied different greywater qualities from different residential 

locations in the Cape Peninsula area (Table 2.3). The study showed no significant difference in 

quality amongst the different types of greywater generated as well as amongst the different 

locations where greywater was generated. The variation in quality between source water and dish 

greywater resulted from faecal bacteria contamination during food preparation and the washing 

of used dishes/utensils. Household greywater was found to have high concentrations of chlorine, 

sodium (Na) and potassium (K) with variable levels of nitrogen (N) and phosphorous (P). The 

study also reported that greywater was generally alkaline and had a reasonably high sodium 

adsorption ratio (SAR).  

 

Salukazana et al, (2005) also studied the characteristics of greywater in Cato Crest, Kwazulu-

Natal. The results provided in Table 2.3 were obtained from eight households, selected based on 

the number of people per household, age, gender and washing applications (bath, bathroom sink, 

laundry and dish washing). The study originated from the need to address the worrying situation 

of inappropriate greywater management, especially in peri-urban areas. Problems related to the 

pooling of wastewater, which typically led to unpleasant smells, potential risks of ground water 

pollution and soil erosion were reported.  

 

2.4.1.  Physical characteristics 

Physical parameters of relevance to GWR are temperature, colour, turbidity and suspended 

solids. Greywater temperature is often higher than that of the municipal potable water supply and 

often varies within a range of 18–30oC. These temperatures are attributed to the use of warm 

water for personal hygiene and cooking. These temperatures are not suitable for biological 

treatment processes (aerobic and anaerobic digestion occurs within an optimal range of 25–35oC) 

(Crites and Tchobanoglous, 1998). Temperatures within the typical greywater range can cause 

increased bacterial growth and decreased CaCO3 solubility, causing precipitation in storage tanks 

or piping systems. Suspended solids concentrations in greywater typically range from 50–300 

mg/l, but can be as high as 1,500 mg/l in isolated cases (Del Porto and Seinfeld, 1999). The 

highest concentrations of suspended solids are typically found in kitchen and laundry greywater. 

Observations in Nepal, Malaysia, Israel, Vietnam, and the United States reveal that an average 

suspended solids loads of 10–30 g/p/d in domestic water contributes 25–35% of the total daily 
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suspended solids load in domestic wastewater which includes toilet wastewater (Ledin et al., 

2001). 
Table 2.3: Domestic greywater characteristics in selected communities of South Africa 

 

2.4.2.  Chemical characteristics 

The chemical parameters of relevance to greywater reuse are hydro-chemical e.g. biological and 

chemical oxygen demand (BOD, COD), nutrient content (nitrogen, phosphorous), pH, alkalinity, 

electrical conductivity, sodium adsorption ratio (SAR), heavy metals, disinfectants, bleach, 

surfactants and organic pollutants in detergents (Morel and Diener, 2006). 

Parameter Unit Salukazana (2006) Engelbrecht and Murphy (2006) Carden et al. 
(2007) 

    Range for 1st 
trial 

Range for  
2nd trial 

Dishwater Bathwater All GW 
Source1 

Alkalinity (mg/L) 300-334 300-334 10-572 14-453 * 
NH3H  (mg/L) 20 157 0.3-3 <0.1-57 0.2-44.7 
BOD5

  (mg/L) 280-310 300-320 * * * 
Cadmium (mg/L) <0.05 <0.05 * * * 
Calcium (mg/L) <0.5 7.5 4.4-20 3.5-21 * 
Chrome (mg/L) 210 220 * * * 
Chloride (mg/L) 0.11 0.14 17-144 6.8-127 * 
COD (mg/L) (mg/L) 1135 1140 713-7821 70-8619 32-11451 
Conductivity (mS/m) 144-148 267 19-265 8-145 28-1763 
Copper (mg/L) 0.1 0.1 * * * 
Lead (mg/L) 0.2 <0.05 * * * 
Magnesium (mg/L) 5.6 7.1 0.5-4.9 * * 
Nickel (mg/L) <0.1 <0.10  * * 
Boron (mg/L) * * <0.1-9.5 <0.1-0.16 * 
Nitrate+Nitrate (mg/L) <0.1-1.2 <0.10 <0.1-0.35 <0.1-0.6 * 
Ortho Phospate (mg/L) 11 40 0.87-131 <0.1-11 0.7-769 
PH (mg/L) 5.8-6.3 8.1 5.5-9.5 6.7-9.9 3-3-10.9 
Selenium (mg/L) <0.05 <0.05 * * * 
Sulphate (mg/L) 113 137 2.7-483 2.9-51 * 
TKN (mg/L) 24-30 206 15-62 1.1-224 0.6-488 
TP (mg/L) 13 69 0.87-131 <0.1-14 * 
Zinc (mg/L) 0.22 0.22 * * * 
Sodium (mg/L) * * 25-655 6.6-192 96-1700 
Potassium (mg/L) * * 2.5-28 0.58-30 * 
SS (mg/L) * * 36-1173 0-1553 * 
TC  (CFU/100ml) 4x105 4x109   * 
FC  (CFU/100ml) * * 0-1.0x108 0-296000 * 
E coli (CFU/100ml) 4x105 4x109 0-1.0x108 0-20000 * 
Oil and Grease (mg/L) * * * * 96-1700 
*=not stated in the study, 1= greywater from all source in a non sewered settlement. 
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Biological and chemical oxygen demand (BOD, COD) measure organic pollution in water. COD 

describes the amount of oxygen required to oxidise all organic matter found in greywater while 

BOD describes biological oxidation through bacteria within a certain time span (typically 5 days) 

(Morel and Diener, 2006). The COD and BOD parameters in greywater are always dependent on 

the quantity of water or products used within the household (especially detergents, soaps, oils 

and fats) (Mourad et al., 2011). Dallas et al. (2004) observed an average BOD5 of 167 mg/l in 

mixed greywater in Costa Rica with a 107 l/p/d water consumption. In Palestine, where the 

greywater flow from bath, kitchen and laundry averages 40 l/p/d, average BOD was as high as 

590 mg/l and exceeded 2,000 mg/l in isolated cases (Burnat and Mahmoud, 2005). Eriksson et al. 

(2002) observed COD and BOD concentrations for laundry greywater ranging between 700-1800 

and 50-500 mg/l respectively. However, for dark greywater, the values may range between about 

10-8000 and 90-350 mg/l for COD and BOD, respectively. According to Pidou et al. (2008), 

BOD and COD concentrations in shower water in England are about 130-200 and 470-670 mg/l 

respectively. Halalsheh et al. (2008) studied greywater characteristics in Mafraq-Jordan. They 

found that the average COD, BOD and TSS values were 2568 mg/l, 1056 mg/l and 845 mg/l 

respectively. 

 

The COD/BOD ratio is a good indicator of greywater biodegradability. A COD/BOD ratio below 

2–2.5 indicates easily degradable wastewater. While greywater is generally considered easily 

biodegradable with BOD accounting for up to 90% of the ultimate oxygen demand (Del Porto 

and Steinfeld, 2000), different studies indicate low dark greywater biodegradability with 

COD/BOD ratios of 2.9–3.6 (see Table 2.1) (Al-Jayyousi, 2003; Jefferson et al., 2004). This, as 

expected, can be attributed to the fact that biodegradability of dark greywater depends primarily 

on the synthetic surfactants used in detergents and on the amount of oil and fat present. While 

western countries have banned and replaced non-biodegradable and thus, troublesome 

surfactants with biodegradable detergents (e.g. Alcohol ether sulphate replaced Linear 

alkylbenzene sulfonate) (Tchobanoglous, 1991), such resistant products may still be used (e.g. in 

powdered laundry detergents) in low and middle-income countries. 

 

Greywater normally contains low levels of nutrients compared to toilet wastewater. Nonetheless, 

nutrients such as nitrogen and phosphorous are important parameters given their fertilising value  
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in plants (Morel and Diener, 2006). High phosphorous content is sometimes observed to cause 

problems such as algae growth in receiving waters or within a piped distribution system. The 

levels of nitrogen in greywater are relatively low (urine being the main nitrogen contributor to 

domestic wastewater) but it is known to cause methaemoglobinaemia in infants if ingested. 

Kitchen wastewater is the main source of nitrogen in domestic greywater while the lowest 

nitrogen levels are generally observed in bathroom and laundry greywater. Nitrogen in greywater 

originates from ammonia and ammonia-based cleansing products as well as from proteins in 

meats, vegetables, protein-containing shampoos, and other household products (Del Porto and 

Steinfeld, 2000). In some instances, the municipal potable water supplied can be a significant 

source of ammonium nitrogen. This was observed in Hanoi (Vietnam) where NH4-N 

concentrations as high as 25 mg/l were measured, originating from the mineralisation of peat, an 

abundant organic material in Hanoi’s groundwater aquifers (Hong Anh et al., 2003). Typical 

values of nitrogen in household dark greywater were found to be within a range of 5–50 mg/l. 

Dishwashing and laundry detergents are the main sources of phosphorous in greywater. Average 

phosphorous concentrations typically range from 4–14 mg/l in regions where non-phosphorous 

detergents are used (Eriksson et al., 2002). However, they can be as high as 45–280 mg/l in 

households where phosphorous detergents are utilised, as observed in Thailand (Schouw et al., 

2002) or Israel (Friedler, 2004). 

 

There have been a few reported cases of the presence of micronutrients and other ground 

elements in greywater. Laundry wastewater was found to contain elevated sodium levels 

compared to other types of greywater. The sodium in the laundry wastewater was said to have 

been caused by the use of sodium such as counterion and several anionic surfactants in powder 

laundry detergent (Jeppesen, 1996) and the use of sodium chloride in ion-exchangers. Another 

study by Christova Boal et al.,(1996) reported notably high levels of zinc in the greywater. 

Laundry and bathroom wastewater contained 0.09–0.34 and 0.2–6.3 mg/l of Zinc respectively. 

The reason for the high values of zinc in bathroom wastewater was related to chlorine tablets that 

were used for disinfecting. These tablets were said to be acidic and may cause the leaching of 

zinc from the plumbing. As a result, it was suggested that systems associated with greywater 

collection, storage and reuse should be constructed from non-corrosive materials, for instance 

plastic or fibreglass (Christova Boal et al., 1996).  
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For easier treatment, the pH level of greywater is expected to be in the range of 6.5–8.4 (FAO, 

1985; USEPA, 2004). The pH indicates whether a liquid is acidic or basic. The pH value of 

greywater, which strongly depends on the pH value of the water supply, usually lies within this 

optimal range. However, Christova Boal et al. (1996) observed pH values of 9.3–10 in laundry 

greywater, partly as a result of the sodium hydroxide-based soaps and bleach used. Observations 

from Carden et al. (2007a) and Salukazana et al. (2005) in South Africa show that the lower limit 

of the pH level range may be as low as 3.3 and as high as 8.8 (see Table 2.3) 

 

Greywater also contains salts indicated as electrical conductivity (EC, in µS/cm or ds/m). EC 

measures salinity of all the ions dissolved in greywater including negatively charged ions (e.g. 

Cl-, NO3-) and positively charged ions (e.g. Ca++, Na+). The most common salt is sodium 

chloride – the conventional table salt. Other important sources of salts are sodium-based soaps, 

nitrates and phosphates present in detergents and washing powders (Morel and Diener, 2006). 

The electrical conductivity (EC) of greywater is typically in the range of 300-1500 µS/cm, but 

can be as high as 2,700 µS/cm, as observed in Palestine (Burnat and Mahmoud, 2005). Salinity 

of greywater is normally not problematic but can become a hazard when greywater is reused for 

irrigation. In laundry wastewater, sodium concentrations can be as high as 530 mg/l (Friedler, 

2004), with SAR exceeding 100 for some powder detergents (Petterson, 2001). Sodium is of 

special concern when applied to loamy soils poor in calcite or calcium/magnesium. High SAR 

may result in the degradation of well-structured soils (dispersion of soil clay minerals), thus 

limiting aeration and water permeability. The sodium hazard can best be avoided by using low 

sodium products, such as liquid laundry detergents. While European and North American 

countries recommend irrigation water with SAR < 15 for sensitive plants (FAO, 1985), Patterson 

(1994) observed hydraulic conductivity problems in Australian soils irrigated with wastewater  

containing a SAR > 3. 

 

Greywater may contain significant amounts of fat such as oil and grease (O&G) originating 

mainly from kitchen sinks and dishwashers (e.g. cooking grease, vegetable oil, food grease etc.). 

Important O&G concentrations can also be observed in bathroom and laundry greywater, with 

O&G concentrations ranging between 37 and 78 mg/l and 8–35 mg/l, respectively (Christova 
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Boal et al., 1996). The O&G content of kitchen greywater strongly depends on the cooking and 

disposal habits of households. No data was found on O&G concentration specific to kitchen 

greywater, but values as high as 230 mg/l were observed in Jordan for mixed greywater (Al-

Jayyousi, 2003), while Crites and Tchobanglous (1998) observed O&G concentrations ranging 

between 1,000 and 2,000 mg/l in restaurant wastewater. As soon as greywater cools down, 

grease and fat congeal and can cause mats on the surface of settling tanks, on the interior of pipes 

and other surfaces. 

 

Surfactants are the main components of household cleaning products. Surfactants, also called 

surface-active agents, are organic chemicals altering the properties of water. They consist of a 

hydrophilic head and a hydrophobic tail. By lowering the surface tension of water, they allow the 

cleaning solution to wet a surface (e.g. clothes, dishes, etc) more rapidly. They also emulsify oily 

stains and keep them dispersed and suspended so that they do not settle back on the surface. The 

most common surfactants used in household cleansing chemicals are LAS (linear alkylbenzene 

sulfonate), AES (alcohol ether sulphate) and AE (alcohol ethoxylate). While in most Western 

countries non-biodegradable surfactants have been banned since the 1960s, these 

environmentally problematic organic chemicals are still used in many developing countries, e.g. 

Pakistan (Siddiq, 2005) and Jordan (Bino, 2004). Laundry and automatic dishwashing detergents 

are the main sources of surfactants in greywater. Other sources include personal cleansing 

products and household cleaners. The amount of surfactants present in greywater is strongly 

dependent on the type and amount of detergent used. Studies conducted by Friedler (2004), 

Gross et al. (2005), and Shafran et al. (2005) reveal surfactant concentrations in greywater 

ranging between 1 and 60 mg/l, and averaging 17–40 mg/l. The highest concentrations were 

observed in laundry, shower and kitchen greywater. A per capita production of mixed surfactants 

of 3.5–10 g MBAS/p/d seems realistic (Friedler, 2004; Garland et al., 2004). 

 

Other pollutants that could occur in greywater include heavy metals and xenobiotic organic 

compounds (XOCs). XOCs constitute heterogeneous groups of compounds that originate from 

the chemical products used in households, such as detergents, soaps and perfumes. Information 

about the presence and levels of XOCs is scarce and it has been recommended that further 

research be conducted in this regard if greywater is to be used for irrigation or infiltration, as 
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these contaminants may be toxic to plants and could pollute the groundwater (Eriksson et al, 

2002). 

 

2.4.3.  Microbiological characteristics 

Both direct and indirect risks of human infection arise from the presence of pathogens in 

greywater. These risks are affected by a number of factors including the type and infectiousness 

of the pathogen, amount of faecal contamination, nature and levels of treatment, potential for 

human exposure to the effluent, method of irrigation and types of plants grown (Myers, 1999). 

Pathogens such as viruses, bacteria, protozoa, and intestinal parasites are often present in 

greywater. These pathogens may originate from the faeces of infected persons. They can end up 

in greywater through hand washing after toilet use, washing of babies and children after 

defecation, diaper changes or diaper washing. Some pathogens may also enter the greywater 

system through the washing of vegetables and raw meat. Pathogens of faecal origin pose the 

main health risk causing diseases such as vomiting, diarrhoea, respiratory illness, anaemia, 

hepatitis, meningitis, paralysis and eye and skin infections (Ledin et al., 2001).  

 

Faecal contamination of greywater, traditionally expressed by faecal indicators such as faecal 

coliforms, strongly depends on the age distribution of the household members. High 

contamination must be expected where babies and young children are present. Average 

concentrations are reported to be around 103–106 cfu/100 ml (see Table 2.1). Contamination can 

range between 107–108 cfu/100 ml in laundry or shower greywater, as observed in Costa Rica or 

Jordan (Al-Jayyousi, 2003; Dallas et al., 2004). Since greywater may contain high loads of easily 

degradable organic compounds, re-growth of enteric bacteria, such as the faecal indicators, are 

favoured in greywater systems (Ottoson and Stenstrom, 2003b; WHO, 2006). Hence, bacterial 

indicator numbers may lead to an overestimation of faecal loads and thus risk. 
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2.5.   Cases studies of greywater reuse around the world 
2.5.1. Success stories 

(a) Palma Beach Hotel Spain  

(March et al., 2004)  

Palma Beach Hotel is a three-star hotel that has 81 rooms (63 of which include a kitchen) and 9 

floors. It is mostly occupied by foreign visitors (most of them from Scandinavia) who go to 

Spain for summer holidays. Usually, customers stay at the hotel for either 1 or 2 weeks. 

 

A simple greywater recycling system was introduced for toilet flushing with the aim of 

conserving the available potable water. The treatment involved filtration using a nylon sock type 

filter (0.3 mm mesh size and 1 m2 filtration surface), sedimentation, and disinfection with 

sodium hypochlorite. The treated greywater was initially stored in a ground level tank (4.5 m3) 

and from there was pumped using an automatic pump to a terrace tank, which could also be fed 

with drinking water, if necessary. From the terrace tank, the toilet cisterns in the rooms were fed 

by gravity. The average toilet cistern is 6 litres and average consumption on site during the study 

was 36 l/person/day. 

 

While undertaking an economic analysis of the system, a 14 year payback period was computed. 

The payback period was based on the seasonal characteristics of the tourist industry with the 

system operating over an average of 7 months a year with average hotel occupancy of 85%.  

 

In terms of perceptions, an informative pamphlet was left in all rooms. The pamphlet included a 

short introduction on the importance of water management, a description of the GWR project, 

identification of the institutions involved, input for residents’ personal data (nationality, age, 

gender, duration of stay at the hotel) and several questions requesting residents’ perceptions 

regarding the reuse system (e.g. opinion on the system and the quality of water in the toilet 

cistern). Data from residents indicated a general satisfaction with the system. A deficiency in 

odour was mentioned by one customer who also gave a "fair" overall impression of his holiday 

period. No complaints about the system were reported to the hotel administration. The system 

was proven to be sustainable in terms of energy consumption, land requirements and waste 

production. The system also showed durability (by operating for 1 year without any significant 
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problems) and robustness (fluctuations in greywater composition did not affect the maintenance 

program).  

 

(b) Florianopolis, Southern Brazil 

(Ghisi and Ferreira, 2007) 

 

The study was conducted to evaluate the potential for potable water savings by using rain water 

and greywater in a residential building located in Florianopolis, southern Brazil. The building is 

a four-storey residential building composed of three blocks with 16 three bedroom flats. 

 

In order to estimate potable water end-use within the building, data was collected by 

interviewing residents (between December 2003 and February 2004), measuring water flow rates 

and obtaining water consumption figures from the local water utility. Residents provided 

information on frequency of use of plumbing fixtures and durations of water use over working 

days and weekends. A weighted average water use was calculated along with frequency of use 

and duration per resident. From these calculations, figures were obtained per resident, flat, block 

and the entire building. 

 

An economic analysis was performed to evaluate the cost effectiveness of using rain water and 

greywater either separately or jointly. Results show that the average potential for potable water 

savings (using non-potable water for toilet flushing, cloth washing and cleaning) range from 

39.2% to 42.7%. By using rain water alone, potable water savings ranged from 14.7% to 17.7%. 

When greywater alone was used, potable water savings were higher, ranging from 28.7% to 

34.8%. As for the joint use of rain water and greywater, potable water savings ranged from 

36.7% to 42.0%. One of the conclusions that was deduced from this project was that the three 

non-potable water supply options investigated in the study were cost effective as the payback 

periods for each were less than 8 years. In comparison to rain water, the greywater option proved 

more cost effective. 

  



 31 

(c) Institute Agronomique et Veterinaire, Rabat, Morocco 

(Hamouri et al., 2007) 

 

This pilot study was conducted in the campus of the Institute Agronomique et Veterinaire (IAV), 

Rabat, Morocco which is located next to the Club of the Association Culturelle et Sportive de 

l’Agriculture (ACSA). Wastewater produced in the showers and the toilets of the ACSA club 

gym was segregated thus allowing the collection of 8 m3/d of greywater. A reservoir outside the 

gym collects greywater which is then pumped through a 50-mm diameter pipe over a distance of 

504 m to the wastewater treatment facility located inside the IAV Campus. 

 

Greywater is treated in a two-step gravel/sand filtration unit. Step 1 consists of planted 

horizontal-flow gravel filter, while step 2 is a vertical-flow multilayer sand filter. The horizontal-

flow gravel filter is constructed of reinforced concrete (Figure 2.3) and has the following 

characteristics: length = 2.25 m, width = 2.0 m depth = 0.8 m, and cross sectional area = 1.6 m2. 

After passing through the filters, greywater is disinfected in an Ultra Violet Tspa Teflon system 

(Figure 2.3). The treated and UV disinfected greywater is then stored in a black, polyethylene 

reservoir and conveyed, using a 50-mm diameter pipe, over a distance of 460 metres to the 

building housing the Department of Rural Engineering (DRE). The four toilets on the ground 

floor of this building are connected to the greywater supply pipe. A dual piping system was 

adopted in the DRE building toilets to avoid any cross connections between potable and recycled 

greywater. Hence, the toilet cisterns have access to potable water when greywater is not 

available. Four other toilets, located on the first floor of the DRE building, were flushed with 

potable water and used as control toilets during comparison studies. 

 



 32 

 

Figure 2.3: The reinforce concrete horizontal-flow gravel filter and UV disinfection unit 
 

 

Figure 2.4: Dual piping supplies for toilet flushing 
 

The performance of the two-step unit was satisfactory. The effluent turbidity was reduced from 

28 to 2 NTU. Removal rates of COD and BOD5 were 75% and 80% respectively. Half of the 

nitrogen was nitrified during the filtration process. Removal rate of phosphorus was almost 50% 

while anionic surfactants were removed at a rate of 97%. On the contrary, the gravel/sand filter 

performance in Faecal Coliform removal was low and did not exceed one log Unit. 
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(d) Berlin, Germany 

(Nolde, 1999) 

 

Nolde (1999) presented his 10 year experiences on GWR for toilet flushing in multi –storey 

buildings. One of the buildings was a 400-bed hotel. The first greywater treatment plant (GW 1) 

was installed in a 15 m2 basement (Berlin-Kreuzberg, Manteuelstraße 41) and it treated the 

greywater from showers, bathtubs and hand-wash basins for 70 persons. At the beginning of 

these investigations in 1989, the pilot plant had not been optimized and the biological stage 

consisted of a two-stage rotating bio-contactor (RBC) which was replaced in 1997 with a four-

stage RBC (Fig.2.5) (Zeisel, 1999). The second greywater treatment plant (GW 2) is a two-stage 

Fluidized-bed reactor (Berlin-Wedding, Bornemannstraße 4) treating the greywater from a 

shower and bathtub of a two-person household. The system has a total volume of 165 litres 

(stage 1 is 105 litres and stage 2 is 60 litres) and placed above the toilet in the bathroom. Cube 

shaped polyurethane material was used as biofilm carrier in both stages. 

 

Samples were taken as 24-hour quantity proportional mixed samples (GW1) or as random 

samples (GW 2), immediately stored without preservation at 4°C and processed within 24 hours. 

Influent samples were taken from the sedimentation tank (or bathtub in GW 2), and the effluent 

samples from the service water reservoir. For all microbiological parameters, random samples 

were taken, stored at 4°C and processed immediately. Testing for faecal and total coliforms 

followed in triplicate serial dilutions and was quantified using the Most Probable Number (MPN) 

method (APHA, 1980). Settled samples were taken for all parameters. 

 

Results from RBC (GW1) showed that the effluents’ BOD 7 concentration were always below 

the 5mg/l control limit. Although the water samples did not meet the microbiological standards 

of 100 cfu/ml and 1000 cfu/ml for the total bacterial count, it showed that the faecal coliforms 

and faecal streptococci were even below the detection limit of 0.03 bacter/ml limits. Also results 

from the Fluidized-bed reactor (GW2) showed that a good service water quality can be achieved 

with a smaller greywater system (TOC = 4-8mg/l and BOD = 5 mg/l). In addition, the water 

standard was achieved following the UV disinfection of the water. 
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Nolde (1999) concluded that biological treatment of the greywater is indispensable in order to 

guarantee risk-free service water for reuse applications other than potable water. The process 

shown in Figure 2.6 was proposed by Nolde 1999. The treatment process consisted of a 

sedimentation stage, biological treatment, a clearing stage and eventual UV disinfection. 

 

Figure 2.5: Recommended concept for greywater treatment (Nolde, 1999a). 
 
(e) Nicosia, Cyprus  

(Kambanellas, 2007) 

 

The recycling of greywater started on an experimental basis in 1997 and continued right through 

1998 by the Cyprus Water Development Department, with the support of Ministry of 

Agriculture, Natural Resources and Environment and Planning Bureau. The study involved the 

recycling of greywater in a hotel, a stadium and five houses (Kambanellas, 2004). Cyprus has a 

population of around 700,000 people but is visited by over 2.5 million tourists a year. The water 

resources in the area are almost fully developed and the greywater scheme was started as part of 

an initiative to conserve water at the household level.  

 

During the experimental work, measurements were taken and it was determined that only 50% of 

the water supply needed to be of drinking water quality, and a plan was developed to use 

‘processed water’ to reduce potable water demand. The first systems were installed in 1997, and 

seven units were installed by the end of 1998. 
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Greywater from laundry, baths, showers, hand-wash basins, and laundry was collected from five 

households and amounted to 36 litres per day or 33% of the total daily consumption. This 

greywater was treated, and then used to irrigate garden or stored for use in flushing toilets. The 

small amount of settled material accumulated was discharged into the septic system.   

 

The cost of the household greywater recycling system with a capacity to treat 1 cubic metre per 

day was approximately €1400 with the government subsidizing over 50% of this cost. The 

decision to subsidize the greywater system was taken after the government realised that the cost 

saved on the quantity of water was about a quarter than if the same amount of water were 

supplied from a new project. A conservation of drinking water from 35% to 40% of the per 

capita water consumption was realized in this project. 

 

 

 

 

 

 

 

 

 

Figure 2.6: Recycling of Greywater at Household level in Nicosia, Cyprus. 
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(f) Loughborough University, United Kingdom 

(Surendran and Wheatley, 1999) 

 

A laboratory scale greywater treatment system and a full sized greywater system for University 

residences were constructed to examine the feasibility of greywater reuse at Loughborough 

University (Surendran and Wheatley, 1999; Surendran, 2004). The laboratory scale system had a 

capacity of 75 litres and consisted of four stages: 1) balancing flow and buffering peak mass 

loads, 2) solid separation and digestion 3) aerated bio-filter to remove organics, and 4) deep bed 

slow filtration to generate near potable quality. It operated for 200 days without any maintenance 

or disinfection. Prior to the lab scale treatment, a survey was conducted to determine people’s 

perceptions and the survey revealed that as many as 96% of customers would accept greywater 

use for toilet flushing and 70% of the respondents would invest an additional 9.8% of the water 

bill-equivalent for long-term benefits. The dissenting respondents (4%) expressed concern about 

the purity and safety of recycled water. During the demonstration stage, the cost of full-scale 

system emerged as the major concern. 

 

The full-scale system was built to flush toilets using greywater and rainwater. This was 

implemented at the university halls of residence, which house about 40 students. The full-scale 

system was based on the laboratory scale design with a few modifications. This system was 

subsequently changed to incorporate a second greywater recycling system that served 6 of the 33 

students. The second full-scale system was implemented in order to test a variation of the 

original methods employed at the lab/full scale. The full-scale system collected greywater from 

16 sinks, 2 baths, 2 showers and about 2/3
rd of the washing machine water for GWR in 4 toilets. 

The five treatment processes are illustrated in Figure 2.8, with the fifth being optional. These 

include: 

 

1. 1400-litre raw greywater buffering tank with a filter. 

2. anaerobic solids treatment tank with large pore size. 

3. aerated bioreactor with large pore size foam and beads 

4. active slow filter with small pore size reticulated foam, and 

5. activated carbon stage (optional if potable water quality is required). 
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The aeration used 2.4 l/min of coarse air bubbles .The tertiary treatment phase was a deep slow 

filter that used 100 mm of 20 ppi foam over 700 mm of 45 ppi foam cartridges. The system 

operated for approximately a year without problems. Treated water was collected into two 

storage tanks; a low-level tank (700 litres) attached to the treatment plant and a high level tank 

500 litres) connected to toilets. The low-level tank was equipped with a timer to initiate pumping 

of treated water to the high-level tank. Excess water was returned to low-level tank via a return 

pipe. A standby mains water supply was connected to the high level tank to ensure adequate 

water supply when the amount of treated water was insufficient for reuse. Water usage and some 

water quality determinants were regularly monitored by means of flow meters and on–line 

monitors.  

 

Twelve months of operation demonstrated that the treated water met the mandatory limits of both 

EC and UK bathing water quality criteria in terms of turbidity, BOD5, faecal coliforms. Odour 

problems or sludge blockages were not experienced (Surendran and Wheatley, 1999). The unit 

has been evaluated to have a payback period of 8-9 years and life-span of 20years.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: Schematic diagram of greywater treatment plant 
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(g) Annecy Residential Building, France 

(Lazarova, 2001) 

 

A full-scale greywater recycling scheme was set-up in a residential complex with 64 apartments 

(i.e. 40 buildings with approximately 120 users) in Annecy, France (Lazarova, 2001; Savoye et 

al., 2001). Light and dark greywater were collected from washing machines, baths, showers, 

washbasins, kitchen sinks and dishwashers and were treated using a membrane bioreactor 

(MBR) (biological treatment followed by ultra-filtration) from Ondeo Degremont. The collected 

greywater accounted for approximately 50–70% of the total water use within the apartments, 

which appeared to be more than the requirement for toilet flushing, even accounting for losses 

within the treatment process. The excess recycled water was discharged into the sewer or used 

for landscape irrigation. 

 

Water quality monitoring demonstrated that the dark greywater contained high concentrations of 

organic matter, comparable to conventional urban wastewater but with a higher fraction of 

biodegradable and soluble organics. It contained less suspended solids and nitrogen but more 

phosphorus. Bacterial content was also high, up to 6–7 log units of TC, FC, streptococci and E. 

coli. Consequently, MBR treatment appeared to be a highly appropriate technical solution for 

greywater recycling, particularly in residential complexes and individual homes, because it 

produced a high quality effluent (fully disinfected) and was operationally reliable. However, it 

remains one of the most expensive treatment alternatives for water reuse, particularly in 

installations below 75 m3/d. The annualised capital and operational cost has been estimated at 3 

€/m3 (Lazarova, 2001). This cost drops to 1.7 €/m3 for plants of up to 300 m3/d capacity (for 

installations serving more than 500 inhabitants). 

 

(h) The Millennium Dome, London 

(Hills et al., 2001) 

 

The largest in-building recycling scheme in the UK and known as “Watercycle” was developed 

by Thames Water at the Millennium Dome (Hills et al., 2001). To reduce the potable water 

requirement at the Dome, the recycling scheme treated sufficient volumes of greywater, rain 
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water and groundwater from site to flush all of the WCs and urinals on site (646 WCs and 191 

urinals). The plant has a capacity of 500 m3/d and served 6.5 million visitors in the year 2000. 

 

Rain water from the Dome roof was collected in specially designed hoppers directing the roof 

run-off into the surface water drainage system and treated through a reed-bed system. Greywater 

from washbasins inside the Dome was treated using a biologically aerated filter (BAF), followed 

by membrane filtration. Rising groundwater from an aquifer beneath the Dome made up the 

required flushing volume. Preliminary tests revealed that the groundwater under the Dome was 

heavily contaminated and brackish, so Granular Activated Carbon (GAC) and membrane 

filtration were used to remove the organic contaminants and salt from the groundwater. 

 

The BAF provided a compact and reliable treatment system for the reduction of BOD, SS and 

microbiological contaminants from the greywater throughout the year. Rain water was the least 

polluted of the 3 water sources and the reed beds and lagoon treatment process produced a high 

quality effluent. The ultrafiltration membranes removed particulate matter and bacteria from the 

mixed feed stream very effectively. Microbial analysis showed 100% removal of both TC and E. 

Coli. The reverse osmosis plant worked efficiently throughout the year and no cleaning of the 

membranes was necessary due to the efficiency of the UF pre-treatment (Smith et al., 2001). 

Overall, the scheme provided recycled water for 55% of the Dome water requirements during the 

year 2000. Greywater only made up 10% of the recycled water requirement. This was because 

water was collected only from the washbasins (i.e. not from kitchens, showers etc) and as water 

efficient taps were also used, volumes of greywater collected were low. The major source of 

recycled water was from groundwater (71%) with rain water contributing 19% (Hills et al., 

2002). A survey carried out on a sample of Dome visitors showed that they were very positive 

about the use of recycled water for toilet flushing (Hills et al., 2001). 
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(i) Irvine Ranch Water District, California, USA 

(Lewinger and Young, 1988) 

 

Irvine was the first city recorded to use its reclaimed water for toilet-flushing on a large scale 

(Young et al 1994). The Irvine Ranch Water District, IRWD, is a full service water and sewer 

agency serving approximately 120 square miles and an existing population of 138,000 in 

California.  

 

In 1987, with the planned intense development of high rise offices in the area, IRWD began to 

investigate the feasibility of using reclaimed water in commercial buildings for non-potable uses 

(Lewinger and Young, 1988). The project estimated that 80% of the total water used could be 

reclaimed water employed for toilet and urinal flushing, and landscape irrigation (Holliman, 

1992; Young et al., 1994). A significant quantity of the remaining 20% could be directed to 

cooling tower operations. It was estimated that a 10% savings in potable water could be realised 

if the cooling tower supply was switched to reclaimed water. 

 

A 66 000 m3/d reclamation plant was constructed to provide effluent for all the targeted uses 

within the district (Young et al., 1994). Greywater was treated by biological oxidation, in-line 

chemical coagulation and dual media filtration followed by disinfection, with all the processes 

meeting the California State Department of Health services’ Wastewater Reclamation Criteria 

(Holliman, 1992; Lewinger and Young,1998). 

 

The reclaimed water contained less than 2.2 coliforms in 100 ml and was classified as type 1 or 

Class A of Title 22 of the California Administrative Code (Holliman, 1992). In 1991, the district 

was the first in the USA to obtain health department permits for the use of reclaimed water in 

interior spaces such as for toilet flushing (Young et al., 1998). Initially, reclaimed water was 

used in two high-rise buildings. By the late 1990’s, the scheme was extended by connecting two 

20-strorey high-rise and two low-rise buildings to dual water supply with five additional high-

rise towers awaiting service. 
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Analyses showed that there were no noticeable difference in colour, corrosivity and odour 

between the reclaimed water and fresh water. The maximum measured value of COD, which was 

used as an indicator of the odour generation propensity, was 50mg/l. 

 

Early results of the operation showed that fresh water demand in high-rise buildings dropped by 

75 % because of the installation and use of the recycling system (Holliman, 1992). The life-cycle 

cost of supplying reclaimed water to at least half of the high-rise tower in the districts was less 

than purchasing and distributing domestic water over a 50 year period (Lewinger and young, 

1988). 

 

(j) Casa del Agua (Tucson, Arizona) 

(Karpiscak et al., 1993) 

 

Casa del Agua represents residences in Tucson that were retrofitted in 1985 with water-

conserving fixtures and reuse technologies, and landscaped with drought tolerant plants. Casa del 

Agua is an occupied domestic residence that is also an educational project designed to facilitate 

research and to test domestic water use and condensation strategies, and is open to the public 

during scheduled hours. Modifications included retrofitting existing landscapes and enlarging the 

rooftop to collect and harvest rain water; separating black water and greywater disposal lines; 

installing meters, low-water-use appliances and fixtures, underground storage tanks for rainwater 

and greywater; and creating a public information center. The construction of Casa del Agua’s 

greywater treatment and distribution system in 1985 was about US$1,500. 

 

 The Casa del Agua greywater system drains greywater from households’ water–using appliances 

into a 55-gallon sump surge tank. A filter is fitted over the greywater drain line where it enters 

the sump to remove lint and hair before the water is pumped to other components of the 

recycling system. The sump fills to a level that activates a float switch and then greywater is 

pumped through an underground drip irrigation system to the landscape or for use in toilet 

flushing  
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Over the 13-plus years of actual operation, both the interior and exterior water use research 

results indicated that large reductions in drinking water use can be effected using water-saving 

devices and/or harvesting and reusing rainwater and greywater respectively. Casa del Agua 

achieved over 30% in municipal water used compared to the typical Tucson residence. Overall 

water used at Casa del Agua comprised harvested rainwater (10%), recycled greywater (20%), 

and municipal water (70%).  

 

2.5.2. Controversial/failed case studies 

(a)  Victoria University of Technology, Melbourne, Australia 

 (Christova-Boal et al., 1996) 

 

This research was conducted through the Victoria University of Technology (VUT), Australia as 

a Master’s degree project. Technical support was given by Melbourne Water (MW), the 

Department of Health and Community Services (HCS) and Victoria’s Environment Protection 

Authority (EPA). A social survey was conducted in Melbourne and showed that people were 

interested in reusing greywater from the bathroom and laundry. The surveyed respondents 

indicated a strong preference for using greywater on gardens. However, they would only 

consider a greywater reuse system if the pay-back period was short (2-4 years). A sampling and 

testing program was developed to analyze a number of typical physical, chemical and 

microbiological characteristics of greywater from bathroom and laundry. 

 

Four experimental sites were selected to provide a variety of conditions in terms of topography, 

soil characteristics, housing type and size of family. Three houses were retrofitted to reuse 

greywater for garden watering and toilet flushing and one house was designed from the start with 

a greywater system. At the experimental sites, the removal of the suspended material was 

achieved by using a three-stage filter system: 

 

• Stage 1 - a strainer (pre-filter) in the laundry trough, shower or bath outlet to remove 

large sized materials 

• Stage 2 - a mesh filter installed in the collection tanks to collect hair, soap particles, lint 

and some entrapped body fats. 
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• Stage 3 - a fine filter on the supply line to the irrigation pipes or toilet cistern for 

precipitates and settled materials. 

 

A number of difficulties were encountered when the greywater systems were  retrofitted to the 

existing houses. These included insufficient hydraulic head and the consequent need to use a 

pump. This was because the floor level drainage outlets were near to ground level, resulting in 

the collection tanks being installed below ground level and the need for ground anchoring. 

 

Lessons Learnt 

Many of the difficulties encountered could have been avoided if the greywater reuse systems 

were included in the initial design of a house prior to its construction. The operating cost of 

treating the greywater was considered very high because a lot of money was spent on disposable 

filters. In addition, the analyses of greywater taken from the bathroom and laundry indicated that 

the use of detergent resulted in the greywater having high levels of sodium, zinc, aluminium and 

(by inference) carbonate which could be detrimental to soil conditions. The initial trials with 

mesh filters and disc filters using 0.1 mm mesh or 0.11 mm disc spacing clogged almost 

immediately. A more satisfactory performance was achieved using a larger size of filter (0.2 mm 

mesh and 0.17 mm disc spacing). This meant that more filtrate was collected through filters with 

larger surface areas. However, the incorporation of collection and storage tanks was undesirable.  

 

(b)  Linacre College, Oxford 

Linacre College was the first domestic water recycling scheme in the UK. A student residence 

for 23 occupants, Linacre College was built in 1995 using “environmental friendly” or recycled 

materials in order to cut down energy and water demand. One of the conservation aspects was 

reuse of greywater for toilet flushing. A survey conducted prior to the project showed that 40% 

of the occupants were concerned about the odour and smell of the treated water but would 

consent to participating in recycling if these were eliminated. 

 

The first scheme comprising a bag filter and a depth filter was built and operated by a contractor 

(Read, 1997). Due to severe problems, the plant was on-line only for two days. Consequently, 

the local water company was contacted in order to have the plant fully operational. Anglian 



 44 

water services Ltd, Huntigdon, undertook a series of process selection trialsls (Murrer and 

Wards, 1997) to identify a suitable system for the scheme, and a number of sand filters and 

membranes were tested. A trial house with a selected process was evaluated at a small-scale 

experiment to investigate the effectiveness of the treatment unit and this led to the second stage 

of the Linacre scheme where greywater was treated by a depth filter and a membrane. 

 

The physical process used at Linacre was situated in an underground chamber. Greywater from 

baths, showers and hand basins was collected in a storage tank and filtered through a 4 inch 

diameter sand filter (Murrer and Ward, 1997). This was followed by a hollow fibre ultra-

filtration membrane with a pore size of 0.01µm. The effluent was collected into a header tank in 

the loft and topped up with mains water when necessary to supply enough water for toilet 

flushing. The effluent was disinfected with chlorine prior to use. Some of the effluent from the 

ultra-filtration membrane was used for backwashing the sand filter. A 5 log reduction in bacteria 

was attained by treatment. Viruses were not detected in the effluent. 

 

However, after few months of operation, it suffered some operational difficulties. The operating 

and maintenance costs were found to be high due to excessive membrane fouling resulting in low 

flux (Ward, 2000). Raw greywater was partially digested under anaerobic conditions in the 

lengthy collection network resulting in poor permeate quality and odour problems from the 

network. 

 

Consequently, a further process modification was done and this time a biological system (Ward, 

2000) was incorporated. The process scheme subsequently comprised a bioreactor followed by a 

sand filter, an activated carbon column and chemical disinfection. Further development of the 

membrane cleaning procedure was done to reduce membrane fouling from fats and other organic 

material in the greywater treatment system. 

 

Lessons Learnt  

The failure of the first scheme was as result of the project manager not following the proper 

procedure in the selection of the treatment unit and due to the fact that no trial was carried out 

before the unit was installed. This led to the continuous breakdown of the treatment unit. The 
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failure of the second scheme which was due to operational problems was attributed to inadequate 

knowledge about the operational and maintenance costs of running the treatment unit. A 

recommendation to proceed from this experience is that the selection of treatment units should be 

based on available guidelines or a framework designed to optimally guide selection. Also, a 

thorough cost benefit analysis should be conducted in other to understand the cost effectiveness 

of a GWR project. 

 

(c) Water Dynamics systems, UK 

(Sayers, 1988) 

 

A two-year project was carried out by the UK Environmental Agency (EA) to assess the 

feasibility of single household greywater systems. Water consumption, cost savings, water 

quality, and user perceptions of the reuse system were evaluated. Ten houses were retrofitted 

with Water Dynamics’ recycling systems, in order to recycle greywater from hand basins, baths 

and showers for toilet flushing. Water meter readings, along with greywater samples from the 

storage units and the toilet cisterns were taken on a monthly basis for analyses. 

 

After the first year of operation, cost savings from 5.2 - 30.6% were realised for the 10 houses. In 

the second year, savings of 5.3 - 35.9% where realised with the number of houses involved in the 

study dropping to 8 (Sayers, 1998). Acceptable water quality in terms of pH (6-8) and 

phosphorus (around 1 mg/l) were realised. Ammonia averaged <8mg/l, but on occasions, rose to 

40mg/l thus resulting in odour problems (Sayers, 1988). The following operational concerns 

were raised during the study: 

 The need for frequent cleaning of filters due to blocking 

 Pump failures occurred often times due to replacement or maintenance hence, the mains 

potable water was used for toilet flushing during those times 

 Chlorine dosing using a bromine-based disinfectant led to some odour 

 Staining of toilet bowls led to the more frequent use of cleaning products 

 There was a building-up of sediments in the toilet cistern 
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Improvements to system design, such as the location of the disinfectant and alarms (in case of 

blockages or low levels of disinfectant) were suggested by the residents. Residents generally 

found the recycling unit and the appearance of the treated greywater aesthetically acceptable 

though the retrofitted infrastructure was visually unattractive. Payback periods were calculated 

based on a range of water and sewerage charges and household occupancy and excluding 

running and replacement costs. The most economic payback period was 13 years in case of a 4 

person household and the most uneconomic at 138 years in case of single person household. 

 

Lessons Learnt 

i. The accuracy of modelling experiments was critical in determining actual greywater 

generation and toilet flushing demands. An accurate estimation of these flows would have 

prevented a significant number of the breakdowns experienced 

ii. Continual monitoring and education of residents on the greywater units was critical to 

sustainability. In many instances, residents “forgot” about the systems and hence problems 

occurred. 

iii. The economic aspects of implementing a greywater reuse project is a critical parameter that 

should be investigated when considering GWR. 

iv.  

(d) Quayside Village Vancouver, British Columbia, Canada 

(Canada Mortgage and Housing Corporation (CMHC), 1998)  
 
Quayside village (QV) is a co–housing community located in the City of North Vancouver 

British Columbia. As a multi-agency supported demonstration project, Quayside’s greywater 

system had to be reviewed and discussed with a number of agencies. Government municipal staff 

expressed concern about possible liability for water-related sickness. For this reason, a 

conservative greywater reuse system with several backup features was permitted, with treated 

greywater to be used for toilet flushing. The reuse system included the following components: 

 A septic tank to remove coarse solids and grease /oil; 

 A biofilter with recirculation back to the septic tank inlet;  

 A slow sand filter to remove solids; 

 Ozone generator and contact tank which has since been replaced by chlorination; 
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 A slow sand filter for automated back-washing, and  

 A storage tank. 

 

Although the system had operated for a prolonged period since implementation (>3years), there 

were a number of equipment failures that interfered with being able to meet the regulatory 

operational requirement of six continuous months. One of the key problems initially identified 

was the reliance on ozone as the sole means of disinfection, compounded by the lack of adequate 

ventilation for the ozone gas residue. 

 

The following remedial measures were thus implemented: 

 The ozone generator contact tank was removed and replaced with a chlorination system. This 

eliminated the problem with the ozone gas residue and provided a chlorine residual to control 

the re-growth of bacteria 

 The cloth fabric which was intended to assist in removing colloidal particles was removed 

from the septic tank. This was because the structure supporting the fabric in the tank 

collapsed and blocked the outlet. 

 

Lessons Learnt 

System design and function should be resolved with the relevant authorities before reuse 

equipment are purchased and the system installed. This is because municipalities would 

generally require a conservative system that will be robust enough to prevent risks to public 

health and safety. 

 

(e) Toronto Healthy House, Toronto, Ontario, Canada 

(Canada Mortgage and Housing Corporation (CMHC), 1998)  
 

The Toronto Healthy House project resulted from a Canada wide Health Housing Design 

Competition. Two residences located next to one another, have no connection to the municipal 

potable water or sewage infrastructure, and are situated on small stands (approximately 6m by 

22m of area). The dwellings rely on harvesting rain water for potable water supply, and reuse 
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water for all other domestic water needs (i.e. toilet flushing, laundry, bath/showers and 

irrigation). 

 

Black water and greywater are collected and treated for reuse as illustrated in Figure 7. The 

treatment process employed in the residences consisted of the following components: 

 A 3 000 litre septic tank which was divided into two unequal (2/3,1/3) compartments. The 

first compartment was intended to remove coarse solids and grease, while the second was 

equipped with hanging filter cloths intended to remove colloidal solids; 

 Biofilter with recirculation back to the septic tank inlet; 

 Roughing filter to remove coarse biosolids; 

 Slow sand  filter to remove fine particles (both the roughing and slow sand filters are 

automatically back-washed; 

 In line ozone injection using a venture-style aspirator, followed by a contact tank 

 Storage tank 

 

Any wastewater that was in excess of the reuse requirement of the household was discharged to a 

gravel bed in the front yard. A three component filter (roughing filter, slow sand filter and 

activated carbon filter) was originally installed but decommissioned and replaced with a separate 

roughing filter and slow sand filter due to problems experienced with filter clogging. Online data 

for both the potable and reuse system was collected by an independent agency from November 

2000. Analytical parameters monitored included: microbiological (Total coliforms, E.coli and 

background bacteria) and chemicals for reuse (nitrate, BOD, TSS, TDS, sodium, chlorides, 

phosphate and ammonia). Although some reuse water qualities (i.e. BOD ,TSS and turbidity) 

were consistently met, the total Coliform bacteria were have not met at times and heterotrophic 

plate counts were often times elevated, indicating bacterial regrowth in the reuse storage tank 

and distribution system. Regrowth can include “opportunistic pathogens” such as strains of 

pseudomonas aeruginosa, and Acinetobacter spp.. The potential for regrowth is of particular 

concern where the water is being sprayed and potentially inhaled as will occur in using reuse 

water for showers/baths. Strains of Klebsiella pneumoniae and Legionella pneumophila if 

inhaled as aerosols can cause severe illness. Water temperatures of 30 to 50 oC are favourable to 
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the growth of Legion Ella. Another concern with the existing treatment system was that ozone 

was being released into the residence and this posed a health hazard to the occupants. 

 

The following remedial measures were recommended to improve system performance and 

address the problems observed with the Toronto Health House reuse water treatment system: 

 An ozone sensor and alarm could be installed, and consideration given to modifying the 

ventilation of the equipment space to ensure the ozone is destroyed and the gas is ventilated 

outside of the structure. 

Either a secondary chlorination or ultraviolet disinfection could be added to both the potable 

and reuse water treatment systems to inhabit bacterial regrowth within the storage and 

distribution systems. The provincial health agency prefers to have a minimum 1mg/l chlorine 

residual maintained within the distribution system.  

 

Lessons Learnt 

Careful consideration must be given to ensure that ozone residue is allowed access to proper 

ventilation, and that consideration is given to controlling regrowth of bacteria within the storage 

and distribution systems. One method of achieving this is to maintain an adequate residual 

chloride level within the treated water storage tank. 

 

(f) Conservation Coop, Ottawa, Ontario 

(Canada Mortgage and Housing Corporation (CMHC), 1998)  
 

Conservation co-op is a 4 storey 84 unit apartment building located in the Sandy hill district of 

the City of Ottawa. The tenants are committed to providing “green” alternatives in an 

environmentally friendly building thus reducing the consumption of energy, water and waste to 

levels significantly lower than conventional households. Constructed in 1995, the project 

incorporates water conserving plumbing fixtures that has resulted in a normalized water use per 

apartment of 390 l/day compared to a typical apartment’s water consumption of 530 l/day in the 

Ottawa area. Bathrooms in 8 of the 84 apartments were constructed with dual plumbing systems. 

The plumbing systems allow the bathrooms to operate using both municipal potable water and 

reuse greywater for toilet flushing. The primary source of greywater is the bathtubs. 
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Discussions were held with the Ministry and City officials to develop treatment criteria. The 

criteria for the design of the treatment systems were established and accepted by the Regional 

Health Department on the understanding that this was an experimental system for water reuse 

strictly for toilet flushing. The average daily water use was 640 l/day for toilet flushing, 1, 300 l 

for bath/shower water and 700 l/day for other uses (there were no laundry facilities in individual 

apartments). 

 

The greywater treatment system was completed and commissioned for use in August of 1999. It 

consisted of the following components: 

i. Basket screens (1mm mesh) to trap hair, lint and other large particles. Sodium hypochlorite 

packs were placed in the screening baskets to control odours and filter befouling; 

ii. Equalization tanks (440 l) to remove floatable oils, scum and settleable solids, as well as 

provide initial disinfection. Accumulated solid scum are automatically discharged into the 

sewer after each treatment cycle is complete; 

iii. A pump to transfer liquid from the equalization tanks through a multi-media pressure filter. 

iv. Upflow multi-media pressure automatic-backwash filter to remove particulate material. 

These types of filters are more commonly used in potable water treatment systems and do not 

remove BOD; 

v. Ozone is added to the filtered water prior to discharge into the treated water tank; 

vi. Tank (600 l); 

vii. A distribution pump that is activated by a drop in pressure (i.e. toilet flushing) within the 

distribution system.  

 

By late September 1999, the filter media had to be replaced, and by mid-October, one of the 

system pumps had failed and the system was down for two weeks until the pump could be 

replaced. A valve and pump failure in November shut the system down until early December 

1999. By March 2000, the treatment system was shut down and the toilets to the eight units were 

once again connected to the municipal potable water mains. This action was taken in response to 

extensive complaints from the residents of the 8 apartment units regarding problems with odour 
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and rapid scum accumulation in the toilets, and an accident in which ozone release from the 

treatment facility caused injury to the maintenance supervisor. 

  

An independent review of the treatment system noted the greywater had a significant 

biochemical oxygen demand (BOD5) of 130 mg /l that had not been taken into consideration in 

the treatment process design. As a result, no biological treatment had been provided for and the 

filtered greywater rapidly became anaerobic, producing black, foul-smelling reuse water that was 

being reused for flushing the toilets. Furthermore, the toilets for the 8 apartments were subjected 

to significant water-hammer effects as a result of the transfer pump and temporary nature of the 

pilot installation, resulting in loud banging noises and vibrations that were extremely 

disconcerting to the residents.  

 

The following remedial measures were recommended to improve system performance and 

address the problems observed: 

 Add a biological treatment component to reduce the BOD concentration to less than 10 mg/l; 

 Add a pressure tank to the distribution system to improve water supply to the toilets; 

 Remove the ozone system and replace it with either a second chlorination or ultraviolet 

disinfection system. 

 

Lessons Learnt 

The project demonstrated that significant operating and maintenance problems can be 

experienced with greywater reuse if (i) wastewater characterization is not considered in the 

design, and (ii) appropriate components are not incorporated in the treatment system to remove 

BOD. Greywater must be treated if it is to be stored for any significant period of time, or if it is 

to be distributed through plumbing for any indoor application. 

 

2.6. Lessons Learnt from the Case Studies   
Based on the above and Ilemobade et al., (2009a), some of the factors that hindered uptake of 

GWR projects were:   
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2.6.1. Economical issues 

i.   Cost is a significant barrier to a wider uptake of water recycling systems (Mustows et al., 

1998). Several investigations regarding water recycling have shown that the requirements to 

treat greywater to prescribed standards, as is the case with sewage, will usually result in 

higher costs (Minh, 2005) 

 

ii. Costs associated with greywater recycling in different locations are difficult to compare. 

They depend on the quality of the recycled water and the use to which it may be put. They 

also depend on whether the costs include infrastructure, pumping/operations and externalities 

(e.g. greenhouse gas production).  

 

iii. Long payback periods tend to infer non profitability, and thus are likely to reduce interest 

amongst potential beneficiaries. The most cost-effective of the GWR systems reviewed had a 

payback period of between 5-10 years. Large housing developments seem to provide more 

tangible economic benefits than smaller developments or individual homes..  

 

v. The most economic application for each GWR system reviewed scheme was in combination 

with rain water, with a payback of less than 6 years. However, in a survey conducted by 

Christova-Boal et al., (1996), most people preferred a payback period of 2-4 years. In order 

to implement GWR in high density urban residential dwellings in South Africa, a careful life 

cycle cost-benefit analysis should be carried out. Also governments must encourage 

individuals or communities by subsidizing the cost of providing such facilities, as is done in 

Cyprus (Kambanellas et al., 2007).  

 

2.6.2. Technical issues 

i. The recycling of greywater would need to be done in such a way as to avoid the build up of 

impurities within the system. The use of a final, polishing filter in the treatment system 

would therefore be an essential component of the system.  
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ii. Simple technologies and sand filters have been shown to have only a limited effect on 

greywater quality, whereas membranes have been reported to provide good solids removal 

but cannot efficiently tackle the organic fraction. 

  

iii. Biological schemes achieve good general treatment of greywater with particularly good 

removal of organics. Micro-organism removal was found to be sufficient to meet the 

standards only in schemes including a disinfection stage; Membrane bioreactors were the 

only systems reported to achieve good microbial removal without the need for disinfection. 

 

iv. It is difficult to give general recommendations regarding the design of greywater treatment 

plants, since different variables such as the type and location of the building, cost issues, 

government policies and legislation are some of the factors which make GWR variable to be 

considered. However the selected treatment plant should be capable of treating greywater to 

the recommended standards.  

 

2.6.3. Social issues 

i. Public perceptions are recognised as key elements of the success of GWR. The factors to  

consider when evaluating perceptions to GWR include information and context, 

communication and dialogue, trust and trust building, perceptions of fairness, and motivation 

and commitment to participate in decision-making (Hartley (2001). 

 

ii. According to Po et al, (2004), people expressed their greatest opposition to the reuse of water 

for potable purposes but seem to accept other purposes in which the level of human contact 

with the reclaimed water is low e.g. toilet flushing and garden irrigation.  

 

iii.  Perception to GWR may change as consumers develop trust in the relevant water authority.  

 

iv. Communities that have experienced water scarcity or about to, are more favourably disposed 

to the concept of reuse than communities in areas of water resource abundance (Ilemobade et 

al, 2009a). 
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v. Even though perceptions are linked to the success of reuse projects, one of the reasons why 

most reuse projects fail is because of the “fit and forget” attitude. Most surveys are conducted 

prior to or immediately after the implementation of the reuse system. Subsequently, 

complaints may not be received and attended to after the implementation, leading to the 

breakdown of the project. To this end, the constant involvement of the users and relevant 

authorities is vital and can help to build trust between authorities and consumers. This will 

assist in implementing quick remedies before a possible system failure. Constant dialogue 

and engagement will also assist in studying consumers’ attitudes to certain variables which 

need to be constantly monitored.  

 

2.6.4. Institutional issues 

i. Government policies can promote or mar greywater reuse. The introduction of stringent laws, 

policies and guidelines may reduce the interest of people who are willing to participate in 

greywater reuse projects. It is believed that as governments change hands, policies may also 

change based on the attitude of the person at the helm of affairs (Radcliffe, 2003).  

 

ii. In South Africa, non-potable water reuse is often driven by private sector initiatives, with 

irrigation, mining and industry being the main uses for the non-potable water (especially 

treated sewage effluent) (Ilemobade et al, 2009a). As a result, many of the implemented 

schemes are currently being operated, maintained and/or driven by the private sector, have no 

formal agreements in place, do not comply with anticipated norms and standards, often not fit 

for use; and have no formal tariff agreements in place (i.e. no payments are being made in 

many instances) (Ilemobade et al, 2009a 

 

iii. There is urgent need to develop a national regulatory document that sets out government’s 

policies on non-potable water use, dual systems, non-potable water licenses, and tariff 

structures. The DNHPD (1978) guideline document and the City of Cape Town (CCT, 2006) 

bye-laws may provide good starting points for this process. Also, uniform plumbing codes 

for dual systems should be adopted in order to present a consistent technical guide for 

infrastructure implementation nationwide (Ilemobade et al, 2009a). 
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2.6.5. Environmental and public health and safety issues 

i. Most of studies conducted on health issues express a strong concern about the safety of 

children if exposed to non-potable water. As a result, the level of acceptance of dual systems 

may be based on the assurances of safety given by the service providers. Colour coding and 

clear identification/labelling of the non-potable pipes (in order to avoid potential cross-

contamination problems) played a significant role in encouraging the acceptance of dual 

systems amongst some respondents previously negative to the technology (Ilemobade et al, 

2009).  

 

ii. Disinfection of greywater to a higher standard for utilization in toilet and urinal flushing is 

very important. Distinction of the non-potable pipe network from the potable network and 

extensive education about this distinction is therefore critical for system feasibility and 

sustainability (Ilemobade et al, 2009). This involves, interacting with and educating 

communities from inception about different non-potable water qualities and their potential to 

satisfy certain non-potable water requirements.  
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CHAPTER 3 
RISK-BASED APPROACH TO GREYWATER REUSE 

 
3.1 Introduction 

Risk is the likelihood of an identified hazard or hazardous event that may cause harm to an 

exposed population. It includes the magnitude of the harm and the consequences. A risk-based 

approach incorporates three components i.e risk assessment, risk management, and risk 

communication (Haas et al, 1999). Risk assessment is the qualitative or quantitative 

characterization, and estimation of potential adverse health effects associated with exposure of 

individuals or populations to hazards. Risk management is the process of controlling risks, 

weighing alternatives and selecting appropriate action while, risk communication is the 

communication of risks to managers, stakeholders, public officials and the public (WHO, 2006). 

The objectives of this chapter are as follows: 

•  To identify and quantify potential health risks associated with the implementation of 

GWR for toilet flushing. This was achieved by employing the elements of risk 

assessment discussed in the next section. 

• To develop an integrated risk management framework using various frameworks that 

have been proposed (i.e. The World Health Organisation, 2006; The United States 

Environmental Protection Agency, USEPA, 2005; Canada Health, 2010 and the 

Australian guidelines, NRMMC-EPHC, 2006) in order to mitigate the risks relating to 

GWR within the pilot studies implemented in this study. Developing this framework 

involved documenting the different risk management frameworks listed above and 

identifying the similar measures employed which would be applicable to this study. 

 

3.2 Risk assessment of greywater reuse for toilet flushing 
The process of risk assessment comprises four components (Figure 3.1) (Metcalf and Eddy, 

2004): 

• Hazard identification  

• Exposure assessment  

• Hazard characterization  

• Risk characterization  
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Figure 3.1:   The risk assessment process (Metcalf and Eddy, 2004) 
 

3.2.1 Hazard identification 

The first step in risk assessment is hazard identification (Health Canada, 2010). This component 

involves defining the hazards or finding the index hazard agents that present the most prominent 

risks and assessing their prevalence in the relevant environment. This is a qualitative process of 

identifying microorganisms, toxins or chemicals of concern in the water. Greywater may contain 

less faecal matter than sewage; it however contains chemical and pathogenic agents that may 

pose a serious risk to human health. It is therefore necessary to establish the quality (physical, 

chemical and microbiological) and quantity of greywater that is generated from various domestic 

activities and that is available for treatment and reuse.  
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3.2.1.1 Hazard identification — microbiological  

It is practically impossible to identify and account for all pathogens in greywater. The microbial 

quality of greywater depends on the quantity of faecal material that enters the greywater through 

activities such as washing of feacally contaminated laundry (i.e. diapers) anal cleansing and 

bathing (Jeppesen and Solley, 1994; Dixon et al., 1999a; Casanova et al., 2001; Ottoson and 

Stenstrom. 2003a; WHO 2006). Tables 3.1 and 3.2 present a wide range of microorganism 

counts that may be found in greywater and wastewater.  

  

Faecal coliform is the most common indicator of the possible presence of other faecal pathogens. 

Therefore, faecal contamination has been used as a central parameter in wastewater quality 

monitoring (Ottoson and Stenstrom, 2003a). Household greywater has been reported to contain 

high levels of indicator organisms such as Total coliforms or E. coli.  Ottoson and Stenstrom 

(2003a) estimated the faecal load in household greywater to be 0.04 g/day per person. As seen in 

Table 3.2, a single gram of feaces can contain a large number of pathogens (NRMMC-EPHC, 

2006). Viruses constitute a key component of such faecal pathogens because of the high rate of 

excretion from infected persons, the low dosages needed for potential infection, and their high 

survival rate in the environment (Gerba et al., 1996; Ottoson et al., 2003; WHO, 2006). 

Rotaviruses are a common cause of gastroenteritis in humans (Gerba, 1995), for which a dose-

response model has been established. In a risk assessment conducted by Ottoson and Stenstrom 

(2003), rotaviruses were found to pose the most significant risk to human health from greywater. 

For these reasons, rotaviruses were chosen as the reference pathogens for risk assessment in this 

study. Opportunistic bacteria such as Pseudomonas spp., Mycobacteria and Legionella spp. are 

also known to grow in hot water systems and could pose a threat depending on reuse options and 

technical solutions (Ottoson and Stenstrom, 2003a).  
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Table 3.1: Ranges of indicator bacteria reported in untreated greywater and wastewater 

Concentrations (CFU/100mL) 
Source of greywater Total coliforms Thermotolerant 

coliforms 
Escherichia 
coli 

Faecal enterococci 

Hand basin 2.4 x 102 - 2.4 x 106 N/Ab 0 -2.4 X 106 0-2 x 104 

Bath shower N/A N/A N/A 6.3 x104 
Bath/showers and hand 
basins 

25 x10 2- 1.8 x 108 0-5.0 X 103 10 -105 10 -105 

Laundry, Kitchen Sick 7 x 105 7.3 X 102 N/A N/A 

Greywaterc 102-106 102-106 10 -105 N/A 

Wastewater 106-108 106-108 106-108 104-106 
a From Gardner (2003), Koivunen et al. (2003), Lazarova et al. (2003), Ottoson and Stenstrom(2003), Birks et 
al.(2004), Gardner (2003), and FBR(2005). b N/A= not available; c Wastewater from all domestic source excluding 
the toilet and kitchen sink. 

Source: Health Canada (2010) 

 
Table 3.2: Enteric pathogens and indicators reported in faeces and raw sewagea 

Organism Numbers in faeces(per gram)  Numbers in 
sewage(per litre) 

Bacteria     
Coliforms (indicator) 107 -109  
Esteherichia  105 -1010 
Pathogenic E coli  Low 
Enterroccoi (indicator)  105 -107 
shigella 105 -109 10 -104 
Salmonella spp 104 -1011 103 -105 
clostridum perfringens(pathogen and 
indicators) 

 104 -106 

Virus     
Enterovirus 103 -107b 102 -106 
Adenoviruses 1010c 10 -104 
Norovirues 1012c 10 -104 
Rotaviruses  102 -105 
Somatic coliphages(indicator)  105 -109 
F-RNA coliphages (indicators)  105 -107 
Protozoa     
Cyptosporriduim 105 -107 0-104 
Giardia 105 -107  
Helminths     
Helminth ova   0-104 

a From Chappel et al. (1996). Chauret. (1999), Haas et al. (1999) and EPHC/NRMMC (2005). b Cell culture 
essays. c Electron microscopic observation of viral particles. 
 
Source: Health Canada (2010) 
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3.2.1.2. Hazard identification — chemical  

Chemical hazards pose a greater risk to the environment than to human health, though long term 

exposure to some chemicals may adversely affect human health in the long run (NRMMC-

EPHC, 2006). The aim of identifying chemical hazards is to safeguard the welfare of future 

generations, protect biological diversity and maintain essential ecological processes and life-

support systems. Chemical hazards may be caused by inorganic and organic chemicals, 

pesticides, potential endocrine disruptors, pharmaceuticals and disinfection by-products 

(NRMMC-EPHC, 2006).  

 

Greywater may contain salts and the most common salt is sodium chloride – conventional table 

salt. The salinity of greywater is normally not problematic but can become harmful when 

greywater is reused for irrigation. High salinity in greywater can considerably reduce the yield 

potential of irrigated crops. Greywater  also contains low levels of nutrients such as nitrogen and 

phosphorous and these are important parameters considering their nutrient value for plants, their 

relevance for natural treatment processes and their potential negative impact on the aquatic 

environment (NRMMC-EPHC, 2006). Nitrogen is widely believed to cause methemoglobinemia 

in infants who are exposed to nitrates in drinking water. Phosphorus discharges into water bodies 

is believed to cause eutrophication resulting in oxygen deprivation and fish deaths (Cantor et al. 

2000). Other chemical parameters of importance are grouped under the categories below (Morel 

and Diener, 2006): 

• endocrine disrupting chemicals;  

• pharmaceutically active compounds (drug residuals) and personal care products; and 

• complex mixtures  

 

An Australian draft of the National Guidelines for Water Recycling (NRMMC-EPHC, 2006) 

identified nine environmental hazards that should be prioritized when assessing the 

environmental risks associated with specific uses of recycled water (e.g. including agricultural, 

municipal, residential and fire control). The nine hazards are boron, cadmium, chlorine 

disinfection residuals, hydraulic loading (water), nitrogen, phosphorus, salinity, chloride and 

sodium.A screening-level risk assessment identified another set of nine hazards associated with 

http://www.lenntech.com/eutrophication-water-bodies/introduction.htm
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the use of recycled water for environmental allocation for water bodies — ammonia, aluminium, 

arsenic, copper, lead, mercury, nickel, surfactants (i.e. linear alkyl benzene sulfonates and 

alcohol ethoxylated surfactants) and zinc (NRMMC-EPHC, 2006). In properly designed and 

managed recycled water systems where reclaimed water is limited to toilet and urinal flushing, 

health hazards from these chemicals are not expected to be high because of the relatively low 

exposure to human and environment (Health Canada, 2010). However, in instances where a 

failure occurs (e.g via a cross-connection between different quality pipes) and there is direct 

ingestion of the above chemicals, the negative impact can be significant (see next section) 

 

3.2.2. Exposure assessment 

This component of risk assessment involves assessing the routes, magnitude (e.g quantity 

ingested per exposure event), frequency and duration of exposure to the hazard, and the exposed 

population, the size and nature of the exposed population (Health Canada, 2010). A complete 

exposure assessment must consider both planned and unintended uses. Unintended uses can take 

two forms: 

• deliberate misuse — for example, filling a swimming pool with recycled water supplied 

for non-drinking residential use; and 

• accidental misuse — for example, mistakenly cross-connecting different water quality 

supply pipes. 

Unintended uses can be reduced by educating stakeholders (users, plumbers, etc.) and by 

ensuring effective management processes. However, it is difficult to completely eliminate all 

forms of misuse especially accidental misuse (NRMMC-EPHC, 2006 and Health Canada, 2010). 

 

Usually, the main route of exposure to microbial and chemical hazards from recycled water is 

ingestion, including ingestion of droplets produced by sprays. Some microorganisms found in 

recycled water have the potential to cause respiratory illness (e.g. certain types of adenoviruses 

and enteroviruses) and, for these organisms, inhalation of fine aerosols (rather than droplets) may 

be a source of infection (NRMMC-EPHC, 2006). In the case of greywater used for toilet 

flushing, aerosols and droplets may also be deposited on surfaces (e.g. toilet seats) which may in 

turn be touched by users, and who may subsequently ingest through hand-to-mouth contact. 

There is also the possibility of dermal exposure. There is however a lack of evidence of the 
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health impacts through this route, and it is considered unlikely to cause significant levels of 

infection or illness in users. It is reasonable to also assume that children will take less care to 

avoid hand-to-mouth contact after touching contaminated surfaces, but there is little information 

available to quantify this potential route of exposure (Trevett et al., 2005).  

 

The Australian Guidelines (NRMMC-EPHC, 2006) suggests an average exposure from toilet 

flushing of 11 ml per person per year from aerosols. The estimated exposure volumes and 

frequencies presented in Table 3.3 were those published by the NRMMC-EPHC, (2006) and are 

considered to be conservative. Ottoson (2002) estimated water intake from inhalation of aerosols 

as a log-normal distribution (dependent on time and droplet size). York and Walker-Coleman 

(2000) suggested that for a residential irrigation scheme, average consumption can be based on 

the accidental ingestion of 1 ml of reclaimed water per person per day, while maximum limits 

can be based on the accidental ingestion of 100 ml on one occasion per year.  
 

Table 3.3: Different exposures to recycled water 

Source of exposure  Route of exposure Exposure volume (mL) Exposure 
frequency per 
person per 
year 

Comment 

Toilet flushing Aerosol 0.01 1100 Frequency is based on three 
toilet flushes per day. Aerosol 
volumes are less than those 
produced by garden irrigation. 

Cross-connection 
with drinking 
water supply  

Ingestion 1000/day 1/1000 houses  Total consumption is 
estimated to be 1.5 L per day 
of which 1L is expected to be 
consumed cold (unboiled). 
Affected individuals may 
consume water 365 days per 
year; however, only about 
1/1000 houses will be 
affected. This is likely to be a 
conservative estimate. 

Two recent reviews of drinking water consumption (Westrell et al., 2004; Mons et al., 2005) calculated volumes of 
cold (eg. unboiled) tap water consumption to be about 870ml per person per day; therefore, 1t is considered to be 
conservative. 
Source: NRMMC-EPHC (2006) 
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3.2.3. Hazard characterization 

This component of risk assessment is sometimes referred to as the dose-response 

characterization. It describes the adverse health effects that may result from exposure to a 

microorganism, toxin or chemical. When data is available, the characterization should present 

quantitative information e.g. dose–response relationship, and probability of adverse outcomes. In 

hazard characterization, exposure and health effects are described with background information 

on the pathogens existing within the specific environment (WHO, 2006). It also includes the 

range of human diseases associated with the identified pathogens (Haas et al., 1999). It focuses 

on the adverse health effects that may result from the ingestion of pathogenic microorganisms. 

This health effect varies from asymptomatic illness to different levels of acute and chronic 

disease and potential death. This relationships between doses of organisms and responses, in the 

form of incidence or likelihood of infection or illness, are obtained either from epidemiological 

investigations of outbreaks or from experimental human feeding studies (Rose et al., 1991; Haas 

et al., 1999; Haas, 2000; Teunis et al., 2004; WHO, 2006). In general, the doses associated with 

illness are much lower for viruses and protozoa than for bacteria. Ingestion of 1–10 virus 

particles or protozoan cysts can result in illness. In contrast, ingestion of 103 to more than 106 of 

bacteria (depending on the type of bacterial pathogen) might be required to cause illness. 

Shigella spp, typhoid salmonellae and enterohaemorrhagic E. coli are notable exceptions to 

these, requiring fewer organisms to cause disease (Haas et al., 1999; Hunter, 2003; Teunis et al., 

2004; WHO, 2006). An investigation of one outbreak found that average doses of E. coli 

Serotype (O157:H7) in affected people were 30–35 organisms (Teunis et al., 2004). Other 

investigations have estimated a dose of 75 organisms ingested in a swimming-related outbreak in 

the United States and an average of 23 organisms consumed in a food borne outbreak in the 

United States (Strachan et al., 2005). Dose–response models developed from human-feeding 

studies are common components of risk assessments (Haas et al., 1999). Table 3.4 provides 

dose–response information and lists the models that may be used to determine probabilities of 

infection following exposure to the reference organisms discussed above. 

 
  

http://en.wikipedia.org/wiki/Serotype
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Table 3.4: Dose-response relationships for different microorganisms 

Organism type Distribution Model Parameter 
Enteric virus (rotavirius) Beta-Poisson Pinf=1-(1+d/β)-α α=0.253 

   β=0.426 
Bacterium (campylobacter jejum) Beta-Poisson Pinf=1-(1+d/β)-α α=0.145 

   β=7.58 
Protozoan Cryptosporiduim parvum Exponential   r=0.059 
    
α and rare parameters describing probability of infection ; d=dose; β=median infective dose 
(N50)÷(21/α-1);Pinf = probability of infection model parameters as described in Table 9.15 of Haas et 
al(1999), except for cryptosporidium, where the data of Messner et al (2001) have been used. 

Source: Health Canada (2010) 

 

3.2.4. Risk characterization 

The risk characterization component of risk assessment is an integration of the three previous 

steps in order to derive a risk estimate i.e. an estimate of the likelihood and severity of the 

adverse health effects that would occur in a given population, with associated uncertainties. It is 

an integration of the information from the hazard identification, dose–response and exposure 

assessments to estimate the magnitude of risk and to evaluate variability and uncertainty (WHO, 

2006). Utilization of wastewater or greywater involves risk. Accordingly, there is a need to set a 

maximum acceptable risk level. Such thresholds involve ethical decisions and are a function of 

societal benefit-cost equations i.e. balancing the benefits of saving water versus the costs of 

infectious disease. The variables in determining the magnitude of risk for the reference 

pathogens are the concentrations of the organisms and the exposures. It is expected that the 

magnitude of risk can be assessed on two levels: 

• Maximum risk- risk in the absence of preventive measures; and 

• Tolerable or Residual risk- risk that remains after consideration of existing preventive 

measures. 

 

Maximum risk is useful for identifying high-priority risks, appropriate preventive measures, 

calculating performance targets and preparing for emergencies should preventive measures fail. 

One simple definition of tolerable risk is that it is a risk that has been widely accepted in 

environmental regulation (Hunter and Fewtrell, 2001). Tolerable risk provides an indication of 
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safety and the sustainability of a recycled water scheme or the need for additional preventive 

measures. After the consideration of preventive measures, tolerable risks are expected to be less 

than 10-6 Disability Adjusted Life Years (DALYs) per person per year (NRMMC-EPHC, 2006). 

This means that, a person’s chance of developing a disease in a year is one in a million or less 

(Hunter and Fewtrell, 2001). 

 

The DALY concept calculates both the number of years of life lost due to death (YLL) and the 

years lived with disability (YLD), and it is used to measure the healthiness of a society 

(Homedes, 1996). DALY is commonly used by the WHO and other countries (e.g. Australia) as 

an important tool to assess maximum tolerable risks by which health targets and public health 

management are decided. The WHO has set 10-6 DALYs per person-year as the maximum 

tolerable risk for water borne disease (WHO, 2006). In other words, a risk is deemed tolerable if 

one year of healthy life is lost due to water borne disease in a population of 1 million people. The 

tolerable infection risk for rotavirus was calculated according to the 10-6 target and the severity 

of the diseases it causes and it was set as 1.4 × 10-3 infections per person per year (WHO, 2006). 

This in turn means that, of the entire population, it is tolerable for about one person out of 1000 

to become infected with a rotavirus, once a year.  

 

A sample risk characterization is shown in Table 3.5. Same value estimates, which are assumed 

to be conservative, are used for exposure per event (L) and number of exposure events per year. 

The formulae used in the calculations are shown in Box B1 and the result is summarized in Table 

3.6. This example demonstrates that even with a very conservative assumption, effective water 

treatment should reduce the risk of illness and the associated disease burden to a very low level 

on an annual basis. The information from the hazard identification, dose–response and exposure 

assessments was used to estimate the magnitude of risk. A deterministic approach was used to 

calculate a health-based target for the reference pathogens in the reclaimed water.  

 

  



 66 

Table 3.5: Potential disease burdens for aerosols from toilet flushing with greywater 

 Cryptosporiduim Rotavirus E coli 0157:H7 
Organisms per liter in source watera,b 2000 8000 1.2X105 
Log reduction provided by treatmentc 5 6 6 
Exposure per event(L) 1 x 10-5 1 x 10-5 1 x 10-5 
Dose per event (L) 2 x 10-7 8.0 x 10-5 1.2 X10-5 
Number of events per year 1100 1100 1100 
Dose-response constantsd  (α) 1.8 x 10-2 2.7 x 10-1 2.1 x 10-1 
   N=1120 
Probability of infection per organism 1.8 x 10-2 2.7 x 10-1 4.8 x 10-3 
Risk of infection(Pinf) (Probability of infection per event) 3.6 x 10-9 4.6 x 10-8 6.0 X10-9 
Ratio of illness /infectione 0.7 0.88 0.53 
Risk of illness (Pill) per event 2.5x 10-9 4.0 x 10-8 3.2 x 10-9 
Risk of illness (per year, i.e, 1100 events) 2.8 x 10-6 4.4 x 10-5 3.5 X10-6 
Disease burdenf (DALY per case) 1.5 x 10-3 1.3 x 10-2 1 x 5.5-2 
Susceptibility fraction (%)g 100 6 100 
DALY per year 4.2 x 10-9 3.5 x 10-8 1.7 x 10-8 
    
a Concentrations of Cryptosporidium and rotavirus in raw sewage are taken from NRMMC-EPHC (2006); numbers 
of adenovirus are used as an indication of rotaviruses because of lack of enumeration methods for rotavirus 
b Concentration of E.coli O157:H7 is calculated assuming the 2% of the maximum number of generic E.coli 
enumerated in raw wastewater samples from Canadian cities are pathogenic (6.2 x 106; Payment et al., 2001). More 
information is needed to refine this estimate. 
c Based on log reductions shown in tables D1 and D2 (see Appendix D); hazard concentrations reduced by 
secondary treatment, coagulation, filtration and disinfection. 
d Models used to calculate risk of infection are shown in Table 3.4 
e  Havelaar and Melse (2003) 
f  DALY per case based on Havelaar and Melse (2003) 
g  The proportion of the population susceptible to developing disease following infection. The figure of 6% for 
rotavirus is based on the fact that infection is common in very young children. The 6% equates to the percentage of 
population aged less than five years. 
Source: Health Canada (2010) 

 
BOX B1 

1 Dose per event =  Source water concentration x log reduction x exposure 
2 P inf = Dose -response models and parameters are shown in Table 3.4 
3 P inf per year =  1-(1-P inf)N 

  where N=number of exposures per  year 

  For lower levels of risk, this can be approximated to: 
  P inf per year = P inf x N 

4 P ill per year = P inf per year x ratio of illness to infection 
5 DALY per year = P ill per year x DALY per case x susceptibility fraction 

Source: Health Canada (2010) 
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Health-based targets are the ‘goal-posts’ or ‘benchmarks’ that have to be met by each recycled 

water scheme to ensure that the maximum risk of 10–6 DALYs per person per year is not 

exceeded (NRMMC-EPHC, 2006). In many countries, the common forms of health-based targets 

are numerical guideline values and/or performance targets for chemical and microbiological 

hazards. In relation to chemicals, a guideline value is generally the concentration or measure of a 

water quality parameter that, based on present knowledge, does not pose any significant risk to 

the health of the consumer over a lifetime of consumption. A health based target uses the 

tolerable risk of diseases as a baseline to set specific performance targets that will reduce the risk 

of disease level. Reducing this risk thus involves reducing the levels of exposure or 

concentration of pathogens/chemicals. Health-based targets can be specified in terms of 

combinations of different components or single parameters including: 

• Health outcome: as determined by epidemiological studies, public health surveillance or 

quantitative microbiological risk assessment (QMRA): 

• Excreta or greywater quality: e.g. concentrations of viable intestinal nematode eggs and 

/or E coli; 

• Performance e.g. a performance target for removal of pathogens through a combination 

of treatment requirements, handling practices and quality standards. Performances may  

be approximated by other parameters such as storage time and temperature; and 

• Specified technology: specified treatment process, either in general or with reference to 

specific circumstances of use. 

 
Table 3.6: Tolerable risk of illness and disease burden calculated for reference pathogens 
 Cryptospordium Rotavirus E. coli 0157:H7 
Risk of illness (per year, i.e 1100 events) 7.2 x 10-7 4.5 x 10-5 3.5 x 10-6 

DALY per yeara 11 x 10-9 3.5 x 10-8 1.7 x10-8 

Source: Health Canada (2010) 

http://www.google.co.za/url?q=http://www.rivm.nl/carma/overcarma/bijeenkomsten/workshop0102202/sld001.htm&sa=U&ei=4CEdT4ftJ86EhQfYy5TADA&ved=0CBoQFjAD&usg=AFQjCNEK2sldMhlc048tyZhDYEM7wH6hfA
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3.3. Integrated Risk Management Frameworks 
Integrated risk management (IRM) involves managing risks in a proactive way, rather than 

simply reacting when problems arise. This includes identifying preventive measures to control a 

hazard, the establishment of monitoring programmes to ensure that preventive measures operate 

effectively, and the verification of the management system as it consistently provides quality 

recycled water that is fit for the intended use (i.e ‘fit for purpose’) (NRMMC-EPHC, 2006). The 

management strategies may involve all aspect of sustainability which may include social, 

engineering, economics, legal and political issues.  

 

An IRM framework is a generic risk assessment and protective management tool that can be 

applied to any form of wastewater recycling (NRMMC-EPHC, 2006). The development of IRM 

management frameworks are often dependent on many factors, including enabling legislation, 

available resources and the need or desire of the individual or community to pursue water 

recycling. Authorities in different regions have to determine the IRM framework that will best 

suit the needs of their communities. Examples of some of these frameworks are outlined in The 

WHO guidelines for Safe Use of Wastewater, Excreta and Greywater: Volume IV, Excreta and 

Greywater in Agriculture (WHO, 2006) and have been published within guidelines in Canada 

(Health Canada 2010); United States (USEPA, 2005); and Australia (NRMMC-EPHC, 2006). 

 

3.3.1 The Stockholm IRM framework 

The WHO 2006 publication titled: Water Quality — Guidelines, Standards and Health: 

Assessment of Risk and Risk Management for Water-related Infectious Disease, presents a 

harmonized IRM framework for the development of guidelines and standards for water related 

microbial hazards and involves (1) the assessment of health risks prior to setting of health 

targets; (ii) defining basic control approaches; and (iii) evaluating the impact of these combined 

approaches on public health status (Bartram et al., 2001; WHO, 2006). The framework 

encourages countries to adjust the guidelines to suit local social, cultural, economic and 

environmental circumstances and to compare the associated health risks with the risks that may 

result from microbial exposures through wastewater use, drinking-water and recreational or 

occupational water contact. This approach requires that diseases be managed as a whole package 

and not in isolation. Disease outcomes from one exposure pathway, or from one illness to 
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another, can be compared by using a common measure, such as disability adjusted life years 

(DALYs). The framework contains four major components which are: 

• Assessment of health risk (discussed extensively in section 3.2) 

• Tolerable health/health based targets (discussed extensively in section 3.2.4) 

• Health risk managements  

• Public health status. 

 

The assessment of health risk can be carried out directly via epidemiology studies or indirectly 

through quantitative microbiological risk assessment (QMRA). Epidemiology studies aim to 

assess health risks by comparing the level of diseases in exposed population (e.g a population 

using excreta/greywater in agriculture) with that in an unexposed or control population. QMRA 

is an indirect approach of risk assessment usually done in four steps (see section 3.2) which 

includes (1) Hazard identification, (2) Exposure assessment, (3) Hazard characterization, and (iv) 

risk characterization (WHO, 2006). 

 

Tolerable risks are described as the risk that remains after consideration of existing preventive 

measures while health base targets are the ‘goal-posts’ or ‘benchmarks’ that have to be met by 

each recycled water scheme to ensure that the maximum risk of 10–6 DALYs per person per year 

is not exceeded (NRMMC-EPHC, 2006). Health-based targets are numerical guideline values 

and/or performance targets for chemical and microbiological hazards. A health based target uses 

the tolerable risk of diseases as a baseline to set specific performance targets that will reduce the 

risk of disease level. Reducing this risk thus involves reducing the levels of exposure or 

concentration of pathogens/chemicals (see section 3.2.4) 

 

The Stockholm IRM framework emphasised two basic control approaches to achieving health-

based targets i.e (wastewater quality and other management objectives) in the management of 

risks associated with the use of greywater and excreta. These objectives are the basis for many of 

the frameworks developed in several countries. The different elements of the Stockholm 

framework are presented in Figure 3.2.  
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Figure 3.2: The Stockholm framework for developing harmonized guidelines for management of water-
related infectious diseases (Bartam et al., 2001) 
 

Health risk management is an aspect of risk management which may include identifying 

preventive measures to control a hazard and the establishment of monitoring programmes to 

ensure that preventive measures operate effectively. It may also include the verification of the 

management system as it consistently provides quality recycled water that is fit for the intended 

use (NRMMC-EPHC, 2006). Risk management strategies may include combinations of the 

following (WHO, 2006): 

• Addressing behaviour (e.g. hand washing with soap); 

• On-site storage treatment technologies to reduce pathogens to a level that presents a 

tolerable risk  

• Off-site additional treatment to further reduce pathogens; 

• Efficient operational processes e.g. during irrigation with greywater, and during operation 

and maintenance of facilities; 



 71 

• Exposure control methods e.g. limiting public access to the resource through the wearing 

of protective clothing such as gloves or masks when coming in contact with the resource. 

 

Public health status assists in evaluating the effectiveness of risk management interventions on 

specific health outcomes through both investigation of disease out-breaks and evaluation of 

background disease levels (WHO, 2006). Public health status can be regarded as a health 

indicator for certain communities so as to encourage dialogue about actions that can be taken to 

improve a community’s health. These indicators are not designed only for the public health 

professionals but also for members of the community who are interested in the health of their 

community. The outcome report may have indicators like death rate due to heart disease and 

cancer. 

 

3.3.2 The Canadian IRM framework 

In Canada, the IRM framework outlined in the Position Paper From source to tap: The multi-

barrier approach to safe drinking water has been used as framework for the management of 

drinking water (FPTCDW/CCME, 2004). The report contains 9 section/chapters.  The document 

begins with the introduction which is followed by the discussion of the multi- barrier approach as 

a way of ensuring drinking water supplies are kept clean, safe and reliable. It recognises that the 

drinking water system contains three main elements: the source water, the drinking water 

treatment plant, and the distribution system (Figure 3.3). 

 

Section 3 looks at the commitment to responsible use of water and the obligation of all parties 

involved in the management of drinking water. These commitments include legislative and 

policy tools, resources for research and development, financial support for infrastructure 

programs and staff training. Section 4 gives general information about risk management process 

which leads into a discussion in section 5 of hazards that can compromise a drinking water 

system. 

 

Section 6 talks about source water protection and is divided into two sections: source water 

assessments and the development of watershed/aquifer management plans. Section 7 builds on 
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the information given in Section 6 to deal with the design of drinking water treatment plants and 

distribution systems based on the quality of the source water. 

 

Section 8 is entitled "Total Quality Management" and focuses on how best to manage and 

operate the components of the water supply once the elements are in place. This section includes 

discussions on monitoring, record-keeping and reporting; laboratory selection and sampling 

protocols; operating procedures; automated systems; facility classifications and operator training; 

incident and emergency response plans; program evaluations and audits; as well as abatement 

and enforcement programs.  

 

The document ends with a discussion in Section 9 of public awareness and involvement in the 

drinking water program. It emphasis that public awareness is key to the success of any drinking 

water program (FPTCDW/CCME, 2004).  

 

According to Health Canada (2010), the above framework can also be adjusted to apply to 

reclaimed water (Health Canada 2010). The elements of the framework also centred on the two 

objectives of water quality management and other management objectives as earlier mentioned 

in the Stockholm IRM framework. The elements of this framework can be grouped under the 

following objectives: 

• Water quality (inner circle): this involves water quality monitoring and management of 

water supplies from source to tap. 

• Other management (outer circle): this involves legislative and policy frameworks, public 

involvement and awareness, guidelines, standards and objectives, and research, science 

and technology solutions. 
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Figure 3.3: Components of the multi-barrier approach (FPTCDW/CCME, 2004) 
 
The key strength of multiple barrier systems is that the limitations or failure of one or more 

barriers may be compensated for by the effective operation of the remaining barriers. This 

compensation minimizes the likelihood of contaminants passing through the entire system and 

being present in sufficient amounts to cause illness to consumers (FPTCDW/CCME, 2004). 
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3.3.3. The Australian IRM framework  

In Australia, the IRM framework used was based on the Australian Drinking Water Guidelines 

(NRMMC-EPHC, 2006). The Australian management framework consists of twelve elements of 

which nine are interrelated. An important feature of the framework is that if one measure fails, 

other measures continue to provide control. For example, in order to irrigate commercial crops 

with recycled water from a metropolitan sewage treatment plant, preventive measures designed 

to protect human health might include restrictions on the type of waste entering the plant, a range 

of treatment processes, cross-connection control at all irrigation sites and an education 

programme on irrigation practices for those using the water or working on the scheme. Also 

essential to the approach are critical control activities, procedures or processes where control can 

be applied, and that are essential for either preventing or reducing to acceptable levels, those 

hazards that pose high risks.  

 

The 12 elements are organised within four general areas, as illustrated in Figure 3.4 and listed 

below (NRMMC-EPHC, 2006): 

 Commitment to responsible use and management of recycled water. This requires the 

development of a commitment to responsible use of recycled water, and to the application 

of a preventive risk management approach to support this use. The commitment requires 

active participation of senior managers, and a supportive organisational philosophy 

within agencies responsible for operating and managing recycled water schemes. 

 

 System analysis and management:. This area requires an understanding of the entire 

recycled water system, the hazards and events that can compromise recycled water 

quality, and the preventive measures and operational control necessary for assuring safe 

and reliable use of recycled water. 

 

 Supporting requirements: This area includes basic elements of good practice, such as 

employee training, community involvement, research and development, validation of 

process efficacy, and systems for documentation and reporting. 
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 Review: This includes evaluation and audit processes to ensure that the management 

system is functioning satisfactorily. It also provides a basis for review and continuous 

improvement. 

 

 
Figure 3.4: Elements of the Australian IRM framework for the management of recycled water quality and 
use ( NHMRC-NRMMC, 2006) 
 

Looking at the 4 areas of the framework, the Australia framework can be categorized under the 

two basic objectives of water quality management and other management as categorised by the 

Stockholm IRM framework. The Australian IRM frameworks elements under system analysis 

and management may easily be categorised under Stockholm’s water quality objectives while the 

other three areas under the Australian IRM framework i.e. commitment to responsible use and 

management of recycled water, supporting requirements and review may easily be categorised 

under other management objectives. 

 

3.3.4 The USA IRM framework 

In the USA, The United States Environmental Protection Agency (U.S. EPA, 2005) developed a 

handbook that outlines a useful process for developing a decentralized wastewater IRM 

programme (USEPA, 2005). It provides an overview of key considerations for developing or 

enhancing management programs for decentralized wastewater treatment systems. Chapter 1 of 
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the document outlines some of the benefits of decentralized systems and the management 

program. Information-gathering and public outreaches are reviewed as critical factors in this 

phase to help communities identify management options that are technically feasible, cost-

effective, and protective of public health and the environment. Chapter 2 discusses the important 

role of formal leadership in the program development process. During this phase, key 

stakeholders are identified, convened, and tasked with setting program goals. Various leadership 

options are reviewed. 

 

Chapter 3 reviews necessary risk assessment and analytical work that must be undertaken to 

characterize the current situation and identify existing gaps in wastewater system management. 

Chapter 4 considers the authority needed to implement various program elements, such as 

operation and maintenance, enforcement, and permitting. Chapter 5 offers options for 

implementing a management program, including the adoption of the model programs developed 

by EPA. Integrated wastewater planning, linkages between wastewater management activities, 

and compliance with state, tribal, and federal water resource protection programs are also 

reviewed.   

 

Appendix A contains EPA decentralized wastewater treatment fact sheets. The one page fact 

sheets summarize each of the 13 principal programme elements that make up an onsite 

management program (Figure 3.5) which are: (i) public education and participation, (ii) 

planning, (iii) performance requirement, (iv) record keeping, inventories, and reporting (v) 

financial assistance (vi) site evaluation, (vii) system design (viii) construction and installation 

(ix) operation and maintenance (x) residuals management, (xi) training and 

certification/licensing (xii) inspections and monitoring (xiii) corrective action and enforcement.  

These one-page fact sheets describe various levels of management based on community needs 

along with real life examples to help guide decision-makers and are applicable to the 

management of reclaimed water systems. Each element of the programme is explained in detail 

in Table 3.7.  
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Figure 3.5: Decentralized reclaimed water management programme elements (USEPA, 2005) 
 

Based on the figure above, this IRM programme also supports the twin goals of protecting 

human health and environmental resources. They are also intended at influencing future growth 

and community character, promoting water recycling and reuse, protecting and enhancing private 

property values, and protecting against water resource diversions. Depending on the type of 

reuse activity, risks are classified into high, moderate or low in order to be able to select the 

appropriate management programme. The elements of the framework can be grouped based on 

the two Stockholm objectives of water quality and other management. The USEPA (2005) 

elements of risk management on the administration and installation of a decentralized water 

reclamation programme mostly relate to the Stockholm’s other management objective while the 

elements under operation and compliance mostly relate to Stockholm’s water quality objective.  
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Table 3.7: Decentralized wastewater management programme elements (USEPA 2005) 

Elements Purpose Basic activities Advanced activities Application to 
this study 

Administration 
Performance 
requirements 

Link treatment 
standards and relative 
risk to health and water 
resource goals 

Prescribe 
acceptable site 
characteristics and 
system types 
allowed. 

Stipulate that system performance 
must meet defined standards that 
consider water resource values, 
vulnerabilities and risks 

Prior perception 
survey to 
determine the 
pilot project site 

Planning  Consider site and 
regional conditions and 
effects on long term 
watershed and public 
health. 

Identify minimum 
lot sizes surface 
water/ground water 
separation 
distances, and 
critical areas 
requiring protection 

Monitoring and model  regional 
pollutants loads; tailor development 
patterns based on environmental 
and physical limitations; require 
clustering for large developments 

Estimating toilet 
flushing water 
consumption in 
high density 
urban buildings 
and develop a 
model for 
estimating this 
demand 

Record keeping, 
inventory and 
reporting 

Create inventory of 
systems and O & M 
logs, planning and 
reporting to oversight 
agencies 

Provide inventory 
information on all 
systems; submit 
performance reports 
to health agency 

Provide GIS-based comprehensive 
inventories including web-based 
monitoring and O & M data input 
for administrative reporting and 
watershed assessment studies. 

Investigating the 
economic 
viability of the 
implemented 
greywater system 

Financial assistance 
and funding 

Provide financial and 
legal support for 
management program. 

Implement basic 
powers, revenue-
generation fees and 
legal backup for a 
sustainable 
program. 

Initiate monthly or quarterly service 
fees; cost-share or other 
repairs/replacement program full 
financial and legal support for 
management program; equitable 
revenue base and assistance 
programs; regular reviews and 
modifications. 

 

Public education and 
participation 

Maximize public 
involvement while 
developing a 
management program 

Sponsor public 
meetings forums, 
updates and 
education programs 

Maintain public advisory review 
groups and other involvement 
opportunities in the program; 
distribute educational and other 
materials. 

Monitoring users 
perceptions and 
awareness 
sessions 

Installation 
Site evaluation Assess system site and 

relationship to other 
features(groundwater 
and surface water). 

Characterize 
landscape soils, 
ground and surface 
water location, lot 
size and other 
conditions 

asses site and cumulative watershed 
impacts groundwater mounding 
potential, long-term specific 
potential, long-term specific 
pollutant trends, and cluster system 
needs 

 

System design Ensure that system is 
appropriate for site 
watershed and 
wastewater 
characteristics. 

Prescribe a limited 
number of  design 
for specific site 
condition 

Implement codes for developing 
designs that meet performance 
requirements for each site: address 
wastewater, reuse and dispersal 
options 

Framework for 
the evaluation of 
locally available 
greywater 
treatment plants 
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Elements Purpose Basic activities Advanced activities Application to 
this study 

Construction Ensure installation as 
design: record as built 
drawings. 

Inspect installation 
prior to covering 
with soil and enter 
as built information 
into the file record. 

Provide supplemental training 
certification and licensing 
programs; provide as-built 
information into record more 
comprehensive inspection of 
installations; verify and enter as-
built information into the record. 

 

Operation and Compliance 
Operation and 
maintenance 

Ensure that systems 
perform as designed 

Initiate homeowner 
education and 
reminder programs 
that promote O&M 

Require service contracts or 
renewable revocable operating 
permits with periodic reporting; log 
service reports in database; ensure 
responsibility for O &M activities 

Monitoring users 
perceptions and 
awareness 
sessions 

Inspections and 
monitoring 

Documents provider 
performance, 
functioning of systems, 
and impacts 

Perform inspection 
prior to cover-up 
and property title 
transfer; provide 
complaint response. 

Conduct regional surface water and 
groundwater monitoring; web-
based reporting and inspections. 

 

Residual 
management 

Remove and treat 
residual; minimize 
health or 
environmental risks 
from residuals handling 
use, and dispersal 

nsure compliance 
with federal and 
state codes for 
residuals dispersal 

Conduct analysis and oversight of 
residuals program. Web-based 
reporting and inspection of 
pumping and dispersal facility 
activities; assistance in locating or 
developing residuals handling 
facilities. 

Modelling and 
simulation of 
contaminant 
transport in 
potable water 
distribution 
network 

Training and 
certification/licensing 

Promote excellence in 
site evaluation, design 
installation, O&M and 
other service provider 
areas 

Recommend use of 
only state-
licensed/certified 
service providers 

Provide supplemental training 
certification and licensing 
programs; offer continuing 
education opportunities; monitor 
performance through inspections; 
sponsor mentoring programs 

 

Corrective actions 
and enforcement 

Ensure timely 
compliance with 
applicable codes and 
performance 
requirements. 

Provide for 
complaint reporting 
under nuisance 
laws; inspection 
and prompt 
response 
procedures and 
penalties 

Deny or revoke operating permit 
until compliance measures are 
satisfied; set violation response 
protocol and legal response actions, 
including correction and liens 
against property by RME 
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3.3.5 Finding similarities and the development of a proposed IRM framework 

The development of an IRM framework is dependent on many factors, including enabling 

legislation, available resources and the need or desire of the individual or community to pursue 

water recycling (NRMMC-EPHC, 2006). According to the Stockholm’s IRM framework, the 

basis for selecting IRM strategies should be based on the combination of other management 

practices and appropriate water quality objectives. As shown in the immediate previous sections, 

these objectives to a large extent relate quite well with the elements and structures of various 

frameworks developed by different organizations and countries (i.e NRMMC-EPHC, 2006; 

USEPA, 2005; FPTCDW/CCME, 2004). Thus, the development of the proposed IRM 

framework in this study was based on these two objectives.  

 

The Stockholm’s water quality objective requires an understanding of hazards in GWR and the 

implementation of preventive measures and operational control for assuring safety and reliable 

use of greywater. This objective thus relates reasonably with the technical and environmental 

attributes of sustainability in this study. A detailed discussion and analysis of these attributes as 

they relate to the GWR implemented in this study is presented in chapters 5 and 6. 

 

The second Stockholm objective involves the implementation of other management (i.e. good 

management) practices which involves public awareness and education about GWR, building 

trust between stakeholders, and understanding the economic viability of GWR. This objective 

thus relates to the social and economic attributes of sustainability in this study. A detailed 

discussion and analysis of these attributes as they relate to GWR implemented in this study is 

presented in chapter 4 and 5.  

 

Thus, the IRM framework developed for this study comprised the following measures (see 

extract of Figure 1.1 below): 

 Social measures of risk management (Chapter 4).  

 Technical and economic measures of risk management (Chapter 5). 

 Environmental (i.e.  public health and safety) measures of risk management (Chapter 6). 
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Social measures to risk 
management.   
• Monitoring evolving 

perceptions to GWR 
• Public awareness and 

involvement 
• Analysis of the attributes 

that are important to GWR 
and understanding the 
willingness of 
beneficiaries to pay for 
some of these attributes. 

Technical and economic measures to risk 
management.   
• Estimating and modelling toilet flushing 

demand 
• Developing and applying a framework for 

GWR systems evaluation 
• Investigating the economic viability of 

GWR 

Chapter 6 

Chapter 4 

Chapter 5 

Environmental ( i.e public 
health and safety) measures to 
risk management  
• Model and simulate the 

transport of contaminants in 
potable water and human 
exposure  
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CHAPTER 4 

SOCIAL MEASURES TO RISK MANAGEMENT  

4.1 Introduction 

Public perceptions and acceptance are recognised as key elements of the success of any 

developmental scheme that has the potential to change a community’s way of life (May-Le, 

2004; World Bank, 2003). Po et al. (2004) ascribes the successes in the implementation of dual 

water reticulation systems to several factors including positive attitudes of communities towards 

reuse, and community participation in the planning and implementation of the reuse project. 

Lundqvist and Gleick (1997) indicate that major decisions made without involving local 

communities and those affected by the decisions made, are more likely to fail. Therefore in order 

to facilitate the success of a reuse project, perceptions of potential and actual respondents need to 

be investigated.  

 

This chapter reports on the social measures implemented to manage, and therefore mitigate, the 

risks associated with the implementation of GWR for toilet flushing at the pilot sites. The social 

measures carried out were the following: 

• The evaluation of perception surveys carried out on potential and actual beneficiaries of 

GWR for toilet flushing; 

• Public awareness and involvement; and  

• An analysis of the attributes that are of importance to GWR and understanding the 

willingness of beneficiaries to pay for some of these attributes.  

 

4.2 Perception survey 
4.2.1 Background 

The successful implementation of any reuse project is hinged on public acceptance (Po et al., 

2004). Numerous reuse projects have failed in the past despite initially having received 

favourable support from potential users Po et al. (2004). The California Bay water recycling 

programme in the USA had to be redesigned after strong opposition from the local community 

(Okun, 2002).  
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In many of the perception studies conducted, several factors have emerged as affecting public 

attitudes and willingness to accept water reuse schemes: Hartley (2003) identifies factors 

influencing public participation and perceptions towards recycled water use as the  information 

and context, communication and dialogue, trust and trust building, perceptions of fairness, 

motivation and commitment to participate in decision-making. Surveys carried out in Australia 

and California indicate that the foremost reasons for public willingness to use reclaimed water is 

based on their overall environmental attitude and level of trust in the local water authority (Khan 

& Gerrard, 2006; Po et al., 2004). Erickson (2004) identified health risks, psychological 

repugnance, and religion as some of the factors that have affected the acceptance of reuse. Table 

4.1 shows the levels of opposition to reclaimed water reuse from different surveys. These studies 

show how the acceptance of recycled water is dependent on its proposed uses, with minimum to 

no human contact uses (e.g. toilet flushing and irrigation) being preferred.  

 

Recent research conducted in South Africa shows that acceptance is a function of cost and the 

extent of the aridity of an area (Ilemobade et al., 2009a); the awareness about sustainability 

(Wilson and Pfaff, 2008); and trust in the service provider (Adewumi et al., 2008).  

 

Many of the above factors are confirmed by Po et al. (2004) who identified the following factors 

as influencing the acceptance of a water reuse project. (i) disgust or “Yuck”; (ii) perceptions of 

risk associated with using recycled water; (iii) the specific uses of the recycled water; (iv) the 

sources of water to be recycled; (v) the issue of choice; (vi) trust and knowledge; (vii) attitudes 

towards the environment; (viii) environmental justice issues; (ix) the cost of recycled water; and 

(x) socio-demographic factors.  

 

This section documents the evaluation of perception surveys carried out on potential and actual 

beneficiaries of GWR for toilet flushing. To achieve this, the following tasks were carried out: 

i. Perception and demographic surveys were carried out using the (Po et al., 2004) factors on 

potential beneficiaries of GWR 

ii. From the above perception surveys, the preferred locations for the pilot system were 

identified. 
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iii. After the GWR for toilet flushing system were implemented at the preferred locations, 

perception and demographic surveys were carried out on actual beneficiaries. 

iv. The perception and demographic surveys were analysed for trends highlights. 

 

Table 4.1: Opposition to different uses of recycled water in different surveys (Po et al., 2004)  

 ARCWIS 

(2002) 

N=665 
(%) 

 

Lehman, 

Milliken 

(1985) 

N=403 
(%) 

Milliken, 

Lowman 

(1983) 

N= 399 
(%) 

Bruvold 

(1981) 

N=140 
(%) 

 

Olsson al. 

(1979) 

N=244 (%) 

Kasperon 

et al.( Po 
et al. 
(2004) 
1974) 

N=400 
(%) 

Stone & 
Kable 
(1974) 

N=1000 
(%) 

Bruvold 

(1972)* 

N=972 (%) 

Drinking 74 67 63 58 54 44 46 56 

Cooking at 
home 

- 55 55 - 52 42 38 55 

Bathing at 
home 

52 38 40 - 37 - 22 37 

Washing 
clothes 

30 30 24 - 19 15 - 23 

Toilet 
flushing 

4 4 3 - 7 - 5 23 

Swimming - - - - 25 15 20 24 

Irrigated 
dairy 

 

- - - - 15 - - 14 

Irrigated 
vegetable 

 

- 9 7 21 15 16 - 14 

Irrigated 
vines 

- - - - 15 - - 13 

Orchard 
irrigation 

- - - - 10 - - 10 

Irrigation of 
alfalfa hay 

- - - - 8 - 9 8 

Home 
garden 

 

4 3 1 5 6 - 6 3 

Irrigated 
park 

- - - 4 5 - - 3 

Golf course 
irrigation 

2 - - 4 3 2 5 2 

*cited in Bruvold (1988) –this study was conducted in the US 
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4.2.2. Structure for the perception questionnaires 

The questionnaires were developed using the factors influencing perceptions as identified by Po 

et al. (2004). The first questionnaire, which solicited respondents’ perceptions to reusing 

greywater for toilet/urinal flushing prior to the greywater systems being implemented, was 

administered to the following respondents: students registered at three South African 

Universities (the universities of the Witwatersrand, Johannesburg and Cape Town). After 

identification of the pilot sites at the Universities of the Witwatersrand and Johannesburg, and 

the implementation of the GWR system, the first questionnaire was also administered to the 

beneficiaries of the systems. Thereafter, three site-specific questionnaires were designed and 

administered (see Table 4.2). The sampling size in table 4.2 was based on the minimum 

acceptable sample sizes (continuous and categorical data) presented by the following authors – 

(Krejcie and Morgan, 1970, Bartlett et al., 2001).  

 

 Questionnaire 2 followed up on some items in Questionnaire 1 and solicited respondents’ 

perceptions as regards their levels of satisfaction with the system about 3 months after 

implementation; 

 Questionnaire 3 followed up on some items in Questionnaires 1 and 2 and required that 

respondents evaluate the system about 7 months after implementation. 

 Questionnaire 4 followed up on some items in Questionnaires 1, 2 and 3 and required 

respondents to assess the system about 14 months after implementation. 

 

The first section of each questionnaire has a number of statements requiring respondents to select 

the option that is most applicable to them using the 5-point scale provided i.e. Strongly agree, 

Agree, Neutral, Disagree, and Strongly disagree (See Table 4.3). The succeeding section is 

open-ended and requests respondents to provide reasons (personal, cultural, religious or 

otherwise) why they may not use treated greywater for toilet/urinal flushing or garden watering, 

and also to make whatever comments they wish to make. The third section solicits socio-

demographic data such as age and  status at university.  
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Table 4.2: Profile of respondents  

 

 

 

 

 

 

 

Year Questionnaire Respondents Number 

2008 
Questionnaire 1 (prior to the 
implementation of the greywater 
system) 

WITS (students and staff at the School of Civil and 
Environmental Engineering, University of the 
Witwatersrand) 

253 

UJ (a random sample of students at the University of 
Johannesburg) 103 

UCT (a random sample of students from 3 
university residences – University House, Varietas 
and Forest Hill) 

104 

2009 
Questionnaire 1 (prior to the 
implementation of the greywater 
system) 

UJ (Female students residing at the proposed 
university residence and some members of the 
Student Town council) 

13 

2010 
Questionnaire 1 (immediately after 
the implementation of the greywater 
system) 

UJ (beneficiaries of the greywater reuse system) 14 

2010 
Questionnaire 1 (immediately after 
the implementation of the greywater 
system) 

WITS (a random sample of undergraduate students 
at the School of Civil and Environmental 
Engineering) 

139 

2010 Questionnaire 2 (about 3 months after 
implementation of the greywater 
system) 

WITS (a random sample of undergraduate students 
at the School of Civil and Environmental 
Engineering) 

120 

2010 Questionnaire 2 (about 3 months after 
implementation of the greywater 
system) 

UJ (beneficiaries of the greywater reuse system) 13 

2010 Questionnaire 3 (about 7 months after 
implementation of the greywater 
system) 

WITS (a random sample of undergraduate students 
at the School of Civil and Environmental 
Engineering) 

168 

2010 Questionnaire 3 (about 7 months after 
implementation of the greywater 
system) 

UJ (beneficiaries of the greywater reuse system) 15 

2011 Questionnaire 4 (about  14 months 
after  implementation of greywater 
system) 

UJ (beneficiaries of the greywater reuse system) 12 
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Table 4.3. Extract of Questionnaire 1 showing section 1 

 

  

AIM: This questionnaire aims to determine (i) perceptions to using treated greywater for toilet/urinal 
flushing or garden watering and (ii) willingness to use a dual water distribution system. Your 
responses will be confidential. 

 
To what extent do you agree with each of the following statements? Please tick (√) against the option that is 
most applicable to you using the 5-point response scale provided. 
S/N 

Statement 

St
ro

ng
ly

 a
gr

ee
 

A
gr

ee
 

N
eu

tr
al

 

D
isa

gr
ee

 

St
ro

ng
ly

 d
is

ag
re

e 

1 Using treated greywater for toilet/urinal flushing or garden watering will 
have a positive impact on the  environment 

     

2 Using treated greywater for toilet/urinal flushing or garden watering will 
make our limited drinking water resources go further 

     

3 I am comfortable using treated greywater for toilet/urinal flushing      

4 I am comfortable using treated greywater for garden watering      

5 I am comfortable using treated greywater originating from other 
buildings for toilet/urinal flushing or garden watering 

     

6 I am concerned about people getting sick from using treated greywater 
for toilet/urinal flushing 

     

7 I am concerned about people getting sick from using treated greywater 
for garden watering 

     

8 Using treated greywater for toilet/urinal flushing or garden watering is 
disgusting 

     

9 I will only be prepared to use treated greywater for toilet/urinal flushing 
or garden watering during a drought or water shortage 

     

10 I am comfortable for a dual water distribution system to be installed 
where I currently reside 

     

11 FOR STUDENTS/STAFF AT THE WITS SCHOOL OF CIVIL & 
ENV. ENG. ONLY: I am comfortable with the dual water distribution 
system that is installed at the School building 

     

12 I trust the relevant university authorities will ensure that the treated 
greywater used is safe for toilet/urinal flushing or garden watering 
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4.2.3. Analysis of perceptions 

Data from the questionnaires were entered into a Microsoft Excel worksheet with coding based 

on that shown in Appendix A5. Frequencies of responses were calculated in Microsoft Excel, 

while Statistical Package for the Social Sciences (SPSS) was used to analyse socio-demographic 

patterns and some other aspects. Open-ended responses were tabulated and grouped according to 

similarities and differences 

   

To understand patterns in the responses to the statements addressing perceptions to GWR, 

Strongly (dis)agree and (Dis) Agree responses are often merged in the results section to further 

simplify the results generated. A principal components exploratory factor analysis was carried 

out using the extraction method to examine the correlation between each statement. This was 

achieved by determining the Cronbach’s alpha (α) value amongst the statements. Cronbach’s 

alpha is commonly used to measure the extent to which multiple items of a construct belong 

together and varies from 0.0 to 1.0. It is generally accepted that a Cronbach’s alpha value above 

0.7 is an indication of good internal consistency between items (Vicente and Reis, 2008). 

 

4.2.4 Results from perception surveys  

4.2.4.1  Location of Pilot Sites 

During the administration of the first questionnaire, relevant officials decided that the University 

of Cape Town (UCT) should not participate in the implementation of the GWR systems. This 

was due to some other water saving interventions which had recently been carried out in their 

University. Therefore subsequent questionnaires were not administered after the identification of 

the location for the pilot sites. The University of Witwatersrand (WITS) and University of 

Johannesburg (UJ) were on the other hand, excited to participate and therefore, selected to host 

the GWR systems. The specific locations were the WITS School of Civil and Environmental 

Engineering (representive of a non-residential/public building), and Unit 51A, a residence unit 

within Student Town, UJ (representive of a residential building).  

 

Figure 4.1 shows the building housing the School of Civil and Environmental Engineering, 

WITS. On a peak working-day of the academic calendar, the building typically houses about 36 

staff (academic and support services) and approximately 450 students. There are 12 toilets within 
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the building: 2 male and 3 female toilets (mostly used by students) are located at the south wing 

of the building, while 5 male and 2 female toilets (mostly used by staff) are located at the north 

wing of the building. In each of the male bathrooms, there are 2 urinals. Unit 51A, UJ (Figure 

4.2) houses the second pilot greywater reuse system. Unit 51A, which houses 16 students, 

comprises of 2 floors with 2 toilets, 1 shower, 1 bath tub and 3 hand wash basins on each floor. 

 

 

 
 Figure 4.1: The entrance into the School of Civil and Environmental Engineering at WITS (left) 
 Figure 4.2: The rear view of Unit 51A, Student Town, UJ(right) 
 

4.2.4.2  Socio-demographic survey 

For the 2008 cohort of respondents, principal components exploratory factor analysis of the data 

generated from responses to the 12 statements in Table 4.3 produced 3 broad categories of 

responses: ‘Comfort levels’ (statements 1, 2, 3, 5, 10, 11, 12), ‘Concern levels’ (statements 6, 7, 

8 and 9) and ‘Other’(statement 4). The discussion below is based on the first 2 categories. The 

‘Other’ category did not statistically present any significant difference from the ‘Comfort levels’ 

category and is hence omitted from the highlighted results presented below: 
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Age groups
22 yrs and older15 - 21 yrs

C
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 (1
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3.00

2.00

1.00

411

131

• Age groups: In relation to ‘Comfort levels’, the average response of the median of the ’15-21 

yrs’ category of respondents (1.83) was slightly lower than that for the ’22 yrs and older’ 

category (2.00) (Figure 4.3 left). This implied that 50% of the ‘15-21 yrs’ were generally  

less comfortable about greywater reuse than the same percentage of the ‘22 yrs and older’. 

Thus the ‘Concern levels’ expressed by the ‘15-21 yrs’ (median of 2.50) was less than that 

expressed by the ‘22 yrs and older’ (median of 2.75) (Figure 4.3 right).  
 

Figure 4.3: Response due to age- levels of comfort (left) and levels of concern (right)  
 

• Gender: In relation to ‘Comfort levels’, the average responses of the 75th percentile of ‘Male’ 

and ‘Female’ respondents were the same (1.86). A marginal difference did however exist 

between the genders in terms of ‘Concern levels’ – the average response of the median for 

‘Female’ (2.50) was less than for the ‘Male’ (2.75). This indicated that females may be 

generally less concerned about greywater reuse than males (Figure 4.4); 
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Figure 4.4:  Responses due to gender-levels of comfort (left) and levels of concern (right) 

 

• Residence: In relation to ‘Comfort levels’, the average responses of the medians of those 

living in university residence (2.00) were higher than that for those not living in university 

residence (1.80). This was converse for ‘Concern levels’. These results showed that those not 

living in university residence were in general, more comfortable about greywater reuse than 

those living in university residence (Figure 4.5); 

 

 

 

 

 

• Gender: In relation to ‘Comfort levels’, the average responses of the 75th percentile of ‘Male’ 

and ‘Female’ respondents were the same (1.8571). A marginal difference did however exist 

between the genders in terms of ‘Concern levels’ – the average response of the median for 

‘Female’ (2.50) was less than for the ‘Male’ (2.7500). This indicated that females may be 

generally less concerned about greywater reuse than males; 

• Figure 4.5. Responses due to residence status-levels of comfort (left) and levels of concern (right) 
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• Status: In relation to ‘Comfort levels’, the average response of the 75th percentile for the 

‘Undergrad’ category (1.86) was lower than that for the ‘postgraduate students, academics 

and support staff’ category (2.14). This result which correlates positively with the age groups 

in the bullet point above, shows that the ‘Undergrad’ category of respondents who are 

typically within the age group 15-21 years, are more comfortable about greywater reuse than 

the older age groups (Figure 4.6);  

 

 

 

 

 

 

 

 
 
 
 

Figure 4.6. Responses due to status-levels of comfort (left) and levels of concern(right)  
 
• Race: In relation to ‘Comfort levels’, the ‘White’ racial category were generally more 

comfortable (median of 1.50) about greywater reuse than the ‘Asian and Coloured’ (median 

of 2.00) and ‘Black’ (median of 2.00) race groups. The ‘Black’ race group expressed more 

concern (median of 3.00) about greywater reuse than either of the other groups (Figure 4.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.7. Responses due to racial background-levels of comfort (left) and levels of concern(right)  
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4.2.4.3  Evolution of perceptions 

Questionnaires administered were analysed in order to observe the evolution of certain 

respondent perceptions. The responses of “strongly agree” and “agree” were merged together to 

become the “agreement response”, while the responses of “disagree” and “strongly disagree” 

were merged together to become the “disagreement response”. The mergers were carried out in 

order to simplify the analysis below.  

 
 Trust 

Respondents were asked the following questions: “I trust that the authorities will ensure that the 

treated greywater is safe for toilet/urinal flushing? Prior to the implementation of the GWR 

system at WITS (Figure 4.7a), 88% of respondents were in agreement that the relevant 

authorities will ensure that greywater is safe. Immediately after implementation 84% were in 

agreement; while the figure was 76%, 3 months after implementation. A marginal percentage 

decline is noticed in respondents’ trust from prior to implementation to 3 months after 

implementation. The perceptions at UJ (Figure 4.7b) shows 64% of respondent were in 

agreement with the above statement prior to implementation, 86% just after implementation, 

69% 3 months after implementation, and 83% 14 months after implementation. The distinct 

declines in the UJ response 3 months after implementation were due to certain operation 

problems experienced with the GWR system and which was immediately resolved by the project 

team. Overall, the level of trust in authorities at both universities was high (above 64%).   
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Figure 4.7a:  I trust the authorities will ensure that the treated greywater is safe for toilet/urinal flushing 
(WITS) 

 

Figure 4.7b:  I trust the authorities will ensure that the treated greywater is safe for toilet/urinal flushing (UJ) 
  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

WITS – prior WITS – immediately after WITS – About 3months after  

88% 
84% 

76% 

8% 
16% 

21% 

4% 1% 4% 

Agree Neutral Disagree

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

UJ – prior UJ – immediately after UJ – About 3 months 
after  

UJ – About 14 months 
after  

64% 

86% 

69% 

83% 

20% 14% 23% 

8% 15.60% 

0.00% 
8% 8% 

Agree Neutral Disagree



 95 

 Perceptions of risk associated with using recycled greywater 

Perceptions of risk are often related to public health issues from reusing waste water. People may 

perceive the reuse of greywater to be too risky because (i) the use of the water source is not 

natural (ii) it may be harmful to people (iii) there might be unknown future consequences (iv) 

their decision to use the water may be irreversible, and (v) the quality and safety of the water is 

not within their control. Responses to the statements “I am concerned about people getting sick 

from using treated greywater for toilet/urinal flushing” or “I am concerned about my health 

when I use the toilet that flushes with greywater” are presented below. At WITS (Figure 4.8a),  

33% of respondents were concerned and 41% unconcerned about greywater reuse for toilet 

flushing prior to implementation. The respondent concern level from WITS was also reduced to 

40% and 21% immediately after implementation, and 3 months after implementation 

respectively. At UJ however (Figure 4.8b), the percentages of the concerned, were much higher 

(average of 65% prior to the implementation than at WITS). Immediately after implementation at 

UJ in 2010, the female residents recorded a percentage of concern of 50% which was 

significantly lower than the results prior to implementation and it was later reduced to 39%, 3 

months after implementation The reduction in concern levels at both universities may have 

resulted from an increased level of confidence in the project team who regularly held awareness 

sessions with the respondents, routine maintenance and random water quality tests to ensure that 

the greywater system was safe and hygienic for their use.  Overall, the results above highlight the 

impact regular community engagement and awareness by the project team and regular 

maintenance and hygiene had on respondents trust. 
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Figure 4.8a: I am concerned about people getting sick from using treated greywater for toilet/urinal flushing 
(WITS) 
 

 

Figure 4.8b: I am concerned about people getting sick from using treated greywater for toilet/urinal flushing 
(UJ) 
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 Perceptions regarding the colour of the greywater 

Respondents were asked the following question “I am satisfied with the improvement in the 

colour of the greywater”. At WITS (Figure 4.9a), the results show an increase (from 56% to 

71% in the level of satisfaction with regards to colour of the greywater from 3 months after 

implementation to 7 months after implementation.  At UJ (Figure 4.9b), the result also shows an 

increase from 62% to 67% in the level of satisfaction from 3 months after implementation to 7 

months after implementation. After 14 months of implementation, there was a drastic reduction 

in respondent’s satisfaction to 17%.  What was noticed is that most of the respondents that were 

initially satisfied with the colour were now “neutral” about the colour issue. The latest response 

at UJ was likely due to the fact that the maintenance of the system may not have been as 

effectively carried out in comparison to when the system was initially installed.  

 

Figure  4.9a: I am satisfied with the improvement in the colour of the greywater (WITS). 
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Figure  4.9b: I am satisfied with the improvement in the colour of the greywater (UJ). 
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\ 

Figure 4.10a:  I am satisfied with the reduction in unpleasant smells emanating from the greywater toilet 
while flushing (WITS) 

 
Figure 4.10b:  I am satisfied with the reduction in unpleasant smells emanating from the greywater toilet 
while flushing (UJ) 
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 Frequency of greywater toilet use 

Respondents were asked the following question: “How often do you use the greywater toilet?”. 

At WITS, about 72% of respondent (3 and 7 month after implementation) indicate that they use 

the GWR toilets more than or equal to 50% of the time (2 out of 4 time) while at UJ these values 

were 55%,80%and 67%.3,7 and 14 month after implementation. At both sites, the above values 

show most respondents pro-action in using the toilets even though there is a visible decline in use 

at UJ. This was likely due to the ineffective maintenance mention in the previous 2 sections. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.11a: Frequency of greywater toilet use at WITS  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11b: Frequency of greywater toilet use at UJ 
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4.2.5 Summary of the evolution of perceptions 

Prior to the implementation of the pilot greywater reuse systems at the 2 sites, most of the 

respondents surveyed affirmed that the concept of greywater reuse for toilet flushing was a good 

idea that could benefit the environment. After implementation of the systems, and the problems 

and/or discomforts experienced by the respondents (e.g. turbid/foamy greywater in the toilet 

bowls often forming an unsightly ring, and unpleasant odours during flushing due to irregular 

maintenance) there was increased concern about hygiene. Surprisingly, this did not negate the 

earlier affirmation about the concept of greywater reuse, nor did it result in the reduced use of the 

greywater toilets. The pro-action of the project team in regularly allaying concerns during the 

awareness sessions and speedily rectifying reported problems is suspected to have played a 

significant role in sustaining positive perceptions amongst respondents. In essence therefore, a 

critical component that will sustain beneficiaries’ confidence in greywater reuse for toilet 

flushing (or similar interventions) and the effective functioning of these systems, will be the pro-

active and regular community engagement, awareness and maintenance/repair interventions. At 

the onset of projects of this nature, beneficiaries often need to be assured that the systems are not 

a threat to health, are hygienic, and can be reliably operated. It is the responsibility of the 

implementing authorities to guarantee this until such a time that beneficiaries are confident to 

operate the systems themselves. The following are some of the highlight on the similarity and 

difference between the University of Witwatersrand (WITS) and University of Johannesburg 

(UJ): 

 The level of trust in implementing authorities at both universities was high (above 

64%). 

 There was a reduction in concern levels at both universities which may have resulted 

from an increased in level of confidence in the project team who regularly held 

awareness sessions with the respondents, routine maintenance and water quality tests 

to ensure that the greywater system was safe and hygienic for their use.   

 There was an increase in the level of satisfaction with regards to colour at WITS with 

an increase from 56% to 71% from 3 months after implementation to 7 months after 

implementation.  At UJ, the results also show an increase from 62% to 67% in the 

level of satisfaction from 3 months after implementation to 7 months after 

implementation and a decline in satisfaction after the 14th month.  
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 At WITS there was an increase from 55% to 78% in the level of satisfaction with 

regards to smell from 3 months after implementation to 7 months after 

implementation.  At UJ the responses show an increase from 46% (3 month after 

implementation) to 80% (7 month after implementation) and a decline to 25% about 

14 month after implementation.   

 Two issues likely resulted in the decline in satisfaction as regards smell from 7 

months after implementation to 14 months after implementation. Firstly, the 

ineffective maintenance and secondly, the smell of chlorine which was used as the 

disinfectant and which many of the respondents deemed to be a persistent and 

unpleasant smell. 

 At both sites, most respondents were pro-active about the use of the greywater toilets 

even though there was a visible decline in use at UJ. This was likely due to the 

ineffective maintenance mentioned in the previous section. 

 Smell and Colour were highlighted as two attributes of greywater of importance to 

respondents at both sites. Beneficiaries’ receptivity of reuse schemes will therefore 

depend heavily on these attributes being sustainably satisfactory. Greywater systems, 

such as the one employed in this study, will therefore need to look into the 

elimination of unpleasant smells and include a final, polishing filter to reduce 

turbidity and remove scum prior to use; 

 With regards to demographics, respondents younger than 21 years were generally 

more comfortable about greywater reuse than older respondents at WITS and 

therefore should be targeted when considering greywater reuse for toilet flushing (or 

similar interventions).  
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4.3  Public awareness and involvement  
4.3.1 Background 

Public awareness and involvement is the process by which all stakeholders within a community 

are provided the opportunity to make their views known and to contribute to designing initiatives 

which will improve the targeted project/programme. Effective public involvement ensures that 

stakeholders recognize and understand the activities of a project and its guiding polices.  Public 

involvement also enhances the legitimacy of decisions made and ensures the programmes’ goals 

reflect public concerns, values and priorities (SERM 1995).  

Public participation has many components, all of which should ideally be considered within any 

project. These components may include the direct involvement of stakeholders in planning 

committees, public involvement in informational meetings through written and/or oral 

submissions, participation in community training events (such as training on a demonstration 

unit) and public involvement in the development and distribution of educational maternal, such 

as fact sheets, posters, radio adverts, brochures, and artwork (FPTCDW/CCME, 2004). This 

section highlights the public awareness and involvement programmes/events implemented within 

this study to manage/mitigate risks of failure at the GWR pilot sites. 

 

To this end the following educational and awareness activities were carried out: 

i. Several meetings were held prior to the installation of the GWR system at WITS and UJ. 

This included meetings with relevant management and maintenance personnel at WITS 

and UJ to obtain permission and inform on progress on the project.  

ii. There were several meetings held at the UJ pilot site after the implementation of the 

GWR system. These meetings were targeted at administering the perception surveys and 

providing residents’ ample opportunities to air their concerns, questions and receive 

feedback from the project team about various issues (see Figure 4.12a and b).  

iii. Awareness sessions were held with the technical staff and different student cohorts (1st - 

4th year B.Sc. civil engineering students) at the WITS GWR pilot sites shortly after the 

system was implemented. These sessions were aimed at describing the system and 

allaying fears due to the intermittent functionality of the system at the time, and the 

unpleasant odours which were emanating from within the greywater tanks due to 
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decomposing foods, fat, oils and grease that had entered into the system from the 

laboratory basins; 

iv. A school seminar on the GWR system was presented in 2010 by two 4th year B.Sc. civil 

engineering students at Wits who were conducting their investigational project on the 

GWR system. This seminar was attended by students, staff and visitors to the school and 

was part of a showcase of projects which were geared towards “greening” the school 

building; 

v. The GWR system formed part of the exhibition showcased by the school to visitors and 

potential students during its annual information days at WITS; 

vi. Size A3, A4 and A5 posters were put up within the building and bathrooms (Figures 4.13 

(a), (b) and (c). These posters help to create awareness about the GWR system and to 

inform users about how to use the system. 

vii. The GWR project was presented at the WITS 2010 university-wide postgraduate 

symposium.  

 

Figure 4.12 (a) Some of the residents of UJ Unit 51 during a meeting (b) Project team answering questions 
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Figure 4.13 (a): A5 posters placed in front of each hand basin 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 4.13 (b): A3 posters placed above toilet cisterns guiding users about how to use the system 
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Figure 4.13 (c): A3 posters placed above toilet cisterns guiding users about how to use the system 
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4.3.2. Highlights from the public awareness and involvement 

The implementation of the above public awareness and involvement programmes/events 

provided education and information to potential and actual beneficiaries of the GWR project. It 

also assisted in identifying the needs and priorities of beneficiaries of the project with respect to 

water quantity and quality. The programme/events also provided opportunities for building of 

relationships between stakeholders and beneficiaries. A significant highlight is that awareness 

and involvement assisted in identifying issues of concern and in setting up preventive measures. 

The concerns raised were recorded and addressed subsequently. Some of these concerns and 

responses are listed below: 

• Residents’ concern: the often back flow of bath and shower greywater into the ground 

floor bath and shower when released from the 1st floor.  

Project team response: the plumbing was subsequently modified to separate the 

ground and 1st floor greywater collection pipes; 

• Residents’ concern: unpleasant smells from the greywater during flushing at the 

beginning of the semester.  

Project team response: Due to the 6 week inter-semester break when the residents 

were on holiday, the greywater in the tank had gone septic. The project team had 

omitted to undertake the regular maintenance on the system prior to residents 

returning to the unit and hence the unpleasant odours in the greywater during flushing 

after residents return to the unit. Subsequent to this meeting, diversion pipes were 

introduced into the system to prevent greywater storage during periods when the 

system was not being used; 

• Residents’ concern: the effect of the greywater on feminine hygiene especially if 

there is a splash of greywater on the skin during toilet use.  

Project team response: the project team was not aware of any negative impacts on 

dermal or related health if splashes of greywater occurred during toilet use. However, 

ingestion of the greywater, if contaminated with pathogenic microorganisms, could 

compromise health. Respondents were therefore advised to observe hygiene practices 

when using the toilets that flush with greywater similar to what would typically 

happen when they use toilets that flush with municipal water; 
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• Residents’ concern: the ring of scum often seen in the greywater toilet bowl. 

Project team response; the ring of scum was often a result of either limited use of the 

greywater toilets and hence, the deposition of scum around the surface of the 

greywater within the toilet bowl or the lack of regular maintenance. The project team 

committed to undertake maintenance twice a week and encourage residents to use the 

greywater toilet as often as possible. 

• Residents’ concern: Low flushing pressure in the ground floor greywater toilet. 

Project team response: This may be a result of a blockage in the pipe supplying the 

toilet bowl and will be checked. 

 

4.4 Analysis of the attributes that are of importance to beneficiaries regarding GWR 

and understanding the willingness of beneficiaries to pay for some of these attributes. 

4.4.1  Background 

The attributes that are of importance to recycled water vary from that of drinking water and the 

extent to which they vary depends largely on the source of the water (Hurlimann and McKay, 

2007). For recycled water, these attributes can also vary from the source to the process of 

treatment and aesthetics. In order to implement successful GWR, it is therefore important to 

identify the attributes that are of importance to beneficiaries and their willingness to pay (WTP) 

for these attributes. The section below investigated beneficiaries’ attitudes to price, colour and 

odour of greywater. It also estimates WTP for some of these attribute of greywater. 

 Conjoint Analysis (CA) was used to evaluate respondents’ preferences for the above attributes 

of greywater and to also estimate WTP for these attributes. 

 

4.4.2  Methodology 

In determining the attributes to investigate in this study, the most prominent concerns  expressed 

by the pilot study beneficiaries (see section 4.2.4.3) were selected alongside attributes in 

literature (Hurlimann and McKay, 2007) deemed to be critical in recycled water use. This 

process led to the selection of the attributes of colour, odour and price. The matrix shown in 

Table 4.4 was developed based on these 3 attributes. As can be seen, price of greywater is 

expressed as a percentage of the price of drinking water.  Based on the matrix (Table 4.3) and the 
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possible attribute combinations (2x2x3=12), Table 4.5 was administered to respondents. 

Respondents were asked to rate their preference for each scenario on a scale of 1–12, where 1 

represented the least desirable preference and 12, the most desirable preference. This 

questionnaire was only administered to the UJ respondents 14 months after the greywater reuse 

system had been implemented and was not administered at WITS because of its 

inappropriateness – WITS is an academic institution where students do not pay for municipal 

services. This is in contrast to the UJ site, which is a residential unit where students are required 

to pay for services.  

Table 4.4: Attributes of recycled water and the different levels tested 

 
Note:  
Grey colour (original colour of greywater) 
Blue colour (using cistern blocks that change the grey colour to blue) 
Pleasant smell (this is as a result of using the cistern blocks)  
 
  

 

Attribute Colour (value) Odour (value) 

Tariff  per m3 (as a% of 
the price of drinking 
water) (value) 

Level Grey colour (1) Pleasant smell (1) 50 (1) 

Blue colour (2) Unpleasant smell (2) 75 (1.5) 

  100 (2) 
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Table 4.5: Possible combinations of attributes tested. 

 

 

 

S/N Colour (value) Odour (value) 

Price per m3 (as a% of 
the price of drinking 
water) 

Preference on a 
scale  of 1-12 

1 Grey colour (1) Pleasant smell (1) 50 (1)   

2 Grey colour (1) Pleasant smell (1) 75 (1.5)   

3 Grey colour (1) Pleasant smell (1) 100 (2)   

4 Grey colour (1) Unpleasant smell (2) 50 (1)   

5 Grey colour (1) Unpleasant smell (2) 75 (1.5)   

6 Grey colour (1) Unpleasant smell (2) 100 (2)   

7 Blue colour (2) Unpleasant smell (2) 50 (1)   

8 Blue colour (2) Unpleasant smell (2) 75 (1.5)   

9 Blue colour (2) Unpleasant smell (2) 100 (2)   

10 Blue colour (2) Pleasant smell (1) 50 (1)   

11 Blue colour (2) Pleasant smell (1) 75 (1.5)   

12 Blue colour (2) Pleasant smell (1) 100 (2)   
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4.4.3 Data Analysis  

Conjoint Analysis (CA) was used to evaluate respondents’ preferences for the different attributes 

of greywater and to estimate willingness to pay for these attributes. CA has been extensively 

used by marketers to assess/understand consumer attitudes to new commodities or new 

attributes/features of an existing product. CA is based on the assumption that complex decisions 

by consumers are not based on a single factor or criteria but on several factors ‘considered 

jointly’ (Hurlimann and McKay, 2007). SPSS version 16.0.1 was used in the analysis. An 

Ordinary Least Squares (OLS) method was used to estimate the coefficients and the statistical 

significance of the independent variables. The objective of an OLS CA is to produce a set of 

additive regression equations that identify each respondent's preferences amongst different 

attribute combinations. Hence, the OLS method solves for preferences using a set of dummy 

independent variables which may take a value between 0 (unimportant attribute) and 1 

(important). The model used in this study (after Hurlimann and McKay, 2007) considers the 3 

attributes of greywater –colour, smell and tariff and is expressed as:  

 

U = β1 (colour) +β2 (smell) +β3 (tariff) + ej,…………………………(4.1)  

Where U is the utility (respondent’s preference score) for a particular combination of the 3 

attributes. As shown in Table 3 (see page 109) the assigned values for β1 (colour) were 1 (grey) 

or 2 (blue); for β2 (smell), the values assigned were 1 (pleasant) or 2 (unpleasant); for β3 

(greywater tariff per m3), the values assigned were 1 (50% of the tariff for drinking water), 1.5 

(75%) or 2 (100%) and ej is the constant of the equation. 

 

To determine the least and most desirable combinations, an initial regression analysis was 

conducted on all the variables. The result from the initial regression analysis indicates the 

influence of the each attribute on the overall preference (utility) score (Table 4.6). The more 

positive or negative the coefficient, the more influence that attribute has on the overall 

preference score. Table 4.6 shows an initial coefficient of +5.27 for pleasant smell to coefficient 

0 for an unpleasant smell. This makes pleasant smell more desirable, while 2.52 for blue 

coloration and 0 coefficient for grayish colour. While greywater tariff per m3 – 1 for (50% of the 

tariff for drinking water) has the value of 0, (75% of the tariff for drinking water) has the value -

0.54 and or -1.29 (100% of the tariff for drinking water). After the initial regression analysis 



 112 

conducted, a dummy variable regression analysis was conducted on the most desirable 

combination and the least desirable combination. The result of the two separate dummy variable 

regression analysis gives two separate intercept which makes the values of the two constants. 

 
Table 4.6:  Results of initial regression analysis. 

  Coefficients 

Intercept 3.18 

Greyish colour 0.00 

Blue colour 2.53 

Pleasant smell 5.28 

Unpleasant smell 0.00 

0.5 0.00 

0.75 -0.54 

1 -1.29 

 

 

Willingness to pay (WTP) was calculated using equation 2 (Hurlimann and McKay, 2007): 

WTP = βc/βy………………………………………………………………. (4.2) 

Where βc represents the coefficient of an attribute (either colour or smell) and βy represents the 

coefficient for greywater tariff. For example, if coefficient of the colour attribute is 5.2 and the 

coefficient of the greywater tariff is 2.0, then WTP would equal 2.6. 
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4.4.4 Results  

4.4.4.1   Analysis of the attributes of importance to beneficiaries regarding GWR 

The results from the regression analysis carried out are reported in Table 4.7. The coefficients 

indicate the influence of the specific attribute on the overall preference (utility) score. The more 

positive or negative the coefficient, the more influence that attribute has on the overall 

preference score. The coefficient of determination, R2 shows how good the fit is between the 

data and the least square model. The closer R2 is to 100% the better the fit. In the analysis of the 

most desirable and least desirable preferences, an R2 value of 69% was obtained. The largest 

coefficient (in this case = 5.28 and related to smell) had the largest influence on respondents’ 

preference followed by the blue colour (2.53) and then the price of greywater which was 50% of 

the price of drinking water (1.29). A change in smell of greywater from pleasant to unpleasant (-

5.28) will have a significantly larger influence on respondents’ preference than changes in colour 

(-2.53) or price (-0.54 for 75% the price of drinking water or -1.29 for 100% the price of 

drinking water). Hence, of the 3 attributes-odour, colour and price, odour had the largest 

influence while price influenced respondents’ preference the least. As expected, respondents 

preferred the cheapest price for GWR (i.e 50% water).  

 

These results conform to the report by Hurliman and Mckay (2007) which determined a 

relatively small coefficient on the price of the resource in comparison to the other greywater 

attributes, for different uses of greywater including garden watering, toilet flushing and cloth 

washing.  
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Table 4.7:  Results of dummy variable regression analysis. 

Variable  Coefficient for the most desirable 
preference 

Coefficient for the least 
desirable preference 

Multiple R 0.83 0.83 

R2 0.69 0.69 

Adjusted  R2 0.66 0.68 

Standard error 2.03 2.03 

Observation (12 attribute x 12 respondents) 144 144 

Constant, ej 1.89 10.99 

Blue Colour 2.53 0 

Grey Colour 0 -2.53 

Pleasant smell 5.28 0 

Unpleasant smell 0 -5.28 

Price (50% of drinking water ) 1.29 0 

Price (75%of drinking water) 0.75 -0.54 

Price (100% of drinking water) 0 -1.29 
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4.4.5 A practical example of the application of the model. 

A practical example based on what one of the respondents selected as her preferences is shown 

in Table 4.8. 

Table 4.8: A sample of a respondent’s preferences  

 

 From Table 4.7, the most desirable preference was given a value of 12 (the combination of Blue 

colour, Pleasant smell and 50% of the price of drinking water). By inserting the coefficient of the 

variables in Table 4.6, we can compare if the model predicts the respondent’s most desirable 

attribute properly.  

 

In testing for the most desirable attribute combination, the value of the coefficients that are 

presented in Table 4.7 under the most desirable column are given the value of 1 while the 

attributes not selected are allocated a 0 value. 

 

 

 

S/N Colour (value) Odour (value) 

Price per m3 (as a % of 
the price of drinking 
water) 

Respondent’s 
preference on a 
scale  of 1-12 

1 Grey colour (1) Pleasant smell (1) 50 (1)  9 

2 Grey colour (1) Pleasant smell (1) 75 (1.5)  8 

3 Grey colour (1) Pleasant smell (1) 100 (2)  7 

4 Grey colour (1) Unpleasant smell (2) 50 (1)  3 

5 Grey colour (1) Unpleasant smell (2) 75 (1.5)  2 

6 Grey colour (1) Unpleasant smell (2) 100 (2)  1 

7 Blue colour (2) Unpleasant smell (2) 50 (1)  6 

8 Blue colour (2) Unpleasant smell (2) 75 (1.5)  5 

9 Blue colour (2) Unpleasant smell (2) 100 (2)  4 

10 Blue colour (2) Pleasant smell (1) 50 (1)  12 

11 Blue colour (2) Pleasant smell (1) 75 (1.5)  11 

12 Blue colour (2) Pleasant smell (1) 100 (2)  10 
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Therefore the combination preference =  Constant  +   {(1) * coefficient of blue colour} + {(0) * 

coefficient of grey colour} + {(1) * coefficient of pleasant smell} + {(0) * coefficient of 

unpleasant smell} + {(1) * (coefficient of 50% of the price of drinking water)} + {(1) * 

(coefficient of 75% of the price of drinking water)} + {(0)*(coefficient of 100% of the price of 

drinking water)} 

  

= 1.89   +   {(2.53) * 1} + {(0) * 1} + {(5.28) * 1} + {(0) * (1)} + {(1.29) * (1)} + {(0.75) * (1)} 

+ {(0)*(1)} = 11.73 

 

The result shows a value of 11.73. When compared to 12, the most desirable preference shown in 

Table 4.7, there is an error of 0.27 (12 - 11.73). This error is negligible when considering the 

total range of preferences between 1 and 12 and thus, this model is a good predictor of the 

selected respondent’s attribute of importance. 

 

In testing for the least desirable attribute combination, the value of the coefficients that are 

presented in Table 4.67 under the least desirable column, are given the value of 1 while the 

attributes not selected are allocated a 0 value.  

 

Therefore the combination preference = Constant+   {(0) * coefficient of blue colour} + {(1) * 

coefficient of grey colour} + {(0) * coefficient of pleasant smell} + {(1) * coefficient of 

unpleasant smell} + {(0) * (coefficient of 50% of the price of drinking water)} + {(1) * 

(coefficient of 75% of the price of drinking water)} + {(1)*( coefficient of 100% of the price of 

drinking water)} 

 

= 10.99   +   {(0) * 0} + {(-2.53) * 1} + {(0) * 1} + {(-5.28) * 1} + {(0) * (1)} + {(-0.54) * (1)} 

+ {(-1.29)*(1)} = 1.35 

 

The result shows a value of 1.35. When compared to 1, the least desirable preference shown in 

Table 4.7, there is an error of 0.35 (1 - 1.35). This error is negligible when considering the total 
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range of preferences between 1 and 12 and thus, this model is a good predictor of the selected 

respondent’s attribute of importance. 

 

4.4.6  Analysis of Willingness to Pay  

Even though the greywater being supplied to the student’s residence is not provided at a cost, 

WTP is an important consideration that attempts to establish if consumers will be willing to pay 

the cost required for GWR. Therefore, the willingness to pay (WTP) was estimated by dividing 

the coefficients of either colour or odour by the coefficient of price. The values displayed in 

Table 4.9 were converted to South African Rand from the coefficient values based on the 

2010/11 commercial/domestic price of drinking water (R10.59/KL) by Johannesburg Water.  
 
Table 4.9: WTP for various water attributes. 

Attribute 

Coefficient value βc/βy (Coefficient of 
odour/colour divided by coefficient of 
price for the most desirable 
preference) 

Rand /m3  (Coefficient x 2010/11 price of 
drinking water) 

Odour 4.1 R0.43 

Colour 2.0 R0.21 

 
 
From the result above, it shows that respondents were rather willing to spend about double the 

amount of money to improve the colour on the smell of the greywater. This is evident in the 

WTP values determined for smell (4.1) in comparison to colour (2.0). 

 

4.7.4.  Summary 

This section reports on the social measures that were implemented to manage and therefore 

mitigate the risks associated with the implementation of GWR for toilet flushing at the pilot sites. 

These measures were: (i) the evaluation of perception surveys carried out on potential and actual 

beneficiaries of GWR for toilet flushing; (ii) public awareness and involvement and; (iii) an 

analysis of the attributes that are important to beneficiaries regarding GWR and understanding 

the willingness of beneficiaries to pay for some of this attributes. The following are the key 

findings from the measures carried out in this section of the study:  
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(i) The evaluation of perceptions:  

 The level of trust in authorities at both universities was high (above 64%). There was a 

reduction in concern levels at both universities which may have resulted from an increase 

in the level of confidence in the project team who regularly held awareness sessions with 

respondents, routine maintenance and water quality tests to ensure that the greywater 

system was safe and hygienic for their use.   

 There was an increase in the levels of satisfaction with regards to colour at WITS with an 

increase from 56% to 71% from 3 months after implementation to 7 months after 

implementation.  At UJ, the results also show an increase from 62% to 67% in the levels 

of satisfaction from 3 months after implementation to 7 months after implementation and 

a decline in satisfaction after 14 months.  

 At WITS, there was an increase from 55% to 78% in the levels of satisfaction with 

regards to smell from 3 months after implementation to 7 months after implementation.  

At UJ the responses show an increase from 46% (3 month after implementation) to 80% 

(7 month after implementation) and a decline to 25% about 14 month after 

implementation. Two issues likely resulted in this decline of the levels of satisfaction 

from 7 months after implementation to 14 months after implementation. Firstly, the 

ineffective maintenance at the time and secondly, the smell of chlorine which was used as 

the disinfectant and which many of the respondents deemed to be a persistent and 

unpleasant smell. 

 At both sites, most respondents were generally pro-active in the implementation and use 

of the greywater toilets even though there is a visible decline in use at UJ. This was likely 

due to the ineffective maintenance at the time of the survey. 

Overall, the results highlight the positive impact regular community engagement and awareness 

by the project team and regular maintenance had on respondents. 

 

(ii) Public awareness and involvement: During these process, the majors concerns raised by 

respondents were recorded and addressed promptly. Some of these concerns helped to identify 

some attributes of importance regarding the smooth running of the GWR system. Some of the 

concerns raised included the following: 
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 the back-up of bath and shower greywater into the ground floor bath and shower when 

released from the 1st floor just after the system was implemented;  

 unpleasant smells from the greywater during flushing after a long holiday with no 

maintenance carried out on the system prior to respondents’ resumption at the residence;  

 the effect of the disinfected greywater on feminine hygiene while using the greywater 

toilet especially if there is a splash during toilet use; 

 the ring of scum/soap often seen in the greywater toilet bowl; and 

 low flushing pressure in the ground floor greywater toilet.  

 

(iii) The major highlights of the attributes of importance and estimation of respondents’ willingness 

to pay for greywater included: 

 The positive and largest coefficient (5.28) determined for the smell attribute of greywater 

indicated that respondents viewed a pleasant smell as the most important attribute of the 

greywater. Second to smell was the colour of greywater with a coefficient of 2.52. This 

indicated that the elimination of unpleasant smells and the addition of cistern blocks to 

colour the greywater blue will increase the preference for GWR.  

 Respondents were rather willing to spend about double the amount of money to improve 

the colour on the smell of the greywater. This is evident in the WTP values determined 

for smell (4.1) in comparison to colour (2.0). 
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CHAPTER 5 

TECHNICAL AND ECONOMIC MEASURES TO RISK MANAGEMENT 
Reclaimed greywater is expected to fulfil four main criteria (hygienic safety, aesthetics, 

environmental tolerance and economic feasibility) (Nolde, 1999; Li et al., 2009). To achieve 

these criteria, technical and economic measures in addition to others must be put in place to 

manage and therefore mitigate the risks associated with the implementation of GWR for toilet 

flushing. According to Adewumi (2011) and WHO (2006), technical and economic factors are 

important in determining the viability of a new reuse scheme. Technical measures include the 

selection and implementation of the most suitable technology, determining downstream demand 

and preventive measures put in place to ensure that the use of recycled water in dual pipe 

schemes is environmentally sustainable (USEPA, 2005). While economic measures involve 

employing various instruments to determine the economic feasibility of a proposed project, 

economic measures also consider the optimal use of limited resources, opportunities foregone by 

their uses and comparisons between competing options (WHO, 2006). 

 

This section reports on the technical and economic measures put in place to manage and 

therefore mitigate the risks of failure associated with the implementation of GWR for toilet 

flushing. These measures include: 

 The development of a framework for evaluating locally available greywater package 

plants. No tool such as this currently exists. With increased greywater reuse within South 

Africa and beyond, and the plethora of treatment units purporting to produce suitable 

toilet flushing effluent from greywater/wastewater, the framework developed offers 

decision-makers with an efficient tool for evaluating a diversity of plants and selecting 

the most suited for specific requirements; 

 The estimation of toilet flushing water consumption in high density urban buildings and 

consequently, develop a model for this purpose; and 

 The evaluation of the costs and benefits of GWR at the two pilot sites – WITs and UJ. 

This evaluation is timely as no South African study exists that investigates the economics 

associated with greywater reuse for toilet flushing within a residential nor non-residential 

building. 
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5.1  Development of a framework for evaluating locally available greywater package 
plants 
5.1.1. Background 

The selection of the most appropriate or the best available technology in the execution of any 

GWR project will most likely play a key role in its operational reliability, the suitability of 

recycled water quality and a reduction in the health risks associated with GWR. 

To optimally facilitate this selection of technology for the pilot projects employed in this study, a 

framework to evaluate available greywater treatment package plants was developed. The 

development of the framework involved the following tasks: 

1. A literature review to understand greywater treatment technologies typically employed in 

small package plants. Small package plants are used to treat wastewater in small 

communities or in individual households with about 4 to 1000 PE. They commonly treat 

flows between 37.85 m3/day and 946.25 m3/day;  

2. The population of a database of locally available small package plants;   

3. The development of a framework for evaluating these plants with the treated greywater 

effluent specifically for toilet flushing. 

 

5.1.2.  Review of greywater treatment technologies 

Various authors have worked extensively on the review of greywater treatment options and 

application among them are Pidou et al, (2007) and Li et al (2009).  In Li et al. (2009), greywater 

treatment for unrestricted, non-drinking urban reuses (including toilet flushing) typically requires 

four processes – pre-treatment, chemical/biological treatment, filtration and disinfection (if 

restricted reuse, disinfection may be excluded). Individually, these processes cannot guarantee 

adequate treatment. Figure 5.1 shows Li et al.’s (2009) proposed treatment flow for different 

qualities of greywater for urban non-drinking purposes. 
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Figure 5.1: Greywater treatment for non-drinking urban reuses (Li et al., 2009). 
 

Common amongst most locally available package plants, is the actual treatment of greywater 

using biological processes i.e. suspended growth or fixed film/growth systems (details of these 

processes are presented below) (Hulsman & Swartz, 1993, Laas & Botha, 2004 and Gaydon et 

al., 2006). There are however other package plants that make use of reverse osmosis, chemical 

treatment or other processes. The sections below briefly describe the suspended growth and fixed 

film/growth systems.  

 

5.1.2.1  Suspended Growth Systems 

(Elisabeth V. Münch, 2005) 

 

The activated sludge process is the best-known suspended growth system. This process is most 

commonly used in large, centralised and small wastewater treatment plants. Activated sludge is 

the process whereby sewage is aerated (using atmospheric air or pure oxygen) and agitated in 

order to promote the growth of beneficial microorganisms that break down organic matter and 



 123 

produce biological floc. The process usually occurs in two distinct phases (and therefore vessels) 

i.e. aeration followed by settling. Four processes are common in all activated sludge systems: 

 A flocculent, aerated slurry of microorganisms (which is called “mixed liquor suspended 

solids” or MLSS) is utilized in a bioreactor to remove soluble and particulate organic matter 

from the influent wastewater;  

 Quiescent settling is used to remove the MLSS from the process stream, producing an 

effluent that is low in organic matter and suspended solids;  

 Settled solids are recycled as a concentrated slurry from the clarifier back to the bioreactor;  

 Excess MLSS (sludge or biosolids) is discharged from the bioreactor in order to control the 

solids retention time to a desired period.  

 

There are several process variations to the activated sludge process- the main ones are briefly 

described below:  

 

a) Sequencing Batch Reactor (SBR)  

The SBR process is a fill-and-draw-type reactor that acts as an aeration basin and final clarifier. 

Wastewater and biomass are mixed and allowed to react over several hours in the presence of air. 

At a certain point in time, the aeration is turned off and the mixed liquor in the reactor is allowed 

to settle, thereby removing the need for a separate settling tank.  

 

After a short settling period, the clarified treated effluent is discharged via a specially designed 

decanter. One design variant is that the decanter follows the liquid level down enabling only the 

clear, treated effluent to be discharged, while the biomass continues to settle. Once the treated 

effluent is discharged, the reactor is available to treat a further batch of wastewater. This way, 

the process operates on a batch treatment principle, with the operations being sequenced. Two or 

more SBRs are usually operated in parallel unless a sewage storage tank is used.  

 

b) Membrane Bioreactor (MBR)  

A membrane bioreactor (MBR) combines the process of a suspended growth system and 

membrane filtration into a single unit process. MBRs replace the need for a separate filtration 

process attached to a suspended growth system with a treatment process that has a small 
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footprint and produces high quality effluent with low TSS, BOD, and turbidity. There are two 

basic configurations for a MBR: a submerged membrane bioreactor that immerses the membrane 

within the suspended growth system (Figure 5.2) and a bioreactor with an external membrane 

unit. MBRs are usually of a modular design such that it may be located indoors or outdoors and 

it may be for large or small scale applications. The suitability of MBRs for GWR is strongly 

influenced by its capability to remove both biological contaminants without the use of chemicals 

for treatment. MBRs provide a proven and reliable treatment technology, having been used 

extensively in Japan for greywater and blackwater reuse systems.  

 

Control of membrane fouling is an important operational issue. If fouling is not controlled, 

membranes will wear quicker, and there will be increased energy costs and decreased effluent 

quality. MBRs have higher capital (which includes expensive membranes) and energy 

(chemicals required for membrane cleaning) costs than other treatment systems. It may be 

susceptible to shock loading of organic matter and bactericidal chemicals. 

 

Figure 5.2: An immersed membrane bioreactor (Jefferson et al., 2001) 
 

5.1.2.2  Fixed Film/Growth Systems 

(Elisabeth V. Münch, 2005) 

 

Fixed film/growth systems are systems where the microorganisms are attached to a surface that 

is exposed to the water. Many locally available package plants employ a purely fixed film system 

or a combination of fixed film and suspended growth systems. Two variations of this system are 

briefly described below:  
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a) Rotating Biological Contractor (RBC)  

The Rotating Biological Contactor (RBC) (Figure 5.3) supports a biologically active film, or 

biomass, of aerobic micro-organisms. An RBC treatment system typically comprises of three 

units:  

 Primary Zone: A settlement/sedimentation tank where wastewater enters and solids settle and 

are stored for subsequent removal. Anaerobic digestion may take place in this tank.  

 RBC: This is where the biological treatment takes place. Numerous discs attached to a shaft 

form the RBC assembly, which is partially submerged in a trough to create an environment 

for an active biomass to develop on the media. The RBC is slowly rotated to bring the 

biomass into alternate contact with the wastewater and atmospheric oxygen.  

 Final Clarification Zone/clearing tank: Here settlement of the mixed liquor and excess 

biomass takes place.  
 

 

Figure 5.3: A rotating biological contactor (Jefferson et al., 2001) 
 

b) Submerged Aerated Filter (SAF)  

The SAF process can be described as follows: Settled wastewater is fed from a primary tank into 

the first stage of a reactor at a controlled rate, where it is mixed with the aerated bulk liquid 

already present. Air is introduced into the reactor through a fine bubble diffuser system at the 

base of each chamber. A uniquely structured media is suspended over the fine bubble membrane 

diffuser to provide optimized contact between the oxygen-rich wastewater and the biomass.  

 

With a high surface area to volume ratio, the media supports a biologically active film of micro-

organisms, to treat the wastewater by using oxygen from the air provided. Manufactured from 
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lightweight vacuum-formed PVC sheets (for example), bonded together to form packs, the media 

can easily be removed for maintenance.  

 

When the oxygen-rich wastewater comes into contact with the biomass attached to the surface of 

the media, organic pollutants are broken down by the biomass. The flow of air can be controlled 

to optimize the levels of dissolved oxygen within the reactor, ensuring that the process is energy 

efficient.  

 

5.1.3.  The range of locally available greywater package plants for toilet flushing 

The range of locally available on-site greywater and wastewater treatment units that exist locally 

and whose effluent has been advertised as suitable for toilet flushing is presented in Appendix 

B1. Information on these plants was obtained from the following sources: 

 Guidebook for the selection of small water treatment system for potable water supply to 

small communities. WRC report no TT 319/07. (Swartz et al., 2007); 

 Evaluation of sewage treatment package plants for rural, peri-urban and community use. 

WRC report no. 1539/1/06. (Gaydon et al., 2006). 

 The Global Directory for Environmental Technology (The Green Pages, 2009).  

 

Detailed information on each of the package plants was obtained by requesting specific 

information from manufacturers/suppliers using performance criteria obtained from the 

documents above. Manufacturers/suppliers were typically contacted as follows: 

1. A letter was drafted explaining the project and requesting plant specific information using 

a questionnaire (Appendix B2); 

2. This letter and questionnaire was faxed or emailed to the relevant contact personnel and 

telephone calls were made to confirm receipt and request responses. 30 manufacturers 

were originally collated, 25 were sent questionnaires and 10 responded. Table 5.1 

presents the summary of the 10 locally available greywater/wastewater treatment package 

plants and the key element in the selection process. 

 

 

  

http://www.eco-web.com/
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Table 5.1: Summaries of the 10 locally available greywater/wastewater package plants and the key elements in the selection process 
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Table 5.1 (continued): Summaries of the 10 locally available greywater/wastewater package plants and the key elements in the selection process 
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5.1.4.  Framework for the evaluation of greywater reuse package plants 

5.1.4.1.  Performance criteria for evaluating package plants and standards/guidelines 

The performance criteria used in the framework for the evaluation of the 10 package plants were 

obtained from the following standard/guideline documents: 

 

1. The Water Act No 36 of 1998 (DWAF, 1998) 

2. The Official Journal of the European Union (2005). 

3. Landcom’s WSUD strategy (2003) (Appendix B3).  

4. The USEPA Code of Practice for Wastewater Treatment Systems for single Houses (PE < 

10) (Appendix B4) (USEPA, 2007).  

5. National and international wastewater quality guidelines in Surendran & Wheatley (1998)  

 

5.1.4.2 The framework, weights and scoring range 

The framework for evaluating package plants for greywater/wastewater recycling for toilet 

flushing is shown in Table 5.3. Specific references for the evaluation of each criterion are 

included on the framework. 

 

The weights employed in the framework are based on the average weights obtained by 

Ilemobade et al. (2009a). Ilemobade et al. (2009a) developed these weights based on decision-

makers ranking of key issues to be considered when assessing the feasibility of implementing a 

dual water reticulation system in South Africa (Table 5.2). For the purpose of this report, the 

three key issues, confirmed by the literature in sections 5.2.2 and 5.2.3 are technical/engineering, 

public health and safety, and economics. 
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Table 5.2. Decision-makers ranking of key issues to be considered when assessing the feasibility of 

implementing a dual water reticulation system (Ilemobade et al., 2009a) 

 Key issues Decision-makers ranking Weight 
Technical / Engineering 1 1.00 

Public health and safety 2 1.13 

Economics 3 1.26 

Social acceptance 4 1.93 

Legislation 5 2.13 

Organisational capacity 6 2.40 

Public education 7 2.43 

 

Within the framework, the process of evaluating package plants is as follows: 

 Criteria within each of the key issues are scored using a scale of 0 (low), 1(moderate) and 

2(high) 

 The score for each criterion is multiplied by the weight of the key issue to obtain a weighted 

real score 

 For each key issue, the weighted mean of the real scores is calculated 

 For the framework, the aggregate of the weighted mean of the real scores is calculated. This 

aggregate ranges between 0.00 (most preferred package plant) and 6.78 (the least preferred 

package plant) 
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Table 5.3. Framework for evaluating greywater treatment plants for toilet flushing 

CRITERIA SCORES WEIGHT LITERATURE 
REFERENCE 0 1 2 

TECHNICAL KEY ISSUE 
Treatment 
Technology 

Secondary and 
tertiary 
treatment 

 Primary 
Treatment only/ 
no info 

  1.00 Li et al 2009 

Pre-treatment 
and storage 

Yes No / no info   1.00 Li et al 2009 

Disinfection Yes No / no info   1.00 Li et al 2009 
Operating 
range (kl/d) 

0.5-100 (Covers 
a wide range 4-
500 PE) 

0.5-10 
(household) 

10-100(clustered  
development<= 
500 PE) / no info 

1.00 Landcom's WSUD strategy 
(2003)  

Footprint (m²) 1.2-124 (Covers 
a wide range 4-
500 PE) 

1.2 to 3 
(household) 

3-124(clustered  
development<= 
500 PE) / no info 

1.00 Landcom's WSUD strategy 
(2003)  

Life cycle 
(years) 

>= 25 25 to 15 < 15 / no info 1.00 EPA Code of Practice for 
single houses (2007) and 
WRC report No 1539/1/06 

Level of 
operator skill 

Low Moderate High / no info 1.00 EPA Code of Practice for 
single houses (2007) and 
WRC report No 1539/1/06 

Ease to upgrade Yes No / no info   1.00 EPA Code of Practice for 
single houses (2007) and 
WRC report No 1539/1/06 

WEIGHTED MEAN OF REAL SCORES  
ECONOMIC KEY ISSUE 
Cost (Rand) < 50 000 50 000 -100 000 > 100 000 / no 

info 
1.26 Landcom's WSUD strategy 

(2003)  
Operating cost 
(Rand/year) 

< 5000 5000 to 10 000 >10 000 / no 
info 

1.26 Landcom's WSUD strategy 
(2003)  

WEIGHTED MEAN OF REAL SCORES  
PUBLIC SAFETY AND SAFETY (I.E.  WATER QUALITY) KEY ISSUE 
BOD (mg/l) <= 10 > 10 / no info   1.13 USA, EPA Standard 
COD (mg/l) < 75 > 75 / no info   1.13 DWAF (1998); Prathapar 

et al (2005) 
Total 
Suspended 
Solids (mg/l) 

< 30 > 30 / no info   1.13 German Standard  

Turbidity 
(NTU) 

<= 2 > 2 / no info   1.13 USA, EPA Standard 

Free chlorine 
(mg/l) 

>= 1 <1 / no info   1.13 USA, EPA Standard 

PH 6 to 9 no info   1.13 DWAF (1998); USA, EPA 
Standard 

Total Coliform Non detected Detected / no 
info 

  1.13 USA, EPA Standard 

E.Coli Non detected Detected / no 
info 

  1.13 DWAF (1998); USA, EPA 
Standard 

WEIGHTED MEAN OF REAL SCORES  
AGGREGATE OF THE WEIGHTED MEAN OF REAL SCORES  
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5.1.5.  Results and discussion 

Table 5.4 represents the results of our evaluation of the 10 locally available greywater / 

wastewater treatment package plants.  
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Table 5.4: Results of the evaluation of ten greywater/wastewater treatment package plants with effluent for toilet flushing 
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Most manufacturers/suppliers of package plants contacted for information concerning their 

products responded by sending leaflets with little information on treated effluent quality. 

Hence, where no responses were given to specific criteria, the highest score was assigned. 

The final score is the aggregate of the weighted mean real score of the three key issues. 

 

a) Technical  

The Technical key issue refers to the treatment technology employed by the package plant. 

 Package plants 1, 2 and 3 scored the lowest in this key issue. Most of their treatment is 

biological followed by disinfection;  

 Manufacturers of package plants 6 and 7 did not specifically mention whether the treated 

effluents of their plants could be used for toilet flushing. However, the effluents may be 

used for toilet flushing as their quality parameters are within DWAF (1998) and 

international guidelines;  

 Package plant 7 can only treat effluent produced by not more than 35 people; and 

 An advantage of package plants 1 and 3 is that they cover a wide operating range i.e. 

from household level to clustered developments. 

 

b) Economic 

Cost determines if a package plant will be affordable. Cost is directly related to the treatment 

technology employed. Hence, the more complex the treatment process, the more expensive 

the package plant will likely be. Actual costs were obtained for Package plants 1, 2, 3, 4, 6 

and 8.  

 Package plants 1, 2, and 4 score the lowest in this key issue; 

 Package plant 2, which includes a pump chamber, pump, sieve, plumbing retrofitting and 

installation,  costs the least with a range of between R8,000 and R12,000 per toilet.;  

 Costs of operating the above units depend on local circumstances (e.g. disinfection and 

electricity). 
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c) Public health and safety (i.e. water quality) 

Public health and safety was evaluated using the quality of the treated effluent released from 

each package plant. Information from several manufacturers/suppliers was lacking in this 

regard. This may be because there is limited information regarding most package plants in 

this regard or for some reason, manufacturers/suppliers were being cautious in releasing such 

information. 

 

 Package plants 3,5 and 1 scored the lowest in this key issue; 

 Package plant 6 does not specifically mention that its plant’s treated effluent can be used 

for toilet flushing. However, their effluent may be used for toilet flushing as quality 

parameters are within DWAF (1998) and international guidelines 

 Treated effluent from a Package plant 3 was analysed. The presence of the above water 

quality parameters were negligible; 

 

5.1.6.  Preferred greywater treatment package plant based on the aggregate of the 

weighted mean of the real scores 

There is no simple formula for selecting a package plant because of the trade-offs that need to 

be made between the three key issues i.e. technical, economics and public health and safety.  

 

 Package plants 1, 2 and 3 achieved the lowest scores in the framework and are hence, the 

most favoured for the pilot project: 

 Package plant 3: 

 Sensitive to influent quality. Hence, a drastic change in influent quality would 

negatively affect effluent quality; 

 Aesthetic, compact, automated  and its effluent  can also be used for irrigation; 

 Three times the cost of  package plants 1 and 2; 

 

a. Package plant 2:  

 Uses a filter/sieve with disinfection cubes and can easily be programmed to ensure 

that treated greywater is not stored in the pump chambers for more than 24 hours – 
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thereby reducing the possibility of pathogen growth. Failure to ensure this will likely 

result in the growth of bacteria; 

 Package plant 2 costs  the lowest among the three; 

 Indigenous technology; 

 

b. Package plant 1: 

 The plant with the most favourable score on the framework; 

 Indigenous technology; 

 Water quality parameters were evaluated based on information provided by the 

manufacturer/supplier; 

 

5.1.7 The Water Rhapsody Conservation System 

After the extensive investigation into the locally available greywater technologies, Water 

Rhapsody Conservation Systems emerged from Section 5.1.6 as the preferred system 

appropriate for the two pilot sites (UJ and WITS). The selection was based on the fact that it 

was cheap, rugged, functional and easy to change/upgrade if and when necessary. A 

schematic diagram of the original greywater system is shown in Figure 5.3.  Greywater is 

collected from 12 bathroom hand basins and 2 laboratory basins within the building1. After 

collection, the greywater passes through two 2mm sieves2 in series which are housed in a 

cylindrical pipe3 (Figure 5.4(b)) and is disinfected using 200g Sanni Tabs4a (chlorine/bromine 

tablets) (Figure 5.4(c)) which are inserted into the sieves once a week. The filtered greywater 

is then stored within a 200 litre greywater tank5 which houses 2 submersible pumps (each 

pump is connected to a toilet – a male toilet on the ground floor and a female toilet (Figure 

5.4 (d)) on the first floor). When pressed, the bell switch6 (Figure 5.4 (d)), which is attached 

to the wall close to the toilet cistern, activates the pump it is connected to and conveys the 

sieved greywater into the toilet bowls7for flushing. A second tank8, situated close to the 

greywater storage tank, stores municipal water and provides a back-up water supply to the 

greywater tank when greywater drops below a prescribed level. An overflow pipe connected 

to the tank conveys excess greywater to the sewer13a. 
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Figure 5.3. The original Water Rhapsody greywater reuse system 
 

   

Figure 5.4 (a) The installed greywater (collection, sieving, pumping and storage backup) system (b) The 2 
No. 2mm sieves used to sieve the greywater (c) Samples of the 200g Sanni Tabs (d) The female toilet 
connected to the greywater system 
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5.1.8.  The modified greywater reuse system at WITS. 

Some issues/highlights that crept up just before and after installation of the system and in 

some instances, required the original greywater reuse system (shown in Figure 5.3) to be 

modified include (Ilemobade et al.,2012): 

i. Weekly, blue or green toilet cistern blocks4b (Figure 5.5) were inserted into the sieves. 

This was done in order to provide an aesthetic greywater colour; 

  

 

 

 

 
Figure 5.5. Cistern blocks used to colour the greywater  
 

ii. An additional back-up measure was provided (Figure 5.6) - The toilet cistern9 which 

previously used municipal water supply was not disconnected – it was simply turned off 

using a valve10. Hence, in the event of greywater supply failure, the municipal supply 

may be turned on at the valve and the toilet will revert to its former use; 

 

 

 

 

 

 

 

 

 
Figure 5.6. Additional backup measure in the event of greywater supply failure 
 

iii. Unknowingly, the lab basins were used for washing dishes and disposing cleaning fluids. 

Unfortunately, this introduced foods, cleaning chemicals and dirt, fats and oils into the 

sieves (Figure 5.7) and greywater tank and resulted in unpleasant greywater odours and 

colour. When this problem was identified, posters were placed near the sink and an 

10 

9 

4b 
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awareness session was held within the school. In addition, sink strainers were installed as 

a first barrier to trap food and other materials from finding their way into the greywater 

system. Initially, this made a significant difference to the physical quality (colour and 

smell) of the greywater; 

    

Figure 5.7. The sieves a few days before and after the awareness session 
 

iv. Despite the steps above, foods, fats, etc continually entered into the greywater system and 

consequently, all the laboratory basins were disconnected from the greywater system. 

This made a significant difference to the quality of the greywater (see Figure 5.8); 

 

Figure 5.8. The sieves after disconnection of the laboratory hand basins 
v. To improve the disinfection of the greywater, inline chlorine capsules were installed 

(Figure 5.9); 
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Figure 5.9. Inline chlorinators installed to improve disinfection of the greywater  
 

vi. A diversion12 was introduced to allow the greywater system to be shut down during major 

maintenance actions or university holidays. The diversion conveys the greywater to the 

sewer without it passing through the greywater system and thus prevents greywater 

retention in the tank for long periods of time.  

vii. An additional overflow pipe13b to the sewer was added to the system in the event that a 

blockage occurred in the filter during operation. 

Based on the above, the original Water Rhapsody greywater reuse system (Figure 5.3) was 

modified to become Figure 5.10. 

 

 

 

 
 
 
Figure 5.10. The modified and current greywater reuse system for toilet flushing at the School of Civil 
and Environmental Engineering, WITS 
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5.1.9.  The modified greywater reuse system at UJ 

The greywater system, which was similar in construction to the greywater system installed at 

WITS, had the following modifications (Figure 5.11): 

 Initially, greywater was sourced from the 2 showers, 2 baths and 6 hand basins within 

the unit. Subsequently, due to water quality problems, the hand basins were 

disconnected; 

 A rainwater harvesting system was installed as the primary water supply backup to 

the greywater tank. Prior to greywater implementation, the rainwater gutters were 

already implemented at UJ. It therefore seemed a waste not to use rainwater since it 

could function as a primary back-up to the greywater tank. Municipal potable water 

therefore became the secondary water backup into the greywater system; 

 The greywater tanks and filters were buried in the soil in the enclosure behind the unit 

as the unit did not have a basement below the bathrooms as was the case at WITS; 

The schematic of the current greywater system at Unit 51A is shown below. 

 

 

 

 

 

 

 
Figure 5.11. Schematic of the greywater system for toilet flushing at Unit 51, Student Town, UJ 
 

1Greywater collection from 2 bath tubs and 2 showers within the unit 
3The cylindrical pipe housing the two 2mm sieves in series 
4bCistern blocks inserted weekly into the sieves to provide colour to the greywater 
5The 200 litre greywater tank 
6The bell switch  
7The toilet bowl which flushes with disinfected greywater 
8Potable water backup to the rainwater tank 
9The greywater toilet cistern which is retained to ensure the toilet can revert to potable water flush if there is 
greywater supply failure; 
11The chlorinators which provide disinfection to the raw greywater  
12The diversion to allow the greywater system to be maintained or shut down during university holidays 
13An overflow pipe from the greywater tank to the sewer 
14A rainwater harvesting system providing supplemental water to the greywater tank 
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5.1.10.  Conclusion  

This section presents a valuable and holistic tool for evaluating locally available GWR 

technologies for toilet flushing in South Africa as it became evident that there were no simple 

formulas for selecting a technology due to the trade-offs that had to be made between the 

three key evaluation criteria i.e. technical, economics and public health. Three package plants 

rated lowest in the framework and are hence, the most favoured for the pilot project 

treatment. The Water Rhapsody Conservation Systems emerged as the most appropriate 

system out of the three package plants for the two pilot sites (UJ and WITS). The selection 

was based on the fact that it was cheap, rugged, functional and easy to change/upgrade if and 

when necessary. Some modifications were made to the original greywater system, due to 

some issues/highlights that crept up before and after installation of the original greywater 

system. After the several modifications, a significant difference was observed in the 

aesthetics and quality of the greywater at the two pilot sites.  
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5.2 Development of a model to estimate historical toilet flushing demands within non-
residential buildings 
5.2.1 Background 

Water systems must be appropriately sized in order to cater for expected demands. The same 

holds true for GWR systems which can fail technically if the implemented system is 

incapable, due to under-design, to meet expected demand. On the other hand, over-design of 

the GWR system would imply failure, not in the system’s ability to meet demands but in the 

waste of resources used to provide excess capacity that will not be optimally used 

(Summerfelt, 1996). 

 

To mitigate this potential area of failure in respect of GWR systems, this section generates 

and analyses toilet flushing data at WITS and presents a regression model for estimating 

toilet flushing demand based on various influencing parameters. In planning for greywater 

reuse for toilet flushing therefore, this model will be  valuable in scientifically determining 

historical toilet flushing demand within a facility as long as data on the independent variables 

(i.e. bulk water demand, rainfall, max temperature and min temperature) are available.  

 

5.2.2 Methodology 

5.2.2.1   Logging toilet flushing water demand 

Toilet flushing water demand data was collected at the WITS School of Civil and 

Environmental Engineering over a period of 6 months (from the 21st of May 2009 to the 20th 

of November 2009) prior to the installation of the greywater treatment unit. A displacement 

counter (Figure 5.12) was installed in each toilet cistern next to the float. Each time a toilet 

was flushed, the counter recorded an additional digit. The frequency of toilet flushes was 

recorded at three hour intervals between 06h00 and 18h00 and six hour intervals between 

18h00 and 06h00. Each toilet was labelled for proper identification. Climatic data and data 

relating to the university’s academic calendar were also collected/recorded for the same 

period as the water data.  
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Figure 5.12: A displacement counter installed within a toilet cistern 
 
Due to the tediousness of manually logging toilet flushes and the repeated failures of some of 

the counters due to interaction with moisture within the toilet cisterns, an electronic data 

logger was subsequently purchased and installed to log toilet flushes (Figure 5.13). The 

electronic data loggers measure voltage across 2 probes - positive and negative. These probes 

are placed within the cistern (Figure 5.14). When the probes are submerged in water, a 

voltage reading is read across the probes. When the toilet is flushed and the water level 

within the cistern drops, the probes, which are no longer immersed in the water, are exposed 

and an approximate zero reading is read. These loggers can be programmed to measure 

voltage drops of durations between 1 second and 12 hours and can store up to 32,510 

readings. A zero voltage reading is regarded as a single flush even though this may not be the 

case at all times e.g. when the cistern takes longer to fill than the programmed logging 

duration of data, a logger may record more than 1 flush. Detailed specifications for the logger 

are shown in Table 5.4. 

 

In order to ensure unrestricted access, the data loggers were placed in a box within the service 

area behind the toilet cubicles (Figure 5.15). To download data, a logger is connected to a 

computer and data is imported into Microsoft Excel® (Figure 5.16). 

Figure 5.13: A data logger   Figure 5.14: Setup of the loggers within the cisterns 
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Table 5.4: Detailed specifications of the Lascar Electronics Voltage USB Data Logger (EL-USB-3) 

 

 
 

 

Figure 5.15: The data loggers within a box        Figure 5.16: Downloading data from a 
logger 

For consistency with the measurement of greywater toilet flushing, data was sorted hourly 

(Figure 5.17).  

Figure 5.17: Sorting of toilet flushing data – at 18:29:00 on 2009/05/08, the value of ‘1’ under the column 
‘flushes’ represents 1 toilet flush.  
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5.2.2.2. Logging bulk water demand 

Bulk water demand at WITS was measured using a data logger connected to the bulk water 

meter (Figure 5.18a and Figure 5.18b). The logger was programmed to read 0.5 litres for 

every pulse sent out by the bulk water meter. Each time the logger receives a pulse, it 

automatically produces a data set that can be exported into Microsoft Excel® (Figure 5.19).  

 

Figure 5.18a: One of the WITS water meters Figure 5.18b: Downloading data from the water meter 

 

 

Figure 5.19: Bulk water demand data generated by the logger 
 

  



 
 

 

147 

5.2.2.3. Collation and analysis of data 

Toilet flushing demand (in litres per day) was calculated by multiplying total flushes by an 

average cistern volume of 9 litres. Two different analyses were conducted on the data. The 

first analysis was conducted on the data logged prior to the installation of the electronic data 

loggers and bulk water meters i.e. 6 months between May and November, 2009 using the 

manual displacement counters. The analysis was conducted to determine the effect of some 

socio-economic factors (such as gender, status, time of day, and academic calendar) on toilet 

flushing demand. The university academic calendar was separated into 3 - teaching periods 

(1), study break (2) and examination period (3) (Table 5.5). A model was developed using 

this data but was deficient in estimating toilet flushing demand because it relied on some 

parameters which could not be quantified. 
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Table 5.5: Extract of data showing the different socio-economic parameters influencing toilet flushing 

• TDM = Total Demand for toilet flushing in the Male toilets 
• TDF= Total Demand for toilet flushing in the Female toilets 
• UG = Total Demand for toilet flushing by Undergraduate students 
• PG/ST= Total Demand for toilet flushing by Postgraduate students and staff 
• T1 (06h00), T2 (09h00), T3 (12h00), T4 (15h00), T5 (18h00) and T6 (00h00) = Total Demand for toilet flushing at the respective times 
• Period = 1 (Teaching Period), 2 (Study Break) and 3 (Examination Period).  

   Flushing 
demand 

Temperature Academic 
Calendar 

Demand based on 
gender 

Demand 
based  on 

status 

Time 

Month DAY DEMAND Max 

 

Min 

 

Average 

 

PERIOD TDM TDF UG PG/ST T1 T2 T3 T4 T5 T6 
May 21 1647 15 6 10.5 1 1044 603 900 747 2 34 73 41 27 6 
May 22 1566 17 7 12 1 792 774 891 675 1 34 71 46 20 2 
May 23 459 20 7 13.5 2 351 108 135 324 0 16 18 11 6 0 
May 24 342 18 10 14 2 234 108 162 180 0 8 11 11 6 2 
May 25 1062 20 8 14 2 432 630 486 576 0 21 42 33 16 6 
May 26 1143 20 10 15 2 738 405 702 441 0 29 55 24 17 2 
May 27 1350 20 6 13 2 720 630 810 540 0 34 42 38 20 16 
May 28 1368 20 10 15 3 711 657 765 603 1 34 49 46 20 2 
May 29 729 20 11 15.5 3 468 261 207 522 0 23 28 14 10 6 
May 30 261 18 5 11.5 3 108 153 153 108 0 3 14 2 5 5 
May 31 171 16 5 10.5 3 136 36 99 72 0 6 3 3 4 3 
June 1 1125 16 5 10.5 3 531 594 450 675 0 24 43 36 16 6 
June 2 819 20 5 12.5 3 405 414 378 441 2 22 45 20 1 1 
June 3 1377 18 11 14.5 3 693 684 747 630 1 34 50 46 20 2 
June 4 1134 20 10 15 3 621 513 459 675 1 31 53 30 10 1 
June 5 945 20 7 13.5 3 585 360 423 522 1 28 42 16 12 6 
June 6 252 20 11 15.5 3 135 117 144 108 0 3 13 2 5 5 
June 7 162 20 5 12.5 3 126 36 99 63 0 4 3 4 4 3 
June 8 1026 12 7 9.5 3 432 594 450 576 0 21 38 33 16 6 

http://www.wunderground.com/history/airport/FAJS/2009/5/21/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/22/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/23/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/24/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/25/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/26/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/27/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/28/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/29/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/30/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/5/31/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/1/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/2/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/3/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/4/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/5/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/6/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/7/DailyHistory.html
http://www.wunderground.com/history/airport/FAJS/2009/6/8/DailyHistory.html
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Due to the deficiency in the data and therefore previous model, a second analysis and 

modelling exercise was conducted in 2011 based on data collected between March – 

December 2010 with the aim of estimating toilet flushing demand using other variables i.e. 

bulk water demand, rainfall and temperature. These parameters are selected based on 

literature which showed the direct relationship between climatic data, such as rainfall and 

temperature and residential water demand (Babel et al., 2007). Typically, with increased 

temperature, there is an increase in water demand. Table 5.6 shows an extract of data used in 

this exercise. 

 

Table 5.6: Extract of data showing the different climatic parameters generated and toilet flushing and 

bulk demand 

Months                                                                                                                   Toilet 
flushing 
demand 
(liters) 

Daily bulk 
water 
demand  
(liters) 

Rainfall                 
(mm) 

Max 
temperature 

(0C) 

Min 
temperature 

(0C) 

Average 
temperature 

(0C) 

March-10 461.32 2794.25 118.50 26.40 14.80 20.60 
April-10 546.30 5302.17 113.90 22.10 12.20 17.15 
May-10 351.00 5856.94 16.50 21.30 8.30 14.80 
June-10 220.50 4208.83 0.00 18.60 2.90 10.75 
July-10 395.71 3951.33 0.00 18.00 4.10 11.05 

August-10 367.84 4696.29 0.00 22.10 5.20 13.65 
September-10 409.20 5404.83 0.00 26.60 9.60 18.10 

October-10 405.00 4060.32 41.50 28.10 12.50 20.30 
November-10 398.70 3749.00 69.50 26.80 14.00 20.40 
December-10 100.16 1720.61 173.90 27.10 14.90 21.00 
 

5.2.2.4. Modelling toilet flushing water demand 

The methodology employed in this section consisted of 3 steps. Firstly, the data was plotted 

in order to preliminarily visualize trends in the data. The second step involved finding a 

statistical relationship between two random variables or two sets of data. This process is 

referred to as correlation of dependence. The relationship between the two data sets was 

determined using correlation coefficients, often denoted by ρ or r. The more common of the 

two coefficients is the Pearson correlation coefficient (ρ) with a range of between -1 and +1. 

The value of the correlation coefficient represents the level of relationship and the statistical 

significance of each independent variable in relation with the dependent variable (e.g. 0.7 

represents a strong positive correlation while -0.7 represent a strong negative correlation).   

Lastly, a stepwise regression analysis was carried out on the data using the Statistical 

Package for the Social Sciences (SPSS® 10.1) for Windows®. The stepwise regression 

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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involves the combination of two approaches: (1) Forward selection, which involves starting 

with no variables in the model, trying out the variables one by one and including them if they 

are 'statistically significant' and; (2) Backward elimination, which involves starting with all 

candidate variables and testing them one by one for statistical significance, deleting any that 

are not significant.  

 

5.2.3 Results and discussion 

5.2.3.1   Results of preliminary analysis 

For toilet flushing demand which was logged from March 2010 to December 2010, the bulk 

water demand ranged from 1729 l/d to 5856 l/d while toilet flushing water demand from 10 

of the 12 toilets ranged from 150 l/d to 500 l/d. This resulted in toilet flushing demand 

comprising 2.6 – 8.5% of bulk water demand. The reason for the small percentage in toilet 

flushing demand can be attributed to fact that the modeling exercise was conducted in the 

academic building which consists of laboratories and offices. Other demands such as the 

water consumed by the laboratory most especially the concrete laboratory and the water 

flume in the hydraulic lab may consume larger percentage of the water in the building.  

Another reason for such a small percentage is that the two month data that were compared to 

determine the water savings were done during an off peak period within the building. 

 

5.2.3.2.   Correlation between toilet flushing demand, climatic and demographic data 

Table 5.6 shows the results of the correlation analysis between toilet flushing demand, 

temperature, rainfall and bulk water demand. The results show a strong correlation between 

bulk water demand and toilet flushing demand  i.e. bulk water demand is a very good preditor 

of toilet flushing demand.  For other variables, the correlation is not significant. The effects 

of muilti-collinearity were also studied in order to produce a stable regression equation. The 

muilti –collinearity test showed that there is high corelation between average temperture and 

minmum and max temperture thus, the average temperature was removed from the regression 

model varibles (Table 5.7). 
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Table 5.7: Correlation between toilet flushing demand, climatic and demographic data 

 

5.2.3.3.   The model for estimating toilet flushing demand 

The analysis carried out immediately above is summarised in Table 5.8. The regression 

model which estimates toilet flushing demand is shown in equation 5.1. The first predictor in 

equation 5.1 is bulk water demand (BWD) and is the first predictor as a result of the high 

correlation value of 0.512 with the flushing demand (Table 5.7). This is followed by rainfall 

(R), maximum temperature (MaxT), and minimum temperature (MinT). From the column of 

‘R2 change’ in Table 5.8, the R2 change value for BWD is 0.512 and indicates that 51.2% of 

the variance for toilet flushing demand is explained by the daily bulk water demand (BWD). 

This is followed by rainfall (R) which explains 5% of the variance in toilet flushing demand 

while maximum temperature and minimum temperature explain 1% in flushing demand 

respectively.  

 

Toilet flushing Demand = 642.13 + 0.03BWD -2.19R - 36.25MaxT - 57.66MinT … (5.1) 
 
  

 Toilet 
flushing 
demand 

Daily 
demand 

Rainfall Max 
temperature 

Min 
temperature 

Average 
temperature 

Toilet Flushing 
demand 

1.00      

Daily 
Bulkwater 
demand 

0.52 1.00     

Rainfall -0.15 -0.66 1.00    

Max 
temperature 

0.02 -0.38 0.51 1.00   

Min 
temperature 

0.13 -0.45 0.82 0.85 1.00  

Average 
temperature 

0.08 -0.43 0.71 0.95 0.97 1.00 
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Table 5.8: Table showing coefficients of the independent variables for the regression model 

No of Observations R2 Adj R2 Std error F-value Sig.F 
10 0.58 0.04 108.58 1.70 0.31 
  Coefficients R2 change F change t Stat P-value 
Intercept 642.13   1.134 0.308 
Daily bulkwater demand (BWD)  0.03 0.512 104.53 0.669 0.533 
Rainfall (R) -2.19 0.05 68.73 -1.170 0.295 
Max temperature (MaxT) -36.25 0.01 6.62 -1.285 0.255 
Min temperature (MinT) 57.66 0.01 3.53 1.617 0.167 
 
5.2.3.4.   Plot of actual and fitted values 

Figure 5.20 shows the graphs of the actual/measured and the fitted/estimated values. The 

actual data points are represented by the blue line with the “x” data points while the fitted 

data points are represented by the yellow line with the solid “o” data points. The accuracy of 

the estimated values generated by the regression model is shown by the similarity in the trend 

exhibited by the two lines. 

 

 
 
Figure 5.20:  Plot of actual and fitted values for toilet flushing water demand. 
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5.2.4. Summary 

This section presents a regression model (equation 5.1) that estimates toilet flushing demand 

based on bulk water demand (BWD), rainfall (R), maximum temperature (MaxT) and 

minimum temperature (MinT) measured between March and December 2010 at WITS. This 

exercise was aimed at developing a model that will assist in the determination of historical 

toilet flushing demand based on the availability of historical data on the independent 

variables within the model. Therefore, in planning for greywater reuse for toilet flushing, 

equation 5.1 will assist decision-makers determine historical toilet flushing volumes within 

academic buildings and thus be better informed as to the potential savings in potable water 

used for toilet flushing and thus costs, if reuse is be implemented. In summary therefore, if 

toilet flushing volumes can be calculated, potential drinking water savings can be estimated 

and the decision can be made whether to implement or not to implement greywater reuse. 
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5.3. The costs and benefits of GWR at the WITS (academic) and UJ (residential) 
buildings. 
5.3.1 Background 

 It is important to undertake an economic analysis of a reuse project as it forms a major part 

of the feasibility study and thus, equips decision makers to make correct judgements on the 

implementation of reuse projects. The economic analysis evaluates the benefits of a project 

from its investments over a determined planning horizon (WHO, 2006). This analysis 

therefore assists to mitigate the failure of a GWR project from an investment and returns 

perspective.  

 

This section presents the investigation that was carried out to determine the spectrum of costs 

(economical and environmental) and benefits (economical and environmental) that could be 

achieved through GWR for toilet flushing at WITS and UJ. A Cost-Benefit analysis was 

performed over a 20 year design life by calculating the Net Present Value (NPV), Cost-

Benefit ratio and Payback period. Economical costs were calculated based on the capital and 

recurrent expenditure on the GWR system while environmental costs were calculated using 

the Disability Adjusted Life Year index (Liang and van Dijk, 2008) which quantifies in 

currency terms, the impact of the system on human health. The economical benefit was 

calculated based on the potable water saved from GWR while the environmental benefit was 

quantified based on the savings achieved through GWR from reducing the quantity of sewage 

requiring treatment. 

 

5.3.2 Methodology 

5.3.2.1  Determination of the potable water saved due to greywater reuse 

Potable water saved due to GWR was calculated by logging demand for toilet flushing over 2 

similar months before and after GWR implementation. The ‘after’ value was then subtracted 

from the ‘before’ value to obtain the potable water saved.  

 

The average potable water saved due to GWR in 2 of the 12 toilets at WITS amounted to 137 

litres per day (Table 5.9). This was due to the potable water demand and therefore savings 

calculated for the months of November and December 2009 and 2010, which fall within the 

off-peak months on the WITS academic calendar. The average potable water saved was then 

multiplied by an estimated peak factor of 3 to achieve the potable water savings estimated for 
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peak academic periods (=412 litres per day). The logic behind the estimation is that in 

November /December the occupation of the building is predominantly by postgraduate 

students and staff which is about 30 percent of the total population. Hence, during the peak 

period, the total population is expected to include undergraduate students with an average 

demand increase to a factor of 3 therefore; a peak factor of 3 is used.  

 

The potable water saved at UJ due to GWR in 2 of the 4 toilets amounted to 72.69 litres per 

day (Table 5.10). Using a peak factor of 2, the estimated savings amounted to 145 litres per 

day for August and September 2010 which typically fall within the peak period of the UJ 

academic calendar. The potable water saved was then calculated using the 2010 

Johannesburg Water (the water service provider) potable water price of R10.58 per kiloliter. 

This price was projected to increase by 10% per annum over 20 years. 
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Table 5.9: Potable water saved due to GWR for flushing in 2 toilets at the School of Civil and Environmental Engineering, WITS 

 

Note: GWR system was implemented in March 2010. 

 

 

 Method of Logging  Month 
and Year 

Monthly 
toilet 
flushing 
consumption 
(litres) 

No of 
days 
logged 

Average 
potable water 
consumption 
for toilet 
flushing per 
day (litres) 

No of 
toilets 
logged 

Average 
potable water 
consumption 
per day from 
Nov  to Dec 
2009 for 12 
toilets (litres) 

Average potable 
water 
consumption per 
day from Nov  to 
Dec 2010 for 10 
toilets (litres) 

Difference in 
potable water 
savings per day 
where method 
of logging was 
similar (litres) 

Peak (x3) 
potable 
water saved 
per day 
where 
method of 
logging was 
similar 
(litres) 

Electronic Nov-09 18 162 30 605 12  
 

      

Dec-09 6 804 31 219 12 412       

Mar-10 14 301 22 650 10        

Apr-10 16 389 30 546 10         

May-10 10 881 31 351 10    
 
 
 
 
 
 
 

    

Jun-10 6 615 30 221 10        

Jul-10 12 267 31 396 10        

Aug-10 11 403 31 368 10        

Sep-10 12 276 30 409 10        

Oct-10 12 555 31 405 10        

Nov-10 7 695 20 385 10       

Dec-10 5 130 31 165 10   275 137 412 
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Table 5.10: Potable water saved due to GWR for flushing in 2 toilets at Unit 51A, Student Town, UJ. 

Note: GWR was implemented in May2010.

Logging 
methodology 

Month Monthly 
toilet 
flushing 
consumptio
n (litres) 

No of days 
logged 

Average 
potable water 
consumption 
for toilet 
flushing per 
day (litres) 

No of 
toilets 
logged 

Average 
potable water 
consumption 
per day from 
Aug to Sept 
2009 for 4 
toilets (litres) 

Average potable 
water 
consumption per 
day from Aug to 
Sept 2010 for 2 
toilets (litres) 

Difference in 
potable water 
consumption 
per day over 
Aug and Sept 
2009 (before 
GWR) and 
Aug and Sept 
2010 (after 
GWR) and 
where method 
of logging was 
similar (litres) 

Peak (x2) 
potable 
water saved 
per day 
where 
method of 
logging was 
similar 
(litres) 

Electronic Aug-09 6678 22 607.09 4  
599.26 

  72.69 145 
Sep-09 6210 21 591.43 4       
Mar-10 3780 15 252.00 4         
Apr-10 4725 30 157.5 4         
May-10 7704 28 275.14 4         
Jun-10 1809 13 139.15 2         
Jul-10 9810 22 445.91 2         
Aug-10 16821 28 600.75 2    

526.58 
    

Sep-10 6786 15 452.4 2       
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5.3.2.2 Determination of the costs and benefits of greywater reuse   

a) Economical costs  

In general, the economic costs for a GWR system include: (1) the design cost and local 

government permit fee, if applicable, (2) purchase and installation costs; and (3) operation 

and maintenance costs. The installation costs which would include materials and labour 

which would be site and system specific; the operation and maintenance costs would include 

costs of energy needed for treatment and conveyance, maintenance personnel, spare parts, 

and disinfectants. The energy consumed in pumping treated greywater to the toilet bowl 

amounted to approximately R3 per month. This value was calculated using meters which 

logged energy consumption at the pumps. Tables 5.11 and 5.12 summarize the capital and 

recurrent costs over a 20 year GWR system design life at the WITS and UJ buildings 

assuming a 5% annual increase. 
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Table 5.11: Capital and recurrent costs for the WITS greywater reuse system over a 20-year design life 

 

Table 5.12: Capital and recurrent costs for the UJ greywater reuse system over a 20-year design life 

Cost items 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 
Cost of the greywater 
treatment unit (R) 

-
38,200                                       

Electricity consumption (R) 
-36 -47 -61 -79 -87 -96 -105 -116 -127 -140 -154 -170 -186 -205 -226 -248 -273 -300 -330 -363 

Chlorine (R) 
-800 -840 -882 -926 -972 -1,021 

-
1,072 

-
1,126 

-
1,182 

-
1,241 

-
1,303 

-
1,368 

-
1,437 

-
1,509 

-
1,584 

-
1,663 

-
1,746 

-
1,834 

-
1,925 

-
2,022 

Cistern blocks (R) 
-360 -378 -397 -417 -438 -459 -482 -507 -532 -558 -586 -616 -647 -679 -713 -748 -786 -825 -866 -910 

Service agreement (R) 
-7,200                                       

Pump replacement (R) 
                    

-
7,787                   

Cost of the rain water 
harvesting system (R) -9,300                                       
Total (R) -

55,896 -1,265 
-

1,340 
-

1,422 
-

1,497 -1,576 
-

1,660 
-

1,748 
-

1,841 
-

1,940 
-

9,831 
-

2,154 
-

2,270 
-

2,392 
-

2,522 
-

2,660 
-

2,805 
-

2,959 
-

3,122 
-

3,295 

 

Table 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 
Cost of the greywater treatment 
unit (R) 

-
38,045                                       

Electricity consumption (R) 
-36 -47 -61 -79 -87 -96 -105 -116 -127 -140 -154 -170 -186 -205 -226 -248 -273 -300 -330 -363 

Chlorine (R) 
-800 -840 -882 -926 -972 

-
1,021 

-
1,072 

-
1,126 

-
1,182 

-
1,241 

-
1,303 

-
1,368 

-
1,437 

-
1,509 

-
1,584 

-
1,663 

-
1,746 

-
1,834 

-
1,925 -2,022 

Cistern blocks (R) 
-360 -378 -397 -417 -438 -459 -482 -507 -532 -558 -586 -616 -647 -679 -713 -748 -786 -825 -866 -910 

Service agreement (R) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pump replacement (R) 
0 0 0 0 0 0 0 0 0 0 

-
7,787 0 0 0 0 0 0 0 0 0 

Total (R) -
39,241 

-
1,265 

-
1,340 

-
1,422 

-
1,497 

-
1,576 

-
1,660 

-
1,748 

-
1,841 

-
1,940 

-
9,831 

-
2,154 

-
2,270 

-
2,392 

-
2,522 

-
2,660 

-
2,805 

-
2,959 

-
3,122 -3,295 



 
 

160 

b) Environmental Cost  
The Disability Adjusted Life Year (DALY) index was employed in this study as a suitable 

measurement unit for the impact of GWR on beneficiaries’ health. DALY is an index of 

health risk, developed by the World Health Organization (WHO) and the World Bank 

(Zhang, 2002). DALY considers the impact of life loss caused by death, deformity after 

disease, and healthy life years (WHO, 2005). It is the sum of discounted and age-weighted 

years of life lost. One DALY corresponds to one lost year of healthy life, and the burden of 

diseases (WHO, 2007).  

 

The calculation of the DALY in this study focuses on the health risk related to diarrhoea 

disease due to GWR. Diarrhoea disease is estimated to be the largest contributor to the 

burden of water-related disease (OECD, 2007). Prüss and Fewtrell (2002) considered 

infectious diarrhoea as the most frequent, non-vector, water-related health outcome, both in 

the developed and under developed countries. Apart from that, Hutton et al., (2007) argued 

that most diseases relating to water and sanitation comprise mainly of infectious diarrhoea 

which include cholera, salmonellosis, shigellosis, amoebiasis, and other protozoals and viral 

intestinal infections. Worldwide, unsafe water and lack of sanitation and hygiene are key risk 

factors for diarrhoea and other diseases. Diarrhoea disease is an important cause of morbidity 

and mortality in low- and middle-income countries, resulting in the death of 4.9 out of every 

1 000 children aged less than 5 years annually (Prüss et al., 2002; Kosek et al., 2003).  In 

South Africa, diarrhoea disease accounts for 3.1% of total deaths – the eighth largest cause of 

death nationally. Among children under 5, diarrhoea disease is the third largest cause of death 

(11.0% of all deaths), and the third largest contributor to the burden of disease, constituting 

84% of all deaths attributable to unsafe water, sanitation and hygiene, or about 13 368 deaths 

and 8.8% of all disability-adjusted life years (DALYs) in this age group (Table 5.13) 

(Norman et al., 2000 and Bradshaw et al., 2003). 
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Table 5.13: Burden of several diseases including diarrhoea  attributed to unsafe water, sanitation and 

hygiene in South Africa in 2000. (Lewin et al., 2007) 

Disease Deaths YLLs* YLDs** DALYs 

Diarrhoea 13368 375476 10685 386160 

Schistosomiasis 20 445 21617 22062 

Internal parasites 
including ascariasis, 
hookworm 

46 1612 8956 10568 

Total attributed 
burden 

13434 377533 41258 418790 

*YLLs = years of life lost, **YLDs =years lived with disability. 
In Zhang (2002), the valuation of health risk was calculated at the national or regional level. 

Valuing the health impact of GWR at the level of a small project has not been investigated. 

Usually, the main route of exposure to hazards from using greywater for toilet flushing is by 

ingestion. Aerosols and droplets may be deposited on the surface of the toilet bowl or seat 

and can in turn, be touched by users, and subsequently ingested through hand-to-mouth 

contact. In this section, we adopt a direct valuation method to assess the health impact on  the 

population affected by the GWR project. Health risk was determined by multiplying the 

DALY number related to diarrhoea risk caused by the GWR project and the DALY cost rate. 

 

The DALY number related to diarrhoea risk was calculated based on pathogenic organisms 

which cause diarrhoea. According to Ottoson (2003), pathogenic organisms that cause 

diarrhoea include faecal bacteria, campylobacter, Enteric viruses (especially rotavirus), and 

protozoa (especially cryptosporidium). Table 5.14 presents the risk calculation from the three 

major diarrhoea causing pathogens.  
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Table 5.14: Potential disease burdens for aerosols from toilet flushing 

  Cryptosporiduim Rotavirus Campylobacter Comments 
Organisms per liter in source watera,b 35 31 150 Oesterholt et al 

2007. From the 
range of values 
reported, the 
highest value was 
selected  

Log reduction provided by treatmentc 1 0.1 0.01 0 log reduction  
Cryptosporidum , 
1 log reduction 
for virus and 2 
log reduction for 
bacterial using 
Chlorine 
Appendix D 

Exposure per event(L) 1.00E-05 1.00E-05 1.00E-05  Health Canada 
2010 

Dose per event (L) 3.50E-04 3.10E-05 1.50E-05 Box B3 
Number of events per year 1100 1100 1100 Table 3.3 page 62 
Dose-response constantsd  (α) r= 0.059 0.253 0.145 Constants for 

alpha and beta in 
Table 3.4 page 64     0.426 7.58 

Risk of infection(Pinf) (Probability of 
infection per event) 

2.06E-05 0.000 0.000 Dose-response 
relationships for 
different 
microorganisms 
Table 3.4 

Ratio of illness /infectione 0.70 0.88 0.3   
Risk of illness (Pill) per event 1.45E-05 1.62E-05 2.67E-06   
Risk of illness (per year, i.e, 1100 events) 1.59E-02 1.78E-02 2.94E-03   
Disease burdenf (DALY per case) 1.50E-03 1.30E-02 5.50E-02   
Susceptibility fraction (%)g 100 6 100   
DALY per year (DALY per person per 
year) 

2.39E-03 1.39E-03 1.62E-02 
  

a Concentrations of Cryptosporidium and rotavirus in raw sewage are taken from NRMMC-EPHC (2006); numbers of 
adenovirus are used as an indication of rotaviruses because of lack of enumeration methods for rotavirus 

b Concentration of E.coli O157:H7 is calculated assuming the 2% of the maximum number of generic E.coli enumerated in 
raw wastewater samples from Canadian cities are pathogenic (6.2 x 106; Payment et al., 2001). More information is needed 
to refine this estimate. 
c Based on log reductions shown in tables D1 and D2 (see Appendix D); hazard concentrations reduced by secondary 
treatment, coagulation, filtration and disinfection. 

d Models used to calculate risk of infection are shown in Table 3.4 

e  Havelaar and Melse (2003) 

f  DALY per case based on Havelaar and Melse (2003) 

g  The proportion of the population susceptible to developing disease following infection. The figure of 6% for rotavirus is 
based on the fact that infection is common in very young children. The 6% equates to the percentage of population aged 
less than five years. 
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The selection of the preferred pathogenic organism for the risk calculation was based on the 

following assumptions: 

 Susceptibility fraction: This is determined by the age group of the exposed 

population. e.g The proportion of the population susceptible to developing diseases 

caused by rotavirus is 6%. The figure of 6% for rotavirus is based on the fact that 

infection is common in very young children. The 6% equates to the percentage of 

population aged less than five years. Therefore the probability of students at the pilot 

sites getting rotavirus is negligible (Health Canada, 2010). 

 Persistence and growth in water: After leaving the body of their host, most pathogens 

gradually lose viability and the ability to infect. The most common waterborne 

pathogens and parasites are those that have high infectivity and either can proliferate 

in water or possess high resistance to decay outside the body. Bacteria’s are known to 

grow and persist in water (WHO, 2008). 

 Severity of illness: Apart from illness caused by Hepatitis E virus and Hepatitis A 

virus and diseases caused by Shigella spp. and E. coli O157. The severity of illness by 

campylobacter is sometimes life-threatening (WHO, 2008).  

 

Based on the above assumptions, campylobacter was selected as the reference organism to 

calculate the health risk related to diarrhoea. Health risk was calculated by multiplying the 

calculated DALY number related to Campylobacter (bacteria causing diarrhoea) and the 

exposed population. The DALY burden of diarrhoea at WITS with approximately 500 

students and staff conducting their business within the building housing the School of Civil 

and Environmental Engineering is equal to the: Calculated DALY burden from 

Campylobacter × The exposed population at WITS (approximately 500 students and staff).  

 

                      (1.62 x 10-2) x   500                               ………………………(5.2) 

= 8.08 DALY/year 

At the UJ residential unit housing 16 students, the DALY burden of diarrhoea disease is equal 

to the: Calculated DALY burden from Campylobacter × The exposed population at UJ 

(approximately 16 students)                  

 

(1.62 x 10-2) x    16                         …………………….(5.3) 
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= 0.26 DALY/year 

According to Pegram et al. (1998), the cost of treating diarrhoea in South Africa was 

estimated to be R3.375 billion/year in 1995. With a 5% annual inflationary increase, the cost 

of treating diarrhoea was estimated to be R6.68 billion/year in 2009. Therefore:  

 

The South African DALY unit cost due to diarrhoea = Total cost of treatment/DALY burden 

of diarrhoea = 

       …………………………….(5.4) 

 

 

= R17,299/DALY 

 

Therefore, the health risk cost (due to diarrhoea) of greywater reuse for toilet flushing at 

WITS = DALY unit cost rate × DALY burden of diarrhoea x Impact factor (area impacted by 

the greywater reuse within the City of Johannesburg (Liang and van Dijk, 2010)). 

= R17, 299 x 8.08 x 0.002 = R 279.55/year 

 

At UJ, the health risk cost = R 8.95/year 

 
c) Economical benefit 

The economic benefit of GWR is the savings in municipal potable water as a result of GWR 

for toilet flushing. It is calculated based on the Johannesburg Water tariff, and the annual 

average potable water saved due to GWR. The 2010 tariff for potable water was 

ZAR10.58/kilolitre. Historically, municipal potable water increases between 7 to 14% per 

year. Therefore, forecasting into the future, a 10% increase per year was adopted. Table 5.13 

presents the economic benefit of the GWR system at WITS and UJ over a 20 year design life. 

The peak potable water savings of 412 litres per day due to the 2 greywater reuse toilets was 

employed in this analysis for WITS (Table 5.9) while the savings of 145 litres per day was 

employed for UJ (Table 5.10). 

 
d) Environmental benefit 

The environmental benefit of GWR for toilet flushing considered in this study was the 

savings to be achieved through a reduction in sewage to be treated. Conservatively, it was 

assumed that the reduction in sewage to be treated was 55% of the savings in potable water 








DALYR 160,386
910*68.6
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due to GWR. Therefore the environmental benefit = savings due to a reduction in sewage × 

the sewage unit cost (Table 5.15).  

 
Table 5.15: Benefits of the UJ and WITS GWR system over a 20-year design life 

 Case Study UJ WITS 

Economic benefit - 

savings in 

municipal potable 

water as a result of 

GWR 

Savings in potable water on a peak day due to GWR in 2 

toilets (litres) 

278 L 440 L 

Annual savings in potable water due to GWR in 2 toilets 

(litres) (x 330 days at WITS and 200 days at UJ) 

55.60 kL 145.20 kL 

Annual potable water savings at ZAR10.58 per kl R 588.25 R 1,538.22 

Environmental 

benefit – reduced 

sewage treatment 

costs due to reduced 

return flows 

Savings in sewage per day due to GWR in 2 toilets 

(litres) (approximately 55% of potable water savings) 

152.90 L 242.00 L 

Annual savings in sewage due to GWR in 2 toilets 

(litres) (x 330 days at WITS and 200 days at UJ) 

30.58 kL 79.86kL 

Annual sewage savings at ZAR7.00 per kl R 214.06 R 559.02 

 

 
5.3.2.3 Economic analysis 

a) Cost-benefit ratio calculation 

After evaluating the benefit and cost items, the present values of costs and benefits were 

evaluated. The following equations represent the valuation process. CO represents economic 

cost and CE represents environmental cost. BO denotes the economic benefits and BE denotes 

the environmental benefits. The annual discount rate employed was 10%. As indicated 

earlier, the analysis was undertaken over a period of 20 years. The system’s operational 

requirements were assumed to be consistent over the period considered.  

EO CCC +=       ……………………......................(5.5) 

EO BBB += ......................(5.6) 

The comparison between costs and benefits were based on the following:  

If B/C > 1, then the project is economically feasible; Else  

If B/C < 1, the project is not economically feasible. 
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b) Net present value calculation 

Net present value calculations first discounts each future cost and benefit to a present value, 

using an assumed discount rate, and then aggregates the set of present values into a single 

value. A positive NPV indicates a net benefit and a negative NPV indicates a net loss 

(Schuen et al., 2009). Different Scenarios can be compared – those with higher NPV values 

are typically the more favourable. NPV can be calculated based on the equation below: 

…………. …………………............... (5.7) 

Where 

r is the discount rate (i.e. the rate of return that can be earned on an investment in the 

financial markets with similar risk). Ct is the net cash flow at time tx and T is the 

design life of the system. 

c) Payback period calculation 

The equation for calculating payback period is: 

Payback period = Investment required / Net annual cash inflow……………………….. (5.8) 

 
5.3.3. Results  

The results of the analysis conducted for the WITS GWR system are shown in Table 5.16 and 

generated a benefit-cost ratio of -0.65, an NPV of –ZAR19, 269.94 and payback of 18 years. 

The results show that implementing GWR for toilet flushing at WITS is not economical 

within a 20-year period.  

 

The result in Table 5.17 for UJ shows a benefit-cost ratio of -0.21, an NPV of –ZAR53, 

667.31 and a payback of more than 20 years. Similar comment made for WITS also applies to 

UJ. The GWR system would have been viable if the price of potable water was significantly 

higher, larger volumes of potable water were saved, or there were subsidies on capital and/or 

operational costs.  

http://en.wikipedia.org/wiki/Discount_rate
http://en.wikipedia.org/wiki/Rate_of_return
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Table 5.16:  Economic analysis of the WITS greywater reuse system over a 20 year design life 

  

Present value 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

2027 

2028 

Outflow (capital + recurrent) costs (R) 

-52,401.15 

-39,241.00 

-1,264.80 

-1,339.74 

-1,421.94 

-1,496.99 

-1,576.19 

-1,659.78 

-1,748.04 

-1,841.23 

-1,939.66 

-9,830.65 

-2,153.53 

-2,269.69 

-2,392.50 

-2,522.38 

-2,659.78 

-2,805.18 

-2,959.09 

-3,122.07 

-3,294.69 

Inflow (potable water + sewage 
treatment savings) cost (R) 

36,517.14 

2,095.24 

2,293.58 

2,510.86 

2,748.91 

3,009.71 

3,295.48 

3,608.59 

3,951.71 

4,327.72 

4,739.80 

5,191.43 

5,686.44 

6,229.01 

6,823.76 

7,475.73 

8,190.46 

8,974.04 

9,833.14 

10,775.09 

11,807.92 

Health risk cost (R) 

-3,385.93 

-279.55 

-293.53 

-308.20 

-323.61 

-339.79 

-356.78 

-374.62 

-393.35 

-413.02 

-433.67 

-455.36 

-478.13 

-502.03 

-527.13 

-553.49 

-581.16 

-610.22 

-640.73 

-672.77 

-706.41 

Net cash flow (R )  

 

-37,425.31 

735.25 

862.92 

1,003.36 

1,172.93 

1,362.50 

1,574.19 

1,810.32 

2,073.47 

2,366.47 

-5,094.57 

3,054.78 

3,457.29 

3,904.13 

4,399.86 

4,949.52 

5,558.64 

6,233.32 

6,980.25 

7,806.82 

Cumulative cash flow (R )  

 

-37,425.31 

-36,690.06 

-35,827.14 

-34,823.79 

-33,650.86 

-32,288.35 

-30,714.16 

-28,903.84 

-26,830.37 

-24,463.90 

-29,558.47 

-26,503.70 

-23,046.40 

-19,142.28 

-14,742.42 

-9,792.90 

-4,234.26 

1,999.05 

8,979.30 

16,786.13 

Interest rate 10% 
                   

  
Benefit/Cost ratio -0.65 

                   
  

Net Present Value (R) -19,269.94 
       

  
           

  
Payback period (years) 18                                         
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Table 5.17: Economic analysis of the UJ greywater reuse system over a 20 year design life 

  

Present value 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

2027 

2028 

Outflow (capital + recurrent) costs (R) 

-67,542.06 

-55,896.00 

-1,264.80 

-1,339.74 

-1,421.94 

-1,496.99 

-1,576.19 

-1,659.78 

-1,748.04 

-1,841.23 

-1,939.66 

-9,830.65 

-2,153.53 

-2,269.69 

-2,392.50 

-2,522.38 

-2,659.78 

-2,805.18 

-2,959.09 

-3,122.07 

-3,294.69 

Inflow (potable water + sewage 
treatment savings) cost (R) 

13,983.15 

802.31 

878.26 

961.46 

1,052.61 

1,152.48 

1,261.90 

1,381.80 

1,513.19 

1,657.17 

1,814.96 

1,987.90 

2,177.45 

2,385.21 

2,612.95 

2,862.61 

3,136.29 

3,436.34 

3,765.31 

4,126.00 

4,521.49 

Health risk cost (R) 

-108.40 

-8.95 

-9.40 

-9.87 

-10.36 

-10.88 

-11.42 

-11.99 

-12.59 

-13.22 

-13.88 

-14.58 

-15.31 

-16.07 

-16.88 

-17.72 

-18.61 

-19.54 

-20.51 

-21.54 

-22.62 

Net cash flow (R )  

 

-55,102.64 

-395.94 

-388.15 

-379.69 

-355.39 

-325.71 

-289.97 

-247.44 

-197.28 

-138.58 

-7,857.32 

8.61 

99.45 

203.58 

322.51 

457.90 

611.62 

785.70 

982.39 

1,204.19 

Cumulative cash flow (R )  

 

-55,102.64 

-55,498.58 

-55,886.73 

-56,266.42 

-56,621.80 

-56,947.51 

-57,237.48 

-57,484.92 

-57,682.20 

-57,820.78 

-65,678.10 

-65,669.49 

-65,570.03 

-65,366.45 

-65,043.95 

-64,586.04 

-63,974.42 

-63,188.72 

-62,206.32 

-61,002.14 

Interest rate 10% 
                   

  
Benefit/Cost ratio -0.21 

                   
  

Net Present Value (R) -53,667.31 
                   

  

Payback period (years) 
Not within 
20 years                                         
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5.4 Summary of findings. 
This section reports on the technical and economic measures that were implemented to 

mitigate the risks of failure associated with the implementation of GWR for toilet flushing. 

The following are the key findings from this section: 

 

 There are no simple formulas for selecting a package plant because of the trade-offs 

that need to be made between the three key issues involved i.e. technical, economic 

and public health. In this project, the GWR package plant 2 achieved the lowest score 

in the framework and was hence, the favoured GWR system for the pilot project. 

 The factors influencing toilet flushing water demand at WITS (and likely typical of 

academic buildings) were bulk water demand, rainfall, maximum and minimum 

temperature. The developed model can be reliably used to estimate toilet flushing 

demand within the School of Civil and Environmental Engineering, WITS based on 

the 4 independent variables and hence, would be valuable in estimating toilet flushing 

demand in the event that a GWR system for toilet flushing is being planned for all 

toilets within the building. The concept adopted in developing the model can in 

addition to the above, be used to estimate toilet flushing demand in similar high 

density buildings. 

 The results of the cost-benefit analysis for WITS and UJ greywater reuse systems 

shows payback periods of 18 years and longer than 20 years respectively. For both 

systems, Benefit-Cost ratios were less than 1 and NPVs were less than R0.00. These 

results therefore generate a net economic loss and are economically infeasible if 

beneficiaries are to pay the full costs of the systems.  

 To achieve better results, subsidies may have to applied, potable water tariffs may 

have to increase, larger savings in potable water quantities and sewage treatment costs 

may have to be achieved, or greywater reuse system costs may have to be lower. 

Unfortunately, lower cost systems often imply lower treatment technologies which 

typically produce low quality greywater, and demand high maintenance. Trade-offs 

therefore have to be made by beneficiaries and decision-makers between lower and 

higher cost greywater reuse systems.   
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CHAPTER 6 

ENVIRONMENTAL MEASURES TO RISK MANAGEMENT 
 

6.1. Introduction 
Despite the benefits of reuse, the risks to public health due to the possible transmission of 

infectious diseases from greywater ingress (accidental or deliberate) into potable networks, 

continues to be of great concern. Greywater may contain chemical and microbiological 

agents which pose a health risk to users and the environment, and the accidental ingestion of 

contaminated greywater can cause gastrointestinal illness. In a risk assessment conducted by 

Ottoson and Stenstroem (2003a), rotaviruses pose the most significant risk to human health. 

Micro-organisms such as adenoviruses and enteroviruses have been found to cause 

respiratory illnesses as a result of the inhalation of recycled water (NRMMC-EPHC, 2006).  

 

Although most studies on this subject have focused on microbiological hazards, chemical 

hazards also pose significant risks to the environment and human health (Health Canada, 

2010). Some emerging concerns are of the long term exposure to these chemical hazards. 

These chemicals (inorganic and organic) include pesticides, potential endocrine disruptors, 

pharmaceuticals and disinfection by-products. An Australian draft of the National Guidelines 

for Water Recycling (NRMMC-EPHC, 2006) identified 9 environmental hazards that should 

be prioritised when assessing environmental risks associated with specific uses (including 

agricultural and  residential) of recycled water. Nitrogen and phosphorus are listed as 2 of the 

9 hazards. Having high levels of phosphorus and nitrates within a portable water network 

may result in algae growth within the pipe network leading to unpleasant smells and 

methaemoglobinaemia (in infants who ingest the contaminated water) respectively (Cantor et 

al., 2000). 

 

The main route of exposure to microbial and chemical hazards from recycled water is 

ingestion (including the ingestion of droplets produced by sprays of the recycled water). In 

the case of greywater used for toilet flushing, aerosols and droplets may be deposited on the 

surface of the toilet bowl or seat and can in turn, be touched by users, and subsequently, 

ingested through hand-to-mouth contact. Although it is reasonable to assume that children 

will take less care to avoid hand-to-mouth contact after touching contaminated surfaces, there 

is little information available to quantify this potential route of exposure (Trevett, 2005). 
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There is also the possibility of dermal exposure, even though there is also a lack of evidence 

about the health hazards that could occur through this route. It is therefore reasonable to 

assume that in properly designed and managed recycled water systems where recycled water 

is limited to toilet and urinal flushing, the above hazards are not expected to be high because 

of the relatively low exposure (Health Canada, 2010). When they do occur however, the 

consequences can be severe. On the other hand, cross-connections between a greywater pipe 

and potable water pipe can easily occur within a building housing both networks and can lead 

to greywater ingress. This route of ingress has the potential to affect a lot more people at a 

given period of time, than the other routes described above, as it impacts on the quality of the 

potable water which is typically consumed in one way or another throughout a typical day 

(Oesterholt et al., 2007). 

In order therefore to reduce hazards that may result from the reuse of greywater for toilet 

flushing, multiple strategies are typically used and may include combinations of the 

following: 

• Promoting general hygiene (e.g. hand washing with soap after toilet use); 

• On-site/off-site effluent treatment to reduce pathogens and chemicals to a level that 

presents a tolerable risk; 

• Exposure control methods that limit public access to recycled water such as wearing 

certain protective clothing while carrying out maintenance tasks;  

• Understanding the impact cross-connections may have within buildings housing 

GWR systems by modelling and simulating the transport of chemical and 

microbiological substances in potable water reticulation systems. 

 

Modelling and simulation are important tools in predicting the fate of disinfectants and 

contaminants within a potable water pipe network. As these contaminants are carried within a 

potable network, they display different characteristics under different conditions thus, making 

the modelling process complex.  It is therefore imperative that such movements and the 

associated risks be studied.  

Several models that have been developed to analyze and as a consequence, improve water 

quality are discussed below. Based on the survey of models presented below, this chapter 

presents the methodology employed (and results generated) to model the movement of 
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nitrates and phosphorus within a dual (potable and grey) water network due to greywater 

ingress. 

6.2 Water quality models 
Water quality models can be divided into two categories. The first and earlier category of 

models describe water quality parameters, such as for the decay of disinfectants, using 

independent, single species mass balances typically paired with first-order kinetics for the 

reaction terms. These models are called “single species models”. The second and more 

recently developed category of models is called “multi-species models”, because they 

describe water-quality reactions using sets of co–dependent mass balance equations capable 

of tracking multiple contaminants (Woolschlager et al., 2005).  

 

6.2.1. Single species models 

Single species models typically use first-order kinetic terms (e.g. as presented in Meader and 

Hart, 1988 and Zhang et al., 1992). The most prominent model of this type is the Dynamic 

Water Quality Model (DWQM) (Grayman et al., 1988). DWQM is the basis of the initial 

water quality module housed within EPANET. Later versions of EPANET have included a 

pipe wall demand to simulate constituents reacting at pipe surfaces, such as chlorine loss at 

iron pipe surfaces (Rossman et al., 1994). Single species models typically assume plug-flow 

advection and do not allow a deeper understanding of the trends that influence water quality 

in distribution systems due to continuous pollution. Also, because the kinetic parameters are 

site-specific fitting parameters, the single species models cannot predict results for other 

systems or for the same system when significant changes are made to operation or input 

quality. For example, the chlorine demand in bulk water actually depends on reactions with 

organic and inorganic compounds. These reactions depend on the concentration of chlorine 

and the reactive species (e.g. organic matter or nitrite), which change within the distribution 

system. Therefore, to overcome these limitations, multi-species models, described in the next 

section, were developed. 

 

6.2.2. Multi-species models 

Multi-species models more accurately describe microbial metabolism and disinfectant decay 

by using sets of interdependent, multi-species, mass-balance equations based on fundamental 

processes. The first multi-species model designed for drinking water systems is the SANCHO 

model described by Servais et al. (1995). The SANCHO model comprises mass-balance 



 
 

173 

equations describing microbial synthesis, biodegradable organic matter (BOM) utilization, 

chlorine reactivity with organic matter, and disinfection processes. Also, SANCHO calculates 

biomass concentrations in the bulk water and attached to pipe surfaces. Although the 

SANCHO model was limited to the analysis of straight pipes of decreasing diameter, it has 

been applied to full-scale distribution systems (Laurent et al., 1997). Although the SANCHO 

model has proven to be a useful research and analysis tool, as at 2001, it had not been 

developed into a commercially available model with a user-friendly graphical interface 

(Servais, 2001). Another model, which is similar to the SANCHO model, and which 

simulates the growth and decay of heterotrophic bacteria in bulk water in the absence of 

disinfectants was developed by Jegatheesan et al. (2004). Jagatheesan et al.’s, (2004) model 

predicts disinfectant decay due to organic matter in the bulk water, as well as that due to 

biofilm. It simultaneously predicts the growth of biofilm in terms of carbohydrate and protein 

densities. Jagatheesan et al.’s, (2004) was followed by PICCOBIO model as described by 

Dukan et al., (1996). The PICCOBIO model contains similar processes to those contained in 

the SANCHO model. However, these models differ in how some of these processes are 

represented. For example, the PICCOBIO model contains a complex, multilevel bio-film 

growth and disinfection sub-model. Furthermore, it accounts for important chlorine loss by 

reactions with pipe surfaces. The PICCOBIO model was originally calibrated to a pilot pipe 

system. Later, it was revised by Piriou et al., (1998) to be solvable for, and was field-tested 

with, a full-scale pipe distribution network (Piriou et al., 1998a, b). 

 
Another multi-species model called the Comprehensive Disinfection and Water Quality 

Model (CDWQ) was developed to address special issues in systems where chloramines are 

used for disinfection. CDWQ contains a detailed chloramine and free chlorine chemistry 

subroutine to accurately model chloramine and chlorine decay, and heterotrophic and 

nitrifying bacterial processes (Woolschlager, 2000). CDWQ was field tested using data 

generated from a full-scale distribution system (Woolschlager et al., 1999). 

 

Table 6.1 provides a summary and some comparison of a variety of other single and multi-

species water quality models that have been developed to achieve similar water quality 

function.  
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Table 6.1. Summary and comparison of water quality models (Woolschlager et al, 2005)   

Model Disinfectant decay Microbial growth Software source Note 

Single species 

EPANET nth-order in bulk 
water and zero or 
first order at pipe 

None US Environmental Protection 
Agency, Cincinnati, Ohio 
(USA) (www.epa.gov) 

Graphical user 
interface. 

WaterCAD First-order in bulk 
water and zero-
order at pipe 
surface 

None Haestad methods, Inc 
Waterbury, Connection (USA) 
(www.haestad.com) 

Graphical user 
interface. 

H20NET First-order in bulk 
water and zero-
order at pipe 
surface 

None MW soft, inc Pasadena 
California 
(USA)[www.mwsoft.mw.com] 

Graphical user 
interface with 
AutoCAD. 

Synergee First-order in bulk 
water and zero-
order at pipe 
surface 

None Stoner, Inc. Carlisle, 
Pennsylvania 
(USA)[www.stoner.com] 

Graphical user 
interface. Two 
species 
allowed. 

PICCOLO_ 
chlorine 

First-order in bulk 
water and zero-
order at pipe 
surface 

None Infeo Boulogne Billancourt, 
Billancourt,infeo.ornis.net/ 
(France) [http:// 

Graphical user 
interface. 

Multi_species 
SANCHO ( Servais 
et al.,1995) 

Second-order 
reaction with 
organic matter 

Fixed and 
suspended  
heterotrophs 

Not commercially available. No pipe wall 
reactivity for 
disinfectants 

Jagatheeesan et al. 
(2004) 

No disinfection Suspended  Not commercially available. Includes 
nutrient 
balance. 

PICCOBIO  
(Dukan et al., 
1996) 

First-order in bulk 
water and zero-
order at pipe 
surface 

Fixed and 
suspended 
heterotrophs 

Not commercially available. Multi-layer 
biofilm growth 
and 
disinfection 
routine 

PICCOBIO (Piriou 
et al., 1998b) 

First-order in bulk 
water and zero-
order at pipe 
surface 

Fixed and 
suspended 
heterotrophs 

Infeo Boulogne Billancourt, 
Billancourt,infeo.ornis.net/ 
(France) [http:// 

Graphical user 
interface. 
Based on 
Dukan et al. 
model. 

CDWQ 
(Woolschalager, 
2000) 

Complex 
chloramine and 
free chlorine 
chemistry 
subroutine 

Fixed and 
suspended 
heterotrophs and 
nitrifiers 

Not commercially available. Field tested for 
chloraminated 
system. 

PICCOBIO -
chloramine 

Complex 
chloramine and 
free chlorine 
chemistry 
subroutine 

Fixed and 
suspended 
heterotrophs and 
nitrifiers 

Infeo Boulogne Billancourt, 
Billancourt,infeo.ornis.net/ 
(France) [http:// 

Graphical user 
interface. 
Based on 
CDWQ model. 
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6.3. Tools for the modelling and simulation of nitrates and phosphorus within 
drinking water pipe networks 
 
This  section  presents  some prominent tools/software  packages  used  to  model  and  

simulate  nitrate and phosphorus ingress into drinking  water  distribution networks. 

 

6.3.1 EPANET 

EPANET is a computer program that performs extended period simulation of hydraulic and 

water quality behaviour within pressurized pipe networks (Rossman, 2000). EPANET models 

systems of diverse sizes; computes friction losses using the Hazen-Williams, Darcy-

Weisbach or Chezy-Manning equations; computes minor losses and pumping energy. 

EPANET models constant or variable speed pumps, various types of valves (including 

shutoff valves, check valves, pressure regulating valves and flow control valves), storage 

tanks of any shape, and allows variable demand at nodes. In addition to hydraulic modelling, 

EPANET models water quality i.e. the movement and fate of a non-reactive material within a 

pipe network over time (Melo et al., 2009). EPANET uses several order kinetics to model 

reactions in the bulk flow and zero or first order kinetics for reaction at the pipe wall. The 

overall reaction rate coefficients can be specific for each pipe and the wall reaction rate 

coefficients can be correlated with pipe roughness. It is also possible to determine the effects 

of concentration or mass input at any location in the network (Rossman, 2000). The 

governing equations for EPANET’s water quality solver are based on the principles of 

conservation of mass conjugated with reaction kinetics. The equations involve (Melo et al., 

2009) : 

• Advective transport in pipes; 

• Mixing in storage facilities; 

• Bulk flow reactions; 

• Pipe wall reactions; 

• System of equations; 

• Lagrangian transport algorithm; 

 

EPANET also provides an integrated set of conditions for editing network input data, running 

hydraulic and water quality simulations, and viewing the results in a variety of formats, such 

as colour-coded network maps, data tables, time series graphs and contour plots. EPANET 

was initially developed to model single chemical species transportation through the water 
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distribution network and storage tanks. But due to quest for modelling more than one 

contaminant, a new extension software package to EPANET which is called EPANET-MSX 

was released by National Homeland Security Research Center (NSHRC) of EPA (Rossman, 

2000). 

 

6.3.2. EPANET MSX 

EPANET-MSX (Multi Species Extension) was developed to model more than one chemical 

or biological species and their interactions with each other in bulk water and at pipe walls. 

The toolkit library of functions of EPANET-MSX is used to build custom hydraulic and 

water quality applications. The chemical equilibrium and reaction rate equations are defined 

for the species and the differential algebraic equations are solved by numerical methods of 

Euler, Runge-Kutta and Rosenbrock. The algebraic equations are solved by the Newton-

Raphson method (Rossman, 2000; Shang et.al, 2007; Shang and Uber, 2007).  

 
EPANET-MSX allows modelling chemical reactions such as auto-decomposition  of 

chloramines to ammonia, the  formation  of disinfection  by-products,  biological  re-growth,  

combined  reaction  rate  constants  in multi- source systems and mass transfer limited 

oxidation-pipe wall adsorption reactions (Shang et al., 2008). 

 
The   EPANET-MSX   system   is  supplied   as  two   different   formats:   a  stand-alone   

console   application (epanetmsx.exe)  that can run standard water quality analysis without 

any additional programming effort, and a function  library  (epanetmsx.ddl)   that  is  used  

with  the  original  EPANET  function  library  (epanet2.ddl)  to produce customised 

programming applications. In both formats, the user must prepare two input files to run a 

multi-species analysis. One of them is the standard EPANET input file for giving the data 

required for the network hydraulic components: junctions, reservoirs, tanks, pipes, pumps and 

valves. The data file includes elevation, demand and demand patterns for junctions, head and 

pattern for reservoirs, elevations, initial, minimum and maximum levels and diameter values 

for tanks, pipe lengths, diameters, roughness, pump curves, position of valves for specified 

conditions, X-Y coordinates of the nodes, initial quality values at nodes, source types, 

duration of simulation, time steps, reporting time and other various simulation options such 

as units, viscosity, diffusivity, specific gravity, accuracy and tolerance. The second file is  a 

special  EPANET-MSX  file  that  describes  the species  being simulated and the chemical 

reaction/equilibrium models that govern their dynamics (Shang et al., 2008). Some of the 
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parameters defined in the EPANET-MSX  file  are chemical species, reaction coefficients and 

terms, rate equations for pipes and tanks, sources and initial conditions for selected species, 

patterns for sources, parameters for pipes and reporting options (Rossman, 2000; Shang et.al., 

2007; Shang and Uber, 2008). 

 

6.4. Description of a the UJ pipe network  

The network consists of 19 nodes including 2source reservoir (which is the greywater tank) 

and campus supply. The network also consists of 18 pipes linking the nodes and two pumps. 

The greywater system collects raw greywater from 2 showers and 2 bath-tubs only. The 

greywater then passes through a chlorinator which disinfects using chlorine tablets before it 

passes through two 2mm sieves in series which are housed within a cylindrical pipe. A cistern 

block, which provides colour to the greywater, is inserted into one of the 2mm sieves weekly. 

The sieved greywater is then stored within a 200 litre greywater tank which houses 2 

submersible pumps (each pump is connected to a toilet). When pressed, the bell switch, 

which is mounted on the wall close to the toilet cistern, activates its pump and conveys the 

sieved greywater into the toilet bowl for flushing. Figure 6.1a depicts the UJ dual system with 

the location of the cross-connection (Figure 6.1b) just before the first and ground floor 

greywater toilets. Pipe and node properties are listed in Tables 6.2 and 6.3 respectively.  
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Figure 6.1a: The UJ dual potable and greywater pipe network.  
  

Greywater toilet 

Figure 6.1b: The UJ dual potable and greywater pipe network showing the point of cross-
connection located just before the greywater toilets (nodes 3 and 11 in Figure 6.1a) 
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Table 6.2:  UJ network pipe properties 

 Length           Diameter         Roughness        
 Link ID                 m                mm                
Pipe 3                   1.5 15 100 
Pipe 4                   1.5 15 100 
Pipe 5                   1.5 15 100 
Pipe 6                   1.5 15 100 
Pipe 7                   1.5 15 100 
Pipe 8                   1.5 15 100 
Pipe 15                  3.5 15 100 
Pipe 9                   1.5 15 100 
Pipe 10                  1.5 15 100 
Pipe 11                  1.5 15 100 
Pipe 12                  1.5 15 100 
Pipe 13                  1.5 15 100 
Pipe 14                  1.5 15 100 
Pipe 16                  20 50 100 
Pipe 17                  10 50 100 
Pipe 20                  1.5 15 100 
Pipe 21                  6.0 50 100 
Pipe 19                  2.5 50 100 
 
Table 6.3: UJ network node properties 
  Elevation        Base demand      
 Node ID                 Node name m                LPM              
Junc 9                   Kitchen Sink ground floor 2 0.05 
Junc 3                   Greywater toilet ground 

floor 
2 0.5 

Junc 4                   Normal toilet ground floor 2 0.5 
Junc 5                   Shower ground floor 2 0.4 
Junc 6                   Bath ground floor 2 0.4 
Junc 7                   Sink 1 ground floor 2 0.05 
Junc 8                   Sink 2 ground floor 2 0.05 
Junc 10                  Kitchen Sink 1st floor 5.5 0.05 
Junc 11                  Greywater toilet 1st floor 5.5 0.5 
Junc 12                  Normal toilet 1st floor 5.5 0.5 
Junc 13                  Shower 1st floor 5.5 0.4 
Junc 14                  Bath 1st floor 5.5 0.4 
Junc 15                  Sink 1 1st floor 5.5 0.05 
Junc 16                  Sink 2 1st floor 5.5 0.05 
Junc 2                   Mains 2 0 
Junc 18                  Downstream node 2 0 
Resvr Supply             Campus supply 8 #N/A             
Resvr greywater          Greywater tank 12 #N/A             
Resvr greywater          Greywater tank 9 #N/A             
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6.5. Setting of properties 
After representing the network on EPANET, the next step involved the setting of object 

properties. The setting of properties is mainly for the network hydraulic components: 

junctions, reservoirs, tanks, pipes, pumps and valves. The following were put into 

consideration before the setting of properties: 

 

1. The greywater tank was set as the reference point, (i.e. the datum). 

2. The ground floor was considered to be about 2m above the greywater tank 

3. The pump is inside the greywater tank and it is considered to be 1m below the ground 

level. 

4. The second floor was considered to be 3.5m from the first floor, thus making it 5.5m 

from the datum. 

5. Distance from one end use to the other was about 1.5 meters apart. 

6. 15mm pipes supply potable water within the residence and 50mm pipes supply 

greywater. 

7. The base demand was calculated using the average per capita daily water 

consumption within the residential unit. This was later multiplied by the number of 

students living in the residence. This demand was later related to the water demand 

for each end use.  

8. In order to model the pump to supply intermittently, pumps were removed and 

replaced with two reservoirs with each having different pump heads. These pump 

heads (pressure) are added to the total head of the reservoir thereby representing the 

pressure coming out from the pump.  

9. A different water demand pattern which is the toilet flushing demand pattern is 

assigned to the greywater toilet. This represents the demand which is initiated with the 

bell push that comes from the greywater tank causing the pump to supply greywater 

intermittently.  

Based on the above assumptions, the properties that were edited include elevation, demand 

and demand patterns for junctions, pipe lengths, diameters, roughness, pump curves, X-Y 

coordinates of the nodes, initial quality values at nodes, source types, duration of simulation, 

time steps, reporting time, and other various simulation options such as units, viscosity, 

diffusivity, specific gravity, accuracy and tolerance.  
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For the extended water quality simulation, the water demand pattern was calculated from the 

daily bulk water demand recorded at Unit 51 between the period of August and September, 

2010 prior to the toilet flushing modelling exercise. Multipliers (Table 6.4a and b) were used 

to modify the daily diurnal demand from its base level for each time period, and a new 

pattern was created using a Pattern Editor dialog shown in Figure 6.5. Due to the extended 

period simulation over 72 hours, the daily diurnal demand pattern was repeated after every 24 

hours.  

 

Figure 6.5: Diurnal Bulk and Toilet flushing demand pattern for Units 51, UJ. 
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Table 6.4a:  Conversion of the bulk demand into the daily diurnal demand pattern 1 using multipliers 

 

Table 6.4b:  Conversion of the toilet demand into the daily diurnal demand pattern 2 using multipliers 

 

Time 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 

Bulk water demand (liters) 

0.20 0.20 0.20 0.20 3.00 21.00 32.50 41.00 37.00 26.00 29.00 29.00 
Multiplier 

0.01 0.01 0.01 0.01 0.21 1.46 2.25 2.84 2.56 1.80 2.01 2.01 
Time 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 

Bulk water demand (liters) 
22.00 14.00 7.50 7.50 12.50 13.50 13.00 11.00 11.00 9.00 5.00 1.00 

Multiplier  
1.52 0.97 0.52 0.52 0.87 0.94 0.90 0.76 0.76 0.62 0.35 0.07 

Time 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 

Bulk water demand (liters) 

0.00 0.00 0.00 0.00 1.00 4.50 4.50 4.00 3.00 3.00 3.00 3.00 
Multiplier 

0.00 0.00 0.00 0.00 0.48 2.14 2.14 1.90 1.43 1.43 1.43 1.43 
Time 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 

Bulk water demand (liters) 

3.00 3.00 2.00 2.00 2.50 2.00 2.50 2.00 2.00 1.50 1.50 0.50 
Multiplier  

1.43 1.43 0.95 0.95 1.19 0.95 1.19 0.95 0.95 0.71 0.71 0.24 
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6.6 Estimation of bulk and wall coefficients for chlorine, nitrate, and phosphorus. 
The bulk (0.50 1/day) and wall (0.15 l/day) coefficients for chlorine were based on Clark et 

al. (1993) and Powell et al. (2000) respectively. The bulk coefficient chosen for nitrate (a 

first-order decay rate of 0.05 1/day) was based on its decay rate within a water column (Ohio 

EPA, 2008) while the bulk coefficient chosen for phosphorus (a first-order decay rate of 

0.013 1/day) was based on decay within an intensive fish pond system (Lefebvre et al., 2001). 

 

6.7  Modelling the chemical reaction of nitrates and phosphorus in potable water 
The chemical reactions of nitrates and phosphorus (from greywater ingress) into a potable 

water network were modelled using a pathogen inactivation model (i.e. assuming nitrates and 

phosphorus were pathogens in water) (equations 6.1 and 6.2) and the kinetics of chlorine in 

greywater (equation 6.3) (March et al., 2005). These equations were input into the EPANET-

MSX file (Shang et al., 2008). Brief descriptions of these models are presented below: 

 

6.7.1 Pathogen inactivation model 

Chick (1908) and Watson (1908) studied the rate of inactivation of microorganisms and 

proposed equation 6.1. 

ICkr n
p−=1     ……………………………….......................(6.1) 

 

Where I is the number of pathogens per litre, C is the disinfectant concentration in mg/l, kp is 

the pathogen decay rate constant in l/mg.min and n is the reaction order. Assuming a first 

order reaction of n=1, equation 6.1 becomes equation 6.2. 

CIk
dt
dI

p−=     ……………………………………………………..(6.2) 

 

6.7.2 Kinetics of chlorine in greywater 

In relation to the kinetics of chlorine (equation 6.3), the disinfectant (i.e. hypochlorite, Cadded) 

was divided into three fractions of different reactivity. The first, Cw includes the reactions 

with reducing reagents (e.g. inorganic reductants and commercial organic antioxidants) that 
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reduce hypochlorite to a chloride ion. The second and third fractions are chlorinated products 

which maintain oxidative and disinfectant properties. The second fraction involves a higher 

reactive fraction, whose concentration is denoted by C0.x and the third fraction involves the 

formation of and a slower reactive fraction, whose concentration is C0.(l - x). 

).exp().1.().exp(.. 2010 tkxCtkxCCC wadded −−+−+= ……………….(6.3) 

6.8 Simulation of contaminants within the potable water network 

The potential pathways for ingress and nodes where possible human exposure to the 

contaminants could take place were identified. A list of nodes where humans exposure to 

contaminants could occur are shown in Table 6.5. 

 
Table 6.5: A list of nodes where human exposure to contaminants could occur showing activities that 

could lead to ingress and potential pathways  

Node ID                 Node name Description of activity that 
could lead to a hazard during 
an ingress event. 

Pathway for human 
exposure 

Junc 9                   Kitchen Sink ground floor Cooking and washing of dishes Dermal 
Junc 3                   Greywater toilet ground floor Toilet flushing Dermal and inhalation 
Junc 4                   Normal toilet ground floor Toilet flushing Dermal and inhalation 
Junc 5                   Shower ground floor Bathing Dermal, inhalation and 

ingestion 
Junc 6                   Bath ground floor Bathing and washing Dermal, inhalation and 

ingestion 

Junc 7                   Sink 1 ground floor Brushing of teeth Dermal and ingestion 
Junc 8                   Sink 2 ground floor Brushing of teeth Dermal and ingestion 
Junc 10                  Kitchen Sink 1st floor Cooking and washing of dishes Dermal 
Junc 11                  Greywater toilet 1st floor Toilet flushing Dermal and inhalation 
Junc 12                  Normal toilet 1st floor Toilet flushing Dermal and inhalation 
Junc 13                  Shower 1st floor Bathing Dermal, inhalation and 

ingestion 

Junc 14                  Bath 1st floor Bathing and washing Dermal, inhalation and 
ingestion 

Junc 15                  Sink 1 1st floor Brushing of teeth Dermal and ingestion 
Junc 16                  Sink 2 1st floor Brushing of teeth Dermal and ingestion 
 

Hydraulic analysis of the potable water network over 72 hours using EPANET was 

undertaken prior to water quality simulation. The water quality simulation included trace 

flow and multi-species analyses using a developed EPANET-MSX input file. The EPANET-

MSX file was run using the EPANET-MSX Programmers’ Toolkit. When contamination is 

simulated and considering the potable demand events taking place within the building, the 
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contaminant quantities at each node are determined. When compared with drinking water 

standards, the quantities of these contaminants at the different end users will determine the 

degree of hazard users may be exposed to. Various contamination events (e.g. different 

injection locations, different contaminant quantities, and different times of injection) were 

investigated. Some of the assumptions that were considered for the simulation include the 

following: 

1. The pump is supplying water intermittently; 

2. Point of ingress for each of the scenarios is at the node just before the greywater 

toilets. This is because the potable water supply pipes, previously serving the toilets 

now retrofitted to flush with greywater, were not removed during the implementation 

of the greywater toilets, but simply disconnected. Hence, the only possible locations 

for a cross-connection with a potable water pipe were just before the greywater toilets. 

6.9 Results 
SCENERIO 1: Time of injection = 08h00 on Day 1; point of injection = node just before 

the 2 greywater toilets; and quantity injected=0.35 mg/l for nitrate and 10 mg/l for 

phosphorus  

The contaminants from a greywater supply pipe were injected into a potable pipe at the 

ground and first floors at 08h00 on Day 1. Based on research conducted in South Africa on 

the typical ranges of nitrates and phosphorus in greywater (Englbrecht and Murphy, 2006), a 

concentration of 0.35 mg/l for nitrate was injected through the cross-connection from the 

greywater toilet over 72 hours. Similarly, a concentration of 10 mg/l for phosphorus was 

injected through the cross-connection. During simulation, nitrate and phosphorus showed 

similarities in the movement of their respective residual quantities. Figure 6.6 depicts the UJ 

dual system with the nitrate quantities at 08h00. Figure 6.7 depicts the nitrate reaching the 

greywater toilets at 08h01 - about 1 minute after injection. Figure 6.8 depicts the time it took 

the whole network to be completely contaminated with nitrate which is 7 minutes after 

greywater injection into the potable supply network, while Figure 6.9 depicts the time it took 

the whole network to reach it highest nitrate concentration at the furthest fixtures which is 8 

minutes after greywater injection into the potable supply network. Tables 6.6, 6.7, 6.8 and 6.9 

show the concentration of nitrate and phosphorus for each node at 08h00, 08h01, 08h07 and 

08h08 respectively.  Listed below are some observations: 

• There was similarity in the pattern of movement of nitrate and phosphorus within the 

network (see Figures 6.15 (a and b) and 6.16 (a and b)). 
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• It took less than 1 minute for nitrate to reach the greywater toilets. This result was 

compared to the real situation, It was observed that after a bell push for toilet flushes 

it takes less than 1 minute (btw 10-40 seconds) for the greywater to get to the 

greywater toilets (Figure 6.7);  

• It took 7 minute for the contaminant to reach the entire network and at the 8th minute 

the entire network was fully contaminated. The highest nitrate pollution load within 

the network was reached at 8 minutes after initial injection. Thereafter, it remained 

steady for 24 hours before the cycle is repeated for another day.; 

• After 8 minute of greywater injection, at least 80% of contaminant (nitrate and 

phosphorus) were observed at the entire fixture including the furthest fixtures.  

• Results show that the sinks which are the furthest fixture from the point of injection 

were the least affected. Hence, the further the end use from the point of injection, the 

less affected a person using that end use will be during a contamination event; 

• The highest concentrations of contaminants were observed at the two greywater 

toilets with over 90% of the total nitrate and phosphorus at various times during the 

simulation period. This can be attributed to the fact that the greywater toilet receives 

the greywater before it is injected to the other fixtures within the residences. 

• The second fixture that has the highest concentration is the 2 toilets which flush with 

potable water. This was likely as a result of the proportionally larger demand for toilet 

flushing in comparison with the other potable water uses occurring after the greywater 

ingress. This showed that contaminant movement was directly dependent on the 

demand occurring adjacent to the time of ingress. Also, in relation to the previous 

point, the toilets are the closest end use to the point of ingress. 

• Potable water downstream of the potable supply pipe was not affected by the 

contaminants ingress. This was as a result of the zero demand at this section of the 

network. Thus, the movement of contaminants is a function of demand; 

• The health risk associated with the contaminant ingress in this network is dependent 

on the concentration of nitrate and phosphorus injected. With the injection of 0.35 

mg/l of nitrate and 10 mg/l of phosphorus from the sieved and disinfected bath and 

shower greywater, the above results show that the largest concentration of nitrate 

within the potable network, posed an insignificant health risk according to SANS 

0241 (SABS 241-2001) which specifies nitrate concentrates of higher than 10mg/l as 
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harmful to human health. In the SANS 0241 standard (SABS 241-2001), the 

concentration of phosphorus is not specified. 

 
Figure 6.6: Nitrate concentrations at 08h00 of Day 1 
 
Table 6.6:  Concentration of phosphorus and nitrate at all network nodes at 08h00 of Day 1 

 Elevation        Base demand      Phosphorus       Nitrate          
Node Name                 m                LPM              mg/l             mg/l             
Kitchen Sink ground floor 2 0.05 0.00 0.00 
Greywater toilet ground floor 2 0.50 0.00 0.00 
Normal toilet ground floor 2 0.50 0.00 0.00 
Shower ground floor 2 0.40 0.00 0.00 
Bath ground floor 2 0.40 0.00 0.00 
Sink 1 ground floor 2 0.05 0.00 0.00 
Sink 2 ground floor 2 0.05 0.00 0.00 
Kitchen Sink 1st floor 5.5 0.05 0.00 0.00 
Greywater toilet 1st floor 5.5 0.50 0.00 0.00 
Normal toilet 1st floor 5.5 0.50 0.00 0.00 
Shower 1st floor 5.5 0.40 0.00 0.00 
Bath 1st floor 5.5 0.40 0.00 0.00 
Sink 1 1st floor 5.5 0.05 0.00 0.00 
Sink 2 1st floor 5.5 0.05 0.00 0.00 
Mains 2 0.00 0.00 0.00 
Downstream node 2 0.00 0.00 0.00 
Resvr Supply             8 #N/A             0.00 0.00 
GreyRes9m 9 #N/A             10.00 0.35 
GreyRes12m 12 #N/A             10.00 0.35 
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Figure 6.7: Nitrate concentrations at 08h01 of Day 1 
 

Table 6.7:  Concentration of phosphorus and nitrate at all network nodes at 08h01 of Day 1 

 

  

 Elevation        Base demand      Phosphorus       Nitrate          
Node Name                 m                LPM              mg/l             mg/l             
Kitchen Sink ground floor 2 0.05 0.00 0.00 
Greywater toilet ground floor 2 0.50 2.21 0.08 
Normal toilet ground floor 2 0.50 0.05 0.00 
Shower ground floor 2 0.40 0.00 0.00 
Bath ground floor 2 0.40 0.00 0.00 
Sink 1 ground floor 2 0.05 0.00 0.00 
Sink 2 ground floor 2 0.05 0.00 0.00 
Kitchen Sink 1st floor 5.5 0.05 9.38 0.33 
Greywater toilet 1st floor 5.5 0.50 9.89 0.35 
Normal toilet 1st floor 5.5 0.50 9.46 0.33 
Shower 1st floor 5.5 0.40 0.00 0.00 
Bath 1st floor 5.5 0.40 0.00 0.00 
Sink 1 1st floor 5.5 0.05 0.00 0.00 
Sink 2 1st floor 5.5 0.05 0.00 0.00 
Mains 2 0.00 0.05 0.00 
Downstream node 2 0.00 0.00 0.00 
Resvr Supply             8 #N/A             0.00 0.00 
GreyRes9m 9 #N/A             10.00 0.35 
GreyRes12m 12 #N/A             10.00 0.35 
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Figure 6.8: Nitrate concentrations at 08h07 of Day 1 
 

Table 6.8:  Concentration of phosphorus and nitrate at all network nodes at 08h07 of Day 1 

 

  

 Elevation        Base demand      Phosphorus       Nitrate          
Node Name                 m                LPM              mg/l             mg/l             
Kitchen Sink ground floor 2 0.05 8.89 0.31 
Greywater toilet ground floor 2 0.50 8.76 0.31 
Normal toilet ground floor 2 0.50 8.38 0.29 
Shower ground floor 2 0.40 8.05 0.28 
Bath ground floor 2 0.40 7.88 0.28 
Sink 1 ground floor 2 0.05 7.68 0.27 
Sink 2 ground floor 2 0.05 2.70 0.20 
Kitchen Sink 1st floor 5.5 0.05 9.38 0.33 
Greywater toilet 1st floor 5.5 0.50 9.89 0.35 
Normal toilet 1st floor 5.5 0.50 9.46 0.33 
Shower 1st floor 5.5 0.40 9.09 0.32 
Bath 1st floor 5.5 0.40 8.90 0.31 
Sink 1 1st floor 5.5 0.05 8.68 0.30 
Sink 2 1st floor 5.5 0.05 8.32 0.29 
Mains 2 0.00 8.30 0.29 
Downstream node 2 0.00 0.00 0.00 
Resvr Supply             8 #N/A             0.00 0.00 
GreyRes9m 9 #N/A             10.00 0.35 
GreyRes12m 12 #N/A             10.00 0.35 
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 Figure 6.9: Nitrate concentrations at 08h08 of Day 1 

Table 6.9:  Concentration of phosphorus and nitrate at all network nodes at 08h08 of Day 1 

 

  

 Elevation        Base demand      Phosphorus       Nitrate          
Node Name                 m                LPM              mg/l             mg/l             
Kitchen Sink ground floor 2 0.05 8.89 0.31 
Greywater toilet ground floor 2 0.50 8.76 0.31 
Normal toilet ground floor 2 0.50 8.38 0.29 
Shower ground floor 2 0.40 8.05 0.28 
Bath ground floor 2 0.40 7.88 0.28 
Sink 1 ground floor 2 0.05 7.68 0.27 
Sink 2 ground floor 2 0.05 7.37 0.26 
Kitchen Sink 1st floor 5.5 0.05 9.38 0.33 
Greywater toilet 1st floor 5.5 0.50 9.89 0.35 
Normal toilet 1st floor 5.5 0.50 9.46 0.33 
Shower 1st floor 5.5 0.40 9.09 0.32 
Bath 1st floor 5.5 0.40 8.90 0.31 
Sink 1 1st floor 5.5 0.05 8.68 0.30 
Sink 2 1st floor 5.5 0.05 8.32 0.29 
Mains 2 0.00 8.30 0.29 
Downstream node 2 0.00 0.00 0.00 
Resvr Supply             8 #N/A             0.00 0.00 
GreyRes9m 9 #N/A             10.00 0.35 
GreyRes12m 12 #N/A             10.00 0.35 
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SCENERIO 2: Varying the time of ingestion. 

Phosphorus and nitrate were injected at different times of the day (00h00, 08h00 and 16h00).  

Figures 6.8, 6.10 and 6.11 were compared to observe how long it took for nitrates to reach the 

entire network based on different injection times. The results show that when the greywater 

contaminant was injected at 08h00 of Day 1, it took 7 minutes for nitrate to reach the entire 

network (Figure 6.8). When injected at 00h00 it took 4hours 32 minutes (Figure 6.10, 6.15(a 

and b), and 6.16(a and b)) and injection at 16h00 of Day 1, resulted in the entire network 

being contaminated by nitrate 13 minutes thereafter (Figure 6.11).  

 

In addition, Table 6.10 shows the variation in the quantity of nitrate at each node 8 minutes 

after injection. The table shows that nitrate reached all fixtures in 8 minutes when injected at 

08h00 while injection at 00h00 and 16h00 resulted in no nitrate reaching the ground and first 

floor sinks after 8 minutes. As mentioned in Scenario 1, the movement of contaminants is a 

function of the water demand occurring adjacent to the time of injection. Since peak flow 

occurs between 07h00-09h00, it is expected that the contaminants, in this case nitrate, would 

spread to the network faster at 08h00 than at 00h00 and 16h00. The same is also true for 

contaminants reaching the network nodes faster at 16h00 than at 00h00.  

Figure 6.10: Nitrate concentrations at 04h32 of Day 1 
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Figure 6.11: Nitrate concentrations at 16h13 of Day 1 
 

 
Table 6.10:  Concentration of Nitrate at all network nodes 8 minutes after injection on Day 1 

 Injected at 00h00 Injected at 08h00 injected at 16h00 
Node Name Nitrate   mg/l            Nitrate   mg/l            Nitrate   mg/l          
Kitchen Sink ground floor 0.31 0.31 0.31 
Greywater toilet ground floor 0.29 0.31 0.30 
Normal toilet ground floor 0.00 0.29 0.29 
Shower ground floor 0.00 0.28 0.29 
Bath ground floor 0.00 0.28 0.28 
Sink 1 ground floor 0.00 0.27 0.27 
Sink 2 ground floor 0.00 0.26 0.00 
Kitchen Sink 1st floor 0.33 0.33 0.33 
Greywater toilet 1st floor 0.35 0.35 0.35 
Normal toilet 1st floor 0.00 0.33 0.34 
Shower 1st floor 0.00 0.32 0.33 
Bath 1st floor 0.00 0.31 0.33 
Sink 1 1st floor 0.00 0.30 0.31 
Sink 2 1st floor 0.00 0.29 0.00 
Mains 0.27 0.29 0.29 
Downstream node 0.00 0.00 0.00 
Resvr Supply             0.00 0.00 0.00 
GreyRes9m 0.35 0.35 0.35 
GreyRes12m 0.35 0.35 0.35 
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SCENERIO 3: Varying the point of injection. 

The effect of varying the point of injection was studied. Due to the location of the greywater 

network of pipes within the UJ unit, the only possible locations for a cross-connection with a 

potable water pipe were just before the greywater toilets. This is because the potable water 

supply pipes, previously serving the toilets now retrofitted to flush with greywater, were not 

removed during the implementation of the greywater toilets, but simply disconnected. For 

this scenario therefore, varying the point of injection could only occur close to the greywater 

toilets. Hence 3 variations in the point of greywater injection are considered: a cross 

connection just before the ground floor greywater toilet only (Figure 6.12), a cross 

connection just before the first floor greywater toilet only (Figure 6.13), and both (Figure 

6.14).   

Table 6.11 shows that after 1 minutes of greywater injection for each point of injection 

mentioned above, phosphorus was identified only at the greywater toilet close to the point of 

injection. However, after 7 minutes of greywater injection, the numbers of nodes affected 

were then dependent on the location of the point of injection and the number of injection 

points (see Table 6.12). 

 
 

Figure 6.12: Injection of greywater just before the greywater toilet on the ground floor at 00h07 of Day 1 
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Figure 6.13: Injection of greywater just before the greywater toilet on the first floor at 00h07 of Day 1 
 

 
 
 
Figure 6.14: Injection of greywater just before the greywater toilet on both floors at 00h07 of Day 1 
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Table 6.11:  Phosphorus at all network nodes based on different points of injection at 00h01 of Day 1 

 

Table 6.12:  Phosphorus at all network nodes based on different points of injection at 00h07 of Day 1 

 

  

 Base demand      Phosphorus  mg/l 
Node Name LPM              Injected on 

the 
ground 
floor 

Injected 
on the 
1st  
floor 

Injected on 
both floors 

Kitchen Sink ground floor 0.05 0 0 0 
Greywater toilet ground floor 0.50 9.88 0 2.21             
Normal toilet ground floor 0.50 0 0 0.05             
Shower ground floor 0.40 0 0 0 
Bath ground floor 0.40 0 0 0 
Sink 1 ground floor 0.05 0 0 0 
Sink 2 ground floor 0.05 0 0 0 
Kitchen Sink 1st floor 0.05 0 0 9.38             
Greywater toilet 1st floor 0.50 0 9.89 9.89             
Normal toilet 1st floor 0.50 0 0 9.46             
Shower 1st floor 0.40 0 0 0 
Bath 1st floor 0.40 0 0 0 
Sink 1 1st floor 0.05 0 0 0 
Sink 2 1st floor 0.05 0 0 0 
Mains 0.00 0 0 0.05             
Downstream node 0.00 0 0 0 
Resvr Supply             #N/A             0.00 0.00 0.00 
GreyRes9m #N/A             10.00 10.00 10.00 
GreyRes12m #N/A             10.00 10.00 10.00 

 Base 
Demand      

Phosphorus  mg/l 

Node Name LPM              Injected at 
groun
d floor 

Injected at 
1st floor 

Injected at both 
floors 

Kitchen Sink ground floor 0.05 9.44 8.88 8.89             
Greywater toilet ground floor 0.50 9.88 8.42 8.76             
Normal toilet ground floor 0.50 9.46 8.05 8.38             
Shower ground floor 0.40 9.08 7.74  8.05             
Bath ground floor 0.40 8.89 7.57 7.88             
Sink 1 ground floor 0.05 8.67 7.38 7.68             
Sink 2 ground floor 0.05 8.31 4.78 5.58             
Kitchen Sink 1st floor 0.05 9.01 9.37 9.38             
Greywater toilet 1st floor 0.50 8.61 9.89 9.89 
Normal toilet 1st floor 0.50 8.23 9.46 9.46 
Shower 1st floor 0.40 7.91 9.09 9.09 
Bath 1st floor 0.40 7.74 8.90 8.90 
Sink 1 1st floor 0.05 7.55 8.67 8.68 
Sink 2 1st floor 0.05 4.89 8.32 8.32 
Mains 0.00 9.37 7.99 8.30 
Downstream node 0.00 0.00 0.00 0.00 
Resvr Supply             #N/A             0.00 0.00 0.00 
GreyRes9m #N/A             10.00 10.00 10.00 
GreyRes12m #N/A             10.00 10.00 10.00 
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SCENERIO 4: Varying the quantity of contaminant injected. 

Table 6.13 presents the results obtained due to the variations in quantity of nitrate and 

phosphorous within the UJ network due to cross-contamination occurring at both the ground 

and first floor nodes situated just before the greywater toilets. Table 6.13 compares different 

phosphorus (5mg/l, 10mg/l and 15mg/l) and nitrate (0.18, 0.35 mg/l, 0.51mg/l) quantities at 

all the network nodes at 08h08 – i.e. 8minutes after injection. This is the time it took for the 

different quantities of each contaminant to reach all nodes within the network in scenario 1.  

The results in Table 6.13 show that the higher the quantity of contaminants injected, the 

higher the quantities reaching each fixture and consequently, the higher the risk of being 

infected by these contaminants. 

 

Figures 6.15 and 6.16 show the patterns of phosphorus and nitrate concentrations at 4 

selected network nodes (first floor greywater toilet, ground floor greywater toilet, sink 2 on 

the ground floor and sink 2 on the first floor) for scenario 4. The pattern for phosphorus 

infection is similar to that of nitrate. These figures represent 0.35 mg/l for nitrate and 10mgl/l 

for phosphorus injected at both ground and first floor nodes. 
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Table 6.13 Different phosphorus (5mg/l, 10mg/l and 15mg/l) and nitrate (0.18, 0.35 mg/l, 0.53mg/l) quantities injected at both floors at 08h08 on Day 1 

  5 mg/l injected 
at cross-

connection 

0.18 mg/l injected 
at cross-

connection 

10 mg/l injected 
at cross-

connection 

0.35 mg/l 
injected at 

cross-
ti  

15 mg/l 
injected at 

cross-
ti  

0.53 mg/l injected 
at cross-

connection 
  Phosphorus       Nitrate          Phosphorus       Nitrate          Phosphorus       Nitrate          

Node Name mg/L             mg/L             mg/L             mg/L             mg/L             mg/L             
Kitchen Sink ground floor 4.45 0.16 8.89 0.31 13.34 0.47 

Greywater toilet ground 
floor 

4.38 0.16 8.76 0.31 13.14 0.47 

Normal toilet ground floor 4.19 0.15 8.38 0.29 12.57 0.44 

Shower ground floor 4.03 0.14 8.05 0.28 12.08 0.42 

Bath ground floor 3.94 0.14 7.88 0.28 11.82 0.42 

Sink 1 ground floor 3.84 0.14 7.68 0.27 11.52 0.41 

Sink 2 ground floor 3.69 0.13 7.37 0.26 11.06 0.39 

Kitchen Sink 1st floor 4.69 0.17 9.38 0.33 14.07 0.50 

Greywater toilet 1st floor 4.95 0.18 9.89 0.35 14.84 0.53 

Normal toilet 1st floor 4.73 0.17 9.46 0.33 14.19 0.50 

Shower 1st floor 4.55 0.16 9.09 0.32 13.64 0.48 

Bath 1st floor 4.45 0.16 8.90 0.31 13.35 0.47 

Sink 1 1st floor 4.34 0.15 8.68 0.30 13.02 0.45 

Sink 2 1st floor 4.16 0.15 8.32 0.29 12.48 0.44 

Mains 4.15 0.15 8.30 0.29 12.45 0.44 

Downstream node 0.00 0.00 0.00 0.00 0.00 0.00 

Resvr Supply             0.00 0.00 0.00 0.00 0.00 0.00 

GreyRes9m 5.00 0.18 10.00 0.35 15.00 0.53 

GreyRes12m 5.00 0.18 10.00 0.35 15.00 0.53 
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Figure 6.15a:  A time series plot at 4 selected nodes when 0.35mg/l of nitrate was injected at the ground and first floor cross-connections at 00h00 
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Figure 6.15b:  A time series plot at 4 selected nodes when 0.35mg/l of nitrate was injected at the ground and first floor cross-connections at 08h00 
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Figure 6.16a:  A time series plot at 4 selected nodes when 10mg/l of phosphorus was injected at the ground and first floor cross-connections at 00h00 
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Figure 6.16b:  A time series plot at 4 selected nodes when 10mg/l of phosphorus was injected at the ground and first floor cross-connections at 08h00 
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6.10 Summary 
This exercise was undertaken in order to simulate the movement of nitrates and phosphorus 

within a residential potable water network and to investigate the degree of human exposure to 

varying quantities of these contaminants. This investigation was carried out using the 

EPANET-MSX programme. Due the volume of data from the simulation, the detailed results 

of the MSX report have been included in the Appendix E3 of this report. Key highlights from 

the scenarios investigated above include the following: 

1. The movement pattern for phosphorus is similar to that of nitrate as can be seen in the 

time series (Figure 6.15 and 6.16) for both contaminants. These figures represent the 

injection of 0.35 mg/l for nitrate and 10mgl/l for phosphorus at both ground and first 

floor cross-contaminant nodes. Hence, the pattern of infection at each fixture is the 

same except for the difference in quantity injected for both nitrate and phosphorus; 

2. It took less than 1 minute for nitrate to reach the greywater toilets when injected at 

08h00. This result was compared to the real situation and it was observed that after a 

bell push for toilet flush, it takes less than 1 minute (btw 10-40 seconds) for the 

greywater to get to the greywater toilets (Figure 6.7);  

3. The movement of contaminants is affected by the demand pattern of the users. Thus, 

if a contaminant is injected prior to or during a peak period, the contaminant is certain 

to reach all the water use fixtures and at a shorter space of time i.e. in minutes or 

seconds depending on the size of the network. When the greywater contaminant was 

injected at 08h00 (during the first and highest peak period of Day 1), it took 1 minute 

for nitrate to reach the entire network (Figure 6.8). This is in comparison to injection 

at 00h00 which reached the entire network in 4hour 32 minutes (Figure 6.9) and 

injection at 16h00 which reached the entire network in 13 minutes (Figure 6.10); 

4. The quantity of contaminants measured at each fixture ranged from 0.13 mg/l to 0.53 

mg/l for nitrate and 0.05 mg/l to 14.84 mg/l for phosphorus based on the smallest to 

the largest injections of nitrate (0.18-0.53 mg/l) and phosphorus (5-15 mg/l) expected 

within greywater of this kind (sieved and disinfected bath and shower greywater) 

injected at the 3 investigated cross-connection nodes; 

5. The risk of contaminant ingestion is directly proportional to the distance from the 

point of injection. Results from the figures above, show that the sinks which are the 

furthest fixtures from the point of injection were always the least affected. Hence, the 
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further the fixture is from the point of injection, the less affected a person using that 

end use will be during a contamination event; 

6. The degree of human exposure to the contaminants was directly dependent on the 

demand occurring adjacent to the period of ingress. In Scenario 1, over 70% of the 

total nitrate load was directed to the 2 toilets which flush with potable water. This was 

likely as a result of the proportionally larger demand for toilet flushing in comparison 

to other potable water uses occurring after the greywater ingress; 

7. The health risk associated with the contaminant ingress in this network is dependent 

on the concentration of nitrate and phosphorus injected. With the injection of 0.35 

mg/l of nitrate and 10 mg/l of phosphorus from the sieved and disinfected bath and 

shower greywater, results show that the largest concentration of nitrate within the 

potable network, posed an insignificant health risk according to SANS 0241 (SABS 

241-2001) which specifies nitrate concentrates of higher than 10mg/l as harmful to 

human health. For phosphorus, no standards exist in SANS 0241 (SABS 241-2001) 

and hence, the results obtained for phosphorus in the simulation could not be 

benchmarked.  

The EPANET-MSX tool presented in this section is valuable in simulating greywater 

contamination events within potable water piped networks. The results in the different 

simulation above show that the typical maximum concentrations of nitrates and phosphorus 

in sieved and disinfected bath and shower greywater, do not posed a significant risk to human 

health if ingested. However, standard precautions must be adhered to in the use of the 

greywater toilets and maintenance of the GWR system e.g. the use of more natural soap 

products that contain less chemical constituents, hand washing after toilet use, dropping the 

greywater toilet seat cover before flushing, and proper labelling of the greywater system. 
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CHAPTER 7 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 
7.1. Thesis summary 
The reuse of greywater for toilet flushing has the potential to reduce urban potable water 

demand used for toilet flushing, fire fighting and irrigation by between 30 - 70% (Radcliffe, 

2003). GWR is one of many water management concepts with the potential to reduce urban 

potable water use and increase appropriate water use. Yet, there is limited GWR in several 

parts of the world and especially in South Africa. This is as a result of some of the 

risks/barriers identified in the literature and perception surveys such as the absence of 

regulations to guide GWR implementation and management, determination of appropriate 

technology, economic viability, potential risks to human health and public perceptions 

regarding GWR.  

 
The aim of this thesis was to develop and implement integrated risk management in the 

implementation of dual grey and potable water reticulation systems in South Africa. The 

objectives of this study were: 

1. To monitor the evolving perceptions of users towards GWR for toilet flushing in 

high-density urban buildings before and after the implementation of GWR.  

2. To estimate toilet flushing water consumption in high density urban buildings and 

develop a model for predicting this demand. 

3. To develop and apply a robust framework for evaluating available package plants for 

GWR for toilet flushing.  

4. To investigate the economic viability of the implemented pilot GWR systems. 

5. To model and simulate the transport of contaminants (specifically nitrate and 

phosphorus) within a dual grey and potable water reticulation system. In doing so, to 

investigate the degree of human exposure to these contaminants at various times of 

the day, due to varying contaminant quantities, and at different injection points. 

 

The above objectives, and hence original contributions of this thesis were achieved in the 

following chapters:  

 

The third chapter focused on identifying, assessing, and quantifying potential health risks 

associated with the implementation of GWR for toilet flushing and developing a framework 

for mitigating some of these risks. This was achieved by employing the elements of risk 
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assessment. The integrated risk management framework developed was based on various 

frameworks that have been proposed in the literature i.e. The World Health Organisation 

(2006), The United States Environmental Protection Agency, USEPA (2005), Canada Health 

(2010) and the Australian guidelines, NRMMC-EPHC (2006). This chapter therefore 

involved documenting the different risk management frameworks listed above and 

identifying the similar measures employed which were incorporated into the framework 

developed for this study.  

 

Chapter four reports on the social measures that were implemented to manage and therefore 

mitigate the risks associated with the implementation of GWR for toilet flushing at the pilot 

sites. These measures were: (i) the evaluation of perception surveys carried out on potential 

and actual beneficiaries of GWR for toilet flushing; (ii) public awareness and involvement 

and; (iii) an analysis of the attributes that were important to beneficiaries regarding GWR and 

understanding the willingness of beneficiaries to pay for some of this attributes. The above 

measures involved designing, administering, collecting and coding the questionnaires used to 

determine perceptions; regular community engagement; a review of the analytical methods 

available to analyse perceptions and selection of a suitable method; and modelling the factors 

that influence the attitudes of respondents to some attributes of greywater using conjoint 

analysis. The following are some of the most significant findings of this chapter: (i) The level 

of trust in implementing authorities at both universities was high (above 64%). There was 

thus a reduction in concern levels at both universities to the potential risks of GWR. The high 

level of trust was built as the project team regularly held awareness sessions with 

respondents, and conducted routine maintenance and water quality tests to ensure that the 

greywater systems were safe and hygienic for their use; (ii) Respondents generally viewed a 

pleasant smell as the most important attribute of the greywater. Second to smell was the 

colour of greywater. Hence, respondents were rather willing to spend about double the 

amount of money needed to improve the colour on the smell of the greywater.  

 

Chapter five focused on the technical and economic measures put in place to manage and 

therefore mitigate the risks of failure associated with the implementation of GWR for toilet 

flushing. The chapter documents the development of a framework for evaluating locally 

available greywater treatment package plants using sustainability criteria and thus mitigating 

the risk of choosing the wrong system for a specific reuse application. The chapter also 
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documents the development of a model to predict toilet flushing demand within non-

residential buildings, and the analysis of the economical viability of the pilot GWR systems 

using cost benefit analysis. In addition to the toilet flushing estimation model and greywater 

selection framework developed above, the following are some significant findings in this 

chapter: (i) there are no simple formulas for selecting a package plant because of the trade-

offs that need to be made between the three key issues i.e. technical, economics and public 

health; (ii) The results of the cost-benefit analysis for WITS and UJ greywater reuse systems 

shows payback periods of 18 years and longer than 20 years respectively. For both systems, 

Benefit-Cost ratios were less than 1 and NPVs were less than R0.00. These results therefore 

generate a net economic loss and are economically infeasible if beneficiaries are to pay the 

full costs of the systems; (iii) Cost is directly related to the treatment technology employed 

and hence, the more complex the treatment process, the more likely the package plant will be 

more expensive; (iv) the factors influencing toilet flushing water demand at WITS (and likely 

typical of academic buildings) were bulk water demand, rainfall, maximum and minimum 

temperature. The developed model can therefore be reliably used to estimate toilet flushing 

demand within the School of Civil and Environmental Engineering, WITS based on these 4 

independent variables and hence, would be valuable in estimating toilet flushing demand in 

the event that a GWR system for toilet flushing is being planned for all toilets within the 

building. 

 

Chapter six reports on a measure employed to mitigate some of the risks associated with 

public health and safety while employing GWR via dual reticulation i.e. the modelling of 

greywater contaminant transport (specifically nitrate and phosphorus) within potable water 

networks due to accidental or deliberate ingress. Some key results that emerged from the 

modelling and simulation exercise were (i) the degree of human exposure to the contaminants 

was directly dependent on the demand occurring adjacent to the period of ingress; (ii) based 

on the typical quantities of nitrate and phosphorus in shower and bath greywater which has 

been sieved and disinfected with chlorine, there is an insignificant immediate risk to human 

health from ingestion of these contaminants (SABS 241, 2001); (iii) the risk of contaminant 

ingestion is directly proportional to the distance from the point of injection; and (iv) the 

movement of contaminants is affected by the demand pattern of the users. Thus, if a 

contaminant is injected prior to or during a peak period, the contaminant is certain to reach all 

the water use fixtures and at a shorter space of time i.e. in minutes or seconds depending on 
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the size of the network. Despite the low risks emerging from the above analysis, it is 

expedient that standard precautions be observed in the use of the greywater toilets and 

maintenance of the GWR system e.g. the use of more natural soap products that contain less 

chemical constituents, hand washing after toilet use, dropping the greywater toilet seat cover 

before flushing, and proper labelling of the greywater system.  

 
7.2. Conclusion 
This section concludes with reference to the aim and objectives of this study which validate 

the original contribution of this thesis: 

The aim of this thesis was to develop and implement integrated risk management in the 

implementation of dual grey and potable water reticulation systems in South Africa. The 

development of the integrated risk management measure was achieved through extensive 

literature survey reported in Chapters 3 with the development of a robust framework 

employed in developing a valuable tool used to assess and manage risks relating to greywater 

reuse for toilet flushing. The original contributions of this thesis focused on certain technical 

and economic, social, and environmental risk management measures that were investigated, 

developed and/or implemented in Chapters 4, 5 and 6 with respect to the objectives of the 

study. The objectives of this study were: 

1. To monitor the evolving perceptions of users towards GWR for toilet flushing in 

high-density urban buildings before and after the implementation of GWR. This was 

achieved in Chapters 4 with an increase in level of respondents’ trust and confidence 

in the GWR implementing team, and the understanding of important attributes (i.e. 

pleasant smell, colour and tariff) that required critical attention.  

2. To estimate toilet flushing water consumption in high density urban buildings and 

develop a model for predicting this demand. This was achieved in Chapters 5 under 

technical and economic measures with the development of a model to predict toilet 

flushing demand. This model (Equation 5.1) will be valuable to scientifically 

determine the step by step toilet flushing demand within a facility as long as bulk 

water and climatic data  are available ( i.e. toilet flushing, bulk water demand, rainfall, 

maximum  and minimum temperatures. 

3. To develop and apply a robust framework for evaluating available package plants for 

GWR for toilet flushing. This was achieved in Chapters 5 under technical and 

economic measures to risk management and it brought about an holistic and 
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appropriate selection approach for locally available GWR plants specifically, for toilet 

flushing. 

4. To investigate the economic viability of the implemented pilot GWR systems. This 

was achieved in Chapters 5.  

5. To model and simulate the transport of contaminants (specifically nitrate and 

phosphorus) within a dual grey and potable water reticulation system. In doing so, to 

investigate the degree of human exposure to these contaminants at various times of 

the day, due to varying contaminant quantities, and at different injection points. This 

was achieved in Chapters 6 and it addresses the movement of contaminants within a 

residential building and risks associated with greywater ingress. It also presents the 

use of a valuable modeling tool (EPANET-MSX) that can be used in simulating 

multiple greywater contamination events within potable water piped networks.  

 

7.3 Limitations of the research 
The following are the limitations of the developed risk management measures:  

1. Experimental work was not carried out to characterize and understand the behaviour 

of chemicals in the water before the implementation of the modelling exercise. Also, 

the validations of the results at each node were not carried. In future, a pilot-scale 

distribution system simulator (DSS) could be developed so as to understand and 

monitor the movement and behaviour of contaminants so as to be able to compare the 

model’s results with real life situations.  

2. The willingness to pay for greywater was not compared at both pilot sites (UJ and 

WITS). This due to the fact that WITS it is an academic institution where students do 

not pay for municipal services. A comparison of both pilot sites could provide useful 

information in terms of similarities and difference in their choice of attributes of 

importance and the willingness to pay for the attributes.  

3. The scientific monitoring of the impact of awareness raising activities were not 

carried out. If the impact could be scientifically monitored, it will be a major 

contribution. 

4. The framework did not include the direct assessment of energy conservation and 

reductions in greenhouse gas emissions as part of the technology evaluation criteria. 

Owing to current policies on energy conservation and reductions in greenhouse gas 

emissions, this additional criterion is a major way of determining if a treatment 

technology is sustainable.  
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7.4 Recommendations 
Listed below are a number of recommendations proffered based on the experiences garnered 

in this research: 

a) The results presented in Chapter 5 show that the cheapest GWR system employed in 

both pilot sites is economically not viable. Respondents in the study conducted by 

Ilemobade et al. (2009a) generally expect to pay less for non-potable water reuse 

since the non-potable water is considered to be of a lesser quality than potable water. 

Hence, initial and recurrent costs can be reduced by considering the following 

initiatives: (i) Encouraging economies of scale in GWR by including more toilets into 

the GWR project. More toilets would use more greywater for toilet flushing and 

hence, save more potable water and significantly reduce sewage treatment costs; (ii) 

Incorporating the implementation of GWR into the design and construction of new 

buildings will significantly reduce retrofitting costs; (iii) Encouraging GWR through 

government incentives or subsidies especially amongst large consumers of greywater; 

and (iv) Many GWR initiatives, similar to the pilot projects implemented in this 

study, utilised electrical energy to pump the greywater to the point of use. 

Investigating alternative and cheaper sources of energy for the pumps would 

contribute to reducing recurrent costs. 

b) Experiences from Chapter 4 indicate that informed and engaged beneficiaries 

strengthened the levels of trust and confidence bestowed on the project team. This 

was enhanced by providing accurate information to and involving beneficiaries from 

the onset of the project (i.e. prior to implementation) right through to several months 

after implementation. It is however expected, that even with the most comprehensive 

of educational programmes and assurances, there may still be potential beneficiaries 

who will have misgivings and be opposed to the use of greywater. Future GWR 

initiatives must therefore give attention to this.  

c) Public acceptance of GWR has been shown to be highest for the end uses requiring 

the least human contact such as toilet flushing and landscape irrigation. Therefore 

future GWR initiatives should firstly focus on these and similar end uses. 

d) It would be interesting and valuable to investigate the downstream impacts of GWR 

such as on sewer flows (i.e. GWR potentially reduces sewer flows and hence may 

negatively impact on the minimum flows expected to ensure sewage is conveyed 

downstream) and on sewage treatment (i.e. large scale GWR may introduce larger 
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chemical quantities such as are used for disinfection and coagulation and hence, 

unduly increase the chemical loading conveyed to sewage treatment works).  

e) An investigation into the monitoring of greywater quality from point of generation to 

point of use would be valuable to further determine the specific risk to potential users 

of GWR systems. Monitoring of greywater quality would also assist in ascertaining 

that the greywater output quality is fit for use; Regulations regarding GWR for non-

potable end uses are non-existent in South Africa (Ilemobade et al., 2009a). The 

development of a national regulatory document or guideline would be valuable in 

guiding decision-making during the planning, implementation, operation and 

management of GWR and in the protection of human health.  

f) This study attempted to develop a model that can be used to predict toilet flushing but 

instead of predicting it, the study could only estimate toilet flushing demand based on 

historical demands. It would be interesting to consider other parameters such as 

frequency of use, flush volume, day of the week, month of the year in future research 

so as to see if they can be used to develop a predictive model for toilet flushing 

demand.  

  



 
 

211 

REFERENCES 
Al-Jayyousi, O. (2003). Grey water reuse: towards sustainable water management. 

   Desalination, 156, pp. 181-192. 

Adendorff, J. and Stimie, C. (2005). Food from used water - making the previously 

   impossible happen. The Water Wheel. South African Water Research Commission,  

  pp. 26-29. 

Adewumi, J.R., Ilemobade, A.A. and Van Zyl, J.E. (2008). Model to assess public perception 

towards the reuse of treated wastewater effluent In South Africa. Proceedings of the 

Conference on Confluence of water industry (WISA 2008) held at Sun City,  

pp. 1-14. 

Adewumi, J.R. (2011). A Decision Support System for Assessing the Feasibility of  

Implementing Dual Water Reticulation Systems in South Africa. PhD Thesis, 

University of the Witwatersrand, South Africa. 

Alcamo, J., Henrich, T., Rosch, T., (2000). World Water in 2025 - Global modelling and  

 scenario analysis for the World Commission on Water for the 21st Century. Report  

 A0002, Centre for Environmental System Research, University of Kassel, Germany. 

American Public Health Association (1980). Standard methods for the examination of water  

 and wastewater (15th ed.). New York:  

Anda, M., Ho. H., Mathew, K. and Monk, E. (1996). Greywater reuse options: areas for  

further research in Australia. Environmental Resource Forum, 3-4, Transtec, 

Switzerland, pp. 347.  

Angelakis, A.N. and Durham, B.  (2008). Water recycling and reuse in EUREAU countries: 

trends and challenges. Desalination, 218, pp.  3-12.  

Babel, M.S., Gupta, A.D., Pradhan, P. (2007). A multivariate econometric approach for  

domestic water demand modelling: an application to Kathmandu, Nepal. Water 

Resource Management 21, pp. 573–589. 

Balkema, A.J., Preisig, H.A., Otterpohl, R. and Lambert, F.J.D (2002). Indicators for the  

 sustainable assessment of water treatment systems. Urban Water, 4: 153-161. 

Bartram J, Fewtrell L, Stenstrom T-A (2001). Harmonised assessment of risk and risk 

management for water-related infectious disease: an overview. In: Fewtrell L, 

Bartram J, (eds). Water quality: Guidelines, standards and health; Assessment of risk 

and risk management for water-related infectious disease., International Water 

Association (IWA) on behalf of the World Health Organization, London, pp. l-16. 



 
 

212 

Basson, M.S., Van Niekerk, P.H. and Van Rooyen, J.A.(1997). Overview of Water Resources 

   Availability and Utilisation in South Africa, Department of Water Affairs and  

   Forestry, Pretoria, pp. 72.  

Bartlett J.E, Kotrlik and Higgins, C.C. (2001). Organizational Research: Determining 

 Appropriate Sample Size in Survey Research, Information Technology, Learning, and  

Performance Journal, Vol. 19, No. 1, pp 43-50. 

Biagtan, R. N. (2008). Economic evaluation of water recycling in urban areas of California. 

 M.Sc. Thesis, University of California, Davis.  

Bino, M. (2004). Grey water reuse for sustainable water demand management. Proceedings  

  of the International Water Demand Management Conference, Amman: Jordan. 

Bixio, D., Thoeye, C., De Koning, J., D. Joksimovic, D., Savic, D., Wintgens, T. and Melin,  

  T (2006). Wastewater reuse in Europe. Desalination 187,  pp. 89-101. 

Blumenthal, U.J., Strauss, M., Mara, D.D. and Cairncross, S. (1989). Generalised model of  

The effect of different control measures in reducing health risks from waste reuse. 

Water Science and Technology, 21, pp.  567–577. 

Booker, N. (2000). http://www.dbce.csiro.au/inno-web/1200/economic_scale.htm 2000    

[Assessed on 23/09/2009] 

Bradshaw, D., Groenewald, P., and Laubscher, R. (2003). Initial Burden of Disease  

 Estimates for South Africa, 2000. Cape Town: Medical Research Council of South  

 Africa. 

Burnat, J.M.Y., and Mahmoud, N. (2005). Evaluation of On-Site Gray Wastewater Treatment 

   Plants Performance in Bilien and Biet-Diko Villages/Palestine, Environment  

  Protection Committee (EPC).  

Butler, D. (1991). A small scale study of wastewater discharges from domestic appliances. 

    Journal of international Water and Environmental Management, 5, pp. 178-185. 

Butler,  D. (1993). The influence of dwellings occupancy and day of the week on domestic  

 appliance wastewater discharges. Building and Environmental vol.28 1,73-79.  

Butler, D., Friedler, E., and Gatt, K. (1995). Characterizing the quantity and quality of  

 Domestic wastewater inflows, Water Science and Technology, 31(7) pp. 13–24. 

Canada Mortgage and Housing Corporation, (1997). "Regulatory Barriers to On-Site Water 

Reuse, Canadian Water and Wastewater Association", Ottawa, Ontario. Technical 

Series. pp.  98-10.  

Cantor, J., Sutton, P.M., Steinheber, R., Novachis, L., (2000). Industrial Biotreatment: Plant 

http://www.dbce.csiro.au/inno-web/1200/economic_scale.htm%202000


 
 

213 

capacity expansion and upgrading through application of membrane biomass–effluent   

separation. Paper presented at WEFTEC Conference, Anaheim, California. 

Carden, K., Armitage, N., Sichone, O., Winter, K. and Rivett, U. (2007). Understanding the  

   Use and disposal of greywater in the non-sewered areas in South Africa. Water 

   Research Commission Report  1524/1/07 

Casanova, L., Gerba, C., Karpiscak, M. (2001). Chemical and microbiological  

 characterization  of graywater- Journal of Environmental Science and Health, 36(4);  

 pp 395-481. 

CCT WSDP, The City of Cape Town Water Services Development Plan (2007).  

The City of Cape Town. 

Chick, H. (1998).  An Investigation of the Laws of Disinfection, Journal of Hygiene, 8(1), 

pp.92  

Chris Swartz, et al (2007). Guidebook for the selection of small water treatment system for  

     potable water supply in small communities. WRC report No TT 319/07 

Christova-Boal D, Eden RE, and McFarlane S. (1996). “An Investigation into Grey water  

 Reuse for Urban Residential Properties” Desalination.106 (1-3):391-397 

Clark, R. M., Grayman, W. M., Goodrich, J. A., Deininger, R. A., and Skov, K. (1993).  

    Measuring and modeling chlorine propagation in water distribution systems. J. 

   Water Resources Planning Management.120_(6), pp.871–887. 

Comas et al. (2000). Alu Insertion Polymorphisms in NW Africa and the Iberian Peninsula: 

Evidence for a Strong Genetic Boundary Through the Gibraltar Straits. Hum Genet; 

107:312–319 

Crites, R. and Tchobanoglous, G. (1998). Small and decentralized wastewater management 

   Systems, WCB/McGraw-Hill, Boston, 1084 pp. 

Dallas, S., Scheffe, B. and Ho, G. (2004). Reedbeds for grey water treatment – Case study in 

   Santa Elena-Monteverde, Costa Rica, Central America. Ecological Engineering,  

  23(1): pp. 55-61. 

Del Porto, D. and Steinfeld, C. (2000). What about Graywater: the composting toilet system 

   book. Massachusetts the Center for Ecological Pollution Prevention (CEPP),  

   Concord,  Massachusetts, pp. 167-193. 

Del Porto, D. and Steinfeld, C., (1999). The composting toilet system book, 1. The Center for 

  Department of Water Affairs and Forestry (2007), Western Cape Water Supply 

   System: Reconciliation Strategy. Additional Investigations regarding water reuse. 



 
 

214 

   Submitted by Ninham Shand (Pty) Ltd in association with UWP Consulting (Pty)  

   Ltd.  

Department of Environment (DOE) (1996). Household growth: whree shall we all live?  

    Presented to: The parliament by the secretary of state for the environment, HMSO,  

    London, UK. 

Department of Environmental Affairs and Tourism (2011). South-Africa-Tours-and- 

    Travel.com   

 http://www.south-africa-tours-and-travel.com/contact-south-africa-tours-   

 and-travel.html[Assessed 23 Nov.2011]. 

Department of Water Affairs and Forestry (2004). National water resources strategy. 

 Pretoria, South Africa. 

Department of Water Affairs and Forestry and NORAD, Norwegian Agency for  

        Development Cooperation (2007. Introductory Guide to appropriate solutions for  

  water and sanitation TOOLKIT for WATER SERVICES: Number 7.2. Produced 

   under The NORAD-Assisted Programme for the sustainable development of 

   groundwater sources under the Community Water and Sanitation Programme in 

   South Africa. March. 

http://www.dwa.gov.za/Groundwater/NORADToolkit/7.2%20Introductory%20Guide

%20to%20Appropriate%20Solutions%20for%20Water%20and%20Sanitation.pdf 

[Assessed 23 Nov.2011]. 

Dixon, A. M., Butler, D., and Fewkes, A. (1999a). Guidelines for greywater reuse: Health 

issues. Journal of the Chartered Institution of Water and Environmental Management 

(CIWEM), 13, pp. 322–326. 

Dixon, A., Butler, D., Fewkes, A., and  Robinson, M. (1999b). Measurement and modelling 

 of quality changes in stored untreated grey water. Urban Water, 1, pp. 293–306. 

DNHPD (Department of National Health and Population Development) (1978).  

Guide: Permissible Utilization and Disposal of Treated Sewage Effluent. 

Report No. 11/2/5/3. Department Of National Health And Population 

Development, Pretoria, South Africa.  

Duirk, S. E., Gombert, B., Croue, J-P., (2005). Valentine, R. L. Modeling monochloramine  

 Loss  in the presence of natural organic matter. Water Resources. 2005, 39 (14),  

pp. 3418–3431. 

Dukan, S., Levi, Y., Piriou, P., Guyon, F. and Villon, P. (1996). Dynamic modeling of 

http://www.south-africa-tours-and-travel.com/contact-south-africa-tours-%20%20and-travel.html
http://www.south-africa-tours-and-travel.com/contact-south-africa-tours-%20%20and-travel.html
http://www.dwa.gov.za/Groundwater/NORADToolkit/7.2%20Introductory%20Guide%20to%20Appropriate%20Solutions%20for%20Water%20and%20Sanitation.pdf
http://www.dwa.gov.za/Groundwater/NORADToolkit/7.2%20Introductory%20Guide%20to%20Appropriate%20Solutions%20for%20Water%20and%20Sanitation.pdf


 
 

215 

 bacterial growth in drinking water networks. Water Resources.30. 

Edward S.K. and Martin, L. (1995). A methodology for surveying domestic water  

consumption. Journal of the Chartered Institution of Water and Environmental 

Management. 9, pp. 477-488.  

Elisabeth von Münch (2005). On-Site Wastewater Treatment Systems - A Brief Overview Of  

Technical Issues, Department of Municipal Infrastructure, UNESCO-IHE, Westvest 

 7, 2611 Ax Delft, The Netherlands.  

Engelbrecht, J. F. P. and Murphy, K.O.’H., (2006). What Stops me from Using Greywater?” 

 Proceedings of Water Institute of Southern Africa Congress, Durban. 

Environmental Protection Agency (2012). Code of Practice: Wastewater Treatment for 

Single Houses, http://www.epa.ie/whatwedo/advice/wastewater/guidance/cop/  

[ Assessed on 23/10/2012] 

Environment Protection and Heritage Council and Natural Resource Management Ministerial 

 Council, (2006).“Australian Guidelines for Water Recycling: Managing Health and  

 Environmental  Risks,” Commonwealth of Australia.  

Eriksson, E. (2002). Potential and problems related to reuse of water in household, Doctoral 

  thesis, Environment & Resources, Technical University of Denmark, Lyngby.  

Eriksson, E., Auffarth, K.,  Henze, M. and . Ledin, A. (2002). Characteristics of Grey 

 Wastewater Urban Water. Voulme 4.1 , pp. 85-104.  

FAO (1985),.Water quality for agriculture. Irrigation and Drainage Paper 29 Rev. 1. Food 

    and Agriculture Organization of the United Nations, Rome, pp. 174.  

Faruqui, N. and Al-Jayyousi, O., (2002). Greywater reuse in urban agriculture for poverty 

alleviation - A case study in Jordan. Water International, 27(3): 387-394 

FPTCDW/CCME (2004). From source to tap: The multi-barrier approach to safe drinking  

 water.  Federal-Provincial- Territorial Committee on Drinking Water and Canadian  

 Council of Ministers of the Environment, Health Canada, Ottawa, Ontario. Available  

 at: www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/tap-source-robinet/index_e.html 

 [ Assessed on  27/08/2011] 

Friedler, E. (2004). Quality of individual domestic grey water streams and its implication for 

  onsite treatment and reuse possibilities. Environmental Technology, 25(9) pp. 997-

1008. 

Friedler, E. and Hadari, M. (2006). Economic feasibility of on- site greywater reuse in multi –  

story buildings Desalination (19), pp.  221 – 234. 

http://www.epa.ie/whatwedo/advice/wastewater/guidance/cop/
http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/tap-source-robinet/index_e.html


 
 

216 

Froukh, M.L. (2001). Decision-support system for domestic water demand forecasting and 

   management. Journal of Water Resource Management, 15, pp. 363–382. 

Garland, J.L., Levine, L.H., Yorio, N.C. and Hummerick, M.E. (2004). Response of  

  Greywater  recycling systems based on hydroponic plant growth to three classes of  

  surfactants. Water Research Commission report 38(8), pp. 1952-1962. 

Gaydon, P., McNab, N., Mulder, G., Pillay, I., Sahibdeen, M., Thompson, P.  (2007). 

Evaluation of the domestic wastewater treatment package plants for rural, peri-urban 

and community; WRC report No 1539/1/06. 

Gerba, C.P., Straub, T.M., Rose, J.B., Karpiscak, M.M., Foster, K.E. and Brittain,  

  R.G.(1995).  Water Quality Study of Greater Treatment Systems. Water Resources 

   Bulletin. University of  Arizona volume 31:, pp. 109-16.   

Ghisi, E. and Mengotti de Oliveira. S., (2007). Potential for potable water savings by 

 Combining the use of rainwater and greywater in houses in south Brazil. Building  

and Environment, Volume 42, Issue 4, , pp.  1731-1742. 

Ghisi D.F (2007). Potential for potable water savings by using rainwater and greywater in  

a multi-storey residential building in southern Brazil. Building and Environment 

2007; 42(7):2512–22. 

Grayman, W. M., Clark, R. M. and Males, R. M. (1988). Modeling distribution system water 

 quality: Dynamic approach. Journal of Water Resources Planning and Management, 

 volume 114 (3), pp. 295 – 311. 

Grayman, W., Rossman, L., Deininger, R., Smith, C., Arnold, C., and Smith, J. (2004). 

 “Mixing and Aging of Water in Distribution System Storage Facilities”. Journal of  

   the American Water Works Association 96(9), pp. 70-80. 

Grayman, W.M., and Buchberger, S.G. (2006). Fixture-Level Human Exposure Calculation 

   Model. Proceedings of the Water Distribution System Analysis Symposium.  

   University of Cincinnati.  

Gross, A., Azulai, N., Oron, G., Ronen, Z., Arnold, M and Nejidat, A (2005). Environmental 

 impact and health risks associated with greywater irrigation: a case study.,Water 

  Science and Technology, 52(8): 161-169. 

Haas, C.N. (2000). Epidemiology, microbiology, and risk assessment of waterborne  

 pathogens including Cryptosporidium. Journal of Food Production. 63(6), pp. 827– 

 831. 

Haas, C.N., Rose, J.B. and Gerba, C.P. (1999). Quantitative microbial risk assessment, New 

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235691%232007%23999579995%23638871%23FLA%23&_cdi=5691&_pubType=J&view=c&_auth=y&_acct=C000052500&_version=1&_urlVersion=0&_userid=1378557&md5=85797f3f1e0d199a0037105b421be735


 
 

217 

 York, John Wiley and Sons Inc., Pp. 449.  

Halalsheh, M., Dalahmeh, S., Sayed, M., Suleiman, W., Shareef, M., Mansour, M. & Safi, M 

(2008). Grey water characteristics and treatment options for rural areas in Jordan.  

Bioresource technology 99 (14): 6635-6641. 

Hamouda M.A., Anderson W.B., and Huck  P.M. (2008). Point-of-Use/Entry Drinking Water  

 Strategy for Arab Countries. The 3rd International Conference on Water Resources 

 and Arid Environments and the 1st Arab Water Forum, University of Waterloo  

Canada 

Hall, M. J., Hooper, B.D. and Postles S.M.(1998). Domestic per capita water consumption in 

 South West England. J. lnstn. Wat & Envil: Mangt, 1988, 2, (6), 626.  

Hamouri, B. El  (2007). Anaerobic reactor high rate pond combined technology for sewage 

 treatment in small communities: implementation, operation and performance, 

Monography, Institut Agronomique et Vétérinaire Hassan II, Rabat Morocco. 

Hanson, L. (1997). Environmentally Friendly Systems and Products: Water Saving Devices, 

 Bracknell: BSRIA, Department of Environment, Transport and the Regions. 

Hartley, T. W. (2003). Water reuse: Understanding public perception and  

 participation, Virginal: Water Environmental Research Foundation. 

Hartley, S., Kunin, WE. (2003). Scale dependence of rarity, extinction risk, and conservation  

  priority. Conservation Biology, 17: 1559–1570 

Havelaax  A.H, Melse J.M (2003). Quantifying public health risk in the TVHO guidelines 

 for drinking-water quality: a burden of diseases approach. Beethoven, National 

 Institute for Public Health and the Environment (RIVM). 

Health Canada (2010). Canadian Guidelines for Domestic Reclaimed Water for Use in Toilet 

 and Urinal Flushing, Water Quality and Health Bureau, Healthy Environments and  

Consumer Safety Branch, Health Canada, Ottawa, Ontario. Available at:    

 http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/reclaimed_water-   

eaux_recyclees/index-eng.php.[Assessed January 2010].  

Hills, S., Smith, A., Hardy, P. and Birks, R. (2001). Water Recycling and the Millennium 

 Dome. Water Science and Technology 43(10), pp. 287-294.  

Holliman T.R. (1992). Using reclaimed water for toilet flushing and urinals in high-rise  

 buildings-jamboree tower 2c, Irvine, CA (Presented at the 1991 WEF Annual  

 Conference). In: Water Reuse Digest, Water Environment Federation Digest series. 

 Reproduction, Gaithersburg, Maryland, USA, 84-95. 

http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/reclaimed_water-%20%20%20eaux_recyclees/index-eng.php
http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/reclaimed_water-%20%20%20eaux_recyclees/index-eng.php


 
 

218 

Homedes N (1996). The disability-adjusted life year (DALY), Definition, measurement and  

potential use. World Bank. Human capital development working paper 68  

Hong Anh, D. et al. (2003). Trihalomethane formation by chlorination of ammonium 

and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Water 

Research, 37, pp. 3242–3252. 

Hulsman, A. and Swartz, C.D. (1993). Development of an improved compact package plant  

  For small community wastewater treatment. Water Science and Technology. Vol 28.  

 No. 10, 283-288. 

Hunter, P.R. (2003). Drinking water and diarrhoeal disease due to Escherichia coli. Journal 

 Of Water Health, 1(2): 65–71. 

Hunter, P. & Fewtrell, L. (2001). Acceptable risk. In Water Quality—Guidelines, Standards  

 & Health: Assessment of Risk and Risk Management for Water-related Infectious  

 Disease (ed. L.Fewtrell & J. Bartram). IWA Publishing, London, (Chapter 10). 

Hurlimann, A. and Mckay, J. (2007). Urban Australia using recycled water for domestic non- 

 potable use – An evaluation of the attributes price, saltiness, colour and odour using 

 conjoint analysis. Journal of Environmental Management, 83, pp.  93-104.  

Hutton G, Haller L and Bartram J (2007). Economic and health effects of increasing overage  

 of low cost household drinking-water supply and sanitation interventions to countries  

 off-track to meet MDG target 10, Background document to the "Human Development  

 Report 2006. World Health Organization, Geneva, Switzerland. 

Ilemobade, A. A., Adewumi, J. R. and Van Zyl, J. E. (2009a). Assessment of the Feasibility 

   of  using a Dual Water Reticulation System in South Africa. Water Research  

  Commission (WRC) Project K5/1701.  

Ilemobade, A. A., Adewumi, J. R. and Van Zyl, J. E. (2009b). Framework For Assessing  

  The  Viability of Implementing Dual Water Reticulation Systems In South Africa, 

   Water  South Africa Vol. 35 No. 2 Available On Website http://www.wrc.org.za 

Ilemobade, A. A., Adewumi, J. R. and. van Zyl, J. E. (2008). Assessment of feasibility of  

 dual water reticulation system in South Africa, WRC Report No. 1701/1/09 

Ilemobade, A. A., Olanrewaju, O. O., and M L Griffioen (2012). Greywater reuse for Toilet 
Flushing in High Density Urban Buildings in South Africa: A Pilot Study. WRC 
Report No. 1821/1/11 ISBN 978-1-4312-0213-3 

Jackson, R. & Ord, E. (2000). Grey water reuse- benefit or liability? The UK perspective. 

Water 21: 38-40. 

Jacobs, H.E., (2004). A Conceptual End-use Model for Residential Water Demand and  

http://www.wrc.org.za/


 
 

219 

 Return Flow. Doctoral Thesis. Rand Afrikaans University, Department of Civil  

 Engineering.  

Jefferson, B., Judd, S. and Diaper, C. (2001). Treatment methods for grey water.  

  Decentralised Sanitation and Reuse. Concepts, systems and implementation.  

  Integrated Environmental Technology Series. IWA publishing. Ed. Lens, P., Zeeman,  

  G. and Lettinga, G. pp. 334-353. 

Jefferson B., Palmer A., Jeffrey P., Stuetz R. And Judd S. J (2004). Greywater  

 characterisation and Its  impact on the selection and operation of technologies for  

 urban reuse. Water Science Technology, 2004, 50, No. 2, 157–164  

Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles, M. (2004). Modeling bacterial 

growth in drinking water. Journal of the American Water Works Association 96(5), 

 pp. 129 – 141. 

Jeppesen, B. (1996). Domestic greywater re-use: Australia’s challenge for the future. 

 Desalination 106(1–3) pp.311–315 

Jeppesen, B. and Solley, D. (1994). Domestic Greywater Reuse: Overseas Practice and its 

Applicability to Australia. Research report No. 73. Brisbane: Urban Water 

Research. 

Juster, T.F. (1966). Consumer Buying Intentions and Purchase Probability: An Experiment in 

 Survey Design. Journal of American Statistical Association, pp. 658-696. 

Kambanellas, C.A. (2007). Recycling of Grey Water in Cyprus, Water Development 

 Department, Nicosia, Cyprus.  

Karpiscak, M. M., Brittain, R.G., and. Emelity. M. A (1993). Residential Water Conservation 

 and Reuse Demonstration: Casa del Agua and Desert House. Water Resources 

 Planning and Management and Urban Water Resources. pp.  694-697 

Khan, S.J., and. Gerrard, L.E (2006). Stakeholder communications for successful water reuse 

 operations. Desalination 187, pp. 191–202  

Konent, P. (1989). Water demand research: Plumbing fixture requirements for buildings. 

 Journal of American society of plumbing engineers, volume 4, (2), pp. 23. 

Kosek, M., Bern, C., and Guerrant, R.L. (2003). The global burden of diarrhoea disease, as  

estimated from studies published between 1992 and 2000. Bulletin of World Health  

Organization; volume 81, pp.  197-204.  

Kreysig, D. (1991). Grey water Recycling: Treatment Techniques and Cost Savings. World  

  Water and Environment Engineering, (2), pp. 19,  



 
 

220 

Laas, L. and Botha, C. (2004). Sewage package plants: a viability or a liability for new 

developments? Proceedings of the 2004 Water Institute of Southern Africa (WISA)  

Biennial Conference, 1486-1494. 

Landcom’s WSUD strategy (2003). Wastewater reuse in the Urban Environment: selection of 

 technologies Authored by Peter Holt and Emma James. LANDCOM  

Laurent, P., Servais, P., Gatel, D., Randon, G., Bonne, P. and Cavard, J. (1999).  

Microbiological quality before and after nanofiltration. Journal of the American 

Water Works Association. 91(10), pp. 62 – 72. 

Laurent, P., Servais, P., Prevost, M., Gatel, D. and Clement, B. (1997). Testing the SANCHO 

 model on distribution systems. Journal of the American Water Works Association. 

 89(7),  pp. 92 – 103. 

Lazarova, V. (2001). Role of water reuse in enhancing integrated water management in  

  Europe. Final report of the EU project Catch Water, V. Lazarova (Ed.), ONDEO,  

  Paris, France, pp. 708  

Lazarova, V., Hills, S. and Birks, R. (2003). Using recycled water for non-potable, urban  

  uses: a  review with particular reference to toilet flushing. Water Science and  

  Technology: Water Supply 2003; 3(4), pp. 69–77.  

Ledin, A., Auffarth, K., Eriksson, E., Smith, M., Eilersen, A.M., Henze, M. and Mikkelsen,

  P. S (2002).  Investigation of local handling of grey wastewater. Environment &  

 Resources, Technical University of Denmark (submitted to the Danish EPA, in  

 Danish). 

Lefebvre, S., Bacher, C., Meuret, A., Hussenot, J.,(2001). Modeling approach of nitrogen and  

 phosphorus exchanges at the sediment-water interface of intensive fishpond system.  

 Aquaculture ,195, 275-297. 

Lewinger K.L and Young P. E. (1987). Reclaimed water in office high-rises. In: Proceedings  

 of water Reuse Symposium IV: Implementing Water Reuse, 2nd-7th August, Denver,  

 Colorado, USA. AWWA Research Foundation. Denver, Colorado, USA. ISBN 0- 

 915295-16-4. 

Li F., Wichmann K., Otterpohl R. (2009). Review of the technological approaches for grey 

 water treatment and reuses. Science of the Total Environment 407, 3439–3449 

Liu, S., Butler, D., Memon, F., Makropoulos, C., Avery, L., Jefferson, B (2010). Impacts of  

 residence time during storage on potential of water saving for grey water recycling. 

 Water Research 44(1), pp. 267-277. 



 
 

221 

Liang, X. and Van Dijk, M. P. (2010). Financial and Economic Feasibility of. Decentralized  

Wastewater Reuse Systems in Beijing', Water Science and Technology, 61(8), 1965- 

73pp 

Little, V.L., (2002).  Graywater Guidelines, The water conservation alliance of southern  

  Arizona, Tucson, Arizona.  

Loetscher, T. &  Keller, J. (2002). A decision support system for selecting sanitation systems 

 in developing countries, Socio-Economic Planning Sciences, 36, pp.267-290 

Lundqvist, J. and Gleick, P.H. (1997). Comprehensive assessment of the freshwater resources 

 of the world: Sustaining our waters into the 21st century, Stockholm: Stockholm  

Environment Institute. 

Mann, H. T. (1979).  Septic Tank and Small Sewage Treatment Plants. Water Research 

 Centre, Technical Report TR707.  

March, J. G., Gual, M. and Orozco, F. (2004), Experiences on grey water re-use for toilet 

   flushing in a hotel (Mallorca Island, Spain). Desalination 164, pp. 241-247.  

March, J. G., Gual, M., Ramonell, J. A. (2005). “Kinetic Model for Chlorine Consumption in 

  Greywater,” Desalination, volume. 181, pp. 267-273. 

May-Le, N.G. (2004). Household Greywater Reuse for Garden Irrigation in Perth, 

  Environmental Engineering Project 640.406, Center for Water Research, University  

 of Western Australia, Perth. 

Meader, J. and Hart, F. (1988). CLNET – A computer model for tracking movement, decay,  

 And concentrations throughout water distribution systems. Paper presented at the 

Water Resources Conference, American Society of Civil Engineers, Renton,  

Virginia.  

Melo, L.F., Vieira, M.J., (2003). Effect of clay particles on biofilm composition and reactor 

 efficiency, in S. Wuiertz, P. Bishop, P. Wilderer (ed.), Biofilms in Wastewater 

 Treatment: an interdisciplinary Approach, pp. 325-342, IWA Publishing, London . 

Memon, F.A., Zheng, Z., Butler, D., Shirley-Smith, C., Lui, S., Makropoulos, C., Avery, L.  

 (2007). Life cycle impact assessment of greywater recycling technologies for new  

Developments  Environmental Monitoring and Assessment, 129 (1-3),  

pp. 27-35. 

Messner, M.J., Chappell, C.L. and Okhuysen, P.C. (2001). Risk assessment for  

 Cryptosporidium: a hierarchical Bayesian analysis of human dose response data.  

 Water Resources, 35:3934–3940. 



 
 

222 

Metcalf and Eddy Inc. (2004). Wastewater engineering treatment and reuse. 4th edition 

 McGraw-Hill, New York. 

Microlog (2009). http://www.microlog.co.za [Accessed 23 November 2009]. 

Mons, M.N., van der Wielen, J.M.L., Sinclair, M.I., Hulshof, K.F.A.M., Dangendorf, F.,  

 Hunter, P.R. and Medema, G.J. (2005). Estimation of the consumption of cold tap  

 water for microbiological risk assessment: an overview of studies and statistical  

 analysis of data. Kiwa NV, Water Research, Nieuwegein, Netherlands  

(BTO 2005-032). 

Morel, A., Diener, S. (2006). Greywater Management in Low and Middle-Income Countries, 

 Review of different treatment systems for households or neighbourhoods. Swiss  

 Federal Institute of Aquatic Science and Technology (Eawag). Dübendorf,  

 Switzerland. 

Mukheibir (2005). Local water resource management strategies for adaptation to climate 

  induced impacts in South Africa. Proc. Workshop on Rural Development and the 

 Role of Food, Water and Biomass: Opportunities for Development and Climate. 14-

 16 November 2005, Dakar, Senegal. 

Mukheibir, P. and Sparks, D. (2005). Climate variability, climate change and water  

  resources strategies for small municipalities. WRC K5/1500. Pretoria, Water 

 Research Commission.  

Münch, E. V.  (2005). On-Site Wastewater Treatment Systems - A Brief Overview of  

   Technical Issues. Department Of Municipal Infrastructure, UNESCO-IHE, Westvest 

   7, 2611 Ax Delft, The Netherlands  

Murrel J. and Ward M. (1997). Water quality and treatment within greywater systems.  

 Presented at water conservation workshop, 24th -25th April, Oxford, UK Linacre  

 College and Oxford Brooks University. 

Mustow, S., Grey, R., Smeroot, N., and Pinney, C., (1997). Water Conservation –  

 Implications of using recycled greywater and stored rainwater in the UK. Final 

 Report 13034/, Prepared by Building Services Research and Information Association 

 for UK Drinking Water Inspectorate,  

Myers, B.J, Snow, V.O., Dillon, P.J., Bond, W.J.,  and  Smith, C.J.( 1999). Effect of plant  

production system and climate on risk of groundwater contamination from effluent 

irrigation, Water Research,Vol.26, 1999, pp. 26-29. 

Nolde,  E. (1999). Greywater reuse systems for toilet flushing in multi–storey buildings –  



 
 

223 

  Over  ten year’s experience in Berlin. Urban Water, 1, pp. 275-284.  

Norman, R., Bradshaw, D., Schneider, M., Pieterse, D., and Groenewald, P. (2000). Revised 

 Burden of Disease Estimates for the Comparative Risk Factor Assessment, South 

 Africa. Cape Town: Medical Research Council of South Africa, 2006. 

 http://www.mrc.ac.za/bod/bod.htm  [  accessed 31 May 2007]. 

NRMMC-EPHC (2006). Australian guidelines for water recycling: Managing health and 

 environmental risks (Phase 1). Natural Resource Management Ministerial Council, 

 Environment Protection and Heritage Council, Australian Health Ministers  

Conference, Adelaide, Australia. Available at: www.ephc.gov.au/taxonomy/term/39 

OECD, (2007). Unsafe water, sanitation and hygiene: Associated health impact and the costs  

 And benefits of policy interventions at the global level Working Party on National 

 Environmental Policies.  

Oesterholt, F., Martijnse, G., Medema, G.J.  and  van der Kooij, D. (2007). Health risk 

 assessment of non-potable domestic water supplies in the Netherlands,  

 Journal of Water Supply: Resource Technology- Aqua, 56, (3), pp. 171-179. 

Ohio Environmental Protection Agency (2008). TMDLs for the Black River Watershed,  

 Ohio, Appendix D: CE-QUAL-W2 Modeling report, Ohio. 

Okun, D. A. (1996). Distributing reclaimed water through dual systems. Journal of  

America Water Works Association, 89, pp. 52-64  

Okun, D.A. (2002), Distributing Reclaimed Water through Dual Systems. Resource 

    Management 89 (11), Conference proceedings of Urban Drainage. American Society 

    of  Civil Engineers (2002) pp. 52-64  

Okun, D.A. (2002). Water reuse introduces the need to integrate both water supply and 

wastewater management at local and regulatory levels. Water Science and 

Technology  46 (6-7), pp. 273–280. 

Ottosson, J. (2002). Faecal contamination of greywater—assessing the treatment required for 

 hygienically safe reuse or discharge. Paper presented at the 2nd International 

 Symposium on Ecological Sanitation, April 7–11, Lübeck, Germany. 

Ottosson, J., and Stenstroem, T.A. (2003). Faecal Contamination of Grey water, and  

  Associated  Microbial Risks, Water Research, Volume 37 , pp. 645-655.  

Ottosson, J., and Stenstroem, T.A. (2003). Growth and Reduction of Microorganisms in 

   Sediments Collected From a Grey water Treatment System. Letters in Applied 

   Microbiology. Volume 36 (3), pp.  168-72.   

http://www.ephc.gov.au/taxonomy/term/39


 
 

224 

Patterson, R.A. (1994). On-site treatment and disposal of septic tank effluent. Ph.D. Thesis. 

  University of New England. Armidale  

Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, Baly D, Baughman 

 SA, Twaddell T, Glaspy JA and Slamon DJ. (1998).  Journal Clinical Oncology. 16,  

2659-2671. 

Peter, Holt and Emma, James (2003). Wastewater reuse in the Urban Environment: selection 

   of  technologies. Landcom’s WSUD strategy, LANDCOM. 

Petterson, S.R. and Ashbolt, N.J. (2001). Viral risks associated with wastewater reuse:  

  modelling virus persistence on wastewater irrigated salad crops. Water Science  

  Technology; Volume 43(12), pp. 23-26. 

Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S., Liu, et al. (2008). Chemical 

solutions for greywater recycling, Chemosphere, 71, 147-155. 

Piriou, P., Dukan, S. and Kiene, L. (1998). Modeling bacteriological water quality in drinking 

water distribution systems, Water Science and Technology, 38(8 – 9), pp. 299 – 307.  

Piriou, P., Kiene, L. and Dukan, S. (1998). PICCOBIO: A solution to manage and improve 

 bacterial water quality in drinking water distribution systems. Water Supply,   

16(3 – 4), pp.  95 – 104. 

Po, M., Kaercher, J. D. and Nancarrow, B. E. (2003). Literature review of factors influencing 

   public perceptions of water reuse, Technical Report 54/03. CSIRO Land and 

   Water. December. 

Powell, J. C., Hallam, N. B., West, J. R., Forster, C. F., and Simms, J._(2000). Factors which 

 control bulk chlorine decay rates. Water Resoures, 34(1), pp. 117–126. 

Prathapar, S.A., Jamrah, A., Ahmed, M., Al Adawi, S., Al Sidairi, S., Al Harassi, A., (2005),  

Overcoming constraints in treated greywater reuse in Oman. Desalination. 186,  

pp. 177–186.  

Prüss-Üstün. A, and  Fewtrell L (2003). Burden of Disease: Current Situation and Trends.  

 Water Health – Vol. I Encyclopaedia of Desalination and Water Resources  

 (DESWARE) World Health Organization, Geneva, Switzerland.  

Prüss, A., Kay, D., Fewtrell, L., and Bartram, J. (2002). Estimating the burden of disease 

 from water, sanitation, and hygiene at a global level. Environmental Health  

Perspective 2002; 110, pp. 537-542. 

Radcliffe, J. (2003). Water recycling in Australia, op. Cit 

Read R. (1997). Linacre College experience, the college’s views. Presented at: Water  



 
 

225 

 Conservation workshop, 24th-25th April, Oxford, UK. Linacre College and Oxford  

 Brooks University. 

Robert V., Krejcie R and Morgan D (1970). Determining sample size for research activities. 

 Educational and Psychological Measurement, vol 30, pp 607-610. 

Rose, J.B., Sun, Gwo-Shing; Gerba, C.P. and Sinclair. N.A. (1991). Microbial Quality and 

   Persistence of Enteric Pathogens in Greywater From various Household Sources.  

 Water Research, Volume 25.(1),pp.  37-42.  

Rossman , L. A., Clark, R. M., and Grayman, W. M. (1994). Modeling chlorine residuals in 

  drinking-water distribution systems. Journal of Environmental Engineering.,120,  

  pp. 803 – 819. 

Rossman, L.A., (2000). EPANET Users’ Manual. National Risk Management Research 

 Laboratory, Office of Research and Development, United States Environmental 

 Protection Agency, Cincinnati, Ohio(2000). EPA/600/R-00/057. 
Roy, C and Ostapczuk, R. (1995). Modeling Discharges into Rivers and Streams.  

Non-conservative  Point Source Discharge  

http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Environmental/stream/stream.html 

[Accessed: 12 October, 2012]. 

Sadiq, R., Kleiner, Y., and Rajani, B. (2006). Estimating Risk of Contaminant Intrusion in 

  Distribution Networks Using Fuzzy Rule-Based Modeling. Proceedings of the NATO 

Advanced Research Workshop on Computational Models of Risks to Infrastructure,  

Primosten, Croatis, May 9-13, 2006, pp. 318-327. 

Salukazana, L., Jackson, S., Rodda, N., Smith, M., Gounden, T., Macleod, N and Buckley C.,  

   (2005). Plant growth and microbiological safety of plants irrigated with grey water. 

   Proceedings of Third International Conference on Ecological Sanitation, Durban,  

   South Africa. 

Sanders, W., and Thurown, D. (1983). Water Conservation in Residential Development: 

 Land-Use Techniques. American Planning Advisory Services Request 373, USA, 

 1983.  

Sanio, M., Burack, D. and Siddiqui, S. (1998). Reuse of urban waste for agriculture. World 

Engineering Partnership for Sustainable Development. Alexandria, VA, USA. 

Savoye, P., Brehant P., Guuillemet, A., Levine, B, Burtin, A., Skoda, C., and Lazarova,  

  V.(2001). Greywater recycling in collective residential building: Annecy case study 

. Role  of water reuse in enhancing integrated water managemnet in Europe, Final 

http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Environmental/stream/page5.html
http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Environmental/stream/stream.html


 
 

226 

 report of EU  project catch water, V lazarova (Ed.) ONDEO, Paris, France,  

  pp. 531- 595 

Sayers, D. (1998). A study of domestic greywater recycling. National Water Demand 

 Management Centre, Environment Agency, Worthing. 

Schouw, N.L., Tjell, J.C., Mosbaek, H. and Danteravanich, S. (2002). Availability and  

  quality of solid waste and wastewater in Southern Thailand and its potential use as  

  fertiliser. Waste Management & Research, volume 20(4), pp. 332-340. 

SERM (SaskatchewanEnvironment and Resource Management): 1995. Risk Based 

 Corrective Actions for Petroleum Contaminated Sites, Regina, Saskatchewan,  

 Canada. 

Servais, P., Billen, G., Laurent, P., Levi, Y. and Randon, G. (1992). Studies of BDOC and 

 bacterial dynamics in the drinking water distribution system of the northern  

 Parisian suburbs. RevSci Eau 1992; 5:69–89. 

Servais, P. Personal communication to the author, (2001). 

Servais, P., Laurent, P. and Randon, G. (1995).  Comparison of the bacterial dynamics in  

 Various  French distribution systems. Aqua – Journal of Water Service Resources.  

 Technology, 44 (1),  pp. 10 – 17. Servais, P. Personal communication to the author, 

 2001. 

Servais, P., Laurent, P., Billen, G. and Gatel, D. (1995). Development of a Model of BDOC  

 And  Bacterial Biomass Fluctuations in Distribution Systems. Rev. Sci. Eau . 8 (4),  

pp. 427-462 . 

Shafran, A.W., Gross, Z., Ronen, Z., Weisbrod, N. and Adar, E. (2005). Effects of  

  Surfactants Originating from Reuse of Grey water on Capillary Rise in the Soil, Water 

   Science and Technology, 52(10-11), pp. 157-166. 

Shang, F., and Uber, J. (2007). Modeling reaction and transport of multiple species 

 in water distribution systems. Environmental Science and Technology, 42(3),  

pp. 808-814 

Shang, F., Uber, J.G., and Rossman, L.A., (2008). EPANET Multi-Species Extension User’s 

 Manual. National Risk Management Research Laboratory, Office of Research and  

Development, United States Environmental Protection Agency, Cincinnati, Ohio.. 

Sheng, G., Johnston, C.T., Teppen, B.J. and Boyd, S.A. (2001). Potential contributions of 

smectite clays and organic matter to pesticide retention in soils. Journal of   

 Agricultural Food Chemistry. 49, pp. 2899–2907.  



 
 

227 

Siddiq, S.(2005). SDPI Annual Report 2004-2005, Sustainable Development Policy Institute,  

  Islamabad. 

Slaper, T. F. and Hall, T. J., (2011). “The Triple Bottom Line: What Is It and How Does It  

 Work?”, Indiana Business Review. [online]. Available from:  

http://www.ibrc.indiana.edu/ibr/2011/spring/pdfs/article2.pdf [Accessed: 01  

August, 2012]. 

Smith, A. J., Hardy, P. and Lodge, B. (2001). Alternative water sources and technologies for  

   non potable reuse, 74th WEFTEC Conference, Atlanta , Georgia, October 13-17th  

  2001. 

South African National Standards, Drinking Water (2011). 241, 6.01th edition, South African  

 Bureau of Standards 

Strachan, N.J.C., Doyle, M.P., Kasuga, F., Rotariu, O. and Ogden, I.D. (2005). Dose response 

 modelling of Escherichia coli O157 incorporating data from foodborne and 

 environmental outbreaks. International Journal of Food Microbiology, 103,  

 pp.  35–47. 

Summerfelt S.T. (1996). Engineering design of a water reuse system. In: Summerfelt R.C. 

 (ed.): NCRAC Culture Series 101. North Central Regional Aquaculture Center  

Publications Office, Iowa State University, Ames. 277–309. 

Surendran, S. and Wheatley, A. D. (1998). Grey Water Reclamation for Non Potable  

  Reuse. J.  Ciwem, 12, pp. 406-413. 

Swartz, C. (2007). Guidebook for the selection of small water treatment system for potable  

   water supply to small communities. Water Research Commission (WRC) Project no  

   TT 319/07 

Tchobanoglous, G. (1991). Wastewater Engineering, Treatment, Disposal, and  

  Reuse. Irwin/McGraw-Hill, pp.1334.  

Teunis, P., Chappell, C.P. and Okhuysen, P.C. (2002). Cryptosporidium dose studies:  

variation between isolates. Risk Analysis., 22(1), pp.  175–183. 

Teunis, P., Takumi, K. and Shinagawa, K. (2004). Dose–response for infection by  

 Escherichia coli O157:H7 from outbreak data. Risk Analysis, 24(2), pp.  401–407. 

The Global Directory for Environmental Technology (The Green Pages) (2009).  

  http://www.eco-web.com/ini/index.html [ Assessed on17/08/2009] 

Trevett, A.F., Carter, R.C. and Tyrrel, S.F. (2005). The importance of domestic water quality 

 management in the context of faecal–oral disease transmission. Journal of Water 

http://www.eco-web.com/ini/index.html


 
 

228 

 Health, volume 3, pp.  259–270.  

USEPA (2005). Handbook for Managing Onsite and Clustered (Decentralized)Wastewater 

 Treatment Systems :An Introduction to Management Tools and Information for  

Implementing EPA’s Management Guidelines EPA NO: 832-b-05-001 

USEPA/USAID (2004). Technical issues in planning water reuse systems. Guidelines for 

 water reuse. Chapter 3. 

  http://www.epa.gov/ORD/NRMRL/pubs/625r04108/625r04108.pdf  

  [ Assessed on 13/02/2010]  

Van Zyl, J Gat  Y, Olivier Piller O, and Walski, T  (2011). Impact of Water Demand 

 Parameters on the Reliability of Municipal Storage Tanks Journal of Water 

 Resources Planning and Management 24(2), pp.  401–407. 

Vicente P. and Reis E. (2008). “Factors influencing households‟ participation in recycling”.  

 Waste Management and Research, (26) 140-146. 

Vikesland, P. J., Ozekin, K., Valentine, R. L. (2001). Monochloramine decay in model and  

 distribution system waters. Water Resources. 2001,35 (7), pp. 1766–1776 

Watson H E (1908). “A note on the Variation of the Rate of Disinfection with Change in the 

 Concentration of Disinfectant”, Journal of Hygiene, 8, p 536. 

Ward M. (2000). Anglian Water Service. Personal communications 

Westrell, T., Bergstedt, O., Stenström, T.A. and Ashbolt, N.J. (2003). A theoretical approach  

   to assess microbial risks due to failures in drinking water systems International 

  Journal of EnvironmentalHealth Research 13(2), 181-197. 

WHO (2008). Guidelines for Drinking-water Quality: Recommendations-Microbial Aspects, 
 Third Edition Volume 1 Geneva, Switzerland. 

WHO (2005). Review research on the literature of diarrhoea disease in china. National  

 Center for Rural Water Supply Technical Guidance, China CDC. 

WHO (2007). Estimating the costs and health benefits of water and sanitation improvements 

 at global level. Journal of Water and Health, 05, pp. 467. 

WHO (2006). Guidelines for the safe use of wastewater excreta  and greywater- Policy and 

 regulatory aspects Volume. 1, Geneva, Switzerland.  

World Health Organization (2012). Microbial aspects,  

http://www.who.int/water_sanitation_health/dwq/microbial/en/ [assessed on 23/10/2012] 

http://www.epa.gov/ORD/NRMRL/pubs/625r04108/625r04108.pdf


 
 

229 

Wikipedia Encyclopaedia: http://en.wikipedia.org/wiki/water_resource [Accessed 12 March 
2012] 

Wilderer, P.A., (2004). Applying sustainable water management concepts in rural and urban 

areas: Some thoughts about reasons, means and needs. Water Science and Technology, 49(7): 
7-16. 

Wilson, Z. and Pfaff, B. (2008). Religious, philosophical and environmentalist perspectives  

 On  potable wastewater reuse in Durban, South Africa, Desalination  volume 228  

 (2008), pp. 1–9. 

Wong, L.T., Mui, K.W. (2005). Determination of domestic flushing water consumption  

 in Hong Kong. Facilities, 23(1), pp. 82–94. 

Woolschlager, J. E. (2000). A comprehensive disinfection and water quality model for  

 Drinking water distribution systems. Ph.D. Dissertation, North western University,  

 Evanston, Illinois, USA. 

Woolschlager, J. E., Rittmann, B. E., Piriou, P., Kiene, L. and Schwartz, B. (1999).  

 Comprehensive distribution system water quality analysis focusing on chloramine  

 chemistry and nitrification reactions. Paper presented at the Annual Meeting of the  

 American Water Works Association, Denver, Colorado. 

Woolschlager, J.E., Rittman, B.E., and Pirious, P., (2005). Water quality decay in distribution 

  systems – problems, causes and new modelling tools. Journal of Urban Water,2  (2),  

pp. 69–79. 

York, D.W. and Walker-Coleman, L. (2000),. Pathogen standards for reclaimed water.  

  Environment Technology.,12(1), pp. 58–61. 

Young, R. E., Lewinger, K., and Zenk, R. (1988). Wastewater Reclamation - Is It Cost 

Effective? Irvine Ranch Water District - A Case Study. Proceedings of Water Reuse 

Symposium IV, Implementing Water Reuse, American Water Works Association 

Research, Denver, CO, pp. 55-64.   

Young R. E., Thompson K. A., McVicker R.R, Diamond R.A., Gingras M.B., Ferguson D.,  

 Johannesen J., Hen G.K and Parson J.J (!998). Irvine Ranch Water District’s reuse  

 today meets tomorrow’s conservation needs. In: Wastewater reclamation and reuse, 



 
 

230 

 Vol. 10, Asano T (ed). Technomic Publishing Company Inc., Lancaster,  

Pennsylvania, USA, Chapter 21, 941-1036. ISBN 1-56676-620-6. 

Zeisel, J. (1999). Tauchtropfk�orperanlagen im Grauwasser-Recycling,Fa. Lokus GmbH.  

In Grauwasser Recycling, Schriftenreihe fbr 5 (pp. 97±130). Fachtagung der fbr  

1999, Fachvereinigung Betriebsund Regenwassernutzung e.V. (Hrsg.), Darmstad 

Zhang, G. R., Kie´ne´, L., Wable, O., Chan, U. S. and Duguet, J. P. (1992). Modeling of  

 Chlorine residual in the water distribution network of Macao. Environmental  

 Technology. 13, pp. 937 – 946.  

Zhang, X. (2002). Valuing mortality risk reductions using the contingent valuation methods: 

 Evidence from a survey of beijing residents in 1999. Second World Congress of  

Environmental Economist. Beijing.  

Zheng, C. (1999). MT3D99: A modular three-dimensional multispecies transport simulator.  

S. S.Papadopulos & Associates, Inc., Bethesda, MD, USA.  

Zheng, C., and Wang, P.P., (1999). MT3DMS: A modular three-dimensional multispecies  

 model  for simulation of advection, dispersion and chemical reactions of contaminants  

 in  groundwater systems; Documentation and User’s Guide, Contract Report SERDP 

-99-1U.S. Army Engineer Research and Development Center, Vicksburg.  

Zhou, S.L., McMahon, T.A., Walton, A.,and  Lewis, J. (2000). Forecasting daily urban water  

 demand: a case study of Melbourne. Journal Hydrology 236 (3), pp. 153–164. 



 
 

231 

APPENDIX A. PERCEPTION SURVEY QUESTIONNAIRES   
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APPENDIX A1. PERCEPTION SURVEY QUESTIONNAIRE 1 ADMINISTERED PRIOR TO AND 
IMMEDIATELY AFTER THE GREYWATER SYSTEM IMPLEMENTATION 

            
AIM: This questionnaire aims to determine (i) perceptions to using treated greywater for toilet/urinal flushing or garden 

watering and (ii) willingness to use a dual water distribution system. Your responses will be confidential. 

DEFINITIONS:  

• Greywater – waste water originating from showers, baths, laundry tubs and washing machines 

• Treated greywater – greywater that has passed through some processes to remove impurities (e.g. soaps & dirt). 

Treated greywater can be safely used to satisfy some water requirements (e.g. toilet/urinal flushing). 

• A dual water distribution system – separate pipes with different colours supplying drinking water and treated 

greywater to a building for drinking and non-drinking (e.g. toilet/urinal flushing) water requirements respectively. 

 

1. To what extent do you agree with each of the following statements? Please tick (√) against the option that is most 

applicable to you using the 5-point response scale provided. 

Statement 

St
ro

ng
ly

 a
gr

ee
 

A
gr

ee
 

N
eu

tr
al
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is
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e 
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ro

ng
ly

 d
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ee

 

Using treated greywater for toilet/urinal flushing or garden watering will have a positive impact on the  
environment 

     

Using treated greywater for toilet/urinal flushing or garden watering will make our limited drinking water 
resources go further 

     

I am comfortable using treated greywater for toilet/urinal flushing      

I am comfortable using treated greywater for garden watering      

I am comfortable using treated greywater originating from other buildings for toilet/urinal flushing or garden 
watering 

     

I am concerned about people getting sick from using treated greywater for toilet/urinal flushing      

I am concerned about people getting sick from using treated greywater for garden watering      

Using treated greywater for toilet/urinal flushing or garden watering is disgusting      

I will only be prepared to use treated greywater for toilet/urinal flushing or garden watering during a drought 
or water shortage 

     

I am comfortable for a dual water distribution system to be installed where I currently reside      

STATEMENT BELOW FOR STUDENTS & STAFF AT THE SCHOOL OF CIVIL AND ENV 
ENGINEERING ONLY: 

I am comfortable with the dual water distribution system that is installed at the School building 

     

I trust the relevant university authorities will ensure that the treated greywater used is safe for toilet/urinal      

WRC 

http://www.wrc.org.za/
http://www.wrc.org.za/
http://www.wrc.org.za/
http://www.wrc.org.za/
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flushing or garden watering 

2. Might there be any reasons (personal, cultural, religious, etc) why you may not use treated greywater for toilet/urinal 

flushing or garden watering? Please list and briefly explain. 

 

 

 

 

 

 

 

 

3. Age bracket         15-18        19-21        22-25        26-35       36-45       Above 45 

4. Current status                 1st year        2nd year        3rd year       4th year        ___ year 

       Postgraduate         Academic staff          Support staff 

5. Living in university residence? (for students only)           Yes        No 

6. Gender        Male               Female  

7. Racial category        Black       White            Asian             Coloured 

 

8. Make any comments you have on treated greywater use, this questionnaire, the interviewer, etc 

 

 

 

 

 

9. Your current university       WITS        UJ        UCT  

 

 

Thank you for your time and input 
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APPENDIX A2. PERCEPTION SURVEY QUESTIONNAIRE 2 ADMINISTERED ABOUT 3 MONTHS 
AFTER GREYWATER SYSTEM IMPLEMENTATION 

            
AIM: This questionnaire aims to determine (i) perceptions to using treated greywater for toilet flushing and (ii) 

willingness to use a greywater recycle system for toilet flushing. Your responses will be confidential. 

DEFINITIONS:  

• Greywater – waste water originating from the hand basins. 

• Treated greywater – greywater that is filtered and disinfected for toilet flushing. 

• A greywater system – separate pipes within a building supplying treated greywater for toilet flushing. 
 

1. To what extent do you agree with each of the following statements? Please tick (√) against the option that is most 

applicable to you using the 5-point response scale provided. 

Statement 

St
ro

ng
ly
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ee
 

Using treated greywater for toilet flushing in the student bathrooms will have a positive impact on 
the environment. 

     

I am comfortable using treated greywater for toilet flushing.      

I am comfortable using treated greywater originating from the hand basins within the Hillman 
building. 

     

I will only use the toilet that flushes with greywater when the toilets that flush with normal water 
are occupied. 

     

I will only be prepared to use treated greywater for toilet flushing when normal water is 
unavailable. 

     

I am concerned about my health when I use the toilet that flushes with greywater.      

I am satisfied with the reduction in unpleasant smells emanating from the greywater toilet while 
flushing. 

     

I am satisfied with the improvement in the colour of the greywater.      

I would consider installing a grey water system in my household one day.      

I would recommend greywater recycling for toilet flushing to friends and family      

I am confident that the relevant authorities would ensure that the treated greywater used for toilet 
flushing is safe. 

     

WRC 

http://www.wrc.org.za/
http://www.wrc.org.za/
http://www.wrc.org.za/
http://www.wrc.org.za/
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How often do you use the greywater toilet?      

 

  

2. Any comments you would like to make? 
 

 

 

 

 

 

 

 

3. Age bracket         15-18        19-21        22-25        26-35       36-45       Above 45 

4. Current status                 1st year        2nd year        3rd year       4th year        ___ year 

       Postgraduate         Academic staff          Support staff 

5. Living in university residence? (for students only)           Yes        No 

6. Gender        Male               Female  

7. Racial category        Black       White            Asian             Coloured 

8. Your current university       WITS        UJ        UCT  

 

 

Thank you for your time and input 
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APPENDIX A3. PERCEPTION SURVEY QUESTIONNAIRE 3 ADMINISTERED ABOUT 7 MONTHS 
AFTER GREYWATER SYSTEM IMPLEMENTATION 

            
AIM: This questionnaire aims to determine (i) perceptions to using treated greywater for toilet flushing and (ii) 

willingness to use a greywater reuse system for toilet flushing. Your responses will be confidential. 

DEFINITIONS:  

• Greywater – waste water originating from the bathroom hand basins only. 

• Treated greywater – greywater that is filtered and disinfected for toilet flushing. 

• A greywater reuse system – separate pipes within a building supplying treated greywater for toilet flushing. 

 

To what extent do you agree with each of the following statements? Please tick (√) against the option that is most 

applicable to you using the 5-point response scale provided. 

Statement 
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I am satisfied with the reduction in unpleasant smells from the greywater toilet while 
flushing. 

     

I am satisfied with the improvement in the colour of the greywater.      

How often do you use the greywater  toilet? 
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This is my overall assessment of the greywater reuse system at the School of Civil and 
Environmental Engineering 

Pa
ss

 

N
eu

tr
al

 

Fa
il 

1. Any comments you would like to make/suggestions for improvements? 
 

 

3. Age bracket         15-18        19-21        22-25        26-35       36-45       Above 45 
4. Current status                 1st year        2nd year        3rd year       4th year        ___ year 

       Postgraduate         Academic staff          Support staff 

5. Living in university residence? (for students only)           Yes        No 
6. Gender        Male               Female  
7. Racial category        Black       White            Asian             Coloured 
8. Your current university       WITS        UJ        UCT  
Thank you for your time and input 

WRC 

http://www.wrc.org.za/
http://www.wrc.org.za/
http://www.wrc.org.za/
http://www.wrc.org.za/
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APPENDIX A4. PERCEPTION SURVEY QUESTIONNAIRE 4 ADMINISTERED ABOUT 14 
MONTHS AFTER GREYWATER SYSTEM IMPLEMENTATION 

     
 

AIM: This questionnaire aims to determine (i) perceptions to using treated greywater for toilet 
flushing and (ii) willingness to use a greywater reuse system for toilet flushing. Your 
responses will be confidential. 

DEFINITIONS:  
• Greywater – waste water originating from the bathroom hand basins only. 
• Treated greywater – greywater that is filtered and disinfected for toilet flushing. 
• A greywater reuse system – separate pipes within a building supplying treated greywater for 

toilet flushing. 
 

10. To what extent do you agree with each of the following statements? Please tick (√) against the 
option that is most applicable to you using the 5-point response scale provided. 

Statement 
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I am satisfied with the reduction in unpleasant smells from the greywater toilet 
while flushing. 

     

I am satisfied with the improvement in the colour of the greywater.      

How often do you use the greywater toilet? 
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This is my overall assessment of the greywater reuse system at the School of 
Civil and Environmental Engineering Pa

ss
 

N
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Fa
il 

11. Any comments you would like to make/suggestions for improvements? 
 

 

 

12. Age bracket         15-18        19-21       22-25        26-35       36-45
       Above 45 

13. Current status                 1st year        2nd year        3rd year       4th year        ___ 
year 

WRC 
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       Postgraduate        Academic staff         Support 
staff 

14. Living in university residence? (for students only)         Yes        No 
15. Gender        Male               Female  
16. Racial category        Black       White            Asian             Coloured 
17. Your current university        WITS        UJ        UCT  
 
 

 
Section B 

18. The table below is a list of 12 different combinations of greywater attributes based on colour, odour 
and price (as a percentage of prices of drinking water). Kindly rank all this attributes by placing a 
rating from 1(least desirable) to 10 (most desirable) in this table. 

 
 
 
 
S/N Colour Odour 

Price per M3 (as a% of 
cost of drinking water) Preferences 

1 Greyish colour  Odourless 50   
2 Greyish colour  Odourless 75   
3 Greyish colour  Odourless 100   
4 Greyish colour  Unpleasant smell 50   
5 Greyish colour  Unpleasant smell 75   
6 Greyish colour  Unpleasant smell 100   
7 Blue colour  Unpleasant smell 50   
8 Blue colour  Unpleasant smell 75   
9 Blue colour  Unpleasant smell 100   
10 Blue colour  Odourless 50   
11 Blue colour  Odourless 75   
12 Blue colour  Odourless 100   

Note  
Greyish colour (original colour of greywater something milky with foams) 
Blue colour (use of cistern blocks that changes the colour to blue) 
Odourless (it can be chlorine smell or slight freshened smell) 
 

 

Thank you for your time and input 
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APPENDIX A5. PERCEPTION SURVEY QUESTIONNAIRE CODING 
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APPENDIX B: LOCALLY AVAILABLE ON-SITE GREYWATER TREATMENT 
UNITS FOR TOILET FLUSHING AND INTERNATIONAL GUIDELINES FOR ON-

SITE GREYWATER TREATMENT UNITS 
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APPENDIX B2: LETTER DRAFTED TO EXPLAIN THE PROJECT AND REQUEST PLANT SPECIFIC 
INFORMATION USING A QUESTIONNAIRE 

 

  
Date 

Address 

Dear Sir/Madam, 

DEVELOPMENT OF A FRAMEWORK FOR SELECTING WASTEWATER TREATMENT 
PACKAGE PLANTS FOR EFFLUENT REUSE IN TOILET FLUSHING 

A group of researchers from the Universities of the Witwatersrand, Johannesburg and Cape Town 

have been awarded a Water Research Commission project (K5/1821) titled “Dual grey and drinking 

water reticulation systems for high-density urban residential dwellings in South Africa”. Within this 

project, a framework and database is to be developed to guide decision-makers in the selection of 

locally available wastewater treatment package plants that can produce treated effluent for reuse in 

toilet flushing. This information, we believe, will assist decision-makers, institutions, individuals, 

households and communities intending to implement a dual greywater reticulation system. 

As an institution in South Africa involved in the development of wastewater treatment package plants, 

we would appreciate if you would provide us with details of one or more of your package plants that 

may be used in producing treated effluent for toilet flushing. The table below may be used as a guide. 

We believe this framework will be of benefit to your organisation as details of your plant(s) will be 

published in our final report and this will assist in the publicity of your plant(s).  

Your positive response to this request, at your earliest convenience, will be most appreciated. 

Yours truly, 

 

Mr Olawale Olanrewaju; Ph.D. candidate 

011 717 7112; 011 717 7104 (Fax); 079 900 7931; OLAWALE.OLANREWAJU@STUDENTS.WITS.AC.ZA 

 

Dr. Adesola A. Ilemobade; WRC K5/1821 Project leader 

011 717 7153; 086 553 5330 (Fax); 072 128 2903; ADESOLA.ILEMOBADE@WITS.AC.ZA 

DEFINITIONS:  

• Greywater – waste water originating from showers, baths, laundry tubs and washing machines 
• Treated greywater – greywater that has passed through some processes to remove impurities 

(e.g. soaps & dirt). Treated greywater can be safely used to satisfy some water requirements 
(e.g. toilet/urinal flushing). 

• A dual water distribution system – separate pipes with different colours supplying drinking 
water and treated greywater to a building for drinking and non-drinking (e.g. toilet/urinal flushing) 
water requirements respectively. 

mailto:OLAWALE.OLANREWAJU@STUDENTS.WITS.AC.ZA
mailto:ADESOLA.ILEMOBADE@WITS.AC.ZA
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Company/Logo  

 

 

Features of the package 
plant (e.g. treatment 
technology) 

 

 

 

 

Operating range in L/Hour or 
L/Day 

 

Cost of purchasing the plant 

Approximate cost of 
operating the plant 

 

Maintenance requirements  

 

Energy consumption  

 

Footprint  

 

Storage capacity  

 

Expected functional life of 
the plant 

 

Level of skill required for 
operation and maintenance. 

High Moderate Low 

   

Ease  to Upgrade Yes No 

  

Quality of the treated 
effluent after processing 
within the package plant ( a 
single value or range would 
be acceptable) 

Physical quality 

Suspended Solids (mg.ℓ-1)  

 

Turbidity (NTU)  
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Chemical quality 

pH  

 

Chemical Oxygen Demand (mg.ℓ-1)  

 

Biochemical Oxygen Demand 
(mg.ℓ-1) 

 

Ammonia (mg.ℓ-1)  

 

Total Nitrogen (mg.ℓ-1)  

 

Free Chlorine (mg.ℓ-1)  

 

Phosphorous (mg.ℓ-1)  

 

Microbiological quality 

Faecal Coliform (100mℓ-1)  

 

Total Coliform (100mℓ-1)  

 

Physical address 

 

 

URL 

Email  
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APPENDIX B3: THE SUMMARY OF WATER REUSE TREATMENT TECHNOLOGIES AND KEY ELEMENTS IN THE SELECTION PROCESS 
(LANDCOM’S WSUD STRATEGY (2003) 
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APPENDIX B4: THE USEPA CODE OF PRACTICE FOR WASTEWATER TREATMENT SYSTEMS 
FOR SINGLE HOUSES (PE < 10) (USEPA, 2007). 
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APPENDIX C: FRAMEWORK ELEMENTS APPLIED TO THE USE OF RECYCLED WATER 
THROUGH A DUAL RETICULATION SYSTEM (NRMMC-EPHC, 2006). 
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APPENDIX D: AN OVERVIEW OF INDICATIVE REMOVALS OF MICROBIAL HAZARDS THAT CAN 
BE ACHIEVED USING VARIOUS TREATMENT PROCESSES AND TREATMENT LEVELS (HEALTH 

CANADA 2010). 
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APPENDIX E: EPANET MSX FILE (IN CD) 
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