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Abstract 

 

The research is a study of the efficiency and robustness of genetic algorithm to instances 

of both discrete and continuous global optimization problems.  We developed genetic 

algorithm based heuristics to find the global minimum to problem instances considered. 

 

In the discrete category, we considered two instances of real-world space allocation 

problems that arose from an academic environment in a developing country.  These are 

the university timetabling problem and hostel space allocation problem. University 

timetabling represents a difficult optimization problem and finding a high quality solution 

is a challenging task. Many approaches, based on instances from developed countries, 

have been reported in the literature.  However, most developing countries are yet to 

appreciate the deployment of heuristics and metaheuristics in handling the timetabling 

problem.  We therefore worked on an instance from a university in Nigeria to show the 

feasibility and efficiency of heuristic method to the timetabling problem.  We adopt a 

simplified bottom up approach in which timetable are build around departments. Thus a 

small portion of real data was used for experimental testing purposes. As with similar 

baseline studies in literature, we employ genetic algorithm to solve this instance and 

show that efficient solutions that meet stated constraints can be obtained with the 

metaheuristics.  

 

This thesis further focuses on an instance of university space allocation problem, namely 

the hostel space allocation problem.  This is a new instance of the space allocation 

problems that has not been studied by metaheuristic researchers to the best of our 

knowledge. The problem aims at the allocation of categories of students into available 

hostel space.  This must be done without violating any hard constraints but satisfying as 

many soft constraints as possible and ensuring optimum space utilization. We identified 

some issues in the problem that helped to adapt metaheuristic approach to solve it.  The 

problem is multi-stage and highly constrained.  We first highlight an initial investigation 

based on genetic algorithm adapted to find a good solution within the search space of the 
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hostel space allocation problem.  Some ideas are introduced to increase the overall 

performance of initial results based on instance of the problem from our case study.  

Computational results obtained are reported to demonstrate the effectiveness of the 

solution approaches employed.    

 

Sensitivity analysis was conducted on the genetic algorithm for the two SAPs considered 

to determine the best parameter values that consistently give good solutions. We noted 

that the genetic algorithms perform well specially, when repair strategies are 

incorporated.  This thesis pioneers the application of metaheuristics to solve the hostel 

space allocation problem.  It provides a baseline study of the problem based on genetic 

algorithms with associated test data sets. We report the best known results for the test 

instances. 

 

It is a known fact that many real-life problems are formulated as global optimization 

problems with continuous variables.  On the continuous global optimization category 

therefore, we focus on improving the efficiency and reliability of real coded genetic 

algorithm for solving unconstrained global optimization, mainly through hybridization 

with exploratory features. Hybridization has widely been recognized as one of the most 

attractive approach to solving unconstrained global optimization. Literatures have shown 

that hybridization helps component heuristics to taking advantage of their individual 

strengths while avoiding their weaknesses. We therefore derived three modified forms of 

real coded genetic algorithm by hybridizing the standard real-coded genetic algorithm 

with pattern search and vector projection.  These are combined to form three new 

algorithms namely, RCGA-PS, RCGA-P, and RCGA-PS-P. The hybridization strategy 

used and results obtained are reported and compared with the standard real-coded genetic 

algorithm.  Experimental studies show that all the modified algorithms perform better 

than the original algorithm. 

 

Keywords: Unconstrained global optimization, genetic algorithms, space allocation, 

hostel space allocation problem, timetabling, pattern search, vector projection, heuristics, 

metaheuristics, hierarchical heuristics. 
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Chapter One 
 

 

 

Introduction and 

Background 
“The Journey of a thousand miles begins with a single step” 

-  Lao Tzu 

“The ability to convert ideas to things is the secret of outward success” 

- Henry Ward Beecher 

“So many fail because they don't get started - they don't go. They don't overcome 

inertia. They don't begin.” 

-  W. Clement Stone 
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1.0 Introduction 
 
The optimization technique cuts across many fields of study and is applicable in all areas 

where a choice among given or possible alternatives is paramount. These include 

engineering, management science, medicine, computer science, applied mathematics to 

mention a few.  Expectedly, different field of study view optimization from different 

perspective but the key issue lies in the overall goal of the whole process namely, making 

an optimum decision.  The applicability of optimization in different disciplines makes it 

difficult to give a single concise definition of the concept. Mathematicians, for instance, 

aim to find the maxima or minima of a real function within an allowable set of variables 

[118]. In computing and engineering, the goal is to maximize systems or application 

performances with minimal runtime and resources possible. Cherkaev [36] remarks and 

we quote,  

“the desire for optimality (perfection) is inherent for humans.  It seems a 

natural instinct to search for extremes in all endeavour of life (personal 

emphasis).  The search for extremes inspires mountaineers, scientists, 

mathematicians, and the rest of the human race. The mathematical theory 

of optimization is developed since the sixties when computers become 

available. The goal of the theory is the creation of reliable methods to 

catch the extremum of a function by an intelligent arrangement of its 

evaluations.  This theory is vitally important for modern engineering and 

planning that incorporate optimization at every step of the complicated 

decision making process.”   

 

Generally, an optimization model must have three main components [37,80,115,117] 

namely, the decision variables, representing components of the model that can be 

changed to create different possibilities; constraints which represent limitations on the 

variables; and objective function that assigns a value to different possible values of the 

variables. The objective function is optimized with respect to the decision variables. 

Mathematically speaking therefore, optimization is concerned with the study of problems 
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that seek to minimize or maximize a real function by systematically choosing values of 

real or integer variables from an allowed set [121]. The optimization problem can be 

presented mathematically as follows:  

Minimize     f(x) 

such that    x ∈ S 

where      f  is real valued  

and   S = { x ∈Ρn | gi(x) ≤ 0, hj(x) = 0, i = 1,2,…,m; j = 1,2,..,k; k ≤ n }. 

 

The elements of S are the candidate or feasible solutions. The function f is the objective 

or cost function. A feasible solution, x∈S, which minimizes (or maximizes, depending on 

the goal) f is called the optimal solution.  Hereafter a feasible solution will be referred to 

simply as a solution.  

 

Informally then, optimization aims at finding the values of the variables which 

maximizes or minimizes a given quantity subject possibly to some given restrictions on 

the variables.   

 

We define some basic terminologies and concepts as follows: 

 

Neighbourhood:  If we define a distance measure between two solutions as: dist: S × 

S Ρ, then for all x ∈ S, the neighbourhood of x, N(x), is defined as  

 

N(x) = {y ∈ S | dist (x,y) ≤  ε }, 

for real values of ε > 0. 

 

Local optimizer:  An element  Sx∈ is a local minimizer if f(x) ≤ f(y) for all y ∈ N(x) and 

a local maximizer if f(x) ≥ f(y) for all y ∈ N(x).  A local optimizer can either be a local 

minimizer or a local maximizer. 
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Global optimizer:  An element  Sx∈ is a global minimizer if f(x) ≤ f(y) for all y ∈ S and 

a global maximizer if f(x) ≥ f(y) for all y ∈ S.  A global optimizer can either be a global 

minimizer or a global maximizer. 

 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

Figure 1.1: Illustration of an optimization problem 

 

 

 

 

 
 

 
 

Figure 1.2: Types of minima for constrained optimization problems 
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Figures 1.1 and 1.2 present graphical illustrations of typical optimal points in a search 

space.  A global optimal solution is such that there is no other feasible solution with a 

better objective function value within S while a local optimal solution has no other 

feasible solution within its neighbourhood with better objective function value.  A lot of 

efficient algorithms for finding optimal solutions to some classes of optimization 

problems exist.  However, there are still a host of real-world problems where locating the 

optimal solution is not trivial. A major problem with some algorithms is the inability to 

differentiate between local and global optimal solutions and thus the possibility of being 

trapped in a local minimizer. This is where global optimization comes in.  The aim of 

global optimization is to find the best possible global solution within the feasible set, S.  

On the other hand, local optimization techniques aim at finding a good local solution.   

 

Nonlinear optimization models are prominent in many real-world applications such as 

engineering design, space planning, networking, data analysis, logistic management, 

financial planning, risk management, and others. Solutions to these problems often 

require a global search approach. They are generally difficult to solve for many reasons.  

First, literature have reported that optimization problems arising from these applications 

are often NP-hard in nature [14,40,52,56,78,90,126].  Secondly, benchmark problems and 

real-life practical cases present some requirements and constraints which are either hard 

(in terms of solvability) or conflicting [2,14].  Other reasons include the number of 

possible solution (e.g. in combinatorial or discrete case), difficulty in formulating or 

modeling real-world instances, and the computational cost involved in solving these real-

world problems. Weise et al. [118] attribute the difficulty in solving optimization 

problems to some fundamental issues encountered during search for solutions. These 

include premature convergence, ruggedness, causality, deceptiveness, epistasis, 

robustness, overfitting, over-simplification,  and dynamic fitness [118].  The nature of the 

objective function can also increase the complexity of optimization problems especially 

for optimization problems with more than one objectives (otherwise known as multi-

objectives problems [39,77]).  Multi-objective problems are known to be complex due to 

the conflicting nature of the objectives [39].  It is a general belief that there is no general 

optimization method that is best or most efficient for all types of problems. The special 



 19 

structure and domain specific characteristics of the problem can often be utilized when 

choosing a suitable solution method.   

 

At present, no solution method exists that can guarantee global optimal solution of any 

given problem.  Therefore, solution methods are generally referred to as heuristics or 

meta-heuristics. In this thesis, we consider two practical, real-world problems within the 

context of a developing country and adapted genetic algorithm meta-heuristic to solve 

them. The problems are within the domain of space allocation.  To the best of our 

knowledge, one of the studied domains, namely the hostel space allocation problem 

(HSAP), is new in literature.  We further propose some of improve versions of real-coded 

genetic algorithms (RCGAs) for unconstrained global optimization.  These algorithms are 

tested on a large set of test problems.  The rest of this Chapter and Chapter two provide 

some background review for our study.  

 

1.1 Classification of Optimization Problems 

 
An optimization problem can be thought of as decision problem [114].  As stated earlier, 

some optimization methods are only appropriate for certain types of problems. It is 

therefore important to identify the characteristics of a problem in order to apply an 

appropriate method to it.  Brandimarte [23] identified some classification characteristics 

to include the type of constraints, nature of decision variables, physical structure of the 

problem, nature of the objective function, permissible value of the decision variables, 

separability of the functions and number of objective functions. We present a unified 

classification of optimization problem in Table 1.1.  Comprehensive details of the 

problems can be found in [20,22,42,64,72,79,80,124]. 

 

Global optimization problems can be classified based on the properties of the objective 

function, constraints and the decision variables, the most important being the nature of 

the objective function. A problem that has no constraint (or bound constraints) is termed 

an unconstrained global optimization problem.  A problem with linear constraints and 

nonlinear objective function is termed linearly constrained global optimization problem 
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while that with nonlinear constraints and objective function is termed non-linear global 

optimization problem.  The class with only bounded decision variables is known as 

bound constrained (or unconstrained) global optimization problems.  Global optimization 

problems are also classified based on their inherent nature of the decision variables into 

either continuous or combinatorial (discrete) global optimization problem. Many real-life 

problems, for example in applied science and engineering, are formulated as global 

optimization problems with continuous variables. These problems are often non-smooth, 

non-convex and often simulation based, making gradient based methods impossible to be 

used to solve them [70].  They require efficient, reliable and derivative-free global 

optimization methods. 

Table 1.1: Classifications of optimization problems 

Characteristics Property Classification 
Number of decision 
variables 

One Univariate, single-objective 
More than one Multivariate, multi-objective 

Number of optima points One  Unimodal 
More than one Multimodal 

Type of decision variables Continuous real numbers Continuous problems 
Integers Discrete problems 
Both continuous and Integer Mixed Integer problems 
Integer in permutation Combinatorial problems 

Problem formulation based 
on existence of constraints 

Subject to constraints Constrained problems 
Not subject to constraint Unconstrained problems 

Objective functions Linear functions Linear programming 
Objective function is convex and 
constraints set form a convex set 

Convex programming  

Nonlinear objective or/and constraint 
functions 

Nonlinear/non-convex 
programming 

Nature of the decision 
variables 

Probabilistic Stochastic problems 

Physical structure of the 
problem 

Controlled, dynamic Optimal control problems 

 
 
Combinatorial optimization is the process of finding the best solution for problems with 

discrete set of feasible solutions [96].  Combinatorial optimization problem (COP) is a 

special class of optimization problems that seeks to find the optimum permutation of 

decision variables. The solutions are constrained and are usually represented as ordered 

lists. Combinatorial optimization algorithms solve instances of NP-hard problems by 

exploring the large solution space of the instances. This problem class finds applications 
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in numerous real-world settings involving operations management and logistics, such as 

routing, scheduling, packing, inventory and production management, location 

management, and assignment of scarce resources. According to [96], the economic 

impact of combinatorial optimization is profound, affecting diverse sectors such as 

transportation forestry, manufacturing, logistics, aerospace, energy (electrical power, 

petroleum, and natural gas), telecommunications, biotechnology, financial services, 

agriculture, and of interest to this thesis, educational sector.   

 

This thesis deals with the application of global optimization methods both in discrete and 

continuous variable problems. 

 
1.2 Classification of Global Optimization Methods 
 

In this Section, we provide a general overview of some global optimization methods. 

Figure 1.3 gives a classification of global optimization methods.  The classification in 

Figure 1.3 is inexhaustible.  Each class can be further categorized based on other 

observable characteristics. The list of techniques can also be expanded by appending 

methods with similar characteristics under appropriate class.  

 

Figure 1.3 divides global optimization methods into the natural division of exact and 

heuristics (approximate) methods.  There are a number of exact methods developed for 

non-convex global problems with special structures, for example bi-linear and separable 

problems.  An important feature of these methods is that they use convex under-estimator 

of the non-convex problem.  Of these methods, BARON (branch and reduce optimization 

navigator) [100], αBB (branch and bound) [12] and ECP (extended cutting plane) [119] 

are widely known.  This thesis is concerned with metaheuristic methods in dealing with 

application of practical interest.   
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Figure 1.3: A classification of global optimization methods  

 

1.3 Heuristics and Metaheuristics 
 
A heuristic uses current information gathered during execution to decide the next 

candidate solution to examine and how it should be processed.  The basic concept of 

heuristic search, as an aid to problem solving, was introduced by Polya [92].  Polya, 

popularly known as the Father of problem-solving, gave four basic steps that forms the 

foundation for today’s heuristics.  These are [92]:  

1. understanding the problem (separating the known, unknown and constraints), 

2. devising a plan (finding the connection between known and unknown),  

3. carrying out the plan (stepwise implementation with correctness proof), and  

4. looking back (examining and evaluating solutions obtained).  

In algorithmic context, heuristic is a method of performing a minor or a sequence of 

modifications on a given solution or partial solution in order to obtain a different solution 

or partial solution [46]. The modification usually involves neighbourhood search. A 

heuristic therefore helps to create solutions or improve existing solutions by exploring the 
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neighbouring solutions based on certain rules or strategies. A heuristic algorithm 

iteratively applies one or more heuristics based on given design strategy [46].  

 

Metaheuristic [33,53,59] methods aim to strike a balance between exploration and 

exploitation during search for optimality. This balance permits the identification of local 

minima while aiming at the discovery of a globally optimal solution.  Exploration ensures 

a thorough search of the solution space to provide a reliable estimate of the global 

optimum.  Exploitation, on the other hand, concentrates the search effort around the best 

solution found by searching its neighbourhoods.  The exploitation feature helps heuristic 

methods to obtain the best value for decision variables while the exploration feature 

makes them well suitable for problems with large search space.  

 

Advocacy for metaheuristics based methods for global optimization problems is recently 

more pronounced among researchers. While some metaheuristics do not give a guarantee 

of an exact optimal solution yet the argument is that it is better to have a solution that is 

little bit inferior to the optimal than one that will require 10100 years to be found [117].  

This implies a slight compromise in solution quality for computational time and 

robustness.   

 

Metaheuristics are improvements on heuristics.  They are designed to solve more general 

class of global optimization problems.  Metaheuristics include features that may prevent 

them from pre-mature convergence to local minimizers.  They also have search 

exploratory capabilities. They may include local search procedures for local improvement 

of solutions.  The algorithmic family includes genetic algorithm (GA) [60,67,86], 

simulated annealing [47,73], tabu search [53,57,58], differential evolution [9,19,94], and 

pattern search (PS) [45] to mention a few.  

 

This thesis is concerned with the use of GA and some local search heuristics for both 

discrete and continuous problems of interest. The GA used for our problems were, at 

some points, augmented by new heuristics we developed.  These are reported in papers 

[B]-[D]. We also used a modified form of the PS method as an improvement for Real-
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Coded Genetic Algorithm (RCGA) for unconstrained global optimization problems.  We 

therefore present a brief overview of GA and PS in this Chapter. 

 

1.4 Genetic Algorithms 

 

GAs belong to the class of population-based metaheuristics that explore a population of 

individuals randomly sampled over the search space, S, based on Darwin’s theory of 

evolution [43] and the principle of survival of the fittest [108]. An objective function, 

called the fitness function, associates each individual with a fitness value (function value) 

that reflects its quality.  Starting with an initial population, usually generated randomly, 

GA tries to improve the quality of the individuals by making the population evolve.  The 

evolution is achieved using information exchanges between individuals in order to create 

new ones or modify the existing ones.  The individuals that exchange information are 

known as ‘parents’ and the new individuals created (or modified) are referred to as 

‘children’ or ‘offspring’. GAs evolve the population using genetic operators such 

selection, crossover and mutation.   GAs therefore are probabilistic algorithms that 

approximate solutions by maintaining a population of candidate solutions to the problem 

being solved (Figure 1.4).   

 

Crossover combines elements of solutions in the current generation to create individuals 

for the successive generations. It consists of exchanging genetic material between two 

selected single chromosomes.  Mutation, on the other hand, systematically changes 

elements of a solution in the current generation in order to introduce variety into the next 

generation.  Mutation mainly consists of flipping the bit at a randomly chosen point of the 

chromosome representation of the solution. While the selection operator helps with the 

exploitation of search space, crossover and mutation accomplish exploration of the search 

space by creating diversity in the members of the next generation [86]. Common 

selection operators used in GAs include roulette wheel, stochastic universal sampling, 

Boltzmann, rank and tournament selection. Crossover operators include the single-point 

crossover, double-point crossover, preference preserving crossover, and shuffle 

crossover. Mutation commonly reported includes flipping, interchanging, reversing, 
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replacement, and random replacement.  Details of these specific operators can be found 

in [60,107]. 

 

Figure 1.4: Graphical illustration of genetic algorithm steps 
 

GAs are the best known and most successful among the evolutionary algorithms 

[60,86,107].  This is possibly due to the inherent and unique characteristics that are 

regarded as the strengths of GAs.  These include parallelism, derivative-free nature, 

ability to explore large solution space, ability to handle complex fitness landscape and 

deal with multi-objective problems, ability to handle noisy function and escape from 

local optima and best of all, ability to handle large but poorly understood search space 

(problem domain) with ease [83,107].  The effectiveness of GAs for hard and complex 

global optimization problems including real-world instances have been reported in 

literature. Instances include adaptation to resource allocation problems requiring large 

scale high performance computing resources [123], complex robotics [11], gene 

expression and protein folding problems [63,109], transportation, production, logistic 

planning and routing [127], supply chain scheduling [89], flight scheduling [17], 
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unconstrained global optimization problems [8,71], pattern recognition and data mining 

[116], to mention a few. 

 

GAs are not without some challenges for users.  A great challenge in the application of 

GAs is the mapping of a problem domain onto the representational structure 

(chromosome) that will allow for mathematical and computational transformation of the 

various GA operators on the problem at hand.  The choice of the structure depends 

largely on the nature and complexity of the problem. Binary strings consisting of 0s and 

1s is the most commonly used structure. Other possible structures include list, real values, 

and arrays (of integer or real). Crossover and mutation are performed to keep solutions 

within the data element boundaries of the structure used while seeking for better 

solutions. For most data types, specific GA operators can be designed. Different 

chromosomal data structures seem to work better or worse for different specific problem 

domains.  Another challenge is the determination of the fitness function especially for 

problems with no known mathematical model or previous domain knowledge.  Once the 

mapping structure and the fitness function are determined, the next challenge is to 

determine the nature and application strategy of the GA operators that may guarantee 1) 

convergence to global optimum, 2) escape from local optima, and 3) efficiency of the 

algorithm in terms of memory space usage and time complexity.  

 

The structure of a typical standard GA is presented below. 

Algorithm 1.1: The Standard GA procedure 

1. Initialization. Generate initial population P0. Set the crossover and mutation 

probabilities pc  (0, 1) and pm  (0, 1), respectively. Set generation counter k := 1. 

2. Evaluation. Evaluate the fitness function f at all chromosomes in Pk 

3. Selection. Select an intermediate population Pk′ from the current population Pk.  

4. Crossover. Associate a random number from (0, 1) with each chromosome in Pk′ and 

add this chromosome to the parents pool set SPk if the associated number is less than 

pc. Repeat the following Steps 4a and 4b until all parents in SPk are mated:    

a.  Choose two parents p1 and p2 from SPk . Mate p1 and p2 to reproduce children 

c1 and c2.  
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b.  Update the children pool set SCk through SCk := SCk  {c1, c2} and update 

SPk through SPk := SPk − {p1, p2}. 

5. Mutation. Associate a random number from (0, 1) with each gene in each 

chromosome in Pk′, mutate this gene if the associated number is less than pm, and add 

the mutated chromosome only to the children pool set SCk. 

6. Stopping Conditions. If stopping conditions are satisfied, then terminate. Otherwise, 

select the next generation Pk+1 from Pk  SCk . Set SCk to be empty, set k := k + 1, 

and go to Step 2. 

Each iteration of this process is called a generation while the entire set of generations is 

called a run. It is expected that each run produce one or more highly fit chromosomes in 

the population.   

 

A lot of refinements such as enforcing diversity [38], self-adaptation of control 

parameters [48,99], and probabilistic adaptation [71] have been used to extend the 

applicability of GAs to a large domain of optimization problems.  There are significant 

empirical evidence in literature that GAs converge over time and consistently find good 

approximate solutions to hard and complex problems [24,62,81,98,104]. 

 

1.5 Pattern Search 
 

Pattern search (PS) [45] is a direct search method for local optimization that was initially 

proposed by Box [21] in the 1950s and later by Hookes and Jeeves [68] in the early 

1960s.  As a result of more recent strong mathematical proof of its efficiency and 

convergence [35,112,120], PS is gaining interest among researchers working on 

optimization problems [49,74,93,110].  PS has been used for parameter estimation in a 

wide variety of applications and it is popular among optimization researchers because of 

its simplicity, ease of understanding, ease of implementation and robustness [113]. 

Furthermore, PS is a derivative-free method that is very useful for optimization problems 

with either unknown or unreliable function derivatives, or where the function is 

computed to low accuracy.  It serves well as a local optimization algorithm for problems 
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with many known local minima due to its ability to search in multiple directions.  This 

motivates our incorporating PS method as a local search technique into RCGA method to 

solve benchmark unconstrained global optimization problems (see Chapter 6).   

 

PS  is a variation of the coordinate search method [74].  Torczon [112] reported that it 

belongs to the general class of the direct search methods.  It is essentially the 

characteristics of Hooke and Jeeves method [68] with the basic coordinate search method 

[74] and the multi-directional search method [111] hence the term, generalized pattern 

search (GPS) method [35].  Since our interest is to explore a modified form of PS as local 

optimization heuristic to improve RCGAs for solving unconstrained global optimization 

problems.  We present a brief of PS method.  

 

Basically, PS works by generating a sequence of iterates {x(k)} based on the objective 

function values (without using any information of the derivatives, gradient or second-

order derivative).  During successive iteration, the objective function is evaluated at a 

finite number of trial points, taking note of one that yields a lower function value than the 

current iterate. The point found is set as the new iterate and the iteration is termed 

successful otherwise the trial points are updated (size of the pattern reduced and function 

is re-sampled about the current “best” point) and iteration tagged unsuccessful. 

 

Definition 2.1 

Let D be the set of positive spanning directions. A positive combination of the set of 

vectors { } r
ii  dD 1==    is a linear combination dλ i

r

i
i∑

1=
, where λi ≥ 0, i = 1, 2, · · ·, r. 

 

Definition 2.2 

A finite set of vectors { } r
ii  dD 1== , 1 ≤ r ≤ 2n, forms a positive spanning set for Ρn if any ν 

∈ Ρn can be expressed as a positive combination of vectors in D.  The set of vectors D is 

said to positively span Ρn.  The set D is said to be a positive basis for Ρn if no proper 



 29 

subset of D spans Ρn. The simplest search directions used by PS method consist of r = 2n 

vectors and given by the set 

 

D = {e1,· · ·, en,−e1, · · · ,−en} = { d1, d2, · · · ,d2n}, (1.1) 

 

where ei is the ith unit coordinate vector in Ρn. The set D in equation (1.1) is a sample set 

with maximum positive spanning directions.   

 

The two key components of the PS method are the generating matrix and the exploratory 

moves algorithms [35,49].  Operations on these two components gives the PS the basic 

two steps namely, the SEARCH step and the POLL step. The generating matrix 

represents the set of points that can be sampled at any given iteration k, thus it defines the 

pattern from which the function is sampled.  The exploratory moves algorithm specifies 

how the sampling should be done.   PS method generates a sequence of iterates {x(1), x(2), 

· · · x(k), · · · } with non-increasing objective function values.   Each iteration k, goes 

through the two steps of SEARCH and POLL respectively.  We now give a more formal 

description of PS method with an assumption that r = 2n. 

 

In the SEARCH step, the objective function is evaluated at a finite number of points (say 

a maximum of V points) on a mesh (a discrete subset of Ρn) so as to improve the current 

iterate. The mesh at the current iterate, x(k), is given by  

 

{ },∈+=∈= + q : qDxm | Rm M r
k

(k)n
k ΖΔ  (1.2) 

 

where m is a mesh trial point, Δk > 0 is a mesh size parameter (or step size control 

parameter) which depends on the iteration k, and Z+ is the set of nonnegative integers. 

The generation of the trial points for SEARCH step in the current mesh is largely user-

depended and can be done using some heuristic rules.  This step finds a feasible trial 

point, m  Mk, (where m is one of the V points) with a smaller objective function value 

than the value at x(k), that is, f(m) < f(x(k)).  If m is found, it is updated as the new iterate 

and the step size Δk is increased in order to choose the next trial points on the now larger 
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mesh.  If m is not found, then the SEARCH step is unsuccessful for the current iterate, the 

POLL step is then executed around x(k) to decrease the objective function value. This step 

must be done before terminating the iteration. 

 

The POLL step samples the function about the current iterate x(k) in a deterministic 

fashion to generate trial points which produce a new and better iterate (one that 

minimizes the objective function). This produce a poll set, Pk, with trial points that are 

positioned a step Δk away from the current iterate x(k) in the direction designated by the 

columns of D.  Pk, can thus be represented as: 

 

{ },=∈+=∈p=  r ..., 1,i D,d : dxp | R P iik
(k)

i
n

ik Δ  (1.3) 

 

where pi is a trial point in the POLL step. Note that the order of evaluation of Pk does not 

matter nor affect the convergence of the algorithm.  With the two steps defined, we 

present the complete PS algorithm as given in [6]. 

 
 

Algorithm 2.1: Standard PS algorithm (based on the SEARCH and POLL steps) 

1. Initialization. Choose an initial point x(0)  Ω and an initial mesh size Δ0 > 0 Set the 

iteration counter k := 0,  

2. SEARCH. Evaluate the fitness function f at a finite number of points in the mesh Pk 

as defined in equation (1.2). Then, 

a. If f(m) < f(x(k)) for some m Mk, then  set x(k+1) = m, tagSEARCH = SUCCESSFUL;  

go to step 4. 

b. Otherwise (i.e. f(m) ≥  f(x(k)) for all V points), to step 3. 

3. POLL. Follow the steps  

a. If f(pi) < f(x(k)) for some pi  Pk defined by equation (1.3), then set x(k+1) = pi; 

go to step 4; tagPOLL = SUCCESSFUL  

b. Otherwise (i.e f(x(k)) ≤ f(pi) for all pi  Pk defined by equation (1.3) ,then set 

x(k+1) = x(k) and go to step 5 tagPOLL = UNSUCCESSFUL 

4. Mesh Expansion. Let Δk+1 = φkΔk, with φk > 1.   Set k = k+1; Go to step 2 
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5. Mesh Reduction. Let Δk+1 = φkΔk, with 0 <φk < 1.   Set k = k+1; Go to step 2 

Algorithm 2.1 represents a typical procedure for PS method consisting of both the 

SEARCH and the POLL steps.  Implementation steps may however differ depending on 

the problems to solve and objective to achieve. Literature has reported implementation 

that uses only the POLL step [6,74].  Further details on some modified and improved PS 

methods with applications to optimization problems can be found in [6,49,93,111]. 

 
 
1.6 Problem Statements 

 

In this thesis, we consider problems from the two broad classes of global optimization, 

that is, combinatorial optimization and unconstrained global optimization. We selected 

two practical real-world problem instances from the class of space allocation problems 

(SAPs) which have recently attracted attention among metaheuristics researchers. Much 

work has been done with regards to instances of SAPs some areas such as office space 

allocation, timetabling and shelf space allocation. However, most works even in these 

problem instances used cases from developed countries. In addition, there has not been 

any reported work on metaheuristics for HSAP, which is fast becoming a major 

administrative concern for management in tertiary institutions especially in developing 

countries. This, alongside obvious needs that arose in our case study, motivated the 

research into metaheuristic application to the two real-world instances of COPs, namely 

the university timetabling problem (UTTP) and HSAP. Since HSAP is new in literature 

to the best of our knowledge, we designed some basic heuristics and GA metaheuristic to 

solve the problem at different stages.  One of the major objectives of this thesis is to show 

the applicability of heuristics and metaheuristics to the new domain of HSAP especially 

within the context of the case study considered. 

 

Furthermore, we developed some modified RCGAs for finding the global minimum of 

some unconstrained global optimization problems.  We ran simulation experiments based 

on standard RCGA (SRGA) and variants of modified RCGA.  The results of the modified 

RCGAs based on PS and vector projection methods are compared with that of SRCGA.  
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The numerical efficiency and robustness of the methods were tested with fifty seven (57) 

bounded global optimization test problems (see paper [D] in Chapter 6).  

 

The thesis is a further attempt to show the robustness and efficiency of GAs in handling 

real-life global optimization problems. 

 

 

1.7 Structure of the Thesis 

 

The thesis consists of two parts: I) introduction and background study; and II) reports on 

scientific research. Part I covers Chapters 1 and 2.  Chapter 1 gives a general overview of 

the background area of global optimization problems and methods.  An overview on 

global optimization methods with emphasis on GAs and local search PS is presented.  

Chapter 2 presents some backgrounds on SAPs which form a main focus of this thesis.  

In Part II we concentrate on the work done in the papers [A] to [D].  Chapter 3 presents 

paper [A], which describes a multi-level GA that forms the baseline study for the HSAP. 

New heuristics were developed for the first two identified stages of the HSAPs and 

results of the various implementation options compared. These are discussed in paper [B] 

as presented in Chapter 4.  Chapter 5 discusses a GA-based metaheuristic solution to the 

UTTP as presented in paper [C]. Chapter 6 presents paper [D] on some modified RCGAs 

for unconstrained global optimization problems.  A summary of the entire work with 

some drawn conclusions and further research directions are highlighted in Chapter 7.  

Some statements of the contributions of this thesis are provided in Chapter 8. 
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Chapter Two 
 
 

 

 

 

 

Space Allocation Problems: 
Introduction and Related Works 

 
“If we can really understand the problem, the answer will come out of it, because the 

answer is not separate from the problem” 

- Krishnamurti 
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2.0 Introduction 

 

Space planning, distribution and optimization are important managerial responsibilities 

that have great effects on institutions and organizations. Mismanagement, over-utilization 

or under-utilization of space can affect the overall ability of an institution to meet its 

target goals and objectives.  For instance, shelf space in the supermarket continually 

filled with items that are out of demands at the expense of much demanded goods will 

negatively affect the profitability and functionality of the supermarket.  Space is therefore 

an important asset that must be well managed in order to achieve stated goals and 

objectives.  In real-world instances, a common reality is the limited availability of space 

compared with the competitive space demanding entities.  We refer to this as scarcity of 

space. An obvious example is the scarcity of housing (dwelling space) in comparison 

with the rate of population growth in most developed communities.  Expansion in 

business, increase in demands, staff strengths, goods and services as well as competition 

among service providers without corresponding increase in space provision (office, shelf, 

accommodation, etc.) make space planning and optimization a challenging problem for 

researchers.  The functionality of some institutions therefore depends on the ability to 

efficiently manage and distribute available but limited space.  

 

SAPs are those in which the capacity of limited space available has to be distributed 

among a set of items while observing some specific requirements and constraints.  The 

requirements and constraints are sometimes complex and conflicting.  SAPs have some 

close similarity to scheduling problems and are NP-Hard in nature [14,125].  Wren [122] 

defined scheduling as arrangement of objects into a pattern of time or space in such a way 

that the goals are achieved or nearly achieved, and the constraints of the objects are 

satisfied or nearly satisfied. This is the goal of SAP as an optimization problem.  A good 

space distribution must ensure that all demanding entities are given the minimal required 

space as much as possible and space utilization efficiently meets stated domain-specific 

goals, objectives and constraints. Space overuse by any entity must be prevented while 

space wastage is reduced to the barest minimum possible.  
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Space allocation in academic institution is a complex, difficult and time consuming task, 

often carried out manually or semi-automatically by the officers involved.  If we consider 

SAP as a capacity allocation problem, then it has similarities with the classical knapsack 

and bin-packing problems [77,84].  The application of heuristics to tackle domain-

specific SAP was recently suggested and studied [25]. Subsequently, a lot of studies were 

done on the application of heuristics to instances of SAP.  Among these are office SAP 

[77], lecture room allocation (otherwise referred to as timetabling problems) [26,41], and 

shelf SAP [14,15,125].  A domain that has not been studied is the hostel space allocation 

problem (HSAP) especially with reference to the recent increased demand for on-campus 

accommodation in tertiary institutions as a result of increase in admissions. We consider 

an instance of this new case (HSAP) in this thesis.  In physics, time is considered as the 

fourth dimension of space.  Similarly, if we consider time factor in lecture room 

allocation to courses, then timetabling problem becomes essentially a space allocation 

(distribution) problem. Lecture timetabling problem can therefore be treated as a course 

SAP [34].  This motivated part of our study on an instance of the university lecture 

timetabling problem in the context of a developing country where metaheuristics have not 

been explored to solve the problem before. 

 

2.1 Space Allocation Problem – An Overview 

 

Space planning hinges on the efficiency of resource usage and its impacts on institutions 

such as companies, organizations, housing, and education. Practical problems involving 

space allocation include disk storage space allocation in computer science, room 

allocation among staff, lecture room allocation to courses (lectures), and so on.  The 

dynamic nature of these institutions makes space planning process a regular and repeated 

one that requires efficient techniques for carrying it out.  The limited availability of space 

makes it necessary to evolve an efficient distribution strategy for efficiency which can 

only be guaranteed when all demanding entities are given the minimum required space 

while observing, to a large extent, given constraints and/or requirements. 
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SAP, in a higher institution context, can be defined as the allocation of various entities 

(for example, staff, students, laboratory, lectures) to areas of space (for example, rooms, 

bed space) in such a way that satisfies stated requirements and constraints.  Generally, 

allocating rooms in the university environment is a multi-stage process [77]. This class of 

problem is highly constrained with multiple objectives that vary among institutions, and 

requires frequent modifications to accommodate the addition or removal of entities 

and/or rooms [77].  Other characteristics of SAPs are huge search space that increases 

with the size of the problem instance, difficulty in finding a suitable representation that 

can capture the complete system constraints; and the determination and computation of 

an adequate fitness function for the problem instance [29,34].  The automated scheduling, 

optimization and planning research group of the University of Nottingham, UK, listed 

and grouped possible constraints and requirements for SAP into about eleven some of 

which are presented in [77].  However, constraints and requirements generally depend on 

domain specific problem under consideration and the environment.  

 

The increasing demand for university graduates with the attendant increase in admission 

rate and the trend towards electronic-based learning environment bring about the need for 

more flexibility not only in learning but also in management and organization structures 

in higher education institutions of the twenty-first century.  Shabha [102,103] submitted 

that this trend will impact on space management as there will be a shift emphasis towards 

a more time-flexible, space-flexible and location-flexible space planning in higher 

institution. The insufficiency of existing campus buildings and inadequacy of their 

accommodation units to cater for the increased students intake particularly in 

government-owned universities have been pointed out in [82,103]. This problem is 

compounded by the financial constraint and complex organizational framework 

experienced by most institutions especially in the third world countries [106].  Shabha 

[103] further submitted that the relationship between space and service distribution is the 

most significant factor which contributes to sustainable functionality in most specialized 

building such as hospitals.  This explains why space management must be well-planned 

and structured in order to cater for the peculiarity of different categories of entities 

requiring space.  For example, it will not be an efficient distribution to locate people with 
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disability at the topmost floor in a high rise building far away from where they can have 

easy access to health care and attention.  SAP therefore has direct impact on the 

functionality of institutions especially tertiary institutions which is the focus of this 

thesis. 

 

Optimization of space allocation is a complex, multivariate problem [51]. The complexity 

is introduced by the nature of some requirements and constraints which on a broad sense 

might include technical space requirements, operational costs of available space, resource 

requirements such as utilities and networking, compliance with space guidelines and 

requirements, and so on.  Despite this complexity, the task of space allocation is done 

manually in most cases especially in developing countries with some form of reliance on 

database or spreadsheet driven applications for record maintenance [28].  The need to 

incorporate good algorithms to determine an optimal allocation of spaces is therefore 

inevitable [2,28].  

 

SAPs have been classified into either reorganization of the existing allocations or 

construction of completely new solutions [51].  The main differences lie in the objectives 

and requirements of the problem.  Reorganization of the existing allocation is the re-

arrangement of a current space distribution among various entities in order to improve the 

existing solution under existing conditions or modify the allocation because of changes in 

requirements or constraints. Construction of a complete allocation is the generation of a 

new solution from scratch to distribute available space among all eligible entities based 

on given requirements and constraints. HSAP, as a new instance of SAP, falls into the 

second category as we seek to construct complete distribution of university hostel space 

among eligible students while observing given requirements and constraints.  The main 

objectives for a re-organization process might include minimizing the cost of relocation 

of entities and the distance between related entities. 

 

The SAP can therefore be viewed as a problem of distributing the available space among 

the demanding entities in such a way that the space utilization is optimized [77].  An 

important condition that applies to most SAPs such as bin packing problem, knapsack 
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problem, academic resource allocation and others is that the available space and events 

are fixed and are not subject to modification. Knapsack problem for example has a 

number of items of given sizes and a number of knapsacks of given capacities. Each item 

has associated profit and weight assigned. The objective is to fill each knapsack with a 

subset of the items without exceeding the capacity of the knapsack and at the same time 

maximizing the total profit [84].  We give a brief overview of the two instances of SAPs 

considered in the next subsections. 

 

2.1.1 University Timetabling Problem 
 

The timetabling problem (TTP) is a special class of NP-Hard problem that abounds in 

many real life situations especially in educational institutions.  It takes a lot of man-hour 

effort to generate an acceptable timetable manually and yet the search for optimal 

solution to the problem is still on.  Most manually generated timetables are often subjects 

to regular revision as they do not meet all domain-specific requirements.  A change in the 

requirements or preconditions renders the whole process unusable and a new process has 

to be restarted. Even when the problem is reduced through relaxation of some 

requirements, it is still extremely complex to find the optimal solution.  This accounts for 

the trend in heuristics or metaheuristics application to solve TTP.  Part of this thesis is a 

pioneer work to advocate the use of metaheuristics for UTTP in Nigerian universities.  

GAs has proved very useful in search of solution to similar problem within other domain 

instances (see [5,7,27,54,61,75,91,101]). Hence, we experimented with the same 

metaheuristic1 in our study. 

 
TTP in education institutions naturally divide into two namely, the lecture (course) 

timetabling problems (LTTP) and the examination timetabling problems.  An essential 

difference lies in the rigidity of the constraints and requirements of the problems.  Since 

the focus of our study is on the LTTP, all further reference to university timetabling 

problem (UTTP) will be taken to imply LTTP. 

                                                 
1 While some authors refer to GA as a heuristic, we considered it a metaheuristic and employed adapted 
version of the same to solve our problems in this thesis. We however designed other heuristics which are 
incorporated to improve the quality of solutions obtained in some of our problems. 
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UTTP  is an NP-Hard problem [122] with level of difficulties varying from institution to 

institution depending on  space availability and specified constraints and/or requirements.  

In our study, lecture timetabling is considered in a bottom-up fashion, starting from the 

faculty/department level to the university level.  Courses are designated as 1) 

departmental course – offered majorly (almost exclusively) by registered students in the 

department, 2) faculty courses, - offered to students across certain discipline within a 

faculty, and 3) university courses – general courses offered by students across more than 

one faculty simultaneously.  There is a university central timetabling committee in charge 

of timetabling at the topmost level.  Classrooms of various capacities are built around 

each faculty with few dedicated classes for some departments.  To cater for the 

university-wide courses, there are large lecture halls that are controlled by the central 

committee. This arrangement makes it easy to adopt a bottom-up approach to timetable 

generation where each department/faculty can allocate lectures to classrooms they control 

exclusively.  

 

Constraints that affect timetable schedule can be classified into hard and soft constraints.  

Hard constraints are conditions that cannot be violated if feasible solutions are to be 

ascertained.  Soft constraints, on the other hands, might be slacked with some penalty if 

the system cannot fully satisfy them.  Two major constraints that influence classroom 

allocation to courses are the classroom capacity and the class size.  A major characteristic 

of a good lecture timetabling heuristic is the ability to resolve conflicts that arise naturally 

during timetabling generation.  This is a sort of sharing restrictions that prevents two 

lectures being assigned to the same room simultaneously. Other similar restrictions 

include allocation of two or more compulsory courses offered by the same students 

within the same timeslot and allocation of two or more courses taking by the same 

lecturer within the same timeslot. Therefore, no entity (students or courses) must be 

allocated to more than one location at any given time. Moreover, for each period or 

timeslot, there should be sufficient resources available for all scheduled events. 

Depending on environment, promixity - ensuring that lectures are allocated close to the 

department (or students) offering it - can be considered a soft constraint. Other might 
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include preferential treatment – allocating some lectures to desired classes or period, and 

reduction of space wastage and overuse. 

 

LTTP can therefore be defined as a SAP involving the distribution of available classroom 

space with different capacities and specifications, among sets of timetable events having 

different requirements and sizes, without violating any mandatory condition but 

satisfying as many other requirements and/or constraints as possible in order to ensure 

optimum space utilization.  Chapter 5, where paper [C] is presented, gives more overview 

of problem instance and our work in this area. 

 
 
2.1.2 Hostel Space Allocation Problems 
 

Hostel space allocation is becoming a big concern for universities administration in 

developing countries where hostel facilities are provided for students. This concern stems 

from many, and often conflicting, factors and objectives to be achieved. A major issue is 

the increased rate of admission and the attendant requests for campus residence.  One 

great concern is the decrease in capital fund allocation to tertiary education especially in 

developing country which makes it difficult to consider capital project expansion 

including hostel facility for students. Some institutions have to depend on possible 

donations from external bodies which is either highly uncertain and grossly insufficient to 

meet their growing needs. Demands for increased funding have led to many strike actions 

by university staff in recent years which subsequently disrupted academic activities and 

plans [4,95].  The increasing population of students thus poses a challenge of finding an 

optimal design strategy for accommodating changes especially with regards to space 

requirements and provision.  While it might seem easy to predict the short-term space 

requirements based on past admission statistics, it is becoming difficult to predict the 

long-term space requirements due to uncertainty and future admission rate.  The pressure 

is much on the few available tertiary institutions in developing countries to admit the 

ever-growing population of admission seekers. There is therefore the need to efficiently 

manage existing hostel facilities among eligible students while not compromising the set 

goals, objectives and standards of the institutions.  Ideas relating to effective utilization 
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and better deployment of existing hostel facilities are therefore of prime importance to 

university authorities especially in developing countries.  

 

We define HSAP as the problem involving the allocation of scarce bed space resources  

within hostels among many competitive ‘customers’ (eligible students) under given hard 

and soft constraints. The application of well-known heuristics to this instance of SAP has 

not been reported in literature.  To the best of our knowledge, our work is the first 

attempt at employing heuristics to handle instance of HSAP as defined in our context 

especially within the ambit of our case study.  Our work thus forms the baseline for 

studies into HSAP for students in tertiary institutions.   

 

2.1.2.1 Problem definition 

HSAP refers to the distribution of the available bed spaces in halls of residence (hostels) 

among a number of categories of students with different sizes and conditions so as to 

ensure the optimal space utilization and the satisfaction of additional requirements and/or 

constraints.   

Our work is based on instances as obtained at the University of Lagos in Nigeria. The 

university currently has a present combined student population of over 39,000 with halls 

of residence in the main campus built to accommodate both undergraduate and 

postgraduate students. Our concentration is on the undergraduate students who form the 

majority of the student population.  As at the time of study, hostels in the main campus 

consist of twelve undergraduate halls, six for males and six for females. The halls are 

built and grouped into zones based on their physical location (see papers [A] and [B]).  

Hostel space allocation is done just before the beginning of each session by the Students’ 

Affair Office assisted by appointed hall managers.  The stages involve include: 

1. Application and Submission – interested students collect, fill and submit 

application forms. 

2. Data entry – The accommodation office at the Students’ Affairs Office enters 

necessary data from received applications into the system. 
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3. Validation – Applications are validated (by manual cross-checking) to determine 

eligibility of students.  Applicants are then categorized into different category as 

shown below. 

4. Allocation generation – Hall lists are generated, released and distributed for 

further allocation to the hall managers.  

Like other university SAP, HSAP is thus a multi-stage process.  We summarized the 

above processes into the follow: 

1. Compilation of applicants’ list by the Students’ Affair Office.  

2. Categorization of students into various categories. Determination of number of 

students to allocate under each category. 

3. Allocation of part or all students in each category into various hall based on 

certain requirements and priorities. 

4. Allocation of students in each category to various floors/blocks within the each 

hall of residence. 

In our work, we decomposed the whole process into three stages namely, category 

allocation, hall allocation, and block/floor allocation (see Figure 1 of paper [B]).  We 

identified the requirements and constraints for each of these stages. GA-based heuristics 

are designed to handle each of these stages of allocation. The main objective of our work 

is to investigate the viability of heuristic application the case instances considered with 

the aim of helping to improve the efficiency and utilization of the limited physical space 

resources.  

There are eight categories used for allocation purpose namely, final year (Fy), scholars 

(Sc), foreign (Fo), physically challenged (Ht), fresher (otherwise called the first year) 

(Fr), sports men and women (Sp), discretionary list (Ds) and others (Ot).  Priority orders 

are also assigned to these categories for allocation purpose at some stages.  To be 

categorized as Ht student, the applicant must be registered at the university health centre. 

Discretionary students are usually based on individual request made by senior member of 
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staff in the university. Detail on the category and allocation are contained in paper [A] 

and [B].  

 

Some of the requirements and conditions identified for the HSAP include:  

• Capacity constraint must not be violated. For example, number of students 

allocated to a hall must not exceed the capacity of the hall. 

• Fixed allocation - allocations of certain categories of students must be to specified 

halls.  For example, Ht students must be allocated to designated halls that are 

close to health care facility for easy access. Sp students must be accommodated in 

the same hall very close to the sports centre. Sc students also have designated 

halls. 

• Compulsory allocation – all applicants within certain categories must be 

accommodated for some administrative considerations. This affects Fo, Sp and Ht 

categories in our case. 

• As many of Fy,Sc, Fr, Ds and Ot students as possible should be accommodated in 

prioritized order as listed, Fy having the highest priority. 

• If possible, allocation should be such that students from the same department are 

located close to each other.  This was introduced when there was a security 

problem on campus but had since been relaxed.  Hence, we did not consider this. 

• Ht students should be allocated to the lowest possible floor in their designated 

halls – for conveniences. 

• Fy students should be allocated to the highest possible floor in their designated 

halls, possibly for concentration and avoidance of distractions. 

 

We classified these requirements/constraints into either hard or soft constraints for the 

purpose of our study (see Chapters 5&6).  Where necessary, some of these constraints 

were assigned appropriate weights for computational experiment purposes. The quality of 

a solution (allocation) is measured in terms of the following:  

• the number of students allocated under each category 

• satisfaction or no violation of hard constraints.  
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• space utilisation, i.e the amount of space that is wasted (space not used) and the 

amount of space that is overused (categories with less space allocated than 

needed).  

• satisfaction of any soft requirements/constraints. 

An optimal solution for SAP is one where all the entities are allocated, no space is wasted 

or overused and every additional requirements and constraints have been satisfied. In 

most cases of NP-hard problems, this is not always achievable with heuristic allocation. 

A more realistic optimal solution for SAP will be one in which all entities are allocated 

and the space utilization is the best possible, i.e. the amount of space wasted and 

overused has been reduced to the minimum and the additional requirements and 

constraints have been all satisfied.  To minimize the penalties in a solution for a SAP, no 

hard constraints should be violated and as many as possible soft constraints should be 

satisfied [14]. 

 

GAs have shown proven performance in initial studies of similar problems for which the 

search space is large or not fully understood; domain knowledge is scarce and expert 

knowledge is difficult to encode; no mathematical model or analysis is available; and 

where benchmarking standard is unavailable [60,83,86].  Similar baseline studies 

employed GAs due to robustness and efficiency of the algorithm [13,44]. We designed a 

GA data structure for representing above problem at the hall and floor levels and employ 

various heuristics to handle different levels of allocations.  Simulation experiments were 

conducted to determine the best algorithms combinations and/or GA parameters that give 

the best solution for hostel space distribution.  Promising results are reported in papers 

[B] and [C]. 

 

2.2 Modeling the HSAP 
 
We present in this section, the mathematical models for the description of the HSAP.  We 

strive to present a generic view of the problems such as can be easily adapted to any case 

instance.  As pointed out earlier, HSAP is a multi-stage problem.  For the purpose of 
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modeling, we identify three stages of allocations namely, the category, hall, and floor 

allocations.  However, our model is limited to only the first two stages of allocations.  

The models are based on some modified forms of the bounded knapsack problems [84].   

This is done essentially since the problem involves placing some items (students) into 

available knapsack (hostel space) in order to satisfy certain constraints and requirements. 

Comprehensive details on knapsack problems and its various forms is provided in [84]. 

 

We present the discussion for each of these in turn below. 

 

2.2.1 Category Allocation 

 

The allocation at this stage depends upon the priorities set by the administrators (Students 

Affair’s office) and the total capacities of the available halls.   As later discussed in 

Chapter four, the categories are divided into fixed-choice and flexible-choice allocation.  

We assume that individuals are selected into a single knapsack (described by the total 

capacities of all the halls), depending on their level of priority and some assigned 

weights.  We then model this stage as a modified form of bounded knapsack problem.  

Since it is not feasible to allocate all applicants in each flexible-choice category, the 

problem can therefore not be modified as a binary knapsack problem.  The allocation at 

this stage is therefore done subject to the following restrictions and further assumptions: 

• The two broad categories of fixed and flexible must be handled separately with 

the latter given the first priority.  Weight in the range of [0,1] are assigned 

accordingly to these two categories. We assign a weight of 1 to all fixed-choice 

while flexible categories are assigned variable values in [0,1].  However, since all 

categories must be granted the minimal allocation possible, we ensure that no 

category is assigned a weight of 0. 

• A cost function is introduced for the model.  However, for the flexible category, 

this function is designed to follow the order of allocation priority of the categories 

involved. 
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Let T represents the total capacity for all the halls (the size of the knapsack) and pi 

represents the cost of allocating a category i to T, and wi represents the number of 

applicants in category i (equivalent to the weight of each items for the knapsack), i = 

1,…,m; where m is the number of categories.  Let k represents the number of categories 

under fixed-choice.   We assume that the categories are ordered such that the fixed-choice 

comes before the flexible choice (since they are given first priority in allocation). 

Therefore, the number of flexible choice categories is m-k. 

 

Next we define TF and TV as the total number of applicants in the fixed-choice and 

flexible- choice categories respectively. That is,  
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Therefore  

TV = T - TF 

 

Furthermore, we assume that the priority of a given category in the flexible-choice 

increases with the number of applicants in the category.  We therefore defined the cost 

function as: 
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From equation 1.2, it is obvious that the category with higher priority will have higher 

cost function value assigned than those of lower priorities thus enforcing the priority 

requirement of the allocation process. 

 

Put together, the model for the category allocation stage becomes: 
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2.2.1 Hall Allocation 

 

At this stage, allocation is done into respective halls based on certain constraints 

(weights) on some categories of students.  At this stage, we are essentially assigning 

students into the available hall.  Similar to the first stage, we also have the fixed and the 

flexible groups. We seek to allocate students such that certain categories of students 

(fixed) must be allocated to designated halls while others (flexible) are distributed to 

remaining space in all the halls in order to maximize the distribution spread of each 

category.  Note that after the first stage, the overall total number of applicants is 

equivalent to the total number of available bed space in the halls.  Other assumptions 

follow as in the category allocation stage. 

 

We define a variable, hall ratio, rj, as  

 

(1.4)                                                                                              
T
hr

V

j
j =  

 

hj is the capacity of hall j, j = 1,…,n, where n is the total number of halls.  The hall ratio 

is used essentially to enforce the distribution spread of students in flexible group across 

all the available halls. 

Let pij be the cost of allocating student in category i to hall j and wij be the number of 

students in category i allocated to hall j (this represents the weight of class i for hall j).  

We then seek to  



 48 

 

 

 

 

 

 

 

 

 

 

 

Next, we need to determine the cost function, pij.  Since the allocation of the number of 

students depends on the number of applicants and the hall ratio, we cannot allocate more 

than the expected portion of a given category to a given hall.  Therefore the cost function 

is formulated as follows: 
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2.3 Related Works 

 

Many practical, real-world instances of SAPs have been studied in literature. It is 

interesting to note that most instances arose from challenges facing one institutions or the 

other just as in our study.  For example, the automated scheduling, optimization and 

planning group of the University of Nottingham was formed to find automated solutions 

to practical SAPs for different institutions in the United Kingdom [25,29].  With much 

successes recorded on baseline heuristic applications, the group later extended their work 

to higher level heuristics for other instances of SAP (for example, see 

[15,25,28,29,30,31,32,76]).  Michalewicz and Fogel [85] submitted that in practical 

setting, the use of heuristics have proved to be often superior to exact methods.  This 

accounts for their preference in handling real-world problems. 
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Before the application of heuristics and metaheuristics, several attempts were made to use 

exact methods to solve smaller instances of SAPs.  Early studies on space planning and 

utilization in university environment include [16,65,88,97,105].  Most early studies 

however focused more on capacity-related issue, that is, "how much space is required to 

deliver the educational programs of the university or college?"  However, location-related 

issues, that is, “where to place an entity” is of more relevance in space planning and 

management.  In HSAP, the question of “how much space?” is naturally handled from 

capacity constraints and the number of applicants. HSAP therefore seek more to address 

the issues of “who to allocate and where to allocate them”, the solution of which affects 

the overall goal of the allocation process and the university in general.  Part of early 

attempt to address the “where” issue was done by Sharma and Kurma [106] who studied 

the problem of space allocation to academic departments in a high rise building of an 

Australian educational institution. Two main objectives of the study were to minimize 

student pedestrian movement within the building and to maximize intra-departmental 

interaction. A cost-minimization model was used to solve the problem as a transportation 

problem.  The resulting assignment of space was found to be better than the existing 

deployment of teaching department accommodation in terms of objective satisfaction. 

The study is however for a small instance/data set with inability to handle other multi-

objectives that arose from the given instance.  

 

Ritzman et al. [97] formulated a mixed-integer goal programming model to study the 

planning of academic facilities involving the reassignment of 144 offices to 289 members 

in 6 academic departments within the Ohio State University.  The objective of the study 

was to make the reassignment of offices as fair as possible while avoiding conflicts such 

as minimizing the distances between the rooms assigned to each department and its 

administrative office, and ensure that each department obtains a fair share of the available 

high quality offices. The study however revealed that the mixed integer goal 

programming model was rather too complex for the problem than a standard Linear 

Programming.  Benjamin et al. [18] employed linear goal problem to study the multi-

objectives allocation of 15 sections to a new computer integrated manufacturing 
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laboratory at the University of Missouri-Rolla.  The objectives include developing new 

courses relying on the laboratory facilities, increase the students’ use of the laboratory 

facilities and stimulate the graduate-level and funded research.  The goals were 

prioritized using the analytic hierarchy process, a multi-objective decision making 

technique [18] which rank the alternatives of problems in hierarchical structure using pair 

wise comparison. The basic assumption was that the objectives of a problem can be 

represented in a hierarchical structure. The priority structure was incorporated into linear 

goal programming model that determines the optimum resource allocation.  Results 

obtained were measured by the ability to fulfilled stated objectives as no comparison was 

made to other methodology.  Giannikos et al. [55] studied the reorganization of academic 

space distribution in six major sites at the University of Westminster using integer goal 

programming.  The main objective is to assigning enough and adequate type of offices to 

each school while avoiding repeated allocation of the same entity to different offices.  

Other objectives were minimizing the distance between offices assigned to a school and 

its administrative centre and minimizing the number of people that have to be relocated.  

The objectives were ranked according to their importance hence the use of pre-emptive 

goal programming to obtain a satisfactory solution.  

 
The use of heuristics or metaheuristic to solve real-world instances of SAPs was 

popularized by the automated scheduling, optimization and planning group of the 

University of Nottingham then led by Burke [25].  The group has maintained a focused 

effort since 1998 to address the space allocation problem in the context of academic 

institutions.  Specially, office space allocation [77] and on-the-shelf space allocation [14] 

were among those researched by the group. Their initial work on space allocation for 

higher institutions was based on genetic algorithm using data obtained from higher 

institutions in the United Kingdom.  Subsequent works expanded to the use of other 

heuristics and their variants for different instances of SAPs.  One of such employed hill 

climbing (HC), SA and GA methodologies to automatically generate solutions to the SAP 

[25]. The HC was applied in two ways: random selection of rooms (also called as random 

fit) and selection of room with the lowest penalty (best fit). The GA used roulette wheel 

method in the selection process. The GA was tested with various population sizes and 



 51 

various initial populations. It was tested with the random fit HC (random selection of 

rooms), best fit HC (selection of room with the lowest penalty) and SA initialized 

population.  Results showed that SA performed the best though with longer convergence 

while random fit HC performed the worst which has faster convergence.  Subsequent 

work after this have employed several variants of HC, SA and GA to handle the SAP 

[30,31,32]. SA and HC variants showed great performances when it comes to 

reorganizing allocation problem. This is likely because most conflicting resources were 

already allocated hence these local search heuristics serves to improve existing allocation. 

Based on the instance studied and data set used, the results of GA were shown to be 

better when improved with local search heuristics. Most of the works used domain-

specific instances obtained from institutions in the United Kingdom.  

 
 
Furthermore, Burke and Newall [27] presented a multi-stage evolutionary algorithm for 

the timetabling problem. The multi-stage algorithm decomposes a larger problem into 

smaller components which can be effectively handled by evolutionary algorithm. The 

algorithm was able to fix the events in the timetable before considering the next subset of 

events. This approach produced faster and better quality solutions to series of sub-

problems than would have been if the larger problem is handled as an entity. Alkan and 

Ozcan [10] developed a steady state GA to find solution to a small portion of real-world 

course timetable data obtained from the Faculty of Engineering and Architecture (FEA), 

Yeditepe University, Istanbul in Turkey. This was a pioneer study into the instance and 

case considered and GA was found suitable for such with promising results.  The study 

however did not make any distinction between hard and soft constraints.  However, initial 

experimental results obtained in these work showed the viability of applying 

metaheuristics which eventually prompted further studies by the researchers.   In one of 

such subsequent studies, Alkan and Ozcan [91] employed a variety of operators applied 

to memetic algorithm in search of solution to the same data set.   Operators used include 

violation directed mutations, crossovers and violation directed hierarchical HC method.  

Initialization was done randomly and the population passed through the HC heuristic.  A 

random, low probability mutation was applied. An additional mutation was also used to 

guide the search while appropriate penalty values were computed by a factor.  The 
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algorithm employed the one point crossover and uniform crossover as well as a new 

crossover selection based on ranking strategy.  Results obtained favoured the use of 

genetic search combined with HC heuristic. 
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Chapter Three 
 

 

Paper [A]: A Multi-level Genetic Algorithm 

for a Multi-stage Space Allocation Problem 
 

 “That some achieve great success, is proof to all that others can achieve it as well.”  

– Abraham Lincoln 

"There is no one giant step that does it. It's a lot of little steps."  

- Peter A. Cohen 

“You may never know what results come of your action, but if you do nothing there will 

be no result”  

- Mahatma Gandhi 

Necessity is the mother of invention 

- Plato 
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Space management can be carried out more efficiently when the building design process 

has been thoroughly planned.  Paper [A] present the initial work on the multi-level 

application of GA to the multi-stage HSAP. The paper presents some results obtained 

from simulation experiments based on dataset obtained from the University of Lagos in 

Nigeria.  This work was motivated by the need to overcome some obvious bottlenecks in 

the manual approach adopted by the institution.  There was a need for an effective and 

efficient means of allocating hostel accommodation to students especially on the main 

campus which has the higher concentration of student population. Some of the problems 

with the manual approach include piecewise release of allocation list, untimely release of 

list, human manipulations and errors, and of course, the cumulative effects of all these on 

academic performance. In a bid to overcome these problems, the university authority 

sought for ways to accommodate more students.  This led to the semi-privatization of 

hostels, industrial collaboration to build more hostels on build-operate-and-transfer 

agreement, and encouragement of students to seek off-campus residence.  However, the 

introduction of some of these measures had led to more serious security and moral 

concern for the administration.  This is why we believe that proper and efficient 

management of existing facility in order to ensure even distribution of students into 

hostel based on stated requirements will help the authority to overcome part of these 

problems. A complete automated hostel allocation system that incorporates efficient 

optimization techniques is therefore inevitable.  This will ensure that a four-point goal of 

transparency, reliability, efficiency and effectiveness (referred to as the TREE goal) are 

achieved.  Moreover, proper allocation will reduce stress for students and facilitates 

better academic performance.  The desired end results is for the allocation list to be 

released on time (and at once), and be favourable to as many students as possible. 

 

The structure of the overall automated system is given in the sequence diagram in Figure 

3.1.  There are three entities identified that influence the overall system. They are: the 

applicants (students), who must apply for hostel space; the Accommodation Officer, who 

enters and validates all applications; and then the allocation system which distributes 

available bed spaces among eligible applicants in a way as to meet stated 
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requirements/constraints. Some basic definitions of important terminologies are provided 

in Section 2.1 of paper [A]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: A sequential diagram for the HSAP 

 

Since this thesis is concerned with determining the viability of metaheuristic application 

to the allocation distribution, we concentrated our simulation experiments on the 

allocation system.  Aside the other subsystem, the allocation process consists of three 
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stages namely, category allocation, hall allocation and block/floor allocation. The 

mathematical model HSAP had been earlier presented in Chapter 3, Section 2.3.  

Category allocation stage determines number of applicants in each category that can be 

accommodated without violating hall capacity constraints (Table 1 of paper [A]).  

Allocation at this stage must also take into consideration the allocation priority and 

mandatory requirements (Chapter 2, subsection 2.1.2.1). Results obtained from the 

category allocation passed to the hall allocation stage. Since there are separate hostels for 

undergraduate male and female students, we handled the allocation for these two in a 

mutually exclusive manner at the last two stages.  The hall allocation stage determines 

the number of students in each category to be allocated to various hostels based on other 

set of constraints.  The block/floor allocation stage takes the resulting distribution for 

each hostel and determines the number of students under each category to allocate to each 

block/floor within the hostel. This is done also in consideration of 

requirements/constraints that guard the distribution.  To achieve the capacity constraints 

imposed at different stages, we classified the allocation into either fixed or flexible. For 

example, at the category allocation stage, the allocation of Ht, Sp and Fo categories are 

treated as fixed since all eligible students in these categories must be allocated.  Other 

categories are treated as flexible allocation based on the given allocation priority (Section 

2.2.2 of paper [A]).  A sequential diagram illustrating the solution framework for the 

allocation system is shown in Figure 3.2. 

 

We employed a simple greedy heuristic algorithm (Figure 3.3 where, C1, C2, C3 are fixed 

allocation and C4,…,C8 are flexible or free choice allocation) to handle the category 

allocation while remaining two stages were handled by two different but similarly 

designed and inter-dependent GAs (paper [A], Section 3). The general structure of the 

GA metaheuristics is given in Figure 3.4. 

  

In [A], we classified the HSAP requirements given in Chapter 2, subsection 2.1.2.1 into 

either hard constraints or soft constraints. Hard constraints represent absolute limitations 

imposed on the system while soft constraints are necessary but no so important 

requirements that affect the overall quality of the allocation. 
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Main Allocator CategoryAllocator HallAllocator

Allocate

Allocate male halls

Allocate male category

Alllocate female category

Allocate female halls

RoomAllocator

Allocate male to Block/Floor

Allocate female to Block/Floor

 
Figure 3.2: A sequential diagram of the hostel allocation generation subsystem 

 

 



 58 

 
i. Initialize: Set the total capacity of all Halls to TH, Ci = 0 for all categories, Appls[i] = Total number 

of eligible applicants for category i; Ci = allocation for category i, i = 1,2,…8, indexed such that the 
fixed categories, Ht, Sp and Fo are the first three, i.e. C1, C2, C3. 

ii. Allocate Fixed Choice: Set Ci = Appls[i], i = 1,2,3;  
Sum up the students in Fo, Ht and Sp given TFc and subtract from TH.  

iii. Allocate Free Choice:  
Initial:  Set rem = TH - TFc and Bool Ok  FALSE; 
Prioritize: Set free choice categories Ci, i = 4,..,,8 in order of priority such that C4 > C5> ... > C8.  
while (NOT Ok) 
       rem = TH – TFc 
       int remNew = rem; 
      Allocate: Set Ci = Min{remNew, Appls[i]},  
                      Set remNew = remNew - Ci, i = 4,..,8 in order of priority 
      CheckOk() 
End while  

iv. Calculate Unallocated:  Unallocated[i] = Appls[i] - Ci, for i = 4 to 8 
v. CheckOk: If Ci >= 0,for all i = 4,..,8 Set Ok = TRUE 

 
Figure 3.3:  Structure of the greedy heuristic for category allocation 

 

 

 
i. Initialize: Generate initial population, NewPopulation, randomly 

ii. Evaluate: Calculate_Fitness (NewPopulation)  
iii. Set: Set CurrentPopulation = NewPopulation  
iv. While (NOT Terminal conditions)  
v.       For counter = 1 to PopulationSize do 

vi.           Selection:  
                    Parent1 = Heuristic_Select (CurrentPopulation) 
                    Parent2 = Heuristic_Select (CurrentPopulation) 

vii.          Crossover:  
                           Heuristic_Cross (Parent1, Parent2, NewPopulation) 
viii.          Repair:  

                    Heuristic_Repair (NewPopulation) 
ix.          Mutation:  

                    Mutate_Population (NewPopulation) 
x.          Evaluate: Calculate_Fitness (NewPopulation) 

xi.          Replace: 
                           Replace_Population (Current Population, New Population) 
xii. endwhile 

xiii. Display Output  
 

Figure 3.4:  General structure of the genetic algorithms 

 

A major problem with the system is the non-availability of archive data (past allocation) 

that can be used as benchmark for our study. Even the available allocation data at the 

time of study were very scanty and disjointed as the process was done in a piecemeal 

manner.  Hence, the quality of a solution is determined by the degree of 
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requirements/constraints satisfactions. To measure this, we define a space utilization 

factor, U, such that 0 ≤ U ≤ 1 (paper [A], subsection 2.2.1).  This was used for 

appropriate fitness evaluations at both the hall and block/floor allocations.  The overall 

goal therefore is to allocate hostel space such that utilization is maximized, that is, all 

hard constraints are satisfied and as many soft constraints are met as possible.  A sample 

of the final allocation distribution obtained for both hall and block/floor allocation shows 

a high degree of satisfaction of given hard and soft constraints (see paper [A], Tables 

A.1-A.3 and B.1) 

 
GA researchers often report statistics based on GA parameters [66].  Some of these 

statistics are averaged over many different runs of the GA on the same problem [50,87].  

Other statistics reported include the best fitness found in a run and the generation at 

which it was found, the size of the population, the rate of mutation and crossover, and the 

type and strength of selection [87].  For a problem domain therefore, an important 

experiment carry out a sensitivity analysis to determine the best parameter combination 

that gives the best results.  This led to series of simulation experiments we conducted to 

determine the GA parameters values and the best combination of GA operators that give 

the best results for our problem instance.  The experiment setup, results and conclusions 

reached are reported in Section 4 of paper [A].  

 

Furthermore, we carried out series of simulation experiments to determine the rate at 

which feasible solutions, that is allocation that do not violate any stated hard constraint, 

are obtained by the combined GA. This was conducted using different values of 

parameter combinations for each experiment.  In an experiment, the crossover rate (Pc), 

mutation rate (Pμ), population size (N) were fixed and the algorithm executed 50 times 

independently.  For this study, the following combinations (Pc, Pμ, N) were chosen – (0.1, 

0.6, 90), (0.2, 0.5, 90), (0.2, 0.8, 50), (0.3, 0.3, 100) and (0.3, 0.7, 70). Any other 

combinations with good results can be used also. The number of generation was fixed at 

1000 for all experiments.  For each execution, the number of generation evolved and total 

number of feasible solutions over all generations were noted.  The feasibility rate is 

computed as the average of the number of feasible solutions to the total number of 
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solutions.  One of the results obtained is reported in paper [A] (Table 3, Figures 9 and 

10).  We provide in Table 3.1, Figures 3.5 and 3.6, another set of results for parameter set 

(Pc = 0.1, Pμ = 0.6, N = 90).  The results for this combination, (Pc = 0.1, Pμ = 0.6, N = 

90), follows similar pattern with that reported in paper [A] for combination (Pc = 0.3, Pμ 

= 0.3, N = 100).  

 

The GA metaheuristic framework reported in paper [A] does not aim to compete with  

other state-of-art problem specific methods but to provide a generalized approach for 

handling HSAP with solutions that are “good enough, soon enough and cheap enough” 

[13].  This implies solutions that are of good quality, converges, and whose time and 

space complexity are reasonable.  Based on the cumulative results and observations from 

conducted experiments, the following parameter combinations are recommended 

(depending on computing resources consideration):  

• For speedy execution (that is solutions requiring fewer number of generations to 

converge): (Pc = 0.2-0.5, Pμ = 0.7-0.9, N = 80-100) 

• For accuracy (solutions with very high fitness values that are near optima): (Pc = 

0.3-0.4, Pμ = 0.6-0.9, N = 70-100) 

• For minimal use of resources (solutions requiring less amount of intermediate 

processing): (Pc = 0.2-0.4, Pμ = 0.3-0.7, N = 60-80) 

• For consistent optimal results (i.e. solutions with good mix of high accuracy, 

speedy execution and minimal resource usage): (Pc = 0.3-0.5, Pμ = 0.3-0.7, N = 

60-90). 

 

From our results, we conclude that GA metaheuristic is highly efficient in handling the 

HSAP.  It gives results that meet stated requirement thus will be very useful in improving 

the hostel space allocation process. We however note that there are rooms for 

improvements on the results obtained especially if the results of the initial stage (category 

allocation) can be enhanced. This in turn will affect the results of the remaining two 

stages.  This led to our study and presentation in Chapter 4. 
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Table 3.1 - Results of experiment to determine rate of feasibility on the combination (0.1, 0.6, 90). 

 Run#    Male Female 
no. of gens # feasible 

solutions 
Feasibility 

rate(%) 
no. of gens # feasible 

solutions 
Feasibility 

rate(%) 
1 244 6739 30.69 253 18003 79.06 
2 181 9905 60.80 176 8814 55.64 
3 186 4812 28.75 213 8541 44.55 
4 192 6471 37.45 184 4313 26.04 
5 189 8586 50.48 187 4896 29.09 
6 295 8038 30.28 167 3229 21.48 
7 339 7282 23.87 390 6892 19.64 
8 135 3067 25.24 144 9705 74.88 
9 122 5946 54.15 146 7218 54.93 

10 234 6399 30.39 243 15593 71.30 
11 288 5376 20.74 278 11953 47.77 
12 272 11538 47.13 102 7114 77.49 
13 245 7745 35.13 144 7568 58.40 
14 277 14455 57.98 319 6073 21.15 
15 195 9424 53.70 223 7280 36.27 
16 250 10010 44.49 149 7675 57.23 
17 230 5196 25.10 196 4582 25.98 
18 271 16064 65.86 172 5635 36.40 
19 257 7573 32.74 200 3478 19.32 
20 226 10190 50.10 231 9329 44.87 
21 237 4093 19.19 166 4282 28.66 
22 262 4738 20.09 294 14279 53.96 
23 277 15909 63.82 156 4891 34.84 
24 269 13991 57.79 251 6209 27.49 
25 203 5221 28.58 172 5191 33.53 
26 280 9260 36.75 250 825 3.67 
27 195 9702 55.28 254 10921 47.77 
28 314 17196 60.85 164 1557 10.55 
29 271 6343 26.01 262 16951 71.89 
30 269 14590 60.26 255 8788 38.29 
31 98 1 0.01 60 1 0.02 
32 237 6748 31.64 308 17061 61.55 
33 226 8388 41.24 242 10149 46.60 
34 274 4553 18.46 161 5568 38.43 
35 283 11781 46.25 312 11420 40.67 
36 391 17983 51.10 189 11829 69.54 
37 299 12249 45.52 233 13565 64.69 
38 277 14160 56.80 167 8656 57.59 
39 230 9698 46.85 317 5602 19.64 
40 209 12658 67.29 200 2659 14.77 
41 266 11277 47.11 185 7364 44.23 
42 163 6599 44.98 250 11415 50.73 
43 211 10678 56.23 352 21156 66.78 
44 221 3483 17.51 163 11261 76.76 
45 291 11337 43.29 308 5659 20.41 
46 214 3749 19.47 262 9544 40.47 
47 194 5491 31.45 256 8762 38.03 
48 274 13946 56.55 209 8425 44.79 
49 315 6796 23.97 196 3013 17.08 
50 352 14450 45.61 187 8502 50.52 
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Figure 3.5: Feasibility study for male allocation (Pc = 0.1, Pμ = 0.6, N = 90) 

 

 
Figure 3.6: Feasibility study for female allocation (Pc = 0.1, Pμ = 0.6, N = 90) 
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Chapter Four 
 

 

Paper [B]: A Hierarchical Heuristic Strategy 

for Hostel Space Allocation Problem 
 

"Nearly every man who develops an idea works at it up to the point where it looks 

impossible, and then gets discouraged. That's not the place to become discouraged." 

- Thomas Edison 

 

"Success seems to be connected with action. Successful people keep moving. They make 

mistakes, but they don't quit." 

- Conrad Hilton 

 

“That which we persist in doing becomes easier - not that the nature of the task has 

changed, but our ability to do has increased” 

-  Ralph Waldo Emerson
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Paper [B] presents some further studies on the HSAP reported in Chapter 3. The 

mathematical models follow what we defined also in Chapter 3, Section 2.3.  However, 

for comparative study purpose, we further seek to combine the models for the first two 

stages into a single mathematical model.  This is presented later in this chapter. 

 

For better understanding, we present a graphical illustration of the problem and a 

breakdown of constraints in paper [B] (Section 2.1, Figure 1, Tables 2 & 3).  To 

understand the layout of the hostels, we present a graphical layout according to the 

zoning (see Table 1, paper [B]) in Figure 4.1.  For generalization purpose, we use zone-

based hostel identification (hostel ID) instead of the actual names used in paper [A].  For 

example, HA1 refers to hostel 1 in zone A. For cross-examination purposes therefore, 

Table 4.1 gives the names of the hostels with the corresponding ID used in paper [B]. 

 
Table 4.1: Hostel names and identification used 

Zone (Area) Hostel Names Hostel ID Sex 

A  
(Main Campus) 

Jaja HA1 Male 
Mariere HA2 Male 
Moremi HA3 Female 

B 
(New Hall) 

Eni Njoku HB1 Male 
Aliyu Makama Bida HB2 Female 
Fagunwa HB3 Female 
Madam Tinubu HB4 Female 
Sodeinde HB5 Male 

C 
(Gate/Education) 

El-kanemi HC1 Male 
Kofo Ademola HC2 Female 
Queen Amina HC3 Female 
Saburi Biobaku HC4 Male 

 

We developed a multi-level structure heuristics and metaheuristics, jointly called a 

hierarchical heuristic strategy, to solve the HSAP.  Having successfully applied GA 

metaheuristics in our earlier study (Chapter 2), we set out this new study to 1) test other 

heuristics on the first two levels, that is, category allocation and hall allocation, 2) 

develop a heuristic for hall allocation that will maximize the distribution spread of 

categories of students into available hostel space.  This, in turn, is to prevent 1) clustering 

of the same category into the same hall, and 2) bias distribution in which category of 
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higher priorities are allocated to the detriment of those of lower priorities.  We therefore 

aim at given at least some students in the lower category some chance of being 

accommodated while still observing the allocation priority requirement.  

 



 

 
Figure 4.1: Graphical layout of hostels distribution and zoning
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For ease of experimentation, we divided the allocation at the first two levels into either 

fixed-choice or free-choice depending on the strict hard constraints to affect allocation at 

each level.  For example, at the category allocation level, all Ht, Fo and Sp must be 

accommodated hence they are regarded as fixed-choice. 

 

Different heuristics were designed to handle the first two stages while GA metaheuristics, 

FaGA, still drives the final floor level allocation.  For experimental and comparative 

study purposes, two different heuristics, CAH1 and CaH2, were designed for the category 

allocation stage.  CaH1 is still a greedy-like heuristics as in the last Chapter (paper [B], 

Section 3.1).  CaH2 heuristic uses a percentage ranking system to determine the number 

of students to allocate in each category (paper [B], Section 3.2).   Similarly, GA 

metaheuristic, HaGA and a new heuristic, HaNH, were designed for the hall level 

allocation. HaNH heuristic uses a parameter called, hall ratio (HRj, j=1..n), to distribute 

students in each category into various hostel  (paper [B], Section 3.3).   The block/floor 

level allocation was handled by a GA metaheuristic, FaGA.  The algorithms for the 

heuristics are provided in paper [B] (Section 3).  Both HaGA and FaGA metaheuristics 

(paper [B], Section 3.5) are similar to the one in the last Chapter. As noted in Chapter 3, a 

succeeding stage depends on the results obtained from the previous stage.  The overall 

structure of the solution methodology is provided in Figure 2 of paper [B]. 

  

Results obtained by the heuristics pair for the category level are compared and presented. 

The fixed-choice categories are first allocated to specified halls as required. The 

heuristics then seek to distribute the free-choice into remaining hall capacities so as to 1) 

follow the given allocation prioritization and 2) produce an allocation that maximizes 

distribution spread into various hostels.  Figure 4.2 gives a graphical summary of the 

results of the CaH1 and CaH2 heuristics that are reported in paper [B] (Tables 5 & 6). 

The y-axis represents the utilization factor, U, obtained by dividing the actual number of 

students allocated, Ci, by the total number of applicants, Appl[i], for each category.  The 

x-axis represents the categories in free-choice allocation for category allocation stage. C4, 

C5, C6, C7, and C8 in the both represent the Fy, Sc, Fr, Ds and Ot student categories 

respectively.  Note that the fixed-choice categories of Ht, Fo and Sp have a mandatory 
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allocation to specified hall. Figure 4.2 show that both CaH1 and CaH2 meet prioritization 

requirement as shown by the sloppy nature of the graphs. However, CaH2, gives an 

allocation that is better spread among the free-choice categories.  CaH1 gives a more 

biased distribution that favours categories of higher priority and neglect those of lower 

priorities, depending on the available hall capacity. CaH2 therefore produces solution of 

better quality than CaH1.   
 

 

 
 

Figure 4.2: Comparative study of category allocation based on CaH1 and CaH2 heuristics 
 
 
The hall distribution obtained with the application of HaGA and HaNH are reported in 

Tables 7 & 8 of paper [B].  Since hall allocation level depends on results from the 

category allocation, we expect similar pattern of distribution from both HaGA and HaNH 

based on given input.  We therefore only reported the results based on the combination of 

CaH1 with both HaGA and HaNH in paper [B].  Two pie chart illustrations for results of 

HaGA and HaNH  are presented in Figures 4.3 and 4.4. 
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Figure 4.3: Hall distribution based on HaGA 

 

 

Figure 4.4: Hall distribution based on HaNH. 

 

Observation from the results in Tables 7 and 8 of paper [B] both HaGA and HaNH satisfy 

the hard constraints for the fixed-choice allocation.  However, Figures 4.3 and 4.4 show 

that HaNH heuristic maximizes the distribution spread of the free- choice categories more 
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than the HaGA heuristic at the hall allocation stage. For example, though Fy category has 

priority over Fr category, HaGA heuristic however, allocated them to hall based on this 

priority but also considering the number of applicants in the two categories thus 

removing the possibility of priority-based lopsided or biased allocation that favours Fy 

when HaGA heuristics was applied. 

 

As stated earlier, for ease of usage and comparative purpose, we try to combine the 

mathematical models for the category and hall allocation stages into a single model.  This 

is presented as follows:  

We assume the following constraints:  (a) All Fo must be allocated, (b) All Ht must be 

allocated, (c) Ht must be allocated at the lowest oor as possible in a given hall, (d) All Sp 

must be allocated, (e) All allocated Fy should be allocated to the highest oor as possible 

in a given hall, (f) As many Fy, as possible, should be accommodated, (g) As many Sc, as 

possible, should be accommodated, and (h) The order of priority of allocation is Fy, Sc, 

Fr, Ds and Ot.  The first five constraints are hard constraints while the others are soft 

constraints. The objective is to maximize bed space utilization so as to satisfy specified 

hard and soft constraints.   

 

Let ωij be the satisfaction weight if a student of the category i is allocated in the hall j and 

xij be the number of student of category i allocated in the hall j, i = 1,…,m and j = 1,…,n, 

m is the total number of categories while n  is the total number of halls.  We then define a 

satisfaction function as 
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Next we define Li and Ui to be the lower and upper bound, respectively, of the number of 

students to be allocated in category i, while hj the total bed space capacity of the hall j.  

 
In order to satisfy the hard constraints (a), (b) and (d) above, we set their lower bound of 

the number of students allocated in the fixed-choice categories to be equal to the number 

of eligible students in those categories. For the flexible-choice categories, we set the 

lower bound to be 0 and the upper bound to be the number of eligible students within the 

concerned category.  The formulation thus becomes: 
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Equation (4.3) stipulates that the total number of students allocated in hall j should not 

exceed the capacity of the hall, while equation (4.4) represents the constraint of lower and 

upper bound.  We however assume in this model that the values of ωij is assigned by the 

accommodation officer in charge at the Students Affair’s Office based on the order of 

priority assigned to the allocation of each category and also on constraints (c), (e) and (h). 

 

For comparative purpose, we employed simulated annealing (SA) algorithm [see 

47,49,73] to compute the solution for male student for the first two category and hall 

allocation stages based on the new model.  We used the same set of given input as 

employed in main experiment described earlier in this Chapter and in paper [B].  In the 

SA implementation, we chose the cooling function to be tTt αφ 0)( = with 10 << α . 
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Since the experiment is for comparative purpose, we set 9.0=α , and the initial 

“temperature” T0 = 100.  The algorithm was set to stop after a certain number of 

iterations.  

 

Using the same set of input as in Appendix A of paper [B] for male student categories 

only, the SA generated the hall distribution results as presented in Table 4.2. 
Table 4.2: Comparative Results obtained using Simulated Annealing 

  
Category HA1 HA2 HB1 HB5 HC1 HC4 Percentage (%) 

Fy 404 150 110 110 110 340 86.19 
Sc 5 65 65 65 65 6 63.02 
Fo 3 3 3 3 4 4 100 
Ht 10 10 10 10 15 15 100 
Fr 5 162 200 200 200 5 57.95 
Sp 200 40 40 40 40 40 100 
Ds 8 10 15 15 30 2 66.66 
Ot 25 0 300 325 62 100 47.76 

Total 660 440 743 768 501 512  
 
 
A study of the above results shows a good level of satisfaction of some give constraints 

by the SA algorithms.  However, one could notice that the distribution spread objective 

was better satisfied by our earlier HaGA and HaNH heuristics than the SA (compare 

Tables 4.2 with Tables 7 & 8 of paper [B]), thus our heuristics proved to be better than 

SA algorithm.  Similarly, the hard constraints regarding the fixed-choice allocation is 

better satisfied by HaGA and HaNH than the SA (compare Tables 4.2 with Tables 7 & 8 

of paper [B]). 
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Chapter Five 
 

 

 

Paper [C]: A Heuristic Solution to the 

University Timetabling Problem 
 

 “That some achieve great success, is proof to all that others can achieve it as well.”  

– Abraham Lincoln 

"There is no one giant step that does it. It's a lot of little steps."  

- Peter A. Cohen 

“You may never know what results come of your action, but if you do nothing there will 

be no result”  

- Mahatma Gandhi 
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TTP is a special class of NP-hard optimization problem that come up every year in 

educational institutions [54,61]. The use of computer-based solution is limited by the 

complexity of the problem.  This explains the drive for the application of global 

optimization methods in solving the TTP.  GAs have proved to be robust for this kind of 

problems [5,7,75]. In paper [C], we present a flexible representation and solution 

approach for the LTTP as obtained in the instanced considered (see Chapter 2, subsection 

2.1.1).  Further detail of the LTTP case instance is presented in Section 2.1 of paper [A].   

The overall goal of the LTTP is to assign lectures (courses/classes) into a set of time slots 

in such a way that satisfy given constraints and optimize a set of objectives.  Common 

hard constraints considered in a typical UTTP include: lecturer must teach only one class 

at a time; a classroom cannot be allocated more than one course at a time; lecturer may 

only teach courses in his specialty (for example, a Computer Science Lecturer cannot be 

assigned to teach a Chemistry course); and the same class of students must not be doubly 

booked for compulsory courses at the same time. There are also soft constraints that 

influence the solution quality of timetable.  However, in a real-world scenario especially 

with large student population, it is almost impossible to satisfy all soft constraints. In 

most cases, as in the current case instance, they are completely overlooked and where 

need be, assigned minimal weight for fitness evaluation purposes.  Some soft constraints 

might include non-consecutive allocation of classes to Lecturers, preferential timeslot or 

classroom allocation, and proximity requirement (for example, classrooms may be 

booked close to the home department of a course). In our study instance, most soft 

constraints are implicitly taking care of by the arrangement of classrooms around 

department/faculty and the solution approach we adopted. The main emphasis therefore is 

to concentrate on the non-violation of hard constraints. 

 

As stated in paper [C] (Section 2.1), the arrangement of most classrooms around faculties 

makes it easy for us to adopt a bottom-up approach in timetable construction. This makes 

it possible to build the timetables around departments which eventually accumulate into 

faculty and university timetable. Our approach reported in the paper allows most 

constraints to be specified as file inputs. Construction of timetable at higher level 

therefore only requires appending relevant courses, lecturer and classroom data into 
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appropriate files for processing.  The simulation effort was thus concentrated on testing 

the viability of GA for the problem and carrying out sensitivity analysis to determine GA 

parameter combinations that give quality solution for it.  Our approach implicitly handles 

some hard constraints thus making the definition of the fitness function (paper [C], 

subsection 3.2). The two-dimensional chromosome representation adopted (paper [C], 

Section 3.1) also implicitly takes care of class clash constraint.   

 

Furthermore, building of timetable around departments implicitly handles some 

fundamental constraints. For example, conflict of classes for students, conflict of classes 

for lecturers, and lecturer teaching courses in area of specialty are taken care of at the 

departmental level. The issue of when for the LTTP is taken care of naturally (see 

Chapter 2, subsection 2.2, paragraph 2).  The focus then is essentially on timetabling as a 

SAP that is concerned with the question of where, that is, room allocation to courses. 

There are two fundamental constraints that are universal to all timetabling and SAPs in 

general, and that no feasible solution may violate. These are: no entity can be in more 

than one location at any one time.  For each time period, there should be sufficient 

resources available for all the events that have been scheduled for that time period.  This 

implies then that 1) lecturer must not be doubly booked (having two different courses 

taken by the same lecturer allocated to the same time slot); 2) room capacity must be 

appropriate with the size of the class and all classes (courses) must be assigned to rooms; 

and 3) class clash error, which makes students at the same level to be assigned the same 

timeslot for two separate courses, must be avoided.  Aside, only one class can be assigned 

to one room at any one time.  The fitness evaluation therefore was designed as a measure 

of the degree of violation of these hard constraints (see paper [C], Section 3.2).  The 

function determines the number of lecturer doubly booked errors, room too small errors, 

and related class errors and use them to compute the degree of fitness of a generated 

solution. The fitness function therefore takes values in [0,1], with 0 representing a high 

quality (optima) solution and 1 representing complete violation of all hard constraints.  

 

The GA metaheuristic employed is presented in Section 3 of paper [C].  A simple class 

diagram representing the solution framework is given in Figure 5.1. 
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Figure 5.1: A class diagram framework of the solution approach 
 

As seen in Figure 5.1, the main interface of the program developed is TimetableGUI 

which make used of the population class.  The population class in turn called the 

classroom, lecturer and courses subclasses which load relevant constraint data inputs into 

the system.  The population class then invokes the chromosome class to execute the GA 

metaheuristics given in paper [B], Section 3.  The repair strategy was done in two stages.  

The first stage ensures that offspring generated after applying GA operators are within 

the defined search space. It is essential that each class was booked in the chromosome. 

The second stage ensures that there is exactly one booking of each class in the generated 

offspring. 
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Our attempt is the first reported application of metaheuristic to LTTP in the context of 

our case study.  The objective is to test the viability of GA in handling the problem 

instance in our case study.  The need to study the new instance of SAP, that is, the HSAP, 

for the same institution prevented testing of other heuristics or variants on the LTTP.  We 

have however shown that it is viable to apply metaheuristic to this problem instance. 
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Chapter Six 
 

 

Paper [C]: A Comparative Study of Some 

Real Coded Genetic Algorithms for 

Unconstrained Global Optimization 
 

“I find that a great part of the information I have were acquired by looking up something 

and finding something else on the way” 

- Frankling P. Adams 
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Paper [D] is the outcome of the study on GA application to unconstrained global 

optimization problems with continuous variables. The paper attached to this thesis is a 

revised version of the original submission based on the Reviewer’s comments received 

from the journal Editor.  In the paper, we presented a set of new RCGAs that have ability 

to perform both local and global exploratory search.  The algorithms were developed as a 

hybridization of the SRCGA (see paper [D], Section 2) with local search heuristics 

namely, PS and vector projection. A limited version of PS heuristic (see paper [D], 

subsection 3.1) was use to modified the crossover operator for RCGA in order to improve 

its robustness and efficiency.  We further introduced a new vector projection global 

exploratory method (see paper [D], subsection 3.3).  We combined these algorithms in 

such a way that give three new variants which were all tested along side with SRCGA on 

57 test problems. The variants are RCGA-PS (RCGA with PS incorporated into the 

crossover procedure, - see paper [D], subsection 3.2); RCGA-P (RCGA with incorporated 

projection based exploratory mechanism at the end of each generation of the SRCGA - 

see paper [D], subsection 3.4); and RCGA-PS-P (similar to RCGA-PS but augmented 

with projection based exploration at the end of each iteration of the RCGA-PS - (see 

paper [D], subsection 3.5). These algorithms, alongside with SRCGA, were tested on 

various dimensions of the test problems, ranging between 2 and 30.  All the algorithms 

used the same GA parameter values as shown in paper [D], subsection 4.1 and Table 1.  

Each algorithm was run independently for 100 trials on each of the 57 benchmark 

problems to determine its success rate.   

 

Statistical analysis was conducted to determine how the new modified algorithms fare in 

comparison with the SRCGA.  Criteria used for results evaluation include best fitness 

values, mean best fitness value, mean function evaluations, success rate, standard 

deviations, and p-value from ANOVA test (see paper [D], Section 5, Tables 2, 3, 4, 5, 

Appendix II & III).  We also applied the Success Performance (SP) index for ranking of 

the algorithms (see paper [D], Section 5, Table 6, Appendix I).  Graphically, box-plots 

and multiple comparison (MCx) graphs were generated to compare the algorithms (see 

paper [D], Appendices IV & V). RCGA-PS, RCGA-P and RCGA-PS-P were compared 

with SRCGA using the stated criteria (see paper [D], subsection 5.1). Aside these 



 148 

comparative studies, experimental results from the four algorithms are compared with 

similar studies in literature (see paper [D], subsection 5.2). 

 

In all, we discovered that RCGA-PS, RCGA-P and RCGA-PS-P perform better than 

SRCGA thus the local and global exploratory algorithms introduced helped to improved 

the performance of RCGA with RCGA-PS-P giving the best performance.  RCGA-PS-P 

also performed better than recent algorithms from literature. 

 

Paper [D] has been reviewed by two Reviewers appointed by the Journal of Optimization 

Methods and Software of the Elsevier Science (see Appendix A). As noted by the 

Reviewers, Ackley, Griewank, Rastringn, Rosenbrock and Schwefel problems constitute 

a group of five test problems which possess varying level of difficulty as the dimension 

increased from 2 to 30.  Our initial study on these five problems ranged from 2 to 10 

dimensions.   We therefore conducted more experiment on this group of test problems 

using dimensions 10, 20 and 30.  Experimental results obtained are reported in Table 6.1. 

The results further confirm the superiority of the improved RCGAs over SRCGA with 

RCGA-PS-P still performing best. 

 



 

Table 6.1: Comparative study of SRCGA, RCGA-PS, RCGA-P and RCGA-PS-P on selected problem with dimension 10, 20 and 30 
 

              Dimension = 10            

Pro. 
#.  

Global min  

  Min         SR     MBF of successful runs     MFE of successful runs    

SRCGA   RCGA‐PS   RCGA‐PS‐P   RCGA‐P   SRCGA  
RCGA‐

PS 
RCGA‐PS‐P  

RCGA‐
P  

SRCGA   RCGA‐PS   RCGA‐PS‐P   RCGA‐P   SRCGA   RCGA‐PS   RCGA‐PS‐P  
RCGA‐

P  

39   0.00000   8.08E‐04   5.50E‐05   0.00E+00   1.00E‐06  100  100  100  100  2.57E‐03   9.00E‐05   3.40E‐05   4.00E‐05   1,000,100  49,618  1,988  1,276  

41   0.00000   2.22E‐03   3.60E‐05   0.00E+00   0.00E+00  2  52  100  100  2.74E‐03   2.90E‐03   2.00E‐05   2.30E‐05   1,000,100  1,981,670  1,455  878  

46   0.00000   9.95E‐01   2.50E‐05   0.00E+00   0.00E+00  0  6  100  100  ‐  6.83E‐05   2.00E‐05   2.50E‐05   ‐  42,062  1,239  758  

47   0.00000   7.75E‐03   9.20E‐05   1.12E‐03   1.64E+00  1  81  35  0  7.75E‐03   4.84E‐04   6.62E‐03   ‐  1,000,100  2,775,232  3,799,851  ‐ 

49   ‐4189.82890   ‐3.62E+03   ‐4.19E+03   ‐4.19E+03   ‐3.42E+03   0  41  32  0  ‐  ‐4.19E+03   ‐4.19E+03   ‐  ‐  40,401  50,023  ‐ 

52   0.00000   4.20E‐05   1.50E‐05   0.00E+00   0.00E+00  100  100  100  100  8.50E‐05   7.20E‐05   1.70E‐05   2.60E‐05   30,913  15,074  714  446  

 
       Dimension = 20       

Pro. 
#.  Global min  

 Min     SR  MBF of successful runs   MFE of successful runs   

SRCGA  RCGA-PS  RCGA-PS-
P  RCGA-P SRC

GA 
RCGA-

PS 
RCGA-PS-

P 
RCGA

-P SRCGA  RCGA-PS RCGA-PS-
P  

RCGA-
P SRCGA RCGA-PS RCGA-PS-

P  
RCGA

-P  
39  0.00000  1.21E-02  8.20E-05  0.00E+00  0.00E+00 0 100 100 100 - 9.60E-05 3.70E-05 3.90E-05 - 1,834,080 2,044 1,252  

41  0.00000  1.84E-02  8.00E-05  0.00E+00  0.00E+00 0 19 100 100 - 8.61E-04 2.20E-05 2.40E-05 - 818,737 1,448 865  

46  0.00000  4.98E+00  2.98E+00  0.00E+00  0.00E+00 0 0 100 100 - - 2.50E-05 3.10E-05 - - 1,311 739  

47  0.00000  1.12E+00  4.19E-02  3.30E-01  1.14E+01 0 0 0 0 - - - - - - - - 
49  -8379.65780  -6.03E+03  -8.38E+03  -8.26E+03  -5.56E+03 0 1 0 0 - -8.38E+03 - - - 234,214 - - 
52  0.00000  5.90E-05  4.80E-05  0.00E+00  0.00E+00 100 100 100 100 9.20E-05  8.50E-05 2.20E-05 2.40E-05 202,580  25,961 732 448  

 
       Dimension = 30       

Pro. 
#.  Global min  

 Min     SR  MBF of successful runs   MFE of successful runs   

SRCGA  RCGA-PS  RCGA-PS-
P  RCGA-P SRC

GA 
RCGA-

PS 
RCGA-PS-

P 
RCGA

-P SRCGA  RCGA-PS RCGA-PS-
P  

RCGA-
P SRCGA RCGA-PS RCGA-PS-

P  
RCGA

-P  
39  0.00000  2.65E-02  2.37E-04  1.00E-06  0.00E+00 0 100 100 100 - 6.23E-04 3.60E-05 3.60E-05 - 2,799,978 1873 1126  

41  0.00000  3.96E-02  7.80E-05  0.00E+00  0.00E+00 0 39 100 100 - 2.00E-03 2.20E-05 2.40E-05 - 2,384,116 1326 807  

46  0.00000  1.49E+01  9.95E+00  0.00E+00  0.00E+00 0 0 100 100 - - 2.20E-05 2.80E-05 - - 1212 730  

47  0.00000  6.73E+00  1.28E-03  8.12E+00  2.12E+01 0 2 0 0 - 1.34E-03 - - - 2,800,846 - - 
49  -12569.48670  -8.56E+03  -1.21E+04  -1.23E+04  -8.13E+03 0 0 0 0 - - - - - - - - 
52  0.00000  7.00E-05  6.20E-05  0.00E+00  0.00E+00 100 100 100 100 9.60E-05  9.10E-05 1.50E-05 1.90E-05 762,717  41,550 700 412  
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Chapter Seven 
 
 

 

 

 

Conclusion and Future Works 
Every exit is an entrance to somewhere else 

- Tom Stoppard 

“Every man’s life ends the same way. It is only the details of how he lived”  

-  Ernest Hemingway 
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In order to draw some conclusions from the investigation presented in this thesis, it is 

important to consider our initial aims and scope of the research. We set out to test the 

efficiency and robustness of GA metaheuristics for real-world instance global optimization 

problems.  One of the overriding aim was to carry out an investigation on the suitability of 

applying metaheuristic techniques to tackle the space allocation problem in academic 

institutions.    We were concerned with allocating a set of entities into the available room 

space so that the space utilization is maximized. The emphasis was in obtaining a set of high 

quality (i.e. not necessarily optimal) allocations that are also structurally non-similar (i.e. 

diverse with respect to the solution space) so that the institution decision-makers can select 

the most appropriate solution. 

 

Global optimization problems abound in many real-world instances.  It is a known fact 

that real-world problems are characterized by real-time objectives, inconsistent 

constraints, optimum seeking in a changing environment and huge search space.  The 

work in this thesis was devoted to the design and improvement of a population based 

method, namely GA, for solving both discrete and continuous global optimization 

problems.  The discrete problems are real-life instances of SAP, one of which is new in 

literature.  We develop GA metaheuristics to handle both problems.  We also design 

some new heuristics for the HSAP and showed that they are very efficient in giving 

quality results.   

 

HSAP is becoming a big concern to university authorities especially in Africa. As stated 

in Chapter 1, the overall aim of the work on HSAP is to investigate heuristic methods that 

can be used to generate automated and optimized solution in the context of the case 

study. Bearing this in mind, the thesis discussed several issues and potential constraints 

that are involved in hostel space allocation distribution. Due to the diverse manual way of 

handling the problem as a result of changes in personnel, we devised an abstracted and 

simplified version problem with the advantages of practicability and ease of 

implementation. This was done by identifying categories of students to be accommodated 

and constraints that guide their allocation at various stages. We consider this a major 

contribution of the thesis as this is the first reported study in literature for the problem 

instance to the best of our knowledge.  The success record in metaheuristic application to 
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HSAP will opened a new door of research in this area.  We therefore believe that our 

work, parts of which are already published, will inspire other research to do more in this 

area.  We have presented some of the results for HSAP in this thesis at two international 

conferences (see [1,3]).  In one of the conferences, our paper [3] was short listed as a 

finalist paper for the Operation Research (OR) in developing country prize [69].  We 

hope the work can be adapted to other instances from other institutions especially in 

developing countries.   The deployment of a computer based solution with incorporated 

optimization method will help to achieve the 4-points TREE goals of transparency, 

robustness and reliability, effectiveness and efficiency. We also hope to evolve more, and 

possibly better, heuristics for HSAP and apply them to more instances from Institutions 

especially in South Africa.  In one of such current study, we are adaptation a newly 

designed GA based on integrated crossover rule to the discrete HSAP.  The new 

algorithm was originally designed to work for continuous problems [71]. 

 

Unlike some classical problems (such as bin packing, traveling salesman etc.) which have 

large benchmark data sets available in the literature, HSAP does not have benchmark data 

available that allow us to compare the proposed algorithm with other approaches. We 

also noted that it would have taken a considerable amount of work if we compared the 

algorithms used with every other search techniques.  Moreover, the initial objective is to 

show the feasibility of metaheuristics approach to the problems within the context of our 

case study.  Opportunity abounds therefore to 1) test the discrete problems with more 

metaheuristics and possibly hybrid techniques, 2) gather more data set from other 

institutions Nigeria and other developing countries, and 3) develop and formulate 

mathematical models for a generalized version of the HSAP as a standard benchmark 

problem based on fund availability. 

 

Furthermore, we used RCGA to solve unconstrained global optimization problems with 

continuous variables.  Two new local search heuristics based on PS and vector-projection 

were introduced to improve the RCGA metaheuristic.  Three set of improved algorithms 

namely, RCGA-PS, RCGA-P and RCGA-PS-P were introduced and their results 

compared with standard RCGA using 57 test problems with varying dimensions.  
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Numerical comparisons have shown that all new algorithms are better than SRCGA with 

RCGA-PS-P being the best performer.  RCGA-PS-P has also been shown to rank better 

than some obtained from literature (see Chapter 6, paper [D], subsection 5.2).  We 

therefore believe that hybridizing GA with good global and/or local exploratory 

heuristics will help improve it performance, efficiency and robustness in handling even 

difficult unconstrained global optimization problems.  Our future works include the 

design and deployment of improvement heuristics for RCGA to handle constrained 

global optimization problems. 

 

From the GA application to our instance of LTTP, we observed that the application of the 

metaheuristic helps to find a good quality solution as well as reduce the time to find such 

solution.  Though, an optima solution to LTTP is always desirable, it is however ideal 

find a near-optima solution that reduces the amount of infeasibility in the timetable. The 

program developed for the LTTP can be readily scaled to a more comprehensive UTTP. 

This can be achieved by appending appropriate constraint data into appropriate input file 

created and slight modification of the program to adapt it to the new environment.  

 

Hybridization has been one way of trying to come up with methods that are applicable to 

a wide range of problems. Through hybridization, a lot of methods that are more reliable 

can be developed. Our work with unconstrained global optimization problems shows that 

hybridizing GA with other heuristics will improve it robustness and efficiency. 

Therefore, more research is still needed in finding even more efficient global 

optimization methods that are applicable to a wide range of complex optimization 

problems. In the same vein and as future work on SAPs considered, it would be 

interesting to further improve the GA metaheuristics by hybridizing it with other local 

search heuristics in order to improve its exploration capability.  In one of such work, we 

are trying to adapt a new integrated crossover rule developed for continuous global 

optimization problem into this discrete problem.  It is hoped that hybridization will 

greatly improve the efficiency of the algorithm and solutions of the problems.  

Furthermore, hybridization of current metaheuristics with some exact methods, such as 

linear programming, branch-and bound, dynamic programming can be explored. Meta-
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heuristics are believed to be able explore a large search space within a short time while 

exact methods can explore a specific small area exhaustively. Hybridization of the two 

may lead to a better quality solution within reasonable computational time.  Furthermore, 

different fitness evaluation methods can be designed for the two discrete problems to 

assess the fitness of different individuals within the same population. 

 

To the best knowledge of the author, this thesis presents the first investigation on the 

application of metaheuristic techniques to HSAP in academic institution.  It is also the first 

investigation to LTTP within the context of our case study.   It was shown that metaheuristics 

can produce good solutions in much shorter time than required when constructing allocations 

manually.  GA metaheuristics separately and reasonable adapted to all problems studied and 

benchmark results were provided.  

 

The experiences gathered from this thesis can also be beneficial to research in related areas 

such as space planning, task allocation, car space allocation, etc. Also, the algorithms 

described and tested in this thesis can be the starting point for further research and for the 

development of a fully automated system especially for the space allocation processes 

considered.  
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Chapter Eight 
 
 

 

 

 

Contributions 
“Little drops of water make the mighty ocean and the pleasant“ 

- Julia Abigail Carney 

“We ourselves feel that what we are doing is a just a drop in the ocean. But the ocean 

would be less because of that missing drop” 

-  Mother Theresa 

“The world is moved not only by the mighty shoves of the heroes but also by the 

aggregate of the tiny pushes of each honest worker.” 

- Helen Keller 
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The contributions of this thesis can be summarized as follows: 

 

 A description and investigation into a new instance of SAP, HSAP is provided.  

This we believe would created avenue for future rigorous research on the 

application of metaheuristics to such problems 

 For the first time, an investigation on the suitability of applying metaheuristics to 

solve HSAP is presented. It is shown that metaheuristic approach can produce 

solutions of better quality than those generated manually by student affair officers 

and in a much shorter time. 

 The design of three heuristic algorithms (CaH1, CaH2 and HaNH) for HSAP with 

promising results.  

 A further study to show the robustness and efficiency of GA metaheuristics in 

solving both discrete and continuous global optimization problems. 

 The development of three new RCGAs based on local exploratory PS and global 

exploratory vector projection is presented.  We showed that these three algorithms 

perform better than SRCGA.  This shows that proper hybridization of GA with 

other heuristics can improve its performance. 

 

This thesis reports the original ideas of the author.  The Supervisor provided some 

general ideas that helped to refine the works and papers in both scientific and linguistic 

aspects.  Some assistance were received from one of the author of papers [C] and [D] 

who was still resident (and later came for a 6-months visit) and working at the University 

of Lagos where data set used for the SAPs were obtained.  
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