

Some Improved Genetic-Algorithms
Based Heuristics for Global Optimization

with Innovative Applications

Aderemi Oluyinka ADEWUMI

A thesis submitted to the Faculty of Science, University of the Witwatersrand,

Johannesburg in fulfillment of the requirements for the degree of Doctor of

Philosophy

Johannesburg, 2010

 2

Declaration

I declare that this thesis is my own work. It is being submitted for the Degree of Doctor

of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been

submitted before for any degree or examination in any other University.

(Signature of candidate)

_______________________day of ________________________20________________

 3

Abstract

The research is a study of the efficiency and robustness of genetic algorithm to instances

of both discrete and continuous global optimization problems. We developed genetic

algorithm based heuristics to find the global minimum to problem instances considered.

In the discrete category, we considered two instances of real-world space allocation

problems that arose from an academic environment in a developing country. These are

the university timetabling problem and hostel space allocation problem. University

timetabling represents a difficult optimization problem and finding a high quality solution

is a challenging task. Many approaches, based on instances from developed countries,

have been reported in the literature. However, most developing countries are yet to

appreciate the deployment of heuristics and metaheuristics in handling the timetabling

problem. We therefore worked on an instance from a university in Nigeria to show the

feasibility and efficiency of heuristic method to the timetabling problem. We adopt a

simplified bottom up approach in which timetable are build around departments. Thus a

small portion of real data was used for experimental testing purposes. As with similar

baseline studies in literature, we employ genetic algorithm to solve this instance and

show that efficient solutions that meet stated constraints can be obtained with the

metaheuristics.

This thesis further focuses on an instance of university space allocation problem, namely

the hostel space allocation problem. This is a new instance of the space allocation

problems that has not been studied by metaheuristic researchers to the best of our

knowledge. The problem aims at the allocation of categories of students into available

hostel space. This must be done without violating any hard constraints but satisfying as

many soft constraints as possible and ensuring optimum space utilization. We identified

some issues in the problem that helped to adapt metaheuristic approach to solve it. The

problem is multi-stage and highly constrained. We first highlight an initial investigation

based on genetic algorithm adapted to find a good solution within the search space of the

 4

hostel space allocation problem. Some ideas are introduced to increase the overall

performance of initial results based on instance of the problem from our case study.

Computational results obtained are reported to demonstrate the effectiveness of the

solution approaches employed.

Sensitivity analysis was conducted on the genetic algorithm for the two SAPs considered

to determine the best parameter values that consistently give good solutions. We noted

that the genetic algorithms perform well specially, when repair strategies are

incorporated. This thesis pioneers the application of metaheuristics to solve the hostel

space allocation problem. It provides a baseline study of the problem based on genetic

algorithms with associated test data sets. We report the best known results for the test

instances.

It is a known fact that many real-life problems are formulated as global optimization

problems with continuous variables. On the continuous global optimization category

therefore, we focus on improving the efficiency and reliability of real coded genetic

algorithm for solving unconstrained global optimization, mainly through hybridization

with exploratory features. Hybridization has widely been recognized as one of the most

attractive approach to solving unconstrained global optimization. Literatures have shown

that hybridization helps component heuristics to taking advantage of their individual

strengths while avoiding their weaknesses. We therefore derived three modified forms of

real coded genetic algorithm by hybridizing the standard real-coded genetic algorithm

with pattern search and vector projection. These are combined to form three new

algorithms namely, RCGA-PS, RCGA-P, and RCGA-PS-P. The hybridization strategy

used and results obtained are reported and compared with the standard real-coded genetic

algorithm. Experimental studies show that all the modified algorithms perform better

than the original algorithm.

Keywords: Unconstrained global optimization, genetic algorithms, space allocation,

hostel space allocation problem, timetabling, pattern search, vector projection, heuristics,

metaheuristics, hierarchical heuristics.

 5

Declaration

To Him whose love, care and strength saw me through life journey up till

this point of achievement and I still believe will see me through till the end –

the Lord JESUS CHRIST

 6

Acknowledgements

To the only wise God, immortal, invisible whose eyes runs to and fro to show himself

strong on behalf His own, my Lord and Saviour, be all glory, honour, wisdom, power and

majesty. Without Him, I could do nothing, without Him, I would have failed, without

Him I would be drifting, like a ship without a sail. I love Thee Lord.

To the very centre of My Heart (MH), the One who sacrificed her time, talent and even

gave up her lucrative professional job in order to stay by my side and encourage me till

our desired dream is achieved, my one and only darling, Olaoluwa. I owe you a lot.

To the olive branch surrounding our table, the arrows in the hand of the Almighty,

Jeremiah (Tolu), Joy (Tosin), Julie (Tofunmi) and John (Temi) – I know your sacrifice,

months you had to miss dad with the after-effects even on your school performance; your

constant prayers and intercession for God to see daddy through in his PhD. I believe

your prayers are answered. I love you all, my Jewels.

To my mother, Juliana Monilola Adewumi, I cannot forget those early days, when you

determined that come rain come sunshine, the privilege you personally missed, you will

not allow your children to miss it. Days of selling what you had to pay my fees and also

days of weeping, when you did not have enough to help me. And here we are today.

Thank you Mum, I love you.

To my spiritual leader, my Father in the Lord, the Model for our generation, Pastor (Dr)

W.F. Kumuyi, you are a great man of God indeed. The Lord used you to release me from

“Egypt” at the right time He (God) has prepared a “land flowing with milk and honey for

me”. Though, not a single word of prayer as others would expect, but I can never forget

your words, “God will go with you, everything will succeed”, “God will see you

through”. Lo! They all came to pass. Thank you sir.

 7

To all the brethren and beloved compatriots of the Deeper Christian Life Ministry

especially those in DLCF and DLSO, it’s great to be in the family of God - you all rallied

round, supported in prayers and encouragement when the battle was tough, we fought

together and won the victory together. I specially thank Dr. Johnson Olaleru for his

brotherly care and support even when distance separated us, you were always there to

help. Thank you ALL.

To the staff and my past students in Department of Computer Science, University of

Lagos, I cannot forget the period we spent together. You may not know, but God used

everyone to contribute their part. I am particularly grateful to Mr Sawyerr, Mr. Gbenga

Bastos and Ms Nnenna Ihemedu for their assistance with data gathering and other aspects

of the work. I appreciate you all.

To Professor David Sherwell, all staff and postgraduate students of School of

Computational and Applied Matheamtics, I thank you all. The financial supports received

from the University of Lagos, School of Computational and Applied Mathematics,

University of Witwatersrand and the African Millennium Mathematics Science Initiative

(AMMSI) towards the completion of my programme are much appreciated.

Last, but not the least, to my indefatigable, selfless and humble Supervisor, Professor

Montaz Ali, you are really an Angel sent by the Lord to achieve this feat. I sincerely

express my heartfelt gratitude to you. It was your encouragement, commitment and

support that resulted in the production of this thesis. I sincerely appreciate the many

hours you spent to make this thesis possible. Your insight, positive criticism and

comments have been invaluable. You never saw any useless idea in me, rather you

reconstructed them until the job is well done. Thank you Prof.

Adewumi, A.O.

January, 2010

 8

Table of Contents

 Page

Title Page ………………………………………………………………………. 1

Declaration …………………………………………………………………… 2

Abstract ………………………………………………………………………. 3

Dedication ……………………………………………………………………… 5

Acknowledgement …………………………………………………………… 6

Table of Contents ……………………………………………………………… 8

List of Figures ………………………………………………………………… 10

List of Tables ………………………………………………………………… 11

Nomenclature ………………………………………………………………… 12

List of Included Articles ……………………………………………………… 13

1 Introduction and Background 14

 1.0 Introduction……………………………………………………… 15

 1.1 Classification of Optimization Problems ……………………… 19

 1.2 Classification of Global Optimization Methods ……………… 21

 1.3 Heuristics and Metaheuristics ………………………………… 22

 1.4 Genetic Algorithms …………………………………………… 23

 1.5 Pattern Search Heuristic ………………………………………… 27

 1.6 Problem Statements …………………………………………… 31

 1.7 Structure of the Thesis ………………………………………… 32

2 Space Allocation Problems 33

 2.0 Introduction ..……………………………………………………. 34

 2.1 Space Allocation Problem – An overview..……………………... 35

 2.1.1 University Timetabling Problem .……………………………….. 38

 2.1.2 Hostel Space Allocation Problem ……………………………… 40

 2.1.2.1 Problem Definition ……………………………………………… 41

 2.2 Modeling the HSAP …………………………………………… 44

 9

 2.2.1 Category Allocation…………………………………………… 46

 2.2.2 Hall Allocation ……………………………………………….. 47

 2.2 Related Works …………………………………………………. 48

3 Paper [A]:A multi-level genetic algorithm for a multi-stage space

allocation problem

53

4 Paper [B]:A hierarchical heuristic strategy for hostel space allocation

problem

83

5 Paper [C]: A heuristic solution to the university timetabling problem 126

6 Paper [D]:A comparative study of some real coded genetic algorithms

for unconstrained global optimization

146

7 Conclusions and Future works 175

8 Contributions 180

References 182

Appendices

A Correspondence from journal publisher on paper under review 193

 10

List of Figures

1.1 Illustration of an optimization problem …………………………………... 17

1.2 Types of minima for constrained optimization problems ……………... 17

1.3 A classification of global optimization methods ………………………... 22

1.4 Graphical Illustration of genetic algorithm steps ……………………….. 25

3.1 A sequential diagram for the HSAP ………………………………….......... 51

3.2 Sequential diagram of the hostel allocation subsystem …………….. 53

3.3 Structure of the greedy heuristic for category allocation …………….. 54

3.4 General structure of the genetic algorithms …………………………….. 54

3.5 Feasibility study for male allocation (Pc = 0.1, Pμ = 0.6, N = 90) ….. 58

3.6 Feasibility study for female allocation (Pc = 0.1, Pμ = 0.6, N = 90) ... 58

4.1 Graphical layout of hostels distribution and zoning …………………… 81

4.2 Comparative study of category allocation based on CaH1 and

CaH2 heuristics ……………...…………..

83

4.3 Hall distribution based on HaGA …………………………………............. 84

4.4 Hall distribution based on HaNH …………………………………............. 84

 11

List of Tables

1.1 Classifications of optimization problems ………………………………. 20

3.1 Results of experiment to determine rate of feasibility on the

combination (0.1, 0.6, 90).

57

4.1 Hostel names and identification used …………………………………... 80

4.2 Table 4.2: Comparative Results obtained using Simulated Annealing 92

6.1 Comparative study of SRCGA, RCGA-PS, RCGA-P and RCGA-PS-P...

on selected problem with dimension 10, 20 and 30

142

 12

Abbreviations

Nomenclature Meaning/Interpretation

SAP Space Allocation Problem

GA Genetic Algorithm

RCGA Real Coded Genetic Algorithm

SRCGA Standard Real coded Genetic Algorithm

HSAP Hostel Space Allocation Problem

TTP Timetabling Problem

UTTP University Timetabling Problem

LTTP Lecture Timetabling Problem

COP Combination Optimization Problems

PS Pattern Search

Fy Final year student category as used for HSAP

Sc Scholar category as used for HSAP

Fr Fresher category (First year or direct-entry students) as used for HSAP

Ds Discretionary List category as used for HSAP

Fo Foreign student category as used for HSAP

Ot Other student category – in other years aside Fr and Fy as used for

HSAP

Ht Health (Disabled) student category as used for HSAP

Sp Sport men and woman category as used for HSAP

CaH1 A greedy-like heuristic developed for category allocation in HSAP

CaH2 A percentage ranking based heuristic developed for category allocation

in HSAP

HaNH A new heuristics for hall allocation in HSAP to maximize the

distribution spread of students

HaGA A genetic algorithm metaheuristics for hall allocation in HSAP

FaGA A genetic algorithm metaheuristics for block/floor allocation in HSAP

 13

List of Included Articles

[A] Adewumi, A.O. and Ali, M.M. A multi-level genetic algorithm for a multi-

stage space allocation problem. Mathematical and Computer Modeling 51

(2010) 109 -126.

[B] Adewumi A.O. and Ali, M. A hierarchical heuristic strategy for hostel space

allocation problem. Submitted to the Journal of the Operational Research

Society, 2009

[C] Adewumi, A.O., Sawyerr, B.A. & Ali, M.M. A heuristic solution to the

university timetabling problem. Engineering Computations. 26(8) (2009), 972 -

984.

[D] Sawyerr B.A., Ali, M.M. and Adewumi A.O. A comparative study of some real

coded genetic algorithms for unconstrained global optimization. Optimization

Methods and Software, to appear.

 14

Chapter One

Introduction and

Background
“The Journey of a thousand miles begins with a single step”

- Lao Tzu

“The ability to convert ideas to things is the secret of outward success”

- Henry Ward Beecher

“So many fail because they don't get started - they don't go. They don't overcome

inertia. They don't begin.”

- W. Clement Stone

 15

1.0 Introduction

The optimization technique cuts across many fields of study and is applicable in all areas

where a choice among given or possible alternatives is paramount. These include

engineering, management science, medicine, computer science, applied mathematics to

mention a few. Expectedly, different field of study view optimization from different

perspective but the key issue lies in the overall goal of the whole process namely, making

an optimum decision. The applicability of optimization in different disciplines makes it

difficult to give a single concise definition of the concept. Mathematicians, for instance,

aim to find the maxima or minima of a real function within an allowable set of variables

[118]. In computing and engineering, the goal is to maximize systems or application

performances with minimal runtime and resources possible. Cherkaev [36] remarks and

we quote,

“the desire for optimality (perfection) is inherent for humans. It seems a

natural instinct to search for extremes in all endeavour of life (personal

emphasis). The search for extremes inspires mountaineers, scientists,

mathematicians, and the rest of the human race. The mathematical theory

of optimization is developed since the sixties when computers become

available. The goal of the theory is the creation of reliable methods to

catch the extremum of a function by an intelligent arrangement of its

evaluations. This theory is vitally important for modern engineering and

planning that incorporate optimization at every step of the complicated

decision making process.”

Generally, an optimization model must have three main components [37,80,115,117]

namely, the decision variables, representing components of the model that can be

changed to create different possibilities; constraints which represent limitations on the

variables; and objective function that assigns a value to different possible values of the

variables. The objective function is optimized with respect to the decision variables.

Mathematically speaking therefore, optimization is concerned with the study of problems

 16

that seek to minimize or maximize a real function by systematically choosing values of

real or integer variables from an allowed set [121]. The optimization problem can be

presented mathematically as follows:

Minimize f(x)

such that x ∈ S

where f is real valued

and S = { x ∈Ρn | gi(x) ≤ 0, hj(x) = 0, i = 1,2,…,m; j = 1,2,..,k; k ≤ n }.

The elements of S are the candidate or feasible solutions. The function f is the objective

or cost function. A feasible solution, x∈S, which minimizes (or maximizes, depending on

the goal) f is called the optimal solution. Hereafter a feasible solution will be referred to

simply as a solution.

Informally then, optimization aims at finding the values of the variables which

maximizes or minimizes a given quantity subject possibly to some given restrictions on

the variables.

We define some basic terminologies and concepts as follows:

Neighbourhood: If we define a distance measure between two solutions as: dist: S ×

S Ρ, then for all x ∈ S, the neighbourhood of x, N(x), is defined as

N(x) = {y ∈ S | dist (x,y) ≤ ε },

for real values of ε > 0.

Local optimizer: An element Sx∈ is a local minimizer if f(x) ≤ f(y) for all y ∈ N(x) and

a local maximizer if f(x) ≥ f(y) for all y ∈ N(x). A local optimizer can either be a local

minimizer or a local maximizer.

 17

Global optimizer: An element Sx∈ is a global minimizer if f(x) ≤ f(y) for all y ∈ S and

a global maximizer if f(x) ≥ f(y) for all y ∈ S. A global optimizer can either be a global

minimizer or a global maximizer.

Figure 1.1: Illustration of an optimization problem

Figure 1.2: Types of minima for constrained optimization problems

f(x)

x

 Constraints

Global Minimum

Local Minima

Neighbourhood of solution

Global maximum value

Global maximum solution Local maximum solution

x

f(x)

 18

Figures 1.1 and 1.2 present graphical illustrations of typical optimal points in a search

space. A global optimal solution is such that there is no other feasible solution with a

better objective function value within S while a local optimal solution has no other

feasible solution within its neighbourhood with better objective function value. A lot of

efficient algorithms for finding optimal solutions to some classes of optimization

problems exist. However, there are still a host of real-world problems where locating the

optimal solution is not trivial. A major problem with some algorithms is the inability to

differentiate between local and global optimal solutions and thus the possibility of being

trapped in a local minimizer. This is where global optimization comes in. The aim of

global optimization is to find the best possible global solution within the feasible set, S.

On the other hand, local optimization techniques aim at finding a good local solution.

Nonlinear optimization models are prominent in many real-world applications such as

engineering design, space planning, networking, data analysis, logistic management,

financial planning, risk management, and others. Solutions to these problems often

require a global search approach. They are generally difficult to solve for many reasons.

First, literature have reported that optimization problems arising from these applications

are often NP-hard in nature [14,40,52,56,78,90,126]. Secondly, benchmark problems and

real-life practical cases present some requirements and constraints which are either hard

(in terms of solvability) or conflicting [2,14]. Other reasons include the number of

possible solution (e.g. in combinatorial or discrete case), difficulty in formulating or

modeling real-world instances, and the computational cost involved in solving these real-

world problems. Weise et al. [118] attribute the difficulty in solving optimization

problems to some fundamental issues encountered during search for solutions. These

include premature convergence, ruggedness, causality, deceptiveness, epistasis,

robustness, overfitting, over-simplification, and dynamic fitness [118]. The nature of the

objective function can also increase the complexity of optimization problems especially

for optimization problems with more than one objectives (otherwise known as multi-

objectives problems [39,77]). Multi-objective problems are known to be complex due to

the conflicting nature of the objectives [39]. It is a general belief that there is no general

optimization method that is best or most efficient for all types of problems. The special

 19

structure and domain specific characteristics of the problem can often be utilized when

choosing a suitable solution method.

At present, no solution method exists that can guarantee global optimal solution of any

given problem. Therefore, solution methods are generally referred to as heuristics or

meta-heuristics. In this thesis, we consider two practical, real-world problems within the

context of a developing country and adapted genetic algorithm meta-heuristic to solve

them. The problems are within the domain of space allocation. To the best of our

knowledge, one of the studied domains, namely the hostel space allocation problem

(HSAP), is new in literature. We further propose some of improve versions of real-coded

genetic algorithms (RCGAs) for unconstrained global optimization. These algorithms are

tested on a large set of test problems. The rest of this Chapter and Chapter two provide

some background review for our study.

1.1 Classification of Optimization Problems

An optimization problem can be thought of as decision problem [114]. As stated earlier,

some optimization methods are only appropriate for certain types of problems. It is

therefore important to identify the characteristics of a problem in order to apply an

appropriate method to it. Brandimarte [23] identified some classification characteristics

to include the type of constraints, nature of decision variables, physical structure of the

problem, nature of the objective function, permissible value of the decision variables,

separability of the functions and number of objective functions. We present a unified

classification of optimization problem in Table 1.1. Comprehensive details of the

problems can be found in [20,22,42,64,72,79,80,124].

Global optimization problems can be classified based on the properties of the objective

function, constraints and the decision variables, the most important being the nature of

the objective function. A problem that has no constraint (or bound constraints) is termed

an unconstrained global optimization problem. A problem with linear constraints and

nonlinear objective function is termed linearly constrained global optimization problem

 20

while that with nonlinear constraints and objective function is termed non-linear global

optimization problem. The class with only bounded decision variables is known as

bound constrained (or unconstrained) global optimization problems. Global optimization

problems are also classified based on their inherent nature of the decision variables into

either continuous or combinatorial (discrete) global optimization problem. Many real-life

problems, for example in applied science and engineering, are formulated as global

optimization problems with continuous variables. These problems are often non-smooth,

non-convex and often simulation based, making gradient based methods impossible to be

used to solve them [70]. They require efficient, reliable and derivative-free global

optimization methods.

Table 1.1: Classifications of optimization problems

Characteristics Property Classification
Number of decision
variables

One Univariate, single-objective
More than one Multivariate, multi-objective

Number of optima points One Unimodal
More than one Multimodal

Type of decision variables Continuous real numbers Continuous problems
Integers Discrete problems
Both continuous and Integer Mixed Integer problems
Integer in permutation Combinatorial problems

Problem formulation based
on existence of constraints

Subject to constraints Constrained problems
Not subject to constraint Unconstrained problems

Objective functions Linear functions Linear programming
Objective function is convex and
constraints set form a convex set

Convex programming

Nonlinear objective or/and constraint
functions

Nonlinear/non-convex
programming

Nature of the decision
variables

Probabilistic Stochastic problems

Physical structure of the
problem

Controlled, dynamic Optimal control problems

Combinatorial optimization is the process of finding the best solution for problems with

discrete set of feasible solutions [96]. Combinatorial optimization problem (COP) is a

special class of optimization problems that seeks to find the optimum permutation of

decision variables. The solutions are constrained and are usually represented as ordered

lists. Combinatorial optimization algorithms solve instances of NP-hard problems by

exploring the large solution space of the instances. This problem class finds applications

 21

in numerous real-world settings involving operations management and logistics, such as

routing, scheduling, packing, inventory and production management, location

management, and assignment of scarce resources. According to [96], the economic

impact of combinatorial optimization is profound, affecting diverse sectors such as

transportation forestry, manufacturing, logistics, aerospace, energy (electrical power,

petroleum, and natural gas), telecommunications, biotechnology, financial services,

agriculture, and of interest to this thesis, educational sector.

This thesis deals with the application of global optimization methods both in discrete and

continuous variable problems.

1.2 Classification of Global Optimization Methods

In this Section, we provide a general overview of some global optimization methods.

Figure 1.3 gives a classification of global optimization methods. The classification in

Figure 1.3 is inexhaustible. Each class can be further categorized based on other

observable characteristics. The list of techniques can also be expanded by appending

methods with similar characteristics under appropriate class.

Figure 1.3 divides global optimization methods into the natural division of exact and

heuristics (approximate) methods. There are a number of exact methods developed for

non-convex global problems with special structures, for example bi-linear and separable

problems. An important feature of these methods is that they use convex under-estimator

of the non-convex problem. Of these methods, BARON (branch and reduce optimization

navigator) [100], αBB (branch and bound) [12] and ECP (extended cutting plane) [119]

are widely known. This thesis is concerned with metaheuristic methods in dealing with

application of practical interest.

 22

Figure 1.3: A classification of global optimization methods

1.3 Heuristics and Metaheuristics

A heuristic uses current information gathered during execution to decide the next

candidate solution to examine and how it should be processed. The basic concept of

heuristic search, as an aid to problem solving, was introduced by Polya [92]. Polya,

popularly known as the Father of problem-solving, gave four basic steps that forms the

foundation for today’s heuristics. These are [92]:

1. understanding the problem (separating the known, unknown and constraints),

2. devising a plan (finding the connection between known and unknown),

3. carrying out the plan (stepwise implementation with correctness proof), and

4. looking back (examining and evaluating solutions obtained).

In algorithmic context, heuristic is a method of performing a minor or a sequence of

modifications on a given solution or partial solution in order to obtain a different solution

or partial solution [46]. The modification usually involves neighbourhood search. A

heuristic therefore helps to create solutions or improve existing solutions by exploring the

 23

neighbouring solutions based on certain rules or strategies. A heuristic algorithm

iteratively applies one or more heuristics based on given design strategy [46].

Metaheuristic [33,53,59] methods aim to strike a balance between exploration and

exploitation during search for optimality. This balance permits the identification of local

minima while aiming at the discovery of a globally optimal solution. Exploration ensures

a thorough search of the solution space to provide a reliable estimate of the global

optimum. Exploitation, on the other hand, concentrates the search effort around the best

solution found by searching its neighbourhoods. The exploitation feature helps heuristic

methods to obtain the best value for decision variables while the exploration feature

makes them well suitable for problems with large search space.

Advocacy for metaheuristics based methods for global optimization problems is recently

more pronounced among researchers. While some metaheuristics do not give a guarantee

of an exact optimal solution yet the argument is that it is better to have a solution that is

little bit inferior to the optimal than one that will require 10100 years to be found [117].

This implies a slight compromise in solution quality for computational time and

robustness.

Metaheuristics are improvements on heuristics. They are designed to solve more general

class of global optimization problems. Metaheuristics include features that may prevent

them from pre-mature convergence to local minimizers. They also have search

exploratory capabilities. They may include local search procedures for local improvement

of solutions. The algorithmic family includes genetic algorithm (GA) [60,67,86],

simulated annealing [47,73], tabu search [53,57,58], differential evolution [9,19,94], and

pattern search (PS) [45] to mention a few.

This thesis is concerned with the use of GA and some local search heuristics for both

discrete and continuous problems of interest. The GA used for our problems were, at

some points, augmented by new heuristics we developed. These are reported in papers

[B]-[D]. We also used a modified form of the PS method as an improvement for Real-

 24

Coded Genetic Algorithm (RCGA) for unconstrained global optimization problems. We

therefore present a brief overview of GA and PS in this Chapter.

1.4 Genetic Algorithms

GAs belong to the class of population-based metaheuristics that explore a population of

individuals randomly sampled over the search space, S, based on Darwin’s theory of

evolution [43] and the principle of survival of the fittest [108]. An objective function,

called the fitness function, associates each individual with a fitness value (function value)

that reflects its quality. Starting with an initial population, usually generated randomly,

GA tries to improve the quality of the individuals by making the population evolve. The

evolution is achieved using information exchanges between individuals in order to create

new ones or modify the existing ones. The individuals that exchange information are

known as ‘parents’ and the new individuals created (or modified) are referred to as

‘children’ or ‘offspring’. GAs evolve the population using genetic operators such

selection, crossover and mutation. GAs therefore are probabilistic algorithms that

approximate solutions by maintaining a population of candidate solutions to the problem

being solved (Figure 1.4).

Crossover combines elements of solutions in the current generation to create individuals

for the successive generations. It consists of exchanging genetic material between two

selected single chromosomes. Mutation, on the other hand, systematically changes

elements of a solution in the current generation in order to introduce variety into the next

generation. Mutation mainly consists of flipping the bit at a randomly chosen point of the

chromosome representation of the solution. While the selection operator helps with the

exploitation of search space, crossover and mutation accomplish exploration of the search

space by creating diversity in the members of the next generation [86]. Common

selection operators used in GAs include roulette wheel, stochastic universal sampling,

Boltzmann, rank and tournament selection. Crossover operators include the single-point

crossover, double-point crossover, preference preserving crossover, and shuffle

crossover. Mutation commonly reported includes flipping, interchanging, reversing,

 25

replacement, and random replacement. Details of these specific operators can be found

in [60,107].

Figure 1.4: Graphical illustration of genetic algorithm steps

GAs are the best known and most successful among the evolutionary algorithms

[60,86,107]. This is possibly due to the inherent and unique characteristics that are

regarded as the strengths of GAs. These include parallelism, derivative-free nature,

ability to explore large solution space, ability to handle complex fitness landscape and

deal with multi-objective problems, ability to handle noisy function and escape from

local optima and best of all, ability to handle large but poorly understood search space

(problem domain) with ease [83,107]. The effectiveness of GAs for hard and complex

global optimization problems including real-world instances have been reported in

literature. Instances include adaptation to resource allocation problems requiring large

scale high performance computing resources [123], complex robotics [11], gene

expression and protein folding problems [63,109], transportation, production, logistic

planning and routing [127], supply chain scheduling [89], flight scheduling [17],

 26

unconstrained global optimization problems [8,71], pattern recognition and data mining

[116], to mention a few.

GAs are not without some challenges for users. A great challenge in the application of

GAs is the mapping of a problem domain onto the representational structure

(chromosome) that will allow for mathematical and computational transformation of the

various GA operators on the problem at hand. The choice of the structure depends

largely on the nature and complexity of the problem. Binary strings consisting of 0s and

1s is the most commonly used structure. Other possible structures include list, real values,

and arrays (of integer or real). Crossover and mutation are performed to keep solutions

within the data element boundaries of the structure used while seeking for better

solutions. For most data types, specific GA operators can be designed. Different

chromosomal data structures seem to work better or worse for different specific problem

domains. Another challenge is the determination of the fitness function especially for

problems with no known mathematical model or previous domain knowledge. Once the

mapping structure and the fitness function are determined, the next challenge is to

determine the nature and application strategy of the GA operators that may guarantee 1)

convergence to global optimum, 2) escape from local optima, and 3) efficiency of the

algorithm in terms of memory space usage and time complexity.

The structure of a typical standard GA is presented below.

Algorithm 1.1: The Standard GA procedure

1. Initialization. Generate initial population P0. Set the crossover and mutation

probabilities pc (0, 1) and pm (0, 1), respectively. Set generation counter k := 1.

2. Evaluation. Evaluate the fitness function f at all chromosomes in Pk

3. Selection. Select an intermediate population Pk′ from the current population Pk.

4. Crossover. Associate a random number from (0, 1) with each chromosome in Pk′ and

add this chromosome to the parents pool set SPk if the associated number is less than

pc. Repeat the following Steps 4a and 4b until all parents in SPk are mated:

a. Choose two parents p1 and p2 from SPk . Mate p1 and p2 to reproduce children

c1 and c2.

 27

b. Update the children pool set SCk through SCk := SCk {c1, c2} and update

SPk through SPk := SPk − {p1, p2}.

5. Mutation. Associate a random number from (0, 1) with each gene in each

chromosome in Pk′, mutate this gene if the associated number is less than pm, and add

the mutated chromosome only to the children pool set SCk.

6. Stopping Conditions. If stopping conditions are satisfied, then terminate. Otherwise,

select the next generation Pk+1 from Pk SCk . Set SCk to be empty, set k := k + 1,

and go to Step 2.

Each iteration of this process is called a generation while the entire set of generations is

called a run. It is expected that each run produce one or more highly fit chromosomes in

the population.

A lot of refinements such as enforcing diversity [38], self-adaptation of control

parameters [48,99], and probabilistic adaptation [71] have been used to extend the

applicability of GAs to a large domain of optimization problems. There are significant

empirical evidence in literature that GAs converge over time and consistently find good

approximate solutions to hard and complex problems [24,62,81,98,104].

1.5 Pattern Search

Pattern search (PS) [45] is a direct search method for local optimization that was initially

proposed by Box [21] in the 1950s and later by Hookes and Jeeves [68] in the early

1960s. As a result of more recent strong mathematical proof of its efficiency and

convergence [35,112,120], PS is gaining interest among researchers working on

optimization problems [49,74,93,110]. PS has been used for parameter estimation in a

wide variety of applications and it is popular among optimization researchers because of

its simplicity, ease of understanding, ease of implementation and robustness [113].

Furthermore, PS is a derivative-free method that is very useful for optimization problems

with either unknown or unreliable function derivatives, or where the function is

computed to low accuracy. It serves well as a local optimization algorithm for problems

 28

with many known local minima due to its ability to search in multiple directions. This

motivates our incorporating PS method as a local search technique into RCGA method to

solve benchmark unconstrained global optimization problems (see Chapter 6).

PS is a variation of the coordinate search method [74]. Torczon [112] reported that it

belongs to the general class of the direct search methods. It is essentially the

characteristics of Hooke and Jeeves method [68] with the basic coordinate search method

[74] and the multi-directional search method [111] hence the term, generalized pattern

search (GPS) method [35]. Since our interest is to explore a modified form of PS as local

optimization heuristic to improve RCGAs for solving unconstrained global optimization

problems. We present a brief of PS method.

Basically, PS works by generating a sequence of iterates {x(k)} based on the objective

function values (without using any information of the derivatives, gradient or second-

order derivative). During successive iteration, the objective function is evaluated at a

finite number of trial points, taking note of one that yields a lower function value than the

current iterate. The point found is set as the new iterate and the iteration is termed

successful otherwise the trial points are updated (size of the pattern reduced and function

is re-sampled about the current “best” point) and iteration tagged unsuccessful.

Definition 2.1

Let D be the set of positive spanning directions. A positive combination of the set of

vectors { } r
ii dD 1== is a linear combination dλ i

r

i
i∑

1=
, where λi ≥ 0, i = 1, 2, · · ·, r.

Definition 2.2

A finite set of vectors { } r
ii dD 1== , 1 ≤ r ≤ 2n, forms a positive spanning set for Ρn if any ν

∈ Ρn can be expressed as a positive combination of vectors in D. The set of vectors D is

said to positively span Ρn. The set D is said to be a positive basis for Ρn if no proper

 29

subset of D spans Ρn. The simplest search directions used by PS method consist of r = 2n

vectors and given by the set

D = {e1,· · ·, en,−e1, · · · ,−en} = { d1, d2, · · · ,d2n}, (1.1)

where ei is the ith unit coordinate vector in Ρn. The set D in equation (1.1) is a sample set

with maximum positive spanning directions.

The two key components of the PS method are the generating matrix and the exploratory

moves algorithms [35,49]. Operations on these two components gives the PS the basic

two steps namely, the SEARCH step and the POLL step. The generating matrix

represents the set of points that can be sampled at any given iteration k, thus it defines the

pattern from which the function is sampled. The exploratory moves algorithm specifies

how the sampling should be done. PS method generates a sequence of iterates {x(1), x(2),

· · · x(k), · · · } with non-increasing objective function values. Each iteration k, goes

through the two steps of SEARCH and POLL respectively. We now give a more formal

description of PS method with an assumption that r = 2n.

In the SEARCH step, the objective function is evaluated at a finite number of points (say

a maximum of V points) on a mesh (a discrete subset of Ρn) so as to improve the current

iterate. The mesh at the current iterate, x(k), is given by

{ },∈+=∈= + q : qDxm | Rm M r
k

(k)n
k ΖΔ (1.2)

where m is a mesh trial point, Δk > 0 is a mesh size parameter (or step size control

parameter) which depends on the iteration k, and Z+ is the set of nonnegative integers.

The generation of the trial points for SEARCH step in the current mesh is largely user-

depended and can be done using some heuristic rules. This step finds a feasible trial

point, m Mk, (where m is one of the V points) with a smaller objective function value

than the value at x(k), that is, f(m) < f(x(k)). If m is found, it is updated as the new iterate

and the step size Δk is increased in order to choose the next trial points on the now larger

 30

mesh. If m is not found, then the SEARCH step is unsuccessful for the current iterate, the

POLL step is then executed around x(k) to decrease the objective function value. This step

must be done before terminating the iteration.

The POLL step samples the function about the current iterate x(k) in a deterministic

fashion to generate trial points which produce a new and better iterate (one that

minimizes the objective function). This produce a poll set, Pk, with trial points that are

positioned a step Δk away from the current iterate x(k) in the direction designated by the

columns of D. Pk, can thus be represented as:

{ },=∈+=∈p= r ..., 1,i D,d : dxp | R P iik
(k)

i
n

ik Δ (1.3)

where pi is a trial point in the POLL step. Note that the order of evaluation of Pk does not

matter nor affect the convergence of the algorithm. With the two steps defined, we

present the complete PS algorithm as given in [6].

Algorithm 2.1: Standard PS algorithm (based on the SEARCH and POLL steps)

1. Initialization. Choose an initial point x(0) Ω and an initial mesh size Δ0 > 0 Set the

iteration counter k := 0,

2. SEARCH. Evaluate the fitness function f at a finite number of points in the mesh Pk

as defined in equation (1.2). Then,

a. If f(m) < f(x(k)) for some m Mk, then set x(k+1) = m, tagSEARCH = SUCCESSFUL;

go to step 4.

b. Otherwise (i.e. f(m) ≥ f(x(k)) for all V points), to step 3.

3. POLL. Follow the steps

a. If f(pi) < f(x(k)) for some pi Pk defined by equation (1.3), then set x(k+1) = pi;

go to step 4; tagPOLL = SUCCESSFUL

b. Otherwise (i.e f(x(k)) ≤ f(pi) for all pi Pk defined by equation (1.3) ,then set

x(k+1) = x(k) and go to step 5 tagPOLL = UNSUCCESSFUL

4. Mesh Expansion. Let Δk+1 = φkΔk, with φk > 1. Set k = k+1; Go to step 2

 31

5. Mesh Reduction. Let Δk+1 = φkΔk, with 0 <φk < 1. Set k = k+1; Go to step 2

Algorithm 2.1 represents a typical procedure for PS method consisting of both the

SEARCH and the POLL steps. Implementation steps may however differ depending on

the problems to solve and objective to achieve. Literature has reported implementation

that uses only the POLL step [6,74]. Further details on some modified and improved PS

methods with applications to optimization problems can be found in [6,49,93,111].

1.6 Problem Statements

In this thesis, we consider problems from the two broad classes of global optimization,

that is, combinatorial optimization and unconstrained global optimization. We selected

two practical real-world problem instances from the class of space allocation problems

(SAPs) which have recently attracted attention among metaheuristics researchers. Much

work has been done with regards to instances of SAPs some areas such as office space

allocation, timetabling and shelf space allocation. However, most works even in these

problem instances used cases from developed countries. In addition, there has not been

any reported work on metaheuristics for HSAP, which is fast becoming a major

administrative concern for management in tertiary institutions especially in developing

countries. This, alongside obvious needs that arose in our case study, motivated the

research into metaheuristic application to the two real-world instances of COPs, namely

the university timetabling problem (UTTP) and HSAP. Since HSAP is new in literature

to the best of our knowledge, we designed some basic heuristics and GA metaheuristic to

solve the problem at different stages. One of the major objectives of this thesis is to show

the applicability of heuristics and metaheuristics to the new domain of HSAP especially

within the context of the case study considered.

Furthermore, we developed some modified RCGAs for finding the global minimum of

some unconstrained global optimization problems. We ran simulation experiments based

on standard RCGA (SRGA) and variants of modified RCGA. The results of the modified

RCGAs based on PS and vector projection methods are compared with that of SRCGA.

 32

The numerical efficiency and robustness of the methods were tested with fifty seven (57)

bounded global optimization test problems (see paper [D] in Chapter 6).

The thesis is a further attempt to show the robustness and efficiency of GAs in handling

real-life global optimization problems.

1.7 Structure of the Thesis

The thesis consists of two parts: I) introduction and background study; and II) reports on

scientific research. Part I covers Chapters 1 and 2. Chapter 1 gives a general overview of

the background area of global optimization problems and methods. An overview on

global optimization methods with emphasis on GAs and local search PS is presented.

Chapter 2 presents some backgrounds on SAPs which form a main focus of this thesis.

In Part II we concentrate on the work done in the papers [A] to [D]. Chapter 3 presents

paper [A], which describes a multi-level GA that forms the baseline study for the HSAP.

New heuristics were developed for the first two identified stages of the HSAPs and

results of the various implementation options compared. These are discussed in paper [B]

as presented in Chapter 4. Chapter 5 discusses a GA-based metaheuristic solution to the

UTTP as presented in paper [C]. Chapter 6 presents paper [D] on some modified RCGAs

for unconstrained global optimization problems. A summary of the entire work with

some drawn conclusions and further research directions are highlighted in Chapter 7.

Some statements of the contributions of this thesis are provided in Chapter 8.

 33

Chapter Two

Space Allocation Problems:
Introduction and Related Works

“If we can really understand the problem, the answer will come out of it, because the

answer is not separate from the problem”

- Krishnamurti

 34

2.0 Introduction

Space planning, distribution and optimization are important managerial responsibilities

that have great effects on institutions and organizations. Mismanagement, over-utilization

or under-utilization of space can affect the overall ability of an institution to meet its

target goals and objectives. For instance, shelf space in the supermarket continually

filled with items that are out of demands at the expense of much demanded goods will

negatively affect the profitability and functionality of the supermarket. Space is therefore

an important asset that must be well managed in order to achieve stated goals and

objectives. In real-world instances, a common reality is the limited availability of space

compared with the competitive space demanding entities. We refer to this as scarcity of

space. An obvious example is the scarcity of housing (dwelling space) in comparison

with the rate of population growth in most developed communities. Expansion in

business, increase in demands, staff strengths, goods and services as well as competition

among service providers without corresponding increase in space provision (office, shelf,

accommodation, etc.) make space planning and optimization a challenging problem for

researchers. The functionality of some institutions therefore depends on the ability to

efficiently manage and distribute available but limited space.

SAPs are those in which the capacity of limited space available has to be distributed

among a set of items while observing some specific requirements and constraints. The

requirements and constraints are sometimes complex and conflicting. SAPs have some

close similarity to scheduling problems and are NP-Hard in nature [14,125]. Wren [122]

defined scheduling as arrangement of objects into a pattern of time or space in such a way

that the goals are achieved or nearly achieved, and the constraints of the objects are

satisfied or nearly satisfied. This is the goal of SAP as an optimization problem. A good

space distribution must ensure that all demanding entities are given the minimal required

space as much as possible and space utilization efficiently meets stated domain-specific

goals, objectives and constraints. Space overuse by any entity must be prevented while

space wastage is reduced to the barest minimum possible.

 35

Space allocation in academic institution is a complex, difficult and time consuming task,

often carried out manually or semi-automatically by the officers involved. If we consider

SAP as a capacity allocation problem, then it has similarities with the classical knapsack

and bin-packing problems [77,84]. The application of heuristics to tackle domain-

specific SAP was recently suggested and studied [25]. Subsequently, a lot of studies were

done on the application of heuristics to instances of SAP. Among these are office SAP

[77], lecture room allocation (otherwise referred to as timetabling problems) [26,41], and

shelf SAP [14,15,125]. A domain that has not been studied is the hostel space allocation

problem (HSAP) especially with reference to the recent increased demand for on-campus

accommodation in tertiary institutions as a result of increase in admissions. We consider

an instance of this new case (HSAP) in this thesis. In physics, time is considered as the

fourth dimension of space. Similarly, if we consider time factor in lecture room

allocation to courses, then timetabling problem becomes essentially a space allocation

(distribution) problem. Lecture timetabling problem can therefore be treated as a course

SAP [34]. This motivated part of our study on an instance of the university lecture

timetabling problem in the context of a developing country where metaheuristics have not

been explored to solve the problem before.

2.1 Space Allocation Problem – An Overview

Space planning hinges on the efficiency of resource usage and its impacts on institutions

such as companies, organizations, housing, and education. Practical problems involving

space allocation include disk storage space allocation in computer science, room

allocation among staff, lecture room allocation to courses (lectures), and so on. The

dynamic nature of these institutions makes space planning process a regular and repeated

one that requires efficient techniques for carrying it out. The limited availability of space

makes it necessary to evolve an efficient distribution strategy for efficiency which can

only be guaranteed when all demanding entities are given the minimum required space

while observing, to a large extent, given constraints and/or requirements.

 36

SAP, in a higher institution context, can be defined as the allocation of various entities

(for example, staff, students, laboratory, lectures) to areas of space (for example, rooms,

bed space) in such a way that satisfies stated requirements and constraints. Generally,

allocating rooms in the university environment is a multi-stage process [77]. This class of

problem is highly constrained with multiple objectives that vary among institutions, and

requires frequent modifications to accommodate the addition or removal of entities

and/or rooms [77]. Other characteristics of SAPs are huge search space that increases

with the size of the problem instance, difficulty in finding a suitable representation that

can capture the complete system constraints; and the determination and computation of

an adequate fitness function for the problem instance [29,34]. The automated scheduling,

optimization and planning research group of the University of Nottingham, UK, listed

and grouped possible constraints and requirements for SAP into about eleven some of

which are presented in [77]. However, constraints and requirements generally depend on

domain specific problem under consideration and the environment.

The increasing demand for university graduates with the attendant increase in admission

rate and the trend towards electronic-based learning environment bring about the need for

more flexibility not only in learning but also in management and organization structures

in higher education institutions of the twenty-first century. Shabha [102,103] submitted

that this trend will impact on space management as there will be a shift emphasis towards

a more time-flexible, space-flexible and location-flexible space planning in higher

institution. The insufficiency of existing campus buildings and inadequacy of their

accommodation units to cater for the increased students intake particularly in

government-owned universities have been pointed out in [82,103]. This problem is

compounded by the financial constraint and complex organizational framework

experienced by most institutions especially in the third world countries [106]. Shabha

[103] further submitted that the relationship between space and service distribution is the

most significant factor which contributes to sustainable functionality in most specialized

building such as hospitals. This explains why space management must be well-planned

and structured in order to cater for the peculiarity of different categories of entities

requiring space. For example, it will not be an efficient distribution to locate people with

 37

disability at the topmost floor in a high rise building far away from where they can have

easy access to health care and attention. SAP therefore has direct impact on the

functionality of institutions especially tertiary institutions which is the focus of this

thesis.

Optimization of space allocation is a complex, multivariate problem [51]. The complexity

is introduced by the nature of some requirements and constraints which on a broad sense

might include technical space requirements, operational costs of available space, resource

requirements such as utilities and networking, compliance with space guidelines and

requirements, and so on. Despite this complexity, the task of space allocation is done

manually in most cases especially in developing countries with some form of reliance on

database or spreadsheet driven applications for record maintenance [28]. The need to

incorporate good algorithms to determine an optimal allocation of spaces is therefore

inevitable [2,28].

SAPs have been classified into either reorganization of the existing allocations or

construction of completely new solutions [51]. The main differences lie in the objectives

and requirements of the problem. Reorganization of the existing allocation is the re-

arrangement of a current space distribution among various entities in order to improve the

existing solution under existing conditions or modify the allocation because of changes in

requirements or constraints. Construction of a complete allocation is the generation of a

new solution from scratch to distribute available space among all eligible entities based

on given requirements and constraints. HSAP, as a new instance of SAP, falls into the

second category as we seek to construct complete distribution of university hostel space

among eligible students while observing given requirements and constraints. The main

objectives for a re-organization process might include minimizing the cost of relocation

of entities and the distance between related entities.

The SAP can therefore be viewed as a problem of distributing the available space among

the demanding entities in such a way that the space utilization is optimized [77]. An

important condition that applies to most SAPs such as bin packing problem, knapsack

 38

problem, academic resource allocation and others is that the available space and events

are fixed and are not subject to modification. Knapsack problem for example has a

number of items of given sizes and a number of knapsacks of given capacities. Each item

has associated profit and weight assigned. The objective is to fill each knapsack with a

subset of the items without exceeding the capacity of the knapsack and at the same time

maximizing the total profit [84]. We give a brief overview of the two instances of SAPs

considered in the next subsections.

2.1.1 University Timetabling Problem

The timetabling problem (TTP) is a special class of NP-Hard problem that abounds in

many real life situations especially in educational institutions. It takes a lot of man-hour

effort to generate an acceptable timetable manually and yet the search for optimal

solution to the problem is still on. Most manually generated timetables are often subjects

to regular revision as they do not meet all domain-specific requirements. A change in the

requirements or preconditions renders the whole process unusable and a new process has

to be restarted. Even when the problem is reduced through relaxation of some

requirements, it is still extremely complex to find the optimal solution. This accounts for

the trend in heuristics or metaheuristics application to solve TTP. Part of this thesis is a

pioneer work to advocate the use of metaheuristics for UTTP in Nigerian universities.

GAs has proved very useful in search of solution to similar problem within other domain

instances (see [5,7,27,54,61,75,91,101]). Hence, we experimented with the same

metaheuristic1 in our study.

TTP in education institutions naturally divide into two namely, the lecture (course)

timetabling problems (LTTP) and the examination timetabling problems. An essential

difference lies in the rigidity of the constraints and requirements of the problems. Since

the focus of our study is on the LTTP, all further reference to university timetabling

problem (UTTP) will be taken to imply LTTP.

1 While some authors refer to GA as a heuristic, we considered it a metaheuristic and employed adapted
version of the same to solve our problems in this thesis. We however designed other heuristics which are
incorporated to improve the quality of solutions obtained in some of our problems.

 39

UTTP is an NP-Hard problem [122] with level of difficulties varying from institution to

institution depending on space availability and specified constraints and/or requirements.

In our study, lecture timetabling is considered in a bottom-up fashion, starting from the

faculty/department level to the university level. Courses are designated as 1)

departmental course – offered majorly (almost exclusively) by registered students in the

department, 2) faculty courses, - offered to students across certain discipline within a

faculty, and 3) university courses – general courses offered by students across more than

one faculty simultaneously. There is a university central timetabling committee in charge

of timetabling at the topmost level. Classrooms of various capacities are built around

each faculty with few dedicated classes for some departments. To cater for the

university-wide courses, there are large lecture halls that are controlled by the central

committee. This arrangement makes it easy to adopt a bottom-up approach to timetable

generation where each department/faculty can allocate lectures to classrooms they control

exclusively.

Constraints that affect timetable schedule can be classified into hard and soft constraints.

Hard constraints are conditions that cannot be violated if feasible solutions are to be

ascertained. Soft constraints, on the other hands, might be slacked with some penalty if

the system cannot fully satisfy them. Two major constraints that influence classroom

allocation to courses are the classroom capacity and the class size. A major characteristic

of a good lecture timetabling heuristic is the ability to resolve conflicts that arise naturally

during timetabling generation. This is a sort of sharing restrictions that prevents two

lectures being assigned to the same room simultaneously. Other similar restrictions

include allocation of two or more compulsory courses offered by the same students

within the same timeslot and allocation of two or more courses taking by the same

lecturer within the same timeslot. Therefore, no entity (students or courses) must be

allocated to more than one location at any given time. Moreover, for each period or

timeslot, there should be sufficient resources available for all scheduled events.

Depending on environment, promixity - ensuring that lectures are allocated close to the

department (or students) offering it - can be considered a soft constraint. Other might

 40

include preferential treatment – allocating some lectures to desired classes or period, and

reduction of space wastage and overuse.

LTTP can therefore be defined as a SAP involving the distribution of available classroom

space with different capacities and specifications, among sets of timetable events having

different requirements and sizes, without violating any mandatory condition but

satisfying as many other requirements and/or constraints as possible in order to ensure

optimum space utilization. Chapter 5, where paper [C] is presented, gives more overview

of problem instance and our work in this area.

2.1.2 Hostel Space Allocation Problems

Hostel space allocation is becoming a big concern for universities administration in

developing countries where hostel facilities are provided for students. This concern stems

from many, and often conflicting, factors and objectives to be achieved. A major issue is

the increased rate of admission and the attendant requests for campus residence. One

great concern is the decrease in capital fund allocation to tertiary education especially in

developing country which makes it difficult to consider capital project expansion

including hostel facility for students. Some institutions have to depend on possible

donations from external bodies which is either highly uncertain and grossly insufficient to

meet their growing needs. Demands for increased funding have led to many strike actions

by university staff in recent years which subsequently disrupted academic activities and

plans [4,95]. The increasing population of students thus poses a challenge of finding an

optimal design strategy for accommodating changes especially with regards to space

requirements and provision. While it might seem easy to predict the short-term space

requirements based on past admission statistics, it is becoming difficult to predict the

long-term space requirements due to uncertainty and future admission rate. The pressure

is much on the few available tertiary institutions in developing countries to admit the

ever-growing population of admission seekers. There is therefore the need to efficiently

manage existing hostel facilities among eligible students while not compromising the set

goals, objectives and standards of the institutions. Ideas relating to effective utilization

 41

and better deployment of existing hostel facilities are therefore of prime importance to

university authorities especially in developing countries.

We define HSAP as the problem involving the allocation of scarce bed space resources

within hostels among many competitive ‘customers’ (eligible students) under given hard

and soft constraints. The application of well-known heuristics to this instance of SAP has

not been reported in literature. To the best of our knowledge, our work is the first

attempt at employing heuristics to handle instance of HSAP as defined in our context

especially within the ambit of our case study. Our work thus forms the baseline for

studies into HSAP for students in tertiary institutions.

2.1.2.1 Problem definition

HSAP refers to the distribution of the available bed spaces in halls of residence (hostels)

among a number of categories of students with different sizes and conditions so as to

ensure the optimal space utilization and the satisfaction of additional requirements and/or

constraints.

Our work is based on instances as obtained at the University of Lagos in Nigeria. The

university currently has a present combined student population of over 39,000 with halls

of residence in the main campus built to accommodate both undergraduate and

postgraduate students. Our concentration is on the undergraduate students who form the

majority of the student population. As at the time of study, hostels in the main campus

consist of twelve undergraduate halls, six for males and six for females. The halls are

built and grouped into zones based on their physical location (see papers [A] and [B]).

Hostel space allocation is done just before the beginning of each session by the Students’

Affair Office assisted by appointed hall managers. The stages involve include:

1. Application and Submission – interested students collect, fill and submit

application forms.

2. Data entry – The accommodation office at the Students’ Affairs Office enters

necessary data from received applications into the system.

 42

3. Validation – Applications are validated (by manual cross-checking) to determine

eligibility of students. Applicants are then categorized into different category as

shown below.

4. Allocation generation – Hall lists are generated, released and distributed for

further allocation to the hall managers.

Like other university SAP, HSAP is thus a multi-stage process. We summarized the

above processes into the follow:

1. Compilation of applicants’ list by the Students’ Affair Office.

2. Categorization of students into various categories. Determination of number of

students to allocate under each category.

3. Allocation of part or all students in each category into various hall based on

certain requirements and priorities.

4. Allocation of students in each category to various floors/blocks within the each

hall of residence.

In our work, we decomposed the whole process into three stages namely, category

allocation, hall allocation, and block/floor allocation (see Figure 1 of paper [B]). We

identified the requirements and constraints for each of these stages. GA-based heuristics

are designed to handle each of these stages of allocation. The main objective of our work

is to investigate the viability of heuristic application the case instances considered with

the aim of helping to improve the efficiency and utilization of the limited physical space

resources.

There are eight categories used for allocation purpose namely, final year (Fy), scholars

(Sc), foreign (Fo), physically challenged (Ht), fresher (otherwise called the first year)

(Fr), sports men and women (Sp), discretionary list (Ds) and others (Ot). Priority orders

are also assigned to these categories for allocation purpose at some stages. To be

categorized as Ht student, the applicant must be registered at the university health centre.

Discretionary students are usually based on individual request made by senior member of

 43

staff in the university. Detail on the category and allocation are contained in paper [A]

and [B].

Some of the requirements and conditions identified for the HSAP include:

• Capacity constraint must not be violated. For example, number of students

allocated to a hall must not exceed the capacity of the hall.

• Fixed allocation - allocations of certain categories of students must be to specified

halls. For example, Ht students must be allocated to designated halls that are

close to health care facility for easy access. Sp students must be accommodated in

the same hall very close to the sports centre. Sc students also have designated

halls.

• Compulsory allocation – all applicants within certain categories must be

accommodated for some administrative considerations. This affects Fo, Sp and Ht

categories in our case.

• As many of Fy,Sc, Fr, Ds and Ot students as possible should be accommodated in

prioritized order as listed, Fy having the highest priority.

• If possible, allocation should be such that students from the same department are

located close to each other. This was introduced when there was a security

problem on campus but had since been relaxed. Hence, we did not consider this.

• Ht students should be allocated to the lowest possible floor in their designated

halls – for conveniences.

• Fy students should be allocated to the highest possible floor in their designated

halls, possibly for concentration and avoidance of distractions.

We classified these requirements/constraints into either hard or soft constraints for the

purpose of our study (see Chapters 5&6). Where necessary, some of these constraints

were assigned appropriate weights for computational experiment purposes. The quality of

a solution (allocation) is measured in terms of the following:

• the number of students allocated under each category

• satisfaction or no violation of hard constraints.

 44

• space utilisation, i.e the amount of space that is wasted (space not used) and the

amount of space that is overused (categories with less space allocated than

needed).

• satisfaction of any soft requirements/constraints.

An optimal solution for SAP is one where all the entities are allocated, no space is wasted

or overused and every additional requirements and constraints have been satisfied. In

most cases of NP-hard problems, this is not always achievable with heuristic allocation.

A more realistic optimal solution for SAP will be one in which all entities are allocated

and the space utilization is the best possible, i.e. the amount of space wasted and

overused has been reduced to the minimum and the additional requirements and

constraints have been all satisfied. To minimize the penalties in a solution for a SAP, no

hard constraints should be violated and as many as possible soft constraints should be

satisfied [14].

GAs have shown proven performance in initial studies of similar problems for which the

search space is large or not fully understood; domain knowledge is scarce and expert

knowledge is difficult to encode; no mathematical model or analysis is available; and

where benchmarking standard is unavailable [60,83,86]. Similar baseline studies

employed GAs due to robustness and efficiency of the algorithm [13,44]. We designed a

GA data structure for representing above problem at the hall and floor levels and employ

various heuristics to handle different levels of allocations. Simulation experiments were

conducted to determine the best algorithms combinations and/or GA parameters that give

the best solution for hostel space distribution. Promising results are reported in papers

[B] and [C].

2.2 Modeling the HSAP

We present in this section, the mathematical models for the description of the HSAP. We

strive to present a generic view of the problems such as can be easily adapted to any case

instance. As pointed out earlier, HSAP is a multi-stage problem. For the purpose of

 45

modeling, we identify three stages of allocations namely, the category, hall, and floor

allocations. However, our model is limited to only the first two stages of allocations.

The models are based on some modified forms of the bounded knapsack problems [84].

This is done essentially since the problem involves placing some items (students) into

available knapsack (hostel space) in order to satisfy certain constraints and requirements.

Comprehensive details on knapsack problems and its various forms is provided in [84].

We present the discussion for each of these in turn below.

2.2.1 Category Allocation

The allocation at this stage depends upon the priorities set by the administrators (Students

Affair’s office) and the total capacities of the available halls. As later discussed in

Chapter four, the categories are divided into fixed-choice and flexible-choice allocation.

We assume that individuals are selected into a single knapsack (described by the total

capacities of all the halls), depending on their level of priority and some assigned

weights. We then model this stage as a modified form of bounded knapsack problem.

Since it is not feasible to allocate all applicants in each flexible-choice category, the

problem can therefore not be modified as a binary knapsack problem. The allocation at

this stage is therefore done subject to the following restrictions and further assumptions:

• The two broad categories of fixed and flexible must be handled separately with

the latter given the first priority. Weight in the range of [0,1] are assigned

accordingly to these two categories. We assign a weight of 1 to all fixed-choice

while flexible categories are assigned variable values in [0,1]. However, since all

categories must be granted the minimal allocation possible, we ensure that no

category is assigned a weight of 0.

• A cost function is introduced for the model. However, for the flexible category,

this function is designed to follow the order of allocation priority of the categories

involved.

 46

Let T represents the total capacity for all the halls (the size of the knapsack) and pi

represents the cost of allocating a category i to T, and wi represents the number of

applicants in category i (equivalent to the weight of each items for the knapsack), i =

1,…,m; where m is the number of categories. Let k represents the number of categories

under fixed-choice. We assume that the categories are ordered such that the fixed-choice

comes before the flexible choice (since they are given first priority in allocation).

Therefore, the number of flexible choice categories is m-k.

Next we define TF and TV as the total number of applicants in the fixed-choice and

flexible- choice categories respectively. That is,

∑
=

=
k

i
iF wT

1

(1.1)

Therefore

TV = T - TF

Furthermore, we assume that the priority of a given category in the flexible-choice

increases with the number of applicants in the category. We therefore defined the cost

function as:

(1.2)
(flexible) for

(fixed) for 1

⎪
⎩

⎪
⎨

⎧

+=

=

=
1,...,mki

1,....ki

T
wp

V

ii

From equation 1.2, it is obvious that the category with higher priority will have higher

cost function value assigned than those of lower priorities thus enforcing the priority

requirement of the allocation process.

Put together, the model for the category allocation stage becomes:

 47

⎩
⎨
⎧

+=≤≤

=
=

≤∑

∑

=

=

(flexible) for 1 0
(fixed) for 1

where

(1.3) , Subject to

 Maximize

1

1

1,...,mki
1,....ki

T

xx

xwp

xp

i
i

i

m

i
ii

i

m

i
i

2.2.1 Hall Allocation

At this stage, allocation is done into respective halls based on certain constraints

(weights) on some categories of students. At this stage, we are essentially assigning

students into the available hall. Similar to the first stage, we also have the fixed and the

flexible groups. We seek to allocate students such that certain categories of students

(fixed) must be allocated to designated halls while others (flexible) are distributed to

remaining space in all the halls in order to maximize the distribution spread of each

category. Note that after the first stage, the overall total number of applicants is

equivalent to the total number of available bed space in the halls. Other assumptions

follow as in the category allocation stage.

We define a variable, hall ratio, rj, as

(1.4)
T
hr

V

j
j =

hj is the capacity of hall j, j = 1,…,n, where n is the total number of halls. The hall ratio

is used essentially to enforce the distribution spread of students in flexible group across

all the available halls.

Let pij be the cost of allocating student in category i to hall j and wij be the number of

students in category i allocated to hall j (this represents the weight of class i for hall j).

We then seek to

 48

Next, we need to determine the cost function, pij. Since the allocation of the number of

students depends on the number of applicants and the hall ratio, we cannot allocate more

than the expected portion of a given category to a given hall. Therefore the cost function

is formulated as follows:

(1.6)
(flexible) for 0

number) hall (specified fixed and for 1

⎪⎩

⎪
⎨
⎧

=+=≤≤

==
=

 1,...,n;j 1,...,mki

 j1,....ki

rpp
jij

ij

2.3 Related Works

Many practical, real-world instances of SAPs have been studied in literature. It is

interesting to note that most instances arose from challenges facing one institutions or the

other just as in our study. For example, the automated scheduling, optimization and

planning group of the University of Nottingham was formed to find automated solutions

to practical SAPs for different institutions in the United Kingdom [25,29]. With much

successes recorded on baseline heuristic applications, the group later extended their work

to higher level heuristics for other instances of SAP (for example, see

[15,25,28,29,30,31,32,76]). Michalewicz and Fogel [85] submitted that in practical

setting, the use of heuristics have proved to be often superior to exact methods. This

accounts for their preference in handling real-world problems.

up) filled is (hall each for

and

(1.5)
(flexible) for 0

(constant) fixed is and , for

subject to

 Maximize

1

1 1

 1,...,nj, j

 1,...,n1,...,m; jki

jk1,...i

hx

wx
w

x

xp

j

m

i
ij

ijij

ij

ij

n

j

m

i
ijij

==

⎪⎩

⎪
⎨
⎧

=+=≤≤

=
=

∑

∑∑

=

= =

 49

Before the application of heuristics and metaheuristics, several attempts were made to use

exact methods to solve smaller instances of SAPs. Early studies on space planning and

utilization in university environment include [16,65,88,97,105]. Most early studies

however focused more on capacity-related issue, that is, "how much space is required to

deliver the educational programs of the university or college?" However, location-related

issues, that is, “where to place an entity” is of more relevance in space planning and

management. In HSAP, the question of “how much space?” is naturally handled from

capacity constraints and the number of applicants. HSAP therefore seek more to address

the issues of “who to allocate and where to allocate them”, the solution of which affects

the overall goal of the allocation process and the university in general. Part of early

attempt to address the “where” issue was done by Sharma and Kurma [106] who studied

the problem of space allocation to academic departments in a high rise building of an

Australian educational institution. Two main objectives of the study were to minimize

student pedestrian movement within the building and to maximize intra-departmental

interaction. A cost-minimization model was used to solve the problem as a transportation

problem. The resulting assignment of space was found to be better than the existing

deployment of teaching department accommodation in terms of objective satisfaction.

The study is however for a small instance/data set with inability to handle other multi-

objectives that arose from the given instance.

Ritzman et al. [97] formulated a mixed-integer goal programming model to study the

planning of academic facilities involving the reassignment of 144 offices to 289 members

in 6 academic departments within the Ohio State University. The objective of the study

was to make the reassignment of offices as fair as possible while avoiding conflicts such

as minimizing the distances between the rooms assigned to each department and its

administrative office, and ensure that each department obtains a fair share of the available

high quality offices. The study however revealed that the mixed integer goal

programming model was rather too complex for the problem than a standard Linear

Programming. Benjamin et al. [18] employed linear goal problem to study the multi-

objectives allocation of 15 sections to a new computer integrated manufacturing

 50

laboratory at the University of Missouri-Rolla. The objectives include developing new

courses relying on the laboratory facilities, increase the students’ use of the laboratory

facilities and stimulate the graduate-level and funded research. The goals were

prioritized using the analytic hierarchy process, a multi-objective decision making

technique [18] which rank the alternatives of problems in hierarchical structure using pair

wise comparison. The basic assumption was that the objectives of a problem can be

represented in a hierarchical structure. The priority structure was incorporated into linear

goal programming model that determines the optimum resource allocation. Results

obtained were measured by the ability to fulfilled stated objectives as no comparison was

made to other methodology. Giannikos et al. [55] studied the reorganization of academic

space distribution in six major sites at the University of Westminster using integer goal

programming. The main objective is to assigning enough and adequate type of offices to

each school while avoiding repeated allocation of the same entity to different offices.

Other objectives were minimizing the distance between offices assigned to a school and

its administrative centre and minimizing the number of people that have to be relocated.

The objectives were ranked according to their importance hence the use of pre-emptive

goal programming to obtain a satisfactory solution.

The use of heuristics or metaheuristic to solve real-world instances of SAPs was

popularized by the automated scheduling, optimization and planning group of the

University of Nottingham then led by Burke [25]. The group has maintained a focused

effort since 1998 to address the space allocation problem in the context of academic

institutions. Specially, office space allocation [77] and on-the-shelf space allocation [14]

were among those researched by the group. Their initial work on space allocation for

higher institutions was based on genetic algorithm using data obtained from higher

institutions in the United Kingdom. Subsequent works expanded to the use of other

heuristics and their variants for different instances of SAPs. One of such employed hill

climbing (HC), SA and GA methodologies to automatically generate solutions to the SAP

[25]. The HC was applied in two ways: random selection of rooms (also called as random

fit) and selection of room with the lowest penalty (best fit). The GA used roulette wheel

method in the selection process. The GA was tested with various population sizes and

 51

various initial populations. It was tested with the random fit HC (random selection of

rooms), best fit HC (selection of room with the lowest penalty) and SA initialized

population. Results showed that SA performed the best though with longer convergence

while random fit HC performed the worst which has faster convergence. Subsequent

work after this have employed several variants of HC, SA and GA to handle the SAP

[30,31,32]. SA and HC variants showed great performances when it comes to

reorganizing allocation problem. This is likely because most conflicting resources were

already allocated hence these local search heuristics serves to improve existing allocation.

Based on the instance studied and data set used, the results of GA were shown to be

better when improved with local search heuristics. Most of the works used domain-

specific instances obtained from institutions in the United Kingdom.

Furthermore, Burke and Newall [27] presented a multi-stage evolutionary algorithm for

the timetabling problem. The multi-stage algorithm decomposes a larger problem into

smaller components which can be effectively handled by evolutionary algorithm. The

algorithm was able to fix the events in the timetable before considering the next subset of

events. This approach produced faster and better quality solutions to series of sub-

problems than would have been if the larger problem is handled as an entity. Alkan and

Ozcan [10] developed a steady state GA to find solution to a small portion of real-world

course timetable data obtained from the Faculty of Engineering and Architecture (FEA),

Yeditepe University, Istanbul in Turkey. This was a pioneer study into the instance and

case considered and GA was found suitable for such with promising results. The study

however did not make any distinction between hard and soft constraints. However, initial

experimental results obtained in these work showed the viability of applying

metaheuristics which eventually prompted further studies by the researchers. In one of

such subsequent studies, Alkan and Ozcan [91] employed a variety of operators applied

to memetic algorithm in search of solution to the same data set. Operators used include

violation directed mutations, crossovers and violation directed hierarchical HC method.

Initialization was done randomly and the population passed through the HC heuristic. A

random, low probability mutation was applied. An additional mutation was also used to

guide the search while appropriate penalty values were computed by a factor. The

 52

algorithm employed the one point crossover and uniform crossover as well as a new

crossover selection based on ranking strategy. Results obtained favoured the use of

genetic search combined with HC heuristic.

 53

Chapter Three

Paper [A]: A Multi-level Genetic Algorithm

for a Multi-stage Space Allocation Problem

 “That some achieve great success, is proof to all that others can achieve it as well.”

– Abraham Lincoln

"There is no one giant step that does it. It's a lot of little steps."

- Peter A. Cohen

“You may never know what results come of your action, but if you do nothing there will

be no result”

- Mahatma Gandhi

Necessity is the mother of invention

- Plato

 54

Space management can be carried out more efficiently when the building design process

has been thoroughly planned. Paper [A] present the initial work on the multi-level

application of GA to the multi-stage HSAP. The paper presents some results obtained

from simulation experiments based on dataset obtained from the University of Lagos in

Nigeria. This work was motivated by the need to overcome some obvious bottlenecks in

the manual approach adopted by the institution. There was a need for an effective and

efficient means of allocating hostel accommodation to students especially on the main

campus which has the higher concentration of student population. Some of the problems

with the manual approach include piecewise release of allocation list, untimely release of

list, human manipulations and errors, and of course, the cumulative effects of all these on

academic performance. In a bid to overcome these problems, the university authority

sought for ways to accommodate more students. This led to the semi-privatization of

hostels, industrial collaboration to build more hostels on build-operate-and-transfer

agreement, and encouragement of students to seek off-campus residence. However, the

introduction of some of these measures had led to more serious security and moral

concern for the administration. This is why we believe that proper and efficient

management of existing facility in order to ensure even distribution of students into

hostel based on stated requirements will help the authority to overcome part of these

problems. A complete automated hostel allocation system that incorporates efficient

optimization techniques is therefore inevitable. This will ensure that a four-point goal of

transparency, reliability, efficiency and effectiveness (referred to as the TREE goal) are

achieved. Moreover, proper allocation will reduce stress for students and facilitates

better academic performance. The desired end results is for the allocation list to be

released on time (and at once), and be favourable to as many students as possible.

The structure of the overall automated system is given in the sequence diagram in Figure

3.1. There are three entities identified that influence the overall system. They are: the

applicants (students), who must apply for hostel space; the Accommodation Officer, who

enters and validates all applications; and then the allocation system which distributes

available bed spaces among eligible applicants in a way as to meet stated

 55

requirements/constraints. Some basic definitions of important terminologies are provided

in Section 2.1 of paper [A].

Figure 3.1: A sequential diagram for the HSAP

Since this thesis is concerned with determining the viability of metaheuristic application

to the allocation distribution, we concentrated our simulation experiments on the

allocation system. Aside the other subsystem, the allocation process consists of three

:Student :Allocation
System

:Accommodation
Officer

submitCompletedForm

accessDatabase

validateApplications

generateAllocationList

saveList

forwardElligibleApplications

receiveAllocationList

releaseAccommodationList

 56

stages namely, category allocation, hall allocation and block/floor allocation. The

mathematical model HSAP had been earlier presented in Chapter 3, Section 2.3.

Category allocation stage determines number of applicants in each category that can be

accommodated without violating hall capacity constraints (Table 1 of paper [A]).

Allocation at this stage must also take into consideration the allocation priority and

mandatory requirements (Chapter 2, subsection 2.1.2.1). Results obtained from the

category allocation passed to the hall allocation stage. Since there are separate hostels for

undergraduate male and female students, we handled the allocation for these two in a

mutually exclusive manner at the last two stages. The hall allocation stage determines

the number of students in each category to be allocated to various hostels based on other

set of constraints. The block/floor allocation stage takes the resulting distribution for

each hostel and determines the number of students under each category to allocate to each

block/floor within the hostel. This is done also in consideration of

requirements/constraints that guard the distribution. To achieve the capacity constraints

imposed at different stages, we classified the allocation into either fixed or flexible. For

example, at the category allocation stage, the allocation of Ht, Sp and Fo categories are

treated as fixed since all eligible students in these categories must be allocated. Other

categories are treated as flexible allocation based on the given allocation priority (Section

2.2.2 of paper [A]). A sequential diagram illustrating the solution framework for the

allocation system is shown in Figure 3.2.

We employed a simple greedy heuristic algorithm (Figure 3.3 where, C1, C2, C3 are fixed

allocation and C4,…,C8 are flexible or free choice allocation) to handle the category

allocation while remaining two stages were handled by two different but similarly

designed and inter-dependent GAs (paper [A], Section 3). The general structure of the

GA metaheuristics is given in Figure 3.4.

In [A], we classified the HSAP requirements given in Chapter 2, subsection 2.1.2.1 into

either hard constraints or soft constraints. Hard constraints represent absolute limitations

imposed on the system while soft constraints are necessary but no so important

requirements that affect the overall quality of the allocation.

 57

Main Allocator CategoryAllocator HallAllocator

Allocate

Allocate male halls

Allocate male category

Alllocate female category

Allocate female halls

RoomAllocator

Allocate male to Block/Floor

Allocate female to Block/Floor

Figure 3.2: A sequential diagram of the hostel allocation generation subsystem

 58

i. Initialize: Set the total capacity of all Halls to TH, Ci = 0 for all categories, Appls[i] = Total number

of eligible applicants for category i; Ci = allocation for category i, i = 1,2,…8, indexed such that the
fixed categories, Ht, Sp and Fo are the first three, i.e. C1, C2, C3.

ii. Allocate Fixed Choice: Set Ci = Appls[i], i = 1,2,3;
Sum up the students in Fo, Ht and Sp given TFc and subtract from TH.

iii. Allocate Free Choice:
Initial: Set rem = TH - TFc and Bool Ok FALSE;
Prioritize: Set free choice categories Ci, i = 4,..,,8 in order of priority such that C4 > C5> ... > C8.
while (NOT Ok)
 rem = TH – TFc
 int remNew = rem;
 Allocate: Set Ci = Min{remNew, Appls[i]},
 Set remNew = remNew - Ci, i = 4,..,8 in order of priority
 CheckOk()
End while

iv. Calculate Unallocated: Unallocated[i] = Appls[i] - Ci, for i = 4 to 8
v. CheckOk: If Ci >= 0,for all i = 4,..,8 Set Ok = TRUE

Figure 3.3: Structure of the greedy heuristic for category allocation

i. Initialize: Generate initial population, NewPopulation, randomly

ii. Evaluate: Calculate_Fitness (NewPopulation)
iii. Set: Set CurrentPopulation = NewPopulation
iv. While (NOT Terminal conditions)
v. For counter = 1 to PopulationSize do

vi. Selection:
 Parent1 = Heuristic_Select (CurrentPopulation)
 Parent2 = Heuristic_Select (CurrentPopulation)

vii. Crossover:
 Heuristic_Cross (Parent1, Parent2, NewPopulation)
viii. Repair:

 Heuristic_Repair (NewPopulation)
ix. Mutation:

 Mutate_Population (NewPopulation)
x. Evaluate: Calculate_Fitness (NewPopulation)

xi. Replace:
 Replace_Population (Current Population, New Population)
xii. endwhile

xiii. Display Output

Figure 3.4: General structure of the genetic algorithms

A major problem with the system is the non-availability of archive data (past allocation)

that can be used as benchmark for our study. Even the available allocation data at the

time of study were very scanty and disjointed as the process was done in a piecemeal

manner. Hence, the quality of a solution is determined by the degree of

 59

requirements/constraints satisfactions. To measure this, we define a space utilization

factor, U, such that 0 ≤ U ≤ 1 (paper [A], subsection 2.2.1). This was used for

appropriate fitness evaluations at both the hall and block/floor allocations. The overall

goal therefore is to allocate hostel space such that utilization is maximized, that is, all

hard constraints are satisfied and as many soft constraints are met as possible. A sample

of the final allocation distribution obtained for both hall and block/floor allocation shows

a high degree of satisfaction of given hard and soft constraints (see paper [A], Tables

A.1-A.3 and B.1)

GA researchers often report statistics based on GA parameters [66]. Some of these

statistics are averaged over many different runs of the GA on the same problem [50,87].

Other statistics reported include the best fitness found in a run and the generation at

which it was found, the size of the population, the rate of mutation and crossover, and the

type and strength of selection [87]. For a problem domain therefore, an important

experiment carry out a sensitivity analysis to determine the best parameter combination

that gives the best results. This led to series of simulation experiments we conducted to

determine the GA parameters values and the best combination of GA operators that give

the best results for our problem instance. The experiment setup, results and conclusions

reached are reported in Section 4 of paper [A].

Furthermore, we carried out series of simulation experiments to determine the rate at

which feasible solutions, that is allocation that do not violate any stated hard constraint,

are obtained by the combined GA. This was conducted using different values of

parameter combinations for each experiment. In an experiment, the crossover rate (Pc),

mutation rate (Pμ), population size (N) were fixed and the algorithm executed 50 times

independently. For this study, the following combinations (Pc, Pμ, N) were chosen – (0.1,

0.6, 90), (0.2, 0.5, 90), (0.2, 0.8, 50), (0.3, 0.3, 100) and (0.3, 0.7, 70). Any other

combinations with good results can be used also. The number of generation was fixed at

1000 for all experiments. For each execution, the number of generation evolved and total

number of feasible solutions over all generations were noted. The feasibility rate is

computed as the average of the number of feasible solutions to the total number of

 60

solutions. One of the results obtained is reported in paper [A] (Table 3, Figures 9 and

10). We provide in Table 3.1, Figures 3.5 and 3.6, another set of results for parameter set

(Pc = 0.1, Pμ = 0.6, N = 90). The results for this combination, (Pc = 0.1, Pμ = 0.6, N =

90), follows similar pattern with that reported in paper [A] for combination (Pc = 0.3, Pμ

= 0.3, N = 100).

The GA metaheuristic framework reported in paper [A] does not aim to compete with

other state-of-art problem specific methods but to provide a generalized approach for

handling HSAP with solutions that are “good enough, soon enough and cheap enough”

[13]. This implies solutions that are of good quality, converges, and whose time and

space complexity are reasonable. Based on the cumulative results and observations from

conducted experiments, the following parameter combinations are recommended

(depending on computing resources consideration):

• For speedy execution (that is solutions requiring fewer number of generations to

converge): (Pc = 0.2-0.5, Pμ = 0.7-0.9, N = 80-100)

• For accuracy (solutions with very high fitness values that are near optima): (Pc =

0.3-0.4, Pμ = 0.6-0.9, N = 70-100)

• For minimal use of resources (solutions requiring less amount of intermediate

processing): (Pc = 0.2-0.4, Pμ = 0.3-0.7, N = 60-80)

• For consistent optimal results (i.e. solutions with good mix of high accuracy,

speedy execution and minimal resource usage): (Pc = 0.3-0.5, Pμ = 0.3-0.7, N =

60-90).

From our results, we conclude that GA metaheuristic is highly efficient in handling the

HSAP. It gives results that meet stated requirement thus will be very useful in improving

the hostel space allocation process. We however note that there are rooms for

improvements on the results obtained especially if the results of the initial stage (category

allocation) can be enhanced. This in turn will affect the results of the remaining two

stages. This led to our study and presentation in Chapter 4.

 61

Table 3.1 - Results of experiment to determine rate of feasibility on the combination (0.1, 0.6, 90).

 Run# Male Female
no. of gens # feasible

solutions
Feasibility

rate(%)
no. of gens # feasible

solutions
Feasibility

rate(%)
1 244 6739 30.69 253 18003 79.06
2 181 9905 60.80 176 8814 55.64
3 186 4812 28.75 213 8541 44.55
4 192 6471 37.45 184 4313 26.04
5 189 8586 50.48 187 4896 29.09
6 295 8038 30.28 167 3229 21.48
7 339 7282 23.87 390 6892 19.64
8 135 3067 25.24 144 9705 74.88
9 122 5946 54.15 146 7218 54.93

10 234 6399 30.39 243 15593 71.30
11 288 5376 20.74 278 11953 47.77
12 272 11538 47.13 102 7114 77.49
13 245 7745 35.13 144 7568 58.40
14 277 14455 57.98 319 6073 21.15
15 195 9424 53.70 223 7280 36.27
16 250 10010 44.49 149 7675 57.23
17 230 5196 25.10 196 4582 25.98
18 271 16064 65.86 172 5635 36.40
19 257 7573 32.74 200 3478 19.32
20 226 10190 50.10 231 9329 44.87
21 237 4093 19.19 166 4282 28.66
22 262 4738 20.09 294 14279 53.96
23 277 15909 63.82 156 4891 34.84
24 269 13991 57.79 251 6209 27.49
25 203 5221 28.58 172 5191 33.53
26 280 9260 36.75 250 825 3.67
27 195 9702 55.28 254 10921 47.77
28 314 17196 60.85 164 1557 10.55
29 271 6343 26.01 262 16951 71.89
30 269 14590 60.26 255 8788 38.29
31 98 1 0.01 60 1 0.02
32 237 6748 31.64 308 17061 61.55
33 226 8388 41.24 242 10149 46.60
34 274 4553 18.46 161 5568 38.43
35 283 11781 46.25 312 11420 40.67
36 391 17983 51.10 189 11829 69.54
37 299 12249 45.52 233 13565 64.69
38 277 14160 56.80 167 8656 57.59
39 230 9698 46.85 317 5602 19.64
40 209 12658 67.29 200 2659 14.77
41 266 11277 47.11 185 7364 44.23
42 163 6599 44.98 250 11415 50.73
43 211 10678 56.23 352 21156 66.78
44 221 3483 17.51 163 11261 76.76
45 291 11337 43.29 308 5659 20.41
46 214 3749 19.47 262 9544 40.47
47 194 5491 31.45 256 8762 38.03
48 274 13946 56.55 209 8425 44.79
49 315 6796 23.97 196 3013 17.08
50 352 14450 45.61 187 8502 50.52

 62

Figure 3.5: Feasibility study for male allocation (Pc = 0.1, Pμ = 0.6, N = 90)

Figure 3.6: Feasibility study for female allocation (Pc = 0.1, Pμ = 0.6, N = 90)

 63

INCLUDED ARTICLE

 64

Paper [A]

Multi-level Genetic Algorithm for a Multi-stage

Space Allocation Problem

Adewumi, A.O. and Ali, M.

Mathematical and Computer Modeling 51 (2010) 109_126

DOI:10.1016/j.mcm.2009.09.004

© 2010 Elsevier Ltd. Reproduced with permission

 83

Chapter Four

Paper [B]: A Hierarchical Heuristic Strategy

for Hostel Space Allocation Problem

"Nearly every man who develops an idea works at it up to the point where it looks

impossible, and then gets discouraged. That's not the place to become discouraged."

- Thomas Edison

"Success seems to be connected with action. Successful people keep moving. They make

mistakes, but they don't quit."

- Conrad Hilton

“That which we persist in doing becomes easier - not that the nature of the task has

changed, but our ability to do has increased”

- Ralph Waldo Emerson

 84

Paper [B] presents some further studies on the HSAP reported in Chapter 3. The

mathematical models follow what we defined also in Chapter 3, Section 2.3. However,

for comparative study purpose, we further seek to combine the models for the first two

stages into a single mathematical model. This is presented later in this chapter.

For better understanding, we present a graphical illustration of the problem and a

breakdown of constraints in paper [B] (Section 2.1, Figure 1, Tables 2 & 3). To

understand the layout of the hostels, we present a graphical layout according to the

zoning (see Table 1, paper [B]) in Figure 4.1. For generalization purpose, we use zone-

based hostel identification (hostel ID) instead of the actual names used in paper [A]. For

example, HA1 refers to hostel 1 in zone A. For cross-examination purposes therefore,

Table 4.1 gives the names of the hostels with the corresponding ID used in paper [B].

Table 4.1: Hostel names and identification used

Zone (Area) Hostel Names Hostel ID Sex

A
(Main Campus)

Jaja HA1 Male
Mariere HA2 Male
Moremi HA3 Female

B
(New Hall)

Eni Njoku HB1 Male
Aliyu Makama Bida HB2 Female
Fagunwa HB3 Female
Madam Tinubu HB4 Female
Sodeinde HB5 Male

C
(Gate/Education)

El-kanemi HC1 Male
Kofo Ademola HC2 Female
Queen Amina HC3 Female
Saburi Biobaku HC4 Male

We developed a multi-level structure heuristics and metaheuristics, jointly called a

hierarchical heuristic strategy, to solve the HSAP. Having successfully applied GA

metaheuristics in our earlier study (Chapter 2), we set out this new study to 1) test other

heuristics on the first two levels, that is, category allocation and hall allocation, 2)

develop a heuristic for hall allocation that will maximize the distribution spread of

categories of students into available hostel space. This, in turn, is to prevent 1) clustering

of the same category into the same hall, and 2) bias distribution in which category of

 85

higher priorities are allocated to the detriment of those of lower priorities. We therefore

aim at given at least some students in the lower category some chance of being

accommodated while still observing the allocation priority requirement.

Figure 4.1: Graphical layout of hostels distribution and zoning

 87

For ease of experimentation, we divided the allocation at the first two levels into either

fixed-choice or free-choice depending on the strict hard constraints to affect allocation at

each level. For example, at the category allocation level, all Ht, Fo and Sp must be

accommodated hence they are regarded as fixed-choice.

Different heuristics were designed to handle the first two stages while GA metaheuristics,

FaGA, still drives the final floor level allocation. For experimental and comparative

study purposes, two different heuristics, CAH1 and CaH2, were designed for the category

allocation stage. CaH1 is still a greedy-like heuristics as in the last Chapter (paper [B],

Section 3.1). CaH2 heuristic uses a percentage ranking system to determine the number

of students to allocate in each category (paper [B], Section 3.2). Similarly, GA

metaheuristic, HaGA and a new heuristic, HaNH, were designed for the hall level

allocation. HaNH heuristic uses a parameter called, hall ratio (HRj, j=1..n), to distribute

students in each category into various hostel (paper [B], Section 3.3). The block/floor

level allocation was handled by a GA metaheuristic, FaGA. The algorithms for the

heuristics are provided in paper [B] (Section 3). Both HaGA and FaGA metaheuristics

(paper [B], Section 3.5) are similar to the one in the last Chapter. As noted in Chapter 3, a

succeeding stage depends on the results obtained from the previous stage. The overall

structure of the solution methodology is provided in Figure 2 of paper [B].

Results obtained by the heuristics pair for the category level are compared and presented.

The fixed-choice categories are first allocated to specified halls as required. The

heuristics then seek to distribute the free-choice into remaining hall capacities so as to 1)

follow the given allocation prioritization and 2) produce an allocation that maximizes

distribution spread into various hostels. Figure 4.2 gives a graphical summary of the

results of the CaH1 and CaH2 heuristics that are reported in paper [B] (Tables 5 & 6).

The y-axis represents the utilization factor, U, obtained by dividing the actual number of

students allocated, Ci, by the total number of applicants, Appl[i], for each category. The

x-axis represents the categories in free-choice allocation for category allocation stage. C4,

C5, C6, C7, and C8 in the both represent the Fy, Sc, Fr, Ds and Ot student categories

respectively. Note that the fixed-choice categories of Ht, Fo and Sp have a mandatory

 88

allocation to specified hall. Figure 4.2 show that both CaH1 and CaH2 meet prioritization

requirement as shown by the sloppy nature of the graphs. However, CaH2, gives an

allocation that is better spread among the free-choice categories. CaH1 gives a more

biased distribution that favours categories of higher priority and neglect those of lower

priorities, depending on the available hall capacity. CaH2 therefore produces solution of

better quality than CaH1.

Figure 4.2: Comparative study of category allocation based on CaH1 and CaH2 heuristics

The hall distribution obtained with the application of HaGA and HaNH are reported in

Tables 7 & 8 of paper [B]. Since hall allocation level depends on results from the

category allocation, we expect similar pattern of distribution from both HaGA and HaNH

based on given input. We therefore only reported the results based on the combination of

CaH1 with both HaGA and HaNH in paper [B]. Two pie chart illustrations for results of

HaGA and HaNH are presented in Figures 4.3 and 4.4.

 89

Figure 4.3: Hall distribution based on HaGA

Figure 4.4: Hall distribution based on HaNH.

Observation from the results in Tables 7 and 8 of paper [B] both HaGA and HaNH satisfy

the hard constraints for the fixed-choice allocation. However, Figures 4.3 and 4.4 show

that HaNH heuristic maximizes the distribution spread of the free- choice categories more

 90

than the HaGA heuristic at the hall allocation stage. For example, though Fy category has

priority over Fr category, HaGA heuristic however, allocated them to hall based on this

priority but also considering the number of applicants in the two categories thus

removing the possibility of priority-based lopsided or biased allocation that favours Fy

when HaGA heuristics was applied.

As stated earlier, for ease of usage and comparative purpose, we try to combine the

mathematical models for the category and hall allocation stages into a single model. This

is presented as follows:

We assume the following constraints: (a) All Fo must be allocated, (b) All Ht must be

allocated, (c) Ht must be allocated at the lowest oor as possible in a given hall, (d) All Sp

must be allocated, (e) All allocated Fy should be allocated to the highest oor as possible

in a given hall, (f) As many Fy, as possible, should be accommodated, (g) As many Sc, as

possible, should be accommodated, and (h) The order of priority of allocation is Fy, Sc,

Fr, Ds and Ot. The first five constraints are hard constraints while the others are soft

constraints. The objective is to maximize bed space utilization so as to satisfy specified

hard and soft constraints.

Let ωij be the satisfaction weight if a student of the category i is allocated in the hall j and

xij be the number of student of category i allocated in the hall j, i = 1,…,m and j = 1,…,n,

m is the total number of categories while n is the total number of halls. We then define a

satisfaction function as

 91

(4.1)
1 1
∑∑
= =

=
m

i

n

j
ijij xS ω

Next we define Li and Ui to be the lower and upper bound, respectively, of the number of

students to be allocated in category i, while hj the total bed space capacity of the hall j.

In order to satisfy the hard constraints (a), (b) and (d) above, we set their lower bound of

the number of students allocated in the fixed-choice categories to be equal to the number

of eligible students in those categories. For the flexible-choice categories, we set the

lower bound to be 0 and the upper bound to be the number of eligible students within the

concerned category. The formulation thus becomes:

(4.5) andfor ,....}1,0{

(4.4) for

(4.3) for

subject to

(4.2) Maximize

1

1

1 1

n1,...,j m1,...,i

m1,...,i

n1,..., j

S

x
UxL

hx

x

ij

i

n

j
iji

j

m

i
ij

m

i

n

j
ijij

==∈

=≤≤

=≤

=

∑

∑

∑∑

=

=

= =
ω

Equation (4.3) stipulates that the total number of students allocated in hall j should not

exceed the capacity of the hall, while equation (4.4) represents the constraint of lower and

upper bound. We however assume in this model that the values of ωij is assigned by the

accommodation officer in charge at the Students Affair’s Office based on the order of

priority assigned to the allocation of each category and also on constraints (c), (e) and (h).

For comparative purpose, we employed simulated annealing (SA) algorithm [see

47,49,73] to compute the solution for male student for the first two category and hall

allocation stages based on the new model. We used the same set of given input as

employed in main experiment described earlier in this Chapter and in paper [B]. In the

SA implementation, we chose the cooling function to be tTt αφ 0)(= with 10 << α .

 92

Since the experiment is for comparative purpose, we set 9.0=α , and the initial

“temperature” T0 = 100. The algorithm was set to stop after a certain number of

iterations.

Using the same set of input as in Appendix A of paper [B] for male student categories

only, the SA generated the hall distribution results as presented in Table 4.2.
Table 4.2: Comparative Results obtained using Simulated Annealing

Category HA1 HA2 HB1 HB5 HC1 HC4 Percentage (%)

Fy 404 150 110 110 110 340 86.19
Sc 5 65 65 65 65 6 63.02
Fo 3 3 3 3 4 4 100
Ht 10 10 10 10 15 15 100
Fr 5 162 200 200 200 5 57.95
Sp 200 40 40 40 40 40 100
Ds 8 10 15 15 30 2 66.66
Ot 25 0 300 325 62 100 47.76

Total 660 440 743 768 501 512

A study of the above results shows a good level of satisfaction of some give constraints

by the SA algorithms. However, one could notice that the distribution spread objective

was better satisfied by our earlier HaGA and HaNH heuristics than the SA (compare

Tables 4.2 with Tables 7 & 8 of paper [B]), thus our heuristics proved to be better than

SA algorithm. Similarly, the hard constraints regarding the fixed-choice allocation is

better satisfied by HaGA and HaNH than the SA (compare Tables 4.2 with Tables 7 & 8

of paper [B]).

 93

INCLUDED ARTICLE

 94

Paper [B]

A Hierarchical Heuristic Strategy for Hostel Space

Allocation Problem

Adewumi, A.O. and Ali, M.

Submitted to the Journal of the Operational Research Society (JORS)

 126

Chapter Five

Paper [C]: A Heuristic Solution to the

University Timetabling Problem

 “That some achieve great success, is proof to all that others can achieve it as well.”

– Abraham Lincoln

"There is no one giant step that does it. It's a lot of little steps."

- Peter A. Cohen

“You may never know what results come of your action, but if you do nothing there will

be no result”

- Mahatma Gandhi

 127

TTP is a special class of NP-hard optimization problem that come up every year in

educational institutions [54,61]. The use of computer-based solution is limited by the

complexity of the problem. This explains the drive for the application of global

optimization methods in solving the TTP. GAs have proved to be robust for this kind of

problems [5,7,75]. In paper [C], we present a flexible representation and solution

approach for the LTTP as obtained in the instanced considered (see Chapter 2, subsection

2.1.1). Further detail of the LTTP case instance is presented in Section 2.1 of paper [A].

The overall goal of the LTTP is to assign lectures (courses/classes) into a set of time slots

in such a way that satisfy given constraints and optimize a set of objectives. Common

hard constraints considered in a typical UTTP include: lecturer must teach only one class

at a time; a classroom cannot be allocated more than one course at a time; lecturer may

only teach courses in his specialty (for example, a Computer Science Lecturer cannot be

assigned to teach a Chemistry course); and the same class of students must not be doubly

booked for compulsory courses at the same time. There are also soft constraints that

influence the solution quality of timetable. However, in a real-world scenario especially

with large student population, it is almost impossible to satisfy all soft constraints. In

most cases, as in the current case instance, they are completely overlooked and where

need be, assigned minimal weight for fitness evaluation purposes. Some soft constraints

might include non-consecutive allocation of classes to Lecturers, preferential timeslot or

classroom allocation, and proximity requirement (for example, classrooms may be

booked close to the home department of a course). In our study instance, most soft

constraints are implicitly taking care of by the arrangement of classrooms around

department/faculty and the solution approach we adopted. The main emphasis therefore is

to concentrate on the non-violation of hard constraints.

As stated in paper [C] (Section 2.1), the arrangement of most classrooms around faculties

makes it easy for us to adopt a bottom-up approach in timetable construction. This makes

it possible to build the timetables around departments which eventually accumulate into

faculty and university timetable. Our approach reported in the paper allows most

constraints to be specified as file inputs. Construction of timetable at higher level

therefore only requires appending relevant courses, lecturer and classroom data into

 128

appropriate files for processing. The simulation effort was thus concentrated on testing

the viability of GA for the problem and carrying out sensitivity analysis to determine GA

parameter combinations that give quality solution for it. Our approach implicitly handles

some hard constraints thus making the definition of the fitness function (paper [C],

subsection 3.2). The two-dimensional chromosome representation adopted (paper [C],

Section 3.1) also implicitly takes care of class clash constraint.

Furthermore, building of timetable around departments implicitly handles some

fundamental constraints. For example, conflict of classes for students, conflict of classes

for lecturers, and lecturer teaching courses in area of specialty are taken care of at the

departmental level. The issue of when for the LTTP is taken care of naturally (see

Chapter 2, subsection 2.2, paragraph 2). The focus then is essentially on timetabling as a

SAP that is concerned with the question of where, that is, room allocation to courses.

There are two fundamental constraints that are universal to all timetabling and SAPs in

general, and that no feasible solution may violate. These are: no entity can be in more

than one location at any one time. For each time period, there should be sufficient

resources available for all the events that have been scheduled for that time period. This

implies then that 1) lecturer must not be doubly booked (having two different courses

taken by the same lecturer allocated to the same time slot); 2) room capacity must be

appropriate with the size of the class and all classes (courses) must be assigned to rooms;

and 3) class clash error, which makes students at the same level to be assigned the same

timeslot for two separate courses, must be avoided. Aside, only one class can be assigned

to one room at any one time. The fitness evaluation therefore was designed as a measure

of the degree of violation of these hard constraints (see paper [C], Section 3.2). The

function determines the number of lecturer doubly booked errors, room too small errors,

and related class errors and use them to compute the degree of fitness of a generated

solution. The fitness function therefore takes values in [0,1], with 0 representing a high

quality (optima) solution and 1 representing complete violation of all hard constraints.

The GA metaheuristic employed is presented in Section 3 of paper [C]. A simple class

diagram representing the solution framework is given in Figure 5.1.

 129

Figure 5.1: A class diagram framework of the solution approach

As seen in Figure 5.1, the main interface of the program developed is TimetableGUI

which make used of the population class. The population class in turn called the

classroom, lecturer and courses subclasses which load relevant constraint data inputs into

the system. The population class then invokes the chromosome class to execute the GA

metaheuristics given in paper [B], Section 3. The repair strategy was done in two stages.

The first stage ensures that offspring generated after applying GA operators are within

the defined search space. It is essential that each class was booked in the chromosome.

The second stage ensures that there is exactly one booking of each class in the generated

offspring.

 130

Our attempt is the first reported application of metaheuristic to LTTP in the context of

our case study. The objective is to test the viability of GA in handling the problem

instance in our case study. The need to study the new instance of SAP, that is, the HSAP,

for the same institution prevented testing of other heuristics or variants on the LTTP. We

have however shown that it is viable to apply metaheuristic to this problem instance.

 131

INCLUDED ARTICLE

 132

Paper [C]

A Heuristic Solution to the University Timetabling

Problem

Adewumi, A.O., Sawyerr, B.A. and Ali, M.

Engineering Computations: International Journal for Computer-Aided

Engineering and Software 26 (8) 2009 972-984

© Emerald Group Publishing Limited 0264-4401

 146

Chapter Six

Paper [C]: A Comparative Study of Some

Real Coded Genetic Algorithms for

Unconstrained Global Optimization

“I find that a great part of the information I have were acquired by looking up something

and finding something else on the way”

- Frankling P. Adams

 147

Paper [D] is the outcome of the study on GA application to unconstrained global

optimization problems with continuous variables. The paper attached to this thesis is a

revised version of the original submission based on the Reviewer’s comments received

from the journal Editor. In the paper, we presented a set of new RCGAs that have ability

to perform both local and global exploratory search. The algorithms were developed as a

hybridization of the SRCGA (see paper [D], Section 2) with local search heuristics

namely, PS and vector projection. A limited version of PS heuristic (see paper [D],

subsection 3.1) was use to modified the crossover operator for RCGA in order to improve

its robustness and efficiency. We further introduced a new vector projection global

exploratory method (see paper [D], subsection 3.3). We combined these algorithms in

such a way that give three new variants which were all tested along side with SRCGA on

57 test problems. The variants are RCGA-PS (RCGA with PS incorporated into the

crossover procedure, - see paper [D], subsection 3.2); RCGA-P (RCGA with incorporated

projection based exploratory mechanism at the end of each generation of the SRCGA -

see paper [D], subsection 3.4); and RCGA-PS-P (similar to RCGA-PS but augmented

with projection based exploration at the end of each iteration of the RCGA-PS - (see

paper [D], subsection 3.5). These algorithms, alongside with SRCGA, were tested on

various dimensions of the test problems, ranging between 2 and 30. All the algorithms

used the same GA parameter values as shown in paper [D], subsection 4.1 and Table 1.

Each algorithm was run independently for 100 trials on each of the 57 benchmark

problems to determine its success rate.

Statistical analysis was conducted to determine how the new modified algorithms fare in

comparison with the SRCGA. Criteria used for results evaluation include best fitness

values, mean best fitness value, mean function evaluations, success rate, standard

deviations, and p-value from ANOVA test (see paper [D], Section 5, Tables 2, 3, 4, 5,

Appendix II & III). We also applied the Success Performance (SP) index for ranking of

the algorithms (see paper [D], Section 5, Table 6, Appendix I). Graphically, box-plots

and multiple comparison (MCx) graphs were generated to compare the algorithms (see

paper [D], Appendices IV & V). RCGA-PS, RCGA-P and RCGA-PS-P were compared

with SRCGA using the stated criteria (see paper [D], subsection 5.1). Aside these

 148

comparative studies, experimental results from the four algorithms are compared with

similar studies in literature (see paper [D], subsection 5.2).

In all, we discovered that RCGA-PS, RCGA-P and RCGA-PS-P perform better than

SRCGA thus the local and global exploratory algorithms introduced helped to improved

the performance of RCGA with RCGA-PS-P giving the best performance. RCGA-PS-P

also performed better than recent algorithms from literature.

Paper [D] has been reviewed by two Reviewers appointed by the Journal of Optimization

Methods and Software of the Elsevier Science (see Appendix A). As noted by the

Reviewers, Ackley, Griewank, Rastringn, Rosenbrock and Schwefel problems constitute

a group of five test problems which possess varying level of difficulty as the dimension

increased from 2 to 30. Our initial study on these five problems ranged from 2 to 10

dimensions. We therefore conducted more experiment on this group of test problems

using dimensions 10, 20 and 30. Experimental results obtained are reported in Table 6.1.

The results further confirm the superiority of the improved RCGAs over SRCGA with

RCGA-PS-P still performing best.

Table 6.1: Comparative study of SRCGA, RCGA-PS, RCGA-P and RCGA-PS-P on selected problem with dimension 10, 20 and 30

 Dimension = 10

Pro.
#.

Global min

 Min SR MBF of successful runs MFE of successful runs

SRCGA RCGA‐PS RCGA‐PS‐P RCGA‐P SRCGA
RCGA‐

PS
RCGA‐PS‐P

RCGA‐
P

SRCGA RCGA‐PS RCGA‐PS‐P RCGA‐P SRCGA RCGA‐PS RCGA‐PS‐P
RCGA‐

P

39 0.00000 8.08E‐04 5.50E‐05 0.00E+00 1.00E‐06 100 100 100 100 2.57E‐03 9.00E‐05 3.40E‐05 4.00E‐05 1,000,100 49,618 1,988 1,276

41 0.00000 2.22E‐03 3.60E‐05 0.00E+00 0.00E+00 2 52 100 100 2.74E‐03 2.90E‐03 2.00E‐05 2.30E‐05 1,000,100 1,981,670 1,455 878

46 0.00000 9.95E‐01 2.50E‐05 0.00E+00 0.00E+00 0 6 100 100 ‐ 6.83E‐05 2.00E‐05 2.50E‐05 ‐ 42,062 1,239 758

47 0.00000 7.75E‐03 9.20E‐05 1.12E‐03 1.64E+00 1 81 35 0 7.75E‐03 4.84E‐04 6.62E‐03 ‐ 1,000,100 2,775,232 3,799,851 ‐

49 ‐4189.82890 ‐3.62E+03 ‐4.19E+03 ‐4.19E+03 ‐3.42E+03 0 41 32 0 ‐ ‐4.19E+03 ‐4.19E+03 ‐ ‐ 40,401 50,023 ‐

52 0.00000 4.20E‐05 1.50E‐05 0.00E+00 0.00E+00 100 100 100 100 8.50E‐05 7.20E‐05 1.70E‐05 2.60E‐05 30,913 15,074 714 446

 Dimension = 20

Pro.
#. Global min

 Min SR MBF of successful runs MFE of successful runs

SRCGA RCGA-PS RCGA-PS-
P RCGA-P SRC

GA
RCGA-

PS
RCGA-PS-

P
RCGA

-P SRCGA RCGA-PS RCGA-PS-
P

RCGA-
P SRCGA RCGA-PS RCGA-PS-

P
RCGA

-P
39 0.00000 1.21E-02 8.20E-05 0.00E+00 0.00E+00 0 100 100 100 - 9.60E-05 3.70E-05 3.90E-05 - 1,834,080 2,044 1,252

41 0.00000 1.84E-02 8.00E-05 0.00E+00 0.00E+00 0 19 100 100 - 8.61E-04 2.20E-05 2.40E-05 - 818,737 1,448 865

46 0.00000 4.98E+00 2.98E+00 0.00E+00 0.00E+00 0 0 100 100 - - 2.50E-05 3.10E-05 - - 1,311 739

47 0.00000 1.12E+00 4.19E-02 3.30E-01 1.14E+01 0 0 0 0 - - - - - - - -
49 -8379.65780 -6.03E+03 -8.38E+03 -8.26E+03 -5.56E+03 0 1 0 0 - -8.38E+03 - - - 234,214 - -
52 0.00000 5.90E-05 4.80E-05 0.00E+00 0.00E+00 100 100 100 100 9.20E-05 8.50E-05 2.20E-05 2.40E-05 202,580 25,961 732 448

 Dimension = 30

Pro.
#. Global min

 Min SR MBF of successful runs MFE of successful runs

SRCGA RCGA-PS RCGA-PS-
P RCGA-P SRC

GA
RCGA-

PS
RCGA-PS-

P
RCGA

-P SRCGA RCGA-PS RCGA-PS-
P

RCGA-
P SRCGA RCGA-PS RCGA-PS-

P
RCGA

-P
39 0.00000 2.65E-02 2.37E-04 1.00E-06 0.00E+00 0 100 100 100 - 6.23E-04 3.60E-05 3.60E-05 - 2,799,978 1873 1126

41 0.00000 3.96E-02 7.80E-05 0.00E+00 0.00E+00 0 39 100 100 - 2.00E-03 2.20E-05 2.40E-05 - 2,384,116 1326 807

46 0.00000 1.49E+01 9.95E+00 0.00E+00 0.00E+00 0 0 100 100 - - 2.20E-05 2.80E-05 - - 1212 730

47 0.00000 6.73E+00 1.28E-03 8.12E+00 2.12E+01 0 2 0 0 - 1.34E-03 - - - 2,800,846 - -
49 -12569.48670 -8.56E+03 -1.21E+04 -1.23E+04 -8.13E+03 0 0 0 0 - - - - - - - -
52 0.00000 7.00E-05 6.20E-05 0.00E+00 0.00E+00 100 100 100 100 9.60E-05 9.10E-05 1.50E-05 1.90E-05 762,717 41,550 700 412

 150

INCLUDED ARTICLE

 151

Paper [D]

A Comparative Study of Some Real Coded Genetic

Algorithms for Unconstrained Global Optimization

Sawyerr, B.A., Adewumi, A.O. and Ali, M.M.

Journal of Optimization Methods and Software, to appear

 175

Chapter Seven

Conclusion and Future Works
Every exit is an entrance to somewhere else

- Tom Stoppard

“Every man’s life ends the same way. It is only the details of how he lived”

- Ernest Hemingway

 176

In order to draw some conclusions from the investigation presented in this thesis, it is

important to consider our initial aims and scope of the research. We set out to test the

efficiency and robustness of GA metaheuristics for real-world instance global optimization

problems. One of the overriding aim was to carry out an investigation on the suitability of

applying metaheuristic techniques to tackle the space allocation problem in academic

institutions. We were concerned with allocating a set of entities into the available room

space so that the space utilization is maximized. The emphasis was in obtaining a set of high

quality (i.e. not necessarily optimal) allocations that are also structurally non-similar (i.e.

diverse with respect to the solution space) so that the institution decision-makers can select

the most appropriate solution.

Global optimization problems abound in many real-world instances. It is a known fact

that real-world problems are characterized by real-time objectives, inconsistent

constraints, optimum seeking in a changing environment and huge search space. The

work in this thesis was devoted to the design and improvement of a population based

method, namely GA, for solving both discrete and continuous global optimization

problems. The discrete problems are real-life instances of SAP, one of which is new in

literature. We develop GA metaheuristics to handle both problems. We also design

some new heuristics for the HSAP and showed that they are very efficient in giving

quality results.

HSAP is becoming a big concern to university authorities especially in Africa. As stated

in Chapter 1, the overall aim of the work on HSAP is to investigate heuristic methods that

can be used to generate automated and optimized solution in the context of the case

study. Bearing this in mind, the thesis discussed several issues and potential constraints

that are involved in hostel space allocation distribution. Due to the diverse manual way of

handling the problem as a result of changes in personnel, we devised an abstracted and

simplified version problem with the advantages of practicability and ease of

implementation. This was done by identifying categories of students to be accommodated

and constraints that guide their allocation at various stages. We consider this a major

contribution of the thesis as this is the first reported study in literature for the problem

instance to the best of our knowledge. The success record in metaheuristic application to

 177

HSAP will opened a new door of research in this area. We therefore believe that our

work, parts of which are already published, will inspire other research to do more in this

area. We have presented some of the results for HSAP in this thesis at two international

conferences (see [1,3]). In one of the conferences, our paper [3] was short listed as a

finalist paper for the Operation Research (OR) in developing country prize [69]. We

hope the work can be adapted to other instances from other institutions especially in

developing countries. The deployment of a computer based solution with incorporated

optimization method will help to achieve the 4-points TREE goals of transparency,

robustness and reliability, effectiveness and efficiency. We also hope to evolve more, and

possibly better, heuristics for HSAP and apply them to more instances from Institutions

especially in South Africa. In one of such current study, we are adaptation a newly

designed GA based on integrated crossover rule to the discrete HSAP. The new

algorithm was originally designed to work for continuous problems [71].

Unlike some classical problems (such as bin packing, traveling salesman etc.) which have

large benchmark data sets available in the literature, HSAP does not have benchmark data

available that allow us to compare the proposed algorithm with other approaches. We

also noted that it would have taken a considerable amount of work if we compared the

algorithms used with every other search techniques. Moreover, the initial objective is to

show the feasibility of metaheuristics approach to the problems within the context of our

case study. Opportunity abounds therefore to 1) test the discrete problems with more

metaheuristics and possibly hybrid techniques, 2) gather more data set from other

institutions Nigeria and other developing countries, and 3) develop and formulate

mathematical models for a generalized version of the HSAP as a standard benchmark

problem based on fund availability.

Furthermore, we used RCGA to solve unconstrained global optimization problems with

continuous variables. Two new local search heuristics based on PS and vector-projection

were introduced to improve the RCGA metaheuristic. Three set of improved algorithms

namely, RCGA-PS, RCGA-P and RCGA-PS-P were introduced and their results

compared with standard RCGA using 57 test problems with varying dimensions.

 178

Numerical comparisons have shown that all new algorithms are better than SRCGA with

RCGA-PS-P being the best performer. RCGA-PS-P has also been shown to rank better

than some obtained from literature (see Chapter 6, paper [D], subsection 5.2). We

therefore believe that hybridizing GA with good global and/or local exploratory

heuristics will help improve it performance, efficiency and robustness in handling even

difficult unconstrained global optimization problems. Our future works include the

design and deployment of improvement heuristics for RCGA to handle constrained

global optimization problems.

From the GA application to our instance of LTTP, we observed that the application of the

metaheuristic helps to find a good quality solution as well as reduce the time to find such

solution. Though, an optima solution to LTTP is always desirable, it is however ideal

find a near-optima solution that reduces the amount of infeasibility in the timetable. The

program developed for the LTTP can be readily scaled to a more comprehensive UTTP.

This can be achieved by appending appropriate constraint data into appropriate input file

created and slight modification of the program to adapt it to the new environment.

Hybridization has been one way of trying to come up with methods that are applicable to

a wide range of problems. Through hybridization, a lot of methods that are more reliable

can be developed. Our work with unconstrained global optimization problems shows that

hybridizing GA with other heuristics will improve it robustness and efficiency.

Therefore, more research is still needed in finding even more efficient global

optimization methods that are applicable to a wide range of complex optimization

problems. In the same vein and as future work on SAPs considered, it would be

interesting to further improve the GA metaheuristics by hybridizing it with other local

search heuristics in order to improve its exploration capability. In one of such work, we

are trying to adapt a new integrated crossover rule developed for continuous global

optimization problem into this discrete problem. It is hoped that hybridization will

greatly improve the efficiency of the algorithm and solutions of the problems.

Furthermore, hybridization of current metaheuristics with some exact methods, such as

linear programming, branch-and bound, dynamic programming can be explored. Meta-

 179

heuristics are believed to be able explore a large search space within a short time while

exact methods can explore a specific small area exhaustively. Hybridization of the two

may lead to a better quality solution within reasonable computational time. Furthermore,

different fitness evaluation methods can be designed for the two discrete problems to

assess the fitness of different individuals within the same population.

To the best knowledge of the author, this thesis presents the first investigation on the

application of metaheuristic techniques to HSAP in academic institution. It is also the first

investigation to LTTP within the context of our case study. It was shown that metaheuristics

can produce good solutions in much shorter time than required when constructing allocations

manually. GA metaheuristics separately and reasonable adapted to all problems studied and

benchmark results were provided.

The experiences gathered from this thesis can also be beneficial to research in related areas

such as space planning, task allocation, car space allocation, etc. Also, the algorithms

described and tested in this thesis can be the starting point for further research and for the

development of a fully automated system especially for the space allocation processes

considered.

 180

Chapter Eight

Contributions
“Little drops of water make the mighty ocean and the pleasant“

- Julia Abigail Carney

“We ourselves feel that what we are doing is a just a drop in the ocean. But the ocean

would be less because of that missing drop”

- Mother Theresa

“The world is moved not only by the mighty shoves of the heroes but also by the

aggregate of the tiny pushes of each honest worker.”

- Helen Keller

 181

The contributions of this thesis can be summarized as follows:

 A description and investigation into a new instance of SAP, HSAP is provided.

This we believe would created avenue for future rigorous research on the

application of metaheuristics to such problems

 For the first time, an investigation on the suitability of applying metaheuristics to

solve HSAP is presented. It is shown that metaheuristic approach can produce

solutions of better quality than those generated manually by student affair officers

and in a much shorter time.

 The design of three heuristic algorithms (CaH1, CaH2 and HaNH) for HSAP with

promising results.

 A further study to show the robustness and efficiency of GA metaheuristics in

solving both discrete and continuous global optimization problems.

 The development of three new RCGAs based on local exploratory PS and global

exploratory vector projection is presented. We showed that these three algorithms

perform better than SRCGA. This shows that proper hybridization of GA with

other heuristics can improve its performance.

This thesis reports the original ideas of the author. The Supervisor provided some

general ideas that helped to refine the works and papers in both scientific and linguistic

aspects. Some assistance were received from one of the author of papers [C] and [D]

who was still resident (and later came for a 6-months visit) and working at the University

of Lagos where data set used for the SAPs were obtained.

 182

References

[1] Adewumi, A.O and Ali, M.M. and Ayeni, J.O.A. A multi-level genetic algorithm

for a multi-stage space allocation problem. Accepted for the 8th International

Conference on the Practice and Theory of Automated Timetabling (PATAT

2008).

[2] Adewumi, A.O. and Ali, M. A multi-level genetic algorithm for a multi-stage

space allocation problem. Mathematical and Computer Modeling, 51(1-2),

(2010), 109-126

[3] Adewumi, A.O., Ayeni, J.O.A, Fasina E.P, and Ali, M.M. (2008) A genetic

algorithm metaheuristic for a multi-stage hostel space allocation problem.

Proceedings of the International Federation of Operations Research Conference

(IFORS 2008), Sandton, South Africa, 2008.

[4] Alabi, A.T. Conflicts in Nigerian Universities: causes and management. Ilorin

Journal of Education. Faculty of Education, University of Ilorin, Nigeria 21,

2002.

[5] AlAmoush, F.A. Improving primary school timetabling using genetic algorithms.

M.Sc. Thesis. Universiti Utara Malaysia, 2007.

[6] Alberto, P., Nogueira, F., Rocha, H. and Vicente, L.N. Pattern search methods

for user-provided points: Application to molecular geometry problems, SIAM

Journal on Optimization, 14 (2004), 1216–1236.

[7] Aldasht, M., Alsaheb, M., Adi, S., Qopita, M.A. University course scheduling

using evolutionary algorithms. Proceedings of the 4th International Conference

on Computing in the Global Information Technology, International Multi-

Conference. (2009). 47-51.

[8] Ali, M.M. and Törn, A. Population set based global optimization algorithms:

Some modifications and numerical studies, Computers and Operations Research

31(10) (2004) 1703–1725.

[9] Ali, M.M. and Torn, A. Topographical differential evolution using pre-calculated

differentials. In G. Dzemyda, V. Saltenis and A. Zilinskas, (eds.). Stochastic and

 183

Global Optimization, Kluwer Academic Publishers, (2002) 1-17.

[10] Alkan, A., and Ozcan, E. Memetic algorithms for timetabling, Proceedings of the

IEEE Congress on Evolutionary Computation. (2003) 1796-1802.

[11] Andre, D. and Astro, T. Evolving team Darwin united. In Asada, M. and Kitano,

H.(eds.). RoboCup-98: Robot Soccer World Cup II, Lecture Notes in Computer

Science, 1604 (1999) 346-352.

[12] Androulakis, I.P., Maranas, C.D. and Floudas, C.A. αBB: A global optimization

method for general constrained nonconvex problems. Journal of Global

Optimization 7 (4) (1995) 337-363.

[13] Annevelink, E. and Broekmeulen, R.A.C.M. The genetic algorithm applied to

space allocation planning in pot-plant nurseries. XII International Symposium on

Horticultural Economics Acta Horticulture (ISHS) 340 (1995) 141-148.

[14] Bai, R, An Investigation of Novel Approaches for the Optimizing Retail Shelf

Space Allocation. PhD Thesis, University of Nottingham, 2005.

[15] Bai, R. Burke, E.K. and Kendall, G. Heuristic, meta-heuristic and hyper-heuristic

approaches for fresh produce inventory control and shelf space allocation.

Journal of the Operational Research Society (2007), 1-11

[16] Bareither, H.D. and Schillinger, J.L. University Space Planning: Translating the

Educational Programme of a University into Physical Facility Requirements.

Technical Paper ED029467, University of Illinois, , Urbana, 1969.

[17] Beasley, J.E., Sonander, J. and Havelock, P. Scheduling aircraft landings at

London Heathrow using a population heuristic. Journal of the Operational

Research Society, 52(5) (2001) 483-493.

[18] Benjamin, C.O., Ehie, I.C. and Omurtag, Y. Planning facilities at the University

of Missouri-Rolla. Interfaces. 22 (4) (1992) 95-105

[19] Bergey, P.K. and Ragsdale, C. Modified differential evolution: a greedy random

strategy for genetic recombination. Omega 33, 3 (2005), 255 - 265.

[20] Bertsekas, D.P. Nonlinear Programming, 2nd Edition. Athena Scientific, 1999.

[21] Box G.E.P. Evolutionary operation: A method for increasing industrial

productivity. Applied Statistics. 6 (1957) 81-101.

[22] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University

 184

Press, 2004 .

[23] Brandimarte, P. Numerical Methods in Finance and Economics - A Matlab-

based Introduction. 2nd Edition, John Wiley & Sons. 2006.

[24] Buczak, L., Wang, H., Darabi, H. Jafari, M.A. Genetic algorithm convergence

study for sensor network optimization, Information Sciences 133(3) (2001) 267-

282.

[25] Burke E.K and Varley D.B. Automating space allocation in higher education.

Selected Paper from the 2nd Asia Pacific Conference on Simulated Evolution and

Learning SEAL 98, Lectures Notes in Artificial Intelligence, 1998, 1585:66‐73.

[26] Burke E.K, Kendall, G. and Soubeiga, E. A tabu search hyper-heuristics for

timetabling and rostering. Journal of Heuristics, 9 (6) (2003) 451-470.

[27] Burke, E.K. and Newall, J.P. A multi-stage evolutionary algorithm for the

timetable problem. IEEE Transactions on Evolutionary Computation, 13(1):63-

74, Apr 1999.

[28] Burke, E.K. and Varley, D.B. Space allocation: An analysis of higher education

requirements. In: Burke, E.K. and Carter, M.W. (eds.) Lecture Notes in

Computer Science, 1408 (1998), 20-33.

[29] Burke, E.K., Beyrouthy, C., Landa-Silva, J.D., McCollum, B. and McMullan, P.

SpaceMAP: Applying meta-heuristics to real world space allocation problems in

academic institutions. In: Proceedings of the 2004 International Conference on

the Practice and Theory of Automated Timetabling (PATAT), Pittsburgh USA,

(2004) 441–456.

[30] Burke, E.K., Cowling, P. and Landa-Silva, J.D. and Petrovic, S. Combining

hybrid metaheuristics and populations for the multiobjective optimization of

space allocation problems, Proceedings of the 2001 Genetic and Evolutionary

Computation Conference (GECCO) (2001) 1252-1259

[31] Burke, E.K., Cowling, P. and Landa-Silva, J.D. Hybrid population-based meta-

heuristics approaches for the space allocation problem. Proceedings of the

Congress on Evolutionary Computation. (2001) 232-239.

[32] Burke, E.K., Cowling, P., Landa-Silva, J.D., McCollum, B. Three methods to

automate the space allocation process in UK universities. Lecture Notes in

 185

Computer Science 2079 (2001) 254-273.

[33] Caserta, M. and Voß, S. Metaheuristics: intelligent problem solving. In:

Maniezzo, V., Stützle, T., Voß, S. (eds.). Matheuristics: Hybridizing

Metaheuristics and Mathematical Programming - Annals of Information

Systems. Springer. 2009 1-32.

[34] Chandrakaisan S.D. The optimum combination of local searches for genetic

operators in memetic algorithm for the space allocation problem. M.Sc. Thesis.

University of Malaysia, 2008.

[35] Charles, A. and Dennis, E.J. Analysis of generalized pattern searches. SIAM

Journal on Optimization 13 (3) (2003) 889–903.

[36] Cherkaev, A. Course note on methods of optimization. Online available at

http://www.math.utah.edu/~cherk/teach/opt/2009.html

[37] Chinneck, J.W. Practical Optimization: A Gentle Introduction. Online Reading

Material. Systems and Computer Engineering, Carleton University, Canada.

Available at http://www.sce.carleton.ca/faculty/chinneck/po.html.

[38] Cioppa, A.D., Stefano, C.D., Marcelli, A. On the role of population size and

niche radius in fitness sharing. IEEE Transactions on Evolutionary

Computation, 8 (6) (2004) 580-592.

[39] Coello, C.A.C., Twenty years of evolutionary multi-objective optimization: A

historical view of the field. IEEE Computational Intelligence Magazine. 1 (2006)

28-36.

[40] Coffman, E. G., Garey, M. R. and Johnson, D. S. Approximation algorithms for

bin packing: A survey. In: Hochbaum, D.S (ed), Approximation Algorithms for

NP-Hard Problems, PWS Publishing, 1997, pp. 46-93.

[41] Cowling, P., Kendall, G. and Soubeiga, E. A hyper-heuristic approach to

scheduling a sales summit. In: Burke, E.K. and W. Erben, E. (eds.) Lecture Notes

in Computer Science, Springer, (2001) 176-190.

[42] Dantzig, G.B. Linear Programming and Extensions. Princeton University Press,

Princeton, NJ. 1963

[43] Darwin. C. On the Origin of Species, 6th edition, John Murray, 1859.

[44] Dean, J.S. Staff scheduling by a genetic algorithm with a two-dimensional

 186

chromosome, In Burke, E.K. and Gendreau, M. (Eds.), Proceedings of the 7th

International Conference on the Practice and Theory of Automated Timetabling

– PATAT 2008, Montreal, Canada, 2008, 15 pgs

[45] Dennis, J. E. and Torczon, Virginia J. Derivative-free pattern search methods for

multidisciplinary design problems. Proceedings of the 5th AIAA/

USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, Florida. 1994.

[46] Donald, K.L. and Douglas, S.R. Combinatorial Algorithms: Generation,

Enumeration, and Search. CRC Press, Florida, 1999.

[47] Dowsland, K.A. Simulated annealing. In: Reeves, C.R. (ed). Modern Heuristic

Techniques for Combinatorial Problems. McGraw-Hill, 1995.

[48] Fogel, D.B., Fogel, G.B. and Ohkura, K. Multiple-vector self-adaptation in

evolutionary algorithms, BioSystems, 61(2-3) (2001) 155-162.

[49] Gabere, M.N. Simulated Annealing Driven Pattern Search Algorithms for Global

Optimization. M.Sc. Thesis, University of the Witwatersrand, 2005.

[50] Gabrani, G. Bhargava, P., Bhawana, Gill, G.S. Use of genetic algorithms for

Indian music mixing, ACM Ubiquity, 9 (10) (2008) 11-17.

[51] Gage, R.L. and Gates, R.L. Technical challenges in the implementation of a

space management system. Technical Report UC1170, NASA Research Center.

http://proceedings.esri.com/library/userconf/proc05/papers/pap1170.pdf

[52] Gagliardi, J-P, Ruiz, A. and Renaud, J. Space allocation and stock replenishment

synchronization in a distribution center. International Journal of Production

Economics, 115 (2008) 19– 27

[53] Gendreau M. An introduction to tabu search. In: Glover F. & Kochenberger G.A

(eds.). Handbook of Metaheuristics. Kluwer Academic Publisher, Boston, 2003

37-54.

[54] Ghaemi, S., Vakili, M.T., and Aghagolzadeh, A. Using a genetic algorithm

optimizer tool to solve university timetable scheduling problem. Proceedings of

the 9th International Symposium on Signal Processing and Its Applications

(ISSPA 2007) (2007) 1-4.

[55] Giannikos, I. El-Darzi, E. and Lees, P. An integer goal programming model to

 187

allocate offices to staff in an academic institution. Journal of the Operational

Research Society, 46 (6) (1995) 713-720.

[56] Glover F & Kochenberger G.A (eds.). Handbook of Metaheuristics. Kluwer

Academic Publisher, Boston, 2003.

[57] Glover F and Laguna M. Tabu Search. In: Reeves, C.R. (ed) .Modern Heuristic

Techniques for Combinatorial Problems. McGraw-Hill, 1995 70-150.

[58] Glover F and Laguna, M. Tabu Search. Kluwer Academic Publishers, 1997.

[59] Glover, F. (1986). “Future paths for integer programming and links to artificial

intelligence.” Computers & Operations Research 13, 533–549.

[60] Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[61] Gyõri,S., Petres, Z., Várkonyi-Kóczy, A. R. Genetic algorithms in timetabling.

A new approach, Technical paper, 2001. http://www.mft.hu/hallg/200107.pdf

[62] Hartl, R.F. A global convergence proof for a class of genetic algorithms.

Technical Paper, Univerity of Technology, Vienna, 1990

[63] Hill T., Lundgren A., Fredriksson R., Schiöth H.B. Genetic algorithm for large-

scale maximum parsimony phylogenetic analysis of proteins. Biochimica et

Biophysica Acta 1725 (2005) 19–29.

[64] Himmelblau, D.M. Applied Nonlinear Programming, McGraw-Hill, 1972.

[65] Hoadley, J. A., and Anderson, J. I. Space Projection Model for Academic

Departments, Technical Paper, R.M.I.T, Melbourne, 1973.

[66] Holland, J. H. Adaptation in Natural and Artificial Systems. Cambridge, MA:

MIT Press, 1992.

[67] Holland, J.H. Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, 1975.

[68] Hooke, R. and Jeeves, T.A. Direct search solution of numerical and statistical

problems, Journal of the Association for Computing Machinery, 8(2) (1961)

212- 229.

[69] Ittmann, H.W (ed.) International Federations of the Operational Research

Societies (IFORS) Newsletter 2(1) (2008) pg. 13.

[70] Kaelo P. Some Population Set-based Methods for Unconstrained Global

 188

Optimization. Ph.D Thesis, University of the Witwatersrand, 2005.

[71] Kaelo, P. and Ali, M. M. Probabilistic adaptations of point generation schemes in

some global optimization algorithms. Optimization Methods and Software. 21(3)

(2006) 343-357

[72] Kall, P. and Wallace, S.W., Stochastic Programming. John Wiley & Sons,

Chichester, 1994

[73] Kirkpatrick, S., Gellat, C. and Vecchi, M. Optimization by simulated annealing.

Science, 220 (1983) 671–680

[74] Kolda, T.G., Lewis, R.M. and Torczon, V. Optimization by direct search: New

perspective on classical and modern methods. SIAM Review, 45(3) (2003), 385–

482.

[75] Lalescu L. and Badica C. Timetabling experiments using genetic algorithms. In

Proceedings of the International 12th Turkish Symposium on Artificial

Intelligence and Neural Networks (TAINN-2003), Canakkale, Turkey, 2003.

[76] Landa-Silva, J.D. and Burke, E.K. Asynchronous cooperative local search for the

office space allocation problem. INFORMS Journal on Computing, 19(4) (2007)

575-587.

[77] Landa-Silva, J.D. Metaheuristics and Multiobjective Approaches for Space

Allocation. PhD Thesis. University of Nottingham, 2003.

[78] Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G. and Shmoys, D.B. (eds.). The

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization.

John Wiley and Sons, 1985.

[79] Lee, J. A First Course in Combinatorial Optimization, Cambridge University

Press; 2004

[80] Levy, A.B. The Basics of Practical Optimization. SIAM, Philadelphia, PA, 2009.

[81] Louis, S.J. and Rawlins, G.J.E. Predicting convergence time for genetic

algorithms. Technical Report 370, Computer Science Department, Indiana

University 1993.

[82] M&G. Varsities run out of housing. Mail & Guardians (South African)

Newspaper article on higher learning, September 23, 2009 pg 31.

[83] Marczyk, A. Genetic algorithms and evolutionary computation. The TalkOrigin

 189

Archive. Available at http://www.talkorigins.org/faqs/genalg/genalg.html

[84] Martello, S. and Toth, P. Knapsack Problems - Algorithms and Computer

Implementations. Wiley, 1990.

[85] Michalewicz, Z. and Fogel, D.B. How to Solve It: Modern Heuristics. 2nd,

Revised and Extended Edition, Springer, 2004.

[86] Mitchell, M. An Introduction to Genetic Algorithms. The MIT Press, 1998.

[87] Mitchell, M. Genetic algorithms: An overview. Complexity, 1 (1) 1995) 31-39.

[88] Musgrove, J. Space utilization in universities and polytechnics. University

building notes, Design notes No. 12, Department of Education and Science and

Great Britain University Grants Committee, 1972.

[89] Naso, D., Surico, M., Turchiano, B. and Kaymak, U. Genetic algorithms for

supply-chain scheduling: A case study in the distribution of ready-mixed

concrete, European Journal of Operational Research 177 (2007) 2069–2099.

[90] Osman, I.H. and Kelly, J.P. (eds.). Meta-Heuristics: Theory and Applications.

Kluwer Academic Publishers, Boston, 1996.

[91] Ozcan, E. and Alkan, A. Timetabling using a steady state genetic algorithm,

Proceedings of the 4th International Conference on the Practice and Theory of

Automated Timetabling (PATAT 2002), (2002) 104-107.

[92] Polya, G. How to solve it. Princeton University Press, Princeton, 1945.

[93] Powell M,J. Direct search algorithms for optimization calculations. Acta

Numerica, 1998, 7: 287-336.

[94] Price K. An introduction to differential evolution. In: Corne, D., Dorigo, M. and

Glover, F. (eds.) New ideas in optimization, McGraw-Hill, Cambridge, 1999,

79.108.

[95] Radda, S.I. Unethical practices in the Nigeria’s University system: Pattern,

causes and solutions. Business Ethics Network of Africa (BEN-Africa)

Conference Proceedings Ghana, 2009.

[96] Resende, M.G.C. and de Sousa, J.P., (eds.) Metaheuristics: Computer Decision-

Making. Kluwer Academic Publishers, 2003.

[97] Ritzman, L., Bradford, J., and Jacobs, R. A multiple objective approach to space

planning for academic facilities. Management Science 25 (9) (1979) 895-906.

 190

[98] Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE

Transactions on Neural Networks, 5(1) 91994) 96-101.

[99] Rudolph, G. Self-adaptive mutations may lead to premature convergence. IEEE

Transactions on Evolutionary Computation, 5(4) (2001) 410-414.

[100] Sahinidis, N.V. BARON: A general purpose global optimization software

package. Journal of Global Optimization 8 (2) (1996) 201-205

[101] Salikon, M.Z.B.M. Examination timetabling using genetic algorithms – Case

study: Kuittho. M.Sc. Thesis. Universiti Utara Malaysia, 2005.

[102] Shabha, G. An assessment of the effectiveness of e-learning on university space

planning and design. Facilities. 22 (3-4) (2004) 78-86.

[103] Shabha, G. Virtual universities in the third millennium: an assessment of the

implications of teleworking on university buildings and space planning.

Facilities. 18 (5-6) (2000) 235 -244.

[104] Sharapov, R.R and Lapshin, A.V. Convergence of genetic algorithms. Pattern

Recognition and Image Analysis, 16 (3) (2006) 392–397.

[105] Sharma, R. D. Academic staff and space allocation models for Australian CAEs,

R.M.I.T., 1982.

[106] Sharma, R.D. and Kumar, S. Space allocation to academic departments in a high

rise building of an Australian educational institution. Research in Higher

Education, 23(1) (1985) 86-95

[107] Sivanandam, S. N., and Deepa, S. N. Introduction to Genetic Algorithms,

Springer, 2007.

[108] Spencer, H. The Principles of Biology. Reproduced by the University Press of

the Pacific, 2002.

[109] To C.C. and Vohradsky J. A parallel genetic algorithm for single class pattern

classification and its application for gene expression profiling in Streptomyces

coelicolor. BMC Genomics 8 (2007) 49

[110] Torczon V, Trosset M. W. From evolutionary operation to parallel direct search:

Pattern search algorithms for numerical optimization. Computational Science

and Statistics, 1998, 29: 396-401.

[111] Torczon, V. Multi-Directional Search. A Direct Search Algorithm for Parallel

 191

Machines, Ph.D. Thesis, Rice University, Houston, 1989.

[112] Torczon, V. On the convergence of pattern search algorithms. SIAM Journal on

Optimization, 12(4) (1997) 1075–1089.

[113] Vanderplaats, G. Numerical Optimization Techniques for Engineering Design:

With Applications. McGraw-Hill, Inc, 1984.

[114] Varaiya, P. Lecture Notes on Optimization. Re-issue of Notes on Optimization,

Van Nostrand-Reinhold, 1972.

[115] Vesterstrøm J.S and Riget J. Particle swarms: Extensions for improved local,

multi-modal, and dynamic search in numerical optimization. M.Sc. Thesis

submitted to the Department of Computer Science, University of Aarhus, 2002.

[116] Wai-Ho, A., Chan, K. and Yao, X. A novel evolutionary data mining algorithm

with applications to churn prediction. IEEE Transactions on Evolutionary

Computation, 7(6) (2003) 532-545.

[117] Weise T. Global Optimization Algorithms - Theory and Application. Self-

published electronic book, 2006–2009, http://www.it-weise.de/projects/book.pdf

[118] Weise, T., Zapf, M., Chiong, R. and Nebro, A.J. Why is optimization difficult?

In R. Chiong (ed.), Nature Inspired Algorithms for Optimization, Studies in

Computational Intelligence Series, Springer, 193 (2009), pp. 1-50.

[119] Westerlund T. and Pettersson F. An extended cutting plane method for solving

convex MINLP problems. Computer & Chemical Engineering. 19 (1) (1995)

131-136

[120] Wetter, M. and Polak, E. A convergent optimization method using pattern search

algorithms with adaptive precision simulation. Eighth International IBPSA

Conference (2003) 1398 – 1400.

[121] Wikipedia. Optimization (mathematics). Available at

http://en.wikipedia.org/wiki/Optimization_mathematics

[122] Wren, A. Scheduling, Timetabling and rostering: A special relationship? In:

Burke, E.K., and Ross, P. (eds.) Lecture Notes in Computer Science, Springer,

1153, (1996) 46-75.

[123] Wu, X., Sharif, B.S., Hinton, O.R. An improved resource allocation scheme for

plane cover multiple access using genetic algorithm. IEEE Transactions on

 192

Evolutionary Computation. 9 (1) (2005) 74–80.

[124] Yang X.S. Introduction to Mathematical Optimization: From Linear

Programming to Metaheuristics, Cambridge Int. Science Publishing, 2008.

[125] Yang, M.-H An efficient algorithm to allocate shelf space. European Journal of

Operations Research, 131 (2001) 107-118.

[126] Yin, P., Yu, S., Wang, P., Wang, Y. Task allocation for maximizing reliability of

a distributed system using hybrid particle swarm optimization. Journal of

Systems and Software, 80(5) (2007), 724-735.

[127] Zegordi, S. H., Abadi, I. N.K. and Beheshti Nia, M. A. A novel genetic

algorithm for solving production and transportation scheduling in a two-stage

supply chain Export. Computers & Industrial Engineering. In press, 2009.

 193

Appendix A

Remi Adewumi <laremtj@gmail.com>

Optimization Methods and Software - Decision on Manuscript

ID GOMS-2009-0069.R1
1 message

olbur@mai.liu.se <olbur@mai.liu.se> Wed, May 5, 2010 at 5:45 PM

To: laremtj@gmail.com

05-May-2010

Dear Dr Adewumi:

Ref: A Comparative Study of Some Real Coded Genetic Algorithms for Unconstrained Global Optimization

This is just to let you know that the final version of your paper will be forwarded to the production department for

 publication in Optimization Methods and Software.

You will receive proofs for checking, and instructions for transfer of copyright in due course.

The publisher also requests that proofs are checked and returned within 48 hours of receipt.

Thank you for your contribution to Optimization Methods and Software and we look forward to receiving further

submissions from you.

Sincerely,

Oleg Burdakov

Editor-in-Chief, Optimization Methods and Software

This journal is participating in the PEER project (http://www.peerproject.eu/), which aims to monitor the effects of

systematic self-archiving (author deposit in repositories) over time. PEER is supported

bytheECeContentplusprogramme (http://ec.europa.eu/information_society/activities/econtentplus/index_en.htm).

As your manuscript has been accepted for publication by Optimization Methods and Software, you may be eligible to

participate in the PEER project. If you are based in the European Union, you are hereby invited to deposit your

accepted manuscript in one of the partici¬pating PEER repositories. You may also choose to deposit in a

non-PEER, institutional or subject repository in addition to, or as an alternative to deposit in a PEER designated

repository. If depositing your accepted manuscript in a non-PEER repository, please set an embargo period of 12

months from the date of publication of the journal article for the public release of your accepted manuscript. For

further information on PEER deposit, non-PEER deposit and embargo periods please visit the PEER Helpdesk:

http://peer.mpdl.mpg.de/helpdesk.

Gmail - Optimization Methods and Software - Decision on Manuscript I... https://mail.google.com/mail/?ui=2&ik=889d066942&view=pt&q=goms...

1 of 1 6/21/2006 12:20 PM

Journal Submission System - Paper Converted

1 of 1 2/1/2010 5:16 PM

Subject: Journal Submission System - Paper Converted
From: <parry@orsoc.org.uk>
Date: Fri, 23 Oct 2009 10:45:03 +0100
To: <laremtj@gmail.com>

Thank you for submitting your paper to the Journal of The OR Society (JORS). Your document
has been successfully converted by the system and will shortly be assigned to an editor.
The details of your paper are listed below for confirmation purposes. These details
include a paper identification code, which you may use at any time to check the progress
of your paper by simply accessing the URL -

http://www.orsoc.org.uk/jorssubmission/submission/papertrack.asp

- and entering your identification code into the field provided.

The editor will now review your paper to assess its appropriateness for publication in
JORS, after which, if appropriate, the paper will be sent to referees for peer review.
Once the editor has considered the referees' reports and arrived at a decision, I will be
in touch once again.

To enable me to keep in contact with you during the publication process, please notify me
of any changes in your contact details.

Kind regards
Sarah Parry
Editorial Administrator.

parry@orsoc.org.uk

Submitted Paper Details

Paper Title: A Hierarchical Heuristic Strategy for Hostel Space Allocation Problem (Paper
ID - 11311)
Paper Author(s): Aderemi Adewumi and Montaz Ali
Paper Tracking Code: ORJSSHCBHTR

Office Use Only: JSSFEDCC9709

This message has been scanned for malware by SurfControl plc. www.surfcontrol.com

	Final Thesis Report Corrected - Title - Chp 3NEW
	Chapter four New Latest
	Chapter Five New
	Chapter Six
	Chapter Seven
	Chapter 8 - contribution
	Complete References finalNEW
	Appendix A title
	GOMS
	Journal Submission System - Paper Converted

