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Abstract 

 

RNA interference (RNAi) is a highly conserved gene regulatory mechanism triggered by the 

presence of double-stranded RNAs and results in post-transcriptional and transcriptional 

gene silencing. RNAi has been demonstrated to have therapeutic potential to treat chronic 

viral infections including HIV-1. Due to the side effects of and eventual drug resistance to 

highly active antiretroviral therapy, a novel anti-HIV-1 therapy is required. The most suitable 

exogenous RNAi triggers to use in anti-HIV-1 RNAi-based therapy are expressed short 

hairpin RNAs (shRNAs). Despite being highly developed, shRNA systems still pose safety 

concerns. Highly expressed shRNAs are at risk of over-saturating the endogenous RNAi 

pathway, inducing an innate immune response or silencing off-target mRNA. The purpose of 

this study was to minimise shRNA-associated off-target effects and simultaneously maximise 

the potency and specificity of expressed shRNAs for potential therapeutic application. 

ShRNAs shorter than 19 base pairs are not recognised by the endonuclease Dicer, which is 

an important component of the RNAi pathway, but miR-451 is Dicer-independent. Smaller 

shRNAs that retain their potency would be easier to deliver into a disease model. For this 

study, 25mers and miR-451-mimicking 19mers were generated.  The shRNA pairs exhibited 

significant knockdown of their respective targets in dual-luciferase assays. The 19mers are 

more specific gene silencers compared to the 25mers. A 19mer that is more potent than its 

25mer counterpart was identified. None of the hairpins induced an innate immune response, 

caused cytotoxic effects or saturated the endogenous RNAi pathway. This study concludes 

that the 19mers were processed in a manner similar to miR-451 resulting in a single ~30 nt 

mature RNA product. We dubbed these miR-451-mimicking 19mers, guide shRNAs. The 

single RNA strand of mature guide shRNAs abolishes the risk sense strand-associated off-

targeting thus improving shRNA specificity. These revolutionary guide shRNAs can be 

developed into highly potent activators of the RNAi pathway in a therapeutic setting. 
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Chapter 1: Introduction 

 

1.1 RNA interference 

RNA interference (RNAi) is an evolutionarily conserved mechanism that is triggered by double-

stranded RNA (dsRNA) resulting in the transcriptional and post-transcriptional regulation of gene 

expression (Fire et al, 1998; Bernstein et al, 2001b). RNAi interferes with protein synthesis by 

blocking the conversion of messenger RNA (mRNA) into protein (Heo and Kim, 2007). Interest and 

research into the process of RNAi has increased at a rapid rate since its discovery in C. elegans 

resulting in numerous topics including gene function analysis, exploring clinical testing and 

therapeutic applications (Fire et al, 1998; Grimm and Kay, 2007).  

1.1.1 Transcriptional gene silencing 

Epigenetics refers to the study of altered and heritable gene expression in a genome caused by 

external influences that do not affect DNA sequence (Wolffe & Matzke, 1999). Transcriptional gene 

silencing (TGS) otherwise known as RNA-induced transcriptional silencing (RITS), like post-

transcriptional RNAi, is a signalling pathway highly-conserved in mammals but the process occurs 

prior to transcription (Morris et al, 2004). DNA coils around histone proteins and together (known as 

the nucleosome), the two aggregate into chromatin which forms into chromosomes (Kornberg and 

Klug, 1981). The way that histone proteins interact with DNA affects how small RNAs can access 

eukaryotic genetic material (Allfrey et al, 1964).  

Small RNAs, such as small interfering RNAs (see Section 1.1.3), cause TGS by interacting with and 

remodelling chromatin (Noma et al, 2004). This interaction causes epigenetic changes via histone 

modifications including the addition of a methyl group (methylation) (Rea et al, 2000). The altered 

histone proteins act by binding to a genomic region that will force the modified chromatin to be 

formed (now known as heterochromatin) (Noma et al, 2004). The complex that facilitates small 
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RNA-histone binding is known as the RITS complex (Verdel et al, 2004). The RITS complex plays a 

key role in heterochromatin silencing (Noma et al, 2004). 

1.1.2 The canonical RNAi pathway 

There are numerous natural endogenous small non-coding dsRNAs that exist in the RNAi pathway 

including microRNAs (miRNAs) (Cai et al, 2004). Primary miRNAs (pri-miRNAs) are transcribed 

from the exons, introns and intergenic regions of genomic DNA (Figure 1.1) (Kim and Nam, 2009). 

Pri-miRNAs are long polyadenylated RNA polymerase II (RNA Pol II) transcripts that have stem-

loop structures containing mismatched nucleotides and bulges (Lagos-Quintana et al, 2001; Zeng 

and Cullen, 2005). After being processed by the RNase III enzyme, Drosha, and its double-stranded 

RNA binding domain (dsRBD)-containing chaperone protein DGCR8 (DiGeorge critical region 8) 

/Pasha, the hairpins are cut down to precursor miRNAs (pre-miRNAs) and are 70-80 nucleotides 

(nt) in length (Lee et al, 2003). These pre-miRNAs have a 5’ monophosphate (5’P) and a 2-

nucleotide (dinucleotide) overhang with a 3’ hydroxyl (3’OH) end (Lee et al, 2003). RNA Pol III 

generates transcripts with distinct 5’ and 3’ ends this trait allows for proficient nuclear export, 

therefore short hairpins RNAs (shRNAs) that mimic pre-miRNAs circumvent Drosha processing 

(Figure 1.2 b) all together (Paddison et al, 2002; Yi et al, 2003). Exportin-5, when in the presence of 

Ran-GTP, recognises the Drosha-characteristic dinucleotide 3’ overhang of pre-miRNAs (and most 

shRNAs), binds to and transports the hairpins into the cytoplasm (Bohnsack et al, 2004; Castanotto 

et al, 2007). After nuclear expulsion, the RNase III endonuclease Dicer and its companions, protein 

activator of PKR (PACT) and the dsRBD protein, TAR RNA binding protein (TRBP), cleave the pre-

miRNAs and shRNAs (Lee et al., 2013). The resultant double-stranded short inhibitory RNA (siRNA) 

duplex has 2-nucleotide overhangs at the 3’ ends characteristic of Dicer-processing (Hammond et 

al., 2001).  The Dicer-processed duplex binds to the ribonucleoprotein complex (RNP) known as the 

RNAi-induced silencing complex (RISC) (Meister and Tuschl, 2004). 

 



Chapter 1 

3 | P a g e  
 

Argonaute 2 is the catalytic centre of RISC. The Ago2 component of RISC cleaves and degrades 

the sense (passenger) strand and uses the antisense (guide) strand of the dsRNA to identify and 

target homologous mRNA (Martinez et al, 2002). Guide strand selection hinges on factors that 

include thermodynamic stability (Schwarz et al, 2003; Khvorova et al, 2003). The stability of the final 

base pair at the 5’ end of either siRNA strand is a major determinant in selection- the lower the free 

energy; the more stable the strand is (Khvorova et al., 2003). The introduction of mismatched base 

pairs in the same position can induce thermodynamic instability and thus improve a strand’s guide 

strand eligibility (Sano et al., 2008).  

 

RISC (bound to the guide strand) is activated when it interacts with additional components including 

the protein Ago2. The activated RISC induces gene silencing either by targeting messenger RNA 

(mRNA) for cleavage (in the event of high sequence homology between the dsRNA and mRNA) or 

translational inhibition (due to partial homology between the miRNA and mRNA) (Doench and 

Sharp, 2004; Chu and Rana, 2006). Normally, RISC binds the 5’-end of the mature miRNA or 

shRNA duplex within a 2-7 nucleotide “seed region” to the 3’ untranslated region (3’UTR) of the 

target mRNA (Lewis et al., 2003). Gene silencing is achieved either by perfect Watson-Crick pairing 

between RISC and the guide strand leading to target mRNA cleavage, or by translational repression 

due to imperfect complementarity (Figure 1.1) (Han et al., 2006).  
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Figure 1.1: Endogenous miRNA biogenesis. 

A long polyadenylated stem-loop structure (pri-miRNA) is transcribed in the nucleus.  The 

ribonuclease Drosha and its partner protein DGCR8 cleave the ends of the pri-miRNA, resulting in 

pre-miRNA. Pre-miRNA is transported to the nucleus by Exportin-5. Pre-miRNA is processed by 

Dicer, yielding mature miRNA. The guide strand (blue) is incorporated into RISC and the passenger 

strand (red) is discarded. The miRNA/RISC complex is partially complementary to corresponding 

target mRNA therefore translational repression occurs. 

 

 

 

  



Chapter 1 

5 | P a g e  
 

1.1.3 RNAi effectors 

An RNAi effector is a small RNA mimic that exploits the endogenous miRNA biogenesis pathway for 

post-transcriptional gene silencing. Hairpin transcription is controlled by either an RNA polymerase 

II (RNA Pol II) or RNA polymerase III (RNA Pol III) promoter. An RNA Pol II promoter, in nature, 

usually transcribes miRNA-containing precursors but some miRNAs are expressed under the 

control of an RNA Pol III promoter (Lee et al., 2004; Zeng & Cullen, 2005). RNA Pol III transcripts 

are normally ubiquitously expressed at a more potent degree in comparison to RNA Pol II-driven 

expression (Dickins et al., 2007). The turnover of transcripts derived from RNA Pol II promoters is 

generally controlled by the additional step (compared to RNA Pol III transcripts) of Drosha-

processing thus resulting in comparably lower levels of transcripts (McBride et al., 2008; Boudreau 

et al., 2009). Exogenous RNAi effectors can be introduced into the endogenous pathway to trigger 

sequence-specific targeting for gene function studies and research for development of novel 

therapies. RNAi effectors are designed to mimic miRNA at various stages of processing. 

 

1.1.3.1 miRNA constructs 

In mammalian RNAi, the most characterised endogenous small RNAs that guide sequence-specific 

gene silencing are the miRNAs (Bartel, 2004; He et al, 2005). ShRNAs or siRNAs can be 

incorporated into an endogenous miRNA construct to mimic a natural primary miRNA transcript 

therefore allowing for stable and controlled RNA Pol II-transcribed expression (Figure 1.2 a) (Boden 

et al, 2004; Silva et al, 2005; Stegmeier et al, 2005). These shRNA/siRNA-based miRNA constructs 

offer a safer alternative to RNA Pol III-transcribed shRNAs. The constituitive expression of RNA Pol 

III-driven shRNAs can be controlled with a change in promoter. Embedding potent shRNAs into a 

miRNA construct has been shown to reduce RNA Pol III shRNA-associated toxicities (Castanotto et 

al, 2007; McBride et al, 2008). The tissue-specific and temporal expression of shRNA/siRNA-based 

miRNA expression is promising but it has been speculated that because these constructs require 

Drosha-DGCR8-processing, which traditional shRNAs do not need, the extra processing step may 

introduce a new potential step for small RNAs to compete over (Giering et al, 2008). 
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1.1.3.2 siRNAs 

Synthetic RNAi effectors that mimic a Dicer-processed miRNA duplex are known as siRNAs. These 

RNA duplexes with full complementarity mimic Dicer products and are therefore incorporated into 

RISC (Figure 1.2 c) (Schwarz et al, 2002). siRNAs can be introduced into the cytoplasm of cultured 

cells via transfection but siRNAs transfect poorly into many cell types (Elbashir et al, 2001a). These 

RNAi effectors can be potent but the suppressive effects are not long-lasting in vitro (Fellman et al, 

2011).  

 

Figure 1.2: RNAi effectors interacting with the endogenous miRNA pathway. 

RNAi effectors are introduced into the RNAi pathway in one of three forms: a. a pri-mRNA mimic 

that will be processed by all of endogenous RNAi machinery, b. a pre-miRNA otherwise known as a 

shRNA. Expressed shRNAs are generally transcribed by a Pol III promoter and c. Synthetic siRNAs 

that are transfected into the cell. 

 



Chapter 1 

7 | P a g e  
 

1.1.3.3 shRNAs 

Alternatively to miRNAs and siRNAs, short hairpin RNAs (shRNAs) can be used to induce post-

transcriptional gene silencing (Paddison et al, 2002). Using shRNAs rather than siRNAs in RNAi 

studies is cheaper, grants easier delivery and the silencing effects last longer (McIntyre and 

Fanning, 2006). These stem-loop structures that resemble Drosha-processed pre-miRNAs can 

induce stable and continuous gene expression knockdown from one cell division to the next 

(Brummelkamp et al, 2002; Paddison et al, 2002). shRNAs are transcribed in the nucleus and 

processed into an siRNA duplex by the host RNAi machinery (Figure 1.2 b).  

 

The majority of expressed shRNA systems use a RNA Pol III promoter because these promoters 

yield transcripts with defined ends (Figure 1.2 b) (Brummelkamp et al, 2002; Paddison et al, 2002; 

Stegmeier et al, 2005). Due to the constituitive active nature of these promoters in all cell types, cell 

toxicity becomes a problem (Stegmeier et al, 2005; Grimm et al, 2010). The selection of a weak 

RNA Pol III promoter (e.g. H1), or a grouped set of polycistronic shRNAs (shRNAs expressed in 

tandem) transcribed by a single promoter, or combinatorial therapy including non-RNAi therapies 

are all viable options (Li et al, 2005; Zhang and Rossi, 2010).  
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1.2 Alternative approaches to express shRNAs 

Multiple tools have been devised to mimic endogenous RNAi effectors and manipulate the RNAi 

signalling pathway. The traditional shRNA RNAi effector mimics pre-miRNA after Drosha 

processing.  The use of vector-based shRNAs has its disadvantages. These limitations have forced 

researchers to develop different shRNA designs in order to overcome the hurdles of using 

expressed shRNAs. 

 

1.2.1 tRNA-shRNA 

The issue of over-expression of shRNAs has been linked to promoter selection. RNA Pol III 

promoters (e.g. U6 and H1) are constitutively active which can lead to the ectopic RNA out-

competing endogenous RNAi machinery. The U6 and H1 promoters are classified as type III. An 

alternative to highly expressed and potentially cytotoxic H1 or U6-driven shRNAs are the tRNA-

shRNAs. The tRNA promoter is a type II Pol III promoter which is structurally more complicated than 

U6 and H1 with its distinct cloverleaf secondary structure (Sibley, 2010; Boden et al, 2003a). This 

promoter allows the shRNA to circumvent Exportin-5 transport, relying on the Exportin-t instead 

(Sibley et al, 2010). The use of an alternate nuclear export route contributes to a reduction in 

Exportin-5-linked saturation and cytotoxicity. 

 

1.2.2 Trans-kingdom RNAs 

Trans-kingdom (tk) RNAs utilise an elaborate method to avoid Exportin-5 toxicities. Xiang et al 

(2006) engineered Escherichia coli that could be delivered into mammalian cell systems and 

transcribe shRNAs using T7, a promoter derived from bacteriophage T7. The shRNAs bypass the 

mammalian endogenous miRNA pathway but remain active RNAi triggers in the host mammalian 

cells thus preventing potential saturation (Xiang et al, 2006). One concern associated with this 

system is that T7-transcribed siRNAs have been reported to induce a strong interferon response 
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(due to the presence a 5’ triphosphate), which is a major safety concern in gene therapy (Kim and 

Rossi, 2004). 

 

 

1.3 Limitations of RNAi-based therapy 

As promising as the RNAi technology is, the field has hurdles to overcome before fully realising its 

therapeutic potential. The delivery problems associated with gene therapy also apply to RNAi; 

safety is another issue. RNAi effectors can have cytotoxic effects either due to overwhelming the 

endogenous RNAi pathway, stimulating an innate immune response or inadvertently silencing 

unintended targets due to sequence similarity (Aagaard and Rossi, 2007).  

 

RNAi effectors generally use the same RNAi machinery as endogenous miRNAs, therefore some 

pathway components are at risk of oversaturation if a high dose of RNAi triggers is used (Grimm et 

al, 2006; Aagaard and Rossi, 2007). ShRNAs with dinucleotide 3’ overhangs mimicking Drosha-

processing, like endogenous miRNAs, rely on Exportin-5-mediated nuclear export (Yi et al, 2005). 

This observation suggests that strong and constitutive shRNA-guided target mRNA knockdown can 

potentially saturate the endogenous microRNA biogenesis pathway leading to cell toxicity (Grimm et 

al, 2010 and Castanotto et al, 2007). The nuclear exporter Exportin-5 may be at risk of 

oversaturation as it transports both endogenous pre-miRNAs and most exogenous RNAi effectors 

(with the exception of tRNAs which rely on Exportin-t and RanGTP for nuclear export) from the 

nucleus to the cytoplasm (Grimm et al, 2006; Kutay et al, 1998). At high dosages, exogenous RNAi 

effectors can potentially out-compete endogenous miRNAs for Exportin-5-mediated nuclear export 

and negatively affect cell function. Endogenous miRNAs serve functions that range from tumour 

suppression to mammalian development (Chan et al, 2005; Papapetrou et al, 2010). Recent 

literature has identified active Ago2 in the nucleus which introduces a new aspect to consider in 

limiting exogenous RNAi trigger-induced saturation of the endogenous miRNA biogenesis. Ago2 is 
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a major component of the RNAi pathway suggesting that Ago2, rather than Exportin-5, is at the 

most risk of oversaturation (Börner et al, 2013). 

 

Target specificity is important with RNAi effector design. To minimise unwanted targeting, the target 

mRNA sequence should not be similar to non-target mRNAs. This is a difficult task because a mere 

6-7 nucleotide target match to the siRNA “seed region” can cause unwanted translation inhibition 

(Lin et al, 2005; Jackson et al, 2006b; Ui-Tei et al, 2008a). RNAi effector thus will have unwanted 

targeting. Off-targeting may affect genes that are essential for normal cell function hence shRNAs 

have potentially lethal cytotoxic effects due to off-target gene regulation (Jackson et al, 2003; 

Grimm et al, 2006). Off-targeting remains a major concern for RNAi-based therapeutic applications 

(Aagaard and Rossi, 2007). Identifying highly effective RNAi effectors that function at low doses 

would abate any off-targeting concerns (Liu et al, 2013). 

 

The degree at which double-stranded RNA can induce an immune response is influenced by duplex 

length and cell type (Reynolds et al, 2006). RNA duplexes longer than 30 nt can rapidly induce 

cytotoxic effects in mammalian cells by activating the innate immune system via Toll-like receptors 

(TLRs), protein kinase (PKR) that is activated by double-stranded RNA and retinoic acid inducible 

gene I (RIG-I) and activating interferon-stimulated genes including 2’,5’-oligoadenylate synthases 

(2-5-OAS); all of which are conserved mechanisms to protect a host against pathogen invasion 

(Reynolds et al, 2006; Garcia-Sastre and Biron, 2006; Aagaard and Rossi, 2007). RNAi effectors 

are generally designed to yield siRNAs with a <30 nt duplex to minimise the chance of 

immunostimulation. 
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1.4 shRNAs and RNAi efficacy 

Since the discovery and manipulation of this highly conserved pathway, methods have been 

developed to enhance the potency of RNAi triggers. Successful application of RNAi as a therapeutic 

requires the use of potent RNAi triggers at low concentrations, specificity to reduce off-targeting and 

minimal immunostimulation (Uprichard et al, 2005; Castanotto, 2011). The design of expressed 

shRNAs has varied throughout the years.  

 

1.4.1 Features of functional siRNAs  

A set of rules have been established to ensure the design of an effective siRNA and these same 

rules have been applied to shRNA design (Amarzguioui et al, 2005; Ding et al, 2008). Algorithms 

have been developed to identify highly functional siRNA favouring the following features: (i) duplex 

asymmetry to ensure guide strand incorporation into RISC, (ii) low GC content (32-50%), (iii) have a 

minimum of 3 A/U pairings at positions 15-19, (iv) accessibility of the target mRNA (v) a U at 

position 10, (vi) no internal repeats with a melting temperature (Tm) less than 20°C and (vii) A or U 

at position 19 (Holen et al, 2002; Reynolds et al, 2004; Heale et al, 2005). These guidelines are 

helpful but are not discriminative enough to filter out false positives (non-functional siRNAs) (Yiu et 

al, 2005). Additionally, it has been suggested that not all functional siRNA design rules apply to 

shRNAs but most rules do (Matveeva et al, 2007; Zhou and Zeng, 2009). Additional sequence 

factors that have been shown to positively influence shRNA efficacy are: A/U at positions 2, 10, 13 

and 14, a guide strand with a U-rich 5’ end, the target sequence adjacent to where the guide strand 

binds must be taken into account (e.g. ~8 nt of the sequence flanking the binding site must be A-

rich) (Tan et al, 2012). Functional shRNAs have been shown to be most potent if both terminal ends 

have a high free energy state (Zhou and Zeng, 2009). ShRNAs with a Dicer cleavage site 

positioned 2 nt from the loop exhibit greater potency and reduced off-targeting (Gu et al, 2012). Gu 

et al developed this “loop-counting rule” to improve Dicer-cleavage accuracy. Potent shRNAs are 

rare and are difficult to predict using algorithms which leads to either large-scale empirical testing or 

more creative shRNA designs to ensure efficacy (Fellman et al, 2011). Li et al (2007) were able to 
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create an accurate computer algorithm to screen for functional shRNAs, the small data set reduces 

its validity and studies have identified highly functional shRNAs that weren’t predicted by algorithms 

(Fellman et al, 2011). 

 

1.4.2 Strand orientation and shRNA efficacy 

Other factors must be considered for efficient shRNA design. There is a correlation between RNAi 

activity and shRNA structure (Zhou and Zeng, 2009; Ge et al, 2010). Early RNAi studies identified 

5’-arm guide strand shRNAs more potent than their 3’-arm guide strand (typical shRNA design) 

counterparts (McManus et al, 2002; Harborth et al, 2003). This class of shRNA can be potent at a 

very low picomolar range which is ideal for therapeutic applications (Ge et al, 2010). Despite these 

observations, the standardised shRNA design used in most studies has a 3’-arm guide strand (Ilves 

et al, 2006; Vlassov et al, 2007; Wang et al, 2013).  

 

1.4.3 Strand bias 

Ensuring that only the guide strand of a shRNA is incorporated into RISC is an important design 

feature for maximising shRNA silencing efficacy and specificity (Ding et al, 2008). The stability of the 

5’-arm terminal base pair of a functional duplex determines strand bias (Khvorova et al, 2003; 

Schwarz et al, 2003). RNAi studies observed that the less thermodynamically stable strand is 

incorporated into RISC; the same strand bias exists in mammalian RNAi (Schwarz et al, 2003). A 

nucleotide residue mismatch within the 5’-arm terminal base pair introduces thermodynamic 

asymmetry in a RNA duplex resulting in the strand with a 5’ end that is less tightly bound to be 

loaded into RISC (Schwarz et al, 2003). shRNAs are designed to include siRNA functional 

asymmetry for biased guide strand selection (Schwarz et al, 2003; Ding et al, 2008). shRNA 

potency is affected by the accuracy of strand bias (Fellman et al, 2011), which highlights the 

importance of guide strand bias. Evidently there are many ways to positively affect the potency of 
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functional shRNAs. It would be preferable to simplify shRNA design without compromising RNAi 

efficacy. 

 

1.5 The distinct biogenesis of miR-451 

Separate research groups simultaneously discovered an endogenous miRNA that defies the 

generally accepted hypothesis that Dicer is the unifying enzyme in the RNAi pathway (Siolas et al, 

2005; Cheloufi et al, 2010; Cifuentes et al, 2010). The microRNA in question is miR-451, which 

plays a major role in erythropoiesis (Cheloufi et al, 2010).The maturation process of this particular 

miRNA is Dicer-independent but miR-451 is still incorporated into RISC and thus requires Ago2-

processing (Cheloufi et al, 2010; Cifuentes et al, 2010). This miRNA is also non-canonical due to its 

structure (Cifuentes et al, 2010). The conserved precursor miR-451 (pre-miR-451) is a 42 nt hairpin 

with a 17 nt-long stem; this is an uncharacteristically short stem due to Dicer only processing 

hairpins with a ≥ 19 nt stem (Cheloufi et al, 2010; Cifuentes et al, 2010). Mature miR-451 varies in 

length from 20 to 30 nt; six nucleotides of the terminal end follow the length of the loop region to 

double-back into the complementary strand of pre-miR-451 (Figure 1.3), which is an insufficient 

Dicer substrate (Siolas et al, 2005; Cheloufi et al, 2010). The 3’ end is intermediate in length with an 

unpaired uridine tail (Cifuentes et al, 2010; Cheloufi et al, 2010). 

 

 

Figure 1.3: The unconventional structure of the miR-451 hairpin.  

The mature miR-451 extends over the loop (depicted in blue). 
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Primary miR-451 (pri-miR-451) exists in a miRNA cluster with miR-144 upstream of miR-451 

(Cheloufi et al, 2010). Drosha excises pre-miR-451 from the primary miRNA transcript as per 

canonical miRNA biogenesis (Cheloufi et al, 2010). After Drosha cleavage, pre-miR-451 interacts 

directly with the core component of RISC, Ago2 (Cheloufi et al, 2010; Cifuentes et al, 2010). The 

miR-451 Ago2 product is an intermediate hairpin (with a uridine tail of inconsistent length) that is 

further trimmed (Cifuentes et al, 2010). The slicer activity that mammalian Ago2 retains is essential 

for pre-miR-451 cleavage and maturation (Yang et al, 2010). A study discovered that pri-miR-451 

can be reprogrammed to serve as a vector that yields active miRNA and retain Dicer independence 

rescues miRNA maturation and function (Yang et al, 2010). These pri-miR-451 mimic vectors can 

be used in Dicer-null environments but may also have therapeutic potential. Prior to this discovery, 

only Drosha-independent non-canonical miRNAs had been identified such as small nucleolar RNA 

(snoRNA), tRNAs and miRtrons (Berezikov et al, 2007; Babiarz et al, 2008). The canonical RNAi 

pathway depicts Dicer as the central enzyme required for dsRNA processing (Yang et al, 2010). 

miR-451 is processed by Drosha but bypasses Dicer to be loaded directly onto Ago2 (Cheloufi et al, 

2010). 

Due to identifying the Dicer-independent nature of miR-451, a link has been found between the 

conserved slicer activity that Ago2 retains and miRNA maturation (Cheloufi et al, 2010). Ago2 binds 

to and processes miR-451 (Cifuentes et al, 2010). The discovery of a Dicer-independent RNAi 

pathway disputes the generally accepted hypotheses that Dicer-processing and RISC-loading only 

function in tandem and that Dicer-processing determines small RNA silencing efficacy (Siolas et al, 

2005; Chendrimada et al, 2005; Wang et al, 2009). The discovery of miR-451 has expanded our 

understanding of the RNAi pathway and offers an alternative pathway with potential therapeutic 

applications. 
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1.6 Dicer and Ago2 

The major miRNA-processing steps in mammalian RNAi involve the following enzymes: Drosha, 

Dicer and Ago2. Due to shRNAs bypassing interaction with Drosha, I shall focus on Dicer and Ago2. 

With the discovery of miR-451 and its alternate Dicer-independent but Ago2-dependent processing 

route, it is worth briefly describing the structural differences and similarities of Ago2 and Dicer. 

 

1.6.1 Dicer 

Bernstein et al (2001a) identified Dicer as the enzyme that yields 21-27 nt sequences that guide 

gene silencing. Dicer is a member of the RNase III nuclease family that process dsRNAs (pre-

miRNAs, shRNAs and long dsRNAs) into duplexes (siRNAs and mature miRNAs) with a 2 nt 

hydroxyl 3’overhang and 5’ monophosphate (Bernstein et al, 2001a; Czech and Czech and Hannon, 

2011). Mammalian genomes encode a single Dicer protein that consists of the following domains: a 

PAZ domain, two highly conserved RNase III domains (RNase IIIa and b), dsRNA-binding domain 

(dsRBD), domain of unknown function (DUF283) and an ATPase/DExD helicase (Figure 1.3 a) 

(Song et al, 2003; Carmell and Hannon, 2004; Park et al, 2011).  

 

The dsRBD binds Dicer to dsRNAs, aiding in anchoring the enzyme. It has been suggested that the 

DUF283 acts as a dsRNA binding domain (Dlakic, 2006). The helicase domain plays a part in the 

unwinding and “dicing” of dsRNAs (Bernstein et al, 2001a; Welker et al, 2011). The RNase III 

domains work in tandem (RNase IIIa cleaves the 3’-arm and IIIb, the 5’-arm), allowing Dicer to 

process dsRNAs as a monomer (Paddison, 2008). Dicer acts as a molecular ruler for determining 

cleavage sites, typically ~22 nt in length. The distance between the PAZ and RNase III domains 

matches the length of the resultant processed RNA duplex. In mammals, the positively-charged 

Dicer PAZ domain binds to both the 5’ and 3’ ends of pre-miRNAs, binding Dicer to the dsRNA and 

measures a pre-determined distance from the 5’ end to cut the pre-miRNA (Carmell and Hannon, 

2004; Park et al, 2011).  
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1.6.2 Ago2 

A small double-stranded RNA species needs to interact with a member of the Argonaute family in 

order to perform its effector function. The human Argonaute subfamily consists of Ago1, Ago2, Ago3 

and Ago4. All four Argonaute proteins are ubiquitously expressed and associate with miRNAs and 

siRNAs.  

 

 This highly conserved family of proteins can be divided into three subclasses according to 

sequence homology: Ago (similar to Arabidopsis Ago1), the worm-specific WAGO clade and PIWI 

(resembles the Drosophila PIWI protein) (Tolia and Joshua-Tor, 2006; Hutvagner and Simard, 

2008). These protein types generally bind to the guide strands of small RNAs that share the 

following characteristics: a 5’ monophosphate, are ~20-35 nt long and have a 2-nt overhang with a 

3’ hydroxyl terminus which can be modified (Czech and Hannon, 2011).  

 

An Argonaute protein bound to a small RNA guide strand makes up the mature RISC (Filipowicz, 

2005). Before the passenger strand of a small RNA duplex is cleaved and discarded by Ago2, the 

complex is known as pre-RISC (Grimm et al, 2010). The mature RISC must be assembled correctly 

(with the correct guide strand) to facilitate target recognition and repression (Filipowicz, 2005; 

Matranga et al, 2005; Rand et al, 2005). The Argonaute protein is the catalytic core of RISC but 

other proteins may be complexed with RISC to either enhance Argonaute function or direct the 

complex to target specific sites (Meister et al, 2004). Argonautes serve to cleave its RNA target at a 

single phosphodiester bond, between the tenth and eleventh nucleotides of the target (Elbashir et 

al, 2001). 
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The exact three-dimensional structure of any eukaryotic Argonaute protein has yet to be determined 

but due to studies of bacterial and archaeal Argonaute proteins and individual eukaryotic 

components, broadly-applying principles have been observed. Both AGO and PIWI proteins consist 

of the following key domains: 1) PIWI, 2) middle (Mid) and 3) Piwi-Argonaute-Zwille (PAZ) (Figure 

1.3 b).  

 

 

 

Figure 1. 4: Schematic of the Dicer and Ago2 domains.  

a. Mammalian Dicer has a helicase and domain of unknown function (DUF283) at its N terminus.  

There is a PAZ domain. The two RNase III domains and dsRNA-binding domain (RBD) are located 

at the C terminal end. b. Ago2 has a PAZ, Mid and PIWI domain. 

 

The PAZ domain has a 3’-OH binding site where it anchors the 3’-end of the small single-stranded 

RNA (Song et al, 2003b; Jinek and Doudna, 2009). The carboxy-terminal PIWI domain structure 

contains the Argonaute endonuclease and resembles RNAse H due to a motif that consists of three 

negatively charged amino acids, DDH (aspartate-aspartate-glutamate [HIS/]) (Song et al, 2004; 

Czech and Hannon, 2011). The DDH motif determines whether an argonaute has the catalytic 

activity known as slicing (Czech and Hannon, 2011). Thus PIWI is the endonucleolytic cleaving 
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domain of eligible AGO proteins. Despite the great homology between the Ago proteins, Ago2 alone 

has endonuclease or “slicer” activity (Tolia and Joshua-Tor, 2007). Ago2’s ability to slice depends 

on the level of complementarity between the guide strand and its target mRNA. In the event of a 

perfect match, RISC cuts the mRNA at position 10 (10 nt from the site where the 5’ end of the RNAi 

effector is bound to the target mRNA) (Elbashir et al, 2001). If the guide strand and target mRNA do 

not complement each other perfectly (generally the case with miRNAs) then translational repression 

occurs (forms of translational control reviewed by Valencia-Sanchez et al, 2006). The Mid domain 

acts as a binding site for the 5’ phosphate of the terminal of the RNAi effector (Frank et al, 2010).  

Human Ago2 is able to sort through small RNAs due to its Mid domain which selects for 5’ terminal 

adenosine or uridine (Figure 1.3 a) (Frank et al, 2010). 
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1.7 Mimicking miR-451 to improve shRNA specificity and potency 

During the infancy of RNAi-based studies, systems were developed to manipulate the gene 

silencing mechanism in transfected mammalian cells (Brummelkamp et al, 2002; Paddison et al, 

2002; Zeng et al, 2002). ShRNAs can be exogenously introduced into cells (as chemically 

synthesised shRNA or in DNA vectors) or transcribed in vivo to stably suppress gene expression in 

a heritable manner in continuous cell lines (Paddison et al, 2002; Sui et al, 2002; Siolas et al, 2005). 

Most developed shRNAs are DNA vector-based rather than synthetic (Ge et al, 2010; Terasawa et 

al, 2011). Expressed RNAi effectors (including shRNAs) offer longer lasting target suppression 

compared to their synthetic counterparts and, contrary to synthetic RNAi triggers, are compatible 

with viral vectors which is a preferable trait for therapeutic application (Ter Brake et al, 2006; 

Knoepfel et al, 2012). shRNA expression systems can be altered in various ways to enhance RNAi 

efficacy. 

 

The most commonly used shRNA design consists of a 21 bp stem and 5 nt loop but for the 

purposes of this study, three sets of short (19 bp stem) and long (25 bp stem) shRNAs were 

designed with each 19mer/25mer pair targeting the same sequence (Brummelkamp et al, 2002; 

Bernards et al, 2006; Ter Brake et al, 2006 and 2008; Huang et al, 2008; Asparuhova et al, 2008). 

The siRNA core of the long shRNAs was positioned at the terminus of the hairpin and the sequence 

extended to the base of the loop. This design ensured that the position of the siRNA core was the 

same between the short and long shRNAs and maximised silencing efficacy of each class of shRNA 

(McIntyre et al, 2011).  

 

Short hairpin RNA stems are typically 19-29bp long because the shorter shRNAs (≤ 19bp) are not 

Dicer substrates and are thus not considered potent without Dicer processing (Siolas et al., 2005). 

Additionally, a comparative study of 19bp and 29bp shRNAs, in a 4nt loop context, the 29bp 

shRNAs were more potent than their shorter counterparts and increasing the loop length (to 9nt) 
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improved efficacy in both 19mers and 29mers compared to their 4nt versions (Li et al, 2007). The 

Dicer-independent nature miR-451 suggests that a short shRNA design (< 19 bp stem) has the 

potential to be highly functional regardless of Dicer-processing (Cheloufi et al, 2010; Cifuentes et al, 

2010). 

 

Manipulating the guide strand orientation affects the gene silencing efficacy of shRNAs (McManus 

et al, 2002; Ge et al, 2010). ShRNAs typically have the guide strand located at the 3’-arm even 

though studies have shown that the reverse orientation (5’-arm guide strand) can yield stronger 

shRNA inhibitory capability (Harborth et al., 2003; Li et al, 2007; Vlassov et al, 2007; Ge et al 2010; 

Liu et al, 2013).  Relocating the guide strand to the 5’arm of shRNAs creates a defined starting point 

for transcription thus granting more accurate prediction. This alteration will provide a level playing 

field (between the 19mers and 25mers) in determining how Dicer-independent hairpin processing 

affects downstream gene silencing. Moving the guide strand to the 5’-arm also places the seed 

region at the 5’ terminal of the base of the shRNA which secures the seed region from possible 

Dicer cleavage as a precautionary measure (Figure 1.4). 
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Figure 1.5: Relocating the seed region.  

The guide strand being relocated to the 5’-arm results in a seed region at position 2 to 7 of the 3’-

arm to be repositioned to the 5’ terminal end at the base of the hairpin. 

 

Introducing exogenous RNAi effectors can potentially cause unwanted off-target effects (Reynolds 

et al, 2006). A miR-451-based shRNA design may alleviate the negative side effects associated 

with RNAi effectors. The use of smaller hairpins in therapeutic applications is ideal due to increased 

ease and safety of delivering the therapy into a subject (Huang et al, 2008; Asparuhova et al, 2008). 
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1.8  Aims and objectives 

The main aim of this study was to determine whether the RNAi efficacy and potency of expressed 

shRNAs could be improved using a design that mimics Dicer-independent miR-451. The study 

objectives included: 

1) Pairs of 19mer and 25mer shRNAs that targeted the same sequence were constructed. 

2) Assessed how repositioning the seed region affected the RNAi efficacy of the shRNAs. 

a) The silencing efficacy and potency of the shRNAs (19mer versus 25mer) were 

compared. 

3) Determined whether the shRNAs induced unwanted off-target effects. 

a) Assessed the interferon response, cell function and saturation of the RNAi pathway. 

4) Investigated how the 19mer shRNAs were processed by the RNAi machinery. 

a) Did the 19mers mimic miR-451 processing? 
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Chapter 2: Materials and Methods 

 

2.1 Plasmids generated prior to this study 

2.1.1 The H1 promoter 

Each of the shRNAs generated for this study are expressed from an H1 promoter that was first 

characterised by Chen et al (2005, PNAS, A universal library encoding all permutations of siRNA). 

Dyer et al (2010) cloned the entire H1 promoter. The H1 forward (5’-GAT CGA ATT CAC TAG TGA 

ACG CTG ACG TCA TCA A-3’) and reverse (5’-GGA TCC GTG GTC TCA TAC AGA ACT TAT 

AAG ATT CCC AAA TC-3’) primers were synthesised by Integrated DNA Technologies (IDT, USA). 

The H1 forward primer was designed to include including EcoRI (underlined) and SpeI (in bold) 

restriction sites. A resuspended 100 μM stock solution was prepared for each H1 primer 

oligonucleotide and from each, a 15 μM working solution. PCR was used to amplify the H1 promoter 

in a reaction with the final volume of 25 μl consisting of the following: 15 pmol H1 forward primer, 15 

pmol H1 reverse primer, 100 ng H1 genomic DNA, 2.5 mM dNTP mix (Thermo Scientific, USA), 

0.25 U TripleM™ Taq polymerase in 1x High Fidelity buffer from the High Fidelity PCR kit (Roche, 

Germany). The H1 promoter was amplified using the following PCR protocol: 1) denaturation at 

94°C for 5 minutes and ten rounds of touchdown PCR (94°C for 10 seconds of denaturation, 67°C 

for 10 seconds of annealing and an elongation step of 72°C for 10 seconds; the annealing 

temperature was decreased by 1 degree centigrade each cycle); 2) the touchdown PCR was 

followed by 14 cycles of denaturation at 94°C for 20 seconds, 57°C for 20 seconds of annealing and 

72°C for 45 seconds of elongation and 3) a final step at 72°C for two minutes and thirty seconds of 

elongation (Eppendorf Mastercycle Gradient, Germany). The amplicon (PCR product) was resolved 

on an agarose gel for electrophoresis to confirm the DNA fragment size and excised from the gel 

and purified using the MinElute™ Gel Extraction Kit (Qiagen, Germany) (Appendix A.1). The purified 

H1 promoter DNA will be referred to as H1 promoter template DNA.   
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2.1.2 The H1 Mock vector 

Dyer et al (2010) produced an H1-transcribed empty plasmid (referred to as H1 mock) using an H1 

mock reverse primer (5’-GAT CAA AAA ACG GAT CCG AGT GGT-3’) with a BamHI (underlined) 

restriction site and the termination signal. The H1 mock reverse primer was synthesised by Inqaba 

Biotec (Pretoria, RSA) and prepared as described in section 2.3.1. The PCR had a final volume of 

20 μl consisting of 15 pmol H1 forward primer, 15 pmol H1 mock reverse primer, 500 ng H1 

promoter template DNA and 2.5 μl MasterMix™ (Thermo Scientific, USA). The PCR protocol was 

run as described (section 2.3.1) and the amplicon size was determined via agarose gel 

electrophoresis. The amplified DNA was excised from the agarose gel and purified using the 

MinElute™ Gel Extraction Kit (Qiagen, Germany) (Appendix A.1). The H1 mock amplicon was 

inserted into the pTZ57R/T cloning vector (Thermo Scientific, USA). The ligation reaction had a final 

volume of 20 μl and contained the following: 0.165 μg pTZ57R/T, 7.5 U T4 DNA ligase, 300 ng H1 

mock amplicon; all diluted in 1x ligation buffer (Thermo Scientific, USA). The ligation reaction was 

incubated overnight at room temperature and used to transform competent E.coli DH5-α cells 

(Appendix A.2). The transformed DH5-α cells were plated on a X-gal/IPTG (40 μl5-bromo-4-chloro-

3-indolyl-beta-D-galactopyranoside (X-gal, Sigma, USA) and 8 μl of isopropyl thiogalactoside (IPTG, 

Roche, Germany) Luria-Bertani (LB) agar plate (Appendix A.3). The plate was incubated overnight 

at 37°C. Blue/white screening was used to pick the successfully transformed bacteria (Appendix 

A.3). Five clones transformed with the H1 mock plasmid were selected to each inoculate 4 ml LB 

and left to incubate overnight at 37°C in a shaking incubator. On the following day, the H1 mock 

plasmid DNA was purified using the High Pure Plasmid Isolation Kit (Roche, Germany) (Appendix 

A.4). 
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2.1.3 The GFP reporter plasmid 

Passman et al (2000) cloned enhanced green fluorescent protein (eGFP) into the mammalian 

expression vector pCI-neo (Promega, USA). The EGFP-encoding sequence was PCR-amplified 

from the pBI-EGFP vector (Clonetech, USA). The amplicon was digested with XhoI and XbaI and 

cloned into complementary sites in the multiple cloning site of pCI-neo.  The resultant reporter 

plasmid is known as pCI-eGFP. This vector served as the reporter plasmid in all mammalian culture 

work. The supplementary Figure B.3 is an example of GFP expression under fluorescence 

microscopy. 

 

2.2 Molecular cloning 

2.2.1 Generation of the PTZ-H1shRNA expression cassettes 

A one-step PCR approach was used to generate the shRNA-expressing cassettes (depicted in 

Figure 2.1). The H1 mock (pTZ H1+1) plasmid serves as the template DNA; it is complementary to 

both the 3’-end of the reverse primer and the 3’-end of the forward primer. A single reverse primer 

complementary to the whole hairpin was synthesized for each hairpin based on the selected target 

sequences as described in section 2.1 (Table 2.1). The primer contains the sense strand, loop, 

antisense strand and termination sequence. The shRNA primer oligonucleotides (Table 2.2) were 

prepared by Integrated DNA Technologies (IDT, Germany). The H1 forward primer (5’-GAT CGA 

ATT CAC TAG TGA ACG CTG ACG TCA TCA A-3’) is complementary to the 5’ end of the human 

H1 promoter in pTZ H1+1 (Dyer et al, 2010). Dyer et al (2010) inserted EcoRI and SpeI restriction 

sites at the 5’ end of the H1 primer. The H1 forward and hairpin 3’ reverse primers were used to 

generate a shRNA expression cassette (Castanotto et al, 2002). 
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Figure 2.1: One-step PCR approach. 

The empty plasmid pTZ H1+1 (H1 mock) served as the template for the H1 forward primer (section 

2.3.1) and shRNA reverse primer to generate a shRNA in the PCR product. The PCR product was 

then ligated into the pTZ57R/T cloning vector. 
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Table 2.1: Primers used to generate shRNA-expressing constructs.  

The primers served as the reverse primer in the one-step PCR.  The termination tail is underlined. The tetraloop is underlined in bold. The 

guide arranged into the sense strand is indicated in bold. The italicised segment is complementary to the H1 promoter. 

 

Primer 

name 

 

Oligonucleotide reverse primer 

(5’         3’ sequence) 

H1 

shG19 

H1 

shG25 

 

AAAAAATAATCTTGTGGGGTGGCTCTTTCGAGCCACCCCACAAGATTCGGGTCCGAGTGGTCTCATAC 

 

AAAAATAATCTTGTGGGGTGGCTCCTTCTGTTTCCAGAAGGAGCCACCCCACAAGATTCGGGTCCGAGTGGTCTCATAC 

H1 

shE19 

H1 

shE25 

 

 

AAAAAAATATAATTCACTTCACCATTTCTGGTGAAGTGAATTATATCGGGTCCGAGTGGTCTCATAC 

 

AAAAAATATAATTCACTTCACCAATTGTCTTTCGACAATTGGTGAAGTGAATTATATCGGGTCCGAGTGGTCTCATAC 

H1 

shL19 

H1 

shL25 

 

AAAAAATTGAGGCTTAAGCAGTGGTTTCCCACTGCTTAAGCCTCAACGGGTCCGAGTGGTCTCATAC 

 

AAAAAATTGAGGCTTAAGCAGTGGGTTCCCTTTCGGGAACCCACTGCTTAAGCCTCAACGGGTCCGAGTGGTCTCATAC 
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The reaction was prepared with a final volume of 50 μl and consisting of 15 µM H1 forward primer, 

15 µM shRNA oligonucleotide (reverse primer), 1 μg pTZ H1+1 (vector plasmid with the H1 

promoter) template DNA, 10 µM dNTP mix (Thermo Scientific, USA), High Fidelity Taq polymerase, 

5 u/µl (Thermo Scientific, USA), 1x High Fidelity PCR Buffer (Thermo Scientific, USA) with 15 mM 

MgCl2 and 10 µl betaine/DMSO PCR enhancer solution to restrict secondary structure formation. 

The PCR cycle was carried out within the following parameters: initial denaturation at 94°C for 3 

minutes, 40 cycles of denaturation at 94°C for 30 seconds, annealing at 60°C for 30 seconds, 

extension at 72°C for 30 seconds and a final extension step at 72°C for 15 minutes. The annealing 

temperature varied according to the PCR gradient (Bio-Rad, USA). The bands were resolved and 

visualised on a 1% agarose (Lonza, Switzerland) gel using the G:BOX gel doc system (Syngene, 

UK) and the image was documented using Gel Logic 2000 (Kodak, USA). The bands of interest 

were excised from the gel and purified using the MinElute Gel Extraction Kit (Qiagen, Germany) 

(Appendix A.1). The shRNA PCR products (amplicons) were separately ligated into the cloning 

vector pTZ57R/T from the InsTAclone™ PCR Cloning kit (Thermo Scientific, USA). The process of 

generating the shRNA constructs relied on T/A cloning. The shRNA amplicons each had adenosine 

residue 3’ overhangs due to Taq polymerase activity during the PCR step.  These overhangs allow 

the PCR product to ligate to the thymidine residue overhangs of the multiple cloning site of 

pTZ57R/T. The ligation reactions had a final volume of 30 μl with the following: T4 DNA Ligase (5 

U/µl) [U= units], 1x Ligation buffer, vector pTZ57R/T (0.17 pmol ends), shRNA PCR product (0.52 

pmol ends) (Weiss et al, 1968).The reaction was incubated at room temperature for an hour or 4°C 

overnight. Ten microlitres of the ligation reaction was used to transform competent Escherichia coli 

(E.coli) DH5-α bacterial cells (Appendix A.2). Ampicillin (1x, Roche, Germany) Luria-Bertani (LB) 

agar plates were coated with X-gal (Sigma, USA)/IPTG (Roche, Germany) and incubated at 37°C 

for 20 minutes with the plate lids removed (Appendix A.3). The transformed cells were spread on 

the X-gal/IPTG ampicillin LB agar plates and incubated overnight at 37°C. Colony forming units 

(CFUs) transformed with pTZ-shRNA plasmids were identified via blue/white screening (Appendix 

A.3). White CFUs were picked from the agar plate, inoculated in 6 ml LB and incubated overnight at 
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37°C in a shaking incubator. The shRNA plasmid DNA was purified following the instructions of the 

High Pure Plasmid Isolation Kit (Roche, Germany) (Appendix A.4). 

 

The white colonies were screened using a SacI/BamHI (Thermo Scientific, USA) restriction digest 

reaction (Supplementary Figure B.2). The test digest reaction had a final volume of 50 μl:  1 U SacI, 

1 U BamHI and BamHI buffer, respectively (Thermo Scientific, USA), deionised water and 1.5 µg 

pTZ-shRNA plasmid DNA. The restriction digest reactions were incubated overnight at 37°C. The 

DNA fragments of the restriction digest reactions were run on a 3% agarose (Lonza, Switzerland) 

gel. The plasmid DNA was purified via phenol/chloroform (Merck, Germany) extraction (Appendix 

A.5). The phenol/chloroform-purified shRNA plasmid DNA was sent to Inqaba (Pretoria, RSA) for 

automated cycle sequencing to verify whether they had the correct sequence using universal M13 

forward (5’-GTA AAA CGA CGGCCA G-3’) and reverse (5’-CAG GAA ACA GCT ATG AC-3’) 

primers. The sequence files were analysed using FinchTV (Geospiza Inc., USA). 

 

2.2.2 Generation of target reporter plasmids 

To assess the silencing efficacy of the shRNAs, vectors containing their respective target 

sequences were generated. The target sequences were inserted into the 3’ untranslated region 

(UTR) of the Renilla luciferase reporter gene in the psiCHECK 2.2 reporter plasmid. The plasmid 

was designed by Prof M S Weinberg of our laboratory; psiCHECK2 (Promega, USA) was altered 

with the inclusion of an oligonucleotide bearing restriction sites. The target sequences are 

complementary to that of the respective shRNA guide strand. A pair of single-stranded 

oligonucleotides was synthesised by Integrated DNA Technologies (IDT, Germany) for each target 

(Table 2.3). An additional set of target sequences were generated for the passenger strand of each 

shRNA (Table 2.4). 
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Table 2.2: Guide strand target sequences.  

The EcoRV restriction sites are underlined. The XhoI overhangs are in bold and the NotI overhangs 

are italicised. 

Primer name Single-stranded oligonucleotides 

(5’      3’ sequence) 

Target Gag 

 

Gag F 

 

Gag R 

 

 

TCGAGATATCCAGAAGGAGCCACCCCACAAGATTAGC 

 

GGCCGCTAATCTTGTGGGGTGGCTCCTTCTGGATATC  

Target Env 

 

Env F 

 

Env R 

 

 

TCGAGATATCGACAATTGGTGAAGTGAATTATATTG 

 

GGCCGCAATATAATTCACTTCACCAATTGTCGATATC 

Target LTR 

 

LTR F 

 

LTR R 

 

 

TCGAGATATCGGGAACCCACTGCTTAAGCCTCAATGC 

 

GGCCGCATTGAGGCTTAAGCAGTGGGTTCCCGATATC  
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Table 2.3: Target sequences of the passenger strand of each hairpin. 

Primer name Single-stranded oligonucleotides 

(5’      3’ sequence) 

Target  Gag passenger 

 

Gag F 

 

Gag R 

 

 

TCGAGATATCTAATCTTGTGGGGTGGCTCCTTCTGGC 

 

GGCCGCCAGAAGGAGCCACCCCACAAGATTAGATATC 

Target  Env passenger 

 

Env F 

 

Env R 

 

 

TCGAGATATCAATATAATTCACTTCACCAATTGTCGC  

 

GGCCGCGACAATTGGTGAAGTGAATTATATTGATATC 

Target LTR passenger 

 

LTR F 

 

LTR R 

 

 

TCGAGATATCATTGAGGCTTAAGCAGTGGGTTCCCGC 

 

GGCCGCGGGAACCCACTGCTTAAGCCTCAATGATATC 
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In order to insert the target sequence into the reporter plasmid, the psiCHECK 2.2 plasmid was first 

linearised using restriction digest enzymes. Two micrograms (2 µg) of psi-CHECK 2.2 was 

linearised in a reaction including the following: 3 µl 1x Buffer O, 2 U XhoI, 10 U NotI and deionised 

water to make up a final volume of 30 µl (Thermo Scientific, USA). The reaction was mixed and 

incubated at 37°C for 2 hours.  

 

Before the double-stranded target sequence could be inserted into the linearised psiCHECK 2.2 

vector, the pairs of single oligonucleotides were annealed to one another to form double-stranded 

sequences. The single oligonucleotides were first each phosphorylated in separate 20 μl 10 μM 

reactions: 2 μl of 100 M stock single-stranded oligonucleotide, 2 μl 10x PNK buffer, 2 μl 10 mM 

ATP, 0.5 μl T4 PNK and 13.5 μl water (Thermo Scientific, USA). The reactions were incubated for 1 

hour at 37°C. Ten microlitres of each complementary phosphorylated oligonucleotide was added 

together (20 μl total volume) and incubated for ten minutes at 75°C. This step serves to inactivate 

the enzyme. The oligonucleotides annealed while the heating block was left to cool for 30 minutes. 

The final concentration of the dsDNA oligonucleotide is 5 μM. The double-stranded oligonucleotide 

mixture was diluted to a working concentration of 200 nM (4 ng/µl). Five microlitres of the double-

stranded oligonucleotide was ligated with 50 ng of the linearised (XhoI/NotI-digested) psiCHECK 2.2 

vector plasmid (Figure 2.4). The ligation mix was transformed into DH5-α E.coli cells (Appendix 

A.2). Bacteria transformed with target plasmids were selected using blue/white screening and 

picked to inoculate in 6 ml LB (Appendix A.3). The bacterial culture was incubated overnight at 37°C 

in a shaking incubator. The target plasmid DNA was isolated using the High Pure Plasmid Isolation 

kit (Roche, Germany) (Appendix A.4). To verify successful ligation of linearised psiCHECK 2.2 and 

double-stranded target oligonucleotide, the target plasmids were screened using an EcoRV 

restriction digest reaction (Thermo Scientific, USA). The psiCHECK 2.2 vector has a single EcoRV 

restriction site but vectors with the target insert have an additional EcoRV site (seen in Tables 2.3 

and 2.4). The digest reaction: 1 U Eco321 (EcoRV), 1X buffer R, 10 U RNaseA enzyme, 2 μg 

shRNA plasmid DNA and nuclease-free water up to a final volume of 50 μl (Thermo Scientific, 
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USA). The restriction digest reactions were incubated overnight at 37°C. The DNA fragments of the 

restriction digest reactions were resolved on a 3% agarose (Lonza, Switzerland) gel. The target 

plasmid DNA of each clone was sequenced by Inqaba (Pretoria, RSA). The following primers were 

used: psiCHECK forward (5’-GAC GCT CCA GAT GAA ATG GG-3’) and reverse (5’-GTG CCC 

GTG GCC ACC AAG AC-3’) primers (Inqaba, RSA). The sequence files were analysed using 

FinchTV (Geospiza Inc., USA). A greater and more concentrated volume of each sequence-

confirmed PTZ-H1shRNA (described in section 2.4.1) and target plasmid was prepared using the 

Qiagen Plasmid Midi kit, following the included instructions (Appendix A.6). 

 

2.3 Mammalian tissue culture 

The shRNA constructs were tested in mammalian cells (Castanotto et al, 2002). Human embryonic 

kidney 293 (HEK293) and human hepatoma (Huh7) cells were the cell lines used in this study. The 

HEK293 cells were maintained in DMEM growth medium (Gibco, UK) supplemented with 10% 

Biochrom fetal calf serum (FCS, Merck, Germany) and 1X penicillin/streptomycin (Gibco, UK) in a 

humidified incubator at 37°C and 5% CO2. Once the cells reached 80% confluency (covering 80% of 

the culture dish surface), the media was removed and the cells washed with 37°C saline 

(confluency calculation depicted in Appendix A.7). The saline was removed and the cells were 

incubated with 1 ml of 1× TrypLE Express trypsin (Life Technologies, USA) at 37°C for 3 minutes. 

The cells were dislodged from the surface by gently tapping the culture dish. The trypsin was 

inactivated by the addition of 3 ml 37°C DMEM (10% FCS and 1× penicillin/streptomycin).  The cells 

were transferred to a sterile 75 cm2 tissue culture flask. Sixteen millilitres of DMEM was added and 

the flask was incubated at 37°C and 5% CO2 until the cells needed to be passaged again. The 

reagents used are described in Appendix A.8. 

For transfections, HEK293 cells were grown to 80-100% confluency (Appendix A.7). The media was 

removed and the cells washed with 37°C saline. The saline was removed and the cells were 

incubated with 1 ml of 1× trypsin at 37°C for 3 minutes. The cells were dislodged from the surface 
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by gently tapping the culture dish. The trypsin was inactivated by the addition of 4 ml 37°C 

antibiotic-free DMEM supplemented with 10% FCS. The culture dish (24-well plate, 6-well plate or 

10 cm2) was seeded at 70-80% confluency in antibiotic-free DMEM (10% FCS) and the cells were 

left to grow overnight at 37°C and 5% CO2. A 1μg DNA:1μl: Lipofectmine2000™ (Invitrogen, USA) 

ratio was used per transfection.  Twenty four hours post transfection, the media was replaced with 

DMEM supplemented with 10% FCS and antibiotics. 

 

2.4 Dual-luciferase assay 

To assess the target knockdown efficacy of the shRNAs, their respective target sequences were 

inserted into the multiple cloning site of a reporter plasmid (described section 2.3.4). The selected 

plasmid was psiCHECK 2.2. The Dual-Luciferase® Reporter Assay System was used (Promega, 

USA). After removing the supernatant from the cells, 100 µl of 1X Passive Lysis Buffer was added 

per well. The tissue culture plate was slowly agitated for 20 minutes to help lyse the cells. Twelve 

microlitres of each lysate was transferred to a well in a 96-well luminometer plate. A master mix of 

Stop & Glo was prepared to ensure that each well in the 96-well plate received 50 μl of the reagent. 

A 50 μl per well master mix of luciferase activity agent II (LAR II) was also made. In an automated 

system, LAR II is first added to the lysate to activate firefly luciferase luminescence. The Stop & Glo 

reagent is added to stop firefly luminescence and activate Renilla luciferase. The luciferase activity 

of each well was quantified by the Veritas dual-injection luminometer (Turner Biosystems, USA). 
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2.4.1 Dual-luciferase knockdown assay 

To determine the silencing efficacy of each of the shRNA constructs, a luciferase knockdown assay 

was carried out. HEK293 cells were seeded in 24-well plates at 35-40% confluency (Appendix A.7).  

On the following day, the cells were co-transfected in triplicate (as described in Section 2.5) with 

750 ng shRNA-expressing vector, 150 ng cognate target plasmid and 100 ng pCI-eGFP. Each 

target plasmid was paired with either a 19mer shRNA expression plasmid, 25mer shRNA; H1 mock 

plasmid or an anti-HBV plasmid (negative control). Inhibition of the target plasmid expression was 

determined 48hrs post-transfection using the Dual-Luciferase Reporter Assay System (Promega, 

USA) and a Veritas dual-injection luminometer (Turner Biosystems, USA). 

 

2.4.2 Dose response assay 

To determine whether the silencing efficacy of the pTZ-shRNAs was dose-dependent, dose 

response assays were conducted. Twenty-four well plates were seeded with Huh7 cells at 35-40% 

confluency (Appendix A.7). Twenty-four hours later, the cells were transfected in triplicate (as 

described in Section 2.5) with 0.5 μg of plasmid DNA per well. A fixed concentration of target 

plasmid and reporter plasmid was co-transfected with varying concentrations of pTZ-shRNA and the 

pTZ57R stuffer vector (Table 2.5). Forty-eight hours post transfection, a dual-luciferase assay was 

carried out. To determine the effective dose, the concentration of the effectors was converted to a 

log10 scale. The EC50 values were calculated from the downward-sloping sigmoid graph using 

GraphPad Prism 4 (GraphPad Software Inc., USA). The equation used was as follows: Y= Bottom + 

(Top-Bottom)/(1+10^((LogEC50-X))). In this sigmoidal-dose response equation X is the logarithm of 

concentration and Y is the response (Y starts from the Bottom and ascends to the Top) (GraphPad 

Software Inc., USA). 
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Table 2.4: Layout of the dose response assay.  

The assay was conducted with a decreasing concentration of shRNA and proportional increasing 

concentration of stuffer plasmid (pTZ57R). 

 

Target to 

shRNA ratio 

 

psiCHECK-

target (ng) 

 

pTZ-shRNA 

(ng) 

 

pCI-eGFP (ng) 

 

pTZ57R (ng) 

1 to 10 40 400 60 - 

1 to 0.1 40 4 60 396 

1 to 0.05 40 2 60 398 

1 to 0.01 40 0.4 60 399.6 

1 to 0.0025 40 0.1 60 399.9 

Mock 40 - 60 400 
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2.5 Interfering with the RNAi pathway 

2.5.1 Interferon response assay 

HEK293 cells were seeded in a 6-well plate at 35-40% confluency (Appendix A.7).  On the following 

day, the cells were co-transfected in triplicate (as described in Section 2.5) with 4 μg shRNA 

construct and 1 μg pCI-eGFP. Four micrograms of the dsDNA analogue poly I:C positive control 

was co-transfected with 1 μg pCI-eGFP in triplicate. The DMEM media was removed from the cells 

48 hours post-transfection. To extract whole RNA from the transfected cells, 500 μl of TRI-reagent 

(Sigma, USA) was added to the HEK293 cells. The cells were lysed via resuspension in sterile 

centrifuge tubes. The lysates were incubated at room temperature for five minutes. One hundred 

microlitres of chloroform (Merck, Germany) was added to each lysate. The tubes were closed tightly 

and vortexed for 15 seconds then left to incubate at room temperature for ten minutes. The tubes 

were centrifuged at 12, 000 x g (5415 R centrifuge; F45-24-11 rotor) for 15 minutes at 4°C 

(Eppendorf, Germany). The top aqueous phase was transferred to a new tube. Isopropanol (250 μl, 

Merck, Germany) was added to the tubes. The tubes were briefly vortexed then stored at -80°C 

overnight. The tubes were centrifuged at 12000 x g for 30 minutes at 4°C. The pellet was washed 

with 500 μl 75% ethanol (Merck, Germany) then vortexed briefly. The tubes were centrifuged at 

12 000 x g for 5 minutes at 4°C. The pellet was air-dried for 5 minutes then resuspended in 50 μl 

RNase-free water by frequent pipetting at 55-60 °C for 10 minutes. If the partially dissolved RNA 

had an A260/280 reading (using the Thermo Scientific Nanodrop) between 1.8 and 2.1, it was 

stored as 30 μg aliquots at -80°C. 

 

The QuantiTect Reverse Transcription kit was used (Qiagen, Germany). One microgram of whole 

RNA extract was incubated with 1X gDNA wipeout buffer and RNase-free water up to a final volume 

of 7 μl at 42°C for 5 minutes. Half a unit (0.5 U) of QuantiTect reverse transcriptase, 1X QuantiTect 

reverse transcription (RT) buffer and 0.5 U of RT primer mix were added. The mixture was 
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incubated at 42°C for 30 minutes then 95°C for 3 minutes to deactivate the QuantiTect reverse 

transcriptase. 

 

Separate real-time quantitative PCR mixes were prepared for the respective interferon-β (IFN-β) 

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primers (listed in Table 2.6) using the 

SensiMix Capillary kit (Bioline, UK). Two microlitres of template cDNA from the RT reaction was 

mixed with 10 μM forward primer, 10 µM of reverse primer, 4 µl SensiMix lite, 0.4 µl 50X SYBR 

green, 1.5 U enzyme mix and RNase-free water to make up a final volume of 20 µl. The following 

cycling parameters were carried out in the Light Cycler 2.0 (Roche, Germany): 95°C hot-start for 10 

minutes to activate polymerase; 40 cycles of 95°C for 15 seconds, 55-60°C for 15 seconds and 

72°C 15 seconds.  
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Table 2.5: The primers used for the qRT-PCR to assess the induction of an interferon 

response. 

Primer name Primer sequence 

(5’       3’) 

 

IFN-β forward 

 

TCC AAA TTG CTC TCC TGT TGT GCT 

 

IFN-β reverse 

 

CCA CAG GAG CTT CTG ACA CTG AAA A 

 

GAPDH forward 

 

AGG GGT CAT TGA TGG CAA CAA TAT CCA 

 

GAPDH reverse 

 

TTT ACC AGA GTT AAA AGC AGC CCT GGT G 

 

 

2.5.2 MTT assay 

HEK293 cells were seeded at ~30% confluency (Appendix A.7) in 125 μl media per well in a 96-well 

plate. Eight wells were left empty to serve as blank controls. The cells were transfected in triplicate 

(as described in Section 2.5) with 128 ng shRNA and 32 ng pCI-eGFP per well. The addition of the 

growth inhibitor 5-azacytidine (5-azaC, Sigma, USA) served as a positive control. A final 

concentration of 1 µM 5-azaC was added to each positive control well. At 48 hours post-

transfection, 20 μl of thiazolyl blue tetrazolium bromide (MTT, Sigma, USA) solution was added to 

each well. The solution was gently mixed in for 5 minutes and the cell cultures were incubated at 

37°C and 5% CO2 for 5 hours to allow the MTT to be metabolised into formazan. The supernatant 

was removed and 200 μl dimethyl sulfoxide (DMSO, Sigma, USA) added to dissolve the blue 

formazan precipitate. The light absorbance per well was measured at 570 nm and 655 nm 

respectively. The values from the background 655 nm readings were subtracted from the 
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corresponding 570 nm values. The 655 nm readings served as a reference to account for the 

effects of cell debris.  

 

2.5.3 Saturation assay 

Huh7 cells were seeded in 24-well plates at ~40% confluency (Appendix A.7). Twenty-four hours 

later, the cells were transfected in triplicate (as described in Section 2.5) with 0.8 μg of plasmid DNA 

per well. The cells were transfected with a fixed concentration of pCI-eGFP (100 ng) and a fixed 

concentration (100 ng) of HBV target plasmid psiCHECK-8T-Fw (Ely et al, 2008). Three sets of 

controls were included to determine repressive effects: 1) the non-repression control, 2) the 

repression control and 3) the derepression control. The non-repression controls consisted of 100 ng 

pCI-eGFP, 100 ng anti-HBV miR-31/8 (Ely et al, 2008), 100 ng or 10 ng H1 mock and pTZ57R to 

make up a final concentration of 0.8 μg. The repression controls consisted of 100 ng pCI-eGFP, 100 

ng HBV target (psiCHECK-8T-Fw), 100 ng anti-HBV miRNA (miR-31/8), 100 ng or 10 ng H1 mock 

and pTZ57R to make up a final concentration of 0.8 μg. The derepression controls included the 

following: 100 ng or 10 ng shLTR (Saayman et al, 2010), 100 ng pCI-eGFP, 100 ng HBV target 

(psiCHECK-8T-Fw), 100 ng anti-HBV miRNA (miR-31/8) and pTZ57R to make up a final 

concentration of 0.8 μg. The hairpin experiments comprised of the following per well: 100 ng pCI-

eGFP, 100 ng HBV target (psiCHECK-8T-Fw), 100 ng anti-HBV miRNA (miR-31/8) and 100 ng or 

10 ng pTZ-shRNA. The stuffer plasmid pTZ57R made up the deficit to a final concentration of 0.8 

μg. Forty-eight hours after the transfection, the dual-luciferase reporter assay was conducted. 
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2.6 Processing of the shRNA constructs 

2.6.1 RNA extraction for northern blot analysis 

HEK293 cells were seeded in 10 cm tissue culture dishes 35-40% confluency (Appendix A.7).  

Twenty-four hours later, the cells were co-transfected (as described in Section 2.5) with 20 µg 

shRNA-expressing vector and 1 µg pCI-eGFP. Whole RNA was extracted 48hrs post-transfection 

as described in section 2.7.1 with the following changes: 1ml TRI-reagent (Sigma, USA), 100 μl 

chloroform (Merck, Germany), 500 μl  Isopropanol (Merck, Germany),1 ml 75% ethanol (Merck, 

Germany) and the pellet was resuspended in 40 μl 0.5% sodium dodecyl sulphate (SDS, Sigma, 

USA). If the partially dissolved RNA had an A260/280 reading (using the Thermo Scientific 

Nanodrop) between 1.8 and 2.1, it was stored as 30 μg aliquots with an equal volume of 2X loading 

dye (Thermo Scientific, USA) at -80°C. 

 

2.6.2 Radio-labelling Decade marker 

The following were mixed in an RNase-free tube using reagents from the Ambion Decade™ Marker 

System (Life Technologies, USA): 100 ng Decade Marker RNA, 1X kinase reaction buffer, 1 μl [Υ-

32P]ATP radioactivity (PerkinElmer, USA), 1 U T4 polynucleotide kinase and nuclease-free water up 

to a final volume of 10 μl. The mixture was left to incubate at 37°C for 1 hour. Ten times (10X) 

cleavage reagent (Life Technologies, USA) and nuclease-free water up to a final volume of 10 μl 

were added. After a five minute incubation period at room temperature, 20 μl of gel loading buffer II 

was added. The labelled Decade Marker was split into 10 μl aliquots to minimize freeze-thaw 

cycles. 

 

2.6.3 Radio-labelling the probes 

Two microlitres of 10 μM probe stock, 1X of polynucleotide kinase (PNK) buffer A (Thermo 

Scientific, USA), 10 U PNK (Thermo Scientific, USA), radioactivity and deionised water (made up to 
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final volume of 20 μl) were added to a micro centrifuge tube.  One microliter of [Υ-32P]ATP 

(PerkinElmer, USA) radioactivity was added last.  

 

The probes (Table 2.6) were incubated at 37°C for 1 hour. G-25 Sephadex (Sigma, USA) columns 

(Appendix A.10) were prepared during the incubation period. A centimetre of compact filter fiber 

was stuffed into the bottom of a 1 ml syringe (plunger removed). One millilitre of G-25 Sephadex 

was added to the syringe which was spun at 2000 x g (5810 R centrifuge; A-4-81 rotor) for 2 

minutes in a 15 ml centrifuge tube (Eppendorf, Germany). This step was repeated until the 

Sephadex column filled the syringe. The column was transferred to a fresh sterile 15 ml centrifuge 

tube. 

 

After the hour incubation period, 30 μl of water was added to the labelled probes.  The probe was 

purified by spinning it through the prepared Sephadex column at 2000 x g for two minutes and 

collected in the 15 ml centrifuge tube. 

 

2.6.4 Northern blot analysis to visualise processed shRNA products 

The RNA, with an equal volume of 2X loading dye (Appendix A.9) added (Thermo Scientific, USA), 

was denatured at 95°C for 3 minutes and the decade marker denatured at 95°C for 5 minutes 

before being loaded. The RNA samples and decade marker were resolved on a 15% 

polyacrylamide gel (Appendix A.9) at 150 V for 90 minutes, 200 V for 30 minutes and 250 V until the 

bromophenol blue dye front was approximately 2 cm above the end of the gel. The gel was 

removed from the glass plates stained with 10 mg/ml ethidium bromide (Sigma, USA) in 100 ml TBE 

for 5 minutes (agitating). The stained gel was visualised under UV light using the G:BOX gel doc 

system (Syngene, UK) and the image was documented using Gel Logic 2000 (Kodak, USA).  
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Six pieces of thick filter paper were cut to match the dimensions of the gel and one similarly cut 

piece of hybond positively charged nylon membrane (Amersham, USA). A sandwich of 3 filter 

papers, membrane, the gel and 3 filter papers was placed in a semi-dry blotter. The excess liquid 

was pressed out. The gel was transferred to the membrane at 0.4 A for 1 hour. 

 

The membrane was briefly cross-linked then baked at 80°C for 1 hour. During this period, 10 ml of 

Amersham Rapid-hyb buffer (GE Healthcare, USA) was heated to 42°C in hybridisation bottle (one 

bottle per probe).  After the baking step, the membrane was placed in the hybridisation bottle to pre-

hybridise for 20 minutes at 42°C.  The labelled probe was denatured at 95°C for 5 minutes then 

added to the Rapid-hyb Buffer. The membrane was left to hybridise with the probe, rotating 

overnight at 42°C. 

 

The Rapid-hyb Buffer was decanted. The membrane was washed with 50 ml of 5× SSC (Appendix 

A.9) and 0.1% SDS at room temperature for 10 minutes. This wash was repeated once more. The 

membrane was placed on a sheet of (polyvinyl chloride) PVC and exposed to an x-ray film for 13 

days (Fujifilm, Japan). The blot was developed using the FLA-7000 phosphor imager (Fujifilm, 

Japan) and the data was analysed using MultiGauge version 2.0 software (Fujifilm, Japan). 
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Table 2.6: A list of the probe sequences used to detect RNA in the Northern blots. 

Probe name Oligonucleotide sequence 

(5’       3’) 

 

5’ probe GAG 

 

GAGCCACCCCACAAGATTC 

 

 

5’ probe ENV 

 

TGGTGAAGTGAATTATATC 

 

 

5’ probe LTR  

 

CCACTGCTTAAGCCTCAAC 

 

 

5’ LNA probe GAG 

 

 

GAG+CCAC+CCCAC+AAGATTC 

 

5’ LNA probe ENV 

 

 

TGG+TG+AAG+TGAAT+TA+TATC 

 

5’ LNA probe LTR 

 

 

C+C+A+CTGCTTAAGCCTC+A+AC 

‘+’ indicates the LNA modifications
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Chapter 3: Results 

3.1 Hairpin sequence selection 

RNA interference (RNAi)-based gene therapy has the potential to treat viral diseases including 

Human Immunodeficiency Virus type 1 (HIV-1).  Due to the highly mutable nature of the HIV-1 

genetic sequence, a successful RNAi-based therapy needs to mimic the multiple inhibitor approach 

of currently used highly active antiretroviral therapy (HAART) to minimise the occurrence of viral 

escape (Ter Brake et al, 2006). In RNAi-based HIV-1 therapy, the most suitable RNAi triggers to 

utilise are short hairpin RNAs (shRNAs) (McIntyre et al, 2009). Prior to hairpin construction, anti-

HIV-1 shRNA sequences had to be identified from the previous literature. To maximise the 

therapeutic potential of the shRNAs, the following selection criteria was considered: the anti-HIV-1 

sequence had to be potent, the HIV-1 target sequence had to be highly conserved and different 

regions of the HIV-1 genome had to be targeted (Knoepfel et al, 2012). Three sets of potent anti-

HIV-1 sequences were selected from the McIntyre et al (2009) study where 96 shRNAs targeting 

conserved regions of NL4-3 HIV-1 were screened. Ten hairpins were shortlisted according to lack of 

off-targeting effects, silencing efficacy and the level of conservation of the target sequence 

(McIntyre et al, 2009). We selected the LTR 510-21, Gag 532-31 and Env 1428-21 target 

sequences (Table 3.1) (McIntyre et al, 2009). RNAi has great potential in antiviral gene therapy, 

particularly targeting HIV-1 with an array of potent shRNAs. We successfully identified three highly 

conserved HIV-1 target sequences that were incorporated into the shRNA design. 
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               Table 3.1: The HIV-1 target sequences used in this study. 

Sequence 

name 

Sequence Non-specific 

activity 

(100 minus 

increased 

activity) 

Conservation (%) 

LANL and Virco; 

LANL clade B 

Knockdown 

(% of fluorescence) 

 

 

Gag 532-21 

 

GGAGCCACCCCACAAGATT 

 

 

60 

 

70; 80 

 

59.3 

 

LTR 510-21 

 

CCCACTGCTTAAGCCTCAA 

 

 

70 

 

70; 100 

 

81.3 

 

Env 1428-21 

 

GAGAAGTGAATTATATAAA 

 

 

60 

 

73: 81 

 

92.7 
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3.2 Design of shRNAs 

A traditional shRNA consists of a sense strand that folds back on itself to a complementary 

antisense strand with the strands linked by a loop (top panel of Figure 3.1). The antisense (guide) 

strand is incorporated into the RNAi-induced silencing complex (RISC) to guide the multi-protein 

complex to target complementary mRNA. To prevent sense strand off-targeting, shRNAs are usually 

designed to favour the guide strand (Schwarz et al, 2003; Khvorova et al, 2003). An ideal shRNA 

design would guarantee guide strand incorporation into RISC with zero risk of inadvertent sense 

strand off-targeting. ShRNAs (with a 3’-arm guide strand) with stems shorter than 19 bp are not 

Dicer substrates and generally exhibit gene silencing levels weaker than their Dicer-dependent 

(stem length > 19bp) equivalents (Siolas et al, 2005). ShRNAs are typically designed with the guide 

strand within the 3'-arm (downstream of the loop) which can leave it vulnerable to inconsistent Dicer 

cleavage if the stem is ≥19bp long (Macrae et al, 2006; Gu et al, 2012). This trend in shRNA design 

is prevalent despite previous literature showing that shRNAs with stem lengths shorter than or equal 

to 19 bp with a 5’-arm guide strand can be more potent than their 3’-arm guide strand equivalents 

(McManus et al, 2002; Harborth et al, 2003; Ge et al, 2010). Mimicking the unusual structure of the 

Dicer-independent mature miR-451 is a potential solution for shRNA sense strand off-targeting 

(Section 1.4). 

 

 

For the purpose of this study, each shRNA was constructed with a 5’-arm guide strand, tetra loop (4 

nt) and 3’-arm passenger strand (Figure 3.1). All of the shRNAs were assigned the tetra loop 

“GAAA” (Vlassov et al, 2007). Vlassov et al (2007) observed that both 19 bp and 25 bp shRNAs 

exhibited greater silencing efficacy with the GAAA tetra loop compared to a CUCU loop.  Each 

hairpin was assigned a RNA Pol III promoter-terminating tail of 6 thymidine residues (Brummelkamp 

et al, 2002; Paddison et al, 2002). Both the 19mer and 25mer constructs were driven by the RNA 

polymerase III H1 promoter (Figure 3.2). 
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Figure 3.1: Relocation of the antisense strand to the 5' arm of the hairpin.  

The top panel shows the original configuration of a hairpin targeting LTR 510-21 (McIntyre, 2009). 

The bottom panel is an example of how the hairpins were designed. The antisense strand (blue) 

has been manipulated into the 5’ arm. All of the hairpins were given the tetra loop GAAA. The 

intended guide strand has a leading G or A residue for optimal H1 promoter-driven expression at 

the first position (bold, blue) at the 5’ end. 

 

To ensure that the 5’-arm (intended guide strand) would be loaded into RISC, an adenosine or 

guanidine (which is preferred by the H1 promoter for optimal hairpin expression) residue was 

inserted at nucleotide position 1 (indicated in blue and bold in Figure 3.1) (Li et al, 2007). With the 

A or G residue at this position, the 5’-arm strand was less thermodynamically stable (compared to 

the 3’-arm) and given a greater chance of being recognised as the guide strand (Khvorova et al, 

2003). A terminal 5’ mismatch of either the sense or antisense strand confers asymmetry strand 

bias but this rule only applies in shRNAs with a >19 nt stem (Ding et al, 2008) therefore the 

mismatch was inserted in the 5’ arm of both the 19mers and 25mers. Pairs of shRNAs were 
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designed to target the same HIV-1 gene. One hairpin had a 19 bp-long stem and the other, a 25 bp-

long stem (Figure 3.2). The hypothetically Dicer-independent 19mers were designed to mimic miR-

451. The 25mers were designed to serve as canonical shRNAs. 

 

 

Figure 3.2: Design of the PTZ-H1shRNA cassettes.  

The transcription of each shRNA is driven by an H1 promoter. Three sets of hairpins (a 19mer and 

25mer) were generated to target Gag (red), Env (purple) and LTR (blue). The terminating tail of 

thymidines (Ter) is at the 3’ end of each shRNA. 
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3.3 Molecular cloning of the H1-driven shRNAs  

The designed shRNAs were encoded into DNA expression vectors (Figure 3.2). shRNA expression 

cassette construction can be difficult due to the high presence of PCR mutations that negatively 

affect sequence verification (McIntyre and Fanning, 2006). In this study, we utilised the one-step 

PCR technique that was devised by Castanotto et al (2002) for the rapid synthesis of RNAi effector 

constructs. The use of a single oligonucleotide reduces the chance of PCR mutations occurring 

(Castanotto et al, 2002; McIntyre and Fanning, 2006). The H1-driven shRNA expression cassettes 

were generated using the following steps: 1) one-step gradient PCR to produce amplicons that each 

contain an shRNA downstream of an H1 promoter (depicted in Figure 2.2 in Section 2.2); 2) ligation 

of the shRNA amplicon into the vector plasmid pTZ57R/T and 3) screening of the produced clones. 

The band strength weakened as the annealing temperature was incrementally increased from 

55.5°C up to 63.5°C. Increasing the annealing temperature reduced non-specific binding resulting in 

a more defined amplified PCR product without the ±500 bp bands and larger amplicons in lanes 3 

and 4 of Figure 3.3. The annealing temperature selected for amplifying the shRNAs was 60.8°C. 

The ±100 bp bands indicate primer dimers. The PTZ-H1shRNA PCR products were cloned into the 

pTZ57R/T vector plasmid (Thermo Scientific, USA) as described in Section 2.4.1. The resultant 

pTZ-H1shRNAs clones were designated into the following categories according to target sequence 

and stem length: shGag19, shGag25, shEnv19, shEnv25, shLTR19 and shLTR25. The pTZ-

H1shRNA clones were screened using a SacI/BamHI double digest (Supplementary Figure B.1).  



Chapter 3 

51 | P a g e  
 

 

Figure 3.3: An example of a PCR gradient conducted for an shLTR25 amplicon.  

The O’GeneRuler™ DNA ladder (Thermo Scientific) served as the molecular weight ladder (lane 1). 

The shLTR25 amplicons in lanes 3-6 are the result of the same PCR protocol with varying 

annealing temperature (Ta) values used. The Ta values in lanes 3-6 are 55.5˚C, 58.1˚C, 60.8˚C and 

63.5˚C respectively. No PCR reaction or ladder was loaded into lane 2. The asterisk (*) indicates the 

presence of primer dimers. 

 

Using a single oligonucleotide and Taq polymerase to generate each pTZ-H1shRNA was 

problematic due to the amplification of false positive products with various mutations. The false 

positives were a result of strong secondary structure formation within the primer (McIntyre and 

Fanning, 2006). The strong secondary structure of some of the pTZ-H1shRNAs also caused the 

premature termination of sequencing reactions (Guo et al, 2005). In these cases, the pTZ-

H1shRNAs had to be sequenced using both forward and reverse primers and the processed 

chromatograms overlapped at the loop sequence. The chromatograms of the successfully cloned 

PTZ-H1shRNAs were viewed using the FinchTV application (Figure 3.4). The sequence-confirmed 

were shG19, shG25, shE19, shE25, shL19 and shL25. 
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Figure 3.4: Chromatogram of the sequenced positive shE25 clone.  

The sequenced clone is a 25mer shRNA targeted against Env; the hairpin is known as shE25. Blue: 

guide strand. Black: loop. Red: passenger strand. The chromatogram was viewed using FinchTV 

software.  
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3.4 Generation of reporter plasmids with target sequence inserts 

To determine the silencing efficacy of the PTZ-H1shRNAs, their ability to silence complementary 

target sequences had to be assessed. The interaction between the shRNA guide/passenger strand 

and its complementary target mRNA was reconstructed in a cell-based assay. The respective 

cognate target sequences were inserted into the 3’ UTR of the psiCHECK2.2 reporter plasmid. 

psiCHECK2.2 expresses two luciferases: Renilla and Firefly. This reporter plasmid when combined 

with a rapid dual-luciferase assay (described in Section 3.7), allows one to measure the degree at 

which the PTZ-H1shRNAs knockdown their respective target sequences. 

 

The target sequences LTR 510-21, Gag 532-31 and Env 1428-21 (McIntyre et al, 2009) were 

generated using single-stranded oligonucleotides that were arranged into their respective pairs to 

form DNA duplexes with sticky ends that are complementary to XhoI and NotI processed sites. The 

double-stranded target sequences were each inserted into a linearised vector (psiCHECK2.2) with 

ends that were digested by the restriction enzymes XhoI and NotI. The psi-target plasmids were 

cloned as described in Section 2.4.2 into psiCHECK2.2. A previously sequence-verified psi-target 

plasmid served as the positive control (lane 1, Figure 3.5). The EcoRV insert is approximately 500 

bp which is indicated by the positive control plasmid in lane 2 (Figure 3.5). The plasmid in lane 3 

was cut by in the large backbone, an approximately 600 bp band and a smaller insert that is not 

visible (< 400 bp). All of the EcoRV-screened positive clones (example in lane 9, Figure 3.5) were 

sequenced by Inqaba Biotech (Pretoria, RSA). The target sequences were viewed using FinchTV 

software (Figure 3.6). The target plasmids were: psi-Gag-AS, psi-Gag-SS, psi-Env-AS, psi-Env-SS, 

psi-LTR-AS and psi-LTR-SS (AS= antisense/guide strand target; SS= sense/passenger strand 

target). 
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Figure 3.5: Example of EcoRV-screening of the psi-target clones. 

The O’GeneRuler™ DNA ladder in lane 1 served as the molecular weight ladder. A positive psi-

LTR-AS clone with the correct insert size was identified in lane 9. The clone in lane 3 is a negative 

clone due to incorrect insert size. 

 

 

Figure 3.6: Chromatogram of sequence-verified LTR target plasmid, psi-LTR-AS. 

The LTR 510-21 (McIntyre et al, 2009) is highlighted beneath the black bar. Chromatogram viewed 

using FinchTV. 
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3.5 The 19mer shRNA RNAi products are larger than that of the 25mers  

One of most important ways to characterise the hairpins was to determine whether the 19mers and 

25mers were processed differently by the RNAi pathway. The most definitive technique available to 

both determine the size and expression level of RNA molecules was the combination of 

polyacrylamide gels and northern blotting (Calin et al, 2002; Lagos-Quintana et al, 2001). 

Additionally, this method is more sensitive than microarray analysis and more specific than RT-PCR 

(Taniguchi et al, 2001; Streit et al, 2009). This technique allows one to detect the RNA expression of 

genes of interest in a given sample (Alwine et al, 1977). Whole RNA was extracted from HEK293 

cells that were transfected with either pTZ-H1shRNAs or H1 Mock plasmid and a northern blot was 

used for analysis. The H1-driven mock vector (referred to as H1 Mock) served as a mock control in 

the dual-luciferase assays (Section 2.6.1). Radio-labelled DNA probes (Table 2.6) complementary 

to the sequences of interest were used to detect guide sequences. A U6 small nuclear RNA 

(snRNA) oligonucleotide probe was included to assess equal loading of the RNA samples. 

 

When processed, shG25 and shL25 each yielded a canonical ~22 nt product (Figure 3.7). The Env 

probe did not detect the 19mer or the 25mer. The H1 Mock samples had no signal that could be 

detected by any of the DNA probes. The evident U6 snRNA confirms that H1 Mock RNA was loaded 

into the polyacrylamide gel. The radio-labelled DNA oligonucleotide LTR probe detected a ~30 nt 

product shL19 product. None of the other processed 19mers were detectable. The detection levels 

of the LTR-targeting PTZ-H1shRNA pair was as follows: shL19= 5.3% and shL25= 4.7% (Figure 

3.7); the PSL value of the PTZ-H1shRNAs were normalised to their respective U6 snRNA PSL 

values. 
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Figure 3.7: Processing of the shRNAs detected by northern blot analysis.  

Radio-labelled probes were used. U6 snRNA-probing served as a loading control. 

 

Evidently, there is a difference between the canonical processing of the 25mers (shG25 and shL25) 

versus that of shL19 (Figure 3.7). To determine whether this phenomenon applied to other 19mers 

or was sequence-dependent and thus limited to sh19 (in this case), the sensitivity of the northern 

blot had to be enhanced. The GC content of the Env DNA oligonucleotide probe is lower than that of 

the Gag and LTR probes and therefore its melting temperature (Tm) is ~10°C lower (Tm values: 

Gag= 55.9°C; Env= 43.8°C and LTR= 53.6°C). An oligonucleotide probe with a lower Tm value 

exhibits comparably poorer thermal stability (than probes with higher Tm) during the hybridisation 

step in northern blotting (Válóczi et al, 2004). This is an additional factor to account for the poor 

detection of shE19 and shE25 RNA expression. 
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To detect a stronger signal from the processed products, a separate northern blot was hybridised 

with the more sensitive locked nucleic acid (LNA)-modified oligonucleotide probes (Válóczi et al, 

2004) that are listed in Table 2.6 (Section 2.8.2). LNAs are bicyclic, high-affinity RNA analogoues 

(Válóczi et al, 2004; Várállyay et al, 2007). These monomers have a chemical alteration in the 

sugar-phosphate backbone that locks the furanose ring in an N-type (C3’-endo) conformation due to 

the insertion of a 2’-O,4’-C methylene bridge (Válóczi et al, 2004). DNA oligonucleotides modified to 

insert an LNA at every third nucleotide have been shown to exhibit significantly increased mismatch 

discrimination and sensitivity in detecting small RNAs in northern blot studies (Várállyay et al, 2007). 

The LNA-modified oligonucleotide probes used in this study were designed by Prof Marco Weinberg 

and synthesised by Exiqon (Denmark). 

 

Band patterns similar to those in the blot probed with DNA oligonucleotides (Figure 3.5) were 

detected by the radio-labelled LNA probes but in more of the RNA samples (Figure 3.6). The 

increased thermal stability (compared to traditional DNA oligonucleotide probes) of the LNA 

oligonucleotide probes allows for a higher temperature during the hybridisation and wash steps with 

the exception of the Env probe. The stringency and protocol of the SSC washes for the LTR and 

Gag probes was altered to follow that conducted by Várállyay et al (2007). 

 

All three 25mer RNAi products were visualised; ~22 nt bands were detected by the LNA-modified 

DNA oligonucleotides for shG25, shE25 and shL25 (Figure 3.8). The band signal of the shE25 

product was only 2.6% of the total RNA according to the U6 PSL (photo-stimulated luminescence) 

value.  The poor detection of the shE19 product (~6.2% of its U6 PSL value) may be due to 

inaccessible target mRNA. A strong and stable (target mRNA) secondary structure would be difficult 

to probe or perhaps the hybridisation step may have altered the target mRNA secondary structure 

thus obstructing LNA probe:target binding. An alternative and more likely explanation for the fore-

mentioned observation is that the shE19 RNA is significantly degraded compared to the other 



Chapter 3 

58 | P a g e  
 

hairpins (indicated by the faint U6-probed band in Figure 3.8).  The altered SSC detergent 

stringency resulted in non-specific binding of the probes (large bands in Figure 3.8). Non-canonical 

processing of the 19mer hairpins was observed resulting in faint shL19, and shG19 (possibly 

shE19) ~ 30 nt products (Figure 3.8). The PSL values of the 19mer bands normalised to their 

corresponding U6 snRNA PSL values were as follows: shG19= 14.7%; shE19= 6.2% and shL19= 

4.6% (Figure 3.8). The bands larger than 30 nt (Figure 3.8) are a result of non-specific binding 

between the radio-labelled LNA oligonucleotides and non-target nucleic acids (Várallyay et al, 

2007). These non-target nucleic acids may be precursors of the pTZ-H1shRNAs. The shRNAs may 

be highly expressed but poorly processed by the RNAi machinery resulting in a build-up of shRNA 

precursors instead of mature shRNA product (Boudreau et al, 2009). The presence of these non-

specific bands is influenced by factors including the hybridisation temperature and the stringency of 

the washes (Várallyay et al, 2007). The lower the hybridisation temperature and stringency of the 

washes, the less specific the detection of small RNAs. The non-specific bands in the Env-probed 

membrane (Figure 3.8) are present due to low stringency hybridisation and washing conditions 

(Válóczi et al, 2004). The non-specific background in the Gag- and LTR-probed membranes is likely 

the result of the low stringency wash steps (Válóczi et al, 2004). 
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Figure 3.8: Northern blot analysis with radio-labelled LNA-modified oligonucleotide probes. 

 

The 25mers were all successfully processed by the endogenous RNAi pathway. The presence of 

the large ~30 nt RNA product in both the shG19 and shL19 samples (Figure 3.8) is evidence that 

the 19mers may have most likely been processed by an enzyme other than Dicer (Cheloufi et al, 

2010; Cifuentes et al, 2010).   

 

  

Non-specific 

bands 
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3.6 Knockdown comparison of the 5’ and 3’ arms 

The sequence of each PTZ-H1shRNA was selected from previous literature that had identified 

potent RNAi effectors (McIntyre et al, 2009). There are differences in the design of the shRNAs 

generated for this study and the McIntyre et al (2009) hairpins; the McIntyre et al (2009) shRNAs 

had varying 8 nt loops and the targeting sequence in the antisense strand (3’-arm). The shRNAs in 

this study all have the same 4 nt loop sequence and the antisense strand sequence repositioned to 

the 5’-arm of the hairpin.  

 

The Promega Dual-Luciferase Reporter Assay System offers rapid and sensitive quantitation of 

relative gene expression (Figure 3.9) (Elbashir et al, 2001a). The reporter plasmid psiCHECK 2.2 

has both Renilla (with a SV40 promoter) and Firefly (with a HSK TV promoter) luciferase. The target 

sequence was cloned into the 3’ UTR of the Renilla luciferase gene.  If the shRNA guide strand 

binds to its complementary sequence, the target mRNA is degraded and Renilla expression 

reduced. Renilla luciferase expression was knocked down by the respective hairpin thus diminishing 

its luminescence (Figure 3.9). In the absence of a silencing hairpin, the Renilla luciferase 

luminescence is unaffected. The firefly luciferase reporter gene is constitutively expressed and 

serves as an internal control to which the expression experimental Renilla luciferase reporter gene 

is normalised. Changes in luciferase activity are indicative of changes in shRNA activity. The degree 

of target knockdown is determined by calculating the ratio between Renilla and Firefly luciferase 

luminescence.  Forty-eight hours post transfection, the reporter assay was carried out using the 

Promega Dual-Luciferase Reporter Assay System following instructions.  



Chapter 3 

61 | P a g e  
 

 

Figure 3.9: Dual-luciferase reporter assay.  

The reporter plasmid psiCHECK 2.2 expresses both Renilla and Firefly luciferase. The target 

sequence is inserted in the 3’ UTR of Renilla. In the presence of a silencing shRNA, Renilla gene 

expression is negatively affected, resulting in diminished luminescence. The ratio between Renilla 

and Firefly luciferase activity reveals the silencing efficacy of the shRNAs. 
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To evaluate the silencing efficacy of the expressed PTZ-H1shRNA cassettes, they were each co-

transfected with a cognate target. Each anti-HIV-1 hairpin, a mock plasmid (H1 Mock) and a non-

HIV-1 targeting plasmid (negative control) were transfected in HEK293 cells in triplicate. An anti-

HBV shRNA (donated by Tristan Scott) served as the non-targeting plasmid. All of the values were 

normalised to the mock plasmid (H1 Mock). A rapid dual-luciferase assay was conducted 48 hrs 

post-transfection to quantitate target knockdown. 

 

The shG19 guide strand exhibited ~80% knockdown of its target but the passenger strand exhibited 

only 40% knockdown (Figure 3.10 A). Both guide and passenger strands of shG25 were potent, 

exhibiting ~90% and 80% knockdown respectively (Figure 3.10 A). The shE19 guide and passenger 

strands were both weaker than shE25 guide and passenger strands. The shE19 hairpin is active but 

its RNA is degraded (Figure 3.8) compared to its 25mer counterpart. The shE19 guide strand 

reduced its target expression down to ~50% and the shE19 passenger strand exhibiting ~25% 

target knockdown (Figure 3.10 B). The Env-targeting 25mer guide strand exhibited ~90% 

knockdown and the passenger strand, ~95% knockdown (Figure 3.10 B). The guide strand of the 

19mer LTR-targeting hairpin (shL19) exhibited greater silencing ability compared to its 25mer 

counterpart (shL19: ~90% knockdown; shL25: ~75% knockdown) (Figure 3.10 C). Poor activity was 

observed of the shL19 passenger strand with only 20% knockdown compared to the shL25 

passenger strand that exhibited ~80% target knockdown (Figure 3.10 C). The guide strand of the 

25mer shRNAs targeting Gag and Env respectively are stronger gene silencers than the shorter 

19mers (shE19 and shG19) (Figure 3.10 A and B). 
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Figure 3.10: Knockdown efficacy of the guide (Gag/Env/LTR target) and passenger strands 

respectively.  

The 19mer guide strands exhibited silencing efficacy. Both the guide and passenger of the 25mers 

were capable of significantly silencing their respective target sequences. All of the values were 

normalised to the H1 mock control (100 %). A) Red = Gag. B) Purple = Env.  C) Blue = LTR. 

Student’s t-test (n = 3, ** = p < 0.05). 

 

The 25mers were promiscuous silencers with both the 5’-arm and 3’-arm exhibiting ≥ 70% 

knockdown (Figure 3.10). The 19mers were able to silence the 5’-arm targets (Figure 3.10). These 

results combined with the non-canonical large ~30 nt 19mer RNA products observed in the northern 

blots (Figures 3.7 and 3.8) suggest that the 19mer passenger strand is inactive or degraded due to 

circumventing Dicer-processing similar to mature miR-451 (Cheloufi et al, 2010; Cifuentes et al, 

2010; Liu et al, 2013) (Figure 1.3 of Section 1.4). All of the 25mer guide and passenger strands 

were active but only the 19mer guide strands exhibited effective target knockdown. 
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3.7 The H1-driven shRNA expression cassettes inhibit expressed targets in a 

dose-dependent manner 

The sequences incorporated into the shRNA design have been previously shown to be potent RNAi 

effectors (McIntyre et al, 2009) but does the efficacy remain at low doses? To determine the 

effective concentration (EC) of each expressed shRNA, a dose inhibition response assay was 

conducted. To assess the efficacy of the generated shRNAs, each H1 hairpin cassette was 

transfected in triplicate into Huh7 cells in decreasing doses. A fixed concentration of psiCHECK2.2 

vector containing the target sequence and pCI-eGFP were included in each transfection. A 

breakdown of the dosages is described in Table 2.5 (Section 2.6.2). The degree of expression by 

pCI-eGFP was visualised by fluorescence microscopy and served as an indicator of transfection 

efficacy. A dual-luciferase assay was carried out 48 hours post transfection. 

 

Each expressed shRNA silenced its cognate target in a dose-dependent manner. At the highest 

dose of pTZ-shRNA (10 to 1; 400 ng pTZ-shRNA and 40 ng psiCHECK-target), shG19, shG25 

(Figure 3.11 A), shE25 (Figure 3.12 A) and shL19 (Figure 3.13 A) exhibited more than 80% 

knockdown of their respective targets. As in the Vlassov et al (2007) study, the majority of the 

25mer shRNAs exhibited a stronger inhibition. The LTR-targeting 19mer (shL19) was a consistently 

more effective silencer than its 25mer counterpart (Figure 3.13 A). 

 

According to the EC50 values, the shE19 and shL25 plasmids were the least potent of the set with 

comparably higher EC50 values of 56.6 ng and 45.2 ng respectively. The most effective hairpins 

were shG19 and shL19 with low EC50 values of 3.2 ng and 2.2 ng respectively. The most potent 

25mer was shG25 with an EC50 dosage of 4.7 ng.  
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In order for a short shRNA to have therapeutic potential, it needs to be potent and remain effective 

at low dosages. shE19 and shL25 exhibited poor RNAi efficacy at low concentrations. Potent PTZ-

H1shRNAs were identified: shG19, shG25, shE25 and shL19. These results suggest that shG19 

and shL19 are potential candidates for clinical testing. 

 

 

 

A      B 

 

Figure 3.11: Gag dose response assay.  

A) Huh7 cells were transfected with varying concentrations of the hairpins. Dose-dependent 

knockdown of the Gag target was determined from a dual-luciferase assay 48 hrs post transfection. 

The mock (0 ng shGag) value was set at 100% and the other dose values were relativised to the 

mock. One-way ANOVA (n = 3, ±SEM).  ** (p > 0.05). B) Inhibition dose response curve.  The EC50 

values for shG19 (solid squares) and shG25 (solid triangle) were 0.08 to 1 (3.2 ng) and 0.012 to 1 

(4.7 ng) respectively. Log10 x-axis values. 

A      B 
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Figure 3.12: Env dose response.  

A) The silencing efficacy of the expressed anti-Env shRNAs in varying concentrations. Huh7 cells 

were transfected and a dual-luciferase assay was conducted 48 hrs post transfection. All of the 

dose values were relativised to the mock (0 ng shEnv) values (set to 100%).  (n = 3, ±SEM).  B) 

Inhibition dose response curve. The EC50 values for shE19 (solid squares) and shE25 (solid 

inverted triangle) were 1.42 to 1 (56.6 ng) and 0.15 to 1 (5.9 ng) respectively. X-axis values in log10 

scale. 

 

A      B 

 

Figure 3. 13: Dose response of LTR target.  

A) Each hairpin pair was transfected into Huh7 cells in decreasing concentrations. A dual-luciferase 

assay was conducted 48 hrs post transfection. Values relativised to the mock (0 ng shLTR). (n = 3, 
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±SEM).  B) Inhibition dose response curve constructed with log10 x-axis values. The EC50 values for 

shL19 and shL25 were 0.06 to 1 (2.2 ng) and 1.13 to 1 (45.2 ng) respectively. 
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3.8 The PTZ-H1shRNAs do not compete with other exogenous RNAi effectors  

A series of assays was conducted to determine whether the endogenous RNAi pathway is 

negatively affected by the hairpins (Sections 3.10 and 3.11) or whether the generated hairpins can 

potentially affect other exogenous RNAi effectors (Section 3.9). A common concern about RNAi 

therapy is disrupting and over-saturating the endogenous miRNA biogenesis pathway (Grimm et al, 

2006; Boudreau et al, 2009). Exogenously expressed RNAi effectors can compete with one another 

for the endogenous miRNA machinery including the nucleus-exporting protein Exportin-5 and Dicer 

(Grimm et al, 2006; Boudreau et al, 2008). Several factors contribute to the saturation effect of an 

exogenously introduced RNAi effector including the concentration of the RNAi effector. Saturation is 

less likely if lower concentrations are used (Ely et al, 2008; Castanotto et al, 2007). 

 

A sensitive in vitro saturation assay was used to demonstrate the interaction between the shRNAs 

and an anti-HBV pri-miRNA and its cognate target. If the shRNA disrupted the function of the 

exogenously introduced miRNA, it would indicate a potential to saturate the endogenous RNAi 

machinery. The shLTR plasmid was generated by Saayman et al (2010). The plasmid is driven by a 

U6 promoter and targets the long terminal repeat (LTR) promoter of HIV-1. shLTR served as  the 

highly disruptive derepression control in the saturation assay. The exogenously introduced RNAi 

effector used in the same saturation assay was HBV-targeting miR-31/8 and its cognate target 

psiCHECK-8T-Fw (Ely et al, 2008). Three sets of controls were used to demonstrate possible 

effects the pTZ-shRNAs could have on the system. The non-repression control served as a mock to 

which the experimental values were normalised. The repression control (pri-miRNA and its target) 

exhibited normal target knockdown, serving as the positive control. The shLTR plasmid was 

expected to interfere with miR31/8 inhibition of its target psiCHECK-8T-Fw when transfected at high 

(100 ng) concentration thus serving as a negative control indicative of oversaturation of the 

endogenous miRNA pathway (Saayman et al, 2010).  Figure 3.14 depicts how the assay functions.. 
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Figure 3.14: Explanation of the saturation assay.  

a. Non-repression occurs when the exogenous miRNA (miR31/8) knocks down complementary 

target expression as per normal (normal target knockdown). b. shLTR represses miRNA activity, the 

miRNA silencing efficacy is negatively affected. 

 

The saturating effect of the shRNAs was assessed by co-transfecting each control plasmid or pTZ-

shRNA in varying concentrations (100 ng or 10 ng) in triplicate into Huh7 cells with a fixed 

concentration of an anti-HBV miRNA shuttle and its cognate target. A dual-luciferase assay was 

conducted 48 hours post-transfection to determine the repressive effects of each plasmid.  

 

The controls were as follows: the non-repression control, the repression control and the 

derepression control. The non-repression controls consisted of 100 ng pCI-eGFP, 100 ng anti-HBV 
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miRNA (miR-31/8), 100 ng or 10 ng H1 mock and pTZ57R to make up a final concentration of 0.8 

μg. The repression controls consisted of 100 ng pCI-eGFP, 100 ng HBV target (psiCHECK-8T-Fw), 

100 ng anti-HBV miRNA (miR-31/8), 100 ng or 10 ng H1 mock and pTZ57R to make up a final 

concentration of 0.8 μg. The derepression controls included the following: 100 ng or 10 ng shLTR, 

100 ng pCI-eGFP, 100 ng HBV target (psiCHECK-8T-Fw), 100 ng anti-HBV miRNA (miR-31/8) and 

pTZ57R to make up a final concentration of 0.8 μg. In both concentration sets, the pTZ-shRNA 

values were not significantly different (p > 0.05) from the repression control (Figure 3.15). These 

data suggest that the pTZ-shRNAs did not compete with the expression of the anti-HBV shuttle 

hence did not saturate the system. The validity of the system is called into question due to the 

unexpected poor repressive effect of shLTR (Figure 3.15).  

A       B 

 

Figure 3.15: Assessment of the repressing effect of shRNAs on an exogenous HBV-

expressing cassette.  

Huh7 cells were transfected with 100 ng or 10 ng of plasmid with a fixed concentration of an anti-

HBV cassette and its target. Values were normalised to the mock values. RC= repression (positive) 

control. DC= de-repression control. ns, p > 0.05. (n = 3, ±SEM). Red = Gag. Purple = Env. Blue = 

LTR. 



Chapter 3 

72 | P a g e  
 

 

3.9 The 19mers and 25mers induce a negligible interferon response compared 

to poly I:C 

When shRNAs are transfected into mammalian cells, they are processed into short interfering RNAs 

(siRNAs). Depending on the length of the siRNA, an interferon response can be induced (Bridge et 

al, 2003; Reynolds et al, 2006). Both the 25mers and 19mers should be too short to elicit significant 

interferon expression (Reynolds et al, 2006) but do the 25mers induce a greater interferon response 

compared to their shorter 19mer counterparts? To answer this question, an interferon response 

assay was conducted. The transfection of foreign RNAi effectors into cultured cells can activate an 

innate immune response. Long RNA duplexes (> 27 bp) are at risk of triggering off-target gene 

silencing and are generally considered to be potent inducers of an interferon response in HEK293 

and HeLa cells (Reynolds et al, 2006). To determine whether the 19mers elicit an interferon 

response at a significantly lesser degree compared to the longer 25mers, the interferon-β and 

GAPDH mRNA levels in PTZ-H1shRNA-transfected HEK cells were quantified via real-time PCR. 

The dsRNA analogue poly I: C served as the positive control and the mock plasmid pTZ-H1 +1 

served as the negative control. The greater the IFN-β: GAPDH ratio, the greater induction of an 

interferon response. The interferon-β induction triggered by the PTZ-H1shRNAs does not differ 

significantly between the short shRNAs (19mers) and 25mers (Figure 3.16). The LTR-targeting 

shRNA cassettes and shG25 elicited a negligible interferon-β response compared to the mock 

plasmid (Figure 3.16). The shG19, shE19 and shE25 plasmids induce a statistically greater 

interferon response (p < 0.05) than the mock plasmid. The interferon induction of all of the plasmids 

is significantly lower than that poly I:C (p < 0.05). The shG25, shL25 and shL19 hairpins induced a 

negligible interferon response compared to the H1 mock positive control plasmid (Figure 3.16). The 

IFN-β:GAPDH values (y-axis of Figure 3.16) were converted to a log10 scale to discern between the 

hairpins targeting against Gag, Env and LTR (supplementary Figure B.4). 
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Figure 3.16: The induction of the interferon response in shRNA-transfected cells measured 

by real-time RT-qPCR.  

HEK293 cells were transfected with the shRNAs. Interferon-β induction was determined by 

measuring the IFN-β mRNA concentration in whole RNA extracted from cells transfected with the 

respective shRNAs, H1 mock (negative control) or the Poly I: C positive control. Quantitative RT-

PCR was conducted to measure the concentration of IFN-β mRNA and normalised to the GAPDH 

values. (±SEM, n=3). The y-axis has been split to clearly indicate the scale of the shRNA and H1 

mock interferon response. 
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3.10 The shRNAs do not negatively affect cell viability 

RNAi triggers cannot be utilised if they have cytotoxic effects. The thiazolyl blue tetrazolium bromide 

(MTT) assay is a measure of metabolic dysfunction and cytotoxicity in transfected cells. This assay 

was used to determine whether transfecting the shRNAs into mammalian cells affected normal cell 

function.  Treatment with the DNA methyltransferase inhibitor 5-azacytidine (5-azaC) served as a 

positive control for cytotoxicity. Visual confirmation of cell viability was determined via light 

microscopy.  

 

An optical density reading is directly correlated with cell density (Mosmann, 1983). The optical 

density readings of all the shRNA-transfected cells do not significantly deviate (p > 0.05) from that of 

the untransfected control (Figure 3.17). The OD readings of the PTZ-H1shRNAs were as follows: 

shG19= 1.25; shG25= 1.16; shE19= 1.24; shE25= 1.19; shL19= 1.02 and shL25= 1.42 (Figure 

3.17). The OD reading of the 5-azaC-treated cells (0.553) was significantly lower (p < 0.01) than 

that of the untransfected cells that served as the negative control with an OD reading of ~1.5 in all 

three PTZ-H1shRNA pairs (Figure 3.17). 

 

These data confirm that the metabolic activity of the 19mer and 25mer-transfected cells is similar to 

that of the untransfected cells therefore the hairpins do not have any cytotoxic effects. The optical 

density reading of shL19 compared to that of the untransfected (Figure 3.17 C) may call the prior 

statement into question but the Dunnet’s post-hoc test is highly stringent and thus reliable.  
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A              B 

 

C 

 

Figure 3.17: Cytotoxicity assessment.  

HEK293 cells were transfected with an expressed shRNA ,treated with 5-azacytidine (5-azaC) or 

not transfected. One-way ANOVA of the untransfected control versus the hairpin-expressing 

cassette (solid line) or the5-azaC control (dotted line) with Dunnet’s post-hoc test. (n = 3, SEM). 

Red = Gag. Purple = Env. Blue = LTR. Ns= p > 0.05. ***=  p < 0.01.
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Chapter 4: Discussion 

Potent shRNAs have great therapeutic potential but pose safety concerns. shRNA can be 

considered for clinical testing if potent even at low dosages, its off-target effects are minimal, 

doesn’t negatively affect the endogenous RNAi pathway or normal cell function. The silencing 

efficacy of an RNAi effector is influenced by hairpin structure and sequence. This study focused on 

the effects of stem length on shRNA RNAi efficacy. Three sets of anti-HIV-1 vector-expressed 

shRNAs were designed for this study. In each set, a theoretically Dicer-independent 19 bp stem 

shRNA (19mer) and a Dicer-substrate 25 bp stem shRNA (25mer) was generated (Figure 3.2). All of 

the shRNAs had a small 4 nt loop, six thymidine termination tail and a H1 promoter to drive 

transcription. The RNAi processing, target knockdown efficacy, shRNA potency and adverse effects 

were determined and compared between the 19mers and 25mers. 

 

4.1 shRNA potency and stem length 

There are contradictory publications about the link between stem length and shRNA efficacy (Siolas 

et al, 2005; Vlassov et al, 2007; Ge et al, 2010). For years, the general consensus about shRNA 

potency was that there is a direct correlation between shRNA stem length and silencing efficacy; the 

longer the hairpin (≥ 27 bp stem), the more potent it can be (Kim and Rossi, 2004; Siolas et al, 

2005; Kim and Rossi, 2005). Siolas et al (2005) reinforced this rule in rational shRNA design by 

stating that Dicer-substrate shRNAs are more potent RNAi triggers. The study determined that 

expressed shRNAs with a stem length too short (< ~22 bp) to be recognised by Dicer, may still be 

incorporated into the RNA-induced silencing complex (RISC) but cannot be potent (Siolas et al, 

2005). 

 

An increasing number of reports observed the contrary, where 19 bp stem shRNAs with 4-10 nt 

loops proved to be potent RNAi effectors (Li et al, 2007; Vlassov et al, 2007; Ge et al, 2010). Ge et 
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al (2010) determined that 19 bp shRNAs are Dicer-independent. The study identified potent 5’-arm 

antisense hairpins with 19 bp-long stems and minimal loops but Ge et al (2010) were unable to 

determine how these non-Dicer substrates are processed by the RNAi machinery. 

 

A non-canonical Dicer-independent RNAi pathway was simultaneously discovered by Cifuentes et 

al (2010) and Cheloufi et al (2010) after identifying the small RNA miR-451 in zebra fish and 

mammals respectively. The two groups observed that miR-451 processing was Drosha-dependent 

but Dicer-independent with the Drosha product being loaded directly into Ago2 (Cifuentes et al, 

2010; Cheloufi et al, 2010). The distinct 17 bp stem and 4 nt loop of miR-451 allowed it to enter the 

non-canonical processing route (Cifuentes et al, 2010; Cheloufi et al, 2010; Yang et al, 2010).  

 

In this study, three sets of shRNAs were designed and generated to determine whether or not Dicer 

processing affects silencing efficacy.  A pair of shRNAs was produced for each target sequence: 1) 

a 25mer due to previous literature dictating that shRNAs with stems longer than 22 bp are 

recognised and processed by the ribonuclease Dicer, 2) a 19mer to mimic miR-451 which is 

processed by RNAi machinery other than Dicer (Ge et al, 2010; Cifuentes et al, 2010; Cheloufi et al, 

2010). The guide strands of all of PTZ-H1shRNAs produced for this study exhibited significant 

knockdown of their respective target sequences therefore all of the hairpins were effective silencing 

effectors. Short shRNAs were identified that remain potent at low doses. Northern blot analysis 

revealed that the RNAi machinery yields a large RNA fragment when processing 19mers (excluding 

shE19). 

 

  



Chapter 4 

78 | P a g e  
 

4.2 The 19mers have guaranteed strand bias with a single RNA strand 

In the canonical RNAi signalling pathway, dsRNA is processed by the endonuclease Dicer resulting 

in two active ~22 nt siRNA strands. One of the siRNA strands is incorporated into RISC where the 

sense strand guides sequence-specific knockdown of the target mRNA. The silencing efficacy of the 

5’-arm (guide strand) and the 3’-arm (passenger strand) of each expressed shRNA was compared 

via dual-luciferase activity. Target knockdown was expected from both the 5’-arm and 3’-arm of the 

shRNAs.  

 

Contrary to Siolas et al (2005), this study has successfully identified a 19mer (shL19) which is 

comparably more potent than its 25mer counterpart. Both arms of the 19mers and 25mers exhibited 

target knockdown but the 3’-arm of the 19mers is comparably weaker than the 3’-arm of the 25mers. 

The passenger strand (3’-arm) of shG19 was the most potent of the 19mers with ~40% knockdown 

of the target sequence but an shRNA needs to exhibit a minimum of 50% knockdown to be 

categorised as an active suppressor (McIntyre et al, 2009). We speculated that the observed strand 

bias towards the 5’-arm in the 19mers was due to an inactive or non-existent 3’-arm as observed in 

mature miR-541 (Cheloufi et al, 2010; Cifuentes et al, 2010). This consistent 5’-arm bias in the 

target knockdown data is a novel demonstration of expressed 19mers being processed differently 

(compared to the 25mers) by the RNAi machinery.  

 

In a study that was conducted concurrently with our own, a group of shRNAs with varying stem 

lengths and loop sizes and sequences were tested, similar results were observed (Liu et al, 2013). 

The 5’-arm of 19mers with 3-8 nt loops was highly suppressive of their cognate target sequence and 

the 3’ arm exhibited poor activity (Liu et al, 2013).  
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The detection of the large ~30 nt mature RNA products in the northern blots (Figures 3.8 and 3.9)  

suggests that shG19 and shL19 were successfully processed in a manner similar to mature miR-

451 (Cifuentes et al, 2010; Cheloufi et al, 2010). We’ve dubbed our 19mers “guide shRNAs” 

because the single, long mature RNA fragment most likely guides RISC to target complementary 

mRNA. This data (combined with the dual-luciferase knockdown observations) illustrates that our 

novel guide shRNAs offer a streamlined shRNA design with guaranteed strand bias to the 5’-arm. 

Most siRNA design tools focus on RNAi efficacy instead of specificity (Boudreau et al, 2011). This 

guide shRNA design circumvents the need for predictive algorithms to determine factors required for 

shRNA strand bias therefore simplifying the screening for highly effective shRNA sequences. 

 

 Liu et al (2013) conducted an Ago2 co-immunoprecipitation assay (to assess the interaction activity 

between AGO2 and the shRNAs) and revealed that Ago2 processes a 19 bp shRNA with a 5 nt loop 

into a ~33 nt RNA fragment. This observation supports the theory that my guide shRNAs were 

processed like mature miR-451; in a Dicer-independent and Ago-dependent manner. Ago2 cleaved 

the 3’-arm of the 19mer resulting in: 1) a long RNA product consisting of the 19 nt 5’-arm, the 

minimal loop and ~6 nt of the 5’ end of the 3’-arm and 2) the degraded 3’ end of the 3’-arm (Liu et 

al, 2013).  

The notable poor signal of the RNA products, particularly the 19mers, may be due to poor 

processing efficiency. shRNAs are generally poorly processed and thus yield an abundance of 

precursors (Boudreau et al, 2009). No unprocessed shRNA precursors were visible in the northern 

blot hybridised with DNA oligonucleotide probes and yet the RNA product bands were bold (strong 

signal). The poor signal detection may be due to the selection of a weaker RNA polymerase III 

promoter (H1) (Brummelkamp et al, 2002). Another factor to consider in the case of the 19mers is 

that circumventing Dicer-processing also bypasses interaction with the TAR RNA binding protein 

(TRBP); Dicer-TRBP binding is considered essential for RNAi function (Daniels et al, 2009). The 

potency of shL19 either contradicts the importance of Dicer-TRBP binding or is influenced by other 
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unidentified factors. To establish a greater understanding of the 19mers, testing in a Dicer-null 

environment is required. Additionally, in vivo testing will help further characterise this 19mer and 

help determine whether these minimal length guide shRNAs with small terminal loops have a future 

in clinical testing. 

 

RNAi activity in short shRNAs is sequence-dependent which may explain the poor silencing efficacy 

exhibited by shE19. A larger number of potent short shRNAs need to be identified in order to 

determine what characteristics generate potent minimal-length shRNAs. Ge et al (2010) speculated 

that the presence of an exposed 5’-phosphate in shRNAs with a 5’-arm-positioned guide strand 

enhances Ago2-binding. As interest in guide shRNA increases, the possible over-saturation of Ago2 

should be investigated. This alternative RNAi processing route has removed Dicer as a saturation 

bottleneck, leaving Ago2 (Grimm et al, 2006; Grimm et al, 2010; Börner et al, 2013). 

   

4.3 The guide shRNAs reduce off-targeting and maximise potency 

Potent shRNAs run the risk of inducing negative side-effects such as off-target silencing via miRNA-

like partial complementarity, saturating the endogenous RNAi pathway and inducing an interferon 

response (Saxena et al, 2003; Grimm et al, 2007; Rao et al, 2009). The saturation effects of highly 

expressed shRNAs are dose dependent and highly potent siRNA sequences can minimise off-

targeting if low doses prove to be effective.  To minimise the negative side effects associated with 

shRNAs, one must increase the potency of shRNAs in order to reduce the required dose (Bridge et 

al, 2003; Aagaard and Rossi, 2007). Both shG19 and shL19 were shown to be effective target 

suppressors at low dose values.  

 

Off-target RNAi activity is unpredictable and best to be avoided. Off-targeting can have cytotoxic 

effects (Fedorov et al, 2006). Off-target effects can result from as little as a 6 – 7 nucleotide match 
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between the seed region and target mRNA (Jackson et al, 2006; Birmingham et al, 2006). Off-target 

effects may be caused by inadvertent sense (passenger strand) strand incorporation into RISC 

resulting in incorrect target recognition (Schwarz et al, 2003; Khvorova et al, 2003; Wei et al, 2009). 

Alterations to siRNAs and shRNAs including the insertion of sequence and chemical modifications 

change the internal stability of the duplex in favour of ensuring that only the intended 

(guide/antisense) strand is taken up by RISC (Khvorova et al, 2003; Schwarz et al, 2003; Rao et al, 

2009). These modifications of siRNAs to potently reduce off-target effects include the use of 

asymmetric terminal overhangs, guide strands must be AU-rich at the 5’-end and GC-rich at the 3’-

end, a 3’ blunt end on the passenger strand combined with a dinucleotide overhang on the guide 

strand and nucleotide mismatches (Rose et al, 2005; Sano et al, 2008; Engels, 2013). Functional 

strand asymmetry in shRNAs can be achieved by ensuring that the sense strand only has 8 to 12 

C/G nucleotides, inserting a terminal 5’ mismatch pair, limiting the number of C/G sequences in 

tandem to five, inserting miRNA-like bulges (e.g. a G:U wobble in the seed region) or mismatches in 

the sense strand to inactivate the sense strand (McIntyre and Fanning, 2006; Ui-Tei et al, 2008a; 

Ding et al, 2008). Software can be used to determine the thermodynamic profiles of shRNAs to 

assess the stability of the intended guide strand (Ding et al, 2004; Gonzalez-Alegre et al, 2005).  

The choice of promoter and controlling shRNA dosage both significantly influence the saturation risk 

of shRNAs (Boden et al, 2003a; Rao et al, 2009). 

 

One of the main advantages of using synthetic RNAi triggers is that one can engineer the RNAs 

with minimal off-target effects; particularly sense strand off-target effects. The use of synthetic 

siRNAs to secure strand bias is an option that is not afforded in expressed RNA systems. The single 

RNA strand of our processed guide shRNAs has great potential to serve as an ideal alternative 

without the limitations novel synthetic RNAi activators face; such as high synthesis cost, increased 

cytotoxicity or sense strand off-target effects (Sibley et al, 2010). The northern blot and target 

knockdown data indicate that mature guide shRNAs do not have a passenger strand. This absence 

nullifies the risk of sense strand-related off-target effects and simplifies shRNA design. The 
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revolutionary design of the guide shRNAs can potentially improve the specificity of previously 

characterised potent traditional (canonically processed by the RNAi pathway) shRNAs. 

 

4.4 Insignificant interferon response 

The innate response system is an evolutionarily-derived trait for mammalian cells to combat viral 

invasion through stunted protein synthesis and/or cell death (Aagaard and Rossi, 2007). The 

introduction of double-stranded RNA in mammalian cells can activate an innate immune response. 

Bridge et al (2003) observed that the commonly used Pol III-driven shRNA expression system does 

is capable of inducing an interferon response. 

 

The protein kinase PKR is activated in response to the presence of dsRNAs resulting in the 

upregulation of IFN-β mRNA via the interferon signalling pathway (Sledz et al, 2003). It is unlikely 

that the shRNAs generated in this study activated PKR because dsRNAs need stem lengths ≥ 30 bp 

to be recognised (Kim and Rossi, 2007). 

 

Toll-like receptors that are expressed from the endosomes (internal vesicles) can recognise both 

single-stranded (ss) and dsRNAs (Kim and Rossi, 2007). Both Toll-like receptor 3 (TLR3) and the 

RNA helicases RIG-I and Mda-5 recognise and are activated by dsRNAs leading to the induction of 

type I interferon transcription (Kim and Rossi, 2007). The signalling pathways of TLR3, RIG-I and 

Mda-5 converge downstream in the induction of inflammatory cytokines and type I interferons 

including IFN-β (Sen & Sarkar, 2007). Real-time quantitative RT-PCR was used to determine the 

level of IFN-β upregulation induced by the shRNAs relative to the housekeeping gene GAPDH. 
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Liu et al (2013) speculated that Ago-dependent shRNAs may activate a comparably lesser 

interferon response than Dicer-processed shRNAs and thus be safer to use in therapeutic 

applications. None of the PTZ-H1shRNAs elicited an interferon response comparable to the dsRNA 

analogue, poly I:C.  The LTR-targeting shRNAs (shL19 and shL25) and shG25 each induced a 

negligible interferon response relative to the mock plasmid. The other shRNAs did elicit an 

interferon response greater than the mock plasmid but significantly less than poly I:C. 

 

Assessing the in vitro induction of interferon stimulated genes is not a completely definitive measure 

of immunostimulation or cytokine dynamics as the results can vary between cell lines but the assay 

serves as an initial guide. One of the most critical factors to consider with in vitro assessment of an 

immune response is the time period after which the supernatants are collected. Twenty-four hours 

was given in these assays due to IFN-β mRNA reaching its maximal induction at this time point. 

 

4.5 Negligible interference of the endogenous RNAi pathway 

Conventional shRNAs are substrates for the cellular transporter, Exportin-5 (Aagaard and Rossi, 

2007). Exportin-5 mediates the transport and stabilisation of both endogenous and ectopic pre-

miRNAs and shRNAs from the nucleus to the cytoplasm (Yi et al, 2003; Grimm et al, 2006). High 

expression of shRNA cassettes can result in oversaturation of the RNAi machinery (Exportin-5, 

Dicer, Ago2 incorporation into RISC) leading to cellular toxicity (Castanotto et al, 2007; Grimm et al, 

2007; Grimm et al, 2006). The link between cytotoxicity and Exportin-5 saturation was determined in 

a study where the negative saturation effects of shRNAs outcompeting miRNAs was reversed by 

the over-expression of Exportin-5 (Yi et al, 2005). Additionally, Grimm et al (2006) observed 

fatalities in mice that were treated with liver-specific shRNAs; liver toxicity/damage was shown to be 

the cause. Due to essential liver-specific miRNAs being out-competed by the highly expressed 

shRNAs, the endogenous RNAi system could not facilitate normal liver function (Grimm et al, 2006). 

The ectopic shRNAs and endogenous miRNAs each competed to be shuttled from the nucleus to 
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the cytoplasm by the transport factor Exportin-5; this lead to saturation of Exportin-5 (Grimm et al, 

2006). There is no significant metabolic difference between the 19mer and 25mer-transfected cells 

(Figure 3.13 in Section 3.8) leading one to speculate that the short shRNA (19mer) constructs may 

also transported from the nucleus to the cytoplasm by Exportin-5 or that neither the 19mers nor 

25mers were shuttled into the cytoplasm by Exportin-5.  

 

Börner et al (2013) suggested that saturation of Ago2 (rather than Exportin-5) by exogenous RNAi 

triggers leads to cytotoxic effects. The presence of Ago2 in the nucleus challenges the idea of the 

Exportin-5-dependent shuttling of the guide shRNAs from the nucleus to the cytoplasm. Active Ago2 

in the nucleus may retain its ability to “slice” therefore shRNA-processing could possibly occur in the 

nucleus (Gagnon and Corey, 2012). RNAi saturation effects may be due to exogenous RNAi 

effectors competing to interact with nuclear Ago2. Exportin-5 recognises the dinucleotide 3’ 

overhang characteristic of Drosha-processing, which the shRNAs expressed in this study do not 

have, removing Exportin-5 as the saturation limiting factor (Kim et al, 2004).  

 

RISC can assemble and function in the nucleus therefore RISC is a potential saturation factor 

(Robb et al, 2005). Expressed shRNAs also compete for downstream factors in the RNAi pathway. 

RISC saturation may occur as siRNAs, miRNAs and shRNAs alike bind to the Ago2 component of 

RISC in both the nuclear and cytoplasmic areas of a cell (Grimm et al, 2007). If shG19 and shL19 

are indeed Dicer-independent and Ago2-dependent, the guide shRNAs did not over-saturate Ago2. 

 

Key determinants that dictate shRNA cytotoxicity are shRNA length, sequence and dose (Grimm et 

al, 2009). Despite possessing different attributes, none of the shRNAs in this study caused 

significant cytotoxic effects. Promoter selection contributes to both shRNA efficacy and saturation 

effects (Grimm et al, 2009). The saturation assay results suggest that the shRNAs do not out-
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compete endogenous RNAi triggers.  Using the weaker H1 Pol III promoter instead of a U6 Pol III 

promoter can help prevent cytotoxic effects (An et al, 2006).These data show that selecting the 

constitutively active RNA polymerase III H1 promoter to drive the transcription of each of the 

shRNAs contributed to maintaining a balance between silencing activity and saturation. 

 

4.7 Potential antiviral combinatorial therapy  

Anti-viral gene therapy usually requires a combinatorial RNAi approach to initially reduce viral 

escape routes and negatively regulate viral replication (Grimm and Kay, 2007). Different studies 

have engineered strategies that include using the presence of naturally clustered polycistronic 

transcripts to coordinate expression of anti-HIV-1 miRNAs that most resemble the natural pre-

miRNA structures (Liu et al., 2008), small RNAs multiplexed (arranged in tandem) into shuttles that 

resemble the natural polycistron with substituted anti-viral  guide and complementary sequences 

(Chung et al., 2006; Boden et al., 2004), under the transcriptional control of a single or multiple 

promoters and the use of various small RNAs in a single therapeutic attack (DiGuisto et al., 2010).  

Highly specific and potent short shRNAs may be applicable for combinatorial RNAi therapy. It may 

be worth investigating whether guide RNAs can be multiplexed either in miR-451 shuttles or as 

shRNAs expressed in tandem.  

 

4.8 Future work 

To further validate my findings and to dispel any doubt about the validity of my results, I’d 

recommend that the northern blot analysis (Figure 3.8) be repeated with new RNA samples for each 

of the tested 19mer and 25mer hairpins. The in vitro assay results can be repeated in HIV-infected 

cells or in cells infected with a non-replicating version of HIV. An in vivo study using an appropriate 

animal model can also be conducted. Humanised mouse non-human primate models exist that 

mimic different stages of HIV infection (e.g. the humanised Rag2 -/- Ƴc-/- mouse model simulates the 



Chapter 4 

86 | P a g e  
 

progression of HIV replication and decreased CD4 count) (Neff et al, 2011; Hatziioannou & Evans, 

2012).   
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Chapter 5: Conclusion 

The ideal expressed vector-based shRNA system should be highly efficient with maximal target 

knockdown and minimal cytotoxic effects and off-targeting. Efficiency is determined by the silencing 

efficacy of the shRNAs. Although both shG19 and shL19 were shown to be highly effective, the 

shL19 hairpin was more potent than its 25mer counterpart therefore the guide shRNA design 

enhanced the RNAi efficacy of the shRNA sequence. shL19 is transcribed by a moderately powerful 

promoter that may limit potential Ago2 saturation and the 19mer is efficient at a low dose. With the 

single processed RNA strand, non-specific effects are minimised and specificity is highly ensured 

with potential sense strand off-target effects abrogated. The shL19 guide shRNA may be a prime 

candidate for therapeutic application.  

 

This study has generated novel data identifying a shRNA design that yields a single active RNA 

(guide) strand. Our guide shRNAs have completely altered shRNA design by abolishing sense 

strand off-target effects thus improving the shRNA safety profile and simultaneously enhancing 

shRNA specificity; essentially leaping over major hurdles in RNAi-based therapy. 
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Appendix A – Experimental protocols 

A.1 MinElute Gel extraction 

Reagents 

Qiagen® MinElute Gel Extraction kit 

Protocol 

The DNA fragment was excised from the agarose (Lonza, Switzerland) gel and weighed in a micro 

centrifuge tube. Three volumes of Buffer QG were added to 1 volume of gel (100 mg ~ 100 µl). The 

tube was incubated at 50°C for 10 minutes; the tube was vortexed every 2 to 3 minutes to mix. 

Once the gel slice was completely dissolved, one volume of isopropanol was added and the sample 

mixed. A column was inserted into a 2 ml collection tube. The sample was applied to the column 

and the DNA bound to the membrane of the column. The tube assembly was centrifuged for 1 

minute at maximum speed in a standard tabletop micro centrifuge (Mini spin centrifuge; F-45-12-11 

rotor)(Eppendorf, Germany). The flow-through was discarded and the column re-inserted into the 

collection tube. To wash the DNA, 750 µl of Buffer PE was added to the column. The tube was 

centrifuged for 1 minute. The flow-through was discarded and the tube assembly spun for an 

additional minute. The column was transferred to a sterile 1.7 ml micro centrifuge tube. The DNA 

was eluted out of the column membrane and into the tube by adding 50 µl of Buffer EB to the centre 

of the membrane. 

A.2 Chemically competent E.coli cells 

Reagents 

Transformation buffer 
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Transformation buffer constitutes the following: 100 nM CaCl2, 10 nM PIPES-HCl (Sigma, 

USA) and 15% Glycerol (Merck, Germany). Using NaOH, the buffer pH was changed to 7.0. 

The buffer was autoclaved at 121°C and 1 kg/cm2 for 30 minutes then stored at -20°C. 

Luria Bertani medium 

Ten grams of tryptone (Oxoid, UK), ten grams of sodium chloride (Merck, Germany) and five 

grams of yeast (Oxoid, UK) were mixed together in a one litre Schott bottle. Distilled water 

was added, making up the total volume to one litre The LB medium was autoclaved at 121°C 

and 1 kg/cm2 for 30 minutes. 

Protocol 

Two hundred millilitres of Luria Bertani medium was inoculated with 100 μl of DH5-α E. coli. The 

broth was left to incubate overnight at 37°C in a shaking incubator. Five millilitres of the inoculated 

broth was added to 45 millilitres of fresh LB medium; the culture was left to incubate at 37°C until its 

absorbance at 600 nm was 0.3 – 0.5. The cells were centrifuged at 3000 x g (5810 R centrifuge; A-

4-81 rotor) for 15 minutes and the pellet resuspended in 5 ml transformation buffer (Eppendorf, 

Germany). This was followed by 20 minute incubation on ice. The cells were centrifuged at 1000 x g 

for ten minutes and the pellet resuspended in 2 ml transformation buffer. Aliquots of 100 μl were 

prepared in sterile micro centrifuge tubes and stored at -70°C. 

A.3 Blue/white screening 

Reagents 

X-gal 

One hundred milligrams of X-gal (Sigma, USA) was dissolved in 5 ml dimethyl formanide 

(Sigma, USA). 

IPTG 
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One hundred milligrams of IPTG (Roche, Germany) was dissolved in 1 ml of water and filter 

sterilised 

1000× Ampicillin 

Five grams of ampicillin was dissolved 50 ml of 50% ethanol. 

Ampicillin-positive Luria Bertani agar plates  

Ten grams of tryptone, ten grams of sodium chloride, and five grams of yeast and six grams 

of agar were mixed together in a one litre Schott bottle. Distilled water was added, making 

up the total volume to one litre. The LB medium was autoclaved at 121°C and 1 kg/cm2 for 

30 minutes. In the case of LB-ampicillin media, 1 ml of 1000× ampicillin was added once the 

solution had cooled down. The medium was poured into Petri dishes and left to solidify at 

room temperature. 

Protocol 

One hundred nanograms of DNA was added to 100 μl of competent E. coli cells. The mixture was 

left on ice for 28 minutes. Forty microlitres of X-gal (Sigma, USA) and 8 μl of IPTG (Roche, 

Germany) were spread on the LB-ampicillin plates for the blue/white screening of the pTZ57R/T 

plasmids. The plates were left to incubate for 20 minutes at 37°C with the lids removed. Once the 

28 minutes were up, the cells were heat-shocked at 42°C for 90 seconds. The cells were left on ice 

for five minutes then spread onto the X-gal/IPTG LB-ampicillin plates using a glass spreader. The 

plates were sealed and left to incubate upside down (to avoid condensation on the cells) at 37°C 

overnight. 

A.4 Small scale plasmid isolation (mini prep) 

Reagents 

Roche High Pure Plasmid Isolation Kit 

Ampicillin-positive Luria Bertani medium 
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Protocol 

A single bacterial colony from a transformed ampicillin-positive LB plate was used to inoculate 4 ml 

of ampicillin-positive LB medium. The bacteria were left to culture overnight in a shaking incubator 

at 37°C. The bacterial cells were centrifuged at 4000 × g (5810 R centrifuge; A-4-81 rotor) for 10 

minutes (Eppendorf, Germany). The supernatant was decanted and the pellet resuspended in 250 

μl of suspension buffer (with RNase) and gently mixed by inverting the micro centrifuge tube 3 to 6 

times. Two-hundred and fifty microletres of lysis buffer was added to the mixture. After a five minute 

incubation period at room temperature, 350 μl of chilled binding buffer was added. After gently 

inverting the tube 3 to 6 times, the mixture was incubated on ice for 5 minutes. The tube was 

centrifuged for 10 minutes at maximum speed (5415 R centrifuge; F45-24-11 rotor) at 4°C 

(Eppendorf, Germany). 

A High Pure Filter Tube was placed in a collection tube (provided by the kit). The supernatant from 

centrifugation was transferred to the upper buffer reservoir of the filter tube. The tube was 

centrifuged for one minute at full speed (Mini spin centrifuge; F-45-12-11 rotor) in a standard 

tabletop micro centrifuge (Eppendorf, Germany). The filter tube was removed from the collection 

tube, the flow-through liquid discarded and the filter tube re-inserted into the collection tube. The 

cells were washed with 700 μl wash buffer II and centrifuged for 1 minute at full speed. The flow-

through was discarded. To remove any excess ethanol from the wash buffer, the High Pure tube 

was centrifuged for an additional minute. The collection tube was discarded and the filter tube 

placed in a sterile 1.7 ml micro centrifuge tube. One hundred microlitres of elution buffer was added 

to the upper reservoir of the filter tube. The entire tube assembly was centrifuged for 1 minute at full 

speed to elute the plasmid from the filter. 

A.5 Phenol chloroform extraction 

Reagents 

Phenol:choloroform  
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Protocol 

Phenol and chloroform are organic solvents that denature proteins and dissolve hydrophobic 

molecules. One tenth (of the initial volume) of 3 M sodium acetate (pH = 7) was added to the 

prepared plasmid DNA in a micro centrifuge tube. An equal volume of 50/50 phenol: chloroform 

(Merck, Germany) was then added. The tube(s) was briefly vortexed then spun at the maximum 

speed for 60 seconds at 4°C (Eppendorf 5415 R centrifuge; F45-24-11). The upper aqueous phase 

containing DNA was extracted and transferred to a fresh eppendorf tube. The organic phase and 

interphase containing cellular proteins and membrane was discarded. An equal volume of 

chloroform was added to the tube which was then vortexed and spun for 60 seconds at the 

maximum speed at 4°C. This step was repeated. After the third spin, 2.5 times the volume (of the 

aqueous phase) of isopropanol was added. The prep was left at -70°C for 30 minutes. The prep was 

then spun at the maximum speed for 30 minutes at 4°C. The supernatant was decanted and the 

pellet washed with 100 μl of 70% ethanol. It was then spun for five minutes at the maximum speed 

at 4°C. The supernatant was decanted and the residual ethanol removed by inverting the tubes on 

paper towel for 5 to 10 minutes. The pellet was resuspended in half the initial volume’s worth of 

deionised water. 

A.6 Medium scale plasmid (midi-prep) preparation 

Reagents 

Qiagen® Plasmid Midi Kit 

Ampicillin-positive Luria Bertani medium 

Protocol 

A single bacterial colony (from an ampicillin-positive LB plate that was transformed with sequence-

confirmed plasmid) was used to inoculate 25 ml of ampicillin-positive LB medium.  The bacteria 

were left to culture overnight in a shaking incubator at 37°C. The bacterial cells were centrifuged at 

4000 × g (5810 R centrifuge; A-4-81 rotor) for 15 minutes at 4°C (Eppendorf, Germany). The 
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supernatant was decanted and the pellet resuspended in 4 ml of Buffer P1 (50 mM Tris-HCl, pH 8.0 

and 10 mM EDTA) with 100 μg/ml RNase. Four millilitres of Buffer P2 (200 mM NaOH and 1% SDS) 

was added to the mixture and vigorously mixed by inverting the 15 ml tube 4 to 6 times. After a five 

minute incubation period at room temperature, 4 ml of chilled Buffer P3 (3 M KAc, pH 5.5) was 

added. After vigorously inverting the tube 4 to 6 times, the mixture was incubated on ice for 20 

minutes. The tube was centrifuged for 45 minutes at 4000 × g (5415 R centrifuge; F45-24-11 rotor) 

at 4°C (Eppendorf, Germany). The supernatant was transferred to a sterile 15 ml tube and 

centrifuged for 30 minutes at 4000 × g at 4°C. 

A QIAGEN-tip 100 was equilibrated by applying 4 ml of Buffer QBT (750 mM NaCl; 50 mM MOPS, 

pH 7.0; 15% isopropanol and 0.15% Triton® X-100) and leaving the column to empty by gravity 

flow. The supernatant from the prior centrifugation step was transferred to the QIAGEN-tip 100 

column and left to drain out by gravity flow. The column was washed twice with 10 ml of Buffer QC 

(1 M NaCl; 50 mM MOPS, pH 7.0 and 15% isopropanol). The DNA was eluted out of the QIAGEN-

tip 100 column and into a 15 ml tube with 5 ml of Buffer QF (1.25 M NaCl; 50 nM Tris-Cl, pH 8.0 and 

15% isopropanol). The DNA was precipitated with 3.5 ml of room temperature Isopropanol, mixed 

and centrifuged at 4000 × g for 45 minutes at 4°C. The pellet was washed with 2 ml of room 

temperature 70% ethanol and centrifuged at 4000 × g for 20 minutes at 4°C. The pellet was air-

dried for 10 minutes and the DNA resuspended in 150 μl of TE buffer (10 mM Tris-Cl, pH 8.0 and 

0.1 mM EDTA). 

 

A.7 Cell seeding calculation 

When seeding the cells for in vitro work, the following formula was used to achieve the desired 

confluency: 

Dilution factor to dilute cells in = Current surface area x current confluency (%)   

                                                   Desired surface area x desired confluency (%) 
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A.8 Mammalian tissue culture 

Reagents 

Dulbecco’s Modified Eagle Medium (DMEM) 

Ten grams of powdered DMEM (Life Technologies, USA) and 3.7 g of sodium hydrogen 

carbonate were diluted in 1 L of room temperature distilled water with gentle stirring. The pH 

was adjusted to 6.8 using NaOH. The medium was then filter sterilised. 

1000× Penicillin/Streptomycin 

One gram of streptomycin (Gibco, UK) and 0.61 g of penicillin (Gibco, UK) was dissolved in 

deionised water then filter sterilised.  

 

A.9 Northern blot hybridisation 

Reagents 

2 x RNA loading dye 

95% formamide, 0.025% SDS, 0.025% bromophenol blue, 0.025% xylene cyanol FF, 

0.025% ethidium bromide and 0.5 mM EDTA (Thermo Scientific, USA). 

10 × Tris Borate EDTA (TBE) buffer 

Fifty grams of Boric acid powder (Merck, Germany), 40 ml of 0.5 M EDTA (pH 8.0, 

Associated Chemical Enterprises, RSA) and 100 g of Tris (Sigma, USA) were dissolved in 1 

L of deionised water. The buffer was autoclaved at 121 °C and 1 kg/cm2 for 30 minutes. 

15% polyacrylamide gel (1:19 bis-acrylamide: acrylamide) 

Thirty grams of 8 M urea (Merck, Germany), 0.45 g bis-acrylamide (Merck, Germany) and 

8.55 g of acrylamide (Merck, Germany) were added together in a 100 ml beaker. Six 
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millilitres of 10× TBE buffer was added and the final volume made up to 60 ml with water. 

Thirty microlitres of TEMED (Sigma, USA) and 300 μl 1% Ammonium persulphate (Merck, 

Germany) were added before pouring the gel. 

20 × SSC 

Eighty eight grams of 0.3 M Tris-sodium citrate dihydrate (NA.3C6H507.2H20) (Merck, 

Germany), 175 g of 3 M sodium chloride (Merck, Germany) were dissolved in deionised 

water (made up to a final volume of 1 L). The pH was adjusted to 7.0 using HCl. 

 

A.10 Radioactive labelling of the probes 

Reagents 

TE buffer 

10 ml of 0.5 M Tris-HCl (pH 8.0, Sigma, USA) and 1 ml 0.5 M EDTA (pH 8.0, Associated 

Chemical Enterprises, RSA) were added to a 500 ml Schott bottle. The volume was made up 

to 500 ml with deionised water. 

G-25 Sephadex 

5 g of G-25 Sephadex (Sigma, USA) was added to 50 ml TE buffer and left to rotate 

overnight at room temperature. The dissolved Sephadex was spun at 4000 x g (5810 R 

centrifuge; A-4-81 rotor) for two minutes, the TE buffer decanted and replaced by 50 ml of 

fresh TE buffer (Eppendorf, Germany). This step was repeated two more times. 
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Appendix B - Supplementary Data 

 

The 19mers were identified by the presence of a 324 bp band and the 25mers, a 338 bp band 

(Figure B.1). PsiCheck 2.2 served as the positive control for both groups of PTZ-H1shRNA clones 

because it yielded the exact fragment sizes expected after restriction enzyme digest: (i) the 19mer 

positive control was digested with NotI and NruI and (ii) the 25mer positive control was digested with 

PvuII (Thermo Scientific, USA)(Figure B.1).  

 

Figure B.1: An example of the shRNA clone screening process.  

Lanes 1 and 12: O’GeneRuler DNA molecular weight ladder. Lane 2: NotI/NruI-digested PsiCheck 

2.2 served as the positive control for 19mer screening. Lanes 5-8: identified positive 19mer clones. 

Lane 13: PsiCheck 2.2 was digested with PvuII to yield the band pattern expected of positive 25mer 

clones. Lane 15: 25mer clone with the correct band size.   
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Figure B.2: SacI and BamHI digest of confirmed positive pTZ-shRNA clones.  

The digested clones were loaded onto an ethidium bromide-stained agarose gel, electrophoresed 

and visualised under UV light. The products in lanes 1-3 are 2857 bp and 327 bp in size. The 

plasmids in lanes 1-3 were shG19, shE19 and shL19, respectively. The molecular weight marker 

used in lane 4 was O’GeneRuler™ DNA ladder (Thermo Scientific). Lanes 5-7 are the digested 

GAG-, ENV- and LTR-targeting 25mers, respectively. The double-digest products in lanes 5-7 are 

2857 bp and 338 bp. The shift in product size between lanes 1-3 and lanes 5-7 is notable. 

     1           2           3          4           5         6          7     
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Figure B.3: Example of GFP expression.  

HEK293 cells were transfected with 9 μg of shE25 and 1 μg of pCI-eGFP. Forty eight hours post-

transfection, the cells were view under a fluorescence microscope. 
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A                         B                C 

 

Figure B.4: The induction of the interferon response in shRNA-transfected cells measured by real-time qPCR.  

HEK293 cells were transfected with a 19mer and 25mer pair targeting A) Gag, B) Env and C) LTR. (±SEM, n=3). The y-axis is in a log10 scale. 

Red = Gag. Purple = Env. Blue = LTR. 

 

 

GAG interferon response

H
1 

M
ock

sh
G
19

sh
G
25

P
oly

 I:
C

1

10

100

1000

10000

IF
N

- 
 m

R
N

A
/G

A
P

D
H

ENV interferon response

H
1 

M
ock

sh
E
19

sh
E
25

P
oly

 I:
C

1

10

100

1000

10000

IF
N

- 
 m

R
N

A
/G

A
P

D
H

LTR interferon response

H
1 

M
ock

sh
L19

sh
L25

P
oly

 I:
C

1

10

100

1000

10000

IF
N

- 
 m

R
N

A
/G

A
P

D
H


