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Abstract

The largely dominant adaptationist argument is currently used as the

framework within which hominid brain evolution is explained; however these

adaptationist explanations are inherently problematic and only suffice to ‘clutter’ our

knowledge of the possible causes of hominid brain evolution. This study addresses the

caveats observed in the fossil record and aims to assess the relative influence of

structural laws of form, phylogenetic constraints, and adaptive factors during the

course of primate and hominid brain evolution.  A combination of methods such as

variance partitioning, phylogenetic regression procedures and path analysis indicate

that constraints have played a critical role in the scaling attributes of the primate and

hominid brain. In particular, developmental constraints governing the scaling

attributes of the skull and body are shown to explain up to 50 % of the variation in

body mass whereas phylogenetic constraints are purported to have played a lesser role

(i.e. 0.8 -3.6 %). In addition, the scaling attributes of neural and non-neural

components of the cranial vault suggest a highly constrained suite of traits and

suggest that as much as 96 % of the variation in both brain mass and residual

endocranial space may be explained by correlated scaling with the cranial vault.

Constraints are observed to be far more pliable than traditionally thought – a feature

highlighted by intraspecific analyses of scaling attributes in humans. Low regression

coefficients typical reported for intraspecific curves are shown to arise during

development as greater variation in body parameters is allowed with advancing age.

Grade shifts in the scaling of brain and body size for primates and other mammalian

orders is also emphasised by this current study and it is argued that correlated changes

between the brain and body size may not necessarily impact upon the ‘complexity’ of
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the neural system as the functional integrity may be maintained via higher output

states initiated at certain levels of organisation such as at the level of the cortical area.

Although constraints should rightfully be given greater coverage in explanations

concerning hominid brain expansion, it is only through implementation of research

protocols that take a pluralistic approach to an understanding of the role of both

constraints and adaptation in the formation of the brain that our interpretation of the

likely mechanism for hominid brain expansion may be understood.
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Chapter 1

The Panglossian Paradigm Revisited: The role of non adaptive mechanisms in
hominid brain and body size evolution

1.1 Introduction

Probably no branch of biology is more charged with immoderate, emotive and

misleading statements than that which deals with man himself (Tobias, 1971).

Humans are a species obsessed with their own uniqueness. It is an obsession

that has seen us devote an increasing amount of both rational and esoteric discussion

towards understanding our place in nature. An obsession that has driven us towards

the ends of enquiry, all to answer a deceptively difficult question: What is it that

makes us human?

As an almost reflex like tendency, the relatively large human brain had been

historically isolated as definitive of our cognitive and technical abilities; however,

subsequent evidence would point towards the conclusion that the human brain is the

serendipitous by-product of an evolutionary trajectory that started some 7-8 million

years ago. Together with bipedality our hominid ancestors are surmised to be making

use of rationalization and intelligence as an adaptive advantage. It is this cerebral

adeptness and proficiency which has on the one extreme yielded the ilk of Einstein

and Bach and yet on the same account has spawned racism, genocide, terrorism and a

myopic potentially for self destruction. It is the intellect that sets humans apart from

the other animals and that has fuelled our ongoing obsession with humanity. But a

study of the human brain in isolation approximates only a limited set of answers and

in fact says nothing about the evolutionary history of hominids, after all humans are

primates and would be best investigated within the backdrop of this Order. But do we
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stand to learn anything from analyses of the brain in non-human primates, and just

what does it mean that gorillas and capuchin monkeys aren’t asking questions as to

their origins and how they came to be? What does it mean that despite the remarkable

similarity between chimpanzees and humans, we are as yet to come across a chimp

feverishly typing away on a laptop preparing a manuscript on the evolutionary

trajectory of the chimpanzee brain?

If the evidence were clear-cut and the answers obvious, then there would be no

need for any further discourse on the matter, but it is not. Indeed it is far from it as

there remain few scientific questions as decorated with unproven scientific

proclamations and held together by convenient omissions as that which attempts to

explain the dichotomy between ape and human mental capabilities. With this in mind,

it comes as no surprise that when a paleoanthropologist seeks to explore the possible

mechanism by which the hominid brain emerged, a reckless path is tread. Departures

from scientific rigour and a plethora of less parsimonious explanations has left the

scholar palpably confused as to the most likely means by which the human brain

evolved and thus an overall reassessment is necessary.

To date no completely satisfactory hypotheses have been proposed regarding

the adaptive or other evolutionary forces resulting in the modern human brain –

available hypotheses have met unresolved challenges or suffer from lack of

substantiating evidence (e.g. concerning the evolutionary link between increases in

brain size and language). Most scenarios present evolutionary increases in brain size

in an adaptive context – large brains allowed early ancestors, to overcome challenges

with cunning derived from a superior intellect. A popular notion in the 1950's was the

hypothesis that the obvious differences between hominids and apes was the making

and using of stone tools and that this was the most likely cause for brain expansion
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(Wynn, 1991). This hypothesis, encapsulated by the 'Man the Tool-maker' slogan,

explained the tripling of hominid brain size as being accompanied by the increasing

complexity of the tool industry. A decade later, this hypothesis was replaced by the

slogan 'Man the Hunter'; however, both hypotheses saw the engine of hominid brain

expansion as being the mastery of practical affairs (Lewin, 1999). More recently,

ideas have emerged which seek answers within the realm of primate social life (i.e.

‘Man the Social Animal’) and believe that the mastering of culture and language via

the underlying complexity of primate social alliances and networks, had allowed

hominids to remain the proverbial 'cognitive step' ahead of predators, prey and the

environment (Dunbar, 1992, 1998; Seyfarth & Cheney, 1992); however, most

discussions about hominid brain evolution do not give much consideration to primate

evolutionary history, or to related evolutionary factors such as primate

phylogenetic/developmental constraints.

 For example, in Fleagle’s 1999 textbook “Primate Adaptation and Evolution”,

there is only one paragraph and one figure (pg.307-308) out of the book’s 596 pages

discussing the issue of causal factors in brain evolution of primates. Fleagle cites the

“gossip hypothesis” of Dunbar (1992, 1998) that relates primate brain size and

relative neocortical size to average social group size, with the conclusion that

increases in brain size are driven by increasing complexity in social interactions,

rather than the need to remember food locales or to monitor the environment. First,

the model presented in Fleagle’s text is clearly adaptationist, suggesting that any

increase in brain size must have an adaptive basis. Second, this model focuses on a

primate adaptive trait – complex social behaviour- that is also invoked in hominid

evolutionary/adaptive models. Fleagle’s text may be considered to be somewhat

conservative in order to appeal to a more general audience, but it is notable that there
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is no consideration of alternate, non-adaptive models in primate brain evolution. What

if we examine a less conservative approach to primate and human brain evolution?

One of the more recent and bold attempts at synthesizing the various observations

made on primate and hominid brain evolution is the book “Evolving Brains” (Allman,

1999). The final chapter of the book is an attempt to synthesize a broad range of

observations and theories, including trade offs between gut and brain weight,

developmental observations, dietary considerations, retinal evolution, longevity,

parenting, metabolism, sociality, gender specific death rates, neural reactions to stress,

climatic variations, paedomorphy and even dancing with wolves – in the end

confusing rather than clarifying the evolution of the brain. Each of these factors is

coupled to different adaptations determined from analysis of “brain residuals”,

however, no clear synthesis emerges, and there is no attempt to include phylogenetic

contingencies, structural laws of form, or any other alternative factors.

Thus the adaptationist view, even at its most elaborate, fails to shed any

distinct or potent concepts regarding primate and hominid brain evolution and

generally fall into a chicken and egg argument. For example, in explaining the

‘Expensive Tissue Hypothesis’ Allman proposes that a higher quality diet with easier

digestion of food will lead to a smaller gut allowing more energy to be channelled to

the brain allowing it to become larger (Aiello & Wheeler, 1995). This in turn

enhances the ability of the organism to find more and higher quality food, resulting in

a higher quality diet and so on. But what came first, and what is the evolutionary or

selective stimulus in such a network? This kind of explanation involves adaptationist

theory, but is not causal, and therefore is not ultimately explanatory. In a somewhat

clearer attempt at adaptationist explanation, McKee (2000) has proposed the

“autocatalytic” feedback loop of human evolution, with such adaptations as dietary
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niche, bipedalism, manual dexterity, material culture and language all interacting with

each other and the brain to cause elaboration of the brain over time, a self-reinforcing

system.

In stark contrast to these adaptationist views, although not directly applied to

hominid brain evolution, is the recently proposed “developmental constraints

hypothesis” of Finlay and co-workers (Clancy et al., 2001; Finlay and Darlington,

1995; Finlay et al., 2001). These studies of brain morphology in extant mammals have

demonstrated those structural laws of forms in relation to brain evolution. These

observations, coupled with observations on brain and body weight scaling in primates,

demonstrate that the majority of brain evolution within the order primates might be

explained by structural laws of form and phylogenetic constraints, as both the internal

proportions and size of the brain are statistically significantly correlated to each other

or to body size respectively, and the form of the brain is clearly homologous across

primate species. The one clear exception to these laws of form is the relative brain

size of modern humans, being far larger than predicted for body weight; however, the

relative internal proportions of the human brain are exactly what would be expected

for a primate with a brain size averaging around 1300 grams.

So what do we make of these disparate views? Evolutionary theory, as

assessed in an open manner clearly indicates that there are three major influences on

the genesis of form, these being adaptation, phylogenetic history and structural laws

of form (Gould, 2000). The latter two are closely related, but the differences can be

examined if comprehensive data is available. While these three factors are by no

means mutually exclusive, explanations involving phylogenetic constraint or

structural laws of form as primary influences usually do exclude adaptationist

considerations since they are essentially non-selective mechanisms for change. It is
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the determination of the relative balance of these three influences that ultimately

provides the most informative evolutionary explanation for morphology. It is the aim

of the current series of studies to provide data that can contribute to the assessment of

the relative influences of the structural laws of form, phylogenetic constraints, and

adaptive factors during the course of primate and hominid brain evolution.

1.2 The rise and fall of Dr Pangloss

The central pillar of the neo-Darwinian modern synthesis is that of adaptation

by means of natural selection (Stebbins, 1966). This concept has served not only as a

unifying theme to evolutionary biology but also as a framework within which

differential survival may be viewed. Despite the undeniable success of the

adaptationist paradigm in making sense of various morphologies, it becomes apparent

to the biologist that its ‘generous’ usage to explain all evolutionary change must be

fundamentally flawed; after all, the unwritten rule in biology is that nothing is as

simple as we may come to expect.î”o emphasise this point Gould and Lewontin

(1979) critiqued the reflex like tendency of evolutionary biologists to explain all

morphologies in terms of inferred evolutionary adaptations. Under the influence of the

adaptationist program, every organic feature had a well constructed adaptive reason

for its occurrence, no matter how convoluted the justification. To Gould and Lewontin

(1979), this type of reasoning was equivalent to that of Voltaire’s Dr Pangloss, who

claimed a noble purpose to any situation, no matter how ridiculous the reasoning:

“Our noses were made to carry spectacles, so we have spectacles…Legs were clearly

intended for breeches and so we wear them” (Gould & Lewontin, 1979).
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What Gould and Lewontin coined the ‘Panglossian paradigm’ (a euphemism

for the adaptationist program), has also dramatically affected existing models of

primate brain and body size evolution, in which adaptive explanations have been

sought to explain the ‘apparent’ gradual expansion of the hominid brain. Many of

these adaptive explanations have at their core, the basic pitfalls of the adaptationist

arguments, which are excessive atomization, decoupling of biological elements or the

reliance on trade-off relationships between structures (see Allman, 1999 for

examples). As a result of this focus on adaptationist explanations, potentially

important aspects of evolution relating to ontogenetic constraints, phylogenetic

contingencies and structural laws of form have been marginalized (Gould &

Lewontin, 1979; Gans, 1989; Lauder & Liem, 1989). It is imperative that evolutionary

biologists heed a note of caution, so that adaptation and natural selection do not

simply become ‘evolutionary deities’ upon which all questioning is explained away.

But what motivated Gould and Lewontin’s (1979) searing attack on the

Panglossian paradigm? When tracing the historical path up until the publication of

this paper it is argued that a major contributing factor may have been the rise of

sociobiology in a large part cemented by E.O. Wilson (1975) and also the celebrated

popularity of Richard Dawkins’ extreme reductionist, yet narrowly centred genetic

approach, typified by his book “The selfish Gene” (Pigliucci and Kaplan, 2000).

Critics to sociobiology in its old form and its more contemporary disguise as

Evolutionary Psychology (e.g.  Ramachandran, 1997) have often levelled concern at

the less parsimonious and ‘just so’ approach of this discipline and Lewontin was no

exception (Lewontin, 1992). In accordance with the point raised by Lewontin (1992),

sociobiologists needlessly argue for the existence of adaptive reasons to explain

human biology and behaviour (i.e. they regard the persistence of a trait as being
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directly reflective of a hypothesis in favour of adaptation by means of natural

selection and use this as prime evidence to argue for it being adaptive).

Subsequently, the writing of Dawkins that highlighted the agents of selection

as being individual genes mediated by direct phenotypic responses became integral to

the extremely dominant adaptationist notions. As a consequence, when applied to

questions pertaining to human behaviour it opened itself to conclusions with

contentious socio-political implications. One may argue that one prime example of

this is the foil which it provided for the debate concerning the ‘mismeasure of brain

size’ and the impetus for proponents of hierarchical views of intelligence (see Gould

1981 for review Rushton & Ankney, 1996 for an example of this line of argument).

As sharply mentioned in jest by Pigliucci and Kaplan (2000), “The attack on

adaptationism…. would have been far less aggressive if the adaptive significance of

the variation in the color of snail-shells were the only thing at stake.”

What is apparent from the above interpretation and the plethora of rebuttals

from Gould and Lewontin following the “Spandrels” paper is that the authors had

distinct foresight for what impact a strong unilateral approach such as that advocated

by the sociobiologists would have on the public domain. However they (Gould and

Lewontin, 1979) also highlighted an important theoretical point and that was the

acknowledgement that alternate hypotheses be considered in order to understand the

aetiology of traits and that organisms are not components of optimized parts forming

a complete whole. This opened the door for the consideration of other factors in the

modelling of traits (e.g. genetic drift; exaptation; indirect selection and the case for

multiple adaptive peaks etc.) and an approach in which constraints upon optimization

could play a more pivotal role in the evolutionary process. Despite what appeared to

be a veritable coup d’état on what some would label a ‘theoretical despot’, Gould and
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Lewontin repeatedly reinforced the idea that adaptation by means of natural selection

has and continues to be an influential agent in the shaping of organisms. What they

merely wished to emphasis was that evidence is necessary to support the notion that a

trait is adaptive and a result of natural selection and that this may not be taken as an

untestable null hypothesis.

Whether intended or not, what ensued was the championing of an alternate

approach to account for the complexity of the evolutionary process (Gould, 2000).

Unfortunately, although constraints were increasingly acknowledged as playing a key

role in the evolutionary process, researchers were divided concerning the categories of

constraints. This point is emphasized by Antonovics and Tienderen’s (1991) plea for

consensus in the use of terminology encapsulated by the title of their paper:

“Ontoecogenophyloconstraints? The chaos of constraint terminology.” As highlighted

by Antonovics and Tienderen (1991) a survey of the literature revealed an enormous

range of adjectives applied to constraints such as: developmental (Wagner, 1988);

phylogenetic (Warburton, 1989); cytogeometric (Nanney et al., 1980); morphological

(Werdelin, 1987); physiological (Perrin and Rubin, 1989); ecological (Ziehe and

Gregorius, 1988; Shine, 1989); pleiotropic (Johnson, 1987); environmental (Sjogren

et al., 1988); and mechanical (Carrier, 1987) to mention a few. What has been perhaps

more disconcerting has been the early incongruent invocation of constraints as a non-

specific label sometimes referring to traits, levels of variation and even processes. To

lend clarity and uniformity to this problem, a number of suggestions have been made

(e.g. Antonovics and Tienderen, 1991; Leroi, et al., 1994; Burt, 2001). Although all of

these are relevant, in this current study the approach outlined by Burt (2001) is used,

which proposes a more unambiguous set of terminology to describe evolutionary

stasis and constraints. These terms are preferred as they present a more concise set of
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definitions that are free from the historical ambiguity associated with the traditional

set of terminology.  Burt (2001, pg. 515) defines evolutionary constraint as: “An

evolutionary pattern in which a character fails to change in an adaptive manner due to

preventative factors or mechanisms”.  If the various data points examined do change

in manner that is not consistent with this definition of constraint, then it is possible

that this or these changes represent an adaptive evolutionary scenario.  In this study

the use of variance partitioning methods with consideration of phylogenetic

relationships aids in the disentanglement of the various adaptive and non-adaptive

mechanisms of evolutionary change.

With this in mind, the following set of chapters designated by separate

research projects, aims to re-examine the evolution of brain size and structure in

primates, with a specific focus on hominids and the role of non-adaptive mechanisms

on the genesis of form. A comprehensive comparative data set documenting brain and

body size variation among living and fossil primates, including hominids is provided

and the data is used to re-evaluate patterns of hominid brain evolution and to

reconsider the role of both adaptive and non-adaptive evolutionary influences in

hominid brain evolution.  The subsequent chapters are divided as follows:

Chapter two addresses the question of body mass estimation from the cranium

using an array of regression procedures. Whilst making up a substantial component of

the data necessary for the final assessment of brain: body size allometry in fossil

hominids, this chapter also serves to introduce the reader to the existence of strong

correlative relationships between body mass and certain cranial variables. This scaling

relationship is argued to be indicative of a set of developmental constraints whilst

phylogenetic constraints are shown to play a lesser role in the channelling of brain and

body dimensions.
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In chapter three the relative occupancy of the skull is investigated by means of

magnetic resonance imaging and a regression equation is derived from which the

brain mass of fossil hominids may be accurately estimated from the available cranial

capacities. Endocranial volume is shown to overestimate brain mass by about 20%,

and via the use of variance partitioning procedures the case is made for the existence

of developmental constraints governing the relative occupancy of the cranial vault by

the brain.

Brain mass variation in Homo sapiens has long been the focus of attention for

numerous researchers. In chapter four, the reason for population and inter sex

differences in brain mass is investigated using bivariate and multivariate regression

models and the argument is made for no significant differences in brain mass between

the study groups. Changing scaling relationships during development (i.e. beyond the

age of three years) are shown to facilitate the introduction of greater variation in brain

mass and body size with age. It is believed that this ‘relaxing’/diminishing of the

brain: body constraint axis is responsible for the variation displayed in modern

humans and is reflective of an initial critical period in development (i.e. prior to

3years of age) when the proportional integrity of the human body is maintained to

prevent the influence of deleterious factors. These results indicate that constraints in

the brain and body axes can been ‘bent’ or even ‘broken’ and that decoupling of these

relationships may have been mediated by the developmental process to result in the

scaling relationship displayed within our lineage.

Chapter five is concerned with investigating scaling relationships between

organisms taken at different taxonomic levels. The case is put forth that at taxonomic

levels lower than that of the Order, primate groupings show similar brain: body mass

scaling relationships to that observed in certain Orders of mammals. The case is put
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forth that there may be different constraints on the evolution of neural systems and

that analyses must take phylogenetic effects into account as these may relate to the

timing and tempo of change at various organizational levels within the brain.

The final chapter attempts to summate the significant results obtained from the

previous chapters and to use this as a starting point from which a final assessment of

the role of constraints in brain and body size may be elucidated. A test of this is made

with reference to the newly discovered and contentious hominid fossil, Homo

floresiensis. This chapter ends with a call for pluralism between the relative

contributions of constraints and adaptations on the evolution of the hominid brain.
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Chapter 2

The use of cranial variables for the estimation of body mass in fossil hominids

2.1 Introduction

Body mass remains a key aspect of species biology and has been shown to be

intimately related to the energetic, ecological and physical properties of an organism

(Calder, 1984; Damuth and MacFadden, 1990). In addition, body mass provides a

measure with which to compare brain mass in organisms with very different body

sizes (Jerison, 1973; Bauchot & Stephan, 1961; Manger, 2005, 2006). The correct

determination of body mass is an essential precursor to comparisons of relative brain

size in fossil primates (Jerison, 1973, 1979; Radinsky, 1977).

Estimating body mass of fragmentary and incomplete fossil remains poses

serious challenges. In attempts to overcome these challenges, researchers have used

variables such as femur length or cheek tooth area as surrogates for body mass (e.g.,

Kay, 1975; Gingerich, 1977; Pirie, 1978; Gingerich & Schoeninger, 1979; Martin,

1979; Gould, 1975; Kay & Simons, 1980; Martin, 1980; Dechow, 1983; Jungers,

1985). Estimates of early hominid body mass have largely been based on postcranial

material (McHenry, 1974, 1992, 1994; Steudel, 1980; Jungers, 1985; Ruff et al.,

1997) as it has been shown that limb bones are more strongly correlated with body

mass than cranio-dental elements whose functional associations are not as direct

(Aiello & Wood, 1994).

However, commonly used postcranial dimensions such as diaphyseal breadths

have proved problematic in comparative settiV:s as they appear to be environmentally

sensitive to responses in mechanical loading (Ruff et al., 1993). Attempts at

overcoming this shortfall, has seen workers investigate the use of dimensions that are

less sensitive to environmental perturbations (e.g. femoral head breadth) or are not
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dependent on the assumptions of the mechanical association in the support of body

mass (e.g. multivariate regressions using stature and bi-iliac breadth, Ruff et al.,

1997). Whilst multiple regression using postcranial elements has proved an interesting

and useful method for estimating body mass, its utility is limited by the availability of

necessary skeletal elements to compute the equations. This has seen a continued

reliance on the use of simple linear regression procedures using preferred postcranial

elements to predict hominid body mass.

In this regard, McHenry’s (1992) estimates of body mass for fossil hominids

using either axial or appendicular material provide high correlation coefficients which

range typically between r = 0.92 to r = 0.99. Further estimates of body mass yielded

the following modal weights for male and female hominids of the genus

Australopithecus and early Homo: A. afarensis, 45 kg and 29 kg; A. africanus, 41 kg

and 30 kg; A. robustus, 40 kg and 32 kg; A. boisei, 49 kg and 34 kg; and H. habilis,

52 kg and 32 kg (McHenry, 1992). These estimates are consistent with those

published in a later article by McHenry (1994) and are equivalent to estimates

calculated by Steudel (1980).

However, while postcranial elements are still believed to provide the most

reliable and consistent estimates of body mass, a number of factors combine to reduce

the utility of these estimates. These include: a) the paucity of postcranial elements;

and b) the uncertainty that exists in most cases when assigning a species designation

to postcranial material (e.g. between early Homo and Paranthropus specimens)

[McHenry, 1992b]. Furthermore, although there is a general consensus about limb

proportions and locomotor strategies of early hominid species, there is also an

acknowledgment of the problems related to the use of these inferences (Grauz, et al.,
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1988),  plus the fact that cranio-dental elements are usually the source of diagnostic

features of early hominid taxa (Wood, 1992).

This study explores the utility of cranial fossil evidence for body mass

predictions. While cranial variables have been used previously to predict hominid

body mass (Kappelman, 1996; Aiello & Wood, 1994), and have yielded high

correlation coefficients indicative of the strength of predictability, these studies have

not taken into account the potential bias which may be introduced by the non-

independence of species points. For instance, the study by Kappelman (1996) was

concerned with investigating the predictive capability of orbital area on hominid body

mass. This analysis was based on LSR and yielded an r value of 0.987 derived from

18 primate species. Aiello and Wood (1994) under took a similar study to predict

hominid body mass from a sample of both Cattarrhini and Platyrrhini primates. Whilst

this study also yielded high r values (r > 0.96 for best predictor variables) it too as

with that of Kappelman (1996) had not taken phylogeny into account and thus the

reported r values still contained a portion of variance which the species share in

common as a result of phylogenetic autocorrelation.

Phylogenetic correction methods have grown in popularity in recent years as

the pitfalls of traditional regression methods, such as the assumption of randomness

and independent sampling, have been shown to be invalid for most biological

enquiries (Sokal & Rohlf, 1995). In addition experimental models have shown that

comparative analyses that do not take phylogeny into account incur higher type 1

error rates, sometimes as high as 44% as opposed to the usually assumed 5% in most

analyses (Harvey & Rambaut, 2000). The rationale behind the use of phylogenetic

methods is the empirical observation and theoretical prediction that closely related

species are more likely to share characteristics in common than are more distantly
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related species. This invalidates the use of traditional regression methods such as

LSR. By accounting for phylogeny, phylogenetic methods may hope to reveal the

‘true’ extent of developmental association between structures in the absence of

phylogenetic effects. These methods have proved, under various simulation studies, to

outperform traditional methods even when their assumptions are violated. In

particular, a simulation study by Martins et al (2002) has shown that Felsenstein’s

independent contrasts method gave the best performance when tested using computer

simulated evolutionary scenarios, even when weak constraints had been acting

throughout phenotypic evolution and that most phylogenetic methods yielded good

statistical performance in comparison to traditional procedures, regardless of the

details of the evolutionary models (Martins et al., 2002).

 This study attempts to build on earlier studies by applying the more ‘robust’

technique of Phylogenetic Independent Contrast Analysis (Felsenstein, 1985) and

investigating the strength of correlation between cranial dimensions and body mass

and asks the following questions: a) are cranial variables useful for body mass

prediction and if so which cranial variables offer greatest utility; b) what are the

effects of controlling for phylogeny on the strength of relationships derived between

body mass and cranial variables and what does quantifying the partitioned variation

explained by each variable reveal about the influence of body mass on these cranial

variables; and c) how do body mass estimates for fossil hominids derived from this

method compare with those of previous studies using either cranial or postcranial

variables.
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2.2 Materials and methods

The analysis is based on 259 primates representing 16 species (Table 1).

Sample sizes for the hominoid species ranged from two individuals for Pongo

pygmaeus to 180 individuals for Homo sapiens, whilst that for the non-hominoid

primates varied between one and 30 individuals depending on availability. Sample

sizes for each species are indicated in Table 1. Non-human primates were obtained

from the J.C. Middleton-Shaw Collection (School of Anatomical Sciences, University

of Witwatersrand, South Africa) and the comparative primate collection from the

Transvaal Museum (Pretoria, South Africa), whilst modern human skeletal material

was obtained from the Raymond A. Dart Human Skeletal Collection (School of

Anatomical Sciences, University of Witwatersrand, South Africa). Average body

masses were obtained for each species from the relevant sources (Table 1).

As an initial exploratory step eleven cranial variables that showed high

correlations in previous studies (Radinsky, 1982; Aiello & Wood, 1994) were taken

using conventional spreading and sliding callipers and were assessed using Lin’s

Concordance Correlation Coefficient (Lin, 1989). This method was used to assess

repeatability and the measurement error for each variable. Not all variables proved

useful in terms of their repeatability and only those with Pc values of 0.9 and above

were selected for further analysis as this ‘cut off’ point suggests at least a 90%

correlation between measurements taken at different time periods using the same

variable, instrument and observer (i.e. only a 10% error in repeatability) (Lin, 1989).

All variables were tested for normality prior to inclusion in the relevant analyses.

From these variables a list of nine measurements were taken on the cranium of each

specimen (Table 2) and two additional variables, namely foramen magnum area

(Fma) and orbital area (Orba), were derived using the relevant lengths and breadths.
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Martin (1990) maintains that this method remains efficient for an analysis of scaling

relationships and is the argument used by Aiello and Wood (1994) for not deriving

area estimates based on the area of an ellipse. In the current study area estimates

based on the area of an ellipse were included, as the authors believe that their

inclusion provides a more accurate reflection of the actual areas.

2.2.1 Traditional LSR and RMA regressions

All analyses were carried out on logarithmic (base 10) transformed mean body

mass and cranial measurements for each species as has become ‘standard’ technique

in most analyses, whilst the resulting regression equations for LSR and Reduced

Major Axis (RMA) were computed using PAST (Version.1.18; PAST © Hammer &

Harper, 1999-2005). As with Aiello and Wood (1994), two separate sets of z)alyses

were undertaken using conventional regression techniques (i.e. LSR and RMA), the

one based on a combined primate species sample (N=16 or N=12 where indicated)

and the other on a smaller set of hominoid data (N=5). The purpose of these sets of

analyses was to assess the possible differences in scaling in broader and narrower

taxonomic groups. In accordance with Smith (1993) the Smearing and Ratio

estimators were calculated for the LSR equations to allow for compensation of any

bias introduced due to logarithmic transformation.

2.2.2 Control for phylogenetic effects

Because previous studies have calculated correlation coefficients for

predicting body mass using individual species as data points and had not taken into

account the potential for bias introduced by the non-independence of these species,

the technique of independent contrast analysis (Felsenstein, 1985) was applied to the
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dataset as implemented using COMPARE (Version. 2.0 – CONTRAST., © University

of Oregon and E.P. Martins, 1997). This method compares sets of differences between

different nodes in a known phylogeny and computes values known as ‘contrasts’

which represent the difference between a pair of species or nodes in a phylogeny and

not individual species. Each contrast in the phylogeny is then ‘weighted’ by a factor

proportional to the amount of evolutionary time estimated to separate nodes. This

process adjusts for the different variances expected as the contrasts potentially

represent accumulative differences over differing amounts of time. The assumptions

of the ‘comparative method’ have been explored since the seminal publications of

Cheverud et al., (1985) and Felsenstein (1985). The arguments in favour of its usage

include the following points: a) the high type 1 errors incurred by traditional models

that do no take phylogeny into account (Harvey & Rambaut, 2000); b) the robustness

of the Brownian motion model even when violated (Garland et al., 1992; Garland &

Ives, 2000); and c) traditional methods have reduced statistical power to detect

associations and relationships among groups in data sets (Harvey & Rambaut, 1998;

Nunn & Barton, 2001). Additionally, it is important to remember that even traditional

comparative methods assume an underlying ‘star’ phylogeny (where each data point

radiates from a central origin) and that replacing this with a ‘hierarchical’ model

matches the way in which species are related and are compared.

The specific phylogenetic hypothesis used in this study is shown in Figure 1. It

is based on a composite phylogeny for the Order Primates provided by Purvis (1995).

The branch lengths for this figure were obtained from the scaled scanned image

published in Purvis (1995) and using the program TreeThief version 1.0. TreeThief is

an application for inputting phylogenetic trees, with branch lengths, into the computer

for use in other programs like PAUP and COMPARE as used in this study. The input
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method is essentially to draw the tree out by clicking on each node in turn on a

template of the scanned image, and then to use the provided scale bar to calibrate the

tree. In this method the branch lengths remain untransformed.Another consideration

in favour of the use of independent contrasts especially when comparing correlations

between structures within an organism is that associations with body mass are likely

to be high whether or not they have any direct causal connection with body mass. This

is true because any cross species variability of the subcomponents of mass is

necessarily constrained by the variability of mass itself and thus these variables are

not truly independent of one another which subsequently invalidate the use of the

traditional statistical tests applied to correlations. In this current study correlation

coefficients using phylogenetic correction were computed for comparison as well as

the estimated regression slopes of the contrasts for the 12 species sample.

In addition, we analysed the body masses for the species used in this study by

comparing their tip data (original data) and phylogenetic topology using a test for

serial independence (von Neumann et al., 1941). The test for serial independence

(TFSI) provides a measure of the degree of non-randomness in a sequence of

continuous characters. When observations are ordered sequentially along the tips of a

phylogeny, the test for serial independence can be used to test for either positive or

negative phylogenetic autocorrelation (Abouheif, 1999). Positive phylogenetic

autocorrelation presents as similarities in adjacent observations due to phylogenetic

descent whereas negative phylogenetic autocorrelation is a non-random pattern

attributed to convergence (Abouheif, 1999). The test for serial independence was

applied to both the original data (tip data) and to the absolute values of the

standardized independent contrasts (Felsenstein, 1985) to assess the degree of non-

randomness when using either traditional regression procedures or independent
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contrasts. Subsequently, frequency distribution plots of the observed mean C-statistic

for each technique relative to the distribution of randomized mean C-statistics were

drawn to provide a visual perspective of the distribution of randomness in the sample

and to indicate whether body mass is more suited to investigation using independent

contrast analysis or traditional regression techniques.

2.2.3 Quantifying the partitioned variation

Comparative analyses that take phylogeny into account have become widely

used in biology and usually consist of comparing either two or more traits across

species, although it works equally as well when comparing a trait and an

environmental variable (Harvey & Pagel, 1991). Several methods have been proposed

for this type of analysis (e.g. Felsenstein, 1985; Grafen, 1989; Diniz-Filho et al.,

1998). A controversy resulted from the discussion by Westoby et al., (1995) who

argued that comparative methods partition the explained variation of

environmental/ecological data by “allocating the maximum possible variation in a

trait to phylogeny, considering only the residual as potentially attributable to ecology”

(Westoby et al., 1995). These authors noted that the phylogenetic portion of the total

variance of a variable is not exclusive and may contain a phylogenetic component

related to ecology, a term called “phylogenetic niche conservatism” by Harvey and

Pagel (1991). This term also encompasses the shared attributes that related species

display and have acquired due to the tendency to occupy similar niches during

evolutionary history.

 Westoby et al. (1995) proposed to partition the variance of the data into three

portions a, b and c - where a is a part strictly due to environment, b is a part due to the

common influence of environment and phylogeny, and c is a part strictly due to
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phylogeny. Desdevises et al. (2003) proposed a method by which to calculate the

partitioning of variation in a phylogenetic setting and is the technique used in this

study as it not only partitions the variation into three components but also adds a

further fourth component known as fraction d which is the unexplained part of the

variation. The decomposition of the phylogenetic variation for the cranial variables

under study was undertaken in accordance with the procedural steps outlined by

Desdevises et al. (2003), where step 1 was the determination of the coefficient of

determination from the computation of a regression of Y on X, thus giving fraction a

+ b; step 2 was the determination of fraction b+c  by computing a multiple regression

of Y on all principal coordinates; step 3 was the determination of fraction a+b+c by

computing a multiple regression of Y on both X and the principal coordinates; and

step 4 was the calculation of the individual values for a, b, c and d by subtraction from

previous results, e.g. a = R2 (step 3) - R2 (step 2); c = R2 (step 3) - R2 (step 1). Principle

coordinate analysis is an ordination method similar to that of principle component

analysis and is aimed at finding the eigenvectors and eigenvalues of a matrix

containing the distances between data points. Eigenvalues provide a measure of the

variance accounted for by the corresponding eigenvectors/coordinates. All multiple

regressions and eigenvalues were calculated using SPSS version 11.0. As suggested

by Desdevises et al. (2003) the broken-stick model (Barton and David, 1956; Frontier,

1976) was abandoned for the use of only principal coordinates that were significantly

contributing to the modelling of the phylogenetic distance matrix. Negative

eigenvalues were sign corrected in accordance with the suggestions of Desdevises et

al. (2003). In this present study, fraction a+b has been denoted as representing the

amount of variation explained by a specific cranial variable, b+c the amount of
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variation explained by phylogeny, whilst the subcomponents a and c represent the

variation explained solely by a cranial variable and phylogeny respectively.

2.2.4 Assessment of cranial variables

The suitability of the eleven cranial variables as body mass predictors was

primarily assessed on the basis of the resulting r values - the levels of transformation

bias where useful equations should have relatively low and consistent bias estimates,

approximately less than 10% (Smith, 1993), and the percentage prediction error

(Smith, 1980, 1984) which should be relatively small (Aiello & Wood, 1994).  The

magnitude of the percentage prediction error was assessed by calculating the mean

percentage prediction error (MPE) in accordance with the technique outlined by

Aiello and Wood (1994).

2.2.5 Predicting Hominid body mass

On the basis of the above analyses, the most reliable body mass estimators in

both the hominoid and primate models were used (where available) to give

predictions of body mass for selected hominid species. Seven hominid specimens

were included on the basis of availability and the potential to provide an insight into

body mass for various species. These specimens are: STS 5, OH 5, MLD 37/38, STW

505, SK 48, La Ferrasie 1 and La Chappelle 1 which represent Australopithecus

africanus, Paranthropus boisei, Paranthropus robustus and Homo neanderthalensis.

High resolution plaster casts were used to measure the required intact cranial

dimensions for the La Ferrasie 1, La Chappelle 1 and the OH5 specimens, whereas 3

Dimensional digital casts of the South African material were reconstructed and

measured from Computer Topographical (CT) scans provided by the University of
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Vienna. The CT scanned images were reconstructed and analysed using 3D Doctor

(Version 4.0, © ABLE Software Corp. 1998-2006) which provides an array of

advanced 3D image processing, visualization and rendering software for scientific

applications. Measurements obtained using digital images were compared with those

taken from plaster casts using a digital calliper in a sub-sample of 5 individuals.

Comparable measurements proved to be only marginally different, with an error range

of between 3% and 5% and argued in favour of the use of either technique as they

were not significantly different from one another. Where needed, missing cranial

fragments were reconstructed by ‘mirroring’ opposing sides, as is the case in STW

505. Figure 7 provides a view of the digitally reconstructed specimens from which

measurements were subsequently taken.

Cranial measurements taken from hominid sources were then substituted into

the derived LSR equations (Table 3 and Table 4) for the best predictor variables. Best

predictor variables were selected on the basis of a combination of high predictability

(high r values in both traditional regression techniques and independent contrasts

analysis), low levels of transformation bias (useful equations displayed relatively low

and consistent bias estimates, approximately less than 10%) and small mean

percentage prediction errors. An estimate of species body mass was then computed by

calculating the average body mass estimate derived from using each individual

variable (e.g. as seen in Table 9, the estimated body mass using each separate best

predictor variable on STS 5, in the whole primate sample is: 28.64 kg using orbital

length; 25.54 kg using orbital area and 35.25 kg using upper facial breadth. Taking

the average of these three body mass estimates provides an overall body mass

estimate for Australopithecus africanus of 29.81 kg, as displayed in Table 10). In

cases where certain best predictor variables are missing, the average species body
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mass is calculated using the available body mass estimates calculated from the

remaining variables (e.g. for SK48 average species body mass in the whole primate

sample is calculated using orbital length and orbital area ).

2.3 Results

2.3.1 Traditional LSR and RMA regressions

In the analysis of the whole primate sample (Table 3), the most reliable

predictor variables as determined on the basis of the criteria stated in the methods

section are upper facial breadth (Ufb), orbital area (Orba; OrbaElp), orbital height

(Orbl), and bizygomatic breadth (Bizy). These variables have smearing estimates (SE)

of 1.07 or lower (i.e., 7% or lower underestimation), correlation coefficients of 0.96

or higher (r2> 0.92), and mean percentage prediction errors of 37% or less (See

Figures 2a and 2b).

The results of the hominoid-based analysis are displayed in Table 4.

According to this analysis, the best predictor variables are foramen magnum area

(Fma & FmaElp); biorbital breadth (bpor); orbital height (Orbl); orbital area (Orba;

OrbaElp) and biporionic breadth (Biorp). These variables display correlation

coefficients of 0.98 or above (r2> 0.96); SE of less than 1.02 (i.e., 2% or lower

underestimation) and MPE of 10% to 16%.

2.3.2 Control for phylogenetic effects

The resultant correlation coefficients using independent contrast analysis are

displayed in Table 5. Orbital height, orbital area (calculated as an ellipse) and upper

facial breadth display on average the strongest correlations with body mass (i.e., 0.99-

0.91 for the whole primate sample and 0.96-0.94 for the hominoid sample). The
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maximum length of the skull (Skul) displays the lowest correlation coefficient of

between 0.53 and 0.77 for the whole primate sample and hominoid sample

respectively. Estimated regression slopes using RMA and independent contrast

analysis (in the 12 species sample) indicate that there exists no statistically significant

difference (P > 0.05) between RMA and IC regression slopes for the variables

understudy and thus common slopes were computed (Table 5).

Results from the test for serial independence are displayed in Figure 4a and

4b. Results indicate that the original body mass data as used in traditional regression

procedures were significantly phylogenetically autocorrelated (Fig. 4a; P = 0.01; α =

0.05) but when applying the technique of independent contrast, the TFSI detected no

significant phylogenetic autocorrelation among the contrasts ( Fig. 4b; P = 0.51; α =

0.05 ).

2.3.3 Quantifying the partitioned variation

Using the partitioning method proposed by Desdevises et al. (2003), we

attempted to quantify what proportion of body mass is correlated with a specific

cranial variable, with phylogeny alone and jointly with a cranial variable and

phylogeny. Using the phylogeny in Figure 1, a minimum of two and a maximum of

three PCs were significant and retained in the 12 and 16 species models respectively.

PC1 and PC2 explained 73% and 14% of the total variance and cumulatively

explained 87% of the variation in the 12 species primate sample (See Tables 6). PC1,

PC2 and PC3 were extracted to represent the matrix when using 16 species and

explained 74%, 8% and 6% of the variation respectively, with a cumulative sum of

89% of the total variation being explained for the 16 species primate sample (See

Table 7). Table 8 gives a breakdown of the components of body mass explained by
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the various cranial variables. The range for the amount of variation in body mass

explained by a cranial variable alone lies between 40% and 49%, with upper facial

breadth (Ufb) explaining the highest percentage variation and maximum length of the

skull (Skul) the lowest. Component b which represents the portion of variation

explained by a combination of the cranial variable and phylogeny ranged between

43% and 46%, with orbital height and orbital area displaying the two highest values,

even though a very narrow range of variation is displayed for b. The unexplained

component of body mass variance included in the model ranges between 3% to 12%

with the greatest uncertainty in body mass variation belonging to maximum length of

the skull whilst orbital breadth and upper facial breadth showed the lowest values for

the component of unexplained variance. Figures 5 and 6 provide a visual breakdown

of the components as discussed above.

2.3.4 Predicting Hominid body mass

Table 9 gives the predicted masses derived using LSR from the whole primate

and hominoid based samples and derived from the best predictor variables. LSR was

used as no log transformation bias estimators exist for RMA. When using the criteria

described earlier for selection of best predictor variables, the following variables were

selected: upper facial breadth; orbital area and orbital length in the Whole primate

sample and orbital area; orbital length; foramen magnum area; biporionic breadth and

biorbital breadth in the Hominoid sample.

In accordance with these estimates, average body mass estimates for the

hominid species are as follows: a body mass of approximately 30 kg and 47 kg for

Australopithecus africanus based on STS 5 and STW 505 respectively; a body mass

of 52 Kg and 48 kg for Paranthropus robustus and Paranthropus boisei based on SK
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48 and OH 5 respectively; and a mass of approximately 75 kg for Homo

neanderthalensis based on La Ferrasie 1and La Chapelle 1. In the absence of

necessary best predictor variables for MLD 37/38, a hominoid model was used to

derive an estimate of body mass for Australopithecus africanus which yielded a

species body mass estimate of approximately 41 kg based on MLD37/38.
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TABLE 1 List of specimens used in study and the average female body weights

as obtained from relevantã]ources

Species Average Body Weights (g) N Source
Petterus fulvus * 1200 1 Jerison, 1973
Varecia variegata 3850 1 Nowak, 1999
Daubentonia
madagascariensis 2500 1 Nowak, 1999
Propithecus verrauxi * 3200 1 Jerison, 1973
Indri indri 6250 1 Nowak, 1999
Mircocebus murinus * 54 1 Jerison, 1973
Loris tardigradus * 195 1 Jerison, 1973

Callithrix jacchus 290 1
Aiello & Wood,
1994

Alouatta seniculus 6400 1
Aiello & Wood,
1994

Papio ursinus 27500 31 Nowak, 1999
Cercopithecus aethiops 5750 30 Nowak, 1999

Hylobates lar 5300 2
Aiello & Wood,
1994

Pongo pygmaeus 37000 2
Aiello & Wood,
1994

Pan troglodytes 31100 2
Aiello & Wood,
1994

Homo sapiens 49610.37 180 RDCS

Gorilla gorilla 93000 3
Aiello & Wood,
1994

(RDCS) Average body mass calculated from autopsy records from the Raymond Dart
Collection of Skeletons; N = sample size.
Species marked with asterix (*) were included in an analysis of the correlation between
body weight
and foramen magnum area (Fma) using 16 species.
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TABLE 2  List of variables measured and the definitions (Singh & Bhasin, 1968).

Variable Name

Variable
Abbreviatio

n Variable Description
Foramen magnum

length Fml Maximum distance between basion and opisthion
Foramen magnum

breadth Fmb
Maximum distance in the coronal plane between
the inner margins of the foramen magnum

Foramen magnum area

Foramen magnum area
(calculated as ellipse)

Fma

FmaElp

Product of foramen magnum length and breadth

Product of foramen magnum length and breadth

Bizygomatic breadth Bizy
Straight distance between two zygia i.e., the most
laterally placed points on the zygomatic bone

Max. Cranial length Skul
Straight distance between glabella and
opisthocranion

Upper facial breadth Ufb
Straight distance between two frontomalare
temporalia

Biorbital breadth Bpor Straight distance between two ectoconchion

Orbital  height (length) Orbl

Straight distance between upper and lower
margins of the orbital cavity, taken at a right
angle to orbital breadth

Orbital breadth OrbB
Straight distance between maxillofrontale and
ectoconchion

Orbital area

Oribtal area (calculated
as ellipse)

Orba

OrbaElp

Product of orbital breadth and orbital length

Product of orbital breadth and orbital length

Biporionic breadth Biorp Straight distance from porion to porion
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TABLE 3  Regression statistics to predict body weight from cranial variables

(Whole primate sample).

LSR         RMA  

Variable r n slope intercept
error
slope

error
int. SE RE MPE slope intercept

P Values
P (uncorr.)

Fml 0.94 12 2.63 0.67 0.30 0.38 1.13 1.05 47.99 2.79 0.46 4.62*10 -6

Fmb 0.94 12 3.30 -0.01 0.36 0.44 1.13 1.02 44.40 3.50 -0.25 3.81*10 -6

Fma 0.96 16 1.70 -0.25 0.13 0.30 1.17 0.90 51.09 1.77 -0.40 3.56*10 -6

FmaElp 0.95 12 2.89 -1.91 0.31 0.64 1.13 1.03 46.12 3.06 -2.25 3.36*10 -6

Bizy 0.97 12 2.93 -1.68 0.25 0.48 1.08 1.01 37.70 3.04 -1.88 3.39*10 -7

Skul 0.92 12 2.83 -1.38 0.38 0.73 1.19 0.99 53.78 3.08 -1.85 2.43*10 -5

Ufb 0.98 12 3.25 -1.99 0.22 0.41 1.05 1.03 27.28 3.32 -2.13 4.00*10 -8

Bpor 0.93 12 2.47 -0.47 0.31 0.56 1.17 1.06 51.88 2.65 -0.81 1.23*10 -5

Orbl 0.98 12 3.86 -1.62 0.25 0.36 1.06 0.96 29.58 3.77 -1.48 7.34*10 -8

OrbB 0.95 12 3.71 -1.18 0.37 0.52 1.11 1.07 39.71 3.89 -1.44 1.56*10 -6

Orba 0.97 12 1.89 -1.41 0.15 0.42 1.07 1.03 31.70 1.95 -1.57 2.77*10 -7

OrbaElp 0.97 12 3.79 -4.44 0.28 0.62 1.06 1.03 29.95 3.89 -4.66 8.63*10 -8

Biorp 0.96 12 3.57 -2.47 0.33 0.60 1.09 1.07 31.40 3.74 -2.74 7.92*10 -7

SE = Smearing estimate, RE = Ration estimate, MPE = Mean percentage error
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TABLE 4 Regression statistics to predict body weight from cranial variables

(Hominoid sample)

LSR         RMA  

Variable r n slope intercept
error
slope

error
int. SE RE MPE slope intercept

P  Values
P (uncorr.)

Fml 0.98 5 3.86 -1.24 0.46 0.69 1.02 1.04 15.98 3.94 -1.37 0.004
Fmb 0.97 5 3.77 -0.73 0.52 0.72 1.02 1.03 19.40 3.88 -0.87 0.005
Fma 0.98 5 1.93 -1.03 0.22 0.64 1.02 1.04 14.13 1.96 -1.14 0.003
FmaElp 0.98 5 3.82 -4.06 0.39 0.88 1.01 1.03 12.80 3.88 -4.19 0.002
Bizy 0.92 5 3.08 -2.04 0.75 1.58 1.07 1.05 34.32 3.34 -2.59 0.026
Skul 0.76 5 2.75 -1.27 1.37 2.88 1.23 1.09 66.25 3.64 -3.13 0.14
Ufb 0.98 5 3.91 -3.38 0.51 1.02 1.02 1.02 16.77 1.01 -3.57 0.004
Bpor 0.98 5 3.81 -3.29 0.41 0.84 1.02 1.03 16.19 3.88 -3.43 0.002
Orbl 0.99 5 4.45 -2.64 0.30 0.49 1.01 0.99 10.32 4.48 -2.69 0.001
OrbB 0.93 5 3.78 -1.31 0.89 1.37 1.07 1.04 30.20 4.09 -1.77 0.024
Orba 0.98 5 2.16 -2.27 0.23 0.73 1.02 1.01 12.89 2.19 -2.39 0.003
OrbaElp 0.99 5 4.34 -5.79 0.40 0.95 1.01 1.01 11.07 4.39 -5.92 0.002
Biorp 0.98 5 4.82 -4.92 0.52 1.02 1.02 0.96 15.07 4.91 -5.09 0.003
SE = Smearing estimate, RE = Ration estimate, MPE = Mean percentage error
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TABLE 5 Comparison of correlation coefficients and slopes obtained from

independent contrasts analysis (IC) and traditional regression techniques (TRD) for

the Hominoid and Whole primate sample.

Whole sample Hominoid sample

TRD IC TRD IC

Variable r
RMA
slope r slope r

RMA
slope r slope

Fml 0.94 2.79 0.88 2.91 0.98 3.94 0.95 3.79

Fmb 0.94 3.50 0.88 3.45 0.97 3.88 0.95 3.98

Fma 0.96 1.77 0.87 1.60 0.98 1.96 0.96 1.96

FmaElp 0.95 3.06 0.89 3.15 0.98 3.88 0.96 3.87

Bizy 0.97 3.04 0.92 2.96 0.92 3.34 0.84 2.72

Skul 0.92 3.08 0.77 2.79 0.76 3.64 0.53 1.79

Ufb 0.98 3.32 0.94 3.44 0.98 1.01 0.91 3.73

Bpor 0.93 2.65 0.89 2.96 0.98 3.88 0.96 3.87

Orbl 0.98 3.77 0.96 4.10 0.99 4.48 0.99 4.47

OrbB 0.95 3.89 0.90 3.54 0.93 4.09 0.89 3.46

Orba 0.97 1.95 0.95 0.95 0.98 2.19 0.96 2.08

OrbaElp 0.97 3.89 0.95 0.01 0.99 4.39 0.97 4.23

Biorp 0.96 3.74 0.94 3.71 0.98 4.91 0.97 4.50



34

TABLE 6 Total variance explained by PC analysis of the patristic distance matrix

obtained from the 12 species phylogeny displayed in Figure 1. Only the first two PCs

were selected as they cumulatively explained 87 % of the variance.

Total Variance Explained

8.775 73.124 73.124 8.775 73.124 73.124 7.301 60.845 60.845
1.686 14.050 87.174 1.686 14.050 87.174 3.160 26.330 87.174
.675 5.627 92.801
.401 3.339 96.140
.127 1.055 97.195
.103 .861 98.056

8.366E-02 .697 98.753
6.392E-02 .533 99.286
5.950E-02 .496 99.782
1.648E-02 .137 99.919
9.726E-03 8.105E-02 100.000
-3.25E-16 -2.712E-15 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.



35

TABLE 7  Total variance explained by PC analysis of the patristic distance

matrix obtained from the 16 species phylogeny displayed in Figure 1. Only the first

three PCs were selected as they cumulatively explained 89 % of the variance.

Total Variance Explained

11.848 74.048 74.048 11.848 74.048 74.048 6.590 41.190 41.190
1.385 8.659 82.707 1.385 8.659 82.707 5.326 33.285 74.475
1.007 6.294 89.000 1.007 6.294 89.000 2.324 14.525 89.000
.579 3.618 92.618
.452 2.822 95.441
.295 1.842 97.283
.112 .702 97.984

7.922E-02 .495 98.480
6.710E-02 .419 98.899
4.908E-02 .307 99.206
4.105E-02 .257 99.462
3.706E-02 .232 99.694
3.269E-02 .204 99.898
1.050E-02 6.560E-02 99.964
5.798E-03 3.624E-02 100.000
1.273E-16 7.957E-16 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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TABLE 8  Decomposition matrix of the percentage body weight variance

explained by each cranial variable

% Explained by cranial variable  %Unexplained
    % Explained by phylogeny  

Cranial variable a b c d
Body weight   

Biorp 46.70 45.38 1.72 6.20
Bizy 49.00 44.31 2.79 3.90
Blop 41.40 44.97 2.13 11.50
FmaElp 43.50 45.96 1.14 9.40
Fmb 43.50 45.69 1.41 9.40
Fml 42.80 45.97 1.13 10.10
Orba 48.10 46.17 0.93 4.80
OrbaElp 48.60 46.30 0.80 4.30
OrbB 45.30 45.64 1.46 7.60
Orbl 48.80 46.27 0.83 4.10
Skul 40.90 43.50 3.60 12.00
Ufb 49.70 45.93 1.17 3.20
Fma16sp 32.10 60.50 0.90 6.50
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TABLE 9   Body weight estimates for selected hominids

Hominoid sample Whole primate sample
Specimen Variable Body weight (kg) Body weight (kg)

Fma 26.19 -
Blop 28.50 -
Orbl 21.74 28.64
Orba 20.95 25.54
Biorp 28.51 -

STS 5
 
 
 
 
 Ufb - 35.25

Fma - -
Blop - -
Orbl 38.22 46.75
Orba 35.36 -
Biorp - -

STW 505
 
 
 
 
 Ufb - -

Fma 36.57 -
Blop - -
Orbl - -
Orba - -
Biorp 47.15 -

MLD 37/38
 
 
 
 
 Ufb - -

Fma 15.14 -
Blop 24.05 -
Orbl 33.77 41.98
Orba 44.07 62.62
Biorp - -

SK 48
 
 
 
 
 Ufb - -

Fma 26.43 -
Blop 68.02 -
Orbl 36.89 45.34
Orba 38.50 43.58
Biorp 58.41 55.38

OH 5
 
 
 
 
 Ufb - -

Fma 114.97 -
Blop 76.50 -
Orbl 59.25 68.41
Orba 46.38 51.32
Biorp 78.16 -

La Ferrasie 1
 
 
 
 
 Ufb - 63.42

Fma 97.01 -
Blop 63.18 -
Orbl 69.19 78.27
Orba 54.71 59.34
Biorp 93.61 -

La Chapelle 1
 
 
 
 
 Ufb - 71.72
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TABLE 10  Average body mass estimates using least square regression for

selected hominids

Specimen Average Body weight (kg) using LSR
Whole Primate Model
STS 5 29.81
STW 505 46.75
SK 48 52.3
OH 5 48.10
Hominoid Model
La Chapelle 1 75.54
La Ferrasie 1 75.05
MLD 37/38 41.86



TABLE 11  Comparative body weight estimates (kg) for A. africanus, P. boisei and P. robustus

Author
Anatomical

Region Variables Regression type A. africanus P. boisei P. robustus
McHenry,1988 Postcranial Femur shaft Inter-hominoid/intra-human 45.50 46.10 47.70

Hip Joint size Human  - - 35.30McHenry,1991
 

Postcranial
 Hip Joint size Ape - - 43.70

Hind Limb
Joint size Intra-human 35.50 41.30 -

McHenry,1992
 

Postcranial
 

Hind Limb
Joint size Inter-hominoid 44.80 59.00 -

orba Hominoid 33.35 53.37 -
horb Hominoid 26.45 41.70 -
bpor Hominoid 36.95 92.40 -
orba Simian 34.00 50.70 -
horb Simian 28.45 43.70 -

Aiello & Wood,
1994
 
 
 
 
 

Cranial
 
 
 
 
 bpor Simian 36.50 81.53 -

Fma Hominoid 31.38 26.43 15.14
Blop Hominoid 28.50 68.02 24.05
Orbl Hominoid 29.98 36.89 33.77
Orba Hominoid 28.16 38.50 44.07
Biorp Hominoid 37.83 58.41 - 
Orbl Whole primate (simian) 37.70 45.34 41.98
Orba Whole primate (simian) 25.54 43.58 62.62
Biorp Whole primate (simian) - 55.38  -

Current Study
 
 
 
 
 
 
 

 

Cranial
 
 
 
 
 
 
 
 Ufb Whole primate (simian) 35.25   -
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Figure 1 Phylogeny used for determining independent contrasts. Species marked

with an asterix (*) were omitted from analyses conducted on the 12

species sample. Diagram modified from Purvis (1995). MaBp –

Million years before present
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Figure 2  A. Plot of the mean percentage prediction error (MPE%) for the

cranial variables, based on whole primate sample. B. Plot of the

Smearing Estimate expressed as a percentage for the cranial variables,

based on the whole primate sample.  Biorp –  Biporionic breadth; Bizy

–   Bizygomatic breadth; Bpor –  Biorbital breadth; Fma –  Foramen

magnum area; FmaElp –  Foramen magnum area calculated as an

ellipse; Fmb –  Foramen magnum breadth; Fml – Foramen magnum

length; Orba –  Orbital area; OrbaElp – Orbital area calculated as an

ellipse; OrbB – Orbital breadth; Orbl –  Orbital height; SE% –

Smearing estimate expressed as a percentage; Skul –  Maximum

cranial length; Ufb –  Upper facial breadth.
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Figure 3  A. Plot of the mean percentage prediction error (MPE%) for the

cranial variables, based on hominoid sample. B. Plot of the Smearing

Estimate expressed as a percentage for the cranial variables, based on

the Hominoid sample. Abbreviations as in Figure 2.
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Figure 4 A. The test for serial independence applied to the data set of body

masses for the 12 primate species. The arrows indicate the position of

the observed mean C-statistic relative to the sampling distribution of

randomized mean C-statistics. The frequency distribution in (a)

represents the mean C-statistics calculated from the body mass data

along the tips of the phylogeny (original logged data used in traditional

regression procedures). B. The test for serial independence applied to

the data set of body masses for the 12 primate species. The arrows

indicate the position of the observed mean C-statistic relative to the

sampling distribution of randomized mean C-statistics. The frequency

distribution in (b) represents the mean C-statistics calculated from

independent contrasts.
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Figure 5 Plot of the percentage variance for the decomposition components

obtained from the cranial variables displayed in Table 8. (a+b) =

Percentage variance explained by the cranial variable; (b+c) =

Percentage variance explained by the phylogeny; (d) = Percentage

variance which is unexplained. Abbreviations as in Figure 2.
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Figure 6 Plot of the percentage variance for the decomposition components

obtained from the cranial variables displayed in Table 8.The letters a,

b, c and d are as described by Westoby et al 1995. a – Percentage

variance explained by cranial variable alone; b – Percentage variance

explained by both the phylogeny and the cranial variable; c –

Percentage variance explained by phylogeny alone; d – Percentage

variance which is unexplained; other abbreviations as in Figure 2.
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Figure 7  Selected South African hominid specimens a) STS 5; b) STW 505; c)

SK 48; and d) MLD 37/38 reconstructed using 3 D Doctor (Version

4.0, © ABLE Software Corp. 1998-2006).
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2.4 Discussion

2.4.1 Traditional LSR and RMA regressions

In the analysis of the whole primate sample the most reliable predictor

variables were upper facial breadth (Ufb), orbital area (Orba; OrbaElp), orbital height

(Orbl), and bizygomatic breadth (Bizy), whilst in the hominoid sample the best

predictor variables were foramen magnum area (Fma & FmaElp); biorbital breadth

(bpor); orbital height (Orbl); orbital area (Orba; OrbaElp) and biporionic breadth

(Biorp). From the analyses it is apparent that these variables are the best predictor

variables for the estimation of body mass as they present with high correlation

coefficients (r2> 0.92), low mean percentage prediction errors (in the range of 10% to

37%) and smearing estimates of less than 7%. Orbital area and orbital height are

selected in both the hominoid and whole primate analyses as one of the better

predictor variables for the estimation of body mass. This is not the first time that

orbital dimensions have proved useful in the estimation of body mass. Shultz (1940)

examined the relationship between body mass and both eye and orbital volume and

showed a general trend for the largest primates to have both the largest orbits and eyes

although both indicated negative allometry relative to body mass. Shultz’s (1940)

sample study consisted of both diurnal and nocturnal Cattarrhini and Platyrrhini

primates, a feature which would invariably affect an analysis of the orbit and its

contents. A subsequent reanalysis of Shultz’s data revealed a correlation coefficient of

0.96 between orbital volume and body mass, a result which has been confirmed by

further regression analysis performed by Kappelman (1996) indicating a correlation

coefficient of 0.98 between body mass and orbital area. In contrast, Delson et al

(2000) found orbital dimensions to be poor predictors of body mass in an analysis of

cercopithecoid postcranial and cranio-dental dimensions.
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 Plavcan (2003) also showed that primates exhibit general patterns of greater

facial versus neurocranial and orbital dimorphism and greater length as opposed to

breadth dimorphism. These findings add credence to developmental studies which

have demonstrated that dimorphic growth tends to be stronger in the anterior-posterior

components of the skull as opposed to the medio-lateral components of the skull

(Leutennegger & Masterson, 1989; Leigh & Cheverud, 1991; Ravosa & Ross, 1994) a

feature which possibly underlies the utility of orbital dimensions for body mass

estimation.

2.4.2 Control for phylogenetic effects

The resultant correlation coefficients using independent contrast analysis

reveal an overall adjustment in r values for the two samples. Results prove overall

consistency in the strength of relationship between body mass and cranial variables,

with most remaining highly correlated with body mass even after phylogeny is taken

into account. Once again, orbital dimensions (orbital height and orbital area) prove to

be highly correlated with body mass, with r values ranging between 0.95-0.99. As is

the case when using the traditional regression techniques, the maximum length of the

skull (Skul) displays the lowest correlation coefficient of between 0.53 and 0.77 for

the whole primate sample and hominoid sample respectively. The relatively low r

values, together with the high mean percentage prediction errors of 54% and 66% for

the whole primate and hominoid samples respectively, strongly argue against the use

of the maximum length of the skull to predict body mass for primate species. The

poor predictive statistics reported for this variable is indicative of the relatively large

amount of variation in skull length between primate species a point which is reiterated

by the analysis of the decomposed variance (Table 8).
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Using the test for serial independence, it is apparent that the original body

mass data as used in traditional regression procedures displays significant

phylogenetic autocorrelation (Fig. 4a; P = 0.01; α = 0.05) whereas the use of

‘contrasts’ sufficiently adjusts the data to remove any significant phylogenetic

autocorrelation (Fig. 4b; P = 0.51; α = 0.05 ). As shown in this analysis and previous

studies (Gittelman et al., 1996; Abouheif and Fairbairn, 1997), body mass is strongly

correlated with phylogeny and is ideally suited to analysis by means of independent

contrasts to reduce correlation due to common descent. Thus the technique of

independent contrast analysis is advocated as a preferred method of investigating

body mass regressions, but not for predicting body mass due to the lack of

transformation bias error estimates.

2.4.3 Quantifying the partitioned variation

The amount of variation in body mass explained by phylogeny alone from the

list of cranial variables is small and argues in favour of the use of cranial variables for

the estimation of body mass as only a small component of variance in body mass is

attributed to phylogeny alone (range between 0.80% to 3.6%). Once again orbital

breadth and orbital area together with upper facial breadth and foramen magnum

dimensions are most reflective of this diminished component of variance explained by

phylogeny alone.

It is interesting to note the changes in the various components when variance

partitioning is applied to the phylogeny in Figure 1 containing 16 species of primates

and tested for the variable foramen magnum area (Fma). What is noticeable is the

change in the amount of variance explained by foramen magnum area (only) in the 12

species sample as compared to the 16 species sample, and the paralleled change in the
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component of variance explained by a combination of foramen magnum area and

phylogeny. For the 16 species sample 60% of the variance in body mass is explained

by a combination of foramen magnum area and phylogeny as compared to 45%

displayed in the 12 species sample. This difference may be largely due to a reduction

in the amount of variation explained by the cranial variable alone as component c, for

the 16 species sample reveals that the amount of variance explained by phylogeny

alone has not changed as markedly and is still reflective of the usefulness of cranial

variables for body mass estimation.

2.4.4 Predicting Hominid body mass

Differences exist between the body masses derived from the hominoid based

equations and those using the whole primate sample, with certain variables showing

considerable variability. Larger bodied hominids display a greater range in predicted

body mass than that of smaller bodied hominids, e.g., Homo vs. Australopithecus. The

degree of variation in predicted body mass when utilising different variables raises the

question as to which mass estimates are most representative of the fossil hominids.

Differential scaling of fossil crania negates the option of simply choosing variables

with the highest predictive capability (Aiello & Wood, 1994). McHenry (1994)

proposes guiding the choice of appropriate predictive variable by comparing the

average mass predicted from cranial and post-cranial variables for each fossil taxon.

As this study wished to examine the utility of cranial elements solely without drawing

upon the somewhat problematic post-cranial material, this procedure was not

undertaken, and body mass averages based solely on the cranial elements were

calculated by averaging the estimates obtained from the best predictor variables (See

Table 10). The choice of equation when deriving estimates of fossil hominid body
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mass is often guided by phylogenetic closeness. In addition, our understanding of the

likely body proportions for the various fossil hominids may also guide our choice of

model. In this particular study it is proposed that equations derived from the whole

primate sample be used to model body mass for the australopithecines, whilst

hominoid based regressions are used when dealing with body mass estimates for

Homo. This is recommended as body mass estimates based on the whole

primate/simian model are largely consistent with those reported in the literature using

postcranial elements (See Table 11).

Resultant body mass estimates for the fossil hominids are comparable with

that obtained in previous studies. As seen in Table 11, estimates of species body mass

for Australopithecus africanus have been in the range of 35kg to 45kg as based on

postcranial dimensions derived from inter-hominoid/intra human regressions

(McHenry, 1988, 1992). Later estimates of body mass of Australopithecus (A.)

africanus using cranial dimensions, revealed that average body mass for the species

ranged between 26kg- 37kg (hominoid regressions) and 28kg-36kg (simian

regressions) [Aiello & Wood, 1994]. The body mass estimates for A. africanus

derived from this current study lie between 28kg-37 kg depending on the variables

and regression sample used. This is directly comparable with that observed in a

previous study by Aiello & Wood (1994) which also showed a similar body mass

range for A. africanus. Our average estimate of body mass for A. africanus based on

the preferred whole primate sample is approximately 30 kg as based on STS 5, whilst

MLD 37/38 and STW 505 produce average body mass estimates of 41kg and 47kg

respectively. This variation in species body mass when using different fossil

specimens may be indicative of sex differences within the species, a point which has

seen certain researchers assign two body mass estimates to the taxon, one based on a
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small morph of approximately 30kg and that for the larger morph of 41 kg (McHenry,

1992). For Paranthropus (P.) boisei comparative body mass estimates based on the

postcranial skeleton, typically range between 41kg and 59kg (McHenry, 1988, 1992).

Aiello and Wood (1994) had obtained average body mass estimates for P. boisei of

between 41kg-92kg (hominoid regression) and 43kg-81kg (simian regression) using

cranial dimensions. The range in average body mass for P. boisei in this current study

is 26kg-68kg based on the hominoid regressions and 43kg-55kg based on the

preferred whole primate regressions. The average body mass estimate derived from

this current study for P. bosei is approximately 48 kg. Postcranial elements have

yielded average body mass estimates for P. robustus within the range of 35kg-47kg

(McHenry, 1988, 1991). Cranial dimensions have also yielded similar average body

mass estimates using the preferred whole primate regressions, with body mass for P.

robustus ranging between 41kg-62kg and having a mean species body mass of 52kg

as based on SK 48. Body mass estimates for Homo neanderthalensis based on La

Chapelle 1 and La Ferrassie 1, both approach a species average of 75kg, which is

comparable to that observed in the literature for this hominid species and reinforces

the utility of the hominoid based regressions in this current study to predict species

body mass for later hominids.

2.5 Conclusion

These analyses have supported the usefulness of using cranial variables for the

estimation of average body mass in fossil hominids. The advantages of using cranial

variables are numerous but of primary utility is the fact that it provides (when

reasonably intact) both a measure of cranial capacity and average species body mass

from a single specimen. The use of both independent contrasts analysis and a method
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of partitioning the variance of body mass explained by each cranial variable reinforces

the idea that cranial variables are strongly correlated with body mass even when

taking phylogeny into account. Body mass estimates derived for fossil hominids using

certain cranial variables display consistency and are similar to those obtained from

post-cranial elements.
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Chapter 3

Quantitative magnetic resonance imaging of the endocranial volume in humans

and other primates: Predicting fossil hominid brain weights

3.1 Introduction

MRI based brain volumetrics is concerned with the analysis of relationships

between volumes and / or structural components of the brain (Caviness et al., 1999).

The versatility and reliability of this technique has seen its increasing application to

comparative neuroanatomy and the elucidation of evolutionary similarities or

dissimilarities between species (e.g. Rilling & Seligman, 2002; Semendeferi &

Damasio, 2000; Hopkins et al., 1998). In this regard, the endocranial volume serves as

a prime candidate for investigation as it makes-up a substantial amount of the baseline

data surrounding hominid brain evolutionary studies. The argument in favour of the

use of endocranial volumes as a source of data is the seemingly close association

between the brain and the skull, a point which has seen numerous researchers use

endocranial capacity as a proxy for brain size in both extant and extinct species (e.g.

Lee & Wolpoff, 2003; Elton et al’; 2001; Falk et al., 2000; Leigh, 1992; Hennenberg,

1987; Beals et al., 1984; Lestrel & Read, 1973; Tobias, 1971).

However there are numerous neural and non-neural structures found within the

endocranium. Apart from the brain, these include the cerebrospinal fluid, meninges,

subarachnoid cisterns, cerebral arteries and veins, cranial venous sinuses and the roots

and trunks of the cranial nerves (Romanes, 1996). Estimates of this non-neural

component of the endocranial volume have varied with some workers reporting a 10

% discrepancy between neural and non-neural structures (Brandes, 1937) and others

reporting values as high as 33.5 % (Mettler, 1955). When one looks at a human
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developmental series and ranks it according to age, the non-neural component is

shown to range from 6 % at birth to 20 % into early adulthood (Blinkov & Glezer,

1968; Tobias, 1994). This suggests that the amount of neural tissue expressed as a

percentage of endocranial volume is inversely correlated with age up to adulthood

(Tobias, 1994).

Despite the usefulness of these studies in providing us with an understanding

of the variation in the components of the developing human endocranium, several

unanswered questions remain. Of particular interest is the investigation of whether

endocranial volume is strongly and predictably correlated to brain weight after

accounting for the ‘residual’ non-neural component. If so, we believe that this may

render a reliable estimate of brain weight for fossil hominid specimens, thereby

facilitating a more accurate depiction of hominid brain evolution.

The present study will address the following questions concerning the

proportional occupation of the endocranium by utilizing magnetic resonance imaging

techniques: 1) What is the average measure of the non-neural relative to neural

component in the endocranium of humans and other primates; 2) Can endocranial

volume be used as an intermediate character for the estimation of hominid brain

weight; and 3) What does a quantitative assessment using variance partitioning reveal

about the strength of relationship between brain weight and endocranial volume.

3.2 Materials and methods

3.2.1 Subjects and MRI acquisition

For the human dataset, a total of 47 adult individuals were obtained from three

sources; a student volunteer group of 18 individuals between the ages of 18-25 (6

males and 12 females); 13 normal patients between the ages of 29-77 (1 male and 12



63

females) scanned on request by neurologists within the Johannesburg region; and a

supplementary dataset of 16 normal male subjects between the ages of 21-28 scanned

and obtained from the Karolinska Institute, Stockholm, Sweden (Roland et al., 2001,

EU-LSSM-CT-2003-504752). The sample was deliberately skewed towards

individuals between the age range of 20-35 years of age (See Figure 1) as previous

studies have shown that brain growth ceases in the early 20’s and that the human

brain may undergo atrophy and subsequent reduction in weight in advanced age

(Pakkenberg & Voigt, 1964; Chrzanowska et al., 1973; Dekaban &  Sadowsky, 1978;

Hartmann, et al., 1994), though this doesn’t appear to be the case for all primates

(Herndon et al., 1998).Thus this age range was focused on as it represented

individuals that were ideally suited for the purposes of this investigation. All subjects

consented to making their images available for this study. MRI scans covering the

whole brain were performed on a 1.5 Tesla whole body imager (Gyroscan Intera,

Phillips Medical Systems). The subjects were imaged in the supine position using a

routine protocol. A head coil was employed and a T1 3D acquisition series was

obtained to cover the entire head. Acquisition parameters were as follows: voxel

spacing [1.04/1.04/3]; dimensions [512, 512, 65] with a TR = 25ms; TE = 4.6ms; fov

= 30 with a 0 gap; a matrix of 288 with a reconstruction matrix of 512; a flip angle of

30 and a slice thickness of 3mm.

 The non-human primate dataset was obtained from the published data of

Rilling and Insel (1998) released under permission from the authors to the fMRI Data

Center and obtainable on request from www.fmridc.org. Scan acquisition parameters

are as indicated in the original article (Rilling & Insel, 1998) with a total sample size

of 29 specimens used in this current study, representing 11 anthropoid species. The

included species were: Saimiri sciureus (N = 2), Cebus apella (N = 2), Cercocebus
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atys (N = 3), Macaca mulatta (N = 3), Papio cynocephalus (N = 2), Hylobates lar (N

= 4), Pongo pygmaeus (N = 3), Gorilla gorilla (N = 2), Pan troglodytes (N = 4) and

Pan pansicus (N = 4).

3.2.2 Volumetric image analysis

Coronal T1 weighted images were pre-processed using MRIcro Version.1.39

(Rorden & Brett, 2000) whereby each image sequence was manually outlined for the

region of interest (ROI), in this case being the endocranial volume. The resultant

endocranial volume sequences were then saved in Analyze format and then imported

into ITK-SNAP Version. 1.4. RCI (Yushkevich et al., 2006), an open source

application which provides semi-automated segmentation of anatomical structures and

allows for the reconstruction of three dimensional volumes. Brain volumes were

determined for the specimens of interest by using a skull-stripping procedure (BSE)

which accompanies the neuron-imaging package Brainsuite2.01 (Shattuck & Leahy,

2001). This skull-stripping procedure was preferred to the built-in Brain extraction

Tool (Smith, 2000) which accompanies MRIcro on the basis that it has been shown to

yield better results for brain size (Fennema-Notestine et al., 2005).

Pre-processing facilitated the removal of any non-brain tissue (i.e. endocranial

space, meninges etc.) and provided images which were free of extra-neural tissue and

were exclusively representative of the brain volume. Both endocranial volume

sequences and brain volume sequences were then semi-automatically segmented in

ITK-SNAP to produce 3-D reconstructions of the endocranial volumes and brain

volumes. The difference between endocranial volume and brain volume, termed

endocranial space (ECS) and representing the non-neural component of the

endocranial volume was calculated by simple subtraction and used in subsequent
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statistical analyses along with the already determined values for endocranial volume

and brain volume for each individual. Brain volumes were converted to weight by

multiplying the volumes by the specific gravity of brain tissue (Stephan et al., 1981).

Weighted means for each variable were calculated per species in order to account for

the sometimes uneven representation of males and females for the samples (Sokal &

Rolf, 1969). This allowed for the calculation of mean values for each species which

were representative of the number of males and females which made up each sample

(See Table 12 and Table 13). Figures 9 and 10 provides an example of the procedural

outline used during image preparation and analysis.

3.2.3 Statistical analysis

3.2.3.1 Repeatability

Absolute volumes were calculated for each image sequence using the volume

and statistics function provided in ITK-SNAP. As a means of ensuring that accurate

volumes were being obtained, 10 image sequences were manually outlined using

ImageJ Version.1.3 (Abramoff et al., 2004). From the calibrated images, area

dimensions were calculated on each slice and these areas were summed and

multiplied by the slice thickness to provide a volumetric measure of the combined

regions of interest in the image sequence. Repeated measures of volume were also

taken on selected image sequences using both ITK-SNAP and ImageJ and these were

tested using Lin’s concordance correlation coefficient (Lin, 1989). This method was

used to assess the level of repeatability and the measurement error (intra-observer) for

each variable.
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3.2.3.2 Regression analysis

All variables were tested for normality prior to inclusion in any subsequent

analyses whereafter the data was logarithmically transformed (base 10) and

‘traditional’ regression equations using Reduced Major Axis analysis (RMA) were

computed using PAST (Version.1.18; PAST © Hammer & Harper, 1999-2005).

In order to take into account the potential bias introduced by treating species

as�Zon-independent data points, the technique of independent contrast analysis

(Felsenstein, 1985) was also applied to the dataset using COMPARE (Version. 2.0 –

CONTRAST © University of Oregon and E.P. Martins, 1997). As a method,

independent contrasts analysis operates by comparing sets of differences between

different nodes in a known phylogeny and computing ‘contrasts’ which represent the

difference between pairs of species/nodes in a phylogeny. Contrasts are then

‘weighted’ in proportion to the amount of time estimated to separate nodes. Numerous

arguments have been raised in favour of the use of independent contrasts but some of

the more pertinent points are as follows: a) lower type 1 errors compared to those

incurred by traditional regression techniques (Harvey & Rambaut, 2000); b) the

greater robustness of the Brownian motion model even when violated (Garland et al.,

1992; Garland & Ives, 2000); and c) the increased statistical power to detect

associations and relationships among groups (Nunn & Barton, 2001). The specific

phylogenetic hypothesis used in this study is shown in Figure 4 and is based on a

composite phylogeny for the Order Primates (Purvis, 1995).
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3.2.3.3 Variance partitioning

The advent of the ‘Comparative method’ has brought to prominence a number

of techniques that not only take phylogeny into account but are also widely applicable

to differing datasets. These techniques have facilitated the study of both ‘trait on trait’

comparisons and that of the effects of environmental variables on traits. (Harvey &

Pagel, 1991).However, an interesting point was raised by Westoby et al., (1995) who

argued that comparative methods investigating the interaction between a trait and an

environmental variable, may have an intrinsic bias by allocating the maximal amount

of variation in the trait as due to phylogeny and only considering the ecological

effects as being residual (Westoby et al., 1995). Accordingly it was argued that the

phylogenetic portion of the total variance of a variable is not exclusive and may also

contain a phylogenetic component related to ecology, called “phylogenetic niche

conservatism” (Harvey and Pagel, 1991). The mixed interaction between adaptation

and phylogenetic constraint poses a challenge to comparative techniques as it

represents the portion of variation simultaneously explained by both ancestry and

adaptation, an area which is largely not accounted for in comparative settings.

 Westoby et al.,  (1995) proposed to partition the variance of data into three

portions a, b and c - where a is a part strictly due to environment, b is a part due to the

common influence of environment and phylogeny, and c is a part strictly due to

phylogeny. Subsequently, a method was proposed to quantify and calculate the

partitioning of variation in a phylogenetic setting whilst also taking into account the

unexplained part of variation (Desdevises et al., 2003). This method is applied in the

current study and follows the procedural steps outlined by Desdevises et al., (2003)

and as described in a previous article by some of the current authors (Spocter &

Manger, 2006). Although the use of variance partitioning has been advocated for the
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investigation and quantification of the relative effects of adaptation and constraints on

the formation of traits, this method is not strictly devoted to this study. In fact when

using non-ecological variables the method may be used successfully to study the

effects of phylogeny and developmental/structural or functional components making

up the variables of interest. In this particular study it was decided to investigate the

strength of relationship existing between endocranial volume and its sub-components,

with the aim of quantifying the effects of developmental and phylogenetic effects.

This facilitated the dissection of the variance into four major components, namely: the

variance solely due to endocranial volume (developmental constraints); variance due

to phylogeny alone (phylogenetic constraints); variance due to a combination of

phylogeny and the effects of endocranial volume; and the variance designated as

unexplained by the model.

3.3 Results and Discussion

Endocranial volume inflates brain size by approximately 21% in both adult

humans and anthropoid primates. Endocranial volume is highly correlated with brain

weight and this relationship is used to derive an equation for the calculation of brain

weights for fossil hominid species (Brain weight (g) = 0.8177 * Endocranial volume

(cc) – 14.138). Analysis using variance partitioning reveals that endocranial volume

explains 96 % of the variation in both brain weight and endocranial space and is most

likely to be the result of developmental constraints acting upon the internal

components of the endocranium.
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3.3.1 Repeatability

A test of the degree of intra observer error using Lin’s Concordance

Correlation Coefficient revealed a Pc value of between 0.90 and 0.98, indicating a

percentage accuracy of 90 % for outlines of endocranial volume and 98 % for the

designation of brain volume. Cross validation results of endocranial volume

calculated by using a combination of regions of interest (ROI) outlined in MRIcro and

then segmented in ITKSNAP were highly confluent with those obtained using

ImageJ. The combination of the results summarised above and the accuracy provided

by the technique of magnetic resonance imaging, highlights the confidence which the

authors have in the techniques and the subsequent results obtained in this study.

3.3.2 Human dataset

The analysis of the human dataset shows an interesting range of variation (See

Table12). In particular, endocranial volume ranges between 1316 cc to 1862 cc,

whilst brain volume ranges between 991cc to 1476cc. Associated with this variation

in both endocranial volume and brain volume is an evident variable measure of body

weight which has a minimum value of 44 kg and a maximum value 121 kg for the

subjects studied. Although computation of brain weights for the sample is also

indicative of the variation highlighted above, what is most apparent and surprising is

the relatively conservative measure of endocranial space. This ranges between 14 %

and 27 %, with a mean of 21 %; a median of 20.9 % and a standard deviation of 3.2.

In order to account for the uneven representation of males and females in the sample,

weighted means were calculated. This provided a weighted mean of 21.1 % for

endocranial space, a value consistent with previous studies (e.g. Blinkoff & Glezer,
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1968; Tobias, 1994) and reiterates the percentage overestimate of brain volume when

using endocranial volume/cranial capacity as a ‘stand alone’ estimate.

3.3.3 Non-human primate dataset

Volumes for the endocranial contents of the non-human primate dataset were

calculated with the weighted means for the species (Table 13). This computation

revealed that for both endocranial volume and brain volume/mass the human sample

displayed the largest overall values in comparison to the other species. Average

endocranial volume for the human sample was approximately 1575 cubic centimetres

(cc). This is approximately 2.5 times greater than in Pongo pygmaeus, which had the

second largest endocranial volume (614 cc), followed by Gorilla gorilla, Pan

troglodytes and Pan paniscus which have endocranial volumes of 558 cc, 535 cc and

534 cc respectively. Species with larger body weights also present with larger

endocranial volumes and overall larger amounts of endocranial space. But the

percentage endocranial space (ECS/ECV *100) seems more consistent across species,

ranging between 18% for the 0.7kg Saimiri sciureus to 31 % for the 45kg Pan

paniscus. Although the human sample has an overall larger endocranial space totaling

approximately 328 cc, the percentage endocranial space is only 21 % which is

comparable to that observed in the other non-human primate species, where 90 % of

the species points lie within 5 percentage points of the median. This preliminary

analysis would seem to suggest that endocranial volume over- estimates brain

volume/size across the species represented in this study, by approximately 25 %.
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3.3.4 Regression analysis

Following this preliminary investigation, further analyses were performed on

the raw data to investigate the relationships between the residual endocranial space,

endocranial volume, brain size/weight and body size. Results obtained from this set of

regression analyses are presented in Table 14 which gives r –values obtained using

both reduced major axis (RMA) and independent contrast analysis (IC). All r – values

were high and were associated with other good indicators reflective of the strength of

relationship, such as low error terms, high p-values and fairly normally distributed

residuals. Notable was the exceptionally strong correlations between brain volume

and endocranial space and brain volume and endocranial volume. This result is hardly

surprising considering the close association as indicated in both this study and

previous studies between the endocranial vault and the underlying brain, especially

when considering the cross-species ‘conservation’ of the relative amount of residual

endocranial space forming the interface between the brain and the endocranium. Just

as interesting is the strongly almost isometric, relationship existing between brain

weight and endocranial volume (R2 = 0.996, slope=1.001, y –intercept= -0.116) a

result which proved just as strongly correlated even when adjusting for phylogeny.

It is apparent that the expressed relationship between brain weight and

endocranial volume may be employed with accuracy to estimate brain weights for

fossil species. Most comparative neuroanatomical studies in extant species use brain

weight as an integral part of their study, as a means of extracting necessary data, but

cranial capacity has been used successfully as a proxy for brain size in fossil hominid

species (e.g. Lee & Wolpoff, 2003). Despite this success it is apparent that if a

reliable estimate of brain weight were to be extracted from the existing data, this may

facilitate a more refined investigation of brain size changes for fossil species. As
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shown in this current study, endocranial volume/cranial capacity may overestimate

brain size by approximately 25 %. Thus an accurate estimate of brain weight

computed by using the underlying biological relationship, especially a strong

isometric relationship as that between brain weight and endocranial volume, may add

greater value and ‘sensitivity’ to an analysis of brain and body size changes in

hominid evolution.

In order to test this assertion we compiled a dataset of pre-published cranial

capacities for various fossil hominids for whom there is relatively little debate

concerning the validity of the reconstructions (Table 15). Following this, the equation

derived for the relationship between brain weight and endocranial volume was used to

compute brain weights. To avoid the bias associated with the de-transformation of

data as is the case when aiming to predict variables from a log transformed dataset

(Smith, 1993), it was decided to use the ‘raw’ /non-log transformed data to derive the

equation representing the relationship between endocranial volume and brain weight.

This relationship as when using the log transformed data, shows strong predictive

capability with an r value = 0.998; slope = 0.8177 and a Y-intercept = -14.138 [i.e.

Brain weight (g) = 0.8177 * Endocranial volume (cc) – 14.138] (See Figure 12a;

12b; 12c and 12d). The probability of the two variables being uncorrelated is P

(uncorr) = 9.706 * 10-13 whilst the probability of the slope being equal to one is P

(a=1) = 2.39 * 10-7, both supporting statistics reiterating the general results of

isometry and strong predictive capability as seen in the log transformed data. The

resultant brain weight estimates for the fossil specimens is displayed in Table 15.
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3.3.5 Variance partitioning

In order to investigate the relative contributions of developmental constraints,

phylogenetic constraints, and the ‘mixed’ effects of phylogeny and developmental

constraints, we decided to employ a method of variance partitioning as implemented

by Desdevises et al., (2003). In the absence of an ‘ecological’ variable, endocranial

volume was used as a primary X variable to investigate the portion of variance in

brain size and endocranial space explained by endocranial volume attributed to

developmental constraint, after having accounted for phylogeny. When utilising this

approach as a means of discerning between partition categories, the following results

were obtained (See Figure 13). Approximately 96% of the variation in either

endocranial space or brain weight can be attributed to endocranial volume and thus

argued to be a result of developmental constraints existing between the structures.

Both niche conservatism and phylogenetic constraint appeared to play a substantially

lesser role in explaining the variation existing in the models.

3.4 Conclusion

Cranial capacity/endocranial volume has long been used as a proxy for brain

size in hominid evolutionary studies and has in the past provided a suitable measure

for comparison in the absence of neural tissue. However, the current study has re-

emphasised the magnitude of the over-estimation of brain volume by endocranial

volume. If future studies are to improve upon their quantitative description of brain

evolution for the hominid lineage, then a reassessment of brain size by reference to

weights calculated from the strong isometric relationship existing between

endocranial volume and brain weight is essential and will allow an extension and

refinement of the available data. We believe that the contribution provided in this
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study may serve as an adequate starting point from which future paleoneurological

investigators may approach questions of size and relative size for changes in the

hominid brain. Whilst this study has tried at best to provide a mean measure for the

relatv_e over-estimate of brain size in adult primate species, there still remain a

number of questions concerning the change in endocranial space with age in other

non-human primates. This investigation of a developmental series for non-human

primates may prove to be an apt extension of the results provided in this current study.
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Table 12  Mean age (Age), body weight (BW), endocranial volume (ECV),

brain volume (BrnV), brain weight (BrnW), residual endocranial space

(ECS) and percentage endocranial space (ECS/ECV*100) in 47

Human subjects. Average values are weighted means calculated in

order to account for uneven distribution of males and females in the

sample.
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Specimen Age(years) BW (kg) ECV(cc) BrV(cc) BrW(g) ECS(cc) ECS/ECV*100
Homo sapiens 1 43.00 44.00 1562.93 1298.19 1344.92 264.74 16.94
Homo sapiens 2 33.00 60.00 1574.21 1253.42 1298.55 320.78 20.38
Homo sapiens 3 49.00 75.00 1579.43 1268.62 1314.29 310.81 19.68
Homo sapiens 4 40.00 73.00 1542.82 1248.69 1293.64 294.13 19.06
Homo sapiens 5 35.00 65.00 1629.67 1307.86 1354.95 321.81 19.75
Homo sapiens 6 49.00 82.00 1720.94 1346.89 1395.37 374.05 21.74
Homo sapiens 7 36.00 65.00 1861.35 1385.24 1435.11 476.11 25.58
Homo sapiens 8 29.00 62.00 1602.14 1319.52 1367.02 282.62 17.64
Homo sapiens 9 56.00 66.00 1794.96 1366.87 1416.07 428.09 23.85
Homo sapiens 10 56.00 53.00 1543.11 1183.58 1226.19 359.53 23.30
Homo sapiens 11 23.00 121.30 1711.86 1354.70 1403.47 357.16 20.86
Homo sapiens 12 22.00 47.00 1582.75 1221.47 1265.44 361.28 22.83
Homo sapiens 13 18.00 61.00 1452.34 1163.08 1204.95 289.26 19.92
Homo sapiens 14 18.00 51.10 1568.21 1275.37 1321.29 292.84 18.67
Homo sapiens 15 22.00 45.00 1612.35 1318.50 1365.97 293.85 18.22
Homo sapiens 16 20.00 59.90 1862.34 1475.82 1528.95 386.52 20.75
Homo sapiens 17 20.00 44.50 1512.60 1259.67 1305.02 252.92 16.72
Homo sapiens 18 20.00 49.00 1689.58 1383.57 1433.38 306.01 18.11
Homo sapiens 19 22.00 48.00 1459.68 1196.92 1240.01 262.76 18.00
Homo sapiens 20 21.00 54.00 1446.13 1184.52 1227.16 261.61 18.09
Homo sapiens 21 23.00 58.00 1493.26 1221.10 1265.06 272.16 18.23
Homo sapiens 22 20.00 52.90 1638.72 1327.61 1375.40 311.11 18.98
Homo sapiens 23 77.00 75.00 1551.20 1327.04 1374.81 224.16 14.45
Homo sapiens 24 70.00 80.00 1481.21 1142.23 1183.35 338.98 22.89
Homo sapiens 25 60.00 115.00 1768.59 1440.96 1492.83 327.63 18.53
Homo sapiens 26 22.00 79.00 1675.45 1302.88 1349.78 372.58 22.24
Homo sapiens 27 22.00 62.00 1626.68 1307.49 1354.56 319.19 19.62
Homo sapiens 28 20.00 72.00 1574.68 1295.53 1342.17 279.14 17.73
Homo sapiens 29 21.00 52.00 1550.57 1222.35 1266.36 328.22 21.17
Homo sapiens 30 23.00 82.30 1511.41 1169.14 1211.23 342.27 22.65
Homo sapiens 31 21.00 83.20 1613.06 1270.54 1316.27 342.52 21.23
Homo sapiens 32 23.00 N/S 1506.00 1119.17 1159.46 386.83 25.69
Homo sapiens 33 30.00 N/S 1481.66 1136.02 1176.91 345.65 23.33
Homo sapiens 34 22.00 N/S 1458.25 1156.86 1198.51 301.39 20.67
Homo sapiens 35 28.00 N/S 1615.54 1386.34 1436.25 229.20 14.19
Homo sapiens 36 22.00 N/S 1548.08 1194.20 1237.19 353.88 22.86
Homo sapiens 37 27.00 N/S 1558.71 1139.49 1180.51 419.22 26.90
Homo sapiens 38 25.00 N/S 1513.18 1178.61 1221.04 334.57 22.11
Homo sapiens 39 23.00 N/S 1520.15 1166.52 1208.52 353.62 23.26
Homo sapiens 40 28.00 N/S 1467.55 1183.24 1225.83 284.31 19.37
Homo sapiens 41 24.00 N/S 1628.08 1186.05 1228.75 442.03 27.15
Homo sapiens 42 24.00 N/S 1316.03 990.96 1026.63 325.07 24.70
Homo sapiens 43 26.00 N/S 1358.24 988.39 1023.97 369.85 27.23
Homo sapiens 44 23.00 N/S 1382.20 1006.62 1042.86 375.58 27.17
Homo sapiens 45 24.00 N/S 1616.79 1207.43 1250.90 409.35 25.32
Homo sapiens 46 21.00 N/S 1644.18 1276.24 1322.18 367.95 22.38
Homo sapiens 47 23.00 N/S 1639.38 1275.83 1321.76 363.55 22.18

Average 29.87 43.34 1575.49 1243.22 1287.98 332.27 21.11
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Table 13  Mean age (Age), body weight (BW), endocranial volume (ECV),

brain volume (BrnV), brain weight (BrnW), residual endocranial space

(ECS) and percentage endocranial space (ECS/ECV*100) for subjects

from 11 anthropoid species. Five anthropoid families are represented

namely: Hominidae, Pongidae, Hylobatidae, Cercopithecidae and

Cebidae. Intraspecific sample sizes range from between 2-50

individuals. Average values are weighted means calculated in order to

account for uneven distribution of males and females in the sample.
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Specimen Age(years) BW (kg) ECV(cc) BrV(cc) BrW(g) ECS(cc) ECS/ECV*100
Pan paniscus 1 25.00 68.50 570.48 370.11 383.43 200.37 35.12
Pan paniscus 2 8.00 35.00 474.37 353.55 366.28 120.82 25.47
Pan paniscus 3 11.50 36.70 557.07 376.58 390.13 180.49 32.40
Pan paniscus 4 28.00 41.50 535.46 357.05 369.90 178.41 33.32

Average 18.13 45.43 534.34 364.32 377.44 170.02 31.58
Pan troglodytes 1 8.00 43.00 584.39 397.43 411.74 186.96 31.99
Pan troglodytes 2 39.00 41.50 500.18 334.31 346.35 165.86 33.16
Pan troglodytes 3 36.00 44.00 464.88 348.95 361.51 115.93 24.94
Pan troglodytes 4 20.50 62.50 592.46 424.79 440.09 167.67 28.30

Average 25.88 47.75 535.48 376.37 389.92 159.10 29.60
Gorilla gorilla 1 8.00 68.10 625.54 522.29 541.09 103.26 16.51
Gorilla gorilla 2 13.50 55.40 490.56 364.67 377.79 125.89 25.66

Average 10.75 61.75 558.05 443.48 459.44 114.58 21.08
Pongo pygmaeus 1 8.50 52.50 608.49 428.85 444.28 179.65 29.52
Pongo pygmaeus 2 15.00 87.00 629.89 467.83 484.68 162.06 25.73
Pongo pygmaeus 3 18.00 100.00 604.32 503.74 521.88 100.58 16.64

Average 13.83 79.83 614.24 466.81 483.61 147.43 23.96
Hylobates lar 1 26.00 5.48 196.88 119.50 123.80 77.38 39.30
Hylobates lar 2 23.50 5.35 127.14 84.33 87.36 42.81 33.67
Hylobates lar 3 18.50 6.70 137.24 90.91 94.18 46.33 33.76
Hylobates lar 4 5.50 4.20 110.52 98.35 101.89 12.17 11.01

Average 18.38 5.43 142.94 98.27 101.81 44.67 29.44
Papio ursinus 1 4.50 20.60 184.93 136.87 141.79 48.06 25.99
Papio ursinus 2 6.50 23.15 242.73 188.73 195.52 54.00 22.25

Average 5.50 21.88 213.83 162.80 168.66 51.03 24.12
Cercocebus atys 1 9.00 6.30 130.31 102.21 105.89 28.10 21.56
Cercocebus atys 2 5.00 8.20 135.00 103.12 106.83 31.88 23.62
Cercocebus atys 3 8.00 9.40 146.31 108.70 112.62 37.60 25.70

Average 7.33 7.97 137.21 104.68 108.45 32.53 23.63
Macaca mulata 1 14.50 12.50 113.97 80.69 83.59 33.29 29.21
Macaca mulata 3 11.00 9.70 122.98 91.46 94.75 31.52 25.63

Average 10.33 11.07 120.38 84.50 87.54 35.88 29.78
Saimiri sciureus 1 2.50 0.80 34.12 28.15 29.16 5.98 17.52
Saimiri sciureus 2 2.50 0.60 33.53 27.18 28.15 6.36 18.96

Average 2.50 0.70 33.83 27.66 28.66 6.17 18.24
Cebus apella 1 10.50 4.30 109.61 76.94 79.71 32.67 29.80
Cebus apella 2 4.50 2.30 87.95 65.47 67.83 22.48 25.56

Average 7.50 3.30 98.78 71.21 73.77 27.58 27.68
Homo sapiens

average 29.87 43.34 1575.49 1243.22 1287.98 332.27 21.11
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Table 14 Regression statistics summarising the strength of relationship existing

between body weight (BW) and brain weight (BrnW), body weight and

endocranial volume (ECV), body weight and endocranial space (ECS),

body weight and brain volume (BrnV), brain volume and endocranial

volume and brain weight and endocranial volume using both Reduced

Major Axis (RMA) and Independent Contrasts Analysis (IC).All

results are computed using log transformed data. a = slope; b = Y

intercept; r = Pearsons correlation coefficient; P(uncorr)= probability

of being uncorrelated; P(a=1) = Probability of the slope being 1.
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RMA IC

X Y r r N a b
error

a
error

b P (uncorr) P (a=1) 95 % on a 95 % on b
BW BrnW 0.938 0.52 11 0.728 -1.815 0.076 0.745 1.97*10-5 0.006 0.59 - 1.08 -5.41 - -0.62
BW ECV 0.944 0.52 11 0.728 -1.510 0.073 0.710 1.28*10-5 0.004 0.60 - 0.99 -4.17 - -0.32
BW ECS 0.946 0.504 11 0.742 -3.035 0.073 0.713 1.10*10-5 0.006 0.58 - 0.95 -5.24 - -1.48
BW BrnV 0.938 0.52 11 0.728 -1.815 0.076 0.745 1.97*10-5 0.006 0.59 - 1.06 -5.25 - -0.61
BrnV ECS 0.975 0.955 11 1.019 -1.185 0.068 0.362 3.21*10-7 0.784 0.84 - 1.19 -2.01 - -0.16
BrnV ECV 0.998 0.998 11 0.999 0.303 0.017 0.091 1.46*10-12 0.942 0.96 - 1.04 0.09  -  0.55
BrnW ECV 0.998 0.998 11 1.001 -0.116 0.017 0.042 1.46*10-12 0.942 0.96 - 1.05 -0.24 - -0.03



Table 15 Fossil hominid data collated from the literature with recorded chronological age (MyBp) and cranial capacity (cc). The

estimated brain weight (BrnW) for each specimen as calculated using the equation Brain weight (g) = 0.8177 *

Endocranial volume (cc) – 14.138 is also presented. Note the average difference of approximately 20 grams between

reported cranial capacity and estimated brain weight. MyBp = Millions of years before present.



Specimen Taxon Age CC BrnW  Specimen Taxon Age CC BrnW

TM 266-01-60-1
Sahelanthropus
tchadensis 6 365 312.6  La Quina 5

Homo
neanderthalensis 0.05 1350 1118

A.L. 333-45
Australopithecus
afarensis 3.4 500 423  La Quina 18

Homo
neanderthalensis 0.05 1310 1085.3

A.L. 162-28
Australopithecus
afarensis 3.4 400 341.2  Spy 1

Homo
neanderthalensis 0.05 1305 1081.2

A.L. 444-2
Australopithecus
afarensis 2.9 500 423  Spy 2

Homo
neanderthalensis 0.05 1553 1284

ARA-VP-12/130 Australopithecus garhi 2.6 400 341.2  Shanidar 1
Homo
neanderthalensis 0.05 1600 1322.5

KNM-WT 17000
Paranthropus
aethiopicus 2.5 410 349.4  Shanidar 5

Homo
neanderthalensis 0.05 1550 1281.6

MLD 1
Australopithecus
africanus 2.6 500 423  Teshik-Tash 1

Homo
neanderthalensis 0.05 1578 1304.5

MLD 37/38
Australopithecus
africanus 2.6 435 369.8  Qafzeh 6 Homo sapiens 0.09 1535 1269.3

Sts 5
Australopithecus
africanus 2.25 485 410.7  Qafzeh 9 Homo sapiens 0.09 1531 1266

Sts 19/58
Australopithecus
africanus 2.25 436 370.7  Qafzeh 11 Homo sapiens 0.09 1280 1060.8

Sts 60
Australopithecus
africanus 2.25 428 364.1  Skhul 4 Homo sapiens 0.09 1554 1284.8

Sts 71
Australopithecus
africanus 2.25 428 364.1  Skhul 5 Homo sapiens 0.09 1518 1255.4

Stw 505
Australopithecus
africanus 2.25 585 492.5  Skhul 9 Homo sapiens 0.09 1587 1311.8

KNM-ER 406 Paranthropus boisei 1.8 510 431.2  Cro-Magnon 1 Homo sapiens 0.03 1600 1322.5
KNM-ER 732 Paranthropus boisei 1.8 500 423  Dolni Vestonice 3 Homo sapiens 0.026 1322 1095.1
KNM-ER 13750 Paranthropus boisei 1.8 475 402.5  Grotte des Enfants 4 Homo sapiens 0.028 1775 1465.6
KNM-ER 407 Paranthropus boisei 1.8 506 427.9  Grotte des Enfants 5 Homo sapiens 0.028 1375 1138.5
OH 5 Paranthropus boisei 1.81 530 447.5  Grotte des Enfants 6 Homo sapiens 0.028 1580 1306.1
SK 1585 Paranthropus robustus 1.81 530 447.5  Mladec 1 Homo sapiens 0.035 1620 1338.8
OH 7 Homo habilis 1.81 674 565.3  Mladec 5 Homo sapiens 0.035 1500 1240.7
OH 13 Homo habilis 1.81 673 564.5  Paderbourne Homo sapiens 0.027 1531 1266
OH 16 Homo habilis 1.81 638 535.8  Pataud 1 Homo sapiens 0.021 1380 1142.6



Specimen Taxon Age CC BrnW  Specimen Taxon Age CC BrnW
OH 24 Homo habilis 1.81 594 499.9  Pavlov 1 Homo sapiens 0.026 1522 1258.7
KNM-ER 1805 Homo habilis 1.81 582 490  Predmosti 3 Homo sapiens 0.027 1608 1329
KNM-ER 1813 Homo habilis 1.81 509 430.3  Predmosti 4 Homo sapiens 0.027 1518 1255.4
KNM-ER 1470 Homo rudolfensis 1.81 752 629  Predmosti 9 Homo sapiens 0.027 1555 1285.7
D2700 Homo georgicus 1.7 600 504.8  Predmosti 10 Homo sapiens 0.027 1452 1201.4
D2280 Homo georgicus 1.7 775 647.9  Nazlet Khater 1 Homo sapiens 0.033 1420 1175.3
D2282 Homo georgicus 1.7 655 549.7  Minatogawa 1 Homo sapiens 0.018 1390 1150.7
KNM-ER 3733 Homo erectus 1.78 804 671.6  Minatogawa 2 Homo sapiens 0.018 1170 970.85
KNM-ER 3883 Homo erectus 1.58 848 707.5  Minatogawa 4 Homo sapiens 0.018 1090 905.43

OH 9 Homo erectus 1.2 1067 886.6  
Zhoukoudian Up. Cave
1 Homo sapiens 0.018 1500 1240.7

UA 31 Homo erectus 1 775 647.9  
Zhoukoudian Up. Cave
2 Homo sapiens 0.018 1380 1142.6

BOU-VP-2/66 Homo erectus 1 995 827.7  
Zhoukoudian Up. Cave
3 Homo sapiens 0.018 1290 1069

Gongwangling 1 Homo erectus 1.15 780 651.9  Arene Candide 1-IP Homo sapiens 0.018 1490 1232.5
Sangiran 2 Homo erectus 1 813 678.9  Arene Candide 1 Homo sapiens 0.011 1414 1170.4
Sangiran 10 Homo erectus 0.8 700 586.5  Arene Candide 2 Homo sapiens 0.011 1424 1178.5
Sangiran 12 Homo erectus 0.8 1059 880.1  Arene Candide 4 Homo sapiens 0.011 1520 1257
Sangiran 17 Homo erectus 0.8 1004 835.1  Arene Candide 5 Homo sapiens 0.011 1661 1372.3
Zhoukoudian D1 Homo erectus 0.44 1030 856.4  Barma Grande 2 Homo sapiens 0.019 1880 1551.4
Zhoukoudian E1 Homo erectus 0.44 915 762.3  Bruniquel 2 Homo sapiens 0.012 1555 1285.7
Zhoukoudian H3 Homo erectus 0.44 1140 946.3  Cap Blanc 1 Homo sapiens 0.012 1434 1186.7
Zhoukoudian L1 Homo erectus 0.44 1225 1016  Chancelade 1 Homo sapiens 0.012 1700 1404.2
Zhoukoudian L2 Homo erectus 0.44 1015 844.1  Oberkassel 1 Homo sapiens 0.012 1500 1240.7
Zhoukoudian L3 Homo erectus 0.44 1030 856.4  Oberkassel 2 Homo sapiens 0.012 1370 1134.4

Sambungmacan 1 Homo erectus 0.4 1035 860.5  
Saint Germain-la-
Riviere 1 Homo sapiens 0.015 1354 1121.3

Hexian 1 Homo erectus 0.2 1025 852.3  San Teodoro 1 Homo sapiens 0.011 1565 1293.8
Ngandong 1 Homo erectus 0.2 1172 972.5  San Teodoro 2 Homo sapiens 0.011 1569 1297.1
Ngandong 5 Homo erectus 0.2 1251 1037  San Teodoro 3 Homo sapiens 0.011 1560 1289.8
Ngandong 6 Homo erectus 0.2 1013 842.5  San Teodoro 5 Homo sapiens 0.011 1484 1227.6
Ngandong 9 Homo erectus 0.2 1135 942.2  Veryier 1 Homo sapiens 0.01 1430 1183.4



Specimen Taxon Age CC BrnW  Specimen Taxon Age CC BrnW
Ngandong 11 Homo erectus 0.2 1090 905.4   Pecos Homo sapiens 0.001 1030 856.37
Hexian 1 Homo erectus 0.2 1025 852.3   Pecos Homo sapiens 0.001 1275 1056.7
Saldanha 1 Homo heidelbergensis 0.5 1225 1016   Pecos Homo sapiens 0.001 1300 1077.1
Swanscombe 1 Homo heidelbergensis 0.4 1325 1098   Pecos Homo sapiens 0.001 1120 929.96
Arago 21 Homo heidelbergensis 0.4 1166 967.6   Pecos Homo sapiens 0.001 1380 1142.6
Steinheim 1 Homo heidelbergensis 0.3 950 791   Pecos Homo sapiens 0.001 1380 1142.6
Petralona 1 Homo heidelbergensis 0.3 1230 1020   Pecos Homo sapiens 0.001 1270 1052.6
Ndutu 1 Homo heidelbergensis 0.4 1100 913.6   Pecos Homo sapiens 0.001 1100 91U^61
Atapuerca 4 Homo heidelbergensis 0.3 1390 1151   Pecos Homo sapiens 0.001 1465 1212.1
Atapuerca 5 Homo heidelbergensis 0.3 1125 934.1   Pecos Homo sapiens 0.001 1320 1093.5
Atapuerca 6 Homo heidelbergensis 0.3 1140 946.3   Pecos Homo sapiens 0.001 1285 1064.9
Broken Hill 1 Homo heidelbergensis 0.3 1280 1061   Pecos Homo sapiens 0.001 1350 1118
Dali 1 Homo heidelbergensis 0.3 1120 930   Pecos Homo sapiens 0.001 1440 1191.6
Ehringsdorf 9 Homo heidelbergensis 0.2 1450 1200   Pecos Homo sapiens 0.001 1410 1167.1
Jinnu Shan 1 Archaic Homo 0.2 1300 1077   Pecos Homo sapiens 0.001 1350 1118
Narmada 1 Archaic Homo 0.3 1260 1044   Pecos Homo sapiens 0.001 1190 987.2
Singa 1 Archaic Homo 0.15 1550 1282   Pecos Homo sapiens 0.001 1300 1077.1
Laetoli 18 Archaic Homo 0.13 1367 1132   Pecos Homo sapiens 0.001 1390 1150.7
Omo-Kibish 2 Archaic Homo 0.13 1435 1188   Pecos Homo sapiens 0.001 1350 1118
Krapina 3 Homo neanderthalensis 0.13 1200 995.4   Pecos Homo sapiens 0.001 1140 946.32
Saccopastore 1 Homo neanderthalensis 0.1 1258 1043   Pecos Homo sapiens 0.001 1155 958.58
Tabun C1 Homo neanderthalensis 0.15 1271 1053   Pecos Homo sapiens 0.001 1178 977.39
Amud 1 Homo neanderthalensis 0.045 1750 1445   Pecos Homo sapiens 0.001 1340 1109.9
La Chapelle-aux-Saints Homo neanderthalensis 0.052 1626 1344   Pecos Homo sapiens 0.001 1500 1240.7
La Ferrassie 1 Homo neanderthalensis 0.072 1681 1389   Pecos Homo sapiens 0.001 1550 1281.6
Forbes' Quarry Homo neanderthalensis 0.05 1200 995.4   Pecos Homo sapiens 0.001 1400 1158.9
Ganovce 1 Homo neanderthalensis 0.05 1320 1094   Pecos Homo sapiens 0.001 1350 1118
Guattari 1 Homo neanderthalensis 0.057 1550 1282   Pecos Homo sapiens 0.001 1325 1097.6
Le Moustier 1 Homo neanderthalensis 0.04 1600 1322       
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Figure 8 A plot of the frequency distribution for the age ranges used in the

human dataset. Note the skewing of the distribution towards

individuals between the ages of 20-35 years of age.
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Figure 9 Procedural outline used for the extraction of brain and endocranial

volumes. A- Represents the ‘Raw’ magnetic resonance images prior to

outlining and isolating the volumes of interest. B- Represents the

outlined endocranial volume using a region of interest tool provided in

MRIcro. The isolated endocranial volume is shown in C where after

the brain volume is extracted using the Brain Surface Extraction tool

(BSE) as provided in Brainsuite 2.01 and as shown in D and E. The

final endocranial vol_qe and brain volumes are then 3-dimensionally

reconstructed using ITKSnap examples of which are shown in F and

G.
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Figure 10  An example of the reconstructed brain volume superimposed upon the

endocranial volume and skull of one of the non-human primate

specimens. Note that despite the close association between the

endocranial volume and brain volume, there still remains a

cumulatively significant amount of ‘residual’ endocranial space in

certain regions.
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Figure 11 Phylogeny used for the calculation of independent contrasts. A scaled

tree provided by Purvis (1995) was used as a graphic template and then

redrawn to highlight the species of interest. Nodes and branch lengths

were then ‘captured’ from the scanned and calibrated tree using

TreeThief Version 1.01 where after the tree statistics were used to

compute contrasts in Compare version 2.0.The final tree for

publication was then reconstructed using the Drawtree program

accompanying Joseph Felsenstein’s Phyllip 3.65 ©1999-2004

University of Washington.
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Figure 12 A. Regression analysis plot (reduced major axis) of log endocranial

volume against log brain weight for the human dataset using reduced

major axis. Note the strength of correlation r = 0.88; P (uncorr) =

1.66*10-16 and the slope statistics which are suggestive of isometry. B.

Regression analysis plot (reduced major axis) of endocranial volume

against brain weight for all primate species. C. Regression analysis

plot (reduced major axis) of endocranial volume against brain weight

for all primate species using the weighted means of the variables under

study. D. Least square regression analysis plot of the ‘contrasts’

computed using phylogenetic independent contrast analysis for

endocranial volume against brain weight. Once again note the strong

correlation and indications of isometry.
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Figure 13 Summary of the results from the variance partitioning method aimed at

exploring the percentage trait variation in brain weight and endocranial

space explained by endocranial volume (ECV). As mentioned in the

text, when endocranial volume is used as a primary X variable, then

the results from the variance partitioning method may be argued to

render the relative effects of developmental constraint, phylogenetic

constraints and the mixed effects of phylogeny and developmental

constraints (MPDC). Accordingly it is shown that the greatest amount

of the variation in brain weight and the absolute amount of endocranial

space can be explained by developmental constraints whilst the mixed

combinatory effects of developmental and phylogenetic constraints

appear to have played a substantially lesser role in the molding of the

displayed variance for the species understudy.
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Chapter 4

Intra specific variation in human brain mass

4.1 Introduction

 Amongst the numerous questions pertaining to the structure and evolution of

the human brain, brain mass both absolute and relative stands out as an obvious

feature for comparison and is often argued to underscore much of humankind’s

uniqueness in terms of cognition and problem-solving abilities (e.g. Jerison, 1973).

This line of reasoning is apparent in hominid evolutionary studies where the size of

the hominid brain remains an integral character for investigating evolutionary trends

and for assigning taxonomic categories (e.g. Lee & Wolpoff, 2003; Elton et al., 2001;

Falk et al, 2000; Leigh, 1992; Henneberg, 1987; Tobias, 1985; Holloway, 1983), and

also in comparative studies of extant primate brains (e.g. Elston et al., 2006).  An

extension from these type of studies is the close association between absolute brain

size and absolute cerebral cortical volume (Finlay et al., 2001), that indicates that

absolute brain size is a good indicator of the cognitive complexity that can be found in

the cerebral cortex of humans and other mammals.

Variable estimates for brain size in fossil specimens coupled with considerable

overlap for certain taxa, raise serious questions concerning the validity of brain size

estimates and the variation in estimates due to differing techniques (Henneberg & De

Miguel, 2001). Perhaps more disconcerting is the obvious existence and

acknowledgment of individual variation in brain size (e.g. Tobias, 1968, 1971; Olivier

& Tissier, 1975; Holloway, 1980; Henneberg et al., 1985; Blumenberg, 1985;

Henneberg, 1990). This evident variation signals a note of caution towards the use of

brain mass as a taxonomically diagnostic feature or cognitive indicator and warrants

an enquiry as to the range and nature of variation in brain mass for extant species.
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In this regard several attempts have been made to document the range of inter-

specific variability in brain size for Homo sapiens, however despite the success of

these studies, many fall short on one of three grounds: 1) the use of cranial capacity as

a proxy for brain mass despite the fact that this has been shown to overestimate brain

mass by approximately 20% (Brandes, 1936; Metteler, 1955; Tobias, 1994; Spocter,

et al., 2007); 2) the use of relatively small sample sizes to represent population means;

and 3) the failure to recognise covariation in parameters such as height, weight and

age and its effects on brain mass.

Hierarchical views of inter and intra-population differences in brain mass for

Homo sapiens and the possible existence of links to intelligence as first argued by

early 19th Century researchers (reviewed by Gould, 1981), have once again surfaced

in the writings of a sector of present day evolutionary and behavioural psychologists

(Rushton, 1988, 1991, 1992, 1994, 1997, 1998; Rushton & Ankney, 1996; Rushton &

Osborne, 1995; Ankney, 1992; Rushton, 1991). Despite contemporary reports refuting

these claims (e.g. Gould, 1978, 1981; Gross, 1990; Peters, 1993) it appears

appropriate to rebut proponents of hierarchical models of intelligence by drawing

upon large, reliable datasets and to investigate the various biological factors that may

exist and contribute in a ‘causal’ manner towards inter and intra- population brain

mass variation.

This study asks the following specific questions concerning brain mass

variation for Homo sapiens using a dataset of over 18 500 individual records of brain

mass, body mass, height, sex, population affinity, and age: 1) What is the range of

variation and the level of sexual dimorphism in brain mass (within and between

population groups); 2) Is there any evidence for stratification in brain mass along the

lines of population affinity and sex; 3) What is the strength of correlation between
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brain mass, body mass, height and age; and 4) Using various factors simultaneously

can a hypothesised ‘causal’ model be established to explain the variation existing in

human brain mass.

4.2 Materials and methods

4.2.1 Sample and measurement acquisition

The database accumulated consisted of a total of 18 612 autopsy records (12 560

males; 6 152 females) of individuals aged from 1 month to 100 years obtained from

two sources: 1) the Hamburg University Hospital, Federal Republic of Germany (17

860 individuals) and 2) the Johannesburg Government Mortuary, South Africa (752

individuals). All individuals were autopsied within three days of death and individuals

with emaciated bodies or head injury were excluded from the sample. Measurements

of body mass and brain mass were taken using autopsy scales with the brain masses

representing ‘wet’ weights with the dura mater removed and the brain stem clipped at

the level of the foramen magnum. Measurements of height were taken using a tape

measure (centimetres) while age, sex and population affinity were confirmed using

the death certificates. The German sample represented a population of ‘European

descent’ collected from autopsy records over a period of 20 years in and around the

Hamburg area, while the South African sample was a mixed sample of South Africans

of both ‘European’ and ‘African’ descent having died within the Johannesburg region

between January 2005 to January 2006. In the current study, most of the statistical

analyses and results are based upon a sub-sample of 11 000 individuals drawn from

the original database and aged between 18 years and 60 years of age. This age cohort

is used as it eliminates the effects of individuals undergoing significant changes in

growth as well as the degenerative effects of aging.
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4.2.2 Statistical analysis

4.2.2.1 Brain mass, body mass and height variation for males,

females and population groups

In order to determine the range of variability in brain mass, body mass, height

and age for males, females and between and within the various population groups,

univariate descriptive statistics (i.e. means, standard deviation, variances etc.) were

computed for each sex and population group (Table 16). In addition, coefficients of

variation (COV) and significance tests such as the Student’s t-test and the F-test were

used to test for significant differences between the means and variances (Table 17).

4.2.2.2 Regressional permutations between brain mass, body mass,

height and age

Regression analyses (reduced major axis) were performed on the data, to

investigate the permutational relationships between brain mass, body mass, height,

and age, between and within the sexes and population groups. The resulting

regression equations were computed using PAST (Version.1.18; PAST © Hammer &

Harper, 1999-2005) while tests to determine if there exists any significant difference

between male versus female and African versus European regression slopes were

implemented using (S)MATR: Standardised Major Axis Tests & Routines (Version

2.0; © Falster, 2003-2005) (Table 20).

4.2.2.3 Sexual dimorphism in brain mass, body mass and height

Sexual dimorphism is an important component of the morphological variation

for a species (e.g. Oxnard, 1987; Kelley, 1993) and is related to various aspects of

social organisation and behaviour (e.g. Alexander et al., 1979; Clutton-Brock, 1985;
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Plavcan & van Shaick, 1992; Lovejoy, 1981; Borgognini Tarli & Repetto, 1986;

Kappelman, 1996). A number of different approaches are used to measure sexual

dimorphism. In this current study estimates of the amount of sexual dimorphism in

brain mass, body mass and height were calculated per population group by assessing

the magnitude of the difference between mean male and mean female measures for

the traits in question. This difference represented the absolute difference in size

between the sexes. Subsequently, a further measure derived from the more widely

used quotient approach of Borgognini et al. (1986) representing the percentage sexual

dimorphism in size was computed as follows:

Percentage sexual dimorphism = [(Mean male measure – mean female measure) /

mean female measure] * 100

To investigate whether the amount of sexual dimorphism varies with age, it

was decided to partition the samples into age cohorts. These cohorts represent: a

developmental phase (Phases 1 to 3, which is characterised by pronounced growth in

body dimensions); an adult phase (Phase 4, characterised by relatively little growth in

the body dimensions); and a degenerative phase (Phase 5, characterised by a reduction

in size with advanced age). The results where calculated for cohorts with large enough

sample sizes are tabulated in Table 18.

4.2.2.4 Testing heterochrony as an explanation for why females

have smaller mean brain and body masses than males

Using an ontogenetic series drawn from the European (Hamburg) sample a test

for heterochrony was performed on the brain and body mass growth curves for males
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and females. In this particular study, we have adopted a definition for heterochrony

which is similar to that proposed by Rice (1997, 2002). We thus define heterochrony

as a uniform change in the rate or timing of a developmental process. Subsequently,

growth curves were analysed by transforming female curves using sequential

hypermorphosis (Rice, 2002). In this particular study the phenotype axes for brain

mass and body mass was multiplied by the factors 1.12 and 1.19 respectively

(calculated from the mean brain mass and body mass ratios). A line of the form Y =

abxx c was fit through the male data points (r > 0.97) and then the distribution of the

transformed female data points were investigated for evidence of even distribution

about this line (Rice, 2002). The runs test was then applied in accordance with the

procedures outlined by Rice (2002) by finding the longest run of transformed female

data points on the same side of the male line and calculating the probability of this

occurrence. Although the female growth curves were transformed and male growth

curves were used as reference points, transformation of either sex would provide

equivalent results. To accommodate for reservations concerning the use of a ‘runs

test’ on a potentially non-symmetrical dist~öbution of brain masses, the more robust

Kolmogorov-Smirnov test was applied to the dataset to test if there exists any

significant difference between male and female transformed and untransformed data

points.

4.2.2.5 Causal modelling of human brain mass variation

Having analysed the separate sources of variation in brain mass due to age,

body mass and height, it is apparent that perhaps a simultaneous analysis of these

traits and their ‘joint’ effect may provide greater explanatory power and provide

insight into modelling the causes of variation in human brain mass. To test this, both
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multiple regression and path analysis was applied to the various age cohorts within the

dataset. The underlying reason for partitioning the data into age cohorts is the

possibility that the strength of relationship between variables may vary at different

developmental periods. Multiple regression analysis was thus applied to the following

age cohorts: phase 1 (0-3yrs); phase 2 (0-5yrs); phase 3 (6 -17yrs); phase 4 (18-60yrs)

and phase 5 (61-100yrs), with the included variables being age, body mass, height and

brain mass. Cohorts were then selected for path analysis depending on the strength of

the multiple regression coefficients (i.e. the cohort with the largest coefficient of

multiple determination was selected for subsequent path analysis). Derived ‘causal

hypotheses’ were then tested using the available data and were offered up as potential

theoretical frameworks within which the variables are related. The procedures of path

analysis and multiple regression analysis were performed using AMOS 5 (Version 5.

© Arbuckle, 2005, Statistical Product and Service Solutions).

4.2.2.6 The effects of climate on human brain mass

A reanalysis of the Beals et al (1984) dataset (CRANDAT) was performed in

this study by omitting populations for which cranial capacity or body mass had not

been recorded. The original sample from Beals et al (1984) consisted of cranial

capacity data from 122 human populations and body mass data obtained from 52

human populations worldwide, and had been published in a dataset available for study

from the World Cultures Journal. An updated version of the file may be obtained

directly from the Department of Anthropology, York College, CUNY Jamaica, NY

USA. In this current study the original dataset had been reduced to 34 populations so

as to include only populations for which body and brain size estimates had been

recorded. Measures of cranial capacity were converted to brain mass by using the
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equation derived by Spocter et al, (2007). In addition the two samples used in the

population comparison from this study (i.e. African and European samples) were

added to the Beals et al. (1984) dataset and correlation coefficients were computed for

brain mass against body mass, height and climatic zone.

4.3  Results

While several findings of interest emerged from the current study, those most

noteworthy include our findings that: (1) the average human brain mass is 1412 g; (2)

there are no differences in brain mass between population groups investigated; and (3)

once body mass is corrected for, providing an encephalization quotient (EQ), there are

no apparent differences between the sexes.

A study using a database such as the one used herein may produce numerous results

however in the current study only those results which have direct implications

towards the understanding of brain and body size variability in Homo sapiens are

reported and discussed here. For a more detailed outline of the results obtained from

this investigation the accompanying Tables can be consulted.

4.3.1 Brain mass, body mass and height variation for males, females and

population groups

4.3.1.1 Brain mass descriptives

When looking at the 18-60 year cohort, the mass of the average human brain

was found to be approximately 1412 g and ranged between 960 g to 2033 g (Table

16). The standard error in brain mass for_Ôhis sample was 1.46 g and was associated

with a standard deviation (SD) of 153.31 g.  When we compared the sexes of the 18-

60 year cohort we found that males had on average larger brain masses than females,
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with the mean male brain mass being approximately 1447.95 g while the comparable

female average was 1302.14 g.  Within the population groups investigated in the

present study similar trends were observed. African males had a mean brain mass of

1376.23 g while their female counterparts had a mean brain mass of 1273.42 g. Males

from the Hamburg European sample also had larger mean brain masses than females

drawn from the same population (i.e. 1452.12 g as compared to 1302.63 g), while

results from the South African European sample indicated an average male brain mass

of 1425.63 g and an average female brain mass of 1346.1 g.  Mean brain mass also

varied significantly between the population groups (See Table 17) a result that on its

own would erroneously argue in favour of the existence of sex and population

differences in brain mass. However on investigation of the 95th percentile ellipses of

body mass against brain mass, it became apparent that both sex and population

differences were small, if any, for the sample under study (Figs. 14 – 16).

4.3.1.2 Body mass descriptives

Across the 18-60 year cohort mean human body mass was approximately

73.46 kilograms (kg) and ranged between 25 kg to 208 kg. This was accompanied by

a standard error of 0.169 kg and a standard deviation of 17.75 kg. By and large as

with brain mass there existed significant differences in the means and variances of

body mass for the individual sex and population specific sub-samples (Table 17).

Males were on average heavier than females, with the mean male body mass for the

18-60 year cohort being 76 kg whereas that for females was 65.67 kg. Within the

population groups similar results were obtained, for example for the two European

sub-samples males from Hamburg and South Africa had average body masses of

76.23 kg and 83.97 kg respectively whilst females from the two regions had average
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body masses of 65.39 kg and 74.90 kg respectively. An exception to this trend was

observed in the body mass of Africans where females were marginally heavier than

their male counterparts (72 versus 70.30 kg).

4.3.1.3 Body height descriptives

The height of the average human as obtained from the 18-60 year cohort was

173.29 cm. Mean height ranges between 101-250 cm and was associated with a

standard error and standard deviation of 0.09 cm and 9.19 cm respectively. Sexual

dimorphism in height was apparent as revealed by a mean male body height of 175.97

cm as compared to 165.01 cm for females. Within the population groups, similar

trends were observed as those displayed for the full 18-60 year cohort. African males

were taller than African females (172.94 cm as compared to 164.78 cm for females)

and European males from both Hamburg and South Africa were taller than their

female counterparts (176.10 cm for males versus 165.04 cm for females; and 178.90

cm for males versus 172.05 cm for females from Europe and Africa respectively).

Significant differences in the means and variances were found between the sexes for

each population group, and between the populations groups when comparing the same

sex (Table 17).

4.3.2 Regressional permutations between brain mass, body mass, height

and age

4.3.2.1 Body mass versus brain mass regressions

The equation that defined the relationship between body mass and brain mass

across the entire 18-60 year cohort was found to be:
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Brain mass (g) = 8.63 × Body mass (kg) + 777.76

(r = 0.28; P (uncorr) = 6.54×10-194). (1)

The derived coefficient of determination demonstrates that only 7.84 % of the

variation in brain mass can be accounted for by variation in body mass. For males and

females from the 18-60 year cohort the equations that defined the relationships

between body mass and brain mass were, for males:

Brain mass (g) = 8.50 × Body mass (kg) + 801.96

(r = 0.22; P (uncorr) = 2.93×10-91). (2)

and, for females:

Brain mass (g) = 7.03 × Body mass (kg) + 840.35

(r = 0.13; P (uncorr) = 3.11×10-11). (3)

Coefficients of determination were 4.84 % for males and 1.69 % for females.

Similar results are observed for males and females of the individual population groups

with r values ranging between 0.05, for the African female sample, and 0.33 for the

South African European male sample. Despite the low r values across and within the

sexes and population groups, all equations defining the relationship between body

mass and brain mass, were associated with low probabilities of the two variables

being uncorrelated. Results for the individual equations defining the relationship
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between body mass and brain mass for the population groups are tabulated in Table

20.

When regression analyses are performed on the different age cohorts a clearer

picture of the establishment of the correlation coefficients presented in Table 20

emerged (See Table 21). For phase 1 (0- 2.5 yrs of age) correlation coefficients

between body mass and brain mass are high (r ~ 0.86) with approximately 74 % of the

variability in brain mass being explained by the variability in body mass. The high

regression statistics are maintained across the sexes and are also associated with low

probabilities of the two variables being uncorrelated [P (uncorr) = 2.42×10-85 –

4.25×10-163]. By phase 2, (3-5 yrs) the r values are of the order of 0.23-0.32 and are

largely maintained into advanced ages beyond phase 2 (Table 20).

4.3.2.2 Height versus brain mass regressions

When regression analysis is performed to investigate the relationship between

body height and brain mass across the entire sample of the 18-60 year cohort, the

following equation is obtained:

Brain mass (g) = 16.68 × Height (cm) + -1478

(r = 0.40; P (uncorr) = 0). (4)

As is evident from the above equation, the strength of relationship between

height and brain mass is 0.40 and thus only 16 % of the variability in brain mass can

be accounted for by the variability in height. For males and females of the 18-60 year

cohort the respective equations defining the relationship between height and brain

mass are:
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Brain mass (g) = 18.00 × Height (cm) -1719.90

(r = 0.24; P (uncorr) = 1.45×10-105). (5)

and

Brain mass (g) = 16.57 × Height (cm) -1433.60

(r = 0.29; P (uncorr) = 6.96×10-53). (6)

Similar results are observed for males and females from the individual

population groups with relatively low r values reported (Table 20). Despite the low r

values most of the equations defining the relationship between height and brain mass,

are associated with low probabilities of the two variables being uncorrelated. As with

body mass, height is also strongly correlated with brain mass up until 2.5 years of age

(r = 0.88) [Table 21]. The sex combined equation defining the relationship between

height and brain mass in phase 1 for the European (Hamburg) sample is:

Brain mass (g) = 21.34 × Height (cm) - 653.80

(r = 0.88; P (uncorr) = 3.29×10-181). (7)

By phase 3 the relationship between height and brain mass decreases in

strength to an r value of 0.36 with a P value of 6.50×10-10 of the two variables being

uncorrelated. Although differences exist for the individual regression statistics of

males and females, both r values and probabilities are comparable and indicate the

same trends between the age cohorts observed across the sexes.
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4.3.2.3 Age versus brain mass regressions

When regression statistics are computed for age (years) against brain mass

(See Table 22), low r values and negative slopes are observed across almost the entire

18-60 year cohort, though the probability of the two variables being uncorrelated still

remains fairly low, with the only exception being that observed for the South African

European male sample. The equation defining the relationship between age and brain

mass for the sex and population combined 18-60 year cohort is:

Brain mass (g) = -12.98 × Age (Yrs) + 1953

(r = 0.11; P (uncorr) = 2.07×10-28). (8)

Age also displays low correlation coefficients with both body mass and height across

the entire 18-60 year cohort (Table 22) with the equations defining the relationships

between age and body mass and age and height for the sex and population combined

sample being:

Body mass (kg) = 1.50 × Age (Yrs) + 10.80

(r = 0.06; P (uncorr) = 1.87×10-9). (9)

and

Body height (cm) = -0.78 × Age (Yrs) +205.72

(r = 0.16; P (uncorr) = 2.72×10-66). (19¢
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4.3.2.4 Slope comparisons and tests for heterogeneity in slope

A comparison of the slopes as defined by the regression equations for body

mass versus brain mass and height versus brain mass revealed the following results

(Table 19). Male and female slopes of brain mass versus body mass were significantly

homogenous [P (heterogeneity) >0.05] in the South African European sample

whereas all other sub-samples showed significant differences in slope between males

and females [P (hetero.) < 0.05]. Further analysis also revealed the existence of

significant similarities in male and female height versus brain mass regression slopes

for the South African European and African sub-samples.  Africans and Europeans

displayed similarity in slope for body versus brain mass regression equations however

significant heterogeneity was observed in the slopes defining height versus brain mass

and body mass versus height regressions.

4.3.2.5 Sexual dimorphism in brain mass, body mass and height

When sexual dimorphism in brain mass is examined at different age cohorts

within the population groups an interesting pattern becomes apparent (Table 18). In

the first 2.5 years of life the amount of sexual dimorphism in brain mass is

approximately 51 grams (i.e. a percentage sexual dimorphism of 6.7 %).  This

measure is then markedly increased during the next phases of life to reach the levels

of between 102-150 grams (i.e. a percentage sexual dimorphism of between 8-12%)

as displayed within the 18-60 age cohort.   

Sexual dimorphism in body mass and height as with brain mass, also varies

with age. In both body mass and height sexual dimorphism is low during the first 2.5

years of life and then increases to the levels observed in Phase 4. In the early phases

sexual dimorphism in body mass is approximately 0.58 kg (8.8%), whilst for height a
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sex difference of 1.13 cm (1.8%) is observed. By phase 4 these measures have

increased to a 10 kg (16.6%) difference in body mass and an 11 cm (6.7%) difference

between the sexes (See Table 18).

4.3.2.6 Lack of Sexual Dimorphism in Encephalization Quotient

Given the above described differences in the absolute mass of the brain

between the two sexes, it was of interest to calculate the encephalization quotient

(EQ) for each sex as described by Jerison (1973).  To calculate EQ we used the

following equations based on a generalized mammalian regression (not including

primates and cetaceans) from Manger (2006):

(1) Mbr = 0.069Mb
0.718

and that from an unpublished equation derived from additional data encompassing

approximately 800 mammalian species (Spocter and Manger, unpublished

observations):

(2) Mbr = 0.054Mb
0.741

The resulting encephalization quotients for humans as a whole was 6.564 and 6.482

for both equations (1) and (2) respectively.  For equation (1), the average male EQ

was 6.569 and the average female EQ was 6.561, and for equation (2) the average

male EQ was 6.482 and the average female EQ was 6.495.  Despite the absolute

differences in mass of both the brain and the body for the sexes, there was no

discernable difference in the EQ of the sexes.
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4.3.2.7 Testing heterochrony as an explanation for why females

have smaller mean brain and body masses than males

In order to test for the effects of heterochrony on the sex difference exhibited

between male and female brain and body masses, the use of mathematical

transformation was performed on the growth curves for the female ontogenetic dataset

using the procedures outlined by Rice (2002). This analysis involves a comparison of

two growth curves using plots of residuals from the transformed and untransformed

data points. In accordance with Rice (2002) two growth curves would be considered

commensurate if the distributions of the residuals against age from each curve (i.e. the

male growth curve and the transformed female growth curve for brain mass and body

mass in this case) are shown to ‘overlap’ and are uniformally distributed about 0. This

may also be stated as: the two untransformed growth curves and derived residual plots

would display bimodality prior to transformation, but on transformation the growth

curves and subsequent residual plots should overlap and prove positive using the runs

test. The resultant plots from the current study are presented in Figure 19 A – H.

For brain mass, Figure 19A and 19B are indicative of the trends observed in

the male and female growth curves prior to transformation. Note the bimodal

distribution indicated by the separation of the curves where male data points lie above

those of females. However, on transformation (as shown in Figure 19C and 19D)

female data points are adjusted and overlap with their male counterparts.

For body mass similar results are found. Note once again the existence of a

bimodal distribution in body mass prior to transformation (Figs. 19E,F) and

subsequent overlap of male and female body masses on transformation (Figs. 19G,H).
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 Testing via the use of the runs test revealed that out of 134 points, the longest

run of points on the same side of the regression line is 33 points for brain mass and 36

points for body mass. Since the probability of getting a run of 33 or more if the

transformed female points were randomly drawn from the same distribution as the

male points is < 0.05, we conclude that the difference between the male and female

brain mass and body mass trajectories when investigated using the runs tests, is

unlikely to be explained by sequential hypermorphosis of the male data points. Thus

we can say that using the runs test, males do not appear to undergo a period of

prolonged growth in brain mass or body mass relative to females.

However as is evident from the residual plots presented in Figures 19D and

19H, the male and female residuals are not symmetrically distributed about 0, thus

violating an assumption of the technique used here. As an extension of this analysis,

the Kolmogorov-Smirnov test was implemented to test whether there is any

significant similarity between the untransformed male and transformed female data

points. Results indicated that when the untransformed male and female brain and body

mass growth curves are compared to one another, there exists a small probability of

the male and female curves being commensurate [i.e. P (same) = 6.19 x10-23  & 1.03 x

10-13, for brain and body mass respectively] (See Table 23). However, when

transformation of the female brain and body mass growth curves was performed, a

significant similarity was achieved between it and the untransformed male growth

curves (i.e. P > 0.05). Thus, in this case using the more appropriate Kolmogorov-

Smirnov technique we can conclude that by transformation of the female growth

curves to match that of males, significant similarity in growth trajectories is achieved

and thus the size dimorphism exhibited between male and female brain and body

masses may be attributed to an extended period of growth in males relative to females.
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4.3.2.8 Causal modelling of human brain mass variation

4.3.2.8.1 Multiple regression analysis on the 18-60 year age

cohort

When the simultaneous effects of age, body mass and height are used to

explain brain mass variation for the sex and population combined sample (18-60 year

age cohort), only 12% of the variation in brain mass is explained by the combinatory

effects of these variables. Standardised regression coefficients indicate that body mass

is the strongest contributor towards explaining this joint variation (i.e. when body

mass goes up by one standard deviation brain mass goes up by 0.27 standard

deviations, as compared to height which only results in a 0.16 increase in brain mass

with every one increment in standard deviation. An increase in age by one standard

deviation results in a decrease of brain mass by 0.11 standard deviations) (See Figure

20A). These results clearly indicate that a substantial amount of variation in brain

mass still remains unaccounted for. Proponents of hierarchical models of intelligence

would argue that sex and population affinity when factored in would dramatically

increase the explanatory power and will assist in explaining a substantial component

of the unexplained variation. However, when factored into the model, the combined

effect of sex and population affinity, along with the remaining variables, only help to

increase the explanatory power of the regression analysis by a further 6% (i.e. only

24% of the variation in brain mass is explained by the combined effects of body mass,

age, height, sex, and population affinity) (Fig. 20B). This once again, argues against

the utility of either sex or population affinity as having significant statistical power to

explain a large component of brain mass variability. The low multiple correlation
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coefficients for the 18-60 year cohort, lend themselves to the argument that a change

may have been effected during development (i.e. a decoupling or relaxing of

constraints on brain: body size), which resulted in a loss of explanatory power and a

reduction in the amount of variation in brain mass explained by the combinatory

effects of body mass, height and age.

4.3.2.8.2 Multiple regression analysis on the various age

cohorts

To investigate the possibility of a change in explanatory power due to

developmental changes, multiple regression analyses were performed on five age

cohorts, the results of which are presented in Figure 21.  Multiple regression analyses

revealed, that the largest amount of brain mass variation (i.e. 84%) is explained by the

combined effects of body mass, height and age during the first three years of life and

that this explanatory power rapidly drops to below 20% between the ages of 6- 60

years only to rise marginally to a level of 24% between the ages of 61-100 years.

During both the developmental phase (0-17years) and degenerative phase of life (61-

100 years) height remains the major contributor towards explaining brain mass

variation. Within the first five years of life an increase in height by one standard

deviation results in a concomitant increase in brain mass. During the same time period

however, body mass and age exert a negative effect on brain mass (i.e. with every

increase in body mass or age, brain mass decreases). During the age cohort 6-17 years

of age the relationship between body mass and brain mass changes. Body mass is now

no longer inversely related to brain mass but rather an increase in body mass results in

a subsequent increase in brain mass, a trend which continues into the final phase of
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life (61- 100 age cohort). Age however almost always exerts a negative effect on brain

mass, with brain mass decreasing with increases in age.

4.3.2.8.3 Potential ‘causal’ models

The use of multiple regression analysis revealed that the highest multiple

coefficient of determination (i.e. 84%) is observed early during development (i.e. 0-3

years of age). Using this observation path analysis was used to derive potential

‘causal’ models for brain mass variation during the first 3 years of life. Numerous

causal models were computed, many of which proved ‘untestable’ and were

subsequently rejected. However, four models were both successfully fit and tested on

the 0- 3 year age cohort. In all of the presented models P > 0.05, thus all four models

significantly agree with the 0-3 year age cohort, but when tested on other age cohorts

such as the 18-60 year cohort these models were rejected and deemed to depart

significantly from the data, reiterating the effect of a change in the brain and body size

scaling relationships. On the basis of the accompanying P values, the two best models

as tested on the 0-3 year age cohort, were those with P = 0.938 as presented in Figure

22. In model 1, height has both direct and indirect effects on brain mass. The direct

effect of height on brain mass indicates that when height goes up by one standard

deviation, brain mass goes up by 1.045 standard deviations (See Table 23). The

indirect effect of height on brain mass is affected via body mass and results in a

decrease in brain mass by 0.134 standard deviations for every increment in height

(Table 23). Body mass has a direct, inverse effect on brain mass of 0.14 standard

deviations, whilst the indirect effects of age results in an increment of 0.771 standard

deviations for every increment in age. Height and age jointly help to explain 83% of

variation in body mass, whilst age explains 71% of the variation in height. These
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results provide one of potentially numerous theoretical frameworks governing the

control of brain mass during the first 3 years of life when maximum variation in brain

mass can be accounted for by the body parameters of age, height and body mass.

4.3.3 The effects of climate on human brain mass

Climate has been invoked by numerous researchers as the prime causative

agent in the expansion of the hominid brain and the variation displayed in human

brain mass (e.g. Beals et al 1984). To retest this assertion a modified version of the

Beals et al. (1984) dataset was combined with the data from this current study and

correlation coefficients were computed to test which of climatic zone or body

parameters explain more of the variation in brain mass. The Beals et al. (1984) dataset

was modified by excluding all populations for which either cranial capacity or body

mass were not available and this meant that in total data from 34 human populations

were used in this analysis. In order to facilitate direct comparison all cranial capacities

were converted to brain mass, whereafter the African and European (Hamburg)

samples were included in the analyses.

 Results indicate that although climatic zone is relatively highly correlated

with brain mass across the human populations, the highest correlation is still between

brain mass and body mass (r = 0.67; [p (uncorr) = 8.74×10-6] while height [r = 0.50; p

(uncorr) = 0.0025] is also more strongly correlated with brain mass than is climatic

zone (r = 0.43; [p (uncorr) = 0.0093]). Climatic zone also shows relatively small

correlation coefficients with body mass and height, though still significant (See Table

25). These results argue in favour of the consideration of body size parameters into

explanations of human brain mass variation. Inclusion of climatic factors at the cost of
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body parameters, may thus result in omission of the significant role played by body

size constraints in our evolutionary history.



Table 16 Descriptive statistics for brain mass, body mass and height in three human population groups. N = sample size; Min =

minimum value; Max = maximum value; Std. error = standard error; Stand. Dev = Standard deviation; COV =

Coefficient of variation.

Parameter Sample Sex N Min Max Mean Median Std. error Variance Stand. Dev COV
Brain mass African m 426 1022 1988 1376.23 1376.5 6.41765 17545.3 132.459 9.62

African f 77 1025 1868 1273.42 1252 17.0593 22408.5 149.695 11.76
European m 7786 960 2000 1452.12 1455 1.6294 20671.3 143.775 9.9
European f 2619 1000 1880 1302.63 1300 2.42846 15445.3 124.279 9.54
SA. European m 87 1037 2033 1425.63 1426 15.7996 21717.6 147.369 10.34
SA. European f 21 1105 1872 1346.1 1346 34.6602 25227.9 158.833 11.8
Whole sample m+f 11016 960 2033 1411.99 1410 1.46067 23503.1 153.307 10.86

Body mass African m 426 25 179 70.3404 68 0.723472 222.973 14.9323 21.23
African f 77 42 173 72.6494 68 2.63064 532.862 23.0838 31.77
European m 7786 40 208 76.2301 75 0.192756 289.287 17.0084 22.31
European f 2619 24.5 200 65.3862 63 0.34387 309.688 17.5979 26.91
SA. European m 87 48 140 83.9655 84 1.77236 273.289 16.5315 19.69
SA. European f 21 53 137 74.9048 73 4.18552 367.89 19.1805 25.61
Whole sample m+f 11016 24.5 208 73.4578 72 0.169187 315.324 17.7574 24.17

Height African m 426 101 196 172.944 173.5 0.442674 83.479 9.13668 5.28
African f 77 149 185 164.779 165 0.935117 67.3322 8.20562 4.98
European m 7785 107 250 176.103 176 0.089548 62.4273 7.9011 4.49
European f 2619 113 195 165.042 165 0.146971 56.5714 7.5214 4.56
SA. European m 87 145 198 178.897 180 0.926608 74.6985 8.64283 4.83
SA. European f 21 160 189 172.048 169 1.83935 71.0476 8.42897 4.9
Whole sample m+f 11015 101 250 173.286 174 0.087585 84.4968 9.19222 5.3



Table 17 Results from the significance tests of means and variances for male versus female and African versus European

population groups. f = female; m = male

Parameter Sample Sex F Test t Test 
Brain mass European m vs f p(equal) = 3.01*10 -19 p(equal) = 0.0

African m vs f p(equal) = 0.142 p(equal) = 1.62*10-7
SA.European m vs f p(equal) = 6.14*10-1 p(equal) = 0.046
African vs European Comb. p(equal) = 0.001 p(equal) = 0.001

Body mass European m vs f p(equal) = 3.13*10-2 p(equal) = 0.0
African m vs f p(equal) = 4.34*10-8 p(equal) = 4.00*10 -1
SA.European m vs f p(equal) = 3.47*10-1 p(equal) = 0.056
African vs European Comb. p(equal) = 0.74 p(equal) = 0.05

Height European m vs f p(equal) = 2.27*10-3 p(equal) = 0.0
African m vs f p(equal) = 2.51*10-1 p(equal) = 0.0
SA.European m vs f p(equal) = 9.46*10-1 p(equal) = 0.0023
African vs European Comb. p(equal) = 0.0 p(equal) = 0.40



Table 18 Absolute sexual dimorphism in brain mass, body mass and height for the African and European (Hamburg) sample

taken at various age cohorts where available. Note that values in parentheses () are the calculated percentage sexual

dimorphism calculated as: Percentage seã·al dimorphism = [(Mean male measure – mean female measure) / mean

female measure] * 100.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Parameter Sample (0y-2.5y) (3y-5y) (6y-17y) (18 y- 60 y) (61 y-100 y)
Brain mass (g) African - - - 102.81 (8.07%) -

European 51.06 (6.69%) 44.77 (3.42%) 143.45 (10.97%) 149.49 (11.48%) 148.43 (12.08%)
Body mass (kg) African - - - 2.31 (3.18%) -

European 0.58 (8.75%) 2.45 (13.06%) 8.47 (17.31%) 10.84 (16.58%) 15.6 (38.71%)
Height (cm) African - - - 8.16 (4.96%) -

European 1.13 (1.77%) 0.49 (0.45%) 9.31 (6.04%) 11.06 (6.7%) 15.25 (10.15%)

                                         Sexual Dimorphism 



Table 19 Slope comparisons between male and female and African versus European population groups. Euro = European

(Hamburg) sample; Afric = African population group; m = male; f = female; P = probability; LowCI = lower

confidence interval; UppCI = upper confidence interval; Com slope = common slope; P (Hetero) = probability of the

slopes being heterogeneous.



           X
Parameter Sample Sex slope R 2 P LowCI  UppCI  Inter. LowCI  UppCI  Com.slope P (Hetero) 

    Body vs Euro. m 8.45 0.05 0 8.27 8.64 807.7 793.2 822.3 8.09 P=0.001
  Brain Mass f 7.06 0.02 0 6.8 7.34 840.9 822.2 859.5

SA Euro. m 8.28 0.06 0.3 5.28 13 725.8 423.1 1028.6 8.79 P=0.762
f 8.91 0 0.11 7.28 10.91 677.1 520.3 833.9

Afric. vs Euro. m -6.49 0 0.68 -8.14 -5.16 1744.5 1626.6 1862.5 8.47 P=0.018
f 8.87 0.03 0 8.08 9.74 752.3 691.4 813.1

Afric. vs Euro. Afric. 8.52 0.01 0.02 7.81 9.3 758 702.9 813.1 8.62 P=0.794
Euro. 8.63 0.08 0 8.47 8.79 780.3 768.1 792.5

   Height vs Euro. m 18.2 0.06 0 17.81 18.59 -1752 -1822 -1683 17.75 P=0.001
  Brain Mass f 16.52 0.08 0 15.93 17.14 -1424 -1525 -1324

SA Euro. m 17.05 0 0.56 13.77 21.11 -1625 -2283 -967 17.44 P=0.665
f 18.84 0.17 0.06 12.33 28.79 -1896 -3314 -478

Afric. vs Euro. m 14.51 0.03 0 13.21 15.94 -1133 -1370 -896 15.03 P=0.068
f 18.24 0.03 0.12 14.58 22.83 -1733 -2414 -1051

Afric. vs Euro. Afric. 14.8 0.06 0 13.59 16.12 -1181 -1399 -964 16.67 P=0.005
Euro. 16.75 0.17 0 16.46 17.05 -1489 -1540 -1438

Body mass vs Euro. m 0.46 0.11 0 0.45 0.47 140.7 139.9 141.5 0.46 P=0.001
      Height  f 0.43 0.07 0 0.41 0.44 137.1 136 138.2

SA Euro. m 0.52 0.15 0 0.43 0.64 135 126.1 143.9 0.49 P=0.309
f 0.44 0.57 0 0.32 0.6 139.1 128.4 149.8

Afric. m 1.63 0.1 0 1.49 1.79 -212.3 -238 -186.6 1.77 P=0.001
f 2.81 0.1 0.01 2.27 3.49 -390.9 -492.4 -289.5

Afric. vs Euro. Afric. 0.58 0.07 0 0.53 0.63 131 127.4 134.6 0.52 P=0.009
Euro. 0.52 0.16 0 0.51 0.52 135.5 134.8 136.2

              Y         Slope test



Table 20 Results from reduced major axis analysis (RMA) of body mass versus brain mass; height versus brain mass; body mass

versus height and lean body mass versus brain mass. Lean body mass = 1 was calculated using the equation derived by

Hume (1966). According to Hume (1966):  For men over the age of 16: lean body mass in kilograms = (0.32810 *

(body weight in kilograms)) + (0.33929 * (height in centimeters)) - 29.5336, whereas for women over the age of 30:

lean body mass in kilograms = (0.29569 * (body weight in kilograms)) + (0.41813 * (height in centimeters)) - 43.2933.



X Y Population Sex r  - value Slope Y-int. 95% on slope 95% on Int. P(uncorr)
Body mass Brain mass European f 0.14 7.06 840.86 [6.59; 7.59] [808.3; 868.5] 3.11*10-12
Body mass Brain mass European m 0.21 8.45 807.72 [8.16; 8.77] [784.8; 829] 1.14*10-81
Body mass Brain mass African f -0.05 -6.48 1744.5 [-9.411; 7.81] [722.6; 1949] 0.68
Body mass Brain mass African m 0.17 8.87 752.27 [7.25; 10.84] [622.1; 857] 0
Body mass Brain mass SA European f 0.24 8.28 725.81 [2.93; 18.02] [74.34; 1100] 0.3
Body mass Brain mass SA European m 0.33 8.91 677.13 [6.28; 11.99] [425.2; 887.6] 0
Body mass Brain mass Whole sample f 0.13 7.03 840.35 [6.55; 7.57] [808.5; 868.2] 3.11*10-11
Body mass Brain mass Whole sample m 0.22 8.5 801.96 [8.19; 8.81] [779.8; 823.5] 2.93*10-91
Body mass Brain mass Whole sample m&f 0.28 8.63 777.76 [8.39; 8.89] [759.8; 795] 6.54*10-194
Height Brain mass European f 0.29 16.52 -1424.4 [15.75; 17.32] [-1556; -1298] 1.67*10-51
Height Brain mass European m 0.24 18.2 -1752.5 [17.58; 18.82] [-1863; -1643] 1.73*10-98
Height Brain mass African f 0.18 18.24 -1732.6 [-22.9; 22.99] [-2504; 5066] 0.12
Height Brain mass African m 0.17 14.5 -1131 [11.81; 17.76] [-1705; -669.4] 0
Height Brain mass SA European f 0.42 18.84 -1895.9 [9.12; 32.65] [-4240; -241.3] 0.06
Height Brain mass SA European m 0.06 17.05 -1624.7 [-19.34; 22.52] [-2631; 4882] 0.56
Height Brain mass Whole sample f 0.29 16.57 -1433.6 [15.8; 17.37] [-1566; -1306] 6.96*10-53
Height Brain mass Whole sample m 0.24 18 -1719.9 [17.37; 18.63] [-1831; -1609] 1.45*10-105
Height Brain mass Whole sample m&f 0.4 16.68 -1478.2 [16.27; 17.07] [-1548; -1409] 0
Body mass Height European f 0.27 0.43 137.1 [0.3978;0.4593] [135; 138.9] 1.4712*10-43
Body mass Height European m 0.33 0.46 140.69 [0.4461;0.4848] [139.2; 142.1] 2.4668*10-200
Body mass Height African f 0.31 2.81 -390.9 [2.062;3.76] [-5.46.2; -271.9] 0.01
Body mass Height African m 0.31 0.61 129.9 [0.48866; 0.774] [118.8; 138.6] 7.6477*10-11
Body mass Height SA European f 0.76 0.44 139.13 [0.327;0.7159] [120.4;147] 7.3939*10-5
Body mass Height SA European m 0.39 0.52 135 [0.4071;0.6708] [122.3;145.2] 0
Body mass Height Whole sample f 0.27 0.42 137.22 [0.3966;0.4555] [135.3;139] 9.8943*10-48
Body mass Height Whole sample m 0.38 0.47 140.08 [0.4532;0.49] [138.7; 141.5] 2.3361*10-219
Body mass Height Whole sample m&f 0.4 0.53 135.26 [0.5024; 0.5336] [134.1; 136.3] 0
Lean Body mass1 Brain mass European f 0.24 18.39 474.1 [17.37; 19.42] [428.5;518.1] 2.5869*10-35
Lean Body mass1 Brain mass European m 0.26 20.69 309.29 [20.1; 21.31] [276.2; 341,6] 2.2024*10-123
Lean Body mass1 Brain mass African f 0.03 17.52 448.6 [-23.55; 21.54] [277.4; 2386] 0.77
Lean Body mass1 Brain mass African m 0.21 20.2 321.12 [17.11; 24.23] [108.3; 479.9] 1.4258*10-5
Lean Body mass1 Brain mass SA European f 0.33 18.36 413.31 [7.858;36.74] [-433.4;916.7] 0.01
Lean Body mass1 Brain mass SA European m 0.28 20.75 207.54 [14.61; 27.85] [-202.8; 558.9] 0.01
Lean Body mass1 Brain mass Whole sample f 0.23 18.31 475.63 [17.22; 19.27] [433.8; 521.9] 4.216*10-34
Lean Body mass1 Brain mass Whole sample m 0.27 20.69 307.66 [20.13; 21.27] [276.8; 338] 4.4877*10-136
Lean Body mass1 Brain mass Whole sample m&f 0.42 18.79 422.92 [18.43; 19.16] [403.2; 442] 0



Table 21 Results from reduced major axis analysis (RMA) of body mass versus brain mass and height versus brain mass for the

European (Hamburg) sample taken at various age cohorts. Note the high correlation coefficients in the first 2.5 years of

life followed by a rapid reduction to the levels observed in the adult population.



Age cohort X Y Sex r  - value Slope Y-int. 95% on slope 95% on Int. P (uncorr)
Phase 1 (0-2.5yrs) log Body mass log Brain mass f 0.91 0.78 2.22 [0.73; 0.83] [2.18; 2.26] 2.42*10-85

log Body mass log Brain mass m 0.83 0.83 2.17 [0.76; 0.90] [2.11; 2.22] 3.44*10-85
log Body mass log Brain mass m&f 0.86 0.81 2.19 [0.76; 0.86] [2.16; 2.23] 4.25*10-163
Height Brain mass f 0.93 20.93 -635.1 [19.67; 22.36] [-718.7; -558.8] 4.46*10-92
Height Brain mass m 0.86 21.54 -661.44 [19.81; 23.05] [-760.9; -546.3] 3.79*10-98
Height Brain mass m&f 0.88 21.34 -653.8 [20.17; 22.47] [-727.3; -576.2] 3.29*10-181

Phase 2 (3-5yrs) log Body mass log Brain mass f 0.32 0.32 2.69 [-0.19; 0.64] [2.29; 3.34] 0.18
log Body mass log Brain mass m 0.23 0.58 2.36 [-0.46; 1.22] [1.56; 3.70] 0.13
log Body mass log Brain mass m&f 0.25 0.51 2.45 [0.18; 0.89] [1.97; 2.83] 0.05
Height Brain mass f 0.16 9.68 174.73 [-10.33; 20] [-865.1; 2384] 0.5
Height Brain mass m 0.25 12.12 -10.28 [-11.18; 27.15] [-1555; 2536] 0.1
Height Brain mass m&f 0.23 11.73 8.21 [-10.47; 21.05] [-948.7; 2454] 0.07

Phase 3 (6-17yrs) Body mass Brain mass f 0.26 7.63 935.31 [6.09; 9.19] [852.1; 1021] 0.01
Body mass Brain mass m 0.34 7.4 1045.6 [5.86; 9.16] [948.2; 1129] 6.12*10-6
Body mass Brain mass m&f 0.37 8.23 961.71 [6.97; 9.59] [889.2; 1029] 2.59*10-10
Height Brain mass f 0.25 7.19 200.33 [5.86; 9.02] [-99.1; 419.6] 0.01
Height Brain mass m 0.33 7.19 295.84 [5.82; 8.82] [20.32; 521.3] 1.54*10-5
Height Brain mass m&f 0.36 7.9 144.17 [6.91; 9.11] [-63.79; 307.3] 6.50*10-10

Phase 4 (18-60yrs) Body mass Brain mass f 0.13 7.03 840.35 [6.55; 7.58] [807.8; 868.3] 3.11*10-11
Body mass Brain mass m 0.22 8.5 801.96 [8.209; 8.79] [780.4; 822.5] 2.93*10-91
Body mass Brain mass m&f 0.28 8.63 777.76 [8.38; 8.89] [760.3; 795.4] 6.54*10-194
Height Brain mass f 0.29 16.52 -1424.4 [15.75; 17.32] [-1556; -1298] 1.67*10-51
Height Brain mass m 0.24 18.2 -1752.5 [17.58; 18.82] [-1863; -1643] 1.73*10-98
Height Brain mass m&f 0.41 16.75 -1488.6 [16.37; 17.14] [-1557; -1423] 0

Phase 5 (61-100yrs) Body mass Brain mass f 0.17 7.11 811.72 [6.78; 7.44] [793.2; 831.1] 5.84*10-23
Body mass Brain mass m 0.2 7.57 847 [7.19; 7.96] [819.3; 873.3] 3.09*10-35
Body mass Brain mass m&f 0.32 8.18 776.1 [7.91; 8.44] [759; 793.3] 1.94*10-169
Height Brain mass f 0.23 13.27 -859.95 [11.87; 14.8] [-111; -637.1] 4.53*10-41
Height Brain mass m 0.19 12.55 -744.14 [11.32; 14] [-997.6; -533.5] 2.83*10-34
Height Brain mass m&f 0.43 12.75 -778.03 [12.05; 13.49] [-901.4; -662.1] 1.02*10-311



Table 22 Results from reduced major axis analysis (RMA) of age versus brain mass, age versus body mass and age versus height

for the three populations taken in the 18-60 age cohort. Note the overall low correlation coefficients across the sub-

samples.



X Y Population Sex r  - value Slope Y-int. 95% on slope 95% on Int. P (uncorr)
Age Brain mass European f -0.14 -10.18 1730.7 [-10.55; -9,83] [1713; 1749] 3.91*10-12
Age Brain mass European m -0.13 -12.38 1973.3 [-12.62; -12.13] [1962; 1984] 4.06*10-31
Age Brain mass African f -0.17 -12.5 1710.1 [-16.19; 10.85] [880; 1850] 0.13
Age Brain mass African m -0.12 -14.33 1854.3 [-16.06; -12.52] [1789; 1913] 0.01
Age Brain mass SA European f 0.18 13.55 813.79 [-13.83; 20.28] [554.2; 1887] 0.43
Age Brain mass SA European m -0.03 -12.99 1942.2 [-16.37; 16.04] [796.5; 2093] 0.77
Age Brain mass Whole sample f -0.13 -10.24 1730.4 [-10.62; -9.88] [1713; 1750] 1.28*10-11
Age Brain mass Whole sample m -0.11 -12.36 1962.7 [-12.60; -12.13] [1951; 1973] 1.20*10-22
Age Brain mass Whole sample m&f -0.11 -12.98 1953 [-13.19; -12.78] [1943; 1963] 2.07*10-28
Age Body mass European f 0.06 1.44 4.78 [1.35; 1.54] [0.84; 8.40] 0
Age Body mass European m 0.05 1.46 14.58 [1.41; 1.51] [12.72; 16.68] 4.27*10-5
Age Body mass African f 0.29 1.93 5.31 [1.41; 2.51] [-12.75; 20.83] 0.01
Age Body mass African m 0.11 1.62 16.44 [1.27; 1.96] [5.74; 26.89] 0.03
Age Body mass SA European f 0.04 1.64 10.62 [-2.66; 2.22] [-7.73; 180.2] 0.87
Age Body mass SA European m 0.06 1.46 26.02 [-1.69; 1.76] [13.97; 152.4] 0.58
Age Body mass Whole sample f 0.06 1.46 4.77 [1.36; 1.55] [1.13; 8.54] 0
Age Body mass Whole sample m 0.06 1.45 15.44 [1.41; 1.50] [13.49; 17.3] 5.20*10-8
Age Body mass Whole sample m&f 0.06 1.5 10.8 [1.46; 1.55] [9.15; 12.47] 1.87*10-9
Age Height European f -0.22 -0.62 190.95 [-0.64; -0.59] [189.8; 192.2] 2.01*10-29
Age Height European m -0.2 -0.68 204.74 [-0.70; -0.66] [203.8; 205.7] 2.50*10-73
Age Height African f 0.08 0.68 140.84 [-0.76; 0.79] [136.9; 191.7] 0.47
Age Height African m -0.07 -0.99 205.92 [-1.20; 0.92] [142.5; 212.4] 0.14
Age Height SA European f -0.11 -0.72 200.3 [-1.049; 0.77] [140.6; 213] 0.63
Age Height SA European m -0.14 -0.76 209.19 [-0.96; 0.73] [150.7; 217.2] 0.2
Age Height Whole sample f -0.21 -0.62 190.93 [-0.64; -0.59] [189.8; 192.1] 1.18*10-27
Age Height Whole sample m -0.18 -0.69 204.57 [-0.71; -0.67] [203.6; 205.5] 3.47*10-60
Age Height Whole sample m&f -0.16 -0.78 205.72 [-0.79; -0.76] [205; 206.4] 2.72*10-66



Table 23 Results from the Kolmogorov Smirnov test of the untransformed and transformed male and female growth curves.

Prior to transformation the untransformed male and female brain mass and body mass growth curves display a small

probability of being equal (i.e. P<0.05) . However on transformation of the female dataset, both brain mass and body

mass distributions display significant similarity, as is indicated by P>0.05.

These results indicate that sequential hypermorphosis of the female growth curves and a prolonging of male growth is

responsible for the sexual size dimorphism observed between human males and females. Utr. Male Brm =

untransformed male brain mass; Utr. Fem. Brm = untransformed female brain mass; Tr. Male Brm = transformed male

brain mass; Tr. Fem Brm = transformed female brain mass; Utr. Male BM = untransformed male body mass; Utr. Fem.

BM = untransformed female body mass; Tr. Male BM = transformed male body mass; Tr. Fem Bm = transformed

female body mass.

Male Curve Female Curve D statistic P (same)
Utr. Male Brm Utr. Fem. Brm 0.61194 6.19?10-23
Utr. Male Brm Tr. Fem. Brm 0.13433 0.16451
Utr. Male BM Utr. Fem. BM 0.47015 1.03?10-13
Utr. Male BM Tr. Fem. BM 0.14925 0.091617



Table 24 Summation of path analysis results for Model 1 used to explain the variation in human brain mass in the 0-3 year age

cohort. RW = regression weights; Std RW = standardised regression weights; Imp Cor = implied correlations.



Regression Wts. RW Std.RW Imp.Cor.
Height Age 15.425 0.843 0.8

Body mass Height 0.288 0.928 0.91
Body mass Age -0.125 -0.022 0.8
Brain mass Height 20.301 1.045 0.913

Brain mass
Body 
mass -9.052 -0.145 0.806

Total Effects Age Height
Body 
mass

Height 15.425 0 0
Body 
mass 4.317 0.288 0
Brain 
mass 274.08 17.695 -9.052

Direct Effects Height 15.425 0 0
Body 
mass -0.125 0.288 0
Brain 
mass 0 20.301 -9.052

Indirect Effects Height 0 0 0
Body 
mass 4.441 0 0
Brain 
mass 274.08 -2.606 0

Std.Total Effects Height 0.843 0 0
Body 
mass 0.761 0.928 0
Brain 
mass 0.771 0.911 -0.145

Std.Direct Effects Height 0.843 0 0
Body 
mass -0.022 0.928 0
Brain 
mass 0 1.045 -0.145

Std.Indirect Effects Height 0 0 0
Body 
mass 0.783 0 0
Brain 
mass 0.771 -0.134 0



Table 25 Matrix of correlation coefficients and probabilities comparing the strength of relationship between brain mass, body

mass, height and climatic zone. Note that although climatic zone is relatively highly correlated with brain mass across

the human populations, the highest correlation is still between brain mass and body mass (r = 0.67; [p (uncorr) =

8.74×10-6] while height [r = 0.50; p (uncorr) = 0.0025] is also more strongly correlated with brain mass than is climatic

zone (r = 0.43; [p (uncorr) = 0.0093]). P (uncorr) = probability of being uncorrelated; r = Pearsons correlation

coefficient.

Variable Brain mass Body mass Height Climatic Zone
Brain mass 0 0.000006 0.002067 0.008119

      r Body mass 0.67 0 0.000002 0.034435
Height 0.49 0.69 0 0.662266
Climatic Zone 0.43 0.35 -0.07 0

        P  (uncorr)



Table 26 Comparison of average brain sizes reported in the literature from human populations. The 'weighted' mean for human

brain size as calculated from the literature is 1413.18 g and is obtained by using the means and sample sizes reported in

the following studies: Borowska & Golachowska, 1935; Milicer, 1955; Strzalko, 1974; Holloway, 1980 and Henneberg

et al., 1985. When the 'weighted' mean is recalculated using the dataset presented in this study, the average brain size

for humans is 1412.14 g. CC = cranial capacity; Std. Dev = standard deviation.

Study Measure Method Sample/Population size Mean Variance Std.Dev
Borowska & Golachowska, 1935 Cranial capacity Individual 268 1481.9 17822 133.5

Milicer, 1955 Cranial capacity Individual 63 1169.3 85661 92.6
Strzalko,1974 Brain mass Individual 254 1367.1 19500.4 139.6

Holloway, 1980 Brain mass Individual 667 1387.6 17916.4 133.9
Beals et al., 1984 Cranial capacity mean of means 122 populations 1349.3 12681.7 112.6

Henneberg et al., 1985 Cranial capacity Individual 302 1498.3 23478.7 153.2
Henneberg, 1990 CC & Brain Mass mean of means 6 previous studies 1350 24550 157
This current study Brain mass Individual 11000 1411.99 23503.1 153.31
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Figure 14 A. Scatter plot of brain mass (g) versus body mass (g) for the whole male

sample. B. Scatter plot of brain mass (g) versus body mass (g) for the

whole female sample. C. 95th percentile ellipses of the male and female

samples drawn from the 18-60 year age cohort and constructed from the

bivalent plot of brain mass (g) against body mass (g). Note the pronounced

overlap between males and females with the male ellipse only marginally

above that of the females.
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Figure 15  A. Scatter plot of brain mass (g) versus body mass (g) for the whole

European (Hamburg) male sample. B. Scatter plot of brain mass (g) versus

body mass (g) for the whole African male sample. C. 95th percentile

ellipses of the European (Hamburg) male and African male samples drawn

from the 18-60 year age cohort and constructed from the plot of brain

mass (g) against body mass (g). Note the pronounced overlap between the

population groups with the European ellipse only marginally above that of

the African sample.
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Figure 16 A. Scatter plot of brain mass (g) versus body mass (g) for the whole

European (Hamburg) female sample. B. Scatter plot of brain mass (g)

versus body mass (g) for the whole African female sample. C. 95th

percentile ellipses of the European (Hamburg) female and African female

samples drawn from the 18-60 year age cohort and constructed from the

bivalent plot of brain mass (g) against body mass (g). Note the overlap

between the population groups with the European ellipse only marginally

above that of the African sample.
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Figure 17 A. 95th percentile ellipses of all the sub-samples used in this study for the

18-60 year age cohort. Ellipses were constructed from the brain mass

versus body mass scatter plots.  B. 95th percentile ellipses of all the sub-

samples used in this study for the 18-60 year age cohort. Ellipses were

constructed from the brain mass versus height scatter plots. Once again

substantial overlap between the sub-samples is observed.
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Figure 18  Box and whisker plot for the six sub-samples used in this study. Despite

differences in mean brain mass for the samples, what is most apparent is

the range of variation in brain mass which reiterates the overlap between

the samples.
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Figure 19 A. Comparison of male and female untransformed brain mass growth

trajectories. Note the bimodal brain mass distributions with the male

growth curve lying above that of the female sample prior to transformation

of the female curve. B. Plot showing the distribution of brain mass

residuals representing the distance between each data point on the female

curve and the local best-fit regression line through the male data. C.

Comparison of growth trajectories after transformation of the female brain

mass growth curve by sequential hypermorphosis (i.e. phenotype axis was

multiplied by 1.12). D. After transformation the female brain mass

residuals come to be evenly distributed around the male datapoints. There

are 134 residual points and the longest run of female brain mass residuals

on the same side of the male curve is 33. E. Comparison of male and

female untransformed body mass growth trajectories. Once again a

bimodal distribution is observed with the male growth curve lying above

that of the female sample. F. Plot showing the distribution of body mass

residuals representing the distance between each data point on the female

curve and the local best-fit regression line through the male data. G.

Comparison of growth trajectories after transformation of the female body

mass growth curve by sequential hypermorphosis (i.e. phenotype axis was

multiplied by 1.19). H. After transformation the female body mass

residuals are evenly distributed around the male datapoints. There are 134

residual points and the longest run of female body mass residuals on the

same side of the male curve is 36
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Figure 20 A. Diagram summating the results of multiple regression analysis for brain

mass variation in the 18-60 age cohort. Explanatory variables were body

mass, age and height. Based on the coefficient of multiple correlation 12

% of the variation in brain mass is explained by the combined effects of

age, height and body mass. B. A diagrammatic summation of the extended

multiple regression analysis for brain mass variation in the 18-60 age

cohort. This analysis indicates that even after factoring in the effects of

sex and population affinity, the coefficient of multiple correlation is only

marginally increased to explain 24% of the variation in brain mass.
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Figure 21 Series of multiple regression analyses using body mass, height and age to

explain brain mass variation in different age cohorts. Note that the highest

coefficient of multiple correlation (0.84) is observed during the 0-3 age

cohort and this explanatory value rapidly decreases to reach the levels

displayed in adulthood. e 2 = error term.
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Figure 22  Path diagrams depicting four causal models for the relationship between

brain mass, body mass, height and age. All four models were both

successfully fit, i.e. P > 0.05 thus they significantly agree with the 0-3 year

age cohort. When tested on other age cohorts such as the 18-60 year

cohort these models were rejected and deemed to depart significantly from

the data, reiterating the effect of a change in the brain and body size

scaling relationships with age. The two best models as tested on the 0-3

year age cohort, were those with P = 0.938. In Model 1, height has both

direct and indirect effects on brain mass. The direct effect of height on

brain mass indicates that when height goes up by one standard deviation,

brain mass goes up by 1.045 standard deviations. Body mass has a direct,

inverse effect on brain mass of 0.14 standard deviations.



body
mass

e1

age brain
mass e2

0.71

1.05

0.84

0.84

P = 0.423

height

e3

-0.140.83

0.91

0.00

body
mass

e1

age brain
mass e2

0.71

1.04

0.84

0.84

P = 0.723

height

e3

-0.140.83

0.91

body
mass

e1

age brain
mass e2

0.88

1.04

0.84

0.36

P = 0.938

height

e3

-0.140.76 0.57

0.64

body
mass

e1

age brain
mass e2

0.71

1.04

0.84

0.84

P = 0.938

height

e3

-0.14-0.03 0.83

0.93



154

4.4  Discussion

4.4.1 Average human brain mass

Using the entire sample of 11000 individuals for the age cohort of 18-60 years,

the average human brain mass is approximated as being 1412 g (males 1447.95 g;

females 1302.14 g). This is comparable to that reported in previous studies, where mean

human brain mass ranges between 1169 g to 1498 g (See Table 26); however, brain size

estimates are often derived from different sources and using a range of procedures and

measures of brain size. For example, the average brain mass reported by both Strzalko

(1974) and Holloway (1980) were both obtained using forensic material and the means

closely approximate one another (i.e. mean =1367.1 g, males = 1432.2 g, females = 1302

g; and mean =1387.6 g, males = 1457.2 g females = 1317.9 g; for Strzalko (1974) and

Holloway (1980) respectively). However, the two populations from which they were

derived vary in that Strzalko used a Polish population whilst Holloway’s estimate was

recalculated using the Danish sample from Pakkenberg and Voigt (1964). Other studies

such as that by Borowska and Golachowska (1935), based on a Slavic population and that

by Milicer (1955) using a 19th century Australian Aborigine sample, vary not only in the

samples used, but also in the measure of brain size, which for both population groups is

that of cranial capacity as opposed to brain mass. Borowska and Golachowska’s (1935)

estimate of mean brain size is 1481.9 cubic centimeters (cc) (males 1545.5 cc; females

1396.1 cc) whilst Milicer’s (1955) estimate is 1169.3 cc (males 1229.4 cc; females

1109.3 cc).

The use of cranial capacity has been drawn into question as a number of previous

studies have shown that the endocranial vault may overestimate adult brain size by
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approximately 20% (Brandes, 1936; Metteler, 1955; Tobias, 1994; Spocter et al., 2007).

Despite this relatively large overestimate, cranial capacity still remains a favoured

measure of brain size for numerous researchers. An extension of this is the use of

cephalometry on living individuals as performed by Henneberg et al (1985) in which a

student population from Poland was used and yielded a mean brain size of 1498.3 cc

(males 1589 cc; females 1407.6 cc). In order to extend the range of data and to produce

brain mass estimates which are more representative of the human mean, meta-analyses

have been used by certain researchers. The most notable has been the study performed by

Beals et al (1984) in which a worldwide population average was derived from a database

of cranial capacities from 122 human populations. The average human brain size as

approximated by Beals et al (1984) is 1349.3 cc (males 1426.6 cc; females 1272 cc) and a

similar analysis by Henneberg (1990) arrives at a comparable species average for Homo

sapiens of 1350 cc. Both Beals et al (1984) and Henneberg (1990) make use of cranial

capacity rather than brain mass to arrive at the species mean for Homo sapiens. The

results obtained in the current study are well within range of that reported by both

Henneberg (1990) and Beals et al (1984), but are larger and more closely associated with

the values reported in more recent studies undertaken using the more validated Magnetic

Resonance Imaging (MRI) procedures (e.g. Peters et al., 1998; Bartley et al., 1997;

Bigler et al., 1995).

Another area of discontinuity between the techniques used to derive estimates of

average human brain size in various studies has been the use of relatively small sample

sizes to arrive at population means. For example, the samples used by Strzalko (1974);

Pakkenberg and Voigt (1964); Borowska and Golachowska (1935) and Henneberg et al
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(1985) all use sample sizes of 700 individuals or less. In comparison the current study

uses a dataset of 11000 individuals from three population groups and two ‘ethnically’

distinct groups. Magnetic resonance imaging of the human brain has facilitated the in

vivo volumetric analysis of brain mass with great accuracy (Piven et al., 1995; Raz et al.,

1997; Bartley et al., 1997; Bigler et al., 1995; Caviness et al., 1996; Geidd et al., 1996;

Peters et al., 1998); however, the cost of this procedure has made large scale analyses

with large sample sizes (the like of the current study) unfeasible. Although the brain mass

of healthy individuals can now be determined with great accuracy, the range of variability

of the samples as being reflective of the variation in brain size for Homo sapiens is drawn

into question. In this regard we believe that while imaging does provide accurate results,

the use of a reliable, large dataset is appropriate for defining the mean brain mass for

humans.

Whilst the analyses of Beals et al (1984) and Henneberg (1990) attempt to

overcome this pitfall by incorporating population means into their final estimate of

average brain size, they suffer from the mathematical error of taking ‘means of means’

instead of ‘weighting’ the means as is conventional procedure in meta analyses of this

type. This results in a lower average brain size estimate than might actually be

representative of the species. For example although the actual average brain mass in this

study is 1411.89 g, if individual group means as represented in Table 16 are summed and

a mean is calculated from this sum, the new mean is 1362.69 g. The mean of means for

this study would thus match more closely with that reported by Beals et al (1984) and

Henneberg (1990), although it is obvious that this isn’t the actual mean for the sample. In

fact when calculating the mean of means for brain mass of the African and European
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(Hamburg) samples, an estimate of 1351.1 g is derived whilst when using the two

geographically similar population groups (i.e. South African European and African

samples) an estimate of 1355.34 g is arrived at which is virtually identical to that reported

by both Beals et al (1984) and Henneberg (1990).

A much better way of performing this type of meta analysis would be to correct

for sample size by ‘weighting’ the means relative to the number of individuals in the

sample (Sokal  & Rolf, 1969). For this current study, the mean brain mass calculated by

‘weighting’ the mean brain mass from each population relative to the sample size for that

population is 1411.85 g, which is only 0.04 g away from the actual mean calculated.

Using the data presented in Table 26 (to the exclusion of that presented by Beals et al.,

1984; Henneberg, 1990 and the data in this current study) a ‘weighted’ mean for brain

size as calculated from the literature is approximately 1413 g, which is virtually identical

to that obtained in this current study. This result argues in favour of a revaluation of

average brain mass towards values in the range of 1411 g to 1413 g. Another statistical

descriptive often accompanying reported measures of mean brain size is the standard

deviation for the sample understudy. In this current study the standard deviation of brain

mass is 153 g. The range for standard deviation from previous studies is between 92.6 g -

167 g. Our standard deviation is very similar to that reported by Henneberg (1990) and

Olivier and Tissier (1975) who report a standard deviation of 157 g whilst Tobias (1968)

reports a slightly higher standard deviation of 167 g.  Thus, once techniques are corrected

for, our database is in strong agreement with previous studies, and revises the average

brain mass and body mass for humans as a species.  This revision is important in terms of
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understanding human brain evolution and the use of data in comparing changes in brain

mass over time in the hominid lineage.

4.4.2 Population differences in brain mass.

Brain size differences have been reported between various population/ethnic

groups and have been accorded differing explanations and significance; however,

explanations that invoke hierarchical levels of intelligence and the link to brain size have

recently reappeared in the literature (e.g. Rushton, 1988, 1991, 1992, 1994, 1997, 1998;

Rushton & Ankney, 1996).  In this current study it has been shown that although there

exists differences between the mean brain mass of the African and European population

groups, these differences are small and may be largely attributed to differences in body

size between the two populations. Although tests for significant difference in mean brain

mass between the African and European population are positive (i.e. P<0.05), a test for

heterogeneity in slope indicated significant homogeneity in the slopes for brain mass

between the two population groups (See Table 19). Furthermore, a visual assessment of

the means and range of data for the two groups (Fig. 18) strongly reinforces the similarity

existing between the two populations. When the 95th percentile ellipses of the male and

female data points from the population groups were drawn, tremendous overlap was

observed between the plots (Fig. 17). This overlap is seen to be even more dramatic when

one considers the standard deviation in brain mass (i.e. 153 g) and that adding or

subtracting this amount from the mean brain mass for each sex and population group

would result in an immediate ‘crossing over’ into the range of the remaining groups. This

reiterates the point, that the ‘differences’ observed between the ethnic/population groups
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lie well within the expected variation for brain mass and challenges the validity of

proposed links between brain size and intelligence within Homo sapiens. An extension of

this argument has been laid forth by more recent clinical findings showing that numerous

individuals with clinically defined microcephaly, are functionally normal and often have

normal IQs (Sells, 1977; Sassaman & Zartler, 1982; Rossi et al., 1987). That variation

exists in human brain size and that this has very dubious links with IQ is perhaps best

highlighted by the recorded brain volume for the Nobel prize wining novelist Anatole

France. According to Gould (1981) Anatole France had a post mortem brain volume of

933 cc / 1017 grams, a measure which lies within the range for Homo erectus. Clearly the

case for Anatole France serves as one clear example to doubt the credibility of claims for

links between brain size and intelligence being partitioned along the lines of population

affinity.

4.4.3 Sex difference in brain mass

Sex differences in mean brain mass have been reported in the literature and this

study is no exception. As indicated in Table 16, mean male brain mass is larger than that

of females (male 1447.95 g; female 1302.14 g) and this pattern is maintained across the

population groups. Numerous other studies have indicated the same result, the reasons for

which and its significance have been the subject of debate for numerous researchers. Our

results are most notably closest to that reported by Strzalko (1974) and Holloway (1980)

who report a mean male and female brain mass of 1432.2 g and 1302 g and 1457.2 g and

1317.9 g respectively. A test for significant difference between male and female brain

mass indicates low probabilities of the means and variances in brain mass for males and
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females being equal (Table 17). However, mean body mass and height are also largely

different between the sexes, indicating that an associated difference in body mass or

height largely accompanies the difference in brain mass.  Male and female regression

slopes of brain mass versus body mass were also largely heterogenous and are believed to

be reflective of the greater variation in body mass between the sexes. In comparison, tests

for similarity in slope between height versus brain mass regression equations indicates

the existence of significant homogeneity in slope between males and females of the South

African European and African populations, however this is not the case for the European

(Hamburg) sample.

Whether differences in brain mass between the sexes can be accounted for by

body size has been a matter of interest to numerous researchers. Even as early as 1892

Marshall had asserted that the use of height as a covariate to brain mass could not

“wholly explain” the sex difference in brain mass between males and females. This point

was substantiated by Gould (1981) who indicated that even after correction for height the

difference between male and female brains is approximately 113 g. Skullerud (1985)

obtained a similar result and indicated that the sex difference between male and female

brain mass is in the range of 110-115 g. The sex difference (without controlling for body

parameters) as calculated from the samples used in this current study ranged between 102

–150 g as based on the 18-60 age cohort.

Our analysis indicated that the strength of relationship between brain mass and

body mass, and brain mass and height, varies tremendously with age, and that the

strongest linear correlations between brain mass and body parameters occurs during the

first 2.5 years of life (Table 21). Following this, there is a dramatic drop in the strength of
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relationship between the variables under study after which the value of both height and

body mass in explaining brain mass is reduced to the levels quoted in most texts (i.e. r ~

0.13-0.29). If the change in r-value is taken to be reflective of the change in the strength

of relationship between brain mass and body parameters at different ages, it is no wonder

that the sex difference in brain mass persists despite correction for either height or body

mass. This suggests a ‘decoupling’ of the scaling relationship between brain mass and

body parameters to allow for greater variation in both height and body mass with

increases in age. A possible reason for why brain mass is tightly correlated with body

parameters early in life may be the existence of a developmental constraint which exerts

its effect most notably during the first few years of life. In this regard, subsequent

diminishing of the strength of association in later life is thus indicative of the end of a

crucial period in the developing organism.  An example of this type of waning of a

developmental constraint may be the disappearance of potential pleiotropic effects of

genetic expression patterns during the developmental period, which in humans may last

for sometime in the post-natal period.

The amount of sexual dimorphism in brain mass is smallest during the first 5

years of life and then subsequently increases to the levels displayed in adulthood (Table

18). Coincidentally the amount of sexual dimorphism in body mass and height are also at

minimum levels during the first few years of life and increases with advancing age. This

is indicative of the constraint exhibited in scaling relationships between brain and body

parameters early in life followed by a subsequent relaxation and the onset of greater

variation. That male and female brain mass do not differ dramatically from one another is

most apparent in an analysis of the 95th percentile ellipses (Figs. 14, 15). Substantial
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overlap is evident between male and female ellipses and this is also apparent from the

plots in Figures 17 and 18. Once again when considering the standard deviation in brain

mass (i.e. 153 g) and subtracting this from the mean male brain mass for each sub

sample, the female mean comes to lie even closer within the range of the male data

points, thus reiterating that the size dimorphism in brain mass between the sexes lies well

within the expected variation for human brain mass. This result again questions the

validity of claims for substantial differences in brain size between the sexes and

especially any claims between brain size and intelligence within Homo sapiens. Although

the size difference between male and female brain mass is hardly substantial enough to

warrant an investigation of any cognitive significance in size, the origin of this size

difference is still a valid area of interest. We attempted to investigate this phenomenon by

using a test for heterochrony as implemented by Rice (2002). Our analysis indicates that

transformation of the female brain growth curve and subsequent testing using the more

appropriate Kolmogorv-Smirnov test reveals that males have relatively larger mean brain

masses than females and that this may be attributed to a slightly prolonged period of

growth of the male brain.

Despite these differences in mass of the brain and body between males and

females, an analysis of encephalization quotients (EQ) revealed that there is no difference

in the relative size of the brain between the sexes.  Our calculated EQs are somewhat

lower than those previously published.  For example, Jerison’s  EQ of 8.07 for humans

(Jerison, 1973).The major difference between these studies and the present one is the

difference in the estimate of brain and body mass, as well as the regression equation used.

Given that our estimates are based on an extremely large dataset for all three possible
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variants in the calculation of EQ, we believe that the present results represent a more

accurate assessment of the situation.  Thus, in previous studies the relative brain size of

modern humans appears to have been overestimated.

Our analyses, whilst showing that there are differences in mean brain mass

between males and females, these differences are not substantial enough to warrant an

investigation of links to intelligence and brain size and that the differences between the

sexes fall well within the expected variation in brain mass.  Moreover, we find no

difference in the EQ of the sexes when calculated using the large dataset analyzed in the

present study.  Jersion (1973) postulated that EQ was a direct measure of biological

intelligence.  If EQ is taken in this sense, then there is no difference in intelligence

between the sexes of Homo sapiens.

4.4.4 Multiple regression analysis and causal modelling of brain mass

variation

The use of multiple regression analysis indicates that as with the use of univariate

analyses, body parameters are most closely related to brain mass during the first 3 years

of life. The reason for this is postulated to be the result of a constraint that limits the

amount of early variation in body size. A potential causal model for the explanation of

brain mass variation indicates that height is the largest contributor to brain mass variation

during this period, followed by body mass and then age. Our analyses also indicate that

both sex and population affinity, play a minor role in explaining brain mass variation for

Homo sapiens. The role of climate as a potential explanation for the variation in human

brain mass is drawn into question by our reanalysis of the Beals et al (1984) dataset.
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Accordingly climatic zone appears to explain a lesser amount of the global variation in

human brain mass than either body mass or height. This result reiterates the importance

of accounting for body parameters, especially in analyses concerned with exploring brain

mass variability. The correlative and potentially constraining influence of body

parameters (such as height and weight) on brain mass may not be overlooked and must

have played a substantial role in channelling changes in hominid brain size. The

possibility that these constraints may have been ‘lifted’ in intensity, ‘decoupled’ or

potentially ‘reversed’ during the course of our hominid ancestry remains a feasible

argument. Evidence for this is reflected in the plasticity of the allometric equations

defining the relationship between brain mass and body parameters early in life as

opposed to the weaker correlations later and the incremental variation in both brain and

body mass with advancing age.

4.5 Conclusion

This study has shown that differences in brain mass between and within

population groups are small and may be the result of variation in body parameters such as

height and body mass, whilst factors such as sex, population affinity and climate play a

lesser role. That Homo sapiens represent a single homogenous group is undisputable and

is once again reiterated by the current analysis of brain mass. These results seriously

question the validity of intraspecific links between brain size and intelligence due to the

tremendous overlap between the sexes and population groups. In addition

paleoanthropologists should find the levels of variation in brain mass for Homo sapiens

useful as a guide to the interpretation of brain size variation in fossil hominid taxa.
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Chapter 5

Allometric Scaling of Brain Size and Tempo in Primate and Mammalian Neural
Systems Evolution.

5.1 Introduction
One of the most striking features in the evolution of brain size across mammals is

the strong correlation between body and brain mass.  This negative allometric scaling is a

clear constraint on the evolution of variation in brain mass in mammals, i.e. changes in

brain mass appear to be a predictable outcome of changes in body mass.  This correlation

has been known for well over a century (DuBois, 1897), but was formalized into a

coherent theory by the seminal publication of Jerison (1973).  What is clear from

comparisons of body and brain mass across mammals is that certain groups do deviate

from a mammalian norm, this being most clearly expressed in the primates (Jersion,

1973) and cetaceans (e.g. Manger, 2006).  For non-primate-non-cetacean mammals, there

is a strongly statistically significant and predictable negative allometric scaling that

shows for every doubling in body mass, the mass of the brain increases by around 1.65

times (e.g. Armstrong, 1990; Manger, 2006).  Mammals in general show some degree of

deviation or variation, around this norm, with some species having a larger brain mass

than you might predict from body mass and others the opposite.  The primates, excluding

humans, show a significant and order specific deviation to that seen in other mammals, in

that the average brain mass is around two times larger than you would predict from

knowledge of the brain and body mass of other mammals (e.g. Jerison, 1973).  The non-

human primates are seen to exhibit a negative allometric scaling relationship that is

similar to that seen across mammals generally, but with higher than predicted brain



166

weights.  When body mass in the non-human primates is doubled, the brain mass

increases by approximately 1.69 times (e.g. Manger, 2006).

This primate – non-primate dichotomy is of interest in both understanding the

history of the evolution of brain size in humans (e.g. Manger, 2005a) and in

understanding trends and tempos in the evolution of the mammalian brain in general.  For

the most part, studies of the evolution of the mammalian brain have come to the

fundamental conclusion that larger brains are more complex and differentiated (e.g.

Stephan et al., 1981).  This line of reasoning emanates from cross species comparisons

that do not take into account the phylogenetic relationships of the animals compared.

This basic axiom often also ignores the level of organization within the brain that is

compared across phylogenetically unrelated species.  Thus, our understanding of brain

evolution in mammals is being stymied by theorists who do not take into account the

potential effects of phylogenetic constraints or scaling laws of form when discussing

evolution of this organ.  Phylogenetic constraints and scaling laws of form play

important, if not the most important, roles in the genesis of any new form (Gould, 2002).

Gould (2002) has surmised that these two avenues of evolutionary change may occur at a

far higher relative frequency than adaptive avenues of change.  While these avenues of

change may not have received a great deal of attention previously in terms of studies of

brain evolution, recently Manger (2005b) gathered evidence indicating that at the systems

level of organization in the mammalian brain, there appears to be strong phylogenetic

constraints apparent in that members of the same mammalian order do not appear to show

differences in the complement of homologous subdivisions of systems despite differences

in brain size, phenotype or life history.
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The present study addresses some of these issues by examining allometric scaling

within mammals at the phylogenetic level of the order and compares this with

documented changes in the organization of the brain at the systems level.  To undertake

this, the scaling of the primate brain and subgroups of primates is compared to the scaling

of the general mammalian brain and orders within the mammals.  The case is then made

for a potential correlation between constraints acting on brain mass within and across

phylogenetic groupings with constraints acting upon changes at the system level of neural

organization.  This approach may lead to some predictability in findings across mammals

adding a level of potential understanding to the study of brain evolution at the systems

level that is not yet fully appreciated.

5.2 Materials and methods

In total 821 brain mass and body mass records for the Class Mammalia were

collated from numerous published sources (Bininda-Emonds et al., 2001; Crile and

Quiring, 1940; Stephan et al., 1981). Of these were representatives from 11 different

Orders namely: Didelphimorphia (10); Dasyuromorphia (7); Xenarthra (9); Insectivora

(8); Rodentia (26); Chiroptera (338); Carnivora (216); Artiodactyla (22); Diprotodontia

(19); Perissodactyla (10) and Primates (156). In addition the estimated brain and body

masses of 13 hominid species were also added to the existing database for later analysis

(Chapters, 1, 2 and 3).

The analysis was split into four major parts: a) an investigation of the brain: body

mass scaling relationship exhibited in the primate brain and how it compares to that of

other non primate mammals; b) a test for homogeneity in slope between non primate
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mammalian orders; c) a test for homogeneity in slope between the major sub-ordinal

categories within the Order Primates; and d) a comparison of slopes and tests for

homogeneity between primate sub-ordinal levels and orders from the Class Mammalia.

Bivariate trait relationships were analysed by fitting regression analysis lines

using reduced major axis to the log base 10 transformed dataset as implemented by the

statistical package (S)MATR: Standardised Major Axis Tests & Routines (Version 2.0; ©

Falster, 2003-2005).  Slopes were fitted across the species within each group with 95%

confidence intervals calculated following (Pitman 1939). In order to visualise these

bivariate relationships, analysis plots depicting these relationships were constructed using

the linear fit and graphing function in PAST (Version.1.18; PAST © Hammer & Harper,

1999-2005). A regression slope common to both groups was then estimated following

Warton and Weber (2002), and using a likelihood ratio method as implemented by the

statistical package (S)MATR: Standardised Major Axis Tests & Routines (Version 2.0; ©

Falster, 2003-2005). The significance of this estimate was determined by testing for

significant heterogeneity among the group slope estimates by means of a permutational

procedure (Manly, 1997). After fixing the position of individual points along the

estimated common slope, residuals were permuted among groups 1000 times wherewith

the common slope and test statistic was recalculated after each iteration. This method is

analogous to that proposed by (Freedman & Lane, 1983) for linear regression, and has

been shown to maintain close to exact significance levels in small samples for linear

models (Anderson and Robinson 2001).
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5.3 Results

Brain mass and body mass were strongly correlated within each of the groups

studied (Table 27). The coefficients of determination range typically between 0.8 – 0.97

indicating that 80 % to 97 % of the variation in brain mass can be accounted for by

variation in body mass. These high correlation coefficients were also associated with low

probabilities of the two variables being uncorrelated and ranged between 0 - 5.73 x 10-133.

Low probabilities of uncorrelation argue strongly in favour of the existence of a brain:

body mass scaling constraint that regulates changes in brain size across various taxa and

taxonomic groups. The slopes for each of the taxonomic groups are also of interest as

they give an indication of the rate of change in brain mass with changes in body mass and

how these may correlate with changes at various levels of organization within the brain.

5.3.1 Non-human primate and mammalian scaling

While the non-human primates scale in a manner reflecting their greater relative

brain mass as compared to the mammals (as indicated by the difference in the Y

intercept), our observations indicate that the non-human primate slope (0.727) appears

remarkably similar in magnitude to that of the mammalian class (0.749) (Figure 23).  It

should be noted here that the non-human primates include all extant primates for which

we could find measures of brain and body mass to the exclusion of Homo sapiens, and

the generalized mammalian group includes all extant mammals for which we could find

measures of brain and body mass to the exclusion of the cetaceans as they show a

phenotypically unusual form of scaling (Manger, 2006).  Visual inspection of these

results by plotting the respective regression lines seemed to confirm at least graphically if

not statistically, the similarity between slopes derived for these two taxonomic groups as
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the regression lines appear to be almost parallel.  While speculation as to the whether

these curves display similar enough slopes may be approached from a visual basis, a

more sound and objective analysis, would be to test for homogeneity in slope using

statistical procedures. In this regard a set of tests for common slopes between groups was

undertaken (Table 28), and these tests for homogeneity in slope prove positive and

indicate that the non-human primates do indeed have a slope comparable to that of the

mammalian class.  This first analysis indicates that it is likely that changes in the size of

the brain associated with changes in the size of the body occur under the same type of

scaling constraint in the non-human primates and the generalized mammalian class, i.e. a

class level form of scaling is found for the non-human primates.

5.3.2 Scaling within mammalian orders

Of the several Mammalian orders used in this study, four groups were

investigated to assess whether they displayed similar intra-ordinal ‘uniformity’ in slope.

The orders included for analysis as there was enough data available (more than 20

combined brain-body mass estimates) were the carnivores, rodents, diprotodonts and

artiodactyls. Visual assessment of the derived regression slopes was suggestive of slopes

that were less steep than that determined for the mammalian class in general or the non-

human primates.  But the derived regression slopes appeared to be relatively parallel

between these groups (Figure 24). The four mammalian orders analyzed were all seen to

have regression slopes that lie between 0.518 – 0.667 in magnitude (Table 27); however

when using a more objective statistical approach to testing for homogeneity in slope, the

nature of the visual similarities observed for the Orders became apparent (Table 29).

Tests indicate that within the four orders studies, the diprotodonts share a common slope
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with the artiodactyls, carnivores and rodents, whilst rodents and carnivores also have

statistically similar slopes. Thus, as with the first analysis it seems likely that changes in

the size of the brain and correlated changes in the size of the body follow an order

specific scaling constraint in the non-primate mammals.

5.3.3 Scaling within primate groupings

While the subgroups in the mammalian analysis represented mammalian Orders,

the subgroups of the primate comparison were comprised of taxonomic groups taken

below the level of the Order. These groups are as follows: the Pongidae & Hylobatidae

group (Apes); Hominidae group (Hominids); Haplorrhini (New and Old World Monkeys)

and Strepsirrhini (Prosimians). Unlike the comparison of the mammalian components,

these slopes appear more variable though the apes (0.572) and the Haplorrhini (0.654)

groupings superficially displayed slopes of a similar magnitude as that observed for

mammalian orders (Figure 25). A notable exception to this is the very steep slope

calculated for the hominid regression line (1.496) which included humans as one of the

data points.  Of all the groups examined in the current study, only the hominid regression

showed positive allometry (i.e. slope > 1), the remainder being negative allometry (slope

< 1). On statistical inspection a test for homogeneity in slope revealed that within the

Order Primates, the Apes share a common slope with the Haplorhini (0.654) and

Strepsirrhini (0.705), whilst as expected from the visual assessment of the curves, the

hominid slope is significantly different from all other slopes within the primate Order

(Table 30). Thus from the analyses presented above, three major primate groupings, of

taxonomic levels below that of the Order, display similar scaling relationships between

brain mass and body mass, and is potentially indicative of a grouping specific scaling
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constraint. The clear separation and juxtaposition of the hominid slope from that of the

rest of the primate groups is reflective of a scaling relationship in brain and body size

which is specific to hominids, and originated at the onset of this family.

5.3.4 Scaling in primate groupings compared with mammalian orders

These analyses allow us to ask the question – do sub-categories within the

Primate Order scale in the same fashion as some of the Orders comprising Mammalia? In

order to answer this a cross taxonomic analysis for homogeneity in slope needed to be

undertaken. It is apparent that the regression lines for a number of the primate groups are

visually parallel to that of the mammalian orders (Figure 26), whilst the magnitude for

most of these slopes are relatively close except for that of the hominids. Statistical

analysis for homogeneity however revealed surprising results (Table 31). The apes were

shown to share a common slope with a number of the mammalian orders (i.e.

Artiodactyls; Diprotodonts; and Carnivores). The Haplorrhini slope was significantly

homogenous with that of the Carnivores; Diprotodonts and Rodents. Statistically

homogenous slopes also existed between the primate Strepsirrhini sub-order and the

mammalian Order Rodentia. Not surprising, the hominid slope was not homogenous to

any of the groups understudy.
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Table 27 Regression estimates based on least square regression analysis for the

samples understudy. N = sample size; R2 = Pearsons correlation

coefficient; P (Uncorr) = Probability of brain mass and body mass being

uncorrelated; LowCIs = Lower confidence interval for slope; UppCIs =

Upper confidence interval for slope; Interc. = Intercept.

Group N R 2 P (Uncorr) Slope LowCIs UppCIs Interc.
Primates 156 0.890 8.27 * 10-76 0.7269 0.6862 0.7675 -0.828
Other mammals 636 0.982 0 0.749 0.741 0.757 -1.286

Artiodactyla 22 0.898 2.23*10-11 0.5183 0.4367 0.5998 -0.234
Carnivora 218 0.939 5.73*10-133 0.6552 0.6327 0.6776 -0.889
Diprotodontia 19 0.887 2.45*10-18 0.5643 0.4612 0.6674 -0.819
Rodentia 27 0.955 1.81*10-9 0.6671 0.6074 0.7269 -1.107

Pongidae & Hylobatidae 8 0.970 8.19*10-6 0.5717 0.472 0.6715 -0.177
Hominidae 13 0.800 3.72*10-5 1.4958 0.9991 1.9924 -4.168
Haplorrihini 83 0.862 1.52*10-36 0.6586 0.6002 0.7169 -0.552
Strepsirrhini 25 0.930 8.34*10-15 0.7046 0.6214 0.7877 -0.92
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Table 28 Common slope and associated P value Matrix used for comparing the

Order Primates and the Class Mammalia (excluding the Order Primates).

Numbers in BOLD indicate the derivation of an acceptable common slope

where P>0.05 and thus the slopes can be regarded as homogenous. (a, b) =

slope, Probability of the slopes being heterogeneous.

Group Primates Other mammals
Primates -1 (0.748 ,0.293)
Other mammals (0.748 ,0.293) -1
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Table 29 Common slope and associated P value Matrix used for comparing the

slopes of some of the Orders within the Class Mammalia (excluding the

Order Primates). Numbers in BOLD indicate the derivation of an

acceptable common slope where P>0.05 and thus the slopes can be

regarded as homogenous. (a, b) = slope, Probability of the slopes being

heterogeneous.

Groups Artiodactyla Carnivora Diprotodontia Rodentia
Artiodactyla -1 (0.647 ,0.004) (0.536 ,0.496) (0.619 ,0.010)
Carnivora (0.647 ,0.004) -1 (0.651 ,0.086) (0.657 ,0.707)
Diprotodontia (0.536 ,0.496) (0.651 ,0.086) -1 (0.641 ,0.095)
Rodentia (0.619 ,0.010) (0.657 ,0.707) (0.641 ,0.095) -1
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Table 30 Common slope and associated P value Matrix used for comparing four

major definitive groups within the Order Primates. Numbers in BOLD

indicate the derivation of an acceptable common slope where P>0.05 and

thus the slopes can be regarded as homogenous. (a, b) = slope, Probability

of the slopes being heterogeneous.

Groups
Pongidae &
Hylobatidae                   Hominidae Haplorrihini Strepsirrhini

Pongidae &
Hylobatidae -1 (0.598 ,0.004) (0.630 ,0.102) (0.644 ,0.029)
Hominidae (0.598 ,0.004) -1 (0.674  ,0.003) (0.732  ,0.010)
Haplorrihini (0.630 ,0.102) (0.674  ,0.003) -1 (0.675  ,0.366)
Strepsirrhini (0.644 ,0.029) (0.732  ,0.010) (0.675 ,0.366) -1



Table 31 Common slope and associated P value Matrix derived from a comparison of the subcomponents of the Order Primates
and the Class Mammalia. Numbers in BOLD indicate the derivation of an acceptable common slope where P>0.05 and
thus the slopes can be regarded as homogenous. (a, b) = slope, Probability of the slopes being heterogeneous.

Groups
Pongidae &
Hylobatidae Artiodactyla Carnivora Diprotodontia Hominidae Haplorrihini Rodentia Strepsirrhini

Pongidae &
Hylobatidae -1 (0.546 ,0.374) (0.650 ,0.092) (0.569 ,0.914) (0.598 ,0.003) (0.630 ,0.114) (0.637 ,0.097) (0.644 ,0.030)
Artiodactyla (0.546 ,0.374) -1 (0.647 ,0.005) (0.536 ,0.479) (0.547 ,0.004) (0.614 ,0.007) (0.619 ,0.004) (0.610 ,0.003)
Carnivora (0.650 ,0.092) (0.647 ,0.005) -1 (0.651 ,0.069) (0.658 ,0.002) (0.656 ,0.910) (0.657 ,0.716) (0.659 ,0.236)
Diprotodontia (0.569 ,0.914) (0.536 ,0.479) (0.651 ,0.069) -1 (0.607 ,0.005) (0.634 ,0.112) (0.641 ,0.078) (0.650 ,0.039)
Hominidae (0.598 ,0.003) (0.547 ,0.004) (0.658 ,0.002) (0.607 ,0.005) -1 (0.674 ,0.003) (0.682 ,0.008) (0.732 ,0.006)
Haplorrihini (0.630 ,0.114) (0.614 ,0.007) (0.656 ,0.910) (0.634 ,0.112) (0.674 ,0.003) -1 (0.663 ,0.853) (0.675 ,0.358)
Rodentia (0.637 ,0.097) (0.619 ,0.004) (0.657 ,0.716) (0.641 ,0.078) (0.682 ,0.008) (0.663 ,0.853) -1 (0.680 ,0.439)
Strepsirrhini (0.644 ,0.030) (0.610 ,0.003) (0.659 ,0.236) (0.650 ,0.039) (0.732 ,0.006) (0.675 ,0.358) (0.680 ,0.439) -1
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Figure 23 Reduced major axis regression analysis plots of brain mass against

body mass for the Order Primates (excluding human) and the Class

Mammalia.
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Figure 24 Reduced major axis regression analysis plots of brain mass against

body mass for four major Orders of the Class Mammalia.
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Figure 25 Reduced major axis regression analysis plots of brain mass against

body mass for four major groups of the Order Primates.
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Figure 26 Reduced major axis regression analysis plots of brain mass against

body mass for four major groups of the Order Primates and four major

Orders of the Class Mammalia.
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5.4  Discussion

The present study compared the allometric relationship between the

parameters of brain mass and body mass in a range of extant mammalian species, and

how the relationship between these parameters change with specific phylogenetic

groupings.  The first key observation made, confirming that seen in many other

studies (e.g. Jerison, 1973), is that as an order, the non-human primates show a

brain:body scaling that is parallel to that seen in mammals in general, but with greater

relative brain size.  Thus, we conclude that the non-human primates exhibit a

brain:body scaling that can be considered, when compared to mammals, as a class

level type of scaling.  Second, we found that when non-primate mammalian orders are

examined on their own, a “typical” ordinal level type of scaling is found, one with a

slope less steep than the class level.  Again, relative brain mass may change between

the orders, but the slopes of the regressions are for the most part parallel.  When

dividing the primates into four subordinal groups, prosimians, old and new world

monkeys, apes, and hominids, we found that for the first three of these groups the

relationship between brain and body mass is very similar to the type of scaling found

within mammalian orders – an ordinal type of scaling.  Hominids were a major

exception to these scaling trends, and were the only group to show a positive

allometry in the relationship between brain mass and body mass.  Here we explore the

possibility that the observed differences in scaling within these phylogenetic

groupings may be instructive, or representative, of distinct changes in the structure of

the brain at the organization level of the system in terms of the complement of

homologous identifiable subdivisions (Manger, 2005).

5.4.1 Examples of stasis and change in systems level organization in

non-primate mammals
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In an earlier study Manger (2005) proposed that changes in the number of

identifiable components of the brain at the organization level of the system (these

components being discrete nuclei or cortical areas), would remain stable within a

specific mammalian order irrespective of brain mass, life history or phenotype, but

will either increase or decrease in number when species belonging to different orders

were compared.  The cholinergic, catecholaminergic and serotonergic systems, being

readily identifiable with immunohistochemical techniques and having been compared

in a number of mammalian species are examples of systems that are relatively easy to

compare.

 In two species of monotremes, the platypus and echidna, 52 components of

these systems were found, all being identical in each species, despite a 3 fold

difference in brain size, and dramatic differences in life history and phenotype

(Manger et al., 2002a,b,c).  Within rodents, these systems have found to be similar

across species (Da Silva et al., 2006), again despite major differences in phenotypes

and life history.  Within the rodents, there is a nucleus, the C3 catecholaminergic

nucleus of the medulla, that is specific to rodents alone (Smeets and Gonzalez, 2000).

In the carnivores that have been studied, the cat and the dog, it was found that there

was no difference in the number and homology of identifiable subdivisions of the

catecholaminergic system (Kitahama et al., 1994), despite differences in the brain

size, phenotype, life history and the 55 million year period since these species shared

a common ancestor.  However, when species from different orders are compared, the

number and complement of these subdivisions can vary quite significantly, even

though they may share many features in common (e.g. Smeets and Gonzalez, 2000).

For example, the A4 and A6 dorsal subdivisions of the locus coeruleus complex are

only present in the rabbit (Blessing et al., 1978), tree shrew (Murray et al., 1982) and
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primates (Felten et al., 1974; Garver and Sladek, 1975; Jacobowitz and McLean,

1978; Schofield and Everitt, 1981; Smeets and Gonzalez, 2000) and absent in all other

mammals studied.  There are three subdivisions of the catecholaminergic system that

are specific to the bottlenose dolphin (Manger et al., 2004).  The monotremes and the

insectivores lack the cholinergic parabigeminal and Edinger-Wetphal nuclei (Manger

et al., 2002a; Karasawa et al., 2003) that are found in other mammals, while the

monotreme possess the serotonergic paraventricular organ of the hypothalamus

(Manger et al., 2002c) which is not found in other mammals.

Within the cerebral cortex, in the two species of monotremes studied, the

number and homology of cortical areas were clear with both species having the

identical complement (Krubitzer et al., 1995a).  In a series of studies on the cortical

visual system of the ferret, it has been seen that the number of cortical areas in the

ferret is likely to be the same as that seen in the cat, despite a 5-fold difference in

brain size, extensive binocular vision in the cat compared to lateralized eyes in the

ferret, and a 55 million year period of divergence (Manger et al., 2005).  In a study of

five species of shrews belonging to the order Soricomorpha, Catania et al. (1999)

found evidence for an invariant pattern of cortical area organization across these

species despite an almost five fold difference in body mass (no brain masses

reported); however, there were less somatic sensory cortical areas in the shrews than

in the closely related hedgehog (Catania et al., 2000) which belongs to the order

Erinaceomorpha, which in turn appears to have less cortical visual areas than seen in

the tenrec, belonging to the order Tenrecoidea (Krubitzer et al., 1997).  When larger

cross order comparisons are made across mammals, it is clear that the representatives

of the different orders have different complements of cortical areas.  For example,

Rosa (1999) provides a summary diagram comparing representatives of different
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orders, demonstrating clearly that each species from the different orders has its own

complement of cortical visual areas.  Others have also providx_ similar and more

broadly based diagrams representing these differences between individual species of

different orders (Krubitzer and Kahn, 2003).

From this foregoing discussion it becomes apparent that there is the possibility

that the number of homologous subdivisions within the neural systems of species of

the same order are likely to be similar, and that these number of divisions will differ

between orders.  This view is in contrast to that provided by many, where gradualistic

changes and eventual separation of nuclei and cortical areas is thought to occur as a

result of increases in overall brain, or cortical, size (e.g. Changizi and Shimojo, 2005;

Kaas, 2006).  However, if we accept that within orders, subdivisions of systems are

stable (Manger, 2005), we can propose a correlation between the ordinal brain: body

mass scaling observed and the timing of changes in the evolution of additional

subdivisions of systems such that both these changes will occur at the genesis of a

new mammalian order and will be stable thereafter.

5.4.2  Examples of stasis and change in systems level organization in

primates

There is a tendency in the comparative literature to describe changes in the

differentiation of neural systems as being associated with increases in the size of the

brain, such that larger brains have more differentiated or complexly organized neural

systems (i.e. more nuclei and cortical areas) than smaller brains (e.g. Stephan et al.,

1981; Rosa, 1999; Krubitzer and Kahn, 2003; Changizi and Shimojo, 2005; Kaas,

2006). The discussion above challenges this pervading view for non-primate

mammals, but what about primates?  It has been assumed that the larger brain size of
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humans should be associated with significant changes in the organization of neural

systems, especially with language (e.g. Tobias, 1995), but is this really the case, and if

so, how and when might this occur?

The first point to elucidate here is to determine whether there are examples of

consistency in the subdivisions of systems across various primate species, i.e. are

there systems that have the same complement of homologous nuclear subdivisions in

all primate species?  The strongest examples of consistency stem from the literature

on the neuromodulatory systems.  Of three species studied, the common marmoset,

baboon, and human (Everitt et al., 1988; Satoh and Fibiger, 1985; Mesulam et al.,

1989), 26 homologous subdivisions of the cholinergic system were found, including

the absence of a subdivision (the medullary tegmental field) seen in other mammals.

For the catecholaminergic system, 27 homologous subdivisions were found in the

pygmy marmoset, squirrel monkey, macaque monkey, and human (Felten et al., 1974;

Garver and Sladek, 1975; Jacobowitz and McLean, 1978; Schofield and Everitt,

1981).  Thus for the neuromodulatory systems, 53 homologous subdivisions, and only

these subdivisions, have been found in a range of primates of very different brain

sizes, phenotypes and life histories.  In examining a range of primaZü thalami, Jones

(1998) could find no major differences in the parcellation of the nuclei across species,

despite major differences in size, concluding that the only real difference in the

thalami of various primate species was one of size and not nuclear differentiation.

However, even given these examples of order specific complements of neural systems

that appear to be constained in their evolution, many still believe that cortical areas

must be added with increasing brain size in primates (e.g. Kaas, 1995, 2006; Karlen

and Krubitzer, 2006).
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One of the major problems in comparing the areal organization of primate

cerebral cortex is that there appears to be as many schema of cortical organization as

there are laboratories working on this problem.  This difficulty is highlighted by Rosa

(1997, his figure 1), where four different models of the organization of visual cortex

in the owl monkey are presented.  In these models the only consistent visual cortical

area is V1, as even the borders of V2 are different (and this summarizes 7 studies).

Interestingly, Rosa (1997) proposes a model whereby all simian primates share the

same basic layout of cortical visual areas, and later (Rosa, 1999) indicates that

prosimians have fewer visual cortical areas than simians.  In a similar vein, Kaas

(2004) has proposed that there are 11 visual cortical areas in common to all primates.

Culham and Kanwisher (2001) make the case for the homology of 5 posterior parietal

visual areas in macaque monkeys and humans.

The somatomotor cortex has also been extensively studied across primate

species, and while the primary motor and somatosensory areas are a common feature,

the number of other areas differs between reports.  For example, Wu et al. (2000)

found evidence of 10 cortical motor areas in the prosimian galago that were direct

homologues of the motor cortical areas found in macaques.  In a subsequent study of

the somatosensory cortex, Wu and Kaas (2003) found evidence for three

somatosensory cortical areas lateral to SII and PV, whereas only a single cortical area

has been defined in this region for the macaque monkey (Krubitzer et al., 1995b).

The cited studies are but some of the examples of the differing schema proposed for

the organization of cerebral cortex in primates and there are many more available in

the literature, but the central point to be made here is that there is a great deal of

variance in these reports.
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In the current study we divided primates into four phylogenetically related

groups to examine differences in brain and body scaling.  By doing this, we observed

that three of the groupings evinced scaling that is similar to that seen by mammalian

orders.  Above we made the tentative link between scaling differences in orders and

the appearance of novel subdivisions in systems for mammals in general.  Here we

attempt to make this link in primates, given the above scenario of a great deal of stasis

in the non-cortical organization of neural systems, the variance in reports of cortical

area organization, and the complete lack of readily comparable data of the

organization of cerebral cortex in apes.

Rosa (1997, and Rosa and Tweedale, 2001, 2005) makes the case that the

organization of visual cortex in the common marmoset and macaque monkeys consist

of an equal number of homologous subdivisions, including (in their terminology) V1,

V2, VP/DLp, VA/DLi, DLa, MT, DM, DA, and M.  Rosa (1997, 1999, and Rosa et al,

1997) however, indicates that there are less cortical visual areas in the prosimian

galago than are found in the simian marmoset and macaque.  Moreover, in Rosa and

Tweedale (2005, their figure 3) the manner in which the diagram is drawn indicates a

great deal of potential space for additional cortical areas in the visual system of

humans as compared with the macaque monkey.  Thus, if we follow the studies of

Rosa and colleagues, we have the possibility of additions of cortical areas between the

groups we have demonstrated as having changes in the brain:body scaling

relationship, and stasis within those where the scaling is consistent.  In the

somatosensory system of primates, a change in numbers of cortical areas is seen

between the galago and macaque, but in this case the macaque has less cortical areas

lateral to SII and more cortical areas posterior to primary somatosensory cortex than
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the galago.  Thus again, there are differences in the subdivisional complement of the

systems between the groupings studied allometrically here.

5.4.3 Possible evolutionary scenarios

The link made herein between the appearance of additional subdivisions of

neural systems related to the evolution of a new mammalian order and a subsequent

altered and order specific allometric scaling appears to hold relatively true for

mammals in general.  Obviously a great deal more comparative work would be

required to consolidate such a proposal, but on the basis for current information, it is

as likely an evolutionary scenario as any forwarded to date.  Moreover, this

hypothesis does not ignore phylogenetic relationships, and the confounding

observations of some species with larger brains having less subdivisions of particular

systems than those with small brains (e.g. the mouse vs dolphin locus coeruleus

comparison made in Manger, 2005) is also overcome.

We are left with two possibilities in the current situation considering primates.

First of all, there appears to be a lot of order specific stasis in the non-cortical regions

of the primate brain.  This would not be parsimonious with the groupings made in the

current study, and would negate the link made between allometric scaling trends of

the brain and body and changes in the number of homologous subdivisions of the

neural systems.  On the other hand, the organization of the areas of the cerebral cortex

do, at least to some extent, appear to be coincident with these allometric differences in

the groupings made.  If this were the case, then the groupings and scaling revealed

may make it possible to reveal some predictability in the evolution and organization

of the primate cerebral cortex at the systems level.  If, for arguments sake, further

studies across a range of prosimians revealed that they shared a common plan of
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cortical organization and that there were fewer cortical areas found than in a common

plan of cortical organization for new and old world monkeys, the scenario proposed

here would apply.  Again, apes may reveal a common organizational plan with more

cortical areas than those found in new and old world monkeys.  The positive

allometric scaling found in hominds may reveal yet another point in primate evolution

when additional cortical areas may be added.  The increasing number of cortical areas

may allow, at the systems level, for increasing degrees of freedom in terms of

information processing, and thus correlate with the observable increases in

behavioural sophistication (Kaas, 1995).

5.5 Conclusion

While it is obvious that the proposal forwarded in this study is tentative and

for the most part speculative, if true, it would provide some sense of order in our

understanding for primate cortical evolution, and indeed evolution of neural systems

across mammals as a whole.  A great deal more work is required to validate or negate

the current hypothesis, but the observations made to date provide a basis of support.

The major problems in arriving at conclusions regarding systems level evolution in

mammals are dual, firstly there is the inherent gradualistic thinking ingrained in the

literature indicating that larger brains are more complex, and second, especially for

primate cortical organization, is the variance in schemes of organization proposed for

the different species studies.  Once these problems are dealt with, the current

proposal, or newer more novel proposals may lead to a greater understanding of

primate and mammalian brain evolution.
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Chapter 6

Concluding remarks

6.1  Introduction

Much of the variation in organ size is attributable to the size of the body and

the brain is no exception to this rule (Mayr, 2002). Regression analysis has revealed

that across species, correlations between body mass and brain mass are usually in the

order of 0.9 to 0.98, suggesting that at least 90% of the variation in brain mass may be

explained by body mass. As a consequence of this observation numerous researchers

have and continue to tailor their comparative research questions towards controlling

for the scaling effect of body mass on brain mass (Jerison, 1973).

However, even after taking the effects of body size into account, brain mass

still differs between various taxonomic groups (e.g. Barton, 2007; Jerison, 1979;

Chapter 5). For humans in particular both the absolute and relative size of the brain,

poses serious questions concerning the mechanism and agent responsible for hominid

brain expansion (Chapter 4). In particular the residual variation in human brain mass

(after accounting for body size) has been the focus of attention to various

adaptationists suggesting that it is indicative of selection for greater cognitive abilities

for foraging, sociality or other aspects of behavioural ecology (Dunbar, 1998; Aiello

& Wheeler, 1995). A major difficulty in discerning between these selective forces is

that the data representing rival hypotheses are largely inter-related. For example,

Dunbar (1998) has argued for sociality as being the main selective agent for primate

brain size and intelligence, an idea encapsulated by his ‘Social brain hypothesis’.

Unfortunately, group size and diet (or foraging behaviour) as invoked by Eisenberg

and Wilson (1978) and Clutton-Brook and Harvey (1980) are often correlated with
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each other and are compounded by the considerable error associated with the

measurement of this data.

A more traditional approach has been to use the often rare and fragmentary

evidence provided by the fossil record (e.g. Tobias, 1971; Wood & Collard, 1999;

Falk et al., 2000). As a source of evidence fossil hominid remains have contributed

substantially to our pool of ideas concerning the mode, tempo and mechanism of

hominid brain expansion. Whilst favoured as an approach closely aligned to

elucidating the biology of intermediate hominid forms, the fossil record presents its

own unique set of challenges and problems. Central to this is the much needed

estimation of fossil hominid brain and body mass estimates and what the expected

level of variation in brain mass is in a single hominid species.

Each chapter within this thesis has been an attempt to address a specific

problem related to the use of fossil remains to explain hominid brain evolution.

Chapter two addressed the problem of fossil hominid body mass prediction and

revealed that cranial variables show similar predictive capability as those of

postcranial elements. This chapter sought to emphasis the utility of cranial variables

for body mass prediction, not only because of their availability and species diagnostic

value, but also because of the existence of constraints which guide the scaling

relationship between craniofacial elements and body mass. From this chapter much

needed accurate predictions of fossil hominid body masses were derived and methods

which take phylogeny into account as well as a method of variance partitioning was

implemented for the first time in a question concerning the prediction of fossil

hominid body mass.

Chapter three was concerned with addressing the other major problem

regarding the use of fossil material, and that is the accurate prediction of hominid
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brain mass. In this study magnetic resonance imaging of comparative primate brain

scans were used and yielded a mean adult percentage difference between endocranial

volume and brain volume of about 20%. Using a regression analysis of endocranial

volume versus brain mass, an equation was derived from which brain mass for fossil

hominid species could be calculated. This technique allows paleoneurologists to bring

their comparative cranial capacity and body mass analyses in line with the traditional

variables of body mass and brain mass as used in analyses of extant species.  This

chapter also provided the first preliminary set of brain mass estimates for selected

hominid species, whilst also indicating by means of variance partitioning that the

maintenance of the stable isometric relationship between brain mass and endocranial

volume is likely to be the result of a strong developmental constraint governing the

scaling attributes of neural and non-neural endocranial components.

Chapter four was primarily concerned with addressing the question of

variation in brain mass within a single species, in this case Homo sapiens. This

chapter attempted to overcome a central problem of comparative studies and that is

obtaining measures for the limits of human brain size. In this analysis 18 000 data

points of brain mass and associated body mass, height and age were analysed for sex

and population differences.

Results indicated that hierarchical views of intelligence and brain size between

sexes and population groups were unfounded as the majority of the variation in brain

mass could be accounted for by differences in body size. This study saw the novel

approach of structural equations modeling and residual transformation applied to the

question of brain mass variability. The effects of body parameters in describing brain

mass was reiterated by an analysis of the relatively reduced effect of climate in

explaining both body size and brain size. An adjusted estimate of average human
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brain mass in the range of 1411g to 1413 g was proposed which brings the estimate of

average human brain mass more in line with values obtained from MRI studies. The

‘diminishing’ of constraining forces on the brain: body size axis later in life and the

facilitation of greater variation, is argued to be indicative of the lifting of a

developmental constraint which controls body size scaling during an integral period

of development in the human fetus and infant.

Chapter five was concerned with addressing a key theoretical problem in

studies of comparative brain: body mass allometry in mammals and p÷{mates and this

is the problem of possible brain reorganization. In this study three groups of primates

were shown to scale like mammalian orders, a result that is predicted to be indicative

of changes in complexity at the systems level of organization. This argument is taken

as suggesting that within primates there exists a potential group specific scaling law,

with Prosimians having fewer cortical areas than Old World and New World

Monkeys, which in turn may have fewer cortical areas than Apes, whilst Apes may

have fewer cortical areas than hominids.  For example, Kaas (2006) indicates that

modern humans have more than 150 cortical areas, while the macaque monkey has

around 80.  This extent of reorganization, or addition of cortical areas may add a great

deal to behavioural flexibility of the organism possessing more cortical areas by

increasing the degrees of freedom in which information can be processed or

associated. The consideration of phylogeny in analyses of complexity and the

consideration of various levels of brain organization is emphasized by this chapter.

What remains is an application of the techniques outlined in all previous

chapters to a case study and to observe what potential explanatory value this approach

may add to the scientific literature.
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In this regard, perhaps no better case study for a test of the allometric

approach exists than that presented by the recently announced remains of a fossil

hominid on the island of Flores, Indonesia. This discovery announced in 2003 by

Morwood and colleagues, was given the scientific designation of Homo floresiensis

and has subsequently captured the imaginations and attention of both the scientific

and non-scientific community (Brown et al 2004; Falk et al 2005; Morwood et al

2005; Brumm et al 2006; Conroy & Smith, 2007). Central to the controversy which

surrounds the taxonomic categorization of this species is its notable diminutive stature

of around one meter, a measured cranial capacity of  between 380-417 cc, and the

recovery of a relatively advanced stone tool culture normally associated with the

cerebrally superior (at least in size) species of Homo erectus.  A point of contention

exists concerning the assertion that a species with a cranial capacity similar to that of

a chimpanzee could display the stone tool capability of an advanced hominid like

Homo erectus. The debate concerning this species has seen the academic community

split into two major camps:  1) those who assert that H.floresiensis is a

microcephalic/pathological human group and 2) those who believe it represents a new

hominid species derived from insular dwarfing of a H. erectus population to give rise

to this unusual occurrence of body proportions. What could the approach outlined in

the preceding chapters reveal about the taxonomic affiliation of this species and its

apparent anomalous brain: body size scaling?

6.2 Predicting body mass and brain mass for Homo floresiensis

While the body dimensions for Homo floresiensis has been estimated as being

similar to that of AL 288-1 suggesting a body mass of about 27 kg based on the

femoral cross sectional area (Schoenemann, 2006). An estimate of body mass has as
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yet not been derived from the cranium. Morwood et al (2005) provide a measurement

of the foramen magnum length (28 mm) and breadth (21 mm) for this species while

measurements for orbital length and orbital breadth were derived from a digital

version of the published photographs available in the initial publication (Morwood et

al 2005). Photographs were scanned using an Epson 3170 Photo-scanner and the

images were saved as image files for subsequent measurement. The ‘edge detection

tool’ accompanying the program IrfanView 3.09 was then used to delineate between

the orbital boundaries whereafter the program ImageJ Version.1.3 (Abramoff et al.,

2004) was then used to open and calibrate the image files and to measure the straight

line distance between the upper and lower margins of the orbital cavity and the

straight distance between maxillofrontale and ectoconchion (see definition in Chapter

2 and Figure 31 A & B). Using the Whole primate regression equations derived in

Chapter 2 the species body mass for Homo floresiensis was estimated from the cranial

measurements.

This yielded a mean orbital and mean foramen magnum based species body

mass of 29.6 kg and 31.3 kg respectively. This estimate for body mass is consistent

with that derived from the postcranial skeleton, once again reinforcing the utility of

cranial elements for body mass prediction (Chapter 2).

 However, could the cranium be used to predict brain mass for this species? As

shown in Chapter 3, although the cranial capacity/endocranial volume overestimates

brain volume by approximately 20 %, a strong predictive relationship exists between

endocranial volume and brain mass. The derived regression equation for this

relationship (See Chapter 3, Brain weight (g) = 0.8177 * Endocranial volume (cc) –

14.138 ) was used to estimate brain mass for Homo floresiensis.  Using the more

recently computed cranial capacity for this species of around 400 cc (Falk et al.,
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2005) it is predicted that the species brain mass for Homo floresiensis is

approximately 341.22 grams.

6.3  How does the brain: body mass scaling of Homo Floresiensis compare

with that of Human pygmies, other hominids, and micrencephalics?

The estimated brain mass and body mass for Homo floresiensis was compared

with that of other groups to see whether the scaling relationship may be indicative of

any affinity shared with a particular group. Data for body mass, brain mass and or

cranial capacity was compiled from a number of sources. Non human primate brain

and body mass data were obtained from various the prepublished sources (Bininda-

Emonds et al., 2001; Crile and Quiring, 1940; Stephan et al., 1981).

A modified version of the Beals et al (1984) dataset formed the core of the

world human population sample with populations omitted in cases where cranial

capacity and associated body mass had not been recorded. Measures of cranial

capacity were converted to brain mass by using the equation derived in Chapter 3.

Comparative fossil hominid brain and body mass data were obtained from various

sources (Abbate et al., 1998; Aiello and Dean, 1990; Asfaw et al., 1999, 2002; Falk et

al., 2005; McHenry, 1992; Rightmire et al., 2006; Ruff et al., 1987; Senut et al.,

2001; Zollikofer et al., 2005)The species represented here were : Australopithecus

afarensis; Australopithecus africanus; Paranthropus boisei; Homo habilis; Homo

rudolfensis; Homo erectus; Homo heidelbergensis; Homo neanderthalensis and Homo

sapiens.

 Brain and body mass data for extant modern human micrencephalics were

obtained on request from a published dataset by Michael Hofman (Hofmann, 1984).

This dataset consisted of brain and body mass records for 84 micrencephalic humans
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aged between 0 to 74 years of age however only adult individuals (i.e. 18 years and

older) were included in this current comparison. Hofman (1984) defined

micrencephaly as individuals who had brain masses greater than three standard

deviations lower than his normal comparative sample. Although he recognized two

categories of micrencephaly (i.e. primary and secondary) he had not partitioned this

dataset accordingly. Ward’s clustering procedure was performed using PAST

(Version.1.18; PAST © Hammer & Harper, 1999-2005) to see whether the dataset

could be split into two major groups using the measures of body height, brain mass

and body mass. The two micrencephalic groups are from here on referred to as

Micrencephalic group 1 and Micrencephalic group 2, with the Micrencephalic group 1

appearing to be categorized by larger body and brain dimensions. Note that this

distinction is pragmatic and is aimed at correcting for the possible admixture of data

from the two clinically defined micrencephalic groups.

Human pygmy male and female body mass estimates were obtained from

mean values published by Gusinde (1961) in a study describing the somotalogy of the

Ayom pygmies from New Guinea. Gusinde (1961) also published mean head

measurements for the Ayom population but for obvious reasons had not included

measurements of brain mass or cranial capacity. The extensive list of linear

craniometric dimensions for the Ayom were then used to estimate required

endocranial volumes using the formula given by Williams et al (1995): Males

0.000337 (L-11) x (B-11) x (Ht-11) + 406.01; Females: 0.000400 (L-11) x (B-11) x

(Ht-11) + 206.60  (Manjunath, 2002; Williams et al , 1995).This formula simply

requires a measure of head length, head breadth and auricular height to derive an

estimate of endocranial volume. Subsequently endocranial volumes were derived for

the pygmy population, whereafter these volumes were converted to brain mass using
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the equation relating endocranial volume to brain mass (see Chapter 3). Graphs

representing the relationships between the Homo floresiensis and the other groups

were then subsequently drawn and revealed the following results (Figs 27-30).

Firstly, the dichotomy between the hominid and ape line is most apparent

(Figure 27) with the steep slope displayed in hominids being indicative of a distinct

scaling relationship established for this group. A shown in Chapter 5 a comparison of

the hominid and ape (Pongidae and Hylobatidae) regression slopes proves to be

significantly different from one another (i.e. P(Heterogenous) < 0.05).

Figure 28 shows the regression lines computed for the world human

population and hominid samples. Note that the human mean values calculated in

Chapter 4, have been included in the hominid sample. When Homo floresiensis is

plotted alongside this graph its scaling relationship in brain mass and body mass

appears to be consistent with that displayed for the entire hominid group. This

suggests that whatever selective forces had been responsible for the dramatic change

in body size displayed in this species, had not effected the overall scaling constraint

governing the proportionality of hominid brain and body mass dimensions. Thus what

is clear from the above analysis is that the brain of Homo floresiensis scales just as

one would predict for a hominid of its body size.

But how does the brain mass of Homo floresiensis compare with that of the

human pygmy and the two micrencephalic groups obtained from Hofman (1984)? In

comparison to the Human Ayom Pygmies it is apparent that Homo floresiensis

exhibits a different scaling relationship in brain and body mass. The pygmy data

points are strongly grouped with the human data points from different geographical

regions and are visually distinct from Homo floresiensis (See Figure 29).  Homo

floresiensis also appears to scale differently from that of the two micrencephalic
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groups. The distinction between H.floresiensis and the micrencephalic dataset is made

most apparent by an observation of the mean brain and body masses for the two

micrencephalic groups (See Figure 30). As observed in Figure 30 H.floresiensis

appears visually distinct from the microcephalic groups in its brain: body mass scaling

relationship and appears to share a scaling affinity with the Australopithecines.   This

observation is supported by recently published studies of brain shape in H.

floresiensis and human microcephalics (Falk et al., 2007).

6.4  The paradox which is Homo floresiensis

This result presents a problem to our interpretation of the taxonomic

designation of Homo floresiensis a point highlighted by Conroy and Smith (2007)

who attempted to calculate the size of brain components for fossil species including

H.floresiensis. Conroy and Smith (2007) conclude that if we are to take the original

assertion of LB1 as being correct (i.e. that it represents a non-pathological specimen

of Homo which despite its small brain size displayed advanced cultural attributes),

then we are faced with a paradox in that 1cm3 of H.floresiensis brain could not

possibly be functionally equivalent to 1cm3 of either a modern chimpanzee or human

brain.

Whilst this conclusion may seem to be a serious blow to those arguing that H.

floresiensis is a credible species, it also inadvertently raises concern regarding the

well-accepted axiom that ‘bigger brains are more complex’. This line of argument is

epitomised by Stephan et al (1981) who categorically state: “The two variables of a

structure, (i.e.) size and differentiation, in general do not vary independently.

Increased size is almost always accompanied by progressive differentiation and vice

versa.” This form of reasoning has widely permeated comparative studies and has
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fostered enquiry towards explaining the behavioural repertoire of large brained

species on the premise that they represent complex, uniquely adapted neural systems.

However, the brain consists of hierachical levels of organisation (such as

molecular, synaptic, single neuron, cortical areas and whole systems) and

evolutionarily significant changes may occur at any of these levels and may or may

not result in cascading effects upon the information processing capacity of the entire

system, without necessarily having to increase or decrease brain size, and thus lead to

changes in behavioural sophistication. Manger (2005) proposed that systems level

organisation remains consistent across an Order and this concept formed a major part

of the contribution in Chapter 5, in which Order specific scaling relationships were

further investigated.

As argued for in both Manger (2005) and the Discussion in Chapter 5, there

exists several examples to the contrary that bring the validity of the ‘bigger brains are

more complex axiom’ into question. These examples are widespread and essentially

argue for stasis in the number and complement of brain components at the

organisational level of the system. A favoured example cited by Manger (2005) for

stasis is that exhibited by the two Monotremes, the platypus and echidna who despite

a three fold difference in brain size, contrasting life history, diet and phenotypes, still

display consistency in all 52 components of their neuromodulatory systems. Rodents

too appear to display similar consistency across species (Da Silva et al., 2006) as do

cats and dogs (Kitahama et al., 1994). Homology of cortical areas amongst various

species are also displayed within the cerebral cortex. Krubitzer et al (1995) have

shown that the two species of monotremes studied display an identical complement of

cortical areas. The cortical visual system of the ferret and the cat is also likely to be

the same despite differences in brain size (Manger et al., 2005), while Catania et al
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(1999) found invariant patterns of cortical area organisation in shrews of various

sizes. In primates, stasis in the cholinergic system of the marmoset, baboon and

human (Everitt et al., 1988; Satoh & Fibiger, 1985; Mesulam et al., 1989) have also

been shown with 26 homologous subdivisions of the cholinergic system being

identified. In a study of the pygmy marmoset, squirrel monkey, macaque and human,

27 homologous subdivisions of the catecholaminergic system have been identified

(Felter et al., 1974; Garver & Sladek, 1975; Jacobowitz & Mclean, 1978; SChofred &

Everitt, 1981). Sadly however, thus far only these subdivisions have been found and

identified and more work needs to be done to approach a complete assessment of

homology between primate species. What is emphasised however is that increases or

decreases in brain size are not necessarily associated with increases or decreases in

complexity, and that there exists several cases where organisational levels such as the

number of cortical areas, have remained the same despite changes in brain size.

To return to the paradox presented by H. floresiensis, changes in the size of

the brain of H. floresiensis need thus not be associated with changes in complexity, at

least at the systems level, as evidence lent from contemporary comparative neurology

would seem to suggest, and thus the possibility exists that 1cm3 of H. floresiensis

brain is not functionally equivalent to 1cm3 of either a chimp or human brain. This

perspective suggests a serious reconsideration of the manner in which trends in

hominid brain size are currently viewed. Progressionist notions, strictly reliant on

advancing brain size as a proxy for complexity both in structure and behaviour may

need to be abandoned for a synthesis of observations based on comparative studies of

extant species and the various levels of organisation at which these have been

observed. This restructuring of the paradigmatically held view that ‘bigger brains are

more complex’, may usher in a new era in paleoanthropology in which observations
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of fossil hominid cranial capacities may be brought more in line with the

contemporary work presented by modern neurology.

So what does this mean for H. floresiensis in terms of brain organization and

behavioural sophistication?  The parameter examined above, brain mass vs body

mass, indicates that H. floresiensis may be considered to be a new species of hominid.

However, with its small brain, can it demonstrate the purported behavioural

sophistication?  The analysis undertaken in Chapter 5, indicates that H. floresiensis

may in fact have a brain organization, in terms of the number of identifiable areas of

the cerebral cortex, that resembles the situation seen in modern humans. If the

hominids indeed have far more cortical areas than the apes, and if H. floresiensis is a

hominid, this would separate H. floresiensis from the apes in terms of cognitive and

behavioural flexibility.  This increase in the number of cortical areas, in the order of

30 to 40 areas (Kaas, 2006), even with a smaller brain size, would indicate the

possibility of greater flexibility in the processing and association of neural

information.  This change at the systems level, even if not accompanied by changes at

other levels of organization within the brain (Conroy and Smith, 2007), has the

potential to lead to changes in the behaviour of the organism.  This view of brain

evolution and primate brain evolution specifically, may help, at least theoretically, to

unravel the paradox of H. floresiensis.

Using H.floresiensis as a case study it has been demonstrated that the

approach outlined in all previous chapters adds a novel perspective both in terms of

practical body and brain mass estimation and theoretical implications for assessing the

functional capabilities of fossil hominid species. What is still unaccounted for is an
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assessment of the relative contribution of constraints and adaptation to the evolution

of hominid brain and body size.

6.5  The role of constraints in hominid brain and body size evolution

It is has been the aim of the current study to provide data that may contribute

to the assessment of the relative influence of structural laws of form, phylogenetic

constraints, and adaptive factors during the course of primate and hominid brain

evolution.

Using results obtained from subsequent investigations, constraints have been

shown to play a critical role in the scaling attributes of the primate and hominid brain.

In Chapter 2 variance partitioning revealed that developmental constraints governing

the scaling attributes of the skull and body may explain up to 50 % of the variation in

body mass whereas phylogenetic constraints are purported to have played a lesser role

(i.e. 0.8 -3.6 %). In Chapter 3, scaling attributes between the neural and non neural

components of the cranial vault suggested that the relative occupancy of the skull by

the brain is highly constrained. 96 % of the variation in both brain mass and the

residual endocranial space was explained by the developmental constraint controlling

the scaling of these two variables with the cranial vault. That constraints are far more

pliable than traditionally thought has been shown in Chapter 4 and intraspecific

analyses of scaling attributes in humans is a prime example of this. The poor

regression coefficients typical reported in intraspecific curves have been shown to

arise during development as greater variation in body parameters are allowed with

age. That grade shifts in the scaling of brain: body size exists is highlighted in Chapter

5 with the key emphasis being that primate groups scale like Mammalian Orders and

that this may be reflective of Order specific scaling attributes. Constraints are integral
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to correlated evolution between structures but the brain has several levels of

organisation and changes effected at these various levels may have cascading affects

on the information processing ability and behavioural repertoire of a species. Thus,

this represents a unique problem in that even correlated changes between the brain

and body size may not necessarily impact upon the ‘complexity’ of the neural system

as functional integrity may be maintained via higher output states initiated at levels of

organisation such as that of the molecule, neuron or cortical area. However, it is only

through implementation of research protocols that take a pluralistic approach to an

understanding of the role of both constraints and adaptation in the formation of the

brain, that Order specific changes and the levels of organisation at which they may be

act could fully be understood.



210

Figure 27 Least square regression analysis plots of brain mass against

body mass for Apes and Hominids (including humans).
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Figure 28 Least square regression analysis plots of brain mass against

body mass for the World Human population and Hominids

(including human average). Homo floresiensis datapoint is also

plotted though not included in the regression.
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Figure 29 Scatterplot of brain mass versus body mass for all the samples

studied.
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Figure 30 Least square regression analysis plots of brain mass against

body mass for all the samples studied. The mean value for the

microcephalic groups are plotted though not included in the

regression analyses. The Homo floresiensis datapoint is also

plotted though not included in the regression.
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Figure 31 (A) Original photographs of Homo floresiensis taken from Morwood et

al (2005). (B) Edge detection reconstruction made from the original

figures indicating the orbital margins from which measurements were

taken to calculate body mass.
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