

5-Fter inhintts the enzure thyatiynte synthetase. This is the enzyme which in the production of cndogenous thymidne convents dump (uridine monomoghate) to dThe (thymidne monophosplate), indicated in Figure 1.43 below. In the nomal metatshic cyele the thymidne monophosplate is then comorted to thymathe triphosphate (nucleotida) and in thic fomm enters the tha. It can be seen therefore that if thanidylate synthetase is imibited, endogenous thymidne is not produced and in the absence of thymidne ond cannot replicate, This, of course, prevents nitosis, as has been obsorved experimentally (Toliver anu' simon 1967). Addition of , tomal thymidime can reverse the efferts of 5 -FUdR because DHA roplication (requiring wymidine) can agan tate place.

The actua reaction taking ploce during the fomation of dTrit from dume is shom below and in richne 1.43 at (1). The mothyl group in the reaction belon is transferred from 510 methyleme tetrahydrofolate (CH,TF) to the 5 position of the pyrimidine ring of dutif forming dThe + dihydrofolate.

```
domP + CH2TT, - dTM + DHF
    tetmbydro -
    dihydrofotate
    folate.
```

The reaction is shom in tes contost in the metabolic scheme in Figure 1.43 belon.

 (1-wtabot at $)$

The actual biod ap: of tho achivity of the enyme thymdytate symthetase vecurs as follows:
 molecule of dutp to one matecule of thymdytute syntherase). The Inhibitor semde binds wh this engme in the ratio tho molecules of 5 - Fudf to one bolecule of thandylate rymbetase (heidenberger 1905), This is shom in figun 1 , 40 betow.
$\operatorname{TSase}+1$ dUWP $-\operatorname{TSacta}(\text { (tmP) })_{1}$

obrtuter to hath

Once the enzy has bean lened by dur (nomat reaction) it is used to convert duk to dere by faciltaning the transfon of a mothy group Tom 5, 10 methylons tetahymomate to the 5 position of the pyrimidne rive of dum (le wan an he inolberge 1561). Hechylene tetruydmofotad is rertired for the imbititom of this raction by 5 -ruet (in the fom Fdum) as, in ths absence, rdut binds poorly to the encya. The tronsfor of the G, group from the methylene tetrohytrofolate to the dem is shom in Figure 1.45 onpage 44

Fioure 1.45 कm.ro of tha from oh to to ath.
A further scheme of the 5 -FUAR block is shown below with 5 -FUdR entaring the cycle at. (1) and forming rdump instead of thymine being able to form dThP at (2). The FUCR enters the cycle as $5-\mathrm{TdaR}$ and is motabolised to FH_{2} as shown in ligure 1.46 on page 45

 further thetuptetion into the thetrition cyete. The twhibtion ate to mamed T.

In conclusion, 5-FUdR inhibits the enzme thymidylate synthetase by competing for its binding site and in so doing prevents the formation of thymidine, thus preventing DNA replication. This causes an inhibition of mitosis.

1.8.4. $\quad 5$-Bromodeoxyuridine

5-Bromodeoxyuridine difters from 5-FUdR in that a bromine atom rather than a fluorine aton is fond at position 5 (see Finure 1.41) as shown in Figure 1.47 below.

5-BUdR replaces thymititne in the DNA, making the DNA heavier than normal Dita. rigure 1.48 below shows the made of entry of the 5 -BUdR into the DNA at the position marked 2 .

For comparison the position marked 1 again shows the 5-FUdR block. DNA containing 5-BUdR prevents differentiation in cells in culture although the cells grow normally. This will be further discussed in section L.3.5. below.

> (1) Bloch in Thymidylate synthesis

Figure 1.48 Entry of 5 -BUdR into DNA (sxybalsk1 1962)
1.8.5. Effects of 5-BUdR and 5-FUdR on cells in culture Although cells with 5 -BUdR in their DNA are fully functional i.e. they continue growing and dividing, the production of "luxury proteins" (proteins for the specialised functioning of the cell e.g. myosin in muscle) is prevented. This can be reversed, as when the $5-$ BUdR is removed the cells proceed to differentiate normally. Likewise the effects may be reversed if thymidine is added to replace the shortage of endogenous thymidine. Stockdale et al (1964) showed that myogenic cells (prospective muscle cells) in the presence of 5-BUdR failed to fuse and form multinucleated myotubes prior to becoming muscle.

Simon (1963) reported that Hela cells in culture with both 5-BUaR and 5-FUdR divided only once and incorporated slightly more 5-BUdR than did cells in 5-BUdR alone. It could be suggested that this is due to the lack of thymidine caused by 5-FUdR in the DNA, (which the cells replace with 5 -BUdR). The one cell division is the final one in the presence of 5-FUdR.

1.8.5.1. The effects of 5-FUdR on cells and organisms

when administered alone, with special
reference to concentration
Owing to the cost of 5-FUdR, prudent use was made in the administration of this drug. As a first approximation to set a working concentration of 5-FUdR, it was decided to follow the dosage concentrations for Chinese Hamster cells which were worked out by Conrad and Ruddle (1972). They showed that when Chinese Hamster cells were grown in concentrations of $0,00005 \mu \mathrm{~g} / \mathrm{mi} 5-F U d R$, there was no reduction in the rate of mitosis and hence no reduction in thymidylate activity. In concentrations of $0,0001 \mu \mathrm{~g} / \mathrm{m} \mid$ 5-FUdR, the rate of mitosis initialiy sloyed dow, stabilised and then returned to normal, showing an initial reduction in thymidylate activity. When these workers used a concentration of $0,001 \mathrm{\mu g} / \mathrm{ml} 5-\mathrm{FUdR}$, the rate of cell division was slowed down permanently and did not return to normal. Thymidylate synthetase activity was reduced to 20% of its original level.

Another worker (Ferguson 1978) who worked on the teratological effects of $5-$ FUdR in Wister rats, injected $0,1 \mu \mathrm{~g} 5-$ FUdR per mg . of body weight.

In the present siudy, tadpoles were maintained continuously in water, and concentrations runging from $0,2-20 \mu \mathrm{~g} / \mathrm{ml}$ of 5 -FUdR were added to the water. These concentrations were 2000 times greater than the concentrations of $0,001 \mu \mathrm{~g} / \mathrm{ml}$ that were effective in tissue culture and 200 times greater than the concentrations injected into the Wister rats. Furthemore, while the rate of uptake of the 5-FUdR may have been relatively lower, this was compensated for by the continuous application of 5-FUdR.

1.8.5.2. Effects of 5 -BUdR on c 11 s and organisms
 when administered alone, with special
 reforence to concentration

In the present project a concentration of $10 \mathrm{gg} / \mathrm{ml} 5$-BUdR was u ad. This was higher than that used in most tissue culture experiments as the tadpoles ere swum in the solution and it was assumed that the chemical could be less toxic with this method than "n tissue culture as the tadpoles were only getting a fresh solution of 5-BUdR once weekly.

While 5-BUdR affects differentiation, it does not affect cell division and growth as shown by Bishoff and Holtzer (1970). The fact that thymidine competes with 5-BUdR to enter the DNA was shown by Stockdale et al (1964) where excess thymidine added to the culture medium prevented the uptake of 5 -BUdR.

Abbott and Holtizer (1968) examined the effects of 5-BUdR on chondrocytes taken from chick vertebral cartilage. The concentration used was $204 \mathrm{~g} / \mathrm{ml}$. The resulting chondrocytes had bizarre shapes and the clones consisted of widely scattered fibroblastic cells i.e. true condersations required for cartilage formation were not seen. The mucopolysaccharide required for the matrix was destroyed.

Lasher and Cahn (1969) in their studies of cartilage cells found that a concentration of $10^{-4} \mathrm{M}$ was toxic to the cells, while $10^{-5} \mathrm{M}$ was not toxic, but prevented differentiation.

Agnish and Kochhar (1976) showed a relationship between the developmental stage of mice embryos and their sensitivity to $5-B U d R$. From each embryo they removed the 1 imbs and grew them in cell culture, one on normal medium and one on 5-BUdR. They found the following:

1. At a concentration of $249 / \mathrm{ml}$ 5-BUdP, stage 26 to 29 embryos (eleven day) showed a complete suppression of chondrogenesis.
2. Mid-eleventh day embryos needed 10 to $254 \mathrm{~g} / \mathrm{m} 75$-BUdR to achicve the same effect.
3. If twelve and thirteen day embryos were used the effects were milder no matter how high the concentration of $5-B U d R$ was.
The effectiveness of the drug coincides with the various stages of cartilage differentiation, as the first signs of differentiation were apparent only in the late eleventh day embryo and after differentiation has taken place, the drug has no more effect.

Abbott and Holtzer (1968), Coleman et al (1970), (1968), Lasher and Cahn (1969) found that $5-F U d R$ had a proximo-distal effect. The scapula, first to differentiate, became increasingly resistant to the drug, while the nore distal radius and ulna retained sensitivity throughout. This is in keeping with Tschumi (1957) who shows that differentiation proceeds in a proximo-distal direction.

Sala and Rizotti (1975) used stage 40 or 47 (NF stage) tadpoles (Xenopus laevis) and exposed them to 5 -BUdR by injecting it into the coelomic cavity (241 of $5 \times 10^{-2} \mathrm{M}$). The most severe effects were noticed on stage 40 tadpoles reduction in pigmentation, swelling in the anterior portion of the head, curvature of the tail and accelerated cardiac rhythm. The effects were less severe in the stage 47 tadpoles and at stage 51 no external modifications were seen. Histologically, however, all the animals had suffered abnormalities to some degree.

In conclusion 5-BUdR is found to affect the differentiation of cells in culture and the severity of the effect is related to concentration.

1.9 Analysis of DNA by density gradient analytical ultracentrifugation

In the present study DNA was made heavy by swimming tadpoles in a solution of 5-BUdR. This heavy DNA was analysed by Density Gradient UTtracentrifugation. This technique is a means of measuring the amount of $5-B U d R$ that has entereu the DNA due to the fact that the 5-BUdR makes the DNA heavy. Meselson and Stah1 (1958) performed the classic experiment using this technique on DNA labelled with ${ }^{15} \mathrm{~N}$ heavy hydrogen. If several species of DNA of different density are placed in an ultracentrifuge cell in a solution of caesium chloride and spun for twelve hours or more at 20,000 to 50,000 revolutions per second. As the DNA absorbs ultraviolet light at 260 fm, ultraviolet photographs will display these various bands.

Hanawalt (1968) has shown that the Loyant density of DNA containing 5 -BUdR increases by $0,9 \mathrm{gcm}^{-3}$, while Wril et at (1055) have shown that in the presence of 5 -FUc? even more b-bUdR is taken up as chown by the fact tha' the buoyant density of the DNA increases. Further, by this method one can distinguish between very heavy DNA which has two strands substituted with 5-BUdR and hybrid DNA, which is lighter as only one strand has been substituted with $5-B O d R$. The hybrid bands of DNA are found between the normal DNA and the heavy DNA on the photographs. Vinograd (1963) has postulated the use of marker DNA bands using DNA of known density to determine the density of the various bands of DNA. Each DNA species forms a band at the position where the CsCl (caesium chloride) density equals the buoyant density of that species in the ultracentrifuge cell. The CsCl spins down forming a varied density solution throughout the ce11, the densest solution being at the base of the cell. The various solutions of DNA stabilise in position in the cell when their density is counterbalanced by the density of the CSCT at a particular point in the cell. This takes up to 12 hours to achieve. At this point bands can be seen on the ultraviolet photographs.

Figure 1.49 below shows a cell with the various densities of CsCl.

Figure 1.49 CBCL in the uttracentrifuge celt

Figure 1.50 dn p. 51 shows - a typical result of an ultracentrifuge ultraviolet photograph.

Figure 1.50 sketch of ultraviolet photograph showing various DNA bonds

1.10 Objectives of this study

The hindimb of Xenopus Taevis appears to develop in a proximodistal direction (Tschumi 1957) under the influence of the apical ectodermal ridge. The zone of polarising activity (ZPA) appears to influence the antero-posterior patterning of the limb during its developnent (Saunders and Gasseling 1968). Of the three limb axes, proximo-distal, antero-posterior and dorso-ventral, the dorso-ventral axis is established first, followed by the antero-posterior axis and lastly the proximo-distal axis is determined.

The differentiation of the hindlimb tissues, muscle, cartilage and connective tissue, appears to be determined by the cell's position which the cell determines according to a gradient of a particular chemical or it could determine its pasition according to the amount of time it has spent in the "progress zone" (Nolpert 1981).

The present study used 5 -BUdR and $5-F U d R$ to study the above processes further. As 5-BUdR prevents differentiation and 5 -FUdR prevents cell division, the hindlimb development was likely to be affected in various ways. These effects couid increase our knowledge of the processes of cell differentiation and cell patterning in the Xenopus laevis hindlimb.

2. METHODS AND MATERIALS

2.1 Experiments investigating the effects of 5-BUdR and 5-FUdR on the shape and patterning of the Xenopus Taevis hindlimh.

2.1.1. Tadpole breeding and rearing

For the experiments in which the tadpoles were swum in 5 -BUdR and 5 FUdR a reliable, regular supply of tadpoles was required, Xenopus laevis responds well to life in captivity, in that it breeds all year round when kept at warm temperatures and treated with a regular dose of breeding hormone (Pregnyl). The tadpoles respond equally well by growing and metamorphosing as long as the temperature is kept corstantly warm. For these reasons Xenopus Taevis was chosen as the amphibian for this study.

Xenopus laevis tadpoles were bred from adults supplied by Jonkershoek Island Fish Hatchery, Stellenbosch. Females and males were isolated and fed on chopped beef liver twice weekly in summer. When breeding became more difficult, in winter, they were fed daily. The water was changed after feeding and the frogs were kept at a temperature of $25^{\circ} \mathrm{C}$, which is conducive to breeding. Breeding was induced by Pregnyl (Organon). A solution was made up of 4500 units in 9 ml water, about 500 units $/ \mathrm{ml}$. The male was given 2 doses of $0,3 \mathrm{~m} 7$, about 300 units in total. As breeding became more difficult to induce during the winter, it was necessary to prime the males daily for two weeks with the above closage until the black nuptial pads appeared. The females did not require increased doses. The hormone was injected through the dorsal 1ymph sac (Gurdon 1967). The frogs were then placed in a laying tank in shallow water on a mesh. The eggs dropped through the mesh and were collected the following morning and placed in shallow trays at $25^{\circ} \mathrm{C}$. At this temperature they developed to stage 43 in three days (Nicuwkoop and Faber 1967). At about this stage they started feeding and were fed on Liquifry No. 2 (Liquifiry Company Led, Dorking), about ten drops daily to sixty tadpoles in two litres of water. The tadpoles were thinned out constantly to prevent growth inhibition by overcrowding. The water was changed regularly.

2.1.2. In vivo experiments in which Xenopus laevis tadpules were swum in 5-BUrR and 5-FUdR and analysnd for growth deformities

The following experiments were set up to test the effects of 5-uJdR and $5-F U d R$ on Xenopus laevis tadpole growth. A weekly analysis was carried out under the dissecting microscope and hindlimb deformities were noted. (See section 3.1 for pictures.) The hin. 17 imb was therefore focussed on for further experimentation.

2.1.2.1. Pilot experiments.

The following initial experiments were set up :
a) Experiment started at stage 43 (NF stage)

Solution \quad\begin{tabular}{r}
Volume (m7)

Number of tadpoles

(2 dishes, 6 tadpoles
\end{tabular}

per dish)

\{5-FUdr 0,2 ug/m\}	200	2×6
5-FUdR 0,2 ug/ml	200	2×6
$5-B U d R 100 \mathrm{~g} / \mathrm{ml}$	200	2×6
5-BUdR $10 \mathrm{mg} / \mathrm{ml}$	200	2×6
5-bUdR $14 \mathrm{~g} / \mathrm{ml}$	200	2×6
5 -BUdR 0,1 $4 \mathrm{~g} / \mathrm{m7}$	200	2×6
Water	200	2×6

b) Experiment started at stage 40 (NF stage)
Solution

Volume (ml) | Number of tadpoles |
| :--- |
| (2 dishes, 6 tadpoles |
| per dish) |

2.1.2.2. Further experiments using Xenopus

 Taevis tadpoles swum in 5-FUdROn the basis of the results of the pilot experiments in 2.1.2.1. fwether experiments were set up in which the tadpoles were swum on7y in 5-FUdR as 5-BUdR was noted not to have had any externally visible deforming effects on the hindlinb.

The folluwing experiments were set up:

Stage (Experiment begun)	Solution	Comentration $\mu \mathrm{m} / \mathrm{m}$	volume m7 \qquad	Number of tadpoles (2 dishes, 6 tadpoles per dish)
0	Fudi	10	200	6×2
46	FudR	20	200	6×1
46	FudR	10	200	6×1
46	FUCR	10	200	6×2
47	FUdr	20	200	6×2
48	FUuR	20	200	5×1
48	FUdR	10	200	6×1
49	Fuir	20	200	6×1
49	FUAR	10	200	6×1
50	FUdR	20	200	6×2
52	FUdR	20	200	6×2
43	Hater	-	200	6×4
(The tadrole	ages used	can be seen in	Appendix	A.)

In order to study the deformed limbs in further detail, and for the purposes of clearer photography, the tadpoles were fised and the ifms stained, renoved and mounted for photography (whole mount).

The tacpoles were fixed in Karnovsky's fixative (Karnovsky 1965) as this was found to be less domaging than the formaldehyde mutioned in the same article.
Karnovshysfisative
4g of paraformaltehyde are dissolved in 46 water. The temperature is raised to $60^{\circ} \mathrm{C}$ in a water bath and IN NaOH is added dropiy ise unet the solution clears.
Ad 50 m buffer solution 6 atd enf 26 g gtutaraldehyde. Titrate at rom temomture to pH $7,2-7,4$ using 1 NHCT .

Buffer $\hat{C}=41$, 5in soln $A+8,5 m 1$ soin B.
Soln $A=\mathrm{H}_{2} \mathrm{H}_{2} \mathrm{PO}_{4} \mathrm{H}_{2} \mathrm{O}$ (monosohium phosphate) $2,26 \%$
Soln $2=\mathrm{NaOH} \quad$ (sodium hydroxide) 2,52\%.
Washing solution 50% buffer $+50 \%$ glutaraldehyde solution.
The tadioles were fixed for 24 hours and then washed for 24 hours. They were then transferred te acid alcohol for 24 hours ($1 \% \mathrm{HCT}$ in 70% ethyl alconol) (Mahoney 1973). They were then stained for one week in 19. Victoria Blue in actd alcohol. Tiay were then differentiated in several chanoes of acid alcohol until the desired colour was obtained. When difterentiation was complete they were transferred to 90% alcohol for twelve hours. They ware then dehydrated thoroughty in several charges of absolute alconol for a few hours. When cuipletely defydsated they were cleared in nethyl berizote and stored in fresh methyl benzoate, inis method stained the cartilage blue and nede the limb transparent so that the cartilage could be clearly seen, The limbs were now whole mounted and photographed having been severed from the antmal. The preliminary experimente vere plotographed on the wole animal (see 3.1). These whole mounts were analysed by weans of a deformity index (see section 3.2).

2.2 Radioactive thynidine untake in the presence of 5-FUdK by Xenopus laevis tadpote hindlinbs

As $5-F U d R$ is known to depress the uptake of tiymidine (by decreasing DNA replication which reduces the recuirement for thymidine), it was decided to test this by swilling Xenopus laevis tadpoles in radiouctive thymidine ($3^{3} 1$-thmidina). The experiments were set up is follows:
Control
One cith of 200 al capacity with six stage 49 tadpoles which were swin in the solution of 20 ug/ai 5-FUdR for one week. They were unfed for three days then fed on liquifry No. 2 for four days. Experiment
Oie dish of 20bin capacity with six stage 49 tadpoles which were swim in the solution of $20 \mu \mathrm{H} / \mathrm{m} 7 \quad 5$ FUdR $+5 \mu \mathrm{Ci} / \mathrm{mt}$ thymidine for one week. They were unsed for thee days, thon fed on liquifry No. 2 for four days.

The limbs of the tadpoles were removed and weighed as were the tails. They were than placed singly into clean glass scintillation vials containing 1 ml of soluene which was used to solubilise the tissue. The vials were immediately capped and incubated at $45^{\circ} \mathrm{C}$ in a water bath for eight hours to assist the solubilisation process. 10 ml of a specially prepared Toluene based mixture was added to each vial. The vials were recapped and thoroughly shaken. The vials were then placed in the dark in a refrigerator at approximately $\sigma^{\circ} \mathrm{C}$ for twelve hours.

The vials were then counted in a Packard Tri-Carb Scintillation Counter (Series 3,000) for fifty minutes each. Counts of radioactivity were registered on all three channels, each channel having a window setting of $50-1000$ and a gain setting of 53% for tritium. The counts per fifty minutes were then reduced to counts/ $\mathrm{min} / \mathrm{mg}$. (Price 1973.) The results are analysed in section 3.3.

2.3 Buoyant derisity gradient analysis of 5-BUdR DNA

It was decided to analyse the amount of 5 -BUdR entering the DNA using buoyant density gradient analysis and to compare this to the uptake of 5-BUdR by the DNA in the presence of 5 -FUdR. In the presence of 5 -BUdR DNA should become heavy and in the presence of 5 BUdR and 5-FUdR DNA should become heavier still as the lack of thymidine should cause the uptake of more 5 -BUdR. The tadpoles were swum in the solutions as follows :
a) 100 stage 41 (NF stage) Xenopus laevis tadpoles in 200 m 1 water for three lays at $21^{\circ} \mathrm{C}$. These tadpoles were killed at stage 43.
b) 100 stage 43 (NF stage) Xenopus laevis tadpoles in 200 ml of 0,1 $\mathrm{mg} / \mathrm{ml} 5$-BUdR for five hours at $21^{\circ} \mathrm{C}$.
c) 100 stage 43 (NF stage) Xenopus laevis tadpoles in 200 ml $0,1 \mathrm{mg} / \mathrm{ml} 5$-BUdR and $0,0002 \mathrm{mg} / \mathrm{ml} 5$-FUdR $(0,2 \mathrm{mg} / \mathrm{ml}$ as $0,001 \mathrm{mg}$ $=1 \mathrm{gg}$) for five hours at $21^{\circ} \mathrm{C}$.
The DNA was then extracted from the tadpoles and analysed by buoyant density ultracentrifugation.

2.3.1. DNA extraction

DNA extraction was done essentially according to the method of Marmur (1961) and Grossman, Goldring and Marmur (1969).
a) 100 tadpoles were killed in 15 ml of ice cold EUTA solution (Ethylene Diamine Tetra-acetic Acid. Disodium Salt, Merck Analytical Reagent). EDTA solution : $0,1 M$ EDTA $+0,1 M$ NaC1. The solution was adjusted to pH 8. The tadpoles were homogenised in this soluiion by means of an ultra-turrax homogeniser. During this process, the test tube with the solution was placed in a beaker of ice (Ledoux and Huart 1967).
b) The cells were lysed in Sarkosyl NL 30 , Sarkosyl NL. 97 or Sarkosyl 0 (sumples by kind donation of Ciba-Geigy). The Sarkosyl was used at a concentration of $1,3 \%$. The mixture was placed in a $50^{\circ} \mathrm{C}$ water baw for ten minutes and then allowed to cool to roon temperature (Marmur 1961). Sarkosyl is a new detergent uscd by Grossmn, Goldring and Marmu? (1969) inctead of SOS (sodiun dodecyl sulphate) used by most earlier workers. SDS is usually used to dissociate the protein from the nucieic acid but the anide derivative, sodium dodecy 1 sarcosinate, is now used due to its ligh solubility in concentrated CsCl. Probably the hydrocarbon chain of sodium dodecyl sulphate competes fro hydrophobic bonds. The anionic detergent appears to inhibit nucloases and the negative charge prevents interaction with mucleic acids (Noll and Stutz 1968). On comparing Dia yields for the differert detergents, Sarkosyl was found to give a higher yield than SOS. Of the three Sarkosyl NL. 30 was used instead of the sarkosyl NL 97 used by both of the above groups of research workers, as it gave a better DNA yield. Sartosyl surfactants are high molecular weight carboxylic acids or their om sodium salts of the form: $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CON}\left(\mathrm{CH}_{3}\right)$ $\mathrm{CH}_{2}-\mathrm{COOH}$ (or CCuRa).
They are molified fatty acids in with the hydrocarbon chain is interrupted by an amidomethy grow $\left(-\mathrm{CONCH}_{3}-\right)$. They are the amide derivatives of SUS (also known as sodium lauryl sulphate, This modification improves the solubility and crystallinity of the molecule, mhances the ncidity of the carbosylic ucid group and increases the absorption characteristics.

They are soluble in most organic solvents and are appreciably soluble at mildiy acidic pH's. They foam less than SOS (Handbook - Geigy Industrial Chemicals).
c) Sodiun perchlorate (pure reagent) was added at a high concentration to separate the protein from the nucleic acid (Marmur 1961). $1,338 \mathrm{~g}$ were added to the lysate thus formirig a 5 M solution which was then adjusted to pH 5 .
d) The solation was deproteinised by shaking in 30 ml chloroform : isoanyl alcohol $24: 1$ (isoany) alcohol 3 nethy) butanol $\mathrm{C}_{5} \mathrm{H}_{11}$ OH pure reagent, Herck). The solution was shaken gently for thirty minutes in a stoppered flask. The chlorofom sauses surface denaturation of the protein, While isoamy alcohol reduces foaming, afds the separation and maintains the stablity of the layers of the centrifuged deproteinised solution (farmur 1961).
E) The emutsion was separated into three layers by a ten minute centrifugation at 2000 rpa . The upper aqueous layer containing the nucleic acids vas romoved with a pasteur pipette. The protein interface and chlorofom layer were discarded.
f) Further deproteinisation was accomplished with pronase Streptayces griseve, Miles-Seravac (Crossman, Goldring and Maraur 1969)).
It was made up as follows :
300 m dissolved in 300 m water and placed in a water bath at $37^{\circ} \mathrm{C}$ for forty five minutes. The solution was then adjusted to pH 5 with concentrated HCl and left at wnom temperature cm forty five minutes. Solid Tris Buffer (Seravac) was th eed to adjust the pll to 7 and the enzyme was used at a firal concentration of $1 \mathrm{mg} / \mathrm{ml}$ and allowed to act for three hours at $37^{\circ} \mathrm{C}$ (Stern 1963). As well as digestmg protein, pronase partly dicosts itself (HoCarthy 1908).
g) The Tysate was dialysed against SSC for three hours at room temperature and then overnight at $4^{\circ} \mathrm{C}$ (Grossman, Goldring and Mamar 1969). SSC (standard saline citrate) - 0,151 NaCl + $0,01 \mathrm{MM}$ Trisodim Citrate (2-Hydrate) (Analytical Reagent, Merch.).
h) The lysate was treated with Ribonuclease (RNase) (Bovine Ribonuclease Grade II $5 \times$ crystallised Miles-Seravac). The enzyme was used at a final concentration of $504 \mathrm{~g} / \mathrm{ml}$ and allowed to act at $37^{\circ} \mathrm{C}$ for three hours (Marmur 1961). RNase also partly digests itself (McCarthy 1968). The RNase was made up as follows (Kalf and Grece 1968) : At a concentration of $1 \mathrm{mg} / \mathrm{ml}$ in acetate buffer pH 4,5 and incubated at $37^{\circ} \mathrm{C}$ for thirty minutes. Acetate buffer $-0,001 \mathrm{M}$ sodium acetate (trihydrate) (Analytical Reagent BDH) $+0,001 \mathrm{M}$ EDTA. pH was adjusted with concentrated glacial acetic acid. The solution was heated at $80^{\circ} \mathrm{C}$ for ten minutes to inactivate any DNase.
i) The lysate was dialysed at room temperature for four hours and then overnight at $4^{\circ} \mathrm{C}$ (Marmur 1961). It was dialysed against $0,2 \% \mathrm{SSC}+0,15 \mathrm{M} \mathrm{NaCl}$ at a pH of 5 .
The dialysis tubing was handled only with rubber gloves, as enzymes on the hands could denature the DNA. Dialysis removes the detergent, enzymes and the prod. of enzyme degradation (Kalf and Grece 1968).
j) The nucleic acids were precipated by addition of absolute ethyl alcohol (Kalf and Grece 1968). The DNA was then centrifuged down and dried in a vacuum for two hours and redissolved in 3 ml SSC. A few drops of chloroform were added and it was stored at $4^{\circ} \mathrm{C}$.

2.3.2. Buoyant analytical density

 gradient ultracentrifugationThe extracted DNA was analysed by buoyant density ultracentrifugation.

2.3.2.1. Theory of analytical density
 dient ultracentrifugation

As 5-BUdR has been found to enter the DNA, and as bromine has a higher molecular weight than the methyl group which it replaces, the buoyant density of the substituted DNA has been found to increase and this principle has been used by Meselson, Stahl and Vinograd (1957) to study molecular weights and partial specific volumes of macromolecules.
h) The lysate was treated with Ribonuclease (RNase) (Bovine Ribonuclease Grade $115 \times$ crystallised Miles-Seravac). The enzyme was used at a final concentration of $5049 / \mathrm{ml}$ and allowed to act at $37^{\circ} \mathrm{C}$ for three hours (Marmur 1951). RNase also partly digests itself (McCarthy 1968). The RNase was made up as follows (Kalf and Grece 1968) :
At a concentration of $1 \mathrm{mg} / \mathrm{ml}$ in acetate buffer $\mathrm{pH} 4,5$ and incubated at $37^{\circ} \mathrm{C}$ for thirty minutes. Acetate buffer $-0,001 \mathrm{M}$ sodium acetate (trihydrate) (Analytical Reagent BDH) $+0,001 \mathrm{M}$ EDTA. pH was adjusted with concentrated glacial acetic acid. The solution was heated at $80^{\circ} \mathrm{C}$ for ten minutes to inactivate any ONase.
i) The lysate was dialysed at room temperature for four hours and then overnight at $4^{\circ} \mathrm{C}$ (Marmur 1961). It was dialysed against $0,2 \% \mathrm{SSC}+0,15 \mathrm{M} \mathrm{NaCl}$ at a pH of 5 .
The dialysis tubing was handled only with rubber gloves, as enzymes on the hands could denature the DNA. Dialys is removes the detergent, enzymes and the products of enzyme degradation (Kalf and Grece 1968).
j) The nucleic acids were precipated by addition of absolute ethyl alcohol (Kalf and Grece 1968). The DNA was then centrifuged down and dried in a vacuum for two hours and redissolved in 3 m 1 SSC. A few drops of chloroform were added and it was stored at $4^{\circ} \mathrm{C}$.

2.3.2. Buoyant analytical density

 gradient ultracentrifugationThe extracted DNA was analysed by buoyant density ultracentrifugation.

2.3.2.1. Theory of rnalytical density gradient ultracentrifugation

As 5 -BUdR has been found to enter the DNA, and as bromine has a higher molecular weight than the methyl group which it replaces, the buoyant density of the substituted DNA has been found to increase and this principle has been used by Meselson, Stahl and Vinograd (1957) to study molecular weights and partial specific volumes of macromolecules.

The method involves an observation of the equilitrium distribution of the macronolecular material in a density gradient, itself at equilibrium. The density gradient is established by the sedimentation of a low molecular weight solute in a solution subject to a constant centrifugal field. A solution of low molecular weight is centrifuged until equilibitum is closely approached. The opposing tendencies of sedimentation and diffusion have then produced a stable concentratiun gradient of the low molecular weight solute. The initial corcentration of low molecular weight solute, the centrifug field strength and the length of the liquid column are chosen so that the range of density at equitibrium encompasses the effective density of the macronolecular material. At equilibrum, the macromolecules reach prititions at which the density of the surrounding liguid is ecual to their own, thus macronolecules of different consity band at different positions in the ultracentrifuge coll (Meselson, Stahl and Vinograd 1557, and Reckman Reviev). As the molecules sediment towards the botton of the cell a transparent solvent solution region is ureated and the inage of this portion of the cell becomes darter. Where the ultraviolet light is absorbed by the DiA light bands will be seen. By neans of a densitometer the fage on the film can be converted into a plot of optical dorsity versus distance from the axis of rotation (Meselson and Stahl 1958, Beckman 1966).

The advantage of this optical system is that concentrations of $0,001 \%$ of 0 AA can be detected which is of the order of magnt tude Tikely to be found in the experimental samples (Beckman Instruction Manuat E-IM-3).

2.3.2.2. Method Used

One of the most effoctive low molecular weight substances found for DNA is CsCl, which combines with it to form the caesilun salt. Neselson, Stah1 and Vinograt (1057) chose it due to its high solubilfty, high molecular wight and high rensity wich allows the obtainirg of steep gradionts, 1,25 to $1,90 \mathrm{~g} / \mathrm{mt}$. It also has a 10 w viscosity suitable for rafid sedmentation, is non-toxic to DNA and is solublo in water (Dirk:) and salt solutions (Sxyhalski 1960).

The average buoyant density of UNA in CsCl is $+1-1,7 \mathrm{~g} / \mathrm{m} 7$ and thus a caesium chloride solution was wade up at average density $1,699 \mathrm{~g} / \mathrm{ml}$ at $25^{\circ} \mathrm{C}$, t'e temperature used fon the ul iracentrifuge runs (Szybalski 1968).

The experimental work was done on a Beckman Model E Analytical Ultracntrifuge. A 30 mm charcoal-filled Epon centrepiece was used as CsCT is corrosive to aluminiam (Vinograd and Hearst 1962). The longer centrepiece was chosen, as low volumes of DNA of a certain dens'ty were more likely to be detected. 0,2 to 0,5 ug can be used (Vinograd and Bruner 1966). A counter-balance of 30 mm was used.

The optical density of the sample was read on a Beckman Ultraviolet Spectrophotometer at $260 \mu \mathrm{~m}$

The sample was diluted to an optical density of approximately 0,65 with SSC. $2,85 \mathrm{~g}$ of CSCT (Optical Grade - Suprapur Merck) Were added and the sample made up to a weight of $5,09 \mathrm{~g}$ with SSC. The refractive index of the solution was read of an Abbe Refractometer and the density read off from t lles (Chervenka 1969).

The upper plain window of we cell was replaced with a 2° negative wedge window to correct for the light scatter caused by the density of the solution (Vinograd and Hearst 1962).

The AN.E Rotor was used and the machine was run at 44770 rpm in order to allow the sedimentation of the macromolecules in the dense gradient (Meselson, Stah1 and Vinograd 1957, Grossman, Goldring and Marmur 1969).

The duration of the run was eighteen hours and photographs were taken at two hourly intervals with an exposure of two minutes.

The photographs were analysed in a Beckman RB Analytrol with a Film Denstometer attachment.

The following three runs were performed:

The photographs and densitometer traces are shown in section 3.4.

2.4 Investigation into the arowth of tadpoles under different methods of feeding

It was decided to investigate the optimu growth conditions for the tadpoles, as far as feeding was concemed, in both large trays (2 litre capacity normally used) and small dishea (200 ml capacity used in this study due to scarcity of 5 -FUdR),

Tadpoles were taken at stage 47 (NF stage) and placed ints trays of 2 litre capacity and large surface arca. Sixty tadpolos were placed in two litres of weter as this was the concentration of tadpoles used in the smoll (200 ml) dishes.
Experiment A

Food	Dose	Number of Tadpoles	Volume of
Commater (litres)			

Experment e

Foct	Dose	Number of Tadpoles	Volume of Water (litres)
Commerctal			
baby food			
(liver and	1 g/day for 2 veeks	60	2
vegetalles)	$2 \mathrm{~g} / \mathrm{d} \mathrm{y}$ for rest.		
Fish food	"	60	2
(Tetrmin)			
Yeast	${ }^{\prime \prime}$	60	2
Liquifry	"	60	2
Lettuce	1	60	$?$

The tadpole were analysed for rate of growth once weekly by counting the nurber of ammals at any one stage (if stage). The resuits are shom in section 3.5 .
2. 5 Details of the chemicals used and source list of suppliers

1. BUdR, 5-Bremo 2^{\prime} deoxyuridine, 5 gma Chemical Corporation.
2. 5-FUdR, 5-fluoro 2'deoxyuridine kindly donated by Dr. Rem of Roche Products (Pty) Limited.
3. Victoria Blue, $A R$ Herck, Art 8539.
4. Tetramin, Lopis, Johamesburg, containing fish meat, fish roe, fish liver, crayfish, water plants, mussel meat, brine shrimp, wheat germ, cod liver, insect larvae, kelp.
5. Liver and vegetables, Licence Gerber Prod. Company, USA, Purity Riclet and Colman SA Letd, containing modified maize starch, liver, soya protem, tonatoes, yeast, onion extract, caranel, iodiser salt.
6. Yeast, Anchor Yeast (Pty) Lhited, Watt Street, Industria; Johamesburg.
7. Complon, Glaxo Allenbury's SA (Pty) Limited, Hanchester Road, Wadeville, containing protein 31 g , fat 16 g , carbohydrate 45 g , calciun 850ng, phosphorus 750 ag , sodiun 400 mg , chloride 750 mg , potassin 1100 t , iron 7.700 , iodine 44ug, Vit A 1100 units, Vit a_{1}, ong.
8. Csol, Art 2011 Merck 2525019 extrapur na, $168,36$.
9. Soluene 350 (fachard) is an extremely efficient salubiliser of animal tissue. Since most of the Biological samplos containing radioactivity measured by liquid scintillation counting are not readily soluhie in the aromatic hydrocarbon based scintillation solution (Toluens) specia) solmbilisers are required to obtain a horogenous systen for reproducible measurement of radioactivity.
10. Toluene scintillant is composed of 100 m Pemarluor III (Packard) in 1 litre of Toluene (Packard). The resulting solution contains 5,09 PPO and $0,5 y$ bis-HSB per 7 tre. PPO and bishst are highty efficient scintillators which wil not form quenching adducts with tissue solubilisers, amines and acids.
11. Toluene mixture. The solubititing mixture was made up as follows :
Pomathor 111 Puckand : 70*
Triton $\times 100$ Packard: 30

Pemafluor is a concentrated solution of stable efficiont scintillators (PPO and bisMSB). It does not form quenching adducts with tissue solubiliser, amines and acids. Triton x 100, especially purified for liquid scintillation countine, is an efficient tissue solubiliser, so that the mixture of Permafluor and Triton is an extremety efficient scintillant. This mixture modified from Thorn7ey 1971, was found to be the most efficent method of detecting radioactivity in aqueous biclogical samples. Samples were incubated in the dark to allow them to equilibrate and to rectuce chentluminescence to a mintmur (Packard handbook).
12. Methy ${ }^{3} 11$ bhyidine specific activity $18 \mathrm{Cf} / \mathrm{m}$ mol labels DIA.
13. $5,6^{3} \mathrm{H}$ Uridine (metry) specific activity 40,0 Ci/mol label A.
14. Liguifry Mo. 2 (Liquifry Company Limited, Domling).
15. Pregry (orgmon). This is a mamalian gonadotropin wich in the male fros stimulates the growth of the tesres, sexual meturityand release of the sperm, as well as the formation of dark nuptial pads on the insides of the forelimbs. The fomation of the nuptial pads indicates that the males are in mating condition.
16. EDTA, Ethylene Diomine Totra - acetic acid, disodiun salt, Herck analviical reagent.
17. Sarkosyl 17. 30, sarko.y7 W. 97 , sambosyl 0 , by kind donation of Giba Gaigy.
18. Isomyl alcohol $=3$ methyl butanol $\mathrm{C}_{\mathrm{H}} \mathrm{H}_{21}$ oH pure reagent Herck.
19. Pronase, streptomese siseus Mites Seravac.
20. Ribonuclen. . Bovine fibonuclease Gidad II $5 \times$ crystallised Miles Seravac.
21. Sodiun Recteta, Aralytical Reagent nol.

3. RESULTS

The hindlimb buds of the tadpoles swum in 5-FUdR were found to be defore d (see section 2.1) efther in shape or lacking the full number of digits or both. A method was devised to approximate the degree of deformity of each 1 imb . In the limb each defect wa's given equal weighting as described on page 73 . For convenience, the limbs were divided into three types: adult limbs $(56-65)$ were given a count of 91 when normal, medium mature limbs $(54-56)$ were given a count of 32 when normal and inmature limbs were given a count of 24 when normal. From these normal counts points were removed depending on the type of deformity and the result is referred to as the deformity index for euch timb.

3.1 Results of pilot experiments in which Xenopus Taevis

 tadpoles were swun in solutions of 5-FUdR and 5-BUdRA series of initial experiments revealed the hindlimb deformities on observation of the tadpoles under the dissecting microscope. These tadpoles were subsequently photograned to show the deformities. The photographs of these tadpoles are showh in the next few pager. In section 2.1 the limbs were further analy;ed by staining the cartilage and taking magnified photographs of the result. Below, on Figure 3.1, is a picture of a tadpole (NF stas: م0) with three toes on the left hindlimb and two toes on the right hindimb.

|||||||||||||||||||||||

Figure 3.1 Doraal view of stage 60 tadpole swum in 0,2 ug/mi 5-Fudr. A clat is visible on the third toe of the left foot.

In Figure 3.2 below are sketches of the hindlimbs of the above tadpole compared to the sketch of the nomal tadpole hindlimb for that stage.

Figure 3.2 sketch of the hindlimbs of the tadpole in Figune 3.1 compred to that of the nomat stage 60 hindlimb.

The tadpole in Figure 3.1 can be compared to the noriial stage 60 tadpole shown in Figure 3.3 below.

Figure 3.3 photograph of normat stage 60 tadpole.

This type of result was found consistently throughout the various preliminary experiments as will be seen in the following photographs (Figures 3.4 to 3.11). A stage 53 tadpole was seen to have a bifurcated hindlimb bud instead of the normal division into five toes at this stage. See Figure 3.4 below.

Figure 3.4 Lateral view of ntage 53 tadpole swimn in , 10 peg/mb s-bulR $+\quad 2 \mu \mathrm{~J} / \mathrm{mL} 5$-imah.

The tadpole in Figure 3.1 can be compared to the nommal stage 60 tadpole shown in Figure 3.3 below.

Figure 3.3 Photogroph of nomal stage 60 tadpole.

This type of result was found consistertly throughout the various preliminary experiments as will be seen in the following photographs (Figures 3.4 to 3.11). A stage 53 tadpole was seen to have a bifurcated hindlimb bud instead of the normal division into five toes at this stag: See Figure 3.4 below.

Figure 3.4 Latcrat view of stage 53 tadpule surn in $.104 \mathrm{~g} / \mathrm{m}^{2}$ $5-B U c l i n+\quad 2 \mu \cdot g / m 2 \quad 5-1 v / n$.

The same tadpole was enlarged to show only the abdominal region so that the hindimb was clearly visible (see Figure 3.5 below).

Figure 3.5 Abdominat region of stage 53 tadpole en langed to show detail of bifurcated hindlimb.

Normal

Figure 3.6 sketch of the above hindimb with a nomal timb for comparison.

A photograph of the normal stage 53 tadpole is shown below for comparison to the photograph in Figure 3.4.

Figure 3.7 Photograph of normal stage 53 tadpole
In Figure 3.8 below is a photograph of a stage 57 tadpole with a hindlimb having three toes.

Figure 3.8 Latenat view of stage 57 tadpole summ in $100 \mu \mathrm{~m} / \mathrm{m}$ 5 -BUdR $+, 0,2 \mu g / m 2$-FUdr. Only three toes can be seen.

The photograph in Figure 3.8 has been en larged to show the hindlimb more clearly.

Figure 3.9 Enlargement of the hinalimb region of the tadpote in Figure 3.8 on page 70. Three toes are clearly seen.

A sketch is shown in Figure 3.10 below comparing the three-toed stage 57 hindlimb to the normal stage 57 hindlimb.

Figure 3.10 Sketch showing the hindlimb from Figure 3.9 above -compared to nomal tadpolo hindlimb.

In Figure 3.11 below an enlarged hindlinb of a normal stage 57 tadpole hindlimb is seen for comparison to Figure 3.9.

Figure 3.11 Entarged hindlimb region of stage 57 tadpoie to show normal hindlimb

These preliminary results provided the basis for further exhaustive experimentation. The hindlimbs were studied in greater detail by the more refined method of cartilage staining (see section 2.1.2.2.) and the limbs were analysed in detail in section 3.2 .

3.2 Effect of 5-BUdR and 5-FUdR on tadpole

 hindlimb development - a detailed analysisThe tadpoles were immersed in solutions of 5 -BUdR and $5-F U d R$: which were renewed weekly (see section 2.1). The tadpoles were staged and studied each week under the dissecting microscope, in order to detect any deformities in the development of the hind? imb. The progress of the deformity was traced until no further deformity appeared. Subsequently the tadpoles were killed and the hindlimbs stained to make the cartilage clearly visible (see section 2.1).

These stained hindlimbs were photographed. The photographs were analysed in a semi-quantitative manner, according to the degree of the deformity. A penalty number was given which reflected the degree of this deformity.

In order to attain a non-weighted figure (overall) a measure of the degree of deformity with regard to the temporal aspect of the formation of the deformity was adopted. In this approach a score was allocated which reflected the absence or magnitude of the deformity. For convenience the developing hindlimb was classifed into three stages :

1. The most mature limb (aduit limb) in which the digits are clearly visible and demarcated and all the cartilaginous elements as would be seen in the adult limb are present. Stages 56 to 65 . (See Figures 3.12 and 3.15.)
2. The medium mature limb in which the cartilage elements are not clearly seen but demarcation of toes was visible. Stages 55 to 56. (See Figures 3.13 and 3.17.)
3. Immature limbs in which only a paddle was visible. Only deformities in shape could be detected in these limbs. Stages 54 and younger. (See Figures 3.14 and 3.18.)
In this approach each element was awarded a point of 4 and from this number a penalty of 2 was imposed on a deformed element, while a penalty of 4 was imposed on an absent element. (Toescould be visible)

3.2.1. Adult hindlimb

In this limb according to the point system above a total score of 91 was accumulated in the normal adult 7 imb as follows :
Femur 4

Tibio-fibula 4
Tibiale fibiale $\quad 4$
Metatarsals $\quad 20$
Phalanges
CTaws
Total
$56 \quad 2(2 \times 4)+2(3 \times 4)+4(4)=16+24+16=56$
3 (1 per claw)
91

In a typical deformed adult limb one could calculate a penalty index as follows :

Femur $\quad 2$ bent ($4-2$)
Tibio-fibula 2 bent (4-2)
Tibiale fibulare $\quad 3$ mildly bent (4-1)
Metatarsals : 12 two absent (20-2(4))
Phalanges $\quad 28$ digits 4 and 5 absent (56-4(4)-4(3)
Total 47
This indicates approximately 50% deformity.
To illustrate these analyses more clearly a series of graphs has been drawn alongside each limb photograph, next to the penalty index analysis. In Figure 3.12 below a nomal adult limb is shown on this graph and below it a typical deformed limb as described above with a penalty index of 47.

$91-0$

K!y:	
Fo	Fernus
1 F	- Tlblo tibula
Tofe	Tiblale flbulare
Ms	Metatatsals
Pl	Phalanges
Cl	Claws

Normallimb

Deformed limb

Figure 3.12 Graphical neprosontation of nomal adult nindlimb and a typroal defomed hindlimb

3.2.2. Medium mature hindlimb

In this stage of 7 imb develupment, although the metatarsals and phalanges were present they were not clearly demarcated and could not easily be counted. For this reason penalties in the distal region of the hindlimb were only given for the presence or absence of toes.

According to the point system a total score of 32 was accumulated for the normal medium mature 1 imb as follows :

Femur	4
Tibiowfibula	4
Tibiale fibulare	4
Toes	20
Total	32

In a typical deformed medium mature limb one could calculate a deformity index as follows :

Femur	4	
Tibio-fibula	4	
Tibiale fibulare	2	slightiy bent
Toes	12	$(3 \times 4) 2$ toes missing
Total	$\underline{22}$	

This indicates approximately 33% deformity.
To lllustrate these analyses more mearly, a series of graphs has been drawn alongside each limb photograph, next to the deformity analysis. In Figure 3.13 below is a graphical representation of a normal medium mature limb and below it the typical deformity analysed above.

Daformilylndax
$32-7$

Normallimb

Deformed limb

Figure 3.13 Graphicat representation of the normal medium mature $n i n d l i n b$ and a typieal defomed hindlimb

3.2.3. Immature hindlimb

In this stage of limb development deformities in early limb shape were noticed, which often went on to form the typically reduced number of digits in the adult limb. Penalties were given only for shape and possible absence of toes judyed by indentations on the paddle at stage 53 only. According to the point system a total of 24 was accumulated for the normal immature limb as follows:

Shape	4
Toes	$20(5 \times 4)$
Total	24

In a typical deformed immature limb one could calculate a deformity index as follows :

Shape	1	limb very bent
Toes	16	(4×4) stage 53 smaller paddle in width i, e.
	one toe less	
Total	17	

A 28% deformity.

To 1714 state these analyses more clearly a series of graphs has been drawn alongside each limb photograph, next to the deformity analysis. In figure 3.14 below is a sketch of a normal immature limb and below it the deformity analysed above.

Figure 3.14 Graphical noprecentation of the nomad immature
hindlimb and a typical deformed hindlimb

This detailed analysis is summarised as follows :
There are three classes of 1 imb development for this analysis. The earlier two classes were analysed to show the on-going progress of the deformity while the adult class was a detailed analysis of the deformities themselves. This semi-quantitative approach gave interesting results even though the deformities were not found to be consistent either with stage or concentration.

The detailed analysis of the limb deformities is carried out in 3.2.5, for adult limbs, 3.2.6. for medium mature limbs and 3.2.7. for immature limbs.

The results show 1 imbs with one or more digits missing. In the thirty cases of adult limbs analysed in detail:
Digit 1 missing

- 23-30 cases

Digit 2 missing

- 13-30 cases

Digit 3 missing
Digit 4 missing

- 6-30 cases

Digit 5 missing

- $16-30$ cases
- 16 - 30 cases.

3.2.4. Analysis of normal hindlimbs

Figure 3.15 Normal hindtimbs

B

Normal Stage 54

Normal $5 \log 55$

Normal Slage 56

No:mal Stage 57

Normal stage 53

3.2.5. Detailed analysis of adult hindlimbs

Figure 3.16 Adult hindlimbs

3.2.6. Detailed analysis of medium mature hindlimbs

Figure 3.17 Medium mature $\hbar i n d i m b s$

r

Author Christie C A

Name of thesis The effect of 5-bromodeoxyuridine and 5-fluorodeoxyuridine on differentiation and metamorphosis in Xenopus Laevis Tadpoles 1982

PUBLISHER:

University of the Witwatersrand, Johannesburg © 2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

