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Abstract

In this thesis a novel mathematical technique for the analysis of longitudinal surveys in the social

sciences is given. This analysis maps the longitudinal data of a fixed number n of demographic

variables of a single social unit into an orbit of a single point in the unit square. The x, y−axes

denote fitness, and, significance of social variables. A finite set of 2n×n! states in the unit square is

thereby defined. Data from the rural Agincourt Health and Demographic Surveillance Site survey

is analysed. The data set consists of the following demographic variables: biological mother out-

migration, household head is a minor and adult death. For a sample of 2669 households we record

orbits for the period 1998 to 2007. Social variables relate to educational progression. The flow

of household orbits is found to describe temporary in- and out-migration of biological mothers of

children. The densities of the flows show that educational default is associated with out-migration.

The method predicts an increase of 52 defaulting households per year for the period 2007 to 2015.

This result is facilitated by visualization of orbits and by identification of appropriate dynamical

models, directly from the longitudinal data. It is hoped that visualization of household fitness can

better influence policy makers.
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Chapter 1

Introduction

1.1 Introduction

In this thesis, we use the term social unit to describe a social entity which is part of a larger

social group or society. There are various types of social units including individual, family and

household [1]. This latter will be used as the analysis level in the discussion of the data that are

analysed as an application of the theory developed in this thesis.

Because of the growing complexity of social networks in modern societies [2, 3, 4, 5, 6, 7, 8],

the use of deterministic models has become a topic of great interest in social sciences research

[9, 10, 11, 12]. In fact, many social phenomena cannot be analysed with conventional statistical

techniques [13]. For instance there are some dynamical social processes that are not equivalent to

a simple sequence of time-dependent structures, which can be statistically analysed. Such ”com-

plex systems” require strong mathematical techniques which also include the description of non-

equilibrium phenomena. The need of such new mathematical models is critical to improve research

in the social sciences. In this thesis a new deterministic mathematical technique, to complement

probabilistic methods, is presented which hopefully will add value to the scientific understanding

of the social sciences.

We are interested in the very rich information of longitudinal surveys. For instance, the Ag-

incourt Demographic Surveillance Site has yielded answers to some 200 questions asked to 14000

households over 16 years (details given below). As household conditions change, this represents

some 2200 possible transitions of each household if answers are Yes/No. The problem is to access

14



this potentially huge quantity of ”experimental” information.

Dynamical systems are mathematical laws that evolve a set of states in time. An example is

given by angular rotation about a circle where the unit of angle is chosen so that 360o = 1

θn+1 = aθn, 0 ≤ θn ≤ 1 (1.1)

where a is a fixed real number. Note that 0 ≤ θn ≤ 1 means that we are only interested in the

decimal part of the angle θn. This truncation of the integer part is denoted

θn+1 = aθn mod 1, n = 0, 1, 2, . . . . (1.2)

Of course θ1 = aθ0 mod 1, θ2 = aθ1 mod 1, . . . and in general

θn+1 = anθ0 mod 1, n = 0, 1, 2, . . . . (1.3)

Consider the case a = 10. Then the initial angle θ0 = 0.31459 . . . (digits of π) jumps to θ1 =

0.14159 . . . , θ2 = 0.4159 . . . and so on. The initial angle θ0 = 0.314314314 . . . = 0.314 maps to

θ1 = 0.14314, θ2 = 0.4314, θ3 = 0.314 = θ0. In the first case θ never repeats any pattern for ever

(because π is an irrational number). In the second case, θn+3 = θn, ∀n and we have a period-3

pattern. We note the infinite number of initial conditions θ ∈ [0, 1) and the infinite number of

patterns that arise from these initial conditions. Of course patterns are here just orbits on the

circle.

In the Agincourt data we may imagine regular and irregular patterns as the answers to the

questionnaires of a household evolve in time. Even with the richness of the data, we note that the

binary answers at any moment from a long string of 0′s and 1′s may be regarded as a number,

even a decimal number θn if we divide by the number of questions, and that they are all easily

accommodated by the dynamical system (1.1) if it applies. Demographically, the situation might be

more complicated because many households may be on the same pattern, or orbit, if (1.1) applies.

In this thesis, we attempt to define ’orbits’ in some socially meaningful way, and to identify

dynamical systems (if any), that might govern the orbits. This study is inspired by dynamical

system theories [14, 15, 16].
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1.2 Review of deterministic mathematical modelling

This section is devoted to a short review of a large and growing literature on mathematical

modelling in the social sciences, [17, 18], [19] and [20] are reviews. We do this here by briefly

illustrating the types of mathematical models, to better contrast our approach.

Models can be classified in two main categories including

1. Deterministic mathematical studies of individual-level social dynamics

2. Deterministic population-level dynamic models

1.2.1 Deterministic mathematical studies of individual-level social dynamics

There are few deterministic mathematical studies of social dynamics at the individual-level.

Lewin [21, 22], Barber [23], Helbing and Molnar [24], Pearson and McCartney [25, 26] proposed

various deterministic approaches.

Lewin [22] introduced a new approach for modeling individual behavioural changes. He argued

that behavioural changes are driven by so-called social fields or social forces. The idea of iden-

tification of social forces was taken further by [23, 24]. The model developed in [24] considered

individual pedestrian behaviour. The most sophisticated model of pedestrian behaviour is perhaps

that of Helbing and Molnar [24]. This illustrates is an application of the ideas of Lewin [22].

Helbing and Molnar give coupled Leugevin equations

dωα
dt

= Fα + fluctuations (1.4)

drα
dt

= ωα(t)g(
vmaxα

||ωα||
) (1.5)

with

g(
vmaxα

||ωα||
) =

{ 1 if ||ωα|| ≤ vmaxα

vmax
α

||ωα||
otherwise.

(1.6)

Here ωα is a preferred velocity of pedestrian α, vα is actual velocity and rα is distance from

desired destination. They construct forces Fα(t) in potentials with exponential rates of spatial
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change. With choice of these rates they can simulate interaction of many pedestrians, for many

positions rα(t), over time.

We note the individual level of study and the ad hoc form of the model. The results of simu-

lations over many pedestrians can in principle be compared with observation of many individual

pedestrians. In general, the parameters of the model are adjusted for agreement.

Pearson and McCartney [25] inspired by the methods of Barber [23] used similar social and psy-

chological models to develop deterministic mathematical models of individual dynamics. Stochastic

models have been presented in [27]. For a given set of n individuals in a network, Pearson and Mc-

Cartney model the dynamic behaviour of the interactions between these individual by the following

equation

ẋ = A(x)Φ(x) (1.7)

where x is the vector containing the nodes of the social network xi. The matrix A = (aij) with

aij constant or function of x. The map Φ is defined as Φ : x → (f(x1), f(x2), . . . , f(xm))T where

f is a cubic polynomial with three real roots with negative derivatives at the two roots 0 and

1, and m = n(n − 1). In particular, A and f are models in six parameters, designed to introduce

attraction or reaction between individuals. Again, Pearson and McCartney can simulate the passage

of individual interactions through the network. Their paper [25] was fully deterministic, individuals

merely distinguished by their initial conditions in a state space. We note again the ad hoc model

and the necessity to adjust parameters to achieve comparison with (future) experiment.

These two models of individual behaviour contrast strongly with the individual dynamics that

arise from a well-posed longitudinal data which give detailed and precise knowledge of the social

unit, focused within a precisely stated and relevant purpose. It is of interest to extract the dynamical

system, if it exists, directly from the individual data. We know of no such studies.

We note the use of utility functions as the determinant of individual behaviour in mathematical

models in the social sciences [20, 9]. These are very high level descriptors, in a few parameters,

of dynamics of individuals and are a statistical attack on the data that can allow direct access

to diffusion [28, 29, 30] and other differential equations. They are then of great interest, in the

context of this study. However, they are again ad hoc model, without detailed characterization of

the underlying dynamics. The human variables used are few (e.g. in [31], three forces only are ex-

plained by words like ’persuasive’, ’compromising’ and ’avoiding’ as compared to the approximately

200 questions of the Agincourt data). Also, such models make the assumption of randomness of
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individual behaviour. Again we are encouraged to make direct use of ’experimental’ data.

1.2.2 Deterministic population-level dynamics models

Deterministic population dynamics is widely used (reviewed in [32, 20, 33]). These methods

typically probe the truth of growth rates of sub-populations, but do not probe downward to the

individual. Ordinary differential or difference equation models of population dynamics are of course

deterministic models used for population projection [33].

The trivial model
dN

dt
= αN , (1.8)

for population numbering N individuals, and growth rate α, does not acknowledge any particular

social force, and is remote from longitudinal data such as that of Agincourt.

The well-known logistic model [34, 35] is given by

dN

dt
= r0N(

K −N
K

) (1.9)

where N is the population size, r0 is the population growth rate, and K is the capacity of the

environment. The model (1.9) is an example of interaction of a population with a resource; in this

case the social force is directly imposed but is very simple.

Chaotic dynamical systems [33, 36, 37, 38] are of interest as models of unpredictable population

behaviour. These can model the stochastic behaviour of real phenomena perhaps capturing random

fluctuations in population numbers. We have given a famous mathematical example of a chaotic

system in (1.1).

Andrew [39] discussed the question of whether the behaviour of stochastic models of population

dynamics agrees with equivalent chaotic deterministic dynamics [38]. Inspired by [40, 41], the

methods of [39] were based on chaotic models including

1. the deterministic component of the single-species model

Nt+1 = fNt(1 + aNt)
−b (1.10)

where Nt is a population density in generation t, f is the per capita finite rate of increase,

the constant a scales the density and b determines the form of the density dependence. Note

if a≪ 1, b = 1, this approximates the logistic difference equation corresponding to (1.9).
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2. the deterministic component of the host-parasitoid model

Ht+1 = fHt(1 + aPt

k
)−k

Pt+1 = cHt[1− (1 + aPt

k
)−k]

(1.11)

where Ht and Pt, respectively host and parasitoid densities in generation t, f is the finite per capita

rate of increase of the host, c is the number of parasitoid progeny produced per parasitized host, a is

the area of discovery of parasitoid, and k describes the degree of aggregation over hosts of encounters

with parasitoid. Similarities were found, making chaotic models of stochastic phenomena of interest

in applications. We note that chaotic dynamics is a mixture of periodic orbits in many periods and

of stochastic orbits. These dynamical systems warn us to search for periodic orbits in data. They

also warn against the statistical modeller’s assumptions of random data.

Detection of periodic orbits was discussed by Pierson and Moss [42] and So [43]. They built

predicted models based on the recurrence of patterns in state space and were were successful in

establishing the existence of periodic orbits in the study of the crayfish caudal.

Pawelzik and Schuster [44] developed a new method for predicting chaotic time series. This

method extracted periodic orbits using time-series data of chaotic continuous dynamical system.

Thus, to discover periodic orbits of many periods is to discover a property of chaotic systems. The

periodic orbits are easy to simulate and they showed that these orbits can be used to construct

models that could be used for projection.

Following the discussion of the above ideas, Paul and Edward [45] presented new techniques to

detect periodic orbits in a dynamical system. They emphasised that the detection of periodic orbits

in dynamical system is a test of the presence of determinism [46]. As in Pawelzik and Schuster

[44], they also used experimental time series data to test their models. However, they limited their

discussion to the determination of period one orbits. This is very simple and does not help to better

understand the behaviour of the rest of the system. Developing their previous ideas [45], Paul and

Edward [47] show that the best way of describing a dynamical system is through the detection of its

periodic orbits. They prove that in a mathematical state space, periodic orbits are the equilibrium

states [43]. Thus, if we are capable to detect all of the periodic orbits in this abstract dynamical

space, then the systems temporal evolution can be predicted.

In this study, we are careful to detect period τ orbits.

The differential equations of diffusion [28, 29, 48, 30], or more deeply, the integral-differential
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equations of kinetic theory [49], are deterministic [46] and have been used [50, 51, 52, 53, 54, 55, 56]

to model population dynamics when the condition of each individual is a random walk [20]. Diffusion

equations have the form
∂N

∂t
= D

∂2N

∂x2 (1.12)

where t is time, x may be, for example, spatial displacement and D is the diffusion coefficient [57].

Diffusion equations are again coarse as they do not ask for experimental data for individuals, or for

the forces that change individual states. D becomes a parameter to fit to observations. Further,

forces on individuals need not be random, for example a new law can have lasting social impact.

Helbing [20] notes their limitation to homogeneous conditions. For example they do not naturally

apply to irregularly, geographically dispersed populations.

Kinetic equations [49] model simple social forces on a collective of individuals and models have

been applied [20]. Helbing [20], proposes a simple master equation

d

dt
P (X, t) =

∑

X′(6=X)

[ω(X|X′; t)P (X′, t)− ω(X′|X; t)P (X, t)] . (1.13)

Here, X is one state of the system and the set of all states is denoted by Γ. P (X, t) is a probability

density over state X at time t, ω(X|X′; t) is the transition rate from X′ to X at time t. We note that

the left-hand side of (1.12) and (1.13) have the same time dependence. In certain circumstances,

equation (1.13) can be brought to the form of equation (1.12) by integrating over the state space.

This shows that the kinetic equations contain more information of individual dynamics. Helbing

has many sophisticated extensions and applications of (1.13). They are all derived from knowledge

of individual dynamics, under the assumption of stochastic process [58]. Typically, the transition

rates are modelled in terms of simple utility functions that capture behaviour of every individual.

Again we see ad hoc modelling, all be it in a very convincing framework. The forces of interaction

of individuals must also be modelled. We note for example interest in the psychological ”forces” of

persuasion, avoidance, compromise.

Mathematical deterministic models can be developed from two different approaches [59, 60, 61]:

a discrete time approach, and continuous time approach used above. Models from the discrete time

approach fall into two categories: recurrence models and matrix models. The deterministic discrete

time matrix model was first introduced by Bernardelli [62], Lewis [63] and Leslie [64]. Important

contributions to the study of deterministic discrete time recurrence models can be acknowledged in
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the work of Dobbernack and Tietz [65]. These again involve high level modelling by rate equations.

Inspired by Bernardelli, Lewis and Leslie, Caswell was the first to introduce a detailed stage-

classified demographic theory [66]. His particular focus was on stage-classified populations models

that were later developed in [67]. The theory included linear and non-linear, time-invariant and

time-varying, deterministic and stochastic models defined as follows. The size of the population

at time t is given by the vector n(t) = (ni(t)), i = 1, 2, 3 . . . , s where ni(t) gives the number of

individuals at state i, at time t. The dynamics are specified by a s×s population projection matrix

At, where

n(t+ 1) = Atn(t) (1.14)

Note that A = (aij(t)) where aij(t) gives the rate of change of individuals from state i to stage j

at time t. Thus the aij describe the vital rates which may vary through time.

Age is always regarded [68] as a basic demographic variable used to describe the state of an

individual in its life cycle. Caswell used age to define the stage of the individual in his models.

There are of course, other demographic variables that influence individual behaviour and also

provide deeper knowledge of the individual than the age does.

All the above models use reduced information of the population and its environment compared

with the information of a longitudinal data of a questionnaire as found in detailed demographic

questionnaires such as in detailed surveys such as from the Agincourt Demographic Surveillance

Site [69, 70].

This thesis gives a precise theory of orbits of individuals (TAg3 , Chapter Four), not as modelled

with utility functions, but as exactly revealed by the best question set that can be devised to probe

the reasons for change in individual state relative to purpose.

Although the core aim of this thesis is to formulate, describe and demonstrate orbit theory,

the discussion of the literature review is not complete without reviewing statistical approaches

commonly used for longitudinal data analysis.

1.3 Review of statistical longitudinal data analysis techniques

A large body of research methods developed for data analysis are based on statistical methods

[71, 72, 73, 74, 75, 76]. The application of these techniques includes the use of both cross-sectional
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and longitudinal data. We review and discuss a statistical technique for longitudinal data analysis,

namely survival analysis. This type of analysis consists of a range of statistical methods developed

for investigating the occurrence and time of events. The terminology used to describe this technique

varies across disciplines. For example it is known as survival analysis in biostatistics, failure-time

analysis (reliability theory) in engineering and event-history analysis in sociology. The central

objective of this type of analysis is to measure survival time. There are various approaches used in

survival analysis. Our review is focused on the following:

1. Discrete Time Event History Analysis approach [75, 77, 78, 79]. The commonly used model

in this approach is the discrete-time hazard model. This is a parametric regression procedure

used in survival analysis to characterize the distribution of survival time using a set of variables

for a given population. The simplified discrete-time hazard model [77] is given by

hij = Pr [Ti = j|Ti ≥ j] (1.15)

where hij denotes the discrete-time hazard which is the fundamental parameter of the discrete-

time survival process. It defines the conditional probability that an individual i randomly

selected in the population will experience the event of interest in the time period j, knowing

that he or she did not experience that event in the early period to j.

Another way of describing the distribution of survival time is by using the survivor function

given by

S(tij) = Pr [Ti ≥ j] (1.16)

where S(tij) similarly defines the survival probability which is the probability that an individ-

ual i will survive past time period j. A homogeneous population is assumed in (1.16). Note

that the hazard function (1.15) determines the risk associated with each time period while

the survivor function (1.16) cumulates risk period by period. This can be generalized [75] to

a non-homogenneous population.

The application of discrete-time event history analysis [75] requires us to know whether or

when study events occur. The event can be positive (e.g. birth), negative(e.g. death) or

neutral (e.g. marriage). Data in this case are recorded in such a way that if the question

of study has one of the words ”When” or ”Whether” then an event has occurred. The

determination of the dynamics requires the following: (1) A target event which is change of

a state of interest. States (e.g. married/divorced) are exhaustive and mutually exclusive. (2)
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Identification of the beginning of time, i.e. an initial starting point when no one under study

has yet experienced the target event - everyone in study population occupies one and only

one of the possible states. (3) Sensible metric for clocking time. Here time should be recorded

in smallest possible units relevant to process under study.

Note that in Discrete Time Event History Analysis [75], uncensored and censored subjects

(individuals experiencing events outside the study time or never experiencing events) must

be simultaneously incorporated into the analysis. The latter subjects inform event non-

occurrence and thus provide information about event occurrence.

2. Cox-Regression (proportional hazard) approach [80, 81, 82]

The Cox-proportional hazards model is a semi-parametric procedure used in survival analysis

to investigate the association between the survival time and a set of independent variables

of interest for a given population. The general Box-Cox transformation, introduced in [80] is

given by

Y (λ) =







Y λ−1
λ

, λ 6= 0

ln Y , λ = 0
(1.17)

The assumption in this model is that for each parameter λ, Y (λ) is a monotonic function of

Y, where Y represents data. The model (1.17) is used to discriminate between log, linear

or more general functional forms. Applying the Box-Cox transformation to variables in the

linear model leads to the Box-Cox regression model given by

Yi(λ) = β0 + β1X1i + β2X2i + · · · βkXki (1.18)

which can be summarised by

Yi(λ) = Xiβ + ǫi (1.19)

where Xi is the k+1 vector composed of the regressors and β = (β0, β1, · · · , βk) are unknown

regression parameters. As discussed in [82], it is not clear which variable should be of interest,

the transformed Yi(λ) or the original Yi.

Note that the Cox-regression model can be regarded as a transformation of the hazard as a

linear function of predictors. In this case the hazard function of the survival time is given by

λ(t, x) = λ0(t)e
β′x(t)

(1.20)

where λ0(t) is a baseline hazard function, x(t) is a time-dependent vector of covariate values

and β′ is a vector of unknown regression parameters. We note that this approach uses
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continuous time. The continuous-time hazard function (1.20) is a rate not a probability as in

(1.15).

The method presented in [81] considers the modelling of complex data which involve covariates

or risk factors. In this study [81] the general proportional hazard model is given by

ln { −ln S(t)} = g(t) + β′z (1.21)

where S(t) is the survival function, g(t) denotes the logarithm of the integrated null (or base-

line) hazard and the linear predictor β′z expresses the relative effect of the covariates z in

terms of a vector of estimable parameters β′.

The discussion of [82] concentrates on several techniques that are useful for forming point and

interval predictions in regression models with Box-Cox transformed variables. The techniques,

including mean squared error analysis, predictive likelihood as well as stochastic simulation,

take account of non-normality and parameter uncertainty in varying degrees. The authors of

[82] use Monte Carlo methods to examine small-sample accuracy and find indications that

uncertainty about the Box Cox transformation parameter may be relatively unimportant. For

certain parameters, deterministic point predictions are biased, and plug-in prediction intervals

are also biased. Stochastic simulation, as usually carried out, leads to badly biased predictions.

In [82], a modification of the usual approach renders stochastic simulation predictions largely

unbiased. Note also that Cox’s proportional hazards model assumes that the hazard ratio is

constant over time. In [82], this assumption is taken into consideration.

3. Kaplan-Meier approach [83, 84, 85] Kaplan-Meier approach is a framework which provides a

method for estimating the survival curve using observed data, the actual event times. The

central objective of this technique is to estimate the survival probabilities S(d) given by

S(d) = P [D > d] (1.22)

where D denotes the time to death. If L denotes the time that a loss occurs, then D and

L are assumed to be non-negative random variables. An observation in this model consists

of a bi-variable random vector (T, δ) where T = min(D,L) is the time of observation and δ

indicates the nature of the observation. It is defined as δ = 1 or 2 if T = D or L respectively.

We note that this method is an extension of the discrete-time approach described above. This

technique breaks the assumption of rounding event times to construct intervals as used in the
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discrete-time event approach. The Kaplan-Meier estimate of the survivor function is the same

as that of the discrete-time event method. Note also that there is no Kaplan-Meier estimate

of hazard.

The study presented in [83] shows that in the theory of competing risks, the non-parametric

Kaplan-Meier estimator plays an important role. The authors of [85] consider the performance

of the Kaplan-Meier technique relative to a more flexible parametric model. They claim that

the reduction in efficiency of the Kaplan-Meier survival estimator becomes negligible fairly

quickly as the number of parameters in the parametric model increases. Note that parametric

estimation of the survival curve may be necessary in certain extreme cases, such as when the

sample size is very small.

Apart from the approaches reviewed above, there are other methods used in survival analysis.

For example the Bayesian non-parametric approach to a (right) censored data problem has been

developed in [86] with particular emphasis on medical survival studies. The core aim of this study

was to obtain the predictive distribution for future observations based on previous data. The

authors of [86] addressed prediction and argue that it plays a central role in the real decision-

making process implicit in most of the medical survival studies. The authors of [87] use regression

with frailty in studies of survival. The hazard function for each individual may depend on observed

risk variables but usually not all such variables are known or measurable. This unknown factor of

the hazard function is usually termed the individual frailty.

In summary we note that in survival analysis, the outcome variable (response) is event time,

failure time or survival time which is associated with some other independent variables of interest.

Events may be discrete (for example sex, race) and continuous variables (for example age or tem-

perature). In these approaches we have to consider censoring of observations. Note also that these

techniques account for within-subject correlation, the basic assumptions have to be adhered to for

the estimates to be acceptable.

These statistical methods are mathematically sophisticated and yield numbers. These may be

difficult for non-specialists to interpret. In this thesis we develop a new method for longitudinal

data analysis that is fundamentally different in that it develops visualisable orbits among fitness

states invoking full information of the data. We will be concerned to examine its own effectiveness

and will not compare these statistical methods with our theory. Our method suggests a statistical

analysis and we will give a brief discussion in Section 4.11 of the statistical methods.
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1.4 Projection

The longitudinal survey is, fundamentally, a more powerful instrument than a cross-sectional

survey. The difference between cross-sectional and longitudinal surveys is that a longitudinal survey

involves a series of measurements taken over a period of time and allows extrapolation. The

discussion presented in this section will not be complete if it does not include studies which address

projection. As is known, the critical test of the theory resided in projection [88]. If a theory does

not predict then it fails absolutely.

In all the time-dependent, population level models above, if parameters can be chosen to give

good agreement between theory and observations, it is allowed to continue the computation forward

in time, and so project future population level behaviour. This is the importance of deterministic

models, because these extrapolations may be used to set policy.

The deep sociological reasons why the rates are as they are, can be hard to identify. Yet in

the rich information of longitudinal surveys, if questions are well asked, we might hope to find the

experimental evidence for those reasons or causes [89, 14].

1.5 Motivation and objectives

1.5.1 Motivation

The current research work builds the orbits of individuals in a ”fitness space”, arising out of

longitudinal surveys in the Social Sciences. This is a new approach. We aim to use given longitudinal

data to determine deterministic orbits and embed in a dynamical system that can induce again

random or periodic orbits [43] as in (1.1). This contrasts with Helbing [20] who assumes a random

walk with uniform statistics for all individuals.

Orbits compare with statistical methods where there is no visualization and instead the demog-

rapher communicates through quite sophisticated ”moments of distribution functions”, for example.

Such numbers as means and variances are perhaps hard for the layman to understand. It is easily

understood that they are drastic reduction in information compared to visualized orbits.

Finally, we know of no direct analysis of experimental, time-dependent social data, that is, from

longitudinal survey data, that induces the mathematical ”laws” that take the study population
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from one year to the next.

1.5.2 Objectives

The specific objectives of this research are as follows:

1. To build an orbit theory directly from empirical data to complement the theoretical ad hoc

models of the above review, which contain parameters that are adjusted to the data

2. To use observed individual behaviour to complement the population level models of human

behaviour

3. To have a mathematical computational system that would be able to predict future states of

a social process and system

4. To implement our theory, for longitudinal data of the Agincourt Health and Demographic

Surveillance Site.

1.5.3 Outline

The outline of this thesis can be summarised as follows. Attention is focussed on the data set of

the Agincourt Health and Demographic Surveillance Site in Chapter Two. In Chapter Three, the

models that will be used as tools for our analysis are described. In particular, a discussion based

on a comparative approach between the real and simulated data of the individual-level analysis is

presented. Chapter Four will then generalise the discussion of Chapter Three to the population-

level. Chapter Five will concentrate on the discussion of population projection using the techniques

developed in Chapter Three and Chapter Four. Finally, the general conclusion including a brief

discussion of future work will be presented in Chapter Six.
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Chapter 2

Data Preparation

2.1 Introduction

In this chapter emphasis is placed on preparation for analysis of Agincourt data [69, 70]. The

methods developed to prepare Agincourt data can be applied to any population data. We make use

of Python, Octave and Matlab programming tools to develop the software and analytic techniques

for analysis of Agincourt and simulated data in this thesis.

There are various issues that researchers, involved in collecting Agincourt data, faced during the

data collection process [90]. It is possible that among the data properties there are some which are

complicated to understand and which can be explained if we have a better knowledge of the place

they are collected. For example, the concept of poverty is differently regarded (or measured) in

different environments. Thus, an individual who resides in an urban area is more likely to consider

himself or herself as a poorer man or women, compared with one who lives in a rural area. In this

case, the measurement of poverty will slightly differ for such different living environments. In this

chapter, we provide not only the description of the data but also gives a brief description of the

study site where the data were collected.

2.2 Description of the Agincourt District

The Agincourt research site constitutes a sub-district of Bushbuckridge district, Mpumalanga

Province and is located in the remote, rural north-east lowveld of South Africa. It is close to the

28



eastern border with Mozambique. The Agincourt study site is rural, with poor infrastructure and

services.

In 2001, the population of the Agincourt HDSS was about 69, 000 persons residing in about

11, 300 households which were distributed over 21 villages with both traditional and civic leadership

[69, 70]. Almost a third of the study population was constituted of Mozambican immigrants. The

study site covered 402km2. The area was densely populated with around 175 people living on each

square kilometre. People in the Agincourt study population are largely Tsonga-speaking. One

third of the Agincourt population is composed of Mozambicans who also speak Tsonga. The more

detailed history and evolution of the Agincourt study population have been described elsewhere

[91, 92, 69, 70].

The following is a summary of the demographic results from the decade 1992−2002 [69, 70]. The

sex ratio was about 93 for the whole population (80 for the permanent) and 96 among Mozambicans.

The dependency ratio was 75 overall but 94 among Mozambicans. A net migration from the

Agincourt sub-district was of 1% of the population per year. A crude natural increase of 2% per

year resulted in annual population growth of 1%. Most permanent migration that occurred within

Agincourt was a result of family formation and dissolution; 15% however was to nearby towns and

a further 6% to cities. Temporary (labour) migration maintained strongly high rates for men ( 60%

in men in the age group 35− 54 years) and growing proportions of adult women (from around 5%

of women in the age group 15− 34 in 1997 to 19% in 2001). Close to half (43%) of the women who

became temporary migrants in 1999 or 2000 had at least one child. These mothers were likely to

be older, divorced or separated, with primary or tertiary education, and residing in female-headed

households with high likelihood of co-residence with a grandparent or sibling. Mothers least likely

to migrate were those living in a nuclear household.

The overall unemployment rate of the Agincourt population was about 40% and can be described

as follows. There was a clear peak in unemployment around age 25; employment peaked at age

40 and involved 80% of men and 50% of women. Young adult women were more likely to be in

formal sector employment; older married women tended to work as entrepreneurs or retailers in the

informal sector. Although mining remained the main employer of migrant men, this was no longer

the case for all employed men.

The average household size decreased significantly from 7 in 1993 to 6.6 individuals per house-

hold in 2000; this reflected a distributional shift to increasing numbers of smaller households.
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Estimates of annual transition probabilities showed that household type changes regularly. The

proportion of female-headed households increased significantly from 29% in 1992 to 33% in 2000;

notably, given marked increases in AIDS-related deaths among adults, the proportion of skip-

generation households remained low (< 1%).

2.3 The Agincourt research

There are several research groups, with topics that use data from the Agincourt HDSS. This

helps to build productive ties across scientific disciplines. These include collaborations with both

African and international centres of excellence. At the local-level, we note for instance, a part-

nership in research between the Schools of Social Sciences, Public Health, Statistics, Economics,

and Applied Mathematics at the university of the Witwatersrand. At the international-level we

note collaborations (WBCA) between the Wits Demography and Population Studies Programme,

the university of Boulder, the University of Colorado and the African Population and Health Re-

search Centre (APHRC). These collaborations contribute to the development of interdisciplinary

and multi-method strengths and a growing methodological approaches. The Agincourt HDSS is

closely linked with highly productive rural and urban longitudinal research initiatives. In particu-

lar, it is supporting studies examining relationships between migration and child mortality. A study

[92, 69, 70, 93] shows that temporary migration of mothers did not appear to increase the mortality

risk for their children under age 5, in fact a small protective effect was found; 40 children born into

Mozambican (former refugee) households have significantly worse mortality, this particular study

concentrated in the 1−5 age group. Preliminary findings from a survey [92, 69, 70, 93] of randomly

sampled male labour migrants and locally resident men (s = 857) indicate that, while migrant men

are at risk for multiple sexual partners, the highest risk was in locally employed men; lowest risk

was among migrants who returned home monthly.

Children in the same household as their parents attained higher levels of schooling, as did

children whose fathers were migrant workers [69, 70]. Female-headed households were not associated

with lower levels of education [69, 70]. The last two results will be of interest in our analysis.
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2.4 Description of the Agincourt HDSS database

The Agincourt HDSS maintains a database which consists of a relational database model that

is a longitudinal representation of population data in the study site [69, 70]. The data is captured

and upgraded through a computer program, Microsoft Structured Query Language (SQL) Server

2005.

The Agincourt database went through many modifications which contributed to its improvement

since 1992. This improvement can be summarized as follows: The baseline census was stored in

Foxpro in 1993, then converted into Microsoft Access in 1995, and followed the upgrades of the

Microsoft Access software until 2001 when it was converted into SQL Server 2000. The current

relational database model has been in place since 1999.

A number of tables including observations table, individuals table, residences table, locations

table, memberships table and households table are designed to capture information in the database.

These tables are related each other to form the relational structure of the database. Along with the

basic demographic variables: birth, death and migration; there are other important demographic

variables including pregnancy and marriage which are used to record the moves of an individual in

or out of the database. Access to the tables is achieved through SQL commands called queries.

The Agincourt HDSS database records information at two different levels. At the individual-

level, the information related to individuals is captured for all individuals who live in the study site

and are members of the households in the study site. In particular, data on births, deaths, migration

are collected and updated annually for all household members in the HDSS. The database also

records information at the individual-level concerning the following demographic variables: cough

status, child care grants (data available only for the following census modules: 2002, 2005 and 2008),

child morbidity (data available only for the census module of 2006), education status (data available

only for the 1992, 1997, 2002, 2005 and 2008 census modules and for new individuals), fatherhoods

(data available only for the 2007 and 2008 census modules), father support status (data available

only for the 2007 and 2008 census modules), health care utilization (data available only for the 2003

and 2006 census modules), labour status (data available only for the 2000, 2004 and 2008 census

modules) and stroke status.

The database contains a verbal autopsy table which records information used to establish the

probable cause of death in areas lacking a vital registration system. At the household-level, data
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collected include asset status (available only for the following 2001, 2003, 2005, 2007 census modules)

and food security status.

The data collected is based on a repeated census taken on December 31St of each year for which

data is available. The baseline of the HDSS was established in 1992. These data are recorded

as status observations at the census round immediately preceding the date of cross-section (for

example name of deceased, date of death, cause of death).

The time step which can be year or month, is an important concept that we need to address

here, because information for each demographic event is not recorded or upgraded on the same

time step basis. We note that the date is recorded for all basic demographic events (births, deaths,

and migrations) in the database.

If the date is estimated, it is then indicated in a separate field. Observations are time stamped

with an observation date. This gives the date at which an interview took place, which is the date

at which the data was recorded. All events and status observations can be linked to an observation

date. Residences and memberships are recorded as episodes with start and end dates. As described

above, a residence is the period of time an individual spends located at a specific dwelling. A

membership is the period of time that an individual remains a member of a household. The events

that start or end a residence or a membership are recorded. Status observations are repeated, cross-

sectional measures and the dates of observation are recorded. These observations are repeated at

different periodicities in the database and some have only been captured once.

Table 2.1 displays the associations that were made between census rounds (used below) and

cross-section date.

2.4.1 Problem of question order in design of questionnaires

This study uses order of questions as an analytical tool. We distinguish between our analysis

and the psychological effect of question order [94, 95] in a survey.

One of the most important aspects of designing a questionnaire [96] is improving the response

rate, which requires providing the respondent with the motivation to complete the questionnaire

and also give honest response [97]. The difficulties of questionnaire design are well known. In

order to address these concerns, we note that respondents are sensitive to the context in which a

question is asked, as well as to the particular words used to ask it. For instance, a questionnaire
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Table 2.1: Annual cycle of census rounds.

Cross-section date Census round

December 31st 1992 1

December 31st 1993 2

December 31st 1994 3

December 31st 1995 4

December 31st 1996 5

December 31st 1997 6

December 31st 1999 7

December 31st 2000 8

December 31st 2001 9

December 31st 2002 10

December 31st 2003 11

December 31st 2004 12

December 31st 2005 13

December 31st 2006 14

December 31st 2007 15

December 31st 2008 16

that asks straightforwardly about whether or not the respondent has tested HIV positive can be

compared with a questionnaire that is prefaced by a series of attitudes of the respondent about

HIV. It is important to decide in what order the questions will be asked. On the other hand, the

impact of question order is often difficult to understand. There are [13, 75, 98] cases where it is

showed that order of questions does not have an effect. It is noteworthy that there are almost no

experimentally based general rules for ordering questions [75]. Models which are more complicated

in terms of psychological or sociological interpretations have been studied using the same statistical

techniques [10]. This study is the first that tries to use the question order as an important variable

in the analysis of data. We must be careful to distinguish this from the design of questionnaire.

We assume that questionnaires have been actually designed, that data has been cleaned and that

responses are honest.
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2.5 Description of the Agincourt data for the current analysis

Collecting data for orbit theory application has two main steps. We first need to design a

questionnaire with respect the research topic of interest. Note that in principle, the format of

data as required by orbit theory may differ from that of the database. For example, we need to

construct a questionnaire whose questions have Yes/No answers. In the case of continuous data

such as income, we bin incomes and then we must ask a set of questions, ”is income in the i′th

income bin?” Secondly, we might also have to infer Yes/No responses from multiple sources in the

data.

2.5.1 Designing questionnaire

Before presenting our questionnaire, it is important to note that the four variables used in this

dissertation, presented below, are all variables constructed from other information, and not the

result of direct questioning. The questionnaire used in my thesis is described as follows.

q0 : Was there a child without a biological mother in the household?

q1 : Was the head of the household a minor?

q2 : Was there an adult death in the household?

q3 : Was there a child not progressing well at school in the household?

(2.1)

This is a set of questions regarding the effect of household changes on children’s educational out-

comes, that we will present in chapter Four as a detailed demographic study. We acknowledge that

this is a small subset of questions that might be asked regarding household change. In this thesis

we will be concerned to develop a new method of analysis that might be applied for any number

of questions. This subset will serve our purpose. We will argue that application of the method will

best proceed by examination of combinations of small numbers of questions and that in this way

bias in the choice of questions can ultimately be eliminated.

2.5.2 Description of data collection process

We give a detailed description of how the data related to the questionnaire (2.1) was collected.

As mentioned above the data set used in this thesis has four variables. Three variables (q0, q1 and
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q2) have complete and available information each observation year and one (q3) variable which is

related to education information is only collected every 5 years in Agincourt HDSS [69, 70]. The

first application of orbit theory presented in this thesis uses variables with a binary outcome. As

noted above, this can be extended to continuous data.

Our scientific challenge in this thesis was to develop the method and from this point of view,

it was reasonable to take a small number of ”test questions” sufficient to get the mathematics to

work. We are careful to experiment with numerical simulations as discussed in Section 3.3.2 of

Chapter Three. The data set is based on a repeated cross-sections taken on December 31st of each

year for which data is available. We used household information on the date of the cross-section.

We used events occurring in the household over the 12 months prior to the cross-section date

For this data extraction, associations of Table (2.1) were made between census rounds (used

to identify which education and residence status observation to use) and cross-section date. It is

important to note that annual cycle of census rounds was only established after 1998 [91, 92, 69, 70].

As a result Agincourt data before 1998 is found not to be useful for the analysis presented in this

thesis. It is not a specific selection criterion imposed by orbit theory to use data from 1998. The

detailed process of using Agincourt database to answer our questions is as follows.

1. Before we describe the process of collecting data related to question q0, we define some

terminologies used in the wording of q0. Throughout this thesis, the term ”child” for the

Agincourt population data will refer to a child of school going age, from age 7 to 16 who was

member of the household over the period 1992 to 2007. The term ”biological mother” for the

Agincourt population data will refer to a the biological mother of a child of school going age.

Thus, for every observation year, the answer to question q0 is to check whether or not in each

Agincourt household, among all children living in that household, there is a child without

a biological mother. The absence of the biological mother from a household is measured by

her number of residence months in that household. In order to capture both temporary and

permanent migration of the biological mother, for each observation year we record a biological

mother absent if the number of residence months of that mother is less than 12. To illustrate,

suppose that household k has 3 children of school going age at the observation time t. Two

children have their biological mothers in the household and one child does not have his/her

biological mother in that household. In this case the answer to question q0 for that household

is Yes. We apply this process for every observation time.
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In the Agincourt database the information to answer question q0 is collected as follows. We

used the residence status of biological mother. The resident status table has been combined

with observation table to get the observation period. In addition to the added observation

year column, it also provides the opportunity to rank the record to get rid of duplicates

entries. The table generated by this process is joined to the individuals table to obtain the

mother residents status. No data needs to be inferred for this question. We cannot from

Agincourt data infer finer time intervals.

2. As before, let us first define some terminologies used in the wording of q1. In this thesis, we

define a ”minor” as an individual of age less than 18 years. We use the Agincourt definition

of ”household head” as the person who is identified as a head by the older women in the

household. In order to collect data related to question q1 (household head is a minor), we

used the information related to household head’s age. The tables here are combined to

generate the head of each household using household head relation found in the memberships

tables. There were cases where two or more individuals have ’T’ as household head relation

value in a household for a particular. The rank function (in SQL) was employed to handle

this. The rank gives the household head to the oldest person. This is decided as the oldest

male rather than the oldest person will be the household head in the African context. This

is added to the main table to get the household head. No data needs to be inferred for this

question. Since q0 can only be applied on an annual basis, inference on a finer time scale is

of no use.

3. We define an ”adult” as an individual of age 18 years and above. To answer question q2 (adult

death), we used the death table linked to individuals table. No data needs to be inferred for

this question, because we cannot infer for questions q1, and q2.

4. To answer question q3 (education of child), we used education status of child at school going

age. This is measured as follows. We look at the total number of completed years of education

(grade) of the child in each observation year where data is available. This is linked with the

age of the child at that observation year to define the lag of grade behind ”normal” grade.

Note that in Agincourt, the average age of enrolment at school is 7 years. The education

status table has been combined with the observation table to get the observation period, the

grade and the age data. In addition to the added observation year column, it has a rank

column to handle the duplicate records. We must recode the education column to years of

36



education completed. The table generated is joined later to the individuals table to obtain the

educational years of the respondents. It is important to note that education data is collected

only every 5 years in Agincourt HDSS [91, 92, 69, 70]. We cannot infer data for this question.

Thus, let us consider the following scenarios for infering data for this question. Suppose a

child’s education status is grade 4 in 2002 and grade 8 in 2006, then we can assume that

he or she passed every year between 2002 and 2006. In this case we could assign favourable

(1) values to all the years in between. On the other hand, if we see that a child’s education

status is grade 4 in 2002 and grade 6 in 2006, then we can assume that this child failed to

pass for two of the three unobserved years between 2002 and 2006. But we are unable to say

when this happens. Note that it also becomes difficult to decide whether a child was not at

school anywhere in time, or the child was at school but failed the same year of study twice.

What really matters in our strategy is to clearly identify an unique observation year when

change occurs for each state (e.g. educational default), which is not possible to determine in

this case.

Concerning error in the data, note first that there is only a little literature relating to data

quality and error rates in Demographic Surveillance Sites (DSSs) [99]. Errors vary widely. In [99]

using Farafenni DSS, we find a 0.01% error after considerable data cleaning. In [91, 92, 69, 70, 99]

in the Agincourt DSS, a 2% sample population is revisited but no error estimate is reported. In

the absence of published errors we will give tolerance limits to our demographic conclusions.

In Chapter Four, we will define the measure of education progress for the Agincourt population

data in order to answer question q3.

We carefully select our questions according to purpose. In this thesis we consider the purpose

p1 : To investigate the effect of household change on child’s progression in school . (2.2)

Note that q3 directly identifies effect in purpose (2.2). Then questions q0, q1, q2 are regarded as

an initial set of questions that might cause educational default. Here we hypothesize that household

change, with respect to questions defined in (2.1) can effect progress in school, that is that in a sub-

population, household change precedes progress default. This introduces the possibility to analyse

cause and effect in longitudinal data and suggests that questionnaires, in general, be posed in the

fashion of p1 : To investigate the effect of A,B,C, . . . on E,F,G, . . . Note that if all orbits are

stopped at same moment, the state of all social units represents cross-sectional data. The pattern
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of instantaneous data in a mathematical space hides causal relationships, relevant to purpose. We

emphasis again this weakness of cross-sectional studies. If a cross-sectional study is not assisted by

a longitudinal survey, sub-populations are identified by frequent occurrences of pairs of variables

(here qi with qj, i 6= j), but they might have very different preceding states.

2.5.3 Data Sampling Methods

At this point, it is important to note that no statistical assumption is imposed on the sampling

of the study population for the present analysis. However, there are some important data properties

that must be taken into account in order to use the techniques that are proposed in this thesis.

Consider the population of the Agincourt households with a child at school going age (from 7 to

16) in the period between 1992 to 2007. Each household is observed with respect to the questions

described in (2.1).

Figure 2.1 clearly displays the distribution of the number of households (members of the present

study population) over their observation time. Thus, we find that the data collected for this study

consist of 15603 households that are observed in the period between 1992 and 2007. We can also

distinguish between the distribution of the number of Agincourt household with a missing value

of question q0 (2.1) from the distribution of those without a missing value for the same question.

There are 6417 households without missing biological mother data. This represents about 41.13%

of the study population.

Note that the first desirable criterion for the application of Orbit Theory is that there are no

missing values in the data. Because of this important criteria, it is clear to see that the target

population will then consist of the 6417 households which is about one third of the total study

population.

On the other hand Figure 2.1 also shows the relationship between the number of households in

the study population and their observation time. As this thesis presents a longitudinal study, the

observation time for each household then becomes an important property to consider in the data

collection process [90]. Thus, it is an additional information we use to select households from the

study population. It is important to see for instance, that less than 1000 households without missing

biological mother information have more than 10 observation points. Thus, the second desirable

criterion for the application of Orbit Theory is to consider social units with a long observation time.
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In addition to these two properties of the data above mentioned, for the specific case of the

Agincourt data, another important property must be discussed in order to address the purpose

(2.2). We can see as described in Table (A.1), that the information on education in the Agincourt

HDSS is only captured every five years starting from 1992. Thus, in order to analyse the dynamics

of an Agincourt household including the data of question q3, which is related to education, the

observation time of that household must not be less than 4 years. Thus, only Agincourt households

with the observation time l ≥ 5 must be included in the present study population.

With these strong arguments, we find that there are 3098 Agincourt households without a

missing biological mother data and with the observation time greater than 5 years. Note that this

population sample represents about 20% of the study population. This is the data sample that will

be considered in the current analysis. We also find that for this population sample, the average

observation time is l = 7.969.
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Figure 2.1: The distribution of the number of households over the length of the observation period,

in the Agincourt population sample.

Figure 2.2 shows the distribution of the questions changing in our sample data. Note that

the question about whether or not the household head is a minor is very stable (about 0.16% of

changes in time). It shows that they are few households in Agincourt that are headed by minors.
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Figure 2.2: The frequency distribution of answer values changes for the Agincourt population

sample of 3098 households.

The variable biological mother (BM) changes more often (about 86.72%) followed by adult mortality

regime which changes for about 13.12% of the observation time.

In Figure 2.3, it is clear that 48.76% of the time nothing changes. Only one change occurs for

about 47.9% of the time. The frequency of change of 2 questions is given by 3.32% of the time.

The case where 3 questions change per time step is very small (about 0.02%) but it will be a useful

illustration below to retain this question. Also, the average number of questions that change per

time step is about n = 0.53.

In Figure 2.4, we break down the distribution of Figure 2.1 for each observation year. The

number of households (on the y−axis) is now expressed in percentage of the total population.

From Figure 2.4, we can see that apparently no Agincourt household was observed in the following

years: 1993, 1996 and 1997. Figure 2.4 also shows that more than 60% of the population sample

has data available every year from 1998. The observation time with the appropriate data is taken

from 1998 to 2007. Thus, we reduce the present population sample by only selecting the Agincourt

households that meet the above criteria but now with data selected for the observation time from

1998 to 2007.
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Figure 2.3: The frequency distribution of the number of answers changing values per time step, for

the Agincourt population sample of Figure 2.2.

The final population sample consists of

s = 2669 (2.3)

households which represents 17.10% of the study population. It is also important to redefine the

distribution of questions changing answer values of Figure 2.2 and the distribution of the number

of questions that change answer values per time step of Figure 2.3.

Using the same definition, but now applied to the new population sample (2.3), Figure 2.5 and

Figure 2.6 respectively display the new distributions of Figure 2.2 and Figure 2.3. The population

average observation time is calculated and it is given by

l = 7.115 . (2.4)

The new population average number of questions changing answer values does not change that

much (an increase of about 10%), it is now

n = 0.546 . (2.5)

These are the parameters that will be used for the present analysis.
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Figure 2.4: The distribution of the number of households per observation year.
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Figure 2.5: The frequency distribution of answer values change for the Agincourt population sample

of 2669 households.
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Figure 2.6: The frequency distribution of the number of answers changing values per time step, for

the Agincourt population sample of Figure 2.5.
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2.6 Conclusion

The objectives of this chapter were to address the data for our analysis. Thus, we clearly show

that this process can be divided in two major parts. The first part of our task is the design of

questionnaires and the definition of variables of interest. In order to achieve this, the study purpose

must be well defined. This is simply because the study purpose directly suggests questions that

might cause the effect of interest. The second part is to choose the data in such a way that they can

be properly used. As in any scientific data collection [90], we understand that data must also be

clean. In particular, for the purpose of the present study, we assume that households with missing

values in the data are not accepted.

The discussion around these issues was particularly based on arguments that can be used to

explain, for instance, some of the difficulties that researchers face when they collect data. In

particular, we find that no Agincourt household was observed during 1993, 1996 and 1997. Thus,

the distribution of the number of Agincourt household per observation year (see Figure 2.4) was

helpful to sample the study population for the present analysis.

On the other hand, we have defined an important property of the data. This property is the

order of questions (in the questionnaires) which is an additional variable that we must carefully

take into account in order to use the current techniques.

Because the Agincourt data will be used in this thesis, in the discussion of this chapter we also

presented a detailed description of the Agincourt study site and population. At this point, the

models that constitute the present study can now be presented.

Finally, it is also important to note that throughout this thesis, any household identification

number (id) that will be used represents an anonymous unique identifier for the household.
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Chapter 3

General Orbit Theory of Longitudinal

Data

3.1 Introduction

The analysis begins at the social unit-level just as physics begins with the understanding of

individual particles by their orbits. Social units are here the households. The methods developed

in this chapter will be extended to the population-level in the next chapter in order to provide a

complete discussion of the present analysis.

The best example of a ‘hard science’ is classical, or engineering, physics. Newton’s laws [100]

are examples of dynamical systems, that is, systems where time is the independent variable. The

information revealed by these laws is the ‘orbit’ of a particle, that is, the position and velocity at

any moment, as affected by forces. These must agree with long sequences of measurements of the

orbit variables of position and velocity.

In the social sciences, the social variables are not obvious. A longitudinal survey is regarded

as a measuring devise. Questions have been chosen according to some social purpose. We have

agreed above that we can formulate questions for Yes or No answers, that inform the purpose.

If we code Yes = 1, No = 0 then we can say that an answer has a value 0 or 1. Thus the set of

values at any moment, or the response, condenses as bits in a single binary string. Then, while

the Newtonian particle is described by values of a few numbers, each having as many as possible

digits, the social system is described by as many relevant questions as necessary with a single-digit,
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1/0 answer value, which can similarly come together to form a long binary string. Both can be the

basis for an orbit.

Physicists clearly define the space to visualize the movements of physical system orbits. In

analogy, this study suggests methods that social scientists can use to build a new mathematical

space in which the social system orbits can be visualized.

3.2 Fitness Space

Physical orbits define a state of the particle at each time in the space. Thus, position and

velocity are measured and we say the state of the particle is known, in the space of ordinary

geometrical coordinates. But we also have a sense of direction of movement (up-down, left-right,

forward, backward) in the space and a sense of ”how fast”. In social sciences, we ask questions

such that, at any moment, the state of the social unit is given, and the direction of change is also

defined.

Consider the questions from (2.1) given by

q2 : Was there an adult death in the household?

q3 : Was there a child not progressing well at school in the household?
(3.1)

In this example, we say that the fitness state of a household is determined by the set of answer

values obtained by responding the questions defined in (3.1). This can change with time.

Changes of the answer values under the Yes/No answers do not guarantee us to have the

dynamics with a consistent sociological content. To see this, consider the following equivalent

questions in the area of public health. Assume that each questionnaire has one of the following

questions

q2 : Was there an adult death in the household?

q′2 : Was there no adult death in the household?
(3.2)

The Yes/No responses to these questions have opposite values and can induce opposite dynamics.

Either question is ‘correct’ and in general a questionnaire under Yes/No answers is not uniquely

defined for its purpose. This means that we can imagine no absolute orbit, that is, absolute

sociological truth, because measurements taken by independent sociologists will yield differing

orbits, within the same given purpose of Qt. This is in contrast to an orbit of a physical particle.
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We make a fundamental assumption that, in the social sciences, the fitness state of a social unit

is determined by its welfare in some social sense. In q2, for example, adult death is less favourable.

In q3, educational default is less favourable. We code each answer value to ”unfit” = 0, ”fit”

= 1, where ”fit” represents a favourable state. This ”fit” and ”unfit” coding is important because

independent sociologists will tend to make the same definition of fitness, at least where there is a

common scientific study purpose (adult death might be a good thing where the adult is abusive).

It is clear that the ”fit” and ”unfit” coding is also important because it gives a sense of direction.

Thus, if all answer values are zero, the individual is fully unfit. As zeros change to ones, the

individual state becomes more fit. Further, it can do this more or less quickly, thus giving a sense

of speed. Again we note that independent scientists will, given the same social data and purpose,

tend to discover the same direction of movement. We say that the fitness state of a social unit is the

current set of answer values as the above. Independent sociologists will tend to code in agreement.

However consider the question q : Was there death of an abusive father? In this case it is not

clear how to code fitness. We allow any coding and regard this as an hypothesis. The data will

decide fitness relative to purpose. For example child progress at school may subsequently improve

on the death of an abusive father. After analysis, independent sociologists will agree to code Yes

= fit, in this case.

Now change of fitness state is the primary justification for longitudinal studies [101]. Thus,

the value of q2 may change from fit (1) to unfit (0). The value of q3 may change from fit (1) to

unfit (0). In the case adult death precedes educational default, we have a possible cause and effect.

This is the second justification for longitudinal studies. Because adult death might cause delay in

children’s educational progress, we say that adult death is a (possible) social force [24] relevant to

purpose. Each of the questions q0, q1, q2 associates a social force.

Suppose that a well-posed questionnaire induces an orbit and reveals social forces and possible

causes, for a particular state of a social unit, given some purpose. These qualities are directly

analogous to the outcomes of Newton’s Law for particles [100] which account for the advance of

understanding in modern science and engineering.

Physics always seeks more and more digits to improve precision, for example, of position in ge-

ometrical space. Correspondingly, in this thesis, it is sought to allow social scientists to continually

refine their questionnaires in order to fully capture the state of a social unit.

Suppose we have a population P of a finite number s ≥ 1 of social units. Suppose that the
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population is observed for a fixed length l of time period. Denote a questionnaire, administered at

time t, by Qt.

Definition 3.1. If this questionnaire, Qt, contains nt ≥ 1 questions at time t then the questionnaire

is defined by

Qt = {qt0, qt1, . . . , qti, . . . , qtnt−1} (3.3)

where qti is the wording of the i’th question at time t.

It is necessary to assume that the questionnaire defined in (3.3) remains unchanged for each

social unit k, k = 1, 2, 3, . . . , s in the population.

Definition 3.2. The answer set given by a social unit k, at time t can then be defined as

Akt = {akt0, akt1, . . . , akti, . . . , aktnt−1}, (3.4)

where akti ∈ {0, 1} is the answer value to the i’th question, qti ∈ Qt, codes so that 0 =unfit, 1 = fit,

by hypothesis.

Definition 3.3. The fitness state of the k’th social unit at time t with respect to questionnaire Qt

(3.3) is defined by the set Akt as described in (3.4).

If we combine elements of Akt as a concatenated string, then directly from (3.4) we can now

define the fitness state as follows.

Definition 3.4. The binary sequence

bkt = akt0a
k
t1 . . . a

k
ti . . . a

k
tnt−1 (3.5)

equally captures the fitness state of the k’th social unit at time t.

As each answer has a 0/1 value, then it is clear that there are 2nt possible arrangements of answer

values at time t. In a longitudinal survey, new questions may be added and, where questions are

apparently irrelevant, or null, some may be deleted. Thus nt can change with time.

Let

nl = max
t
nt, (3.6)

which is the largest number of questions asked in Qt to the present time l, so that there are 2nl

possible states that a social unit can have. These states are points in the mathematical space of
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binary finite sequences. Following the notation of [14, 102], we define a mathematical space for the

present model as follows.

Definition 3.5. Let

Σnl

2 = {b = (b0b1b2 . . . bi . . . bnl−1)|bi = 0 or 1} , or, Σnl

2 = {0, 1}nl , (3.7)

be the fitness space of finite one-sided binary sequences of length nl.

Note that Σnl

2 is a sub-space of Σ2 = {0, 1}∞, the space of infinite one-sided binary sequence

[14, 102]. The number 2 refers to the number of symbols (here because of the binary coding, we

have only two symbols 0 and 1). Then the binary sequence bkt is a single point in Σnl

2 that captures

the state of a social unit k at time t. Notice that all knowledge of the social unit under purpose p

is captured by this single point.

If we suppose that the questionnaire is applied to times t = 0, 1, 2, . . . , l, then we may define a

fundamental object of this thesis as follows.

Definition 3.6. The sequence of binary sequences, or, sequence of points in Σnl

2 , denoted by

Ωk
l = (bkt )

l
t=0 (3.8)

defines an orbit to time l of the k’th social unit, in Σnl

2 .

To illustrate social changes that can be observed in Σnl

2 , consider the onset of HIV [103] that

may occur at a random time to social units in a population P but once these social units are

infected, the progress of this infection is perfectly predictable (while the social units live) because

it is irreversible. Thus if the answer to a question q : Have you tested HIV-positive? will

change from 0 → 1 in value at time t1 and if all else goes unchanged, the law of motion for Ωk
l is

deterministic and known (it is akt = cnst., t1 ≤ t ≤ l). On the other hand, opportunistic disease can

be reversed, can strike again at a random time and so on, so that the law of motion might be random

or, non-deterministic dynamics. In general we may expect mixed dynamics, but to understand the

deterministic and random parts is presumably a contribution to social sciences. Newton’s mechanics

too, may involve, usefully, deterministic and non-deterministic forces. However, we make it clear

that existing data is unambiguous, while a cause for each change of state may in principle be

identified. Past history is always deterministic.
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Social orbits are intrinsically more complicated than physical particle orbits. In physics there

are just 5 known forces that can act on a particle [104] and usually just one acts at a time. In

sociology, nt questions can be independent and each will change independently. But then there

will be nt independent social forces acting on each question and thus many forces acting at any

moment on the social unit. The full state of a social unit is captured by a set of responses. The

full history of all this information of a social unit is captured by the orbit.

3.3 Equally weighted questions model

We make a fundamental assumption that questions have a weighting that affects welfare. We

start by assuming that the order of questions is not important.

Suppose for simplicity that Qt has n = constant, equally-weighted questions. Because of this

property, Definitions 3.1, 3.2 and 3.4 then become respectively

Q = {q0, q1, . . . , qi, . . . , qn−1} , (3.9)

Akt = {akt0, akt1, . . . , akti, . . . , aktn−1} , (3.10)

bkt = akt0a
k
t1 . . . a

k
ti . . . a

k
tn−1 . (3.11)

We recall that questions are asked so that the answers are ”unfit/fit” and the value of an answer

aki ∈ {0, 1} is coded so that 0 = ”unfavourable” and 1 = ”favourable”. We suppose that questions

are framed so that only this binary response is possible. Then at any time t, the state of the k’th

social unit is defined by the ordered sequence given in (3.11).

Note that all information at time t of the social unit k is gathered in bkt . Suppose that the

questionnaire has been used on a regular basis for l periods, for times t = 0, 1, . . . , l. Then the

complete history of the social unit k to time l is the sequence of binary sequences defined by the

orbit

Ωk
l = {bkt , t = 0, 1, . . . , l}. (3.12)

Theorem 3.7. The map

h : Σn
2 → I = [0, 1] ⊂ R : bkt = akt0a

k
t1 . . . a

k
ti . . . a

k
tn−1 → xkt = 0.akt0a

k
t1 . . . a

k
ti . . . a

k
tn−1 (3.13)

is a homomorphism from sequence space Σn
2 to the unit interval I.
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This is proved in [14, 105, 106]. Thus h encodes bkt as a real number xkt , and we can uniquely

switch back and forth from one to the other.

Note that there are 2n possible points in Σn
2 or on the unit interval that are visited by a

trajectory of a social unit, that is,

bkt ∈ {000 . . . 0000 . . . 1, 000 . . . 10, 000 . . . 11, . . . , 011 . . . 1} ≡ Σn
2 , (3.14)

xkt ∈ {0.00 . . . 0, 0.00 . . . 1, 0.00 . . . 10, 0.00 . . . 11, . . . , 0.11 . . . 1} ≡ In2 , (3.15)

where we add the interval 2−n sequentially. So In2 denotes a discrete space of rational decimal

numbers in base 2. Social units on the left are fully unfit, on the right are fully fit.

Definition 3.8. In2 is the fitness space of real number states of the questionnaire Q. Then we have

defined an orbit on the unit interval.

Xk
l = {xkt , t = 0, 1, . . . , l} (3.16)

is the orbit of the k’th social unit on I.

The orbits Ωk
l ,X

k
l can be visualised in each space.

3.3.1 Distance and displacement for equally weighted questions

It is important to measure changes of the social system as it acts in Σn
2 or In2 . If Σn

2 or In2

is a metric space then it becomes simple to measure the movement of a social unit between two

observation times t and t′. The importance of a homomorphism is that distances are given by the

same real number in each space.

Each social unit in the population P jumps between points in Σn
2 . Thus, following the techniques

used in [14, 102] we define the distance moved by the k’th social unit in a time interval [t, t′] by

d(bkt , b
k
t′) =

1

n

n−1
∑

i=0

∣

∣

∣akti − akt′i
∣

∣

∣ ≥ 0 (3.17)

where bkt = akt0a
k
t1 . . . a

k
tn−1, and bkt′ = akt′0a

k
t′1 . . . a

k
t′n−1 ∈ Σn

2 define the response sets at the two

times and akti, a
k
t′i ∈ {0, 1} are answer values, all of a social unit k. Then we can see that the distance

is proportional to the number of differing answer values. This is intuitively satisfactory because
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if none of them changes then d(bkt , b
k
t′) = 0 and if they all change it undergoes a maximal jump

d(bkt , b
k
t′) = 1.

Recall that the weighting of each question is the same. If one answer value only changes, the

distance remains unchanged (d(bkt , b
k
t′) = 1

n
) because it is independent of the position of the answer

that changes value. Throughout this thesis, we will refer to this property as non-uniqueness of

orbits. The analysis of dynamics related to this property will be referred to as order-independent

dynamics. Then as in physics, orbits (3.8) jump in Σn
2 , as measured by (3.17). The distance

between two social units k and k′ at time t is consistently defined by

d(bkt , b
k′

t ) =
1

n

n−1
∑

i=0

|akti − ak
′

ti | ≥ 0. (3.18)

Then also, orbits (3.8) move relative to each other in a quantified way. The definitions (3.17) and

(3.18) respectively reveal differences in the dynamics within and between the orbits as discussed

by [107, 108, 109].

So far, there is no sense of direction of movement in Σn
2 . Let us order binary sequences according

to the so-called lexicographical ordering of 3.15 where the significant digits may be viewed as base

2 integers of increasing magnitude [14, 110].

Now a change ai : 0→ 1 must jump the point to the right in Σn
2 , otherwise to the left. The new

response in Σn
2 can then be given a fitness displacement (as opposed to distance which is always

positive), by

∆k
tt′ =

1

n

n−1
∑

i=0

(akti − akt′i), t > t′. (3.19)

This can be a positive or negative number and so the direction of movement in Σn
2 is achieved. An

orbit for the k’th social unit can apparently be visualized in In2 by writing down the space as in

(3.15) l + 1 times, one below the other and then connecting states bkt , to bkt+1, t = 0, 1, 2, . . . , l − 1.

Here big jumps to the left (for example) correspond to many factors becoming unfavourable.

A relative displacement between two social units k and k′ can be similarly defined by

∆kk′

t =
1

n

n−1
∑

i=0

(akti − ak
′

ti ). (3.20)

Note that sociologists always seek to give each social change a sociological meaning. However,

with the displacement ∆k
tt′ , given in (3.19), we are unable to give a sociological explanation to each

social change. To see this, consider the following example.
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A fundamental objection is that while the state always has a position in (3.15), the distances

(3.17) and (3.18) do not correspond to the distance jumped along (3.15). Thus if, say, ∆k
tt′ = − 1

n
,

then this does not necessarily correspond to a jump to the neighbouring sequence to the left in the

lexicographical ordering. To see this, consider state qkt = 10 . . . 01; then a change in value of the

1’st answer (on the left), or, the i’th answer (on the right) gives ∆k
tt′ =

−1
n

in either case. However

in Σn
2 the second indeed jumps by one to its left neighbour but the first jumps left over many

elements, contradicting the meaning of distance. There is clearly no re-ordering of (3.15) along

a number line that will give a consistent distance or displacement for change in any one equally

weighted question, if n > 2 (because it is not possible to place all elements adjacent to any given

element). There is hence a sense of position and direction of movement in Σn
2 , but no consistent

displacement and no social relevance to its direction (±).

The non-uniqueness of orbits in the ordered space of all possible answer values, and the lack, so

far, of a suitable metric space in which to visualize orbits, weakens the theory in comparison with

physical dynamical systems. We must take this into account in order to enrich our theory.

To judge the usefulness of Σn
2 and orbits Ωk

l , the displacements (3.19), (3.20) correspond perhaps

to no more than the professional judgement of a physician of the relative state of health of the social

units.

Definition 3.9. We define the accumulated fitness displacement by the map

acc∆
k
t ≡ acc∆

k
t−1 + ∆k

t−1t, t ≥ 1 (3.21)

where ∆k
tt′ is as defined in (3.19) and acc∆

k
t represents the accumulated displacement for the k’th

social unit.

Note that at t = 0, naturally there is no initial accumulated displacement. Thus, we can assume

that acc∆
k
0 = 0,∀k. Then the function (acc∆

k
t , t) can then be plotted, to visualize the accumulated

favourable or unfavourable change from t = 0 of a social unit k.

3.3.2 Results for the accumulated displacements acc∆
k
t

In this section, we present some of the results using simple illustrations and they will be

followed by results from the Agincourt data. It is convenient at this point that we first describe

the model parameters for all results that will be presented in this section. For simplicity, we
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suppose throughout all illustrations that only one change of answer value, per time step, occurs

and a constant number of questions, here n = 26 and 10 ≤ l ≤ 10000. Note that in the present

illustrations, we consider the time step being a second, a minute or a day. This can help to

understand why we choose such a range for the observation period l.

The Agincourt household displacements that will be discussed in this section are randomly

chosen from the study population and are anonymous.

In Figure 3.1 we give accumulated fitness displacement as defined in (3.21) for a social unit, in

the case of a single favourable, switch-and-stay, deterministic answer value change (e.g. infection

cure). We start the social unit at acc∆
k
0 = 0, assuming that there is no initial displacement. A

social unit is now fitter in one answer value only. Perhaps an intervention has been successful or a

disease naturally recedes.

In Figure 3.2 we show an example of a social unit which rests for some time before it starts

a deterministic on-off-on-off-on. . . answer value change. We see regularly oscillating accumulated

displacement. In this case, perhaps an intervention gives only temporary relief or a disease recurs.

In Figure 3.3 we have a social unit for which 8 of 26 answer values change (one at a time), with

uniform probability of 8
26 . If the social unit starts with answers all zero valued for the changing

answers (e.g. has eight pathologies as a result of some severe trauma), it is possible for acc∆
k
t

to move favourably through at most two jumps as these pathologies are corrected (this may be

deterministic [89] if the treatment is well-understood). Thereafter, the social unit wanders within

the range acc∆
k
r = ±8/26. If we are able to account for every jump, e.g. in terms of some preceding

therapy, then the therapy is the cause of the jump, or, is the force acting on the social unit. This

example shows on average a fit social unit, perhaps because many interventions are successful.

acc∆
k
t is randomly generated and over longer times could become negative for many periods.

In Figure 3.4 we give a social unit in which all 26 answer values change (one at a time), with

uniform probability of 1/26. If all answer values are initially zero, there can again be a run to a

favourable state, but over long times the orbit will wander randomly over xr = ±26
26 . As compared

to existing longitudinal data, these figures appear to be substantially the available information of

the social unit, so far as accumulated displacement is concerned. Perhaps an associated financial

cost of a displacement might be useful but this must be included over and above Qt as needed. In

this example, we note the long study time. It is very rare (it has not occured here) that a run of

26 positive moves, occurs and the displacement reaches acc∆
k
t = ±1.
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In Figures 3.5-3.7 we give examples of accumulated displacement for three households in the

Agincourt data set. In these examples (Figures 3.5-3.7) we consider the questions defined in (2.1).

We can identify particular social qualities that change. We note a tendency for household

number 4325 (Figures 3.5) to fluctuate, rather than drift towards a relatively fit or unfit state.

For this household, the answer to question q0 was the only change in answer value in 12 years of

observation. The present analysis clearly identifies the dynamics of this household to the movement

of the biological mother (of child at school-going age) who is sometimes in, sometimes out of the

household.

Figure 3.7 displays a maximum negative jump from the initial state of household 7150. In

particular, all the answers to questions q0, q1, q2 unfavourably change values at t = 2001, for this

household. We also note a fluctuation about an unfit state as shown in Figure 3.6. Here we may

also identify with the help of the data set the change from acc∆
7150
2000 = 0 to acc∆

7150
2001 = −1 as change

from an initial (t = 1995) state defined by sequence 111 which remains unchanged until t = 2000

to sequence 000 at t = 2001; note 3 answers have changed value so that ∆A
2000−2001 = −3

3 ; note that

we identify absence of biological mother (unfavourable) from the household and that there is now

a minor head (unfavourable) of the household. As a result, an adult death occurs in the household

(unfavourable).

An oscillation related to one question change in answer value can be observed in Figure 3.6.

For this household 5873, the answer to question q0 was the only change in value in 9 years of the

observation period.

Another social unit might show an unfavourable drift towards an unhealthy fitness state. The

social unit characterized by the most zeros is in the less favourable state. The distance (3.18) and

displacements (3.20) apply to two social units k and k′ at time t. Performing this analysis for both

social units, it may happen that a stable distance arises, indicating two possible degrees of health.

The appropriate technique for analysing sub-populations in this dynamics is not geometric (∆t is

not an orbit) but a sort. Thus for n questions for l time steps, there are 2n possible orbits. Sort

the numbers of social units that follow each orbit. This can in principle reveal the most populous

orbit which becomes the typical orbit. It may be unrealistic to expect any two social units to be

always in exactly the same fitness state. Orbits may be defined to be close if they differ by only

ndif ≪ n answer values. Then sort all social units into the population such that d(bkt , b
k′

t ) ≤ ndif

n
,

for all t. This sort is just a mathematical jump in the abstract space Σ+
n . This appears to be the
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substantial demographic information, so far. It can be of obvious use.
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Figure 3.1: Accumulated displacement for only one switch-and-stay answer value change.
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Figure 3.2: Accumulated displacement for only one oscillating answer value change.
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Figure 3.3: Accumulated displacement for a uniformly random change in 8 of 26 answer values.

The bias to positive accumulated displacement is an accident of short derivation time.
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Figure 3.4: Accumulated displacement for a uniformly random change in 26 of 26 answer values.

Only for very long times does random motion becomes apparent.

In all the Figures 3.1 - 3.8, the question order is as defined in (2.1) and the changing answers can

be identified in these figures. The accumulated displacements for the illustrations and Agincourt

households are real numbers on [−1, 1] and hold equally for orbits Ωk
l ∈ Σn

2 or Xn
l ∈ In2 . In Figure

3.8 Σn=3
2 illustrated by discrete points, linearly arranged. We could instead have plotted the discrete

space In=3
2 , just the points 0.000, 0.001, . . . , 0.111 of the unit internal, in base 2 arithmetic, spaced

2−3 apart.

The fitness orbits Ωk
l are visualized in Σ2

n=3 in Figure 3.8. It will be appreciated that if we simply

coded to Yes/No, different orbits will result from questions posed in the positive and negative sense.

Without a uniform convention for Yes/No, some favourable shifts will be to the left, some to the

right. Fitness is a uniform convention that captures a fundamental human characteristic. At this

point it is important that we ask ”is a state favourable or unfavourable?”.

But it will also be appreciated that the question order is arbitrary and that independent so-

ciologists can choose different ordering [94, 95]. This will result in different orbits and this is not

satisfactory.
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Figure 3.5: Agincourt household accumulated displacement, suggestive of random change of answer

values.
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Figure 3.6: Agincourt household accumulated displacement, suggestive of simulation of Figure 3.2.
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Figure 3.7: Agincourt household accumulated displacement, for 3 negative changes.
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Figure 3.8: Visualization in Σ3
2. The trend of social unit fitness is made clear by visual orbits.

3.4 Models with Weighted Questions

Visualization of the fitness state as a point on the number line with meaningful displacement is

of great importance because it is here that orbits approach the full sense of Newtonian dynamics.
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Weighting of questions may be artificially applied in order to achieve this, or, may arise naturally

out of the purpose. The assumption for the moment for weighting each question is that some good

reason exists. We allow that each household might have a different weighting (adult death may be

more important in some households than absence of biological mother). We order the questions

by this weighting, most important question on the left so that the order of questions varies among

households. However, we begin supposing that this order remains constant for all times.

As before, suppose that we have the same socialized coding of the questionnaire Q as given in

(3.9) and the associated answer set is again as given in (3.10). Again, the state bkt as defined in

(3.11) is a concatenated binary sequence. However, we suppose a weight wi for question i for (2.1)

and order the questions by this weight, with largest weight on the left. If we attach a weight to

each question qi ∈ Q, then it becomes important to distinguish between the question number i of

(2.1) and its position in Q that we denote j. It is important to make it clear that at each time step,

each question qi only has one position j in Q. This property will change the notations in (3.9) as

follows.

Q = {qi0 , qi1 , qi2 , . . . , qij , . . . , qin−1
} , (3.22)

where we have some permutations of questions qi.

In order to achieve consistent displacements in Σn
2 or In2 , we choose a particular order as follows.

Definition 3.10. The map

wij 7→
1

2j+1
, j = 0, 1, 2, . . . , n− 1 (3.23)

defines the weight of the i’th question which is placed in the j’th position.

It follows that we may also associate weights to the answers given to these questions by modifying

the notation of (3.10). Then from (3.10) for some permutations (i0, i1, i2, . . . , ij , . . . , in−1), we have

the weighted answer set given by

wA
k
t = {ai0 , ai1 , ai2 , . . . , aij , . . . , ain−1

} , (3.24)

and from (3.11) we will also have the weighted concatenated sequence

wb
k
t = ai0ai1ai2 . . . aij . . . ain−1

, (3.25)
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which now defines the weighted fitness of the social unit k at time t.

The weight is coded by the order of questions. Under the homomorphism h defined in Definition

3.7 we can associate the weighted fitness wb
k
t to a real number xkt , as follows.

h : Σn
2 → In2 : wb

k
t ↔ xkt (3.26)

where

xkt =

n−1
∑

i
j
=0

wija
k
ti

j
, akti

j
∈ {0, 1}. (3.27)

Another simple way of transforming the weighted fitness wb
k
t to a real number xkt is by the following

coding map

γ : wb
k
t ↔ xkt = 0.wb

k
t (3.28)

which just places a dot in front of the weighted fitness wb
k
t to make it a real number in base 2.

Note that from (3.23) and (3.27), it is clear to see that 0 ≤ xkt ≤ 1,∀k and all dynamics is then

visualized on the discrete unit interval In2 ⊂ [0, 1]. Then the fitness position at time t is defined by

the real number xkt . Given either binary sequence or real number, each particular answer akti
j

can

be identified and its value determined. We refer to this property to socialized numerical coding. It

is necessary that the order of questions is preserved by the map h or γ, and does not itself change

with time.

The weighted fitness distance moved by the k’th social unit is defined by

d(wb
k
t ,wb

k
t′) =

n−1
∑

i
j
=0

wij |aktij − a
k
t′ij
| ≥ 0 (3.29)

for some permutation of question order, and the fitness displacement is similarly defined by

∆k
tt′ =

n−1
∑

i,j=0

wij (a
k
tij
− akt′ij ). (3.30)

Fitness displacements (3.19), (3.20) are not consistent with jumps on an ordered space such as

(3.15). We now have consistent displacements as follows. It will be seen that if akt1 : 1→ 0 changes,

then d(wb
k
t ,wb

k
t′) = 2−1 and ∆k

tt′ = −2−1, corresponding to the geometrical distance |xkt −xkt′ | = 0.5

and displacement xkt − xkt′ = −0.5, on the real axis. Similarly if only aktn : 1 → 0 changes, then

d(wb
k
t ,wb

k
t′) = 2−n and xkt −xkt′ = −2−n. These are now consistent with usual measure on [0, 1]. The
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displacement (3.30) is similarly consistent. Favourable and unfavourable moves are again achieved

but now a fitness orbit (wb
k
t )
l
t=0 ∈ Σn

2 can be visualized as the sequence of real numbers

Xk
l = (xkt )

l
t=0 : xkt ∈ [0, 1] (3.31)

As xkt approaches 1, the state of the social unit becomes more favourable and it becomes more

unfavourable if xkt approaches 0. In particular, big displacements are now associated with changes

in heavily weighted questions. If questions are not all equally significant, the size of a displacement

in [0, 1] may indeed approximate a sense of social consequence to the social unit. For example, it

is reasonable that a Minister of Health should rank family ailments from expensive treatment to

cheap treatment; Q would be designed to record the treatment history of families (say) and the

orbit on [0, 1] would visualize that history, and reflect cost of treatment.

A change in the n’th answer value clearly gives smaller displacement than would changes in

the first answer. The concept of ‘nearby’ must fold in the weights; thus, for orbits that are near

in the sense that the states do not differ up to the n’th question, they should be within a distance

2−(n+1) of each other in In2 . So the use of weighting gives us consistent visualization of orbits, the

orbits are unique given some purpose and the dynamics resembles that of Newtonian particles in

one-dimensional motion along [0, 1].

The weighting method can be modified. In Sociology the ordering of a stable invariant set may

be unimportant. The binary string can be subdivided into ninv invariant answers of equal weight

and nl − ninv variable answers of weight as before, ordered by frequency of change. Then the first

ninv answers all have equal weight 1− 2−ninv and the subsequent answers have weight as in (3.27).

The position on [0, 1] is naturally given by

xkt =

ninv−1
∑

i,j=0

(1− 2−ninv )aktij +

nl−1
∑

i,j=ninv

wija
k
tij
. (3.32)

In a ”two-weight” model we can give the first ninv answers equal weight 1−2−ninv , the following

nl− ninv answers equal weight 2−nl − 2−ninv . Then from real data, if an ”invariant” answer should

change, simply move it into the changing segment. To move a changed answer into the invariant

part would best be done with good reason, for well-posed questions. The position on [0, 1] is given

naturally by

xkt =

ninv−1
∑

i,j=0

(1− 2−ninv )aktij +

nl−1
∑

i=ninv

(2−nl − 2−ninv )aktij , (3.33)
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where ninv is the number of invariant answers. As before, 0 ≤ xkt ≤ 1. These are examples of

piece-wise ordered answer sets. They have obvious use in speeding up the evolutionary process, but

will not be used in this thesis.

3.4.1 Results for fitness orbits for weighted questions of fixed order

In Figures 3.9-3.12 we give illustrations of fitness orbits Xk
l for some questions that are now

weighted. We take the same data as Figures 3.1-3.4. We suppose an arbitrary fixed question

order. Then if the social unit displaces significantly upward, a favourable trend is visualized and is

explained at each time by the index of the answer that changed value. As before, only one change

per social unit occurs at each time step. In these examples a social unit moves significantly by a

few large displacements or many smaller displacements. It will be noted that in Figures 3.11-3.12,

orbits vary within bounds set by the changing set of answers. In Figure 3.12 we illustrate a random

walk on I3
2
. Because all digits change with equal probability, the state of a social unit will sample

all points of I3
2
. Note that in Figures 3.11-3.12, 8 of 26 forces respectively act on the social unit,

which wanders randomly in some domain under the influence of those forces. No single cause for

change in the domain can be identified, but the forces pushing the social unit into a domain (Figure

3.11) can be identified.

Figures 3.13-3.15 display the fitness orbits of the same Agincourt households. Here the order

of questions is assumed to be standard, i.e, 012. The household 5873 clearly has only one strong

change in their social factors, which must now be owing to change in q0 (i.e. absence of biological

mother changes dramatically, so we can identify which answer change value). In practice, more than

one answer can change value at each time step. In household 7150 where x7150
1995 = 0.875, (Figure

3.15), the state of the household remains favourably unchanged for 6 years, we find that just a year

latter, x7150
2001 = 0 displays the most dramatic situation. This is related to the maximum negative

change of social factors in that household captured by the accumulated displacement acc∆
7150
2000−2001.

Note that it is possible to have a zero accumulated displacement while the fitness can vary,

because while one answer changes favourably another might change unfavourably, giving a zero net

displacement. We clearly have more information stored in the fitness plots than in the plots of

accumulated displacements.
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Figure 3.9: Single social unit fitness orbit, for a switch-and-stay answer value change and fixed

question order.

3.5 Evolutionary question order model

Suppose that the unchanging answers are of principle interest for example, a social unit with

HIV-infection. Among many questions, identify answers that have changed and in each such case,

exchange each with the stable answer to the right. If this answer continues to change frequently, it

will migrate to the right and the net effect of all such changes is to cause the unchanging answers

to migrate to the left. Over very long times, answers will re-order themselves from left to right in

increasing order of frequency of change. If there are some unchanging answers for long times, we

have a social unit that is now characterized by the unchanging part. To think at the population-

level, if there are many social units with this unchanging part, then we automatically identify a

sub-population. These ideas will be explored in detail in the next chapter.

We have assumed fixed weighted question order above. The task of the sociologist, through

Qt, is now extended to deciding whether to add or subtract questions and whether to adjust the
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Figure 3.10: Single social unit fitness orbit, for an oscillating answer value change and fixed question

order.

order/weighting of questions. The Minister of Health’s ordering might or might not change with

external developments. New ailments may arise and be added at some appropriate point in the

question set. This may have impact and be seen as a sudden shift in the health of social units.

Ailments may be dropped from Q where they do not contribute significantly to drift of a social unit

on [0, 1]. We note that HIV/AIDS [103] did not contribute before about 1980 and may be regarded

as weighted zero cost to the Minister up to that date, high cost after that date, without altering

the history of Qt. If sociologists agree that the question set is adequate, we might suppose that the

social system is understood. But there will not in general be agreement among sociologists as to

question order that best reflects the changes of all individuals in a population. It is a fundamental

contribution of this thesis to give a rational, objective method for deciding appropriate question

order.

Because a social unit migrates towards or away from a favourable state, because an unchanging

part is defined, because a sub-population as in (3.33) population (”species”) is defined, we refer to

the evolutionary model [111]. The swapping of answers (or re-weighting) is contributory to under-

standing of the purpose of Qt and is a new, independent tool to exhibit automatically, emergence
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Figure 3.11: Single social unit fitness orbit, for a uniformly random change in 8 of 26 answer values

and fixed question order.

of a new, objectively defined, sub-population which is conditional on the purpose of Qt. Dynamic

re-ordering is an additional deterministic function applied to the answer set per social unit. This

function is informed by purpose and the given data (any such functions can be of use).

For a simple example we may reorder questions by frequency of change from the right. Or, we

may have a cost function for each answer change (temporary out-migration brings in money, adult

death costs money) that assigns weights. In this thesis we attach importance to the automatic

identification of sub-populations and to the fundamental property of emergence of fitness of the

sub-populations (the property of evaluation). But also, simple relative frequency of change of

questions is a fundamental statistic of the data, typical of longitudinal data. An evolutionary orbit

visualizes this relative frequency, by order of questions, or as we will now see by a ”y−axis” that

encodes question order. We will use this evolutionary model throughout this thesis.

Here the slowest varying part is of most importance and is given the largest weighting. Note

now that should a long-fixed answer value a0 = 0 at the first significant digit of xkt change value,

it will move right by one space and the sequence will displace right by at least 25% of the unit

interval. A change of the new, left-most factor will move q1 back to the left with changed value
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Figure 3.12: Single social unit fitness orbit, for a uniformly random change in 26 of 26 answer

values and fixed question order.
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Figure 3.13: Agincourt fitness orbit, for many answer values changing. The question order is 012.
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Figure 3.14: Agincourt fitness orbit, for a single oscillating answer value changing. Same ordering

of questions as Figure 3.13.

a0 = 1 and so give a total 50% change on the unit interval. But then an enormous displacement

has taken place, making the importance of the invariant, heavily weighted factors in separating

sub-populations. In contrast, only small separation arises for the rapidly-changing or low-weighted

factors on the right of the binary string.

The dynamics of change of answer value per social unit may be stochastic [112] or deterministic.

The game of swapping changing questions to the right is deterministic [113].

We use the properties described above to construct evolutionary orbits of social units. If change

in question order is with respect to this deterministic game [113], then the orbits xkt defined by

(3.31) now become evolutionary fitness orbits and will be denoted, for clarity, by

(ekt )
l
t=0 : ekt ∈ In2 , (3.34)

3.5.1 Result for the evolutionary orbits on I
n
2

Under the evolutionary model, we give the graphs of ekt in Figures 3.16-3.19. The technique

of the previous section is used to plot position on the number line, but now the order of answers
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Figure 3.15: Agincourt fitness orbit, for 3 answer values changing. Same ordering of questions as

Figure 3.13.

must be recorded. We also assume a standard initial question order 012. The dynamics of Figure

3.16 is unchanged from Figure 3.9 because only one switch occurs and the state is then constant

where question order is reordered. In Figure 3.17 as one factor oscillates, it migrates to the right,

the constant factors keep their relative order and value, thus defining a position on the e-axis while

the changing factor has ever decreasing effect. The orbit settles to e = constant and it is clear that

among a large population, sub-populations might emerge. Of course this state has a fitness that

may be attached to the sub-population. Comparing to Figure 3.10, we can clearly see changes in

the dynamics because of the evolutionary game that we apply.

In Figure 3.18 there are unchanging factors and the orbit will again settle in I26
2
. Note that 8

answers change values over the 26. With such significant changes, the orbit converges to a small

sub-domain in I26
2

and stays forever in that domain.

Figure 3.19 applies where there are no unchanging factors and the orbit wanders over the interval

I26
2

without converging.

These Figures 3.16-3.19 are not satisfactory and we do not give Agincourt examples. Although
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Figure 3.16: Single social unit evolutionary fitness orbit, for a switch-and-stay answer value change.
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Figure 3.17: Single social unit evolutionary fitness orbit, for an oscillating answer value change.

a social unit now has a localized position on the x−axis, it is clear that some other social units, with

completely different distribution of answers, might have the same fitness. But then two differing
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Figure 3.18: Single social unit evolutionary fitness orbit, for uniformly random change in 8 of 26

answer values.

evolutionary states (for example) are indistinguishable on that axis. Only where a sub-population

has the same distribution of answers on significant digits (i.e. the evolutionary species), can we

overlay orbits on the same graph, and talk naturally of the differences between like classes. The

emergence of sub-populations is, for example, as for the Minister of Health above, if many orbits

converge towards the same, possibly small domain.

3.5.2 Evolutionary orbits in the unit square I
n
2 × I

n
n

The goal of this section is to solve the problem of overlay of sub-populations as mentioned

above. We have given each question an answer value in {0, 1} and coded fitness to binary numbers.

We will quantify a question sequence by recording its position j as described in the notation qi
j
.

Then this is coded by the set

Okt = {i
j
|j = 0, 1, 2, . . . , n− 1} . (3.35)

This order value corresponds to the position j of the i′th question as described in the notation

qij ∈ Q.
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Figure 3.19: Single social unit evolutionary fitness orbits, for a uniform change in 26 of 26 answer

values.

As before, if we also combine elements of Okt as a concatenated string, then directly from (3.35)

we can define the significance as follows.

Definition 3.11. The sequence

θkt = i0i1i2 . . . in−1 , ij ∈ {0, 1, 2, . . . , n− 1} (3.36)

captures the significance state of the k’th social unit at time t.

As stated above, each question order has a unique value in {0, 1, 2, 3, . . . , n − 1}, thus for n

questions there are n! possible arrangements of question order values.

Definition 3.12. The space

Σn
n = {θi|i = 0, 1, 2, . . . , n− 1 and θi is a permutation of symbols 0, 1, 2, . . . , n− 1} , (3.37)

is the space of finite one-sided sequences of length n consisting of n distinctive symbols. In this

thesis, Σn
n is also called the significance space of sequence states with respect to the questionnaire

Q.
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Then the sequence θkt is a single point in Σn
n that captures the significance of a social unit k at

time t.

As before, let

woi =
1

ni+1
, i ∈ {0, 1, 2, . . . , n− 1} (3.38)

define the order weight function. Let

χkt =

n−1
∑

i=0

woi θ
k
ti, θ

k
ti ∈ {0, 1, 2, . . . , n− 1} , χkt ∈ Inn (3.39)

where Inn is a discrete space consisting of n! rational numbers χkt . It is also clear to see that

0 ≤ χkt ≤ 1. We will refer to χkt as the significance of the answer set for the k’th social unit at time

t.

Following the definitions (3.29) and (3.30), the significance distance moved by the k’th social

unit is defined by

d(θkt , θ
k
t′) =

n−1
∑

i=0

woi |θkti − θkt′i| ≥ 0 (3.40)

and the significance displacement is similarly defined by

∆k
tt′ =

n−1
∑

i=0

wijw
o
i (θ

k
ti − θkt′i) . (3.41)

We can also derive from (3.40) and (3.41) respectively the significance distance and displacement

at time t between two social units k and k′. Note that the fitness displacements in these cases may

be constant so that as these new displacements grow we find questions reordering in different ways,

that is, social units have different frequencies of change of answer values.

The state of social unit k is now coded by the ordered pair

(ekt , χ
k
t ) ∈ In2 × Inn (3.42)

in general, base 2 and base n ”decimals” respectively. Then the value of an answer and the answer

itself can be decided by its distance from the ”decimal point”.

To illustrate if n = 3, we code the questions

{q0, q1, q2} → {0, 1, 2}, (3.43)

(just the digits of base 3 arithmetic) so that a question order sequence, say q1q2q0 is coded by 120.

As for the e-values above, the question order 120 is mapped to a base 3 number, i.e. 0.120. Each
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coordinate may be translated (using definitions (3.27) and (3.39)) to common base 10 arithmetic

for convenience of visualization, as in

(0.110, 0.120) = (0.75, 0.55) (3.44)

and these can again be uniquely decoded (by going back to base 2 and base 3, using definitions

(3.27) and (3.39) for question order and answer value respectively. Note that sub-populations in

the e, χ−plane can automatically emerge.

We again use

Xk
l = (ekt , χ

k
t )
l
t=0 (3.45)

to denote the orbit of the k’th social unit in the unit square. In keeping with mathematical usage,

we refer to Γn = In2 ×Inn as phase space[14, 114]. It is at this point that we may change the question

set. New questions can be added but these should be included on the right where their impact

is small; then in time they must assert themselves if they are relevant. If this is the case, and it

happens for many social units in a population, then a new sub-population automatically emerges.

3.6 Dynamics of orbits in the state space Γn = I
n
2 × I

n
n

The ideas of this thesis are strongly informed by modern dynamical systems theory [14, 110,

105, 114, 115, 16, 116]. Let

ζkt = (ekt , χ
k
t ) (3.46)

denote the state of the k’th social unit at time t now in Γn. According to the dynamics established

in the state space Γn, it is clear to see that e and χ vary with time. Define the map

ψ : Γn → Γn : (ekt , χ
k
t ) 7→ (ekt+1, χ

k
t+1) (3.47)

which gives the relationship between consecutive states of a social unit k over time.

According to the properties of the homomorphism γ (3.26), changes in values of the evolutionary

fitness ekt of each social unit k are related to changes in values of its associate concatenated sequence

wb
k
t . Similarly, changes in values of the significance χkt of each social unit k are attached to changes

in values of its associate sequence wθ
k
t . So we can think in decimals or sequences.

Thus, we can associate changes under ψ (3.47) to change under a map ξ as follows:

(et, χt)
ψ7→ (et+1, χt+1) ≡ (wbt, θt)

ξ7→ (wbt+1, θt+1) (3.48)
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where

ξ : Σn
2 × Σn

n → Σn
2 × Σn

n : (wbt, θt) 7→ (wbt+1, θt+1) . (3.49)

The maps ψ and ξ arise from social forces as discovered in the data and the deterministic evolu-

tionary game.

Suppose that the order of questions is known at each time t and that we identify changes in e

and χ to changes in values of bkt and θkt for each social unit k. Let νkt ≤ n denote the number of

questions that change answer values for the social unit k at time t. Let

ηkt = {i0, i1, . . . , iνk
t −1| ij = 0, 1, 2, . . . , n− 1, ij 6= ik ν

k
t ≤ n}, (3.50)

denote the set of indexes (in increasing order) of all questions that change answer values at time t

for the social unit k.

We note that ξ = ϕ ◦ σ consists of two parts, first σ (3.51) changes the answer values with

respect to ηkt for each social unit k then ϕ (3.54) changes the question order under the evolutionary

game, also with respect to ηkt . We write

σ : (wb
k
t , θ

k
t ) 7→ (wb

′
t
k
, θkt ) (3.51)

so that

wb
k
t = aki0a

k
i1
aki2 . . . a

k
ij
. . . akin−1

7→ wb
′
t
k

= a′
k
i0
a′
k
i1
a′
k
i2
. . . a′

k
ij
. . . a′

k
in−1

(3.52)

where

a′
k
ij

=







1− akij if i
j
∈ ηkt

akij otherwise.
(3.53)

Thus σ changes question values only. Longitudinal data merely lists answer values under a fixed

answer order and σ first accepts the new data.

Then we write

ϕ : (wb
′
t, θ

k
t ) 7→ (wbt+1, θt+1) (3.54)

Here we swap changing answers, starting from the right, to the right hand end. That is

ϕ = ϕ
0,π0
◦ ϕ

1,π1
◦ ϕ

2,π2
◦ . . . ◦ ϕ

i,πi
◦ . . . ◦ ϕ

νk
t
−1,π

νk
t
−1

, i ∈ ηkt (3.55)

and

πi : i 7→ n− 1− i (3.56)
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defines the jump of the i’th question that changes answer value, and

ϕ
i,πi

: (wb
′
t, θ

k
t ) 7→ (wb

i
t+1, θ

i
t+1) (3.57)

θkt = i0i1 . . . ij . . . in−1 7→ θit+1 = i0i1 . . . ij−1ij+1 . . . in−1ij . (3.58)

Thus once we have accepted the new data under σ, we apply the evolutionary game ϕ. If νkt

questions change answer values, then ϕi is applied νkt −times.

To illustrate the rather complicated mathematics above of dynamics under ξ, suppose that the

number of questions n = 5. Consider a social unit k, with the fitness state at time t given by

wb
k
t = 10101. The significance state of that social unit at time t is given by θkt = 01234. Suppose

also that νkt = 3 questions change answer values for that social unit at time t and that the indexes

of these questions are defined by ηkt = {1, 2, 4}.

For simplicity, we write in bold with a dot on top, the questions that change answer values.

Then, we have wb
k
t = 10̇1̇01̇ and θkt = 01̇2̇34̇. Let us compute the fitness state wb

k
t+1 and the

significance state θkt+1 of the social unit k at time t+ 1 Thus, from (3.51), we have

σ(10̇1̇01̇, 01̇2̇34̇) = (11000, 01̇2̇34̇) . (3.59)

From the definition (3.55), we can write

ϕ = ϕ
1,π1
◦ ϕ

2,π2
◦ ϕ

4,π4
. (3.60)

We now use the definition (3.57), to compute ϕ
i,πi

for i ∈ ηkt = {1, 2, 4}. Thus

ϕ
4,π4

(11000, 01̇2̇34̇) = (11000, 01̇2̇34) , π4 = 0

ϕ
2,π2

(11000, 01̇2̇34) = (11000, 01̇342) , π2 = 2

ϕ
1,π1

(11000, 01̇342) = (10001, 03421) , π1 = 3 .

(3.61)

Finally, the state of the social unit k at time t+ 1 is given by

ϕ ◦ σ(10̇1̇01̇, 01̇2̇34̇) = (10001, 03421) . (3.62)

We recall that under the evolutionary game (3.58), we assume that questions with changing

answer values are less important compared to those that are unchanged. Thus, if the i’th question

changes answer value we allow ϕ
i,πi

to simply shift that question to the end of the sequence. This
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process redefines the weight of each question by adding more weight to unchanging questions and

reducing weight to changing answers by the function π (3.56).

The elements of wb
i
t+1 are equal in value to those of wb

′
t
k but now rearranged in an order given

by θit+1. Note that order of change of answers (from left to right) gives differing states, that is

ϕl = ϕ
νk
t
−1,π

νk
t
−1

◦ . . . ◦ ϕ
2,π2
◦ ϕ

1,π1
◦ ϕ

0,π0
6= ϕ

0,π0
◦ ϕ

1,π1
◦ ϕ

2,π2
◦ . . . ◦ ϕ

νk
t
−1,π

νk
t
−1

= ϕr . (3.63)

We refer to ϕl when we change order from the left and ϕr when answer values are changed from

the right. We can now distinguish between the dynamics obtained under ϕl with that obtained

under ϕl. We find that ϕr better separates sub-populations because it gives big jumps when bt and

θt change values compared to changes operated under ϕl.

Consider the above example where wb
k
t = 10̇1̇01̇ and θkt = 01̇2̇34̇. Note that the result (3.62)

is obtained using ϕr. Let us follow the definition (3.62) to compute wb
k
t+1 and θkt+1 with respect to

ϕl. Thus,

ϕl ◦ σ(10̇1̇01̇, 01̇2̇34̇) = (10100, 03124) . (3.64)

We use the definitions (3.29) and (3.40) to measure the fitness and significance distances moved by

the social unit t between the two times t and t+ 1 with respect to ϕl and ϕr. These measures will

help us to compare the dynamics under ϕl with the dynamics under ϕr.

dr(10101, 10001) = 0.125

dl(10101, 10100) = 0.03125

dr(01234, 03421) = 0.09856

dl(01234, 03124) = 0.0896

(3.65)

This result (3.65) clearly shows that the fitness distance obtained from ϕr is 4 times the fitness

distance obtained from ϕl. Also the significance distance under ϕr is slightly bigger than the sig-

nificance distance under ϕl. As a result, the evolutionary process operated under ϕr is preferable

in terms of identification of sub-populations.

Because of the above properties, the results presented in this thesis are obtained with the

dynamics operated under ϕr. Thus, we can write

ξ = ϕ ◦ σ (3.66)

If there are n questions, then there are 2n possible responses because each answer ai ∈ {0, 1}. Thus

any state ζt can then map to 2n new fitness values in ζt+1. The map ϕ (3.54) is entirely owing to
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our design. The order of questions can take any one of n! values (if the first question is any one of

n, once this is decided the second question is any one of n − 1 questions and so on). Then there

exist n!× 2n possible states for a social unit and the state space of geometric points

Γn = {ζ = (e, χ)} . (3.67)

or sequences of answer values and orderings

Sn = {(wb, θ)} (3.68)

consist of many states. It follows that Sn = Σn
2 × Σn

2 .

The space Sn is represented by Figure 3.20. Since Sn is a discrete space, we can number elements

of Sn as represented in Figure 3.21 in the case of n = 3 questions. The arrow illustrates a transition

from state 48 defined by (wb, θ) = (111, 012) to state 37 defined by (wb, θ) = (100, 021). This

transition indicates that questions 1 and 2 have changed values. Thus, we note that ξ(111, 012) =

(100, 021).
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201
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000 001 010 011 100 101 110 111

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

wb

θ

Figure 3.20: Bi-sequence space Sn = Σn
2 × Σn

n for n = 3 questions.
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Figure 3.21: Bi-sequence space Sn = Σn
2 × Σn

n for n = 3 questions, with sequences indexed.

3.7 Transition matrix for social units

With the dynamics of the map ψ (3.47), we can refer each move ζkt 7→ ζkt+1 to a transition

i 7→ j as in Figure 3.21. Thus, given a fixed number of questions n, a state space Γn combined

with the process ψ can be associated to the matrix of allowed transitions for a social unit k, that

is referred to as the transition matrix and we denote it by T kn . Thus T kn ∈Md×d where d = 2n × n!

The elements of T kn are defined by

T kn = [tkij] i, j = 1, 2, 3, . . . d , (3.69)

where

tkij =







1 if i→ j

0 if i 9 j
(3.70)

is the Kronecker delta. There are transitions that are not allowed in Γn due to the properties of

the process ψ. Let Tn denote the theoretical transition matrix for n questions, which displays all

allowed transitions in Γn under the process ψ. Each row of Tn adds to 2n which represents the total

number of possible binary sequence arrangements if there are n questions.
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As an example, suppose that n = 3 questions, the theoretical transition matrix T3 is given by

(3.78). Note that each row of T3 has 23 = 8 non-zero entries. We can also note that there are many

transitions that are not allowed. The total number of transitions that are allowed is given by

48
∑

i,j=1

tij = 384. (3.71)

The description of ξ = ϕ ◦ σ is very complicated. Tn captures all possible state changes of a

social unit that might occur in a very simple (but possibly very large) matrix of zeros and ones.

That is, for a single time step, a social unit in any state i maps to state j by

St+1 = TnSt (3.72)

where

St =























1

2

3
...

2n × n!























(3.73)

represents a vector of all possible states. Tn captures every possible transition that a social unit

can make. A transition matrix T3 does not vary with time but records all possible transitions. Tn

is known as adjacency matrix in communication theory [117].

Real data will not in general, show every possible transition. For the Agincourt data, for n = 3

questions, we can determine T
Agk

3 by methodically listing all transitions that actually occur in the

k’th household. It is useful to define a deficiency matrix TDn which identifies the possible transitions

that do not occur at Agincourt.

TDn = Tn − TAgk
n (3.74)

The definition (3.72) is a theoretical discrete dynamical system [16, 118, 106]. But St+1 = TAg3 St

is the real Agincourt dynamical system. The real data defines a map

St+1 = TAg3 St (3.75)

from the set of states (3.73) to itself.

The maps (3.72) and (3.75) are well known in dynamical systems theory as sub-shifts of finite
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type [119, 120, 121, 122]. As a simple example, the system

St+1 =





1 1

0 1



St, S =





1

2



 (3.76)

allows transitions 1 → 1, 1 → 2, 2 → 2 but not 2 → 1. This means that in a long time sequence of

state changes, 1 can never follow 2. Thus we have the following example sequences

11111111 . . .

11112222 . . .

12222 . . . . . .

(3.77)

In T3 (3.78), we generate sequences in d symbols (1, 2, 3, . . . , 48) instead but it can never happen

that state 24 follows state 32. It is of interest that Agincourt data might not allow certain transitions.

Each of the sequences of state symbols is an orbit in Sn = Σn
2 × Σn

n. In Agincourt dynamics,

when the deficiency matrix is non-zero, many possible transitions do not occur. The sequences that

do occur are the set of orbits of the social unit that are characteristic of the purpose. They hold

complete information of state and change of a social unit at Agincourt, and are the foundation for

our demographic analysis. Here we remain interested in particular orbits.

Note the very general nature of this discussion. Tn is the matrix of all possible transitions

under any purpose whatsoever in n questions. TAgn is an example of an experimental transition

matrix, say TExpn . Then this may have additional zeros, will depend on purpose, the questions asked

and may vary between demographic surveillance sites. But even TExpn completely characterises all

possible transitions of that particular site. The mathematical study of all possible transitions, and

of the orbits or trajectories in infinitely long sequences of transitions, of any social unit, is known

as dynamical systems. TExpn will be the basis of population projection addressed in Chapter Six.
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T3 =

1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

(3.78)
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3.7.1 Some properties of the transition matrix Tn

Properties of Tn can reveal useful information that can be used to interpret the dynamics of

the social system of interest.

Our general process ξ = ϕ ◦ σ produces transitions that are reversible and not reversible.

For example for n = 3, the transition 23 → 24 is reversible and a transition 1 → 10 is not

reversible. To reverse any transition (i → j followed by j → i) requires that Tn has an inverse

(i = Tn
−1j = Tn

−1(Tni)). In the general case this cannot be done, for n ≥ 2, Tn is not invertible

(singular) and so

Det (Tn) = 0 . (3.79)

Of course we find this to be true for (3.78). Singularity is of interest because at least one transition

i→ j but j 9 i; an orbit such as there is enhanced possibility of cause.

It may in principle happen in experiment that no irreversible transitions occur, in which case

Det (Tn) 6= 0. The result (3.79) reveals important properties of the matrix T3. First, it shows that

T3 is not invertible. Second, it proves that the system under investigation, for which this matrix

is associated to, is not linearly independent [123, 46]. We can also use this result to interpret the

dynamics of any social system of 3 questions.

The symmetry of the associated matrix of the dynamical system is another important property

that is useful to understand the system behaviour. In general, under ξ, for Tn = (tij),

tij 6= tji . (3.80)

Thus Tn is not symmetric. Of course this follows if Tn is irreversible, or if Det (Tn) 6= 0. Symmetry

merely reflects irreversibility.

It may happen that no change occurs to a social unit, in state i, that i→ i→ . . . i and we say

that it idles. The trace of the theoretical transition matrix Tn is given by

Trace (Tn) = 2n × n!, (3.81)

which displays the total number of idling states. In experiment, in rapidly changing environment,

all social units might never idle once, in which case

0 ≤ Trace (TExpn ) ≤ 2n × n! . (3.82)
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Even if sometimes it is difficult to classify questions in terms of reasons for asking them, we

suggest to establish the relationship between the number of questions in the questionnaires and

the purposes of designing these questionnaires. As an example, consider the population growth as

a study purpose. Thus from the properties of the well-known balancing equation in demography

[124, 125, 32], we can see that if a questionnaire must be designed to address this particular study

purpose, it will only consist of three questions. Each of these questions is related respectively to

each of the three basic demographic variables: birth, death and migration. This clearly suggests

that it is possible to find a fixed number of relevant questions to design a questionnaire that can

address a well-defined research question.

Note that the information size is represented by the number of questions n, in the questionnaire.

Another way to understand why the application of the present theory requires a constraint on

the information size is to consider the relationship between the number of questions n and the

dimension of the transition matrix d. Note that for n questions, we have a transition matrix of

dimension d = 2n × n!

To see this clearly, we compare the exponential function and the dimension function d. Thus,

Figure 3.22 shows both the exponential function and the dimension d of the transition matrix as

a function of the number of questions n. We can clearly see how the function d (dimension of the

matrix) increases faster than the exponential function. Such a comparison can be used to carefully

decide the reasonable number of questions that is needed to address a specific study purpose, as

mentioned in chapter Two. Note for example that for n = 8, we have a d = 645120 and the

transition matrix T8 ∈M645120×645120 which can only be handled by a very sophisticated computer

(with a large memory). Thus, it makes it computationally difficult to handle and mathematically

difficult to analyse.

3.8 Example of Agincourt household orbits in Γn=3

In this section, we give examples of household orbits in the state space Γ3 for the Agincourt data.

We can identify particular social qualities that change for each example that will be presented. We

consider three demographic variables related to questions as defined in (2.1).

Consider the Agincourt household k = 7150 as presented in Figures 3.23-3.24. The data is as

follows Table 3.1.
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Figure 3.22: Comparison of the exponential function and the distribution of the dimension of the

transition matrix d, over the number of questions n.

Table 3.1: Data of the anonymous Agincourt household k = 7150.

t q0 q1 q2 e χ

1999 1 1 1 0.875 0.555

2000 1 1 1 0.875 0.555

2001 0 0 0 0.000 0.259

2004 0 1 1 0.375 0.185

2005 1 1 1 0.875 0.555

2006 0 1 1 0.750 0.555

The evolutionary orbit in Γ3 for this household is shown in Figure 3.23 and as a time series over

Γ3 in Figure 3.24. Note that we have arbitrarily begun with question order χ = 0.555.

Here we may identify with the help of the data set the change from x7150
2000 = 0.875 to x7150

2001 = 0

as change from a certain fitness state defined by wb
7150
2000 = 111 to the fitness state defined by
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wb
7150
2001 = 000. Note that 3 answers have changed values so that the accumulated displacement

∆7150
2000,2001 = −1. This maximum negative jump illustrates the most dramatic situation that we

can have in the population under these three questions. Note also that we identify an adult death

(unfavourable) which in this case has a direct impact on the absence of the biological mother

(unfavourable). These two unfavourable events are followed by the household being headed by a

minor (unfavourable).

Three years later (at time t = 2004) from that dramatic year (t = 2001), we observe two positive

changes in the characteristics of that Agincourt household. In particular, although the biological

mother is still absent from the household, the household is now headed by an adult (favourable). No

adult death occurs (favourable) that year. In 2005, the households gets back to its initial favourable

fitness state, which is characterised here by the return of the biological mother. Unfortunately, just

a year later (at t = 2006), the biological mother has to migrate out of the household again.

 0
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Figure 3.23: Agincourt evolutionary fitness-significance orbit (e7150t , χ7150
t ), for 3 negative questions

changing answer values in Γ3.

In the following example, we give another social dynamics that we observe in the Agincourt

population. Consider the Agincourt household k = 4325, the data is as follows Table 3.2.
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Figure 3.24: Agincourt evolutionary fitness-significance orbit (e7150t , χ7150
t ), for many questions

changing answer values, in 3−dimensional space.

Table 3.2: Data of the Agincourt household k = 4325.

t q0 q1 q2 e χ

1998 1 1 1 0.875 0.555

1999 1 1 1 0.875 0.555

2000 0 1 1 0.75 0.555

2001 0 1 0 0.5 0.407

2002 0 1 1 0.625 0.407

2003 0 1 1 0.625 0.407

2004 1 1 1 0.875 0.555

2005 0 1 1 0.75 0.555

2007 1 1 1 0.875 0.555

As before, the evolutionary orbit in Γ3 of this household is shown in Figure 3.25 and as a time

series over Γ3 in Figure 3.26. Once again we begin with the arbitrary order χ = 0.555.
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From Table 3.2, we can clearly see that the fitness state of this household was favourable for

the first two observation years (t = 1998 and t = 1999). In 2000, the state of this household begins

to change unfavourably. In particular, the biological mother out-migrates. This change is seen as

an unfavourable event for this household because it is suddenly followed by an adult death that

occurs in 2001. The rest of the observation time for this household is characterised by a single social

dynamics which here is clearly identified to in- and out-migration of the biological mother.

One important property of the dynamics of this household is that all social changes are concen-

trated in a parallelogram loop as displayed in Figure 3.25.
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Figure 3.25: Agincourt evolutionary fitness-significance orbit, for various questions changing answer

values in Γ3.

The last example of the household-level fitness-significance state in Γ3 is as follows. Consider

the Agincourt household k = 5873, the data is as follows Table 3.3.

Similarly, we present in Figure 3.27, the evolutionary orbit in Γ3, and as a time series over Γ3

in Figure 3.28. As before, we consider the same arbitrary question order χ = 0.555.
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Figure 3.26: Agincourt evolutionary fitness-significance orbit, for various questions changing answer

values, in 3−dimensional space.

Table 3.3: Data of the Agincourt household k = 5873.

t q0 q1 q2 e χ

1999 1 1 1 0.875 0.555

2001 0 1 1 0.750 0.555

2002 1 1 1 0.875 0.555

2003 0 1 1 0.750 0.555

2004 1 1 1 0.875 0.555

2005 0 1 1 0.750 0.555

2006 1 1 1 0.875 0.555

2007 0 1 1 0.750 0.555

As previously stated, here only one question changes answer value each observation year. From

Table 3.3, it is clearly shown that the single answer changing value is associated to question q0.

Directly from column 4 of the same table, we can also see that the significance value is unchanged.
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To explain this phenomenon, note that because of the arbitrary initial question order χ = 0.120, the

changing question q0 is initially given the weight ω0 = 1
8 , which means that question q0 is initially

less significant than other questions. With the evolutionary process over this household, we expect

that no significance χ change will occur for this specific case. As a result, the dynamics of this

Agincourt household is now reduced to two states of Γ3 as shown in Figure 3.27. In this case, we

expect the dynamics of this household to be related to an oscillation as clearly displayed in Figure

3.28. It is obvious to identify this social dynamics to the movement of the biological mother who

sometimes out-migrates and sometimes in-migrates into the household.
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Figure 3.27: Agincourt evolutionary fitness-significance orbits (e5873t , χ5873
t ) Γ3, for a single oscil-

lating answer value.

3.9 Social unit-level transition matrix T
k
n

In general T kn merely exhibits the transitions of the k’th social unit. In principle this may be

constant for all time, but in experiment we have a finite time series and must be careful to note

the periods of observation. Because this chapter is essentially restricted to the social unit-level of
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Figure 3.28: Agincourt evolutionary fitness-significance orbit (e5873t , χ5873
t ), for a single oscillating

answer value, in 3−dimensional space.

analysis, it is interesting to present an example of the transition matrix for an Agincourt social

unit.

Consider data for the household number 7150 as presented in Table 3.1 to discuss its transition

matrix. The transition of this Agincourt household is as follows : 24→ 24→ 33→ 44→ 24→ 23

which can be represented in the following table

Table 3.4: Transitions for the Agincourt household number 7150, for 1999 ≤ t ≤ 2006.

State index 23 24 33 44

23 0 0 0 0

24 1 1 1 0

33 0 0 0 1

44 0 1 0 0

Table 3.4 displays the indexes of the 4 states of Γ3 among which the social dynamics of the
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household number 7150 are concentrated. Thus T 7150
3 , for the period 1999 − 2006, is a matrix of

binary values.

Note that Det(T 7150
3 ) = 0 which means that there are irreversible transitions. Here, we note

(Figure 3.29) that the household goes through 3 irreversible transitions 24→ 33, 33→ 44, 44→ 24

and the reversible transition 24 → 23 → 24 Also, Trace(T 7150
3 ) = 1, which means that only one

state idles in this household.

If we use Table 3.4, we can associate the dynamics of the Agincourt household number 7150 as

shown in Figure 3.23 to the transitions of Σ3
2 × Σ3

3 (see Figure 3.21). This is simply placing the

dynamics of Figure 3.23 in Γ3 into the space S3 to obtain Figure 3.29.
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Figure 3.29: The dynamics in S3, of the Agincourt household k = 7150 of Figure 3.23.

Note that the household number 7150 idles for the period 1999 − 2000 in a favourable state

(111, 120) of symbol 24 which corresponds to no adult death in the household (favourable), the

household is headed by an adult (favourable) and also the presence of biological mother in the

household (favourable). In 2001, this household made a negative jump to state 33 and the household

is now found in a very unfavourable state (000, 021) which is related to the absence of the biological

mother which possibly leads to an adult death in the household. As a result, the household is now

headed by a minor.
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The transition from state 33 to state 44 displays an improvement of the household status. Here

we notice that there is a change of the household head from a minor to an adult. Although the

biological mother is still absent from the household, there is no adult death in the household.

We also note that the level of significance of the questions is given by the values of θ. If we

compare change in significance level between the transitions 44 → 24 and 33 → 44, we note that

the presence of the biological mother has been given more weight compared with other questions.

Thus, we can see the transition from 44 → 24 related to the return of the biological mother, is

captured by an important jump compared to the improvement captures by a transition 33→ 44 in

which two questions change answer values.

It is important to see that this example helps us to understand that the size of jump is not only

related the number of questions that change values, but more importantly also to the weight of the

questions that change answer values.

3.10 Conclusion

In this chapter, the central goal was to introduce Orbit Theory of a social unit. We have

achieved an orbit comparable to those of the hard sciences at least within purpose. Thus they have

a meaningful sense of direction and magnitude of jump.

New mathematical spaces Γn and Sn to visualize social dynamics have been defined. These

spaces are related to the given number of questions n ≥ 1 in the questionnaire and also on the

coding of the answers of these questions. In order to monitor transitions that a social unit can

make in Γn or Sn, we have clearly defined a transition matrix which contains all information of

transitions.

Now, given a questionnaire Q, of a fixed number n of questions with binary answers, we have

achieved the analysis of social dynamics for a single social unit. We have discussed the behaviour

of a single social unit using some illustrations and also Agincourt data. In particular, for the

Agincourt data, the household is the unit level of the present analysis. The techniques presented

in this chapter allow us to determine properties of a household by the use of its orbits. Fitness and

significance changes are easily visualised and a reason for change may be identified.

Note that we were not challenged to decide the weight to give to each question for a single
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social unit. Thus, a choice of the arbitrary question order that we suggested was convenient for

this specific level of analysis. Thus, we do not say that qi0 is twice as important than qi1 . We only

say that it is more important, because it is in position zero.

As stated above, in physics, every change in physical systems is associated to a physical force.

In this chapter, we may identify a social force that leads to change in the dynamics of a social unit.

For example of no adult death in 2000 but adult death in 2001, then for this household, ”no death”

is the force of change. This is a demographic study and it is important to extend the discussion

of the ideas of this chapter to the population-level. It is only with such a level of analysis that we

may attempt to examine patterns of social unit orbits and see whether it will be possible to attach

numerical significance to a specific social phenomenon. If the orbits of a significant number of social

units display the same (similar) behaviour, then we may identify the social phenomenon leading

that sub-population with a social force. The properties of such a social force are very important

to understand cause and effect relationship which in turn can lead us to address the concept of

causality, in demography.
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Chapter 4

Demographic Analysis

4.1 Introduction

So far, orbits discussed for both Agincourt data and illustrative examples were limited to

a single social unit. Of course sociologists and demographers are concerned with behaviour of

populations. In this chapter, we focus on this important aspect and present the analysis of orbits

at the population-level using Agincourt data.

Population study in the social sciences is concerned with everything that influences or can be

influenced by population size, distribution, processes, structure, or characteristics [126, 124, 125,

127]. In this chapter, we consider the (e, χ)−plane in real number space Γn or sequence space Sn

and use it as the space of visualization of the population orbits. We use the techniques developed

in the previous chapter, per household, and apply them at the population-level in order to provide

an analysis of the dynamics. Here, particular attention will be placed on the determination of the

structure or characteristics of the population using patterns of social unit orbits at any one time

and in time series. Identification of sub-populations will be of interest as will the dynamics of these.

4.2 Population-level dynamics models

Before we discuss the general orbit theory at the population-level, it is important that we first

discuss the parameters of the models. Note that because the methods presented here constitute

an extension of those discussed in the previous chapter, the properties of certain parameters of the
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data presented in the previous chapter can be assumed to be the same. Thus, it is reasonable to

keep the number of questions n, in the questionnaire, the length of the observation time of each

social unit lk and the total number s of social units in the population fixed.

4.2.1 Initial conditions of the social systems

In order to analyse the dynamics of the population in the (e, χ)−plane, the state ζkt = (ekt , χ
k
t )

of each social unit k, must first be determined, for each time step t. In the previous chapter we

made one assumption only (granted purpose and question set) to determine the state of a social

unit. This was to initialise all example orbits from Agincourt in an arbitrary significance level, for

example χk0 = 0.185 ∈ I3
3 or θk0 = 012 ∈ Σ3

3. The orbit arising from this is unique, but we have not

yet developed a rational strategy for initial question order.

There are several scenarios we could imagine. For example, all social units can start at the

same significance level, or we can randomly choose the initial significance value for each social unit.

Another scenario would be to fix the initial significance value for each social unit according to the

specific frequency of questions, changing answer values of that social unit.

In this thesis, we will use the following two strategies. First, we suppose that the initial question

order is randomly chosen in Sn for each social unit. We refer to this case as the ”riqo” (random

initial question order) scenario. This may be justified in the case where most orbits are random

and will thus visit all states in the space in a random order.

Second, the initial question order of each social unit is fixed according to the specific frequency

of answer value change of that social unit taken from longitudinal data. We refer to this case as the

”fhiqo” (frequency of household initial question order) scenario. This is natural in the sense that the

operation ϕ (3.54) sorts states by frequency. These orbits start in an ”already” sorted state, with

known fitness and they will thus tend to converge more rapidly to any sub-space than will a ”riqo”

orbit. When frequency of answer value change is uniform for a social unit, it is reasonable to adopt

the population average distribution of frequencies. Demographic time series are relatively short and

when orbits are indeed random, and where there is Brownian motion [128, 129, 130, 48, 51, 52],

convergence of an orbit to stable question order is typically slow (∝
√
t). Note that in statistics

we hypothesize a population level order and then are careful not to bias outcome in favour of that

hypothesis. Here, the present strategy to change question order by frequency is a deterministic
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action to expose sub-populations, and is not a hypothesis. We may then bias initial conditions to

force out sub-populations.

A third strategy might be to start all social unit orbits with question order corresponding to

the population frequency, and with their known fitness. In this case all orbits start at the same

significance value χ0. There is no advantage in doing this when the detailed knowledge is available

and we reject this scenario.

4.2.2 Population transition matrix

Using the definition (3.47) for each social unit, it is possible to determine the jumps each social

unit in the population can make in Γn. If each possible jump in Γn is associated to a transition as

described in Figure 3.21, then this leads us to find all possible transitions of the population. Thus,

the associated transition matrix can be determined using the definitions (3.69) and (3.70).

Let TPn denote the transition matrix for a population P, then we recall definitions (3.69) and

(3.70), that is

TPn = [tPij ] i, j = 1, 2, 3, . . . n!× 2n (4.1)

where

tPij =







1 if ∃ k ∈ {1, 2, 3, . . . , s} | i→ j

0 if i 9 j .
(4.2)

We can use (4.1) and (4.2) to define the transition matrix for the population as a function

of time. Let TPt,n denote the transition matrix related to a questionnaire of n questions, for the

population P consisting of s social units, at time t. Similarly, we define TPt,n as follows:

TPt,n = [tPt,ij ] i, j = 1, 2, 3, . . . n!× 2n , (4.3)

where, at time t

tPt,ij =







1 if ∃ k ∈ {1, 2, 3, . . . , s} | i→ j

0 if i 9 j .
(4.4)

Thus, TPt,n gives important properties of the social dynamics of the population P over time. For

instance, it can help to capture when and what new social changes have been observed in the

population P and also what other social dynamics are removed from the population. To illustrate,

suppose that at time t, for a certain transition i→ j, we have tPt,ij = 0. This means that the social

change related to the transition i→ j does not exist in the population at time t. If after a certain
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period of time τ ≥ t, surprisingly we find that tPτ,ij = 1, then we can use τ as a reference in time

that this particular social change started to be observed in the population. Another example could

be the identification of an observation time, say, tdramatic where most of the negative social changes

began in the population.

The properties of the time-dependent transition matrix TPt,n can help to check the validity of the

data. Suppose that data for a population have been collected for each time t, 0 ≤ t ≤ l. Compute

the transition matrix Tn = (tij) of all theoretically possible transitions. This is given by (3.78). If

there exists tPij = 1 when tij = 0, there is an error in the data. If there exists tPij = 0 when tij = 1,

it is not an error but signals that a transition does not take place in P.

It is important to note that, in general, TPn 6= TP
′

n , P 6= P ′. Thus if P is the population of

households where child education is favourable, P ′ is the population where it is not favourable,

comparison is of obvious interest.

According to the definitions (4.1), (4.2), (4.3) and (4.4) of the transition matrix, we are able to

know whether or not (and when) a social change related to a certain transition i → j happens in

the population. However, the transition matrix does not provide us with the information of how

significant a certain social change is in the population, which is very useful to sociologists in order

to advise policy-makers.

4.2.3 Population density matrix

There are several properties of Γn or Sn that can be of particular interest to sociologists. For

example, they might be concerned with exploring the information about how many social units are

in each state of interest in Γn. Suppose that a specific state ζHIV = (eHIV , χHIV ) is identified [103]

as a new (very unfavourable) state in the population, perhaps a case of HIV infection newly found in

an HIV-free population. If intervention strategies have to be developed in order to reduce the spread

of this infection, then public health researchers would like first to investigate the dynamics of the

spread of HIV infection in the population before implementing any of the intervention strategies.

Thus, their particular attention would be more focused on counting the social units that are in

HIV-state at each time t and also investigating how these figures change over time. With this kind

of information they can better inform policy-makers on certain recommendations or interventions

leading to assist the population with regard to this kind of infection.
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Suppose a specific transition (iTB)→ (jHIV ) is investigated in order to examine whether or not

TB infection leads to HIV-infection, then public health researchers would also need to determine

the number of social units making this specific transition i→ j at each observation time t, in order

to control the dynamics of TB infection in the population and understand why is it assumed to be

responsible of HIV infection. This is possible causal information under some purpose.

In general, suppose again that we investigate the dynamics of some demographic events in a

given population P. Assume that each social unit k is observed for a period of time lk. If a specific

transition i → j is of great interest to policy-makers, then the answers to the following questions

would give some insights in the understanding of the dynamics of the demographic events under

consideration.

1. How many social units in the population made the transition i → j at a given time t,

0 ≤ t ≤ lgiven?

2. What are the transitions that happen the most in the population?

Define the density matrix for the entire population up to time t as follows:

DP
n = [dPij ] i, j = 1, 2, 3, . . . n!× 2n (4.5)

where

dPij =















s
∑

k=1

t
∑

t′=0

tkt′,ij if i→ j

0 if i 9 j .

(4.6)

Define the density matrix for each observation time t′ = 1, 2, . . . , t.

DP
t′,n = [dPt′,ij] i, j = 1, 2, 3, . . . n!× 2n (4.7)

where

dPt′,ij =















s
∑

k=1

tkt′,ij if i→ j

0 i 9 j

(4.8)

The properties of TPn might be distinct from Tn and give valuable information regarding events

that do not occur in P. There is no theoretical density matrix Dn. Note that DP
n , D

P
t,n are unique

to P and can be very different for P 6= P ′; thus migration might be absent in an urban community,

present in a rural community [131, 132, 133, 134].
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4.2.4 Population flux vector

The elements dt,ij of DP
t,n do not directly measure how the density of any state changes over

time. To achieve this we use the definitions (4.7) and (4.8) to define a measure which captures that

change. The flux is a net flow [135] into state i, per unit time and is

δt,i =
d

∑

j=1,j 6=i

(dt,ji − dt,ij), t ≥ 1. (4.9)

Note that δt,i can either be positive or negative. If δt,i > 0, it means that there are increasing social

units in state i at time t. If δt,i < 0, it means there is a decrease in the number. If δt,i = 0, then

in-flow equals out-flow. This indicates that state i is a steady state [135, 136].

In physics net quantity flowing into a state per unit time is called flux. We define the population

flux vector at time t as follows.

fP
t

= (δt,i) i = 1, 2, 3 . . . , n!× 2n, t ≥ 1. (4.10)

4.3 Agincourt population dynamics

In this section we use the Agincourt data as described in the second chapter to discuss the

population dynamics. The discussion of this section is organized as follows. First, we describe

the properties of the Agincourt transition matrix TAg3 , density matrices DAg
3 ,DAg

t,3 and the flux

fAg
t,3
. Second, we present and discuss not one but all orbits of the Agincourt population. Finally, we

provide a detailed demographic analysis of the Agincourt data with respect to changes in household

characteristics and how they affect educational progression of children.

As stated in (2.1), for the analysis of the Agincourt data, the number of questions is fixed

to n = 3. The total number of social units in the present studied population sample is fixed to

s = 2669 which represents the number of households with an observation time l ≥ 5 in the final

selected studied population sample (see Section 2.5.3). The average length of observation time for

the Agincourt data is l = 7.115 (years).

We refer to Figure 2.2 for the frequency of value change for an answer to each question. This

shows that Agincourt dynamics is dominated by absence of biological mother (about 86.72%),

adult death (about 13.12%) with minor heads of households (about 0.16%). Figure 2.3 displays the

distribution of the number of answers that change value at each time step. From this distribution,
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the average number of questions that change per time step is calculated and we found that it is

about 0.53. The number of answer changes per time step is dominated by no change (idle), (about

48.76%) and one change (about 47.9%).

4.3.1 The ”fhiqo” and ”riqo” starting strategies

We present in (4.14) and (4.15) the transition matrices for the Agincourt population respectively

for the ”fhiqo” and ”riqo” scenarios. To better understand the discussion of the differences between

the properties of the two scenarios, we present the difference T riqo,fhiqodiff = TAg(riqo) − TAg(fhiqo) in

(4.16).

Although the properties of the transition matrices for any given population data depend only

on its own characteristics, it is possible to interpret them with respect to the properties of the

theoretical transition matrix as described in (3.79), (3.81). Thus, it is important to also discuss

the properties of the difference T Theo,fhiqodiff = T3 − TAg(fhiqo) as given in (4.17) and T Theo,riqodiff =

T3 − TAg(riqo) as given in (4.18).

We examine the properties of the Agincourt transition matrices to time t to derive some social

properties of the Agincourt population as proposed in (3.74). Directly from (4.14) and (4.15), we

find the following results:

48
∑

i,j=1

(t
Ag(fhiqo)
ij ) = 58,

48
∑

i,j=1

(t
Ag(riqo)
ij ) = 93

d
∑

i,j=1

(tij) = 384. (4.11)

Det (T
Ag(fhiqo)
3 ) = Det (T

Ag(riqo)
3 ) = Det (T3) = 0 . (4.12)

Trace (T
Ag(fhiqo)
3 ) = 11, Trace (T

Ag(riqo)
3 ) = 17, Trace (T3) = 48 . (4.13)

As stated in the previous chapter, again we understand that for the Agincourt population not

all transitions are allowed. Thus, the result (4.11) gives the total number of transitions that hap-

pen in the Agincourt population, with respect to each of the two mentioned scenarios. Note that

the total number of transitions under the ”fhiqo” scenario is about 15.10% of the total number of

possible transitions (3.71). Under the ”riqo” scenario we have about 24.21% of the total number

of transitions. As expected, we can see that the ”riqo” scenario gives more transitions (about 9%)
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compared to the ”fhiqo” scenario. This is an evidence that ”fhiqo” gives the expected fast con-

vergence and we can immediately attach importance to this strategy. Given the short observation

time (l = 7.115), this is useful.

To judge ”riqo”, we must first discuss randomness of orbits. It is clear that a random process

[128] would visit all possible states (or make all possible transitions as in theoretical T3) under

some probability distribution. Because households do not do this, the dynamics is not random in

Γ3 or S3. We should not then, select the ”riqo” starting strategy, for the Agincourt data. Note that

dynamics may still be random within transitions defined by TAg3 .

The result (4.12) is the same as that of the theoretical transition matrix (3.79) and shows that

regardless of the initial order that we give to the questions, the dynamical system concerning the

Agincourt data related to the present questions is not invertible. As a result, there are non-reversible

transitions in Agincourt data. Such ”one-way” change clearly relates to causality.

Note that if each state idles, then for n = 3 questions we have 48 (3.81) idling states. The total

number of idling states for each scenario is given in (4.13) for the present Agincourt population

data. We find that under the ”riqo” scenario, we have 35.41% of states that idle while the ”fhiqo”

scenario presents about 23% of idling states. Under the ”riqo” scenario, each social unit is given a

random initial question order, which in turn implies a random initial state and it has more chance

to start in an idle state.

We observe that there are 3 transitions (19→ 14, 20→ 38 and 33→ 44) that occur under the

”fhiqo” which are not observed under the ”riqo”. Note that these three transitions relate to the rare

case (about 0.16%) of a change in question 1 (household head is a minor). Thus, we discover that

the ”fhiqo” scenario is not only good in convergence but has an additional advantage of revealing

transitions that are lost by randomly sampling initial states.

Finally the results (4.17) and (4.18) are useful for checking errors in the data. Note that for

every single transition i → j, we must always have T Theo,fhiqodiff
ij

≥ 0 and T Theo,riqodiff
ij

≥ 0 otherwise

there is an error in the data. No such error was found in the Agincourt data set.
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T
Ag(fhiqo)
3 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(4.14)
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T
Ag(riqo)
3 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(4.15)
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T
riqo,fhiqo
diff =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4.16)

107



T
Theo,fhiqo
diff =

1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

(4.17)
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T
Theo,riqo
diff =

1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

(4.18)
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4.3.2 Agincourt density matrices

In this section, we present and discuss the properties of the Agincourt density matrices. We

first discuss the properties of the density matrix for the overall observation time. After that we

will examine the dynamics in the density matrices for each observation year from 1998 to 2006. We

recall that the density matrix of year t is calculated from the transitions occuring between year t

and year t + 1. Thus, with this definition and considering the range of the Agincourt observation

time, it is convenient that no Agincourt density matrix is defined at t = 2007.

Based on the present two scenarios, we present in (4.21) and (4.22) respectively the Agincourt

population density matrices for ”fhiqo” and ”riqo” scenarios. To facilitate the discussion, we extract

the dominant transitions for all years of study in Tables 4.1 and 4.2, for the indicated scenario. It

is clear that these two density matrices are not symmetric. Of course this happens because TAg3 is

not symmetric. But now we see that even where dij , dji 6= 0, density can be different. For example,

d23,24 < d24,23 for all years of study. It is also clear that the Agincourt population behaviour with

respect to the present questions is not totally random that is, random over Γn or Sn. There must be

a deterministic process leading the social dynamics in the Agincourt population to these sub-spaces.

The dynamics within a sub-space might be random [128] or regular.

The analysis of the density matrix is quite complex compared to that of the transition matrix

where entries are binary numbers. This is where we can measure the impact of each social change.

Note that these two density matrices, (4.22) for ”riqo” and (4.21) for ”fhiqo” are computed for the

whole observation time. Thus, they contain the information about the population dynamics for the

observation time l.

Before comparing the two density matrices, it is important to verify that the total number of

transitions in ”riqo” and in ”fhiqo” must be as follows

48
∑

i,j=1

dij
Ag(riqo) =

48
∑

i,j=1

dij
Ag(fhiqo) = 16321 (4.19)

because each scenario under consideration does not delete any transition that happens in the

population.

Thus, any difference that we will mention in the discussion, will concern the distribution of the

number of such transitions in each element of the density matrix. A quick look at the entries of

each density matrix shows the difference in the distribution of numbers for each matrix. We see
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that there are more non-idling transitions happening in the Agincourt population under the ”riqo”

scenario compared to the ”fhiqo” (see (4.16)). This is consistent with our earlier discovery that

where initial conditions are fixed by frequency of change of questions, there is rapid convergence of

orbits.

More importantly, the four transitions

24→ 24 ←→ 23→ 23

(111, 210) (110, 210)
(4.20)

are dominant for the two scenarios. Thus, regardless of the scenario, we are able to capture the

social phenomena that lead to significant change within the population. We see that Agincourt

households that get into a favourable state 24 are more likely to stay in that state for a long time

as compared to unfavourable state 23. We understand from Figure 3.21 that this is the case of the

advantaged, fully fit Agincourt sub-population.

On the other hand, we observe that state 23 corresponds to Agincourt households with absence

of the biological mother. What happens in these households is that once a biological mother leaves

her household, she takes time to return into the same household. As a result, we have a significant

number of transitions 23→ 23.

Now let us examine some of the important transitions that differ between the two scenarios.

The following are some of the transitions that occur in the ”riqo” but do not happen under the

”fhiqo” scenario. They are 7 → 7 ↔ 8 → 8, 48 → 48 → 23, 40 → 40 → 7, 16 → 16 → 7, 36 → 8

and 44→ 24.

First of all note that we have already explained (using the result (4.13)) why there are more

idling states in the ”riqo” than in the ”fhiqo” scenario. Now apart from the idling transitions, in

all the other above transitions, with the help of S3 (see Figure 3.20) we can clearly see that only

question q0, which is related to the absence of the biological mother, is changing answer value.

This has already been identified as the dominant social changes that is observed in the Agincourt

population.

Secondly, if we look at the fitness value of each of the states of the above transitions, it is

possible to associate each of them to the states 23 and 24 which are again the common dominant

transitions as mentioned above. For example the states 7 and 23 have the same fitness value, the

states 8, 16, 24, 40 and 48 have the same fitness value.
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Finally, we can clearly see that these transitions are built up of states that are defined by

randomly selecting significance value. Thus, we can conclude that Agincourt household orbits that

normally should start at θ = 120 were given by the ”riqo” scenario a different significance value,

for example θ = 210, 021, 012.

In order to explore the information from the density matrix Driqo
3 or Dfhiqo

3 , much attention of

demographers will be focused on the significant numbers. We now assume a transition significance

level, dij ≥ 100, in the remainder of this thesis.

It is important to identify the social forces that drive significant transitions. However, it can be

quite challenging to go through every element dij of the density matrix in order to investigate these

properties. Thus, we generate the following tables (4.1) and (4.2) respectively from Dfhiqo
3 and

Driqo
3 . Through each of these table, we have in a reduced form, all information that is necessary to

identify the significant social phenomena leading social changes within the Agincourt population.

These tables display the sub-region of S3 where the attention of demographers must be focused.
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D
fhiqo
3 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 12 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 15 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3164 3163 0 0 0 0 129 0 132 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3650 4336 0 0 0 0 125 0 178 0 2 0 0 0 0 0 0 0 00 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 90 0 0 0 0 2 109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 116 0 0 0 0 5 127 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 139 0 0 0 0 0 0 0 7 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 194 0 0 0 0 0 0 0 11 253 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 21

(4.21)
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D
riqo
3 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1396 1302 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 0 54 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 0 1234 1329 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 54 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 95 0 0 0 0 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 291 0 0 0 0 0 0 0 0 381 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 17 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1517 1512 0 0 0 0 57 0 65 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1365 1477 0 0 0 0 50 0 75 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 82 0 0 0 0 1 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 158 0 0 0 0 8 178 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 117 0 0 0 0 0 0 0 4 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 366 0 0 0 0 0 0 0 18 503 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 287 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 427 0 0 0 0 0 0 13 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 87 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 25

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 329 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 516

(4.22)
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Table 4.1: Sorted number of transitions from the density matrix Dfhiqo
3 , dij ≥ 100.

state i state j dij

24 24 4336

24 23 3650

23 23 3164

23 24 3163

32 32 253

32 23 194

24 31 178

31 23 139

23 31 132

23 29 129

30 30 127

31 32 126

24 29 125

30 24 116

29 30 109

Table 4.1 and Table 4.2 display by decreasing order the transitions that occur. Using each state

index given in columns 1 and 2 of each table, and with the help of the state space S3 (see Figure

3.20), we can identify the fitness and significance associated to each transition. For example 24

indexes the state (111, 120) ∈ S3. This state is one of the above-mentioned favourable states in S3.

It corresponds to the situation of households being headed by adults, in which all children from age

6 to 17 years live with their respective biological mothers. No adult death occurs in the Agincourt

households which are at this state.

Tables 4.1 and 4.2 show that regardless of the scenario, the idling state 24 or (111, 120) is the

most common in the Agincourt population. Thus, we find that most of the Agincourt households,

once they get into this particular condition, stay there for the rest of their observation time, which

is a positive social change that happens in the Agincourt population.

Note that for all the results discussed so far, the population dynamics under the ”fhiqo” scenario
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Table 4.2: Sorted number of transitions from the density matrix Driqo
3 , dij ≥ 100.

state i state j dij

23 23 1517

23 24 1512

24 24 1477

7 7 1396

24 23 1365

8 8 1329

7 8 1302

8 7 1234

48 48 516

32 32 503

40 40 427

16 16 381

32 23 366

48 23 329

16 7 291

40 7 287

30 30 178

30 24 158

36 8 118

31 23 117

44 24 114

31 32 111

converges faster compared to the ”riqo” scenario and that the dynamics is nonetheless qualitatively

similar. It is convenient to suggest that we use the ”fhiqo” scenario for the rest of the analysis in

this thesis. We now drop the ”fhiqo” suffix and refer to DAg
3 .

Now apart from the transitions associated to idling states, we can clearly see from Table 4.1
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that the transitions 24→ 23 (about 22.36%) and 23→ 24 (about 19.37%) are the most significant

social changes to households. This might be associated to period 2 household orbits, which corre-

spond to the situation of an on-off-on-. . .move of biological mothers from the households. We note

that this type of move does not have a negative impact on other household characteristics under

consideration. In fact, the household heads are constantly adults (favourable) and there is no adult

death (favourable) in the households regardless of the biological mothers being absent or present

in the households. We find that this type of move of biological mothers is not related to negative

demographic dynamics for the households, before we consider educational default.

Table 4.1 helps to reduce the space of visualization of the population dynamics from the whole

state space Γ3 to an automatically identified region of Γ3, defined by 0.5 ≤ e ≤ 1 and 0.4 ≤ χ ≤ 0.5.

In this region, we only have only a few significant transitions to investigate. The Agincourt popula-

tion is then automatically divided into sub-populations with identified fitness and significance as we

expected in designing the reordering of questions. The sub-population of great interest consists of

households jumping between 6 states in Γ3. These states are respectively indexed by 23, 24, 29, 30, 31

and 32. Thus, all significant dynamics of the Agincourt population can be summarized in Table 4.3

in which the X entries represent insignificant (≤ 100) number of transitions.

Table 4.3: Transitions of Table 4.1: significant transitions from the density matrix DAg
3 . Note lack

of symmetry.

State index 23 24 29 30 31 32

23 3164 3163 129 X 132 X

24 3650 4336 125 X 178 X

29 X X X 109 X X

30 X 116 X 127 X X

31 139 X X X X 126

32 194 X X X X 253

From Table 4.3, we can see that the states 29 and 31 do not significantly idle. We have decided

to ignore these infrequent transitions. Consider the transition 31 → 31 or (110, 102) → (110, 102)

where d31,31 = 7. The idling state is related to households headed by adults, with the presence of

the biological mother, but at the same time with an adult death. It means that in the Agincourt
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households with the above characteristics, adult death does not significantly occur every year. Now

what transition can a household make from state 29? Only transition 29 → 30 (no adult death in

the following year) significantly happens. Note the reverse 30 → 29 (adult death in next year as

well) does not happen so often (d30,29 = 5). Basically, all significant transitions involve biological

mother.

We conclude again that the behaviour of the Agincourt population is not random with respect

to the demographic variables (2.1) because orbits do not wander over the whole space Γ3. As shown

in the above tables, the dynamics of the Agincourt population sample is concentrated in a sub-space

of Γ3. In fact, this is a direct consequence of the distribution of questions changing values that we

discussed in chapter 2. We can clearly see that according to the distribution given in Figure 2.2,

answers given to question 1, related to the household head is a minor, are almost always unchanged.

We previously argued that in such a case, this question can be deleted. As a result, the dynamics

of this population is now reduced in the space S2 ⊂ S3 that we show in Figure 4.1. Reducing

complexity is an advantage of our method. In principle we could choose more questions in Q (not

available to us) look for clustering in Γn or Sn, and then analyse sub-populations as in Figure 4.1.

Both Table 4.3 and Figure 4.1 identify typical orbits in the Agincourt population. They are

defined by transitions between the following 6 states 23, 24, 29, 30, 31, 32 of Γ3 or S3. We clearly see

these typical orbits are dominated by oscillations between states 23 and 24. There are only a few

excursions to states 29, 30, 31 and 24.

Definition 4.1. The approximate transition matrix TApprox. ∈M48×48 describes only the dominant

transitions of Table 4.3. Similarly DApprox. ∈M48×48.

4.3.3 Distribution of the number of transitions in each observation year

Figure 4.2 displays the distribution of the total number of transitions that happen in each

year of study. The dynamics is related to the results (4.11) that we discussed before. The total

number of transitions shows no dramatic changes. For each observation year the total number of

transitions that occur in the Agincourt population varies between 27 to 38. This means that the

number of transitions that occur in each observation year is less than 66% of the total number (58)

of transitions observed in the Agincourt population.
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Figure 4.1: State space Sn for n = 2 binary-valued questions with states numbered and number of

transitions. In this space, every household is headed by an adult.

As before, we summarise the dominant transitions in Table 4.4 for each year of study. Table 4.2

and Table 4.1 give dominant transitions added up over all years, dij ≥ 100, here we give dominant

transitions in each year, dt,ij ≥ 10. The exchanges 24 → 24 ↔ 23 → 23 are always present. To

recall, these are changes related to the absence of the biological mother. The new non-idling state

change is typically 22 → 32, in 1998 and 1999. It is a demographic change related to adult death.

Apart from this new transition, the distribution in each observation year is comparable to the

overall distribution of Table 4.3 and Figure 4.1.
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Figure 4.2: Distribution of the number of transitions in the Agincourt population over years 1998

to 2007.
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Table 4.4: Reduced Agincourt density matrices for the indicated year, dt,ij ≥ 10.

i j dAg
1998,ij

24 24 725
24 23 365
23 24 219
23 23 133
32 32 33
22 32 22
24 31 17
32 23 16
30 24 16

i j dAg
1999,ij

24 24 738
24 23 555
23 24 315
23 23 233
32 32 43
32 23 33
24 31 30
30 24 25
22 32 13
23 31 10

i j dAg
2000,ij

24 24 560
24 23 451
23 24 402
23 23 359
32 32 38
24 31 26
32 23 23
31 23 17
24 29 17
31 32 17
23 31 15
30 30 13
30 24 11

i j dAg
2001,ij

24 24 564
24 23 447
23 24 409
23 23 394
32 32 36
32 23 29
31 32 23
24 31 20
31 23 16
30 30 16
23 29 15
23 31 15
24 29 13
29 24 12
29 30 10

i j dAg
2002,ij

24 23 415
23 23 392
24 24 351
23 24 342
23 31 23
32 32 23
32 23 22
24 29 21
31 32 18
31 23 16
24 31 14
23 29 13
30 30 13
30 24 12
29 30 11
29 24 10

i j dAg
2003,ij

23 23 457
24 23 433
23 24 406
24 24 404
32 32 26
32 23 24
24 31 24
23 29 23
31 23 19
29 30 19
23 31 18
31 32 17
29 24 16
24 29 16
30 30 10

i j dAg
2004,ij

23 23 464
24 23 406
23 24 387
24 24 374
23 29 27
31 23 24
32 32 23
32 23 22
29 30 20
29 24 19
31 32 19
30 30 17
24 31 17
23 31 13
24 29 10

i j dAg
2005,ij

23 23 432
23 24 382
24 24 355
24 23 344
30 30 24
23 31 22
32 23 21
32 32 21
31 23 20
24 31 19
23 29 18
24 29 18
29 24 17
30 24 17
29 30 17

i j dAg
2006,ij

23 24 301
23 23 300
24 24 265
24 23 234
30 30 19
31 23 18
29 30 17
24 29 16
31 32 16
29 24 13
23 29 13
23 31 13
24 31 11
30 24 10
32 32 10
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4.4 Agincourt flux vector

We use the definition (4.10) to discuss the Agincourt flux vector for each year of study. We

present the results in Table 4.5. Consider the dominant states 23 and 24. We note immediately the

flow into 23, and out of 24 for all years 1998−2004. There is a slow decay in the magnitude of these

flows. In 2005, 2006 the flows reverse. Since the fluxes are small we have not attached importance

to this phenomenon. In Figure 4.3 we plot |δt,23|, |δt,24| and clearly see that the dominant fluxes are

balanced between 23 and 24. Thus while the magnitude of flux may change, it changes approximately

equally, but in opposite direction. This balance is a constant feature of the dominant Agincourt

dynamics.
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Figure 4.3: Time-dependent flux over the dominant states 23 and 24.
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Table 4.5: Agincourt flux vector for the indicated year.

i δ1998,i

1 0
2 0
3 0
4 0
5 0
6 0
7 1
8 0
9 0
10 0
11 0
12 0
13 0
14 1
15 0
16 -2
17 0
18 0
19 -1
20 0
21 -17
22 -24
23 158
24 -154
25 0
26 0
27 0
28 0
29 16
30 -5
31 21
32 12
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 0
41 0
42 0
43 0
44 -1
45 0
46 0
47 0
48 -5

i δ1999,i

1 0
2 0
3 0
4 0
5 0
6 0
7 1
8 -1
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 -1
21 -4
22 -14
23 267
24 -249
25 0
26 0
27 0
28 0
29 3
30 -12
31 23
32 -10
33 0
34 0
35 0
36 0
37 0
38 1
39 0
40 0
41 0
42 0
43 0
44 0
45 0
46 0
47 1
48 -5

i δ2000,i

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 1
9 0
10 0
11 0
12 0
13 0
14 -1
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 -5
23 70
24 -79
25 0
26 0
27 0
28 0
29 13
30 -3
31 7
32 0
33 2
34 0
35 0
36 0
37 0
38 -1
39 0
40 0
41 0
42 0
43 0
44 -3
45 0
46 0
47 -2
48 1

i δ2001,i

1 0
2 0
3 0
4 0
5 0
6 0
7 -1
8 1
9 0
10 0
11 0
12 0
13 1
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 1
22 -3
23 56
24 -50
25 0
26 0
27 0
28 0
29 5
30 5
31 -3
32 -6
33 -2
34 0
35 0
36 0
37 0
38 0
39 0
40 0
41 0
42 0
43 0
44 0
45 0
46 0
47 1
48 -5
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Agincourt flux vector for the indicated year (continued).

i δ2002,i

1 0
2 0
3 0
4 0
5 0
6 0
7 1
8 -1
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 1
22 0
23 76
24 -85
25 0
26 0
27 0
28 0
29 13
30 -2
31 5
32 -6
33 0
34 0
35 1
36 0
37 0
38 0
39 0
40 0
41 0
42 0
43 0
44 -1
45 0
46 0
47 -1
48 -1

i δ2003,i

1 0
2 0
3 0
4 0
5 0
6 0
7 2
8 -2
9 0
10 0
11 0
12 0
13 -1
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 -1
22 1
23 30
24 -43
25 0
26 0
27 0
28 0
29 7
30 8
31 7
32 -8
33 1
34 0
35 -1
36 1
37 0
38 0
39 0
40 0
41 0
42 0
43 0
44 0
45 0
46 0
47 0
48 -1

i δ2004,i

1 0
2 0
3 0
4 0
5 0
6 0
7 2
8 -1
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 -2
22 -2
23 26
24 -17
25 0
26 0
27 0
28 0
29 -2
30 15
31 -12
32 -4
33 0
34 0
35 0
36 -1
37 0
38 0
39 0
40 0
41 0
42 0
43 0
44 -1
45 0
46 0
47 0
48 -1

i δ2005,i

1 0
2 0
3 0
4 0
5 0
6 0
7 -3
8 3
9 0
10 0
11 0
12 0
13 1
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 2
22 4
23 -38
24 36
25 0
26 0
27 0
28 0
29 1
30 -3
31 12
32 -14
33 -1
34 0
35 0
36 0
37 0
38 0
39 0
40 0
41 0
42 0
43 0
44 0
45 0
46 0
47 0
48 0

i δ2006,i

1 0
2 0
3 0
4 0
5 0
6 0
7 -1
8 1
9 0
10 0
11 0
12 0
13 1
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 2
22 -1
23 -72
24 63
25 0
26 0
27 0
28 0
29 -1
30 7
31 -10
32 11
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 0
41 0
42 0
43 0
44 0
45 0
46 0
47 0
48 0
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4.5 Initial and final states of the Agincourt population in Γ3

One way to measure the improvement in social changes of this population is to compare the

initial and final states of that population. This comparison can help us to understand the direction

of movement of the population which in turn can be associated to social phenomena.

In Figure 4.4 and Figure 4.5, we present the distribution of the initial states of the Agincourt

population sample in Γ3. In particular, Figure 4.4 displays the phase diagram of the initial states

of 1998 while Figure 4.5 shows the distribution of the number of Agincourt households initially in

each state. This initial state has been chosen by the ”fhiqo” strategy.

From the above figures, we clearly see that there are two dominant initial states in this pop-

ulation. The first dominant state is 24, (0.875, 0.555) ∈ Γ3 which defines Agincourt households

headed by adult in which all children (age between 6 and 17) live with their biological mothers. In

these Agincourt households no adult death is registered. This state defines about 67.55% of the

Agincourt population. The second state is 23, (0.75, 0.555) ∈ Γ3, with the same significance value

is related to the Agincourt households with at least one child without a biological mother. This

state defines about 23.34% of the population. About 9.11% of the population is distributed over

the rest of states in Γ3.

On the other hand, we identify the significance χ that dominates in the Agincourt population.

Because we start each household at a significance level related to the frequency of questions that

change answer values in that household (fhiqo), we automatically observe that the significance

level of the Agincourt population is initially given by χAg = 0.555 as displayed in Figure 4.5. This

corresponds to question order θ = 120.

Similarly, Figure 4.6 and Figure 4.7 show the final distribution of the Agincourt population in

2007. We find that the Agincourt population ends its observation time in the same two dominant

states of Figure 4.5. This is not surprising because we have chosen initial conditions by the ”fhiqo”

strategy. Then what is of interest in these diagrams is the way the number of households redistribute

over the dominant states. Now, we have 45.89% of the population at the above first dominant state

and 44.81% at the second dominant state.

Now if we compare the initial and final distributions for this population, we can measure social

changes that happen in the Agincourt population for the given observation time. First, we observe

that most of changes happen between the two dominant states as mentioned above. There is
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a decrease of about 21.66%, in the number of households that were initially at state (e, χ) =

(0.875, 0.555), and an increase of about 21.47% in the number of households that were initially at

state (e, χ) = (0.75, 0.555). This shows a balance in the number of households moving between the

two states in both directions. This is consistent with the fluxes of Table 4.5 and with the decrease

in the magnitude of fluxes from 2000 towards we expect that this balance of numbers is now

stable. It is clear that the important change is the transition (111, 120) → (110, 120). Thus, from

this transition, we can easily identify the social change as related to the absence of the biological

mother. The leading demographic phenomenon for this sub-population, involves about 26.57%, or

more than a quarter, of the Agincourt population.

These two distributions only give us an idea about how the population moves from its initial

position to its final position. However, they do not inform us about what happens between the

initial and the final observation times. In order to include the analysis of the dynamics between

the extreme observation times, we need a more detailed visualisation of orbits. Thus, in the next

sections, we will present the time series and the phase diagram of the states of the population for

the whole observation time.
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Figure 4.4: Initial states of the Agincourt households in Γ3.
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Figure 4.5: Initial distribution of the number of Agincourt households s, over states of Figure 4.4.

4.6 Visualization of all orbits of Agincourt data.

Figure 4.8 displays the time series of the fitness component of the states of the Agincourt

population while in Figure 4.9 we show the time series of the significance component of the states.

All 2669 orbits of our studied population are plotted.

Figure 4.8 shows that most of the orbits are concentrated in the fitness region defined by

0.75 ≤ e ≤ 0.875. Although, this region is fitter, it is difficult to identify the questions that change

answer values in that region. Thus, we need to look at the significance values to indicate questions

that change answer values. Figure 4.9 shows a concentration of orbits in the significance region

defined by 0.407 ≤ χ ≤ 0.555. Many orbits obviously overlap and these figures do not give a

sensitive measure of number of households but this conclusion is supported by our knowledge of

the dominant transitions involving states 23 and 24. In this figure, we have the knowledge of the

questions that change answer values. This region of Γ3 is defined by θ ∈ {102, 120}. We identify

that dynamics with adult household heads. Here, Figure 4.9 displays all 6 possible significance

values that we can have with n = 3 questions.
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Figure 4.6: Final states of the Agincourt households in Γ3.

We notice a few unfavourable fitness jumps to e = 0, in 2001 and 2005 which reveal the few

cases of Agincourt households headed by minors, with an absence of biological mothers and where

an adult death is registered at these observation years. Note also that among the 8 possible fitness

states that we can have with n = 3 questions, Figure 4.8 displays only 7 of them. With the help

of diagram of the space S3 (see Figure 3.20), we identify that the missing fitness state is given by

e = 0.125 and related to the binary sequence b = 001. In order to explore some valuable information

regarding this missing state, we must first attach a significance level to this state which in turn

will help to associate questions to their answer values. There are 6 possible significance values

that we can attach to this binary sequence, to define a state in S3. It is convenient to start by

examining the Agincourt population significance value given by θ = 120. Thus, if we attach this

significance level to that binary sequence, we will then define the state (wb, θ) = (001, 120). This

state defines households headed by minors, with an adult death and the presence of the biological

mother. This is a situation that is not possible to find in the Agincourt population. In fact, even if

there is an adult death that occurs in the household, we assume that if the biological mother is in

the household and that there is no other adult that can head the household, that biological mother

automatically becomes the head of that household.
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Figure 4.7: Final distribution of the number of Agincourt households s, over states of Figure 4.6.

We have identified dominant dynamics as being in the sub-space of Figure 4.1. We have defined

in 4.1 approximate Agincourt transition matrix TApprox., defined in turn by Table 4.3. It is this

dynamics which we define to be of demographic population-level, importance.
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Figure 4.8: Time series of the fitness component, et, of all the Agincourt households, with children

of school-going age.

4.6.1 Orbits of the Agincourt population in Γ3

In the previous section we clearly showed that the time series for both the fitness and significance

components give useful information to identify for example an observation time when a specific

social change occurs. However, it is difficult to interpret the dynamics of fitness and significance

orbits separately. In particular, we have seen that with any pair of consecutive fitness values, we

are unable to identify what questions change answer values between the two times. Thus, the

one-dimensional space of visualisation presents limitations. To overcome these, we now visualize

orbits in Γ3.

Figure 4.10 shows the orbits of the whole population of 2669 Agincourt households in Γ3, for

all observation years from 1998 to 2007. Now that we have both the fitness and the significance

values together, their combination helps to link change in orbits to change in answer values with

now the knowledge of the changing questions. We identify in Figure 4.10 that {(e, χ) | 0.555 ≤ e ≤
0.875, 0.407 ≤ χ ≤ 0.555} ⊂ Γ3 is the sub-space of Γ3 where most of the Agincourt population

dynamics happen. Figure 4.10 is not sensitive to numbers of households in each transition and
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Figure 4.9: Time series of the significance component, χt, of the Agincourt households, with children

of school-going age.

again we use earlier experience. Note that this sub-space is a Cartesian product of the fitness and

significance spaces that we previously identified in Figure 4.8 and Figure 4.9 respectively. In this

region changes are related to questions q0 and q2.

In Figure 4.11 we present the same orbits of Figure 4.10 now viewed in time (vertical axis). We

see that the same above sub-space of Γ3 is identified, where most Agincourt dynamics occur. But

now, we have a clear view of these changes over time. In particular, the two points (0, 0.259, 2001)

and (0, 0.259, 2005) of Figure 4.11 show the two years where the associated unfavourable jump

occurs. Note emergence of the usual two dominant states. Recall that the first state 23, (e, χ) =

(0.75, 0.555) reveals Agincourt households with absence of the biological mother and the second

state (e, χ) = (0.875, 0.555) characterises Agincourt households with fitter states.

The dynamics outside that sub-space reveal some rare changes that we mentioned above. For

example unfavourable jumps to (e, χ) = (0, 0.259) related to Agincourt households headed by

minors, with absence of biological mother and an adult death.

In Figure 4.12 we display the overall distribution of the number of visits that households made
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over the states of Γ3. It is clear that the above-mentioned dominant states 23 and 24 are identified.

As previously noticed from Table 4.1, we see that over our observation period 1998 − 2007, about

50.11% of the visits involves state 24 and about 40% involves state 23. Less than 10% of the visits

were related to other states of Γ3.
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Figure 4.10: Phase diagram of the Agincourt households.
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Figure 4.11: Orbits of the Agincourt households with time dependent (vertical axis).
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Figure 4.12: Distribution of the number of the Agincourt household orbits over Γ3.

133



4.7 Effect of household change on children’s progression in school

In Chapter Two, we showed that the Agincourt data collected for this study has some limita-

tions. The information on the education in Agincourt is only available for the following years: 1992,

1997, 2002 and 2006. Note that this study does not deal with missing values in the data. Because

of these Agincourt data issues, we cannot add a fourth question to the three questions that define

household characteristics, for an Agincourt household, in order to include the education status of

the household. The education status of the household is simply measured by asking whether or not

there is a child in the household who repeats a year of study too often.

4.7.1 Colour coding and definition of educational default

We associate the colour of an orbit with defaulting or non-defaulting education in households.

Red associates to orbits of households with a defaulting child and green to orbits of households

without a defaulting child anywhere during its whole observation time.

As stated in Chapter Two, in order to measure the progress in education of children in the

present study population, we must first define parameters that will be used to measure that progress.

In the present data, we have for each observation year that the data is available, the following

information for each child: ID, age and the total number of completed years of education. Let

lfailure define the maximum number of education years that a child fails during his/her school life.

Thus, we associate the education progress to these 3 parameters.

Now, if we define a defaulting child as a child who fails lfailure times during his/her school life,

then we must be careful in choosing the value of lfailure in relation with the study observation time.

For the present analysis, the observation time has been sampled to the period 1998− 2007 and the

average observation time is l = 7.115.

Recall that for each household, for each child in that household, the data we collect gives the

information about the age of the child and the number of complete years of education of that child.

Let a denote the age of each child. Then we can associate the number of education years function

to the age of the child by the function

y : a 7→ y(a) . (4.23)

Note that we cannot measure whether or not a child of age a < (7 + lfailure) has failed any
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particular grade lfailure times. We simply assume that a child at age a < (7 + lfailure) whatever

the associated education value y(a) could be, is not a defaulting child.

Now for other ages a ≥ (7 + lfailure), we define a defaulting child as follows:

If y(7 + lfailure + k) > (lfailure − 1) + k, return: child is non-defaulting

If y(7 + lfailure + k) ≤ (lfailure − 1) + k, return: child is defaulting
(4.24)

where k varies with respect to the age range. For example for the Agincourt data, the age range

is from 7 to 16 years. Thus, because we assume that lfailure ≥ 2, we will have k such that

lfailure − 2 ≤ k ≤ 7.

Directly from (4.24), we define a defaulting household as a household with at least one defaulting

child who is found at least once during its observation years. Note that the definition of a defaulting

child applies each observation year in which education data is available. However the definition of

a defaulting household is applicable for its whole observation time. We can now use the definition

(4.24) to colour defaulting households.

To illustrate, suppose lfailure = 2 years. If we accept the above assumptions, all Agincourt

household orbits with only children of age a < 9 will be non-defaulting households. Otherwise, the

following definition applies.

If y(9 + k) > 1 + k, return: child is non-defaulting

k = 0, 1, 2, . . . 7

If y(9 + k) ≤ 1 + k, return: child is defaulting

(4.25)

4.7.2 Analysis of Agincourt dynamics including education status

We start by presenting the distribution of the educational status of the Agincourt households

with respect to the value of lfailure. Thus Figure 4.13 shows how the number of Agincourt defaulting

and non-defaulting households changes as we vary lfailure.

We find that about 73.25% of the Agincourt households have at least one child that repeats

twice in the period between 1998 to 2007, and about 26.75% of the Agincourt households did not

have a child that repeats twice in the same observation period. These figures show that on average

the Agincourt population is significantly defaulting with respect to lfailure = 2. We find that most

of the Agincourt population is defaulting at this level. Because the majority of the population
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Figure 4.13: Distribution of the Agincourt households educational status with respect to lfailure.

defaults, we must suspect that this is owing to failure of the school system and it thus becomes

important to increase lfailure.

With lfailure = 3, we find 65.79% of Agincourt defaulting population against 34.21% non-

defaulting population and we must again suspect the school system. If lfailure = 4 we have a

balance in the two populations. We now have 54.17% of defaulting population and 45.82% of

non-defaulting population.

We have clearly understood by the properties of the transition and density matrices, the rela-

tionship between the Agincourt household states. The results related to the analysis presented in

the previous sections will be extracted here to better achieve the analysis of the effect of change in

household states on the education status. We give density matrices in (4.33) and (4.34).

We present in Table 4.6 the relationship of the Agincourt educational distribution including the

dominant transitions with respect to the value of lfailure. The stared entries denote the dominant

transitions. We note dominant idling in state 23 and transition 24 → 23 in the case of defaulting

households. This contrasts with dominant idling in state 24 and transition 23→ 24 in progressing
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households.

Finally we summarise in Table 4.7 both the distribution of Figure 4.13 and the properties of

Table 4.6.

Table 4.6: Distribution of Agincourt educational transitions with respect to lfailure. Note that Ed

refers to defaulting households.

Education measure Dominant transitions dAgij dEdij dEdij

i→ j # % # % # %

24→ 24 4336 26.56 3119 71.93 1217 28.06∗

lfailure = 2 24→ 23 3650 22.36 2793 76.52 857 23.48

23→ 23 3164 19.38 2545 80.43∗ 619 19.57

23→ 24 3163 19.37 2418 76.44 745 23.56

24→ 24 4336 26.56 2773 63.95 1563 36.05∗

lfailure = 3 24→ 23 3650 22.36 2500 68.49 1150 31.51

23→ 23 3164 19.38 23.6 72.88∗ 858 27.12

23→ 24 3163 19.37 2174 68.73 989 31.27

24→ 24 4336 26.56 2256 52.03 2080 47.97∗

lfailure = 4 24→ 23 3650 22.36 2082 57.04 1568 42.96

23→ 23 3164 19.38 1904 60.17∗ 1260 39.83

23→ 24 3163 19.37 1796 56.78 1367 43.22

Finally, we decide to use lfailure = 4 because there are two significant populations (50% of

total) with education progress and default that can be compared and household phenomena might

be expected to emerge from the general educational failure.

We follow the analysis used in the previous section to organise the discussion. Thus, we start

by presenting the transition matrices TEd3 , TEd3 and density tables.
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Table 4.7: Summary of Agincourt educational dominant transitions with respect to lfailure

Education measure Population (%) Dominant transition

lfailure Ed Ed Ed Ed

23→ 23 24→ 24

2 73.25 26.75

24→ 23 23→ 24

23→ 23 24→ 24

3 65.79 34.21

24→ 23 24→ 23

23→ 23 24→ 24

4 54.18 45.82

24→ 23 23→ 24

4.8 Properties of Agincourt transition matrix with education sta-

tus, lfailure = 4

We decompose the Agincourt transition matrix TAg3 defined in (4.14) in two different transition

matrices. The first is the transition matrix for defaulting households TEd3 which captures all possible

transitions that Agincourt defaulting households make. The second is the transition matrix of

non-defaulting households TEd3 which similarly display all possible transitions occuring in the non-

defaulting Agincourt population. We present the transition matrix for non-defaulting households

in (4.30) and the transition matrix for defaulting households is given in (4.31).

To better understand the properties of the difference between the two transition matrices,

we also analyse the difference TEd,Eddif = TEd3 − TEd3 which gives the difference in the transitions

happening in both sub-populations. TEd,Eddif is presented in (4.32).

In the previous sections, we have defined some properties of the transition matrices including

the trace, determinant that give valuable information regarding the dynamics of the population.

Here, we use the same definition to determine these properties for each of the two Agincourt

sub-populations.

138



48
∑

i,j=1

(tAgij ) = 58,
48

∑

i,j=1

(tEdij ) = 44,
48
∑

i,j=1

(tEdij ) = 55 . (4.26)

Det (TAg3 ) = Det (TEd3 ) = Det (TEd3 ) = 0 . (4.27)

Trace (TAg3 ) = 11, Trace (TEd3 ) = 10, Trace (TEd3 ) = 11 . (4.28)

The result (4.26) gives the total number of transitions that occur in both Agincourt defaulting

and non-defaulting sub-populations. In particular from 58 transitions that we observe in the Agin-

court population, there are 44 (about 75.86%) transitions that occur in non-defaulting Agincourt

households and 55 (about 94.82%) that occur in the Agincourt defaulting population. Note that

48
∑

i,j=1

(tAgij ) <
48
∑

i,j=1

(tEdij ) +
48
∑

i,j=1

(tEdij ) (4.29)

which means that there are common transitions occuring in the two sub-populations.

The result (4.27) indicates that for both sub-populations, the dynamics is not reversible. This

property suggests a possibility of identifying causal effects.

The number of idling states for both sub-populations is given in (4.28). We find that almost all

idling states in the Agincourt population are also idling in both sub-populations.

Now looking at the difference (4.32) between the two sub-populations, we can clearly see that

there are transitions that occur in both sub-populations. There are 3 negative values in TEd,Eddif

(4.32). This identifies the 3 transitions that occur in non-defaulting Agincourt households which

do not happen in defaulting households. They are the following transitions 20→ 38, 38→ 23 and

48→ 21. In particular the transition 20→ 38 is related to a positive change in household head from

a minor to an adult even if we have at the same time an adult death. The other two transitions

define two changes happening at the same time which are absence of biological mother followed by

an adult death.

On the other hand, there are 14 (about 29.16%) transitions that occur in the defaulting Agin-

court households which are not observed in the non-defaulting households. They are the following

13 → 8 → 14 → 14, 19 → 14, 23 → 33∗∗, 24 → 33∗∗, 30 → 35∗∗, 33 → 24, 33 → 44 → 22,

35→ 36→ 8 and 47→ 48→ 47. Let us examine for instance the transitions that we denote by ∗∗.
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The transition 23 → 33 is related to an adult death which is followed by change in household

head. Although there are only few Agincourt households that are headed by minors, this result

shows their education status, which is found to be defaulting. The transition 24→ 33 is one of the

most unfavourable changes that happen in the Agincourt population. In this case the household is

fully unfit. The transition 30→ 35 also indicates negative change to household head.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(4.30)
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 53 0 0 0 0 1 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 73 0 0 0 0 2 90 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 74 0 0 0 0 0 0 0 3 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 95 0 0 0 0 0 0 0 2 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 9

(4.34)
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4.8.1 Time series of fitness states, including educational status.

In Figure 4.14 we show the overlapping time series of the fitness component of the Agincourt

population states. As before, we see that most orbits for both red and green colours are concentrated

in the sub-space of I3
2 defined by 0.75 ≤ e ≤ 0.875. Recall that the transition in this sub-space is

related to the movement in and out of biological mothers.

Note also that none of the non-defaulting Agincourt household orbits crosses below the fitness

line e = 0.375 or b = 011. The defaulting Agincourt household orbits reach the most unfavourable

fitness level, e = 0 or b = 000 and wander almost everywhere on I3
2 .

To help better visualisation of the orbits of each sub-population, we separate the two sub-

population and show the fitness time series of each in Figure 4.15 and Figure 4.16. Again for each

sub-population, most orbits are in the same sub-space of I3
2 as above mentioned.

As stated before, because with the fitness time series dynamics, we are not able to identify the

questions that change answer values, it is important to present the phase diagram which combines

fitness and significance states.
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Figure 4.14: Time series of fitness component, et, with an educational colour coding, lfailure = 4.

146



 0

 0.2

 0.4

 0.6

 0.8

 1

 1998  1999  2000  2001  2002  2003  2004  2005  2006  2007

t

ek t

Figure 4.15: Time series of fitness component, et, for the defaulting Agincourt households, lfailure =

4.

4.8.2 Agincourt orbits in phase diagram, including educational status.

In Figure 4.17, we show the educational colouring orbits of the Agincourt population in Γ3.

We separate the two sub-populations to better visualise orbits of each group. Figure 4.23 gives the

phase diagram of defaulting Agincourt households and Figure 4.24 for the non-defaulting Agincourt

households.

Figure 4.24 shows that the non-defaulting Agincourt population is automatically divided in

three sub-populations. The first, which is the dominant sub-population, is located in the sub-space

of Γ3 defined by {(e, χ)|0.5 ≤ e ≤ 0.875, 0.407 ≤ χ ≤ 0.55}.

The second sub-space is given by {(e, 0.185), e ∈ {0.375, 0.75, 0.875}}. This sub-population

defined by a fixed significance value χ = 0.185. The three states of households in this sub-space are

the following: absence of biological mothers, an adult death and the last one corresponds to a fully

fit household.

The last sub-population is defined by {(e, χ)| e ∈ {0.75, 0.875}, χ ∈ {0.703, 0.777}}. The three

states in this sub-population have two social meanings. The first state corresponds to households
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Figure 4.16: Time series of fitness component, et, for the non-defaulting Agincourt households,

lfailure = 4.

with an absence of biological mothers and the other one corresponds to households with better

conditions. Finally the maximum jump that occurs in non-defaulting Agincourt population is a

positive social change e = 0.375 → e = 0.875 which corresponds to a return of biological mothers

(favourable).

The dynamics of defaulting Agincourt households as shown in Figure 4.23 can also be divided

in different dynamic of sub-populations. Here the dynamics is not well separated. Note that the

leading sub-population in this case is the same as the above first sub-population. We also observe

many negative jumps to the region e ≤ 0.407.

On the other hand, Figure 4.22 presents the 3−dimensional view of defaulting Agincourt orbits.

Similarly in Figure 4.21, we show the 3−dimensional view of non-defaulting Agincourt orbits.

These figures give clear view of the dynamics over time. Again for both sub-populations, most of

the orbits are in the same dominant sub-space that we defined above. We observe the jumps outside

that sub-space for each sub-population. In particular the stable sub-population of non-defaulting

Agincourt households is now clearly shown in Figure 4.19.
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The distribution of the number of Agincourt households over the states of Γ3 is given in Figure

4.18 for the defaulting households and in Figure 4.19 for non-defaulting households. In particu-

lar, note that in both sub-populations, most of the orbits are defined by two states of Γ3. The

first state is (0.875, 0.555) which defines Agincourt households in better conditions. The second is

(0.75, 0.555) which corresponds to Agincourt household with an absence of biological mothers. How-

ever, as before, there are more defaulting households in state (0.75, 0.555) than the non-defaulting

households.
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Figure 4.17: Phase diagram of the Agincourt households, with an educational colour coding,

lfailure = 4.
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Figure 4.18: Distribution of the number of the Agincourt defaulting households, sred over Γ3, for

lfailure = 4.
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Figure 4.19: Distribution of the number of the Agincourt non-defaulting households, sgreen over

Γ3, for lfailure = 4.
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Figure 4.20: Orbits of the Agincourt households, with time dependent (vertical axis), with an

educational colour coding, for lfailure = 4.
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Figure 4.21: Orbits of non-defaulting Agincourt households, with time dependent (vertical axis),

for lfailure = 4.
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Figure 4.22: Orbits of defaulting Agincourt households, with time dependent (vertical axis), for

lfailure = 4.
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Figure 4.23: Phase diagram of defaulting Agincourt households, for lfailure = 4.
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Figure 4.24: Phase diagram of non-defaulting Agincourt households, lfailure = 4.
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4.9 Identification of social force in the social system

One of the central objectives of this thesis is to use the present techniques in order to identify

social forces that lead the dynamics of social systems. In physics we feel justified by saying that,

for example, because the force of a tennis racquet reverses the direction of motion of the tennis

ball, that the racquet causes the reversal of the ball. We seek to identify force and cause in the

present dynamical system.

Note that there are two levels of analysis that are used. They are the social unit-level and the

population-level analysis. In physics, the forces on individual objects decide (for example atoms)

the overall dynamics of many objects (for example the flow of water). In social dynamics if many

households suffer the same individual-level force, it is natural to call this demographic force.

Force is sometimes obvious. For the answer to question q : does there exist HIV infection in the

household?, the transition at = 1 → at+1 = 0 is owing to the ”force” of HIV infection. Note that

this may not be the same as at = 0→ at+1 = 1 where we must be careful to ask if sudden absence

of HIV infection is owing to death of an individual, or his/her out-migration, which are completely

different forces from that of infection. Thus there are various cases that we can identify

1. at → a′t+1 6= at can in value be known, but possibly different forces in either direction.

Yet suppose q : has the biological mother out-migrated? If the answer is Yes, it is now not

clear what social force caused this. We must specifically ask this knowledge by better asking

many questions. Perhaps

q0 : Has the biological mother out-migrated to work?

q1 : Has the biological mother out-migrated owing to illness?

q2 : Has the biological mother out-migrated because of marriage?

(4.35)

Then forces such that ai → a′t+1 6= at become clear as in item 1, only after asking the

questions. If the answer to one of these questions is Yes, then

2. A force may not be identifiable by the question set.

3. If none of the questions of 1 is answered Yes, then an observed transition at → a′t+1 cannot

be associated with a force of migration and we must ask further questions to achieve this. If

we do not ask these questions here, we cannot expect to identify the forces of migration.
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4. If two or more of the questions are answered Yes by various households, then multiple forces

may be identified and they act at the same time.

5. In principle, a force might be identified for each of very many a (so that social dynamics is

more complicated than physics).

6. However our purpose is educational progression and we can ask if mother migration, adult

death or minor household heads are forces relative to our purpose

7. In physics we associate cause with a force. We do the same here.

From Table (4.3), the principle Agincourt transitions we have, relative to the purpose of edu-

cational default, the demographic forces

Table 4.8: Identification of social force

24→ 23 Biological mother’s out-migration is a demographic

force and cause for educational default

23→ 24 Biological mother’s in-migration is a demographic

force and cause for educational progression

The transitions 23 ↔ 24 are mathematically reversible, but there is a different demographic

force in each direction and different cause. The transition 32 → 23 is not reversible. It is the

demographic force of biological mother out-migration from a fully fit household that is itself fed

by in-migration from state 31. This reflects a population with different social history, owing to the

timing of in- and out-migration of the biological mother.

4.10 Summary of Agincourt Demographic Results 1998− 2007

There were two main objectives in this chapter. The first was to extend the theory developed

in chapter Three to the population-level. We have achieved the analysis at the population-level by

investigating orbits of many social units at the same time. In particular, Agincourt data have been

included in the discussion. We have achieved identification of sub-populations by characterising

dominant fitness and significance.
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We started the analysis in the chapter by considering two different scenarios related to the

choice of initial question order. We found that the ”fhiqo” scenario converges faster than the

”riqo” scenario. As a result we select the ”fhiqo” scenario.

The second objective of this chapter was to associate education status of Agincourt households

in the discussion of properties of orbits. Since the present analysis does not accept variables with

missing values in the data, we have to build new strategies to include the education variable which

has many missing values for the Agincourt data. To solve this problem, we have coloured the orbit

of each household. Through this process, we have achieved distinguishing between defaulting and

non-defaulting populations.

The results in the two main parts of the discussion presented in this chapter, are in agreement.

In summary, we have found the following:

1. Not all transitions with respect to n = 3 questions occur in the Agincourt population. We

find about 23% of idling states in the Agincourt population. This suggests the presence of a

stable sub-population in the Agincourt population.

2. Insignificant numbers of Agincourt households are headed by minors because q1 was very

stable in the state of adult household head. As a result the visualisation of orbits was then

reduced to a sub-space of Γ3 as presented in Figure 4.1. In particular we find that this reduced

sub-space was defined by the following 6 states 23, 24, 29, 30, 31 and 32 of Γ3 as in Table 4.3.

3. The Agincourt population dynamics is dominated by two states 23 and 24. Most of significant

social changes observed in the Agincourt populations were related to the transitions 24 →
24 ↔ 23 → 23. In-and out-migration of biological mothers were identified as the major

demographic events taking place in the Agincourt population with respect to our variables.

4. The education measure lfailure = 4 better separates the Agincourt population of households

in educational default. At lfailure = 4, we find that there are 54.18% of Agincourt defaulting

households and 45.82% of non-defaulting Agincourt households. The results at lfailure = 2

that 73.25% of households are defaulting is taken as evidence of the general failure of education

at Agincourt and is rejected as a criterion for the effect of household change on educational

default.

5. We find in the early years of our study that there is a net flux of households for transition
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24→ 23.

6. For the non-defaulting Agincourt households, the dominant transition was 24 → 24 which

suggests that households in a fully fit state stay in these conditions for a long period of time.

7. For the defaulting Agincourt households, we find that once biological mothers out-migrate,

they take long to return to their households. This was revealed by the transition 23 → 23

which was found to be the most dominant in this sub-population.

8. We conclude (see the results of Table 4.6) that Agincourt educational default is related to

absence of biological mothers. As noted in Chapter Two, there is to our knowledge no

published information about stochastic errors in the Agincourt data. However from Table

4.6 we note that for lfailure = 4, the percentage idling transitions 23 → 23 and 24 → 24 will

tolerate an error of ±10% without altering our conclusions that absence of biological mothers

is associated with educational default. We add that at lfailure = 2 level, we can only tolerate

an error of 4.5% so that we have an additional criterion for choosing lfailure = 4.

4.11 General strategy for large number of questions and comment

on the role of statistical methods

The application of orbit theory is not limited to a small number of questions n = 3 as in the

analysis presented above. We have discussed simulations with n = 26 questions in Section 3.3.2 and

Section 3.5.1 of Chapter Three. We have given simulations with n = 26 questions and discussed

clustering (see Figure 3.18). However we have needed to use decimal notation for fitness to see

the effect of change of digits on the right of the fitness sequence; this illustrates that the phase

space becomes almost continuous for large n (recall that for n questions, the number of states is

d = 2n × n!; to illustrate, for n = 3, 4, 5, 6 we have d = 48, 384, 3840, 46080 respectively). To deal

more thoroughly with large n we may adopt deterministic strategies. It is also clear that because

d increases very quickly with the number of questions, it might sometimes be useful to shorten

computational time by using statistical methods.

Deterministically, we may sensibly use the following strategy: Suppose we have long time series.

To say that for example, 10 variables are associated with educational default, rather than just one

(as in the case of mother out-migration), does not enable us to relate a small number of possible
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causes. However, suppose we eliminate one variable. We get a small state space Sn−1, but if

the orbits in Sn−1 have significantly the same connectivity as in Sn then that variable has no

independent relevance to change of state and thus to cause. In this case we drop that variable. We

proceed in this fashion to eliminate all such irrelevant variables.

To illustrate, consider the strong transitions at Agincourt as shown in Figure 4.1. Notice that

we may delete question q1 (Minor household head) without changing the connectivity of the figure.

However, to remove question q2 (Adult death) will give a set of connections in S1 (just the two

states 23 and 24 with connections as shown) that is obviously different from S2. The same would

apply if we remove question q0. Alternatively, we may start with small numbers of questions (as

in this thesis) and work through permutations to find strong associations. Indeed, it is a primary

importance of our method that clustering associates demographically important transitions. In our

argument significantly connected patterns can define properties of a cluster. Note that each cluster

carries approximately independent transitions and each deserves detailed study. All this suggests

study of permutations of a reduced number of questions.

However this deterministic method has the serious constraint that demographic time series are

relatively short. At Agincourt we have an average observation time of 7 years. It is obvious that if

one answer value changes at each time step that for example for 7 questions, it could take 7 years for

a question on the right to migrate one place at a time to the left. Indeed if the right hand question

diffuses randomly through questions order, it could take 72 years to reach the left hand side. For

3 questions, it could take 9 years to diffuse from left to right which is comparable to the average

Agincourt observation time. For this reason also, we should choose a small number of questions to

give each answer an opportunity to show its effect, and then search through permutations of small

numbers of questions.

Our method does suggest a statistical approach for analysis if n is large. To illustrate, let us

double the number of questions used in the above demographic analysis and assume n = 6 questions

(or variables). In longitudinal studies, frequencies of change of variables is a fundamental property

of the data. Thus, from a statistical point of view, it is easy to determine the frequency of each

answer value change just by reading the data. Let fi denote the frequency of change of answer value

for question i. We conveniently model each answer frequency fi, i = 0, 1, · · · , 5 as a probability so

that
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5
∑

i=0

fi = 1 . (4.36)

To illustrate, suppose
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f0 = 0

f1 = 0.15

f2 = 0.4

f3 = 0

f4 = 0.35

f5 = 0.1

(4.37)

The frequency of change of each answer value of (4.37) can be visualized in Figure 4.25 where

ai labels the answer value for question i.
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Figure 4.25: Example of frequency distribution of changing answer value.

From the distribution of Figure 4.25, our method asks us to identify the significance level of clus-

tering. Thus, because the answer values a0 and a3 do not change (f0 = f3 = 0), the clusters in

this case will be defined in the state space S6 by all the significance sequences 30ai1ai2ai3ai4 (e.g.

301245) and 03bi1bi2bi3bi4 (e.g. 031245) where aij and bij ∈ {1, 2, 4, 5} which here start with 30 and

03 respectively.

In general, for any number of questions n the result (4.37) is straightforward statistics of the

data that can be easily determined. By including the question order in the analysis of the data, orbit

theory indicates that if i = 0, 1, 2, · · · , n−1 is the most slowly changing answer value, the clustering

in the population under this scenario is automatically given by the significance level defined by the
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sequence starting by i. Thus, this helps to identify a sub-region of Sn on the significance axis where

clustering will occur, even before we plot orbits.

In order to achieve identification of clustering in the state space Sn, we must also determine the

fitness region of clustering. Thus, we need additional information from the data. By reading the

data, we can determine the distribution of favourable (1) and unfavourable (0) responses to each

question. Let f ji denote the frequency of question i having an answer value j ∈ {0, 1}.

To illustrate, let us use the above example (4.37), suppose that f1
0 = 0.7 and f0

0 = 0.3 as

displayed in Figure 4.26. Clearly question 0 has more favourable answers. Thus, because the

clustering involves question 0, we will expect to have more clustering on the sub-region of Sn

defined by (x, y) = (1ci1ci2ci3ci4ci5 , 03di1di2di3di4), where cij ∈ {0, 1} and dij ∈ {1, 2, 4, 5}, that is,

on the right half of S6.
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Figure 4.26: Example of frequency distribution of f j0 , j ∈ {0, 1}

This statistics is related in a primitive way to the statistical techniques mentioned in the review

(Section 1.3). The survival function underlies these techniques. The frequency distribution of

Figure 4.26 may be interpreted as relative likelihood for change in each variable with f2 the fastest

and if we associate change to unfavourable status with question 2 then we have a ”survival measure”

of that variable. Note that for an individual where many changes occur unfavourable and favourable

changes must balance and that this statistic is definitely a demographic property of the population.

With reference to the simple Kaplan-Meier survival formula (1.22) applied to our data, with d =

1998 (i.e. for the whole period of observation) we have

P (Out-migration of mother) ≫ P ( Adult death) ≫ P ( Minor household head) ∼ 0 (4.38)
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for defaulting and non-defaulting households with

PEd( Out-migration) > PEd( Out-migration) (4.39)

Note that since f0 = f3 = 0, these two clusters cannot change in time. If we drop q0 and q3,

then q5 will define clustering, but it can cluster itself on the left and on the right depending on

f j5 . But then clustering can be time-dependent (e.g. clustering on the right 1998 − 2002, on the

left 2003 − 2007). It is immediately clear that orbit theory, which reveals the time-dependence of

clustering in figures such as Figure 4.11, would show such a transition. Note direction of change

(e.g. 23→ 24 and 24→ 23); in our simple statistical method these will not be identified. Of course

application of the rigorous statistical techniques of the review above will detect a jump in survival

probability at such a transition.

It should be noted that we have not been able to avoid statistical analysis altogether. Note that

Figure 4.13 is a survival curve and is essential in deciding a criterion of educational progression.

Thus if we define D to be delay in educational progression and d to be grades (or years) of delay

in educational progression, then a ”survival curve” is defined precisely by (1.22).

Yet, orbit theory presents a method of visualizing all possible states and corresponding transi-

tions that we can have with any number of questions n in the easy-to-understand state space Sn.

Full information is preserved, yet we can visualize patterns and extract demographic information.
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Chapter 5

Projecting the future of Agincourt

social dynamics

5.1 Introduction

In the hard sciences, the critical test of a theory resides in projection. It is here that the

opportunity emerges to say that a theory fails absolutely, if it fails a projection. Suppose a purpose

is understood in terms of stable Qt. Then many individuals entering the population (e.g. those not

sampled under Qt) can be placed on the appropriate typical orbit at some time t by interviewing

with Qt - then if that momentary response lies on one flow only, its future is reasonably predictable

by the typical orbit. Fluctuations between states 23 ↔ 24 are clearly identified above as typical.

Of course this might be the first social unit of a new flow, or in a flow missed by the choice of

sample from the population. These are discovered properties in the demography and a typical

orbit is obviously deeper information than that offered by statistical analysis especially if cause

can be identified along the orbit. Demographic information is directly extracted from a typical

orbit. If the deterministic models mentioned in the previous chapters are applicable, they present

opportunities for projection. If they fail we may say unambiguously that the present theory, adapted

for projection has failed.

Social systems present complex behaviours and we might suppose that human behaviours are

irregular and not predictable. The existence of periodic behaviour at Agincourt will disprove this.
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5.2 Formulation of the dynamics

Let st,n denote the state row vector at time t. Recall that with n questions, we have d = 2n×n!

possible states. Thus, we have

st = (st,i) i = 1, 2, 3 . . . , d (5.1)

where st,i represents the index of state i at time t. Relate st+1 to st by

st+1 = stT
P
t (5.2)

As stated above TPt is the transition matrix of the population P at time t. This is a deterministic

dynamical system that captures the full set of transitions that occur at Agincourt. It gives the

possible dynamics of individuals or households at Agincourt.

Let us make some iterations from the definition (5.2). For simplicity we let TPt = Tt. Thus, we

have, with matrix multiplication

s1 = s0T0

s2 = s1T1 = s0T0T1

s3 = s2T2 = s0T0T1T2

... =
...

st = st−1Tt−1 = s0T0T1T2 . . . Tt−1

(5.3)

Thus, we write

st = s0T
t−1 t ≥ 1 (5.4)

where

T t−1 =

t−1
∏

t′=0

Tt′ . (5.5)

Here, we capture the detailed dynamics of P, given an initial state vector. The relation (5.4) is an

example of a dynamical system [16, 137, 138, 139, 118, 120]. At this stage, st is just an abstract

vector of state indexes. It is the ’space’ in which our population moves. The relevant general way

in which states at time t change in going to time t + 1 is hidden in TPn , for n questions. It may

be specialized, for example for 3 questions on the Agincourt population, TAg3 . To see how TPn itself

contains information, note that if each TPt,n = Tt in (5.3) and if each Tt = T0 =constant, then (5.5)

becomes the power matrix of T0, that is
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st = s0T0
t−1 (5.6)

Then in [118] it is shown that while the elements of our basic transition matrix T0 contain only 1′s

and 0′s, the elements of T0
t−1 count the number of orbits (not the number of households) that go

from state i to state j in t− 1 steps. This applies more generally to (5.5). For this reason, we note

the important point that this map is not suitable for demographic purpose where the number of

households on an orbit is of important.

As a further example, if T t−1 has no inverse (Det (T t−1) = 0) then there are transitions i→ j,

j 9 i, for some i, j.

Now the properties of the social transitions of the population P are computed by the charac-

teristics of the properties defined in (5.4) and (5.5).

Longitudinal data gives us not only T t−1, but also D3 (4.21). With the knowledge of the initial

density of states, dij of D3 = (dij), (4.5), (4.6) and the transition matrices Tt, t ≥ 1, we are now

able to determine the number of social units at any state i, i = 1, 2, 3, . . . d, at any time t as follows.

We construct the density row vector

mt = (mt0,mt1, . . . ,mtd) = (mti) (5.7)

where mti represents the number of social units at state i, at time t. Similarly to (5.2) and (5.4)

we relate mt+1i and mti as follows. By definition we have

mt+1i = mti + δti (5.8)

where δt,i is as defined in (4.9). It is just the net flow [135] into state i, in one time step.

Thus, from (5.8) and (4.10) we can write

mti = m0i +

t−1
∑

t′=0

δt′i, mt = m0 + F t (5.9)

where

F t =

t−1
∑

t′=0

f
t′

= m1998 + F 2006; (5.10)

The density vector of the Agincourt population in 2007 will be predicted to be more generally

mAg
2007 = mAg

1998 +
2006
∑

t′=0

fAg
t′

(5.11)
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It is at this level that we have a simple model for predicting ahead. This too, is a deterministic

dynamical system. It is not defined over an abstract space as in (5.2) and specifically models

population level flows into and out of a state.

5.3 Method of projection

It is a tradition in the formulation of any new theory that first, models are built which constitute

the basis of the theory. Now that the models have been achieved, in the following, we present the

outline of the techniques that are used to include projection.

To predict ahead for Agincourt, we begin by simulating the longitudinal data of households.

We use as much information of Agincourt data as possible. Then we test the simulated transition,

density and flux matrices against the time matrices for agreement. Then if no dramatic changes

occur in comparison to the Agincourt population, we may predict ahead by running longer simu-

lations. This may be useful. For example, 4000 new households have been added to the Agincourt

population study (in 2009), no longitudinal data is of course available, but if the new population

is reasonably similar to the existing population, we can reasonably forecast the new dynamics.

Once we have confidence of similarity with full data, we can investigate scenarios. Thus suppose

we make one change only to the data, say we pay biological mother to stay at home. Keeping all

else unchanged, and supposing that indeed this will improve educational progression (as found

in chapter Four), we can simulate forward from the present state of Agincourt, to see how the

population evolves. Questions we might ask are ”how many years before educational default is

halved?”

In outline our method of simulation is

1. Use the average observation time, l, from Agincourt data as calculated in (2.4).

2. Identify periodic orbits from Agincourt data, that complete at least two clear oscillations

within l. Determine their population fractions and typical orbits. If there are in excess of

that expected from random sampling, the simulation of some population is just the periodic

fraction on the identified orbits. This is trivial.

3. Assume that the remaining orbits are random. Determine frequency of change of an answer

value (Figure 2.5) to each question and frequency of occurrence of n questions changing
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answer values n = 0, 1, 2, 3 (Figure 2.6). Simulate household data accordingly.

4. From the approximate density of states at t = 0(1998) define initial occupation numbers for

simulated households, denoted m0.

5. T
Ag(Approx.)
3 , FApprox. are the Agincourt approximate matrix of allowed transitions and vector

of fluxes. For each household as in (5.9), iterate the dynamical system mt+1 = mt + f
t
.

6. Compare DSim
3,5 with DApprox

3,2006 , also FSim3,4 with FAg3,2005

7. If not in good agreement, use T3 not TAg3 . This is useful anyway to decide if the approximation

TAg3 is good. T3,t varies between 1998− 2007 and if T3 is not useful, it might be necessary to

model its time dependence.

8. When good agreement

(a) set initial conditions on D
Ag(Approx.)
3,2006 to simulate forward for the existing Agincourt

population. If we have first data for the 4000 new households, then we can use that to

predict ahead, as well.

(b) simulate effects of interventions, e.g., mother-grants to keep them at home. Estimate

rates of change into the future.

5.4 Detecting periodic orbits

5.4.1 Periodic orbit for a dynamical system

Suppose ζt = (et, χt).

Definition 5.1. A periodic orbit with period τ for the map

ψ = ϕ ◦ φ : Γn → Γn : ζt+1 = ψ(ζt), ζt = (et, χt) ∈ Γn, n ≥ 1 (5.12)

is the set of τ distinct points

ζt = ψt(ζ0) , t = 0, · · · , τ − 1 with ψτ (ζ0) = ζ0 . (5.13)

where ψτ represents the composition of ψ with itself τ times. The smallest positive value of τ for

which this equality (5.13) holds is the period of the orbit.
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We have coded ζt to a pair of integer values for each state. Then equivalently suppose st = (bt, θt)

Definition 5.2. Let s be the vector of state (b, θ) ∈ Sn as in (3.68). Let st+1 = stTn where Tn

is the constant transition matrix of the (theoretical or measured) dynamics [119, 120]. Then a

periodic trajectory of period τ is one such that

st+τ = stTn
τ , ∀ t . (5.14)

In addition to the definitions of periodic orbits given in Definition 5.1 and Definition 5.2, in

this thesis, we note that all period τ ≥ 2 orbits are assumed not to be of period τ = 1. In general,

note that all period τ = 2k, k = 2, 3, . . . are assumed not to be of period τ = k. This is useful to

distinguish for instance, between social units of period-2 orbits with those of period-4 orbits.

5.4.2 Agincourt period one (τ = 1) orbits

Period one orbits (τ = 1) are called fixed points [140, 44, 42, 139, 45] of a dynamical system.

These are very special cases of predictable behaviour, because this type of dynamics is related to

stationary household state, that is to idling states on the diagonal of TAg3 . The analysis of this

particular sub-population is especially simple in Sn.

In particular, for a questionnaire consisting of n = 3 questions, the number of distinct period

one orbits s1 as in (4.13),

s1 = Trace (TAgn ). (5.15)

Figure 5.1 and Figure 5.2 display period one orbits for the Agincourt population. We clearly

see that there is only one orbit defined by state 24 or (111, 120) that characterises Agincourt period

one sub-population.

It is important to note how the initial question order is determined for period one households.

Recall that period one orbits have stable behaviour. Thus, it is important that the initial question

order that is taken from the ”fhiqo” scenario, returns for the case of no change, the average popu-

lation significance defined by θAg = 120. The total number of Agincourt period one households is

given in Figure 5.3. We find 4 (about 0.15% of total population) Agincourt period one households.

Recall that state defined by (e, χ) = (111, 120) represents households fully fit. Note also that

the state (111, 120) indexed by 24 is the most idling state in the present Agincourt population and
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the associated transition 24 → 24 or (111, 120) → (111, 120) represents 31.28% of the transitions

that we observe in the Agincourt population. It represents more than one third of the total number

of the transitions that occur in the Agincourt data. Thus, it is convenient that all period one

households are defined by that state.

This type of analysis is useful for projection which in this specific case is obvious. If such a

sub-population is identified then, we can simulate its behaviour. As stated above, note that a

period one orbit defines a sub-population. The properties of these orbits give reduced information

of the associated sub-population dynamics.
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Figure 5.1: Agincourt period-1 household orbits (ekt , χ
k
t ) in Γ3.

5.4.3 Agincourt period two (τ = 2) orbits

The dynamics of the Agincourt period two orbits are presented in Figure 5.4 and Figure 5.5.

In particular, these figures clearly show that all the Agincourt period two orbits are represented

by two states of Γ3 or S3. These two states are defined by (b, 120) where the fitness component of

the states is located in the region defined by b ∈ {110, 111}. We also see that all the Agincourt
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Figure 5.2: Orbits with time dependent (vertical axis), for Agincourt period-1 household orbits

(ekt , χ
k
t ).

period two orbits have the same and constant significance given by θ = 210, as displayed in Figure

5.6. This significance is related to no change in answer value of question q1. In these period two

sub-populations, although in- and out-migration of biological mothers dominated, no household is

headed by a minor.

In Figure 5.8, we show the initial distribution of the number of period two Agincourt households

over the associated two states of Figure 5.4. In contrast to the above case, this initial distribution

differs from the final distribution because the period two households do not all stay where they

start. The total number of period two Agincourt households is 3. We note a slightly decrease of

about 0.04%, in the number of period two households compared with the number of period one

households.

As before, projection in this case, is also obvious. Because we know what the dynamics are, for

each social unit in this sub-population, we can predict that if the biological mother out-migrates

from the household at a given point in time t, then we know exactly that at time t + 2, she will

return into that household, and vice versa. Again, it is also possible to identify typical orbits

associated to this period two sub-population.
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Figure 5.3: Distribution of the number of Agincourt period-1 households over the states (ekt , χ
k
t ) ∈

Γ3.
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Figure 5.4: Agincourt period-2 household orbits (ekt , χ
k
t ) in a sub-space of Γ3.
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Figure 5.5: Phase diagram in reduced space, with time dependent (vertical axis), for the Agincourt

period-2 household orbits (ekt , χ
k
t ).
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Figure 5.6: Evolutionary fitness orbits ekt , for all Agincourt period-2 households.
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Figure 5.7: Evolutionary significance orbits χkt , for all Agincourt period-2 households. Note that

θ = 120, since only q0 is changing

5.4.4 Agincourt period three (τ = 3) orbits

In Figures 5.9-5.12 we present the dynamics of the Agincourt period three orbits. Figure 5.9

and Figure 5.10 show that the Agincourt period three orbits are defined by the same two states

(110, 210) and (111, 210) ∈ Γ3. The significance level χ = 210, being also constant and the same (see

Figure 5.12), we have the same social dynamics as above. In particular, we can see that here the

dynamics are also linked to the movement of biological mother who is sometimes in and sometimes

out from the household. In this case, when she is out of the household, she just delays her return

for one time step, and vice versa.

Figure 5.13 displays the initial distribution of the number of period three Agincourt households

over the states of Figure 5.9. We find that there are 4 Agincourt households of period three

orbits starting in 1998. But now they all started at state (111, 120), hence they were initially all

in a favourable state. As before, we also identify the movement of the biological mother as the

major social change in this sub-population. We also note a slightly increase of about 0.04% in the
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Figure 5.8: Initial distribution of the number of Agincourt period-2 households over the states

(ekt , χ
k
t ) ∈ Γ3.

number of households if we compare the number of period two households with that of period three

households in the Agincourt population.

Various combinations of dynamics can lead to period three orbits. For example, a period three

household orbit can be made of part of period two behaviour and another part of period one

behaviour or vice versa. As before, projection of a period-3 orbit is trivial. For simulation of the

whole population, the fraction of period-3 orbits is assumed together with their orbits.
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Figure 5.9: Agincourt period-3 household orbits (ekt , χ
k
t ) in Γ3.
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Figure 5.10: Phase diagram with time dependent (vertical axis), for the Agincourt period-3 house-

hold orbits (ekt , χ
k
t ).
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Figure 5.11: Evolutionary fitness orbits ekt , for the Agincourt period-3 households.
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Figure 5.12: Evolutionary significance orbits χkt , for the Agincourt period-3 households.
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Figure 5.13: Initial distribution of the number of Agincourt period-3 households over the states

(ekt , χ
k
t ) ∈ Γ3.

5.4.5 Agincourt period four (τ = 4) orbits

Following the same methods, we present the dynamics of the Agincourt period four orbits in

Figures 5.14-5.17.

Similarly, Figure 5.14 and Figure 5.15 show again the dominant two states (110, 210) and

(111, 210) of a sub-space of Γ3. The significance level χ = 210, being also constant and the same

(see Figure 5.17), we have the same social dynamics as above. In particular, we can see that

here the dynamics are also restricted to the movement biological mother who is sometimes in and

sometimes out of the household. In this case, when she is out of the household, she just delays her

return for one year, and vice versa.

In Figure 5.18 we present the initial distribution of the number of period four Agincourt house-

holds over the states of Figure 5.14. The total number of period four Agincourt households is 12.

As before they almost all started at the same favourable sate (111, 120). The movement of the

biological mother is also the major social change in this sub-population. Now we have an increase

of about 0.3% in the number of households if we compare the number of period three households
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with that of period four households in the Agincourt population.

The period four dynamics can be constructed from different scenarios. As before, we can also

predict the future of this type of sub-population with the knowledge of its states.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ekt

χ
k t

Figure 5.14: Agincourt period-4 household orbits (ekt , χ
k
t ) in Γ3.

Using the definition (5.13), the following table summarises the information about the distribu-

tion of the number of the Agincourt household periodic orbits.
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Figure 5.15: Phase diagram with time dependent (vertical axis), for all Agincourt period-4 house-

hold orbits (ekt , χ
k
t ).
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Figure 5.16: Evolutionary fitness orbits ekt , for the Agincourt period-4 households.
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Figure 5.17: Evolutionary significance orbits χkt , for the Agincourt period-4 households.
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Figure 5.18: Initial distribution of the number of Agincourt period-4 households over the states

(ekt , χ
k
t ) ∈ Γ3.
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Table 5.1: Distribution of the number of periodic orbits in Agincourt population

Period (τ) Number of households Percentage %

1 4 0.15

2 3 0.11

3 4 0.15

4 12 0.45

Total 23 0.86

The above techniques allow us to automatically separate any population P in two parts P1 and

P2. We refer to P1 as part of the population with a periodic behaviour and P2 with a non-periodic

behaviour. From Table 5.1, we find that less than 1% of the Agincourt population is periodic with

respect to our variables of interest, which in turn defines PAg1 . Thus, we can assume that the rest

(about 99%) of the Agincourt population with a non periodic behaviour, which we refer as PAg2 is

stochastic. The behaviour of PAg2 can then be simulated.

As noted, periodic behaviour is not above the expected periodic orbits arising from random

sampling.

5.5 Simulation of the Agincourt population

The main purpose of this section is to simulate the dynamics of the present Agincourt popu-

lation. The discussion will only include the population-level analysis. The techniques presented in

this section can be applied to simulate the dynamics of any population, given longitudinal data of

the population. We follow the method of Section 5.3.

First of all note that in order to simulate the Agincourt population dynamics, it is important

to determine the population parameters that will be used in our simulations. Thus, as stated in

Section 4.3, recall that the number of questions is n = 3, the average observation time for the

Agincourt population is calculated using the definition (2.4), we find l = 7.115. Note that for the

present simulations l must be an integer, thus it is convenient for the present simulations to use

l = 7 as the observation time for each household. The total number of Agincourt households in

the present study population is s = 2669, we will use s as the total number of households in our
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simulations then model regular and random stochastic population P1 and P2.

Second, note that the results of Section 5.4 show that the Agincourt population is dominated

(more than 99%) by a non-periodic behaviour. The Agincourt population is divided into two parts.

Here PAg1 consists of 23 households (about 0.86% of the total population) and PAg2 contains 2664

households which represent about 99.14% of the population. The periodic population PAg1 may be

neglected for the simulations.

Note also that there are various levels of simulations. As stated above, in this thesis we focus on

the outline of Section 5.3 that we divide in two main parts including stochastic level of simulations

and scenarios planning.

5.5.1 Simulation of Agincourt results

Before we start, it is important to note for the Agincourt population PAg2 , the distributions of

Figure 2.5 and Figure 2.6 do not change significantly. Thus, they may be used in the following

simulations.

The results of Table 4.3 and Figure 4.1 are used to determine the approximate density matrix

D
Ag(Approx.)
3 which is obtained with respect to Definition 4.1. The approximate Agincourt dynamics

constitute reduced information that we will use for the simulations. The simulations should agree

with DAg
3 .

We use the definition (5.9) to determine the distribution of Agincourt households over states of

Γ3 for each observation year t = 1998, 1999, . . . , 2006. With reference to (5.9), we obtain approxi-

mate fluxes fApprox
t

by deleting fluxes not in the states of Table 4.3 and Figure 4.1. The approximate

and Agincourt distributions of households over dominant states are presented in Table 5.3.

We compare the results of Table 5.3, specially for the observation year 2006 to the distribution

presented in Figure 4.6 and Figure 4.7. It is clear that they are in agreement. If we time average

the Agincourt fluxes

faverage =
1

9

2006
∑

t=1998

fApprox
t

, (5.16)

where faverage is given in Table 5.2.

We repeat the simulations and present in Table 5.4. We again note agreement. This final result
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Table 5.2: Agincourt average flux vector.

i δAveragei

21 0

22 -3

23 63

24 -66

29 4

30 0

31 7

32 -5

gives the very simple and elegant model

mt+1 = mt + faverage (5.17)

for predicting the future. In contrast to the map (5.2), this equation gives the number of households

that flow into a given state averaged over time. This is now appropriate for demographic modelling.

Another method of simulation is as follows. From the Agincourt density matrix DAg
3 we extract

DApprox.
3 which is defined only for the dominant transitions. For each row i of DApprox.

3 we use the

probability

pij =
dij

∑

i,j

dij

, i, j = 23, 24, 29, 30, 31, 32 (5.18)

as a transition probability from state i to state j. We then start mi households in state i and

according to the probability pij, sample their transitions to dominant state j.

Note that if every social unit is observed each observation time, we will have the same number

of social units

st =

d
∑

i=1

mti ∀t (5.19)

We give the results in Table 5.5 for the final transition 2006 − 2007. We note the reasonable

agreement in the percentage transitions of the simulations. We do not ask for close agreement with

Agincourt densities. Thus, in the simulations we use l = 7, in reality households come and go and

may have not completed to 2007.
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Table 5.3: Comparison of approximate and real Agincourt number of households over dominant

states.

i mAg
1998i = mApprox.

1998i

21 23

22 48

23 636

24 1826

29 0

30 32

31 2

32 58

i mAg
1999i mApprox.

1999i

21 6 23

22 24 26

23 794 798

24 1672 1679

29 16 0

30 27 16

31 23 19

32 70 64

i mAg
2000i mApprox.

2000i

21 2 23

22 10 13

23 1061 1061

24 1423 1434

29 19 0

30 15 -9

31 46 59

32 60 44

i mAg
2001i mApprox.

2001i

21 2 23

22 5 13

23 1131 1135

24 1344 1353

29 32 17

30 12 -20

31 53 66

32 60 38

i mAg
2002i mApprox.

2002i

21 3 23

22 2 13

23 1187 1188

24 1294 1294

29 37 23

30 17 -10

31 50 62

32 54 32

i mAg
2003i mApprox.

2003i

21 4 23

22 2 13

23 1263 1263

24 1209 1208

29 50 36

30 15 -11

31 55 65

32 48 28

i mAg
2004i mApprox.

2004i

21 3 23

22 3 13

23 1293 1292

24 1166 1157

29 57 40

30 23 8

31 62 71

32 40 21

i mAg
2005i mApprox.

2005i

21 1 23

22 1 13

23 1319 1317

24 1149 1130

29 55 38

30 38 28

31 50 58

32 36 18

i mAg
2006i mApprox.

2006i

21 3 23

22 5 13

23 1281 1280

24 1185 1165

29 56 40

30 35 28

31 62 79

32 22 -3
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Table 5.4: Comparison of average and real Agincourt number of households over dominant states.

i mAg
1998i = mAverage

1998i

21 23

22 48

23 636

24 1826

29 0

30 32

31 2

32 58

i mAg
1999i mAverage

1999i

21 6 23

22 24 44

23 794 699

24 1672 1759

29 16 4

30 27 32

31 23 9

32 70 53

i mAg
2000i mAverage

2000i

21 2 23

22 10 40

23 1061 762

24 1423 1693

29 19 8

30 15 32

31 46 16

32 60 48

i mAg
2001i mAverage

2001i

21 2 23

22 5 36

23 1131 825

24 1344 1626

29 32 13

30 12 33

31 53 24

32 60 43

i mAg
2002i mAverage

2002i

21 3 23

22 2 32

23 1187 888

24 1294 1560

29 37 17

30 17 33

31 50 31

32 54 38

i mAg
2003i mAverage

2003i

21 4 23

22 2 28

23 1263 952

24 1209 1493

29 50 21

30 15 33

31 55 39

32 48 33

i mAg
2004i mAverage

2004i

21 3 23

22 3 24

23 1293 1015

24 1166 1427

29 57 25

30 23 34

31 62 46

32 40 28

i mAg
2005i mAverage

2005i

21 1 23

22 1 20

23 1319 1078

24 1149 1360

29 55 30

30 38 34

31 50 54

32 36 23

i mAg
2006i mAverage

2006i

21 3 23

22 5 16

23 1281 1141

24 1185 1294

29 56 34

30 35 34

31 62 61

32 22 18
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Table 5.5: Comparison of simulated and Agincourt density matrices, for the final transition year.

i j dAg2006,ij dAg2006,ij(%) dSim5ij dSim5ij (%)

23 24 301 23.589342 537 20.119895

23 23 300 23.510972 560 20.981641

24 24 265 20.768025 616 23.079805

24 23 234 18.338558 504 18.883477

30 30 19 1.489028 48 1.798426

31 23 18 1.410658 21 0.786812

29 30 17 1.332288 50 1.873361

24 29 16 1.253918 20 0.749344

31 32 16 1.253918 24 0.899213

In Table 5.6, the simulated fluxes into dominate states are compared and we note reasonable

agreement, after accounting for loss of households in 2007.

Comparing the models 5.17 and 5.18, we find 5.17 to be preferable because of its simplicity and

because l = 7 is short. We will use 5.17 to predict for the final transition 2006 − 2007.

5.5.2 Predicted Agincourt population, 2007− 2015

In Table 5.7 we give predicted conditions over the dominant states for the whole population,

over the period 2007 − 2015. We find average increase of 52 defaulting households per annum.

In Table 5.8, we begin 4000 households, uniformly distributed over dominant states. Recall

that 4000 new households have been added to the Agincourt data set. By 2015 we find emergence

of states 23 and 24. The rate of emergence in state 23 of defaulting households is approximately

faverage
23

= 63 per annum if our sample of 2669 households. The outflow from state 24 is faverage
24

=

−66 per annum. If these averages model a steady state at Agincourt, then the new households are

in danger of experiencing growing educational default at a proportional rate of approximatively 99

households per annum. Because the 4000 new households of Agincourt do not have a well-defined

initial state, the rate is of use in making decisions. Thus the new households suffer a possible
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Table 5.6: Comparison of simulated and Agincourt flux vectors for the final transition year

i δAg2006i δSim5i

21 2 0

22 -1 0

23 -72 -45

24 63 40

29 -1 -5

30 7 -6

31 -10 10

32 11 6

disservice by moving to Agincourt. Increased educational resources are necessary to accommodate

defaulting children. The graphs of Figure 4.13 and this rate of default is a server criticism of the

Agincourt educational system.

5.5.3 Scenario planning

The results of the previous chapter show that the Agincourt population is dominated by mi-

gration of biological mothers. In particular we find that out-migration of these mothers was the

major cause of children’s educational default. Thus, an important scenario we would imagine is to

simulate Agincourt dynamics with no out-migration of biological mother. This means the answer

value of question q0 must be changed to 1 for all the observation years. We accordingly generate a

new data set where a0 = 1 for all time and then rerun orbit theory over the period 1998 − 2007.

The new Agincourt dominant transitions are summarised in Table 5.9 and Table 5.10. As

expected, the Agincourt population is now fitter than before. Table 5.9 shows the population

shift to fully fit states 24, 32, 48. Table 5.10 shows emergence of the fully fit states, for originally

defaulting households. Note that unfavourable transition 24 → 31 have increased; this is owing

to adult death and merely states that where households were in states 23 and experienced adult

death, they are now in state 24.

Under this scenario, the average fluxes on the dominant sub-space are presented in Table 5.11.
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Table 5.7: Distribution of simulated Agincourt population

i mSim
6i mSim

7i mSim
8i mSim

9i mSim
10i mSim

11i

21 5 5 5 5 5 5

22 3 0 -4 -8 -12 -16

23 1196 1259 1322 1385 1448 1512

24 1225 1158 1092 1025 959 892

29 55 59 63 68 72 76

30 57 57 57 58 58 58

31 54 61 68 76 83 91

32 60 55 50 45 40 35

Table 5.8: Distribution of simulated Agincourt population with new 4000 households

i mSim
6i mSim

7i mSim
8i mSim

9i mSim
10i mSim

11i

21 500 500 500 500 500 500

22 500 496 492 488 484 480

23 500 563 626 689 752 816

24 500 433 367 300 234 167

29 500 504 508 513 517 521

30 500 500 500 500 501 501

31 500 507 514 522 529 537

32 500 495 490 485 480 475
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Table 5.9: Sorted number of transitions from the density matrix D
(scenario)
3 .

state i state j dij

24 24 11615

32 32 1783

48 48 1659

24 31 465

31 32 436

Table 5.10: Sorted number of transitions dAgij for previously defaulting households (4.34).

state i state j dscenarioij dAgij

24 24 6460 2256

32 32 1047 111

48 48 925 9

24 31 243 90

31 32 236 56

Table 5.11: Fluxes of dominant transitions for the scenario

state i faverage,scenarioi

21 0

22 -14

23 0

24 -104

29 0

30 0

31 23

32 94
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Table 5.12: Scenario of Agincourt defaulting households, 2007 − 2015.

i mAg,Ed
2007i mAg,Ed

2008i mAg,Ed
2009i mAg,Ed

2010i mAg,Ed
2011i mAg,Ed

2012i mAg,Ed
2013i mAg,Ed

2014i mAg,Ed
2015i

21 0 0 0 0 0 0 0 0 0

22 0 -14 -28 -42 -56 -70 -84 -98 -112

23 0 0 0 0 0 0 0 0 0

24 1706 1601 1496 1391 1287 1182 1077 973 868

29 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0

31 108 131 154 178 201 224 248 271 294

32 558 652 746 840 934 1029 1123 1217 1311

In Table 5.12, we predict ahead using

mt+1 = mt+1 + faverage,scenario. (5.20)

States 24 and 32 are both fully fit. We see emergence of favourable state 32. The total of favourable

states declines very slowly at about 9 fully fit households per annum. Adult death remains in

households and we see an increase in educationally defaulting households with adult death (state

31) at a rate of about 21 households per annum. We note that this data is taken only in the

dominant sub-space and that the fully fit state 48 could become important.

In Table 5.13, we again suppose that the 4000 new households are uniformly distributed over

dominant states. In addition to that, we suppose that half of the new population is educationally

defaulting with respect to lfailure = 4. Behaviour is very similar to that of Table 5.12. We clearly

see that a policy of keeping biological mothers at home will be a service to this community.

5.6 Conclusion

There were two main objectives in this chapter. We first developed the model (5.17) to predict

forward in time from 2007.

We were careful to ensure that the number of periodic orbits did not exceed levels that could
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Table 5.13: Predicted number of Agincourt with additional 2500 defaulting households, 2007−2015.

i mAg,Ed
2007i mAg,Ed

2008i mAg,Ed
2009i mAg,Ed

2010i mAg,Ed
2011i mAg,Ed

2012i mAg,Ed
2013i mAg,Ed

2014i mAg,Ed
2015i

21 250 250 250 250 250 250 250 250 250

22 250 236 222 208 194 180 166 152 138

23 250 250 250 250 250 250 250 250 250

24 250 145 40 -63 -168 -273 -377 -482 -587

29 250 250 250 250 250 250 250 250 250

30 250 250 250 250 250 250 250 250 250

31 250 273 296 319 343 366 389 413 436

32 250 344 438 532 626 721 815 909 1003

be expected from random sampling.

For the Agincourt data, we find that the the non-periodic sub-population was the significant

(more than 99%) sub-population. We therefore simulated a stochastic process of sampling house-

holds data according to Agincourt statistics.

The second objective was to simulate the Agincourt population dynamics and compare the

results with the real data. Again, as in any simulations the choice of the initial conditions is

a central point that needs to be discussed. We decided to simulate from the Agincourt initial

conditions using the average observation time l = 7.115 ≈ 7 and the total number of households

s = 2669. The simulation results are in good agreement with the Agincourt real data.

We simulated ahead from 2007 Agincourt data to 2015 and found decline in educational pro-

gression of some 52 households per annum. At this point we simulated effects of interventions to

adopt policy that keeps biological mothers at home. This reduced the rate of educational default

to 9 households per annum.
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Chapter 6

Conclusion

The aim of this thesis was to develop a new mathematical ”orbit theory” for analysing longi-

tudinal data. This theory specifically concerns the social sciences. Thus the sense of direction of

motion of a social unit comes from change in its social fitness.

It is important to this work that our space of states Γ3 or S3 specifies the state of a social unit

and is not a state at the population level as is achieved by starting analysis with the deterministic

models reviewed in Section 1.2.2. However clustering induces demographic properties that may be

studied by the statistical techniques of Section 1.3 or by a deterministic study of the detailed state

space defined by the clusters.

Our method achieves analysis while preserving full complexity under our purpose. By this we

here mean that n = 3 questions are hypothesised to be relevant to purpose. The value of answer to

each question becomes an element of a sequences or a decimal digit with social variable identified

with the position of that question. In principle we may have n independent social variables and

the complete state of the household is captured by a single real number (or sequence). Contrast

this with the measured position of a physical particle where additional digits merely improve the

accuracy of the single physical variable of position. The orbits that we generate preserve this full

information. In Chapter Four we have seen automatic identification of sub-populations in Γ3. This

too, retains full information of the longitudinal data relevant to purpose. Further, the time series

of a single household records all transitions of the household within purpose.
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6.1 Mathematical conclusion

We achieved the objectives of this thesis as follows.

• We have stated our purpose in (2.2)

p1 : To investigate the effect of household change on child’s progression in school .

We regard the form of p1 as important in the contest of longitudinal data. We emphasise the

word effect. Thus we suggest that in general, purpose is stated to extract causal relationship.

• Household change was characterized by questions as in (2.1).

• The education measure lfailure = 4 captures educational default of households.

• With our questionnaire of n = 3 questions, we define fitness and significance space Γ3 or

S3 and code raw data. This may be generalized to n questions, but as discussed in Section

4.11, to seek cause from few effects seems to be advisable. Work must be done to survey

permutations of questions if n is large.

• We define the maps ψ : (ekt , χ
k
t ) 7→ (ekt+1, χ

k
t+1) ∈ Γ3 (3.47) and ξ : (wbt, θt) 7→ (wbt+1, θt+1) ∈

S3 (3.48). In these maps change in fitness value is taken directly from longitudinal data.

This may be regular or stochastic. Significance is determined by reordering questions in an

evolutionary sense. This is a deterministic process imposed on the data. Here we look at the

social unit level (household level)

• The maps induce individual level orbits Ωk
t , for household k in fitness-significance space Γ3

or S3.

• We determine the theoretical transition matrix T3 (3.78) which captures all possible transi-

tions under n = 3 binary-valued answers to questions.

• Agincourt transitions are extracted in (4.14), TAg3 ⊂ T3. Dominant transitions are identified

from the density matrix (4.21), DAg
3 . Dominant fluxes fAg are identified in Table 4.5.

• Typical orbits are identified in Table 4.3 and Figure 4.1. They are revealed to dominantly

be random oscillations between states 23 and 24 as biological mothers temporarily migrate.

There are a few random excursions to states 29, 30, 31 and 32 in the case of adult death.
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• Our orbits in Γ3 or S3 clearly extract sub-populations as expected, by clustering data. This

has facilitated our demographic analysis. The analysis processes full information of the lon-

gitudinal data.

• As in the previous item visualization of orbits facilitates analysis. Figures showing time-

dependence of the sampled Agincourt data is given in Figure 4.11. In this figure, we see that

the clustering (about states 23 and 24) is constant in time.

• Periodic orbits are extracted but their number does not exceed that expected from random

sampling. It may be assumed that the dynamics hidden in Agincourt longitudinal data is

stochastic.

• Educational default is identified with out-migration of biological mothers (state 23). We iden-

tified out-migration as a social force acting against educational progression or, as a possible

cause of educational default under our question set (Table 4.8). We have noted that at the

lfailure = 4 level this conclusion will tolerate a ±10% stochastic error in the data.

We have noted above that this thesis develops a new method of analysis that best proceeds by

detailed analysis of reduced numbers of questions identified by clustering. A thorough demo-

graphic study would search through permutations of questions regarding household change

and search for strong associations with educational default.

• Projection: the Agincourt demographic dynamics was approximated by the map mt+1 =

mt+1 + fAverage (5.17) with m0 = m1998. We find good agreement between Agincourt and

approximated dynamics.

• For Agincourt we predict for the years 2007 − 2015 that out-migration of biological mothers

will cause increased educational default at the rate of 52 households per annum (Table 5.7).

• Scenarios: suppose we pay biological mothers to stay at home (BM: at : 0 → 1, ∀ t). We

have run orbit theory for this new data. This scenario predicts that the number of default

households will improve from 52 to 9 (Table 5.12).

• The reduced model (5.17) may be compared with those of the Introduction. Comparing

(5.17) with (1.9) we see that the Agincourt community is better modelled by additive maps

as opposed to multiplicative maps based on rate of change.
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• Yet, at the level of individual orbits, the Agincourt transition matrix, TAg3 reveals the detailed

dynamics of the population extracted directly from the data. We have used only superficial

information of determinant and trace. Define for the k′th household the sequence i0i1i2 · · · ij
of its visits to points in Sn with index i. Then the map σT defined by

ij+1 = σT (ij) (6.1)

tells us what the next state will be if we know ij . This map is known as a sub-shift of finite

type [119, 120, 121, 122] and has deep mathematics. It is directly linked to the longitudinal

data. We believe this is a significant step forward in mathematical modelling [141] of processes

in the social sciences. It is important to note that (6.1) gives the dynamics of all possible

orbits under purpose but it does not give the number of households on any one orbit. We have

chosen in this thesis to present only the high level demographic results in order to explore

the usefulness of orbit theory. It is for this reason that we have constructed the density

matrices and flux vectors in order to achieve (5.17) and this has required use of the detailed

data. The mathematical properties of (6.1) will be explored elsewhere. However we note

that TAg3 is unique to the Agincourt data and has extracted only a subset of all possible

transitions as given in (3.78). All this is completely inaccessible to the deterministic models

of the Introduction. It does suggest new statistical approaches as in Section 1.3. We add

that because we have clearly defined states and the state space, it becomes possible to use

survival analysis on each state. Statistic of the fluxes will be of great interest as well.

• Our reduced models have involved no hypotheses other than choice of questions and a deci-

sion on the 100−transitions cut-off. Concerning favourable/unfavourable coding. We have

supposed that out-migration of biological mothers is unfavourable to educational progression

and we note that our conclusion is consistent with this assumption. Minor household head

is not significant, so its coding is irrelevant. Concerning adult death, we see from Figure 4.1

that there is balanced rate of death from both unfavourable state 23 and favourable state 24

to the death state 29. Because these are by far the dominant states we do not have significant

evidence that adult death causes educational default and the coding is acceptable.

• Concerning existing deterministic theories as mentioned in the Introduction, we note that

(5.17) and (6.1) contain no parameters. Neither of these equations is ad hoc but arises nat-

urally from longitudinal data. Equation (5.17) can be made more precise by time-modelling
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faverage. Thus, it will be noted from Figure 4.1 that the 6 dominant states can be reached by

a single orbit that might have repeated patterns (e.g. 23 ↔ 24) and by orbits that connect

all points in an endless non-repeating pattern. The map is indeed chaotic [38] and as was

suggested in the discussion of the map (1.1), it is therefore able to represent the periodic and

stochastic orbits that we have discovered in the data.

• We have not compared our method with statistical methods. The automatic clustering of orbit

theory and our confirmation that the dynamics is stochastic, suggests statistical correlation

among clustered variables [142, 143]. In this way orbit theory can have practical use as

preconditioning of data for statistical analysis. We have selected our appropriate statistical

method in Section 4.11. A detailed comparison of statistical (event history analysis) and orbit

theoretical approaches is under way elsewhere.

6.2 Discussion

Our data set was restricted to n = 3 questions only. It is possible for example that socio-

economic change such as income effects the ability of a child to get to school and to have good

resources for success. Our strategy in the case of many questions would be to investigate automatic

clustering in Γn, this is a space of real numbers and in principle, can handle many decimal places

corresponding to social variables. Where clustering is identified, we would eliminate variables not

associated with the cluster and thereby reduce the phase space as we have done above in Figure

4.1. Each cluster can then be analysed for cause and effect [142, 143]; we note in this case that

we would re-frame purpose for the local analysis. The interconnection between clusters might

sometimes be significant and in this case we would build a new phase space by simply renumbering

states consecutively through associated clusters.

It is important in the design of Qt that the coding to binary is unique if the notion of

favourable/unfavourable holds. In this case it may be hoped that different sociologists would

arrive at the same Qt, for the same given purpose. If the number of questions differs somewhat,

so that there is redundancy in one of say two questionnaires, the simplest questionnaire should be

chosen. In turn, the best questionnaire will be that with the least number of questions that, by

consensus, is sufficient to address purpose. If there is such general agreement, then it is reasonable

to say that Qt stabilizes and the purpose is understood. If this understanding suggests practical
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actions (to favourably alter the direction of orbits) then we can say that it is useful.

To ensure that the minimal necessary question set is achieved, each question can be systemat-

ically deleted from Qt to judge the effect on orbits (not necessary in our case). Then the number

of accessible states in the state space Γn is reduced. If the deleted question has little or no effect

on the common states in Γn that question may be deleted. For the Agincourt analysis, we have

showed that change in question q1 was very small. As a result, the dynamics of the whole Agincourt

population was reduced to a Γ2. Conversely, if it has noticeable effect it must be retained. If new

questions are to be added and their frequency of change is unknown, they should be placed at

insignificant digits (on the right), so that the evolutionary dynamics may automatically bring them

to significant digits, with significant effect on the orbits. If there is no effect on the common states

of the old and new orbits, then the new question may be deleted.

It may be that the purpose suggests additional elements to the value set, for some questions,

for example the answer value ai ∈ {0, 1,∅} where ∅ = not relevant. Additional values must have

unambiguous social content (be coded in the same way by all sociologists). Consider q : did you

breast feed your child? with answer value set {yes, no, father} with a numerical coding {0, 1, 2}.
In this case it is equivalent to work in base 3 numbers rather than binary numbers. In Γn irrelevant

evolutionary orbits (i.e., those of the father) will go to a y-value in the interval [0.2, 1.0), that is,

where the ternary numerical coding begins with the digit 2 after the decimal point. In this case, the

flow suggests a cost-saving restriction of the survey to female respondents. Note that old data can

be unambiguously translated for this modified questionnaire. No new mathematical phenomena

are implied in this case and in this thesis the binary case only is considered.

Questions may offer no choice of reply as in q : tax number? Single-valued questions are

unambiguous and reveal nothing dynamical. The purpose of single-valued questions is surely as a

convenient initial identification of sub-populations, relevant to purpose, by the sociologist.

‘Open questions’ are not directly acceptable but they may be useful. Thus q: why did you steal?

may elicit many responses. However, every response that is a reason for stealing can immediately

be viewed as a reply to a satisfactory question - this builds a set of good questions from each open

question. Note that a questionnaire with open questions can then be translated to a satisfactory

form. Other typical questions choose from many possible values. An obvious example is the value of

the question q : what is your income within ten thousand Rand? It is clear such questions can

be translated to a set of questions qi: is your income in the i’th income bracket? Translation
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of all responses to open questions might be very laborious.

6.3 Future work

The mathematics of the dynamical system as defined in (6.1), ij+1 = σT (ij) is very deep. We

note that this is technically a sub-shift of finite type [119, 120, 121, 122]. As stated, it is chaotic and

has advanced properties such as (Kolmogorov) entropy, that might or might not have interpretation

in demography. It will be of interest to continue these mathematical investigations.

Of great importance, is an explicit comparison of statistical and orbit theoretical methods. It

is there that the strengths and weaknesses of the methods can be made clear and offer guidance to

future researchers.
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Appendix A

Agincourt data description

A.1 Description of the variables
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Table A.1: Description of the variables

Variable Description
Year This variable represents the year for the cross-sectional analysis for example

2001 refers to the cross-section on December 31st 2001
Household ID This variable represents the anonymised unique identifier for the household
Anon ID This variable represents the anonymised unique identifier for all children in-

cluded in the analysis i.e. all children aged between 7 and 16 years of age
members of the household between December 31st 1992 and December 31st

2008
MotherResMonths This variable represents the number of months that the childs mother was

resident as recorded as a Residence Status observation in the census round
associated with the cross-section date (see Table 2.1).
Database field = ResidenceStatus.ResMonths
Possible values
n- number of months mother was resident
NULL No data recorded (missing data)

Education Recode This variable represents the highest level of education obtained for the child
derived from the Education Status observation in the census round associated
with the cross-section date (as described in Table 2.1).
Database field = EducationStatus.Education
This is recoded from the raw data to represent the number of years of edu-
cation for each child. This data was recorded for all household members in
the following census rounds. Round 1(1992), Round 4(1997), Round 8(2002),
Round 12(2006). In addition a status observation is recorded for all individuals
whenever a new household is established or a new individual migrates into a
household. See Table 2.1 for mapping between Education status codes and
number of years of education completed
Values
n Number of years of education completed
NULL No education status information recorded

HHHead IsMinor On the cross-section date, the current household head is identified using the
household head relation and membership start and end date fields in the mem-
bership table. Where two possible household heads are identified the oldest
is selected. Where no household head is identified, the field is given a NULL
value. The age of the household head on the cross-section date is calculated.
Possible values
”Yes” Household head aged < 18
”No” Household head aged ≥ 18
”NULL” No household head identified.

AdultDeath Possible value = ”Yes” if any deaths have occurred for individuals who were
members of the household during the year 1st Jan December 31st . Note that
in unusual circumstances an individual who dies may have been a member of
the household during the year terminate their household membership prior to
December 31st. These are included as Adult Deaths for that household and
given the value ”Yes”.

Household This variable represents the unique identifier for the household for all household
included in the extracted data set

Household established The variable represents the date when the household was established and it is
in the format = (mm/dd/yyyy)

Household dissolved This variable represents the date when the household was dissolved and it is in
the format = (mm/dd/yyyy)
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