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ABSTRACT

ABSTRACT

Background:

Globally malnutrition is an underlying cause of death and accounts for over 45% of

under-5 mortality mainly resulting from diarrhoea and pneumonia. The post-2015 era

has seen, more than 25% of Kenya’s population being food insecure, with considerable

geographic and temporal disparities. Our primary aim was to understand the determinants

of malnutrition related morbidity and mortality in the rural Kilifi HDSS, with a special focus

on children admitted in Kilifi County Hospital (KCH) during 2002-2015.

Methodology:

Our study participants were all the children between the ages of 6 months to 15 years

who were admitted two times or more at the KCH. The outcomes were derived from

malnutrition-related admissions based on wasting (WHZ<-2) and oedema and the

discharge outcome whether alive or died. There were 3114 children with a total of 7620

admissions for children with more than one admission.

In the exploratory data analysis, temporality and seasonality were determined using

SARIMA time series models. Morans I index was used to investigate for the presence of

spatial autocorrelation. SatScan was used to identify the spatial clusters of malnutrition

related admissions and mortality. To understand mortality patterns, geo-additive logistic

models were fitted to the KCH data. Mixed effects negative binomial models with

separate space and temporal random effects were fit using the Maximum Likelihood

and Bayesian Estimation procedures. The Bayesian methods were used to estimate

the spatial parameters using Markov Chain Monte Carlo (MCMC) assisted with either

Metropolis Hastings or Integrated Nested Laplace Approximations (INLA).
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Results:

There were 17,740 children observed over the period of study and 4.01% of those died. A

total of 23,347 admission events were observed of which 7,128 were malnutrition related.

Out of the 17,740 children admitted, 3,114 had one or more admission event. A seasonal

hike in the May to July month was identified for malnutrition admission. Children with

more than one admission, (7620 admissions) ~24%(n=1858) had a malnutrition event and

6.24% of them died. Spatial hotspots clusters were identified in the North and South of the

creek and areas near Kilifi Town was identified as cold spots. Children with two or more

severe diseases are more likely to have a malnutrition admission event and females are

less likely to be admitted with malnutrition. There was a protective effect as the children

grew older and also as their body weights increased.The males had a higher risk of death

compared to the females and a year increase in age reduced the risk of death by 15%.

Conclusion:

A better understanding of the factors that contribute to malnutrition attributable admission

and mortality can be used to advocate for and develop earlier and more appropriate

responses. Additionally, this can provide an indication of future trends and the potential

impact of interventions.Importantly, including spatial and temporal random effects

biostatistical modelling can help reduce bias reporting and help understand better the

patterns of morbidity and mortality. Campaigns providing food and/or vitamin or other

supplements can contribute to reducing morbidity and ultimately deaths in Kenyan

children and building more health facilities to reduce the distance of travel to care is highly

recommendable.
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CHAPTER 1: INTRODUCTION AND BACKGROUND

1.1 Background

1.1.1 Burden of Malnutrition

Malnutrition is a vital underlying cause of death and accounts for 45%

of childhood mortality and morbidity by increasing susceptibility to major

infections like diarrhoea and pneumonia (1,2). Among hospitalised children

with malnutrition, in the absence of suitable treatment, the case-fatality

rates range from 30% to 40% (1,3,4). Majorly, it affects childhood

development and increases the risk of other diseases in adulthood. These

malnutrition related outcomes can significantly affect the socio-economic

productivity in their adult life (5). Sub-Saharan Africa and Asia remain

the areas with the highest prevalence of malnutrition. Specifically, in

Sub-Saharan Africa, malnutrition has been reported to be among the

leading risk factors in populations health (1,2,6).

In East and Southern Africa, research estimates have shown that

approximately 40%, 30% and 6% of children under five are stunted,

underweight and wasted respectively (7). In patients withmultiple infections

and malnutrition have been shown to complicate the management
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1.1 Background CHAPTER 1: INTRODUCTION AND BACKGROUND

of patients, therefore leading to a higher case-fatality in hospitals (3,8).

Malnutrition remains a major contributor to inpatient morbidity and mortality

among children in rural areas in Kenya, despite the incentives to overcome

malnutrition. Malnutrition has also been associated with increased inpatient

costs and increased risk of inpatient mortality (3,9,10).

In Kenya, considerable geographic disparities of the food insecure

population have been reported (11). Food inavailability has been shown

to increase the risk of malnutrition potentially. Nonetheless, malnutrition

is the result of a much broader range of risk factors. The UNICEF

malnutrition conceptual framework (Appendix 7) shows a wide spectrum

of determinants that worsen malnutrition leading to a vicious cycle (2).

1.1.2 Spatial-temporal analysis in sub-Saharan Africa

Spatial-temporal Bayesian models have been applied in different health

research studies especially in malaria and other infectious diseases

in sub-Saharan Africa (SSA). Spatial models in SSA have importantly

contributed to understanding the spread of malaria and a potential role for

alerts on epidemics. According to a review done by Gebreslasie et al., he

describes the importance of spatial models in the study of epidemiology

and the transmission risk of malaria in Africa (12).

2
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Multivariate and Semi-Parametric Bayesian spatial models have also

been applied to understand the risk and spatial variation of HIV in

Africa (13,14). This modelling approach of spatial multivariate and

semi-parametric models shows the adaptability and viability of spatial

models in understanding HIV in sub-Saharan Africa (SSA) (13,14).

Malnutrition has been shown to be heterogeneous spatially although very

little of this work has been done in sub-Saharan Africa. Lack of detailed

spatial data at administrative and homestead levels has been a major

limitation for residence centred investigation of malnutrition. According to a

review of SSA spatial analysis on malnutrition, most of them applied spatial

regression models at a meso level, but few studies used the Bayesian

spatial modelling approach (15).In Somalia, Kinyoki et al. observed a clear

seasonal variation in wasting in under 5s due to variations in climate, food

security and diseases. Bayesian hierarchical space–time models using

stochastic partial differential equation (SPDE) was used in Somalia (16).

Malnutrition being a compounded phenomenon, using joint spatial-temporal

models can give a better understanding of this issue. Spatial analysis

allows health research to integrate health, environmental and population

data. This allows them to investigate the relationship between these

3
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factors at different scales (17).

1.1.3 Advantages of Bayesian spatial models

The main advantage of Bayesian modelling approach is the ability to

incorporate prior information on the parameters used in the models.

This method offers a better way over the classical regression models by

allowing concurrent modelling of spatial-temporal autocorrelation while

still estimating the usual fixed effects. In spatial models, Bayesian models

over the frequentist modelling approach make it possible to include the

intrinsic Gaussian CAR prior distribution to represent the shared spatial

components. Modelling of shared spatial components using the frequentist

approach can also be cumbersome and computer intensive (13,18,19).

1.2 Problem statement

Malnutrition remains a serious challenge in public health and has been

linked to an increased number of deaths and morbidity of children. This

accounts for approximately 50% of global deaths in under-fives, which

enhances the risk of infectious diseases. Conversely, infections aggravate

malnutrition by different reasons leading to increased number of admissions

4
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and a longer length of hospital stay (1,6,20,21). Malnutrition has also been

reported to interact with various components of the environment potentially

increasing the risk of malnutrition and low birth weight (22,23).

Shortage of data on detailed geographic, temporal, household and

homestead level is a major setback in research on malnutrition related

morbidity and association with potential risk factors (15).

1.3 Justification of the study

According to a review done by Marx et al., little research has been done

on spatial-temporal malnutrition attributable mortality and morbidity. Some

studies have associated this with a lack of detailed geographic household

and homestead level data (15,24). Non-bayesian based methods are the

most commonly used approaches to the analysis of malnutrition attributable

morbidity andmortality, and they are limited in themanner they handle large

data set, temporal and spatial random effects (25,26).

It is now feasible to map malnutrition attributable mortality and morbidity

status at high spatial resolutions using Bayesian approach due to the

availability of georeferenced data. Additionally, recent developments

and accessibility of modern statistical tools together with advances in

5
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computing speeds offer opportunities for fitting spatial-temporal models

that converge quickly without loss of predictive precision (27). This will

provide a better understanding of space-time variation of morbidity and

mortality associated with malnutrition to improve the prevention, early

detection and outcome of diseases in malnourished children.

1.4 Literature review

1.4.1 Child malnutrition morbidity and mortality studies

Currently, Asia Latin America and sub-Saharan Africa hosts two-thirds

of the world’s malnourished children, and it is responsible for over 50%

of under-five mortality (1,28). In a study done in a rural area in Kenya,

malnutrition accounted for a higher rate of inpatient morbidity and mortality.

Bejon et al. concluded that despite the great effort to fight malnutrition, the

malnutrition attributable fraction for hospital mortality was over 50% and

not a significant change noted in East Africa since 1980’s. Middle Upper

Arm Circumference (MUAC) was a better marker for malnutrition compared

to the other conventional clinical definitions; wasting and stunting in this

study (3).

In a longitudinal study conducted in East rural Ethiopia among under-5

6
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years, wasting was observed to occur during the dry season though

seasonality was not a significant covariate. This could have been a

limitation of using a fixed effect model as stated in their paper to avoid

variable omission bias (28). Enhanced vegetation index (EVI) was highly

associated with all the malnutrition indicators according to a study done in

Somalia. EVI unit increase in Somalia accounted for over 30% reduction in

all the indicators (29). This study concluded that infections and seasonal

variations are key drivers of malnutrition, but a spatial-temporal study

similar to what we propose would help understand this better.

In Malawi, spatial patterns of childhood morbidity determined by Bayesian

geo-additive models similar to those we propose revealed some urban

agglomerations to be associated with a higher childhood morbidity,

especially diarrhoea. Other significant factors were environmental, climatic

factors and remoteness in some rural areas. Modelling was also controlled

for geographic factors (30).

1.4.2 Spatial-temporal modelling utilisation in epidemiology

In a few studies done in Africa and other studies elsewhere, the available

evidence suggests that malnutrition is spatially heterogeneous (30,31).

A Malawi study suggested more emphasis be placed upon childhood

7
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morbidity association with remoteness and geographic variation (30). In

Brazil, malnutrition was associated with primary diagnosis at admission and

was shown to be higher in different regions (20). Non-random clustering

of infant mortality due to malnutrition and diarrhoea deduced from verbal

autopsy (VA) was observed in rural South Africa (32).

Geographical variability has also been seen in hospital admissions using

non-separable spatial-temporal models(33). Since malnutrition amplify

common life-threatening infections that lead to admissions, understanding

the spatial and temporal patterns of the childhood malnutrition attributable

mortality and morbidity can be of great importance (15,31). Developing

models that will help better estimate the impacts of geographical variation

on population changes in health has been recommended by various

authors (23,34,35). Bayesian space–time geostatistical models and

structured additive logistic regression models have been used to predict

and estimate the risk factors of malaria in sub-Saharan Africa respectively

(36,37).

Noor et al. applied the Bayesian spatial-temporal models to show how a

reduction in transmission of malaria has been achieved and also predicted

the malaria burden in SSA for the period between 2000 and 2010 (36). This

8
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is complimented by Chirombo et al. using structured additive models which

showed similar results in Malawi with second order random walk priors for

their continuous variables (37).

Bayesian Poisson zero-inflated models using Integrated Nested Laplace

Approximation (INLA) approach for inference were used to identify

protective factors for HIV/TB child mortality (38). This was applied on the

mortality outcome variable, which had a Poisson distribution similar to the

morbidity outcome in this study. Inverse probability weighting combined

with prediction models were used to obtain the statistics and spatial

epidemiology of the prevalence of HIV in Malawi (13). This approach

applied Bayesian multivariate models to jointly model and map the HIV

risks (13). In Kenya, a spatial variation of HIV infections was observed

using Bayesian Spatial Semi-Parametric model showing the adaptability

and viability of spatial models in understanding HIV in SSA (14).

In Somalia, a Bayesian approach was applied to understand the

spatial-temporal distribution of wasted children. The study showed

a seasonality patterns in the prevalence of wasting recommending

consideration of seasons implementation of nutrition programs (16).

Ricardo et al., identified clusters of severe anaemia and malnutrition were

9
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identified as one of the factors contributing to the spatial heterogeneity of

anaemia risk (39).

1.4.3 Child malnutrition morbidity and mortality determinants

Agricultural production, food prices, food availability and food security

remain important determinants of malnutrition in sub-Saharan Africa.

However, while malnutrition exacerbates common life-threatening

infections, these infections themselves cause growth faltering and without

a sufficient recovery period can worsen malnutrition (1,3,6,8,23). Thus,

diseases, especially diarrhoea, are a key driver of malnutrition. Recently,

it has also become clear that chronic intestinal inflammation, known as

environmental enteric dysfunction (EED), is widespread in the developing

countries and is an important mediator of stunting (1,40).

1.4.4 Hospital based models

Kazembe et. al. used semiparametric regression model with data from

Zomba district hospital to show the risk of dying in hospital is lower in the

dry season but high for those reffered to the hospital. Significant difference

was observed in both structured and unstructured spatial effects.The

health facility effects revealed considerable differences by type of facility

10



1.5 Research question CHAPTER 1: INTRODUCTION AND BACKGROUND

or practice offered (41).In Tanzania, prompter care-seeking behaviour

, improved quality of care at health facilities and better adherence to

treatment was reccommended after analysing hospital data to understand

the malaria attributabke mortality (42). This shows the importance of geo

referenced data in informing important epidemiological policies and design

of interventions.

Most of the malnutrition studies have used survey or household

data.Therefore, we propose to map the mortality attributable to malnutrition

and malnutrition related morbidity using the available geo-referenced

household data for admitted children in the paediatric ward at county

Hospital in Kilifi and their non-admitted counterparts in the Kilifi Health

and Demographic Survey System (KDHSS) (43). This should better our

understanding of the variation of malnutrition attributable mortality and

malnutrition related morbidity.

1.5 Research question

Is there a variation in malnutrition attributable mortality and malnutrition

related morbidity space-time patterns among children admitted in Kilifi

county Hospital from 2002-2015, Kenya?

11
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1.6 Aim and objectives of the study

1.6.2 Study aim

To investigate the variability in childhoodmorbidity andmortality attributable

to malnutrition in Kilifi county between 2002 and 2015 using space-time

models.

1.6.3 Study objectives

a) To describe the spatial-temporal trends of malnutrition related

morbidity and mortality in Kilifi county, Kenya between 2002 and

2015.

b) To investigate the space-temporal variations in malnutrition related

morbidity in Kilifi county, Kenya between 2002 and 2015.

c) To investigate the spatial variations of impact factors for malnutrition

attributable mortality patterns in Kilifi county, Kenya between 2002 and

2015.

12
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CHAPTER 2: METHODOLOGY

Introduction

This chapter describes the study site, design and population of the data

used for this research project. Additionally, we describe the data collection

and management process for the different statistical approaches used to

analyse the data. The analysis was done in three main phases, exploratory

data analysis, temporal investigation and spatial-temporal models. Time

series models were used for investigating temporality. Moran I and

Kulldorff statistics that were used to investigate spatial auto correlation,

hotspots and coldspots respectively are introduced for the exploratory

analysis. Finally, we present Bayesian spatial-temporal negative binomial

model and geo-additive logistic model for the inferential statistics. In this

analysis we used WHZ and oedema as our malnutrition defining variables

since the children were aged between 6 months to 15yrs and MUAC is a

reliable malnutrition marker for children below 60 months (3,44).
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2.1 The Kilifi Health and Demographic Surveillance System (KHDSS)

The KHDSS was launched in 2000 in Kilifi County which is located in the

Coastal region of Kenya as shown on Figure~2.1. The area is a semi-arid

area with subsistence farming being the main economic activity for the

population in this region. The study area was mainly set to define rates

of mortality, migration and fertility. KHDSS has 15 administrative locations

and 40 sub-locations. Special 4-monthly visits are done to the households

to record any death, migration and birth event.

Figure 2.1: The location of the KHDSS and the different dispensaries and the main Hospital
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We utilise data from the Kilifi County Hospital (KCH) paediatric ward

admissions. KCH is the main referral hospital in this region, and 80% of

the admissions come from KHDSS. The hospital is located in the middle of

KHDSS which was launched in 2000 to capture the majority of the inpatient

details at KCH paediatric ward. The area has approximately 280,000

residents with almost 4000 paediatric admissions per year. The mortality

and morbidity events at the hospital are synchronised real time with the

population register updated by 4-monthly visits to the households (43).

2.2 Study Design and Data Management

Our study design was a retrospective cohort observational study. To

understand malnutrition related morbidity, our outcome was the number of

malnutrition related admissions over the period of 2002 to 2015. Our cases

for the mortality were children who had a death outcome and malnutrition

as the main predictor variable (3).

The mortality and morbidity events captured at the hospital are integrated

with the population register updated by 4-monthly visits to the households.

The linkage of the surveillance data and admissions data is done real

time with the matching of individuals at the point of admissions by the field

15
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workers. The data is then de-identified by assigning a unique identifier and

a corresponding person identifier for the KHDSS residents. A MySQL 5.7

database updated by the medical officers at KCH using a web based PHP

5.3.19 application. The medical officers update the medical background

of each admission with a unique identifier and a corresponding person

identifier for the KHDSS residents (43,45,46).

2.2.1 Data Quality

A team of qualified field workers trained on using the KHDSS surveillance

system do the matching of the data on real-time admissions. Each

field worker has a unique username to access the web based system

and the matching procedures of the individuals is explained elsewhere

(43). Qualified medical and clinical officers enter the history and clinical

examination of the patients in the system after matching has been done by

the field workers. The data quality checks on the clinical measurements

are implemented ensure values entered into the system are within the

expected range. The database has a daily backup, and each event or

record entered into the system has a unique event identifier and an audit

trail.
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2.3 Study Population

The study utilised data of children admitted in KCH from 2002 to 2015 and

aged between 3 months and 13 yrs who live in KHDSS and were health

system users.The highest number of admission events was 20, but for

the morbidity outcome, we selected up to 11 admission events. This was

considered in the modelling approach.

2.3.1 Inclusion Criteria

We included children who lived within the KHDSS and were admitted in Kilifi

county hospital between 2002-2015. The age limit for the children was 3

months to 13 years. The household geolocations for the participant was a

requirement to be included in the analysis.

2.3.2 Exclusion Criteria

We excluded children with unknown discharge outcome and the

malnutrition status was unknown at admission.Trauma admission events

were also excluded from the analysis. Children with missing person

identifier were excluded from the analysis.
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Figure 2.2: Data flow diagram

2.4 Outcome and Explanatory Variables

The outcome variables used to define amalnutrition related admission were

Weight for Height Z-score (WHZ) for children under-5 years or BMI for age

Z-score for children over 5 years and the presence of nutritional oedema

18
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at admission. The Weight for Height Z-score was calculated using the

2006 WHO child growth standards (47) and the BMI for age Z-score was

calculated using WHO growth reference for school-aged children (48). The

weight of the children during admission was done using an electronic scale

(Weylux; H Fereday and Sons, London, United Kingdom). The heights of

the children were measured with a wall-mounted scale except for children

with less than two years whose length was measured using a calibrated

board. Wasting which is low WHZ (WHZ < -2) or low BMI for age Z-score

(BMIZ <-2) is one of the key indicators of malnutrition and is related to

illness or food insecurity (49). Oedema is a clinical sign of undernutrition

which may include swelling of the feet, skin and hair changes (3). Nutrition

oedema is recorded by the medical officers at KCH during admission.

Child severe illness was defined as a child admitted with either gastroenteritis,

LRTI, blood and CSF culture positive, malaria and fever or meningitis

(3). Other factors affecting malnutrition related morbidity and mortality

were selected using the UNICEF malnutrition conceptual framework

guidance (2). The conceptual framework defines the immediate causes

of undernutrition to be individual related, i.e., diseases and inadequate

dietary intake and the underlying causes to be the environmental and

household factors as shown in Appendix 7.

19



2.5 Exploratory Data Analysis CHAPTER 2: METHODOLOGY

Additional covariates that are associated with malnutrition morbidity were

identified by a stepwise analysis based on a generalised linear regression

model and also those that have a biologically plausible relationship (2,50).

The environmental predictor variables were extracted from the Moderate

Resolution Imaging Spectroradiometer (MODIS) using the MODISTools

and MODIS package in R version 3.3.2 (51–53). To extract values from the

Kilifi EVI and Rainfall Raster files, the values interpolated from the values

of the four nearest raster cells of each admission coordinate provided (54).

The immediate and underlying factors of undernutrition were considered in

this analysis.

2.5 Exploratory Data Analysis

The summary statistics, frequency tables of the demographic characteristics

were done using the repeated measures tabulation and frequency

statistics.The summaries are created from the panel data of the number

of admissions and the monthly time variable. Continuous variables are

summarised with sample size (n), overall and between means, between,

within and overall standard deviations of the panel data. Categorical

variables are summarised as counts and percentages of overall, between

and within components of the panel data.
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2.5.1 Temporal Exploratory Data Analysis

To explore the temporal patterns, the data were defined as a regular time

series data using monthly time points of counts of malnutrition related

admissions and mortality. A line plot of the time series data was done

for the period 2002-2015. Augmented Dickey-Fuller unit-root was used

to test for stationarity; the null hypothesis is that the series has no root

or there is no trend in the model. The stationary series is then examined

on the Auto-Correlation Function (ACF) for the MA lags, and Partial

Auto-Correlation Function (PACF) for the AR lags. This was followed by

fitting Autoregressive integrated moving average (ARIMA) and seasonal

ARIMA models (51,55). The Seasonal ARIMA is useful where a time

series data shows a periodic pattern that reoccurs with about the same

intensity in a year. This makes it adequate for the admissions data since

admissions in a hospital seems to follow a pattern.

The time series orders autoregression, integration and moving-average

of 1,0,1 respectively were selected using the table of the autocorrelations

with Bartlett’s statistic (51). Seasonality was determined using the same

approach with pointwise confidence intervals also based on Bartlett’s

formula and selected the peaks.
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In general the seasonal autoregressive moving average model is defined

as;

ARIMA (p, d, q)

↑

Non seasonal

(P,D,Q)s
↑

seasonal

where s is the number period per season.SARIMA is anARIMA (p, d, q)

model whose residuals at ℓt are ARIMA (P,D,Q).

In general SARIMA model with period s is defined as;

(1 − φpL)

↑

NS AR(1)

(1 − θ1L
s)

↑

S AR(1)

(1 − L)

↑

NS D

(1 − Ls)yt
↑

SD

=
(1 + ϕpL)

↑

NS AR(1)

(1 + Θ1L
s)ℓt

↑

S AR(1)
(Eqn:1)

NS - Non-seasonal, AR - Auto Regressive, S- Seasonal, D -Difference

By definition ARIMA (p, d, q) (P,D,Q)s is fitted as

Θ (Ls)φ (L) (1 − L)d (1 − Ls) and DYt = Θ (Ls) θ(L)εt
where L is the

lag operator defined as Lk = Yt−k
Yt

, φ (L) = 1 − φ1 (L1) − φ2 (L2) −

..... − φp (Lp) is the polynomial function of order p with a set number of
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vector coefficients φ∼ . θ (L) = 1 − θ1 (L1) + θ2 (L2) + ..... + θq (Lq)

is a moving average polynomial of order q with a vector of coefficients θ∼

. Θ
(
LS

)
= 1 − φS,1L

S − φS,2L
2S − .... − φS,P

LPS and Θ
(
LS

)
=

1−φS,1L
S −φS,2L

2S − ....−φS,Q
LQS are seasonal parameters of order P

and Q respectively that meet the stationarity assumption. d is the number

of differencing passes needed to stationarize the series, D is the number

of seasonal differences,and εt are the error terms with mean zero and

variance σ2 (56,57).

The Portmanteau test is used to confirm the significane of the seasonality

as a covariate. The Portmanteau test null hypothesis is there is no serial

correlation using the white noise under the Chi2 statistic (58). Our model

was defined as; SARIMA(p, d, q)(P,D,Q)s , where s is the number

of period per season. This was defined as SARIMA(1,0,1) (1,0,1)s and

modelled as µt = ρ(yt−1) + θεt−1 + εt where ρ and θ are the products of

the seasonal parameters identified.

2.5.2 Spatial Exploratory Data Analysis

Maps of the prevalence of children admitted with malnutrition and the

patients who died were done. The Global Moran I index was used
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to calculate the measure of sublocations spatial autocorrelation or

randomness or dispersion on malnutrition admission. A distance matrix

of the sub-locations centroids was used to calculate the Morans I index

(59,60). The Moran’s I index was calculated based on the large sample

theory distribution of the index, which states that as the sample size

increases the indexs tends to a normal distribution.

I = n

W

n∑
i=1

n∑
j=1

wi,jzizj
n∑
i=1
z2
i

(Eqn:2)

Where zj is the deviation of a malnutrition admission from a sub-location

i(zi = Yi −
∼
Y ) , wi,j is the spatial weight between locations i and j

andW = n∑
i=1

n∑
j ̸=i
wi,j is the aggregate of all spatial weights. The Moran I

index is interpreted depending on the three outcomes; I > E(I) shows

a positive autocorrelation implying clustering and I ≈ 0 shows no spatial

auto correlation and I < E(I) shows a negative autocorrelation implying

a dispersed neighbouring value, where E(I) is the normally distributed

population mean (38,61).

Local heterogeneity and clustering of malnutrition attributable mortality and

morbidity were determined using SaTScan software to observe the hot

and cold spots in Kilifi County. SaTScan applies the Kulldorff spatial scan
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statistic which imposes a circular window and calculates the likelihood of

observing the events inside and outside the study area. The circle with the

maximum likelihood is defined as the most likely cluster (62,63).

2.6 Inferential Statistics

2.6.1 Spatial-Temporal Negative Binomial Model

Our outcome was defined as the counts of malnutrition related admissions

until the person with the highest number of malnutrition related admissions.

Secondly, the variance of the malnutrition related admissions was higher

than the mean, so a negative binomial distribution fitted our count data

well (25,32,64). The morbidity outcome data followed a negative binomial

distribution; which is a generalisation of the Poisson distribution used

to provide better epidemiological estimates of factors associated with

malnutrition morbidity (25). The negative binomial spatial-temporal model

was applied to achieve objective 2; to identify the spatial and temporal

pattern of malnutrition admissions in Kilifi (64). We included children with

at least two admissions events for the spatial-temporal negative binomial

model due to computational requirements(65). The readmissions would

also help investigate vulnerability due to malnutrition morbidity.
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Model Definition

The definition of the negative binomial spatial model is

yijt|ψijt,Ω∼ ∼ π
(
yijt|ψijt; Ω∼

)
(Eqn:3)

For i = 1, 2, 3, ...., nt = 3114, individuals data , j = 1, 2, 3, ...., q = 40,

are the sub locations and t = 1, 2, 3, ...., p = 11 is the admission visit

number. Ω∼ (used as Ω thereafter) is a vector of parameters to be estimated

and ψijtis the linear predictor.

Where y
∼

= [yijt]n×p are the observed admission data which follow a

negative binomial distribution of the form yijt ∼ NegBinomial(pijt, rijt)

(66).

p(y = [yijt] |p, r) =


yijt − 1

r − 1

 pr(1 − p)yijt; y ≥ r, r = 1, 2, 3...; 0 < p < 1

(Eqn:4)

where r = 1
θ and pijt = 1

1+θµijt
.

Using our data and y is the number of admissions from each individual i,r
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is the number of successful malnutrition admissions from sub-location j at

admission t, and p is the probability of a malnutrition admission.

The conditional mean is E (yijt|p, r) = r(1−pijt)
pijt

and conditional variance

var(yijt|p, r) = r(1−pijt)
p2

ijt
.

Taking the natural logs from Eqn:4 above,

= ln


yijt − 1

r − 1

 + r ln (pijt) + yijt ln(1 − pijt) (Eqn:5)

And in general the exponential family form of a negative binomial is

expressed as a member of the generalized linear model which has a link

function and a cumulant as shown below;

f (y; p, r) = exp


yijt ln (1 − pijt)

link function
+ r ln (pi)

cumilant
+ ln


yijt − 1

r − 1




(Eqn:6)

Since 
yijt − 1

r − 1

 = Γ (yijt)
Γ (yijt − r) Γ (r)
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from Γ (x) = (x− 1)! and


x

m

 = x!
m!(x−m)! and using r = 1

θ and

pijt = 1
1+θµijt

from Eqn:4 above, and replace in Eqn:5 , this is gives

= ln
 Γ (yijt)

Γ
(
yijt − 1

θ

)
Γ
(

1
θ

)
+ 1

θ
ln

 1
1 + θµijt

+yijt ln
1 − 1

1 + θµijt


(Eqn:7)

Then after taking the exponents, this can be expressed as;

= exp
ln Γ (yijt) + yijt ln

 θµijt
1 + θµijt

 − ln Γ
yijt − 1

θ

+

1
θ

ln
 1

1 + θµijt

 − ln Γ
1
θ




(Eqn:8)

From the marginal of the joint distribution of the Poisson-Gamma, the

Negative-Binomial distribution (66) can be expressed as follows;

= exp
c0 (µijt, θ) + ln Γ (yijt) − ln Γ

yijt − 1
θ

 − ln Γ
1
θ


(Eqn:9)

Where

c0 (µijt, θ) = yijt ln
 θµijt

1 + θµijt

 + 1
θ

ln
 1

1 + θµijt


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c0 (µijt, θ) = yijt ln
 θµit

1 + θµit

 − 1
θ

ln (1 + θµit)

Where µijt = exp (ψijt) = log (Eijt) + xijtβ
∼

+ ϕ
∼j

+ ϑ∼j + γ
∼t

+ εijt with

Eijt as the ages of the children and is the exposure time variable, xijt are

the covariates design matrix, β
∼
vector of fixed coefficients. And the INLA

modelled latent variables for structured (ϕ
∼j

) and unstructured (ϑ∼j) space

and time (γ
∼t

)

Our spatial-temporal model was fitted assuming the age of the child as the

exposure variable and was fitted as follows

ln(µijt) = xijtβ
∼

+ ϕ
∼j

+ ϑ∼j + γ
∼t

+ εijt + log(Eijt) (Eqn:10)

µijt = exp
xijtβ

∼
+ ϕ

∼j
+ ϑ∼j + γ

∼t
+ εijt

 × Eijt (Eqn:11)

Under maximum likelihood estimation, the negative binomial form was

expressed as (32,66)

L (µijt|yijt, θ) =
nt∏
i=1

exp
c0 (µijt, θ) + ln Γ

yijt − 1
θ

 − ln Γ (yijt) − ln Γ
1
θ


(Eqn:12)
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The log likelihood is obtained by taking the log of the likelihood; Eqn:12

ℓ (µijt|yijt, θ) =

exp
 nt∑
i=1

c0 (µijt, θ) + ln Γ
yijt − 1

θ

 − ln Γ (yijt) − ln Γ
1
θ




(Eqn:13)

Considering values with the parameters , substituting µijt with the linear

predictor and c0 (µijt, θ), the negative binomial log-likelihood from Eqn:13

the model coefficients can be expressed as

∝ exp
 nt∑
i=1

yijt ln
 θ exp(ψijt)

1 + θ exp(ψijt)

 − 1
θ

ln (1 + θ exp(ψijt))



(Eqn:14)

Thus our model from Eqn:6 can be implemented using GLM with the link

function being (66–68).

yijt ln
 θ exp(ψijt)

1 + θ exp(ψijt)


Since the prior distribution of µijt is a multivariate normal with a mean zero

and a ∑
q×q = ∑

40×40 variance matrix, µijt = MVN (0,∑40×40). The

likelihood contribution for the jth sub location is obtained by integrating

µijt out of the joint probability density f (yijt|µijt, θ)
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L (Ω,∑, θ) = (2π)−q
2 |∑|−

1
2
∫
f (yijt|µijt, θ) exp

(
µ

′
ijt

∑−1µijt
2

)
dµijt

(Eqn:15)

The above equation (Eqn:15) has no closed form, and thus approximation

method is used for Maximum likelihood estimation.

The spatial-temporal model with Bayesian approach estimation was

defined as follows

Posterior[p(parameters|data)] ∝ Likelihood × Priors

The posterior likelihood of our malnutrition admission data is defined as;

L

Ω ≡
β∼, ϕ∼j, ϑ∼j, γ∼t

 |yijt
 =

n∏
i=1
p (yijt|Ω) × p

β
∼
, ϕ
∼j
, ϑ∼j, γ∼t


(Eqn:16)

The full conditional for our model is expressed as;

p (Ω|yijt) ∝ L (yijt|Ω) × p
(
β
∼k

)
× p

ϕ
∼j

|τc
 × p

(
ϑ∼j|τh

)
× p

(
γ
∼t

|τe
)

(Eqn:17)
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= L (yijt|Ω)×p
(
β
∼k

)
×p

ϕ
∼j

|τc
×p (τc)×p

(
ϑ∼j|τh

)
×p (τh)×p

(
γ
∼t

|τe
)

(Eqn:18)

The prior for the beta coefficients for k − 1 prdictors in the model is

assumed to be β
∼k

iid∼ N (µβ, σβ2) therefore

p (βk) = 1√
2πσ2

β

exp
−1

2

βk − µβ
σβ


2 (Eqn:19)

Spatial Components:

The unstructured random effects p
(
ϑ∼j|τh

)
, where ϑj

iid∼ N
(
0, 1

τh

)
.

Therefore

p (ϑj|τh) = 1√
2π
τh

exp

−1
2

ϑj − 0
1√
τh


2 (Eqn:20)

with a Gamma function prior used τh ∼ Gamma (αh, βh) expressed as

p(τh) = (βh)αh

Γ (αh)
ταh−1

h
exp(−βhτh), αh > 0; βh > 0 (Eqn:21)

Therefore the unstructured random effects prior in BUGS is expressed as;
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p (ϑj|τh) × p (τh) ∝ ταh−1
h

exp(−βhτh) × exp

−1
2

ϑj − 0
1√
τh


2

(Eqn:22)

Similarly in INLA the unstructured random effects ϑ∼j = fspat_unst (sj)

scaled with parameter τh.

In BUGS, a CAR prior is used for the structured spatial random

effects,a CAR prior is used for the structured spatial random effects

(19) ϕ
∼

∼ CAR (τc) and a CAR prior given by prior is given as

ϕj|ϕi, j ̸= i, τc ∼ N


ϕj

ϕ̄j
, 1
τcmj

 therefore

p (ϕj|τc) = 1√
2π
τcmj

exp


−1

2



ϕj −
ϕj

ϕ̄j√√√√√√√√ 1
τcmj



2
(Eqn:23)

Hence the likelihood of the neighbouring sub-locations is given as

p (ϕj|τc) ∝ exp
−τc

2
nt∑
i=1
wij(ϕj − ϕi)2

 (Eqn:24)

wherewij denotes the adjacency matrix and ij shows that the sub location

j is a neighbour of sub location i andmj is the number of neigbours for sub

33



2.6 Inferential Statistics CHAPTER 2: METHODOLOGY

location j. A conjugate hyper prior of τc ∼ Gamma (αc, βc) is assumed

p(τc) = (βc)αc

Γ (αc)
ταc−1
c exp (−βcτc) , αc > 0; βc > 0 (Eqn:25)

Therefore;

p (ϕj|τc) × p(τc) ∝ exp
−τc

2
n∑
i=1
wij(ϕj − ϕi)2

 ταc−1
c exp (−βcτc)

(Eqn:26)

In INLA,the structured temporal component ϕ
∼j

= fspat (sj) ,a Besag CAR

prior was used similar to CAR prior in BUGS, given as

sj|si, j ̸= i, τc ∼ N

 1
mj

∑
j∼ i

sj,
1

τcmj

 (Eqn:27)

Where ϕj = (ϕ1, ϕ2, ϕ3, ...., ϕ40), mj is the number of neighbours of

sub location j ,j ∼ i indicates that the two sub locations j and i are

neighbours.

AR(1) Temporal Component:

The temporal component was only implemented using R-INLA only and a

first order autoregressive model with normal first term prior was used.

γ
∼t

= ftemp (yt) ∼ AR (1) first order autoregressive model with normal
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first term prior yt = ρyt−1 + εt (69,70) where

y1 = N

0, 1
τe (1 − ρ2)


|ρt| < 1 for stationarity and εt ∼ N (0, τ−1

e = σ2
t ) is the white noise

process.

The auto regressive parameter is expressed as

p (ρ|σt) = 1√
2πσ2

t

exp
−(yt − ρyt−1)

2

2σ2
t

 (Eqn:28)

Finally combining the likelihood and the prior to obtain our posterior

distribution as shown in Eqn:43

p (Ω|yijt) ∝ exp
 nt∑
i=1

yijt ln
 θ exp(ψijt)

1 + θ exp(ψijt)

 − 1
θ

ln (1 + θ exp(ψijt))

×

1√
2πσ2

β

exp
−1

2

βk − µβ
σβ


2 × ταh−1

h
exp(−βhτh) × exp

−1
2

ϑj − 0
1√
τh


2×

exp
−τc

2
n∑
i=1
wij(ϕj − ϕi)2

 ταc−1
c exp (−βcτc) ×

1√
2πσ2

t

exp
−(yt − ρyt−1)

2

2σ2
t


(Eqn:29)

Where

exp (ψijt) = exp
xijtβ

∼
+ ϕ

∼j
+ ϑ∼j + γ

∼t
+ εijt


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This combination has no closed form; estimation is used to estimate the

parameters. To solve for the parameters, we use the adapted Stochastic

Partial Differential Equations (SPDE) in INLA, and the MCMC with

Metropolis- Hastings algorithms approaches in WinBUGS (25,32,71).

In our implementation, combination of the unstructuredϑ∼j = fspat_unst (sj)

and the structuredϕ
∼j

= fspat (sj) priors wasmodelled as a convolution-prior

resulting to a Besag-York-Mollie model. The model is a union of a Besag

model Eqn:27 and iid model Eqn:22 . This BYM model allows to get the

posterior marginal of the sum of structured Besag and unstructured iid

spatial components (72).

A negative binomial Bayesian hierarchical space-time model was

implemented through an adapted Stochastic Partial Differential Equations

(SPDE) approach to produce continuous maps of malnutrition attributable

morbidity at level 5 spatial resolution. This approach was selected over

the Markov Chain Monte Carlo (MCMC) due to its suitability for Gaussian

Markov Random Fields (GMRF) and its computing capability of temporal

models (26,27,69,73,74).
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2.6.2 Spatial Logistic Model

Our outcome for objective 3 was the discharge outcome of the patient,

whether discharged alive or dead. A Bayesian geo-additive spatial logit

model with the death as the outcome with a logit link function is fitted

to determine the malnutrition attributable mortality. This was considered

over the count model since the mortality outcome was fitted as a binomial

outcome to allow adjusting for the individual admission effects.

Model Definition

Since our outcome is binary the general distribution is;

yi =


1

0

if there was a death

otherwise

Then the likelihood of death is a binomial distribution (a sequence of

Bernoulli trials) in general defined as;

L (xij, yij|pij) = L {Yij = yij} =


rij

yij

 p
yij
ij (1 − pij)rij−yij (Eqn:30)

Where pij represents the probability of the subject i from sub-location j

who has a covariate vector xij and yij = 1 indicates death or alive if it

takes value zero.
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The rij are total admissions with a mean E (yij) = µij = rijpij and the

variance is var (yij) = δij = rijpij (1 − pij).

Considering that a logistic regression model can be defined as follows with

cluster-level random effects u∼ij.

logit (pij (xij)) = xijβ
∼

+ ϕ
∼j

+ ϑ∼j + εij (Eqn:31)

Then making pij the subject of the formula, then logistic model was

modelled as

ln
 pij

1 − pij

 = xTijβ∼
+ ϕ

∼j
+ ϑ∼j + εij (Eqn:32)

Considering the binomial mixed-effects model, for the sub location clusters,

j = 1, 2, 3, ...., 40 the conditional distribution of y
∼j

= (yj1, yj2, ..., yjnj
)T

given a set of sub location level random effects u∼ij; expressed as

f (yij|µij) =
nj∏
i=1




rij

yij


H(ψ

∼ ij
)

yij
1 −H(ψ

∼ ij
)

rij−yij

 (Eqn:33)

Where ψ
∼ ij

= xTijβ∼
+ z∼iju∼j

Then, exponentiation and log transformation ofH(ψ
∼ ij

), this can be written

as,
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H

ψ
∼ ij

 =


exp

xijβ
∼

+ ϕ
∼j

+ ϑ∼j + εij


1 + exp

xijβ
∼

+ ϕ
∼j

+ ϑ∼j + εij



 =
exp

ψ
∼ ij


1 + exp

ψ
∼ ij


(Eqn:34)

From Eqn:32

= exp


ln


rij

yij

 + yij ln
H

ψ
∼ ij

 + (rij − yij) ln
1 −H

ψ
∼ ij




(Eqn:35)

Expanding the brackets inside the exponent and simplifying we obtain

=
nj∏
i=1

exp


ln


rij

yij

 + yij ln


exp

ψ
∼ ij


1 + exp

ψ
∼ ij



 + (rij − yij) ln


1

1 + exp
ψ

∼ ij






(Eqn:36)

=
nj∏
i=1

exp


ln


rij

yij

 + yij ln
exp

ψ
∼ ij

 − rij ln
1 + exp

ψ
∼ ij




(Eqn:37)

=
nj∏
i=1

exp


ln


rij

yij

 + yijψ
∼ ij

− rij ln
1 + exp

ψ
∼ ij




(Eqn:38)
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= exp


nj∑
i=1

yijψij − rij ln
1 + exp

ψ
∼ ij

 + ln


rij

yij






(Eqn:39)

Let r∼j =
(
rj1, rj2, ..., rjnj

)T
, y

∼j
=

(
yj1, yj2, ..., yjnj

)T
and ψ

∼ j
=(

ψj1, ψj2, ..., ψjnj

)T
then

c

y
∼j
, r∼j

 =
nj∑
i=1

ln


rij

yij


which does not depend on the model parameters on Eqn:39 in compact

form is thus expressed as

f

y
∼j

|u∼j
 = exp

 nj∑
i=1

y
∼

′

j
ψ
∼ j

− r
′
j ln

1 + exp
ψ

∼ j

 + c

y
∼j
, r∼j


(Eqn:40)

Given that the prior distribution of the uj = MVN (0,Σ) is a multivariate

normal with a mean zero and a ∑
q×q = ∑

40×40 variance matrix. The

likelihood contribution for the jth cluster is obtained by integrating u∼j out of

the joint density f
y
∼j

|u∼j
.

Lj (β,Σ) = (2π)−q
2 |Σ|−

1
2
∫
f

y
∼j

|u∼j
 exp

(
−u′

JΣ−1uj
2

)
duj

(Eqn:41)
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= exp {c(yj, rj)} (2π)−q
2 |Σ|−

1
2
∫

exp
{
h
(
β,Σ, u∼j

)}
duj (Eqn:42)

Where

h
(
β,Σ, u∼j

)
= y

′
jψ∼ j

− r
′
j ln

1 + exp(ψ
∼ j

)
 − u

′
jΣ−1

u∼j
2

And for convenience in the arguments of h (.) we supress the dependence

on the observable data
y
∼j
, r∼j, x∼j, z∼j


The above equation has no closed form and has to be approximated

for the maximum likelihood estimation using mean–variance adaptive

Gauss–Hermite quadrature and Laplacian approximation crossed

random-effects models (75).

The model fit within STATA does not cater for spatial random effects as

such we extended this to the Bayesian framework such that the link function

predictor ψj is extended such that

ψ∗
j = xijβ

∼
+ ziju∼j + εij

Letting ziju∼j = ϑ∼j + ϕ
∼j

The spatial Bayesian model is defined as follows

Posterior[p(parameters|data)] ∝ Likelihood× Priors
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The full conditional for our model can be expressed as

p
(
Ω ≡

{
β
∼
, ϕ
∼
, ϑ∼

}
|yij

)
∝ P (Ω|yij) =

L (yij, xij|Ω) × p
(
β
∼k

)
× p

ϕ
∼j

|τc
 × p

(
ϑ∼j|τh

) (Eqn:43)

= L (yij|Ω)×p
(
β
∼k

)
×p

ϕ
∼j

|τc
×p (τc)×p

(
ϑ∼j|τh

)
×p (τh) (Eqn:44)

The prior for the beta coefficients in the model is βk
iid∼ N (µβ, σβ2) , is as

defined in Eqn:19

The unstructured random effects p
(
ϑ∼j|τh

)
, where ϑ∼j

iid∼ N
(
0, 1

τh

)
with

a Gamma function prior used τh ∼ Gamma (αh, βh) was defined as

shown in equation Eqn:22 above.

A CAR prior is used for the structured spatial random effects ϕj ∼

CAR (τc) and a CAR prior is given as ϕj|ϕi, j ̸= i, τc ∼ N
(
ϕj

ϕ̄j
, 1
τcmj

)

with a conjugate hyper prior of τc ∼ Gamma (αc, βc) assumed. The pdf

is as described in equation Eqn:26 and a similar approach with a Besag

prior as shown in Eqn:27

Combining the equations for our posterior distribution as shown in Eqn:43
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p (Ω|yij) ∝ exp
 nj∑
i=1

y
∼

′

j
ψ
∼ ij

− r
′
j ln

1 + exp
ψ

∼ ij

×

1√
2πσ2

β

exp
−1

2

βk − µβ
σβ


2 × ταh−1

h
exp(−βhτh) × exp

−1
2

ϑj − 0
1√
τh


2×

exp
−τc

2
n∑
i=1
wij(ϕj − ϕi)2

 ταc−1
c exp (−βcτc)

(Eqn:45)

Where

ψ
∼ ij

= exp
xijβ

∼
+ ϕ

∼j
+ ϑ∼j + εij


The above equation also has no closed form and has to be approximated.

To approximate for the parameters we use the adapted Stochastic Partial

Differential Equations (SPDE) in INLA and the MCMC with Metropolis-

Hastings algorithms approaches (26,27,69,73,74).

The estimated parameters we then used to calculate the mortality

attributable fraction. To calculate the confidence intervals for the

attributable fractions, the ordinary bootstrap with 1000 iterations was

used (3,76).
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2.6.3 Model assesment and goodness of fit

We adopted both multilevel models and Bayesian approach for model

estimation. The advantage of Bayesian models over the multilevel models

is the combination of the prior information with the data through Bayes

theorem to obtain posterior distributions as shown in section 2.6.1 and

2.6.2. Convergence of the MCMC and SPDE approach was monitored

using the trace plots. For model comparison and best fit, we use the

Deviance Information Criterion (DIC), where the small DIC was considered

better. DIC is defined as
−
D (θ) + pD where

−
D (θ) = E [D(θ)|y] which

is the posterior mean of the deviance, D(θ). pD is the difference in the

posterior mean deviance and the deviance evaluated at the posterior mean

of the parameters, pD =
−
D (θ) − D (E (θ|y)). The posterior mean of

the deviance is used to asses the best model fit and pD penalizes for

number of parameters in the model, and values between 5-10 indicates

the model fits better (71,77).

2.9 Ethical Clearance

The project utilises data fromKHDSSwhich was received in an anonymised

format. The study is approved by the KEMRI (Kenya Medical Research
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Institute) Scientific Steering Committee in Kilifi (78). Ethical approval under

clearance certificate number M1611104 was received from the Human

Research Ethics Committee of the University of the Witwatersrand. The

certificate is in Appendix 1.
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CHAPTER 3: RESULTS

3.1 Introduction

In this chapter, we show the results of the analysis of the KHDSS

admissions data for the period between 2002-2015. Temporal and spatial

exploratory analysis using time series and hotspot analysis respectively

are presented. We adjusted for the potential confounders, spatial-temporal

random effects and other associated factors.

Inferential analysis of the spatial-temporal negative binomial model and

spatial logistic model for objective 2 and objective 3 respectively are

presented, but we discuss the models of best fit only. Firstly we present

the exploratory analysis and then the inferential statistics.

3.2 Exploratory Data Analysis

3.2.1 Temporal Exploratory Data Analysis

The temporal analysis was fitted using monthly data for the period from

April 2002 to December 2015.The auto correlation function (ACF) and

partial auto correlation function(PACF) of the monthly transformed series

using data from 2002 to 2015 show the peaks at different periods as shown
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in Appendix 3 for morbidity. A significant serial correlation (seasonality)

of 7 months was observed in children admitted with malnutrition and 4

months was observed for non-malnutrition admissions. We report the

admission pattern that was unique for malnutrition related admissions.

This was confirmed with a significant (p<0.001) Portmanteau test for white

noise. An Autoregressive of order 1 (AR1) was selected to be used in the

spatial-temporal model which fitted the observed data well as shown in

Appendix 3.

Panels (A) and (B) of Figure~4.3 show graphs of the time series plots

for the monthly malnutrition related admissions. A significant seasonality

of July was observed for malnutrition related admissions, but in general,

the malnutrition admissions decline over the period. The graphs show

the prediction using SARIMA model. The Panel B of Figure~4.3 shows

the non-malnutrition related admission. The red line on Figure~4.3

shows that the Auto Regressive of order 1 predicts the data well and this

was implemented in the spatial-temporal model for malnutrition related

admissions. The tables in Appendix 2 shows the monthly counts of

malnutrition admissions and mortality for the period 2002 to 2015.
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Figure 4.3: A time series plot for monnthly number of admissions from 2002-2015 in KHDSS

3.2.2 Spatial Exploratory Data Analysis

A Global Moran’s I index of 0.1 (p-value<0.001, sd=0.029) was observed.

Based on the calculated Global Morans I index, we rejected the zero

spatial autocorrelation hypothesis. This shows spatial clustering of the

admissions from the different sub locations. The Kulldorff spatial scan

statistic using SaTScan showed hotspots in the Northern and Southern

areas of the Kilifi urban area. Areas closer to the main hospital (KCH) and

Kilifi town were observed as cold spots of malnutrition related admissions

as shown on the Figure~4.4 panel A. Four of the five hot spots and

cold spots were significant (i.e. p<0.05), the cluster (Mwapula, Marere,

Magogoni-K, Mdangarani, Vinagoni, Chivara) was the one observed not to

be significant for malnutrition related admissions.The temporal clustering

of malnutrition related admissions as shown in Appendix 4, kept on shifting
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over the periods but apparently similar regions were observed. Three

mortality clusters we observed as shown on Figure~4.4 panel. We only

did hotspot analysis for mortality, and the clusters close to urban Kilifi town

was observed during the period 2002 to 2006, the other mortality hotspots

were observed until 2008.

Figure 4.4: Malnutrition related hotspots (red shade) and coldspots (blue shade) in KHDSS 2002-2015, A- morbidity coldspots and hotspots and B- mortality
hotsposts
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3.3 Bivariate Analysis

The data used was for the children aged 3 months to 15 years admitted in

Kilifi County Hospital over the 14 years between 2002 and 2015 whose sub

location data was available. This totalled to 23,483 admissions from 17,940

individuals across the 40 sub-locations in the KHDSS. Malnutrition related

readmission analysis had 7,820 admission events from 3,114 children as

shown on Table~4.1. In objective three we used the full set of data with

16,355 non-malnutrition related admissions and 7,128 malnutrition related

admissions. The average age of the patients who died was higher than that

of those who were discharged alive but had many numbers of admission

days as shown on Table~4.1. The admissions that had a malnutrition was

30.24% of the total inpatient records of 2365 individuals. Out of the 1271

respondents who had a malnutrition admission in at least one of his or her

admission, 73% of their admissions are a malnutrition related admission.

The between column tells us that (1271/3114) 40.82% of the repeated

admissions happened with the children being malnourished.

Males had a higher percentage (56.23% between males) of experiencing

two or more admissions compared to the females (43.77% between

females), which is also a similar case in the mortality outcome. Malaria
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admissions happened 68% of the times in all admissions that occurred.

At least 33% of the admissions had a malaria admission with a significant

association in the cases and controls. Blood culture and CSF culture

positive patients who died had a higher between percentage compared to

those discharged alive as shown on Table~4.2 below.
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3.4 Spatial-Temporal Negative Binomial Model Fit and Diagnostics

3.4.1 Model fit results

Multivariable analysis was done adjusting for different random effects

non-spatial, spatial and spatial-temporal. The age of the child at

admission was used as the exposure duration (offset)variable, and

the cumulative count of admissions was used as the temporal variable

for more epidemiological intuitive results. The estimated coefficients are

reported in Table~4.3 with 95% confidence interval based on the Maximum

Likelihood Estimation (MLE) approach and 95% credible intervals for

the Bayesian approach. As shown on Table~4.3 four models were fit, a

multilevel model (MLE approach) adjusting for the sub-location random

effects, a spatial model using Gibbs sampling and the INLA estimation

procedure which has a better computational capability (79).

In general, the spatial-temporal model with a lower Deviance Information

Criterion compared to non-spatial models was used to assess the best

model fit. Bayesian spatial-temporal model using R-INLA was the model

with the best fit with a DIC= 13640.20 which is the lowest among the

spatial-temporal models but with a higher number of effective parameters

pD = 35.50 because of the extra temporal parameters.
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The Bayesian spatial-temporal multi variable model showed some

explanatory variables as determinants of child malnutrition re-admission

which was consistent with the non-spatial models. The results are as

shown on Table 4.3. The environmental variables were significantly

associated with a malnutrition admission in the multilevel model, but a

different observation in the spatial-temporal models. Rainfall increase

was associated with a higher risk of malnutrition admission (RR=1.04;

Cr.I=(1.01-1.09)) in the spatial model but after adjusting for the temporal

component the interval of the level of significance changes (RR= 1.02;

Cr.I=(0.97-1.05)) in the spatial-temporal model. Similarly, adjusting for

the spatial and temporal model changed the significance of the EVI

variable in the model though it still showed a reduction of the risk of

malnutrition admission. The weight of a child which is an important

marker of malnutrition; we observed that an increase in weight of a child

reduced the relative risk of admission by 20% (RR=0.89; Cr.I= (0.88-0.91)).

The children with more admission days had a higher risk of malnutrition

re-admission.

The Figure~4.5 shows the overall hot spots and cold spots which were

consistent with the SaTScan results, but some sub-locations close to the

Kilifi urban were identified as hotspots in this model. Areas with darker red
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shows that they have a higher risk of admission with malnutrition and blue

shades (in the coloured version) indicate less probability of a malnutrition

admission. The temporal risk ratios map were generated after running

the Bayesian spatial-temporal model and are as shown on the Figure~4.6.

The maps were generated to explain differences in the temporal trend of

malnutrition related admissions for the different sub-locations. The blue

shades symbolise the cold spots; the red shades exhibits the hot spots for

malnutrition related readmissions.
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Figure 4.5: Malnutrition related hotspots (red shade) and coldspots (blue shade) in KHDSS 2002-2015, overall results from the Bayesian spatial-temporal model
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3.4.2 Model fit diagnostics

Using the final spatial-temporal model we investigated for the model

convergence and correlation. As a way of showing the convergence

graphically the model convergence we show posterior mean density plots

Figure~4.7 and the WinBUGS model convergence graphs are shown

in Appendix 5. The convergence graphs show a perfectly symmetrical

pattern observed for the estimated parameters indicating that the model

captured the true values very well (80).

Figure 4.7: Posterior density plots for fixed effects of the NB spatiotemporal model
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3.5 Spatial Logistic Model Fit and Diagnostics

3.5.1 Model fit results

Multivariable analysis was done using non-spatial and spatial models for

admission specific variables with WHZ scores being the main predictor,

environmental variables and sub-location information. Table~4.4 shows

the association between different admission predictors and mortality. The

model with structured and unstructured random effects had a higher DIC

due to the extra spatial parameters. We used the pD that assesses the

model complexity to select the most parsimonious model, which is the

model with structured and unstructured random effects model as shown

on Table~4.4.
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The model with unstructured and structured random effects model showed

several predictors of mortality. WHZ which is one the determinant of

malnutrition admission was strongly associated with mortality (p<0.001)

and RR = -0.52 CrI= (-0.58;-0.46) in both spatial and non-spatial models

respectively. The malnutrition attributable fraction for the non-spatial

model was high than in the spatial model 38.30(C.I 35.64,42.82). The

attributable fraction was lower in the spatial model, after adjusting for the

spatial random effects 24.91(C.I = 21.04;30.84 ) but this was the most

effective model with a pD = 22.41.

The weather variables and gender were significantly associated with

mortality. The model shows high admission mortality when there is high

rainfall, and EVI was significantly associated with a lower risk of admission

mortality. The children who had a higher number of admissions and

many admission days had a lower probability (~28% and 2% lower odds

respectively) of death as shown on Table~4.4. The diagnostic plot for the

posterior means are as shown on Figure~4.9

After adjusting for the spatial random effects, the attributable fraction differs

by clusters as shown on Figure~4.8. The maps present the clustering

of malnutrition attributable mortality after adjusting for the spatial random
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effects. Areas on the south of the creek are observed to have a higher

(more than 30%) mortality attributable to mortality. Gede location did not

have an estimated fraction due to fewer numbers in from the region.

Figure 4.8: Malnutrition attributalble mortality in KHDSS, 2002-2015

3.5.2 Model fit diagnostics

The selected model which had the lowest pD = 22.41 was investigated

for convergence and correlation. Posterior mean density plots on

Figure~4.9 were used to show convergence graphically. The convergence

graphs show a perfectly symmetrical pattern observed for the estimated

parameters indicating that the model captured the true values very well
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(80).

Figure 4.9: Posterior density plots for fixed effects of the logisitc spatial model

65



CHAPTER 4: DISCUSSION AND CONCLUSION

CHAPTER 4: DISCUSSION AND CONCLUSION

4.1 Introduction

This chapter discusses the key results from our analysis by comparing

these with other studies. We also discuss the strength and limitations of

the study. The two main models under discussion are the spatial-temporal

model for morbidity and spatial model for mortality.We adjusted for

potential confounders and other associated factors, adjusting for spatial

and temporal for objective 2 and spatial only for objective 3.

In general, hotspots of malnutrition related admissions were found in North

and South areas of the Kilifi town as shown on Figure~4.4. The mortality

attributable to malnutrition had a spatial heterogeneity as it was observed

in Figure~4.8 and the spatial model in section 3.3.

4.2 Spatial-Temporal Patterns of malnutrition related morbidity

A 19-year analysis done on Kilifi showed that a trend for neonatal

admissions and severe diseases. Severe disease was defined as neonatal

sepsis, prematurity, neonatal jaundice, neonatal encephalopathy, tetanus

and neonatal meningitis.The severe diseases accounted for approximately
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75% of the admissions, though seasonality of admissions was not reported

(81). Stella et al. reported a seasonality during rainfall peaks for malaria

admissions in the Kenya Coast (82). Malaria hotspots and hotspots within

hotspots were also observed in the period between 2003 to 2011 (83).

From our analysis, a seasonality of malnutrition related admissions was

observed in Kilifi County hospital with peaks occurring in July.

The severity of diseasewas defined as the presence of either gastroenteritis,

LRTI, blood and CSF culture positive, malaria and fever or meningitis.

The explanatory variables; severe disease, admission weight, days of

admission and environmental factors; EVI and rainfall were identified as

significant factors from our model. In Somalia, infections and the Enhanced

Vegetation Index were observed as key drivers of malnutrition (29).

Similarly, in our analysis children with a higher number of severe diseases

were associated with an increased risk of a malnutrition admission.

In Malawi, it was reported that remoteness, environmental factors and

geographical factors were important drivers of children morbidity (30).

Rainfall increased the risk of malnutrition admissions, but EVI was

associated with the reduction of malnutrition admission. The malnutrition

admissions mostly during the rainy season which was different from a
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longitudinal malnutrition study done in Ethiopia where acute malnutrition

happened during the dry seasons, though the season was not significant

in their study (28). In our analysis, we combined both the spatial and

temporal random effects and the environmental variables. In our analysis,

rainfall increased the risk of a malnutrition related admission and the EVI

index reduced the risk of a malnutrition related admission. This could be

possibly be explained by the infections that occur during rainy seasons,

i.e., diarrhoea, environmental enteropathy or malaria.

In Somalia, Damaris et al. observed a distinct seasonal variation in wasting

of under 5 due to changes in climate, food security and diseases. The

peaks of malnutrition were observed during the dry season and were

reported to have an elevated effect for the rainy season (16). This can also

be used to explain the peaks of malnutrition related re-admissions in Kilifi

county hospital during the rainy season.

In a study done in Spain, malnutrition was significantly associated with the

number of days a patient stayed in hospital thus increasing the cost of

hospital stay (21). In our model, the length of hospital stay reduced the

risk of a malnutrition admission. Additionally, higher time to readmission

increased the risk of a malnutrition admission. Treatment of malnourished
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children is considered an important factor for nutrition specific interventions

and programs (1).

4.3 Spatial patterns malnutrition attributable mortality

The report for malnutrition attributable fractions in KHDSS report fractions

for the whole study region (3). In our study, we build on the study to

report location specific attributable fractions; having recognised the spatial

heterogeneity in Kilifi HDSS. The importance of adjusting for spatial location

in malnutrition prevalences is advised in a study done DR Congo in 2011

(31).

In our model WHZ was a strong predictor of mortality, a unit increase in

WHZ score reduced the risk of death by approximately 20%. In a study

done in Kilifi children aged 6 to 60 months malnutrition was a strong

predictor of mortality with inpatient deaths attributable mortality reported

as 19% using WHZ as the marker and 51% using MUAC (3).

In our spatial-temporal model, the inpatient mortality attributable fraction

using WHZ was 21.98% with a confidence band of 18.73%-27.81%. The

attributable fractions also showed a spatial heterogeneity as shown on

Figure~4.8. Most children are treated in the community, and most of the
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mortality occurs without a hospital admission, so the reported attributable

fractions might be a lower estimate. Similarly, the maps show spatial

variation in attributable fractions emphasising on the role of location in

malnutrition related modelling (31).

Children who were older had a lower risk of death adjusting for the location

and WHZ which is comparable to what was reported in a Tanzanian

study where the prevalence of malnutrition decreased in older children

(8). Children who had a higher number of admission days had a lower

risk of a malnutrition admission in our model. The environmental factors

were not significantly associated with mortality in both the multilevel and

spatial-temporal models.

4.4 Computational aspects of Spatial-Temporal Modelling

The data we use for our analysis was imbalanced; some individuals had

more admission events than others at different times. A better computing

speed for approximation was needed. To handle this we also excluded

individuals who had a single admission event for a reduced computing time.

Sabrina et al. in 2014 review recommended the importance of combining

spatial and temporal components in understanding the compounded
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phenomenon of malnutrition (15). With the different recommendations of

spatial models to get an improved understanding of malnutrition; some of

them require higher computing resources for an imbalanced and large data

sets (15,84). In our models, we utilise a spatial-temporal and spatial model

to understand malnutrition related admissions and malnutrition attributable

mortality using KHDSS data.

In most spatial-temporal models with imbalanced data, the temporal

components are fitted as a random effect or a Bayesian generalised linear

mixed model is implemented (71,84,85). We performed the latter in our

analysis; a spatial-temporal negative binomial model, which is a family of

GLM using a Bayesian approach. In the spatial mortality model, we did not

include the temporal component since mortality is not a changing covariate

for the individuals.

Due to the complexity of our data set over 23,000 admissions with

17,000 individuals, we utilised the nested Laplace approximation to

handle our spatial-temporal model. The R-INLA interface provided an

interface to handle the spatial-temporal negative binomial model with

a better computing capability. This is similar to what Musenge et al.

in 2013 utilised. In the analysis, they used Integrated Nested Laplace
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Approximation (INLA) to fit spatial models with Gaussian Markov Random

Fields which had better computing time over MCMC (38). This approach

has also been applied in other health research methods and has been

shown to give faster and accurate results of posterior estimates (27,36,69).

4.5 Strengths and limitations of the study

The strength and limitations of the results and discussion in this research

project are discussed in four broad categories;

• Exposures and outcomes classification

• Modelling approach to catering for confounding and effect modification

• sub-Saharan Africa relevance of the results

• Computational requirements

4.5.1 Exposures and outcomes classification

A major drawback in the utlisation of Negative Binomial model over the

truncated Negative Binomial model in modelling the morbidity variable

due to lack of implementations truncated negative binomial (TNB) in

INLA or BUGS packages (86). The main interest for our modelling was

to adjust for the spatial and temproral random effects so we considered
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the spatial-temporal negative binomial model over the truncated negative

binomial. New approaches which would conisder TNB in INLA implemtation

would further help in modelling this.

4.5.2 Modelling approach to catering for confounding and effect modification

Detailed spatial-temporal data has been amajor drawback in understanding

the epidemiology of malnutrition (15). One of the strengths of the data

points used in this analysis is that they are consistently corrected, updated,

and a proper audit trail is in place. However, in our modelling, selection

bias may have occurred since we selected individuals who had two

or more admissions and kept the admissions events up to the highest

number of a malnutrition admission for objective 2. This was handled by

using a negative binomial regression model which caters for this (66).

Additionally, we used geo-additive regression models to cater for multiple

confounding variables and also catered for time-varying covariates in the

spatial-temporal model.

Bayesian models helped in catering for the complex structured data

for inpatient admissions in KCH. This approach helped in adjusting for

geographical location confounding and including the prior information on

the distribution of the data.
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4.5.3 sub-Saharan Africa relevance of the results

The results from our analysis show the importance of adjusting for the

spatial random effects and spatial covariates. This is comparable to what

other studies have shown in sub-Saharan Africa, especially temporality of

admissions and spatial heterogeneity (29,31,82).

Environmental variables, EVI and rainfall, have been shown to be key

drivers of malnutrition and infectious diseases. In Somalia, Kenya and

the Democratic Republic of Congo, EVI was shown to reduce the risk

of malnutrition in children. However, temporality was not considered

in the different projects (29,31,82). Similarly, this was observed in our

spatial-temporal models.

Logistic regression has been applied in different studies to estimate

attributable fraction (3,76,87) but few studies adjust and report spatially

adjusted attributable fractions. In our spatial model for mortality, we

adjusted for spatial random effects, and as shown in section 3.3,

heterogeneity of attributable fractions is observed.
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4.5.4 Computational requirements

Bayesian inference using MCMC required high computing capabilities

compared to the Laplace Approximation in handling imbalanced data. This

led to fitting the spatial-temporal Bayesian models in INLA alone. This was

due to the complex structure of the data. We treated the spatial component

as a random effect without considering the temporality of the locations

since children of age 6 months to 15 years rarely migrate.

Computational capability was one of the things required for bulk download

of MODIS data for rainfall and EVI. The MODIS reprojection process for

EVI was a challenge but using an R Slurm Job was a better way to handle

this (53,88). Slurm job is an open source platform that clusters large jobs

with a scheduling system in Linux clusters. This helps in performance and

also notifications of jobs when done (88).

4.6 Conclusion

A better understanding of the spatial and environmental factors that

contribute to malnutrition related re-admissions can be used to advocate

for and develop earlier and more appropriate responses and provide

an indication of future trends and the potential impact of interventions.
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Admission with malnutrition is an important marker of re-admission,

understanding the spatial risk distribution can be used to understand

mechanisms of post discharge mortality. This would also help in the

research of tremendous costs associated with the treatment of morbidity

that could be prevented through better child nutrition.

Campaigns providing food and or vitamin or other supplements can help

reduce deaths in Kenyan children and building more health facilities to

reduce the distance of travel to care is highly recommendable.

The developments of spatial-temporal models account for individual,

location and temporal aspects in health-related data analysis. As we have

observed, spatial-temporal Bayesian models provide better fitting models

compared to non-spatial models. Especially in targeted interventions,

maps produced from Bayesian models can be of great importance to policy

makers and financing organisations.

Studies considering malnutrition related interventions should consider time

and locations in their approach. Available health care significantly reduce

the risk of malnutrition as we have observed, so having medical facilities

closer and evenly distributed can help reduce the burden of mortality and

morbidity.
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A more sustainable solution would be to empower and equip smaller

facilities. This is drawn from our results that those closer to the Kilifi

Hospital were most likely not to die and also not to be readmitted in relation

to other health facilities.
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Appendix 2 - Number of malnutrition admission cases by month.

Table 16.5: Number of malnutrition admission cases by month in KCH admissions from KHDSS, 2002-2015

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
2002 14 51 25 26 19 12 17 41 82 287
2003 82 48 43 51 69 75 114 77 61 57 63 80 820
2004 67 54 66 60 101 44 80 84 56 45 45 96 798
2005 84 48 47 54 67 56 81 51 34 38 34 63 657
2006 58 70 65 58 64 80 74 52 42 35 40 53 691
2007 64 62 40 26 32 47 51 41 34 35 40 36 508
2008 42 26 27 33 32 43 47 42 39 36 21 31 419
2009 36 43 27 41 39 76 83 65 20 42 44 50 566
2010 43 53 48 28 51 56 47 34 41 23 29 32 485
2011 46 44 45 52 48 43 38 17 18 21 38 39 449
2012 37 44 36 19 28 34 49 27 23 27 36 11 371
2013 16 18 15 17 26 28 39 17 20 26 26 15 263
2014 36 21 27 35 32 45 61 23 30 35 35 44 424
2015 49 26 33 35 29 52 40 26 24 25 24 27 390
Total 660 557 519 523 669 704 830 575 454 462 516 659 7,128

Table 16.6: Number of deaths by month in KCH admissions from KHDSS, 2002-2015

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
2002 1 0 2 1 2 1 1 2 4 14
2003 12 7 4 5 11 12 19 15 6 9 8 6 114
2004 9 4 8 8 15 4 10 9 4 11 7 5 94
2005 12 4 9 6 7 6 4 0 6 6 3 6 69
2006 7 8 5 3 12 11 8 11 7 8 6 9 95
2007 4 6 1 1 7 5 4 7 4 8 7 6 60
2008 5 2 2 2 4 5 2 5 4 5 5 2 43
2009 4 4 5 6 13 11 16 8 3 6 8 8 92
2010 10 6 3 5 7 8 7 5 3 7 3 6 70
2011 3 6 11 3 11 4 7 3 4 3 4 8 67
2012 6 10 7 4 2 5 6 5 3 9 8 2 67
2013 7 1 4 3 8 3 3 4 3 3 2 5 46
2014 8 2 3 5 6 5 5 9 6 5 3 12 69
2015 5 3 4 8 5 9 4 2 2 4 2 7 55
Total 92 63 66 60 108 90 96 85 56 85 68 86 955
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Appendix 3 - Time series plots

Figure 16.10: A partial autocorrelation function calculated for both cases and controls

Figure 16.11: A test of AR1 for the temporal variable used in the Spatial - Temporal model.
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Appendix 4 - Spatial Temporal Clustering using SaTScan for 2003-2015
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Appendix 5 - Winbugs diagnostic plots for convergence.

alpha2 -alpha10 shows our covariates in the model.
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Appendix 3 - Analysis Codes

The full codes are available at https://github.com/Keniajin/msc_thesis_2017

C.1 Morbidity Analysis

C.1.1 Stata Multi-level model

menbreg cumulitive_count EVI_VALUE rain_mm i.nsex i.severe_disease total_admission ///

admdays nweight , exposure(nagem) nolog || sublocs:

C.1.2 WinBUGS Model

model {

for (i in 1:N) {

# Likelihood

cumulitive_count[i] ~ dnegbin(p[i], r)

p[i] <- r / (mu[i] + r)

log(mu[i]) <-

log(nagem[i]) + alpha[1] + alpha[2] * EVI_VALUE[i] + alpha[3] * rain_mm[i] + alpha[4] *

nsex[i] +

alpha[5] * equals(severe_disease[i], 1) + alpha[6] * equals(severe_disease[i], 2) +

alpha[7] * equals(severe_disease[i], 3) + alpha[8] * total_adm[i] + alpha[9] *

admDays[i] + alpha[10] * nweight[i] + Phi[sublocation[i]]

}#end loop

##########

# Priors #

##########

#r

r ~ dcat(pi[])

## 1:11 is the number of succcessful admissions
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for (i in 1:7) {

pi[i] <- 1 / 7

}

### Define the priors for the model parameters specification

# Baseline Covariate Coefficient

alpha[1] ~ dflat()

for (j in 2:10) {

alpha[j] ~ dnorm(0, 0.001)

}

# Bivariate CAR Prior for Phi -- Spatial Main Effects

Phi[1:40] ~ car.normal(adj[], weights[], num[], tau) # num specifies no. of neighbors

for (i in 1:sumNumNeigh) {

weights[i] <- 1

}

### prior for tau

tau ~ dgamma(0.5, 0.0005)

}#end model

C.1.3 Bayesian Multilevel Spatial Random Effects Model (INLA)

## Mapping

library(rgeos)

library(maptools)

library("ggplot2")

library(INLA)

library(spdep)

## coloring the spplot

library(colorspace)

#' \\\_Model_1_\\\ #

############### MOdel 1
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############### #######################################################

############### replicate the final model in STATA spatial unstructured DIC

############### 11229.11

formulaUH0 <- cumulitive_count ~ EVI_VALUE + rain_mm + gender +

severe_disease + total_admission + admdays + nweight + f(Adj_ID,

model = "iid", prior = "normal", param = c(0, 0.001), initial = 1)

resultUH0 <- inla(formulaUH0, family = "nbinomial", data = admData2,

control.compute = list(dic = TRUE, cpo = TRUE), E = log(nagem),

control.predictor = list(compute = TRUE))

## summary in 3 decimal places

summary(resultUH0)

exp(resultUH0$summary.fixed)

## write the files to a CSV

write.csv(data.frame(resultUH0$summary.fixed), "results1_14504_36.csv")

pdresultUH0 <- resultUH0$dic$p.eff

## summary in 3 decimal places

summary(resultUH0)

C.1.4 Spatial Model -INLA

## Load the packages in the above code

#' \\\_Model 2\\\ #

############### MOdel

############### 2#######################################################

############### spatial model structured and unstrustured without

############### to comapare with Winbugs DIC 14498.08 PD 25.03

formulaUHB <- cumulitive_count ~ EVI_VALUE + rain_mm +

gender + severe_disease + total_admission + admdays +

nweight + f(Adj_ID, model = "bym", graph = klf.adj,

scale.model = TRUE, hyper = list(prec.unstruct = list(prior = "loggamma",
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param = c(0.0111, 0.001)), prec.spatial = list(prior = "loggamma",

param = c(0.0011, 0.001))))

resultUHB <- inla(formulaUHB, family = "nbinomial",

data = admData2, control.compute = list(dic = TRUE,

cpo = TRUE), E = log(nagem), control.predictor(compute = TRUE))

summary(resultUHB)

pdresultUHB <- resultUHB$dic$p.eff #25.03

exp(resultUHB$summary.fixed)

## save the file to csv

write.csv(data.frame(resultUHB$summary.fixed), "results2_14498.08.csv")

C.1.5 Spatial Temporal Model -INLA

############### MOdel

############### 3#######################################################

############### spatial model structured and unstrustured with

############### the temporal component included

formulaUH <- cumulitive_count ~ EVI_VALUE + rain_mm +

gender + severe_disease + total_admission + admdays +

nweight + f(Adj_ID, model = "bym", graph = klf.adj,

scale.model = TRUE, hyper = list(prec.unstruct = list(prior = "loggamma",

param = c(0.0111, 0.001)), prec.spatial = list(prior = "loggamma",

param = c(0.0011, 0.001)))) + f(count_adm,

model = "ar1")

resultUH <- inla(formulaUH, family = "nbinomial", data = admData2,

control.compute = list(dic = TRUE, cpo = TRUE),

E = log(nagem_int), control.predictor(compute = TRUE))

summary(resultUH)

pdresultUH <- resultUH$dic$p.eff #35.50

exp(resultUH$summary.fixed)

write.csv(data.frame(resultUH$summary.fixed), "nm_results2_13640.2.csv")

#### The computation of the posterior mean for the
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#### random effects <f0><U+009D><U+009D><U+0083> is

#### performed in two steps as we have more than one

#### parameter: we extract the marginal posterior

#### distribution for each element of the random

#### effect

csi <- resultUH$marginals.random$Adj_ID[1:40]

## then apply the exponential transformation and

## calculate the posterior mean for each of them

## using the lapply function.

zeta <- lapply(csi, function(x) inla.emarginal(exp,

x))

## define the cut offs for your risk ratio

zeta.cutoff <- c(0.83, 0.9, 0.95, 0.999, 1, 1.01, 1.05,

1.1, 1.2)

# Transform zeta in categorical variable

cat.zeta <- cut(unlist(zeta), breaks = zeta.cutoff,

include.lowest = TRUE)

# Create a dataframe with all the information

# needed for the map

maps.cat.zeta <- data.frame(unique(admData2$Adj_ID),

cat.zeta = cat.zeta)

# Add the categorized zeta to the kilifi spatial

# polygon

data.kilifi <- attr(kilifi_sub, "data")

attr(kilifi_sub, "data") <- merge(data.kilifi, maps.cat.zeta,

by.x = "Adj_ID", by.y = "unique.admData2.Adj_ID.")
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## mapping the risk ratio spplot(obj=kilifi_sub,

## zcol= 'cat.zeta',

## col.regions=gray(seq(0.9,0.1,length=4)), asp=1)

png(filename = paste0("figure4A", "img.png"), width = 19.45,

height = 22.4, units = "cm", res = 300)

spplot(obj = kilifi_sub, zcol = "cat.zeta", col.regions = diverge_hsv(8),

scales = list(draw = TRUE), asp = 1)

dev.off()

### mapping the convergence plots

plot(resultUH, plot.fixed.effects = TRUE, constant = FALSE,

plot.lincomb = TRUE, plot.random.effects = TRUE,

plot.hyperparameters = TRUE, plot.predictor = TRUE,

plot.q = TRUE, plot.cpo = TRUE, single = TRUE)

plot(resultUH, plot.fixed.effects = TRUE, constant = FALSE,

plot.cpo = F, single = F)

save.image("stModel.RDA")

C.2 Mortality Analysis

C.2.1 Stata Multi-level model

xtmelogit noutcome whz06 i.nsex i.severe_disease EVI_VALUE rain_mm ///

total_admission admdays timeTR age_yr || sublocs: , nolog

C.2.2 Bayesian Multilevel Random Effects Model (INLA)

formulaMorta0 <- noutcome ~ whz06 + nsex + severe_disease + EVI_VALUE +

rain_mm + total_admission + admdays + timeR + age_yr + f(Adj_ID,

model = "iid", prior = "normal", param = c(0, 0.001), initial = 1)
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# f(count_adm, model = 'ar1', replicate = Adj_ID3)

resultMorta0 <- inla(formulaMorta0, family = "binomial", data = admData,

control.compute = list(dic = TRUE, cpo = TRUE), control.predictor(compute = TRUE))

summary(resultMorta0)

C.2.3 Bayesian Spatial Random Effects Model (INLA)

formulaMorta <- noutcome ~ whz06 + nsex + severe_disease +

EVI_VALUE + rain_mm + total_admission + admdays +

timeR + age_yr + f(Adj_ID, model = "bym", graph = klf.adj,

scale.model = TRUE, hyper = list(prec.unstruct = list(prior = "loggamma",

param = c(1, 0.001)), prec.spatial = list(prior = "loggamma",

param = c(1, 0.001))))

# f(count_adm, model = 'ar1', replicate = Adj_ID3)

resultMorta <- inla(formulaMorta, family = "binomial",

data = admData, control.compute = list(dic = TRUE,

cpo = TRUE), control.predictor(compute = TRUE))

summary(resultMorta)
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Appendix 7 - UNICEF Conceptual Framework

Figure 16.12: UNICEF Conceptual Framework for malnutrition
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