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ABSTRACT 

Cases of HIV-1 infection are growing in large numbers, and deaths as a result of AIDS 

are escalating in South Africa. Understanding cellular immune responses to HIV-1 by 

exploring general effects and changes occurring at a cellular level, including direct 

engagement of T cells with the virus during exposure or infection will provide 

information on possible correlates of viral control. This dissertation focuses on three 

characteristics of T cells during HIV infection, dual HIV/TB co-infection and exposure to 

HIV. The characteristics examined are 1) memory and activation status of CD4+ and 

CD8+ T cell subsets; 2) T cell receptor repertoire and 3) HIV-1– specific T cell 

responses.  

 
There are two hypotheses in this dissertation. Firstly, that co-infection with TB leads to 

elevated T cell activation, disruption of the T cell receptor repertoire and altered 

patterns of immunodominance in HIV-1 subtype C-specific T cell responses in infected 

adults. Secondly, that T cell priming occurs in utero in HIV uninfected babies born to 

HIV infected mothers.   

 
 
Four cohorts were examined in this dissertation. Three were recruited from a clinic 

around the Welkom area and analysed in a cross-sectional and longitudinal manner. The 

cohorts consisted of HIV-1 infected adults, individuals dually infected with HIV and 

TB and healthy controls. Whole blood samples from the HIV and HIV/TB infected 

groups were analysed at baseline (before TB chemotherapy), at 2, 8 and 24 weeks. A 
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further cohort consisted of babies born to HIV-1 infected mothers, with some being 

followed up at three months after birth.  

 

This dissertation consisted of five different methods: 1) the use of four colour flow 

cytometry to measure the frequency of naïve T cells (CD45RA+/CD62L+), memory 

(CD45RA-CD62L-) and activated (CD38) T cell populations in individuals singly 

infected with TB and dually with HIV and TB. This investigation was aimed at 

obtaining the overall representation of T cells involved in HIV-1 and TB co-infection. 

2) the use of flow cytometry staining with monoclonal antibodies recognizing different 

T cell receptor (TCR) Vβ specificities for quantitation of the percentage of particular 

TCR families in pools of T cells. The aim was to provide an indication of TCR usage in 

different disease states. 3) the immunoscope assay was used to measure the different 

CDR3 lengths of the TCR and assess Vβ family repertoires in newborn babies. The aim 

was to show evidence of T cell maturity at birth and whether there was TCR 

engagement in utero by analysing cord blood cells. 4) the use of the IFN-γ ELISPOT to 

measure HIV-specific T cell responses in a cohort of HIV and HIV/TB co-infected 

individuals. The aim was to identify targeted immunodominant regions and to 

determine whether TB infection resulted in differing patterns of HIV-1 specific T cell 

immunity. 5) intracellular cytokine staining (ICS) was used to confirm the responses 

obtained after initial screening with the IFN-γ ELISPOT and was used to delineate 

CD4+ and CD8+ T cell responsiveness.  
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Whole blood was stained with an array of monoclonal antibodies to measure various T 

cell subsets in HIV-1 and HIV/TB co-infected adults. The CD4+ T cells in HIV-1 

infected individuals ranged between 245 - 436, those of HIV/TB co-infected patients 

were 157-840 and the TB group had CD4+ absolute counts ranging between 583-1757 

cells/mm3. CD4+ T cells were reduced as a result of HIV-1 infection and HIV/TB co-

infection, and no loss of these cells was seen as a result of single infection with TB.  

There was a loss of naïve T cells, with increased memory phenotypes in the presence of 

TB and HIV single infection, which was more pronounced in the presence of HIV and 

TB co-infection. The loss of naïve CD4+ and CD8+ T cells was associated with a high 

HIV-1 plasma RNA load in patients co-infected with HIV and TB. CD8+ T cells in HIV 

singly infected and HIV/TB co-infected individuals were highly activated when 

compared to those infected with TB only, which was likely due to the high HIV plasma 

RNA load. The standard course of six months of TB therapy in HIV/TB co-infected 

adults did not lead to recovery of absolute CD4 cells, nor did it stem the loss of naïve 

CD4+ and CD8+ T cells, which remained in a highly activated state: possibly due to 

unchanged HIV-1 RNA loads.  

 
The fine specific nature of T cell activation was investigated by examining TCR Vβ 

expansions in HIV and TB single and co-infected individuals. Whole blood was stained 

with CD3+, CD4+, CD8+, CD38+ and an array of Vβ-specific antibodies. Polyclonal 

skewing of the TCR Vβ repertoire, showing expansion of various Vβ−CD4+ and -CD8+ 

families was observed in TB and HIV-1 single and dual infection. A more restricted 

usage of the T cell repertoire was observed in both HIV and HIV/TB co-infected patients, 

where major and oligoclonal expansions of Vβ11, Vβ16, Vβ20 and Vβ22 were observed. 



 
 

vii

No major expansions were observed in TB single infection. Overall, significantly greater 

use of TCR Vβ families were found in the CD8+ T cell compartment rather than by 

CD4+ T cells in both HIV-1 and HIV/TB co-infected adults.  

 

A cohort of neonates born to HIV-infected mothers was used to assess TCR usage using 

immunoscope analysis to support the hypothesis that the TCR repertoire skewing in cord 

blood cells can be a marker of T cell priming in-utero. The repertoire measured in HIV 

uninfected neonates born to HIV-1 infected mothers displayed a polyclonal skewing of 

various TCR families and oligoclonal distribution of Vβ5, Vβ6a, Vβ7, Vβ18, and Vβ23 

families as compared to the Gaussian distributions seen in healthy controls. This study 

readily detected perturbations in the TCR repertoire in presumed HIV exposed babies and 

that newborns possess an intact TCR repertoire.  

  

Measurement of HIV-1-specific CD8+ T cells was made to identify which regions of the 

expressed HIV genome were immunodominant and what impact of co-infection with TB 

may have. PBMC samples were thawed and cultured in vitro using CD3+/CD4+ bi-

specific antibody to preferentially expand CD8+ T cells and measure IFN-γ producing 

cells in the ELISPOT and confirmed with the ICS. The ELISPOT results were interpreted 

in SFU/million PBMC and as percentages of T cell subsets in ICS assays.  HIV-1 subtype 

C-specific CD8+ responses were readily detected in both HIV-1 and HIV/TB co-infected 

patients, however, patterns of peptide targeting were different between the two groups. 

Gag was targeted by 85% of HIV-1 infected patients, whereas only 27% of HIV/TB co-

infected patients targeted Gag. Pol was targeted by 73% in the HIV/TB group. Gag and 
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Nef responses observed in some (n =7) of the patients were confirmed using ICS. These 

data infer that TB co-infection may change patterns of targeting and in how CD8+ T cells 

recognize HIV antigens.  

 

Collectively, this dissertation demonstrated the existence of highly activated CD8+ T 

cells, most probably driven by high HIV-1 plasma RNA loads; restricted TCR usage by 

CD8+ T cells, predominantly in individuals dually infected with HIV and TB; possible 

shifting of immunodominant HIV-specific CD8+ T cell responses as a result of co-

infection with TB. Despite successful treatment of TB with chemotherapy, these 

immunological observations remained unchanged.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE 

REVIEW 
 

1.1  INTRODUCTION 

 

The human immunodeficiency virus (HIV) infection epidemic is growing in developing 

countries, such as those in Sub-Saharan Africa. Current statistics indicate that 5.5 million 

persons in South Africa are infected with HIV-1 (UNAIDS 2006, AIDS Epidemic 

Update). HIV infection initiates a slow progressive degeneration of the immune system. 

It infects cells bearing the CD4 antigen, along with co-receptors CCR5 and CXCR4 on 

their surface (Lusso, 2006; Rubbert et al., 1998), mainly macrophages and CD4+ T 

helper cells (Shacklett et al., 2003). CD4+ T helper cells play an important role in 

facilitating and enhancing the functions of other immune cells that protect the host from 

invading pathogens.  The hallmark of HIV-1 infection is the gradual decline in the 

numbers of CD4+ T cells and as a result, the immune system becomes suppressed and 

allows the development of various opportunistic infections which contribute to disease 

progression and ultimately Acquired Immunodeficiency Syndrome (AIDS). One of the 

most common of these opportunistic infections in South Africa is Mycobacterium 

tuberculosis (TB) (Wilkinson et al., 1997). Understanding the characteristics of T cells in 

people infected with HIV-1 and during TB infection may provide valuable information 

on HIV pathogenesis. 
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One of the most common forms of HIV-1 transmission in South Africa is through mother 

to child transmission (Brody et al., 2003). This can occur through several routes: foetal 

exposure to maternal body fluids during gestation, delivery, and breastfeeding (Gordon et 

al., 1992). It is generally acknowledged that the increase in susceptibility of infants and 

neonates to viral infections, including HIV-1, is related to the immaturity of their immune 

system (Krampera et al., 2000; Siegrist et al 2001) but the correlates of protective 

immunity to neonatal HIV-1 infection is poorly understood. Understanding the 

characteristics of T cells in neonates infected or exposed to HIV-1 may hopefully shed 

light on possible protective mechanisms. 

 

Understanding cellular immune responses to HIV-1 by exploring general effects and 

changes occurring at a cellular level, including direct engagement of T cells with the 

virus during exposure or infection will provide information on possible correlates of viral 

control. This dissertation focuses on three characteristics of T cells during HIV infection, 

dual HIV/TB co-infection and exposure to HIV. The characteristics examined are 1) 

memory and activation status of CD4+ and CD8+ T cell subsets; 2) T cell receptor 

repertoire and 3) HIV-1 antigen – specific T cell responses.  

 

Various cohorts of HIV-1 infected and HIV-1 exposed individuals have been included in 

this dissertation, including those individuals who are co-infected with mycobacterium 

tuberculosis (TB). Also included are HIV-1 uninfected children born to HIV-1 infected 

mothers, aiming at determining the level of antigen exposure.   
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1.2  LITERATURE REVIEW 

1.2.1 HUMAN IMMUNODEFICIENCY VIRUS 

Human immunodeficiency virus (HIV) is a retrovirus belonging to the family of 

Lentiviruses, which was initially described in 1983 (Montagneur, 2002). Infection with 

HIV shows a chronic course of disease, persistent viral replication in 

monocytes/macrophages (Zhu et al., 2002) and gut-associated lymphoid tissue 

(Guadalupe et al., 2003). HIV is the causative agent of Acquired Immunodeficiency 

Syndrome (AIDS), a disease associated with severe immunosuppression as a result of 

infection and loss of CD4+ bearing T lymphocytes (Guadalupe et al., 2003).  

 

1.2.1.1 Virus composition and structure 

HIV is a genetically complex, 100nm RNA virus consisting of three structural genes; env, 

pol, gag and six regulatory genes, tat, rev, vif, nef, vpr and vpu. A schematic diagram of 

the structure of HIV is shown in Figure.1.1 and gene arrangement is shown in Figure 1.2. 

Each viral particle contains 72 glycoprotein complexes, which are integrated into the 

lipoprotein membrane surrounding it. The external glycoprotein gp120 may be easily 

shed into the external environment within the host, and can therefore be detected in 

serum, as well as within the lymphatic tissue in HIV infected individuals. The 

transactivator gene (Tat) stimulates the transcription of HIV-1 DNA into RNA, promote 

RNA elongation, enhance the transportation of HIV RNA from the nucleus to the 

cytoplasm and it is also essential for translation. The virion protein expression (rev) is a 

gene that positively regulates the expression of virion proteins. Nef has been shown to 

cause down-regulation of CD4 and HLA class I (A and B alleles) molecules from the 
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surface of infected cells, therefore facilitating viral escape from immune T cell attack 

(Aiken et al., 1996), as well as interfering with T cell activation and function by binding 

to proteins that are involved in intracellular signal transduction pathways. The potential 

importance of nef in disease progression has been shown where deletions of portions of 

the nef gene have been associated with slow disease progression and low viral replication 

(Collins et al., 1999). Vpr is essential for viral replication in non-dividing cells such as 

macrophages. It stimulates the HIV-LTR (long-term region) and it is also important for 

transport of the pro viral DNA to the host cell nucleus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Structure of an HIV virion particle (D.W  Sears, 2007. http://tutor.lscf.ucsb.edu) 

 

 



Chapter 1 

 
 

5

 

 

 

 

 

 

 

Figure 1.2: Schematic diagram of the genes of HIV-1, showing the three structural genes (gag, pol, and 

env) and the regulatory gene (nef, tat, rev, vpu,vpr and vif  (Dan Stowell, 2006. 

http://www.mcld.co.uk/hiv). 

 

The vif protein enhances viral infectivity and also enhances cell to cell transmission of 

HIV-1 (Gabudza et al., 1992). Vpu is essential for the budding process, because 

mutations in vpu have been shown to dis-able release of viral particles from infected cells 

(Schubert et al., 1996). 

 

1.2.1.2 Portal of entry and replication   
 
HIV enters target cells (e.g. CD4+ T lymphocytes and monocytes/macrophages, dendritic 

cells and glial cells) by attaching its gp120 molecule (the envelope glycoprotein) to the 

CD4+ molecule on the surface of these cells (Randall, 1999; Rubbert et al., 1998; Blanco 

et al., 2002). This attachment requires interaction of gp120 with two host cell receptors, 

the CD4 molecule and a chemokine receptor, either CCR5 (R5 using) or CXCR4 (R4 

using). Gp120 primarily binds to certain epitopes of CD4 and induces conformational 

changes in gp120 that promote a more efficient interaction of the V3 loop of gp120 with 
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its respective co-receptor. Binding to the co-receptor in turn triggers a rearrangement of 

gp41 to extend the α-helical fusion domain, which then interact with the cell membrane. 

Penetration of the viral particle into the host cell is then followed by uncoating, i.e. when 

the viral core enters the cytoplasm of the target cell. Viral RNA is then converted to 

proviral DNA in the cytoplasm of the target cell. This conversion is mediated by the viral 

enzyme reverse transcriptase (RT) and it is the most important step in viral replication. 

RT inhibitors are currently widely used to inhibit viral replication (nucleoside and non-

nucleoside analogues) and are utilized for effective treatment in HIV-1 infected 

individuals. The provirus then migrates to the nucleus and integrates into the host 

chromosome with the help of the viral enzyme, integrase. The pro-viral DNA remains in 

the cell for as long as the cell survives, and is the continuous source of new viral progeny. 

The RNA transcript is formed from pro-viral DNA, and it gets processed to yield a 

complex pattern of subfragments of the initial transcript that serve as messenger RNAs 

for generation of viral proteins. Viral proteins are then assembled and packaged into a 

mature virus particle that buds from the cell as a free virion released into the extracellular 

space (Figure 1.3). 
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Figure 1.3: The life cycle of HIV virus showing viral entry and replication. 

(http://www.gladstone.ucsf.edu/gladstone/files/publicaffairs/HIVlifeCycle.gif).  

 

1.2.1.3  Mechanisms of HIV transmission 

HIV is transmitted when infected blood, semen, vaginal fluids, or breastmilk enter 

another person’s body. HIV can be transmitted by any infected person or injection of 

infected blood, or from mother to infant during pregnancy or at the time of birth. Viral 

transmission can occur in a number of ways (Douglas et al., 1992; Puren et al., 2002; 

Schmid et al 2004). 

 

1.2.1.3.1 Sexual intercourse  

The virus can enter the body during sexual intercourse through the mucosal membranes 

of the anus, vagina, penis, or mouth, as well as through cuts, sores and abrasions on the 
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skin. Oral sex is risky as well, but not as risky as vaginal and anal intercourse. Infection 

takes place when the virus crosses the mucosal surface and binds to cells that express 

CD4 and CCR5 and/or CXCR4. The risks of acquiring infection are increased by the 

presence of sexually transmitted diseases (Korenromp et al., 2005) and lowered by male 

circumcision (Auvert et al., 2001; Auvert et al., 2005). Plasma levels of virus broadly 

correspond to viral loads in the genital secretions, which are associated with the risk of 

transmission (Hart et al., 1999). Heterosexual transmission is the most common route of 

HIV-1 acquisition in South Africa (Schmid et al., 2004; Hunter et al., 1993; Abdool 

Karim et al., 1992). 

 

1.2.1.3.2 Occupational Exposure and infection 

Health care workers are at risk of being infected in the case of a needle stick injury. From 

a study conducted in Durban, South Africa, thirteen percent of hospital staff reported 

injuries with HIV positive patients (Gouden et al., 2000). Trainee registrars were the 

highest risk group (60%), with 94% percutaneous and 65% occurred during emergency 

surgery injuries (Gouden et al., 2000). Needle stick injuries and eye splashing of infected 

material can also be a source, especially in laboratories where high concentrations of 

virus is being used for research experiments. Healthcare workers mostly prone to HIV 

infection are nurses, laboratory technicians, surgeons, housekeepers, morgue technicians, 

and non-nursing attendants. Based on multicenter trials of more than 3000 healthcare 

workers, the risk of HIV infection is very high after needle stick injury or parenteral 

injury, which results in direct inoculation of infected material (Gouden et al., 2000). 

Meanwhile, the risk is very low following mucous membrane exposure (Kandla et al., 
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1997).  Other factors, which affect the risk of HIV infection in health care workers, 

include the volume of inoculum, the quantity of virus, depth of penetration, type and size 

of needle, and actual infection of blood (Gouden et al., 2000; Veeken et al., 1991) 

 

1.2.1.3.3 Blood transfusion  

Extensive testing of the blood by donor banks is performed before the blood can be 

distributed for donation. However, there is still a risk of HIV-infected donated blood 

because of donors who are in the ‘window period’ during acute infection (Sitas et al., 

1994). The increased use of Nucleic Acid Testing (NAT) (303) (Scuracchio et al., 2007) 

would minimize the use of HIV infected donor blood, as this would detect early infection 

during acutely infected potential donors. There have also been new policies put in place 

in South  Africa  to reduce the prevalence of HIV in blood donors, which included 

closing donor clinics in areas where HIV prevalence is high (Heyns et al., 2006). 

Following new policies, prevalence of HIV-1 in blood donations declined from 0.17% in 

2000 to 0.08% in 2002. The prevalence of HIV in first time donors decreased by 45% 

(Heyns et al., 2006).  

 

1.2.1.3.4 Injection drug use 

Small amounts of blood can remain in needles and syringes, which poses a high risk of 

transmission when the same tools are used without being sterilized. This happens 

predominantly among drug users. Intravenous abuse of Wellconal was reported in a study 

conducted in Johannesburg from 86 patients who were admitted to Johannesburg hospital 
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(Williams et al., 1997). Studies on treatment demand pointed to substantial use of 

heroine, although most of the users tend to smoke rather than inject (Parry et al., 2005). 

 

1.2.1.4  Mother to child transmission (MTCT) 

MTCT is referred to as vertical transmission, when the mother is infected with HIV and 

then transmits the virus to the unborn baby in-utero or to the newborn during birth and 

also through breastfeeding. Intrauterine infection and infection during delivery has been 

extensively reduced by the use of AZT or single dose Nevirapine during the last trimester 

of pregnancy or to the baby immediately after birth (Coetzee et al., 2005; Sherman et al., 

2004). One of the most common routes of perinatal transmission is via breast milk and 

the issues around whether mothers should breastfeed or not is currently controversial 

(Doherty et al., 2006, Chopra et al., 2002). Maternal viral load has a direct effect on all 

three modes of transmission (Thea et al., 2006, Rigopoulos et al., 2007), where the higher 

the viral load, the more likely is transmission (Hayes et al., 2006). Caesarean section has 

been shown to reduce perinatal transmission by more than 50% (European collaborative 

study, 2005).  

 

1.2.1.4.1  Infection at fertilization and post fertilization stages 

It has been shown that free virus or HIV infected leukocytes present in the ejaculate may 

reach the site of fertilization in the upper oviduct. The embryo may also be susceptible to 

infection as a result of the presence of virus in the female genital tract (Spinillo et al., 

2006). Virus has been isolated from the vaginal and cervical fluid and from the cells of 

the cervix (Maher et al., 2005). There is also evidence of a leucocytic infiltration of the 



Chapter 1 

 
 

11

cervix and the uterus following insemination. If CD4-bearing cells are infected, the 

chances of intrauterine infection are increased.  Infection of the zygote is also likely to 

happen through the motile sperm, carrying free virus from the vaginal and cervical 

secretions, which has been shown in vitro by expression of HIV proteins from human egg 

infected at the time of fertilization (Kiessling, 1998; Whitmer et al., 1992). 

 

1.2.1.4.2   Infection at implantation  

Trophoblasts (cells forming the placental barrier) invade maternal endometrial capillaries 

within a few days of implantation (Lunghi et al., 2007). The invading trophoblasts 

encounter infected cells during this time and therefore, contact of the trophoblasts with 

maternal blood poses hazards of HIV infection since placental trophoblasts will be bathed 

in maternal blood (Vidricaire et al., 2004; Al-Harthi et al., 2002). Direct infection of 

trophoblasts may cause transmission of the virus to the foetus. Infection was found to be 

independent of gp120/CD4 interaction but requires heparin sulfate proteoglycans for 

uptake of the virus (Vidricaire et al., 2007).  

 

1.2.1.4.3  Transmission across placental villi and the chorioamnion 

Most maternal-foetal exchanges are mediated by the placenta. The placental 

syncyciotrophoblast plays a major role in these interactions since it is in direct contact 

with maternal blood (Menu et al., 1999). Some studies have suggested that 

monocytes/macrophages and epithelial cells lining the foetal capillary may function as a 

reservoir for the HIV (Maher et al., 2005). DC–SIGN may facilitate the transplacental 



Chapter 1 

 
 

12

transmission of HIV, where DC-SIGN is a C-type lectin that is able to bind gp120 with 

high affinity and has been found to be expressed in the placenta (Soilleux et al., 2001).   

 

Another potential route is through the chorioamnion (Menu et al., 1999), where the 

cellular trophoblast and the maternal decidua are joined together. This happens in late 

gestation. The deciduas contain maternal blood vessels, macrophages, lymphocytes and 

thus may serve to expose the adjacent trophoblast to HIV. From here the virus or infected 

cells may cross the foetal connective tissue and amnion and enter the amniotic fluid. It 

has been demonstrated that women showing positive granulocyte elastase at delivery 

should be suspected of having had chorioamnionitis during pregnancy, which increases 

the risk of intrauterine transmission of HIV (Kaseba-Sata et al., 2006; Bhoopat et al., 

2005). 

 

1.2.1.4.4  Infection during delivery and postpartum  

There are reported risks of transmission even if the baby escapes intra-uterine HIV 

infection. HIV has been isolated from vaginal and cervical secretions from about one-half 

of infected women studied (Nunnari et al., 2005; Saracino et al., 2000), making it 

possible that the foetus could be infected. Distinguishing intrapartum and postpartum 

infection has been difficult to prove. Current methods involve performing a PCR at birth 

and from specimens obtained within 72 hours of birth to indicate in-utero infection 

(Mock et al., 1999; Fawzi et al., 2001; Sherman et al., 2005).  
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1.2.1.4.5  Infection through breastfeeding 

Breastfeeding is a potential mode of vertical transmission, especially in those countries 

where HIV prevalence is high. HIV-1 transmission via breast milk ranges from 8%-16% 

(Nduati et al., 200; Wiktor et al., 1999). There is no clear evidence of the timing of 

transmission during breastfeeding. Studies have demonstrated that the number of infected 

breast milk cells per million cells was associated with levels of cell-free viral RNA in 

breast milk (Koulinska et al., 2006; Rousseau et al., 2004). This suggests that infected 

breast milk cells may play a role in transmission of HIV via breast-feeding than cell free 

virus. 

 

1.2.2 NEONATAL T CELL IMMUNITY AT BIRTH 

Neonatal immune responses are generally considered to be immature and therefore lead 

to susceptibility of infants to both viral and bacterial pathogens. Neonates depend on 

maternal antibodies since neonatal humoral immunity is entirely underdeveloped. 

However, it has been determined that the foetal immune system can be activated to 

produce antigen specific responses as shown during parasitic infections with 

Trypanosoma cruzi (Hermann et al., 2002) and human cytomegalovirus infection 

(Marchant et al., 2003). Clonal T cell expansions have been previously identified in 

peripheral blood of HIV-1 infected children (McFarland et al., 2002), which further 

supports the existence of a matured T cell immunity during infancy. It has been 

demonstrated that human foetal CD8+ T lymphocytes can expand, differentiate, and 

acquire effector functions during a CMV infection and that this response shares similar 

characteristics to that found in adults (Marchant et al., 2003). It has therefore been 
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concluded that human CD8+ T cells can be primed in utero and could provide immunity 

to newborns against viral infections. A better understanding of the immune system in 

early life is required to develop vaccines that could protect infants from viral infections.  

 

1.2.3 THE EPIDEMIOLOGY OF HIV-1 INFECTION IN SOUTH AFRICA 

Worldwide, the number of HIV-1 infected individuals exceeds 40 million. The majority 

of these live in developing countries of Asia, South America and Sub-Saharan Africa. 

The profile of the epidemic to date at a national level, as produced by UNAIDS stated 

that the total number of people living with HIV in South Africa was estimated to be 5.5 

million. It is estimated that 240 000 children between the age of 0-14 are infected with 

HIV-1 and 320 000 AIDS deaths have been reported (UNAIDS update, 2006). 

 

There were around 530,000 new infections between the middle of 2004 and the middle of 

2005, and around 340,000 AIDS deaths over the same period (Groenewald et al., 2005). 

The HIV prevalence is still growing, and this has resulted in an estimated 520,000 

untreated South Africans who are sick with AIDS and in need of antiretroviral treatment. 

It is also estimated that 1.5 million South Africans have died of AIDS-related illnesses 

since the beginning of the epidemic (Groenewald et al., 2005). The ASSA2003 (Actuarial 

Society of South African AIDS and Demographic model) predicts that the total number 

of HIV infections in South Africa will increase slightly, from 5.2 to 5.8 million by 2010 

(Groenewald et al., 2005). It is predicted that the annual number of new HIV infections is 

likely to remain at approximately half a million over the next few years, despite the 

significant interventions that have already been introduced to limit the spread of HIV. 
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Amongst other interventions is the implementation of an Operational Plan for 

Comprehensive HIV and AIDS Care, Management and Treatment. By the end of 

December 2005, 111 827 people were estimated to be accessing free antiretroviral drugs. 

Significant progress has also been made in prevention through campaigns such as the 

Government Mass Media Campaign (Khomanani-http://www.aidsinfo.co.za/) Soul City 

(http://www.soulcity.org.za/); Love life (http://www.lovelife.org.za/) and others. The 

Government is also continuously distributing free condoms (UNAIDS update, 2006). 

According to the South African National HIV Prevalence communication Survey-2005, 

the highest rate was found to be among South African females at 33.3% (between 25-29 

years old) followed by males at 26% (between 30 and 34 years old) (Shisana et al., 

2005). There appears to be a high HIV prevalence among South African children which 

are estimated at 129,621 children aged 2-4 years and 214,102 children aged 5-9 (Shisana 

et al., 2005).  The most predominant HIV-1 subtype in South Africa is Clade-C, with 

only a few of A, B, D, G, and U (Bredell et al., 1998; Puren, 2002). These other subtypes 

represent a very small fraction of the predominant circulating subtypes.  

 

 1.2.4 INTERACTION BETWEEN HIV-1 AND MYCOBATERIUM  

   TUBERCULOSIS 

Globally, Mycobacterium tuberculosis (TB) is one of the common HIV-associated 

opportunistic infections and the leading causes of AIDS related deaths. An estimated 1.7 

million people (27/100) died from TB in 2004, including those co-infected with HIV (248 

000) (WHO report, 2005). The incidence of TB in South Africa is currently 718 

cases/100 000 annually, with the prevalence rate of 670 cases per 100 000 population. TB 
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mortality has been reported at 135 per 100 000 population per annum. 60% of these cases 

are HIV infected (WHO report, 2005), which are adults between the ages of 15-49 years. 

Approximately 10% of infected individuals develop active disease, which if left 

untreated, will kill more than 50% of its victims (Bonfioli et al., 2005). 

  

1.2.4.1 Mycobacterium tuberculosis 

Mycobacterium tuberculosis is a human-type aerobic acid fast tubercle bacillus, which is 

classified as a Gram-positive (Fisher et al., 1990). The bacterium is an intracellular, 

growing in mononuclear phagocytes e.g. macrophages (Zhang et al., 1999). It is a slow-

growing pathogen with the generation time of 12 to 18 hours. It has a hydrophobic cell 

wall with a high lipid content, which makes it impermeable to the usual gram stains. 

Once stained, the cells resist decolorization with acidified organic solvents and are 

therefore called “acid fast”. One commonly used acid-fast staining method for TB is the 

Ziehl-Neelson stain (Prasanthi et al.,  2005). The TB smear is fixed, stained with carbol 

fuchsin (pink dye), and decolorized with acid-alcohol. The smear is then counterstained 

with methylene blue or certain other dyes. Acid-fast bacilli appear pink in a contrasting 

background (see Figure.1.4). Laboratory diagnosis of tuberculosis is made by a positive 

tuberculin skin test, which can be confirmed by X rays of the chest and microscopic 

examination of the sputum or tissue samples using Ziehl Neelsen stain. This may 

however, be confirmed by laboratory culture of the bacterium (Toure et al., 2006). 
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Figure 1.4: Mycobacterium tuberculosis appearing as pink rods/bacilli (pointed by the arrow) on a Ziehl 

Neelsen stain (http://www.search.com/reference/Tuberculosis). 

 

1.2.4.2 Host response to tuberculosis 

TB infection commences with the acquisition of bacilli by the susceptible person via 

infectious droplets from an infectious case (Fennely et al., 2004). These droplet nuclei are 

transmitted from one individual to another via coughing, sneezing, talking and singing. 

Following inhalation, most of the larger droplets become lodged in the upper respiratory 

tract (the nose and throat), where infection is unlikely to develop. The smaller droplets 

pass through to the small air sacs of the lung (the alveoli) where infection begins after 7-

21 days post exposure (Johnson et al., 2006). Transmission can only occur from people 

with active TB disease (see 1.2.3.4). Individuals at risk include immunocompromised 

patients such as those with HIV/AIDS (Cahn et al., 2003), health care workers who serve 
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high-risk clients (Corbett et al., 2007; Naidoo et al., 2006), and children exposed to 

adults in high-risk categories (Soeters et al., 2005). 

In the alveoli, the mycobacteria are taken up by macrophages and dendritic cells, to the 

lung parenchyma and eventually to the lymph nodes (Johnson et al., 2006; Abdel-Dayem 

et al., 1997). At this stage lymphocytes begin to infiltrate as they are presented with 

microbial antigens. TB-antigen specific T cells induce the formation of a granuloma 

around infected macrophages primarily composed of monocyte-derived macrophages, 

CD4+ T cells and an outer ring of CD8+ T cells (Tsai et al., 2006). In the granulomatous 

lesion, macrophages are activated by T lymphocytes through production of type 1 

cytokines (IFN-γ and TNF-α) (Roach et al., 2002). IFN-γ activates macrophages which 

are now capable of destroying the microbe. It is at this stage that the individual becomes 

tuberculin-positive, which is a result of the host developing a vigorous cell-mediated 

immune response. It is also at this stage that the tubercle is formed, which does not allow 

the microbe to multiply but to persist for extended periods. Many macrophages can be 

found surrounding this tubercle, but remain in an inactive form, and used by the microbes 

to replicate. The granuloma persists for years and efficiently contains tubercle bacilli as 

long as an individual remains immunocompetent (Chan et al., 2004).  

 

1.2.4.3 Mycobacterium tuberculosis disease progression 

It is thought that progression from TB exposure and infection to TB disease occurs in 

individuals whose immune system fails to control bacilli and they begin to multiply. This 

may occur soon after infection (primary TB disease in 1-5% of cases) or many years after 

infection (post primary TB, secondary TB, reactivation of dormant bacilli in 5-9% of 
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cases). About 5% of infected persons will develop TB disease in the first two years, and 

another 5% will develop the disease later in life (McShane et al., 2005). The risk of 

reactivation increases with immune suppression, especially that caused by HIV (Milburn 

et al., 2001). Apart from HIV infection, there are other conditions that increase the risk of 

progression to TB disease, which includes silicosis, end stage renal disease, poorly 

controlled diabetes, chronic malnutrition and those who smoke tobacco (Johnson et al.,  

2006; Ariyothai et al., 2004). 

 

TB disease most commonly affects the lungs, where it is referred to as pulmonary TB. 

Extrapulmonary sites include the pleura, central nervous system (meningitis), lymphatic 

system, genitourinary system and bones and joints, and the hematogenous spread known 

as miliary tuberculosis (Farid et al., 1999; Maltezou et al., 2000). 

 

1.2.4.4  Tuberculosis treatment 

TB is currently treated by means of combination therapy, using cocktails of 3-4 drugs 

with different properties: Isoniazid, rifampicin, streptomycin which is a combination that 

has antibacterial activity; as well as isoniazid, rifampicin, ethambutol which is a 

combination used to inhibit the development of resistance. Vaccination against TB is 

routinely practiced in many countries as a prevention strategy. The Bacillus Calmette-

Guerin (BCG) vaccine is a live, attenuated strain of mycobacterium bovis which was 

introduced in 1922. However, the true efficacy of BCG is unknown. Some studies 

suggest 60-80% effective rate in children. BCG is still used in South Africa, however the 

use of BCG in the United States of America (USA) has been stopped because its 
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effectiveness in preventing infectious forms of TB is uncertain and the reactivity to 

tuberculin that occurs after vaccination interferes with management of persons who are 

possibly infected with TB. The primary strategy in the USA is to minimize the risk of 

transmission by the early identification of persons who have latent TB infection and the 

use of Isoniazid or Rifampicin for preventing progression of latent TB to active TB 

disease (CDC-MMWR, 1996).   

 

1.2.4.5 HIV/TB co-infection  

 Immunosupression, resulting from HIV infection hinders the ability of macrophages to 

clear TB infection, therefore enabling the bacilli to spread easily throughout the body. 

The risk of progression to TB disease is between 5 to 10% per year for co-infected 

patients, compared to a 7-10% risk for the rest of their life for patients with TB only. In 

areas like Sub-Saharan Africa where TB is endemic, many individuals harbor latent TB 

infection and reactivation occurs consequently due to the immunosuppressive effect of 

HIV infection.  In this regard, it has been widely noted that TB is a high grade pathogen 

that is the most common cause of death in HIV infected patients (Cahn et al., 2003). As a 

result, HIV is likely to have significant implications for the management and control of 

TB infection. 

 

HIV-1 infected patients with tuberculosis were reported to have lower CD4+ and CD8+ T 

lymphocyte counts than patients with single TB or HIV infection, respectively (Villacian 

et al., 2005; Rodrigues et al., 2006). These findings are an indication of disease 

progression in HIV infected individuals presenting with an opportunistic infection. High 
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activation of CD8+ T cells has been demonstrated in patients co-infected with HIV-1 and 

TB (Rodrigues et al., 2006). Virological and immunological impact of tuberculosis on 

HIV disease has been well documented. Among other studies, it was reported that TB 

provides a milieu of continuous cellular activation and irregularities in cytokine and 

chemokine circuits that are permissive of viral replication and expansion in vivo (Toosi, 

2003). An increase in HIV plasma RNA load was observed soon after onset of TB 

(Goletti et al., 1996) with increased viraemia in bronchoalveolar lavage fluid. In HIV-1 

infected persons with pleural tuberculosis, increased HIV-1 activity was demonstrable in 

both pleural-acellular and pleural mononuclear cells (Richter et al., 1994); increased 

HIV-1 systemic heterogeneity was found in dually infected patients. Distinct quasispecies 

were found to be more frequent in patients with both HIV-1 and TB, as opposed to HIV-1 

infected patients without TB (Richter et al., 1994). The overall conclusion from these 

findings presents a clear indication that sites for active TB infection in subjects co-

infected with HIV and TB play a critical role in HIV replication and evolution. As long 

as these sites harbor TB infection, they contribute to systemic viral activity. Additionally, 

TNF-α is produced and circulated in abundance in TB infected individuals (Toossi et al., 

2001; Bal et al., 2005, Raja et al., 2004) and has been shown that TNF-α enhances HIV 

replication in vitro (Kitaura et al., 2004).  

 

1.2.5  HIV IMMUNOPATHOGENESIS 

Infection with HIV initiates a slow progressive degeneration of the immune system, 

infecting predominantly cells bearing the CD4+ marker on their surface, mainly 

macrophages and CD4+ T helper lymphocytes (Klatzmann et al., 1984; Dalgleigh et al., 
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1985). The hallmark of HIV infection is a gradual decline in the numbers of CD4+ T 

helper cells (Clerici et al., 1997; Alimonti et al., 2003; Holm et al., 2005). Depletion of 

CD4+ T cells result in progressive suppression of the immune system which gives rise to 

introduction of various opportunistic infections that leads to AIDS. CD4+ lymphocyte 

depletion has been shown to be the result of a combination of specific virus-induced cell 

death, activation-induced loss of the memory (CCR5+CD45RO+) cell pool, occurring 

predominantly in the gut associated lymphoid tissues (Veazey et al  2000) and impaired 

renewal of the naïve (CD45RA+) cell pool  (Lawn et al.,  2001). 

 

1.2.5.1 CDC classification of HIV infection and disease stages 

The CDC classification system for HIV infected adolescents and adults, categorizes 

persons on the basis of clinical conditions and CD4+ T lymphocyte counts (CDC-

MMWR, 1992). The three CD4+ T lymphocyte categories are: 1) Greater than or equal to 

500 cells/µl, 2) 200 – 499 cells/µl, 3) less than 200 cells/µl. The clinical categories/stages 

are: Stage A) Asymptomatic HIV infection B) Symptomatic conditions including 

candidiasis, Herpes zoster, e.t.c C) AIDS defining illness including Pneumocystis carinni 

pneumonia, cytomegalovirus disease, wasting syndrome e.t.c. CD4+ T cell counts are 

higher in infants and young children than in adults. The immunological status of children 

is therefore based on age-specific CD4+ levels. The three CDC-CD4+ T lymphocyte 

immunologic categories applied for children  are: 1)   No evidence of  suppression  with 

>= 1500 cells/ml for less than 12 months; >= 1000 cells/ml for 1-5 years; and >= 500 

cells/ml for 6-12 months,  2) moderate suppression with 750-1499 cell/ml for < 12 
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months; 500-999 for 1-5 years; and 200-499 for 6-12 years. 3) Severe suppression with < 

750 for < 12 months; <500 for 1-5 years; and < 200 for 6-12 years (CDC-MMWR, 1994). 

 

1.2.5.2 Mechanisms of CD4+ T cell depletion  

There are various considered mechanisms of CD4 depletion in HIV-1 infected 

individuals. It is unclear whether one mechanism predominates or that all operate. The 

possible reasons for CD4 depletion include: 

• Direct cytopathocity: HIV virions are synthesized in an infected cell, which then 

buds out of the cell in such a way that they create punctures on the cell membrane 

resulting in cell death (Morita et al., 2004 ; Cadd et al., 1997). 

• Syncytia formation: In in-vitro studies performed using established cell lines, the 

HIV-envelope protein (gp120) expressed on the surface of infected cells could 

fuse with the CD4+ molecule of uninfected cells and form large multinucleated 

cells or syncytia. Syncytia get large, are unwieldy, and ultimately die prematurely 

(LaBonte et al., 2000). Syncytia formation may be an in vitro effect as this has not 

been observed in vivo 

• Apoptosis: CD4+ T lymphocytes have been shown to be killed by autologous 

HIV-infected cells, without syncytium formation. This cytolytic mechanism 

depends on gp120–CD4 binding, which triggers apoptotic death (Nardelli et al., 

1995; Heinekelein et al., 1995; Herbein et al., 1998).     

• Autoimmunity: HIV–specific CD8+ cytotoxic T cells (CTL) become stimulated 

by HIV antigens to kill infected CD4+ cells, through secretion of granules 
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(perforin and granzyme) that mediates the killing process (Shankar et al., 1999; 

Zarling et al, 1999; Liu et al., 2007). 

 

1.2.5.3 CD4+ and CD8+ T cell function  

CD4+ T helper cells provide critical help to B cells in the production of antibodies 

against HIV antigens, including stimulatory signals (e.g. IL-2) for B cell proliferation, 

differentiation into immunoglobulin–producing or memory B cells, and isotype switching 

from IgM to IgG (Barlett et al., 1990; Fogelman et al., 2000). Studies done in mice 

demonstrated the role of CD4 help in the development of functional CD8 memory 

(Shedlock et al., 2003). Both these immune mechanisms play an important role in the 

control of viral replication (Xiang et al., 2005) cytotoxic T cells (CTL) which 

differentiates and mediates killing of infected CD4+ T cells via production of perforin 

and granzyme (Yanai et al., 2003; Pardo et al., 2004), as well as  cytokine (e.g. TNF-

 and IFN-γ) pathways (Harty  et al., 2000) .   

 

1.2.5.4 HIV RNA load 

The plasma HIV load is a major indicator of HIV-1 prognosis associated with increased 

risk of death (Vlahov et al., 1998; Mellors et al., 1997). It is influenced by co-existence 

of other chronic viral infections (e.g. CMV, EBV and HSV), (Grando et al., 2005); 

opportunistic infections such as P. carinii pneumonia, M. avium complex disease, 

Candida esophagitis, toxoplasmosis, cryptosporidiosis, and mycobacterium tuberculosis 

(Goletti et al., 1996; Cahn et al., 2003). A representative diagram of HIV/AIDS disease 

progression is shown on Figure 1.5. The dissemination of HIV during primary infection 
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is co-incident with reduction of plasma viral load and detection of strong cellular 

immunity. It is likely that the strong CTL response contributes to the initial fall in plasma 

viral load (Koup et al., 1994; Borrow et al., 1994). The deterioration in T cell immunity 

and the increase in viraemia is accompanied by a gradual depletion of CD4+ T helper 

cells and the onset of AIDS and increased susceptibility to opportunistic infections 

(Pantaleo et al., 1993). This may take a range of times, from within months to several 

years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5:  Representation of a typical HIV /AIDS disease progression in the absence of antiretroviral 

therapy, showing a gradual decline in CD4 count, a decline in viral load reaching setpoint and then 

increasing overtime thereafter. An increase in HIV CTL and neutralizing antibodies which declines 

gradually as the disease progresses to AIDS (www.studentreader.com, 23rd March 2007). 
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1.2.6  HIV-1 EXPOSURE AND INFECTION 

There are several routes of exposure by HIV-1 which could either lead to HIV infection 

or no infection if precautionary measures are taken. The most common exposure happens 

either in an occupational setting, through drug use, sexually, as well as mother-to-child. 

Vertical/mother-to-child transmission has however, been dramatically reduced with the 

introduction of antiretroviral treatment and other precautionary measures such as 

avoidance of breastfeeding and opting for caesarean section (Coetzee et al., 2005; 

Sherman et al., 2004, European collaborative study, 2005).   

  

There is a high possibility that infants born to HIV infected mothers may have been 

exposed to HIV proteins and particles in–utero. This has been shown through several 

studies as indicated by immune activation (Clerici et al., 2000; Kuhn et al., 2002 ), HIV–

positive PCR (Peretz et al., 2006; De Andreis et al., 1996) and the presence of HIV-

specific CD4+ and CD8+ T cell responses masured by flow cytometry (Legrand et al., 

2006; Kuhn et al., 2002).  

Impaired progenitor cell function has been observed in HIV-negative infants of HIV-

positive mothers as evidenced by lower numbers of naïve CD4+ T cells and reduced 

thymic output (Nielson et al., 2001). HIV envelope peptide specific IL-2 responses 

associated with Beta-chemokine production were detectable at birth in the majority of 

uninfected infants of HIV-positive mothers (Wasik et al., 1999). It has been reported that 

children, even during the first year of life, are able to mount functional immune responses 

as indicated by the IFN-γ ELISPOT (Feeney et al, 2005; Legrand et al., 2006). Major 

expansions of Vβ-restricted T cells have also been described in infants born to HIV-
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positive mothers, which were similar to those observed in acutely infected adults. The 

expansions have been considered to be associated with HIV-specific cytotoxic T 

lymphocyte activity (Soudeyns et al., 2000; McCloskey et al., 2002).     

 

1.2.7 T CELL RESPONSES DURING HIV INFECTION 

Cellular immunity is made up of CD3+CD4+ T helper lymphocytes, CD3+CD8+ T 

cytotoxic lymphocytes, and natural killer cells (Steward et al., 1985; Parkin et al., 2001). 

The induction of cellular immune response to HIV-1 exposure and infection depends 

upon the presentation of viral antigens on the surface of infected cells or antigen 

presenting cells to the CD4+ or CD8+ T lymphocytes (Parkin et al., 2001).  

 

Upon encounter and recognition of antigen, CD4+ T helper cells produce cytokines e.g. 

IL-2, IL-1, IL-6, IL-15, TNF-α, IFN-γ) which, amongst other functions facilitates 

proliferation and activation of CD8+ cytotoxic T lymphocytes. CD8+ T cells expand and 

differentiate into effector cells upon HIV infection (Fujiwara et al., 2005; Jordan et al., 

2006; Jassoy et al., 1993). CD8+ cytotoxic T lymphocytes have been shown to be 

predominantly involved in the partial containment of HIV replication (Benito et al., 

2004; Musey et al., 1997). This has been shown in studies of long term non-progressors, 

who sustained HIV-specific activity and were able to control viremia (Propato et al., 

2001; Greenough et al., 1999; Bailey et al 2006).  

T cells recognize HIV proteins by interaction of the T cell receptor (TCR) with small 

linear HIV peptide fragments (known as epitopes) on the surface of virally infected cells 

and antigen presenting cells which may be macrophages and/or dendritic cells (Parkin et 
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al., 2001; Knights et al., 1991; Macatonia et al., 1992). There are two ways in which 

MHC molecules loading ofantigen onto MHC molecules occur. 1) During viral 

replication and protein synthesis in the infected cell, peptide fragments bind and fold in a 

specific host cell class I MHC molecules and are transported to the cell surface for 

presentation to CD8+ T cells. 2) For presentation to CD4 T cells, proteins are degraded to 

peptide fragments in intracellular endosomal compartments or exogenous antigen may be 

taken up by endocytosis and then loaded onto class II MHC proteins for subsequent 

presentation.  The MHC class I pathway presents endogenous antigen and MHC class II 

pathway presents exogenous antigens. Figure 1.6 illustrates interaction of the TCR on 

CD4+ and CD8+ T cells and MHC class-1- and class II epitope complexes. The TCR on 

the surface of CD4+ T cells recognize HIV antigens presented through MHC class II 

complex and CD8+ T cells recognize antigens presented through MHC class I (Parkin et 

al., 2001). 

 

MHC-class I molecules consist of two polypeptide chains, an α or heavy chain which has 

three domains (α1, α2, and α3) and a smaller, non covalently associated chain, the β2-

microglobulin which has one domain (Cossarizza, 1997). The α3 domain and that of the 

β2-microglobulin have a folded structure, whereas the α1 and α2 domains pair to generate 

a long cleft, or groove that is the site at which an epitope binds to the MHC molecule. As 

discussed, antigens degraded in the cytoplasm, mainly those of endogenous origin, are 

bound to MHC class I molecules and presented to CD8+ T lymphocytes. MHC class II 

molecules are formed by two chains, α and β, which forms a structure very similar to that 

of class I. The two domains forming the peptide-binding cleft (α1 and β1) are given by 
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different chains. One important difference between MHC class I and II molecules is that 

the ends of the peptide-binding cleft are open in MHC class II and closed in MHC class I. 

As a result, the ends of an epitope bound to MHC class I are constrained, whereas the 

ends of epitopes bound to MHC class II hang over the open binding cleft. Antigens 

processed in acidified vesicles, mainly exogenous, are bound to class II molecules and 

are recognized by CD4+ T lymphocytes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: TCR and MHC interaction. Viral peptides are presented to the CD4+ T cell via MHC class II 

(A) and to the CD8+ cytotoxic T cell through MHC-class (B).  (users.rcn.com/.../BiologyPages/H/HLA).  

 

 

In both cases, epitopes are stably bound to MHC molecules so that the upper surface of 

the molecule is kinked in such a way that residues on the bound epitope are recognized 

A B
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by the TCR. A complete recognition by the TCR is achieved through a composite of 

residues of the MHC molecule (α1 and α2) and the epitope. CD8+ T cells increase in 

numbers in the peripheral blood after HIV infection, mirroring the decline in CD4+ T 

cells. A large proportion of CD8+ cytotoxic T cells (CTL) are HIV-specific, recognizing 

different epitopes across the HIV proteome. Many of these cells are activated to varying 

degrees and co-express markers that reflect activation events, such as CD38 and HLA-

DR (Kestens et al., 1994; Benito et al., 2004). CD8+ cytotoxic T lymphocytes directly 

kill HIV infected cells through secretion of cytoplasmic granules (perforin and granzyme 

A and B). Perforin is a monometric pore-forming protein containing serine esterase that 

may be involved in the assembly of the lytic complex. In the presence of calcium, the 

perforin monomers bind to the target cell membrane and polymerize to form 

transmembrane channels, leading to cell death and removal from the circulation (Yanai et 

al., 2003). Granzyme enters the cell through the pores that are created by perforin. 

Granzymes are a collection of serine esterases (enzymes) which interact with intracellular 

pathways in the target cell to activate mechanisms which trigger apoptosis and DNA 

degradation (Pardo et al., 2004).  

 

Another mechanism used by CTL to kill infected cells is the Fas-FasL interaction. 

Ligation of Fas induces trimerization of the Fas molecule onto the target cell surface, 

associating with a transducing molecule which recruits and activates caspases 8 and 10, 

mediating cell killing by apoptosis (Pardo et al., 2004; Pinkoski et al., 2002). 
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1.2.8  THE SPECIFICITY OF T CELLS IN RECOGNIZING 

ANTIGENS  

Specificity of T cells is generated during T cell formation in the thymus. Lymphocytes 

mature in the thymus and recognize cell surface presented MHC-I and MHC-II 

complexed-HIV epitopes by a specific clonotype T cell receptor (TCR). During 

intrathymic maturation, T cells undergo a series of events in a positive or negative 

manner, provoking their expansion and or deletion, respectively, and ultimately 

encounter a variety of antigens in the periphery resulting in clearance of infected cells. T 

cell maturation consists of three closely related processes (Pathak et al., 2005; Delves et 

al., 2000). 

 

1.2.8.1 Migration and proliferation: Immature T cells (haematopoetic stem cell 

precursors) arise from the bone marrow, leave the bone marrow, circulate in the blood 

and enter the thymic cortex, where a high level of proliferation occurs. Selective 

processes result in death of most of the newly formed cells so that only MHC-restricted, 

self-tolerant cells survive. Surviving cells then migrate to the medulla and are finally 

discharged into the periphery (Pathak et al., 2005; Delves et al., 2000). 

 

1.2.8.2   Differentiation: This is development of the mature phenotype of T cells. 

This involves formation of TCR complexes following formation of functional TCR genes 

by somatic rearrangement of different gene segments. Some of the accessory molecules 

acquired by T cells include CD4 and CD8 molecules. Functional differentiation occurs at 

this stage so that the potential of a thymocyte to become either a helper or a cytolytic T 
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lymphocyte is already developed before the cell enters the circulation (Pathak et al., 

2005; Delves et al., 2000). 

 

1.2.8.3 Selection: Two selection processes are applied so that T cells are modified or 

shaped for specificity in recognition of epitopes in association with the MHC molecule. 

These two processes are referred to as positive and negative selection. Positive selection is 

the process by which the T cell repertoire becomes self MHC-restricted. This ensures that 

only those cells expressing TCR capable of recognizing self MHC will be permitted to 

mature. Negative selection then eliminates potential autoreactive clones, and survival of T 

cells that do not recognize self antigens (Pathak et al., 2005; Delves et al., 2000). These 

two selection processes then result in the self-restricted, self antigen-tolerant mature T cell 

repertoire (Figure 1.7) as shown in adult mice studies. 
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Figure 1.7: Positive and negative selection of thymocytes in the thymus. Immature thymocytes from the 

bone marrow are subjected to positive or negative selection, where T cells are tuned to recognize host MHC 

first. During positive selection Double-Positive T cells (CD3+CD8+ and CD3+CD4+) that can recognize 

self MHC's are selected for proliferation. Those T cells that have high affinity for self MHC die via 

apoptosis (negative selection). If they escape this elimination, they may subsequently react against self 

antigens, and cause autoimmune disease.  The selection process and apoptosis occur in the thymic cortex 

and T cell maturity occurs in the thymic medulla. Matured T cells are then transported to the circulating 

blood  (Roitt et al., 2001).   
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1.2.9 THE TCR GENE: ORGANIZATION, REARRANGEMENT  

AND  GENERATION OF DIVERSITY. 

T cell differentiation in the thymus results in cells expressing randomly generated TCR 

molecules with diverse specificities. This process happens prior to the selection process. 

T cells of the T lymphocyte lineage possess functional TCR-α and β chain genes, which 

are capable of being expressed as polypeptides. The antigen-specific TCR on 90% of the 

T cells in peripheral blood is a di-sulphide-linked, heterodimeric, transmembrane 

glycoprotein composed of α and β chain (Cossarizza, 1997). Functional α and β genes 

are formed by DNA rearrangements that generate V-(D)-J genes which are then linked to 

a C-region segment by RNA splicing, following transcription. Diversity in the TCR is 

generated by random utilization of a large number of germline V, D, J segments and 

random insertion of P- and N- nucleotides junctions between the V, D, J segments of the 

β chain and the V and J gene segments of the α chains. The most variable loops of the 

TCR namely the CDR3 regions of the α and β chains lie centrally and have the most 

contact with the presented peptide side chains.  

 

Three key structural features of CDR3 predominantly contribute to this interaction: the 

amino acid sequence of  CDR3, which is critical for physical recognition of the epitope; 

CDR3 length, which influences how deep the loop can reach into the epitope-binding 

groove of the MHC molecule and represents the first structural feature to be fixed during 

maturation of antigen specific immune responses; and the identity of the J segment used 

in TCR rearrangement, as well as the germ-line J region contributes at least four 

polymorphic residues to the C-terminal portion of CDR3. A schematic diagram of the 
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TCR gene is shown on Figure 1.8. The combined sum of all the different TCRs and 

specificities in an individual forms a repertoire. Both α and β chains play a crucial role in 

shaping the peripheral T cell repertoire responding to different antigens. At least 57 V 

gene segments are used to form beta chains, and they can be grouped into 24 families of 

Vβ1, Vβ2, Vβ3.1, Vβ4, Vβ5.1, Vβ5.2/3, Vβ6a, Vβ6β, Vβ7, Vβ8, Vβ9, Vβ11, Vβ12.1, 

Vβ13.1/3, Vβ13.6, Vβ14, Vβ15, Vβ16, Vβ17, Vβ18, Vβ20, Vβ21, Vβ22, Vβ23, based 

upon having 75% or greater sequence homology (Cossarizza 1997). 

 

 

 

 

Figure 1.8: The Vβ TCR gene. 

 

1.2.10  THE T CELL RESPONSE TO HIV AND CLONAL 

EXPANSION 

Antigens are presented to naïve CD4+ or CD8+ T cells either by presentation with class 

II or class I MHC on dendritic cells. This results in immunoactivation and priming of T 

cells bearing specific T cell receptors (e.g. Vα and Vβ), as shown on Figure 1.9. 

Dendritic cells prime T cells and then on encounter with antigen on other antigen 

presenting cells, expansion of T cells occurs. The specific TCR interacts with the specific 

MHC  plus epitope complex, and this determines which Vβ family is expanded. In the 

absence of infection, the TCR repertoire is fairly stable through time within individual 

subjects (Garderet et al., 1998; Even et al., 1995). An indication of TCR engagement 

V β CDR3 Jβ C β
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with antigen can be identified by investigation of the T cell repertoire. Perturbations in 

the repertoire have been previously observed as a result of T cell antigen encounter, i.e. 

during infection with various viruses and bacteria, including HIV-1 (Mc Farland et al., 

2002; McCoskey et al., 2002; Pantaleo et al., 1994). The diversity of the T cell repertoire 

plays a critical role in recognition of antigen. A more diverse repertoire has been shown 

to give rise to multiple HIV-1 epitope targeting (Douek et al., 2002; Gamberg et al., 

1999). Previous studies have demonstrated changes in the TCR Vβ repertoire during 

HIV-1 infection (Wilson et al., 1998; Kharbanda et al 2003). Gene expression analysis or 

spectratyping/immunoscope (Pannetier et al., 1995) and/or protein expression analysis by 

flow cytometry provides quantitation of the percentage of particular TCR Vβ families in 

a pool of T cells.  

 

 

 
 
 
 
 
 
 
 
 
 
 
            
 

Figure 1.9: Cartoon of the clonal expansion of CD8+ T cells after encounter with presented antigen by a 

dendritic cell. Priming and activation of a T cell bearing TCR-Vβ1 occurs, resulting in generation of T cell 

clones bearing the same TCR-Vβ1 (courtesy of Gray CM, 2007).  
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1.2.11  MISSING GAPS IN KNOWLEDGE 

 
The main objective of this dissertation is to examine the overall characteristics and 

functional nature of T cells in response to infection and exposure to HIV-1, as well as in 

the presence of mycobacterium tuberculosis (TB) co-infection. T cell-phenotypic changes 

have been associated with HIV-1 infection when compared to normal individuals 

(Vanham et al., 1991; Ho et al., 1993). These changes have been observed in various 

cohorts of HIV-1-infected as well as in HIV/TB co-infected cohorts, mainly indicative of 

T cell activation. It has been shown that activated T cells are higher in individuals co-

infected with HIV-1 and TB (Rodrigues  et al.,  2003; Morris et al., 2003; Hertoghe et 

al., 2000). More knowledge of the pathogenesis of HIV-1 in the presence of opportunistic 

infections needs to be explored.  

 

This dissertation examines different characteristics of T cell responses to HIV-1 and TB 

in infected, exposed and co-infected individuals; ranging from phenotypes to HIV-

specific function. Effective immune reponses to HIV-1 have been associated with both 

CD4+ and CD8+ T lymphocyte functional responses. HIV-1 proteins have been shown to 

elicit HIV-1-specific CD8+ cytotoxic T lymphocyte (CTL) responses (Novitsky et al., 

2003; Masemola et al., 2004; Ramduth et al., 2005,) as measured by secretion of IFN-γ.  

The emergence of CTL during the acute stage of infection coincides with a rapid decline 

in viraemia (Wilson et al., 2000; Koup et al., 1994). This dissertation explores: a) the 

nature of T cell reponses to HIV-1 infection in the absence and presence of co-infection 

with TB; b) the nature of T cell reponses in exposed uninfected individuals and exploring 

the neonate TCR as a model for exposure.  
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The immune system of neonates is generally known to be weaker than that of adults 

(Krampera et al., 2000; Qian et al., 1997; D’Arena et al., 1998), as demonstrated by low 

expression of Th1 cytokines. However, other studies have shown it to be mature in the 

context of cellular immunity to pathogens (Regner et al., 2004; Hermann et al., 2002). 

The interruption of HIV transmission from mother to child is important, and it involves 

research studies that focus on investigating the ability of infants to respond to HIV 

vaccines and whether any immunogenicity would be elicited by those vaccines. The 

immune response of neonates to HIV-1 has not been extensively defined, therefore 

hindering possible approaches to vaccine design. A number of vaccine trials have been 

conducted (Johnson et al., 2005; McFarland et al., 2001) which elicited poor 

immunogenicity compared to adults, or no immunogenicity at all.  

 

1.2.12 AIMS AND HYPOTHESIS 

1.2.12.1 AIM 1 

Examine changes in T cell phenotypes as a result of HIV-1 infection and co-infection 

with mycobacterium tuberculosis. This investigation is aimed at obtaining an overall 

representation of T cells involved in the defense against HIV-1 exposure and infection. 

This analysis has included the influence of TB disease on T cell immunity in HIV-1 

infection.  

 

1.2.12.2  AIM 2 

To examine the T cell receptor repertoire by measuring the frequency of TCR-T cell 

families and the diversity of the T cell populations by investigating CDR3 length 
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variations. This analysis provides a more refined nature of direct T cell engagement with 

antigen exposure in vivo using two techniques to measure TCR-usage, flow cytometry 

and CDR3 length variation to identify TCR Vβ family skewing. 

 

1.2.12.3 AIM 3 

To examine HIV-1 antigen-specific CD8+ cytotoxic T lymphocyte responses and profiles 

in HIV-1 single infection and co-infection with TB. 

This analysis provides a further refined approach of investigating antigen-specific T cell 

immunity at the peptide level in both HIV-infected and dually HIV/TB infected 

individuals. 

  

1.2.12.4  HYPOTHESIS 1 

That the immune response in HIV/TB co-infected individuals leads to elevated T cell 

activation and disruption of the TCR. 

 

1.2.12.5 HYPOTHESIS 2 

That T cell priming can occur in utero as a result of HIV-1-exposure. 

  

1.2.12.6 HYPOTHESIS 3 

That the patterns of immunodominance in HIV-1 subtype C–specific T cell responses are 

altered in the presence of TB disease. 
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CHAPTER 2 

 
T - CELL PHENOTYPIC ANALYSIS TO MEASURE 

NAÏVE AND ACTIVATED CELLS 
 

2.1   INTRODUCTION 
The pathogenesis of HIV is associated with several immunological dysfunctions, mainly 

the loss of CD4+ T helper cells as well as phenotypic changes to other T cells. CD4+ and 

CD8+ have been shown to be activated in response to various pathogens including HIV-1 

(Benito et al., 1997; Kerstens et al., 1994) and mycobacterium tuberculosis (TB) 

(Hertoghe et al., 2000; S Rodrigues Ddo S. et al., 2003; Morris et al., 2003). A major 

change that occurs during HIV infection is the reduction/depletion of naïve CD4+ and 

phenotypic alteration of naïve CD8+ T cells (Rodrigues et al., 2003; Brinchmann et al., 

2000). The phenotype and hence the functional quality of these T cells have been shown 

to change upon encounter with HIV and during the course of HIV infection (Barry et al., 

2003; Eggena et al., 2005).  

 

Activation of the immune system by HIV-1 infection enhances the maturation of naïve T 

cells into effector memory cells and central memory T cells (Hazenberg et al., 2000; 

Resino S et al., 2001). Along with depletion of CD4+ T cells, HIV infection leads to an 

increase in CD8+ T lymphocyte populations, both in percentage and absolute numbers 

(Barry et al., 2003). Upon infection, T cells express activation markers such as CD38+ 

and HLA-DR+ (Chun et al., 2004, Barry et al., 2003; Ho et al., 1993). Expression of 
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CD38+ on CD8+ T cells has been shown to be a strong predictor of HIV disease 

progression (Liu et al., 1997; Lubaki et al., 1999; Chun et al., 2004; Resino et al., 2004).  

 

Measurements of the frequency of naïve, memory and activated T cells from a total 

leucocyte  population have been widely achieved by the use of four colour flow 

cytometry (Brenchley et al., 2002; Landay et al., 1990), although this is rapidly changing 

beyond four colour (Walker et al., 2004; de Rosa, 2004). Four colour flow cytometry was 

used in this dissertation to measure the frequency of naïve T cells (CD45RA+/CD62L+), 

memory (CD45RA-/CD62L-) and activated (CD38+) T cell populations in individuals 

infected with HIV-1 and mycobacterium tuberculosis (TB), to examine changes in T cell 

phenotypes as a result of HIV-1 infection and co-infection with TB. This investigation 

was aimed at obtaining an overall representation of T cells involved in HIV  and HIV and 

TB co-infection.  

 

2.2  MATERIALS AND METHODS 

2.2.1 Study cohort 

Four groups of individuals were recruited from a gold mine in Welkom, and analyzed in a 

cross-sectional manner. The cohorts consisted of HIV-1 infected, singly TB infected 

individuals, HIV/TB co-infected individuals and healthy controls. The three infected 

cohorts with CD4 counts and HIV plasma RNA copies are shown on Table 2.1. The 

medians and interquartile ranges for both CD4+ counts and plasma RNA copies are 

shown below the table. The TB and HIV/TB co-infected groups were followed 

longitudinally over a period of 6 months while they were obtaining TB therapy and 



Chapter 2 

 42

samples were obtained at baseline (before treatment), 2 weeks, 6 months and 12 months. 

The TB status was determined by sputum-culture. 

Table 2.1: Cohorts of HIV infected, HIV/TB co-infected and TB infected  
 

HIV+ HIV/TB TB+
Viral load Viral load

 RNA copies /ml RNA copies /ml Patient ID CD4 (cells/µl)

IM67 270 6861 IM1 140 284612 IM3 1254
IM68 420 9460 IM5 111 29861 IM4 1606

IM70 379 10887 IM6 * 6475 IM7 559
IM71 1225 15828 IM9 * 19522 IM10 957

IM72 260 21588 IM11 833 113 IM12 1073

IM73 287 3192 IM13 437 3763 IM22 585
IM74 539 5106 IM14 1395 36096 IM23 580
IM75 391 225 IM15 * 29401 IM26 627
IM76 * 14556 IM16 583 65976 IM32 1908

IM77 * * IM19 510 24658 IM35 464

IM78 * 6093 IM21 177 35413 IM40 537
IM79 537 54822 IM29 945 6378 IM41 2624
IM80 393 * IM30 66 49172 IM45 1353

IM81 36 67574 IM33 353 82638 IM46 2681
IM82 393 1980 IM34 70 128271 IM57 *
IM83 452 19756 IM36 158 48403 IM59 2285
IM84 643 20599 IM42 873 9334
IM85 300 1980 IM47 1828 12283
IM86 717 19756 IM51 155 57230
IM87 208 26216 IM56 * 12460
IM88 350 2520 IM58 117 245634
IM89 304 121 IM60 939 67166
IM90 222 82150 IM61 189 92239
IM91 371 219917 IM62 536 5217
IM92 229 6576 IM63 847 9488
IM93 56 59463 IM65 469 41398

IM66 324 3645
CD4 Count
Cohort Median IQR
HIV+ 371 245 - 436
HIV/TB 437 157 - 840
TB+ 1073 583 - 1757

 HIV RNA LOAD 
Cohort Median IQR
HIV+ 12722 4628 - 22745
HIV/TB 29861 9411 - 61603

Patient ID CD4 (cells/µl) Patient ID CD4 (cells/µl)

 
IQR: Interquartile range 
*No results  
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The HIV-1 results were obtained by a serological assay (ELISA) at baseline- The 

GENSCREEN HIV1/2 Ab EIA was used, which is an enzyme immunoassay based on the 

principle of a two-step sandwich technique. It consists of a solid phase coated purified 

recombinant gp160 and gp25 proteins. Briefly, plasma samples were added to the wells 

on the antigen coated plate and incubated at 37oC. Peroxidase conjugate was then added, 

followed by the substrate solution. The reaction was stopped using sulphuric acid. 

Samples with ODs above the cutoff were considered to be positive. The Quantiplex HIV-

1 RNA 3.0 Assay (bDNA) was used to measure plasma viral load. The method was based 

on amplification of a signal nucleic acid probe for direct quantification of HIV-1 RNA in 

human plasma. It is a nucleic acid hybridization procedure. The RNA in plasma is 

captured to a microwell plate by a set of specific, synthetic oligonucleotide capture 

probes. A set of target probes hybridizes to both the viral RNA and the pre-amplifier 

probes. The capture probes (comprised of 17 individual capture extenders) and the target 

probes (comprised of 81 individual target extenders) bind to the different regions of the 

pol gene of the viral RNA. The amplifier probe hybridizes to the pre-amplifier forming a 

branched DNA (bDNA) complex. A chemiluminescent substrate was added and the 

emitted light was measured and calibrated by means of a standard curve for 

determination of RNA load. Viral load data for HIV and HIV/TB infected individuals are 

shown on Table 2.1.  

 

Absolute CD4+ counts were determined using percentages of CD4+ T cells obtained 

using Becton Dickinson FACSort flow cytometer-CellQuest software version 1.1, which 

were calculated from total lymphocyte counts obtained from the Coulter Onyx (Coulter) 
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blood cell counter. Whole blood was stained with APC labeled-CD3 and PerCP labeled–

CD4, as described in section 2.2.2. Percentage of CD3+CD4+ T helper cells was then 

obtained from gated lymphocytes. This percentage CD3+CD4+ was then used to 

calculate the absolute value of CD3+CD4+, as a proportion of total lymphocytes obtained 

from Coulter Onyx. Absolute CD4 counts for HIV and HIV/TB co-infected patients are 

shown on Table 2.1. 

 

2.2.2  Whole blood staining and flow cytometric analysis 

Whole blood cells were labeled with FITC (Fluorescein isothiocyanate); PE 

(Phycoerythrin); PerCP (Peridin Chlorophyll) and APC (Allophycocyanin)–conjugated 

monoclonal antibodies (Table 2.2). The table describes monoclonal antibodies used to 

identify cell types/cell populations described by various markers. Whole blood (100µl) 

and monoclonal antibodies (0.5µl to 10µl) were added to 5ml FACS polypropylene tubes 

and incubated in the dark at room temperature for 30 minutes. Red blood cells were lysed 

with 2ml BD 1x FACS lysing solution. Cells were then washed by centrifugation at 

1200rpm with 3ml of sheath fluid/haematology diluent (see Appendix 1) and fixed with 

300µl of cell fixer (see Appendix 1) for acquisition and analysis on the FACSort. 
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Table 2.2: Monoclonal antibodies (conjugated to different fluorochromes) and cell types 
measured 
 

Tube Measured cell type FITC PE PerCP APC
1 Naïve CD4+ T lymphocytes CD45RA CD62L CD4 CD3

2 Naïve CD8+ T lymphocytes CD45RA CD62L CD8 CD3

3 Acutely activated CD4+ T lymphocytes CD69 CD25 CD4 CD3

4 Acutely activated CD8+ T lymphocytes CD69 CD25 CD8 CD3

5 Chronically activated CD4+ T lymphocytes HLA-DR CD38 CD4 CD3

6 Chronically activated CD8+ T lymphocytes HLA-DR CD38 CD8 CD3
 

 

2.2.3  The gating strategy 

A total of 50,000 cells were acquired on the Becton Dickinson FACSort using the 

CellQuest software-version 1.1. List mode data was analyzed using the same software by 

gating live-lymphocytes on the FSC/SSC parameter followed by gating of specific T cell 

populations. An example of the gating strategy is shown on Figure 2.1. Lymphocytes 

were selected by region 1 (R1, Figure 2.1A), and sequentially gated by region 2 (R2) 

selecting CD3+ T cells (Figure 2.1B), and then sequentially gated by region 3 (R3) 

selecting CD8+ T cells (Figure 2.1C). Using this sequential (R1+R2+R3) gating strategy, 

the percentage of CD3+CD8+CD62L+CD45RA+ (naïve CD8+ T cells) is shown on the 

upper-right quadrant of Figure 2.1D (4.14%) and memory CD8+ T cells (34%) labelled 

as CD3+CD8+CD62L-CD45RA- is shown on the bottom left quadrant. Using a 

sequential gating strategy of R1 + R2, a percentage of activated CD8+CD38+ T cells was 

determined (Figure 2.2).  Activated CD8+ T cells are shown on the upper right quadrant 

of Figure 2.2.C, which is 65.15% of  T cells expressing the CD38 marker. 
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 Figure 2.1:  Flow cytometry dot plots showing the phenotype analysis of naïve and memory T cell 

populations. Events (50,000) were acquired on FACSort and the frequency of activated CD8+ T cells was 

measured. The gating strategy for CD8+CD45RA+CD62L+ (4.14%) and CD8+CD45RA-CD62L- (34%) T 

cells are illustrated. The percentages of both naïve CD8+ T cells and memory T cells were measured using 

a sequential gating strategy (R1+R2+R3) as shown on plot -A, B, and C.        
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Figure 2.2:  Flow cytometry plots showing gating strategy to measure activated T cells. The gating strategy 

for CD3+CD8+CD38+ (65.5%) is illustrated. The percentage of activated CD8+ T cells was measured 

using a sequential gating strategy (R1+R2) as shown on plot -A, B, and C.  

 

 2.3 RESULTS 

2.3.1 Comparison of CD4 + T lymphocyte counts between TB infected, HIV-1 

infected and HIV/TB co-infected individuals 

To understand the clinical picture of these groups, CD4 absolute counts were compared. 

Both HIV-1 infected and HIV/TB co-infected groups had lower CD4+ T cell counts 

when compared to healthy controls (p = 0.004 and p = 0.029 respectively) as shown in 

Figure 2.3. No differences were observed between the normal and the TB infected group 

(p = 1.000) as well as between the HIV-1 infected group and the HIV/TB co-infected 

group. Both HIV-1 infected and HIV/TB co-infected groups had lower CD4+ T cell 

counts when compared to the TB infected group (p = 0.0001). Statistical data (P values) 

is shown in Figure 2.3. The significant difference by group was calculated using 

Bonferroni, (Statacorp, College station, Texas), which is a pairwise test that measures 

R1
R2

65.15%

A B C
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differences between groups. Similar results were obtained when percent CD4 counts were 

compared between the four groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Differences in absolute CD4 counts between healthy controls and the three cohort groups. 

Statistical P values are shown in the table below the graph.  

 

2.3.2 Comparison of CD8+ T lymphocyte counts between HIV-1 infected, TB 

infected and HIV/TB co-infected individuals 

Both HIV-1 infected and HIV/TB co-infected groups had significantly higher CD8+ T 

cell counts when compared to the normal controls (p = 0.027 and p = 0.034 

consecutively) as shown in Figure 2.4. No differences were observed between the normal 

and the TB infected group (p = 1.000) as well as between the HIV-1 infected group and 

 

Normal HIV+ TB+

HIV+ 0.004

TB+ 1.000 0.0001

HIV/TB+ 0.029 1.000 0.0001

0

500

1000

1500

2000

2500

Normal TB+ HIV+ HIV/TB+

CD
4 

Co
un

ts
 ( 

ce
lls

/ 8
l) n = 7

n = 15

n = 26
n = 27



Chapter 2 

 49

the HIV/TB co-infected group. Both HIV-1 infected and HIV/TB co-infected groups had 

higher CD8+ T cell counts when compared to the TB infected group (p = 0.016 and 0.022 

respectively). Statistical data is shown in Figure 2.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Differences in absolute CD8 counts between healthy controls and the three cohort groups. 

Statistical P values are shown in the table below the graph. 
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Table 2.3: The CD4:CD8 ratios from the three study cohorts and the normal controls 

CD4/CD8 ratio Normal TB+ HIV+ HIV/TB+

Median 1.68 1.60 0.25 0.24

Range 0.94 - 2.02 0.48 - 2.95 0.02 - 0.86 0.01- 0.97
 

These data show that CD4 counts are suppressed in HIV infected individuals, with or 

without TB and that TB infection alone did not significantly impair either the CD4+ or 

CD8+ compartment. 

 

2.3.3 Comparisons of HIV-1 RNA load between HIV and HIV/TB co-infected  

individuals 

HIV-1 RNA load was compared between 24 HIV-1 infected and 27 of the HIV/TB co-

infected individuals. Although there was no statistically significant differences observed 

between the two groups (p = 0.075), the HIV/TB patients had a higher trend of viraemia 

than the individuals with HIV-1 only (Figure 2.5). These data may suggest that the 

elevated levels of viraemia in co-infected patients may result in different pathologies 

between the two groups. 
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Figure 2.5: Comparison of HIV-1 plasma RNA load between 24 HIV/TB and 27 HIV-1 infected 

individuals. 

 

2.3.4   Phenotypic analysis of naïve and memory T cell populations in the TB, 

  HIV-1 and HIV/TB co-infected individuals 

The first T cell subsets to be determined were the frequencies of naïve and memory T 

cells. Flow cytometry data for this phenotypic analysis was expressed as percentages of 

total T lymphocytes as shown in the gating strategy example in Figure 2.1A-C. The mean 

percentages of naïve and memory T cells between healthy individuals (n = 7), TB 

infected (n = 16), HIV-1 infected (n = 26) and HIV/TB (n = 27) co-infected individuals 

were compared.   
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frequency of naïve CD4+ T cells to that of TB, HIV-1 and HIV/TB co-infected 

individuals (Figure 2.6). There was a statistically higher frequency of memory CD4+ T 

cells (CD3+CD4+CD62L-CD45RA-) in the three disease cohorts when compared to 

healthy donors and conversely lower frequencies of naïve CD4+ T cells. It was 

interesting to note, that although the gross CD4 count in TB infected individuals (without 

HIV infection) did not differ from healthy controls (see Figure 2.3), there were as few 

naïve CD4+ T cells in the CD4 compartment as in those infected with HIV-1 (Figure 

2.6). The lower proportion of naïve CD4+ T cells probably reflects the transition from 

naïve to memory T helper cells. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Differences in naïve CD4+ T cells (CD3+CD4+CD62L+CD45RA+) and memory CD4+ T 

cells (CD3+CD4+CD62L-CD45RA-) between healthy controls and the three cohort groups. Statistical P 

values are shown in the tables. Statistical P values were determined by using ANOVA and Bonferroni 

pairwise analysis for these three cohorts consecutively when compared with the healthy controls. 
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2.3.4.2  CD8+ T cells  

The control group had the highest frequency of naïve CD8+ T cells when compared with 

all the groups (p = 0.0001). The plot and statistical tables are shown on Figure 2.7. Lower 

frequencies of naïve CD8+ T cells were observed in the HIV+ (p = 0.012) and the 

HIV/TB co-infected group (p = 0.001) when compared with the TB infected group. 

Higher frequencies of memory CD8+ T cells were observed in the HIV+ (p = 0.0001) 

and the HIV/TB group (p = 0.0001) as compared to the normal donors. The CD8+ 

memory pool in the TB+ group was significantly lower than that observed in the HIV/TB 

co-infected group (p = 0.004). The frequencies of both memory CD4+ T cell and memory 

CD8+ T cell populations in all three infected groups were higher than the naïve T cells 

populations (Figure 2.6 and 2.7), and the over-representation of circulating memory T 

cells, coupled with a preferential loss of the naïve T cell population, is likely due to 

persistent antigen and maturation of naïve to memory T cells upon interaction with both 

HIV-1 and TB antigens.  

 

 

 

 

 

 

 

 

Figure 2.7: Differences in naïve CD8+ T cells (CD3+CD8+CD62L+CD45RA+) and memory CD8+ T 

cells (CD3+CD8+CD62L-CD45RA - between healthy controls three infected groups.  Statistical P values 

are shown in the tables.  
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2.3.5  Phenotypic analysis of activated CD8+ T cell populations in the TB, 

HIV-1 and HIV/TB+ co-infected individuals  

The increased frequencies of memory CD8+ T cells, demonstrated in the infected cohort 

groups, were also accompanied by increased T cell activation. The level of activation was 

achieved by measuring the percentages of CD3+CD8+ T cells expressing CD38. The 

phenotypic patterns of activated CD8+ T cells between the 7 healthy controls, 16 TB 

infected, 26 HIV-1 infected and 27 HIV/TB co-infected individuals were compared 

(Figure 2.8) 

 

A larger proportion of CD3+CD8+ T cells expressing CD38+ were observed in the 

HIV/TB group when compared with healthy controls and TB infected individuals (p = 

0.0001) followed by the HIV-1 infected group which showed higher levels when 

compared to TB and healthy control groups (p = 0.0001); as shown in Figure 2.8, no 

significant differences were observed between the normal controls and the TB group (p = 

1.0000). The presentation of the opportunistic infection (TB) in the co-infected 

individuals was associated with higher frequencies of T cells expressing CD38 and is 

perhaps in agreement with accelerated progression to AIDS (Kerstens et al., 1994). The 

increased activation status observed in the HIV/TB co-infected group is associated with 

the high levels of CD8+ memory T lymphocytes as described in section 2.3.4, as well as 

the high absolute CD8+ T cell counts. HLA-DR was expressed at very low percentages in 

the CD8+ T cells of all cohort groups and no significant differences were observed. No 

differences were observed in the frequency of acutely activated T cells: 
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CD3+CD8+CD69+ and CD3+CD8+CD25+ T cells between the four cohort groups - (p = 

1.000).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: T cell phenotype results showing the percentage (mean +SD) of activated CD8+ T cells 

(CD3+CD8+38+). The percentages of CD8+ T cell activation was compared amongst the normal controls 

and the three infected cohort groups. Statistical P values are shown in the table. 
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infected individuals. There was an inverse trend between naïve CD4+ T cells (R = -0.354, 

p = 0.0877) and viral load, although not reaching significance (Figure 2.9A). A similar 

association was observed between naïve CD8+ and viral load (R = -0.475, p = 0.0192, 

Figure 2.9B). These data may suggest that a high burden of viraemia enhances the 

maturation of naïve T cells to memory. Although not significant, the trends towards 

positive correlations were observed between memory CD4+ (R= 0.171, p = 0.419) and 

CD8+ T cells (R = 0.328, p = 0.116) and HIV-1 RNA load (Figure 2.9C and D), 

suggesting that levels of viraemia may drive maturation of T cells from naïve to memory.  

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: The association between naïve CD4+ (A), naïve CD8 (B), memory CD4+ (C) and memory 

CD8+ (D) in patients infected with HIV-1, using Spearman Rank Order Correlation tests.  
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2.3.7 Associations between naïve /memory T cells and HIV plasma RNA 

   copies in individuals dually infected with HIV-1 and TB. 

 

The relationship between viral load and the percentage of naïve CD4+ and CD8+ T cells 

was determined from a total of 27 HIV/TB co-infected individuals. A statistically 

significant negative association was observed between naïve CD4+ T cells and viral load 

(R = -0.476 and p = 0.0124, Figure 2.10A), with a similar association observed between 

naïve CD8+ T cells and viral load in the same group (R = -0.503 and p = 0.031, Figure 

2.10B). No significant association was observed between memory CD4+ T cells (Figure 

2.10C) or memory CD8+ T cells (Figure 2.10D) and viral load in this group of 

individuals.  

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: The association between naïve CD4+ (A), naïve CD8 (B), memory CD4+ (C) and memory 

CD8+ (D) in patient dually infected with HIV-1 and TB.   
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2.3.8 The association between activated T cells and HIV-1 plasma RNA load 

Activation of the immune system in HIV infection can be measured by investigating the 

proportions of CD8+ T cells co-expressing CD38, which has been associated with disease 

progression, coinciding with high levels of viraemia (Barry et al., 2003). This dissertation 

examined the association between HIV-1 plasma RNA copies and the level of T cell 

activation, where it is hypothesized that immune activation positively associates with 

viraemia. Associations were made in 27 HIV/TB co-infected and 24 HIV infected 

individuals. A significant positive association was indeed observed between activated 

CD8+ T cells and HIV–plasma viral load (R = 0.411, p = 0.0455) in HIV-1 infected 

individuals (Figure 2.11A). Although not reaching significance there was a similar 

association seen in the HIV/TB co-infected group (R = 0.338, p = 0.0836) shown on 

Figure 2.11B.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: The relationship between activated CD8+ T cells and HIV-1 RNA load for 24 HIV-1 infected 

individuals (A) and 27 HIV/TB co-infected individuals (B) using Spearman Rank Order Correlation tests.  
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These data supports the notion that HIV replication drives T cell activation, as measured 

by the CD38 marker. 

 

2.3.9 The effect of TB treatment on CD4+ counts and HIV-1 RNA load in 

HIV/TB co- infected individuals 

 

Successful treatment of TB in HIV/TB co-infected individuals may represent an effective 

strategy in elimination of some of the immunopathology associated with dual HIV and 

TB infection. With this in mind, one of the aims of this dissertation was to explore 

whether anti-TB therapy could alleviate or reverse markers of immune activation and 

restore levels of naïve T cells.  

 

The effect of TB therapy on CD4+ T lymphocyte count and HIV-1 viraemia were 

evaluated from 10 HIV/TB infected individuals, which were selected because of 

availability of longitudinal samples, although some of the patients were lost to follow up. 

Blood samples were collected at baseline, 2 weeks, 8 weeks and 6 months of TB therapy. 

There was no change in CD4 counts or viraemia over time of treatment (Figure 2.12) 
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Figure 2.12: The effect of TB treatment on CD4+ T lymphocyte count (A) and HIV-1 RNA load (B) in 

HIV/TB infected patients over six months of anti-TB treatment.  
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level for 6 months (Figure 2.13A). As shown on Figure 2.13B, levels of memory CD4+ T 

cells were significantly reduced at 6 months (p = 0.008). Anti-TB treatment in this cohort 

group did not improve restoration of naïve CD4+ T cells; however, the memory T cell 

pool was significantly reduced. Naïve CD8+ T cells increased significantly at 8 weeks (p 

= 0.019) and declined to baseline levels at 6 months (Figure 2.13C). There were no 

differences in levels of memory CD8+ T cells (Figure 2.13D). Interpretation of these data 

suggests that anti-TB treatment had variable effects and there was probably too much 

inter-patient variation to identify conclusive effects of treatment. Activated CD8+ T cells 
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 (CD3+CD8+CD38+) were shown to be at the same level as those of healthy controls in 

this study group, and this did not change during anti-TB treatment (Figure 2.13E). As 

these results showed no meaningful or long term effect of anti-TB treatment on the 

phenotypes of T cells in TB infected individuals, these data infer that reduced naïve 

CD4+ T cells in this study group may not be associated with TB infection per se. One of 

the limitations of this study was the absence of longitudinal follow-up of healthy control 

donors, to establish the variation of these phenotypes without disease or pathology.             

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: The effect of TB treatment on naïve CD4+ (A) memory CD4+ (B), naïve CD8+ (C) memory 

CD8+ (D) and activated CD8+ T cells (E) in TB single infected individuals. 

 

 

 

A C

P = 0.000

B

0

20

40

60

80

0

20

40

60

80

baseline 8 wks2wks 6 months

C
D

3+
C

D
4+

C
D

45
R

A+
C

D
62

L+

P =  0.000

P > 0.05

P > 0.05

0

20

40

60

80

0

20

40

60

80

C
D

3+
C

D
4+

C
D

45
R

A
-C

D
62

L-

P = 0.049

P> 0.05

P = 0.008

baseline 8 wks2wks 6 months
0

20

40

60

80

0

20

40

60

80

C
D

3+
C

D
8+

C
D

45
R

A
+C

D
62

L+
baseline 8 wks2wks 6 months

P> 0.05

P = 0.019

P> 0.05

0

20

40

60

80

0

20

40

60

80

C
D

3+
C

D
8+

C
D

45
R

A
-C

D
62

L-

baseline 8wks2wks 6 months

P> 0.05

0

20

40

60

80

0

20

40

60

80

baseline 8wks2wks 6 months

P> 0.05

C
D

3+
C

D
8+

C
D

38
+

A B C

P> 0.05

P> 0.05

P > 0.05

P > 0.05

Naïve CD4 Memory CD4 Naïve CD8

Memory CD8 Activated CD8

D E



Chapter 2 

 62

 

2.3.11 The effect of TB treatment on T cell phenotypes in HIV/TB co-infected 

  individuals 

This dissertation demonstrated elevated levels of CD38+-expressing CD8+ T cells in dual 

infection. A decrease in T cell activation as a result of TB therapy has been previously 

demonstrated in individuals with HIV/TB co-infection, and most of these studies 

described changes in the levels of cytokines (IFN-γ, IL-6 and TNF-α) and expression of 

HLA-DR as a marker of activation (Lawn et al., 1999, Wallis et al., 1993). This 

dissertation describes the effect of anti-TB therapy on phenotypic changes including 

CD3+CD4+ and CD3+CD8+ T cells expressing CD45RA+CD62+ (naïve), CD45RA-

CD62L-(memory), and CD38+ (activated) phenotypes.  

 

Frequencies of naïve CD4+ T cells in this study group were significantly reduced 

although when adjusting for CD4+ T cell count, the frequencies of naïve CD4+ T cells 

were sustained throughout the duration of anti-TB treatment (p > 0.05)(Figure 2.14A). 

The elevated frequencies of memory CD4+ T cells were also sustained throughout anti-

TB therapy (p > 0.05) (Figure 2.14B), suggesting that presumed removal of TB bacillus 

load made no impact on the naïve to memory imbalance. Adjusting for CD8+ T cell 

counts at each time point of anti-TB treatment in individuals co-infected with HIV-1 and 

TB, there was a marginal significant increase in naïve CD8+ T cells at 6 months (p 

=0.049) (Figure 2.14C), coinciding with a decrease in memory CD8+ T cells ( p = 0.000) 

(Figure 2.14D). Elevated frequencies of CD8+ T cells expressing CD38+ were observed 

in HIV-1 infected and HIV/TB co-infected individuals, whereas those individuals 

infected with only TB had the same frequency of CD38–expressing CD8+ T cells as 
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healthy controls. No significant difference in CD8+ T cell activation occurred at all time 

points during TB therapy in this cohort group (Figure 14E), suggesting that TB infection 

probably had a minor role to play in T cell activation observed in HIV/TB dual infection. 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: The effect of TB treatment on naïve CD4+ (A) memory CD4+ (B), naive CD8+ (C), memory 

CD8+ (D) and activated CD8+ T cells (E) in HIV/TB co-infected patients. 
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been previously reported to result in apoptosis and therefore loss of CD4+ T cells (Hirsch 

et al., 2001), no loss of CD4+ T cells was observed as a result of TB infection in the 

cohort studied. CD4+ absolute cell counts in patients infected with TB in this study were 

similar to those observed in healthy controls. 

 

The loss of CD4+ T cells in HIV-1 infected patients was not significantly affected by co-

infection with TB, suggesting that loss of these cells is predominantly due to HIV-1. This 

was further confirmed by approximately similar values of the CD4:CD8 ratio observed in 

patients who were singly infected with HIV-1 and those co-infected with HIV-1 and TB 

which were both lower than the ones observed from single infection with both HIV-1 and 

TB. The CD4:CD8 ratio is used as a marker of HIV/AIDS disease progression (Taylor et 

al., 1989) where lower ratios reflect the more advanced stage of HIV-1 infection. 

 

The results from this chapter have demonstrated that the loss of CD4+ T cells is caused 

by HIV-1, and was probably not due to TB infection in these cohorts. Since anti-TB 

treatment did not restore this T cell population, it may be necessary to consider the use of 

both antiretroviral therapies concurrently with anti-TB treatment to increase survival in 

individuals co-infected with both pathogens. Previous studies have shown no significant 

reduction in HIV-1 plasma viraemia during anti-TB treatment (Lawn et al.,1999; Toossi 

et al., 2001) however, contrasting report showed a decrease in viral load after 3 months of 

treatment and which was maintained at 6 months (Morris et al., 2003). The findings in 

this dissertation demonstrate maintenance of high viraemia in HIV-1 infected individuals 

who are co-infected with TB, despite anti-TB treatment. A significant loss of 
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CD3+CD4+CD45RA+CD62L+ (naïve CD4+) T cells in all three infected groups, 

concurrent with an increase in the memory phenotype was demonstrated in this 

dissertation, which was maintained throughout a six months period of anti-TB therapy in 

HIV/TB co-infected individuals. This reduction of naïve CD4+ T cells was concurrent 

with a reduction in absolute CD4+ T lymphocyte counts and an increase in HIV-1 plasma 

load, which were not affected by anti-TB therapy. Maturation of naïve CD4+ T cells  to 

memory phenotype may pose a detrimental effect since it has been reported that memory 

CD4+ T cells are more susceptible to HIV-1 infection (Veazey et al., 2000), consequently 

leading to an increased loss of the CD4+ T lymphocyte pool. HIV-1 infection has also 

been associated with impaired renewal of naïve CD4+ T cell pool (Lawn et al., 2001), 

which may also be a factor in the reduction of these T cells. The influence of high HIV-1 

RNA copies in the loss of naïve CD4+ T cells is also demonstrated. These results 

demonstrate that loss of naïve CD4+ T cells occurs, largely in the presence of co-

infection with HIV-1 and TB, which is driven by high HIV-1 plasma load. Anti-TB 

treatment did not improve the loss of this T cell population. 

 

Similarly, HIV/TB co-infected individuals had the highest levels of memory CD8+ T 

cells, and the lowest levels of naive CD8+ T cells, which may imply that the high HIV-1 

RNA load as well as co-existence of TB may be the two factors driving maturation of 

naïve CD8+ T lymphocytes to memory phenotype. It was further demonstrated that naïve 

CD8+ were elevated and memory CD8+ T cells were reduced at 6 months during anti-TB 

therapy, which was not observed with CD4+ T cells, suggesting that removal of TB 

antigens with treatment allowed the restoration of CD8+ T cells probably because they 
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are not directly infected by HIV-1. This study did not identify any reduction of absolute 

CD8+ T lymphocytes in HIV/TB co-infected individuals, but contrasting reports 

demonstrated loss of absolute CD8+ T cells in individuals co-infected with HIV and TB, 

whereas these cells were found in large numbers during the natural progression of HIV-1 

infection (Rodrigues et al., 2005). These results demonstrate that despite severe loss of 

CD4+ T cells in advanced HIV-1 disease, anti-TB therapy could restore a pool of naïve 

CD8+ T lymphocytes which could possibly play a role in the potential control of HIV-1 

disease progression. 

 

Elevated frequencies of CD38-expressing T cells are a strong marker of HIV-1 disease 

progression to AIDS (Liu et al., 1997). CD38 reflected high levels of activation which 

appeared in large numbers in patients who were singly infected with HIV-1 as well as 

those co-infected with TB in this study.  There was no difference between activation 

levels in single HIV-1 infection and HIV/TB co-infection suggesting that activation of 

CD8+ T lymphocytes was predominantly elicited by HIV-1 rather than TB. In this 

respect, anti-TB therapy had no impact on the level of CD8+ T lymphocyte activation, 

suggesting that activation of CD8+ T lymphocytes is driven by high HIV-1 RNA load, 

despite anti-TB therapy. The influence of HIV-1 plasma RNA copies may be implicated 

in the persistence of T cell activation since there was a significant association between 

viral load and the level of activation which did not change during TB therapy. Sustained 

high levels of activation and HIV-1 plasma RNA load could therefore be related to 

advancing disease.  
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In summary, alterations in T cell phenotypes in this chapter appeared to be more 

influenced by HIV-1 than TB infection, as anti-TB treatment and removal of bacterial 

burden did not significantly alter T cell activation or uniformly affect the pool of 

circulating naïve and memory T cell populations.  
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CHAPTER 3 
 

T-CELL RECEPTOR USAGE IN HIV-1 INFECTED 

ADULTS CO-INFECTED WITH 

MYCOBACTERIUM TUBERCULOSIS 
 

3.1  INTRODUCTION 

T cell priming and activation occurs when antigens are presented to naïve CD4+ or CD8+ T 

cells by dendritic cells. The T cell receptor allows this process to occur through binding to the 

MHC and the restricted epitope (see chapter 1, section 1.2.7). This process results in expansion 

of T cells bearing specific T cell receptors and in the absence of infection or persistent 

infection, the TCR repertoire is fairly stable throughout time within an individual (Garderet et 

al., 1998; Even et al., 1995). An indication of TCR engagement with antigen can be 

investigated by measuring the T cell repertoire. Perturbations in the repertoire have been 

previously observed as a result of T cell antigen encounter during infection with various 

bacterial and viral infections, including HIV-1 (Mc Farland et al., 2002; McCoskey et al., 

2002; Pantaleo et al., 1994). The diversity of the T cell repertoire plays a critical role in 

recognition of antigen and the more diverse repertoire has been shown to give rise to multiple 

HIV-1 epitope targeting (Douek, 2002; Gamberg et al., 1999).  

Previous studies have demonstrated changes in the TCR Vβ repertoire during HIV-1 infection 

(Wilson et al., 1998; Kharbanda et al., 2003). Gene expression analysis or 

spectratyping/immunoscope (Pannetier et al., 1995) and/or protein expression analysis by flow 
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cytometry (Wilson et al., 1998) are among the most frequently used assays for analysis of the 

TCR repertoire in HIV-1 infected individuals. 

 

Flow cytometry staining with monoclonal antibodies recognizing different TCR Vβ 

specificities provides quantitation of the percentage of particular TCR Vβ families in a pool of 

T cells, and can give an indication of T cell receptor (TCR) usage in response to antigens. 

Flow cytometry was applied in this dissertation to determine TCR usage in individuals 

infected with HIV-1 and the impact of TB co-infcetion. Approximately 80% of the T cell 

repertoire can be assessed using monoclonal antibodies specific for the variable beta TCR and 

so provides a measure for surface expression of different TCR families on T cells. Thus, this 

approach, using flow cytometry, allows simultaneous measurements of Vβ-expressing CD4+ 

and CD8+ T cells.  

 

3.2  MATERIALS AND METHODS 

3.2.1   Study cohort  

TCR repertoire changes were investigated in three patient cohorts: 26 HIV-1 infected, 27 HIV-

1 and TB co-infected, 16 TB infected patients and 7 healthy controls. The TB and HIV/TB co-

infected groups were followed longitudinally while on anti-TB therapy for a period of 6 

months and samples were obtained at baseline (pre-treatment), 2 weeks, 8 weeks and 6 months 

(as described in section 2.2.1). 
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3.2.2  Whole blood staining and flow cytometric analysis  

Whole blood (100µl) and different volumes of monoclonal antibodies (Table 3.1) for 

CD3+CD4/8+CD38+Vβ+ T cells ranging from 0.5 to 10µl were added to 5ml FACS 

polypropylene tubes and incubated in the dark at room temperature for 30 minutes. Red blood 

cells were lysed with 2ml BD 1x FACS Lysing solution. Cells were then washed by 

centrifugation at 1200rpm with 3ml of wash solution (see description on Appendix 1A) and 

fixed with 300µl of cell fixer (see description on appendix 1A). A total of 50,000 cells were 

acquired on a Becton Dickinson FACSort using CellQuest software-version 1.1. List mode 

data was analysed using the same software by gating live-lymphocytes on the FSC/SSC 

parameter followed by gating of specific T cell populations. The gating strategy is shown on 

Figure 3.1. Gating of CD3+CD8+ T cells (R1) and CD4+ T cells (CD3+CD8-) as R2 finally 

resulted in measurements of 1.99% of CD8-CD38+ (CD4+) T cells –expressing Vβ5.1 and 

2.73% of CD8+CD38+)-expressing Vβ5.1. As it was shown in Chapter 2, CD38 surface 

expression was used to assess which Vβ TCR were used by activated T cells. Panels for 

analysis of Vβ1, Vβ2, Vβ6.7, Vβ9, Vβ18 were excluded for analysis of activated T cells for 

all cohort groups due to unavailability of relevant monoclonal antibodies/fluorochrome 

combinations. 

 

3.2.3  Interpretation of the TCR results 

T cell receptor usage was classified using arbitrary definitions of minor and major T cell 

expansions, using the ratio of Vβ TCR expression in infected cohorts divided by those found 

in healthy controls. Minor expansions were defined as those Vβ-expressing T cells with 

greater than two–fold but less than ten-fold higher than frequencies observed in healthy 
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controls. Major expansions were those that were ten-fold and higher than frequencies found in 

healthy controls. Thus, major expansions were considered those where Vβ TCR+ T cells had a 

ratio of ≥10.  Oligoclonal expansion of T cells, reflecting a restricted use of the T cell 

repertoire and polyclonal expansion of T cells, reflecting diverse Vβ TCR usage, were defined 

as multiple minor and major expansions respectively. Representative examples of polyclonal 

and oligoclonal expansions are shown on Figure 3.2. 

Table 3.1: List of Monoclonal antibodies used 

Tube APC PerCP PE FITC 
1 CD3 CD8 Vβ1 CD45RA*
2 CD3 CD8 Vβ2 CD45RA*
3 CD3 CD8 CD38 Vβ3.1 
4 CD3 CD8 CD38 Vβ5.1 
5 CD3 CD8 CD38 Vb5.2 
6 CD3 CD8 CD38 Vβ5.2/3 
7 CD3 CD8 CD38 Vβ6.7 
8 CD3 CD8 CD38 Vβ7 
9 CD3 CD8 CD38 Vβ8 
10 CD3 CD8 Vβ9 CD45RA*
11 CD3 CD8 CD38 Vβ11 
12 CD3 CD8 CD38 Vβ 12.1 
13 CD3 CD8 CD38 Vβ13.1/3 
14 CD3 CD8 CD38 Vβ13.6 
15 CD3 CD8 CD38 Vβ14 
16 CD3 CD8 CD38 Vβ16 
17 CD3 CD8 CD38 Vβ17 
18 CD3 CD8 Vβ18 CD45RA*
19 CD3 CD8 CD38 Vβ20 
20 CD3 CD8 CD38 Vβ21.3 
21 CD3 CD8 CD38 Vβ22 
22 CD3 CD8 Vβ23 CD45RA*

 

*CD45RA  was used in some four colour staining due to lack of availability of the relevant antibody 
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Figure 3.1: The gating strategy for Vbeta analysis by flow cytometry. Events (50,000) were acquired on the flow 

cytometer and the frequency of activated CD3+CD8-(CD4) and CD3+CD8+ T cells expressing Vbeta TCR were 

measured as illustrated, using a sequential gating strategy (R1+R2) as shown in this figure.        
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Figure 3.2: Representative examples of oligoclonal (major) and polyclonal (minor) expansions of activated 

CD8+ T cells for two HIV/TB co-infected individuals. (A) Major expansion of CD8+ T cells expressing Vβ23 

(shown by red circles) (B) polyclonal minor expansions of cells expressing Vβ5.2, Vβ7, Vβ22 and Vβ23 (shown 

by red circles).  

 

 

 

 

 

Oligoclonal expansion

0.0
2.0

4.0
6.0
8.0

10.0

12.0
14.0
16.0

18.0
20.0

Vb
3.

1

Vb
5.

1

Vb
5.

2

Vb
5.

2/
3

Vb
7

Vb
8

Vb
11

Vb
12

.1

Vb
13

.1
/3

Vb
13

.6

Vb
14

Vb
16

Vb
17

Vb
20

Vb
21

Vb
22

Vb
23

IM21

A

B

Polyclonal expansion

0
2
4

6
8

10
12
14

16
18

20

Vb
3.

1

Vb
5.

1

Vb
5.

2

Vb
5.

2/
3

Vb
7

Vb
8

Vb
11

Vb
12

.1

Vb
13

.1
/3

Vb
13

.6

Vb
14

Vb
16

Vb
17

Vb
20

Vb
21

Vb
22

Vb
23

IM34

Oligoclonal expansion

0.0
2.0

4.0
6.0
8.0

10.0

12.0
14.0
16.0

18.0
20.0

Vb
3.

1

Vb
5.

1

Vb
5.

2

Vb
5.

2/
3

Vb
7

Vb
8

Vb
11

Vb
12

.1

Vb
13

.1
/3

Vb
13

.6

Vb
14

Vb
16

Vb
17

Vb
20

Vb
21

Vb
22

Vb
23

IM21

A

B

Polyclonal expansion

0
2
4

6
8

10
12
14

16
18

20

Vb
3.

1

Vb
5.

1

Vb
5.

2

Vb
5.

2/
3

Vb
7

Vb
8

Vb
11

Vb
12

.1

Vb
13

.1
/3

Vb
13

.6

Vb
14

Vb
16

Vb
17

Vb
20

Vb
21

Vb
22

Vb
23

IM34

R
at

io
 o

f V
β

ex
pr

es
si

ng
 T

 c
el

ls
 

R
at

io
 o

f V
β

ex
pr

es
si

ng
 T

 c
el

ls
 



Chapter 3 

 74

3.3 RESULTS 

3.3.1     T cell receptor usage in HIV/TB dual infected individuals 

It has been demonstrated in previous chapters of this dissertation that CD8+ T cells are 

persistently activated during HIV-1 and TB co-infection, and predominantly due to HIV. In 

this chapter, the fine specific nature of T cell activation was investigated by examining TCR 

Vβ expansions in HIV and TB single and co-infected individuals. It was hypothesized that 

different Vβ TCR families are expanded in single and dually infected patients. The total T 

cells expressing 22 Vβ −ΤCR from 27 HIV/TB co-infected individuals were measured by flow 

cytometry as described in section 3.2.2. The ratio of Vβ expressing cells in HIV/TB dual 

infected patients versus healthy controls was calculated as described in section 3.2.3, and the 

results are shown in Tables 3.2 and 3.3 for CD4+ and CD8+ T cell subsets, respectively. The 

data shows for activated CD4+ T cells that there was polyclonal skewing (minor expansions) 

of activated CD4+ T cells in 14 of the 27 co-infected patients (52%), where there was major 

expansion of Vβ16 TCR using cells in two patients as shown on Figure 3.3. For CD8+ T cells, 

there was polyclonal skewing (minor expansions) of activated CD8+ T cells (Table 3.3) in 22 

of the 27 individuals analysed (82%), with oligoclonal expansions of Vβ11 and Vβ20 

observed in three individuals (Figure 3.4). Using Fisher’s Exact test, there was a significant 

difference (p=0.0418) in the frequency of polyclonal skewing, with a greater number of TCR 

being used by CD8+ than CD4+ T cells in dually infected individuals. In summary, multiple T 

cell receptors were used by CD8+ T cells rather than CD4+ T cells in individuals co-infected 

with HIV-1 and TB. 
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Table 3.2: Ratios of frequencies of Vβ-expressing CD4+ T cells  

 

TCR IM1 IM5 IM6 IM9 IM11 IM13 IM14 IM15 IM16 IM19 IM21 IM29 IM30 IM33 IM34 IM36 IM42 IM47 IM51 IM56 IM58 IM60 IM61 IM62 IM63 IM65 IM66
Vb3.1 1.3 0.3 1.1 0.4 0.9 0.3 2.3 1.4 2.0 0.8 2.4 0.2 0.4 0.3 0.2 0.3 0.5 0.2 0.5 1.5 0.4 0.1 0.2 0.7 0.6 0.2 1.2
Vb5.1 2.2 0.8 2.3 0.8 1.2 0.9 0.9 1.7 2.5 0.5 5.5 1.9 0.6 0.7 0.6 0.7 1.3 0.5 0.7 0.9 0.5 0.9 1.2 1.0 0.9 0.3 0.1
Vb5.2 0.0 2.0 1.0 1.1 1.0 1.9 2.6 2.1 1.6 0.8 1.9 0.8 0.5 1.0 0.0 0.4 1.0 0.7 0.5 0.5 0.7 1.1 0.7 0.7 0.3 0.0 7.2
Vb5.2/3 2.0 1.3 0.5 0.8 1.1 1.1 1.1 5.0 2.7 2.4 1.2 0.7 0.6 1.1 0.1 0.8 1.1 2.7 0.5 0.7 0.6 1.3 0.5 0.5 0.7 0.5 0.6
Vb7 2.7 1.0 0.5 0.9 1.2 1.1 0.6 0.7 0.7 0.9 0.8 0.5 0.6 0.6 0.0 0.9 0.3 0.6 0.3 0.7 0.8 0.8 1.0 0.6 0.9 0.4 1.0
Vb8 0.6 0.8 0.8 0.5 0.6 0.9 0.7 3.7 0.2 1.2 0.2 0.4 0.3 0.9 1.2 0.4 0.5 0.4 0.2 0.7 0.8 0.9 0.5 0.3 0.3 0.5 0.3
Vb11 2.0 1.2 1.0 0.4 0.2 1.1 0.3 1.5 1.4 0.4 3.5 0.2 0.0 0.3 0.0 0.9 0.4 0.3 0.4 0.3 0.4 0.7 0.1 0.7 0.3 0.0 0.5
Vb12.1 2.5 2.5 2.0 1.4 0.4 0.9 0.5 1.4 4.0 4.7 0.8 1.8 2.4 1.2 2.9 0.8 0.0 0.6 0.8 1.0 3.4 3.5 0.7 1.4 0.4 1.9 0.9
Vb13.1/3 0.9 1.1 1.2 0.7 0.7 1.0 0.4 1.0 1.1 1.4 0.8 0.3 0.2 0.7 0.0 0.7 0.8 0.8 0.9 0.8 0.9 1.1 0.6 1.1 0.8 0.2 0.2
Vb13.6 2.1 0.8 1.6 1.4 0.7 1.0 0.4 1.5 1.4 1.0 1.4 0.4 0.4 0.8 0.0 0.8 1.3 0.4 1.3 0.8 1.0 1.0 0.4 1.0 0.5 0.4 0.6
Vb14 1.2 0.8 1.2 1.3 0.1 0.9 0.1 0.8 0.9 0.5 1.9 0.6 0.0 0.2 3.4 0.4 0.3 0.1 0.5 0.6 0.0 0.4 0.5 1.4 0.0 0.5 0.5
Vb16 3.7 2.2 1.5 1.0 0.5 1.9 0.8 2.4 27.8 1.1 26.5 0.5 0.2 1.5 0.5 1.3 2.0 0.8 1.3 0.5 0.2 1.6 0.8 0.7 0.8 0.5 7.6
Vb17 1.4 0.8 0.3 0.8 0.7 0.8 0.4 1.2 0.9 0.4 2.4 0.4 0.2 0.8 0.5 0.7 0.9 0.5 1.0 0.9 0.5 1.0 0.8 0.8 0.6 0.6 0.1
Vb20 2.4 0.8 1.4 1.6 1.3 1.2 0.8 1.7 2.1 0.7 3.0 1.7 0.2 0.9 1.3 0.6 1.2 0.5 1.1 1.3 0.5 1.6 1.9 2.0 0.6 0.6 1.1
Vb21 2.6 0.7 0.9 1.4 0.8 0.9 0.7 1.6 2.3 1.0 2.3 2.5 0.4 0.9 0.0 1.1 1.1 0.4 0.5 0.7 0.6 1.1 0.6 0.9 0.8 0.4 0.0
Vb22 2.2 0.9 1.0 1.1 1.5 1.2 0.7 2.0 2.2 0.9 2.3 0.7 0.1 0.9 0.4 1.0 1.1 0.4 1.1 1.1 1.0 1.3 0.8 1.2 1.2 0.2 1.3  

TCR usage as shown by ratios of Vβ-expressing CD4+ T cell populations between HIV/TB co-infected individuals and healthy controls. The blue shaded 

squares are minor expansions and the yellow shaded ones are major expansions       
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Table 3.3: Ratios of frequencies of Vβ-expressing CD8+ T cells.  

TCR IM1 IM5 IM6 IM9 IM11 IM13 IM14 IM15 IM16 IM19 IM21 IM29 IM30 IM33 IM34 IM36 IM42 IM47 IM51 IM56 IM58 IM60 IM61 IM62 IM63 IM65 IM66
Vβ3.1 0.6 0.4 1.5 0.3 1.0 0.3 1.6 2.0 3.3 1.0 3.5 0.3 0.4 1.9 0.2 0.2 0.7 0.4 1.1 1.1 3.5 0.1 0.1 0.8 4.0 0.5 0.9
Vβ5.1 2.4 3.8 3.7 2.0 0.9 2.7 1.8 3.6 1.8 0.6 0.9 0.7 1.7 1.0 2.3 1.7 0.4 2.3 1.2 2.3 1.3 0.5 1.0 1.3 0.9 1.1 0.7
Vβ5.2 0.0 1.5 0.4 0.3 2.7 4.7 4.3 1.0 1.1 0.2 1.7 0.6 0.2 1.1 0.6 1.2 0.4 4.3 2.6 0.6 2.8 0.3 3.0 2.4 0.8 0.2 3.3
Vβ5.2/3 3.2 2.8 3.9 1.8 1.5 3.3 1.0 3.8 1.8 0.8 1.2 1.1 0.4 0.8 1.2 1.5 0.4 2.9 3.0 0.9 4.6 2.5 1.7 1.9 0.7 1.4 1.0
Vβ7 2.8 2.1 0.7 4.8 2.5 1.5 1.5 2.4 0.5 1.4 1.4 3.0 0.4 0.7 2.8 1.2 0.0 1.5 1.0 1.5 2.8 2.8 3.1 1.1 1.1 0.5 1.8
Vβ8 1.2 0.7 1.8 0.8 0.5 0.8 0.8 2.2 0.1 1.2 3.1 1.0 0.2 1.5 1.2 7.7 0.2 0.9 1.3 0.9 0.5 2.2 1.1 1.5 1.2 1.9 0.0
Vβ11 22.7 0.4 19.4 0.3 0.4 0.9 0.8 0.3 0.8 0.5 3.8 0.2 0.0 0.7 1.2 0.4 0.1 15.0 0.5 0.2 0.5 0.5 0.7 0.6 1.9 0.2 1.5
Vβ12.1 1.3 1.4 0.6 0.3 0.4 0.1 0.3 0.3 0.2 0.1 0.2 0.6 1.1 0.1 0.1 0.2 0.2 0.2 1.4 0.1 0.1 3.0 0.3 0.7 0.2 2.0 1.1
Vβ13.1/3 1.5 0.8 1.9 0.7 0.4 1.3 0.4 1.1 0.6 2.7 0.5 0.1 0.2 1.1 2.2 0.3 0.0 0.4 0.8 1.1 0.7 2.1 1.9 1.1 0.5 0.3 0.5
Vβ13.6 0.5 0.1 1.2 0.7 0.2 0.7 0.4 1.2 0.3 2.2 0.3 0.4 0.2 0.5 0.7 0.2 0.1 0.3 0.3 0.4 1.1 0.3 1.5 0.3 0.2 0.3 0.4
Vβ14 0.2 0.3 1.1 1.2 0.2 1.1 0.1 0.3 0.4 0.2 0.6 0.4 0.0 0.2 2.1 1.0 0.3 0.0 0.1 0.2 0.2 0.2 1.4 1.2 0.1 0.2 0.2
Vβ16 1.9 0.2 0.2 0.9 0.1 0.3 0.2 0.5 1.1 3.2 0.1 0.1 0.0 0.2 0.3 0.4 3.4 0.3 0.1 0.2 1.0 0.4 0.9 0.1 0.1 0.1 0.8
Vβ17 2.2 0.6 2.1 0.6 0.4 1.1 1.0 0.8 0.4 0.4 1.4 0.3 0.3 1.8 2.2 0.6 1.6 1.4 0.7 2.6 0.5 0.9 0.9 3.4 0.6 0.4 0.1
Vβ20 13.2 1.2 2.3 1.2 1.0 3.2 1.0 0.4 1.6 0.4 1.9 1.8 0.3 0.6 3.1 0.8 0.3 1.6 0.8 1.8 0.2 0.3 2.8 0.9 0.4 0.5 1.4
Vβ21 3.1 0.4 1.0 1.3 1.8 3.3 2.4 5.4 1.1 0.8 1.6 2.3 0.4 2.5 3.5 0.9 0.5 1.3 0.4 4.4 0.7 4.4 1.5 3.3 0.6 0.9 0.0
Vβ22 0.8 1.9 4.0 0.9 1.3 2.5 0.9 3.2 3.8 0.7 3.1 0.6 0.1 1.3 1.2 3.7 0.6 1.4 1.0 1.6 1.2 1.1 2.5 0.4 0.8 0.2 1.8
 

TCR usage as shown by ratios of Vβ-expressing CD8+ T cell populations between HIV/TB co-infected individuals and healthy controls. The blue shaded 

squares are minor expansions and the yellow shaded ones are major expansions. 
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Figure 3.3:  TCR usage of CD4+ T cells in 27 HIV/TB dually infected individuals. Major oligoclonal 

expansion of CD4+ T cells expressing Vβ16 in two HIV/TB infected individuals (IM16 and M21) is observed, 

as well as minor expansions in fourteen individuals. The horizontal blue line at the ratio of 2 indicates the cutoff 

for minor expansions and the red line at 10.0 indicates the cutoff for major expansions.   

  

 

 

 

 

 

 

 

 

Figure 3.4: TCR usage of CD8+ T cells in 27 HIV/TB dually infected individuals. Major oligoclonal expansion 

of CD8+ T cells expressing Vβ11and Vβ20 in three HIV/TB infected individuals (IM1, IM6 and IM47), as well 

as minor expansions in twenty-two individuals. The horizontal blue line at the ratio of 2 indicates the cutoff for 

minor expansions and the red line at 10.0 indicates the cutoff for major expansions.  
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3.3.2     T cell receptor usage in HIV-1 single infected individuals 

Minor expansions of activated CD4+ T cells were observed in sixteen of the 26 

individuals (62%), as shown in Table 3.4. None of the patients showed oligoclonal 

expansion of activated CD4+ T cells (Figure 3.5). As shown in Table 3.5, minor 

expansions of activated CD8+ T cells were observed in 20 of the 26 individuals (77%). 

There was oligoclonal skewing of CD8+ T cells expressing Vβ11 and Vβ22 in 3 patients 

(Figure 3.6). In summary, as observed in HIV/TB infected individuals, usage of multiple 

TCRs (polyclonal skewing) by CD8+ T cells rather than CD4+ T cells was observed in 

HIV-single infection, although this was not significant (p=0.37).        

 

 

 

 

 

 

 

 

 

Figure 3.5: TCR usage of CD4+ T cells in 26 HIV-1 singly infected individuals. Expansions of CD4+ T 

cells-expressing Vβ3.1, Vβ5.1, Vβ5.2, Vβ5.2/3, Vβ8, Vβ11, Vβ12.1, Vβ14, Vβ14, Vβ21 and Vβ22 were 

observed in sixteen individuals. The horizontal blue line at the ratio of 2 indicates the cutoff for minor 

expansions and the red line at 10.0 indicates the cutoff for major expansions. The horizontal line at the ratio 

of 2.0 indicates the cutoff for minor expansions.  
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Table 3.4: Ratios of frequencies of Vβ-expressing CD4+ T cells.  

TCR 67 68 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
Vb3.1 0.1 1.4 2.5 2.0 0.4 0.1 0.7 0.1 0.3 0.0 0.1 0.1 0.4 1.3 0.4 0.1 0.3 0.2 0.8 0.1 0.2 0.4 1.0 1.1 0.9 0.2
Vb5.1 0.6 0.5 0.5 0.9 0.6 0.4 0.8 0.4 0.7 0.5 0.3 0.4 0.9 0.6 0.7 0.6 1.2 0.8 1.0 1.4 0.6 1.1 1.2 0.0 0.9 3.2
Vb5.2 0.6 1.5 0.5 0.9 0.4 1.1 0.0 0.2 8.1 0.9 0.3 1.0 1.3 2.3 0.5 0.5 1.3 0.7 2.4 1.6 0.6 2.0 2.3 9.4 1.6 3.2
Vb5.2/3 0.4 0.7 0.4 0.9 0.6 0.6 3.3 2.0 0.7 0.9 0.3 1.3 0.6 0.7 0.7 0.5 0.9 0.4 1.5 2.5 2.0 1.5 0.9 4.4 1.0 1.4
Vb7 0.5 0.8 0.2 1.1 0.9 0.7 0.3 0.3 1.8 0.4 0.3 0.6 1.3 0.4 0.3 0.4 1.6 0.8 1.3 2.7 0.1 1.4 1.1 1.7 1.7 1.5
Vb8 0.5 0.4 0.4 0.8 0.4 0.4 1.2 0.4 0.7 0.4 0.4 0.2 1.2 0.8 1.0 0.9 1.1 0.7 1.2 0.8 0.4 1.2 1.0 2.6 2.7 0.7
Vb11 0.8 0.5 0.4 0.7 0.8 0.5 0.6 0.3 0.2 0.5 0.3 0.0 1.7 1.0 0.3 2.0 0.9 0.5 1.5 3.2 0.7 2.1 0.8 3.1 1.0 5.5
Vb12.1 0.6 1.0 0.9 1.3 1.2 0.8 1.4 0.4 2.9 1.0 0.5 0.6 1.1 0.8 0.7 0.3 0.9 0.7 1.4 3.9 0.3 1.4 0.6 1.8 0.5 0.6
Vb13.1/3 0.3 0.3 0.3 0.5 0.4 0.3 0.3 0.3 0.9 0.3 0.4 0.3 0.5 0.4 0.4 0.5 0.8 0.6 0.6 1.1 0.8 0.7 0.5 1.3 0.4 0.3
Vb13.6 0.5 0.7 0.7 1.0 0.8 0.7 0.8 0.5 0.8 0.4 0.4 0.7 0.6 0.3 0.4 0.7 0.8 0.8 1.7 2.5 0.7 1.8 0.7 1.7 0.8 2.1
Vb14 2.2 0.4 0.4 0.4 0.9 0.4 0.4 0.2 0.3 0.1 0.3 0.3 1.7 1.2 1.3 0.6 0.7 0.5 2.7 2.1 0.9 1.3 6.9 1.8 1.7 2.7
Vb16 4.2 0.5 0.7 2.0 0.6 0.8 0.7 0.6 0.8 0.7 0.8 0.0 0.2 1.5 0.7 1.1 1.1 1.3 5.9 5.7 2.3 2.7 2.2 3.2 4.5 6.9
Vb17 0.4 0.6 1.4 0.9 0.0 0.7 0.7 0.3 0.7 0.5 0.7 0.7 0.7 0.6 0.8 0.8 0.8 0.1 1.1 1.2 0.4 1.0 1.8 1.0 0.6 1.1
Vb20 0.6 1.1 0.5 1.5 1.0 0.6 1.1 0.6 0.9 0.1 0.5 0.7 1.0 0.8 0.7 1.0 0.8 0.5 2.7 2.2 1.2 2.6 1.5 1.7 0.6 1.5
Vb21 0.8 0.9 0.3 0.5 0.6 0.7 0.9 0.6 0.6 0.4 0.9 0.4 2.2 0.5 0.3 0.7 0.7 0.6 2.2 2.4 0.8 1.5 1.4 2.1 0.9 2.0
Vb22 0.8 1.1 0.6 1.1 1.1 0.5 0.6 0.7 1.6 0.4 0.6 0.7 1.5 0.6 1.1 0.8 1.8 1.5 1.7 3.2 0.8 1.5 4.0 3.0 1.4 1.8  

 

TCR usage as shown by ratios of Vβ-expressing CD4+ T cell populations between 26 HIV infected individuals and healthy controls. The blue shaded 

squares are minor expansions.  
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Table 3.5: Ratios of frequencies of Vβ-expressing CD8+ T cells.  

TCR IM67 IM68 IM70 IM71 IM72 IM73 IM74 IM75 IM76 IM77 IM78 IM79 IM80 IM81 IM82 IM83 IM84 IM85 IM86 IM87 IM88 IM89 IM90 IM91 IM92 IM93
Vb3.1 0.0 1.5 0.8 1.1 0.3 0.0 1.3 0.0 0.3 0.1 0.0 0.2 0.2 1.2 0.2 0.0 0.2 0.0 0.3 0.0 0.2 0.2 1.6 0.6 1.1 0.1
Vb5.1 1.7 2.0 0.7 1.1 1.2 0.5 3.5 1.5 0.6 2.6 1.3 3.7 1.6 1.2 1.4 1.4 1.8 1.1 0.6 2.0 0.6 1.2 2.3 3.5 1.6 2.1
Vb5.2 0.3 1.2 0.7 0.5 0.6 0.1 1.7 1.9 1.1 0.4 0.8 0.4 1.0 3.3 0.1 0.4 0.3 1.4 4.3 0.6 0.4 0.9 7.4 0.4 1.0
Vb5.2/3 0.8 0.8 5.5 1.1 1.1 0.4 1.8 1.0 1.8 1.9 1.2 2.2 2.0 1.0 1.4 0.7 2.1 1.4 0.5 1.3 1.6 1.0 1.1 3.0 1.1 2.5
Vb7 1.5 1.3 0.1 1.1 4.3 0.6 0.4 0.6 9.2 1.0 0.2 1.3 1.9 0.5 1.4 1.5 1.2 0.9 2.2 2.2 0.0 0.9 1.2 6.6 0.9 6.4
Vb8 0.7 0.8 0.5 0.5 3.8 0.1 0.9 1.0 1.0 0.7 0.2 0.3 0.9 0.7 0.7 0.2 0.3 0.1 0.2 0.6 0.3 0.6 1.3 1.2 1.4 1.7
Vb11 1.3 0.7 0.3 0.3 0.4 0.3 1.1 0.2 0.2 0.6 0.1 0.1 1.2 1.6 0.6 3.4 2.4 1.7 0.7 3.3 0.7 2.1 11.7 2.1 0.6 2.2
Vb12.1 0.4 0.3 0.6 0.8 0.6 0.2 0.8 0.1 0.9 4.3 0.0 0.1 0.1 0.3 0.3 0.0 0.1 0.1 0.1 0.7 0.0 0.3 0.4 0.4 0.2 0.1
Vb13.1/3 0.4 0.3 0.1 0.2 0.4 0.1 0.0 0.1 0.8 0.1 0.2 0.7 0.3 0.4 0.3 0.4 0.8 0.3 0.1 0.8 0.1 0.4 0.2 0.3 0.2 0.1
Vb13.6 0.4 1.0 0.1 0.3 1.1 0.1 0.7 0.1 1.0 0.1 0.1 1.8 0.8 0.6 0.3 0.3 0.4 0.9 0.7 2.2 0.4 0.6 0.5 0.4 0.4 0.4
Vb14 0.7 0.3 4.3 0.1 0.1 0.0 0.6 0.1 0.2 0.2 0.1 0.1 1.9 3.5 1.5 0.2 0.3 0.8 1.0 1.6 1.7 1.1 8.1 2.0 0.8 1.7
Vb16 0.1 0.2 0.3 0.1 0.2 0.3 2.1 0.2 0.5 0.3 0.3 2.2 0.7 0.3 0.2 0.1 0.1 0.4 0.1 0.9 0.7 0.4 0.2 1.3 0.7 0.3
Vb17 1.2 0.8 1.3 0.5 0.0 0.1 3.5 0.9 0.9 0.8 0.2 1.4 0.8 1.4 1.5 0.2 0.5 0.9 1.8 0.8 0.5 0.6 1.6 0.9 0.9 1.4
Vb20 3.6 1.0 1.0 1.4 0.5 0.4 3.9 1.3 0.4 0.2 0.4 0.1 1.6 1.0 0.9 0.6 1.3 1.0 0.4 1.3 0.7 1.2 5.6 1.1 0.7 1.2
Vb21 1.3 1.0 0.6 0.4 1.6 1.0 1.8 0.5 0.3 0.7 2.0 1.0 1.2 1.7 1.1 0.8 0.9 2.2 0.5 1.5 0.7 1.1 3.0 2.1 0.6 1.4
Vb22 1.8 0.6 0.6 0.9 0.7 0.1 0.5 0.3 2.5 1.0 1.4 0.7 2.8 1.6 2.2 0.5 2.5 3.1 1.0 7.9 1.8 10.1 2.7 2.8 1.5 16.5  

TCR usage as shown by ratios of Vβ-expressing CD8+ T cell populations between 26 HIV infected individuals and healthy controls. The blue shaded squares 
are minor expansions and the yellow shaded ones are major expansions. 
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Figure 3.6: TCR usage of CD8+ T cells in 26 HIV-1 singly infected individuals. Major expansions of 

CD4+ T cells expressing Vβ11 and Vβ22 in two HIV/TB infected individuals (IM90 and IM91) were 

observed, as well as minor expansions in fourteen individuals. The horizontal blue line at the ratio of 2 

indicates the cutoff for minor expansions and the red line at 10.0 indicates the cutoff for major expansions.   

 

3.3.3     T cell receptor usage in TB singly infected individuals 

Minor expansions of Vβ3.1, Vβ5.2, Vβ7, Vβ11, Vβ13.1/3 and Vβ22-expressing CD4+ T 

cells were observed in 6 of the 16 TB infected individuals (Table 3.6 and Figure 3.7). As 

shown in Table 3.7, minor expansions of Vβ3.1, Vβ5.1, Vβ5.2, Vβ5.2/3, Vβ7, Vβ8, 

Vβ11, Vβ13.1/3, Vβ16, Vβ17, Vβ20, Vβ21 and Vβ22 were observed in activated CD8+ 

T cells in 15 of the 16 individuals (94%), with no oligoclonal expansions (Figure 3.8). 

The frequencies of individuals showing polyclonal skewing in the CD8+ T cell 

compartment was significantly (p=0.0021) different from skewing found in the CD4+ T 

cell population. 
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Table 3.6: Ratios of frequencies of Vβ-expressing CD4+ T cells.  

TCR IM3 IM4 IM7 IM10 IM12 IM22 IM23 IM26 IM32 IM35 IM40 IM41 IM45 IM46 IM57 IM59
Vb3.1 0.2 0.1 0.2 0.2 0.7 0.4 0.7 2.5 0.3 0.3 0.4 0.1 0.3 0.2 0.7 0.1
Vb5.1 0.5 0.8 0.6 0.9 0.8 0.7 0.6 0.5 1.0 1.0 0.9 0.9 0.7 0.7 0.6 0.6
Vb5.2 0.0 0.4 0.6 1.8 0.7 0.8 4.9 1.4 0.4 0.3 0.6 0.4 0.4 0.5 0.6 0.6
Vb5.2/3 0.3 0.5 0.2 1.3 0.8 0.9 1.2 1.7 0.2 0.5 0.6 0.6 0.4 0.5 0.7 0.5
Vb7 0.5 1.1 0.5 1.4 0.8 0.6 0.4 2.3 0.4 0.3 0.6 1.2 0.8 0.3 0.5 0.2
Vb8 0.2 0.2 0.3 0.7 0.8 0.7 0.8 0.7 0.6 0.2 0.3 0.2 0.3 0.4 0.9 0.4
Vb11 0.4 0.5 0.4 0.7 0.9 0.3 0.3 0.2 0.5 0.3 0.6 0.4 0.3 2.1 0.5 0.6
Vb12.1 0.5 1.2 0.7 0.6 1.1 0.5 1.7 0.8 0.4 0.7 0.8 0.8 1.0 1.6 0.5 0.6
Vb13.1/3 0.5 1.2 0.6 0.8 0.9 3.3 1.1 0.8 0.6 0.5 0.7 1.0 0.8 0.7 0.4 3.8
Vb13.6 0.6 1.0 0.5 0.6 0.6 0.5 0.8 1.0 0.7 0.7 0.9 0.9 0.8 0.7 0.6 0.5
Vb14 0.4 0.3 0.2 0.4 0.9 0.4 0.4 0.5 0.6 0.3 0.3 0.3 0.3 0.3 0.4 0.4
Vb16 0.8 0.6 0.5 1.3 0.7 0.9 0.8 0.9 1.3 1.0 0.9 1.0 0.9 0.6 0.8 0.9
Vb17 0.6 0.8 0.4 1.0 0.8 0.6 0.7 1.1 0.9 0.5 0.6 0.8 0.9 0.7 0.7 0.6
Vb20 0.5 1.1 0.5 1.3 1.0 0.7 1.3 0.1 0.6 0.3 0.8 0.9 1.3 0.5 0.7 0.7
Vb21 0.7 1.1 0.6 0.8 0.9 0.6 1.0 1.5 0.7 0.5 1.8 0.7 0.7 0.8 0.7 0.4
Vb22 1.2 2.4 1.1 1.1 1.1 1.1 1.2 1.3 0.8 1.4 1.4 1.5 1.5 1.1 0.7 0.6  

TCR usage as shown by ratios of Vβ-expressing CD8+ T cell populations between 16 TB infected 

individuals and healthy controls. The blue shaded squares are minor expansions. 

 

 

 

 

 

 

 

 

 

Figure 3.7: TCR usage of CD4+ T cells in 16 TB singly infected individuals. Expansions of CD4+ T cells-

expressing Vβ3.1, Vβ5.2, Vβ7, Vβ11, Vβ13.1/3 and Vβ22 were observed in sixteen individuals. The 

horizontal line at the ratio of 2 indicates the cutoff for minor expansions and the red line at 10.0 indicates 

the cutoff for major expansions.  
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Table 3.7: Ratios of frequencies of Vβ-expressing CD8+ T cells.  

TCR IM3 IM4 IM7 IM10 IM12 IM22 IM23 IM26 IM32 IM35 IM40 IM41 IM45 IM46 IM57 IM59
Vb3.1 0.6 0.3 2.0 0.1 1.8 1.4 0.5 0.6 0.1 0.2 0.6 0.0 0.2 0.2 1.0 0.2
Vb5.1 1.6 1.8 1.2 0.4 1.4 0.4 0.3 2.0 0.8 0.7 2.0 1.1 0.6 0.9 0.9 2.3

Vb5.2 0.0 1.3 2.7 0.4 0.5 0.5 2.3 0.9 0.8 0.5 0.0 1.1 0.3 2.0 0.7 1.1
Vb5.2/3 1.0 0.9 1.8 3.2 0.4 1.7 0.4 0.7 2.1 1.3 1.0 0.8 1.6 0.6 2.5 0.8
Vb7 4.4 0.5 0.8 0.7 0.5 0.6 0.2 1.0 0.2 0.8 1.8 1.9 1.7 0.1 0.3 0.5

Vb8 1.2 2.6 1.9 0.4 0.9 0.3 0.6 0.7 0.5 0.7 1.4 0.9 1.1 1.0 0.9 1.2
Vb11 0.6 1.5 0.9 0.9 1.6 0.2 0.5 0.5 0.3 0.2 1.7 0.5 0.1 8.5 1.1 1.4

Vb12.1 0.2 0.3 0.2 0.2 0.1 0.7 0.2 1.4 0.2 0.0 1.8 0.0 0.0 0.0 0.2 0.4
Vb13.1/3 0.6 1.1 1.8 5.3 0.7 0.6 0.5 0.7 0.2 0.5 1.2 0.9 2.0 0.4 0.3 2.3

Vb13.6 0.4 0.5 0.6 0.1 0.3 0.1 0.1 0.4 0.1 0.7 0.9 0.3 0.2 0.2 0.2 0.3
Vb14 0.1 0.5 0.5 0.5 0.1 0.1 0.1 0.2 0.2 0.6 0.9 0.3 0.2 0.1 0.3 1.0

Vb16 0.2 0.2 0.2 0.2 0.3 0.3 0.1 0.2 3.2 2.0 0.3 0.7 1.9 0.2 0.3 0.2
Vb17 0.5 1.0 0.6 2.0 0.6 0.8 0.8 0.8 1.3 2.1 1.9 4.5 0.9 0.4 0.5 1.2
Vb20 0.5 2.7 7.5 0.5 1.2 0.4 1.4 0.6 0.7 1.6 1.5 0.9 1.1 0.6 0.9 0.9

Vb21 0.8 1.8 1.0 0.5 1.5 0.6 1.6 0.7 0.5 0.8 3.7 0.7 2.6 0.7 0.5 0.6

Vb22 1.1 3.8 1.7 0.6 2.2 0.5 1.6 1.3 0.4 2.7 1.9 0.9 0.5 1.3 0.6 0.9  

TCR usage as shown by ratios of Vβ-expressing CD8+ T cell populations between 16 TB infected 

individuals and healthy controls. The blue shaded squares are minor expansions.  

 

 

 

 

 

 

 

 

 

 

Figure 3.8: TCR usage of CD8+ T cells in 16 TB singly infected individuals. Minor expansions of CD8+ T 

cells-expressing Vb3.1, Vβ5.1, Vβ5.2, Vβ5.2/3, Vβ7, Vβ8, Vβ11, Vβ13.1/3, Vβ16, Vβ17, Vβ21 and Vβ22 

were observed in sixteen individuals. The horizontal line at the ratio of 2 indicates the cutoff for minor 

expansions and the line at 10.0 indicates the cutoff for major expansions.  
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3.4   DISCUSSION 

Viral and bacterial antigens evoke T cell immunity which results in activation, 

proliferation and expansion of T cells bearing specific TCR (Fujiwara et al., 2005; Jordan 

et al., 2006; Jassoy et al., 1993). Findings in this dissertation have demonstrated elevated 

absolute CD8+ T cell counts and enhanced activation of CD8+ T cells in HIV-1 and 

HIV/TB co-infected patients, which were associated with expansions of CD8+ T cells 

expressing various Vβ T cell receptors as seen in this chapter. It has also been shown that 

multiple TCR, as measured by polyclonal skewing, were significantly used by CD8+ T 

cells rather than CD4+ T cells in two groups: HIV/TB co-infected and HIV-1 single 

infected. No significant skewing in either CD4+ or CD8+ TCR usage was observed in TB 

single infection. These data would suggest that a) either CD8+ T cells play an active role 

in the immune response to HIV with or without TB co-infection or b) that expanded 

CD4+ T cells reside elsewhere rather than in the peripheral circulation. It has been 

previously reported in HIV infection that expanded circulating CD8+Vβ+ T cells 

mediates HIV-specific cytotoxicity (Pantaleo et al., 1994). 

 

Previous reports have determined the existence of skewing/perturbations of the T cell 

repertoire in HIV infected children and adults using flow cytometry (McFarland et al., 

2002;, Halapi et al., 1996; Piltch et al., 2000; Soudeyns et al., 2002; Dalgleish et al., 

2002), and considerable oligoclonality of CD8+ T cells have been shown to occur and 

that they persist frequently due to antigen stimulation by persistent viruses (Wilson et al., 

1998). In agreement with these findings, oligoclonal expansions of Vβ11, Vβ20, and 

Vβ22 were observed in HIV-1 infected individuals as well as in dual infection with HIV 
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and TB. Although a more quantitative approach to this analysis was applied, limited TCR 

usage observed in HIV-1 single infection in this study may indicate a more focused 

recognition of HIV-1 epitopes. A more refined analysis of limited TCR repertoire in 

HIV-1 infection has been shown (Kalams et al., 1994), where these authors observed that 

a high degree of HIV-1 specific CTL activity may be due to oligoclonal expansion of 

specific effector cells and that this limited TCR diversity against immunodominant 

epitopes may limit recognition of mutated viral variants in regions interacting with the 

TCR and therefore allow productive viral infection.    

 

Although there were significant minor expansions of various TCR usage on CD8+ T cells 

within groups, there was no evidence of a common pattern of TCR usage between 

individuals in the same cohort group in this study. This may not be surprising as multiple 

epitopes would be restricted by the various HLA types present in these cohorts, although 

these possibilities were not measured. However, oligoclonal expansion of Vβ11 TCR 

families was observed in 3 HIV/TB infected patients and Vβ22 TCR families in 2 HIV-1 

infected individuals..  

 

Analysis of the T cell repertoire has been performed extensively in HIV-1 infected 

individuals, but there is little data on the same type of analysis in patients singly or dually 

infected with TB. This dissertation has determined that CD8+ TCR Vβ+ T cell 

perturbations in the presence of single and dual infection with TB and HIV-1 are 

significantly more frequent than CD4+ TCR Vβ+ usage and that TB likely result in 

expanded peripheral blood circulating CD8+ T cell clones.
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CHAPTER 4 

THE T CELL RECEPTOR (TCR) REPERTOIRE IN 

HIV-1 UNINFECTED NEONATES BORN TO HIV-1 

INFECTED MOTHERS 
 

4.1 INTRODUCTION   

In the previous chapter this dissertation explored TCR usage by CD8+ T cells using flow 

cytometry in adults infected with HIV and TB. This chapter investigates the TCR 

repertoire in another cohort of HIV-1 exposed uninfected infants to assess TCR usage 

without infection. Paediatric HIV-1 infection is largely acquired via transmission from 

the HIV-1 infected mother and there is a high probability that infants born to HIV 

infected mothers have been exposed to HIV and antigens in-utero. This has been shown 

through several studies as indicated by immune activation (Kuhn et al., 2002; Clerici et 

al. 2000), HIV–positive PCR (Vazquez et al., 2006; De Andreis et al., 1996) and the 

presence of HIV-specific CD4+ and CD8+ T cell responses (Legrand et al., 2006; Kuhn 

et al., 2001).  

 

It has been reported that children, even during the first year of life, are able to mount 

functional immune responses as indicated by flow cytometry (ICS) and the IFN-γ 

ELISPOT assay (Feeney et al., 2005; Legrand et al., 2006; Kuhn et al., 2001). Previous 

studies have demonstrated transient TCRVβ –expansions of CD8+ T cells in HIV-1 

infected children and infants (Halapi et al., 1996; Silvestri et al., 1996) and at lower 
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levels in uninfected children born to HIV-1 infected mothers (Soudeyns et al., 2000). 

Apart from measuring the TCR using a repertoire of monoclonal antibodies, the 

repertoire can also be analyzed based on CDR3 length variations within Vβ gene 

families, a method referred to as the TCR immunoscope (Pannetier et al., 1995, Pilch et 

al., 2000). The immunoscope technique was used in this dissertation to a) assess the 

maturity of the TCR repertoire in newborn infants and b) show evidence of TCR 

engagement in-utero by analysing cord blood mononuclear cells (CBMC) isolated at birth 

from babies born to HIV-1 infected mothers. It was hypothesized that TCR repertoire 

skewing is a marker of T cell priming in-utero as a result of exposure to HIV-1-specific 

antigens from the mother.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Study cohort 

The cohort used in this dissertation was recruited from Coronation Women and 

Children’s Hospital in Johannesburg. Peripheral blood and cord blood samples were 

obtained from 20 HIV-1 infected mothers. The mother and cord/baby samples were 

analyzed as pairs. The mothers received a single dose of Nevirapine at birth. Twenty-five 

HIV-1 uninfected babies and 10 uninfected mothers were included in this cohort as 

negative controls. The HIV status of the mothers was determined by ELISA. For the 

babies, heel prick blood samples were deposited onto Whatman filter paper as dried 

blood spots and used for the detection of HIV-1 by polymerase chain reaction (PCR).  In 

order to establish existence of other common congenital infections, ELISA assays were 
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performed for detection of Syphilis, Toxoplasma, Rubella and Cytomegalovirus on both 

mothers and babies.  

4.2.2 Immunoscope experimental procedure 

RNA was extracted from cryopreserved cord blood mononuclear cells (CBMC) (see 

4.2.3). cDNA was synthesized (see 4.2.4) and amplified by PCR (see 4.2.5) using primers 

for each of the 23 Vβ families (list is shown in Appendix 3).  Amplification was enabled 

by labelling the 3’ end of the TCR gene with a Cβ (constant region) primer and the 5’ end 

was labelled with a specific Vβ primer (Inqaba Biotechnical Industries, Hatfield, South 

Africa). A schematic diagram of a TCR gene with three different regions is shown on 

Figure 1.8 (chapter 1), which is amplified and analysed to obtain fragments of various Vβ 

genes. The PCR products were processed in a run-off PCR reaction using a fluorochrome 

labelled (blue 6-FAM) primer, purified using DyeEx resin columns and acquired on the 

ABI sequencer. Fragment sizes and peak heights were then analysed using Applied 

Biosystems Genemapper software. Figure 4.1 shows the experimental design of the 

immunoscope procedure. 
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Figure 4.1: The immunoscope experimental design 

 

4.2.3  RNA extraction 

Cord and peripheral blood was collected in ACD-anticoagulated tubes and mononuclear 

cells were isolated using the standard Ficoll Hypaque method (AEC Amersham) and 

stored in liquid nitrogen. When required, cells were quick-thawed in a waterbath at 37oC 

and using a sterile 1ml pipette, the cells were transferred to a sterile 5ml snap-cap tube. 

An aliquot of 20µl of the cell suspension was removed and counted using trypan blue 

exclusion using the haemocytometer. The cells were then centrifuged at 1400 rpm for 10 

CBMC

RNA Extraction 

cDNA

PCR - 23 Vβ genes

PCR –runoff reaction with 6-FAM primer

Sequencing (fragment sizing)
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minutes. The supernatant was decanted and the cells were suspended in 1ml of Trizol 

(Invitrogen Life Technologies) lysis reagent which lysed the cells and enabled mRNA to 

be isolated. The RNA suspension was then transferred into 1.5 microfuge tubes. RNA 

was either extracted directly or Trizol suspensions were stored at –80oC for batch 

isolation. Chloroform isoamyl alcohol (200µl)(Sigma-Aldrich) was added to the RNA 

suspension, incubated for 15 minutes at room temperature after vigorous shaking for 10 

seconds and centrifuged at 12000 rpm for 15 minutes. Isopropanol (500µl) was added, 

followed by gentle vortexing and incubated for 10 minutes at room temperature. The 

tubes were centrifuged at 12000 rpm for 10 minutes in the cold room (4oC). Ethanol 

(1ml) was added and the tubes were centrifuged at 15000 rpm for 3 minutes. The RNA 

pellet was suspended in 20µl of sterile diethylpyrocarbonate (DEPC)-treated water and 

incubated at 56oC for 10 minutes. RNA (1µl) was diluted 1/100 in DEPC water and 

optical density (OD) readings were performed on a spectrophotometer (WPA Lightwave, 

Labotec) and the RNA concentrations were calculated to make a final concentration of 

1µg/µl using the following formula:  

 

RNA concentration = A260 x dilution (100) x 40 x volume  

 

The RNA was then stored at –80oC until ready to synthesize cDNA. The purity of RNA 

was visualized by loading a fraction of RNA on a 1% agarose gel, and examined for 

sharp 28S and 18S bands (Preparation of RNA gel is shown in Appendix 2). 

 

 



Chapter 4 
 

91 

 

4.2.4  cDNA synthesis     

RNA (10µl) at an optimal concentration of 1µg/µl was added to 0.6 ml microfuge tubes 

(Eppendorf) after thawing on ice. 10mM dNTP (2µl 10mM) (Roche Diagnostics, South 

Africa) and Oligo-dT (2µl) was added and incubated at 70oC for 10minutes and placed on 

ice for > 1 minute and centrifuged for 5-10 seconds. RT buffer (4µl) (Roche), RNAse 

inhibitor (1µl) and AMV-RT (1µl) were added and incubated for 1 hour at 42oC. The 

mixture was then placed on ice for > 1 minute and spun for 5-10 seconds. cDNA samples 

were subsequently stored at –20oC until they were used in the PCR. 

 

4.2.5 Polymerase Chain Reaction ( PCR) 

A set of primers (5µl, 2.5mM) corresponding to each Vβ family were added to each of 24 

tubes per sample. Details of the PCR mix used are given in Appendix 4 and 20µl was 

distributed, along with each primer, into each of the tubes plus a positive cell control 

(Jurkat cell line known to express VB8, supplied by Highveld Biological, South Africa) 

and a positive cDNA control (GAP-DH, Roche). The tubes were then placed on a 

thermocycler (GeneAmp PCR System 9700, Applied Biosystems) and the mixture was 

subjected to 40 cycles of denaturation for 25 seconds at 94oC, annealing for 45 seconds at 

60oC and elongation for 45 seconds at 72oC with a extended final elongation step of 5 

minutes at 72oC. Products were visualized on a 2% agarose gel (Sigma-Aldrich) in 10X 

TBE using Ethidium Bromide (Sigma-Aldrich) staining before using 2µl of the amplified 

product for a run-off reaction with the 6 Fam labeled HuβC2  primer. Preparations of 

10X TBE, agarose gel and gel loading buffer are shown on Appendix 5. The gel was then 
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run at 230 volts using the power pack and photographed on a UVP-White/UV 

transilluminator (Vacutec, South Africa). Figure 4.2 shows a photograph of a gel for 23 

Vβ products, including the Jurkat cell line as a positive control. Final DNA products 

appear as single white bands. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: DNA gel showing the molecular weight (MW) control marker, 23 Vβ genes and a Jurkat cell 

line as a positive control. cDNA for each of  the 23 Vβ T cell receptor genes was amplified and the PCR 

products were run on 2% agarose gel. The bands appearing on top are showing PCR products for Vβ1, 

Vβ2, Vβ3, Vβ4, Vβ5, Vβ6a,Vβ6B, Vβ7, Vβ8, Vβ9, Vβ10, Vβ11,Vβ12,Vβ13a,Vβ14,Vβ15,Vβ16 to Vβ17 

as shown by the arrow. The bottom row consists of PCR products for Vβ18, Vβ20, Vβ21, Vβ22, Vβ23 and 

the Jurkat cell line. 

MW marker

Vβ1 Vβ17

JurkatVβ18 MW marker

Vβ1 Vβ17
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4.2.6 Polymerase chain run-off reaction for immunoscope analysis  

A  PCR run-off reaction was performed using 24 PCR products. Reactions were prepared 

in 0.6µl microfuge tubes. The PCR mixture details are shown in Appendix 6. Each PCR 

product (2µl) and 8µl of PCR mixture were added into each tube and placed on the 

Applied Biosystems thermocycler and subjected to 94oC for 2 minutes, 5 cycles of 94 oC 

for 25 seconds; 60 oC for 45 seconds; 72 oC for 45 seconds and to a cycle of 72 oC for 3 

minutes, followed by holding at 4 oC. Samples were stored at 4oC until they were purified 

for fragment analysis. 

 

4.2.7    Purification of run-off PCR products 

Products were purified using Performa DTR 96 well standard plate resin columns 

(Southern Cross Biotechnology, SA). The resins are gel filtration plates consisting of 

0.8µl volume columns in a standardized array, packed with gel matrix optimized to 

effectively remove dye terminator dNTPs, salts and other low molecular weight materials 

from the sequencing reactions. Reactions were performed in 0.2µl microfuge tubes on 

strips (Roche Diagnostics). Product volumes were increased by addition of 10µl of sterile 

water to 20µl in each of the 24 Vβ product tubes. The top and bottom adhesive tapes 

from the Performa plates were removed. The plates were covered with a lid, stacked on 

top of an empty plate and centrifuged at 850xg for 3 minutes. The eluate was discarded 

and the complete volume of each product was transferred to the purification plate using a 

multichannel pipette. The plates were stacked on top of a sterile 96 well receiver plate 

and centrifuged at 850xg for 3 minutes. The eluates (products) in the receiving plates 

were retained for sequencing. The remaining product was stored at –20oC.  
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4.2.8   Preparation of product and sequencing acquisition 

Dye–Ex formamide (1ml) (Applied Biosystems) was mixed with 5µl of ROX 400 

Standard (Applied Biosytems). This mixture (5µl) and 5µl of purified product was added 

to the 96 well sequencer plate (Applied Biosystems). The mixture was heated up at 90oC 

for 2 minutes and allowed to cool on ice. The samples were acquired on a 3100 ABI 

Genetic analyzer (Applied Biosytems) using a 3100 Data Acquisition Software with the 

running module described on Appendix 7, using a 50cm array length and POP6. The 

instrument equipped with a laser provides the peak fluorescence intensity (height), peak 

size and peak area. The data was automatically stored in the relevant folder for analysis.   

 

4.2.9 Gene fragment analysis using Genemapper software  

Data was analyzed using Genemapper software (Applied Biosystems). Standard peaks 

appeared red and the sample peaks appeared blue as per fluorescent dye used. The sample 

peak sizes, lengths and areas were determined by comparison with the ROX 400 

standard. A representative snapshot of peaks and data table is shown on Figure 4.3. The 

expected highest peak size were determined by measurements of the size of the 

Vβ primer length to residue 95 of the gene (i.e. the beginning of the CDR3-which lies 

between residue 95 and 106), plus the Cβ2 constant gene distance to residue 106 (73), 

plus the CDR3 length of 30 nucleotides (10 amino acids). The highest peak was expected 

to be 10 amino acids (aa) in length and subsequent peaks to be 3aa apart with the CDR3 

length of 9aa and other peaks following in descending order of variable CDR-3 lengths 

indicated by various fragments. Figure 4.3 shows a representative example of the 

immunoscope graphs for Vβ2 with sample peaks (blue) measured against the standard 
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(red). The peak sizes, heights and areas are shown in the table below the graph and the 

size of the expected highest peak is 299. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: A representative  immunoscope analysis graph of Vβ2-TCR showing the peaks for the standard 

(red) and the peaks for the sample (blue). The table is showing the peak lengths, areas and sizes. Each peak 

represents a Vβ2-T cell clone with a specific CDR3 length. The highest peak has a CDR3 length of 10aa.   
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4.2.10 Interpretation of the immunoscope results 

To quantitate Vβ-CDR3 length variability, and hence a measure of TCR skewing, the 

following formulas were used for Polyclonal Gaussian (PG), Polyclonal Skewed (PS) 

and Oligoclonal Skewed (OS) distributions (representative examples): 

 

% PG = number of PG Vβ families x 100 
Total Vβ analyzed (23) 

 
and  

 
% PS = number of PS Vβ families x 100 

Total Vβ analyzed (23) 
 

and  
 

% OS = number of OS Vβ families x 100 
Total Vβ analyzed (23) 

 

“No skewing” of the T cell repertoire is measured as a Polyclonal Gaussian (PG) 

distribution, which is observed in naïve T cells prior to antigen engagement; a 

Polyclonal Skewed (PS) distribution which is observed after a T cell response resulting 

in multiple antigen-specific T cell clones; Oligoclonal Skewed (OS) distribution which is 

observed when there has been a clonal expansion of a T cell recognizing antigen using a 

specific TCR. Examples of these peak interpretations and CDR3 distributions are shown 

on Figure 4.4, where each of the PG, PS and OS are shown:   
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Figure 4.4: Immunoscope analysis showing polyclonal Gaussian (A), polyclonal skewed (B) and 

oligoclonal skewed (C) distribution observed in peripheral blood mononuclear cells.  

 

4.3     RESULTS 

To ensure that optimal peaks were detected, several optimization experiments were 

completed prior to applying the technique to the cohort samples. 

 

4.3.1 Optimization of the PCR run-off reaction 

In order to obtain optimal conditions for the run off-PCR reaction, various conditions and 

reagent titrations were performed. The Cβ2 primer in the PCR reaction mixture was used 

at three different volumes which were identified as Mix 1 (0.12µl), Mix 2 (0.24µl) and 

Mix 3 (0.48µl). Volumes of reagent used for different PCR reaction mixtures are shown 

on table 4.1. In addition to these, each PCR mixture was combined with 2µl (Condition 

1), 4µl (Condition 2) and 6µl (Condition 3) of the PCR product for amplification used at 

8µl, 6µl and 4µl consecutively. Conditions 1, 2 and 3 were applied as indicated in Figure 

4.5, where condition 1 consists of 2µl of PCR product combined with PCR mixture 1, 2 

A B C
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and 3; condition 2 consists of 4µl of PCR product combined with mix 1A, 2A and 3A and 

condition 3 consists of 6µl of PCR product mixed with PCR mixtures mix 1B, 2B and 

3B. Three representative Vβ-TCRs were analysed under these conditions and the graphs 

are shown on Figure 4.5 (Vβ1,Vβ3 and Vβ 5). Graphs A, B and C are showing data for 

various conditions and the immunoscope peak heights/signals from mix 1, mix 2 and mix 

3 were the highest, when 4µl of the PCR product was used (Condition1). The Cβ2 primer 

was finally used in all reaction mixtures at 0.12µl (MIX 1) and the final volume of PCR 

product used was 4µl (condition 2). 

 

Table 4.1: PCR reaction mixtures used for optimization of the PCR-run off reation 

Reagent Mix 1 Mix 2 Mix 3 

Buffer 1.1µl 1.1µl 1.1µl 

dNTPs 1.1µl 1.1µl 1.1µl 

MgCl2 1.32µl 1.32µl 1.32µl 

Cβ2 primer 0.12µl 0.24µl 0.48µl 

H2O 5.12µl 5.0µl 4.76µl 

Taq polymerase 0.04µl 0.04µl 0.04µl 
 

Volume of mix = 8.8µl  
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Figure 4.5: Optimization results for titration of the 6-Fam labeled Cβ2 primer and different product 

volumes used in a PCR run-off reaction. The CB2 primer was titrated and used in three different 

concentrations in the PCR reaction mixtures. The Cβ2 primer in the PCR reaction mixture was used at three 

different volumes which were identified as Mix 1 (0.12µl), Mix 2 (0.24µl) and Mix 3 (0.48µl). In addition 

to these, each PCR mixture was combined with 2µl (Condition 1), 4µl (Condition 2) and 6µl (Condition 3) 

of the PCR product at 8µl, 6µl and 4µl of consecutively.  Condition 1 consists of 2µl of PCR product 

combined with PCR mixture 1, 2 and 3; condition 2 consists of 4µl of PCR product combined with mix 1A, 

2A and 3A and condition 3 consists of 6µl of PCR product mixed with PCR mixtures mix 1B, 2B and 3B. 

the final reaction mixture used in all PCR reaction mixtures is highlighted in ‘Red’. 
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 4.3.2      Vβ TCR usage in cord blood samples of neonates born to HIV-1 infected  

                  mothers– A measure of exposure to HIV-1 in-utero.     

Having optimized the method, the immunoscope technique was used to obtain a measure 

of the diversity of the T cell repertoire in a scenario of possible antigen exposure. The 

CDR3 length distributions were analyzed by assessing the proportions of polyclonal 

Gaussian (PG), polyclonal skewed (PS) and oligoclonal skewed (OS) profiles from the 20 

HIV-1 babies born to HIV-1 infected mothers; 25 healthy control babies; 12 HIV-1 

infected mothers, and 10 HIV healthy control mothers.  

 

A representative Vβ TCR distribution from a healthy control baby showed a polyclonal 

Gaussian distribution for each family (Figure 4.6). A further representative Vβ 

distribution from an HIV-1 exposed (HIV uninfected) baby showed evidence for a 

polyclonal skewed distribution of almost every Vβ family (Figure 4.7). Each panel 

represents the results of the amplified PCR products from individual TCR Vβ families 

(Vβ1- Vβ23) and the 24th panel represents the Vβ8 PCR–amplified product of the Jurkat 

cell line (cDNA control). Overall, the Vβ TCR distribution profile observed in healthy 

control babies were 46% polyclonal Gaussian and 54% polyclonal skewed, with zero 

oligoclonal skewing (see table in Appendix 8). The polyclonal skewing observed in 

healthy control babies may be expected due to in utero exposure of multiple antigens 

derived from the mother. However, these data may differ from what was reported 

previously in other studies, where no clonal dominance was observed in healthy cord 

blood (147) (Than et al., 1999).  Conversely to that found in the healthy controls, the 

TCR distribution measured in babies born to HIV infected mothers (and presumed 
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exposed in utero) showed 1% polyclonal Gaussian distribution, 72% polyclonal skewed 

and 27% oligoclonal skewed (see Appendix 9), as shown in Figure 4.8. The TCR 

repertoire of babies born to HIV-1 infected mothers was highly skewed as shown by a 

statistically higher proportion of oligoclonal skewing (p <0.05) and a lower proportions 

of polyclonal Gaussian (p<0.001) when compared to healthy control babies (Figure 4.8). 

There was no difference between the distribution of polyclonal skewed TCR between 

healthy and “exposed” babies and the high degree of oligoclonality in the latter group 

suggests engagement of the TCR and clonal expansion. It is tempting to suggest that this 

may be due to engagement with antigens derived from HIV in these babies. The 

oligoclonal expansion of T cells in babies born to HIV-1 infected mothers were mainly 

Vβ18, Vb23, Vβ5, Vβ6a, Vβ7, Vb 6b and Vβ23-families (Figure 4.9), which had five to 

seven out of of twenty babies showing  oligoclonal skewing of the repertoire. 
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Vβ1 Vβ2 Vβ3 Vβ4 

Vβ5 

Vβ8 

Vβ13A 

Vβ16 

Vβ21 

Vβ6A Vβ6B Vβ7 

Vβ9 Vβ11 Vβ12 

Vβ13B Vβ14 Vβ15 

Vβ17 Vβ18 Vβ20 

Vβ22 Vβ23 JURKAT/Vβ8 

 

Figure 4.6: Immunoscope profile of a normal control baby, appearing as 100% Gaussian distribution. Each 

TCR result is shown as a density histogram with the CDR3 sizes shown on the x-axis and the peak 

fluorescence intensity shown on the y-axis. 23 Vβ families were analysed, including the Jurkat cell line as a 

positive control. 
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Vβ1 Vβ2 Vβ3 Vβ4 
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Vβ6A Vβ6B Vβ7 

Vβ9 Vβ11 Vβ12 

Vβ13B Vβ14 Vβ15 

Vβ17 Vβ18 Vβ20 

Vβ22 Vβ23 JURKAT/Vβ8 

 

Figure 4.7: Immunoscope profile of a baby born to an HIV-1 infected mother, appearing as polyclonal 

skewed and oligoclonal skewed (e.g. Vβ9, Vb13B, Vβ17, Vβ21) distributions.  Each TCR result is shown 

as a density histogram with CDR3 sizes shown on the x-axis and the peak fluorescence intensity shown on 

the y-axis. 23 Vβ families were analysed, including the Jurkat cell line as a positive control. 
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Figure 4.8: The T cell receptor profiles for 20 HIV-negative babies born to HIV-1 infected mothers 

(identified as E) compared with those of 25 healthy control babies (identified as H). Proportions of 

polyclonal Gaussian (PG), polyclonal skewed (PS) and oligoclonal skewed (OS) TCR are shown on the Y-

axis as percentage of skewing within the total repertoire. Statistical p values were obtained using Mann-

Whitney Rank Sum test. 

 

 

 

 

 

 

 

 

Figure 4.9: The frequency of oligoclonal skewing from 20 babies born to HIV-1-infected mothers. 

Proportions of babies with oligoclonal skewing of the repertoire are shown on top of the bars.    
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 In order to discount the possibilities that the TCR patterns observed from cord blood 

T cells isolated from babies born to HIV-1 infected mothers were due to 

contaminating T cells from the mother, the TCR patterns in 11 mothers paired with 

their babies were compared. The TCR profiles of HIV-1 infected mothers and paired 

babies are shown in Table 4.2, where it can be seen that oligoclonal skewing of T 

cells was higher in the mothers compared to their corresponding babies. Conversely, 

high polyclonal skewing was observed in babies, but not mothers. These data suggest 

that because the Vβ family profiles were different between mother and baby, it is 

unlikely that there was contamination of maternal cells in the baby cord blood T cell 

population.  

 

Table 4.2: The TCR profiles for 12 HIV uninfected babies born to HIV-1 infected 

mothers compared with their paired mothers    

Patient ID 
Oligoclonal Skewed  

(%) 
Polyclonal Skewed 

(%) 
Polyclonal Gaussian 

(%) 
M1 88 12 0 
B1 0 95 5 
M2 88 12 0 
B2 0 100 0 
M3 75 25 0 
B3 80 20 0 
M4 36 64 0 
B4 10 90 0 
M5 79 21 0 
B5 10 90 0 
M6 33 67 0 
B6 4 91 4 
M7 62 38 0 
B7 75 25 0 
M8 5 95 0 
B8 24 76 0 
M9 71 29 0 
B9 0 100 0 

M10 94 6 0 
B10 83 17 0 
M11 100 0 0 
B11 94 6 0 
M12 86 14 0 
B12 0 100 0 
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4.3.3 Vβ TCR usage at 3 months in babies born to HIV-1 infected mothers 

It was possible to perform a 3-month follow-up in four babies by obtaining a peripheral 

blood sample. Three babies (B1, B2 and B3) had 70-90% polyclonal skewed TCR 

distribution at birth, which was maintained at 3 months after birth (Figure 4.11). 

However, baby B4 had 94% oligoclonal distribution at birth, which was altered to a 

polyclonal skew distribution at 3 months. This would suggest that babies born with 

polyclonal populations of T cells remain polyclonal and that perhaps heavily perturbed 

oligoclonal populations become more diverse in potential recognition of antigens after 

birth. 

   

 

 

 

 

 

 

 

 

 

 

Figure 4.10: TCR profiles of four HIV-1-uninfected babies born to HIV-1 infected mothers, followed at 3 

months after birth. The babies are identified by lab numbers e.g. B1 cord blood (CB) and CTL B1-3 months 

The immunoscope assay was performed from cord blood and from peripheral blood mononuclear cells at 3 

months after birth (3mo). 
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4.4 ELISA results for other congenital infections – A measure of in-utero exposure 

to antigens 

In order to determine some of the source of TCR skewing observed in the babies and that 

skewing may have been due to exposure to other infections, besides HIV, ELISA assays 

were performed for antibodies to syphilis (RPR), toxoplasma (IgG and IgM), rubella 

(IgM) and cytomegalovirus (IgG and IgM) in plasma from 17 babies born to HIV-1 

positive mothers and their corresponding mothers, as well as in 19 healthy control babies 

and their mothers. Measurement of IgM was used to detect the presence of acute 

infection in both mothers and babies, whereas IgG was used for detection of existing 

immunity to previous infections in the mother, and the existence of IgG in cord blood 

was unlikely to be meaningful as this cannot be distinguished from maternal derived 

immunity. Acute infection in both baby and mother was thus confirmed by the detection 

of IgM in cord blood and maternal plasma respectively. Detection of IgM in the mother at 

birth would also result in the possibility that the baby may have been exposed to the 

pathogen in utero. 

 

Three babies born to HIV-1 infected mothers tested positive for syphilis. Seven babies 

tested positive for toxoplasma IgG and two babies were seropositive for rubella IgM. The 

two babies with evidence of the presence of rubella IgM showed more than 90% 

polyclonal skewing with no evidence of oligoclonal expansion (Table 4.3). Seven of the 

nine babies that showed evidence of oligoclonal-T cell expansion (B6, B7, B8, 4153B, 

B14, B4, B17) were not IgM seropositive for any of the pathogens tested. All babies, 

including healthy control babies and mothers were seropositive for CMV IgG (Table 4.4), 
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which coincided with polyclonal skewing of the T cell repertoire, suggesting that the 

babies may have been exposed to CMV antigens at a certain stage in utero. A prior study 

by Marchant showed that maternal CMV infection induced oligoclonal expansion of T 

cells in foetal life. It is tempting to suggest that maternal CMV and HIV-I infection was 

able to induce polyclonal and oligoclonalskewing of the TCR in HIV uninfected babies. 

 

Table 4.3: ELISA results and TCR profiles of HIV-uninfected babies born to HIV-1 -

infected mothers (B) and their paired mothers (M) 

ELISA TCR Profiles
SAMPLE ID Syphilis (RPR) TOXO(IgG) TOXO(Igm) RUBELLA(IgM) CMV(IgG) CMV(IgM) O PS PG
M2852 neg neg neg neg pos neg
B2852 neg neg neg pos pos neg 0 96 4
M4000 neg neg neg neg pos neg 88 12 0
B4000 neg neg neg neg pos neg 0 95 5
M4004 neg pos neg neg pos neg 75 5 0
B4004 neg pos neg neg pos neg 80 20 0
M4089 neg neg neg neg pos neg
B4089 neg neg neg neg pos neg 10 90 0
M4096 neg neg neg neg pos neg
B4096 neg neg neg neg pos neg 0 100 0
M4138 neg neg neg neg pos neg 79 21 0
B4138 neg neg neg neg pos neg 10 90 0
M4140 pos neg neg pos pos neg
B4140 pos neg neg pos pos neg 0 100 0
M4153 neg neg neg neg pos neg 33 67 0
B4153 neg neg neg neg pos neg 4 91 4
M4211 neg neg neg neg pos neg 30 70 0
B4211 neg pos neg neg pos neg
M4214 neg pos neg neg pos neg
B4214 neg pos neg neg pos neg 0 100 0
M4215 pos neg neg neg pos neg 5 95 0
B4215 pos pos neg neg pos neg 24 76 0
M4219 neg pos neg neg pos neg 71 29 0
B4219 neg pos neg neg pos neg 0 100 0
M4223 neg pos neg neg pos neg 94 6 0
B4223 neg pos neg neg pos neg 83 17 0
M4227 neg neg neg neg pos neg 100 0 0
B4227 neg neg neg neg pos neg 94 6 0
M4230 pos neg neg neg pos neg
B4230 pos neg neg neg pos neg 14 86 0
M4232 neg neg neg neg pos pos 86 14 0
B4232 neg neg neg neg pos neg 0 100 0
M4256 neg neg neg neg pos neg
B4256 neg pos neg neg pos neg 67 33 0  
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Table 4.4: ELISA results and TCR profiles of healthy negative control babies (B) and 

their paired mothers (M). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELISA TCR Profiles
SAMPLE ID RPR TOXO(IgG) TOXO(Igm)RUBELLA(IgM) CMV(IgG) CMV(IgM) O PS PG
M20 neg neg neg neg pos neg
B20 neg neg neg neg pos neg 0 74 26
M21 neg neg neg neg pos neg 8 92 0
B21 neg neg neg neg pos neg 0 50 50
M22 neg neg neg neg pos neg
B22 neg neg neg neg pos neg 0 63 37
M23 neg neg neg neg pos neg
B23 neg neg neg neg pos neg 0 10 90
M24 neg neg neg neg pos neg 0 100 0
B24 neg neg neg neg pos neg
M25 neg pos neg neg pos neg
B25 neg pos neg neg pos neg 0 64 36
M26 neg neg neg neg pos neg
B26 neg neg neg neg pos neg 0 50 50
M27 neg neg neg neg pos neg 0 100 0
B27 neg neg neg pos pos neg 0 94 6
M28 neg neg neg neg pos neg 0 100 0
B28 neg neg neg neg pos neg 0 68 32
M29 neg neg neg neg pos neg 18 82 0
B29 neg neg neg neg pos neg 0 100 0
M30 neg neg neg neg pos neg
B30 neg neg neg neg pos neg 0 75 25
M31 neg neg neg neg pos neg
B31 neg neg neg neg pos neg 0 7 93
M32 neg neg neg neg pos neg
B32 neg neg neg neg pos neg 0 77 23
M33 neg neg neg neg pos neg
B33 neg neg neg neg pos pos 0 45 55
M34 neg neg neg neg pos neg
B34 neg neg neg neg pos neg 0 70 30
M35 neg neg neg neg pos neg
B35 neg neg neg neg pos neg 0 84 16
M36 neg neg neg neg pos neg
B36 neg neg neg neg pos neg 0 75 25
M37 neg pos neg neg pos neg 0 93 0
B37 neg pos neg neg pos neg
M38 neg neg neg neg pos neg
B38 neg neg neg neg pos neg 0 14 86

ELISA TCR Profiles
SAMPLE ID RPR TOXO(IgG) TOXO(Igm)RUBELLA(IgM) CMV(IgG) CMV(IgM) O PS PG
M20 neg neg neg neg pos neg
B20 neg neg neg neg pos neg 0 74 26
M21 neg neg neg neg pos neg 8 92 0
B21 neg neg neg neg pos neg 0 50 50
M22 neg neg neg neg pos neg
B22 neg neg neg neg pos neg 0 63 37
M23 neg neg neg neg pos neg
B23 neg neg neg neg pos neg 0 10 90
M24 neg neg neg neg pos neg 0 100 0
B24 neg neg neg neg pos neg
M25 neg pos neg neg pos neg
B25 neg pos neg neg pos neg 0 64 36
M26 neg neg neg neg pos neg
B26 neg neg neg neg pos neg 0 50 50
M27 neg neg neg neg pos neg 0 100 0
B27 neg neg neg pos pos neg 0 94 6
M28 neg neg neg neg pos neg 0 100 0
B28 neg neg neg neg pos neg 0 68 32
M29 neg neg neg neg pos neg 18 82 0
B29 neg neg neg neg pos neg 0 100 0
M30 neg neg neg neg pos

ELISA TCR Profiles
SAMPLE ID RPR TOXO(IgG) TOXO(Igm)RUBELLA(IgM) CMV(IgG) CMV(IgM) O PS PG
M20 neg neg neg neg pos neg
B20 neg neg neg neg pos neg 0 74 26
M21 neg neg neg neg pos neg 8 92 0
B21 neg neg neg neg pos neg 0 50 50
M22 neg neg neg neg pos neg
B22 neg neg neg neg pos neg 0 63 37
M23 neg neg neg neg pos neg
B23 neg neg neg neg pos neg 0 10 90
M24 neg neg neg neg pos neg 0 100 0
B24 neg neg neg neg pos neg
M25 neg pos neg neg pos neg
B25 neg pos neg neg pos neg 0 64 36
M26 neg neg neg neg pos neg
B26 neg neg neg neg pos neg 0 50 50
M27 neg neg neg neg pos neg 0 100 0
B27 neg neg neg pos pos neg 0 94 6
M28 neg neg neg neg pos neg 0 100 0
B28 neg neg neg neg pos neg 0 68 32
M29 neg neg neg neg pos neg 18 82 0
B29 neg neg neg neg pos neg 0 100 0
M30 neg neg neg neg pos neg
B30 neg neg neg neg pos neg 0 75 25
M31 neg neg neg neg pos neg
B31 neg neg neg neg pos neg 0 7 93
M32 neg neg neg neg pos neg
B32 neg neg neg neg pos neg 0 77 23
M33 neg neg neg neg pos neg
B33 neg neg neg neg pos pos 0 45 55
M34 neg neg neg neg pos neg
B34 neg neg neg neg pos neg 0 70 30
M35 neg neg neg neg pos neg
B35 neg neg neg neg pos neg 0 84 16
M36 neg neg neg neg pos neg
B36 neg neg neg neg pos neg 0 75 25
M37 neg pos neg neg pos neg 0 93 0
B37 neg pos neg neg pos neg
M38 neg neg neg neg pos neg
B38 neg neg neg neg pos neg 0 14 86

neg
B30 neg neg neg neg pos neg 0 75 25
M31 neg neg neg neg pos neg
B31 neg neg neg neg pos neg 0 7 93
M32 neg neg neg neg pos neg
B32 neg neg neg neg pos neg 0 77 23
M33 neg neg neg neg pos neg
B33 neg neg neg neg pos pos 0 45 55
M34 neg neg neg neg pos neg
B34 neg neg neg neg pos neg 0 70 30
M35 neg neg neg neg pos neg
B35 neg neg neg neg pos neg 0 84 16
M36 neg neg neg neg pos neg
B36 neg neg neg neg pos neg 0 75 25
M37 neg pos neg neg pos neg 0 93 0
B37 neg pos neg neg pos neg
M38 neg neg neg neg pos neg
B38 neg neg neg neg pos neg 0 14 86
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4.5   DISCUSSION 

Distribution of the TCR repertoire in healthy cord blood has previously been shown to 

have a Gaussian distribution. (Than et al., 1999, Sarzotti et al., 2003), and the repertoire 

in normal cord samples were shown to be diverse, with consistent representation of all 23 

Vβ families with no evidence of clonal dominance. In this dissertation, an equal mix of 

Gaussian and Polyclonal skewed TCR families was shown in cord bloods from healthy 

babies born from HIV uninfected mothers. Polyclonal skewing was measured when there 

was a slight shift in TCR peak position and is sensitive to any form of TCR engagement 

with antigen. It is thus expected that healthy babies may have been exposed to an array of 

maternal antigens giving rise to polyclonal skewing. Converse to this, oligoclonal 

skewing was observed in cord blood TCR from HIV-1 uninfected babies born to HIV-1 

infected mothers, suggesting that clonal expansion may be linked to exposure to HIV-1 

antigens from the mother in-utero. This was further supported from the results looking at 

syphilis (RPR), toxoplasma, rubella and cytomegalovirus immunity in mother and baby 

pairs. 

 

Studies performed in HIV-1 infected children have demonstrated evidence of clonal 

dominance in HIV infected children (Than et al., 1999; McFarland et al., 2002). 

Although we identified TCR expansions in total CBMC, clonal expansions have been 

reported to be common in CD8+ T cells in HIV-1 infected individuals, as shown by 

others (Wedderburn et al., 2001), and also described in the TCR analysis of adults 

conducted elsewhere in this dissertation (Chapter 3). A limitation of this study was that 

the functional implication of these clonal expansions in exposed uninfected babies was 
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not determined. Although other neonatal infections, or antigen exposure, could have 

given rise to the TCR skewing observed using  spectratyping, it is tempting to speculate 

that this was linked to HIV infection of the mother. Indeed, similar expansions in HIV-1 

infected children and adults have been associated with HIV-specific cytotoxic T 

lymphocyte activity. (Feeney et al., 2005, Legrand et al., 2006).   

 

To discount the possibility of TCR skewing observed in exposed uninfected neonates due 

to other possible antigen exposure or congenital infections, IgG and IgM plasma 

antibodies for four possible pathogens [syphilis (RPR), rubella, toxoplasma and 

cytomegalovirus) were screened by ELISA. Detection of CMV IgG observed in all 

babies coincided with polyclonal expansion of T cells in all babies, including healthy 

control babies, whereas, oligoclonal expansion of T cells was observed only in babies 

born to HIV-1 infected mothers. Hence, oligoclonal expansion of T cells in these babies 

is shown to be associated with HIV infection rather than other antigens. Overall, the TCR 

data collected at enrollment and three months later from exposed–uninfected neonates 

showed persistent TCR expansions. The finding that an oligoclonal skewed population 

observed in one baby, which then normalized at three months after birth showed that the 

oligoclonality detected at birth was a biological characteristic and not a technical issue. 

 

 These findings are in agreement with previously reported data showing perturbations of 

the TCR Vβ repertoire in uninfected children younger than 2 months, whereas in older 

children less expanded TCR populations were observed (Silvestri et al., 1996). In 

summary, oligoclonal skewing of the T cell repertoire in HIV-1 uninfected babies born to 
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HIV-1 infected mothers in this study infers that there was exposure to HIV-1 antigens in-

utero.  

 

The oligoclonal dominance of T cells in one neonate was transient, and possibly 

influenced by the presence of antigen. These findings also suggest that it is only in the 

absence of persistent antigen exposure that the diversity of the TCR repertoire in 

neonates broadens, at least as observed in babies born to HIV-1 infected mothers. Future 

studies are necessary to determine whether there is a link between TCR skewing in HIV 

uninfected babies with HIV antigen specificity. This association was not made in this 

dissertation and represents a limitation of the study in terms of attempting to understand 

whether T cell expansion in newborns is associated with protective immunity or a marker 

of exposure to antigen. Further studies are required to determine whether TCR clonal 

populations generated in HIV-1 exposed cord blood and 3 months follow up are HIV-1 

specific. Other studies have demonstrated that 25% of exposed but uninfected infants 

show CTL activity against HIV-1 targets, but this activity is only detectable between 4 to 

12 months of life (Halapi et al., 1996; Sandberg et al., 2003).Overall, this chapter has 

shown that it is possible to detect perturbations in the TCR repertoire in likely exposed 

and HIV uninfected babies. This study has also shown that healthy newborn babies are 

born with an intact TCR repertoire. It remains to be seen whether perturbations of the 

TCR due to exposure to antigens in utero provides immune competence or induces a 

weakness in potential T cell responses upon encounter with antigens at some point after 

birth.
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CHAPTER 5 

MEASUREMENT OF HIV-1 - SPECIFIC T CELL 
ACTIVITY 

 
 

5.1   INTRODUCTION 
 
In this dissertation, several characteristics of T cells have been investigated in different 

cohorts of HIV infected and HIV exposed, but uninfected individuals. In this chapter, the 

fine specific nature of CD8+ T cells has been measured by investigating HIV-specificity 

using the IFNγ ELISPOT assay and intracellular cytokine staining. 

 

The role of antigen-specific T cells, especially that of CD8+ cytotoxic T cells (CTL) in 

the control of HIV-1 has been well documented (Schmidz et al., 1995; Klein et al., 1995; 

Walker et al., 1996; Xia et al., 1999). It has been suggested that ultimate control of HIV-

1 infection and disease will probably rely on an effective CTL-based vaccine. Proof of 

this concept has been shown in pre-clinical experiments when immune responses in 

rhesus macaques were elicited using DNA vaccines and then challenged with SHIV  

(Amara et al., 2001; Barouch et al., 2001; Egan et al., 2000). The immune responses in 

these vaccinated macaques were able to control viraemia to nearly undetectable levels 

and prevent immunodeficiency and clinical disease, as opposed to control monkeys, 

which exhibited high viraemia and significant disease progression. These studies 

emphasize the requirement for more studies to examine correlates of immune control 

against HIV in humans. The complexities of finding a CTL-based vaccine that will work 



Chapter 5 
 

114 

in humans has been recently thwarted by the failed clinical trial of an adenovirus type 5 

vector-based immunogen containing the HIV-1 gag gene. After enrolling 3000 volunteers 

into the STEP trial, it was shown that the vaccine arm had no efficacy and possibly may 

have exacerbated HIV transmission (http://www.hvtn.org/media/pr/step1207.html). 

Whether this was a failure of the concept of CTL-based vaccines or a failure of the 

vaccine product remains to be seen. Nevertheless, understanding CD8+ T cell immunity 

in natural HIV infection remains a valuable foundation for understanding what may be 

required from a vaccine that stimulates T cell immunity. 

   

CD8+ T cells arise in the peripheral blood after HIV infection resulting in a large 

proportion of CD8+ cytotoxic T cells (CTL) that are HIV-specific, recognizing different 

epitopes across the HIV-expressed genome (Edwards et al., 2002; Addo et al., 2003; 

Peretz et al., 2005). Many of these cells are activated to varying degrees and co-express 

markers that reflect activation events, such as CD38 and HLA-DR as described in chapter 

2 of this dissertation. This activation response has been associated with increased levels 

of cytokines, including gamma interferon (IFN-γ) in the peripheral blood (Fan et al., 

1993; Jassoy et al., 1993; Jassoy et al., 1992), CSF and germinal centers of the lymph 

node (Hosmalin et al., 2006). 

 

HIV-specific T cells from peripheral blood can be identified and enumerated by detection 

of antigen induced interferon gamma (IFN-γ) secreted at a single cell level using various 

methods. 1)  The intracellular cytokine staining method (ICS) which allows detection of 

multiple peptides and whole proteins which can be added to stimulate the cells and then 
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analyzed by flow cytometry. Multiple T cell types, allowing analysis of the T cell lineage 

can be measured simultaneously using ICS. 2) Along with the ICS assay, the ELISPOT 

assay allows the quantitative measurement of the frequency of cytokine secreting cells at 

the single cell level directly ex vivo without in vitro expansion or manipulation of cell 

populations. This assay is sensitive and allows for enumeration of low frequencies of T 

lymphocytes. 3) The use of tetramers and flow cytometry analysis, which requires the 

HLA type of the analyzed sample to be known and individual MHC-class I preparation 

contains only a single peptide epitope.  These assays can also be used in measurements of 

other cytokines that are secreted in response to HIV antigens, for example IL-2 and 

TNFalpha. 

 

HIV-1 –specific T cell activity in this dissertation was measured on cryopreserved 

PBMC, by using a combination of the ELISPOT assay and intracellular cytokine staining 

(ICS). This chapter focuses on HIV-1-specific T cell recognition of HIV in a cohort of 

HIV/TB co-infected individuals. The aim was to determine whether mycobacterium 

tuberculosis had any effect on HIV-1-specific T cell immunity.  

 

5.2 MATERIALS AND METHODS 

5.2.1  Study cohort 

Two groups of individuals consisting of HIV-1 infected and HIV/TB co-infected were 

studied in a cross-sectional and longitudinal manner. The ELISPOT assay was performed 

on 14 HIV-1 and 11 HIV/TB co-infected individuals for cross-sectional analysis and 10 

HIV/TB individuals were analysed for longitudinal analysis (see Appendix 8 for cohort 
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details). The 10 individuals were followed from baseline to 12 months following a six-

monthly course of TB treatment as described in chapter 2. 

 

5.2.2  Thawing of cryopreserved PBMC 

PBMC were removed from the liquid nitrogen tank and rapidly thawed by suspending the 

vial in the waterbath and warmed at 37oC. Using a 1ml pipette, the cells were added drop 

wise into 50ml tubes with 10ml RPMI containing 10% FCS, 0.5% gentamycin (R10) and 

50 units/ml benzonase. The cells were centrifuged at 1200rpm for 10 minutes. The 

supernatant was decanted and the cells were suspended in 15 ml R10. The cells were 

centrifuged again  at 1200rpm for another 10 minutes and resuspended in 1-5ml  warm 

RPMI + 20% FCS (R20). 20µl of the cell suspension was removed, mixed with 180ml 

ViaCount solution and counted on the Guava cell counter. An additional volume of R20 

was added to the cells to make a concentration of 2 x106 cells/ml. The cells were 

incubated for 12-18 hours (overnight) at 37oC, 5% CO2 with the caps loosened. The cells 

are washed once with warmed R10 and resuspended in 1-5ml R10 for viable and total 

cell counts. The cells are then ready for the ELISPOT and ICS assays. 

 

5.2.3  The IFN-γ  ELISPOT 

Measurement of IFN-γ was performed from cryopreserved PBMC, which were either 

thawed, rested in the incubator overnight and stimulated with HIV-1 subtype C 

superpools ex vivo,  (these cells were then referred to as “fresh”) or cultured with 

CD3+CD4+ bispecific monoclonal antibody (BSMAB, kind gift from Dr Guido Ferrari, 

Duke University) to specifically expand CD8+ T cells. When added to PBMC in the 
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presence of IL-2, CD3,4B BSMAB there is a selective elimination of CD4+ T cells by 

promoting complement-mediated lysis of CD4+ T cells (Wong et al., 1987). Briefy, 2 x 

106 PBMC suspended in RPMI + 10% foetal calf serum and 0.5 % gentamycin were 

placed into individual wells of a 24 well plate + 25U/ml IL-2 + 0.1 µg/ml CD3+CD4+ 

BSMAB. After every 2 days, the medium was partially exchanged with fresh medium 

containing IL-2 and cultures were continued for five days. These cells were then referred 

to as “expanded”. The ex vivo IFN-γ ELISPOT was performed on freshly thawed PBMC 

from 10 HIV/TB individuals and on expanded CD8+ T cells from 14 HIV-1 infected and 

11 HIV/TB co-infected individuals. 

 

The ELISPOT assay was performed on polyvinylidene difluoride membrane -96 well 

plates (MAIP S45, Millipore, Johannesburg, SA), which were coated overnight at 4oC 

with 50µl of 2µg/ml anti-IFNγ- monoclonal antibody (1-D1K, Mabtech, Stockholm, 

Sweden). Nine peptide superpools that spanned the complete HIV-1 subtype C whole 

genome were used and details pertaining to peptide length, sequence strain (or 

concensus) is shown in Table 5.1. Peptides were synthesized using 9-

fluorenylmethoxycarbonyl-based solid phase chemistry (Natural and Medical Sciences 

Institute, University of Tübingen, Tübingen, Germany). All peptides were checked for 

the correct molecular weight by Elektrospray QTOF-mass spectrometry. Peptide purities 

ranged from 70-80%. Gag, Vpu, Vpr and Tat were synthesized from the consensus 

sequence of HIV-1 subtype C (a generous gift from Marcus Altfeld, Massachusetts 

General Hospital) and  Pol, Nef, Env, Vif and Rev were synthesized from viral sequence 

strains that were closest to the consensus subtype C sequence and used as a basis for HIV 
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vaccine manufacture (Williamson et al., 2003).  Nef peptides were synthesized as 15-

mers overlapping by 11 amino acids (aa), and the remaining peptides varied from 15-18-

mers overlapping at 10 residues. Peptides were dissolved in 100% dimethyl sulfoxide at 

an initial concentration of 10mg/ml and were pooled at 40µg/ml/peptide stock in 

phosphate-buffered saline (PBS) in which the final concentration of dimethyl sulfoxide 

was always less than 0.5%. 

  

Table 5.1: Synthetic peptides used in the ELISPOT  

Protein Number of peptides/superpool Length of peptide Strain

Gag 14 15-18 Concensus

Pol 24 15-18 Du 151 

Nef 10 15 Du 151 

Env 24 15-18 Du 179

Vif 12 15-18 Du 151 

Rev 14 15-18 Du 151 

Vpu 9 15-18 Concensus

Vpr 11 15-18 Concensus

Tat 12 15-18 Concensus  

 

The plate layout is shown in Table 5.2, showing the nine peptide superpools, two wells of  

media and cells only serving as negative controls and two wells of PHA as a positive 

control.  The wells were then washed 3 times with PBS-Phosphate Buffered Saline (in-

house made) and blocked with 100µl of RPMI-10% FCS for at least 2 hours. Peptide 

(50µl, used at a final concentration of 2µg/ml) was added to the wells, followed by 50µl 

of 0.5 -2 x 105 PBMC. The plate was incubated for 16-18 hours in a 37oC, 5% CO2 

incubator. Any positive reaction resulted in a release of IFN-γ, which was captured by the 
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anti-IFN-γ monoclonal antibody coating the surface of the membrane. To identify the 

positive reactions, wells were washed three times with PBS followed by three washes 

with PBS supplemented with 0.05% Tween 20 (Sigma Aldrich, SA) + 1% FCS. A 

secondary detection antibody (50 µl biotinylated IFN-γ (clone 7-B6-1; Mabtech, 2µg/ml)  

was then added and incubated at room temperature for 3 hours. After washing the plate 

six times with PBS-Tween 20, 50µl of streptavidin–bound horseradish peroxidase 

(2µg/ml -Pharmingen, Cupertino) was added and incubated for 1 hour. Developed spots 

were visualized by addition of 100µl of Novared substrate (Vector, Burlingame, 

California, USA) according to the manufacturer’s instructions and incubated at room 

temperature in the dark. As soon as the spots were visible on the membrane (as shown in 

Figure 5.1), the wells were rinsed with tap water and air-dried. When dry, developed 

spots were counted on the ELISPOT reader (CTL, ImmunoSpot, Cleveland, Ohio). The 

frequency of cells responding to each of the peptide pools was normalized as 

spots/million PBMC. A positive cutoff was defined as above 100 SFU/106 PBMC. 

 

Table 5.2: Plate layout of the ELISPOT assay using HIV-1 subtype C peptide 

superpools  

 

1 2 3 4 5 6 7 8 9 10 11 12 

Gag Pol Nef Env Vif Vif Tat Rev Vpu Vpr Media Media

Cells  Cells Blank Blank Blank Blank Blank Blank Blank Blank  PHA  PHA 
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Figure 5.1: The ELISPOT membrane showing HIV-1 antigen responding /IFN-γ+ cells appearing as spots 

on A1, A2, A3, A4 e.t.c. and PHA (positive control), which is shown on well B11 and B12. The plate 

layout is shown on table 5.2.  

 

5.2.4 Intracellular cytokine staining (ICS)  

The ICS assay was used to confirm the HIV-1 subtype C specific responses obtained by 

the ELISPOT assay and to identify the phenotype of responding cells e.g. (CD4+ and 

CD8+ T cells). The main advantage of this method is that more than one cytokine as well 

as the lineage of T cell subsets can be measured simultaneously. The method involves 

three steps consisting of PBMC-peptide stimulation; staining of stimulated cells with 

selected monoclonal antibodies; flow cytometry acquisition and analysis.  

5.2.4.1  Cell stimulation 

Cryopreserved PBMC were thawed and resuspended in RPMI + 10% FCS at 1 x106/ml in 

5ml falcon FACS tubes. PBMC suspension (1ml) was stimulated with 1µg each of anti -

CD28/CD49d (Becton Dickinson-Pharmingen, San Jose, California) as costimulatory 

antibodies and 2µg/ml of the peptide superpool to be confirmed.  Cells containing 

CD28/CD49d only were used as a negative control and cells stimulated with positive 

control (SEB- staphylococcus enterotoxin B which is a superantigen obtained from 

1 2 4 125 76 98 1110

B

3

A
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Sigma Aldrich) were included in each experiment. The cultures were incubated at 37oC in 

the presence of 5% CO2 for 1 hour with addition of the cytokine secretion inhibitor 

Brefeldin A used at a final concentration of 10µg/ml (Sigma Aldrich, SA) followed by an 

additional incubation for 5 hours. The cells were then stored at 4oC (for a maximum of 

16-18 hours) until ready for permeabilization and staining.  

 5.2.4.2 Flow cytometry analysis 
 
 
EDTA (100µl of 20mM, Sigma Aldrich) was added to peptide stimulated and control 

tubes and incubated at room temperature for 15 minutes. The cells were then suspended 

in FACS wash solution (PBS + 1% BSA + 0.1% sodium azide) and centrifuged at 

1200rpm for 10 minutes. The cells were fixed and lysed in 2ml of 1x FACS lysing 

solution (BD Immunocytometry systems, San Jose, California) for 10 minutes at room 

temperature in the dark, and permeabilised with 0.5ml of 1x FACSPerm II (BD) for 15 

minutes at RT. Wash solution (1ml) was added and the tubes were centrifuged at 

1800rpm for 10 minutes. Permeabilized cells were then stained with directly conjugated 

CD3-APC, CD8-PerCP, CD69-PE or IL-2 PE and IFN-γ-FITC (all BD) for 30 minutes at 

room temperature in the dark. After an additional wash the cells were then resuspended in 

the fixing solution (1% paraformaldehyde, 0.05% sodium azide: in -house). Stained cells 

were stored at 4oC for a maximum of 24 hours for flow cytometry acquisition and 

analysis. Four colour flow cytometry was performed on the Becton Dickinson 

FACSCalibur using CellQuest software (BD, San Jose, California). Live events (100,000-

130,000) were acquired, gating small viable lymphocytes and saving 50,000 CD3+ T 

lymphocytes. List mode data files were analyzed using FlowJo (Tree Star, Inc. Ashland, 
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Oregon, and USA). The gating strategy is shown on Figure 5.2. Plot A is showing the 

lymphocyte gate with 21.8% of total cells, plot B is showing gated CD3+ T cells with 

43.3% of total lymphocytes which were collected from the lymphocyte gate. Frequencies 

of CD8+IFNγ+ and CD4+IFNγ+ T cell for unstimulated cells (0.035 and 0.013%) and 

SEB (3.57% and 0.6%) are shown as percentages of total T cells. HIV-1-specific 

responses were rated as positive when the frequency of CD8+IFNγ+ or CD4+IFNγ+ was 

>0.05% above the percentage of unstimulated cells.      
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Figure 5.2: Flow cytometry plots showing analysis of IFN-γ producing T cells as analyzed by FlowJo. Plot 

A is showing the lymphocyte gate with 21.8% of total cells, plot B is showing gated CD3+ T cells with 

43.3% of total lymphocytes which were collected from the lymphocyte gate. Frequencies of CD8+IFNγ+ 

and CD4+IFNγ+ T cell for unstimulated cells (0.035, plot C and 0.013%, plot D) and SEB (3.57%, plot E 

and 0.6%, plot F) are shown as percentages of either CD3+CD4+ or CD3+CD8+ T cells. 
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5.3  RESULTS 

5.3.1    The frequency of response to each region (i.e how many individuals are  

responding to each protein region)  

 

It has been shown in this dissertation that CD8+ T cells are activated by HIV-1, and more 

enhanced by the presence of TB co-infection. It was further noted that clonal dominance 

of the CD8+ T cell population occurs following activation, indicating usage of selected T 

cell receptors. Measurement of HIV-1 specific T cells was made to identify which 

recognised regions were immunodominant. To identify HIV-specific CD8+ T cells, 

PBMC were expanded for 5 days with bispecific antibody (CD3+CD4+) and stimulated 

with 2µg/ml each of 9 HIV-1 subtype C peptide superpools in the IFN-γ ELISPOT assay. 

CD8+ T cells from both HIV-1 and HIV/TB co-infected patients responded to one or 

more of the nine HIV-1 subtype C peptides.Of the 14 HIV-1 singly infected individuals, 

85% recognised Gag; 78% recognized Pol, 64% recognized Nef, 43% recognized Vif, 

36% recognized Env, Rev and Vpr; and 21% recognized Tat (Figure 5.3A and Appendix 

12). Of the 11 HIV/TB co-infected patients, 73 % targeted Pol, Vif and Nef, 45% 

recognized Env; 27% recognized Vpr and Gag, 18% recognized Tat and Vpu; and 9 % 

recognized Rev (and Figure 5.3B and Appendix 13). These data shows that the most 

frequently targeted HIV-1 genome regions in HIV-1 infected individuals differed from 

those individuals with TB and HIV co-infection. 
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Figure 5.3: Targeting of HIV-1 subtype C-peptide superpools by HIV-1 (A) and HIV/TB (B) co-infected 

patients. Frequencies of individuals targetting various HIV-1 subtype C superpools within both cohort 

groups are shown at the bottom of the graph. 

 

These data suggest that recognition of epitopic regions differ between individuals singly 

or dually infected with HIV and TB. 
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5.3.2 Confirmation of HIV-1–specific responses by intracellular cytokine 

staining (ICS) 

IFN-γ ELISPOT responses from selected peptide pools were confirmed using the ICS 

assay, which enabled simultaneous analysis of both CD8+ and CD4+ T cells. PBMC 

samples from 5 HIV/TB patients were stimulated and stained with CD3 Pacific Blue, 

CD8 APC-Cy7, CD4 PerCP Cy5.5 and IFN-γ FITC and IL-2 PE. The cells were acquired 

on the LSR II (Becton Dickinson) using FACSDiva software. List mode data was 

analysed using FlowJo (Tree Star Inc.) software.  

 

A representative example of ELISPOT results for patient JNM 55 (Figure 5.4), showing 

responses to Gag, Nef and Vif was confirmed using ICS. The ICS results confirming a 

Gag response are shown on Figure 5.5, as analysed by FlowJo software. Plot A and B are 

showing CD8+ T cells (y-axis) and CD4+ T cells (y-axis)–expressing IFN-γ (x-axis) for 

unstimulated (negative control), SEB-stimulated (C and D) and Gag-stimulated (E and F) 

PBMC. The frequency of CD8+ T cells expressing IFN-γ for this patient is 2.5% after 

subtracting the background of 0.013%, and the number of CD4+ T cells expressing IFN-γ 

is 0.12%. Other T cell responses to Gag and Nef, which were confirmed, are shown in 

Table 5.3, presented as scores of the ELISPOT (SFU x 106) and the ICS (% IFN-γ 

positive cells). HIV-1 –specific responses obtained by the ELISPOT were readily 

confirmed by the ICS and were predominantly mediated by CD8+ T cells, although there 

were at least 3 CD4+ responses to Gag and Nef (patients 1, 2 and 5).  
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Figure 5.5: The ELISPOT results showing Gag, Nef and Vif responses, for patient JNM 55. 

 

Figure 5.4: The ELISPOT and ICS results showing Gag, Nef and Vif responses for 

patient JNM 55. 
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Figure 5.5:  The ICS results confirming Gag-specific T cell response from patient JNM 055 identified by 

ELISPOT. The dot plots show frequencies of CD8+/IFN-γ+ and CD4+/IFN-γ+ for unstimulated  (A and B) 

, SEB (C and D) and Gag (E and F) were gated from the CD3+ T cells.   
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Table 5.3: ELISPOT and ICS results  

PID HIV-1 superpool ELISPOT ICS- CD8 ICS-CD4 

1 Gag ++ - + 

2 Nef + + + 

3 Gag ++ ++ - 

4 Nef +++ + - 

5 Gag ++ +++ + 

6 Gag ++ ++ - 

7 Gag + + - 
 

  ELISPOT:     ICS 

+ > 400 SFU     + > 0.05-0.5 % 

  ++ = 401-4000 SFU    ++= 0.5-2.0 % 

  +++ > 4000     +++ >2.0% 

  

5.3.3 Comparison between freshly thawed PBMC and in-vitro expanded 

CD8+ T cells in the ELISPOT assay.  

The use of bispecific monoclonal antibodies for in vitro enrichment of T cells has been 

shown to allow expansion of CD8+ T cell populations without loss of specificity (Jones 

et al., 2003). The bispecific enriched cells in this study demonstrated comparable 

repertoire to the original, unexpanded PBMC. In this dissertation, freshly thawed PBMC 

from 10 HIV/TB individuals were analysed in the ELISPOT assay and compared with in 

vitro expanded PBMC. PBMC from these individuals were expanded as discussed on 

section 5.2.3. Low frequencies of CD8+ T cells were readily expanded, and yielded 

higher levels of responses (p= 0.019) as shown on Figure 5.6. These data supports the in 

vitro expansion of specific cell populations from low frequencies when multiple 
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functional studies are required. These findings suggest that there was probably 

enrichment of memory T cell responses leading to expanded CD8+ T cell specificities. 

 

   

 

 

 

 

 

 

 

 

 

 

Figure 5.6: HIV-specific T cell responses from freshly thawed and in vitro expanded PBMC. The p-value 

was calculated by the Mann-Whitney U test.  

 
 

5.3.4 The relationship between HIV-1 RNA load and HIV-1-specific responses 

from HIV/TB co-infected individuals  

Effective cytotoxic T cell responses have been shown to cause a drop in plasma viral load 

in acute HIV-1 infection (Klein et al., 1995; Walker et al., 1996, Jin  et al., 1999) and a 
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dissertation examined the association between HIV-1 subtype C specific responses and 

viral load in 10 HIV-1 infected patients with mycobacterium tuberculosis co-infection. 

Freshly thawed PBMC samples were stimulated in a 6 hour ELISPOT assay with nine 

HIV-1 subtype C proteins (whole genome), as described in section 5.2.3. There was no  

significant relationship between the viral load and HIV-1-specific T cell responses 

(cumulative SFU/106 cells) for any of the HIV-1 proteins (Figure 5.7). Even though these 

were not statistically significant, Env, Tat and Vpu showed a trend towards a positive 

correlation  and Gag showed a trend towards negative correlation with viraemia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: The relationship between HIV-1 RNA load and HIV-1-specific responses to the nine HIV-1 

subtype C peptide superpools from HIV/TB co-infected individuals. The correlation coefficient and the p 

values were obtained using GraphPad Prism version 4. 
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HIV-1 subtype C responses to individual gene regions did not have any significant 

impact on viraemia in HIV/TB co-infected individuals. In addition, correlation of 

response to complete protein regions (cumulative SFU/106 PBMC) with viral load was 

investigated to determine whether total responses would have an impact on viraemia. 

There was no statistically significant association between viraemia and the total SFU/106 

PBMC in these patients (Figure 5.8A). Similar results were observed when viraemia was 

correlated with breadth of responses in these individuals (Figure 5.8B), which was 

defined as the number of peptide pools targeted by each individual.   

 

 

 

 

 

 

 

 

 

Figure 5.8: Correlation between (A) Cumulative responses and viral load and (B) Number of targeted HIV-

1 subtype C regions (breadth) and viral loads.     
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the cumulative SFU/106 PBMC (Figure 5.9A) and the number of targeted gene regions by 

HIV/TB co-infected patients (Figure. 5.9B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Correlation between (A) Cumulative responses and CD4 count and (B) Number of targeted 

HIV-1 subtype C regions and CD4 count.     
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months). The One-way ANOVA, Prism 4 Bonferroni Test established that there were no 

significant differences in the magnitude of responses at different time points (Figure 

5.10) during TB therapy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: HIV-1-specific T cell responses to nine HIV-1 subtype C peptides at 4 different time points 

during TB therapy. The magnitude of responses were compared, and the statistical P values for each 

peptide superpool are shown in the table. 
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5.4  DISCUSSION 

HIV-1 subtype C-specific T cell responses were readily detected in both HIV-1 infected 

and HIV/TB co-infected individuals in this dissertation. Previous studies have 

demonstrated HIV-1–specific responses in HIV-1 subtype C infected individuals 

(Novitsky et al., 2003, Masemola et al., 2004). The effect of TB on T cell responses has 

not been extensively studied. It has been reported previously that Gag-specific CTL 

contribute to maintenance of the asymptomatic state by effectively controlling HIV-1 

replication (Klein et al., 1995). It was further suggested that the more immune pressure 

the host’s immune system can mount against HIV Gag, and in particular Gag p24, the 

more the virus can be controlled (Zuniga et al., 2006). The fact that recognition of Gag 

was dominant in HIV-1 singly infected individuals in this dissertation, and this was not 

the case in HIV-1 infected patients that were co-infected with TB, may have an impact on 

the control of HIV-1. However, the magnitude of response to Gag was not significantly 

affected by TB co-infection. These data provide an understanding of factors that may 

possibly skew the dominance of an effective HIV-1 specific immune response, and co-

infection with other pathogens should therefore be considered when peptide based 

vaccines are designed. The intracellular cytokine staining (ICS) method proved to be 

effective for confirmation of T cell responses observed from the ELISPOT, and it had an 

advantage of identifying CD4+ and CD8+ lymphocytes that respond to specific HIV-1 

peptides. HIV-1–specific responses were largely mediated by CD8+ cytotoxic T 

lymphocytes. Even though this method was only used to measure HIV-1 –specific cells in 

this dissertation, the use of ICS can be extended  to analyse the lineage of HIV-1-specific 
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T cells which provides valuable information on the functionality of various T cell subsets 

as well as  differentiated cells and their quality in  HIV-1 control.    

 

Some previously reported studies demonstrated no correlation between HIV-1-specific 

CTL responses and viraemia (Addo et al., 2003, Peretz et al 2005), whereas some have 

shown that patients who mounted strong gp160-specific responses, as measured by the 

ELISPOT assay showed rapid reduction of acute plasma viraemia (Borrow et al., 1994) 

and others have reported an important role of HIV-1 Gag p24-immune responses in the 

control of viraemia and no restraint of viral load from responses to Nef (Novinsky et al., 

2003, Edwards et al., 2002). Preferential targeting of Gag has been previously shown to 

be associated with low viraemia in HIV-1 subtype C infected individuals (Masemola et 

al., 2004). However, it should be noted that the protective role of HIV-1-specific CTL 

responses predominantly occurs in primary infection (Koup et al., 1994). A progressive 

loss of HIV-1 specific cytolytic activity in the advanced stages of the disease in the 

presence of substantial CTL responses has been reported (Klein et al., 1995, Pantaleo et 

al., 1990). The results from this dissertation supports the former findings, where all the 

markers of HIV-1 disease progression (CD4+ T cell counts and viral load) showed no 

association with measurements of T cell response in HIV-1 infected individuals co-

infected with TB, although there were trends and lack of significance, which may be due 

to small numbers of individuals. Findings from this dissertation showed no effect of HIV-

1 –specific T cell response on the control of viraemia and HIV-1 disease progression in 

the presence of TB. A previously reported longitudinal study revealed that rapid 

progressors were able to mount substantial transient Gag-specific CTL response which 
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disappeared with disease progression (Klein et al., 1995). In this dissertation, HIV-

positive individuals with TB co-infection did not appear to preferentially target Gag. 

Whether this may influence or be an effect of TB disease (infection) would need to be 

further studied. Does the lack of Gag targeting in these individuals relate to more rapid 

disease progression?   
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CONCLUDING REMARKS 
 
 

Various aspects of cellular immunity to HIV-1 were examined in this dissertation, using 

four different cohorts which demonstrated phenotypic changes, including CD8+ T cell 

activation, restricted T cell receptor usage and altered HIV-1 specific responses due to 

co-infection with TB. The data have implications for understanding pathogenesis in HIV 

infected patients co-infected with TB. An array of techniques was applied to measure 

these properties: a) Flow cytometry, b) ICS, c) Immunoscope, d) ELISPOT. Using these 

assays, various aspects examining the characteristics and functionality of T cells were 

explored. 

 

The loss of CD4+ T cells observed in both HIV-1 infected and HIV/TB co-infected 

patients was shown to be caused by HIV-1, and not by TB. There was a remarkable loss 

of naïve CD4+ T cells due to HIV infection, which was driven by viral load. Maintenance 

of high viraemia and low CD4 counts was demonstrated, despite TB co-infection. The 

level of activation in HIV-1 infected individuals was high, regardless of TB co-infection, 

which was also probably driven by HIV plasma RNA load (viral load). The activated T 

cells were sustained, despite TB treatment in HIV/TB co-infected patients, providing 

evidence for advaced stage HIV-1 infection. 

  

In addition to these changes selected expansions of CD8+ T cells expressing Vβ T cell 

receptor were demonstrated. Polyclonal and oligoclonal expansions were noted in both 

HIV-1 and HIV/TB co-infected individuals. Minor polyclonal expansions were also 
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observed in individuals with TB infection only. However, there was no common pattern 

of expanded T cell families observed within HIV-1 single infection or in the presence of 

TB co-infection. Expansion of totally different Vβ families within the same cohort group 

may suggest usage of unique T cell receptors by each individual in response to HIV-1. 

Oligoclonal expansions of T cells observed in some of the patients in this dissertation 

indicate limited and restricted usage of the T cell repertoire, which may impose limited 

recognition of viral variants, leading to immune escape and enhanced viral replication 

and disease progression. Further studies are necessary to determine whether these 

expanded T cell populations can elicit a protective immune response to HIV-1 infection. 

It may also be necessary to examine the diversity of HIV-1 specific clones in the 

presence of opportunistic infection such as mycobacterium tuberculosis.  

 

The TCR repertoire in another cohort of HIV-1 exposed uninfected neonates was 

investigated to assess TCR usage without infection. Oligoclonal and polyclonal 

expansions observed in HIV uninfected babies born to HIV-infected mothers suggested 

that these babies were exposed to HIV-1 antigens in-utero, and that they possess a mature 

T cell repertoire at birth. Future studies are necessary to determine whether T cell 

expansions noted in these neonates are associated with protective immunity to HIV-1 or 

they may merely be a symbol of exposure to antigen.   

 

Analysis of HIV-1 –specific responses in both HIV-1 and HIV/TB co-infected patients 

revealed that CD8+ T cells from both cohorts were able to recognize and respond to one 

or more of the nine HIV-1 Subtype C proteins. Different patterns of recognition observed 
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between the two cohort groups suggest that co-infection with TB may possibly change 

the pattern of recognition across the HIV-1 genome. Shifting of immunodominance was 

observed in the presence of dual infection with HIV and TB. These data may lead to the 

hypothesis that TB co-infection alters patterns of T cell targeting and recognition.  

 

Overall, this study demonstrated high activation of T cells driven by high HIV-1 plasma 

RNA load in response to HIV-1 infection, restricted TCR usage and shifting of 

immunodominant CD8+ T cell responses as a result of co-infection with TB. TB 

treatment had no impact on the loss of naïve T cells or reduction of immune activation. 

This may imply that TB had no role to play in the significant phenotypic alterations 

observed in HIV-1 infected individuals. Thus, combination of TB treatment with 

HAART may be considered a better option in patients with dual infection This 

dissertation further demonstrated that it is possible to detect perturbations in the TCR 

repertoire in likely exposed and HIV uninfected babies, as a result of exposure to 

antigens in utero. It remains to be seen whether these perturbed T cell populations 

provide immune competence upon encounter with antigens at some point after birth. 
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APPENDICES 

APPENDIX 1 

Recipe for Haematology diluent 
 
dH2O 482.2 g  
NaCl  16.8 g 
Kcl  15.6 g 
KH2PO4  141.0 g 
LiCl  25.8 g 
EDTA  21.6 g 
N HCl   75 ml 
 
Recipe for Cell Fixer 
 
PBS + 2% BSA +1.5% Formalin 
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APPENDIX 2 

RNA Verification 

The RNA was extracted from the PBMC samples but no product was seen from cDNA 

amplification in some of the samples. To investigate whether the RNA has not degraded, 

an RNA gel was run following the procedure outlined  below: 

 

RNA Loading Buffer 

• 0.5 M EDTA 4 µl  

• 1% Bromothemol blue 500µl 

• 1% Xylene Cyanol 500µl 

• 100% glycerol 1000µl 

 

10X RNA running buffer  

• 200mM MOPS 20.95g/500ml 

• 50mM NaAc 3M 2.051g/500ml 

• 10mM EDTA 0.35M(PH7.00) 1.861g/500ml 

 

1% Gel mix 

• Agarose 0.4g 

• H2O 27ml 

• 10 X RNA running buffer  4ml 

• Add 8.5ml formaldehyde 

The gel is poured into the gel casting tray and allowed to set at room temperature 
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RNA mix (use 10-20µg RNA) 

• DEPC water 3.3µl 

• 10X RNA running buffer 1.5µl 

• Formamide 7.5µl 

• Formaldehyde 2.7µl 

• RNA loading buffer 1.5µl 

• RNA 10µl 

Final volume = 26µl 

• Heat the mixture at 55oC for 10  minutes 

• Place on ice 

• RNA was then loaded on a gel and run at 30mA. 

• The gel was then stained with Ethidium bromide, rinsed with five changes of water and 

         then photographed (figure 27). The gel showed clearly separated two bands of RNA. 
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APPENDIX 3  
 
A list of TCR primers used and their sequences.  

Primer Sequence 

HuVβ1 ccg cac aac agt tcc ctg act tcg 

HuVβ2 cac aac tat gtt ttg gta tcg tc 

HuVβ3 cgc ttc tcc ctg  att ctg gag tcc 

HuVβ4 ttc cca tca gcc gcc caa acc taa 

HuVβ5 gat caa aac gag agg aca gc 

HuVβ6a gat cca att tca ggt cat act g 

HuVβ6b cag gg(g/c) cca gag ttt ctg ac 

HuVβ7 cct gaa tgc ccc aac agt tct 

HuVβ8 Ggt aca gac aga cca tga tgc 

HuVβ9 ttc cct gga gct tgg tga ctc tgc 

HuVβ11 gtc aac agt ctc cag aat aag g 

HuVβ12 tcc (c/t) cc tca ctc tgg agt c 

HuVβ13a ggt atc gac aag acc cag gca 

HuVβ13b agg ctc atc cat tat tca aat ac 

HuVβ14 ggg ctg ggc tta agg cag atc ctg 

HuVβ15 cag gca cag gct aaa ttc tcc ctg 

HuVβ16 gcc tgc aga act gga gga ttc tgg 

HuVβ17 tcc tct cac tgt gac atc tct cag cct cca 

HuVβ18 ctg ctg aat ttc cca aag agg gcc 

HuVβ20 tgc ccc aga atc tct cag cct cca 

HuVβ21 gga gta gac tcc act ctc aag 

HuVβ22 gat ccg gtc cac aaa gct gg 

HuVβ23 att ctg aac tga aca tga gct cct 

HuCβ1 ggg tgt ggg aga tct ctg c 

HuCβ2 Fam-aca cag cga cct cgg gtg gg 
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APPENDIX  4 

PCR mixture for immunoscope assay 

DEPC-H2O     315µl 

25mM Mg+ (Invitrogen Life Tech)  50µl 

10X Taq buffer (Invitrogen Life Tech)  62µl 

2mM DNTP (Roche Diagnostics)   62µl 

BC Primer (Inqaba Biotechnical Industries) 3µl 

Taq DNA polymerase (Invitrogen Life Tech) 3µl 

CDNA (or DEPC H2O) for control  5µl 

Total mixture     500µl  
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APPENDIX 5 
Preparation of 0.9 M Tris Borate, 20 mM EDTA [10 X TBE] buffer (in-house) 

Tris mw 121.1   1080gm 

Boric acid               550gm    

0.5M EDTA PH 8.0  400ml 

Preparation method: 

Dissolve the TRIS in + 6 litres of water 

Add the Boric acid directly to the solute 

Add water up to 9.5 litres (leave space for EDTA) and shake until dissolved  

Add the EDTA and make up to ten litres 

Filter sterilize with positive pressure - Store at 4oC   

Note:  Use a 293 filter for 3 x 10 litres  

Preparation  of 2% agarose gel and loading of samples: 

• 2g of agarose poured onto- 

• 100ml of TBE in a sterile  glass bottle 

• The gel was heated in a microwave until the mixture was clear 

• The mixture was allowed to cool and poured onto a gel tank with wells created using a  

   gel comb and allowed to set. 

• 5µl  of the product was mixed with 3µl of DNA loading buffer: 

Preparation of DNA  loading buffer: 

To make 1ml: v/v 50% glycerol  500µl 

10 x TBE      100µl 

200µl  0.5% Bromothemol blue and 200µl 0.5% Xylene Cyanol. (Store at -20oC).                                          
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APPENDIX 6 
 

PCR mixture for 24 runoff reactions: 

27.5µl             10X AmpliTaq buffer (Applied Biosystems) 

27.5µl            2mM each DNTPs (Roche)  

33µl 25mM MgCl2  (3mM final- Applied Biosystems)  

3µl         Human 6 FAM labeled cβ-2 primer (Inqaba Biotech)  

128µl                                Sterile water 

1µl                                    AmpliTaq enzyme (Applied Biosystems) 

220 µl                               Total volume of mixture 
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APPENDIX 7 

Running Module for acquisition of samples on a sequencer for immunoscope 

analysis 

• Select dye set D 

• Run temp  50oC 

• Capillary Fill volume 184 

• Pre-run Voltage 12.2 

• Injection voltage 20 

• Run voltage 15 

• Data Delay Time 900 

• Run Time 3250 

• Analysis module is GS400Analysis.gsp 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Appendices 
 

189 

APPENDIX 8 
 
The TCR profile of healthy control babies 
 

Sample 
ID 

Oligoclonal Skewed 
(%) 

Polyclonal Skewed 
(%) 

Polyclonal Gaussian 
(%) 

4863 0 70 30 
4867 0 84 16 
4857 0 7 93 
4835 0 68 32 
4829 0 53 47 
4923 0 83 17 
4855 0 75 25 
4925 0 0 100 
4861 0 45 55 
4827 0 64 36 
4791 0 50 50 
4795 0 63 37 
4831 0 50 50 
4859 0 77 23 
4908 0 0 100 
4797 0 10 90 
2163 0 67 33 
4817 0 31 69 
4833 0 94 6 
4893 0 75 25 
4837 0 100 0 
4897 0 14 86 
4935 0 70 30 
4789 0 74 26 
4933 0 26 74 

mean 0 54 46 
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APPENDIX 9 
 
The TCR profile of HIV uninfected babies born to HIV-1 infected mothers 

Sample 
ID 

Oligoclonal Skewed 
(%) 

Polyclonal Skewed 
(%) 

Polyclonal Gaussian 
(%) 

B1 0 95 5 
B2 0 100 0 
B3 24 76 0 
B4 94 6 0 
B5 0 95 5 
B6 0 100 0 
B7 80 20 0 
B8 86 14 0 
B9 10 90 0 
B10 10 90 0 
B11 0 100 0 
B12 4 91 4 
B13 0 100 0 
B14 75 25 0 
B15 0 100 0 
B16 0 100 0 
B17 83 17 0 
B18 14 86 0 
B19 0 100 0 
B20 67 33 0 

mean 27 72 1 
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APPENDIX 10 

The TCR profile of HIV-1 infected mothers 

Sample 
ID 

Oligoclonal Skewed 
(%) 

Polyclonal Skewed 
(%) 

Polyclonal Gaussian 
(%) 

4000 88 12 0 
4003 75 25 0 
4038 36 64 0 
4139 79 21 0 
4152 33 67 0 
4204 62 38 0 
4211 30 70 0 
4216 5 95 0 
4218 71 29 0 
4222 94 6 0 
4226 100 0 0 
4231 86 14 0 
Mean 63 37 0 
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APPENDIX  11  
 
Cohort groups 

HIV/TB ( freshly thawed)   
SAMPLE ID NUMBER CD4 VL 

JLD 20 136 132001 
LMM 072 446 70764 
BRG 113 1517 500000 
BBS 077 588 164 
NTM 119 374 1008 
ZKC 084 506 17878 
JNM 55 199 33569 
NYJ 060 335 3773 
TMZ 123 385 5547 
MPM 135 216 178465 

   
HIV/TB+ (in vitro expanded) 

SAMPLE ID NUMBER CD4 VL 
IM018    
IM021 177 35413 
IM029 945 6378 
IM030 66 49172 
IM060 939 67166 
IM062 536 5217 
IM066 324 3645 

PMM071 117 545898 
VSG049 990 9010 
NPM100 736 338 
SBK121 691 482 

HIV+ (in-vitro expanded)* 
Dur10 
Dur24 
Dur27 
JHB30 
JHB31 
JHB32 
JHB39 
JHB41 
IM077 
IM080 
IM086 
IM087 
IM089 
IM092 

*Clinical data was not available for the HIV+ in-vitro expanded cohort. 
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APPENDIX 12  

ELISPOT results of HIV-1 singly infected individuals presented as SFU/106 PBMC  

Gag Pol Vif Vpr Tat Rev Vpu Env Nef
Dur10 1364 498 20 0 0 50 0 0 2930
Dur24 206 280 10 0 170 20 40 12 7
Dur27 730 125 240 300 400 0 140 180 24
JHB30 200 197 0 70 0 0 10 10 40
JHB31 522 105 230 0 10 3270 0 76 1526
JHB32 4216 1670 230 360 60 100 120 140 192
JHB39 176 390 380 450 200 1560 590 1196 18
JHB41 116 245 75 110 20 130 10 48 408
IM077 9 33 50 0 77 242 33 128 253
IM080 364 335 1690 0 60 460 0 0 218
IM086 250 130 45 40 10 40 20 10 15
IM087 0 0 74 4 0 4 0 0 349
IM089 116 15 20 530 0 210 0 0 112
IM092 80 305 1150 80 0 0 0 128 908  
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APPENDIX 13 

ELISPOT results of HIV/TB co-infected individuals presented as SFU/106 PBMC  

Gag Pol Vif Vpr Tat Rev Vpu Env Nef
IM018 0 0 0 0 0 300 0 0 0
IM021 14 328 169 0 100 10 20 185 161
IM029 75 103 66.25 40 480 20 50 48 383
IM030 75 422 469 1725 38 62.5 388 729 50
IM060 60 47 120 200 0 0 0 0 113
IM062 60 253 600 0 0 20 0 217 283
IM066 720 1543 2303 0 0 40 0 45 2053
PMM071 50 213 460 1580 0 0 0 260 2555
VSG049 0 1035 5260 0 20 0 160 860 148
NPM100 680 50 0 60 40 0 50 2 0
SBK121 1232 427.5 240 0 20 50 40 80 240  
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APPENDIX 14: ETHICAL CLEARANCE 
 
This study was approved by the University of the Witwatersrand Ethical Committee, 

protocol number M080114. Patients were recruited after informed consent was 

obtained and confidentially of all records ensured. 

 


