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This thesis reviews the essential ingredients of local, time-independent

mixing-length theory, the convective stability of fluid elements in the stellar

interior, the origins and influence of convection zones in stars, and the nu-

merical implementation of convection in some popular stellar evolution codes.

The thesis concludes with a brief discussion of the future role of mixing-length

theory in stellar modelling.
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Chapter 1

Introduction

“It remains to call attention to the chief outstanding difficulty of

our subject.” H. Lamb.

A key problem in stellar astrophysics is understanding the structure and evo-

lution of stars. Such understanding cannot be achieved through observation

alone, but is based on the correlation of model predictions with real observa-

tions. The mathematical models are highly complex. They involve coupled

systems of partial differential equations which do not admit analytic solution

in terms of elementary functions. To explore the properties of these models,

we must resort to numerical solution through computer codes.

Computer models of stellar structure have been severely hampered by sev-

eral key problems. These include the description of stellar convection, the in-

clusion of non-linear effects in stellar pulsation, and the effect of rapid rotation

on the pulsation modes [96]. To date, these problems have been inadequately

addressed by replacing the full theory by highly simplified versions thereof. In

particular, current models of stellar structure do not incorporate in a realistic

way one of the key features of real stars: turbulent convection.

Until recently, stellar models have relied almost exclusively on a semi phe-

nomenological theory of stellar convection, known as mixing-length theory

(MLT) [5]. Recent work in the field has suggested that this theory underes-
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CHAPTER 1. INTRODUCTION 2

timates hugely the rate of energy transport through the stellar material [10].

This has far reaching consequences since the predicted rate of energy transport

impacts severely on the evolution of stars, their ages and lifetimes and conse-

quently also on our understanding of the evolution and structure of galaxies

and of the cosmos.

The modelling and theoretical understanding of this phenomenon has proven

to be a considerable challenge to both theorists and observers. However, dur-

ing the last two decades, rapid advances in computer technology coupled with

observational data of an unprecedented resolution and accuracy has permitted

a new look at the field.

The purpose of this thesis is to review the essential ingredients of mixing

length theory and consider its role in our present understanding of the structure

and evolution of stars.

Physically, convection involves mass motions: hot material moves upward

as cooler, denser material sinks. This often chaotic, overturning motion that

occurs in fluids under special circumstances is an important mode of heat

transfer in nature.

For example, the large-scale movement of air in the atmosphere is a con-

vective phenomenon and is responsible for the distribution of thermal energy

on the Earth’s surface. In the oceans, thermohaline circulation triggered by

differences in the temperature and salinity of water plays an important role in

determining the climate of the Earth. Convection also plays an essential role

in the cores of planets where a dynamo like effect converts mechanical energy

into magnetic energy and is responsible for the planetary magnetic field.

In stars, convection is one of the most important physical processes that

occur and has a strong influence on several stages of stellar evolution. It is the

dominant mode of energy transfer in the cores of moderate to high mass stars

(about F0V or earlier) during the main-sequence phase. This has important

consequences, since the size of a star’s convective core affects its luminosity,
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effective temperature and the lifetime of the corresponding evolutionary phase.

The envelopes of smaller, cooler, main-sequence stars are also dominated

by convection. The extent of these outer convection zones may have an effect

on the surface abundances of different chemical species. In general, the depth

of the convective envelope in stars cooler than about F0-2V increases with

decreasing mass, and stars with masses less than about 0.35M� are thought to

be fully convective. This fully convective state also extends to other low mass

objects in the universe, including brown dwarfs and even giant planets [61].

Convection also influences the late stages of stellar evolution since nearly

all stars develop significant convective envelopes or shells once they leave the

main-sequence. The size of the intermediate convective shells in massive stars

is thought to affect the extension of blue loops in the HR diagram [99] and

convection is even believed to be important in the thin outer atmospheres of

white dwarfs [27].

Convection is an intrinsically non-local, time dependent and 3-dimensional

phenomenon. No truly satisfactory model yet exists to describe it adequately

in stellar environments. This is mostly due to our inability to solve analytically

the Navier-Stokes equations or to produce a full direct numerical simulation

of the behaviour that they predict, and has resulted in the development of

convection theories which approximate the full equations in some way. The

most widely used of these is the mixing-length theory, which has dominated

the treatment of convective heat transport in the stellar interior for several

decades now.

While having served as a useful phenomenological model of the convective

process, MLT is however not without its flaws. The theory is littered with

seemingly arbitrary parameters which have been the source of some disagree-

ment in the literature [60]. One of the major sources of uncertainty in MLT is

the value to be used for the mixing-length itself. However, MLT does provide a

qualitatively reasonable description of convection. Since no truly satisfactory
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prescription currently exists, physicists have been using it for want of a better

theory.

The purpose of this thesis is to examine in detail the elements of mixing-

length theory and its role in stellar models. I begin by discussing the stability

of a fluid element against perturbations of its initial state and derive the cri-

teria needed to determine whether convection will occur. We then discuss the

formation of convection zones in stars and their effects on stellar evolution.

I then consider the history, assumptions and major results of mixing-length

theory. A brief discussion on the role of turbulence follows. I also give a

short summary of the numerical implementation of convection in some popu-

lar stellar evolution codes, and conclude with some remarks on possible future

developments in the field.



Chapter 2

Convective Stability

“...let us say that stability depends on the ability of the gas - par-

ticles and photons - at any given point to sustain the weight of

the overlying layers by means of the pressure it exerts, so as to

maintain exact balance despite possible perturbations” D. Prialnik.

The question of whether or not convection occurs in a certain region of a

star is really a question of stability. This is because the occurence of convection

at a particular level depends on whether or not a given mass element will be

stable against local perturbations of its thermodynamic state at that level. If

it is not, then these fluctuations may give rise to the large macroscopic motions

of the stellar material which we identify as convection. In this chapter we will

consider the motion of such elements, and derive criteria for the convective

stability of a given region of the star.

2.1 Dynamical Stability

The dynamical stability of a displaced mass element is based on the assumption

that the motion of the element is adiabatic. Consider a mass element situated

a distance r from the stellar centre. Suppose that it is slightly hotter than

its surroundings. One might then also expect the element to have a pressure

5



CHAPTER 2. CONVECTIVE STABILITY 6

excess over its surroundings but were this so, the element would immediately

expand at the local speed of sound until a state of pressure equilibrium is

achieved. Since this expansion occurs much more rapidly than any other mo-

tion of the element, we will assume that it maintains the same pressure as its

immediate surroundings throughout its lifetime. We will also assume that both

the element and its surroundings obey the ideal gas law. Thus, the element’s

temperature excess implies that it should be lighter than its surroundings and

hence be driven radially outwards in the star under the action of buoyancy

forces.

Consider an element at position r that is initially in complete equilibrium

with its surroundings. Suppose that this element is now placed at position

r + ∆r. Denote by Dρ the density difference between the element and its

surroundings. Then Dρ at r + ∆r will be given by,

Dρ =

[(
dρ

dr

)
e

−
(
dρ

dr

)
s

]
∆r (2.1.1)

where we have used the subscripts e and s to distinguish between quantities

which refer to the element and its surroundings respectively.

The value of Dρ will determine the effect of the buoyancy force and whether

the element is stable in its new position. There are clearly two situations of

interest here. When Dρ < 0 the element is lighter than its surroundings and

the buoyancy force B = −gDρ > 0. This is an unstable situation since the

element is driven further from its equilibrium position and will thus continue

to rise. When Dρ > 0, B < 0 and the element, which is now heavier than its

new surroundings, falls back to its original position. In this case, the layer is

said to be stable.

The condition for stability is therefore,(
dρ

dr

)
e

>

(
dρ

dr

)
s

(2.1.2)

In practice, it is inconvenient to use the criterion in this form since the structure

equations do not contain explicity any term involving density gradients. It
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would be preferable therefore to express them in terms of something that does

appear explicitly in the equations. The natural choice is the temperature

gradient. To do this, we use the equation of state ρ = ρ (P, T, µ) in the

following differential form:

dρ

ρ
= α

dP

P
− δdT

T
+ ϕ

dµ

µ
(2.1.3)

where

α ≡
(
∂ ln ρ

∂ lnP

)
T

(2.1.4)

δ ≡ −
(
∂ ln ρ

∂ lnT

)
µ

(2.1.5)

ϕ ≡
(
∂ ln ρ

∂ lnµ

)
P

(2.1.6)

Here the subscripts refer to the fact that the derivatives are being taken at

constant T , µ and P .

We ignore the effects of ionization and assume that the mean molecular

weight µ varies only with change of chemical composition, so that for an el-

ement that moves without change, we have dµ = 0. The composition of the

surroundings however, may not be constant since in general the composition

may be stratified in layers.

Using (2.1.3) and applying the condition for pressure equilibrium, we can

rewrite (2.1.2) in the form(
δ

T

dT

dr

)
e

−
(
δ

T

dT

dr

)
s

+

(
ϕ

µ

dµ

dr

)
s

< 0 (2.1.7)

It is customary at this point to multiply the terms in this inequality by the

pressure scale height, Hp, which is defined to be

Hp = −P dr

dP
(2.1.8)

in order to convert the gradients with respect to distance into gradients with

respect to pressure. This is preferred since pressure is a state variable and
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is thus a more direct measure of the thermodynamic state of the material in

any given layer of the star. Also, since pressure decreases monotonically with

distance away from the core, it may be used as a measure of position in the

stellar interior. Doing this yields(
d lnT

d lnP

)
s

<

(
d lnT

d lnP

)
e

+
ϕ

δ

(
d lnµ

d lnP

)
s

(2.1.9)

We now define the following three derivatives:

∇ =

(
d lnT

d lnP

)
s

, ∇e =

(
d lnT

d lnP

)
e

, ∇µ =

(
d lnµ

d lnP

)
s

(2.1.10)

With these definitions (2.1.9) becomes

∇ < ∇e +
ϕ

δ
∇µ (2.1.11)

Consider a layer in the star where all the energy is transported via radiation

so that ∇ = ∇rad. According to (2.1.11) such a layer is stable if

∇rad < ∇ad +
ϕ

δ
∇µ (2.1.12)

(assuming that the convecting elements move adiabatically1). Equation (2.1.12)

is known as the Ledoux criterion for dynamical stability [54]. If it is violated,

the layer is said to be dynamically unstable and small perturbations will tend

to grow until convection occurs. This could be caused by one of two things:

either ∇rad has become too high (which can happen if there is a large flux

through the medium, or if the stellar material increases in opacity) or ∇ad has

become too low.

In a region of homogenous chemical composition, ∇µ = 0 and (2.1.12)

reduces to

∇rad < ∇ad (2.1.13)

which is known as the Schwarzschild criterion [76].

Note that both (2.1.12) and (2.1.13) are strictly local criteria. In certain

situations, these criteria may not be sufficient to determine the stability of a

1See Appendix (A)
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given layer since they only incorporate the effect of local forces on the con-

vective process. However, convective motions may be coupled (via momentum

transfer, inertia and the equation of continuity) to the neighbouring layers of

the star. In extreme cases, such as those involving semi-convection 2 and the

determination of the boundary of a convective zone, one should also take into

account the reaction of nearby layers to a local perturbation.

The above criteria are in fact equivalent to the statement that the fluid will

be convectively unstable in those regions where the entropy decreases outward

(dS/dr < 0). In other words, convection does not take place in hydrostatic

stars where the entropy increases outward. It will be shown that in regions

where the convection is very efficient, ∇ is only slightly greater than ∇ad, and

the entropy is nearly constant with height.

A rigorous study of the conditions for stability against convection, based

on a detailed linear stability analysis, has been published by Lebovitz [52].

This analysis yields the same criterion for convective instability as does the

Schwarzschild criterion, whose validity in the case of a general relativistic fluid

has been established by Chandrasekhar [14] and Thorne [89]

2.1.1 The Relationship Between Stability and Entropy

From the first and second laws of thermodynamics we have that for infinitesi-

mal, reversible changes,

TdS = dE − P

ρ2
dρ (2.1.14)

We now express E and ρ in terms of P and T . The differentials may then

be expanded into partials with respect to P and T and transformed using

standard thermodynamic rules 3 to obtain

dS

dr
= cp (∇−∇ad)

d lnP

dr
(2.1.15)

2See Section (2.3)
3See for example, [49]
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where we have made use of the fact that 4

∇ad =
Pδ

Tρcp
(2.1.16)

It is the presence of (∇−∇ad) in (2.1.15) that is of interest here. Since

hydrostatic equilibrium requires that d lnP/dr 6 0, the following must be

true:

• If the star is locally radiative so that ∇ < ∇ad, then dS/dr > 0 and the

entropy increases radially outwards.

• If the star is convectively unstable so that ∇ > ∇ad, then dS/dr < 0

and the entropy decreases outward. In the special case of highly efficient

convection, ∇ exceeds ∇ad by a negligible amount and we may thus set

∇ = ∇ad. For this situation, S is effectively constant throughout the

convective region.

2.1.2 The Brunt-Väisälä Frequency

In a dynamically stable layer, a displaced mass element will be drawn back to

its original position by buoyancy and will in general overshoot this point as a

result of the excess momentum gained during its motion. This results in an

oscillation around an equilibrium level defined by its original position. The

frequency of this oscillation is known as the Brunt-Väisälä frequency and we

now proceed to derive an expression for it.

Consider a mass element displaced radially from its equilibrium position

by an amount ∆r. The excess density Dρ possessed by the element over its

surroundings at this position is given by (2.1.1). Assuming that the element

undergoes no changes in its composition and maintains a state of pressure

equilibrium, we can use (2.1.3) to show that

Dρ = ρ

[
−
(
δ

T

dT

dr

)
e

+

(
δ

T

dT

dr

)
s

−
(
ϕ

µ

dµ

dr

)
s

]
∆r (2.1.17)

4See also Appendix (A)
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Using (2.1.8) and (2.1.10) we then have the following

Dρ =
ρδ

Hp

[(
d lnT

d lnP

)
e

−
(
d lnT

d lnP

)
s

+
ϕ

δ

(
d lnµ

d lnP

)
s

]
∆r (2.1.18)

=
ρδ

Hp

[∇ad −∇+∇µ] ∆r (2.1.19)

Note that we have assumed that the element moves adiabatically throughout

its motion and hence ∇e = ∇ad in the equation above. The equation of motion

of the element is then given by

∂2 (∆r)

∂t2
= − gδ

Hp

[
∇ad −∇+

ϕ

δ
∇µ

]
∆r (2.1.20)

The solution of (2.1.20) is of the form

∆r = r0e
iωt (2.1.21)

and the frequency ω of this oscillation is the Brunt-Väisälä frequency men-

tioned previously. Clearly

ω =

√
gδ

Hp

[
∇ad −∇+

ϕ

δ
∇µ

]
(2.1.22)

In an unstable layer, the Ledoux criterion is violated and we see from (2.1.22)

that this results in a non-real value of ω. This implies that, in such a situation,

the displaced mass element moves away exponentially instead of oscillating.

2.2 Vibrational Stability

We now consider the effects of deviations from adiabaticity on the motion of

a mass element. We will assume that these deviations are small enough that

the thermal adjustment time of the element is much larger than its period of

oscillation.

The temperature excess of the element over its surroundings is given by

DT =

[(
dT

dr

)
e

−
(
dT

dr

)
s

]
∆r (2.2.1)
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= − T

Hp

(∇e −∇) ∆r (2.2.2)

If DT > 0, the element will lose heat to its surroundings via radiation. If

DT < 0 it will gain heat. For a dynamically stable layer that is also chemically

homogenous, we have from (2.1.11) that ∇e −∇ > 0. This then implies that

DT < 0 for ∆r > 0 in (2.2.2). The element therefore gains heat from its

surroundings by radiation. This has the effect of reducing ∇e−∇, Dρ and the

restoring force, with the net result that the element oscillates with a slowly

decreasing amplitude.

If the layer is dynamically stable but chemically inhomogeneous, we could

have a situation in which ∇µ is so large that ∇e−∇ < 0 in spite of (2.1.11). In

this case DT > 0 for ∆r > 0 in (2.2.2), and the displaced element loses heat to

its surroundings. This has the effect of increasing ∇e−∇, Dρ and the restoring

force, with the result that the element oscillates with a slowly increasing am-

plitude. This vibrational instability may lead to a chemical mixing of elements

within the star, resulting in the overall reduction or perhaps even destruction

of the gradient ∇µ. It is unclear at present, whether a local analysis suffices

in such critical situations. It may be that the reaction of other layers in the

star may provide enough damping to suppress this type of instability [1].

We must therefore distinguish between dynamical stability and vibrational

stability. The former refers to the stability of a displaced mass which is assumed

to be moving adiabatically, while the latter takes into account heat exchanges

between the element and its surroundings. It is possible to have a layer in

the star that is dynamically stable and yet vibrationally unstable. This occurs

whenever the actual temperature gradient for that region is such that the

Ledoux criterion is satisfied but the Schwarzschild criterion is not i.e.

∇ad < ∇ < ∇ad +
ϕ

δ
∇µ (2.2.3)

The unique effects that arise in this situation are the source of debate in the

literature and will be discussed below.
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2.3 Semi-convection

In 1958, Schwarzschild and Härm [77] found that during central hydrogen

burning, the convective cores of massive (M > 10M�) stars leave behind a

certain hydrogen profile as they retreat. This results in a region of outwardly

increasing hydrogen content such that,

∇µ > 0 (2.3.1)

and the layer is dynamically stable. Inside the core, we expect ∇ to be very

close to ∇ad and outside the core we must have ∇ = ∇rad. By considering the

stability criteria presented in section (2.1), it can be shown that

∇ad < ∇rad < ∇ad +
ϕ

δ
∇µ (2.3.2)

which implies that the layer is vibrationally unstable. Thus, a mass element

which has been slighly perturbed will tend to oscillate with increasing ampli-

tude, and will penetrate deeper and deeper into regions of different chemical

composition. The mixing that occurs as a result of this process is known as

semi-convection. As the central convection zone evolves, it creates a compo-

sition discontinuity at its boundary which, once sufficiently large, overcomes

the effects of viscosity and causes the compositional changes to propogate as

waves of chemical discontinuity from the convective core into the region where

the gas still has its original composition.

An accurate physical model of semi-convection requires an understanding

of non-linear hydrodynamic stability and the effects of turbulence near the

boundary of the convective instability. Since these processes are very poorly

understood at present, modern stellar evolution models have had to resort to

a series of approximations in their treatment of semi-convection [80], [22], [85].

Langer et al. [53] have modelled this phenomenon as a diffusion process with

a diffusion coefficient, Dsc, given by

Dsc =
asc
6
Dr

∇−∇ad

∇ad +∇µ −∇
(2.3.3)
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where Dr is the diffusion coefficient corresponding to energy transport by ra-

diation, ie.

Dr =
4

3

c

κρ

aT 3

cρ
(2.3.4)

and a is the radiation density constant. The quantity, asc, in equation (2.3.3)

is an adjustable free parameter. They have suggested that values around 0.1

are suitable for massive stars and have also found that the resulting chemical

profile depends on the ratio of the diffusion time-scale to the adjustment time

of the star (ie. the timescale on which the stellar properties change).

Several other prescriptions for the treatment of semi-convection also ex-

ist, such as those suggested by Robertson and Faulkner [73], Castellani et al.

[13], and Spruit [84]. Whichever method is used, the outcome is the same,

namely, the smoothing of the composition gradients at the interface between

the radiative and convective zones.

Caloi and Mazitelli [9] have also shown that, in the case of core helium burn-

ing, an appropriate implementation of overshooting can mimic semi-convection

reasonably well, and is better suited to numerical simulations. On the other

hand, Mowlavi and Forestini [66] find that for stars of mass 10M� 6 M 6

20M�, both overshooting and semi-convection considerably modify the struc-

tural evolution of the star after core hydrogen burning has occured. By making

a comparison between their calculated evolutionary tracks and observational

data, they conclude that semi-convection is in fact more important.

Detailed discussions of these issues can be found in the papers by Chiosi

[19], Trimble [90] and Simpson [80].

2.4 Secular Stability

Consider a mass element situated in a region of different but homogenous

chemical composition such that Dµ 6= 0 but ∇µ = 0. The element is assumed

to be in mechanical equilibrium with its surroundings. From (2.1.3) we must
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then have that
DT

T
=
ϕ

δ

Dµ

µ
(2.4.1)

For Dµ > 0, the element radiates energy into its surroundings thereby increas-

ing its density. It then sinks (or rises for Dµ < 0) with a velocity vµ such that

DT always remains constant according to (2.4.1).

The temperature of the element changes as a result of radiation at a rate

of −DT/τadj where τadj is its thermal adjustment time. It also changes as a

result of the adiabatic compression (or expansion) that the element undergoes

in order to maintain pressure equilibrium with its surroundings. We therefore

have that
1

T

∂

∂t
DT = − 1

T

DT

τadj
+ (∇ad −∇)

∂ lnP

∂t
(2.4.2)

We now deduce an expression for vµ by noting that the rate of change of

pressure experienced by the element can be expressed in terms of its velocity

and the pressure scale height as follows,

∂ lnP

∂t
= − vµ

Hp

(2.4.3)

Note also that
∂

∂t
DT = 0 (2.4.4)

from (2.4.1), since Dµ does not vary in a chemically homogeneous region.

With this in mind we can solve equations (2.4.2) and (2.4.3) simultaneously

to obtain

vµ = − Hp

(∇ad −∇) τadj

ϕ

δ

Dµ

µ
(2.4.5)

Thus for Dµ > 0 and ∇ad > ∇, the element sinks through a dynamically

stable surrounding at a velocity vµ which depends on the thermal adjustment

time for radiative losses.

Secular instabilities of the kind discussed here can occur, for example, in

stars of roughly one solar mass [46]. Once the hydrogen in the core of such stars

has been converted into helium, the central region is cooled by the outward
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flux of neutrinos which carry away energy without interacting with the stellar

matter. The temperature in these stars is therefore highest somewhere off-

centre. If helium burning is ignited in the region of maximum temperature, a

carbon shell will eventually form around the core. Carbon “fingers” or plumes

will grow and sink inwards towards the stellar centre since the carbon shell will

have a higher molecular weight than the regions below it. This phenomenon

can of course also occur with elements heavier than carbon in the later stages

of stellar evolution [32].

2.5 Reasons for Convective Instabilities

2.5.1 Instabilities due to a large energy flux F

According to (2.1.13), convection will occur in a chemically homogeneous layer

whenever

∇rad > ∇ad (2.5.1)

As mentioned previously, this could be the result of either ∇rad becoming very

large or ∇ad becoming very small. Let us begin by considering the conditions

under which the former is true.

The local value of ∇rad can be expressed in terms of the total flux, F , at

some point r in the star as 5

∇rad =
3FκP

4acT 4g
(2.5.2)

where κ is the opacity of the stellar material at that point and c is the speed of

light. Thus, one way in which the radiative gradient can become large relative

to ∇ad is if F becomes very large. This can happen close to the core of massive

stars where the central temperatures are so high that the CNO cycle serves as

the primary source of energy [23]. Due to the extreme temperature sensitivity

of this process, the energy generation will be strongly concentrated towards

5See section (4.2)
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the stellar centre. This implies that a large energy flux should exist there

since the total luminosity will be generated within a sphere of extremely small

radius relative to the total stellar radius, R. This phenomenon gives rise to the

convective instability responsible for convection in the central zone of massive

stars.

2.5.2 Instabilities due to a steep increase in κ

From (2.5.2) we see that convective instabilities can also occur if κ becomes

large while P also remains large. This will happen if opacity increases steeply

with depth. An example of this occurs in the temperature region of stars in

which hydrogen begins to ionize. Because hydrogen is abundant, even 0, 1%

ionization increases the number of free electrons by a factor of 10. The in-

creased electron density leads to a rise in the H− absorption coefficient, re-

sulting in a very steep increase in κ. The coefficient also increases, as a result

of the increasing excitation of the second and third energy levels of hydrogen.

∇rad therefore becomes extremely large, giving rise to a convective instability

in this region of the star.

Hydrogen convection zones are usually found to occur next to helium con-

vection zones. In fact, in most stars, these zones eventually merge [51]. While

on the main sequence, it is only in early F stars that the two zones remain

distinct [6]. Below these zones, we find layers that are in radiative equilibrium

down to the core, except in the case of very cool main sequence stars. In these,

the hydrogen and helium convection zones can be so extended that they may

even approach the stellar centre [28]. It is interesting to note that, in gen-

eral, convection sets in at lower optical depths for stars with higher effective

temperatures 6.

6See section (3.1)
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2.5.3 Instabilities due to small values of ∇ad

The adiabatic temperature gradient can become very small in temperature

regions where an abundant element like hydrogen or helium ionizes. As dis-

cussed in section (2.5.2), these ionization zones correspond to large values of

κ and hence of ∇rad. These are thus regions of convective instability. Large

values of ∇rad and small values of ∇ad therefore occur simultaneously in the

same temperature range and are hence jointly responsible for the occurence of

these zones. The small values of ∇ad in these areas increases the extent of the

convection zone, which ceases to exist once the ionization is complete.

Small values of ∇ad are also found in the surface regions of M stars, where

convection zones arise due to the dissociation of hydrogen molecules and the

large specific heat of the stellar material there [6]. These unstable zones are

separated from the hydrogen convection zones by regions that are in radiative

equilibrium.



Chapter 3

Convection Zones

“The surface layers of most stars are influenced by convection. This

may be considered unfortunate from the point of view of the the-

ory of stellar structure and evolution, where the lack of a proper

description of convection has, for many years, represented a major

uncertainty.” A. Nordlund.

In general, the atmospheres of stars of spectral types A and earlier are in

radiative equilibrium, while convection becomes important in the middle F

stars, and dominates in later types. The existence of convection zones in stars

is a result of the temperature and density dependence of the opacity as well

as the reduction of the adiabatic temperature gradient caused by the partial

ionization of hydrogen. The importance of these mechanisms and the existence

of extensive hydrogen convection zones in stellar envelopes was first recognized

by Unsöld [92], who found that the amount of H− present in the hydrogen

ionization zone depends on the electron number density, which increases very

rapidly with increasing optical depth in cool stars. Thus, opacity must also

increase rapidly due to the presence of H− ions. As will be shown below, this

causes convection.

19
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3.1 The Onset of Convection in Stellar

Envelopes

3.1.1 Constant opacity

A reason that convection is favoured in ionization zones is that the temperature

gradient needed for convection1 is not very steep there. We will show that this

is due to the fact that the adiabatic index, γ, is close to unity in these regions

of the star. The larger the number of degrees of freedom available to the

gas particles, the smaller the value of γ. Thus, if a gas particle can absorb

heat by exciting internal degrees of freedom such as vibration or rotation, γ is

smaller and the gradient becomes less steep. This is also the case if heat can

be absorbed by the dissociation of molecules or the ionization of atoms. This

means that a rising bubble of gas does not cool very rapidly and is more likely

to remain bouyant if electron recombination can provide some of the energy

needed for it to expand.

The Eddington relation between the temperature and optical depth states

that

T 4 =
T 4
eff

2

(
1 +

3

2
τ

)
(3.1.1)

where Teff is the effective temperature and τ is the optical depth. This can

be rewritten as

4 lnT = ln

(
1

2
T 4
eff

)
+ ln

(
1 +

3

2
τ

)
(3.1.2)

from which we have that
dT

dτ
=

3T

8 + 12τ
(3.1.3)

For convection to occur, the radiative gradient must exceed the adiabatic gra-

dient, which is given by (
dT

dτ

)
ad

=
γ − 1

γ

T

P

dP

dτ
(3.1.4)

1See appendix (A)
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Note that both the temperature and pressure gradients in this equation are

negative. Convection requires that the temperature decrease rapidly with

height. This is determined by the value of the adiabatic index γ and the

fall-off in pressure. We now deduce the value of γ necessary for convection to

occur.

The condition that the surface layer be in hydrostatic equilibrium implies

that
dP

dτ
=
ρg

κ
(3.1.5)

Integration of (3.1.5) between τ = 0 and τ (assuming that κ is independent of

τ) yields

P =
ρgτ

κ
(3.1.6)

which implies that
1

P

dP

dτ
=

1

τ
(3.1.7)

Substituting this result into (3.1.4) gives us(
dT

dτ

)
ad

=
γ − 1

γ

T

τ
(3.1.8)

Equations (3.1.3) and (3.1.7) can now be used to express the Schwarzschild

criterion for convective instability as

3τ

8 + 12τ
>
γ − 1

γ
(3.1.9)

The maximum value of the left hand side of this inequality occurs when τ →∞.

It follows then that when κ is independent of T and ρ (or P ), that the condition

for convection to occur is

γ <
4

3
(3.1.10)

3.1.2 Variable opacity

In cool stars, the opacity tends to decrease rather steeply as the surface is

approached. We show that if the opacity increases with increasing pressure,

then convection occurs at relatively small optical depths.
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κ is known to obey a power law of the form:

κ = κ0P
x (3.1.11)

where κ0 and x are positive integers. Equation (3.1.5) can thus be written as

(κ0P
x)
dP

dτ
= ρg (3.1.12)

Integrating this equation between τ = 0 and τ and solving for P yields,

P =
ρgτ (x+ 1)

κ0P x
(3.1.13)

Equations (3.1.12) and (3.1.13) imply that

1

P

dP

dτ
=

1

(x+ 1) τ
(3.1.14)

which we now use to determine the adiabatic temperature gradient in (3.1.4)

to be (
dT

dτ

)
ad

=
γ − 1

γ

T

(x+ 1) τ
(3.1.15)

Equations (3.1.3) and (3.1.15) can now be used to express the Schwarzschild

criterion for convective instability as

3τ

8 + 12τ
>

γ − 1

(x+ 1) γ
(3.1.16)

Since the maximum value of the left hand side of this inequality is 1/4, it

follows that convection occurs whenever

x+ 1

4
>
γ − 1

γ
(3.1.17)

This implies that if γ = 5/3 (as is the case for a non-relativistic, ideal monatomic

gas), the condition for convection is

x >
3

5
(3.1.18)

It is interesting to note that since dynamical stability requires γ > 4/3 and

since γ is at most 5/3, a star in hydrostatic equilibrium must satisfy

4

3
< γ 6

5

3
(3.1.19)
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which means that if the configuration of a star is to be approximated by a

polytrope, the polytropic index, n, may only vary between 1.5 and 3, due to

the fact that

n =
1

γ − 1
(3.1.20)

3.2 The Depth of the Outer Convection

Zones

The envelopes in early stars are generally in a state of radiative equilibrium due

to the complete ionization of hydrogen (thin, weak convection zones associated

with He0 and He+ ionization do exist, but only transport an extremely small

percentage of the flux). In A stars, thin hydrogen convection zones begin to

develop at shallow depths (τ = 0.2), while in F stars the convection zone starts

somewhat deeper, and is thicker. By types F2 to F5 convection will transport

essentially all of the flux within the zone and for later types, the zone extends

deeper into the star as the convection becomes more efficient. In M stars the

convective envelope is so extensive that it determines the structure of the star

as a whole [56].

Knowledge of the extent of the convective regions in a star is thus of ex-

treme importance for our understanding of its chemical evolution. Determining

the depth of the outer convection zones, however, is not a trivial matter since

the depth of these regions depends very sensitively on the efficiency of the

convective energy transport there. The difference in depth obtained for dif-

ferent efficiencies is not small. This is evidenced by the fact that Unsöld [92]

calculated a depth of 2000km for the outer convection zone of the Sun when

assuming a temperature stratification corresponding to radiative equilibrium,

whereas Biermann [2], who assumed an adiabatic temperature stratification,

determined the depth to be 20000km. We can at least qualitatively say, that

the lower boundary of these zones must occur where the ionization of the most
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abundant elements is nearly complete, since not only does κ decrease appre-

ciably once ionization ceases, but we also have that the average κ decreases

for deeper layers as κ ∝ T−3.5 from Kramers’ Law.

3.2.1 Dependence of the convection zone depth on Teff

From (3.1.1) we see that stars with lower effective temperatures have actual

temperatures that increase more slowly with τ . Since the absorption coeffi-

cients are smaller at lower temperatures, a given value of τ and T will occur at

a greater depth. Thus, the onset of hydrogen ionization occurs deeper within

the stellar interior for stars with lower effective temperatures. This implies

that the resulting convection zones should have higher pressures, smaller tem-

perature gradients, and therefore more efficient convection. Also, the depth

of the zone increases since the ionization is completed deeper within the star,

where the temperatures and pressures are higher. It may even be possible that

for very cool main-sequence stars, the outer convection zones extend down to

the core.

Similarly, for stars with larger effective temperatures, we expect the ion-

ization zones to start higher up in the atmosphere. For early F stars the con-

vectively unstable region may even start at optical depths as high as τ = 0.2,

which must mean that the convection that occurs there is inefficient (because

of the extremely low pressures). For Teff ' 7600K at spectral type A9 or F0,

the temperature stratification no longer differs from the radiative equilibrium

stratification and the convection zones become very thin [7].

3.2.2 The Lithium problem

Since the efficiency of the convective energy transport depends on the charac-

teristic length, l, of the moving elements, so too must the depth of the con-

vection zone. In many parts of the Hertzsprung-Russel diagram (HRD), the

computed stellar strucuture depends very sensitively the characteristic length,
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making it an important quantity to determine. In principle, we should be able

to determine l if we can somehow measure the depth of the convection zone.

Convection zones tend to become thoroughly mixed in relatively short pe-

riods of time due to the turbulent motions that occur there. We can therefore

assume that the composition in a convective region always remains homoge-

nous. This has important consequences for many stages of stellar evolution.

For example, remnants of earlier nuclear burnings may be brought to the sur-

face, fresh fuel may be carried into a zone of nuclear burning, or discontinuities

can be produced that drastically influence the later evolution of the star.

We generally find a certain amount of overshoot at the boundaries of these

zones due to the excess momentum carried by convecting particles. This effect

becomes particularly important when trying to determine the abundance of

lithium in the stellar atmosphere. For temperatures above 2 × 106K, the Li6

nuclei are destroyed in reactions with protons,

Li6 + H1 → He4 + He3 (3.2.1)

and Li7 starts to burn at temperatures in excess of 2.4 × 106K according to

the following reaction

Li7 + H1 → 2He4 (3.2.2)

The fact that we do not observe any Li6 content in the solar spectrum suggests

that outer convection zone of the Sun must extend down to regions where the

temperature is in excess of 2 × 106 K. If this is the case, then Li6 would be

mixed down to layers which are hot enough to destroy it. On the other hand,

we do observe a weak Li7 line, but the solar abundance of this isotope is about

100 times smaller than that observed in the most lithium rich stars, the young

T Tauri. It appears that the solar convection zone does not quite reach down

to layers with temperatures that are in excess of 2.4 × 106 K, however, some

mixing does still occur at those depths as a result of overshoot and this reduces

the Li7 content on a timescale of 109 years [7].
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By assuming that l = Hp, one can calculate that the solar convection zone

should reach down to a temperature of approximately 2 × 106K. This agrees

with the destruction of Li6 and the slow overshoot mixing that destoys Li7. For

l = 2Hp it would extend as far as 3 million kelvin, which would be incompatible

with the presence of any Li7 in the solar atmosphere.

Li6 has not been detected in any of the main-sequence stars, but Li7 has

been observed in many of them [15]. Note that, in general, we expect the

timescale on which the element is destroyed to be smaller for cooler stars due

to them having deeper convection zones. Difficulties however arise when trying

to understand the structure of F stars. Calculations show that the convection

zones in these stars do not reach down to layers of 2 × 106 K, nor do we

expect any overshoot mixing down to layers with temperatures of 2.4 × 106

K. Convective mixing cannot be the explanation for the destruction of lithium

in these stars. Furthermore, observations by Boesgaard and Tropicco [4] show

that in some young cluster stars, the depletion of lithium in the surface regions

is largest for spectral types around F5, a feature which cannot be accurately

explained. It may be that rotation induced mixing and diffusion are important

phenomena in these stars.

3.3 Convective Cores

Convection can also be an important effect in the central part of a star where

thermonuclear energy is generated in a small region near the stellar centre. As

discussed in section (2.5.1), convection generally occurs in the cores of massive

main-sequence stars, where hydrogen burning takes place via the extremely

temperature sensitive CNO cycle. The convective core increases in extent the

larger the star and can cover as much as 70% of the stellar mass in stars of

50M� or more. As the total stellar mass, M , increases further, the convec-

tive core will eventually approach the surface, resulting in stars that are fully
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convective.

In less massive stars, like the Sun, the central energy generating regions

are much larger due to the burning of hydrogen via the p-p chain (which is

less temperature dependent). ∇rad is therefore much smaller near the core and

convection is less likely to occur.

The above observations can be described quantitatively by noting that

the core of a star will become convective if the power generated per unit

mass within it exceeds a certain critical value. To find this critical value, we

equate the radiative and adiabatic temperature gradients, (2.5.2) and (3.1.4)

respectively, and make use of the condition for hydrostatic equilibrium, (3.1.5),

to obtain
3κρ

4acT 4

L(r)

4πr2
=

(γ − 1)

γ

T

P

ρGm(r)

r2
(3.3.1)

where L(r) and m(r) are respectively the luminosity and mass at a distance r

from the centre of the star and G is the gravitational constant. Using the fact

that acT 4 is equivalent to the radiation pressure, Pr, we find that the value of

L(r)/m(r) needed for convection is

L(r)

m(r)
=

(γ − 1)

γ

16πGc

κ

Pr
P

(3.3.2)

Thus, a convective core of radius r will be produced if the power generated

per unit mass within r exceeds this limit. If L(r)/m(r) is smaller than this

value, energy can be transported from the core by radiative diffusion without

inducing convection.

3.4 The Influence of Convection Zones on

Stellar Structure

There are two important ways in which convection can change the structure

of a star:

• The radius of the star becomes smaller
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• There is an increase in the amount of energy generation

If the outward energy transport due to convection is increased then the star

should tend to lose more energy than is generated and hence cool off. However,

this does not actually happen, as the resulting reduction in internal gas pres-

sure would cause the gravitational pull to exceed the pressure force. The star

instead contracts, increasing its internal temperature and hence the rate of en-

ergy generation, ε. This allows it to balance the increase in energy loss and thus

return to a state of thermal equilibrium. In doing so its radius decreases and

luminosity increases, implying that its effective temperature becomes larger.

3.4.1 The Hayashi line

The Hayashi line (HL) is defined as the locus on the HRD of fully convective

stars which correspond to a given mass and chemical composition. In deriving

some properties of the HL we will assume that the temperature throughout

the star is stratified adiabatically and shall neglect the depression of ∇ad that

occurs near the surface due to the partial ionization of H and He. ∇ad will

therefore be taken as being constant throughout the star’s interior. These

simplifications will certainly introduce errors in the P-T stratification, however,

they will be nearly the same for neighbouring models and one can hope to

obtain at least the correct differential behaviour. We now proceed to model

the star as a simple polytrope with

P = K
′
T 1+n (3.4.1)

where the polytropic index, n, is defined by

n =
1−∇ad

∇ad

(3.4.2)

and K
′

is some constant. Note that for an ideal gas, ∇ad = 0.4, in which case

n = 3/2.
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In writing down (3.4.1) we note that in the extreme case when convection

continues down to the centre of the star, the constant K
′

cannot be arbitrary

because (3.4.1) must have solutions corresponding to a complete polytropic

model with the appropriate central boundary conditions. In other words, given

M and R, K
′

must satisfy the following well known relation for ideal gas

polytropes,

K
′
= K−n

(
NAk

µ

)1+n

(3.4.3)

where NA and k are Avogadro’s number and the gas constant respectively, and

K =

[
4π

ξn+1
n (−θ′

n)n−1

]1/n

ξ1

G

n+ 1
M1−1/nR−1+3/n (3.4.4)

Recall that θ and ξ are the dimensionless density and radial coordinates re-

spectively. Note that ξ1 denotes the surface value of ξ.

One way to ensure this is to follow the prescription of Schwarzschild [78],

and rewrite the pressure and temperature in terms of the following dimension-

less variables:

p =
4π

G

R4

M2
P (3.4.5)

t =
NAk

G

R

µM
T (3.4.6)

Equation (3.4.1), then becomes

p = E0t
5/2 (3.4.7)

where

E0 = K
′
4π

(
µ

NAk

)5/2

G3/2M1/2R3/2 (3.4.8)

But according to (3.4.3) and (3.4.4)

K
′
=

2.53/2

4π

[
ξ

5/2
3/2

(
−θ′

3/2

)1/2
]
ξ1

(
NAk

µ

)5/2
1

G3/2M1/2R3/2
(3.4.9)

for an ideal gas. Substituting this expression into (3.4.8) gives us

E0 =

(
−125

8
ξ5

3/2θ
′

3/2

)1/2

ξ1

= 45.48 (3.4.10)
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This shows that E0 does not depend on any of the physical parameters of

the model (such as mass, radius or composition) but rather contains only the

surface values of the polytropic variables, making it a well defined constant for

a given class of polytrope.

For luminosities L 6 L�, Hayashi [34] has derived the following analytical

relation between the stellar parameters:

log

(
L

L0

)
= 0.272− 1.835 log

(
M

M0

)
+ 9.17 (log Teff − 3.70)

+2.27 log

(
E0

40

)
+ 0.699 (log κ0(Z) + 15.58) (3.4.11)

where Z is the star’s metal abundance. This equation defines an almost vertical

line, in the HRD, on which fully convective stars of a given mass (ie. stars

with E0 = 45.48) are found. It is also known as the Hayashi Line.

Note the strong dependence of L on Teff . Changing Teff by only 4%

changes L by a factor of approximately 10. Since stars with zones that are

in radiative equilibrium have a higher Teff than fully convective stars, there

can be no stars with Teff lower than for completely convective stars. The HL

therefore gives a lower limit for the Teff of stars in hydrostatic equilibrium. In

other words, the coolest stars are those which are fully convective and hence

lie on the HL.

A direct application of this discussion is to the evolution of pre-main se-

quence stars which form from the contraction of protostellar clouds and are

initially fully convective. They follow a near vertical path in the HRD that is

qualitatively similar to that given by (3.4.11). These paths are appropriately

known as Hayashi tracks and are almost parallel to the ascending giant branch

but covered in the reverse direction. As these stars continue to contract, their

luminosity may decrease to the point where the deep interior ultimately be-

comes radiative and hydrogen burning is ignited. It is at this point that the

main-sequence stage of evolution begins. These tracks correspond to the radii

and effective temperatures of the very young T Tauri stars [33].
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Mixing Length Theory

“Stellar turbulent convection is going through an interesting phase.

For some forty years there was an intellectual stagnation since most

of the data did not require more than the MLT, a model that in spite

of its rudimentary physical assumptions, proved to be a very useful

tool.” V. M. Canuto.

The mixing length theory was originally formulated by G.I. Taylor [88]

and L. Prandtl [72] to describe incompressible, terrestrial convection. Al-

though Taylor was the first to introduce the idea of a mixing length, credit is

generally given to Prandtl, who developed the theory in complete analogy to

molecular heat transfer while working in Göttingen during the 1920’s. It was

later adapted to stars by Biermann [3], Vitense [95] and Bohm-Vitense [5], and

has since been extended and modified in so many ways that there now exists

several “versions” of the theory. Despite several key shortcomings, the basic

formalism of MLT is still the most widely used model of convection in present

day stellar evolution codes.

31
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4.1 The Assumptions of Mixing Length

Theory

In MLT, the convection zone is treated as if it consisted of groups of “aver-

age” convective elements. This replaces the conceptually difficult situation,

involving eddies of different shapes, sizes, velocities and lifetimes, that actu-

ally occurs inside these zones since each of the “average” convective elements

are assumed to have the same physical properties at a given radial distance r

from the stellar centre.

Convective elements are assumed to form as a result of instabilities or

perturbations in the stellar fluid. Once formed, they will rise or fall under

the action of bouyancy forces through a characteristic distance known as the

mixing length, before losing their identity and merging with the surrounding

fluid. In this sense, the mixing length for a given convective element is its

“mean free path” in the convective motion. The elements may of course also

exchange heat with their surroundings via radiation as a result of temperature

imbalances.

According to Gough [31]: “It is as a result of ignoring different combina-

tions of these processes, approximating the remaining ones in slightly different

ways, and making different assumptions about the geometry of the flow that

different mixing length models have emerged.” The differences in these models

have not been stressed in the literature since in almost all cases they result in

formulae for the advection of heat through the stellar interior that are essen-

tially the same up to factors of order unity. They do however become apparent

in situations where the convectively unstable region is not static, such as in

studies of stellar pulsation.

Some authors ([71], [68]) have proposed a different picture of convection

based on cells consisting of rising and falling columns of fluid surrounded by a

rising or falling cylinder of fluid. It has however been shown that this amounts
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to little more than thinking of pairs of rising and falling elements as a single

entity in the MLT picture [31]. With this in mind, we may state the basic

assumptions of MLT formally as follows:

A 1: On average, each convective element is assumed to travel through a

distance λ, the mixing length, before dissipating into the surroundings.

Note that in general λ = λ(r).

A 2: The mixing length is assumed to be much shorter than any scale length

associated with the structure of the star.

A 3: The precise shape of the elements is not specified, but they are all as-

sumed to possess the same characteristic dimension. This characteristic

dimension will be taken to be of the same order as the mixing length.

A 4: All convective elements at a given radial distance r from the centre of the

star are assumed to convect at the same average speed v, which is taken

to be the speed of upward and downward moving elements averaged over

both the mixing length and the surface defined by r. Note that v = v(r).

A 5: Each element is assumed to maintain a state of complete pressure equi-

librium with its surroundings as it rises or falls. This means that each

material element at a given distance r from the stellar centre is at ex-

actly the same value of pressure. This assumption implies that v should

never exceed the local sound speed, vs, in the mixing length approach.

Were this to happen, the assumption of complete pressure equilibration

would not be very realistic, since the mechanical adjustment time tp is of

the order λ/vs whereas the mean eddy lifetime t is of the order of λ/v.

Hence tp/t ∼ v/vs which means that v < vs in order for tp < t.

A 6: The star is assumed to be in a steady state. The amount of matter rising

at each level is thus, at each time, the same as the amount sinking. This
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assumption is equivalent to that of hydrostatic equilibrium throughout

the star.

A 7: The effects of magnetic fields and rotation are ignored as well as all

acoustic phenomena.

A 8: Temperature and density differences between the element and its sur-

roundings are assumed to be small.

A 9: The effects of turbulent pressure on the the convective process are ne-

glected. It will be shown that this is a reasonable assumption to make

provided that the convection is subsonic.

The above assumptions represent an extreme simplification of the convec-

tive processes that occur in the stellar interior. The constraints represented

by these assumptions are all derived from laboratory based simulations of con-

vection and may not be applicable to the much more complicated situations

encountered in the interiors of stars. In fact, it will be shown that in practice,

MLT ends up violating one of its own assumptions. This failure is traceable

to the fact that the MLT assumptions are essentially equivalent to what is

known as the Boussinesq Approximation. This approximation assumes that

the fluid is almost incompressible, and that variations in its temperature and

density may be ignored except insofar as they give rise to the buoyancy forces

that drive convection. While the Boussinesq Approximation has been shown

to work very well in laboratory situations where the size of the fluid system is

much smaller than any of the associated scale heights, it turns out, that when

applied to stars, reasonable results are obtained only if the mixing length is

chosen to be approximately equal to the pressure (or some other) scale height

characteristic of the star.

To make matters worse, the question as to which scale height is the most

physically significant with regard to the mixing length theory is still unresolved.

It is customary to set λ = αH where H is usually taken to be either the
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pressure or density scale height and α is a free parameter. Use of the density

scale height may however lead to difficulties when studying the stellar surface

since it becomes negative in the case of density inversion. It has also been

suggested by Faulkner et al. [26] that the temperature scale height be used in

certain applications. Most authors tend to adopt the pressure scale height for

the sake of convenience.

One generally uses values of α that lie between 1 and 4, but choosing a

value between 1 and 2 seems to work best. The reason for this is as follows.

Convecting elements which are much smaller than a scale height in size will

radiate away considerable amounts of energy during their motion before dis-

solving and will consequently be poor carriers of convective flux. This is due

both to their small size and the short distance (of the order of λ) through which

they move. Most of the convective flux will then presumably be carried by the

larger elements. However, due to the turbulent nature of these elements, they

are not likely to retain their identity as they move through a distance of much

more than a few scale heights since they will be travelling through regions

whose physical conditions differ significantly from those in which they origi-

nated. For example, it can be shown that the volume of a turbulent element

will increase roughly by a factor of 2 for every scale height through which it

moves.

There is however another troublesome feature present in the assumptions.

Using the virial theorem, one can easily show that the average value of the

pressure scale height in a star is of the same order of magnitude as the stellar

radius, R, so that λ ' Hp ' R. Now if the size of the element is assumed to

be of the same order as the mixing length, then this suggests that it does not

get very far before mixing.

Furthermore, if the cross-sections of rising and falling gas colums were

originally equal in a convective layer, then the rising gas must have expanded

by a factor of e after moving through a pressure scale height, in order to
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maintain a state of pressure equilibrium with the surroundings. This means

that after a distance comparable to Hp there is very little room left for the

falling gas plumes. But we require that the amount of material falling be equal

to the amount which is rising. The only way in which this can happen is if

some of the rising gas elements are dragged down by the falling material. Thus,

for any given layer, a large percentage of the falling matter must have been

taken out of the rising columns. There is however, no satisfactory method for

computing these percentages.

Lastly, our entire picture of convective heat transfer would have to be dras-

tically modified in order to account properly for situations involving supersonic

convection. In the absence of a theory which can accurately account for these

effects, we will force vs to be the upper limit of v, so that should the equations

of MLT ever yield a value of v > vs at some point in a convection zone we

would simply set v/vs = 1. This assumption is arbitrary and ad hoc. The

results obtained using it are likely to be incorrect, both due to fundamental

crudity of MLT and the fact that the theory may not even be applicable at all

in such regions.

With these considerations in mind, we proceed to develop the essential

results of the theory.

4.2 The Energy Flux in a Star

The total energy flux F (r) through a surface of given radius r in a star is

related to the total luminosity L at that radius by

F (r) =
L

4πr2

In general, F (r) consists of the sum of the radiative, conductive and convective

fluxes. The radiative and conductive fluxes, Frad and Fcond respectively, can
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be combined into a single formula as

Fcond+rad = Fcond + Frad =
4ac

3

T 4

κρ

1

Hp

∇

=
4ac

3

T 4g

κP
∇ (4.2.1)

where κ is the effective opacity defined by

1

κ
=

1

κrad
+

1

κcond

It is customary to use Frad as an abbreviation for the symbol Fcond+rad. Note

also that Frad has been averaged over all the matter at radial distance r

Now define the radiative gradient ∇rad by the relation,

F (r) = Frad + Fcon ≡
4ac

3

T 4g

κP
∇rad (4.2.2)

where Fcon is the convective flux at radius r. Note that ∇rad is a fictitious

temp gradient. It is the gradient which would exist at a given point in the star

if all the energy were transported by radiation at that radius.

4.3 The Convective Flux

The average energy delivered per unit area, per unit time, by upward moving

elements is

Fcon =
1

2
ρcpv∆T (4.3.1)

=
1

2
ρcpv (∇−∇e)

λ

2

T

Hp

(4.3.2)

where cp is used because of assumption (A5).

Note that this equation represents only half of the total flux, since approx-

imately one half of the matter is rising while the other half is falling at any

given level.

To determine the convective flux at a given radius in the star, we first need

to obtain expressions for v and ∆T at that radius.
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4.3.1 The Convective Velocity

The equation of motion:

Begin by considering the equation of motion of a convecting element in a non-

viscous medium,
d2r

dt2
= −g∆ρ

ρ

The net force per unit mass acting on the element is therefore

F = −g∆ρ

ρ
(4.3.3)

Using ρ = ρ (µ, P, T ) we can relate ∆ρ to ∆T to obtain

∆ ln ρ = −Q∆ lnT (4.3.4)

where

−Q =

(
∂ ln ρ

∂ lnµ

)
P,T

(
∂ lnµ

∂ lnT

)
P

+

(
∂ ln ρ

∂ lnT

)
µ,P

= ϕ

(
∂ lnµ

∂ lnT

)
P

+ δ

Note that Q is taken at constant pressure due to (A5). Now, for an ideal gas,

the equation of state is P =
(
<
µ

)
ρT , which implies that

Q = 1−
(
∂ lnµ

∂ lnT

)
P

Clearly Q = 1 if the element is chemically homogenous (ie. µ is constant). If

in addition one includes the effects of radiation pressure, then it can be shown

that [20]

Q =
4− 3β

β
−
(
∂ lnµ

∂ lnT

)
P

where β is the ratio of gas pressure to total pressure.

Using (4.3.4) we can rewrite (4.3.3) as

F =
Qg

T
∆T (4.3.5)

and using (2.2.2) we can substitute for ∆T
T

to get

F =
Qg

Hp

(∇−∇e) ∆r (4.3.6)
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The work function:

The work done on the element will in general be a function of ∆r. We must

now average W (∆r) over all possible values of ∆r. This is generally done

by multiplying W (∆r) by a numerical factor and replacing ∆r by its average

value. Most authors tend to choose the numerical factor in such a way as

to obtain agreement with the work of Böhm-Vitense [5]. For our purposes,

this will mean setting it equal to 1/2. It will be demonstrated that the final

result obtained for the work function is in fact, up to an order of magnitude,

insensitive to this seemingly arbitrary value introduced here.

As for the average value of ∆r: consider a level in the star situated a

distance r from its centre. The elements crossing this level will in general have

different values of v and ∆T since they could have each started their motion

at anything up to a mixing length away from r. We will therefore assume that

the average distance travelled by one of these elements is half of its mixing

length, so that ∆r = λ
2

in (4.3.6). The average work done on the element over

this distance is therefore,

W =
Qgλ2

8Hp

(∇−∇e) (4.3.7)

In the absence of dissipative forces, all of W would be transformed into the

kinetic energy of the element. However, in real stars, we know that this is

not the case. All real fluids are viscous and energy will, in general, be lost by

the element as it collides with the stellar material it encounters on its journey

through the star. We will therefore assume that only about 1/2 of this work

appears as the kinetic energy of the moving element while the remainder is lost

to the surroundings, which have to be “pushed aside” as the element convects.

Therefore,

v2 =
Qgλ2

8Hp

(∇−∇e)

and hence,

v =
gλ

2

√
ρQ (∇−∇e)

2P
(4.3.8)
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which may also be expressed in terms of the adiabatic sound velocity, vs, as

v

vs
=

[
λ

2Hp

√
Q

2Γ1

]
(∇−∇e)

1
2 (4.3.9)

Note that it can be shown that the factor multiplying (∇−∇e)
1
2 in (4.3.9)

is of order unity when λ ∼ Hp [20]. This suggests that the numerical factors

introduced in the derivation of v are insignificant, at least from a qualitive

point of view.

As noted previously, we will take vs to be an upper limit for the physically

possible values of v. This means that if we ever have a sitution where v > vs

during the course of an MLT calculation, we will have to replace v by vs. Not

only does this prescription ensure that our assumption of pressure equilibrium

is not violated, but it also lends itself to the assertion that the disspation of

energy through shock formation may very well prevent v from exceeding vs by

a significant amount in a real star. This constraint also implies that the outer-

most layers of a star, which are characterized by very low densities, must be in

radiative equilibrium since, at subsonic velocities, convective energy transport

in these regions becomes highly inefficient 1. This result is in agreement with

observation.

Note that v is the velocity of the element averaged over λ. However, in

practice, one generally uses the local value of the velocity (and other variables)

when performing calculations. This is done for the sake of computational

convenience and is one of the reasons that the MLT is referred to as a local

theory of convection. Non-local mixing length calculations have also been

carried out [83]. Hofmeister and Weigert [41] have performed such an analysis

and conclude that the overall structure of the convection zone obtained using

their methods, does not differ significantly from that obtained using a local

model. Nevertheless, there are differences in the calculated density profiles for

the outermost layers of these zones in red giants.

1See section (4.7)
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Having solved for v we are now in a position to find the convective flux in

this version of MLT. Equation (4.3.2) becomes

Fcon = σcon (∇−∇e)
3
2 (4.3.10)

where

σcon ≡
g2λ2Q1/2ρ5/2cpT

4
√

2 P 3/2
(∇−∇e)

3
2 (4.3.11)

4.4 The Net Flux

We are now in a position to solve for the net energy flux at a given distance r

from the stellar centre. Recall from (4.2.2) that

F (r) = Frad + Fcon (4.4.1)

Using (4.2.1) and (4.3.10) we can rewrite this as

F (r) = σrad∇+ σcon (∇−∇e)
3
2 (4.4.2)

where

σrad ≡
4acT 4g

3κP
(4.4.3)

and σcon is defined (4.3.11). If we now express F(r) in terms of the fictitious

radiative gradient ∇rad defined in (4.2.2) we get

∇rad = ∇+
9

4
A (∇−∇e)

3
2 (4.4.4)

where

A ≡ 4

9

(
σcon
σrad

)
=
cpκgQ

1/2ρ5/2λ2

12
√

2 acP 1/2T 3
(4.4.5)

Now σrad and σcon in (4.4.2) each have the dimensions of an energy flux and

may be regarded as a type of radiative and convective “conductivity”. This

implies that the dimensionless quantity, A, is a measure of the ability of the

stellar material to transport energy by convection.
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4.4.1 The Properties of A

Using (4.3.9) we see that

A =
4

9

[
3
√
Q ρvscpκPα

2

16
√

2Γ1 acT 3g

]
(4.4.6)

If in addition, the ideal gas law, ρ = (µ/<)P/T , is applicable, we have that

A =

[
Q1/2 (µ/<)1/2 cpκα

2

12
√

2 acg

]
P 2

T 3.5
(4.4.7)

We now consider the variation of A with depth in a stellar envelope. Below

the region of hydrogen ionization, for an envelope in hydrostatic equilibrium,

P = KT n+1 (4.4.8)

where K is a constant that depends on the luminosity L, mass M , radius

R, and chemical composition of the star. We also almost always have that

2.5 6 n+ 1 6 5.

Substituting (4.4.8) into (4.4.7) gives

A =

[
Q1/2 (µ/<)1/2 cpκα

2K2

12
√

2 acg

]
T 2(n+1)−3.5 (4.4.9)

MLT ignores any variation with depth in the coefficient of T in (4.4.9) and

treats it as a constant. Since the exponent of T in this equation is practically

always greater than unity it follows that, in general, A increases with depth

in such envelopes.

Interestingly, it can be shown that in the deep interior of a star, we have

A '
(
tff
tk

)−1

(4.4.10)

where tff and tk are the free-fall and Kelvin times respectively. This gives a

value of A ' 1012 for a solar type star.

Now equation (4.4.4) relates the three gradients ∇rad, ∇ and ∇e to each

other in terms of the local values of the physical variables contained in A. We
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assume that these variables and the local value of ∇e = ∇ad are known. If in

addition, we regard the value of ∇ to be known at a given point, then (4.4.4)

can be used to calculate ∇rad at that point. This can then be used to calculate

the corresponding values of v, Fcon, and Frad via equations (4.3.8), (4.3.10) and

(4.2.2) respectively. Alternatively, if the value of ∇rad is regarded as known

at r, then (4.4.4) must first be solved for ∇, and the remaining quantities of

interest can then be calculated as before.

If ∇e = ∇ad is not a valid approximation, another expression relating

the four gradients must be obtained. This expression, along with (4.4.4),

would constitute 2 equations amongst 4 unknowns. Now, ∇ad can always be

calculated at a given point if we know the local values of the physical variables

contained in A. Consequently, given the value of any one of the remaining

three gradients, we can use these relations to determine the other two. Usually

either ∇rad or ∇ is known. Which of the two is known depends on the nature

of the problem. The other gradient of the pair (∇rad,∇) is then regarded as

a function of the known one. We shall develop this expression in the section

that follows.

4.5 Convective Efficiencies

A convecting element which is hotter than its surroundings will lose heat via

radiation. It may also gain heat if it possesses nuclear energy sources. These

losses and gains do not contribute directly to the star’s outward heat flux and

are said to be “horizontal” since they are taken relative to the instantaneous

surroundings of the element, averaged over a spherical shell. On average, there

are as many cool elements as hot ones at any given level in the stellar interior.

There is therefore no net vertical contribution to the heat transport in the

star as a result of these gains and losses. They do however, have an effect on

the efficiency of convection and so contribute indirectly to the outward radial
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transport of heat.

4.5.1 The definition of Γ

The convective efficiency, Γ, is defined as:

Γ =
Excess heat content just before mixing

Energy radiated during lifetime
(4.5.1)

Large values of Γ are typical for very dense matter where radiation losses are

relatively unimportant when compared with the convective flux. In regions

where matter is not very dense, the losses due to radiation can be so large

that the convecting elements lose nearly all of their excess heat content by

radiation and cool to approximately the temperature of their surroundings. In

such situations, even extremely violent movements of the stellar material are

ineffective in transporting energy by convection and Γ is very small2.

The excess heat content:

The excess heat content posessed by the element over its surroundings just

before it dissolves is given by

ρV cp∆Tend (4.5.2)

where Tend is the element’s temperature excess at the end of its motion.

It is customary to set ∆Tend = 2∆T in accordance with [5], where ∆T is

defined as the temperature difference between the centre of the element and its

surface, averaged over its lifetime. Since the characteristic size of a convective

element is taken to be roughly of the same order as the mixing length, we will

assume that the distance over which ∆T occurs is λ/2.

2See section (4.7.1.3)
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The energy radiated:

In order to complete the expression for Γ, we need to determine the energy

radiated by element during its lifetime. If we assume that the element is

optically thick 3, then the outward flux of energy from it is given by

4acT 3

3κρ

∆T

λ/2
for κρ

λ

2
� 1

The net energy radiated by the element to the surroundings during its lifetime

is then, (
4acT 3

3κρ

∆T

λ/2

)
λ

v
A (4.5.3)

where A and λ/v are its surface area and lifetime respectively.

An expression for Γ:

Using (4.5.2) and (4.5.3) in (4.5.1) we get

Γ =
3cpκρ

2v

4acT 3

V

A
(4.5.4)

Equation (4.5.4) contains a form factor V/A , which depends on the geometry

of the element. A sphere of diameter λ, a cube of side λ and a cylinder of

diameter and height λ, all have V/A = λ/6. However, it is customary in the

literature to set V/A = (2/9)λ in order to obtain numerical agreement with

[5]. This gives

Γ =
cpκρ

2vλ

6acT 3
(4.5.5)

Substituting for v using (4.3.8), we get,

Γ = A (∇−∇e)
1
2 (4.5.6)

Finally, equation (4.5.6) can be used to rewrite (4.4.4) in terms of Γ as follows:

∇rad = ∇+
9

4
Γ (∇−∇e) (4.5.7)

3This is a reasonable assumption due to the large sizes of the convective elements (of
the order of the pressure scale height) and the relatively high opacity of stellar material.
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4.5.2 A second expression for Γ

We now deduce a second expression for Γ. For polytropic changes we have,

∇e = ∇ad
1

1− (c/cp)
(4.5.8)

where

c =
dQ

dTe

is a generalized specific heat per unit mass and Te is the temperature of the

element during its motion.

It can be shown that

c

cp
=

− (1− η) /Γ

1− [∇/(∇−∇e)]
(4.5.9)

where

η =
∆ε

∆ (∇ · F/ρ)
(4.5.10)

∆ε and ∆ (∇ · F/ρ) are, respectively, the excess rate of energy generation

within the element and the excess rate of energy loss due to radiation by the

element, both per unit mass.

Subtituting (4.5.9) into (4.5.8) gives

Γ = (1− η)
∇−∇e

∇e −∇ad

(4.5.11)

The factor (1− η) on the right hand side of this equation is clearly due to the

effect of energy sources on convection.

If we assume that the local values of ∇ad and the physical variables con-

tained in A are known, then equations (4.5.6), (4.5.7) and (4.5.11) form a set

of 3 equations in 4 unknowns, namely, Γ, ∇, ∇e and ∇rad. Clearly only one

of these is independent. The values of the remaining three are obtained by

solving the equations simultaneously.

4.5.3 Interpretation of the equations

There are two special cases of interest as regards Γ. These correspond to

situations in which the convection is highly efficient (Γ → ∞), and in which
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it is highly inefficient (Γ → 0). In both instances we would like to know the

fraction of the total flux that is carried by convection. Begin by noting that

from (4.2.1) and (4.2.2),
Frad
F

=
∇
∇rad

(4.5.12)

Therefore,

Fcon
F

=
F − Frad

F

=
∇rad −∇
∇rad

(4.5.13)

From (4.5.7) we see that, as Γ → 0, ∇ → ∇rad and hence Fcon/F → 0. This

means that convection will not significantly effect the structure of a region of

the star in which Γ is small since it carries only a small amount of the total

flux and causes ∇ to deviate only slightly from ∇rad.

Now consider the case where convection is highly efficient. As Γ → ∞

we have from (4.5.7) and (4.5.11) respectively, that ∇ → ∇e and ∇e → ∇ad

implying that ∇ → ∇ad. Therefore,

Fcon
F
' ∇rad −∇ad

∇rad

(4.5.14)

Thus if ∇rad � ∇ad then Fcon/F → 1, but we could also have a situation,

such as that which occurs near the boundary of a convection zone, where

∇rad → ∇ad in which case Fcon/F → 0. Therefore a high convective efficiency

does not necessarily mean that convection will carry most of the flux.

4.6 Order of Magnitude Estimates

We now derive order of magnitude estimates for the convective velocity, timescale

and efficiency as described by the MLT. We will then use the expressions ob-

tained to estimate these parameters for the sun.



CHAPTER 4. MIXING LENGTH THEORY 48

The velocity v :

Using (4.3.5) and the work energy theorem, we have that

1

2
ρv2 = gλ

∆T

T

' GM

R

∆T

T
(4.6.1)

where we have set g = GM/R2 and λ = R in accordance with the discussion

at the end of section (4.1). From (4.6.1) we have that

v '
√
GM

R

√
∆T

T
(4.6.2)

The sound velocity for the whole star can be evaluated using the virial

theorem to give, to an order of magnitude,

vs '
√
GM

R

We therefore have that

v

vs
'
√

∆T

T
(4.6.3)

The timescale t:

The mean lifetime of a convecting element is given by

t =
λ

v
' R

v

Substituting for v in the above expression using (4.6.2) and noting that the

free-fall time tff is approximately (R3/GM)
1/2

gives

t ' tff

(
∆T

T

)−1/2

(4.6.4)

From equations (4.6.3) and (4.6.4) we note the following: Were ∆T/T

unity, the element would be accelerated with the full gravitational accelera-

tion and, after having moved through a distance of λ ' R, would be travelling
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at approximately the free fall velocity (which is of the same order of magni-

tude as vs). Equation (4.6.3) shows that v is smaller than vs by a factor of

approximately (∆T/T )1/2, which implies that (∆T/T ) is the fraction of the

total graviational acceleration that the element actually experiences during its

motion. Note also that (4.6.4) implies that the mean lifetime should be larger

than the free fall time by a factor of approximately (∆T/T )−1/2.

The efficiency Γ:

Let us begin by noting that since the surface area of the element is of the same

order of magnitude as that of the star, the luminosity of the element differs

from the radiative luminosity of star (which is assumed to be of the same order

as the total stellar luminosity) only because the temperature gradient inside

the element is different from that of its surroundings. Inside the element, the

temperature gradient is of the order ∆T/λ ' ∆T/R whereas in the rest of the

star it is of order T/R. The luminosity of the element is therefore of the order

∆T/T which suggests that the energy it radiates during its lifetime is of order

t (∆T/T ) ' tk (∆T/T )2 (4.6.5)

where tk ' GM2/LR is the Kelvin-Helmholtz timescale. To complete our

estimate for Γ we take the mass M of a typical element to be of the same

order of magnitude as the star and note that the excess heat content posessed

by the element over its surroundings is of order McpT (∆T/T ). We therefore

have from the definition of Γ in (4.5.1) that, correct to an order of magnitude,

Γ '
(

∆T

T

)−1

(4.6.6)
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An estimate for (∆T/T ) :

All of the order of magnitude estimates given above depend on the value of

(∆T/T ). To approximate this quantity, note from (4.6.5) that

t ' tk (∆T/T ) (4.6.7)

Substituting this expression into (4.6.4) gives

∆T

T
'
(
tff
tk

)2/3

(4.6.8)

For a solar type star, we have

tff
tk
' LR5/2

G3/2M5/2
' 10−12 (4.6.9)

and hence ∆T/T ' 10−8. This implies that, in a convection zone situated in

the deep interior of a star, the temperature gradient is superadiabatic by only

a negligible amount. This is due to the fact that the fractional excess of the

actual temperature gradient over the adiabatic temperature gradient is of the

same order of magnitude as ∆T/T .

Finally we have from (4.6.3), (4.6.4) that

v

vs
'
(
tff
tk

)1/3

' 10−4 (4.6.10)

t ' tff

(
tff
tk

)1/3

' tff104 (4.6.11)

Γ '
(
tff
tk

)−2/3

' 108 (4.6.12)

Taking vs ' 105 m/s, T ' 107 K, tff ' 103 s and tk ' 1015 s (which are

the appropriate order of magnitude values for the sun) we obtain that v ' 10

m/s, ∆T ' 10−1 K and t ' 107 s for a solar type star. These values should be

compared with those corresponding to the stellar surface where v ' 103 m/s,

∆T ' 102 K and t ' 102 s. Clearly convection is more efficient at transferring
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heat in the outer layers of such a star than it is in the deep interior. This

phenomenon can be attributed to the differences in the values of ρ, λ, and to

a smaller extent T , between the core and surface regions. The density drops

by a factor of approximately 108 while the mixing length and temperature

drop by approximately 103. Note that the result obtained by this calculation

agrees with the fact that solar mass stars have radiative cores and convective

envelopes.

4.7 Solving the MLT Equations

4.7.1 Solution when ∇rad is specified

We now solve the three MLT equations: (4.5.6), (4.5.7) and (4.5.11), for ∇,

∇e and Γ, at a given point r in a convection zone assuming that the total flux

F (r) is known at that point. This implies by way of (4.2.2) that we know the

value of ∇rad at r. We will also assume, in this section and the next, that the

effects of energy sources on the convective process may be ignored and that

the local values of ∇ad and the physical variables contained in A are known.

We state again, for completeness, the equations we would like to solve:

Γ = A (∇−∇e)
1/2 (4.7.1)

∇rad −∇ = a0A (∇−∇e)
3/2 (4.7.2)

Γ =
∇−∇e

∇e −∇ad

(4.7.3)

Note that the numerical factor of 9/4 in (4.5.7) has been replaced by the

parameter a0 in (4.7.2). This is done for the sake of generality since different

versions of the MLT use different values for this constant.
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Define

ξ ≡ ∇rad −∇
∇rad −∇ad

(4.7.4)

We now show that the MLT equations can be reduced to a single cubic equation

in ξ. Once the value of ξ has been determined, we can solve for the actual

gradient ∇ which, from (4.7.4), is given by

∇ = (1− ξ)∇rad + ξ∇ad (4.7.5)

From (4.7.1) and (4.7.2) we have

∇rad −∇ = a0Γ (∇−∇e) (4.7.6)

Hence

∇ =
∇rad + a0Γ∇e

1 + a0Γ
(4.7.7)

from which

∇rad −∇ =
a0Γ (∇rad −∇e)

1 + a0Γ
(4.7.8)

We now solve equations (4.7.3) and (4.7.7) simultaneously for ∇e and write

the resulting equation as follows:

∇rad −∇e =
Γ (1 + a0Γ) (∇rad −∇ad)

1 + Γ (1 + a0Γ)
(4.7.9)

Substituting this equation into (4.7.8) and dividing the resulting expression

by ∇rad −∇ad gives

ξ =
a0Γ2

1 + Γ (1 + a0Γ)
(4.7.10)

This suggests that ξ may be regarded as a measure of the convective efficiency

since it is a function of Γ alone. From (4.7.10) and (4.7.5) we see that

• When convection is inefficient: Γ→ 0, ξ → 0 and ∇ → ∇rad

• When convection is efficient: Γ→∞, ξ → 1 and ∇ → ∇ad

• In the transition region between inefficient and efficient convection: Γ '

1, ξ ' 0.5 and ∇ ' 1
2

(∇rad +∇ad)
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Using (4.7.1), (4.7.6) and (4.7.10) we can write Γ in terms of ξ as follows

Γ = Bξ1/3 (4.7.11)

Where

B ≡
[
A2

a0

(∇rad −∇ad)

]1/3

(4.7.12)

Clearly B is also a measure of the convective efficiency since ξ is a function of

Γ alone.

• When convection is inefficient: Γ→ 0 and B → 0

• When convection is efficient: Γ→∞ and B → Γ

Hence B � 1 implies a high convective efficiency whereas B � 1 implies

the opposite. However, if (A5) is to be satisfied, then B � 1 is alone an

insufficient condition for highly efficient convection. It will be demonstrated

later that if A 6 1, then B � 1 implies v > vs. Thus for highly efficient,

subsonic convection we require in addition to B � 1 that we also have A� 1.

Substituting (4.7.11) into (4.7.10) gives the desired cubic equation in ξ:

ξ1/3 +Bξ2/3 + a0B
2ξ − a0B

2 = 0 (4.7.13)

Note that this equation has only one real root for 0 6 ξ 6 1. We also have

ξ → 0 as B → 0 and ξ → 1 as B → ∞, which is in agreement with the

discussion above.

4.7.1.1 Iterative Solutions of (4.7.13):

The iterative solutions of (4.7.13) are now presented since these are particularly

well suited to numerical simulations of convection.

Case 1: B < 1

We start with (a0B
2)

3
as the initial trial value of ξ. Carrying out the iterative

procedure analytically then results in the following expansion for ξ:

ξ =
(
a0B

2
)3 {1− 3B

(
a0B

2
)
− [3− (9/a0)]

(
a0B

2
)3

+ ...} (4.7.14)
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Case 2: B > 1

Begin by re-writing (4.7.13) in the form

1− ξ =

(
ξ1/3 +Bξ2/3

)
a0B2

(4.7.15)

and take

ξ = 1−
[

(1 +B)

a0B2

]
(4.7.16)

as the initial trial value of ξ. Carrying out the iterative procedure analytically

then results in the following expansion for 1− ξ:

1−ξ =
1 +B

a0B2

[
1− 1 + 2B

3 (1 +B)

(
1 +B

a0B2

)
+

1

9

((
1 + 2B

1 +B

)2

− 1

)(
1 +B

a0B2

)2

+ ...

]
(4.7.17)

4.7.1.2 Determining the Convective Quantities:

Once the value of ξ is known, we can easily determine the remaining quantities

of interest:

• The convective efficiency Γ can be determined from (4.7.11)

• The actual temperature gradient ∇ can be determined from (4.7.5)

• The difference between the actual temperature gradient and that of the

element ∇−∇e, can be determined from (4.7.1)

• The fraction of the total flux carried by convection can be determined

from:
Fcon
F

=

[
1−

(
∇ad

∇rad

)]
ξ (4.7.18)

which is obtained from (4.5.13) and (4.7.4).

• The average velocity of a convecting element v, can be determined from:

v =
Q1/2α

2
√

2 Γ
1/2
1

[(
∇rad −∇ad

a0A

)
ξ

]1/3

vs (4.7.19)

which is obtained from (4.3.9) and (4.7.1)
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• The degree to which the actual gradient is superadiabatic ∇−∇ad, can

be determined from:

∇−∇ad =
1 + Γ

a0Γ2
[ξ (∇rad −∇ad)] (4.7.20)

which is obtained from (4.7.5) and (4.7.10)

4.7.1.3 The Limiting Cases

Highly Inefficient Convection:

We derive expressions for some of the quantities of interest in the limit of

B � 1 convection.

Starting from (4.7.14) we have that

ξ ' a3
0B

6 (4.7.21)

= a0A
4 (∇rad −∇ad)

2 (4.7.22)

� 1 (4.7.23)

We can now use this to deduce the following:

• The convective efficiency:

Γ = Bξ1/3 (4.7.24)

' A2 (∇rad −∇ad) (4.7.25)

� 1 (4.7.26)

• The fraction of the total flux carried by convection:

Fcon
F

=

(
∇rad −∇ad

∇rad

)
ξ (4.7.27)

' a0A
4 (∇rad −∇ad)

3

∇rad

(4.7.28)

� 1 (4.7.29)
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• The average convective velocity:

v =
Q1/2α

2
√

2 Γ
1/2
1

Γ

A
vs (4.7.30)

' Q1/2α

2
√

2 Γ
1/2
1

A (∇rad −∇ad) vs (4.7.31)

Note from (4.7.31) that for B � 1 we do not necessarily have v/vs �

1. Such a situation could occur when energy is being transported by

convection despite the relative “inability” of the stellar material to do

so. To see this, consider the case when v is comparable to vs. From

(4.7.30) we must then have that A 6 Γ � 1, since the coefficient of

Γ/A is normally of order unity. Hence from (4.7.31), (∇rad −∇ad)� 1.

Thus in this case, the “driving force” for convection (represented by

∇rad − ∇ad) is very strong but the ability of the material to convect

efficiently (represented by A) is very small. Large convective velocities

are therefore necessary in order to transport the required amount of

energy by convection.

• The superadiabaticity of the actual gradient:

∇−∇ad = (1− ξ) (∇rad −∇ad) (4.7.32)

' ∇rad −∇ad (4.7.33)

Hence ∇ ' ∇rad as expected.

Highly Efficient Convection:

We now consider the limit of B � 1 convection. In this case, we may set

ξ = 1. The following results are then obtained:

• The convective efficiency:

Γ = Bξ1/3 (4.7.34)

' B (4.7.35)
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=

[(
A2

a0

)
(∇rad −∇ad)

]1/3

(4.7.36)

� 1 (4.7.37)

• The fraction of the total flux carried by convection:

Fcon
F

=

(
∇rad −∇ad

∇rad

)
ξ (4.7.38)

' 1−
(
∇ad

∇rad

)
(4.7.39)

(4.7.40)

Note that if ∇rad � ∇ad we have that Fcon/F = 1

• The average convective velocity:

v =
Q1/2α

2
√

2 Γ
1/2
1

Γ

A
vs (4.7.41)

' Q1/2α

2
√

2 Γ
1/2
1

[
a0 (∇rad −∇ad)

A

]1/3

vs (4.7.42)

For B � 1 we must have that A � 1 if the average convective veloc-

ity is to be subsonic. This is expected since the better the material’s

“capacity” for efficient convection, the smaller the velocity required for

energy to be transported by convection.

• The superadiabaticity of the actual gradient:

∇−∇ad =
1 + Γ

a0Γ2
[ξ (∇rad −∇ad)] (4.7.43)

' (∇rad −∇ad)

a0Γ
(4.7.44)

� ∇rad −∇ad (4.7.45)

Hence ∇ → ∇ad in this limit, as expected.

Of course, even for the most efficient convection, the actual temperature

gradient can never be exactly adiabatic (or less than than adiabatic),
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since this would cause the layer to become stable against convection.

Were this to happen, the convective energy transport would decay and

the temperature gradient would increase until convection could set in

again.

Lastly, since A ∝ λ2, we see from the above discussions that Γ, Fcon/F and

v/vs are more sensitive to the value of λ for small convective efficiencies than

they are for large ones.

4.7.2 Solution when ∇ is specified

In this section we solve for ∇rad, ∇e and Γ assuming that the local value of ∇

is known. Instead of reducing (4.7.1), (4.7.2) and (4.7.3) to a cubic equation

in ξ, we choose for convenience to work with the equivalent set of equations

(4.7.1), (4.7.6) and (4.7.20), which we now reduce to a quadratic equation in

Γ.

Begin by eliminiating ξ from (4.7.20) using (4.7.4). Substite (4.7.6) into

the resulting expression to obtain

∇−∇ad =
1 + Γ

Γ
(∇−∇e) (4.7.46)

Using (4.7.1), eliminate (∇−∇e) to obtain the desired equation:

Γ2 + Γ− A2 (∇−∇ad) = 0 (4.7.47)

The solution of (4.7.47) which is of physical interest is

Γ =
1

2

[√
1 + 4A2 (∇−∇ad) − 1

]
(4.7.48)

From (4.7.47) we see that the quantity A2 (∇−∇ad) may be regarded as

a measure of the convective efficiency since it is a function of Γ alone. Note

also from (4.7.48) that for

• inefficient convection: Γ� 1 ; A2 (∇−∇ad)� 1

• efficient convection: Γ� 1 ; A2 (∇−∇ad)� 1
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4.7.2.1 Determining the Convective Quantities

• The radiative temperature gradient can be determined from

∇rad = ∇+
( a0

8A2

) [√
1 + 4A2 (∇−∇ad) − 1

]3

(4.7.49)

which is obtained by eliminating (∇−∇e) from (4.7.6) using (4.7.1) and

substituting (4.7.48) for Γ into the resulting equation.

• The convective flux can be determined begin by noting that:

from (4.4.4) we have

(∇−∇e)
3
2 =

σrad
σcon

(∇rad −∇) (4.7.50)

Substituting (4.7.50) into (4.3.10) and using (4.7.49) to eliminate (∇rad −∇)

from the resulting expression gives

Fcon = σrad

( a0

8A2

) [√
1 + 4A2 (∇−∇ad) − 1

]3

(4.7.51)

• The fraction of the total flux carried by convection is given as before by

(4.5.13)

• The average convective velocity can be determined from

v =
Q1/2α

4
√

2 Γ
1/2
1 A

[√
1 + 4A2 (∇−∇ad) − 1

]
vs (4.7.52)

Which is obtained by subtituting (4.7.48) into (4.7.30)

4.7.2.2 Taking Radiative Heat Losses into Account

We now define the quantity

f ≡ ∇−∇e

∇−∇ad

(4.7.53)

which from (4.7.1) and (4.7.48) may also be written as

f =

[√
1 + 4A2 (∇−∇ad) − 1

]2

4A2 (∇−∇ad)
(4.7.54)



CHAPTER 4. MIXING LENGTH THEORY 60

In the basic equations (4.3.9) and (4.3.10), one may choose to neglect the

effects of heat losses due to radiation from the convecting elements by re-

placing (∇−∇e) in these equations with the approximate factor (∇−∇ad).

Such a situation may arise if we do not, for example, have knowledge of ∇e.

One can, however, easily take into account radiative losses by multiplying the

uncorrected values of v and Fcon by f 1/2 and f 3/2 respectively.

Note that

• for highly efficient convection A2 (∇−∇ad) � 1 and hence f ' 1 by

(4.7.54). From (4.7.53) we then have that (∇−∇e) → (∇−∇ad) in

this limit.

• for highly inefficient convection A2 (∇−∇ad) � 1 and hence f � 1 by

(4.7.54). Hence at small convective efficiencies, use of (∇−∇ad) in the

basic equations for v and Fcon can lead to large overestimates for these

quantities.



Chapter 5

Turbulent Convection

“Although the turbulent motion has been extensively discussed in

the literature from different points of view, the very essence of this

phenomenon is still lacking sufficient clearness.” L.D. Landau.

The picture of convection that we have developed in the previous chapter

represents a gross simplification of the actual behaviour of the stellar fluid.

The reality of the situation is clearly much more complicated.

Convective flows in stars are highly turbulent and consist of an intricate

heirarchy of eddies and bubbles moving and interacting in an extremely com-

plicated way. The description of this phenomenon poses many physical and

mathematical problems of great complexity. A theory of convection that can

accurately account for turbulent processes does not yet exist. The princi-

pal difficulty lies in closing the system of equations that describe the flow.

All closure models invoke additional heuristic or ad hoc hypotheses to close

the system of equations at some chosen order. They either relate statistical

quantities to each other, or propose relationships between the mean flow and

turbulence. Existent models can be classified into four categories:

• Algebraic models. This includes the mixing-length approach of Prandtl

[72].

61
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• One-equation models, which use a modified turbulent kinetic energy

equation along with a prescribed mixing length [74], [57].

• Two-equation models, the most famous of which is Kolmogorov’s k-ε

theory [43].

• Reynolds stress models, which use transport equations for the Reynolds

shear stresses [75], [50].

In this chapter we start from the hydrodynamic equations for a vertically

stratified medium and derive an expression for the convective heat flux within

the MLT regime.

5.1 Mixing Length Theory Revisited

Begin by considering a plane parallel fluid layer of infinite horizontal extent.

As usual, we ignore the effects of magnetic fields, rotation and nuclear energy

generation. The fluid equations for such a system may be written as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (5.1.1)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= ρgi −

∂p

∂xi
+
∂τij
∂xj

(5.1.2)

ρ

[
∂

∂t

(
U +

u2

2

)
+ ui

∂

∂xi

(
U +

u2

2

)]
= ρuigi −

∂

∂xi
(Fr,i + ρui − uiτij)

(5.1.3)

where ui is the velocity, p is the gas plus radiation pressure, U is the inter-

nal energy per unit mass, Fr,i is the heat flux carried by both radiation and

conduction and τij is the viscous stress tensor.

All flow variables are assumed to be decomposable into a sum of the form

fi = fi + f
′

i (5.1.4)
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where fi is the ensemble average of the fi and f
′
i represents the fluctuation

of fi about the average state. Applying this decomposition to the continuity

equation results in the following expressions for the mean and fluctuating parts,

∂ρ

∂t
+

∂

∂xi

(
ρui + ρ′u

′
i

)
= 0 (5.1.5)

∂ρ
′

∂t
+

∂

∂xi

(
ρ

′
ui + ρu

′

i + ρ
′
u

′

i

)
= 0 (5.1.6)

We now linearize the equations for the fluctuating parts and ignore pressure

fluctuations, except when they occur in the momentum equation. This is

known as the anelastic approximation [29], which amounts to filtering out high-

frequency phenomena such as acoustic waves. In making this approximation we

will clearly end up overestimating the convective flux since, in reality, kinetic

energy from the turbulent flow will be converted to acoustic radiation via the

generation of sound waves in the fluid. With this in mind (5.1.5) and (5.1.6)

become
∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (5.1.7)

∂

∂xi

(
ρu

′

i

)
= 0 (5.1.8)

respectively, and the mean momentum and energy equations may be expressed

as
Dui
Dt

= gi −
1

ρ

∂p

∂xi
− ∂

∂xj
u

′
iu

′
j +

1

ρ

∂τij
∂xj

(5.1.9)

and

ρ
D

Dt

(
U +

1

2
u′2

)
= −∂Fr,i

∂xi
− ∂

∂xi

(
(ρh)

′
u

′
i +

1

2
(ρu′2)

′
u

′
i − u

′
iτij

)
−p∂ui

∂xi
+
(
τij − ρu

′
iu

′
j

)∂ui
∂xj

(5.1.10)

respectively, where
D

Dt
=

∂

∂t
+ ui

∂

∂xi
(5.1.11)

and h is the specific enthalpy. The Reynolds number in stars has been esti-

mated to be of the order 1010 [82] which implies that the molecular viscosity of
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the stellar fluid is very small. We can thus ignore the presence of u
′
iτij and τij

in equation (5.1.10) since these will be small relative to the turbulent energy

flux and Reynolds stress respectively.

An equation for the mean specific turbulent energy, appearing in (5.1.10),

can be derived by averaging the equation obtained by taking the scalar product

of (5.1.9) with u
′
i. The resulting expression contains a term, ε, which describes

the rate of dissipation of turbulent kinetic energy and may be defined as the

trace of

εij = 2ν

(
∂u

′
i

∂xk

)(
∂u

′
j

∂xk

)
(5.1.12)

In the standard MLT model of convection, one usually ignores ε and all other

terms that contain ν. However, not only does this violate the conservation

of energy, but it also leads to an overestimation of the turbulent heat and

momentum fluxes [12]. The reason for this stems from the fact that ε remains

finite even when ν → 0, since the mean-square vorticity diverges in this limit.

A decrease in ν decreases the scale at which viscous dissipation occurs but not

the rate of dissipation. This is consistent with the idea of a spectral energy

cascade in which energy is transferred from large to small scale eddies in a

manner which depends on the inviscid large scale dynamics of the turbulent

field.

In one-equation models, ε is often estimated as

ε ≡

(
u′2
)3/2

lε
(5.1.13)

where lε defines the length scale over which energy dissipation occurs. In the

context of stellar convection, several authors (eg. [79], [98]) have assumed that

lε = λ/D where λ is the mixing length and D is a drag coefficient of order

unity.

For an incompressible fluid, the above assumptions constitute the Boussi-

nesq approximation, which is used in almost all treatments of stellar convec-
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tion that take the mixing-length approach. Within this approximation the

fluid equations become:

∂ui
∂xi

= 0 (5.1.14)

∂u
′
i

∂xi
= 0 (5.1.15)

Dui
Dt

= gi −
1

ρ

∂p

∂xi
− ∂

∂xj

(
u

′
iu

′
j

)
(5.1.16)

Du
′
i

Dt
=
ρ

′

ρ
gi −

1

ρ

∂p
′

∂xi
− ∂

∂xj

(
u

′

iu
′

j − u
′
iu

′
j

)
− u′

j

∂ui
∂xj

+ ν
∂2u

′
i

∂x2
j

(5.1.17)

DT

Dt
=

δ

ρcp

Dp

Dt
− 1

ρcp

∂

∂xi

(
Fr,i + ρcpu

′
iT

′
)

+
ε

cp
(5.1.18)

DT
′

Dt
= − ∂

∂xi

(
u

′

iT
′ − u′

iT
′
)

+ u
′

iβ −
1

ρcp

∂F
′
r,i

∂xi
+
ν

cp

[(
∂u

′
i

∂xj

)2

−
(
∂u

′
i

∂xj

)2
]

(5.1.19)

where the superadiabatic temperature gradient, β, is defined as

β = − 1

cp

(
dh

dx3

− 1

ρ

dρ

dx3

)
' −

(
dT

dx3

− δ

ρcp

dp

dx3

)
(5.1.20)

and we have ignored fluctuations in δ and cp.

Note that the terms describing the dissipation of momentum and energy

in equations (5.1.17) and (5.1.19) respectively, also remain finite in the limit

ν → 0 for the same reason as before.

We now use the fact that the mean horizontal velocity of our system is

zero (ui = 0) and assume that the mean quantities in the fluid equations are

stationary. (5.1.16) and (5.1.18) can then be simplified to,

d

dz
(pg + pt) = −gρ (5.1.21)
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and
d

dz

(
Fr,z + Fc,z

)
= 0 (5.1.22)

respectively, where z represents the vertical direction, pg is the gas plus radia-

tion pressure, pt is the turbulent pressure and Fc,z is the convective heat flux

in the vertical direction. Using the following approximations,

pt ≡ ρw2 ' ρw2 (5.1.23)

Fc,z ≡ ρh′w ' ρcpwT
′ (5.1.24)

Fr,z = −ρcpκ
dT

dz
(5.1.25)

where w is the vertical component of the velocity and κ is the thermal diffu-

sivity, we can rewrite the mean equations as

dpg
dz

= −gρ− ρ∂w
2

∂z
(5.1.26)

and

wT ′ + κ
dT

dz
= H (5.1.27)

respectively, where H is an integration constant. Equation (5.1.26) is just the

law of hydrostatic equilibrium with the inclusion of a turbulent pressure and

equation (5.1.27) expresses the fact that the sum of radiative and convective

transfers of heat is constant over a given layer of fluid.

Using the Boussinesq equation of state,

ρ
′

ρ
= −δT

′

T
(5.1.28)

we can write the fluctuation equations as,

∂u
′
i

∂t
+

∂

∂xj

(
u

′

iu
′

j − u
′
iu

′
j

)
= −1

ρ

∂p
′
g

∂xi
− gi

δ

T
T

′
(5.1.29)

and
∂T

′

∂t
+

∂

∂xi

(
u

′

iT
′ − u′

iT
′
)
− βw = − 1

ρcp

∂F
′
r,i

∂xi
(5.1.30)
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We now need a way of resolving the non-linear advection terms that appear

in equations (5.1.29) and (5.1.30). In eddy-viscosity models, the effect of the

turbulent mixing of momentum is thought to be analogous to the molecular

transport of momentum, which leads to a laminar stress. The role of turbulence

is then to increase the effective viscosity by an amount, νt, called the “eddy-

viscosity”. This idea, which dates back to Boussinesq’s work in the 1870’s, is

widely used in engineering models of turbulence.

Of course, νt is a property of the turbulence and not the fluid. Prandtl was

the first to propose a way of estimating this quantity using a model based on

the concept of a “mixing length”. Inspired by the kinetic theory of gases, he

suggested that

νt = wλ (5.1.31)

where λ is the mixing length or “mean free path” of a turbulent eddy. The

Reynolds stresses are then approximated as

−ρu′
iu

′
j ' ρνt

dw

dz
(5.1.32)

We can now simplify equations (5.1.29) and (5.1.30) as follows (see for eg.

[91]):
∂

∂xj

(
u

′

iu
′

j − u
′
iu

′
j

)
' νt

d2w

dz2
' 2w2

λ
(5.1.33)

∂

∂xi

(
u

′

iT
′ − u′

iT
′
)
' κt

d2w

dz2
' 2wT

′

λ
(5.1.34)

where κt in (5.1.34) is the eddy diffusivity, which accounts for the turbulent

exchange of heat. It was first introduced by Öpik in 1950 [68], and is defined

as

κt =
νt
Pr

(5.1.35)

where Pr is the Prandtl number.

Note that in deriving (5.1.33) and (5.1.34) we have replaced the spatial

derivatives of the fluctuating quantities by λ−1 so that ∂2/∂x2
i = λ−2 (see for
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eg. [47]). The additional factors of 2 in the equations appear because we

have assumed that a typical parcel at any instant might have travelled half

the distance λ.

From here on we omit the overbars on mean quantities in so far as no ambi-

guity results. This is done both for the sake of simplicity, and to reconcile our

notation with that found in the literature. In a static atmosphere in a steady

state, we can ignore the time derivatives of the momentum and temperature

fluctuations that appear in (5.1.29) and (5.1.30) respectively. If the pressure

fluctuations in the momentum equation are ignored then the coupling between

the vertical and horizontal motion will be removed. The fluctation equations

can then be simplified with the aid of (5.1.33) and (5.1.34) to give the following

expressions for the convective velocity and temperature fluctuation:

w2 =
1

2
g
δλ

T
T

′
(5.1.36)

and

T
′
=

1

2

(
β − κ

λ2

T
′

w

)
λ (5.1.37)

It can then be shown [30] that, in the limit of highly efficient convection,

the convective flux may be approximated as

Fc '
1

4
ρcp

(
gδ

T

)1/2

λ2β3/2. (5.1.38)

Note that the numerical factor in this formula may differ from paper to paper

since it depends on the assumed geometry of the fluid element and the precise

definition of λ.



Chapter 6

The Numerical Implementation

of Convection

“...It would thus clearly be safer if we stopped our discussion of stel-

lar evolution here and waited for the results from the big computers,

which we may expect in the nearest future...” M. Schwarzschild.

Numerical simulations have become a tool of vital importance in astro-

physics. They give us invaluable information about complex systems and

physical processes under extreme conditions which cannot be realized in lab-

oratory based experiments. The origins of computational astrophysics can be

traced back to 1956 when Haselgrove and Hoyle performed the first numeri-

cal simulation of stellar evolution on an electronic computer. In 1964 Louis

Henyey proposed a relaxation method for solving the stellar structure equa-

tions in a way that was better suited to the two-boundary value nature of the

problem. His method was a significant improvement over the direct numerical

integration performed by Haselgrove and Hoyle, and has since been adopted

by the majority of stellar evolution codes to date.

In this chapter we give a brief review of the implementation of convection in

several well known computer codes for stellar evolution. A thorough discussion

of these codes may be found in [65].
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6.1 The Aarhus Stellar Evolution Code

(ASTEC)

The development of ASTEC began at Cambridge in 1974 as part of an investi-

gation of solar stability, following earlier work by Christensen-Dalsgaard et al.

[16]. The code drew some inspiration from the Eggleton stellar evolution code

[21], but was developed independently of it. ASTEC has found widespread use

in the field of helio-seismology and has been carefully tested for the computa-

tion of solar models however considerable development is still required in the

treatment of convective mixing.

The code solves the structure equations in the following form:

∂ log10 r

∂x
=

m

4πρr3
(6.1.1)

∂ log10 P

∂x
= − Gm2

4πr4P
(6.1.2)

∂ log10 T

∂x
= ∇∂ log10 P

∂x
(6.1.3)

∂ log10 L

∂x
=

(
ε− ∂H

∂t
+

1

ρ

∂p

∂t

)
m

L
(6.1.4)

where the independent variable, x, is defined by

x = log10

(m
M

)
(6.1.5)

and m is the mass that is interior to the point under consideration, r is the

distance to the stellar centre, H is the enthalpy per unit mass, and the rest of

the symbols have their usual meaning.
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6.1.1 The Treatment of Convection

The value of ∇ in (6.1.3) depends on whether or not the region is convectively

stable. If it is, then

∇ = ∇rad =
3

16πac

κ

T 4

Lp

Gm
(6.1.6)

In convective regions, the calculation of ∇ is carried out using the Vitense [95]

and Böhm-Vitense [5] version of MLT. In addition, emulations of the Canuto

and Mazzitelli formulation [10], established by Monteiro et al. [64] can also be

used. As discussed in section (4.1), the mixing length is taken as a constant

multiple of the pressure scale height and is either set by the user or, in the

case of solar models, is automatically fitted so as to match the observational

data.

The treatment of convective cores is still an area of active development in

ASTEC [18]. Due to the lack of a satisfactory numerical prescription for diffu-

sion near the core, an explicit calculation of its chemical evolution is performed

according to the following formula,

dXk

dt
= Rk +

1

qc

dqc
dt

[Xk(xc)−Xk] (6.1.7)

where Xk is the mass fraction of element k, Rk is the rate of change of Xk

due to nuclear reactions, qc is the mass fraction in the convective core (ie. the

ratio of the mass of the core to the total mass of the star), xc = log10 qc, and

Rk =
1

qc

∫ qc

0

Rkdq (6.1.8)

is the reaction rate averaged over the core.

The term Xk(xc) in (6.1.7) is evaluated just outside the core and only has

an effect if there is a composition discontinuity at its edge. This can happen

in models of intermediate mass stars (with masses up to 1.7M�) where the

gradual conversion of 16O to 14N causes an increase in the importance of the

CNO cycle and a discontinuity in the hydrogen abundance at the edge of the

core [18]. This also leads to discontinuities in ρ and κ, and since κ increases
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with X and ρ, while ρ decreases with increasing X, it is not a priori clear

how ∇rad behaves at this discontinuity. In practice, ∇rad should increase in

going from the value of X in the convective core to the higher value in the

radiative region just outside it. The problem here is that, if the edge of the

core is defined using the composition of the core, then the region immediately

outside it will be convectively unstable. As a consequence, ASTEC defines the

edge of the convective core by the chemical abundances in the radiative region,

leaving a small convectively stable region (which is assumed to be fully mixed

in the standard ASTEC implementation [18]) below that boundary. This may

be regarded as an example of semi-convection, the effects of which are still not

fully understood.

The code has several options for the treatment of convective overshooting.

The overshoot region may be taken to be either adiabatically or radiatively

stratified and the implementation of overshoot from a convective envelope

follows the work by Monteiro et al. [63].

One of the shortcomings of ASTEC is its failure to treat adequately models

with convective cores, especially when both diffusion and the settling of heavy

elements are included (cf. [17]). This problem may be related to the issues of

semi-convection where convective stability is closely related to the details of

the composition profile [62].

6.2 The Yale Rotating Stellar Evolution

Code (YREC)

The original rotating version of YREC was developed by Pinsonneault [70] in

1988 as part of his Ph.D thesis, and was based on earlier work by Kippenhahn

and Thomas [45] and Endal and Sofia [25]. It has since undergone several revi-

sions and has been used extensively in the fields of asteroseismology and stellar

rotation. Notable features of YREC include its treatment of convective core
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overshoot and its implementation of the effects of turbulence on the structure

of the surface layers of stars with convective enevelopes.

YREC uses the well known Henyey method [36] to solve the structure

equations in Lagrangian form 1

∂r

∂m
=

1

4πr2ρ
(6.2.1)

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
(6.2.2)

∂L

∂m
= ε− cp

∂T

∂t
+
δ

ρ

∂P

∂t
(6.2.3)

∂T

∂m
= − GmT

4πr4P
∇ (6.2.4)

The system is treated as a two point boundary value problem, and a relaxation

technique based on a finite difference approximation is used.

6.2.1 The Treatment of Convection

Convective stability is tested for using the Schwarzschild criterion, and the

abundance of chemical species in convective cores is treated under the assump-

tion of instantaneous mixing. The code implements some novel treatments of

convective overshoot and turbulence which we discuss below.

6.2.1.1 Core Overshoot

YREC has several options related to the treatment of overshoot (OS), all

of which assume that the mixing of chemical species in the OS region is in-

stantaneous. This assumption is well founded due to the small characteristic

timescale of convection relative to the star’s thermal and nuclear timescales.

The OS options may be divided into 2 categories:

1See for example [46]
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• A parametric treatment in which the extent of the OS is taken as a

multiple of Hp according to

ros = rs + αHp(rs) (6.2.5)

where rs is distance from the centre of the star to the border of the

convective instability and Hp(rs) is the pressure scale height at that

point.

• A physically motivated treatment in which the extent of the OS is calcu-

lated from a non-local convection theory originally developed by Kuhfuss

[48] and later extended by Wuchterl and Feuchtinger [97]. This approach

is based on an equation for the turbulent kinetic energy which Kuhfuss

derives by taking spherical averages of the first-order perturbed Navier-

Stokes equations within the framework of the anelastic approximation.

The extent of the convective core can be determined from the solution

of this equation, which also incorporates the effects of OS.

The theory contains a set of five parameters which must first be cal-

ibrated before use. In the strictly local limit, Kuhfuss’ treatment is

equivalent to the MLT equations when based on the Ledoux criterion. A

detailed discussion of the implemented equations and associated numer-

ical techniques can be found in Straka et al. [87].

6.2.1.2 The Inclusion of Turbulence

YREC can incorporate the effects of turbulence into the outer layers of one-

dimensional stellar models. The method requires a detailed three-dimensional

hydrodynamical simulation of the atmosphere and superadiabatic regions of

the star in order to extract the required paramaters from the velocity field.

It also incorporates work by Li et al. [55] who use a self consistent approach

introduced by Lydon and Sofia [58] to include the effects of magnetic fields
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in the calculation of the convective temperature gradient within the MLT

framework.

6.3 The ATON 3.1 Stellar Evolution Code

ATON is a versatile stellar evolution code that uses the Newton-Raphson

method to solve the structure equations in Lagrangian form. It was origi-

nally developed and used by Mazzitelli in his study of the helium content and

mixing length in solar models [59]. The code was later updated to include

the Full Spectrum of Turbulence (FST) model of convection [10] which he

co-developed with Canuto. By the end of the nineties treatments of OS and

non-instantaneous mixing were also incorporated [93]. Other improvements

were made by taking advantage of the grid model of atmospheres, originally

computed by Heiter et al. [35], which also employed the Canuto and Mazzitelli

convection model. Version 2.4 of the code contains routines that allow for the

effects of rotation according to the approach followed by Endal and Sofia [24].

This approach improves upon the method of Kippenhahn and Thomas [45] by

adding a potential function that includes a term related to the distortion of

the geometry of the star. These methods, although not included in version 3.1,

are to be updated and added to ATON 3.4 [94]. The current version differs

substantially from other codes in the following areas:

• The treatment of convection.

• The handling of diffusive mixing and OS.

• The input physics of the equation of state.

• The technique used to compute the opacity.
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6.3.1 The Treatment of Convection

The code allows for the calculation of the temperature gradient within the

instability region using either the traditional MLT, or the FST model. The

mixing in these regions is taken to be non-instantaneous and is treated as a

diffusion process according to the equation

dXk

dt
= Rk +

∂

∂m

[(
4πr2ρ

)2
D
∂Xk

∂m

]
(6.3.1)

where Xk and Rk are defined as in (6.1.7). Note that the diffusion coefficient,

D, is taken to be D = 1
3
vl, where v and l are the convective velocity and length

scale respectively. Non-instantaneous mixing coupled with nuclear reactions

is important for the description of all phases of stellar evolution for which

the lifetime of nuclear species is comparable to the mixing lifetime (as in the

case of lithium production in giants). It does not affect the duration of core

hydrogen burning in stars with a convective core, but does have an influence

on the He burning phase (which has been shown to be longer in the non-

instantaneous treatment [94]). An attractive feature of this implementation is

that non-instantaneous mixing spontaneously mimicks semiconvection profiles

at the border of the helium burning core [94].

6.3.1.1 Overshooting

ATON’s handling of OS is based on the following formula,

v = vb exp±
(

1

ζf
ln
P

Pb

)
(6.3.2)

which describes the exponential decay of the convective velocity as measured

from the Schwarzschild boundary. vb and Pb are the turbulent velocity and

pressure at the boundary, P is the local pressure, and f refers to the thickness

of the convective region measured in fractions of Hp. ζ is a free parameter

which defines the distance over which the velocities in the OS region go to

zero. It is related to the e-folding distance of the decay. A detailed discussion
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of this parameter and the description of convective velocities in OS regions

may be found in [93].

6.4 Modules for Experiments in Stellar

Astrophysics (MESA)

MESA is a highly modularized, open-source library for stellar astrophysics that

began as an effort to improve upon the now defunct EZ stellar evolution code

[21], [69]. The MESA modules are “thread safe”, meaning that more than one

process can execute the module routines at the same time. This allows for the

utilization of multicore processors which is particularly useful in simulations

of stellar evolution.

The library includes a one-dimensional code called MESA Star which serves

the same purpose as EZ but has a much richer set of features. The numer-

ical and computational methods used in MESA star, which include adaptive

mesh refinement and sophisticated timestep adjustment, allow it to evolve

stellar models consistently through phases of stellar evolution that have posed

substantial challenges for evolutionary codes in the past. These include the

helium core flash in low mass stars and the advanced nuclear burning phases

in massive stars.

6.4.1 The Treatment of Convection

The convection module uses the standard model of MLT as discussed in chapter

(4). Given the total luminosity, it can compute the actual temperature gradient

or, alternatively, the convective flux given the actual temperature gradient.

The methods employed are identical to those presented in section (4.7).

MESA also incorporates the variation of MLT due to Henyey et al. [38],

which allows the convective efficiency to vary with the opaqueness of the con-
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vecting element. This is an important effect in the outer convection zones of

stars.

6.4.1.1 Overshoot

OS is treated as a time-dependent diffusion process with a diffusion coefficient,

D, given by

D = D0 exp

(
− 2z

fλ0

)
(6.4.1)

where D0 is the MLT derived diffusion coefficient at a user-defined location

near the Schwarzschild boundary, λ0 is the pressure scale height at that bound-

ary, z is the length scale over which the OS occurs, and f is an adjustable

parameter [39].

The parameter, f , may have different values at the upper and lower convec-

tive boundaries for non-burning, H-burning, He-burning, and metal-burning

convection zones. It essentially allows the user to set a lower limit on D below

which overshoot mixing is neglected, and to limit the region of the star over

which OS mixing will be considered



Chapter 7

Discussion

“Despite the great achievements of the stellar evolution theory,

there are many points of disagreement between theory and obser-

vations which are ultimately related to our poor knowledge of the

extension of convectively unstable regions and associated mixing

processes” C. Chiosi.

The convection problem has vexed stellar astrophysics for several decades.

It is the prototype of many astrophysical problems in which the bottle-neck

preventing significant progress is the difficulty involved in solving the hydro-

dynamic equations. Any convective flow, whether turbulent or not, will be

non-linear due to the presence of the advection term, u · ∇u, in the momen-

tum equation and it is this non-linearity that makes all but the very simplest

problems almost impossible to solve. Our present inability to derive ana-

lytic solutions of the Navier-Stokes equations in the case of turbulent flows

has forced us to depend on computer simulations. However, numerical solu-

tions of the equations are themselves extremely difficult to obtain due to the

large range of spatial and temporal scales that need to be resolved. In direct

numerical simulations (DNS) the mesh resolution required to resolve length

scales ranging from the Kolmogorov microscales up to the integral scale of the

flow results in a computing time that is currently not feasible for practical
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applications [81]. This limitation in computing power is something that the

astrophysics community has had to contend with for some time now and has

forced researchers in the field to develop simplified models of convection that

are based on rather drastic approximations. The mixing length theory is one

such model.

The mixing-length treatment has been proven to be fairly adequate when

building stellar models whose sole purpose is the description of the salient

features of stellar evolution. But it has well known shortcomings in specific

applications. Almost all versions of MLT approximate the equations of mo-

tion in the manner set out by Boussinesq [8]. The Boussinesq approximation is

known to be valid only when the mixing-length is much less than the pressure

and density scale heights, and implies in particular that the motion is subsonic.

However, there is a disagreement between stellar models and observations un-

less the mixing length is of the same order as these scale heights, so the theory

is internally inconsistent. Moreover, the energy equation does not admit terms

such as viscous heating which can be important in deep layers, even when the

motion is subsonic [31]. It also appears that supersonic convective velocities

may be achieved in certain classes of variable stars, making the generation of

acoustic energy an important effect. If the flux of acoustic energy becomes a

significant proportion of the total flux, then pulsational effects can no longer

be ignored. This is not something that can be described within the Boussinesq

regime since it does not allow for the possibility of acoustic waves.

Another major deficiency of the MLT is that it describes the convective heat

flux in terms of the local properties of the fluid. This makes it particularly

inadequate for studies of non-local effects such as convective overshoot, which

is known to play a significant role in almost all stages of stellar evolution.

Moreover, MLT provides little information about the dynamical properties of

convection apart from the mean size of the convective eddies and their turnover

time.
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MLT is therefore inadequate when dealing with:

• The description of photospheric and subphotospheric layers.

• Convective overshoot and penetration.

• The coupling between convection and pulsation.

• The interaction between convection and rotation.

• The generation and transport of magnetic fields in stars.

A number of papers in the literature have started to remedy the situa-

tion. Alternate prescriptions for the treatment of convection in the stellar

interior have for example been proposed by Canuto and Mazittelli [10], who

claim that the MLT can be significantly improved by considering the full spec-

trum of eddies with the appropriate convective flux distributions. Recently,

more sophisticated models which not only include the turbulent pressure but

the full Reynolds stress and other higher order moments in the velocity and

temperature fluctuations have also received attention [11], [12].

Moreover, rapid advances in computer technology are finally beginning to

provide scientists with the tools necessary to perform full 3-dimensional hydro-

dynamic simulations of turbulent flow [86]. Such simulations unquestionably

provide a more realistic picture of convection, but this approach is still too

expensive to be implemented in current stellar evolution codes, which is why

it has not yet replaced the mixing-length treatment.

In light of the above, it is evident that despite its many shortcomings, the

mixing-length theory of convection is, for moment, likely to remain the model

of choice in stellar evolution calculations. It remains to be seen whether the

use of more sophisticated closure models based on higher order moments will

result in predictions that are in better agreement with observation than the

MLT. This is now becoming an area of active research and it is hoped that

the development of these models will provide a solution to some of the severe
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limitations present in MLT. It is however, my opinion that significant progress

can be made only by use of full 3-dimensional hydrodynamic simulations, which

in the near future may finally become a viable alternative to MLT, a theory

which has indeed served us well, but which we must agree has reached the end

of its tour of duty.

“Little attention is paid to assessing the accuracy of the models,

partly because there is a general feeling that mixing-length theory is

so uncertain that the task would be fruitless, and partly, perhaps,

because of an optimism that the theory will soon be superseded by

something better.” D. Gough.



Appendix A

The Adiabatic Temperature

Gradient

Consider a bubble of gas located a distance r from the stellar centre. If the

bubble is slightly hotter than its surroundings, it will begin to rise under

the action of the buoyancy force. We will assume that that gas is ideal and

that the bubble moves adiabatically through the stellar medium in such way

that it always maintains a state of complete pressure equilibrium with its

environment. We now to determine how the temperature of the gas inside the

bubble changes as it rises and expands adiabatically.

A.1 Adiabatic Temperature Gradient in

Terms of Distance

The ideal and adiabatic gas laws can be expressed in terms of ρ as

P = ρ<T (A.1.1)

P = kργ (A.1.2)
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respectively, where γ ≡ cp/cv is known as the adiabatic index. From (A.1.1),

dP

dr
=

P

ρ

(
dρ

dr

)
+
P

T

(
dT

dr

)
=

1

γ

dP

dr
+
P

T

(
dT

dr

)
(A.1.3)

using (A.1.2). We therefore have that

dT

dr
=

(
1− 1

γ

)
T

P

dP

dr
(A.1.4)

A.2 The Adiabatic Temperature Gradient in

Terms of Pressure

One often defines the temperature stratification within a convective element

in terms of P since it is a more direct measure of the thermodynamic state of

the material and is itself a function of r. In this approach, the temperature

gradient of the convective element, as it moves adiabatically through a region

of the star, is defined to be

∇ad ≡
(
∂ lnT

∂ lnP

)
s

(A.2.1)

We now derive an expression for (A.2.1) noting that for an adiabatic process,

dq = 0.

Assume that the equation of state is ρ = ρ(P, T ) and the heat equation is

u = u(ρ, T ). The change in internal energy of the system can be expressed as,

du =

(
∂u

∂v

)
T

dv +

(
∂u

∂T

)
v

dT (A.2.2)

This allows us to write dq as,

dq =

(
∂u

∂T

)
v

dT +

[(
∂u

∂v

)
T

+ P

]
dv (A.2.3)

Now (∂u/∂v)T can be expressed in terms of T by considering the change ds =

dq/T in the specific entropy. Using (A.2.3), ds can be written as:

ds =
1

T

(
∂u

∂T

)
v

dT +
1

T

[(
∂u

∂v

)
T

+ P

]
dv (A.2.4)
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Since dv and dT determine ds, they may be regarded as independent dif-

ferentials. Now, the differential ds is exact, so (A.2.4) must arise from the

differentiation of a function of the form

s = s(T, v) (A.2.5)

Differentiating (A.2.5) gives us,

ds =

(
∂s

∂T

)
v

dT +

(
∂s

∂v

)
T

dv (A.2.6)

Comparing (A.2.4) with (A.2.6) we get(
∂s

∂T

)
v

=
1

T

(
∂u

∂T

)
v

dT

and (
∂s

∂v

)
T

=
1

T

[(
∂u

∂v

)
T

+ P

]
Since ds is a total differential form,

∂2s

∂T∂v
=

∂2s

∂v∂T

which means that, (
∂

∂T

)
v

[
1

T

(
∂u

∂v

)
T

+
P

T

]
=

1

T

∂2u

∂T∂v
(A.2.7)

But,(
∂

∂T

)
v

[
1

T

(
∂u

∂v

)
T

+
P

T

]
= − 1

T 2

(
∂u

∂v

)
T

+
1

T

∂2u

∂T∂v
− P

T 2
+

1

T

(
∂P

∂T

)
v

Substituting the above into (A.2.7) gives us the first energy equation for the

system, (
∂u

∂v

)
T

= T

(
∂P

∂T

)
v

− P

We can now rewrite (A.2.3) as,

dq =

(
∂u

∂T

)
v

dT + T

(
∂P

∂T

)
v

dv
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Thus, (
∂u

∂T

)
v

=

(
dq

dT

)
v

≡ cv

where cv is the specific heat at constant volume. Hence

dq = cvdT + T

(
∂P

∂T

)
v

dv (A.2.8)

Now define an isothermal compressibility coefficient, α, as:

α ≡ −P
v

(
∂v

∂P

)
T

=

(
∂ ln ρ

∂ lnP

)
T

(A.2.9)

and a volume coefficient of expansion, δ, as:

δ ≡ T

v

(
∂v

∂T

)
P

= −
(
∂ ln ρ

∂ lnT

)
P

(A.2.10)

dq can be expressed in terms of α and δ by noting that,(
∂v

∂P

)
T

(
∂P

∂T

)
v

(
∂T

∂v

)
P

= −1

This is called the First Cyclic Relation. Solve this equation for (∂P/∂T )v using

the Reciprocal Relation, and introduce α and δ into the resulting expression as

follows: (
∂P

∂T

)
v

= −
(
∂v
∂T

)
P(

∂v
∂P

)
T

=
Pδ

Tα
(A.2.11)

The expression for dq given in (A.2.8) then becomes,

dq = cvdT + T
Pδ

Tα
dv (A.2.12)

We still can not however, determine (A.2.1) from (A.2.12) in its current form.

We need to introduce a term containing dP , so that we can eventually solve

for dT/dP . This can be achieved by noting that,

dv =
dρ

ρ2

=
1

ρ

[(
∂ ln ρ

∂ lnP

)
T

d lnP +

(
∂ ln ρ

∂ lnT

)
P

d lnT

]
=

1

ρ

[
α
dP

P
− δdT

T

]
(A.2.13)
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Using (A.2.13), (A.2.12) becomes,

dq = cvdT −
Pδ

ρα

(
α
dP

P
− δdT

T

)
=

(
cv +

Pδ2

ρTα

)
dT − δ

ρ
dP

= cpdT −
δ

ρ
dP (A.2.14)

Now,

0 = dq = cpdT −
δ

ρ
dP

which implies that (
dT

dP

)
s

=
δ

ρcp

and hence

∇ad ≡
P

T

(
dT

dP

)
s

=
Pδ

Tρcp
(A.2.15)

Note also that (A.2.15) can be substituted into (A.2.14) to yield an expression

for dq in terms of the adiabatic temperature gradient

dq = cpdT −
Tcp∇ad

P
dP

= cpT

[
dT

T
−∇ad

dP

P

]
(A.2.16)
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[5] Böhm-Vitense, E. (1958): Z. Astrophys., 46, 108.
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