
The Crane Problem: Scheduling with Sequence-

Depend~nt Set-up and Processing Times

David Dc minic Clark

A research project submitted to tnc Faculty of Science, University of the

Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the

degree of Master of Science.

Joh~nnesburg, 1998

DECLARATION

I declare that this research project is my own, unaided work. It is being submitted

for the Degree of Master of Science in the University of the Witwatersrand,

Johannesburg. It has not been submitted before for any degree or examination in

any other University

Il~~
~~~~~-------

David Dominic Clark

ii



ABSTRACT

The problem of scheduling with sequence-dependent set-up times in e.
dynamic environment is investigated by studying how various dispatching rules

perform when used to schedule two cranes. Motivated by a practical

scheduling problem, the effect on production by delays due to the conflicts that

result between cranes is examined. The problem is formalized, and it is shown

that it can be classified as a problem of scheduling with both sequence-

dependent set-up and processing times. The effectiveness of simple

dispatching procedures that are used in machine scheduling and for the control

of automated guided vehicles is studied, using a simulation of a crane aisle

with jobs arriving dynamically. In addition, a dispatching rule, which explicitly

uses information regarding the state of the second crane, is examined. The

simulation results confirm the non-dominance of certain dispatching

procedures, and show how performance is improved as the rules are provided

more information regarding the state of the scheduling environment. It is shown

that when there are sequence-dependent processing times, a scheduling

heuristic that uses global information does significantly better than more

commonly used local heuristics.

iii



CONTENTS

DECLARATION _ ii

ABSTRACT iii

LIST OF FIGURES VI

LIST OF TABLES viii

1 INTRI()DUCTION " 1

1.1 Scheduling: Basic definitions and terminoloqy

1.2 Automated guided vehicles (AGVs)

1.3 Definition of the crane problem

2

12

13

2 LITERATURE REViEW " 23

2.1 Introduction - Development of Scheduling

2.2 Simple Deterministic Static Problems

2.3 Heuristics and Dispatchin\~ Rules

2.4 Scheduling Problems with Set-up Times

2.5 AGVs and Material Handling Devices

2.6 Rolling Horizon Methods

2.7 Crane Related Problems

23
23

24

28
30
34

35

3 PROBLEM DESCRIPTION 42

3.1 The Crane Problem

3.2 Crane Jobs in a Smelter Aisle

42

44

4 DISPATCHING HEURISTICSEXAMINED " " .48

4.1 Random Dispatching Rule

4.2 Shortest Distance (SDist) Dispatching Rule

4.3 Local Shortest Processing Time (LSPT) Dispatching Rule

4.4 SDist + Priority (SDist + P) Dispatching Rule

4.5 LSPT + Priority (LSPT + P) Dispatching Rule

4.6 Global Shortest Processing Time (GSPT) Dispatching Rule

49

49

50
51

52

52

iv



5 RESULTS 54

5.1 Total Output of System 54

5.2 Total Blocked, Idle, Busy and Moving Percentages 55

5.3 Total distance, slaved distance, and percentage slaved distance 55

5.4 Actual time to Optimum time for all jobs 56

5.5 Actual time to Optimum tim: were the Actual time> Optimum time 57

6 ANALYSIS OF RESUL T8 58

6, 1 Statistical Procedures

6.2 Analysis

58

58

7 CONCLUSION 65

8 REFERENCES 67

v



LIST OF FIGURES

Figure 1.1: Analysis of the scheduling problem 3

Figure 1.2: Types of solutions of scheduling problems 4

Figure 1.3: Classification of machine types.. 5

Figure 1.4: Workflow in a general flow shop 6

Figure 1.5: venn diagram showing the classification of schedules
into semi-active, active and non-delay. Optimal solutions
are always found in the active set. 11

Figure 1.6: The set C = {C1,C2} and the N job locations with
respect to the crane track 14

Figure 1.7: Graphical representation of the setup time. Sij
I~presents the time taken to move from the last job
location of Ji to the first job location of Jj 15

Fi~lllre 1.8: State diagram of a crane performing a job requiring
two processing locations at ~and ~ 17

Figure 1.9: Single busy conflict at 111 19

Figure 1.10: Two busy conflicts at 111 and 112 20

Figure 1:i 1: Single slaved conflict from Is to 112 20

Figure 1.12: A busy conflict at 111 and a slave conflict from 111 to 112 21

FiglUre 2.1: A schedule with set-up ':;rnes associated with sets of
tasks 29

Figure 2.2: Flow of work in an electroplating line. The hoist moves
work-in-progress from one tank to the next.. 35

Figuft') 2.3: Example of a stacker crane layout. The crane is used
to pickup, transport, and drop-off work-in-progress
between various workstations 38

Figure 2.4: The stacker crane problem 39

VI



Figure 3.1: The two types of jobs that occur in this scheduling
environment. 43

Figure 3.2: Schematic of the converter aisle 44

Figure 3.3: Moving a hopper to the feed chute 45

Figme 3.4: Charging converter three 46

Figure 3.5: Decanting slag 47

Figure 3.6: Moving matte to the slow cooling nays 47

Figure 6.1: Production Output.. 59

Figure 6.2: Percentape Irnprovement over Random dispatching
Heuristic 60

Figure 6.3: Percentage slaved distance to the total distance moved
by both cranes 61

Figure 6.4: Decrease in crane movement as a percentage of the
distance moved under the Random dispatching rule 62

Figure 6.5: The increase in the overall processing time, and the time
when conflicts did occur, as compared to the optimum
time ~or the same job order. 63

Figure 6.6: Increase in the processing and setup times as a
percentage of the optimum time 64

vii



LIST OF TABLES

Table 5.1: Output of System 54

Table 5.2: Percentage time that the cranes spent in
blocked, idle, busy and moving states 55

Table 5.3: Average distances that the cranes traveled
during d six month period 56

Table 5.4: Operational times for all jobs as percentage of
the optimum time 57

Table 5.5: Operational times for jobs where delays
occurred, as percentage of the optimum time ......... 57

Table 6.1: ANOVA results on production output of heuristics ... 58

Table 6.2: Duncan Groupings based on production output.. ..... 59

viii



1 INTRODUCTIOi~

The control of two overhead cranes, that share a common track, is presented as a

scheduling problem that involves sequence-dependent set-up and processing times. Set-

up times are prevalent in many scheduling environments. In manufacturing the time spent

preparing a machin ~ for a specific task can be defined as the set-up time for that task. If

the set-up period is dependent not only on the present task to be carried out, but also on

what jobs were performed previously, then the set-up times are sequence-dependent

Manufacturing processes are usually geared tcwards transforming some physical attribute

of an object, however the crane problem is concerned with changes in the spatial state of

an object A crane's function is to move objects from a pickup location to some drop-off

point. The set-up time can therefore be considered as the time taken for the crane to move

from its initial position to the pickup location.

When only one crane is on the track, the scheduling problem involves only set-up times.

However, when a second crane is introduced, not only are set-up times present but also

sequence-dependent process times. This dependence is not only on the previous job of the

crane, but also on the position and state of the second crane. The possible interference of

the cranes results in set-up and processing times that are contingent on the sequencing of

jobs on both cranes.

The rest of this report is organized as follows. The remainder of the introduction

introduces some of the salient characteristics of machine scheduling problems, along with

terminology and definitions relating to the measurement of scheduling performance . .-

introduction to Automated Guided Vehicles (AGVs) follows, along witt a brief

comparison of the AGV problem to the crane problem. Concluding this section is a

formal description of the crane system based on a model presented in [Lieberman and

Turksen, 81] along with definitions of the set-up and processing time of jobs. and how

crane interference affects these times.



Section 2 presents a survey of relevant literature. The emphasis is on dispatchir !, rules

and scheduling problems that deal with set-up times. A selection of papers that study the

dispatching of AGVs is provided, as well as literature that is related to various types of

crane problems.

A description of the real-world crane problem, and the assumptions made regarding the

model used are presented in Section 3. Section 4, outlines the six dispatching heuristics

that are examined. Their performance with regard to the output of the system is reported

in Section 5, along with various other measurements such as the slaved distances of the

cranes.

AI. analysis of the results is presented in Section 6. The results of two statistical

procedures, ANOVA and Duncan's multiple range test, are presented with respect to the

production output values. Section 7 concludes the paper with a discussion of the results.

1.1 Scheduling: Basic definitions and terminology

The problem of allocating resources over time to perform tasks is known as the

scheduling problem. This general definition of scheduling can be characterized using the

terminology of t manufacturing environment as follows. Given a number of tasks, each

consisting of one or more operations that must be completed in some order, and that

require a certain amount of processing-time on one or more machines, the scheduling

problem involves determining the sequence, timing, and machine assignment of each

operation to optimize some performance criterion.

The complexity of real-world scheduling problems [Rinnooy Kan, 76], [Graves, 81],

[McKay, et al. 88], [Ramesh, 90] and [Chen and Yih, 96], has meant that sequencing and

scheduling theory has been mostly occupied by developing a substantial bcy'!·, of

knowledge on the analysis and optimization of simplified problems [Rinnooy r ,. 6],

2



Scheduling problems belong to the broader class of combinatorial problems [Blazewicz,

et al. 88]. An analysis of the scheduling problem is shown in Figure 1.1. An easy problem

is referred to :IS a problem for which there exists an efficient polynomial-time algorithm.

When the problem is NP-hard, three general approaches can be taken. The problem may

be relaxed e.g. allow jobs to be pre-empted, approximation algorithms may b~ used to

find efficient but non-optimal solutions to the problem, or in the case of small problem

instances, complete enumeration algorithms may be used.

Scheduling Problems

Easy Problems NP-hard problems

Relaxation Approximation Complete
Enumeration

Figure 1.1: Analysis of the scheduling problem.

A number of methods have been employed to solve various types of scheduling

problem'>. Figure 1.2 shows classes of the better known methods that haw: oeen used.

3



Types of Solutions

Complete enumeration

Mixed Integer and Non-linear programming

Branch ana Bound

Dynamic Programming

Heuristic Methods

.. Priority Rules J
L Bayesian Analysis

--------------- ------------------------------------
Figure 1.2: Types of solutions to scheduling problems.

Machine scheduling problems can be classified according to how the jobs are routed

between the machines and various simplifying assumptions regarding the attributes of

jobs and machines.

Let T = {TI, T2•... Tn} represent the set of n tasks, and M = {MI, M2, ... Mm} the set of

m machines to carry out the tasks.

Some of the relevant attributes of each task T, can be denoted as follows:

1. An arrival time (ready time) - 'i, the time at which Tj is ready ',0 begin processing. If

all the arrival times for T are equal then it is assumed, without loss of generality, that

rJ = 0 for j = 1,2, ... .n.

2. A processing time - PI)which is the time needed by machine M, to complete task TJ,

or simply Pi if the processing time is equal on all machines.

3. A due-date - 0. The time when Tj should be completed.

4. The slacktime - OJ The extra time available to process a task and still meets its due

date. Cl) = 0 - (I'; + pj).

5. A weight (priority) -11), which reflects the urgency or importance of Tj.

4



Machi.res can be characterized by the tasks they can complete and the speed at which

·hey can complete them, h::j she vn in Figure 1.3. If they all perform the same functions,

they are described as parallel. When they are specialized to perform certain specific

tasks, they are referred to as dedicated. Parallel machines rr.ay be further classified into

three groups according to their speeds. Firstly, when all .he machines have equal

processing speeds such that Pi} = Pi for i = 1,2, .. , .m the machines are referred to as

identical. Secondly, if their speeds differ by a constant amount thai ;s independent of the

task such that Pu = p/bj for i = 1,2, ... .m where Pi is the standard processing time and b,

is the processing speed factor of machine M. then the machines are uniform Finally, if

the speed of the machine depends on the particular task tc be processed then they are

called unrelated.

Machines

Parallel Dedicated

I
L ~~~~ __ ---~

Figure 1.3: Classification of machine types.

Identical Uniform Unrelated

When the schedule involves dedicated machines, a multistage task Tj can be decomposed

into operations Ojl. Oj2, .. , , Ojk. Each operation may require a different machine, if the

flow of work is unidirectional then the environment is called a flow shop. In other words,

if each operation in TJ is linearly ordered by an ordering relation -<, then it is possible to

number the machines such that if Ojll -< Ojn+l. then the machine required by Ojn has a

5



lower number than the machine required by the Ojn"l operation. Figure 1.4 shows the

flow of work in a general flow shop.

Input Input Input Input

~ \, ~

~

~
Machine Machine

m-I m

Output Output Output Output

Figure 1.4: Workflow in a general flow shop.

By comparison, the job-shop scheduling problem differs from a flow shop in that the

flow of work is not unidirectional. The number of operations per task, their assignment to

machines, and the route or order that they take through the system is arbitrary but known

in advance. An operation in the job-shop case is described as a triplet (i.], k) in order to

denote that operation) of task i is required on machine k.

The most common assumptions and their implications to the complexity and type of

scheduling problems are briefly outlined below.

1. The sets of tasks T and machines M are known in advance and fixed.

Tins assumption distinguishes the static/deterministic problem from the

dynamic/stochastic one. When the set of tasks to be scheduled is not known in advance

then the problem must be studied by probabilistic methods. Instead of dealing with

information regarding the attributes of tasks, the problem is now characterized by the

6



process that generates the tasks. The stochastic problem is concerned with the

distributions that characterize the task attributes and makes use of queuing and

uncertainty theory to solve the scheduling problem in terms of distributions.

2. All tasks are independent and available for processing at time zero.

(r, = 0 for i = 1,2, ... .n),

This assumption may be tightened in two ways. Firstly, the jobs can become available at

non-equal integer ready times. Secondly, there may be non-simultaneous availability of

jobs and mutual dependency between them. This occurs when precedence constraints

exist between jobs, in other words that set T is partially ordered by -<, such that Ti -< Tj

implies that the processing of Tj cannot start before the completion of Ti, When at least

two tasks in T arc. ordered by the precedence relationship, the tasks are denoted as

dependent. The precedence structure of the tasks is usually shown as a directed acyclic

graph H=(V, A) with the vertex set V={1,2, ... .n} and arc set A = {(iJ)ITi -< Tj}.

3. All machines are available at the same time instant, and remain available during an

unlimited period.

Under real world conditions, it is likely that some of the machines will not be available

due to breakdowns, stoppages or labour shortages. This assumption regarding the

availability of machines is rarely removed in analytical scheduling literature.

4. All jobs remain available I.,.ring an unlimited period.

In most cases this is an unrealistic assumption, since deadlines for jobs are common in

most scheduling environments. The concept of due-dates makes provision for this in

various scheduling models.

5. Each job can be in one of three states: waiting for the next machine, being processed

or finished.

In many scheduling cases, there is little or no storage available for work-in-progress. For

instance, a computer operating system has limited buffer space. In some types of

manufacturing, there may be no waiting allowed between jobs, for example in the steel

7



industry where the temperature of the metal must be maintained throughout the

production process.

6. Each job is processed by all the machines assigned to it, and similarly each machine

processes all the jobs assigned to it.

This assumption enforces the deterministic character of the scheduling model. If jobs

may be left unfinished or rejected under certain conditions then the scheduling problem

falls into a dynamic/stochastic scheduling framework.

7. Each job is processed by one machine at a time.

This assumption can be relaxed under certain conditions, for instance assembly-type

production can easily be incorporated in the standard job-shop model without any

complication. Allowing a job to start on a second machine before being finished on the

Pi evious machine is another relaxation of this assumption that has been studied.

8. Each machine processes one job at a time.

lncreasixg the capacity of a machine M: from 1 to some number k relaxes this

assumption, and is equivalent to assuming that th ...e are k identical machines of tY}leMi.

A simpler assumption that one or more of the M; are non-bottleneck machines is

sometimes made. Such a machine is capable of processing all jobs simultaneously, i.e. its

capacity is greater than or equal to the number of jobs in the system.

9. All processing times are fixed and sequence-independent.

While the minimum processing time may be a fixed amount, delays may occur that result

in the processing time being represented by a random variable with some known

distribution. Sequence -dependent processing times occur if the delays are caused by a

resource that in turn can be scheduled .o minimize delays on other machines.

Sequence-dependent set-up times for a job occur when the set-up time of a job cannot be

absorbed into its processing time. The time interval during which a job j occupies a

machine can be expressed as Sij+ tj, where i is the job that precedes} in sequence. Slj is

8



the set-up time required for job j once ~, L ) \1.,3 been completed, and tj is the amount of

direct processing time 'equired to complete job j.

10. Each operation once started must be completed without 'nterruption.

Dropping this assumption by allowing job splitting or pre-en. lion r.iay actually simplify

the scheduling problem. A task that can be stopped at any time, and restarted later with

no additional cost and perhaps on another machine is said to be pre-emptible. When the

above assumption holds the scheduling model is called nan-preemptive.

II.The tasks have linear processing functions, i.e. the amount a task has been processed

depends linearly on the amount of time it has been assigned to a machine.

The above assumptions form the basis for the analysis of scheduling problems and allow

the models to be characterized by which assumptions hold and which are relaxed.

The effectiveness of a particular schedule is typically determined by regular measures of

performance. A function fCCl, C2, .•• , Cn) is regular if it is non-decreasing in every

variable. Iffis regular

f(C" ... , Cn) < r«; ,...,c;,)
implies that C, < C; for at least one i.

Once a set of tasks T has been scheduled, the following scheduling information becomes

available:

Starting time - Sj, which denotes the time task Tj starts processing.

Completion time - Cj, which is the time at which Tj is finished, such that Cj = Sj + Pj

(when there is no pre-emption allowed).

Flowtime (Fj). The amount of time Tj spends in the system: Fj = Cj - ri-

Lateness (Lj). The amount of time that Tj exceeds its due date: Lj = Cj - dj

9



Aggregate quantities from the above information can be used as one-dimensional

performance measures. The flowtime measures the interval that a job waits between its

arrival and departure, and is thus an indicator of how responsive the schedule is when

individual jobs demand competing resources. Three performance measures based on

flowtime are:

Mean flowtime:

Weighted Mean flowtime:
'\:"''' w' FF = L..j=1 J

\V "II
L..j=1 Wj

Maximum Flowtime:

Clearly if all the ready times of the tasks in Tare 0 then the flowtime is s mply the

completion time. The make-span or total production time corresponds to the maximum

completion time C max =max C i .
1 ..... 11

The lateness measure reflects how well the schedule can meet due date demands.

Performance measures such as the maximum lateness Lmax, and the average lateness [

are generally used. Often negative lateness can simply be ignored since there may not be

any penalty involved in completing a task earlier than necessary. The tardiness (Ti)

expresses the positive lateness of a job and is defined as T, = max(O,Lj). Aggregate

measures of tardiness such as the maximum tardiness Tmax, the mean tardiness f and the

number of tardy jobs can be used.

The above performance measures can be expressed as functions of the set of completion

times, which belongs to the class of regular measures. As such it can easily be verified

that the above performance measures are also regular. A number of useful relationships

10



between these performance measures exist. The criteria F, C, and T can be shown to

be equivalent, in that, if a schedule is optima; with respect to one of them, then it is

optimal with respect to the others. However, a schedule that is optimal with respect to

Fma,<, does not imply anything about Lmax [Conway, et al. 67].

A convenient classification of scheduling problems is provided by [Rinnooy Kan, 76].

The classificauon has the following format: a I fJ Iy,r 10, where
a represents the number of jobs, with n representing the general case.

fJ represents the number of machines, with m representing the general case.

y the type of machine ordering, g = {F flow shop, P a permutation schedule and G

indicating the general job-shop problem}.

I" indicates dropped assumptions, and will be explained as the notation is used.

o indicates which optimality criterion is used.

Schedules carr also be categorized into four types, that are useful when dealing with

procedures that generate schedules, such as dispatching rules. These are the set of all

schedules, the set of semi-active schedules, active schedules and non-delay sched-les.

Their relation can be seen in Fignre 1.5.

All schedules

~
Active

-I

Figure 1.5: Venn diagram showing the classification of schedules into semi-active, active
and non-delay. Optimal solutions are always found in the active set.

11



In theory there are an infinite number of schedules since an arbitrary amount of idle time

can always be inserted between jobs to create a new schedule. Semi-active schedules are

those schedules such that the starting time of no operation can be decreased without

altering the processing order on some machine. The cardinality of the semi-active .t is

finite, since if each job has exactly one operation on each machine, and each machine

must process n operations then there are n! possible sequences for each machine. If the

sequences on the machines are independent ther there can be at most (nl)" semi-active

schedules. This set dominates the set of all schedules, and hence in order to optimize

regular measures of performance it is only necessary to consider the semi-active

schedules.

Active schedules in turn are those semi-active schedules in which it is not possible to

decrease the starting time of any operation without increasing the starting time of a least

one other operation. The set of active schedules dominates the semi-active set and must

contain an optimal schedule with respect to every regular measure. The number of active

schedules still tends to be too large for the set to be effectively enumerated, a smaller

subset of active schedules called non-delay schedules may be considered. In a non-delay

schedule, no machine is kept idle at a time when it could be processing some operation.

While the non-delay set is smaller, there is no guarantee that it contains the optimum.

However, it has been shown in [Conway, et al. 67] that the random generation of non-

delay schedule, seems to provide better schedules on average than a similar generation of

active schedules.

The above terminology and definitions of scheduling environments and its characteristics

provide a conceptual framework for the problems and research of scheduling solutions.

more of which is provided in the literature review.

1.2 Automated Guided Vehicles (AGVs)

Many manufacturing environments require a materia! handling system (MHS) to

transport raw material, work-in-progress and finished goods between various locations.

12



Automated Guided Vehicles (AGVs) are being increasingly used as a flexible and more

efficient mechanism to reduce MHS times. These vehicles are driverless, and can be

programmed from a system controller to travel along a predetermined route. The control

system dispatches idle vehicles to carry materials from one processing or storage station

to another. Research into the design of efficient on-line control algorithms for AGVs has

a far shorter history in operations research than general scheduling, with mo- : significant

papers related to this field being written from 1980 onwards. In general, this control

problem has three main issues: dispatching, routing and scheduling. The last being the

amalgamation of dispatching and routing with time constraints.

Most AGV studies have been focused on design issues, such as determining the number

of vehicles required, flow path design, and route planning [Choi, et al. 94] and

[Taghaboni-Dutta and Tanchoco, 95]. Operational studies on vehicle dispatching and

traffic management have not been studied to the same extent. The performance and

behavior of various dispatching rules, under differing environmental conditions, have

been the predominant studies in this field.

The crane problem can be expressed as an AGV problem. The cranes can be considered

as two bi-directional vehicles, both running on a shared acyclic route. The route has no

detours at pickup and delivery points and the vehicles are required to service overlapping

stations. Since the number of tasks at any instance will generally be greater than the

number of vehicles available, the problem can be classified as a vehicle initiated

assignment problem [Egbelu and Tanchoco, 84].

1.3 Definition of the crane problem

The following definitions are provided as a framework for representing the crane

scheduling problem. A descriptive model of a crane system by [Lieberman and Turksen,

81] is presented below.

13



The crane system is defmed as f-l = (c,L, J,R.T) where

C is the set of m cranes {C, I i= 1. 2....• In}.

L jc ,ii' set of Njoh locations {Ii I i == 1,2, ..., N}.

J is the set of 11jobs available {.l; , i = 1,2, "" 11}.

R is the set of job ready times [ri 'rj2: 0, i = 1, ... 11}

T is the set of operation process times.

A representation of the sets C and L is shown in Figure 1.6 below.

~--~~~------~~==========~

IN I
Job locations J

L---- .

Figure 1.6: The set C ~ {C,. C2} and the N job locations with respect to the crane track.

The job locations l, are defined as the physical distance of the location from the leftmost

side of the crane track. Each job J, is defined by the locations that the crane must move to

in order for the job to be completed. Thus, a job consists of one or more ordered job

locations that the crane must traverse. JI can be defined as:

J I = {Iii Ji2 ,...J,q,} where lij ELand q.is the m-mber of operations for job J,

Given that lij is the job location of the jth operation of .e ,\hjob, then Tij is defined as the

processing time associated with the operation lij. The set of processing tirnes is

T == {tIl I tij 2: 0, i == 1,.... 11 ,j = 1,... , q.}

14



Further definitions and notation regarding characteristics of crane problems follow.

o The set-up time Sij of Ij following J, is defined as:

where k is some constant related to the speed of the crane, see Figure 1.7. This definition

is appropriate when considering set-up times created by job sequencing, however the

following set-up definition may also be used:

where l(t) refers to the location of crane c at time t. In most cases ltt) = ljq, ,i.e. the crane

position will be at its last drop-off point.

Ii

o 0------------1> ---- ~1J 0_" --------------1>

,.

Figure 1.7: Graphical representation of the set -up time. Sijrepresents the time taken to
move from the last job location of J, to the first job location of Jj,

15



e The process time P, of job Jj is defined as:

The above definitions of the processing time' and the set-up time are local, in that they do

not take into consideration how they may be influenced by the state of the other cranes ill

the system. The following global definitions of set-up and processing time take all cranes

into account.

Let S'y be the expected set-up time for job j a, time t given the current location of the

crane and global state of the system as

where Xs(t) is extra time due to crane conflicts during set-up, i.e, when two or mure

cranes both require the same section of track at a particular time.

Similarly let pljt be the expected time to process job i at time t given the global state of

the system as

where tp refers to the time we expect to begin processing job i and Xp(t) represents the

additional time needed to resolve any conflicts while performing the task, given the state

of the system at time t.

The values of Xs(t) and Xp(t) depend on how the crane movements are scheduled. These

values are a result of the dependence of the set-up and processing times on the state of tile

16



other crane in the system, but have no bearing 011 the spatial dependence of the set-up

mov "lenr, between jobs,

The current state of the second crane can be classified as idle, moving, or busy, where

busy denotes a crane that is not moving, but completing some or-c-ation. The tasks that

the cranes have to perform can be classified into those that consist of two jobs, and those

that consist of three jobs. A state diagram of a task consisting of two jobs is shown in

Figure 1.8,

Setup Processing

Figure 1.8: State diagram of a crane performing ajob requiring two processing locations

at Ii and Ii.

Let L" :.:{I, Ii:::; x::; j}, be the set of all locations between Ii and Ij. Then the range of job

locations for job 11 , given the crane is currently at let) can be defined as

R, = L1r where" = mine let), mine liJ' j = I ... ql» and Ir:= max( I(t), max (/Ij, j = I .. , ql»

The range IS thus the set of all locations between the minimum and maximum locations

that the crane will navel to while processing a job.

If c is the crane currently being scheduled and c' is the other crane in the system, then no

conflicts wili occur between the cranes under the following conditions:

17



Q c' is idle.

e R, and Rj are disjoint, where one crane is processing job Ii and the other job .Ijo

o c' is moving in the same direction as c and will not impede c at any l;...~"i.c. it will

either move beyond Ij or become idle before c reaches it.

e c' is moving in the opposite direction but will become idle before c reaches it.

When crane interference does take place, the resulting conflict can be classified into two

types, namely, busy and slaved.

A busy conflict occurs when one crane has to wait for another crane to finish its current

operation before it can continue to its destination. For example, crane c' may be busy with

a pickup or drop-off operation that it must complete before it can move out of the way of

crane c.

Let 13, the time taken by a busy conflict, equal the difference between the time taken to

complete an operation 'tij by crane c' and the time of arrival of crane c at location lij such

that

13 = max { 0, ~ij - t(lj)}

where ~ij represents the time that operation 'tij is completed by crane c', and t(lij) the time

at which crane c arrives at location lij.

A slaved conflict occurs when a crane is pushed out of the way by another crane. A

slaved conflict always incorporates a busy conflict, since the crane that is pushing the

other c=ne will only do so if it needs to complete some operation. Thus once the crane

18



reaches its location, the slaved crane will have to wait for that operation to be completed

before it can move back to its original position.

The slaved ,:onflict time !.l, represents the time that crane c must wait for c' to reach its

location and finish the required operation, in addition to the time that it takes for crane c

to move back to its original position.

where Is is the location at which crane c is slaved to crane c', lij is the location that c' is

moving to, and Tij is the length ofthe operation that c' must complete at Ii).

Various combinations of busy and slaved conflicts can occur, depending on the number

of locations that must be visited in order to finish a job, and the control strategy that

determines which crane is slaved during a slaved conflict.

The following example illustrates the types of conflicts that occur when crane c is trying

to complete a set-up movement from location I(t) to l« and c' is busy with a two operation

job JI = {lll' 112}.

g A single busy conflict occurs if crane c reaches III (or 112) before c' is fi nished, see

Figure 1.9.

r--

I(t)

,,,
I
I
I,u-----~------~~,,
I

112

l I

(~}------~------~T '
I,
I
I
I
I,

Figure 1.9: Single busy conflict atili.

19



o Two busy conflicts. Crane c has to wait for c' to finish its operations at both III and 112,

see Figure 1.1O.

, ,
Q I> 0, ,, ,, ,,

"i
,, ,, ,, ,, ,, ,

I(t) III 112 t,

Figure 1.10: Two busy conflicts at III and '12•

e A single slaved conflict. Crane c is slaved by c' from location Is to 112, and must wait

for c' to complete its operation at 112 before it can move again. Figure 1.11 shows the

slaved movement of c as a dashed line.

I(t)

i,
OIl ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,

l,,, 'f,

Ix III

Figure 1.1 J : Single slaved conflict from Is to 112.

20



o A busy and slaved conflict. This case is similar to the above example in Figure 1.11.

however. this time Is = Ill. Crane c thus experiences !I busy contlict first, and is then

slaved to 112• as Figure 1.12 shows.

(')---+----- --p )

I
I
I
I
I

€J
I
I
I
I
I
I
I
I
I

15=111 l(t) 112

Figure 1.12: A busy conflict at III and a slave conflict from III to '12.

The value of 1s{t) can now be formulated for the conditions given in j"e above example:

Let b be the number of busy conflicts and Bi the time taken by the ith busy conflict,

similarly 1(,,1 s be the number of slaved conflicts and Il.ithe time for the jth sf, .ed conflict.

Then

{

o when no conflict occurs
X (t) = b 5

s IjJ, + I:,Llj
1,,1 H

where b :s; 2 and s s 1.

Clearly, the delays can only be calculated once the control strategy of the cranes is

known, as this will affect which cranes become slaved. This strategy may be static or

dynamic in nature. Under static conditions, the scheduling system is unable to control the

behavior of the cranes once a job as been assigned. The dynamic situation gives the

21



scheduler more control over the cranes' movement, in effect scheduling both inter-job

and intra-job crane movements.

The above definitions of the crane problem show that it can be considered as a dynamic

two machine problem, with sequence-dependent set-ups, and processing times that are

affected by delays. The delays are caused by interference between the two cranes, and

hence can be minimized by sequencing the movements of the cranes. The uncertainty

regarding the actual processing time of a crane task is therefore sequence-dependent on

previous jobs and the state of the other cranes.

22



2 LITERATURE REVIEW

2.1 Introduction - Development of Scheduling

Sequencing and scheduling problems occur whenever an efficient allocation of resources

to tasks is required. The environments in which schedules are required cover a wide

variety of situations, from railway timetabling through to production scheduling.

Computers have proved not only to be tools for the construction of schedules, but have

also provided new environments for scheduling applications. Multiprocessor scheduling,

robot activity scheduling, large scale network scheduling and hard real-time scheduling

applications have introduced a number of new problems.

Due to the complexity of the scheduling problem, analytical studies have been confined

to solving scheduling problems with various restrictive assumptions. Several theoretical

results for a number of instances of machine scheduling are provided in [Conway, et al.

67], [Baker, 74] and [Rinnooy Kan, 76]. However, the assumptions used to find optimal

solutions to certain problems, have resulted in a number of discrepancies between

practice and theory in production scheduling, which [Graves, 81] highlights. McKay

contends that many theoretical formulations may be irrelevant, as they do not capture the

intricacies of real-world scheduling problems [McKay, et al.88]. The need to schedule in

environments that do not conform to theoretical worlds has resulted in many different

approaches being used, from combinatorial analysis through to control theory,

uncertainty theory, and artificial intelligence. The use of machine learning tv act as a

knowledge acquisition tool for dynamic scheduling systems [Nakasuka and Yoshida, 92]

and various other knowledge-based approaches have also been studied [Noronha anc!

Sarma, 91]. A survey regarding the various methods being applied to production

scheduling in recent years is provided in [Rodammer and White, 88].

2.2 Simple Deterministic Static Problems

Most production environments are stochastic and dynamic. Scheduling models on the

other hand have generally been deterministic and static. In a static environment the

requirements are finite and fully specified in advance, with the assumption that no

23



additional requirements will be added and none of the existing ones will be altered. An

overview of the major work done in this area can be found in [Graves, 81] and [Sen and

Gupta, 84]. These problems can be broadly classified into four main areas: one-machine

problems, the parallel machine model, the flow shop problem and the job-shop problem.

The one-machine problem or one-stage, one-processor problem is the most popular

scheduling model. Two procedures which determine the optimal task sequence by a

simple ordering procedure are the shortest-processing time (SPT) rule, and the earliest

due-date (EDD) rule or Jackson's Rule [Baker, 74]. The SPT rule solves the n/l/lF

problem sequencing the jobs in order of nondecreasing processing-time and EDD solves

the n/lIILmax, by sequencing jobs in order of nondecreasing due-dates requiring O(n log

n) steps [Rinnooy Kan, 76]. However, simply changing the ready times of the jobs

creates the n/lIrn;:: O/Lmax problem. This problem has been shown to be NP-complete by a

reduction of the KNAPSACK problem [Rinnooy Kan, 76].

The one-machine problem is generally too simple for any practical shop floor use,

however an important generalization of it, the parallel processor prohlem often occurs in

industry.

The simplest environment for multistage jobs is the flow-shop, as shown in Figure 1.4.

The 1110stgeneral and difficult scheduling problems are associated with the job-shop and

open-shop environments,

2.3 Heuristics and Dispatching Rules

The complexity of many scheduling models imposes computational requirements that are

too severe for large problems, and even for relatively small problems there is often no

guarantee of finding a solution quickly enough to suit the environment. Heuristic

algorithms are able to provide solutions with limited computational effort, but they do not

guarantee optimality, and it may be difficult to judge their effectiveness. While the

restrictive assumptions made in scheduling theory may over simplify the real world

conditions, the results gained from the models provide useful insights when developing

24



heuristic rules. A survey of dispatching rules for manufacturing environments is

presented in [Blackstone, et al. 82].

Two methods that have been extensively studied for their general applicability are

priority rules and Bayesian analysis. An overview of these approaches is discussed in

[Rinnooy Kan. 76].

[Gere, 66] defines a priority rule as a function that assigns a value to each waiting job.

and schedules the job with the lowest value first. An early study by [Jeremiah, et al. 64]

examined a number of factors influencing priority rules. Some of the information that can

be used effectively is:

SPT (Shortest Processing Time): Select the operation with the shortest processing

time.

FCFS (First come, First Serve): Select the operation that first becomes available

for further processing.

MWKR (Most Work Remaining): Select the operation which has the most work

remaining.

MOPNR (Most Operations Remaining): Select the job that has the highest

number of operations remaining.

L'"VKR (Least Work Remaining): Select the operation that has the least work

remaining.

RANDOM: Select the operation at random.

The study is summarized by [Conway, et al. 6T; and [Baker, 74]. The results showed that

no one rule dominated all the others. The most significant result is that non-delay

dispatching provided a better basis for heuristic schedule generation than active

scheduling. The MWKR rule and some of its derivatives often produce better schedules

than the other rules in terms of minimizing the makespan of the schedule. SPT and

LWKR tend to be superior to the others when the criterion is minimizing the mean fl..w

25



time. However the RANDOM rule was also found to perform well under this measure of

performance.

[Gere, 66] considers a rule to be random if it does not take into account any information

regarding the state of the Jobs or machines. For example, the first in first serve" -ule

(FIFS) is considered a random rule since it does not take into account any informai.c a

regarding the attributes of (he job. He also differentiates between priority and heuristic

rules. A heuristic rule by Gere's definition is a rule that can take into consideration other

aspects of the environment, and take exception to what the priority rule suggests as being

the best choice of operation. Heuristic rules generally require more complex

considerations of the environmer- and rely on anticipating future conditions, the effects

of alternate operations, or qualitative reasoning [Panwalker and Iskander, 77]. In a study

on the effect of various heuristic rules Gere made two interesting conclusions. Firstly,

when the goal is to meet due dates, the he nat pass specific knowledge to the

priority rule are more important than the prio. "_ .wle itself. Secondly, that there is little

difference in the effectiveness of priority rules after they are combined with one or more

heuristics, and hence a simple priority rule could be used.

The heuristics that Gere found to improve the schedules were the alternate operation and

look-ahead heuristic combined with the insert rule. The alternate operation checks to see

if the application of the priority nih: makes another job critical (if the slack of any other

job has become negative or reached a certain predefined critical level). If so, the last

operation is revoked, the next best operation is scheduled according to the rule, and a

check for critical jobs is once again made. The look-ahead heuristic tests to see if a

critical job will reach a machine at some future given time, yet before the scheduled

operation is completed. If this is the case, then the critical job is scheduled, and the effect

on other jobs is checked. The new schedule either remains, or is replaced with the

previous operation suggested by the priority rule, depending on how the lateness of the

jobs have been affected. The insert heuristic can be used in conjunction with the look-

ahead rule. If an idle gap exists between the job to be scheduled by the look-ahead rule

and the present time. then the longest operation that can be fitted into this gap is inserted.

26



These results seem to show, that by themselves, priority rules are insufficient for the

scheduling of complex problems. This is demonstrated by the fact that no rule dominated

any other, including the RANDOM rule. Gere also confirms this by concluding that the

heuristic rule is more important than the nriority rule.

However dispatching procedures (decisions that are taken in the order of implementation

and never revoked) still have numerous advantages in dynamic/stochastic envirorunents.

They are able to provide real-time response and can be tuned with the use of heuristic

rules for specific scheduling environments. For this reason a great deal of research is still

being done on various combinations of rules of this type.

There are a number of ways that dispatching rules can be classified. Rules can be static,

with job priority values that do not change as a function of time, or dynamic, reflecting

the status of jobs from time to time as the schedule progresses. They can also be classed

as general rules which cover a broader range of scheduling prnb10ams but may trade this

flexibility with loss of performance, or they can be specifically formulated for the

characteristics of the given envirorunent.

Over a hundred scheduling rules are classified in [Panwalker and Iskander, 77], who use

the following broad definition of the types of priority rules. Simple; these rules requite

information related to a specific job, P due date, processing time, etc. Consideration of

the queue length at the next machine that the job will visit is also considered as a simple

rule. Combination; applying different dispatching rules as the environment changes, or

applying different rules to different jobs in the queue depending on their attributes.

Finally, Weighted Priority Indexes, are weighted combinations of the above rules.

An extended dispatching rule (EDR) approach is presented in [Ishii and Muraki, 96]. The

EDR method applies the best dispatching rule depending on the process states. A simple

procedure, the EDR search algorithm, is used to find an appropriate dispatching rule

combination. It consists of two stages; in the first, the best single dispatching rule is

27



selected as the initial combination for the search process, called the current best

dispatching rule combination (CBRC). The next stage attempts to improve the CBRC

tequence by replacing dispatching rules in the CBRC with alternative rules. The new

, -mbination is tested using a dispatching-simulation mechanism. If it improves the

j.erformance the CBRC is updated. One dispatching rule IE replaced at a time, and

terminated when replacement reaches the last rule in the CBRe.

Whether the assumption that actual processing times for jobs are deterministic or

stochastic has any significant bearing on the performance of dispatching rules is

discussed in [Elvers and Taube, 83].

Dispatching rules for flexible manufacturing are discussed in [Chandra and Talavage, 9 J]

and a transient-based real-time scheduling algorithm, that selects dispatching rules

dynamically for short time periods in order to respond to changes in the state of the

system, is given by [Ishii and Talavage, 91].

2.4 Scheduling Problems with Set-up Times

The usual assumption for job-shop scheduh.i., research is that the jobs are sequence

independent. In many cases however, set-up times of jobs are sequence dependent, and

the time taken to perform the set-up 01 change over is a function of the preceding job.

This occurs for instance when die or tool changing is needed in a metal processing shop.

or a particular program must be loaded into memory to perform a task. The majority cf

research in this field has concentrated on static job arrival patterns. a summary of past

research can be found in [Kim and Bobrowski, 94].

The problem is formulated by [Bruno and Downey, 78J as follows. Given n disioint

classes of tasks C" .... Cn such that each Cj has a set-up (ask Sjwith set-up time t(Sj), and

some set-up cost (change-over cost) c(Sj). Then assuming the schedule is non-

preemptive, that every task has a deadline and that there is only one machine, does there

exits a schedule for all the tasks in C such that all the non-setup tasks finish before their



due dates? This problem is called the feasibility prcblem. An example of a Gantt

representation of this type of schedule is shown in Figure 2.1.

Class I Cbss 2 Class I

Task"

Figure 2.1: A schedule with set-up times associated with sets of tasks.

Bruno and Downey show that the since the Knapsack Problem can be reduced to the

feasibility problem that it is NP-hard [Bruno and Downey, 78]. Even when the set-up

times are equal the problem remains NP-complete. When the number of identical

machines is increased to two then all the above scheduling problems can be shown to be

Nl'-hard, by reduction to the Partition Problem.

In the above problem the set-up time is a function of the class only. When the set-up time

is a function of both the current class and the previous class, then the set-up time is

sequence-dependent. Baker shows that when all due dates are identical, that tli" single

machine case of this problem can be shown to be equivalent to the Travelling Salesman

Problem (TSP) which is NP-hard [Bakel', 74]. When the set-up times have arbitrary

.alues, and are equated with arbitrary inter-city distances in the TSP, then Salmi and

Gonzalez show that no polynomial-time algorithm can yield a fixed data-independent

worst-case error bound [Salmi and Gonzalez, 76].

Ovacik and Uzsoy, however, are able to provide tight data independent worst case

bounds for list scheduling heuristics, when set-up times are b0\111dby the processing

times [Ovacik and Uzsoy, 93]. List scheduling algorithms generate non-delay schedules,

where no machine is kept idle if there is a job available for processing. List schedules are

29



based on some permutation of the jobs, such that whenever a machine becomes idle, the

unscheduled job at the head of the list is scheduled on that machine. Clearly ouch a

procedure is restricted to identical parallel mrchine problems. However, when set-up

times are introduced, non-delay schedules are no longer dominant and the optimal

schedule need not be a list schedule. The worst case performance of a list schedule can be

quantified when the set-up times have some special structure, as [Ovacik and Uzsoy, 93]

show using the assumption that the set-up time is always smaller than the processing

time, i.e. sij sPj.

The effect of sequence-dependent set-up times is examined by [Kim and Bobrowski, 94].

They show that ordinary sequencing rules do not perform as well as set-up orientated

rules, and that sequence-dependence has a significant impact on shop performance. The

sequencing rules are classified as set-up orientated sequencing rules if they use

information regarding set-up procedures. The JCR (Job of smallest Critical Ratio) and

SIMSET (Similar Set-up) rules represent set-up orientated rules. The JCR heuristic looks for

a job that is ready for processing and that is identical to the job that it has ~ st processed.

When no such job exists then the job with the smallest critical ratio is scheduled. The

SIMSET procedure simply selects the next job based on minimizing the set-up time. The

experimental results using these rules showed that rules using set-up information

provided increased throughput, better machine utilization and showed less variation when

meeting due-dates.

2.5 AGVs and Material Handling Devices

Most Automated Guided Vehicle studies have been focused on design issues, such a

determining the number of vehicles required, flow path design and route planning, There

have been far fewer operational studies on vehicle dispatching and traffic management.

Most have been with regard to how various dispatching rules perform under certain

conditions.

30



Three of the most popular dispatching rules are the SDT (Shortest Travel Time) rule,

MQS (Maximum Queue Size) rule, and the LWT(Longest Waiting Time) rule. The SDT

rule aims at minimizing the travel time of empty vehicles, and was found by [Egbula and

Tanchoca, 84] to be a very powerful and robust heuristic because, the efficiency of a

material handling system is usually determined by the speed at which components can be

moved to the next destination. However the performance of the SDT rule is highly

dependent on the layout of the departments that must be serviced as well as the locations

of pickup and delivery points.

A hierarchical on-line dispatching algorithm for scheduling jobs on machines and AGVs

is proposed in [Sabuncuoglu and Homrnertzheim, 92a]. The algorithm takes into account

interactions between machines and AGVs during the scheduling process. Most

dispatching rules consider the machines and AGVs as independent sets, and do not use

any information regarding the state of the other system when making a scheduling

decision. The AGV algorithm assigns the next task to an awaiting vehicle using a

hierarchical decision process. The first level checks critical workstations that are blocked

or have full queues. A number of criteria are then applied to determine WhIChworkstation

should be serviced: st if a number of workstations are classified as critical. The second

level checks if there are any jobs waiting in central buffers that can be moved to a

workstation queue. Next, if any idle stations are found, then an AGV will be dispatched

to bring work to it, using either a SDT or LWT rule. Finally, if there are no idle or critical

machines, and the buffers fire empty then the AGVs are dispatched to the workstations

that are most likely to finish first.

The hierarchical algorithm discussed above was compared to various dispatching

combinations for machines and AGVs. The SPT/LQS (Shortest Processing Time /

Largest Queue Size) and SPT/SDT (Shortest Processing Time/Smallest Distance

Traveled) were the main rules used as a comparison. These were previously found by

[Sabuncuoglu and Hommertzheim, 92b] to be the best rule combinations against the

mean-flow time criterion. The results showed the hierarchical algorithm's ability to use

31



information about both machines and AGVs did improve performance, especially at high

load level (utilization rates), but was only slightly better when the load level was low.

A control and scheduling mechanism for AGVs is presented in [Aktruk and Yilmaz, 96]

that considers the interaction of an AGV system with the rest of the decision making

hierarchy found in a manufacturing environment. The automated manufacturing research

facility (AMRF) model, a five level decision making hierarchy, is relaxed to allow the

AGV system to provide feedback regarding scheduling decisions made at the shop and

cell levels. A micro-opportunistic scheduling algorithm (MOSA) is proposed by Aktruck

and Yilmaz that can simultaneously consider both critical jobs from a job-based

scheduling perspective, and the unloaded-travel times of the AGV s from a vehicle-based

viewpoint. On average MOSA outperformed the simpler dispatching rules such as

shortest travel time first (STTF), earliest due-date (EDD), earliest release-time (ER), and

the Rachamadagu-Morton (RM) rules. However, there was no dominant rule since each

rule performed the best in at least one run.

Based on earlier work on finding conflict-free shortest time routes for bidirectional

vehicles in [Kim and Tanchoco, 91), a myopic strategy for working in dynamic

environments is presented in [Kim and Tanchoco, 93]. The method is myopic in that it

considers only one vehicle at a time, and adheres strictly to all previously made

scheduling decisions. The study looks at whether the benefit of a bidirectional AGV

system over its unidirectional counterpart is significant in terms of throughput and

flowtimc, [Kim and Tanchoco, 93 J found that the bidirectional system outperformed the

unidirectional system in terms of throughput, but an upper bound is reached as the

number of vehicles is increased, The difference in throughput also decreases as the PIT

ratio increases, where the PIT "atio is the ratio of the average processing time per

operation to the average transport time per transfer. This is mainly as the impact of the

AGV system becomes less as the PIT ratio increases.

AGV dispatching in a Just-In-Time environment is studied by [Occefia and Yokota, 91].

They propose a heuristic that is sensitive to different degrees of demand in the JIT

32



environment. The maximum demand (MD) dispatching rule prioritizes which stations

should be serviced first by using threshold values on the input and output queues of each

workstation. Departments that have no work (i.e. are starving) are given first priority

followed by departments with the most number of service requests. The rule produces

higher Jlerforman':e than AGV dispatching rules in terms of both transport performance

measured hy throughput and logistic performance measure by the total ave-v-e inventory

level.

Four vehicle-initiated AGV rules are examined by [Lee, 96]. These include three

composite ruJ:5. which combine the concepts of shortest distance and maximum outgoing

queue size. Results show that the Nearest-station/Stay-in-Sanle-Station rule is the best on

ave.. ..~..:111 u rms of throughput and flowtime. This rule works by sending the AGV to the

nearest station with work, and if there is no work it moves to the nearest pickup station on

its route.

Klien and Kim, generalise the composite rule approach and examine the performance of

multi-attribute dispatching rules [Klien and Kim, 96]. Since AGV dispatching is a multi-

attribute decision-making problem. it is argued that a multi-criteria decision should be

superior or at least equal in performance to a single-criterion solution process, A simple

additive weighting method (SAWM) heuristic as well as more complex fuzzy logic based

decision making procedures were examined. The STD rule is superior to other single-

attribute dispatching rules and comparable to multi-attribute methods when the

workstation lay-out is such that no department is being ignored [Klien and Lee. 96]. Even

thougl. the multi-attribute methods are unable to find optimal solutions, they outperform

the single-attribute rules,

Numerous other techniques have been used to schedule and control AGV systems. A

LISP driven controller for scheduling free-ranging AGVs is described in [Taghabcn' and

Tanchoco, 88]. A shortest t:avel time dispatching rule is used. with a SUM,. utine

incorporated in their routing procedure to check if more than one vehicle can pass an

intersection simultaneously without crossing each other's paths. [Krishnamurthy, et al,

33



93] propose a column-generation based heuristic to find conflict free routes for multiple

AGVs to minimise the makespan. Studies using neural-networks have also been

conducted. [Hao and Lai, 96] propose a new methodology for the quasi real-time control

of an AGV system using a self-organizing network, and show encouraging results,

supporting the potential of such a technique.

2.6 Rolling Horizon Methods

While most practical job-shop and AGV scheduling problems use dispatching rules, their

rather myopic view of the environment may lead to poor long-term performance. At the

other extreme, if all jobs in the system, both current and future, are considered as a single

problem, an exact solution could be found. However the computational burden of such a

procedure renders it impractical for problems of a realistic size. Rolling horizon

procedures (RHP) allow for the explicit trade-off between solution quality and

computational time, through the choice (Jl parameter values that define the size and

number of subproblems.

Ovacik and Uzsoy, use RHP to decompose the dynamic scheduling of machines with

sequence-dependent set-up times, into a subproblem that consists of the jobs on hand and

a subset of the jobs that will arrive in the near future [Ovacik and Uzsoy, 94]. The overall

solution of the problem is approximated by the solutions to the successive subproblems.

This decompositlonal approach allows some degree of forward scheduling visibility

combined with optimizatlon procr lures that can focus on smaller problems and thus

make explicit use of du. .la:e: and set-up times. The RHP algorithm used by [Ovacik and

Uzsoy, 94] consists of three decision parameters. The length of the forecast window,

which denotes tJ'e period within which the arrival times of future jobs can be predicted,

the maximum number of jobs that will be considered at any decision point. and finally the

maximum number of jobs that are scheduled at a decision point. The s_,)problems are

then solved using a hvbrid of a depth-first and best-bound search. The results indicated

that the Rl-IP algorithm was able to produce resuits substantially better than dispatching

34



rules, with the added flexibility of being able to explicitly trade off solution time and

quality by the parameter choices.

The above approach is extended to dynamic parallel machines in [Ovacik and Uzsoy, 95].

However a branch and bound approach is not used to solve the subproblems, since it is

hard to find efficient branching schemes due to the non-dominance of list schedules, and

it is also difficult to find effective lower bounds due to the presence of sequence-

dependent setup-times.

2.7 Crane Related Problems

Research regarding crane scheduling is mostly limited to a single crane operating in a

flow-shop type product -n environment. A typical example of such a system occurs when

electronic circuit board" are chemically treated in a sequence of tanks, see Figure 2.2,

[Phillips and Unger, 761 and [Ge and Yih, 95]. The cranes perform inter-tank transfers of

the jobs where each move consists of lifting the unit from a tank, moving to the next tank

and finally submerging the unit in the new tank. Tanks can only process one unit at a time

and no inter-tank buffers exist. An additional constraint is often imposed on the minimum

and maximum time that a unit can remair in a tank.. These intervals are called time

window constraints.

Hoist --1> Trackc=========~=t=----------~
~

~~

~~

Figure 2.2: Flow of work in an electroplating line. The hoist moves work-in-progress

from one tank to the next.

35



Several studies have focused on the creation of cyclic-schedules for flow-type

environments. The cranes are assigned a fixed sequence of moves, which are performed

repeatedly. Each repetition of the move sequence is called a cycle and the time to

complete a cycle is called the cycle time. Cycles may be distinguished by how many units

are introduced into the system during each period. In an n-cycle, n units are introduced

each period. [Phillips and Unger 76J, [Shapiro and Nuttle, 88], [Ge and Yih, 94]. and [Lei

and Wang 91] consider simple cyclic schedu'es (n=I), where exactly one job enters and

one job leaves the system. The objective of the schedule is to minimize the cyclic time to

increase throughput.

[Phillips and Unger, 7i:l use a mixed integer programming model to minimize the cycle

time. The length of a cycle is considered to be from the time a unit departs tank 0 to the

time that the next unit leaves tank O. Since the cycles are assumed to be identical, the

configuration of tanks (whether they are in use or empty) at the end of a cycle must be the

same as when the cycle began. The model involves n+ I continuous variables, (n2 + /1)/2

zero-one variables and (n+1)2 constraints. Real data from a system of 13 tanks is used as

a numerical example. The model was solved using the IBM MPSX/MIP package of

mixed integer programming algorithms, which uses a branch and bound approach.

Additional constraints were added based on experience to reduce the problem size. A

schedule with a rvcle time of 580 time units was found. The authors also note that the

tightness of the time window constraints probably contributed to the short run times by

enabling efficient pruning of the solution tree.

[Shapiro and Nuttle, 88] demonstrate a cyclic-schedule of 521 time units for the same

problem that is studied in [Phillips and Unger, 76]. They also employ a branch and bound

approach, but use ,. • programming to bonnd the search space. A heuristic, which

attempts to introduce units as soon as feasible and stopping as soon as a simple cycle is

obtained, characterizes the essential idea behind the branch and bound procedure used.

The algorithm can also be used to generate cycles of a specified duration (if such a

schedule is possible) by adding a lower bound on the cycle length.

36



The Minimum Common-Cycle algorithm (MCC) is proposed by [Lei and Wang, 91] to

solve the cyclic two-hoist problem. The number of alternate schedules that exists for a

system ofN+ 1 tanks is shown by [Lei and Wang 89] to be N!2N
-
1 where N! represents the

number of circular permutations that exits for N+ 1 elements and the 2N
-1 crane

assignments are due to each tank being serviceable by either crane, excluding the first

and rst tanks. The MCC procedure partitions the system into two sets of contiguous

stauons and assigns a crane to each set. The creation of non-overlapping subsets

eliminates the need to consider interference between the cranes but sacrifices global

optimality. Each sub-problem is optimally solved and then the common-cycle time that is

acceptable to both subsystems is determined through an iterative process. The

partitioning approach reduces the number of possible combinations to O(N(N-l)!) when:

N is an upper bound on the number of possible partitions and (N-l)! is an upper bound

for the total number of circular permutations of the subproblems. However, certain

properties of the problem can be used to reduce the number of partitions investigated

without losing the minimal common-cycle. The following inequality is shown to hold:

Xoptimal ~ Xmcc s x(N -1 ) s x(N)

where Xoptimal is the minimum global cycle time, Xmcc is the minimum common-cycle

time among all the partitions examined, and x(N-l) and x(N) stand for the optimal cycle

time for a single crane system with N-I and N tanks respectively. Increases in the

variation of job processing times and crane travelling times, where the cranes can

perform more efficiently if they are not constrained to partitions, have a negative effect

on the solution provided by the MCC algorithm.

Real-time scheduling is an alternative approach to deal with the crane problem. Instead of

creating a fixed cyclic schedule, a real-time system determines what should be scheduled

using the current state of the environment. A semi-Markov decision model for real-time

scheduling is proposed by [Yih and Thesen, 91J and applied to a material-handling robot

running along a single track. The model, however, requires a large amount of data that is

difficult to obtain, and the resulting state is usually too large for analytical study. An

37



optimal solution is derived by first eliminating those states that did not occur when the

system was scheduled by an expert scheduler, and shown to be significantly better than

the one used by the observed expert.

An incomplete branch and bound approach is presented by [Ge and Yih, 95] to schedule

one crane in a flow-shop type production environment. Each branch of the tree

corresponds to a moving sequence of operations, and is said to be feasible if the

corresponding moving sequence is feasible. A depth first search is used with heuristics to

determine which node to start examining and a linear programming formulation is used to

test the feasibility of the sub-branch found so far, Real-time control is achieved by

implementing the algorithm at each decision point in time, for example when the crane

unloads a job. Based on the state of the system at that moment, the algorithm will give an

efficient schedule for one or more succeeding operations,

ICrane Trackr==:==~=-----------------------------~

Workstation

Figure 2.3: Example of a stacker crane layout. The crane is used to pick up, transport, and
drop-off work-in-progress between various workstations.

The stacker crane-scheduling problem can be viewed as a relaxation of the flow-type

environment discussed above. The crane is used to move units of work from one

38



workstation to another fc ,Jrocessing. Figure 2.3 shows that, unlike the flow-type

environment, the movement of work is not necessarily linear.

The stacker crane problem is a generalization of the travelling salesman problem (TSP)

and can be described as follows. Given a set V of vertices and a set A of directed edges' ,

such that each edge is an ordered pair of vertices. The goal is to find the minimum length

tour which traverses each element of A in the specified direction at least once. Figure 2.4

shows the movement of a crane that has to complete three jobs, J,={A,B}, J2 = {C,D} and

J3 = {E,F}, with the dashed lines indicating set-up movements between the jobs. The

problem can be snown to be NP-complete by a reduction to the problem of finding a

Hamiltonian circuit, and remains NP-complete even if all the edge lengths equal 1 [Garey

and Johnson, 79]. The Equalizing Interval Heuristic, to produce a non-stop cyclic

schedule for a stacker crane, which is shown to be superior to dispatching rules in a

deterministic and repetitive environment is presented in [Matsuo, et al, 91].

C D
(1)---11>0

A B
<)--t>0---------t>

I>J
<l---o<*----:<e--------- . 0

F E
O<li---O
F E

(a) (b)

Figure 2.4: The stacker crane problem. (a) An instance of the stacker crane problem

A.""'{(A,B),(C,D),(E,F)}. (b) A feasible solution of instance A.

Lieberman and Turksen, study the problem of using 111 cranes that process jobs of one

operation only, that is, the crane only has to move to one position to complete a job

I The undirected version of the stacker-crane problem is called the rural postman problem and is also NP-
complete.

3l)



[Lieberman and Turksen, 81]. The scheduling problem is stated as "Given the conflicting

demands, assign cranes to tasks so as to minimize the delays in processing due to crane

interference." By removing the single-track constraint, the system is treated as an 111-

parallel server system (mps).

The simplest case of the crane problem occurs when the crane only needs to perform an

operation at a single location, and does not transport material between locations. When

all the job ready times are the same (i.e. fJ = 0, for all j ) and deadlines are not enforced

then this problem is trivial since each job is processed as it occurs along the crane trac,

The problem reduces to a traveling salesman that has to visit cities that lie along a straight

road.

The static single-operation crane scheduling problem is defined by [Lieberman and

Turksen, 81] as a system of m cranes and n jobs such that m < n, all the jobs are ready for

processing simultaneously, the jobs have equal processing times r, and they consist of

only one operation. The lower bound on the makespan of such a system is In / m l- t .A
simple O(n) batching algorithm is presented which provides an optimal solution.

The concept of batching the jobs is extended to the case when there are constant inter-

arrival times ~r for the jobs. The system can be modeled as a D/D/m queuing system with

arrival rate A = 1 / ~r. An O(n) optimal algorithm can be devised to yield a schedule with

no interference, because the jobs have only one operation.

When the restriction of requiring equal processing times is relaxed. the problem becomes

NP-complete [Lieberman and Turksen, 81]. In this case a lov.er bound on the makespan

can be shown to 1e

40



The model is extended t J two-operation crane problems in [Lieberman and Turksen, 82],

since most tasks involving a crane require picking up material at one location and

transporting it to another position. The algorithms for one-operation problems cannot be

directly applied to this situation, as they are not able to take into account the precedence

structure that exists with a two-operation job, and are therefore unable to eliminate the

resulting crane interference.

Under certain conditions however, [Lieberman and Turksen, 8:2] show that interference-

free schedules can be obtained when all the jobs are simultaneously available and the

processing time of the jobs are equal. Using the concept of a minimum ordered partition

(MOP), a job set can be tested in 0(n2 for a necessary condition as 10 whether or not the

set can be partitioned in such a way as to batch the jobs so that no crane interference will

occur. If such a solution is possible the optimal time for the makespan of the problea is

2· In/ml t . In some cases however complete enumeration of all nossible MOP's is

necessary, making the problem I\'P-complete in general.

(Lieberman and Turksen, 82] also provide an alternative procedure that can be used v.nen

the necessary conditions for the above method cannot be met. known as a mesh procedure

with complexity O(ll). It can only be applied to a system containing two cranes, such

that given both are busy, one crane is processing the first location of its job, while the

other is processing the second location of its job. This forces a cr-me to be idle for the

Iirst and last t time units. '!'he procedure yields schedules whose makespans are at worst

4/3 of the lower bound value,

41



3 PROBLEM DESCRIPTION

3.1 The Crane Problem

The crane problem, can be generalised to any problem where a machine requires some

contiguous spatial resource for some period of time. in order to complete a task. In the

case of cranes or, a single track, the space required is the area over which the crane must

move in order to perform its operation. The area over which it must move may be

contested by the presence of otl-er cranes processing tasks in the same region, leading to

conflicts in movement.

Using the notation presented in the introduction the above crane system is defined as

.u=(C,L,J,R,T) where:

C is the set of2 cranes {C, I i = 1. 2}. Two cranes are responsible for the movement of

material between various locations along the aisle.

L is the ::.t..: "f N job locations {Ill = 1, 2, ..., N}. The job locations occur at each piece of

equipment along the aisle. As these are overhead bridge cranes. job locations occur at

either side of the aisle.

J is the set of n jobs available {Ji I i= 1,2, .... 11}. Two classes of jobs occur in this

environment. J, = {h), ti2} and Ji = {til, la, Ii)}, see Figure 3.1.

R is the set of job ready times {ri I /"j ~ O. i = 1, ... n}.

T is the set of operation process times.

42



A B A B

{}-------[>0--1> <D @-------i>O----f;>O ~

4--

(a) (b)

Figure 3.1: The two types of jobs that occur in this scheduling environment. (Po) Shows a

two location job J, = {A,B}, (b) depicts J, = {A,B,A}. The dashed atTOW indicates the

setup movement.

This study uses a computer simulation model of a smelter aisle developed by [Lubinsky,

et al. 961. The model was developed in 02, an object orientated simulation language. See

the appendix for further details regarding the simulation.

The assumptions together with operational policies are as follows:

1. The cranes have identical capability (identical processors).

2. There is no job pre-emption.

3. Each crane can process at most one location at a time.

4. Each job can be proc, .ed by at most one crane.

5. Crane speeds are constant.

6. Cranes are continuously operational.

7. A crane can only transfer material required for one job at a time.

43



3.2 Crane Jobs in a Smelter Aisle

To study the crane problem a real-world smelter environment was simulated. A

schematic of the environment on which the simulation if based is presented in Figure 3.2.

Converting is the process of removing impurities from molten metal by blowing air

through the liquid. The impurities are changed either into gaseous compounds or into

liquids that are removed as slag. The plant consists of six main areas between which

material has to be transported. These are: furnaces, slow cooling bays, cold matte and

silica feed chutes, slag heap, and the converters, each having a silica and cold matte

hopper. Material enters the system through the furnaces and feed chutes and exits via the

slow cooling bays and slag heap.

Converters

000000

DDD[J[]
Slow Cooling

Bays Feed
Chute

Furnaces

Figure 3 2: Schematic of the converter aisle.

Cranes
r-- :-

- I-

I- I-
L..- _

Slag Heap
J

44



The main activity of the cranes is to transfer matte (a molten mixture of metallic

sulphides) from the fuma: es to the converters, so that the converting process of the

mattes can take place. Once the converter has been charged (filled) with matte, cold

matte, and silica for fluxing purposes, a sustained blast of air is introduced, Slag

accumulates while the blow is in progress. After a certain amount of slag has formed the

air is shut off, and the slag is removed and returned to the furnaces, Another charge of

matte and flux can then be added and the blow started again. This process continues until

enough converter matte has been produced and can be transferred to the slow cooling

bays. A list of the jobs that must be performed are as follows:

Jobs of the form JI = (Iii, /;2): 2 operations and I crane movement.

e Filling the cold matte and silica hoppers that feed the converters. Although the hopper

must be returned to the converter, the job can be split into moving the hopper to the

feed chute, and vice versa. This is possible because the crane can leave the hopper at

the chute and perform another job while the hopper is being filled. The example in

Figure 3.3 shows the movement needed to transfer a hopper from converter number 5

to the feed chute.

Hopper at Converter 5
~

00000°0

/
[] [J n DO c=J

Feed
Chute

Figure 3.3: Moving a hopper to the feed chute.

45



o Cleaning the mouth of a converter - moving the service platform to the converter.

o Returning a slag ladle - moving a slag ladle to a converter.

Jobs of the form Ji = (Iii, li2.l1l): 3 operations and 2 crane movements.

o Charging the converters - transferring matte from the furnaces to a converter.

Requires moving a ladle of matte from a furnace to a converter, pouring the matte

into the converter and returning the ladle to the furnace. Figure 3.4 shows the

movements needed to charge converter number 3.

Converters

000000
--~ .-

o
D~DDD[=:=l

Furnaces

o Decanting slag - transferring slag from a converter to either a furnace for resmelting

or to the slag heap, and returning tile slag ladle to the converter, sec figure 3.5

Figure 3.4: Charging converter three.

46



Converters

000000

DD

Figure 3.5: Decanting slag. (a) Movement of slag to a furnace. (b) Movement of slag to

the slag heap

III Decanting matte - Fetching a ladle from a slow cooling bay, mOV1l1gto the converter

to get the matte, returning to the slow cooling bay and emptying the ladle, see figure

3.6.

Converters

000000

___,_ll--
~Oll~ D DO

Bays

Figure 3.6: Moving ma.te to the slow cooling bays.

47



4 DISPATCHING HEURISTICS EXAMINED

Six heuristics have been tested using the simulation of the smelter plant. Due to the

dynamic nature of the environment and a limited control horizon, the most obvious

scheduling technique is the use of simple dispatching rules. However the effect of

sequence-dependent set-up times and more importantly the problem of interference with

other cranes has a significant impact on their performance.

The first four dispatching rules use very little information regarding the state of the

scheduling environment. As a result they suffer from inherent myopic deficiencies

common ',0 dispatching rules. A random heuristic is used as a benchmark to determine

whether the dispatching rules provide any performance gains whatsoever.

The final dispatching technique examines the effects the other crane may have on the

chosenjob. Tins is a type of rolling horizon procedure with a look ahead of only one job.

and forms the basis of an intermediary procedure hetween simple dispatching rules and a

longer term scheduling formulation.

The state of the crane system at any time consists of the present state and locations of the

cranes, the future commitments of the cranes (i.e. a crane that is committed to a job must

process it to completion since there is no job pre-emption) and pending jobs.

Let pending jobs at time t be defined as:

Pend(t) = {J, I ri -:;t,.Ii Ii!: CCt)}

were CCt)represents those jobs that have been completed or are currently being processed at

time t. Let let) be defined as those cranes that are idle at time t.

48



The following initialization constants are used:

Maxdist = length of the crane track + 1.

Long'Time » Length of time for the longest job possible.

Using the above crane system information, the dispatching rules discussed below assign

jobs to cranes.

4.1 Random Dispatching Rule

As a basis for evaluating the rest of the methods described in this section, the random

dispatching rule is used to determine which job should be carried out next.

Random Dispatching Algorithm

For each crane Cj in I(t) do

Assign C1 to a random job in Pend(t)

End

4.2 Shortest Distance (SDist) Dispatching Rule

The shortest distance rule is closely related to the greedy algorithm used to solve the

travelling salesman problem. It is the easiest rule to practically apply in this type of

scheduling environment, The criterion for choosing a job Ji is based on the distance the

crane must travel to reach IiI, the first processing location of Ji. Sli represents the set-up

distance between the crane at time t and Iii, as discussed in the introduction.

49



Shortest Distance Dispatching Algorithm

Best_Job, AssignedCrane = {null,null}

Nearest_Found = Maxdist

For each crane CI in I(t) do

For each Job Ji E Pend(t) do

If Sf ::,;Nearest_Found then

Nearest_Found = Sti

Best_Job, AssignedCrane = {JI, Gi}

End

End

End

Dispatch AssignedCrane to Best_Job

4.3 Local Shortest Processing Time (LSPT) Dispatching Rule

Shortest distance algoritluns choose jobs only on the basis of minimizing the set-up time.

The LSPT dispatching rule combines the set-up and processing time, and uses the

resulting time as the criterion to judge which job should be dispatched next. The set-up

and processing time are calculated assuming that there is no interference with the other

cram' For this reason it is termed a local dispatching rule, as it does not take into account

the state of the other cranes in the environment.

LSPT Dispatching Algorithm

Best_Found, AssignedCrane = {null.null}

Shortest_Found = LongTime

For each crane Ci in I(t) do

For each Job JI E Pend(t) do

If Sti + PI s Shortest_Found then

50



Shortest_Found = Su+ PI

8est_Job, AssignedCrane = {Jj,CI}

End

End

End

Dispatch AssignedCrane to Best_Job

4.4 Shortest Distance with Priority (SDist + P) Dispatching Rule

The shortest distance rule can be rendered useless if low priority jobs arc always beii.g

serviced first. The SDist+P rule first selects the ' andidate jobs based on a static priority

that is assigned to each job. The SDist dispatching rule then chooses from this subset of

pending jobs. Let PriorityrJj) = the priority of job Jj represented as an integer value

between 1 and 9, with 9 being the most urgent jobs.

SDist + P Algorithm

PriorityJobs = {Jj I Jj E Pend(t) , Priority(Jl) = maximum priority of Pend(t)}

Best_Job, AssignedCrane = {null,null}

Nearest_Found = Maxdist

For each crane Cj in I(t) do

For each Job JI E PriorityJobs do

If Sti::; Nearest_Found then

Nearest_Found = Stj

Best_Job, AssignedCrane = {J;,Cj}

End

End

Enu

Dispatch AssignedCrane to Best_Job

51



4.5 LSPT with Priority (LSPT + P) Dispatching Rule

This rule is similar to the SDist + P dispatching rule, however this time the LSPT rule is

used to choose the next job from the candidate jobs.

LSPT + P Algorithm

PriorityJobs = {Ji I Ji E Pend(t) , Priority(Ji) = maximum priority of Pend(t)}

Best_Job, AssignedCrane ::::{null,null}

Shortest Found= LongTime

For each crane CI in I(t) do

For each Job Jj E PriorityJobs do

If Sti + Pi s Shortest_Found then

Shortest Found= Sti + PI

Best__Job, AssignedCrane = {J;,Ci}

End

End

End

Dispatch AssignedCrane to 8est_Job

4.6 Global Shortest Processing Time (GSPT) Dispatching

The GSPT algorithm is similar to the LSPT rule, except that it takes into account possible

se. up and processing delays caused by the interactions of the two cranes. 'Iv'hen a crane

becomes io Ie, it examines each job in the pending list, and calculates the time it takes to

complete each job given the state of the second crane. Clearly, if the second crane is idle

then the GSPT time equals the LPST time.

In order to calculate the GPST time, a look-ahead simulation of the job is made. This

allows all interactions with the other crane to be taken into account when calculating the

52



time it will take to complete its assigned job. The total time taken to complete the job can

be expressed as Ji= Stj+ Xs(t)+ Pi + Xp(tp).

The delays, /.:s{t) + Xp(tp), are implicitly taken into account when performing the

simulation.

The look-ahead simulation uses the same control strategy that occurs when the cranes

actually perform the jobs. Let Look-headrh.c.t) return the look-ahead simulation time for

Ji performed by crane c at time t , then the delays caused by busy or slaved conflicts can

be shown by

Delaysf.li.c.t) = Look-aheadt.l..c.t) - (Sti + Pi).

GSPT Algori .hm

Best_Found, AssignedCrane = {null.null)

Shortest Found = LongTime

For each crane C1 in I(t) do

For each Job Jj E Pend(t) do

If Look-aheadt.h.Crt) <:; Shortest_Found then

Shortest_Found = Look-ahead(J;,Cjt).

Best_Found, AssignedCrane = {Jj,C1}

End

End

End

Dispatch AssignedCrane to Best_Found

53



5 RESULTS

The aggregate results of 6 simulation runs for each dispatching rule are presenteu in the

tables below. Each run consists of six, 31-day months, representing 186 simulated days

per run.

5.1 Total Output of System

The total output is a measure reflecting the productivity of the system. It represents the

total amount of material that leaves the system after 6 months. To show the increase in

production the output values have been normalized with respect to the Random heuristic's

average. See Table 5.1.

Average Normalized Standard Deviation
-----
Random 23665 416

LSPT 24010 1.01 421

SDist 23923 '1.01 490

SDist + P 24132 1.02 257

LSPT+ P 24525 1.04 112

GSPT 25791 1.09 110

Table 5.l: Output of system.

54



5.2 Total Blocked, Idle, Busy and Moving Percentages

Table 5.2 shows the percentage time that the two cranes spend in one of four states. A

blocked state occurs when the crane is unable to move to its destination due to the

interference of the other crane on the aisle. Busy states occur when a crane is processing

a job. A moving state is the result of a crane moving to perform some job. A crane is idle

when it is not in any of the other three state ..;.

Blocked Idle Busy Moving

-Random 13.8 11 61.6 13.6

LSPT 15.4 10 62.2 12.4

SDist 15.8 10 61.8 12.4

SDist + P 15.9 9.1 62.1 12.9

LSPT+ P 11.9 8.8 137.3 12.0

GSPT 9.6 9.2 68.8 12.4

Table 5.2: Percentage times that the cranes spent in blocked, idle, busy and moving

states.

5.3 Total distance, slaved distance, and percentage slaved distance.

Table 5.3 shows the travelling distance of both cranes over the simulated period. The

slaved distance represents how far eacb crane has had to move to stay out of the way of

the other crane.

S5



Total Distance Slaved Distance % Slaved Distance

Random 4608140 881035 19
LSPT 4282240 785979 18
SDist 4429277 817081 18
SDist + P 4443204 759322 17
LSPT+P 4329444 678074 16
GSPT 4022567 604922 15

Table 5.3: Average distances that the cranes traveled during a six month period.

5.4 Actual time to Optimum time for all jobs

Table 5.4 shows the additional time needed to complete a job, as a percentage increase of

the best possible time that it could have taken. The results have been obtained using the

following formulas.

Processing
(Total time taken to process all jobs) - (Optimum time to process all jobs) 100

Optimum time to process all jobs

(Total set - up time for all jobs) - (Optimum set - up time for all jobs) 100
Set - up

Optimum set - up time for all jobs

Note that these times refer to the sum of the individual jobs actual and best times, given

the state of the system at the time of measurement.

56



Processing Setup Combined

Random 17 24 20
LSPT 15 21 18
SDist 16 2C 17
SDist + P 16 21 18
LSPT+P 13 18 15
GSPT 11 16 13

Table 5.4: Operational times for all jobs as a percentage of the optimum time.

5.5 Actual time to Optimum time were the Actual time> Optirnum time

The results in Table 5.5 are calculated in the same way as in Table 5.4 but in this case,

only those instances in which there was a difference between the actual time and

optimum time were used.

Processing Setup Combined

Random 61 79 67
LSPT 59 it:! 66
SDist 60 79 67
SDist + P 59 77 65
LSPT+ P 53 70 59
GSPT 48 67 54

Table 5.5: Operational times for jobs where delays occurred, as a percentage of the

optimum time.

57



6 ANALYSIS OF RESULTS

6.1 Statistical Procedures

Two types of statistical procedures are used to analyse the simular .on results. The

analysis of variance CANOVA), and the Dun-an multiple range test. The purpose of

ANOV A is to test the differences in means for statistical significance. The Duncan

multiple range test, groups the methods according to statistical differences between the

means.

6.2 Analysis

ANOVA

Source of Variation SS df MS F Pwelu« F ctii
Between Groups 17524470 5 3504894 30.84 5.781::-11 3.69
Within Groups 3409470 30 i13649

Total 20933940 35
Table 6.1; ANOV A results on production output of heuristics.

The effect of the heuristics on the mean output values is statistically significant at a S

0.01 as seen in Table 6.1.

Figure 6.1 shows how production output increases, as the heuristics have more

information regarding the state of the environment.

58



26000
25500

....
::I 25000::l.....
::I
0 24500r:
0
:;:; 24000o
::I

L[L[lJ'tIe 23500a.

23000
22500

qandom Sdist LSPT SDist + P LSPT+ P GSpt

Heuristics

Figure 6.1: Production Output. The bars are shaded according to the heuristic's Duncan

Grouping shown in Table 6.2. Group A - ~ , Group B -0 ,Group C -0 .

Thr results of the Duncan Multiple Range Test on the production outputs are shown in

Table 6.2.

Duncan Grouping Mean Heuristic

A 25791 GSPT

B 24525 LSPT + P

B 24132 SDist + P

C 24010 LSPT

C 23923 SDist

C 23665 Random

Table 6.2: Duncan Groupings based on production output.

59



The groupings show that simple heuristics such as SDist and LSfT do not perform well

when sequence-dependent job times are present. Only when information that is specific

to the scheduling enviromnent is introduced. in the form of priority rules. do the

heuristics show some improvement.

The fixed priority scheme used in SDist + P and LSPT + P works in this case. sino' .he

characteristics of the pending list and job precedence structure ensure that high priority

rules will not always dominate the scheduling system. On average 77% of all schedul g

decisions for the SDist + P and LSPT + P were determined by priority only.

The results of the GSPT show how important it is, in environments where set-up and

processing delays are caused by the state of other machines in the system. to take into

account knowledge that is not limited to only to the machine and job being scheduled. as

is the case in most dispatching heuristics.

Figure 6.2 shows the percentage improvement of the production means. over the Random

heuristic.

%Improvement over Random Dispatching

10
....

8I:
CII
E 6CII>
0... 4Q.

E
~ 2
e

0

SDist LSPT SDist+P LSPT+P GSPT

Heuristics

Figure 6.2. Percentage improvement over Random dispatching heuristic.

60



The GSPT rule shows a 9% improvement over the random case and a 5% improvement

over the next best rule tested LSPT + P. The LSPT rule ontperforms the SDist rule by

33%, and by 84 % when priority scheduling decisions are included (i.e. LSPT + P).

%Slaved Distance

20
18
16
14

" 12'"> 10C1l

iii 8~e
6
4
2
0

Random SDist LSPT SDist+P LSPT+P GSPT

Heuristics

Figure 6.3: Percentage slaved distance to total distance moved by both cranes.

GSPT also shows a 4% improvement compared to the Random rule. in respect to th:

percentage of the distance the cranes had to travel to move out of each others' way, and

the total distance they moved during the simulated period. see Figure 6.3.

Figure 6.4 shows the improvement in the percentage distances moved with respect to the

Random dispatching rule. When using the GSPT rule, the slaved distance moved is 31%

less than the Random rule, and the total distance moved is 13% less. The SDist heuristic

actually performed better than the LSPT algorithm with 11% and 7% decreases in the

slaved and total movement of the cranes as opposed to 7% and 4% respectively for the

LSPT method. This suggests that the SDist rule which always attempts to make the

smallest move to the next job, succeeded in reducing crane movement, but that this in

itself was unable to increase throughput.

61



%Improverrent in Crane Movement

E 350
"0
C 30curr 25I-
Q)
> 200 Q)...., "Sc
Q) 0:: 15
E
Q) 10>
0
I- 5a.
E
:.-R 0
0

oSlaved
a Total

SDist LSPT SDist+P

Heuristics

LSPT+P GSPT

Figure 6.4: Decrease in crane movements as a percentage of the distances moved

under the Random dispatching rule.

Given the order of jobs assigned to the cranes by the various heuristics, Figure 6.5 shows

how the jobs total completion times compare with their individual optimum completion

times. These results show the effects of delays on the individual jobs, and do not indicate

the total makespan of the jobs, which would be dependent on the sequencing of the jobs

as well.

The Random rule shows that the jobs take 20% longer than if no conflict delays had

occurred. For jobs where conflicts are present the percentage increase in the job times is

67%. The GSPT rule is able to reduce the delays to 13% for the overall time, and 54% for

conflicted job times.

62



% Increase in Optimum Time

80
70
60

Q)
CIl
ro 50OJ....
c

40
Q)

E 301=~0 20
10
0

Random Sdist LSPT SDist+ P LSPT+ P GSpt

Heuristics

oOverall 0 Conflicts

Figure 6.5: The increase in the overall processing time, and time when conflicts did

occur, a" compared to the optimal time for those jobs.

The time taken for the jobs which took longer than the optimum time can be split into

their set-up and processing components respectively. Figure 6.6, shows the effects of

delays on each component as a percentage increase in the optimum time.

The LSPT + P and GSPT heuristics stand out from the others, The set-up and processing

increases are 53% and 73% respectively f .-the LSPT+ P, and 48% and 67% for the

GSPT method. While the improvement in times due to a decrease in delays is present, the

corresponding increases in output for the different heuristics must also be attributed to the

sequencing of the jobs, and not only the decrease in conflicts.

63



% Increase in Processing and Set-up Times

90
80

CIJ 70III
(U 60~..
tl 50.5
CIJ 40
E 30i=
';!. 20

10
0

Random SDist LSPT SDist+P LSPT+P GSPT

Heuristics

o Process ,ng [;lSetup

Figure 6.6 Increase in processing and set-up times as a percentage of the optimum time.

64



7 CONCLUSION

The results of the heuristics used in this report, suggest that the GSPT dispatching rule

yields a higher throughput than those rules that do not take into account interactions with

the other crane. When the SDist and LSPT rules were supplemented with a priority

decision making process, they both shewed an improvement in output.

The set-up time of any environment, which involves spatial movement, is inherently

sequence-dependent. The notion of sequence-dependent process times, however, is not

often presented. In this case, the delays caused by the interactions of the cranes while

performing their respective jobs are considered to be part of the processing time, as

opposed to a separate aspect of the scheduling envir .mment,

This idea is carried forward in the definitions of local and global processing times. The

local processing time does not consider delays, and indicates the expected time a jcb

would take if no crane interaction took place. The global processing time, is the time it

takes when the states of the other machines are taken into account. Processing time is

generally considered in sched rling literature to be independent of other machines in the

enviromnent. In the case of cranes or AGVs a spatial resource is required to perform a

job, and this resource may be contested by other vehicles in the area. TIns results in till"

processing time being dependent on the sequencing of those vehicles so that the resource

in question can be used efficiently, thus minimizing the processing time.

The resource need not be spatial. Other examples could be specific memory areas that

programs need to perform certain tasks. If the memory region needed is already in use

then the process will be delayed. The delay however is a function of the sequence-

dependence of the processing times. A similar situation may occur when labour shortages

arise. In this situation the contested resource is the labour, as the processing time for job

Ji on machine M] may increase due to delays caused by the shortage of operators. In this

case however the resource is discrete as opposed to continuous.

65



The delays also affect set-up times, and thus the set-up time is a function of distance and

crane interactions in this environment. Thus, both the set-up and processing times are

sequence dependent.

These dispatching heuristics have focused on the effects of the uelays caused within jobs,

and since they look only one job ahead, they are not effective as sequencing rules for the

overall job order. The results show however, that dispatching rules should attempt to take

into account the current state of any machine that may cause delays within the jobs being

considered.

66



References

AKTURK,M.S., and YILMAZ,H.. 1996, Scheduling of Automated Guided Vehicles in a

Decision Making Hierarchy. Internaticnal Journal of Production Research, vol. 34, no.

2, pp. 577-591.

R\KER, K., 1974, Introduction to Sequencing and Scheduling. New York, Wiley.

BLACKSTONE,J.H. JR, PHILLIPS,D.T .. and HOGG. G.L., 1982, State-of-art survey of

dispatching rules for manufacturing job-shop operations. International Journal of

Production Research, vol. 20, no. 1, pp. 27-45.

BLAZEWICZ,J., FINKE,G., HAUPT,R., and SCHMIDT,G., 1988. New Trends in machine

scheduling. European Journal of Operational Research, vol. 37, pp. 303-317.

BRUNO,J., and DOWNEY,P., 1978, Complexity of Task Sequencing with Deadlines, Set-

UT Times and Changeover Costs. SL1M Journal of Computing, vol. 7, no. 4, pp 393-404.

CHANDRA,J. and TALAVAGE,J., 1991, Intelligent dispatching for flexible manufacturing.

International Journal of Production Research, vol. 29, no. 11, pp. 2259-2278.

CHEN, C .c., and YII-I,Y., 1996, Identifying attributes for knowledge-based development

in dynamic scheduling environments. International Journal of Production Research, vol.

34, no. 6, pp. 1739-1755.

CHOI, H-G., KWON,H-J., and LEE, J., 1994, Traditional and Tandem AGV System

Layouts: A Simulation Study. Simulation, vol. 63, no. 2, pp. 85-93.

CONWAY, R.W., MAXWELLW.L., and MILLER, L.W., 1967, Theory of Scheduling.

Addison- Wesley, Reading, Massachusetts.

67



EGBELU. P.J., and TANCHOCO,J.M.A, 1984. Characterisation of Automated Guided

Vehicle dispatching rules. International Journal of Production Research, vol. 22, pp.

~')9-374.

ELVERS,D.A., and TAUBE,L.R., 1983. Time Completion for Various Dispatching Rules

in Job Shops. Omega, vol. 11, no. 1, pp. 81-89.

GAREY, M.R., and JOHNSON,D.S., 1979, Computers and Intractability: A Guide to the

Theory of NP-complete ness. W.H.Freeman and Company, New York.

GE, Y., and YIH, Y., 1995, Crane Scheduling with time windows in circuit board

production lines. International Journal of Production Research, vol. 33, no.5, pp 1187-

1199.

GERE, W.S. JR, 1966, Heuristics in Job Shop Scheduling. Management Science, vo!. 13,

no. 3, pp. 167-190.

GRAVES, S.C .• 1981, A Review of Production Scheduling. Operations Research. vol. 29,

no. 4, pp. 646-675.

HAo, G., and LAI, K.K., 1996, Solving the AGV problem via a Self-Organizing Neural

Network. Journal of the Operational Research Society, vol. 47, no. 12, pp. 1477-1493.

ISHII, N., and MURAKI,M., 1996. An extended dispatching rule approach in an on-line

scheduling framework for batch process management. International Journal of

Production Research, vol. 34, no. 2, pp. 329-348.

ISHII, N., and TALAVAGE,J.1., 1991, A transient-based real-time scheduling algorithm in

FMS. Internation Journal of Production Research, vol. 29, no. 12, pp. 2501-2520.

68



JEREMIA,B., LALCHANDANI,A., and SCHRAGE,L., 1964, Heuristic ruu. toward optimal

scheduling. Research Report, Department ofIndustrial Engineering, Cornell University.

KIM, S.C., and BOBROWSKI,P.M., 1994, Impact of sequence-dependent setup time onjob

shop scheduling performance, International Journal of Production Research, vol. 32, no.

7, pp. 1')03-1520.

KIM. C.W., and TANCHOCO,J.M.A, 1991, Conflict-free shortest-time bidirectional AGV

routing. International Journal of Production Research. vol. 28. no. 6, pp. 2377-2391.

KIM, C.W., and TANCHOCO, J.M.A, 1993, Operational control of a bidirectional

automated guided vehicle system. International Journal of Production Research. vol. 31.

no. 9,pp. 2123-2138.

KLIEN, C.M. and KIM, J., 1996, AGV dispatching. International Journal of Production

Research, vol. 34. no. 1, pp. 95-110.

KRISHNAMURTHY,N.N., BATTA,R., and KARWAN,M.H., 1993, Developing conflict-free

routes for automated guided vehicles. Operations Research. vol. 41, no. 6, pp. 1077-

1090.

LEE. J., 1996, Composite Dispatching Rules for Multiple-Vehicle AGV Systems.

Simulation, vol. 66, no. 2, pp. 121-130.

LEI L., and WANG, T., 1991, The Minimum Common-Cycle Algorithm for Cyclic

Sche.iuling of Two Material Handling Hoists with Time Window Constraints.

Management Science, vol. 37, no. 12, pp. 1629-1639.

LIEL.oRMAN, R.W., and TURKSEN, LB., 1981, Crane Scheduling Problems. AIlE

Transactions, vol. 13, no. 4, pp. 304-311.

69



LIEBERMAN, R.W., and TURKSEN, I.B, 1982, Two Operation Crane Scheduling

Problems. AIIE Transactions. vol. 14, no. 3, pp. 147-155.

LUBINSKY,D.S., NAGY, P. and PERRY, K., 1996, Smelter Aisle Simulation Model.

Proceedings of the G2 Users Group 1996, Idle Winds Conference Center.

MATSUO,H., SHANG,lS., and SULLIVAN,R.S., 1991, A Crane Scheduling Problem in a

Computer-Integrated Manufacturing Environment. Management Science, vol. 37, no. 5,

pp. 587-606.

McKAY, K.N., SAFAYENI, F.R., and BUZACOTT, lA., 1988, Job-Shop Scheduling

Theory: What is Relevant? Interfaces, vol. 18, no. 4, pp. 84-90.

NAKASUKA,S., and YOSHIDA,T., 1992, Dynamic scheduling system utilising machine

learning as a knowledge acquisition tool. International Journal of Production Research,

vol. 30, no. 2, pp. 411-431.

NORONHA, S.l, and SARMA, V.V.S., 1991, Knowledge-Based Approaches for

Scheduling Problems: A Survey. IEEE Transactions and Data Engineering, vol. 3, no. 2,

pp. 160-171.

OCCENA,L.G., and YOKOTA,T., 1991, Modeling of an automated guided vehicle system

(AGVS) in a just-in-time (JIT) environment. International Journal of Production

Research, vol. 29, no. 3, pp. 495-511.

OVACIK,LM., and UZSOY,R., 1993, Worst-case error bounds for parallel machine

scheduling problems with bounded sequence-dependent setup times. Operations

Research Letters, no. 14, pp. 251-256.

70



OVACIK, 1.M., and UZSOY, R., 1994, Rolling horizon algorithms for a single-machine

dynamic scheduhng problem with sequence-dependent setup times. International Journal

of Production Research, vol. 32, no. 6, pro 1243-1263

OVACIl'., 1.M., and UZSOY, R., 1995, Rolling horizon procedures for dynamic parallel

machine scheduling with sequence-dependent setup times. International Journal of

Production Research, vol. 33, no. 11, pp. 3173-3192.

PANWALKER,S.S., and ISKANDER,W., 1977, A survey of Scheduling Rules. Operations

Research, vol. 25, no. 1, pp. 45-61.

PHILLIPS,L.W., and UNGER,P.S., 1975, Mathematical Programming Solution of a HOlst

Scheduling Program. AIlE Transactions, vol. 8, no. 2, pp. 219-225.

RAMA.SESH,R., 1990, Dynamic Job Shop Scheduling: A Survey of Simulation Research.

Omega, vol. 18, no. 1, pp. 43-57.

RINNOOYKAN, A.H.G., 76, Machine Scheduling Problems: Classification, complexity

and computations. Martinus Nijhoff, The Hague.

RODAMMER, F.R., and WHITE, K.P., JR., 1988, A Recent Survey of Production

Scheduling. IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 6, pp.

841-8.) 1.

SABUNCUOGLU,1., and HOMMERTZHEI1',D.L., 1992a, Experimental investigations of

FMS machine and AGV scheduling rules against mear flow-time criterion. International

Journal of Production Research, vol. 26, no.L pp 173-188.

SABUNCUOGLUand HOMMERTZHEIM,D.L, 1., 1992b, Dynamic dispatching algorithm for

scheduling machines and automated guided vehicles in a flexible manufacturing system.

International Journal of Production Research, vol. 30, no. 5, pp. 1059-1079.

71



SAHNI, S., and GONZALEZ, T., 1976, P-Complete approximation problems. Journal of the

ACM, no. 23, pp. 555-565.

SEN, T., and GUPTA, ~.K., 1984, A State-of-Art Survey of Static Scheduling Research

Involving Due Dates. Omega, vol. 12, no. 1, pp. 63-76.

SHAPIRO, G. W., and NUTTLE, H.L. W., 1988, Hoist Scheduling for a PCB Electroplating

Facility. lIE Transactions, vol. 20, no. 2, pp. 157-167.

TAGHABONI-DuTTA, F., and TANCHOCO, J.M.A., 1988, A U~P based controller for free-

ranging automated guided vehicle systems. International Journal of Production

Research, vol. 26, no. 2, pp. 173-188.

TAGHABONI-DuTTA, F., and TANCHOCO,J.M.A., 1995, Comparison of dynamic routing

techniques for aut =iated guided vehicle system. International Journal of Production

Research, "01. 33,. v. 10, pp. 2653-2669.

YIH, Y., and THESEN, A., 1991, Semi-Markov decision m. .els for real-time scheduling.

International Journal of Production Research, vol. 29. no, 11, pp. 2331-2346.



Author: Clark, David Dominic.
Name of thesis: The crane problem - scheduling with sequence-dependent set-up and processing times.

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2015

LEGALNOTICES:

Copyright Notice: All materials on the Un ive rs ity of th e Witwa te rs ra nd, J0 han nesb u rg Li b ra ry website
are protected by South African copyright law and may not be distributed, transmitted, displayed or otherwise published
in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page)for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.


