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Abstract 

This thesis presents the use of social learning to improve the performance of game 

playing reinforcement learning agents. Agents are placed in a social learning environment 

as opposed to the Self-Play learning environment. Their performance is monitored and 

analysed in order to observe how the performance changes compared to Self-Play agents. 

Two case studies were conducted, one with the game Tic-Tac-Toe and the other with the 

African board game of Morabaraba. The Tic-Tac-Toe agents used a table based TD (λ) 

algorithm to learn the Q values. The results from the tests for the Tic-Tac-Toe agents 

indicate that the social learning agents perform better than the Self-Play agents in both 

board tests and competitive tests. By increasing the population sizes of the agents the 

number of superior social agents also increases as well as improvements in their skill 

level. In the second case study the agents use function approximation and the TD (λ) 

algorithm because of a larger number of states. The social agents performed better than 

the Self-Play agents in the board tests and are not superior in the test where they compete 

against each other. Larger populations were not possible with the Morabaraba agents but 

the results are still positive as the agents perform well in the board tests.  
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Nomenclature 

AI – Artificial Intelligence 

DP – Dynamic Programming 

RBF – Radial Basis Function 

SP – Self Play 
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Chapter One: Introduction 

Artificial Intelligence (AI) (Russell et al. 2003) is a field in which computer programs 

that exhibit intelligence are developed and built. Agents (Russell et al. 2003) are an 

abstraction that is used to describe computer programs that reside in some environment 

and can interact within that environment. Through AI research and development, agents 

that can play board games have been built and tested against humans. Some board games 

are completely solved while others still trouble researchers; in that the computer agents 

cannot beat humans in those games. One way in which agents are taught to play games is 

Reinforcement learning (Sutton, Barto 1998). A problem that arises when training such 

agents is that they cannot learn a policy for a board game that can compete successfully 

against most of the opponents they encounter. The benchmark in this domain is measured 

by how well an agent can play against a human master player for that specific board 

game (Schaeffer 2001). Most Reinforcement learning agents are trained using Self-Play 

(Schaeffer 2001) (An agent learns by playing against itself) and this has led to successes 

in some games (Tesauro 1994) and failures in others (Schaeffer 2001). The agents 

sometimes exhibit behaviour that is not expected when they face an opponent that they 

have never played against, meaning they do not have any knowledge of that particular 

strategy (Wong, Lim & Gao 2004). This thesis proposes and carries through experiments 

using Social learning theory (Bandura 1977) in tandem with Reinforcement learning to 

try and improve the performance of game playing agents. Social Learning is concerned 

with how humans learn from observations of others’ actions. By fusing this theory with 

reinforcement learning, the author aims to observe how the performance of game playing 
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agents changes in social settings and hopefully result in positive improvements in the 

agents’ performance. The agents are trained with other agents as opposed to the manner 

of Self-Play that has been used in some of the board game agents. The social learning 

configuration is tested against the Self-Play configuration on two case studies; the case 

studies are the game of Tic-Tac-Toe and Morabaraba. Two social configurations are used 

in training the social agents and are compared at the end of the thesis. 

 

Chapter Two introduces the use of artificial intelligence in games and describes the 

problems and challenges that arise with current solutions. Chapter Three presents a 

background on Reinforcement learning and how it is used in this thesis for the two case 

studies that are presented. Chapter Four presents a summary of social learning theory, 

how it relates to reinforcement learning and how it differs from other population based 

algorithms. Chapter Five presents the first case study with the game of Tic-Tac-Toe and 

findings using the proposed frameworks. Chapter Six presents the second study with the 

game of Morabaraba and the findings. The last Chapter draws conclusions from the work 

and also recommends some future work. 

 

The following papers from this dissertation have been published/submitted for 

publication: 

 

• V.N. Marivate and T. Marwala. Introduction of Social Methods in Board Game 

Agents, Proceedings of the IEEE Computational Intelligence and Games 

Conference, December 2008, To Appear. 
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• V.N. Marivate and T. Marwala. Social Learning in Board Games, Proceedings of 

the International Symposium on Intelligent Informatics, December 2008, To 

Appear. 

 

• V.N. Marivate and T. Marwala. Study of the effects Social Learning with 

Reinforcement Learning Board Game Agents, IEEE Transactions on 

Computational Intelligence and AI in Games, Submitted. 
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Chapter Two: Artificial Intelligence in Board Games 

2.1 Introduction 

Games are an area where humans can pit their intellect against each other in a 

competitive manner. Making machines/computer programs that have the ability to play 

games (Schaeffer 2001) against human opponents has been a challenge since the 

beginning of research in Artificial Intelligence (Schaeffer 2001). Games are a domain in 

which the performance and boundaries of machine learning and Artificial 

Intelligence (AI) have been tested. Games offer an environment that has rigid rules and a 

specified manner in which interactions can take place. The board game environment is 

deterministic and easy to track. This though does not mean that the game domain is not a 

fruitful area of research. Breakthroughs that are made in AI in games can then be 

extended to solve real world problems where the environments are more uncertain and 

are less constrained. Application domains such as economics use game theory and game 

modelling to model economic phenomena (Roth 2002). Through the years there have 

been machines that have been taught to learn and play a multitude of games. This chapter 

introduces the areas where artificial intelligence has been applied in games. It also 

discusses some of the problems that have arisen within the game domain. 

 

2.2 Early Stages 

Making intelligent machines that can play games against humans has been a fascination 

for many years. For many years there has been substantial research in designing and 

building machines that could beat humans at any board game (Schaeffer 2001). Early on 
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the mechanical contraption of the chess playing Turk (Standage 2002, Wolfgang von 

Kempelen 1783) enthralled audiences around Europe. The machine could beat most 

human players who played against it. Even after the hoax, about a chess master who was 

hidden in the contraption (Figure 1), was revealed the idea of a machine that can play 

games against humans intelligently stayed in the minds of scientists.  

 

Figure 1: Chess Playing Turk, taken from (Wolfgang von Kempelen 1783) 

 

Shannon (1950) would later on explore the possibilities of building high performance 

game playing programs. At his time he was among a number of computer scientists, such 

as Alan Turing, who were trying to solve problems in the game domain. The game of 

choice for computer scientists during the 1950s was chess. Breakthroughs in the 
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algorithms developed to play chess against humans would later be used in other 

domains (Schaeffer 2001). This would form inspiration for the game playing machines of 

today. Whether it is machines that play Board Games (Ghory 2004, Kalles 2008, Neto, 

Julia 2008, Runarsson, Lucas 2005), Card Games (Hurwitz, Marwala 2007, Hurwitz 

2007) or Video Games (Gold 2005, Laird, Lent 2000), researchers have been able to 

model them or are still actively pursuing solutions to some harder games with larger state 

spaces and larger branching factors. 

 

2.3 Current Stages 

Artificial Intelligence techniques have been used in games such as Chess, Othello, 

Backgammon and Scrabble. As more computing power became available to researchers, 

better machines have been developed and built. Solutions for game playing machines 

have used methods such as reinforcement learning (Sutton, Barto 1998), neural networks 

(Bishop 1995), Search methods (Schaeffer 2001) etc. Most of the methods have relied on 

the background knowledge of the researchers (Schaeffer 2001). This implies that the 

performance of the solution is mostly dependant on the domain knowledge that is 

introduced by the researcher. Thus in order to build good game playing machines, one 

has to know what are the best strategies, what are the potential pitfalls and what are 

general patterns in that particular game. This can become tedious and in some games 

unattainable as it is hard to represent some strategies in a machine (Runarsson, Lucas 

2005, Bouzy, Chaslot 2007). Data for training of an AI method or for the search 

databases is normally collected from analysing a number of different games. Some game 
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playing machines have used self-play mechanisms. One famous example is TD-Gammon. 

It was a backgammon playing reinforcement learning agent (computer program that 

performs actions to reach a goal (Wooldridge 2002)) built by Tesauro (1994). It learned 

how to play backgammon by playing against itself and having its structure tuned for best 

results. Thus self-play allows the AI machine to play against itself for a large number of 

iterations as a way of training and learning. This then forgoes the use of databases of 

previous games (and thus search algorithms) as a learning method, because the AI 

method used captures the dynamics of the game. No human player would like to play 1 

million rounds of a game against a machine so that it can learn to play that game. Thus by 

introducing self-play researchers now have an abundance of training data. Another 

manner to train with databases is to use reinforcement learning algorithms that use the 

database games to learn (Mannen 2003). The agent can use the databases to train its 

reinforcement learning method. An example is the use of database games to train a Chess 

playing reinforcement learning agent (Mannen 2003) . 

 

2.4 Problems Arising 

There are board games which intelligent agents still have not mastered. These games 

include game such as GO, an ancient Chinese war game. The reinforcement learning 

agents that have been used in this can only play at a very elementary level. Even with 

some domain knowledge included in the agents the agents still cannot play at a level that 

can beat even novice human players. The methods that have been used successfully in 

other board games perform poorly (Schaeffer 2001). Another problem that arises in 
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agents is mal-adaptive behaviour (Wong, Lim & Gao 2004, Wong, Lim & Gao 2005) of 

agents in cases where they have never played against a strategy that is dynamic, meaning 

the opponent is also learning and changing its strategy as time progresses. Even TD-

Gammon’s success has been argued to be due to the dynamics of the game and not 

completely due to Self-Play (Pollack, Blair 1997). Another problem that may arise is that 

an agent playing against itself might then get stuck using a strategy that is not best but it 

is good to adopt when playing against that strategy (Ghory 2004). This then leads to large 

losses when this agent plays against an opponent who might not even be good but has a 

strategy that can just beat the one the agent has. There has been research into how 

reinforcement learning agents play board games against other agents that have set 

strategies and it was then noted how reinforcement learning is or could be more superior 

(Hurwitz 2007). Multiagent reinforcement learning has been proposed as a solution or 

better approach to modelling games with multiple players, rather than traditional game 

theory (Hurwitz 2007). 

 

The main question that is addressed by this thesis is how do reinforcement learning 

agents then cope with agents that have changing strategies and are also learning? Is there 

also a possibility of building solutions that are more general and can take on different 

games without a great deal of tuning by the researcher? 

  



 

 

3.1 Introduction 

This chapter gives a brief overview on

for this thesis is discussed for insight and expanding on some problems associated with 

some reinforcement learning 

used by the agents that are 

 

3.2 Reinforcement Learning

3.2.1 Agents 

An intelligent agent is defined 

resides in some environment and is allowed to perform actions in that environment

(Figure 2).  
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Chapter Three: Reinforcement Learning 

pter gives a brief overview on Reinforcement learning. The relevant theory used 

for this thesis is discussed for insight and expanding on some problems associated with 

some reinforcement learning methods. This chapter also discusses

the agents that are developed in this thesis. 

Reinforcement Learning 

An intelligent agent is defined (Sutton, Barto 1998) as a computer system/program that 

resides in some environment and is allowed to perform actions in that environment

Figure 2: Agent and Environment 

 

The relevant theory used 

for this thesis is discussed for insight and expanding on some problems associated with 

methods. This chapter also discusses the learning methods 

as a computer system/program that 

resides in some environment and is allowed to perform actions in that environment 
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Intelligent agents (Wooldridge 2002) are defined as agents that can react to changes in 

their environment, have social ability (communication) and the ability to use AI to reach 

their goals by being proactive. Agents are active, task-oriented – modelled to perform 

specific tasks – and are capable of autonomous action and decision making. 

 

3.2.2 Reinforcement Learning 

Humans learn by interacting with each other and then experiencing or being told what is 

right or wrong about what they are doing. This is even truer for early childhood 

development of humans (Sutton, Barto 1998). Extending this to agents that reside in an 

environment, the agents can learn from being reinforced for their actions. Lessons are 

learned from being rewarded or punished after performing an action in a certain situation; 

this is termed Reinforcement Learning (Sutton, Barto 1998). This is different from most 

supervised learning methods in machine learning (Kotsiantis, Zaharakis & Pintelas 2006). 

In supervised learning, a learning algorithm is given test cases that have inputs and the 

corresponding correct outputs. The learning method tries to learn/approximate a 

functional relationship between the input and output data. This for example, can be in the 

form of approximating data that might have been generated using an equation as shown 

in (3.1). 

 

)(xfy =
     

(3.1)  

 

Where y  is the output from a function f that accepts input x . This can be viewed as a 

case of learning from a teacher, different from reinforcement learning where it is assumed 



 

 

that an action has been performed and then a reward or punishment is given.

reinforcement learning the agents must create their own experiences. They perform 

actions and only after then are they given some form of indication of how well the action 

they took is. The agent is not told which action to take but tries to find the actions that 

will lead to the most rewards

actions. The rewards might be delayed (

the end of the game) and thus the agent must be able to track which actions lead to the 

best returns in the long term.

entails an agent trying to maximise its reward given the actions it has taken in a certain 

environment as shown in

Figure 

 

In reinforcement learning the agent is not told which actions to take and when to do so. It 

just perceives the environm

environment, then takes an action to maximise the reward gained from the action or 
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that an action has been performed and then a reward or punishment is given.

reinforcement learning the agents must create their own experiences. They perform 

nd only after then are they given some form of indication of how well the action 

they took is. The agent is not told which action to take but tries to find the actions that 

will lead to the most rewards (Singh et al. 1996). Thus the agent has to explore different 

actions. The rewards might be delayed (as is the case in board games, one wins only at 

the end of the game) and thus the agent must be able to track which actions lead to the 

best returns in the long term. Reinforcement learning (Sutton, Barto 1998)

entails an agent trying to maximise its reward given the actions it has taken in a certain 

as shown in Figure 3. 

Figure 3: Reinforcement Learning Framework

In reinforcement learning the agent is not told which actions to take and when to do so. It 

just perceives the environment through its sensors and thus has a state that represents the 

environment, then takes an action to maximise the reward gained from the action or 

that an action has been performed and then a reward or punishment is given. In 

reinforcement learning the agents must create their own experiences. They perform 

nd only after then are they given some form of indication of how well the action 

they took is. The agent is not told which action to take but tries to find the actions that 

. Thus the agent has to explore different 

the case in board games, one wins only at 

the end of the game) and thus the agent must be able to track which actions lead to the 

(Sutton, Barto 1998) is learning that 

entails an agent trying to maximise its reward given the actions it has taken in a certain 

 

Reinforcement Learning Framework 

In reinforcement learning the agent is not told which actions to take and when to do so. It 

ent through its sensors and thus has a state that represents the 

environment, then takes an action to maximise the reward gained from the action or 
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sequence of actions. The reward can come from within the agent itself (Intrinsic) or from 

the environment (Extrinsic) (Stout, Konidaris & Barto 2005). A good example of 

reinforcement learning in games is the game of checkers (Dubel et al. 2006). In checkers 

the agent will be given the state of the board (Coordinates of all the pieces) and then only 

given a reward if it wins. If there is a loss, the agent will then be given a punishment 

signal. Through this the agent will learn not to repeat the action that caused the 

loss (Ghory 2004). Before going into further details into the theory of how reinforcement 

learning is carried through, a few definitions and notations are in order. These are 

discussed in the next subsection. 

 

3.2.3 Markov Decision Processes 

When observing an agent and the actions it takes in its environment there is a succession 

of states. When the state of an environment contains all information about all previous 

states and actions performed, then it is said that the environment has the Markov 

property (Sutton, Barto 1998). This for example is the position of a board game pieces. If 

a reinforcement learning task satisfies the Markov property then it is termed a Markov 

Decision Problem (Sutton, Barto 1998) (MDP). An MDP is made up of a number of 

entities. 

• S - set of states of the environment (Possible positions on the board) 

• s - current state of the environment (Current position during a game) 

• s’ - The next state (The next game position) 

• A - set of actions that can be taken by the agent (Set of possible moves) 



 

13 

 

• a - current action chosen by the agent (Current move) 

• R – Reward given (R(s), (R(s,a), R(s,a,s’))  

• ),|'( assP -Transitional Probability 

The transitional probability is the probability of moving into another state (s’) given an 

action (a) and a state (s). Given the above information, an agent can make a decision on 

which actions are best to take in a specific state. This is termed the policy (π) of the 

agent. It is a mapping of a state to a specific action (a=π(s)).   The transitional 

probabilities of an environment are not normally provided or known. Thus a challenge in 

reinforcement learning is modelling an environmental dynamics within the agent. To do 

this the concept of the value of a state is introduced. This is done through the introduction 

of Value Function and Action Value functions.  

 

3.2.4 Value Functions and Action Value Functions 

In solving the reinforcement learning problem, one needs a measure of evaluating how 

good it is to be in a certain state or how good it is to be in a certain state and choosing a 

certain action. The value of a state can be interpreted as the likelihood of winning a board 

game given the state of a board game at a given time. Through these functions one can 

evaluate the policy that the agent is taking. The value function is defined in (3.2) as: 

 

∑
∞

=

++ ==
0

01 ]|[)(
k

kt

k ssrEsV γππ
      

     (3.2) 
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This equation entails the expected value (E) of the summation of the discounted (γ) 

reward (r) of all possible future states given that the agent is executing a policy π and 

starting at the current state s. The policy (π) is the mappings of state to actions. The 

second function is to evaluate how good it is to be in a certain state and choosing a 

certain action, thus the Action-Value function is introduced as equation (3.3). 

 

∑
∞

=

++ ===
0

001 ],|[),(
k

kt

k aassrEasQ γππ

     

(3.3) 

 

Where Q(s,a) takes into account not only starting at the current state but also evaluates 

the current action. The maximization of (3.2) and (3.3) by carrying out an optimal policy 

π* will result in higher rewards in the end. To find the policy that maximises the value 

function or action-value function we use the Bellman Optimality equations (Sutton, Barto 

1998). To learn in reinforcement learning from a system without the complete 

model (Model free) of the system, the agent needs to learn through experience. The agent 

thus has to go through interactions and find an optimal policy that optimizes (3.2) or 

(3.3), thus finding V* and Q* which are termed the optimal Value function and Action-

Value function respectively. In the case of board game playing agents, the agents play 

multiple games and learn through their numerous games. Thus they create their own 

training data. 

 

3.3 Reinforcement Learning Algorithms 

There are a number of solutions that have been used to solve the reinforcement learning 

problem. 
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3.3.1 Classical Solutions (Dynamic Programming and Monte-Carlo) 

Dynamic programming (DP) (Sutton, Barto 1998) solutions for the reinforcement 

learning problem are iterative based methods. Mostly they exploit the Bellman Equation, 

shown in (3.4), to find their solutions. 

 

[ ]∑∑ +=
'

'' )'(),()(
s

a

ss

a

ss

a

sVRPassV ππ γπ
     (3.4) 

 

These methods are iterative and can be used to evaluate a policy, do policy iteration and 

value iteration (Sutton, Barto 1998). Dynamic programming methods converge towards 

the optimal values being sought. The second batch of solutions for finding the Value 

Function or Action Value Functions is the Monte-Carlo methods (Sutton, Barto 1998).  In 

Monte-Carlo methods, agents follow a certain policy and keep a running average of the 

awards they are receiving either for the Value function or the Action-Value function. 

Through episodes, these estimates converge to the correct V and Q values. These methods 

suffer the curse of dimensionality when you have large state spaces. Is it possible to visit 

all possible states within a certain reasonable number of episodes?  

 

3.3.2 Q-Learning 

Q-Learning is an online reinforcement learning algorithm. It does not need the model of 

the environment. The algorithm functions by trying to approximate the values of the state 

action pairs for a given problem.  This equation was shown earlier in (3.3). After learning 

the Q-value of each state and action the best action to take in a state would be the one 

with the highest Q-value. The agent learns by populating a Q-value table. This table can 
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be visualised as a matrix whose values are evaluations of each state action pair in the 

game that is possible. The agent first starts off with an empty table with all Q-values 

equal to 0. At each state the agent can choose an action. This action can either be sampled 

randomly or chosen from the Q-Table (Sutton, Barto 1998). The update of each Q-Value 

after an action is chosen is shown in (3.5) 

 

)','(max)((),()1(),(
'

asQsrasQasQ
a

⋅++⋅−= γαα      (3.5) 

 

Where α is the learning rate and γ is the discount factor. The rest of the symbols were 

defined in 3.2.3. The γ discount factor is adjusted so as to make immediate rewards or 

long term returns more important.  

 

3.3.3 Temporal Difference Learning 

Temporal difference learning is taken as the algorithm that was created to solve the 

reinforcement learning problem (Sutton, Barto 1998). The update to a value function is 

made using equation (3.6): 

 

))()(()()(' 1 ttttt sVsVrsVsV −⋅+⋅+= +γα       

     (3.6) 

 

Where 
tr  is the reward just received, α is the learning rate, γ  is the discount factor, 

)( 1+tsV is the value of the state that the agent has transitioned into, )( tsV is the old 

estimate of the value of the current state and )(' tsV  is the new estimate of the value of 

the current state. Temporal difference learning uses estimates to update other estimates 

and this is termed bootstrapping (Sutton, Barto 1998). Temporal difference learning can 
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also be used to estimate Action-Value functions (Sutton, Barto 1998). In this research it is 

used for finding Action-Value functions for the board game states and actions to be 

chosen for the agents. 

 

3.3.4 TD (λ) - Learning 

TD (λ) uses Eligibility Traces (Sutton, Barto 1998) as part of its updating. The eligibility 

traces can be viewed as a manner of keeping information about the previous states that 

have been visited so that if they do occur again within a certain time, they have more 

importance in the learning phase. The TD (λ) algorithm is shown below in Figure 4. 

 

Figure 4: TD-Lambda Algorithm (Sutton, Barto 1998) 
 

e(s) above is the eligibility trace (Sutton, Barto 1998) of a certain state. Thus if a certain 

state repeats itself, its update is taken into account with a higher importance depending on 

how recent the previous occurrence was. 
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3.3.5 Action Selection (Exploration vs. Exploitation) 

In order to explore actions that are available the agent needs to choose whether to explore 

or exploit its gathered knowledge. This is termed the exploitation-exploration dilemma.  

In tandem with the TD (λ) algorithms the agents have an action selection method. The 

selection of actions can be sampled from a probability distribution that may change given 

the number of episodes (games) that have been completed (Sutton, Barto 1998). 

In this research only one action selection method was used.  For choosing the actions and 

allowing exploration and exploitation, actions were sampled from an epsilon greedy 

distribution which can be written as (3.7):  
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    (3.7)  

The agent chooses a random action with probability ε and takes a greedy action with 

probability 1 – ε. This makes sure that the agents initially are more likely to explore but 

as more and more games are played ε decreases and thus the agents start to then exploit 

more, using the knowledge that they have gained through playing the games. 

 

3.3.6 Function Approximation 

For large state spaces (large number of states in one environment) the use of tables as a 

means of storing value function or action-value function data becomes impractical. This 

is due to the large amount of data that would need to be stored in the data structure used. 

Secondly with large state spaces it may not be possible to visit each and every possible 

state or state action pair. Thus there will be empty boxes in the Value table or Action-



 

 

Value table. To solve this problem function approximation s

different function approximation schemes that have been used include Feed Forward 

Neural Networks (Bishop 1995)

1993). For the Morabaraba board game

networks are linear function approximator

function table. Radial basis function networks are similar to multi

networks. They have 3 layers: the input layer, the radial basis function layer (replaces the 

hidden layer) and the output layer. The configuration is shown in 

 

  

 

The equation that defines the network is given by
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To solve this problem function approximation schemes can be utilized. The 

different function approximation schemes that have been used include Feed Forward 

(Bishop 1995) and Radial Basis Function Networks 

. For the Morabaraba board game, a Radial Basis function network is utilized.

linear function approximators. The network replaces the action

function table. Radial basis function networks are similar to multi-lay

networks. They have 3 layers: the input layer, the radial basis function layer (replaces the 

hidden layer) and the output layer. The configuration is shown in Figure 

Figure 5: Radial Basis Function Network 

The equation that defines the network is given by (Park, Sandberg 1993)

                                                   

chemes can be utilized. The 

different function approximation schemes that have been used include Feed Forward 

and Radial Basis Function Networks (Park, Sandberg 

a Radial Basis function network is utilized. RBF 

The network replaces the action-value 

layer perceptron neural 

networks. They have 3 layers: the input layer, the radial basis function layer (replaces the 

Figure 5. 

 

(Park, Sandberg 1993) 

  (3.8) 
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where y is the output, x is the input, N is the total number of centers (c), 
iw is the ith linear 

output weight and φ is the radial basis function. The radial basis function used in this 

paper is a Gaussian function (Orr 1996) which is defined in (3.9) as 
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σ here represents the variance. Now as we are using a function approximation scheme, 

the learning algorithm is adjusted accordingly. The value function V(s) changes to a 

V(s,w) where w is the weight vector (in this case the second layer linear weights). Thus 

the value function or action-value function is now not only a function of the state but also 

adjustable weights. The RBF network used has a uniform grid of centers along all 

possible values of the input. The widths are then fixed before learning can 

commence (this adjustment is done in this research to tune the agents). The linear weights 

are adjusted during learning using a gradient descent algorithm (Baird, Moore 1999). The 

radial basis function network allows for generalisation in estimating Value functions or 

action value functions. This comes in handy for environments that have large state 

spaces. It may not be possible to visit every possible state but the RBF can generalise and 

approximate the values. The downside of using Radial basis functions is the 

computational complexity (Sutton, Barto 1998, Neumann 2003) of its structure and the 

need for adjusting and tuning the network and other parameters of the learning 

algorithms. For this research, RBF networks were chosen because of their generalisation 

characteristics. The board positions would be the inputs into the RBF network. The other 
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inputs would be current player and in some cases be the current game stage. The output 

would be the estimated V or Q value. 
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Chapter Four: Social Learning 

4.1 Introduction 

Since Reinforcement Learning is inspired by modelling how humans are taught to 

develop in their early stages of life, another complimentary theory can be used in 

conjunction with reinforcement learning. Humans seldom learn only by themselves. They 

live in a society and thus observe what others do. From observing the action of others, 

children learn what is right or wrong, what is best and what can lead to maximum 

rewards (Miller 1944).This is termed social learning. In early stages, children observe 

how their parents behave. They reciprocate this behaviour in time. For effective learning 

a number of factors must be present, and according to (Miller 1944). These fundamentals 

of learning are: 

• Drive 

• Cue 

• Response 

• Reward 

The learner has to have motivation to do an action, thus Drive. The learner also has to 

know when to act, thus Cue. After completing the action, the learner then has to get a 

Response. From the response the learner can then get a Reward if his actions led to the 

correct state. There are a number of theories that describe social/observational learning. 

The fundamental points by Miller are used to highlight the general learning theory. In 

learning, there can be an explicit teacher (mirroring Supervised Learning) as seen in 

Figure 6, or one can use observation and imitation of others actions as a way of learning 



 

 

(Less supervised). The next section describes social/observational learning and its 

connections to reinforcement learning.

4.2 Social Learning, Games and 

Social learning in game communities is more common. Social learning itself is the most 

common way of learning 

Scrabble and checkers mentor each other in their clubs

2007). Through the player’s interactions with others in their competitive games, they 

observe how others play. From these they can be rewarded if they show superior skills or 

can then learn from watching other player’s moves. In chess clubs, the clubs do not 

merely rely on teaching the players directly but also encourage playing as many games as 

possible with other players of the club 

learning is heavily encouraged
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(Less supervised). The next section describes social/observational learning and its 

connections to reinforcement learning. 

Figure 6: Supervised Learning Environment.

 

 

Social Learning, Games and Reinforcement Learning 

Social learning in game communities is more common. Social learning itself is the most 

common way of learning (Miller 1944). Players of such board games such as chess, 

Scrabble and checkers mentor each other in their clubs (Okulicz, Vialle & Verenikina 

. Through the player’s interactions with others in their competitive games, they 

observe how others play. From these they can be rewarded if they show superior skills or 

can then learn from watching other player’s moves. In chess clubs, the clubs do not 

rely rely on teaching the players directly but also encourage playing as many games as 

possible with other players of the club as illustrated in Figure 7, thus the obs

learning is heavily encouraged (Okulicz, Vialle & Verenikina 2007)

(Less supervised). The next section describes social/observational learning and its 

 

Supervised Learning Environment. 

Social learning in game communities is more common. Social learning itself is the most 

. Players of such board games such as chess, 

(Okulicz, Vialle & Verenikina 

. Through the player’s interactions with others in their competitive games, they 

observe how others play. From these they can be rewarded if they show superior skills or 

can then learn from watching other player’s moves. In chess clubs, the clubs do not 

rely rely on teaching the players directly but also encourage playing as many games as 

, thus the observational 

(Okulicz, Vialle & Verenikina 2007).  
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Figure 7: Players in Chess Club, taken from (Detroit City Chess Club 2008) 

 

In social learning there are a number of important factors that a being must have in order 

to be able to learn. These factors are additions or variations of the before mentioned 

fundamentals of learning.  In order to benefit from observational learning the learner 

must be able to (Bandura 1977): 

• Pay attention to what is being observed 

• Remember the observations  

• Be able to replicate the behaviour 

• Be motivated to demonstrate what they have learnt 

These properties can be carried through to reinforcement learning; and the agent can: 

• Observe the State and its Transitions 

• Remember the actions taken in specific states 

• Choose different actions to change states (Replicate observed behaviour) 
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• Is rewarded if the actions lead to the goal (Motivation) 

Furthermore Vygotsky (1978) discusses the concept of the “more knowledgeable other”. 

This concept takes into account that in a social setting a learner would learn more from 

observing another being, which has more experience or is at the same skill level, thus 

making it the “more knowledgeable other”. This can also be observed in chess clubs 

where members are paired to train with stronger players or peers. 

 

4.3 Proposed benefits to competitive game agents 

For learning in competitive games, social learning can be used to improve the 

performance of reinforcement learning agents. By introducing other agents as opponents 

in the learning stage, one introduces a dynamic playing environment (Sandholm, Crites 

1996). If for example the opponent is a logic based intelligent computer program, a 

reinforcement learning agent would learn a strategy or policy that would optimally beat 

the logic opponent (Hurwitz 2007). By introducing two different opponents, with 

different set of strategies that the agent would play against, the agent would learn a 

strategy that would beat the two effectively. In board games this would mean creating 

opponents that have varying strategies, thus stimulating a social setting is needed. This 

would introduce reinforcement learning agents that have different strategies and learning 

paths. The non-stationary environment would be more dynamic than having Self-Play as 

all of the agents have their own identities. 
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4.4 Difference from other socially inspired Population based algorithms 

The proposed use of social learning is different from socially inspired algorithms. 

Socially inspired algorithms in evolutionary methods include Particle Swarm 

Optimisation (Kennedy, Eberhart 1995, van den Bergh, Engelbrecht 2004), Ant Colony 

Optmisation (Dorigo, Stützle 2004), Memetic Algorithms (Moscato 1999), Fish School 

Optmisation (Filho et al. 2008). These algorithms are used mostly for 

search/optimisation. In the algorithms that have multiple agents, each agent has some 

knowledge of how well the rest of the agents are performing. In the social frameworks 

used in this study, the agents have no knowledge of how well their opponent 

plays/performs. Another factor is that in the evolutionary methods the agents are acting to 

reach a common goal. Again in the case of the social learning framework the agents are 

competitive. There is no common goal that the agents are trying to reach in their playing. 

Some work has been done in the field of co-evolution of agents. Most studies have 

focused on how co-evolution in multi-agent systems can improve the way in which the 

whole multi-agent system can improve its performance. This means that the focus is on 

getting the agents to work together in solving problems. This is more attributed to the 

standard definition of a multi-agent system. 
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Chapter Five: Study 1 – Tic-Tac-Toe 

5.1 Introduction 

To simulate the social setting an environment was setup in which agents could reside and 

play games. From this social setting the effects of social learning can be monitored by 

testing agents that are taught using social learning and comparing them to Self-Play 

agents. The first game modelled and tested with social learning in play is Tic-Tac-Toe. 

This game is used as a popular example in describing Reinforcement learning in games. 

This chapter describes the game, its setup and how the agents are put in a social 

environment. Tic-Tac-Toe has a smaller state-space and branching factor than other 

games such as Chess or Backgammon. It allows for a comparative test of agent 

performance as well as a population based test. The methodology discussed in this case 

study is also used in the second case study in the game of Morabaraba. The last part of 

the chapter deals with the testing of the agents and the results of these tests. The results of 

the social learning agents are compared against self-play agents and the behaviour of the 

agents is analysed. 

 

5.1.1 Implementation for the Agent Environment 

The agents and reinforcement learning algorithms were implemented using the C++ 

programming language due to its speed and memory (RAM) considerations. All of the 

implementation of this research was done using the C++ Reinforcement Learning 

toolbox (Neumann 2003). All of the models of the agents and environments were 

designed as objects in the toolbox. The games and agents are managed by a game 



 

 

controller. The controller allocates who has to play next and also keeps track of game 

statistics such as wins, test results and how many times each agent has played games. It 

also matches winners and losers 

section 5.4. 

 

5.2 Modelling the Game and Learning

Tic-Tac-Toe (Todd, Reser. Paul, Laska. 2006)

pieces on the board trying to conne

illustrates the player with the noughts defeating the player with the crosses.

 

 

If two perfect players play a game of Tic

draw (Schaeffer 2001)

past, and is frequently used to test and benchmark new algorithms in Reinforcement 

Learning (Ghory 2004)
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controller. The controller allocates who has to play next and also keeps track of game 

statistics such as wins, test results and how many times each agent has played games. It 

also matches winners and losers and thus implements the social frameworks

Modelling the Game and Learning 

(Todd, Reser. Paul, Laska. 2006) is a 3 x 3 board game. Two players place 

pieces on the board trying to connect three of their own pieces in a row. 

illustrates the player with the noughts defeating the player with the crosses.

 

Figure 8: Tic-Tac-Toe Board 

players play a game of Tic-Tac-Toe, the game should always end with a 

(Schaeffer 2001). The game has been modelled with reinforcement learning in the 

, and is frequently used to test and benchmark new algorithms in Reinforcement 

(Ghory 2004). It has been recorded that agents take 

controller. The controller allocates who has to play next and also keeps track of game 

statistics such as wins, test results and how many times each agent has played games. It 

thus implements the social frameworks described in 

is a 3 x 3 board game. Two players place 

ct three of their own pieces in a row. Figure 8 

illustrates the player with the noughts defeating the player with the crosses. 

should always end with a 

with reinforcement learning in the 

, and is frequently used to test and benchmark new algorithms in Reinforcement 

. It has been recorded that agents take up to 50000 learning 
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episodes (Mannen 2003) to be able to play at a beginner level. In this experiment this is 

the amount of iterations used for the training of the agents. 

 

5.3 The Game Model 

5.3.1 States 

To model the game for reinforcement learning the game was represented by 10 state 

variables. Nine of the variables can each have 3 different values which represent the 

positions on the board. Each position on the board can be empty (2) or have a nought (0) 

or cross (1). The tenth state represents the current player who is supposed to play. The 

total number of states is 198332/39366239 ≈=× . The first total is divided by 2 due to 

the fact that one player cannot place all of his pieces on every spot on the board. 

 

5.3.2 Actions 

Actions are represented by number 1 to 9, each corresponding to a position on the board. 

The model also keeps track of which actions are available to an agent in a certain state. 

Thus an illegal move such as placing a piece on a board area that already has a piece is 

not possible.  Actions are chosen using the method described in 3.3.5. 

 

5.3.3 Reward Schedule 

When an agent wins a game, it is rewarded with a reward of 1.0. When the agent loses, it 

then gets a reward of -1.0. When there is a draw, the agents get a reward of 0.0. For all 

other game states that are not terminal (not the end of the game) the reward is 0.0. 
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5.4 Agent Learning 

5.4.1 The Environment and Agent Diversity 

To simulate a social learning environment, multiple agents need to be created. In this 

research each agent is given its own identity. By identity it means that each agent has 

different initialization structural parameters. This induces what is termed as Structural 

Diversity (Masisi, Nelwamondo & Marwala 2008). The agents have the same learning 

algorithm but have different initialization options. These were chosen to be the learning 

rate, the discount factor and the lambda for the TD (λ) algorithm. The range of the agents 

structural parameters are shown below in Table 1.  

 

The ranges in Table 1 were chosen by using the tests sets described in section 5.5 on a 

self-play population of agents. The ranges above resulted in the best set of agents that 

where created. As an agent learns, its opponents’ policies are also changing and thus a 

learner will have to adjust its policy, to be a policy that can play against more than one 

known opponent. 

TABLE I 

AGENT IDENTITIES 

Parameter 
Range 

Learning Rate 0.2 – 0.3 

Discount Factor 0.95 -0.99 

Lambda(λ) 0.9-1.0 
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5.4.2 Social Learning Training Configurations 

Two training configurations are used in training the agents in the social setting. The two 

methods are derived from tournament styles; a modified Swiss (Just, Burg 2003)  and a 

Round Robin system are used and compared. 

 

5.4.2.1 Modified Swiss 

In chess tournaments similar skilled players are paired to play rounds against each other. 

As a player wins games they are further paired with others who have won their games in 

their same skill level, this is termed the Swiss Tournament configuration (Just, Burg 

2003). To simulate an agent always pairing with a player who was more knowledgeable 

the Swiss configuration was modified. In the modified Swiss configuration, agents are 

paired up to play one round of a game which is a full episode. When the game is finished 

there is either a winner, a loser or there is a draw. A tournament like structure was 

utilised for the agents to play in. The structure is shown in Figure 9. 

 



 

 

 

The agents are first initiali

are arbitrarily put in two sub

iteration and for the rest of the game the agents play games against each other. A winning 

agent is pitted against a losing age

winner agent list and the losing agent in the losing agent list, thus a direct simulation of a 

mentor and a learner. At the end of a playing round the agents will be in two groups. A 

number of rounds are 

the maximum number of rounds is reached. In this configuration there is a large focus on 

getting agents to be paired with players that have better experience.

concept of a player learning from a “more knowledgeable” other/player. Another 

variation of this is when winners are paired with other winners and losers with other 

losers. This is closer to the normal Swiss tournament configuration.
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Figure 9: Tournament Learning Framework 

The agents are first initialised and placed in an initial population. In the first iteration they 

are arbitrarily put in two sub-classes (Winning Agents and Losing Agents). In the second 

iteration and for the rest of the game the agents play games against each other. A winning 

agent is pitted against a losing agent. After a game/episode the winner is placed in the 

winner agent list and the losing agent in the losing agent list, thus a direct simulation of a 

mentor and a learner. At the end of a playing round the agents will be in two groups. A 

 played and the process of pairing losers and winners repeats until 

the maximum number of rounds is reached. In this configuration there is a large focus on 

getting agents to be paired with players that have better experience.

of a player learning from a “more knowledgeable” other/player. Another 

variation of this is when winners are paired with other winners and losers with other 

losers. This is closer to the normal Swiss tournament configuration.

 

 

population. In the first iteration they 

classes (Winning Agents and Losing Agents). In the second 

iteration and for the rest of the game the agents play games against each other. A winning 

nt. After a game/episode the winner is placed in the 

winner agent list and the losing agent in the losing agent list, thus a direct simulation of a 

mentor and a learner. At the end of a playing round the agents will be in two groups. A 

played and the process of pairing losers and winners repeats until 

the maximum number of rounds is reached. In this configuration there is a large focus on 

getting agents to be paired with players that have better experience. This is emulating the 

of a player learning from a “more knowledgeable” other/player. Another 

variation of this is when winners are paired with other winners and losers with other 

losers. This is closer to the normal Swiss tournament configuration. 
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5.4.2.2 Round Robin 

In a Round Robin setting each agent plays against every other agent. There is no splitting 

of the group to winners and losers. After a round of playing, the agents are then pitted 

against the next agent. This is done until the maximum number of games is played. 

Round Robin configuration has less of a focus on having a more knowledgeable other or 

peer as an opponent. This configuration will be compared to the modified Swiss 

configuration. 

 

5.4.2.3 Benchmarking Agent 

Benchmark agents are also needed, thus another set of agents were created which are the 

self-play agents. These agents learn by only playing against themselves. Each agent plays 

a move as one player and then plays another move as the other player. These agents were 

created so as to be able to benchmark how well the social agents fair against conventional 

Self-Play learning. 

 

5.5 Testing and Results 

5.5.1 Board Test 

Two tests were setup for the agents. The first test for the agents was an assessment on 

how well the agents perform at trying to pick correct actions in given test states. The 

Tic-Tac-Toe board is setup with pieces already on it. There is only one correct move that 

can be made. There were a total of 10 test boards with different levels of difficulty. The 

level of difficulty was achieved by testing different board configurations that required 



 

 

different responses. The needed responses were then gauged as ranging from easy to 

hard. The agents are given one try at each board. Some boards have to reach a terminal 

state (end of game) while in others the agent has to choose an a

forcing a draw in the game. There are 5 easy boards, 2 intermediate boards and 3 hard 

boards. The easy boards test if the agent can notice states that will make them win 

shown in Figure 10.  

 

 

These are 1 move to win boards. They are relatively easy and test how the agents try to 

choose actions that will maximise

boards are defensive boards where they test how well an agent can block a win by the 

other opponent, which means a loss for the agent, or force a draw. These tests show that 

the agent is trying to avoid

Figure 11. 
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different responses. The needed responses were then gauged as ranging from easy to 

The agents are given one try at each board. Some boards have to reach a terminal 

state (end of game) while in others the agent has to choose an action that will result in 

forcing a draw in the game. There are 5 easy boards, 2 intermediate boards and 3 hard 

boards. The easy boards test if the agent can notice states that will make them win 

 
Figure 10: Cross to Play (Easy) 

 

These are 1 move to win boards. They are relatively easy and test how the agents try to 

choose actions that will maximise reward in their next action choice. The intermediate 

boards are defensive boards where they test how well an agent can block a win by the 

other opponent, which means a loss for the agent, or force a draw. These tests show that 

the agent is trying to avoid losing or getting a lower return. An example is illustrated in 

different responses. The needed responses were then gauged as ranging from easy to 

The agents are given one try at each board. Some boards have to reach a terminal 

ction that will result in 

forcing a draw in the game. There are 5 easy boards, 2 intermediate boards and 3 hard 

boards. The easy boards test if the agent can notice states that will make them win as 

These are 1 move to win boards. They are relatively easy and test how the agents try to 

reward in their next action choice. The intermediate 

boards are defensive boards where they test how well an agent can block a win by the 

other opponent, which means a loss for the agent, or force a draw. These tests show that 

losing or getting a lower return. An example is illustrated in 



 

 

 

The difficult boards test how an agent can force a win his future move and not the next 

move. These are trickier but test how the agent is trying to maximize its future returns. 

The board is shown in 

 

5.5.2 Results for Board Test

The tests were carried through with different agent populations.

created to learn in self-
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Figure 11: Cross to Play (Intermediate) 

test how an agent can force a win his future move and not the next 

move. These are trickier but test how the agent is trying to maximize its future returns. 

 Figure 12. 

 
Figure 12: Cross to move (Hard) 

 

for Board Test 

The tests were carried through with different agent populations. First, 100

created to learn in self-play mode. Their board test results are shown in 

test how an agent can force a win his future move and not the next 

move. These are trickier but test how the agent is trying to maximize its future returns. 

 

First, 100 agents were 

Their board test results are shown in Figure 13. 
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Figure 13: Self-Play Board Test Results 

 

The best Self-Play agent succeeded in 5 of the tests. This was rare as it was only 5 agents 

in the whole population. On average, most of the Self-Play agents got 3 tests correct. For 

the social agents the agent populations were small. This was chosen to see how the 

dynamics change initially. The results of the tests for the modified Swiss configuration 

are shown below in Figure 14. 
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Figure 14: Board test results for Swiss Self Play 

 

The best Self-Play agents get 5 moves correct while the best Swiss social agent in the 4 

agent population gets 5 tests correct, while the one in the 6 agent population gets 6 tests 

correct. This implies that the Self-Play agents can play at a beginner level while the best 

agent in the 6 agent population is playing at an intermediate level compared to the other 

agents. None of the agents are advanced (correctly play the hard boards). 

The other test was with the Round Robin Configuration. The results are in shown in 

Figure 15. 
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Figure 15: Round Robin Agent Performance 

 

Another observation from the social agents is that as more agents (>8) are used in the 

population there is an increase in the number of intermediate agents in one generation. 

This is more evident in the modified Swiss tournament setting as opposed to the Round 

Robin configuration. Both configurations were tested with 16 and 32 agent sized 

populations. When the populations are increased with the modified Swiss configuration 

more than one intermediate agent emerges. In some stages up to 6 intermediate agents 

emerge. With the Round Robin configuration, 2 intermediate playing agents have 

emerged. By introducing multiple different agents as opponents in the training phases, 

one has been able to create agents that are superior to the S-P agent. This is further 

expanded in section 5.5.3. 
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5.5.3 Large Population Effects on Board Tests 

Another study is concerned with dynamics that are created with large populations. This is 

different from small populations and is analysed. Tic-Tac-Toe is suitable for this as up to 

300 agents can be created within 3 GB of RAM. Large state space games are not feasible 

for this type of test on a single computer. A distributed solution (Doran 1996) would be 

needed to create a social environment for a game such as Chess or Checkers, 

Backgammon or Morabaraba. With larger population models, one can study the effects of 

the social learning on a higher number of agents. The distribution and performance of 

300 Modified Swiss tournament agents are shown in Figure 16. Most of the agents get 4 

tests correct although others perform very well with 7 correct tests. Another test was then 

conducted with 300 agents in the Round Robin Tournament configuration. The results for 

this large population test are shown in Figure 17. Here the best agents only get 6 tests 

correct. 
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Figure 16: Results for 300 Swiss Agents 

 

 

 

 

Figure 17: Round Robin 300 Agent Performance 
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From the above two results from the large population social agents, one can observe that 

there are now agents that get 7 tests correct. The Swiss configuration results with 4 agents 

that get 7 correct tests. The amounts of agents that get 6 correct tests are just under thirty. 

For the Round Robin configuration results in just a bit over 24 agents that get 6 tests 

correct. The number of agents that get 4 tests correct is larger in the Round Robin 

configuration than the Swiss configuration. The Swiss configuration has more agents that 

get 3 or less tests correct. The agents that do get 7 tests correct either get all easy and 

intermediate boards correct or get 5 easy 1 intermediate and 1 hard board. This then can 

be used to interpret those agents with 1 hard board correct as being advanced agents. The 

reason for not being able to make a correct move in the intermediate boards may be due 

to the limited number of games played. Thus a branch (a certain game progression from 

the different number of progressions) might have not been explored adequately. A second 

test was done on the Swiss configuration. This time instead of winning agents playing 

against losing agents in the next round, winners play against winners and losers play 

against losers. The results are in Figure 18. 
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Figure 18: Second Swiss Configuration Results for 300 Agents 

 

By changing the Swiss configuration, the numbers of agents that get 5 or more tests 

correct increases, but there is no increase in the agents that get 7 tests correct. The rest of 

the tests results stay similar to the initial Swiss results in Figure 16. 

 

5.5.4 Play Test 

The second test entails the agents playing games in a league setting. All of the agents are 

allowed to play with all the other agents for a specified number of games. This time they 

are not learning but are exploiting the knowledge they would have gained during the 

training stage. The wins, losses and draws are recorded and used for analysis. These are 

used to find which of the agents are the strongest. 5000 games are played by the agents 

against each other. This was applied to the best modified Swiss agents and Self-Play 

agents. This test was administered to gauge how the agents play against each other. It 

also checks how well the Social agents play against the Self-play Agents. The best Self-
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Play agents from the board test play against the social agents. The social agents that 

performed well in the board test perform well in the play test. The best social agents win 

2900 games on average out of 5000. The rest of the games resulted in draws or losses. 

Some social agents that had results of 5 or 7 correct tests on the board test still perform 

very well against the self-play agents. This hints on the possibility of the self-play agents 

not being able to adjust to different policies from the other agents. Furthermore for each 

of the agents, if they start the game first they have a higher chance of winning the game. 

 

5.5.5 A Closer Look at the Agents 

By monitoring the reward schedule, the agents can also be compared by how they learn 

and also perform during that learning. Figure 19 presents the reward schedules of 3 

agents at the beginning of learning with the first 50 games. 

 

Figure 19: Comparison of 3 Social Learning Agents 
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From the figure, the agent that performs the worst starts with losses, then wins, draws and 

then starts losing as the episodes progress. Top Agent 1 (6 correct tests) starts with a loss 

but then starts winning all games after 5 games. Top Agent 2 (7 correct tests) starts with 

some wins and losses, but then starts drawing for a number of games. Top Agent 2 still 

loses in the training but at the end has one of the best performances in the board and play 

tests. From this one can see that learning does take place and is not only due to the 

initialisation parameters.  

 

5.6 Conclusion 

The agents all play the game at beginner level. This is indicated by how they perform at 

the board test. All of the agents fare very well on the easy boards but struggle on the 

intermediate ones and the difficult ones. There are a number of intermediate agents that 

are created in the social settings. Thus without increasing the number of training cycles, 

but by introducing non-stationary opponents in social settings the agent’s performance 

have been improved.  

 

The larger the population sizes the more likely the number of superior agents. In the 

larger populations even better playing agents are trained with the modified Swiss 

configuration.  In the play test the beginner level of the agents is further shown as they all 

have higher chances of winning if they start the game first. The social agents fair better 

when playing against the Self-Play agents in the play test. The social agents have made it 
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possible to create agents that are superior to the best self-play agents. This is a positive 

result and merits the potential for the use of social methods in agent reinforcement 

learning. 

  



 

 

6.1 Introduction 

The second game studied is Morabaraba 

state space and branching factor. Due to this, only small populations of Morabaraba 

agents could be implemented with the computing resources available. The game allows 

for an observation of how the social framework 

The rest of this chapter describes this game and 

experiments. The social learning training configuration and agent structural parameters 

are the same as those used in Tic

 

6.2 Morabaraba 

Morabaraba (Mind Sports South Africa 2008)

similar to Nine Man Morris

positions are arranged in and around 3 squares. The game board is shown in 

 

46 

Chapter Six: Study 2 – Morabaraba 

The second game studied is Morabaraba (Mind Sports South Africa 2008)

state space and branching factor. Due to this, only small populations of Morabaraba 

agents could be implemented with the computing resources available. The game allows 

for an observation of how the social framework has impact on a higher state space game. 

The rest of this chapter describes this game and the results from

The social learning training configuration and agent structural parameters 

are the same as those used in Tic-Tac-Toe in chapter Five. 

(Mind Sports South Africa 2008) is a two player African board game. It is 

similar to Nine Man Morris (Burns 2005). The board is made up of 24 positions. These 

positions are arranged in and around 3 squares. The game board is shown in 

 

Figure 20: Morabaraba Board 

ts South Africa 2008). It has a large 

state space and branching factor. Due to this, only small populations of Morabaraba 

agents could be implemented with the computing resources available. The game allows 

has impact on a higher state space game. 

the results from the social learning 

The social learning training configuration and agent structural parameters 

is a two player African board game. It is 

. The board is made up of 24 positions. These 

positions are arranged in and around 3 squares. The game board is shown in Figure 20 
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Two players each have 12 pieces or cows at the beginning of the game. The players take 

turns placing and moving the cows on the board. The game has three stages: 

• Placing the Cows: Players take turns first placing their cows. If a player manages 

to get three cows in a row they can remove one of the opponent’s cows from the 

board. 

• Moving the Cows: After both players have used up all of their 12 cows, they then 

take turns moving their cows around interconnected nodes. If a player aligns three 

in a row with their cows they can remove an opponent’s cow. 

• Flying the cows: When a player has 3 cows left they are then allowed to “fly” or 

move anywhere on the board where there is an empty node. They no longer have 

to move to an adjacent connected node.  

Figure 20 illustrates the board with 2 cows from each player. The Morabaraba game is 

categorized as a complex war-game (International War Games Federation 2008). The 

experiment is also carried through with only the first stage of the game, which is placing 

the cows. A player gets a reward if they have captured the highest number of cows from 

the opponent at the end of the first round. The game has not gotten a large following in 

providing agents that can play using AI to learn. The programmed Morabaraba solution 

that exists exploits the developer’s knowledge of Morabaraba and databases (Oellermann 

2007). Part of using this game as a case study is to delve into the problems that might be 

faced while trying to use an AI learning agent to learn to play the game. 
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6.3 Modelling the Game 

6.3.1 States 

To represent the game to a reinforcement learning algorithm one has to define the states 

to be used to represent the environment. The game was modelled with 26 states (24 for 

the board, 1 for the game stage and the last for the player). 24 states are used to represent 

the positions on the board. The positions on the board can have 3 values, (2) for empty 

position, (0) for player 1 cow or (1) for player 2 cow. The numbers are just for 

representation to the learning method. Another state was used for representing which 

player is playing next (0 or 1). The last state was a representation of what stage the game 

is in. The game stages would be: placing a cow, removing an opponent’s cow or end of 

game. All of the states are presented as being continuous in the toolbox as to be able to 

use the function approximation scheme. The upper bound of the number of possible states 

is
121224 1085.02/107.1323 ×=×≈×× . This is larger than the number of possible states 

for Tic-Tac-Toe by a factor of approximately 43 610× . Given that the computational 

running time for each game is longer than Tic-Tac-Toe with the implementation only 

100000 games are used and again reinforce the need for a function approximation 

scheme. Games like backgammon used over 1 million games of Self-Play (Tesauro 

1994). 

 

6.3.2 Actions 

There are 24 actions available to the agents at the beginning of the game. As the game 

progresses the availability of each action changes depending on what positions are empty 
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on the board. When an agent has to remove a cow the cows available to be removed are 

represented as actions available from the initial set of 24 actions.  

 

6.3.3 Rewards 

At the end of the game, the number of captured cows by both players is tallied. The 

player with the most captured cows is given a reward of 5.0. The player who has less 

captured cows is then given a reward of -5.0. When a player captures an opponent’s cow 

they receive a reward of 1.0. This is done to encourage the agents to capture as many 

cows as possible. At all other times and when there is a draw the reward is 0.0. A 

complete episode is taken as a complete game. A step in the game is when a player makes 

a move. Thus multiple steps take place before a reward of 5.0 or -5.0 is given. Action 

selection is as described in 3.3.5. This reward schedule encourages the agents to not only 

be rewarded for winning the game but also to try and capture as many of the opponents 

cows as possible during the round. It also punishes the agent that loses cows and thus 

should result in agents trying to protect their cows while trying to capture as many of the 

opponents cows. 

 

6.3.4 Function Approximation 

To learn the Q-Function a radial basis function network was used as described in 3.3.6. 

For best results adjustment of the variance parameter has to be done, in line with the 

number of partitions for each of the board positions. Each board position can have 3 

values and is portioned into 3. The variance is tweaked by checking how each value has 
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an effect on the playing performance of the agents. Unfortunately this is a variable 

process and has to be done when building function approximation schemes that learn 

from TD (λ). Thus a researcher always has to carry out the adjustments (Thrun, Schwartz 

1993). There is active research in trying to find more generalised ways of solving this 

problem (Hurwitz 2007). In Radial Basis functions the centre’s and their associated 

variances are normally initialised using an unsupervised learning method on part of the 

training data. In the case of reinforcement learning there is no training data and it is up to 

the developer to adjust the settings so as to have the best performance. Thus a stumbling 

block in building a good Morabaraba playing agent is finding the best function 

approximation scheme to use as well as an algorithm that will maximise its performance. 

For the purpose of this research, making the best Morabaraba agent was not the goal. The 

goal was to observe the performance of reinforcement learning agents in social settings. 

A reinforcement learning agent using tabular methods was introduced with Tic-Tac-Toe 

and now an agent that used a function approximator is used to play a more difficult game. 

 

6.4 Testing 

6.4.1 Board Test 

The test setup for the agents was an assessment on how well the agents perform at trying 

to pick correct actions in given test states. The Morabaraba board is setup with a 

predetermined state. From this state, one or two moves are judged as being the best to 

make. This could be a transition into a state where the player has three cows in a row or 

the player blocks a sequence of the opponent’s cows. There were a total of 10 test boards 
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with different levels of difficulty. In the case of Morabaraba, the test boards are not 

difficult but are designed to test if the agents have learnt a strategy that will give them 

higher rewards. The agents are given one try at each board. Some boards have to reach a 

terminal state (end of game) while in others the agent has to choose an action that will 

block an opponent from completing a three in a row. A typical test configuration

Figure 21.  

 

Figure 21: Test Board - Black to move. 
 

an example of a “one move to capture” boards. They are relatively 

easy and test how the agents try to choose actions that will maximize reward in their next 

action choice. In this case the player using the black cows will 

if they complete their three cows in a row. The other boards test if the 

agent can block another agent from completing their three in a row. In the case of 

with different levels of difficulty. In the case of Morabaraba, the test boards are not 

difficult but are designed to test if the agents have learnt a strategy that will give them 

ach board. Some boards have to reach a 

terminal state (end of game) while in others the agent has to choose an action that will 

three in a row. A typical test configuration of the 

 

boards. They are relatively 

easy and test how the agents try to choose actions that will maximize reward in their next 

action choice. In this case the player using the black cows will be able to capture the 

in a row. The other boards test if the 

agent can block another agent from completing their three in a row. In the case of Figure 
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21 if the player using the crosses cows were to move, then the best move would be to 

move to the space that would block the opponents three in a row. 

 

6.4.2 Board Test Results 

Firstly a test set was created with Self-Play agents. 50 agents were created and used Self-

Play to learn. The results are shown in Figure 22. 

 

Figure 22: Morabaraba Self-Play Results 

 

The majority of the agents get two tests correct. The best Self-Play agents manage to get 

5 tests correct. The social agents were tested with different social population sizes. There 

are 4 population sizes that were used in the investigation: 4, 6, 8 and 10. Each of these 

was tested 5 different times with the board test (meaning they have been trained 

differently 5 times). The tests were carried through with different agent populations and 

the average of the results is presented below. From the social configurations the best 
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agent’s tally is used. The results of the board tests for the modified Swiss configuration 

are shown below in Figure 23. 

 

 

Figure 23: Swiss Configuration Results 
 

 

The best modified Swiss configuration agent manages to get 8 tests correct. This is with a 

population size of 8. The smaller population sizes result in an emergence of agents that 

still perform better than Self-Play. The results for the Round Robin configuration are 

shown in Figure 24.  
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Figure 24: Round Robin Results 
  

In the Round Robin configuration the best Morabaraba social agent gets 7 tests correct 

within a population of 8. From both these results it can be deduced that as the number of 

agents in a population is increased the more the overall best agent performs better than 

the self-play agents. The social setting of using the modified Swiss would be expected to 

perform better. This configuration allows agents who are weaker to observe strong 

players. Thus the overall strength of the population should increase at every game. By 

using the agents in the social setting the experiment was able to spawn agents that are 

superior to self-play agents. The increase in population size also increases the 

computational complexity of the overall agent experiment. Thus having higher 

population sizes increases the amount of computing power needed thus increasing 

computational cost. This problem was partially solved by using function approximation, 
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but this also suffers the curse of dimensionality (Sutton, Barto 1998) and thus is limiting.  

By increasing the size of each state the training also becomes more complex thus 

resulting in more memory needed and more time needed to train the methods. 

 

6.5 Play Test 

In the play test the best agents (from the board test) from the self-play games played 5000 

games against the social agents. The best social agents (from the board test) performed 

relatively well compared to the weaker agents. The best social agents won 2300 games 

against the Self-Play agents. The rest of the games were lost (2000) or drawn (700). The 

best Self-Play agent won 2100 games, lost 2045 and the rest were drawn. Similar results 

were found when running the tests multiple times. From these it was inconclusive if the 

social agents learned better strategies than the self play agents. 

 

6.6 Conclusion 

By using a human inspired observational/social learning framework in training 

reinforcement learning, reinforcement learning agents that play basic Morabaraba have 

been developed. Morabaraba has a large state space and thus a learning algorithm that 

uses radial basis function networks for function approximation was used. This function 

approximation scheme was used in training the agents at a basic beginner level. The use 

of social learning or evolutionary algorithms within AI is needed in order to be able to 

build machines that are more robust and less prone to sub-optimal behaviour. The results 
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from the board tests indicate that the modified Swiss social configuration have slightly 

better strategies. 

 

The play test though reveals that the agents (Self-Play and Social) play against each other 

at a relatively same level. This then would make the results inconclusive. One problem is 

that the population sizes of the agents cannot be increased as there is a limitation on 

computational resources. If this were made possible, from analysing results from Tic-

Tac-Toe, it could be possible to build better Morabaraba agents.  The results from the 

board tests are promising and comparing them to the Tic-Tac-Toe tests it is expected that 

with an increase in population there should also be an increase in performance in the play 

tests; resulting in robust Morabaraba playing agents. 
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Chapter Seven: Conclusions and Suggestions for Further Work 

7.1 Conclusions 

The goal of this research was to observe and analyse what changes (if any) that would 

occur if agents were put into a social setting during their training phases. The stimulation 

of social learning with reinforcement learning agents had positive results in the first case 

study of Tic-Tac-Toe against traditional Self-Play agents. All of the agents are initialised 

with different structural parameters and thus are diverse set of opponents with dynamic 

strategies. The modified Swiss social configuration yielded agents that played better and 

also performed best in the board tests. The Round Robin social setting also had positive 

results but not as good as the modified Swiss. The larger the population for the modified 

Swiss agents the more advanced agents emerged. From this, one can conclude that the 

more the agents the better the skills transfer in the social learning. The agents have more 

dynamic opponents to play against. As the agents play against each other and learn, their 

policies change. In order for the best agents to stay on top they change their own 

strategies so as to be better equipped to play well against most of the opponents during 

the learning phase. The play test for Tic-Tac-Toe revealed that the best social agents were 

superior to the self-play agents in their play. The best social agents are able to win more 

games against the different Self-Play agents and other social agents. Thus the best social 

agents developed policies that were less likely to be mal-adaptive. Their policies played 

well against a varying number of different opponents.  
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The second case study used the board game of Morabaraba. During learning, tables were 

replaced with a function approximation scheme for generalisation. The results for 

Morabaraba are inconclusive but positive. There is a slight improvement in the social 

agent’s performance in the board tests but this though does not lead to domination in the 

play test as in the Tic-Tac-Toe. The best social agents win a similar number of games as 

the Self-Play agents when they play against each other after learning. The modified Swiss 

configuration was again better than the Round Robin social configuration in stimulating 

the emergence of agents that perform well in the board tests. There were limitations with 

the computational complexity due to the Radial Basis functions but agents that play 

Morabaraba intelligently at a basic level were created.  

 

7.2 Further Work 

As the purpose of this research was to observe how agents react to social settings where 

they learn, where the other agents are also learning while playing there is room for 

improvement. The following recommendations for future work are suggested: 

• The use of evolutionary methods can be further mimicked. The agents could be 

tested after a set number of training games. Then weak agents could be removed 

from the training group and leave only stronger agents to interact. Another option 

is to then find ways to allow “reproduction” of the good agents in order to 

introduce new agents to the training phase. This would be mimicking such 

algorithms as Genetic algorithms. 
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• Given the results from Tic-Tac-Toe, a study can be carried through in trying to 

get some of the world’s best reinforcement learning game playing agents to learn 

while playing against each other and not only against themselves. 

• The focus of this research was not to develop best Morabaraba reinforcement 

learning agent but a functional one. The RBF networks used were adequate for the 

tests performed but had limitations. Developing an agent that uses a less 

demanding function approximation scheme can be done. From this a social 

learning study of a large state space game can be performed with larger 

population sizes. 
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