
1.0 INTRODUCTION 

 

1.1      Background and Motivation 

 

Compressible flow separation is a phenomenon whereby fluid of varying density is 

detached from the surface of a wall due to the presence of adverse pressure gradient in 

the direction of the flow. The motion of the fluid particles close to the wall is retarded by 

this unfavourable flow condition. The flow eventually breaks away from the wall surface 

when the pressure gradient is strong enough to bring the wall shear stress to zero. This 

phenomenon is very crucial in the analysis of compressible flows over solid bodies and is 

fundamental in the determination of the performance of aerodynamic flow devices.  

 

Separation can be steady or unsteady, however, the main focus of this work is the 

unsteady flow separation behind a diffracting shock wave. Understanding of the unsteady 

flow separation plays a very important role in the analysis of both internal and external 

aerodynamics. This phenomenon is encountered in many engineering applications 

especially high speed flows such as supersonic jet engines, gas transmission lines, aircraft 

aerodynamics (e.g. airplanes, helicopters and rockets), automobile engine inlet, flow in 

the exhaust nozzle of internal combustion engines, flow around the blades of turbo 

machines, selection of optimum profile for missiles, etc.  

 

High speed compressible flows are characterized by shock waves. They are mechanical 

waves of finite amplitude propagated by coalescence of several disturbance waves over a 

very short period of time. There is discontinuity in the flow parameters across a thin line 

formed by the shock. The thickness of this line is of order of magnitude of a few 

molecular mean free paths, about  m710  for air at ambient conditions [4]. The flow is 

susceptible to separation when the shock wave interacts with the boundary layer near the 

wall surface as explained by Delery [16], or if a moving shock encounters a convex 

corner. The flow behaviour after separation is critical to the analysis of the pressure loads 

on the structure. 
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When a planar shock wave is propagating through a channel of varying geometry, it will 

experience a series of disturbance waves. If this change in wall profile is such that the 

angle between the shock wave front and the interaction surface is greater than 90 , the 

disturbances generated by the surface will affect the general behaviour (strength, shape 

and orientation) of the shock as well as the flow induced by the shock; this process is 

known as shock wave diffraction [9].  

 

Figure 1.1 is a schematic diagram of a diffraction process on a convex wall for upstream 

subsonic, sonic and supersonic flows as observed by Skews [58 - 60]. A normal shock 

wave that is moving from left to right on a surface becomes diffracted due to sudden 

change in the geometry of the wall. The flow expands around the corner which leads to 

increase in velocity as a result of sudden drop in pressure.  The location of the head of the 

expansion wave depends on the condition of the flow behind the incident shock. The 

three possible flow conditions are illustrated in Figure 1.1 as A, B and C for subsonic, 

sonic and supersonic flows respectively.  

 

The first attempt to explain the diffraction of a shock wave came from Friedlander [18] 

who conducted a study on the diffraction of sound pulses by a semi-infinite plane. The 

nature of this pulse is that of a classical blast wave with a leading shock front and 

exponential type decay. A good background to the present work is the classical works by 

Skews [58-60], and the recent works by Law et al. [33] and  Berezkina et al. [12&13] on 

shock wave diffraction over planar and curved walls. These works revealed many 

important flow features that need to be explained. Some of these flow features are 

common to all geometry but differ in behaviour as illustrated in Figure 1.2 for curved 

walls (EW – Head of expansion wave, OS – Oblique shock, SL – Shear layer, SS – 

Second shock, RC – Recompression shock, CS – Contact surface, DS – Diffracted shock 

wave). The motion of the flow from left to right is induced by the shock that is moving 

through a stationary fluid. The diffraction of the shock commences from the start of the 

curvature generating an expansion fan bounded upstream by the head of an expansion 

wave. Other flow features are propagated as the diffraction process continued 

downstream. 
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Figure 1.1: The characteristics of the flow behind the diffracting shock wave 
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Figure 1.2: The flow features behind the diffracted shock wave on a curved wall [58] 
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The observations are explained as applied to this work as follows: 

 Many discontinuities appeared behind the diffracted shock wave in the form of 

oblique shock, shear layer, second shock, and recompression shock. 

 The shear layer which is defined as a line of finite discontinuity of temperature 

and velocity [13] evolved from the separation point and extends downstream with 

further diffraction of the incident shock wave. 

 The position of the separation point changes as the diffraction process progresses 

downstream. 

 For multifaceted walls the expansion generated at each corner has a significant 

effect on the separation shear layer formed after the corner. 

 The flow behind the diffracted shock wave is complex and highly unsteady. 

 

The analysis of the complex flow structure behind the diffracted shock wave requires a 

highly robust CFD (Computational Fluid Dynamics) code with optimum resolution for 

accurate capturing of the flow features of interest. Takayama and Inoue [63] proposed 

that the diffraction of a Mach 1.5 incident shock wave around a 90  convex corner be 

made a benchmark to measure the performance of CFD codes.  

 

The comprehensive explanation of the complex flow structure within the perturbed 

region behind a diffracted shock wave is the main objective of this research. The 

investigation is accomplished through large scale experimentation which is 

complemented by numerical computations. The data obtained from the experiments 

combined with the numerical results are expected to give the detailed global flow 

behaviour behind the diffracted shock wave. 

 

1.2 Review of Applicable Theories 

 

Compressible flows are characterized by change in density with pressure. The extent to 

which the density of a fluid can change is determined by compressibility which is a 

property of the fluid. Detailed explanation of the theory of compressible flows is given in 

numerous books of gasdynamics such as Anderson [3&4] which gives some background 
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to this work. An important dimensionless parameter in compressible flows is the Mach 

number M , which is the ratio of flow velocity to local speed of sound. This is defined by 

Equation (1). 

a

v
M                                                        (1) 

where v  is the flow velocity and a  is the local speed of sound. 

Compressible flow can be subsonic (M < 1), transonic (0.8 < M < 1.0), sonic (M = 1), 

and supersonic (M > 1) as applicable to this work. At higher Mach numbers the flow 

deviates greatly from the ideal flow assumption that will be discussed in the later section.  

 

1.2.1 Properties of gas 

 

A gas is an agglomeration of numerous particles in random motion bounded together by 

weak intermolecular forces [4]. The internal energy of a gas is the sum of the following 

sources of energy: kinetic energy of individual particle, the rotational energy of the 

atoms, the energy enhanced by vibration of molecules and electronic energy from 

electrons revolving round the nucleus. For compressible flows in which pressures and 

temperatures are moderate, the gas is assumed to be calorically perfect. Numerous works 

are available in the literatures that analyzed compressible flow based on this assumption, 

and modifications necessary are incorporated at relatively high temperature. 

 

The ideal perfect gas model defined by equation (2) is used for all the analysis in this 

work because the gas temperature is within the acceptable range.  

 RTP                                                                           (2) 

where P  is the pressure,  is the density of the gas, R  is the gas constant for air and T  

is the temperature. White [66] has shown that for weak shock waves at ambient pressure 

and temperature any test gas can be assumed to be a perfect gas even with viscous effects 

taking into account. 

1.2.2 Normal shock wave 

A shock wave moving in a direction perpendicular to the direction of the flow is called a 

normal shock wave or conversely, when a flow is moving in a direction normal to a 
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stationary shock wave as illustrated in Figure 1.3. A moving normal shock wave 

propagating into a stationary medium is considered in this work. The gas ahead of the 

shock is stationary while the gas behind the shock is in motion, both referenced to the 

laboratory frame. 

 

The flow at the two sides of the normal shock wave is described by conservation 

principles (continuity, momentum and energy equations) defined by equations (3 - 5). 

Assume adiabatic flow condition, and let A  represents a point at the left hand side of the 

shock which is the region of a moving gas while B  is the region of a stationary gas as 

shown in Figure 1.3. 

 

 

Figure 1.3: Flow around a normal (moving and stationary) shock wave 
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The continuity, momentum and energy equation across the shock are given as: 

 BBAA UU                                                (3) 

22
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BBAA UHUH                                        (5) 

where PU ,,  and H represent density, velocity, pressure and enthalpy respectively. 

These equations are applicable to both calorically and thermally perfect gases as well as 

chemically reacting flows [3].  

 

If the velocities at both sides of the shock are eliminated in equations (3 - 5), the three 

equations reduce to a single equation that relates only state variables. When change in 

flow properties across the shock is expressed in terms of internal energy e , density and 

pressure p , the equation across the shock wave becomes Rankine - Hugoniot equation 

(equation 6) which relates only thermodynamic properties. It is valid for perfect gas, real 

gas and chemically reacting flows [3&4]. 
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When various thermodynamic relations are introduced, the relationship between the 

Mach numbers of the flow at the two sides of the shock is established for calorically 

perfect gas as stated in equation (7). 

2

1
2

1
1

2

2

A

A

B

M

M

M                                        (7) 

where  (ratio of specific heats) is constant, AM  is the upstream flow Mach number 

which is the major determinant of the properties of the shock wave and bM  is the 

downstream flow Mach number referenced to the stationary shock. 

Other flow variables are related at both sides of the shock wave as shown in equations (8a 

– 8c) [3]. 
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For a moving shock wave the major parameter that governs changes across the shock is 

pressure ratio defined by PB/PA. The strength of the shock (Ms) is given by equation (9) 

 

Ms= 2/1)1)1(
2

1
(

A

B

P

P
            (9) 

For an isentropic process the ratio of total to static pressure/temperature at a point in a 

flow as a function of the flow Mach number at that point is given by equations (10a&b) 

respectively. 

P

P0  = 12 )
2

1
1( M           (10a) 

T

T0  = ( 2

2

1
1 M )            (10b) 

 

A uniform supersonic flow that moves over a wedge of angle  will generate an oblique 

shock wave that will deflect the flow streamlines parallel to the wall surface downstream. 

The Mach number of the flow will decrease across the shock while density, pressure and 

temperature will increase.  In contrast to oblique shock, a supersonic flow that encounters 

a convex wall will turn away from its original direction through an expansion wave. The 

flow streamlines will bend smoothly across the expansion fan and become parallel to the 

wall surface as shown in Figure 1.4.   
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Figure 1.4: Prandtl – Meyer expansion wave [3] 

 

A very good way of increasing the Mach number of a flow is to allow the flow to pass 

through a convex geometry that generates expansion waves. The flow velocity across 

these waves will increase with decrease in pressure, density and temperature. A common 

theory for the steady supersonic flow around a convex corner is illustrated in Figure 1.4. 

Further work by Ruba [53]  described the whole process by a self similar solution of the 

Karman-Guderley equation whose analytical solution is applicable to perfect gas, real gas 

and chemically reacting flow. 

 

1.2.3 Shock wave reflection 

 

 The refection of a shock wave occurs when an incident oblique shock wave impinges on 

a solid wall at an angle. The reflection may be regular or irregular depending on the 

oblique angle and the strength of the incident shock wave [10]. A regular reflection is 

made up of the incident and reflected shock both emanated from a point on the rigid 

surface as shown in Figure 1.5.  
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     Figure 1.5: Regular reflection from a rigid surface [10] 

 

Irregular reflection consists of the incident and the reflected shocks moving away from 

the reflecting surface. A Mach stem links the triple point of the three shock configuration 

with the reflecting surface as shown in Figure 1.6. This type of reflection is called "Mach 

reflection” named after Ernst' Mach, who first discovered this non-linear gasdynamic 

phenomenon in 1878 when investigating the reflection of strong shock waves. 

 

 

Figure 1.6:  Irregular reflection from a rigid surface [10] 

 

Irregular reflection can be further divided into Mach reflection and von-Neumann 

reflection [25]. The von-Neuman reflection was observed during the analysis of shock 

reflections that occur when the shock is sufficiently weak and the wedge angle is small [2 

&41].  Barbosa and Skews [8] confirmed the von-Neuman theory of shock wave 

reflection transition experimentally. Other relevant works on weak shock wave 

reflections are reported by Ben-Dor et al. [9], Richard and Allen [51], Kobayashi et 

al.[29], and Sasoh et al. [54]. Analytical investigation of reflected–diffracted shock waves 

has been carried out by many authors such as Zakharian et al. [71], Lighthill [38], Ben–
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Dor  et al. [11], and Li et al. [36]. The results were in good agreement with the earlier 

experimental and analytical works. 

 

The role of viscosity on weak shock wave reflection cannot be neglected as was earlier 

observed by Ivanov et al. [24]. It was confirmed that viscosity plays a crucial role in the 

vicinity of the triple point. A slip stream is formed from the intersection of the three 

shocks. This was motivated by entropy inequality that resulted from difference in 

velocity between the flows across the incident shock/Mach stem and the flow across the 

reflected shock wave. 

 

1.2.4 Shock wave diffraction 

 

Shock wave diffraction is a process in which the shape, the strength and the orientation of 

a planar shock changes with time as a result of the disturbances propagated from a 

change in wall geometry.  Chester, Chisnell and Whitham have established a relationship 

in two dimensions between the strength of the shock and the shape of the surface on 

which the shock is moving [9&20]. The original incident shock is divided into three 

parts: undiffracted part, the diffracted part and the wall shock. Earlier work by Skews 

[58&60] identified these shocks and the shape of the diffracted shock was described with 

reference to the nature of the convex walls. 

 

The diffraction of a shock over a convex wall is an unsteady process and the flow region 

adjacent to the diffracting shock undergoes a non-uniform compression which eventually 

generate adverse pressure gradient along the wall surface. Further work by Skews [58] 

identified the flow features within the perturbed region behind the diffracted shock wave 

especially with regard to the separation phenomenon. Other relevant works on shock 

wave diffraction includes Onodera [45], Klein [26], Takayama and Inoue [63], and 

Berezkina et al. [12], however, the experimental analysis was limited by the scale of the 

experimental facility. 
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1.2.5 Theory of the shock tube 

 

A shock tube is a high speed gasdynamic experimental tube used for generating shock 

waves and gas with particular flow conditions over a very short time duration. The first 

known shock tube was used in France by Vieille in 1899; the diameter and the length of 

this tube was 22mm and 6m respectively. The tube became a high speed flow research 

facility around 1940 after Payman and Shepherd used it in their “bursting - diaphragm 

apparatus” [57].  

 

Consider a long tube closed at both ends divided into two regions of high and low 

pressure by a diaphragm of a known property as shown in Figure 1.7a. By rapidly 

bursting the diaphragm a compressive wave is propagated towards the low pressure 

region while an expansion wave is propagated in the opposite direction as shown Figure 

1.7b. The general design of the tube is a function of the intended application. The tube is 

usually long to allow for proper propagation of the shock before getting to the region 

where the interaction will be observed. The length of the driver section is chosen such 

that the reflected expansion wave does not catch up with the shock. The wall of the tube 

is usually designed to withstand the required high pressure in the compression chamber. 

The tube is aligned along a straight line to avoid distortion of the shock and the inner 

surface of the tube is hydraulically smooth to avoid shock attenuation. 

 

Shock tubes are widely used to study the physical and chemical processes over a large 

range of flow conditions [46]. A comprehensive study of an open ended shock tube flows 

with a particular emphasis on the effect of pressure ratio and diaphragm position was 

carried out by Haselbacher et al. [19]. It was observed that if the pressure ratio is large 

enough to generate supersonic flow behind the slip surface, the flow at the open end 

relaxes from the initial conditions behind the contact surface to sonic conditions once the 

tail of the expansion fan arrives at the open end.  
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Figure 1.7: Schematic diagram of a shock tube [3] 

 

Other types of shock tube that have been developed include diaphragmless shock tubes 

that make use of a piston instead of the conventional diaphragm rupture system. This is a 

very good tool used in gasdynamic laser experiments [50] & [35]. Other applications of 

shock tubes include  generation of high energy beam in a range of 1 – 5 eV [44] and 

impact testing facility as a special wave generator to achieve high velocity, high 

temperature and high energy testing conditions [37].  Shock tubes have also been 

designed such that many functions can be carried out interchangeably in the same shock 

tube. A good example is a free piston compressor, shock tube, shock tunnel and gun 

tunnel that was designed  for different applications [1] 

 

Recent developments in the aerospace technology have called for large scale 

experimental investigation of supersonic and hypersonic flows. The conventional shock 

tubes of lower aspect ratio could not accurately predict some flow behaviour that 

involves shock wave especially on complex walls. Hence the development of large aspect 

ratio shock tubes like the one used for this research.   
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When the shock wave is to be propagated in the shock tube, the diaphragm is removed 

during very short time duration. The shock is formed from the coalescing of compression 

waves and the position of the shock changes with time as shown in Figure 1.8. The flow 

behind the shock is induced and there is a mass motion of the high pressure gas to low 

pressure gas. 

  

All properties of the flow field behind the shock change with respect to distance and time 

after the removal of the diaphragm. This implies that the flow variables are functions of 

space and time ( ),( tx , ),( txTT , ),( txPP  and ),( txUU ). Hence, the flow in 

the shock tube is purely unsteady.  The expansion fan moves backward in the shock tube 

and is reflected at the closed end of the tube as shown in Figure 1.8. The reflected 

expansion fan travels at a high speed behind the contact surface and may eventually catch 

up with it. The driver section is usually designed to be long so that there will be enough 

distance between the shock and the reflected expansion wave.  

The interface between the two gases is called the contact surface which travels at the 

same speed with the fluid behind the shock. Across the contact surface fluid pressure is 

the same, but there is a discontinuous change in entropy which results in density and 

temperature gradient. Experimental test time can be extended by tailoring the interface 

between the driver and the driven gases as studied by Anthony et al. [5] and Zekai et al. 

[72]. Their study shows that tailoring of contact surface delays interaction of the reflected 

expansion wave with the flow adjacent to the shock wave. 
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Figure 1.8: Propagation of shock wave and expansion fan in the shock tube [64] 

 

1.4 Thesis Structure 

 

The thesis consists of seven chapters, each of which is divided into sections and 

subsections to give the detailed description of the subject and for easy reading and 

referencing. There are four appendices which contain drawings, tables, graphs and 

pictures that are not very important to appear in the main report. However, these 

appendices are available to give detailed information about any particular subject 

discussed in the thesis. 
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Chapter one is the introduction which contains motivation and background followed by 

theory of compressible flows that are applicable in this work. Chapter two reviews the 

past work on the subject with critique in analytical, numerical and experimental works in 

order to identify the knowledge gap to be filled. This also helps to determine suitable 

methodologies to be used in capturing the flow behaviour. The later part of the chapter 

itemized the objectives of the study so as to clearly define the pertinent questions to be 

answered with regard to transient compressible flow separation on convex walls. 

 

Chapter three focuses on the methodology used for the investigation. The numerical 

model employed for the analysis is explained with the computational domain used for the 

simulations. The large scale experimental facility is described using relevant pictures 

followed by layout of the apparatus with required instrumentation. The principle of 

operation and set-up of the schlieren visualization technique is explained. This is to draw 

attention to its suitability in capturing the interactions at the test area. 

 

The analyses of the results of low incident shock Mach numbers are discussed in chapter 

four with a view to validate the numerical results and justify the numerical method. 

Chapter five gives the analysis of high Mach numbers simulation results while chapter 

six focuses on the discussion of various findings with reference to the theoretical work. 

This provides comprehensive information that enhances the proper understanding of 

compressible flow separation. The last chapter is devoted to conclusion and 

recommendation in order to expound on the need for further work in various areas that 

could not be covered by this work.  
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2.0 LITERATURE REVIEW 

 

2.1 Introduction 

 

The major breakthrough in explaining causes and mechanism of separation phenomenon 

was made by Prandtl [49] who developed the theory of boundary layers. However, the 

occurrence of separation in shock wave diffraction is mainly dominated by pressure 

rather than viscous eefects suggests that separation phenomenon is not exclusively 

dependent on viscosity.  Prandtl’s theory was based on a steady two-dimensional 

incompressible flow with a no slip boundary condition  [55 & 31]. In this theory the flow 

domain around a solid body is divided into two regions; the inviscid region and a thin 

region called laminar boundary layer, within which the viscous effect is significant.  

 

The drag force within the thin region around a body moving in a fluid is called skin 

friction drag and the flow will separate if there is a strong adverse pressure gradient to 

overcome this viscous force [23, 31 & 42]. Separation is usually accompanied by large 

energy loss due to the formation of eddies. The pressure distribution deviates greatly 

from the potential flow and the drag force on the surface becomes form drag. The 

boundary layer theory indicates separation point based on the zero skin friction but it was 

later noted by Sears and Tellionis [56] that point of singularities in the boundary layer 

equations should be used to analyze separation. However, the available numerical 

solution of the boundary layer equations did not show any singularity.  

 

Two types of separation have been identified by Peacock et al. [48], there is a fixed 

separation in which the separation point is located at a point, and a moving separation 

which is time dependent. The former is a common phenomenon in incompressible flow 

separation while the latter is usually encountered in shock wave diffraction. When a 

shock diffracts over a surface the gas particles behind the shock is unevenly compressed 

due to unsteadiness in the process of diffraction. Different flow regimes are formed 

behind the diffracting shock with low pressure gas across the expansion fan. An adverse 
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pressure gradient is developed near the surface of the wall as the diffraction process 

continues. 

 

2.2  The Perturbed Region behind a Diffracted Shock Wave  

 

The development of a strong adverse pressure gradient behind a diffracting shock wave 

resulted in the local perturbation of the flow region behind the shock. This occurrence led 

to the formation of many flow features that develop with time. Classical works by Skews 

[58&60] have identified some of these flow features while investigating the diffraction of 

shock wave on plane walls. A series of experiments were carried out in a conventional 

shock tube and the observations made on the perturbed region behind the diffracted shock 

wave are summarized as follows: 

(a) The process of shock wave diffraction was observed to be self similar for plane walls.  

(b)The expansion fan behind the diffracting shock is centered for the plane walls. 

(c) For the incident shock Mach numbers considered, the flow behind the diffracted  

     shock wave separated from the walls on corner angle as low as15 . 

(d) The flow behind the diffracted shock wave on a 90  wall is subsonic for incident  

     shock Mach numbers Ms < 1.35 and supersonic for Ms > 2.0. 

(e) The flow features after separation consist of a smooth shear layer that originated  

      from the corner and extended downstream. The shear layer is terminated by a vortex    

     which under certain condition embedded a shock described as a secondary shock. 

 (f) The position of the slipstream, the terminator, the contact surface and the second   

     shock are independent of corner angle for angles greater than 75 . 

 

The results of the further work by Skews [59] and Law et al. [32] revealed the difference 

between the flow behaviour behind a diffracted shock wave on plane and curved walls. 

The flow behaviour was self similar on plane walls while the radius of curvature and 

viscosity affect the flow features on curved walls. The expansion fan is not centered as 

earlier observed for plane walls and it was bounded downstream by a terminator.  

Figure 2.1 shows the coincidence in the point of emanation of both slipstream and the 

oblique shock. As illustrated in the figure, the slipstream did not emanate tangentially 
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from the wall surface. It extended smoothly and terminated with a vortex that increases in 

size as the diffraction process progresses downstream. The nature of the flow within the 

region behind the diffracting shock is determined by the incident shock wave. Law et al. 

[32] observed that when the Mach number of the incident shock is less than 1.5, the Mach 

number of the flow behind the diffracting shock will be less than 0.6.  

 

At higher incident shock Mach numbers the velocity of the flow behind the shock 

becomes high. The diffraction of the shock is accompanied by the formation of different 

flow regions which is motivated by non–uniform compression of the gas adjacent the 

diffracting shock.  A weak shock wave is propagated between the upstream low pressure 

flow and high pressure gas downstream. This shock changes to an oblique shock due to 

the influence of the near wall adverse pressure gradient. 

 

Separation occurred at a point where the oblique shock is formed on the wall followed by 

the evolution of the shear layer. The oblique shock is terminated by the upper  portion of   

a second shock as illustrated in Figure 2.1 and 2.2 (FD-Flow direction, EW-Expansion 

wave, SL-Shear layer, OS-Oblique shock, RS-Recompression shock, SS-Second shock, 

DS-Diffracting shock, MV-Main vortex and CS-Contact surface).  

 

A second shock is propagated as a result of supersonic flow along the shear layer as 

earlier explained by Skews [58]. This shock matched the expanded flow that is exiting 

the oblique shock with the compressed gas behind the diffracting shock. There is a 

contact surface that has its top touching the point of contact between the diffracted shock 

and the original incident shock. The lower part is directed to the wall and touches the 

wall in front of the vortex.  

 

The near wall features in transient compressible flow on convex walls was investigated 

by Law et al. [32]. The viscous effect was observed to have a significant influence on the 

temporal development of the flow especially for wall turning angles between 10  to 50 . 

Hence, the self similarity that is usually assumed in the analysis of the diffraction of 

shock wave on plane walls cannot be generalised. 
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Figure 2.1: A schematic diagram of a complex flow structure on a 30  wall 
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Figure 2.2: The flow behaviour downstream of the corner 
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Skews[59] used Whitham’s method to predict the shape of the shock for both plane and 

curved walls  at different incident shock Mach numbers. The results of this theoretical 

prediction were in good agreement with the experimental measurements, for convex 

walls consisting of a number of facets and circular arcs. The temporal changing of the 

shape of the shock downstream of the convex corner creates unequal compression of the 

gas behind the diffracting shock. This enhances the complex flow structure upstream as 

shown in Figures 2.3 and 2.4 (IS – Incident shock, EW - Expansion wave, SL - Shear 

layer, OS - Oblique shock, RS - Recompression shock, SS - Second shock, DS -

Diffracting shock, MV - Main vortex and CS - Contact surface).  

 

 . 

 

 

Figure 2.3: The complex flow region behind a diffracted shock on a 90
 
wall 
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Figure 2.4: The complex flow behind a diffracted shock wave on a curved wall 

 

The main flow features within the complex flow region  shown in Figure 2.4 correspond 

to what have been observed for plane walls by Skews [59] and Law et al. [32]. However, 

the separation point moves along the arc and at higher Mach number there is a supersonic 

flow directed along the shear layer. The formation of the second shock is attributed to the 

supersonic flow along the shear layer as earlier explained on plane walls.  

 

Skews [59] observed that the flow behind a diffracting shock of incident Mach number 

1.5 on 68mm diameter wall did not separate. The boundary layer along the wall became 

thick especially at higher value of rM /  (M – Mach number, r – radius and α – a 

parameter to define incident shock displacement) which is the parameter that determines 

the position of the diffracting shock. The results also suggested possible separation of the 

flow at higher values of rM / . However, the conventional shock tube used for the 

experiments could not accommodate higher values of this influencing parameter. 
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Another important flow feature observed by Skews [59] is the behaviour of the contact 

surface. The lower part of the contact surface instead of being rolled up between the wall 

and the vortex as observed for plane walls extends past the vortex, develops a kink before  

meeting the wall at an acute angle. All these flow features makes the perturbed region 

behind the diffracted shock more complex, and requires a highly robust computational 

fluid dynamic (CFD) code with optimum resolution for its analysis. Takayama and Inoue 

[63] proposed that the diffraction of an incident shock wave Mach number 1.5 over a 

ninety degree convex corner be made a benchmark to measure the performance of CFD 

research codes. 

  

Kleine et al. [27] investigated the diffraction of shock waves on 90  corners at different 

incident shock Mach numbers. A series of lambda shocks were observed along the shear 

layer at moderate Mach number. After further diffraction process a second shock that is 

facing upstream is formed when the flow along the shear layer becomes locally 

supersonic [59&32]. The pressure of the flow within the expansion fan becomes low 

while the velocity increases, the flow may become locally supersonic across the 

expansion fan if the incident shock Mach number is strong enough. 

 

 Skews [58], Sun and Takayama [61] and Hillier [21] observed the formation of a 

secondary shock that is embedded in the main vortex, and it matched the flow condition 

between the near wall and the flow far away from the wall surface. Parks [46] also 

observed this shock and related it to the early formation of a vortex behind the diffracted 

shock wave. 

 

Skews [58] also noticed the formation of a recompression shock which was confirmed 

numerically by Hillier [21]. The recompression shock is a small shock that forms under 

the shear layer and it decelerates the reverse flow to match with the upstream flow at the 

separation point. The upstream flow around the separation point is subsonic while the 

reversed flow is at high velocity. 
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Kleine et al. [26] noticed the analogy between shock wave diffraction and flow in 

nozzles. The locally supersonic flow at the corner was observed to be decelerated by an 

almost normal shock wave (shocklet) which also interacts with the boundary layer and 

triggers a local flow separation. Development of this separation in front of the shock 

leads to the formation of another shock which is oblique in shape (shocklet). This shock 

is weak and decays with increase in Mach number of the flow and vanishes when the 

boundary layer becomes turbulent. 

 

The nature of vortex formation behind a diffracted shock wave requires both qualitative 

and quantitative investigation for proper understanding of the physics of the flow behind 

the shock. Rott [52] proposed a single vortex model using the acoustic approximation for 

weak shock waves. This theory was later abandoned due to clear disagreement with 

experimental result of Howard and Matthews [23]. A formula was later suggested for the 

vortex sheet, instead of a single vortex the total rate of vorticity was determined as stated 

in equation (11). 
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         (11) 

Where AV  and BV are flow velocities on either side of the slipstream. 

 

The qualitative description of the vortex has been carried out by many researchers. Few 

works such as Evans and Bloor [17], and Sun and Takayama [62] have actually shed 

some light on the quantitative analysis of vortices behind a diffracted shock wave on 

simple convex walls. The production of vorticity behind a diffracted shock is commonly 

ascribed to the baroclinic effects but it was observed that a large portion of the total 

vorticity is produced by the slipstream. The baroclinic effect is negligible in shock wave 

diffraction. 

 

A very important observation on the flow behind a diffracted shock wave was reported by 

Takayama and Inoue [63] in their bench mark numerical results. All the presentations 

showed early stages of the flow development except the poster submitted by Edgar and 
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Woodward. This work showed stages of flow development indicating breakdown of the 

shear layer into a vortex street, as well as multiple vortices developing on the periphery 

of the vortex. 

 

Further numerical work by Sun and Takayama [62] observed early development of the 

flow with series of vortices along the shear layer when using Euler’s equation with fine 

computational grids. The results obtained from the laminar Navier – Stokes solver with 

an incident shock Mach number 1.5 over a computational domain of 104mm x 73mm 

showed flow development at later times. The shear layer rolls up into a spiral vortex. 

 

There was a slight attenuation in the flow behaviour when compared to Eulers’ results 

and this was attributed to viscous dissipation. The turbulence model with additional 

dissipation was used at the same time scales. The results showed the suppression of these 

vortices, and there is a good agreement between the experimental results obtained from 

the conventional shock tube and the numerical results. The outcome of the numerical 

simulations and small scale experimentation in the conventional shock tubes can be 

summarised as follows: 

 Most flow features of interest could not be distinguished clearly except at higher 

Mach numbers. 

 The shear layer remains smooth both at low and high incident shock Mach 

numbers in the experimental images, however, Euler’s computed result shows 

some vortices at early times.  

 The experimental analysis could not explore the flow behaviour at later times due 

to the facility constraint. 

 The upstream flow behaviour near the wall surface could not be captured due to 

the scale of the test. 

A fundamental question that arises from these observations is “what happens when the 

scale of the experiments is significantly large? 
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2.3 Objectives of the present research 

 

The present investigation aims at investigating the global flow behaviour behind a 

diffracting shock wave at a large scale. The study involves observation of flow 

interaction over a large convex surface at times significantly longer than what is 

obtainable in conventional shock tubes. The analysis is accomplished using both 

experimental and numerical analysis to investigate the transient evolution of the shear 

layer through the following objectives: 

 The effect of large (temporal and spatial) scale experimental analysis of the flow 

features behind the diffracted shock will be studied for low Mach number incident 

shocks. 

 The numerical analysis of both low and high Mach number incident shocks will 

be investigated. 

 Analysis will be carried out on both plane (30  and 90 ) and curved (200mm and 

400mm diameter) convex walls. 

 The influence of the incident shock on the global flow behaviour will be studied. 

 The effect of wall geometry on the separation phenomenon will be investigated. 

 The transient development of the unsteady shear layer will be comprehensively 

described. 

The result of this analysis will give the detailed flow behaviour behind a diffracting shock 

wave and will enhance the understanding of the physics of the flow. 
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3.0 MATERIALS AND METHOD 

 

3.1 Research Methodology 

 

The objectives of this research were accomplished by both numerical and experimental 

analysis. The experimental design was guided by the results of the numerical simulation, 

and parameters of interest were determined based on their influence on the complex flow 

structure behind the diffracting shock. The parameters of interest are as follows: pressure, 

velocity, radius of curvature of the model, incident shock strength and the density of the 

fluid.  

 

This chapter discusses the experimental and numerical methods used for the analysis. The 

numerical method consists of modelling, description and discretization of the flow 

domain, specification of the boundary conditions, description of the solution procedures, 

verification and validation of results, and processing of data. The experimental method 

involves model design and fabrication, description of the experimental facility and 

instrumentation, experimental procedures, data acquisition and flow visualization 

technique.  

 

3.2 Numerical Method 

 

The numerical method analysed the flow behaviour behind the diffracting shock wave by 

means of computer-based simulations. The analysis was structured around three main 

activities identified as follows: pre-processing, solution technique/solver and post-

processing. The pre-processing covers domain description and discretization, modelling 

of physical phenomenon by means of governing equations with necessary assumptions, 

description of initial and boundary conditions. The solution of the governing equations 

was discussed under selection and justification of the solver. The post-processing is the 

generation of results in form of plots and images for proper interpretation. The numerical 

analysis was carried out using two commercial software; Fluent 6.3 for the simulation 

and Tecplot (360 R2009 R2) for image processing. 
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3.2.1 Pre-processing  

 

The pre-processing involves the development of a two–dimensional geometry followed 

by the generation of computational grids. This was achieved using GAMBIT (a package 

for geometry development and grid generation). The flow domain was defined using a 

characteristic length chosen as the radius of the convex wall in the case of the circular 

arc. For other geometries the dimension of the inlet to the test section of the experimental 

shock tube was used as the characteristic length. This is because the simulations were 

carried out to mimic the large scale experiments. The maximum length of the incident 

shock is dependent on the inlet height. 

 

Figure 3.1a shows the flow domain used for the simulation before the generation of cells. 

For the curved walls, the inlet boundary is three characteristic lengths high and about four 

characteristic lengths upstream of the start of the wall curvature. This was employed to 

allow for the damping of numerical noise arising from the impulsive starting of the flow 

at the inlet. The height of the outlet boundary and the distance between the curvature and 

the outlet boundary is about six characteristic lengths. This ensures that the interaction of 

interest is not affected by the flow at this boundary. The maximum dimension for both 

inlet and outlet were the exact dimensions of the experimental shock tube (inlet = 0.45m 

and outlet = 1.105m).  

 

The geometry was drawn using various dimensions for edges which form a wireframe of 

a closed face. The edges AB, BC, CD, DE and EF were joined while the edge GH (i.e a 

semicircle of radius “r”) was used to close the face.  The boundary types for the 

simulation are pressure-inlet, pressure-outlet and no-slip walls. The meshes were 

generated using unstructured quadrilateral cells with the initial cell dimension of 3mm as 

shown in Figure 3.1b. The y
+ 

value of the cell nearest to the wall was set to 11.63 in the 

region under the shear layer so that the boundary layer could be properly resolved. This 

lies within the recommended value range of 5 ≤ y
+
 ≤ 30 specified for the k-  turbulence 

models that are implemented in Fluent [66]. This is particularly important as the global 

flow features that are of interest are strongly influenced by this. The grids generated at 
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the curved region of the flow domain are shown in Figure 3.1b. The values of y
+
 at other 

boundaries such as BC, DE and EF are greater than 11.63, but less than 100 in order not 

to increase the computational resources required for the simulations.  It is important to 

note that the flow domain does not require much refining at regions far away from the 

wall before the start of the simulation because cells were dynamically refined during 

simulation. The grid adaption based on density was used to refine the cells at regions of 

significant density gradient. The final discretized flow domain (i.e Figure 3.1c) was 

imported into Fluent for further analysis. 

 

The flow is governed by the mathematical equations based on the fundamental fluid 

dynamic principles; mass conservation, conservation of momentum and conservation of 

energy. The density and pressure are related by the perfect gas law; this is justified by the 

fact that the maximum temperature is well below 1000K for the incident shock Mach 

numbers tested. The gas is assumed to be perfect and this necessitates the use of ideal gas 

equation (i.e equation (2)) to relate density and pressure.  

 

The flow governing equations are the Navier – Stokes equations, and the energy equation 

coupled through the density–pressure relationship. The constitutive relation expresses the 

shear stress terms as a function of velocity gradients; the simplified form of this relation 

is shown in equation (12).  

 

)(
y

U
              (12) 

Where τ is the shear stress,  is the viscosity and U is the flow velocity. This relationship 

is very important in explaining the separation phenomenon especially in viscous flows  

[56]. The flow domain around the geometry of interest can be divided into three regions 

based on Prandtl hypothesis: the laminar sub-layer where the fluid closest to the wall is 

dominated by viscous shear (y
+ 

< 5), the boundary layer where the effect of viscosity 

varies with distance from the adjacent surface (5 < y
+ 

< 100) and inertial dominated 

region in which viscous effects is not significant.  The present study is largely inviscid 
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flow except near the wall where viscous effects play a significant role. The scope of the 

present analysis is limited to the region above viscous sublayer (i.e y
+
 > 5). 

 

Figure 3.1: The flow domain for the numerical simulations 

(a) Actual domain before discretization (b) The grids around the curvature (c) The 

discretized flow domain 
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The flow was initially modelled using both inviscid and viscous flow situations based on 

the earlier work by Law et al. [32] , Takayama and Inoue [63], and Sun and Takayama 

[62]. In these works both Eulers and Navier-Stokes solvers were used and compared to 

the experimental results obtained from conventional shock tubes. Law et al. [32] noted a 

discrepancy between the Navier-Stokes solution and the experiment regarding the shape 

and position of the shear layer, and attributed it to the instability in the finite volume 

method used by the numerical package. Other flow features such as position of the 

separation point and behaviour of the bulk flow field were confirmed to be in good 

agreement with experiment. 

   

A specific case of incident shock Mach number 1.5 on a 90  corner wall was examined 

by Sun and Takayama [62] over a flow domain of 104 x 73mm. The Eulers’ result with 

coarse computational grids did not show any instability but fine grids did. The result of a 

similar simulation using the Navier-Stokes equations with laminar boundary conditions 

showed a smooth shear layer at small times with instability developed at later times. 

There was also a small attenuation which was attributed to viscous dissipation resulting 

in damping. Further analysis using the k-ε turbulent model with additional dissipation 

suppressed the vortices and the results were in good agreement with published 

experimental results at the time.  

 

The focus of the present investigation is flow separation. The sufficient condition for this 

phenomenon is the presence of an adverse pressure gradient relative to the direction of 

the flow, and zero shear stress at the wall [55].  For low incident shock Mach numbers, 

Euler’s equation may not be appropriate. This is due to the significant viscous effect 

along the wall, and the adverse pressure gradient propagated behind the diffracting shock 

wave may not be strong enough to predict the separation point accurately. At high 

incident shock Mach numbers, Euler’s equation meets the two requirements for 

separation as earlier observed by Law et al. [32].  

 

The present analysis requires a model that will adequately resolve the near wall effects. It 

must also suppress viscous dissipation at region far away from the wall.  The standard k-ε 
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turbulence model that was developed by Launder and Spalding [30] and the k-  

turbulence model are considered for the analysis. The k-ε turbulence model focuses on 

the mechanism that affects turbulent kinetic energy. It has two equations, one for k 

(turbulent kinetic energy) and the other equation for ε (turbulent dissipation rate) [22].  

For high Reynolds number flows some wall functions for the standard k-ε turbulence 

model were developed based on the assumptions that the viscous effects unrealistically 

penetrate above the viscous sublayer.  The pressure gradient is retained in order to 

achieve a solution which does not depend on gradient matching [34]. At low Reynolds 

numbers Patel et al. [47] modified the k-ε turbulence model by introducing wall damping 

to ensure that viscous stresses take over from the Reynolds stresses near the wall.  

 

The k-  turbulence model was developed to resolve the viscous effect along the wall 

surface [28].  Application of these turbulence models to shock separated flows have been 

carried out by many researchers such as Liou and Huang [39], Viegas et al. [65] and 

Knight [28]. The results show that the surface pressure in the separation bubbles is higher 

than the measured value, the skin friction is higher than what is measured downstream of 

reattachment, and the velocity downstream of reattachment is in excess of the 

experimentally measured value. Various modifications have been carried out over time to 

ensure the accuracy of the turbulence models [68-70].  

 

The two turbulence models (k-ε and k- ) were blended together by Menter [41] to form 

the SST k-  turbulence model. The free stream independence of the k–ε turbulence 

model and the accurate prediction of the viscous effects of the flow close to the wall by 

the k–ω turbulence model make the SST k–ω turbulence model more suitable for the 

present analysis. This model looks more promising than both the k–ω and k–ε turbulence 

models particularly in the analysis of a separating flow, which requires adequate 

resolution of near wall effects without introducing unnecessary viscous dissipation 

outside the boundary layer.  It has been confirmed accurate and more reliable for adverse 

pressure gradient flows [43], however, its accuracy in the analysis of shock wave 

diffraction is not well reported in the literature. The present investigation uses the SST k-



 

 

35 

 turbulence model complemented by the k-ε turbulence model for high Mach number 

flows. 

 

The Reynold stresses in the equation are related to the mean velocity using the 

Boussinesq hypothesis [68]. This hypothesis is used in the k – ω and k – ε turbulence 

models because there is relatively low computational cost associated with the 

computation of turbulent viscosity. The Boussinesq hypothesis has two additional 

transport equations: for the turbulent kinetic energy (k) and either the turbulent 

dissipation rate ε or the specific dissipation rate ω.  The turbulent viscosity is then 

computed in terms of k and ε.  

 

3.2.2 The solution technique 

 

In setting up the simulation, the 2-dimensional, coupled density based Navier-Stokes 

solver of Fluent 6.3 was chosen. The data were generated using equations (9&10) in 

section 1.22. The gradient option was cell based and the SST k -  turbulence model was 

enabled in the solver. The fluid material used is air and the ideal gas law was selected to 

compute density. The operating condition was set at zero gauge pressure for the reference 

position F (Figure 3.1) defined by x = 0 and y = 0. The boundary conditions were given 

as total gauge pressure and the static pressure. These parameters were used in Fluent for 

solution initialisation to provide initial conditions at different incident shock Mach 

numbers. The stagnation temperature was used as input for the total temperature and the 

turbulent flow parameters were given according to the Fluent 6.3 prescriptions.  

 

The solution was initialised from the inlet relative to the cell zone and the system was 

patched by the ambient flow conditions.  The control parameter which is the Courant 

number was set to 1.5, and the flow discretization was set at second order upwinding in 

space. This higher order upwinding scheme considered the flow direction when 

calculating value of a parameter at the face of a cell. The convective value of a parameter 

was determined from neighbouring points, this minimised the discretization errors by 

considering wider influence. The dynamic adaption that generates grids at the instant of 
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the formation of important flow features was used. The adaption parameter is the density 

because all the flow features of interest produce significant changes in density.  

 

A series of simulations were carried out using the boundary conditions for different 

incident shock Mach numbers as listed in Table 3.1.  The data were computed using 

equations (9-10) in section 1.2.2. This is the main input into the solver from which the 

initial conditions were generated at all solution points. The solutions were obtained using 

an explicit scheme which linearized the source term by substituting the initial values.  

The value for the new time step was obtained from the old time step by forward 

marching. The value of the various parameters was obtained at the new time step using 

the values at the old time step. Data were generated for the set of flow conditions and 

stored as compressed files to save hard drive space on the computer.  

 

Table 3.1: Simulation data 

Incident 
shock Ms 

Initial supersonic 
Pressure 

Flow Mach 
number 

Stagnation 
Pressure 

Stagnation 
temperature 

1.40 176596 0.51 210916 386.76 

1.45 190445 0.56 235370 400.67 

1.50 204780 0.60 262101 415.08 

1.55 219600 0.65 291228 429.98 

1.60 234906 0.69 322867 445.36 

1.65 250698 0.73 357130 461.23 

1.70 266977 0.78 394131 477.59 

1.75 283741 0.80 433976 494.44 

1.80 300991 0.84 476770 511.78 

1.85 318727 0.87 522615 529.60 

1.90 336949 0.90 571606 547.91 

1.95 355657 0.93 623835 566.71 

2.00 374850 0.96 679390 586.00 

2.40 545893 1.16 1252446 757.90 

2.60 643076 1.23 1630697 855.57 

2.80 748034 1.30 2073414 961.05 

2.90 803429 1.33 2319387 1016.72 

2.96 838174 1.35 2477551 1051.64 

2.97 842207 1.35 2496096 1055.69 

2.97 845094 1.35 2509392 1058.59 

3.00 860767 1.36 2581906 1074.34 

3.01 863685 1.36 2595467 1077.28 
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The results were processed into velocity, pressure and density contour plots as well as 

velocity vector plots using the post processing facilities in Fluent. The numerical 

schlieren images used for direct comparison with the experimental results were obtained 

using Tecplot 360 (R2009 R2). The density gradient generated in Tecplot is similar to the 

experimental schlieren visualization images which will be discussed later under 

experimentation.  

 

Figure 3.2 shows the four points at which pressure histories were recorded for the curved 

wall simulations. The points are defined as P1, P2, P3 and P4, and specified using point 

definition in Fluent 3.2. Each point was identified using its coordinates (x, y) referenced 

to point E (0, 0) in Figure 3.1. Four windows were activated in the animation menu for 

the four locations. The time-step for the simulation is 1µs and the total time interval of 

about 1500µs was considered for the pressure history. The pressure at each time-step was 

recorded for the total time interval and saved in four separate files during the simulation. 

These were compared directly with the pressure trace obtained from the experiments.  

 

 

Figure 3.2: Location of points at which pressure histories were recorded 
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3.3 Experimental Analysis 

 

Shock wave diffraction is an unsteady process, the flow behaviour behind the diffracting 

shock changes with time. In order to examine the flow features comprehensively after 

long times of diffraction process. The flow need to be modelled in a large scale facility. 

The experimental analysis requires generation of a planar shock wave that travels a 

significantly long distance before encounters the convex wall. The pressure across the 

shock is expected to be determined before the start of the diffraction process in order to 

compute the strength of the shock. As this shock diffracts over the surface of the model, 

the pressure history at four different locations need to be recorded. These pressures will 

be used to determine the behaviour of the shock as it diffracts over the model and to 

identify the time at which the separation of the flow occurs. The images of the 

interactions behind the diffracting shock need to be visualised for different positions of 

the shock. This requires setting up an optical system that can be triggered at the instant 

the shock wave crosses a particular region. The experiments were set up to cater for these 

requirements and the equipments used are: a large scale shock tube, a data acquisition 

system, a schlieren optical system and data logger.  

 

3.3.1 Experimental facility 

 

Large scale experimental analyses were conducted in a purpose built shock tube at the 

Flow Research Unit of the School of Mechanical, Industrial and Aeronautical 

Engineering, University of the Witwatersrand, South Africa. The facility has the potential 

of generating shock waves up to a Mach number of 3.0.  However, high Mach number 

tests could not be attempted owing to the possibility of damaging the test section 

windows which were made of glass. Furthermore, the wall directly at the exit of the test 

section was damaged twice during the preliminary tests of the shock tube at high Mach 

numbers.  

 

The shock tube consists of a 2m long cylindrical driver section (450mm diameter) bolted 

to the driven section of cross sectional area 0.1 x 0.45 m
2 

 divided into three parts of 2m 
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in length each, as illustrated in Figure 3.3. The overall length of the shock tube is 10m. A 

diaphragm pricker was fixed to one side of the tube at a region where the driver and 

driven section were bolted together. The diaphragm pricker was made up of a stainless 

steel needle, a spring and a long string. They were fitted together to form a system that 

was used to rupture the diaphragm that separated the high and low pressure sections. The 

shock was generated either by increasing the pressure in the driver section (compression 

chamber) or by pricking the diaphragm by means of the pricker.  

 

 

 

Figure 3.3: Schematic diagram of the large scale experimental shock tube 

 

The desired thickness of the diaphragm was obtained by combining different thicknesses 

of polyester film sheeting to achieve the required burst pressure.  This may be one or 

several sheets stacked together depending on the pressure required in the driver section. 

Table 3.2 shows the thickness of the diaphragm and the natural burst pressure for 

different combinations of polyester film sheets.  The natural bursting of higher 

combination (i.e Thickness > 125µm) could not be determined in the present experiments 

because higher test pressures (P > 7bars) were not used.  

 

The driver section was located at one end of the shock tube with two ports: an inlet port 

on top through which air was supplied into the vessel and an outlet port underneath from 

which the pressure of the compressed gas was measured by a pressure gauge. The driver 

section was positioned on a frame with wheels for free movement of the cylinder when 
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changing the diaphragm. A gasket was used between the driver and driven section before 

they were bolted together so as to ensure adequate sealing.   

 

 

Table 3.2: Determination of natural bursting of mylar sheeting combinations 

Diaphragm thickness 

(µm) 

Mylar sheeting 

combinations (µm) 

Approximate natural burst 

pressure (kPa) 

50 50 220 

100 100 370 

125 25 and 100 490 

 

 

The driven section consists of a long rectangular channel of length 6m divided into three 

equal parts (A,B and C) of dimensions 2m x 0.1m x 0.45m, bolted together as indicated 

in Figure 3.3. Each section has flanges at both ends, and there were three holes at both 

sides of the flanges bolts. The sections were joined together with a gasket between them 

to ensure adequate sealing against air leakage. Three bolts were used at each side of the 

flanges for proper gripping against vibration during testing. The three parts of the driven 

section were carefully aligned to avoid unwanted disturbance of the planar shock on its 

way to the test section. The inner surface is smooth, painted and proper setting of the 

gasket was ensured at various joints.  The driver section was designed for a maximum 

pressure of 12bars but the present tests could not be extended beyond 6 bars for safe 

operation. 

 

The driver section of the shock tube was operated with a control panel which consists of 

an inlet hose and valve, air filter and a pressure gauge. The amount of air from the 

pressure line that gets into the driver section through the inlet hose was controlled by the 

inlet valve. The air filter removes impurities that could cause premature bursting of the 

diaphragm while the pressure gauge measures the pressure in the driver section. The 

ambient temperature and pressure were measured at intervals during the experiments by a 
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mercury - bulb thermometer (resolution of C5.0 ) and a digital barometer (resolution of 

1mbar) respectively. 

 

There were two transducer ports on the driven section located close to the inlet of the test 

section; these ports housed the transducers that measured the pressure rise across the 

planar shock wave. The distance between the two transducers is 0.05m and the first port 

is about 0.49m from the start of the diffracting surface.  The transit time between the two 

transducers was used to calculate the velocity of the incident shock before the start of 

diffraction of the shock wave on the model. 

 

The test section has two circular glass windows of diameter 0.30m enclosed in a circular 

frame of diameter 1m. This is surrounded by a device that enables 360  rotation of the 

frame to give coverage of the whole domain, as shown in Figure 3.4. The model was 

fixed in the test section within the glass window such that the surface of interest was 

located within the field of view of the optical system. 

 

The whole test section stands on wheels which allow for easy movement when new 

models are mounted in it, and for proper alignment of the test section with the rest of the 

shock tube. There is a muffler bolted to the exit of the test section to reduce the strength 

of the wave leaving the shock tube before it impacts on the blast barriers that were 

arranged around the muffler to lower the speed of the exiting air. 
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Figure 3.4: The large scale shock tube facility 

 

The following devices in the large scale shock tube are important modifications that 

make the facility different from the conventional shock tube. There are two transparent 

glass windows of diameter 0.3m each through which the interactions behind the 

diffracting shock was captured. This facilitated enough space for large scale diffraction 

process. Any of these windows can be used, depending on position and type of the model 

to be examined. The present facility can allow for a diffraction time of about 1500µs 

depending on Mach number. This is about 10times what is obtainable in most 

conventionally sized shock tubes. The rotation of the circular frame of diameter 1m that 

encloses the glass windows facilitates wide coverage of the flow field in the test section 

irrespective of the orientation of the model. The fixing of the test section on an adjustable 

stand ensures variation of the height of the test window with respect to optical 

arrangement. The facility is suitable for testing of both weak and strong shock waves. 

One of the glass windows is divided into square grids by tiny string for estimation of the 

size of a flow feature of interest. 

 

 

Test windows 

Model 

Transducer  

ports 

Data acquisition 

section 
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3.3.2 Instrumentation 

 

The instrumentation consists of a time delay box, a 4 – channel Yogokawa oscilloscope 

(Model DL1540) that displays the pressure trace, 6 signal amplifiers (PCB Piesotronic 

482 series) and  6 transducers. The specifications of various transducers used on the 

surface of the models are shown in Table 3.3. The two transducers on the driven section 

are connected to the signal amplifiers and to the oscilloscope which displays the pressure 

trace at each port.  A sudden rise in pressure indicates the instant of shock traversing the 

surface of the transducers. The shock velocity is determined from the distance between 

the two ports and the time taken by the shock to cover the distance between the 

transducers.  

 

The approximate time taken by the shock to arrive at a particular location on the model is 

estimated based on the shock speed earlier determined from the two transducers on the 

driven section. This is used to set the time delay to trigger the light source which is 

employed to capture the interaction of interest at different position of the diffracting 

shock wave. Four other transducers are used to record the pressure traces on the surface 

of the model and are connected to the data logger through signal amplifiers. For the 

curved walls the location of the transducers are designated by P1, P2, P3, and P4, and are 

located 50 , 60 , 70  and 80  from the inlet as shown in Figure 3.2 (section 3.2.2). The 

detailed drawings are shown in Appendix A.  

 

Table 3.3: Transducer calibration constants 

Serial 

Number 

Name of the port Transducer specification Calibration constant 

 

14051 P1  113A21 3.3424 mV/kPa 

5478 P2 113A21 3.62595 mV/kPa 

19619 P3 113B21 3.33587 mV/kPa 

6397 P4 113A21 4.11910 mV/kPa 
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For the 30  wall nine transducer ports were made at various locations downstream of the 

corner vertex. Four of these ports are used during each test and the remaining holes are 

covered by blind plugs specially fabricated for this purpose. The surfaces of these blinds 

are smooth and flush with the surface of the model to avoid undesirable reflections. The 

transducers are arranged at different locations where the pressure trace is recorded. The 

specifications of the transducers are shown in Table 3.3.  

 

3.3.3  Flow visualization technique 

 

The flow behaviour behind the diffracting shock wave is characterized by density 

gradients. The schlieren flow visualization technique was used because its principle is 

based on the relationship between change in light intensity and the gradient of the 

refractive index in the fluid. It was developed more than a century ago and is attributed to 

Foucault (1859) and Toepler(1864) [40]. The non-uniformity in the flow field behind the 

diffracted shock alters the direction of a collimated beam of light passing through the 

flow. The deflection of the light is due to the resultant change in the refractive index of 

the flow as a result of density gradient.  

 

The gradient of the refractive index in a test fluid can be obtained from the evaluation of 

the local change in the intensity of the light (
I

I
) in the schlieren image. This evaluation 

is expressed in a simplified form as shown in equation (32) [40]. 

 

 dz
y

n
c

I

I 1

                  (32)  

where c is a constant for the mirror or lens. 
y

n
 is the gradient of the refractive index 

perpendicular to the knife edge which depends on the density of the fluid as shown in 

equation (33) [40]. 

*1 kn                (33) 
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n is the refractive index, k is the Gladstone-Dale coefficient which is 0.23cm
3
/gm for air 

at standard conditions, and varies between 0.1 and 1.5 for most gases [7]. The above 

relationship shows that the refractive index is weakly dependent on density; hence, 

detection of small variation in density using the optics will require very sensitive optical 

system. The influence of temperature and pressure is not significant on k  in a flow field 

at a moderate flow conditions as observed by Barbosa [6&7]. 

 

The Z-Type 2-Mirror schlieren arrangement is used. It consists of a light source (1 s 

xenon flash lamp) connected to a simple electronic switching system to produce a short 

duration exposure. The light is allowed to pass through a condenser lens (C), a vertical 

slit and is collimated by the parabolic mirrors (M1&M2) as shown in Figure 3.5. The focal 

length of the mirrors is 1.8m and they are of equal distance from the object at the 

schlieren field. 

 

The collimated light is allowed to pass through the windows of the test section (flow 

under investigation) and brought to a focus. Some of the light is blocked at the focus by a 

knife-edge that was carefully positioned for the purpose. The combination of knife-edges 

and vertical slits produces higher sensitivity with clear images, and this made this 

configuration very suitable for the present application. A lens is used after the knife edge 

to collimate the light again before it is photographed by the camera. The camera used for 

the experiment is a 10Megapixel Nikon D40 digital camera, with adjustable light 

exposure times.  

 

The light source of the optical system is connected to the output of the delay box. The 

signal from the pressure transducer was sent to the oscilloscope via the signal amplifier at 

the instant of passage of the shock. The oscilloscope sends the signal to the time delay 

box that has been armed and is waiting for the trigger. The flash lamp was triggered by 

the output signal of the time delay box. The Mach numbers of incident shock waves for 

different initial driver pressures are recorded during the preliminary experiments. The 

approximate incident shock Mach numbers from these preliminary studies are used to 

compute the trigger times. 
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Figure 3.5: Z-configuration schlieren arrangement 
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3.3.4       Model design and fabrications 

 

The models used for the tests were designed based on the maximum loading that could be 

generated by an incident shock at Mach 2.0 on a structure. Four models were designed 

and fabricated at the North West Engineering workshop.  These models are 30  and 90  

plane, 200mm and 400mm diameter walls. The important features of each model are the 

location of the transducer ports where the pressure traces were recorded and the convex 

angle/bend that motivated the diffraction process. Figure 3.6 shows the arrangement of 

these ports and their location from the centre line OA which is the line of symmetry for a 

200mm diameter wall. 

 

 

Figure 3.6: The curved model with the transducer ports 

 

The ports were labelled P1 – P4 on the model with each port housing piezoelectric static 

pressure transducer with a known calibration constant. When the shock wave reached 

location P1, a sudden rise in pressure trace was displayed by the oscilloscope confirming 

the passage of the shock wave. The transducers were carefully fitted into the ports with 

O A 
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seals to ensure no air leakage. The surface of the transducer was made flat with the 

surface of the model to avoid propagation of disturbances around the transducer during 

the experiments. 

 

Figure 3.7 shows set up of a 200mm diameter model on the universal support. The shock 

wave that was propagated after the rupture of the diaphragm moved through the driven 

section and entered the test section. It encountered the convex bend at point A and started 

to diffract as it moved over the surface ABC. The sides of the model were covered with 

tape to avoid direct contact with the glass of the test window and to seal the contact area 

against air leakage.  All bolted joints were locked by using two nuts tight together on 

every bolt. This is to ensure that bolts did not loosen due to the vibration generated in 

normal operation. 

 

 

Figure 3.7: The assembly of 200mm diameter model  
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The assembling of the 30  model is shown in Figure 3.8, and the detailed drawing of the 

plate that housed all the pressure transducers is shown in Figure 3.9.  Plate 1 and 3 were 

joined to the universal support that is fixed to the inlet plate of the test section. There are 

nine transducer ports with the first port located at a distance of 15mm from the end A of 

the plate as shown in Figure 3.9. The location of various transducer ports were specified 

as H1-H9, however, only ports H1, H 3, H5 and H7  were used to record the pressure history. 

The unused ports were blocked by blind plugs. The shock wave entered the test section 

and moved over plate 1 before it encountered the convex corner at point A. Diffraction of 

the shock started from A and continued as the shock moves over the surface of plate 2 

which is the surface of interest for this model. The shock encountered the transducer P1 at 

H1, P2 at H3, P3 at H5 and P4 at H7 where the pressure histories were recorded as it traversed 

the surface.  

 

 

 

Figure 3.8: Assembly of the 30  corner model 

 

The models that were comprehensively examined are: 30
 
and 90

 
plane-wall corners and 

a 200mm diameter wall. The models were designed in parts and fabricated from mild 

steel. The assembly of the parts were carefully done especially at joints that have 

significant influence on the experimental results. Among these regions are point A where 

the diffraction process commenced and point B which is the surface of the transducers 

and the blind plugs. This surface was made flat with model surface to avoid reflections 

that may be generated by undesirable contours. The 400mm diameter model was also 

fabricated; however, few tests were conducted due to limited separation. The assembly 

2 
1 

  3 



 

 

50 

and positioning of this model is similar to 200mm diameter wall except that it occupies 

more space in the test section. 

 

 

 

 

Figure 3.9: Location of the transducer ports on the 30  model 

 

 

 

 

 

 

 

 

A 
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3.3.5   Experimental procedure 

 

Experiments in the shock tube were conducted by following these step by step activities: 

 Instrumentation was switched on and enough time was allowed for the system to 

attain steady conditions. 

 The ambient pressure and temperature were recorded from the digital barometer 

and mercury bulb thermometer respectively. 

 The xenon lamp used for the visualization was switched to the external mode. 

 The schlieren optical arrangement was adjusted to ensure proper settings. 

 The spring of the diaphragm trigger plunger was compressed and latched into the 

cocked position. 

 A new diaphragm was fitted at the inlet to the driven section. 

 The supply and other valves on the control panel were closed. 

 The main pressure line was opened and the emergency vent was tested for 

possible blockage. 

 The compression chamber was closed and bolted up using a pneumatic wrench. 

 The oscilloscope time and voltage divisions were set to the required values. 

 The trigger system was set to the required time on the delay box and armed. 

 The emergency vent valve was closed  

 The laboratory doors were locked using the electronic device which also switched 

on the warning lamp at the entrance to the shock tube laboratory. 

 All the lights in the laboratory were switched off except an operator head lamp 

that was used to monitor the compression process. 

  The inlet valve on the control panel was opened slowly for gradual compression 

of the driver section. 

 The inlet valve was adjusted once the desired pressure has been obtained and the 

head lamp was switched off. 

 The camera shutter which has been set to 1minute exposure was opened 

 The string connected to the trigger plunger was pulled for firing. 

 The camera closed automatically and the light in the laboratory was switched on 
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 The inlet valve remained closed while the emergency vent valve was opened. 

 The pressure traces were saved from the data logger. 

 The inside of the shock tube was cleaned of diaphragm fragments for the next 

test. 

 

The following precautions were taken during the testing:  

 Auditory protective device was used when using the pneumatic wrench and at the 

time of firing. 

 The glass windows and the parabolic mirrors were carefully cleaned with a soft 

cloth to avoid scratching. 

 Area around the exit of the test section is always kept clear during the test 

 The inside of the shock tube is always inspected for any foreign objects before the 

test is conducted. 

 The compression chamber was vented after each test to avoid pressure build up in 

the chamber. 

 The camera lens cover is always used to cover the opening when not testing to 

avoid dust contamination. 

 Regular check of all bolts on the test models is required after each test so that any 

bolts loosened due to vibration can be retightened. 
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4.0 ANALYSIS OF LOW MACH NUMBER INCIDENT SHOCKS  

 

4.1 Introduction 

 

This chapter analyses the numerical and experimental results of the diffraction of low 

Mach number incident shock waves. The analysis involves two plane convex walls (30
 
 

and 90 )
 
and two curved convex walls (200mm and 400mm diameters). The low Mach 

number shocks consist of incident shock of Mach numbers 1.30 ≤ Ms ≤ 1.60 with special 

emphasis on Ms 1.40 and 1.50.  

 

Pressure, velocity and density contours plots which show various flow features of interest 

are extracted from the numerical data. These results are validated using numerical 

schlieren images for direct comparison with the experimental pictures. The outcome of 

this analysis is used as a computational guide for the analysis of high incident shock 

Mach numbers since large scale experimental analysis is limited to Ms  1.60. 

 

The major advantage of using a numerical method is the ability to generate a large 

amount of data due to ease at which the influencing parameters could be varied at a low 

cost. However, this may turn out to be a disadvantage if the user can not clearly identify 

the governing parameters at the beginning of the analysis. The user may be overwhelmed 

by the data and it becomes difficult to know how much of that data is meaningful. The 

four governing parameters with regard to this work are the incident shock Mach number, 

the shape of the convex wall, the time of the diffraction process as well as the Reynolds 

number. 

 

4.2 Verification and Validation of Numerical Results 

 

Figure 4.1 shows the flow features behind an incident shock of Mach number 3.0 that has 

diffracted for about 1500µs over 30  corner wall. The upper and the lower walls are well 

spaced, and both inlet and outlet boundaries are far enough away from the surface over 

which the incident shock is diffracting. The complex flow region is free from the 
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reflection of wave from the upper boundary, and the numerical noise resulting from the 

impulsive start of the flow at the inlet has dissipated before the start of the diffraction 

process. This preliminary simulation result shows that there is enough space between the 

boundaries and the complex flow region of interest. 

 

 The flow domain is illustrated in Figure 3.1. The vertical boundaries: 0.65 < y < 1.105 

and 0 < y < 1.05 are the inlet and outlet boundaries respectively. Other edges are walls at 

which the no-slip boundary condition is used. The cells near the wall W1 are fine enough 

to resolve the boundary layer under the shear layer. The adaptive mesh generation is used 

so that sufficient mesh elements will be generated at the instant of formation of any flow 

features of significant density gradient. The upper wall is sufficiently far away to avoid 

impingement of the reflected wave from the wall with the complex flow structure at the 

corner. 

 

 

Figure 4.1: Comparison of complex flow region to the computational domain 

at incident shock Ms 3.0 on 30  corner wall 
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Figure 4.2 shows the position of separation point at incident shock Mach number 2.0 on a 

200mm diameter wall for different number of meshes. This analysis ascertained the 

independence of solution from the mesh. The solution adaptive mesh generation is used 

to fix the maximum number of meshes that were considered. The separation point moves 

with time along the curved wall, however, the present analysis considered the position of 

separation point at the same instant in time. The position of separation point is defined by 

the angle between the separation point and a vertical line from the inlet. The solution 

approaches the asymptotic value of about 62.4 as the number of element tends to infinity. 

The approximate angle of separation at the time under consideration is 62.4 and the 

solution became independent of the number of elements as the number of elements 

reached about 1,000,000 elements. The minimum number of elements used for the 

simulation was 1000,000. 

 

 

Figure 4.2: The behaviour of separation point for different number of elements at 

Ms 2.0 on a 200mm diameter wall 

 

The diffraction of an incident shock Mach number 1.5 on the 90  convex wall is shown in 

Figure 4.3. This particular case is the benchmark proposed by Takayama and Inoue [63] 
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to measure the performance of CFD codes. Figure 4.3(a, b and c) are experimental 

images at different diffraction times and Figure 4.3(d, e and f) are results from the SST k 

-  turbulence model while Figure 4.3(g, h and i) are from Navier–Stokes solver with 

laminar boundary conditions. The flow features of interest are: shear layer, lambda 

shocks (LS), the vortex, the bifurcated shocks (BS) on the vortex, and the contact surface. 

 

The comparison of the images in Figure 4.3 is based on the length of the flow feature of 

interest measured at time t which is expressed in a non-dimensional form as shown in 

equation (34). For experimental pictures the length of the relevant flow feature is 

determined using the square grids positioned over the test window. Each of the grids is 

50mm in dimension, and the approximate dimension of the flow features are obtained 

from the spacing.  

 

The dimensionless time scale is given by τ: 

 

c

at
               (34) 

where c is the characteristic length (radius of the arc for the curved wall and inlet height 

of the test section for the plane walls),  t  is the time from the start of diffraction process 

to the formation of the flow feature of interest, a  is the sound speed in the undisturbed 

region ahead of the incident shock wave.  

 

 

There is good agreement in the bench mark results between the current experimental 

images and results of the SST k -  turbulence model. The lambda shocks are well 

predicted with the bifurcated shock that is interacting with the vortex. The contact surface 

and vortex are also comparable with experiment.  The shear layer is smoother in the SST 

k-  turbulence model than in experimental pictures. The pattern by which the shear layer 

rolled up into a spiral vortex is the same for all the images.  
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The laminar Navier–Stokes images show instability along the shear layer at later times. 

This instability as it develops rolled up into a spiral vortex, followed by the breaking up 

of the shear layer into vortices as shown in Figure 4.3h&i.  These developments follow a 

similar pattern with the Euler solutions as earlier observed by Sun and Takayama [62], 

except that it occurred at later times in laminar Navier–Stokes results with laminar 

boundary conditions.  

 

The development of instability along the shear layer and the eventual breaking up of the 

shear layer into vortices in the Navier-Stokes (laminar boundary conditions) images (Fig. 

4.3g, h & i) can be attributed to viscous dissipation which dominates the entire flow 

domain behind the diffracted shock. The viscous effect that is required in the flow is 

supposed to be limited to region close to the wall. The use of turbulence model with 

additional dissipation removes both the instability and the vortices as shown in the 

images of SST k-  turbulence model in Figure 4.3e&f. The result is comparable to the 

experimental images at the same time scale except that the shear layer is smoother than 

what is shown in the experiment and this can be as a result of excess dissipation. 

 

The results show that Navier-Stokes equations with the SST k-  turbulence model is 

suitable for the analysis at incident shock Mach number 1.5. The choice of SST k-  

turbulence model is motivated by its accurate prediction of near wall effects and ability to 

capture free-stream behaviour at regions far from the wall. 
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Figure 4.3: The diffraction of Ms 1.5 incident shock on a 90  wall using experimental 

(a, b & c), SST k-  turbulence model (d, e &f) and laminar Navier–Stokes solver (g, 

h & i). Dimensionless time scale τ: (a) 0.2 (b) 0.3 (c) 0.4 (d) 0.2 (e) 0.3 (f) 0.4 (g) 0.2 

(h) 0.3 (i) 0.4 
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4.3 Low Mach number Incident Shocks on Plane Walls 

 

4.3.1 90  corner walls 

 

Figure 4.4 shows the diffraction of an incident shock Ms 1.4 on a 90
 
corner wall. The 

diffraction of the incident shock at the corner was followed by flow separation. A shear 

layer evolved smoothly from the corner with a series of lambda shocks above it.  The 

shear layer extends downstream and is terminated by a vortex as shown in Figure 4.4.  

The vortex core is not distinct at small times but at later times. The shear layer develops 

instabilities which break up into vortices as it rolls up into a spiral vortex. The size of the 

vortex increases as it is pushed downstream by the extension of the shear layer. The 

vortex begins to disperse when it has moved far enough from the wall surface. 

 

The first two images shown in Figure 4.4a-b correspond to what had been obtained 

previously on smaller facilities. The time scale is small and the flow behind the 

diffracting shock has not yet fully developed, thus the shear layer is smooth with lambda 

shocks spread above it. Images d-i in Figure 4.4 illustrates the development of instability 

along the shear layer with break-up of shear layer into a chain of discrete vortices. The 

time scale is about five times what is obtained in conventionally sized shock tubes, there 

is enough time for the flow to develop while the main vortex fades away. These images 

show that the earlier observation of the smooth shear layer in the images obtained from 

conventional shock tubes is limited by the experimental scales both spatial and temporal.  

 

The perpendicular distances between the wall and the vortex core were measured directly 

from the images in Figure 4.4.  To measure the vertical displacement of the vortex, the 

distance from the vortex core to a horizontal line drawn from the corner was measured. 

The size of the vortex was estimated from the approximate diameter of the vortex. The 

measured distances were plotted against time for both numerical and experimental data as 

shown in Figure 4.6. There is an increase in both vertical and horizontal velocities with 

time, and the vortex size also showed a significant increase as the diffraction process 

progressed downstream. 
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Figure 4.4: Experimental images of the flow features at incident shock Mach 

number 1.4 on 90 convex corner 

Non-dimensional time scale τ:  (a) 0.15 (b) 0.23 (c) 0.3 (d) 1.1 (e) 1.3 (f) 1.6 (g) 1.9 (h) 

2.3 (i) 2.5 

 

 

 

 



 

 

61 

Figure 4.5 shows the numerical images of the diffraction of an incident Mach 1.4 shock 

over a 90
 
convex corner. These images were obtained from Reynolds Average Navier–

Stokes (RANS) solver with a laminar wall model. The viscous effect is less pronounced 

than at Mach 1.5. The shear layer evolved smoothly from the corner as earlier observed 

in the experimental pictures. At later times instabilities developed along the shear layer as 

it rolled up into a spiral vortex. The shear layer eventually broke up into a series of 

vortices in the pattern of a Kelvin-Helmoltz instability. 

 

Further analysis using the SST k-  turbulence model shows no significant difference 

from what is observed at Mach number 1.5. The shear layer remains smooth from the 

corner throughout the diffraction process. The break-up of the shear layer into vortices is 

not evident. However, other flow features such as the bifurcated shocks that interact with 

the vortex, the lambda shocks above the shear layer and the contact surface remain the 

same. The instability which is evident in the experimental images and Navier-Stokes 

solver (with laminar boundary condition) is not evident in the SST k-  turbulence model 

results. This shows that the turbulence model has excess dissipation that damps out the 

real flow behaviour. 

 

There is a significant change in the size and location of the main vortex from the wall 

surface. The temporal variation in the perpendicular distance between the vortex core and 

the wall surface is labelled X in Figure 4.5. The plot of X against the dimensionless time 

as shown in Figure 4.6 can be used to estimate the horizontal velocity of the vortex using 

the slope of the graph. The total displacement of the vortex from the corner is obtained as 

shown in equation (35).  

)( 22 yxS             (35) 

where yxS &, are the resultant displacement, horizontal and vertical distances. The plot 

of this displacement against time (Figure 4.7) gives the total speed of the vortex. The 

results show that there is no significant variation between the two numerical data, 

however, there is a 3% difference in the slopes when compared to experimental results. 
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The size of the main vortex is determined using the approximate radius “R” which is the 

distance between the vortex core and outer surface of the vortex. This size is obtained by 

computing the area of the vortex using the radius. The transient change in the size of the 

vortex is plotted for both experimental and numerical images as illustrated in Figure 4.8.  

 

The numerical results using Navier-Stokes solver (with laminar boundary conditions) 

under-predict the size of the vortex by about 4% when compared to experiment using the 

slope of the graphs as a parameter of comparison. The SST k-  turbulence model shows 

a variation of about 2% from the experimental result. The small variation between the 

experimental and numerical (SST k-  turbulence model) results as shown in (Figures 

4.6-4.8) revealed that the numerical simulation gives a good prediction of the general 

flow behaviour except for shear layer stability. 
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Figure 4.5: The vortices behind an incident shock Mach number 1.4 on a 90 corner 

using laminar Navier-Stokes solver  

Non-dimensional time τ: (a) 0.1 (b) 0.8 (c) 1.1 (d) 1.3   

 

 

a b 

c d 
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Figure 4.6: The horizontal orientation of the vortex with time 

 

 

 

Figure 4.7: The displacement of the vortex with time 
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Figure 4.8: The change in size of  the vortex with time 

 

4.3.2 30  corner wall 

 

Figure 4.9 shows comparative numerical and experimental images for the diffraction of 

an incident shock (Ms = 1.5) over a 30
 
wall at the same time scale. The dominant flow 

features were clearly identified in both the numerical and experimental images, 

prominent among these features are: lambda shocks that form above the shear layer, the 

shear layer is not smooth and flow instabilities appeared under the shear layer. The shear 

layer is terminated by a vortex that is affected by strong turbulent flow, and it continues 

to be distorted as it extends downstream. The turbulence intensity in the experimental 

picture is much higher than the numerical result showing that the real flow behaviour is 

under-predicted. 

 

The shear layer could not retain its original shape due to strong instabilities that form 

around within the flow. The vortex and the shear layer break up into vortices and the flow 

is dominated by turbulence at later times. There is homogenous turbulent flow from the 
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corner that extends all over the wall surface. The primary flow features in the 

experimental picture are well replicated by the numerical images in terms of the shock 

patterns and the flow instability under the shear layer. However, the homogenous 

turbulent flow is not well predicted. 

 

The pattern of propagation of lambda shocks in the numerical data is slightly different 

from experimental images. These shocks are not restricted to a particular portion but 

spread above the shear layer as shown in both experimental and numerical images of 

Figures 4.9&4.10. The formation of these lambda shocks has been observed by Law et al. 

[33] on multifaceted walls. However, the result of this earlier work is limited by the scale 

of the experiment. The present result shows that the shape of the lambda shocks has been 

affected by the breaking up of shear layer into vortices. This occurrence enhanced the 

development of a strong turbulent flow around the shear layer. There are more lambda 

shocks in the experimental pictures but not sharp as in numerical images.  This may be 

attributed to the viscous effects in the numerical model. Law et al. [34] has shown that 

sharpening up and increase in the number of these lambda shocks can be achieved by 

reducing the dissipation in the numerical code used through decrease in viscosity.  

 

The present investigation also shows that at large diffraction times the region far away 

from the corner could not sustain further propagation of these lambda shocks as shown in 

Figure 4.10e&f. This is due to the development of turbulent flow around the shear layer. 

The angle between the wall and the shear layer is similar in both numerical and 

experimental images especially during the early development of the flow. However, at 

long diffraction times there is a slight increase in this angle as shown in Figure 4.10e&f. 

The change in angle can be attributed to the strong turbulent flow that propagates back to 

the corner within the re-circulating flow behind the shear layer. 

 



 

 

67 

 

Figure 4.9: The evolution of the shear layer at Ms 1.5 incident shock on 30 corner 

(a) SST k-  turbulence model (b) Experiment 

 

 

 

Figure 4.10: Development of homogenous turbulent flow at MS 1.5 shock on 30
 
wall. 

Dimensionless time τ: (a) 0.2 (b) 0.4 (c) 0.6 (d) 0.9 (e) 1.11 (f) 1.55

Figure 4.11 shows the development of flow instability along the shear layer during the 

diffraction of an incident shock at Mach 1.34 on a 30  wall. The flow development starts 

with flow separation at the corner followed by the formation of flow features that could 

not be distinctly identified initially. These flow features becomes distinct after long times 

of the diffraction process. The shear layer that forms from the corner extends downstream 

with a vortex that has been affected by flow instabilities. The angle between the shear 
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layer and the wall surface is small compared to what is observed at high incident shock 

Mach numbers.  

 

The flow instability is enhanced by further extension of the shear layer downstream. 

After long times of the flow development, the flow features become distinct showing 

turbulent breaking up of shear layer as illustrated in Figure 4.11c&d. The shear layer 

remains attached to the corner upstream as the instability develops further downstream. 

This observation shows that the flow development on a 30 corner wall at low Mach 

numbers occurs over different stages. The identification of this flow development is 

possible due to the scale of the experiment which allows for the diffraction of the incident 

shock over long times. There is also space for the visualization of the flow features 

behind the diffracting shock wave. The first two images (a&b) in Figure 4.11 are 

obtainable in conventionally sized shock tubes while the images (c&d) are only possible 

in a large scale shock tube facility. 

 

 

Figure 4.11: Turbulent break-up of shear layer at incident shock Ms 1.34 

Dimensionless time τ: (a) 0.2 (b) 0.4 (c) 0.7 (d) 1.0 
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4.4 Low Mach number Incident Shock Wave on Curved Walls 

 

Two curved walls (200mm and 400mm diameters) were initially considered for 

experiments over a range of incident shock Mach numbers 1.35 to 1.62. The final 

experimental analysis is based on the 200mm diameter wall because separation was not 

observed on the 400mm diameter wall for all the incident shock Mach numbers 

considered. The time scale used for the analysis is expressed in non–dimensional form as 

shown in equation (36). 

r

at
                         (36) 

    where r  is the characteristic length defined as radius of the curved wall, a  is the speed 

of sound at an undisturbed location ahead of the incident shock wave and t is the time 

between the start of diffraction and the formation of the flow feature of interest. 

 

Figure 4.12 shows the diffraction of an incident shock at Mach 1.5 on the 200mm 

diameter wall. The shock traverses the surface of the curved wall for sufficiently long 

time; about ten times the time scale of the conventionally sized shock tube experiments 

conducted by Skews [59]. Separation does not occur at the instant of the shock engaging 

the curvature but the boundary layer thickens. The increase in thickness of the boundary 

layer started from a region labelled BL  as shown in Figure 4.13, and extends upstream 

even beyond the start of curvature. This is the same observation made by Skews[59] for a 

smaller radius and suggests possible separation of flow at later times. 

 

Figure 4.13 shows the flow behaviour behind a Mach 1.5 incident shock on 200mm 

diameter wall at much later times. This observation is possible because the observation 

area in the test section of the shock tube is large enough for the shock to diffract for 

longer times. The change in boundary layer thickness becomes pronounced with further 

diffraction of the shock downstream. The flow behind the diffracting shock was 

monitored for the maximum time scale accommodated in the present shock tube. After a 

time scale of about 5.9 (Figure 4.12d) separation occurred. The separation phenomenon 

in this case was caused by the combined effects of adverse pressure gradient and the 
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impingement of weak shocks on the boundary layer. The induced separation evolved 

under the boundary layer with turbulent patches that spread downstream as shown in 

Figure 4.13e&f.  A very important observation here is the movement of the separation 

point upstream towards the inlet. At longer times, series of reflected shocks were 

propagated at various regions that formed wedges, and these shocks interact with the 

flow. The analysis is limited to flow region that is free from these reflected shocks.  

 

 

 

Figure 4.12: Increase in boundary layer thickness at incident shock Mach 1.5 

 

Ms =1.50 

BL 

c 
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Figure 4.13: Diffraction of incident shock Ms 1.5 on a 200mm diameter wall 

Dimensionless time scale τ: (a) 4.4 (b) 5.1 (c) 5.9 (d) 7.5 (e) 8.6 (f) 9.3 

 

The diffraction of an incident shock Mach number 1.6 on a 200mm diameter wall is 

shown in Figure 4.14. The flow development within the perturbed region starts with an 

increase in boundary layer thickness from a point labelled H and extends upstream as 

shown in Figure 4.14a. This is followed by the formation of series of shocklets that 

impinges on the boundary layer as shown in Figure 4.14b. These shocklets coalesce into a 

shock wave at later times. The boundary layer in this case is assumed to be laminar since 

separation occurs shortly with further increase in boundary layer thickness upstream. The 

thickness of the subsonic flow region within the boundary layer increases and the 

velocity of the flow decreases in order to satisfy no-slip condition at the wall. The earlier 

work by Craig et al. [14] and Delery [16] on shock/boundary layer interaction shows that 

when a shock impinges on the boundary layer the Mach number decreases as it 

approaches the wall and disappears when reaching the sonic line. Information about the 

pressure rise within the subsonic region caused by the shock is sent upstream. This 

pressure increase upstream of the point where the shock impinges on the boundary layer 

causes the boundary layer to thicken. 
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The laminar boundary layer that forms is susceptible to separation due to its thickness. 

The combined effects of the impingement of the shock on boundary layer with the strong 

adverse pressure gradient cause the flow to separate from the wall as shown in Figure 

4.14b&c.  The unsteady fluctuation that engulfs the complex flow region is due to local 

change in flow Reynolds number around the region. It has been observed by Craig [15] 

that the impingement of a shock on a boundary layer can have an effect on transition. If 

the local Reynolds number around the region is very low, the boundary layer will remain 

laminar before and after the emanation of the reflected shock from the boundary layer. 

However, at a high Reynolds number the flow will be laminar before both separation and 

emanation of the reflected shock from the boundary layer, but reattach as a turbulent 

flow. Unsteady fluctuations may evolve upstream which may result in transition to 

turbulence since the subsonic portion of the laminar boundary layer is thicker.  

 

Craig et al. [14] identified the cause of the disturbances at the downstream end of a 

nozzle and attributed it to separation cause by shock/boundary layer interaction. Some 

disturbances are found to propagate upstream about 100 boundary layer thicknesses. This 

important observation shows that a turbulent boundary layer which is unsteady can be 

generated. Figure 4.14d confirms these earlier observations. 

 

 The shear layer and an oblique shock emanate from the separation point and extend 

downstream with further diffraction of the shock. The formation of the shocklets 

indicates transonic flow which is due to the expansion fan within the region. Further 

increase in adverse pressure gradient motivates flow separation as shown in Figure 4.14c. 

A second shock (SS) is formed from the coalescing of the shocklets above the shear 

layer. The perturbed region behind the diffracting shock wave becomes complex due to 

the combination of the shear layer, oblique shock and second shock. The second shock 

changes to an upward facing shock with increase in strength as the complex flow regime 

moves away from the wall as illustrated in Figure 4.14d. A vortex is formed at the lower 

portion of the shear layer and this is pushed downstream by the extension of the shear 

layer. 
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Figure 4.14: The flow features at Ms1.60 on 200mm diameter wall. 

Time scale: (a) 0.52 (b) 0.62 (c) 0.76 (d) 0.96 

 

The flow develops strong turbulent patches which extend up to point TF upstream and 

engulfs the entire complex flow region. A small portion of the second and oblique shock 

is not covered by the turbulent patches as shown in Figure 4.14d. This turbulent flow is a 

new flow feature that has not been observed before and is presumed to be 3-dimensional 

effect on the glass window of the test section. Two turbulent patches are identified; at 

region around the shear layer and at region downstream of the vortex. The turbulent 

patches near the wall extend downstream with time as shown in Figure 4.14c&d.  
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The vortex is formed at the lower extremity of the shear layer. The shape of this vortex 

has been affected and could not be distinctly identified due to the strong turbulent flow 

around the shear layer. It is important to note that the behaviour of this turbulent flow is 

different for Mach 1.5 incident shock. The turbulent patches extend downstream but are 

bounded by the shear layer upstream, and the complex flow region is not covered by the 

turbulent flow as observed at Mach 1.6. The observation of turbulent flow indicates the 

significant effects of the Reynolds number on the flow features behind the diffracting 

shock wave. Law et al. [33] investigated the effect of Reynolds number in high order 

accurate calculations with shock diffraction. A particular case of a 30  corner wall using 

the same mesh with different Reynolds number was investigated. The images obtained 

from the computation shows no significant change in the results between the Reynolds 

number 100000 and 200000. At Reynolds number 400000, degradation in flow feature 

resolution was observed. This degradation was due to the mesh being too coarse in that 

region. The code could not run at a high enough Reynolds number to capture the 

turbulence. 

  

 Figure 4.14d shows the beginning of interaction between the complex flow structure and 

the incoming reflected shock RC from the roof of the test section of the shock tube. This 

interaction is the limiting factor that determines both the maximum temporal and the 

spatial scale of the present experiment. A very important observation in the images for 

incident shock Mach number of 1.5 and 1.6 is that the upstream movement of the 

separation point is clearly identified at Ms = 1.5. However, at incident shock Mach 

number of 1.6 the movement of the separation point is small and it moves downstream as 

will be explained later using numerical data. 

  

Figure 4.15 compares the experimental images with images obtained from numerical 

computations. The Mach number of the incident shock is 1.6 and the convex wall 

considered is 200mm diameter wall. The turbulence model replicates the experimental 

picture better than laminar solution, however the upstream turbulent flow is not well 

predicted.  The turbulent patches that form along the wall downstream of the vortex is 

well replicated in the numerical images of SST k-  turbulence model.  
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The three–shock configuration is observed in all the images however, the laminar Navier-

Stokes shows multiple shock configurations above the shear layer with some instability 

under the shear layer. This observation confirms the earlier observation by Law et al. [32] 

which attributes the discrepancy between the Navier-Stokes solution and the 

experimental images to the instability in the finite volume method used by the numerical 

package. The SST-k-  turbulence model shows a secondary vortex but this is not distinct 

in the experimental picture due to strong turbulent flow that engulfs the shear layer.  

 

 

Figure 4.15: Comparison of the flow features behind an incident shock Ms 1.6 on 

200mm diameter wall
 

 (a) Experimental picture (b) SST k-  turbulence model (c) Laminar Navier-Stokes 

 

Figure 4.16 is the pressure flood plot for flow features at an incident shock Mach number 

of 1.6 on a 200mm diameter arc. The main vortex is shown at the lower end of the shear 

layer; the region under the shear layer is more influenced by the viscous effects due to its 

closeness to the wall. As the main vortex is moves downstream the secondary vortex is 

rotating in the opposite direction close to the wall. The formation of this vortex has been 

observed to be different from the way the main vortex is formed and is dependent on the 

strength of the incident shock wave. Other flow features such as a recompression shock, 

secondary shock and second shock have been explained comprehensively by earlier 

researchers (Kleine et al. [26] & Skews [58-60]).  
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The recompression shock matches the subsonic flow around the separation point with the 

flow under the main vortex.  Secondary shock brings the flow around the main vortex to 

the same flow condition with the near wall flows.  At low Mach number the near wall 

effect is sustained for long time. This is because the complex flow structure remains close 

to the wall. For high Mach number incident shocks the complex flow structure moves 

away quickly from the wall during the diffraction process.  

 

 

 

Figure 4.16: The pressure flood plot showing the secondary and 

main vortex (SST K-  turbulence model at Ms 1.6) 

 

Figure 4.17 shows the pressure contour for the transient development of a three–shock 

configuration, a recompression shock and a secondary shock. This observation was made 

behind the diffraction of an incident shock of Mach number 1.5 on a 400mm diameter 

wall. It is important to note that this result is obtained at later times after the shock has 

finished traversing the curvature. There is no separation at the instant of the shock 

diffracting on the curved wall. The diffraction process changes the orientation, the 

strength and shape of the incident shock. This process enhances the compression of the 
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gas behind the diffracted portion of the shock. The compression process is not uniform 

and this caused the propagation of different flow regimes behind the shock. The upstream 

gas expands while the gas particles close to the diffracted portion of the shock develop 

high pressure. A weak shock wave is propagated between the compressed and the 

expanding flow. This weak shock becomes a strong normal shock wave due to further 

diffraction of the shock downstream.  

 

The shock is perturbed by a strong adverse pressure gradient near the wall and the flow 

separates from the wall as shown in Figure 4.17c. Earlier work by Delery [16] on shock 

wave/boundary layer interaction shows that a strong oblique shock that impinges on a 

boundary layer will cause boundary layer separation. Separation that occurs as shown in 

Figure 4.17b can be attributed to combining effects of an adverse pressure gradient and 

impingement of a strong shock wave on a boundary layer. 

 

After the commencement of separation, the weak shock waves that propagate within the 

complex flow region at later times are identified as follows:  an oblique shock wave that 

bring the expanded flow parallel to the shear layer, a second shock that matches the flow 

above the shear layer with the free stream flow far from the wall and a secondary shock 

on the surface of the main vortex. A recompression shock forms under the shear layer and 

matches the subsonic flow around the separation point with the flow under the vortex. 

The second shock is formed as a result of supersonic flow along the shear layer as earlier 

observed by Skews [59]. This shock has its foot on the vortex and forms a three shock 

configuration with the oblique shock as shown in Figure 4.17d.  
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Figure 4.17: Transient development of a three-shock configuration at incidence 

shock Mach number 1.5 on a 400mm diameter wall 

Dimensionless Time Scale τ: (a) 0.1 (b) 0.4 (c) 0.7 (d) 1.0 
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Figure 4.17 continued 
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Figure 4.17 continued 
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4.5 Pressure Trace from Experimental and Numerical Analysis 

 

The pressure traces are recorded by the oscilloscope and display by a hard disc data 

logger GL1000 Graphtec using hard disc data logger software version 1.0. The pressure 

traces for incident shocks MS (1.33, 1.57, 1.51 and 1.40) as recorded by the machine 

before processing are shown in Figure 4.18. The colour blue, red, green and yellow 

represent the pressure traces for transducers at ports P1, P2, P3 and P4 respectively. The 

trigger is set at the first channel (CH1) which corresponds to port P1.  The sampling 

interval is 1µs, the abscissa is the time in seconds while the ordinate is the pressure which 

is recorded in volts. The voltage range for the graphs is between -0.5000 and +0.5000 

over a time range of -0.8ms to 3.2ms, the system recorded voltage at 4000 data points.  

 

 

Figure 4.18: The pressure traces for incident shock Ms 1.33, 1.57, 1.51 and 1.40 over 

200mm diameter wall. 
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The output voltage from the four ports is converted to pressure using equation (37) and 

the data are generated and plotted as shown Figure 4.19 - 4.21.  

 

 0

1000
P

k

V
P i

i                                                                                                 (37) 

 where:                   
iP  is the absolute static pressure recorded at port Pi [kPa] 

iV    is the voltage recorded by the transducer at Pi 

  k  is the calibration constant of the transducer which is unique 

for each transducer [mV/kPa] 

The static pressure is obtained by adding the ambient pressure P1 to the gauge pressure.  

The present investigation is primarily interested in qualitative data, focussing on the 

trends rather than the actual values. The precise calibration of the transducers was thus 

not considered a priority. 

 

Figure 4.19 shows the pressure history for the diffraction of an incident shock at Mach 

1.57 over the 200mm diameter wall. The main pulse lasts for approximately 2 s, 5µs, 

10µs and 20µs at ports P1, P2, P3 and P4 respectively. The shock travels about 1.07mm, 

2.6mm, 5.37mm and 10.7mm respectively within these times. The shock traverses the 

face of the first transducer in about 10 s and the pressure history reveals rapid decay of 

the incident shock at the wall along the curvature. This is similar to the earlier 

observation by Skews [59] who noticed decreasing peak pressures on successive 

transducers.  

 

 The transducers recorded the maximum pressure of about 166kPa, 136kPa, 132kPa and 

126kPa at ports P1, P2, P3 and P4 respectively. There is a small jump in pressure trace 

along the first and the second transducers (S) and this can be attributed to propagation of 

shocklets around this region. It is important to note that the trigger for the experimental 

pressure history is at CH1; hence this channel is used as the reference point for the 

analysis. For the numerical analysis Port P1 is used as the reference point. 
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In Figure 4.19 the time range of about 4500µs shows long time history of the flow 

especially flow instability that could not be obtained in the conventional shock tube. The 

fluctuation along the pressure trace is used to identify the beginning of instability along 

the wall. The instability is first noticed at A on the transducer located at port P2, and 

extends to port P3 (labelled B) after about 200µs. It spreads upstream and reaches port P1 

after about 800µs (label C). Ports P1 and P3 are at the same distance from P2, this implies 

that there is a significant difference between the rates at which the turbulent patches 

spread upstream compared to downstream.  It is observed from the plot that the turbulent 

length scale around region P2 and P3 is higher compared to the upstream port P1 and 

downstream port P4. This shows that the turbulent flow does not evolve from the 

upstream or downstream of P2 but at a region around it. 

 

Direct comparison of both experimental and numerical pressure history with the transient 

development of pressure profile give the information about separation as shown in Figure 

4.20. The analysis involves an incident shock Ms = 1.56 over a 200mm diameter wall. 

The separation point reaches port P4 about 900µs after the shock leaves port P1 as shown 

in Figure 4.20b. The separation point is labelled SP in both experimental and numerical 

pressure histories. There is about 5% variation in pressure at the point of separation in the 

numerical result compared to the experiment.   
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Figure 4.19: Pressure history for incident shock Ms 1.57 on 200mm diameter wall 
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Figure 4.20: Experimental and numerical pressure history for incident shock Ms 

1.56 on 200mm diameter wall 

(A) Experimental result (B) Numerical result 

B 
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Further analysis using incident shock Mach numbers 1.52 and 1.50 is shown in Figure 

4.2. The separation point is not distinct within the time range of the analysis in plot A, 

however channel CH4 shows traces of separation at about 1380 s. Instability commences 

on the second and third transducers, however, further propagation of this instability is not 

captured because of the time scale of the graph. 

 

 

 

Figure 4.21: Experimental pressure history at incident shock Ms (1.50 & 1.52) on 

200mm diameter wall 

(A) Ms 1.50 (B) Ms 1.52 
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The summary of relevant data acquired from the pressure traces is presented in Table 4.1. 

The initial pressure in the driver section (IDP) is in the first column followed by the 

corresponding incident shock Mach number (Ms). Ms is calculated from the time taken by 

the planar shock to cover the distance between two transducers located at the inlet into 

the test section. The approximate Mach number of the wall shock is determined using the 

theoretical relationship between shock Mach number and the pressure ratio across the 

shock. This relationship is shown in equation (38). 
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where γ is the ratio of heat constants which is 1.4 for the present analysis, P2 is the 

pressure behind the shock and P1 is the pressure downstream of the shock. Rs is the port 

at which separation is first observed and Tf is the port that shows early development of 

instability. 

 

           Table 4.1: Data obtain from Pressure traces 

IDP 

(kPa) 

 

Ms MsP1  MsP2 MsP3 MsP4 Rs Tf 

520 1.58 1.39 1.25 1.23 1.21 P3 &P4 P2-P4 &P1 

510 1.57 1.36 1.24 1.23 1.20 P3 &P4 P2-P4 &P1 

500 1.56 1.36 1.22 1.22 1.20 P3 &P4 P2-P4 &P1  

450 1.52 1.34 1.22 1.21 1.18 P4 P2 &P3  

400 1.51 1.26 1.22 1.19 1.16 - P2 &P3 

390 1.5 1.26 1.18 1.17 1.16 - - 

380 1.49 1.27 1.19 1.17 1.16 - - 

280 1.44 1.26 1.17 1.16 1.13 - - 

240 1.35 1.23 1.14 1.14 1.12 - - 

 

 

Figure 4.22 shows the behaviour of the wall shock for different incident shock Mach 

numbers. The pressure across the shock at each location is obtained from the pressure 
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history and the ambient pressure used is about 83.3kPa. Experimental measurement of the 

time spent between two consecutive ports is nearly the same. This shows that there is no 

significant difference in the speed of the shock across the transducer ports. The sharp 

difference in the strength of the wall shocks between port P1 and other ports shows that 

the wall shock decays more rapidly within the first quadrant of the curved wall. The 

decay of the wall shock is evident also at other transducer locations as shown in the 

pressure history plots in Figures 4.19 – 4.21. A very important revelation in Figure 4.22 

is that there is a significant difference in the decay of the wall shock between the first 

quadrant (CH 1) and downstream of the first quadrant (CH 2-4). 

 

 

Figure 4.22: Behaviour of wall shock with change in incident shock Mach number 

 

The above analysis is based on the assumption that a certain portion of the shock is 

perpendicular to the wall. This implies that the original incident shock is divided into 

three parts: the non-diffracted part, the diffracted part and the wall shock which is the 

portion of the shock that touched the wall.  
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5.0 HIGH MACH NUMBERS INCIDENT SHOCK WAVE 

 

5.1 Introduction 

 

Previous chapters shown that numerical methods applied are adequate for predicting the 

flow behaviour behind the diffracting shock wave. This chapter analyses the data 

obtained from simulations of the flow behind an incident shock with Mach numbers 

ranging between 2.0 and 3.0. The analysis involves only the numerical results as 

experiments could not be conducted at these Mach numbers in the current shock tube 

facility. Figures 5.1 shows a numerical result for the diffraction of an incident shock Ms = 

3.0 on a 200mm diameter wall and two corner walls (30  and 90 ). The important flow 

features behind the diffracting shock are shown as SH-Shear layer, OS-Oblique shock, 

SP-Separation point, CS-Contact surface, T-Triple point, SS-Secondary shear layer and 

DS-Diffracted shock.  

 

The diffraction of an incident shock at Mach 3.0 on a 200mm diameter wall is shown in 

Figure 5.1A. The result gives a good replication of the earlier experimental result 

obtained by Skews [58] in a conventional shock tube of dimensions 51mm x 76mm. The 

complex flow structure behind the diffracting shock starts with an increase in boundary 

layer thickness as the diffraction process starts at the convex bend. Separation occurs 

when the adverse pressure gradient is strong enough to overcome the viscous force along 

the wall. A shear layer evolves from the wall at the separation point labelled SP in Figure 

5.1A.  The angle between the shear layer and the horizontal increases gradually as the 

diffraction process continues downstream.  

 

The separation point is not fixed but moves along the wall with further development of 

the flow. The terminator that bounds the expansion fan changes to an oblique shock 

which motivates the formation of another shock described previously as a second shock 

by Skews [59]. It has been shown that the separation is delayed slightly by an increase in 

incident shock Mach number.   
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Figure 5.1: Flow features behind Ms 3.0 incident shock on convex walls (SST k-  

turbulence model) (A) 200mm diameter wall (B) 30  (C) 90  
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Figure 5.2 shows the behaviour of the separation point with time at different incident 

shock Mach numbers. There is a significant difference in the movement of separation 

point for high Mach number incident shocks compared to low Mach numbers. Separation 

starts very late at low incident shock Mach numbers and the separation angle varies 

slightly with time especially for the case of Ms = 1.6. The comparison of Ms = 1.5 and Ms 

= 1.6 revealed that the separation angle at Ms = 1.5 decreases with time as shown in 

Figure 5.2 while it increases with time for Ms ≥1.6. There is a transition Mach number 

between Ms = 1.5 and Ms =1.6 at which the separation point does not move with time. 

 

The angle of separation increases with time for high incident shock Mach numbers unlike 

low Mach numbers. There is similarity in the behaviour of the separation point at higher 

Mach numbers with a slight increase in velocity once the separation point is established. 

This observation may be due to increase in the velocity of the induced flow at higher 

incident shock Mach numbers. 

 

 

Figure 5.2: The change in separation angle with time on 

400mm diameter wall 
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The behaviour of the separation point with circular walls of different radii is shown in 

Figure 5.3. The separation angle increases with time for all the curvatures but there is a 

significant difference in separation angle for small diameter walls compared to larger 

diameter walls. The behaviour of the separation point tends to become independent of 

curvature as the radius increases. This implies that the movement of the separation point 

will be independent of wall radius for an incident shock with high Mach number 

diffracting on a large diameter wall. This is evident by the collapse of the separation lines 

on 300, 400 and 500mm diameter walls as shown in Figure 5.3.  

 

 

Figure 5.3: Effect of wall curvature on the movement of separation point at 

incident shock Mach number 3.0 

 

The effect of the incident shock Mach number on the shear angle is shown in Figure 5.4. 

The shear angle increases with time but there is a significant difference in the behaviour 

at low Mach number compared to high Mach number incident shocks as illustrated by the 

Ms = 1.6 line in Figure 5.4. For high Mach number incident shocks the flow behind the 

shock is supersonic while the flow is subsonic at lower Mach numbers. The shear angle 
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increases substantially due to the increase in velocity of the flow as it separates from the 

wall surface. The angle approaches a constant value with time as the incident shock 

becomes stronger and this is expected since the maximum angle of deflection of the shear 

layer must be less than 90 .  

 

Figure 5.5 shows the effect of curvature on the deflection of the shear layer from the wall 

at incident shock Ms = 3.0. The shear angle increases with time but is independent of 

curvature when the radius of curvature is above 200mm. At small radius the shear angle 

depends on radius of curvature and increases with time. 

 

 

 

Figure 5.4: Effect of incident shock Mach number on the shear layer for the 

400mm diameter wall 
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Figure 5.5: Effect of curvature on the shear layer for incident shock Ms = 3.0 

 

A very important new observation at higher incident shock Mach number is the 

development of three shock configurations within the complex flow regime. The shock 

configuration is formed from the combination of the oblique shock with the two parts of 

the second shock labelled TP in Figure 5.1A. A secondary shear layer emanates from the 

junction of the three shock configuration and extends smoothly towards the wall and is 

pulled around the vortex as shown in Figure 5.1A. This secondary shear layer is a line of 

finite discontinuity of velocity and temperature and forms as a result of entropy 

inequality between the flows at the either side. The lower part of the second shock 

brought the flow exiting the region above the main shear layer parallel to the secondary 

shear layer.  

 

These flow features are also evident in the numerical Euler and Navier - Stokes (with 

laminar boundary conditions) results as shown in Figure 5.6. This implies that the 

formation of these flow features is independent of viscosity and is pressure driven. 

However, the behaviour of the secondary shear layer is slightly different depending on 
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the solution. Euler result shows instability along the main and secondary shear layer (FI), 

and the Navier-Stokes (with laminar boundary conditions) result is characterised by a 

slight attenuation especially around the three shock configuration (FA). The kink that 

forms at the lower part of the contact surface is more pronounced in the Navier-Stokes 

(with laminar boundary conditions) model labelled CS in Figure 5.6C. 

 

 

Figure 5.6: The flow structure behind an incident shock Ms= 2.0 on a 200mm   

diameter wall (A) SST k-ω turb. model (B) Euler result (C) Navier-Stokes (Laminar 

boundary conditions) 

 

Figure 5.8 shows the transient development of two three-shock configurations at an 

incident shock Mach number of 2.0. The formation of this shock configuration follows 

the same pattern as at low incident shock Mach numbers except that two configurations 

are observed at higher Mach number. The upper configuration T2 forms as a result of 

property gradients that arise among three different flow regimes. The flow regimes are 

free stream flow, locally supersonic flow that could not cross the oblique shock, and the 

flow crossing the upper part of the second shock as illustrated in Figure 5.7. The 

formation of the upper configuration precedes the lower configuration and it forms before 

the flow separates from the wall. The lower configuration forms from the lower portion 

of the second shock. The occurrence of these two three-shock configurations confirm the 

significant difference in the flow features behind the diffracting shock at low and high 

Mach number. 
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Figure 5.7: Three-shock configurations at incident shock Ms 2.0 on a 200mm 

diameter wall 

Non-dimensional time τ: (a) 0.1 (b) 0.3 (c) 0.6 (d) 0.8 

 

At higher Mach numbers the upper three-shock configuration fades away as the complex 

flow region moves away from the wall. The lower triple point becomes stronger and the 
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secondary shear layer becomes weak due to a reduction in the effect of the near wall on 

the flow. 

 

The pattern of the propagation of the recompression shock under the main shear layer is 

different for low and high Mach number incident shocks. At lower Mach numbers the 

flow remains subsonic behind the diffracting shock and the pressure difference between 

the separating and the reattaching flow may not be high enough to generate a strong 

recompression shock. However, for higher Mach numbers there are significant pressure 

gradients that lead to the formation of a recompression shock as shown in Figure 5.8.  

 

At higher Mach numbers the recompression shock appears earlier than at lower Mach 

numbers but the strength decreases as the flow develops further and it fades away at later 

times as shown in Figure 5.8d. The disappearance of this shock signifies decrease in the 

near wall effect on the flow under the shear layer as the complex flow region moves away 

from the wall surface. The effect of the proximity of the vortex on the recompression 

shock is reduced. The pressure gradient between the upstream separating flow and the 

downstream reattaching flow is not significant enough after long times of the diffraction 

process. Hence the final disappearance of the recompression shock.   
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Figure 5.8: Transient development of recompression shock at incident shock 

 Ms 3.0 on 400mm diameter wall. 

          Density contour at time T after the start of diffraction: (a) T = 785 s (b) T = 

1079 s (c) T = 1344 s (d) T = 1485 s 
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Figure 5.8 Continued  
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6.0 DISCUSSION OF RESULTS 

 

6.1 Introduction 

 

Earlier experimental analysis on shock wave diffraction revealed various flow features 

within the perturbed region behind a diffracted shock wave. However, the scale of the 

experiments did not allow for detailed analysis, hence the global flow behaviour could 

not be comprehensively explained. There are many flow features that appear in the 

present large scale experimental investigation which could not be seen clearly in the 

earlier works [58-60 & 32]. Notable among these features are:  

 Flow instability along the shear layer followed by breaking up of the shear layer 

into vortices as illustrated in Figures 4.4 and 4.5. 

 Formation of a series of lambda shocks above the shear layer with a region of 

turbulent flow underneath as shown in Figures 4.9 

 Development of homogenous turbulent flow downstream of the 30  corner wall at 

later times as shown in Figure 4.10 

 Confirmation of turbulent shear layer break-up on the 30  corner wall as 

illustrated in Figure 4.11. 

 Confirmation of the significant difference in flow features between low and high 

Mach number incident shocks on curved walls (Figure 5.3&5.5) 

 Discovery of the independence of the flow feature from the radius of curvature at 

high incident shock Mach numbers (Figures 5.4&5.6) 

 Development of strong turbulent flow that engulfed the complex flow region on 

curved wall as shown in Figure 4.14. 

 Observation of various flow features at low Mach numbers especially those that 

were observed at higher Mach numbers in conventional shock tubes. 

 

The breaking up of the shear layer into vortices was described by Sun and Takayama [62] 

as follows: “The rolling up of small vortices along a vortex sheet, which was reported in 

solving Euler’s equation but never been observed in shock tube experiments, appears also 
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in the solution of the 2-D Navier – Stokes equations, but may be suppressed by using a 

turbulence model. The numerical mechanism of the rolling-up in numerical simulation is 

still a controversial issue”. The rolling up of small vortices along a vortex sheet has now 

been observed in several large scale experiments (see Figure 4.4). The scale of the 

present analysis is about ten times the scale of previous tests. 

 

The flow development observed in the experiments follows a pattern similar to the 

numerical images except that the instability along the shear layer started earlier in the 

numerical computations with little dissipation, such as illustrated in Figure 4.3h&i. The 

experimental images show how the instability develops and breaks up into vortices, it 

then rolls up into a spiral vortex at later times (Figure 4.4).The rate of formation of the 

vortices along the shear layer is very low with the vortex moving away from the corner. 

The displacement of the vortex from the wall and the change in size of the vortex are 

compared as shown in Figures 4.6 - 4.8. The numerical result using SST k-  turbulence 

model gives a good prediction of both displacement and change in size of the vortex with 

time.  

 

The present investigation reveals that neither of the numerical models could give the 

exactly the same results as experiments. The laminar solution shows the early 

development of the instability with the break-up of shear layer into vortices, and rolling 

up of the shear layer into a spiral vortex. However, the rate of formation of vortices is 

over predicted due to a lack of dissipation. Further investigation using SST k-  and k-ε 

turbulence models suppresses the vortices due to excess dissipation. The three models 

predicted the rest of the flow fields with adequate accuracy for the purpose of this study.  

 

Sun and Takayama [62] has earlier observed the good agreement between the results of k-

ε turbulence model and the results of the experiments conducted in the conventionally 

sized shock tube. However, the present results from large scale experiments show 

vortices that could not be captured in the previous tests. Comparison of the present results 

shows that there is good agreement between the images from experiment and the Navier-



 

 

103 

Stokes (with laminar boundary conditions) in terms of the formation of vortices. Other 

models could not capture these vortices; the analysis suggests that the numerical 

dissipation in numerical codes (turbulence models) tends to be too high away from the 

wall.  

 

The lambda shocks are formed along the shear layer indicating transonic flow around the 

corner as shown in Figure 4.4. A similar observation is made on a 30  corner wall, the 

lambda shocks are formed above the shear layer and spread downstream as shown in 

Figure 4.9. This implies that at the Mach number under consideration (1.5) the flow 

above the shear is transonic. There is strong flow instability under the shear layer which 

increases as the shear layer extends downstream. The flow develops further to turbulent 

flow as the shear layer breaks up into vortices. This turbulent behaviour shows the 

relevance of Reynolds number in the analysis of the flow features behind the diffracting 

shock on 30  corner wall.  Law et al. [34] obtained a good prediction of the lambda 

shocks that form above the shear layer by considering the effects of the Reynolds number 

in the analysis of the shock diffraction.  

 

Both experimental and numerical results for the diffraction of an incident shock at Mach 

1.5 on a 200mm diameter wall confirmed that the flow does not separate at the instant of 

the shock engaging the curved surface. However, there is an increase in the thickness of 

the boundary layer starting from a point along the surface and extending upstream as 

shown in Figure 4.13. The flow separates later as shown in Figure 4.12 and the separation 

point is moving upstream contrary to what is observed at higher incident shock Mach 

numbers. Further analysis at an incident shock Ms = 1.6 is illustrated in Figure 4.14. 

 

The separation of the flow is preceded by formation of shocklets at the region where the 

flow is locally transonic. Adverse pressure gradients develop downstream of this region 

due to the compression imposed by the diffracting shock as shown in Figure 6.1 (HPR is 

the high pressure region and LPR is the low pressure region, velocity rises at HVR while 

the flow at LVR moves at very low velocity). The shocklets impinge on the boundary 
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layer before later coalescing into a shock described as a second shock (Figure 4.14b). The 

flow separates from the wall when the adverse pressure gradient is strong enough to 

overcome the viscous force along the wall. A very important observation is the cause of 

separation of the flow at this low incident shock Mach number. Two factors are proposed 

base on the numerical and experimental images in Figure 4.14b and 6.1. The 

impingement of a weak shock wave on the boundary layer and the presence of an adverse 

pressure gradient at the wall. The weak shock wave becomes normal to the wall and is 

perturbed by the adverse pressure gradient as shown in Figure 4.17. The flow eventually 

separates from the wall with the normal shock becoming an oblique shock and a shear 

layer emanates from the separation point. The separation phenomenon in both circular 

wall and 30  corner wall cases are similar except that the vortex at the lower extremity of 

the shear layer is distinct for the curved wall. The expansion waves at the corner are 

centred for the corner walls with the lambda shocks spread over the shear layer. Unlike 

the 30  corner wall, for the curved wall the expansion waves are not centred at the start of 

curvature and the lambda shocks that form initially upstream of the separation point 

coalesce into a second shock.  

 

 

Figure 6.1: Separation behind an incident shock Ms 1.5 on a 200mm diameter wall 

(A) Density contour (B) Pressure flood (C) Velocity flood 

 

The observations at high Mach number do not show the lambda shocks, this is because 

the flow behind the diffracting shock is supersonic and the complex flow region moves 
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away from the wall faster than at low Mach numbers. Separation at high Mach number is 

driven purely by the strong adverse pressure gradient and most of the flow features could 

be identified even at small diffraction time.  

 

The result of the analyses shows that at high incident shock Mach numbers the radius of 

the curved wall does not significantly affect the separation point and the angle of the 

shear layer as shown in Figure 5.4&5.6. In contrast to this, at low incident shock Mach 

numbers, the movement of the separation point and the change in shear angle depend on 

the radius of curvature. The separation point varies inversely with time for Ms=1.5 as 

shown in Figure 5.2.  

 

The significant difference in the behaviour of the flow behind the diffracting shock at low 

Mach numbers is proposed to be the result of near wall effects as shown in Figure 6.2. At 

high Mach numbers the complex flow region is far from the wall compared to low Mach 

numbers.  The movement of the complex flow region from the wall reduces the near wall 

effects on the flow, hence the flow features that form as a result of viscous effects could 

not be observed. Among these features are the lambda shocks that form above the shear 

layer (Figure 6.2 B&C) and the bifurcated shock that interacts with the main vortex. 

Existence of lambda shocks confirms that the flow behind the diffracting shock at low 

Mach numbers is partly transonic.  

 

At low Mach number the SST k -  turbulence model shows a distinct main vortex with a 

secondary vortex that is formed due to viscous effects under the shear layer. The 

experimental pictures show a strong turbulent flow that starts from a point upstream of 

the separation point, and engulfs the complex flow region. The inability to capture the 

secondary vortex under the shear layer could be attributed to the turbulent flow that 

dominates the region. The turbulent flow around the shear layer is not well predicted in 

the SST k-  and k-ε turbulence models. This implies that both numerical models could 

not predict this flow feature accurately due to too much dissipation in free stream flow 

field. 
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Figure 6.2: Comparison of the flow features behind the low and high incident shock 

Mach numbers on different walls 

(A) Ms 1.6 on 200mm diameter wall (B) Ms 1.6 on 30  corner wall (C) Ms 1.6 on 90  

wall (D) Ms 3.0 on 200mm diameter wall (E) Ms 3.0 on 30  wall (F) Ms 3.0 on 90  

wall 

The numerical (SST k-  turbulence model) results shows the three - shock configuration 

and this can be more than one on a curved wall depending on the incident shock Mach 

number. These multiple shock configurations are due to the formation of different flow 

regions within the perturbed region behind the diffracting shock wave. The flow regions 

have different flow conditions enhanced by non-uniform compression of the gas behind 

the diffracting shock. However, at high incident shock Mach number the complex flow 

region moved away faster from the near wall effect which enhances the fading away of 

the upper triple point with time. 
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6.2 The Global Flow Behaviour behind the Diffracting Shock Wave 

 

The flow domain engendered by the diffraction of the planar shock wave over a 90  

convex corner is dependent only on the incident shock Mach number for a gas with a 

constant specific heat ratio ( =constant) as observed by Skews [58 - 60] and Kleine [26]. 

Three flow regimes have been identified behind the diffracting shock on a 90   convex 

wall (subsonic: 1 < M < 1.35, Transition: 1.35 < M < 2.07, and Supersonic: M > 2.07 

Klein [27]). The flow features in the perturbed region behind the diffracting shock is 

different for each flow regime. For subsonic flow, three important flow features observed 

are: a shear layer that evolves from the corner, the expansion wave bounded upstream by 

a sound wave and downstream by a terminator as well as the diffracted and undiffracted 

portion of the incident shock. 

 

6.2.1 Low Mach number incident shocks 

 

The diffraction of incident shock Mach numbers between 1.4 and 1.6 on plane and curved 

walls induces flow that is partly transonic and partly supersonic. The shear layer evolves 

from the corner/bend immediately after the start of diffraction with lambda shocks 

forming along the shear layer. This observation confirms the earlier work by Kleine [27] 

that the flow around the corner is transonic. For a 30  corner wall, a series of lambda 

shocks are formed above the shear layer due to the closeness of the shear layer to the wall 

surface. However, the lambda shocks that form on the 90  corner wall are limited to the 

region close to the corner as shown in Figure 6.3B. This shows that the flow retains its 

transonic nature over a wider region on the 30  wall than on the 90  corner.   

 

For curved walls the lambda shocks are formed at a region along the curvature where the 

flow is locally transonic as shown in Figure 6.3C. The expansion waves along the curved 

wall are not centered hence the flow velocity varies with further diffraction of the shock 

downstream. The lambda shock impinges on the boundary layer and the thickness of the 

boundary layer increases prior to separation of the flow from the wall. 
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Figure 6.3: Lambda shock propagation at incident shock Mach number 1.5 on 30
0
, 

90
0
 and 200mm diameter walls 

 

 The geometrical change of a curved wall is gradual and this promotes gradual 

development of the adverse pressure gradient especially at low incident shock Mach 

numbers. The flow upstream is at higher momentum due to expansion but the gas 

downstream is compressed by the diffracting shock wave. Shocklets are propagated as 

earlier explained and later coalesce into a weak shock that separates the expanded and 

compressed gas. The weak shock becomes strong and is perturbed by the adverse 

pressure gradient at the wall. This process of perturbation makes the flow to become 

stagnated and separates from the wall surface as shown in Figure 6.4. 

 

The perturbed shock transforms to an oblique shock and extends downstream. The flow 

domain is partitioned by the evolving oblique shock into a subsonic flow near the wall 

and expanding flow upstream. There is a sharp velocity gradient between the two flows 

hence a shear layer emanates from the wall at the separation point. The oblique shock 

brings the flow upstream parallel to the flow along the shear layer before the flow is 

finally matched with the subsonic flow at the wall. The region across the shear layer has a 

finite velocity discontinuity without any significant pressure gradient as shown in Figure 

6.4b&d.  
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Figure 6.4: The velocity (a & b) and Pressure (c & d) contour of a separating 

flow at Ms 1.5 on 200mm diameter wall 

 

Separation is evident on 30  plane walls even at a very low incident shock Mach numbers 

like 1.34. However, separation is not evident on the 200mm diameter wall for incident 

shock Mach number 1.5 at the instant of the shock engaging the curved wall. The early 

separation of flow on plane walls is due to a sudden change in boundary condition which 

enhances sudden development of adverse pressure gradients that triggered the separation 

of the flow. 

 

The long time scale diffraction of the incident shock over a 90  corner wall enhances 

extension and break-up of the shear layer into vortices. The earlier works on shock wave 

diffraction could not capture this stage of the flow development because of the scale at 

 
a b 

c d 
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which the experiments were conducted. The present analysis is conducted in a large scale 

experimental shock tube that is about ten times larger than the conventional shock tubes. 

 

Three stages of flow development are identified on plane walls: evolution of its shear 

layer which is smooth initially as it evolves from the corner, turbulent break-up of shear 

layer on 30
0 

 wall, and development of homogenous turbulent flow. The turbulent flow 

that is observed on 30  corner wall shows the significant effects of the Reynolds number 

on the flow. The experimental images for the diffraction of incident shock Ms = 1.6 over a 

curved wall also show strong turbulent flow which engulfs the complex flow region as 

shown in Figure 4.15a. However, the two-dimensional numerical analysis does not reveal 

this observation. It is proposed that this new observation may result from a boundary 

layer effect which is three-dimensional.  

 

 The development of a three – shock configuration within the perturbed region behind the 

diffracted shock wave for low incident shock indicates that there are three distinct flow 

regimes. These flow regimes are the free - stream flow which is not affected by the near 

wall effects, the expanding gas upstream and the compressed gas that is close to the 

diffracting shock wave. The flow conditions in these regions are matched by the three 

shocks that formed the so-called three-shock configuration.  

 

6.2.2 High Mach numbers incident shocks 

 

At high incident shock Mach numbers the flow behind the diffracting shock is supersonic 

with the compressibility effect not strongly felt by the flow upstream due to the speed at 

which the diffracting shock moves downstream. The complex flow region moves from 

the wall into the free stream flow and the expanded flow that is exiting the oblique shock 

(A-B in Figure 6.5) remains locally supersonic and is made parallel to the shear layer 

(SL). There is a significant portion of the expanded flow above the complex flow region 

that does not cross the oblique shock as shown in Figure 6.5. This flow region shown as 

A-D in the figure attains the same flow conditions with the downstream compressed flow 
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through a second shock (SS). The flow above the shear layer which is supersonic 

becomes matched with the compressed flow behind the contact surface through another 

second shock. The present requirement for two second shocks enhances the distortion of 

the original second shock at a point where it forms a three-shock configuration (TSC) 

with the oblique shock wave as illustrated in Figure 6.5. The profile of the second shock 

depends on the incident shock Mach number. The higher the Mach number the farther 

away the complex flow region is from the wall, the less the curvature of the second shock 

because the property gradients across this shock reduces. 

 

 

Figure 6.5: The velocity contour plot of the complex flow region for incident 

shock Ms 3.0 on 200mm diameter wall 

 

At some incident shock Mach numbers (Ms < 3.0), two three shock configurations are 

formed as earlier explained in section 4.2.2. The upper triple point fades away when the 

complex flow region is far enough from the wall. A secondary shear layer may emerge 

from this triple point especially if the incident shock Mach number is moderate and this 

will pull around the original shear layer that forms the main vortex as shown in Figure 

6.6. The flow exiting the lower portion of the second shock is at higher velocity (HSF) 

compared to the subsonic flow under the shear layer (LSF) as shown in Figure 6.6. A 

Region of subsonic flow 

 High speed flow 



 

 

112 

secondary shock is embedded in the main vortex to match this flow with the subsonic 

flow close to the wall surface. Under the shear layer two flow regimes are formed as 

shown in Figure 6.6.  There is a subsonic flow (LSF) around the separation point and the 

high speed flow (HS) around the main vortex; these two flows are matched by the 

recompression shock. This shock is evident in both low and high incident shock Mach 

numbers. It fades away with time at high incident shock Mach numbers, because the 

complex flow region is far enough from the wall surface.  

 

The contact surface in front of the complex flow region creates two regions of different 

densities, low density flow at the vicinity of the main vortex and compressed flow close 

to the diffracting shock wave. The contact surface with its upper part originated from the 

point of contact between the diffracted and the undiffracted incident shock. It extends 

towards the wall and develops a kink as it approaches the wall surface as shown in Figure 

6.7.                      

 

Figure 6.6: A secondary shear layer from three-shock configuration (Velocity 

contour plot) 

Secondary shear 

layers 

Secondary shock 

Recompression 

shock 

HSF 

LSF 

HS 
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The contact surface shows a more pronounced kink at higher incident shock Mach 

numbers; this can be attributed to sudden change in radial velocity as the flow passes the 

complex flow domain. The fluid particles gain some tangential momentum as it 

approaches the wall surface as described by equation (39). The second term of the 

equation tends to zero at the wall and the tangential momentum represented by the third 

term increases as the radius decreases. The fluid particles at the lower portion of the 

contact surface will gain more momentum thereby distorting the contact surface as shown 

in Figure 6.7. 
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Figure 6.7: Density contour plot showing a kink at the lower portion of the 

contact surface 
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7.0 CONCLUSION AND RECOMMENDATION 

 

7.1 Introduction 

 

The unsteady separation behind a diffracted shock wave over convex walls has been 

investigated with a view to give the detailed analysis of the global flow behaviour behind 

the diffracted shock wave.  Large scale experiments were carried out in a purpose built 

shock tube that allows for the diffraction of a shock over a maximum period of about 

1500µs. Images of the interaction behind the diffracting shock were captured by a 

schlieren optical system.  Three cases were considered for 30  corner wall (Ms = 1.34, 1.4 

and 1.5) while two cases were considered for 90 corner wall (Ms = 1.4 and 1.5). For the 

curved wall incident shock Mach numbers of 1.5 and 1.6 were considered. 

 

The pressure histories at different locations along the curved wall were recorded for 

incident shock Ms = 1.5, 1.56 and 1.57. A particular case of Ms = 1.56 was used for 

comparison with pressure history recorded from numerical simulation.  Important 

information obtained from the pressure histories are time and location of separation point, 

and location of flow instability under the shear layer. 

  

Numerical simulations were carried out using incident shock Mach numbers ranging 

between 1.34 to 3.0 over 200, 400, 600, 800 and 1000mm diameter walls, and 30  and 

90  corner walls. The images of interaction behind the diffracting shock were obtained 

using numerical schlieren, density and pressure contour/flood plot. Numerical data were 

obtained for the angle of separation and shear angle for various flow conditions over 

different walls. These data were plotted to examine the effect of wall geometry and 

influence of incident shock Mach numbers on the flow behaviour behind the diffracting 

shock wave. Direct comparison of the experimental pictures of the flow interaction with 

numerical images was used to validate the results.  This validation is used to justify 

further analysis using numerical computation for high incident shock Mach numbers.  
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7.2 Conclusion 

The comprehensive explanation of the global flow behaviour behind the diffracted shock 

wave was given based on the results of the tests of the low incident shocks complemented 

with numerical computation for high incident shocks. The following conclusions were 

deduced from the analysis: 

 

 There is a significant difference between the large and small scale experiments; 

hence, the scale of experiment (both temporal and spatial) plays a very important 

role in the analysis of shock wave diffraction on convex walls.   

 The instability along the shear layer and the breaking up of shear layer into 

vortices are evident in both experimental and numerical results.  

 The movement of separation point behind a diffracting shock wave is dependent 

on the strength of the incident shock and radius of curvature for low Mach 

number incident shocks. At high Mach number the behaviour of separation point 

is independent of the radius of curvature. 

 The number of three - shock configuration that forms on curved wall is dependent 

on the incident shock Mach number. However, the upper triple point disappears as 

the complex flow region moves far away from the wall surface. 

 The flow features within the complex flow region consists of many weak shocks 

such as: second shock, secondary shock, recompression shock and an oblique 

shock. However, the formation of both the secondary and recompression shock 

depends on the incident shock Mach number and is time dependent.  

 The sudden change in radial velocity of the flow passing the surface of the main 

vortex is proposed to be the main cause of the kink on the lower part of the 

contact surface. 

 The numerical dissipation in the SST k-  turbulence model used in this study is 

too high in the free stream flow field. 
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7.3 Recommendations 

 

 The present study has been able to test maximum incident shock Mach number of 

1.62 due to equipment constraints. Further work should be conducted to ascertain 

the flow behaviour at higher Mach numbers at the same scale of experiments. 

 The ability to capture the development of various flow features at smaller time 

increments would have enhanced a better understanding of the transient evolution 

of the separation phenomenon. Large scale experimentation using high speed flow 

visualization system should be conducted to capture the instantaneous behaviour 

and evolution of the flow. 

 Further work should be carried out on planar walls of different angles and curved 

walls like spheres with different radii. 

 The present investigation calls for further development of the existing turbulence 

models in the code used to capture the vortices that are formed from the breaking 

up of the shear layer, and to predict the upstream turbulent flow on curved walls. 

 Further work should be carried out on the threshold incident shock Mach number 

at which the movement of separation point is constant with time. 

 Further investigation should be conducted on the influence of Reynolds number 

on the flow features behind the diffracting shock on both planar and curved walls. 

 Three dimensional investigation of the diffraction of shock on curved wall should 

be conducted to ascertain the behaviour of the upstream turbulent patches. 
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APPENDICES 

 

APPENDIX A: Detailed drawing of the models 

 

 

 

 

 

 

PLATE A1: The assembly of 30
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wall 
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PLATE A2: The lower plate of 30
0 
wall 
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PLATE A3: The middle plate of 30
0 
wall 
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PLATE A4: The vertical middle plate of 30
0 
wall 
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PLATE A5: The horizontal middle support plate of 30
0 
wall 
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PLATE A6: The top support plate of 30
0 
wall 
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PLATE A7: The top arm plate of 30
0 
wall 
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PLATE A8: The blind for transducer holes on 30
0 

wall 
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PLATE A9: The transducer support for 30
0 
wall 
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PLATE A10: The 200mm diameter wall 
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PLATE A11: The assembly of 200mm diameter wall 
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PLATE A12: The lower plate for 200mm diameter wall 
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PLATE A13: The upper plate for 200mm diameter wall 
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PLATE A14: The assembling of 200mm diameter wall with universal support 
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APPENDIX B: Experimental data for all the models 

S/N Driver 

Pressure   

(KPa) 

Diaphragm 

Thickness (mm) 

Operating 

Pressure 

(KPa) 

Local 

Sound 

Speed 

(m/s) 

Trigger 

Delay (s) 

Shock 

Mach 

number 

(Mn) 

Type of 

Model 

Picture 

Number 

1 180 100 83.28 343.11 3000 1.350 C200 610 

2 170 100 83.28 343.11 3200 1.350 C2000 611 

3 280 125 83.28 343.11 3000 1.400 C200 631 

4 280 125 83.28 343.11 3000 1.43 C200 612 

5 360 125 83.28 343.11 2500 1.45 C200 613 

6 360 150 83.34 343.58 2300 1.51 C200 629 

7 400 150 82.6 344.16 700 1.537 C200 170 

8 360 150 83.28 343.11 1800 1.55 C200 605 

9 460 150 82.6 343.16 900 1.569 C200 175 

10 400 150 83.28 343.11 1400 1.58 C200 602 

11 480 150 82.6 343.52 900 1.586 C200 176 

12 500 175       82.6 344.52 900 1.608 C200 177 

13 500 175 83.28 343.11 2000 1.616 C200 616 

14 480 175 83.28 343.11 2000 1.617 C200 609 

15 340 150 82.80 342.82 750 1.50 C200 157 

16 340 150 82.80 342.82 750 1.50 C200 158 

17 340 150 82.80 342.82 750 1.50 C200 161 

18 340 150 82.80 342.82 700 1.50 C200 162 

19 340 150 82.80 345.45 700 1.49 C200 163 

20 340 150 82.80 345.45 800 1.49 C200 164 

21 340 150 82.80 345.45 900 1.49 C200 165 

22 340 150 82.80 345.45 1050 1.50 C200 166 

23 340 150 82.80 345.45 700 1.52 C200 167 

24 340 150 82.80 345.45 800 1.52 C200 168 
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25 160 100 82.77 344.87 800 1.28 P30 210 

         

27 400 150 82.6 344.16 800 1.54 C200 170 

28 400 150 82.6 344.16 950 1.54 C200 171 

29 400 150 82.6 344.16 1000 1.54 C200 172 

30 420 150 82.6 344.16 700 1.55 C200 173 

31 440 150 82.6 344.52 900 1.55 C200 174 

32 460 150 82.6 344.52 900 1.57 C200 175 

33 480 150 82.6 344.52 900 1.59 C200  - 

34 480 175 82.6 344.52 900 1.59 C200  - 

35 480 175 82.6 344.52 900 1.59 C200 176 

36 500 175 82.6 344.52 900 1.61 C200  - 

37 500 175 82.6 344.52 900 1.61 C200 177 

38 500 175 82.6 344.52 900 1.61 C200 182 

39 460 175 82.48 344.57 900 1.54 C200  - 

40 500 175 82.48 344.57 900 1.61 C200  - 

41 300 150 82.40 345.74 900 1.43 C200  - 

42 280 100 82.40 345.74 1000 1.45 P30 195 

43 270 100 82.50 344.98 1000 1.43 P30 196 

44 260 100 82.50 344.98 600 1.43 P30 197 

45 260 100 82.50 344.98 500 1.42 P30 199 

46 230 100 82.50 344.98 600 1.39 P30 200 

47 200 100 82.5 344.98 700 1.36 P30 201 

48 180 100 82.5 344.98 700 1.35 P30 202 

49 160 100 82.5 344.98 700 1.30 P30 203 

50 340 150 83.1 346.32 900 1.50 C200 300 

51 340 150 83.1 346.32 1500 1.50 C200 301 

52 150 100 82.77 344.87 700 1.31 P30 207 

53 160 100 82.77 344.87 800 1.28 P30 208 

54 160 100 82.77 344.87 600 1.266 P30 209 

55 180 100 82.83 344.98 700 1.36 P30 227 

56 350 150 82.83 346.00 450 1.45 P30 230 

57 180 100 82.83 345.74 600 1.25 P30 232 

58 200 100 82.83 345.74 900 1.34 P30 233 

59 200 100 82.83 345.74 700 1.34 P30 234 

60 180 100 82.95 344.28 700 1.30 P30 231 

61 180 100 82.95 344.28 550 1.32 P30 235 
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62 190 100 82.95 344.28 1090 1.30 P30 236 

63 190 100 82.95 344.28 900 1.38 P30 237 

64 190 100 82.95 344.28 1440 1.32 P30 238 

65 190 100 82.95 344.28 980 1.32 P30 239 

66 190 100 82.95 344.28 500 1.32 P30 240 

67 190 100 82.95 344.28 400 1.32 P30 241 

68 190 100 82.95 345.28 700 1.29 P30 242 

69 190 100 82.95 345.28 900 1.31 P30 243 

70 190 100 82.95 345.28 1188 1.31 P30 244 

71 190 100 82.95 345.28 1050 1.30 P30 245 

72 190 100 83.13 344.75 1200 1.32 P30 248 

73 190 100 83.13 344.75 1300 1.32 P30 249 

74 190 100 83.13 344.75 1100 1.32 P30 251 

75 190 100 83.13 344.98 950 1.32 P30 252 

76 190 100 83.13 344.98 900 1.32 P30 253 

77 190 100 83.13 344.98 920 1.32 P30 254 

78 340 150 83.13 345.45 750 1.51 P30 257 

79 360 150 83.13 345.45 1000 1.51 P30 258 

80 360 150 83.13 345.45 900 1.51 P30 259 

81 360 150 83.13 345.45 1100 1.51 P30 260 

 

S/N Driver 

Pressure   

(KPa) 

Diaphragm 

Thickness (mm) 

Operating 

Pressure 

(KPa) 

Local 

Sound 

Speed 

(m/s) 

Trigger 

Delay (s) 

Shock 

Mach 

number 

(Mn) 

Type of 

Model 

Picture 

Number 

82 360 150 83.13 344.75 1200 1.51 P30  - 

83 190 100 83.42 344.87 900 1.34 P30 266 

84 190 100 83.42 344.87 1080 1.34 P30 267 

85 190 100 83.42 344.87 1296 1.34 P30 268 

86 190 100 83.42 344.87 1400 1.34 P30 269 

87 190 100 83.42 344.87 2000 1.34 P30 270 

88 190 100 83.42 344.87 972 1.34 P30 271 

89 190 100 83.42 344.87 950 1.34 P30 272 

90 190 100 83.42 344.87 920 1.34 P30 273 

91 190 100 83.42 344.87 900 1.34 P30 274 

92 190 100 83.42 344.87 1000 1.34 P30 275 

93 190 100 83.42 344.87 900 1.34 P30 276 
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94 340 150 83.42 346.03 900 1.50 P30 277 

95 340 150 83.42 346.03 1100 1.50 P30 278 

96 340 150 83.42 346.03 1300 1.50 P30 279 

97 190 100 83.30 345.33 1500 1.34 P30 283 

98 340 150 83.30 345.33 1300 1.52 P30 284 

99 190 100 83.30 345.33 1300 1.33 P30 285 

100 190 100 83.30 345.33 1600 1.33 P30 286 

101 340 150 83.30 345.33 1300 1.51 P30 287 

102 340 150 83.30 345.33 1100 1.51 P30 288 

103 340 150 83.19 344.98 2000 1.51 P30 293 

104 340 150 83.19 344.98 2400 1.51 P30 295 

105 340 150 83.19 344.98 3000 1.51 P30 - 

106 340 150 83.19 344.98 2300 1.51 P30 - 

 

S/N Driver 

Pressure   

(KPa) 

Diaphragm 

Thickness (mm) 

Operating 

Pressure 

(KPa) 

Local 

Sound 

Speed 

(m/s) 

Trigger 

Delay (s) 

Shock 

Mach 

number 

(Mn) 

Type of 

Model 

Picture 

Number 

107 340 150 83.10 346.32 1000 1.44 C200 305 

108 340 150 83.10 346.32 1200 1.50 C200 306 

109 340 150 83.10 346.72 1400 1.50 C200 307 

110 340 150 83.10 346.72 1600 1.50 C200 308 

111 340 150 82.88 345.80 1500 1.50 C200 310 

112 340 150 82.88 345.80 500 1.50 C200 311 

113 340 150 82.88 345.80 800 1.50 C200 312 

114 340 150 82.88 345.80 650 1.50 C200 313 

115 340 150 82.80 342.82 750 1.50 C200 157 

116 340 150 82.8 342.82 750 1.50 C200 158 

117 340 150 82.80 342.82 750 1.50 C200 161 

118 340 150 82.80 342.82 700 1.50 C200 162 

119 340 150 82.80 345.45 700 1.49 C200 163 

120 340 150 82.80 345.45 800 1.49 C200 164 

121 340 150 82.80 345.45 900 1.49 C200 165 

122 345 150 82.80 345.45 1050 1.50 C200 166 

123 360 150 82.80 345.45 700 1.52 C200 167 

124 360 150 82.80 345.45 800 1.52 C200 168 

125 340 150 82.87 345.45 1300 1.50 C200 317 
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126 340 150 82.87 345.45 1300 1.50 C200 318 

127 340 150 82.87 345.45 300 1.50 C200 319 

128 340 150 82.87 345.45 400 1.50 C200 320 

129 340 150 82.87 345.45 800 1.50 C200 321 

130 340 150 82.87 345.45 1500 1.50 C200 322 

131 340 150 82.87 345.45 1600 1.50 C200 323 

 

S/N Driver 

Pressure   

(KPa) 

Diaphragm 

Thickness (mm) 

Operating 

Pressure 

(KPa) 

Local 

Sound 

Speed 

(m/s) 

Trigger 

Delay (s) 

Shock 

Mach 

number 

(Mn) 

Type of 

Model 

Picture 

Number 

132 340 150 82.87 345.45 1400 1.50 C200 324 

133 340 150 82.87 345.45 1300 1.50 C200 325 

134 340 150 82.87 345.45 1200 1.50 C200 326 

135 340 150 82.87 345.45 1100 1.50 C200 327 

136 340 150 82.87 345.45 1000 1.50 C200 328 

137 340 150 82.87 345.45 900 1.50 C200 329 

138 360 150 82.87 346.03 1200 1.51 C200 330 

139 290 100 83.30 345.45 1200 -   

140 360 150 83.30 345.45 1200 1.48 C400 367 

141 370 150 83.30 345.45 1400 1.51 C400 368 

142 370 150 83.30 345.45 1600 1.51 C400 369 

143 370 150 83.30 345.45 1800 1.51 C400 370 

144 480 175 83.30 345.45 1200 1.57 C400 372 

145 480 175 83.30 345.45 1400 1.61 C400 373 

146 480 175 83.30 345.45 1600 1.61 C400 374 

147 480 175 83.30 345.45 2000 1.61 C400 376 

148 480 175 83.30 345.45 1800 1.61 C400 377 

149 480 175 83.39 344.57 1450 1.58 C400 378 

150 480 175 83.39 344.57 1550 1.61 C400 379 

151 480 175 83.39 344.57 1750 1.61 C400 380 

152 340 150 83.58 344.87 1200 1.48 P30 383 

153 340 150 83.58 344.87 1400 1.48 P30 389 

154 340 150 83.58 344.87 1100 1.48 P30 390 

155 340 150 83.58 344.87 1000 1.48 P30 391 

156 360 150 83.00 345.33 1400 1.48 P30 396 
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S/N Driver 

Pressure   

(KPa) 

Diaphragm 

Thickness (mm) 

Operating 

Pressure 

(KPa) 

Local 

Sound 

Speed 

(m/s) 

Trigger 

Delay (s) 

Shock 

Mach 

number 

(Mn) 

Type of 

Model 

Picture 

Number 

157 480 175 82.8 345.33 900 1.645 C200 333 

158 480 175 82.8 345.33 1300 1.645 C200 334 

159 480 175 82.8 345.33 1500 1.645 C200 335 

160 480 175 82.8 345.33 1600 1.609 C200 336 

161 480 175 82.8 345.33 1800 1.609 C200 337 

162 480 175 82.8 345.33 2000 1.609 C200 338 

163 480 175 82.8 345.33 600 1.609 C200 339 

164 480 175 82.8 345.33 1000 1.609 C200 340 

165 480 175 82.8 345.33 2000 1.609 C200 341 

166 480 175 82.8 345.33 1500 1.609 C200 342 

167 280 100 83.42 345.33 1100 1.45 C200 345 

168 270 100 83.42 345.33 1700 1.39 C200 346 

169 280 100 83.42 345.33 2000 1.42 C200 347 

170 280 100 83.42 345.33 2200 1.42 C200 348 

171 280 100 83.42 345.33 2500 1.42 C200 349 

172 280 100 83.42 345.33 2700 1.42 C200 350 

173 280 100 83.42 345.33 1400 1.42 C200 351 

174 280 100 83.42 345.33 1550 1.42 C200 352 

175 360 150 83.00 345.33 1400 1.48 P30 396 

176 370 150 83.00 345.33 1400 150 P30 353- 

177 370 150 83.00 345.33 1200 1.51 P30 404 

178 380 150 83.00 345.33 1300 1.48 P30 405 

179 380 150 83.00 345.33 1000 1.48 P30 406 

180 380 150 83.00 345.33 1400 1.48 P30 407 

181 380 150 83.04 345.45 1300 1.51 P30 409 

 

S/N Driver 

Pressure   

(KPa) 

Diaphragm 

Thickness (mm) 

Operating 

Pressure 

(KPa) 

Local 

Sound 

Speed 

(m/s) 

Trigger 

Delay (s) 

Shock 

Mach 

number 

(Mn) 

Type of 

Model 

Picture 

Number 

182 380 150 82.76 345.74 1300 1.51 P90 448 

183 380 150 82.76 345.74 1100 1.51 P90 449 

184 380 150 82.76 345.74 900 1.51 P90 450 

185 380 150 82.76 345.74 1600 1.51 P90 451 
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186 280 100 82.76 345.74 1600 1.39 P90 452 

187 280 100 82.76 345.74 1300 1.39 P90 453 

188 280 100 82.76 345.74 900 1.39 P90 454 

189 160 100 82.76 345.74 1600 1.31 P90 455 

190 500 175 82.95 344.28 1000 1.58 P90 460 

191 500 175 82.95 344.28 1300 1.60 P90 461 

192 505 175 82.95 344.28 1200 161 P90 462 

193 505 175 82.95 344.28 1400 1.61 P90 463 

194 500 175 82.95 344.28 1300 1.61 P90 464 

195 380 150 83.22 344.28 1400 1.48 P90 467 

196 400 150 83.22 344.28 1300 1.51 P90 470 

197 400 150 83.22 344.28 1200 1.51 P90 479 

198 500 175 83.22 344.28 1300 1.60 P90 480 

199 500 175 83.22 344.28 1600 1.60 P90 481 

200 400 150 83.22 344.28 1300 1.51 P90 495 

201 400 150 83.22 344.28 1100 1.51 P90 496 

202 400 150 83.22 344.28 1500 1.51 P90 497 

203 400 150 83.22 344.28 1700 1.51 P90 498 

204 400 150 83.22 344.28 1000 1.51 P90 499 

205 400 150 83.22 344.28 1200 1.51 P90 500 

206 400 150 83.22 344.28 1400 1.51 P90 501 

 

S/N Driver 

Pressure   

(KPa) 

Diaphragm 

Thickness (mm) 

Operating 

Pressure 

(KPa) 

Local 

Sound 

Speed 

(m/s) 

Trigger 

Delay (s) 

Shock 

Mach 

number 

(Mn) 

Type of 

Model 

Picture 

Number 

207 400 150 83.44 344.63 1300 1.51 P90 505 

208 400 150 83.44 344.63 1200 1.51 P90 508 

209 400 150 83.44 344.63 1400 1.51 P90 531 

210 400 150 83.44 344.63 1100 1.51 P90 532 

211 400 150 83.44 344.63 1000 1.51 P90 533 

212 400 150 83.44 344.63 1200 1.51 P90 534 

213 400 150 83.44 344.63 1300 1.51 P90 535 

214 400 150 83.44 344.63 1500 1.51 P90 536 

215 400 150 83.44 344.63 1600 1.51 P90 537 

216 400 150 83.44 344.63 1700 1.51 P90 538 

217 400 150 83.44 344.63 1800 1.51 P90 539 
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218 400 150 83.42 344.52 1800 1.51 P90 545 

219 400 150 83.42 344.52 1900 1.51 P90 547 

220 200 150 83.42 344.52 1000 1.42 P90 550 

221 280 150 83.42 344.52 1700 1.42 P90 551 

222 260 125 83.42 344.74 1400 1.40 P90 552 

223 240 100 83.42 344.74 1400 1.40 P90 553 

224 200 100 83.42 344.74 1400 1.34 P90 554 

225 220 100 83.42 344.74 1800 1.34 P90 555 

226 170 100 83.42 344.74 1400 1.27 P90 556 

227 150 100 83.42 344.74 3000 1.27 P90 557 

228 140 100 83.42 344.86 3200 1.21 P90 559 

229 260 150 83.42 344.86 2200 1.37 P90 564 

230 100 75 83.42 344.86 3600 1.19 P90 560 

231 280 150 83.42 344.86 3600 1.37 P90 568 

232 280 150 83.42 344.86 3400 1.36 P90 570 

233 290 150 83.42 344.86 2800 1.40 P90 572 
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APPENDIX C: Experimental pictures for 30Degree Model 
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APPENDIX D: Experimental pictures for 90 corner wall 
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APPENDIX E: Experimental pictures for 200mm Diameter wall 
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Experimental pictures for 400mm diameter wall 
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APPENDIX F: PRESSURE TRACE 
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Ms =  1.35 


