
ON THE FIRST TWO EIGENVALUES OF
STURM-LIOUVILLE OPERATORS

JOHANNES NAMO MASEHLA

Abstract. Among the Schrödinger operators with single-well po-
tential defined on (0, π) with transition point at π

2 , the gap between
the first two eigenvalues of the Dirichlet problem is being investi-
gated. We also show how this extends former results with sym-
metric potential. Finally we will consider an analogous Dirichlet
problem of vibrating strings with single-barrier densities for the
ratio of the first two eigenvalues.

1. Introduction

General bounds on the gaps and ratios between eigenvalues of Sturm-
Liouville operators have been the object of considerable attention.
The gap between the first two eigenvalues is of particular interest be-
cause it represents the first excitation energy. The research was initi-
ated by Singer, Wong, Yau, and Yau in [14] for the multidimensional
Schrödiger operator. Their work was followed by improvements for the
one-dimensional case with Dirichlet boundary conditions.

In this research report, we analyze the paper written by Micklós
Hórvarth in [7]. We consider the Dirichlet problem for Schrödinger
operators:

(1.1) −y′′ + V (x)y = λy

V ∈ L1(0, π) and real-valued acting on (0, π),

(1.2) y(0) = y(π) = 0.

Ashbaugh and Benguria in [2] proved that if V is a symmetric single-
well potential, then (see [7]) the first two eigenvalues of the Dirichlet
problem satisfy:

(1.3) λ2 − λ1 ≥ 3

with equality if and only if V is constant. Hórvarth then demonstrated
a natural way to remove symmetry. The main result is that (1.3) still
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holds for non-symmetric single-well potential if transition point remains
the midpoint.

We next consider another Dirichlet problem for vibrating strings:

(1.4) −u′′ = λ%(x)u

in (0, π)

(1.5) u(0) = u(π) = 0

where %(x) is a positive density function. Huang proved that (see [7])
in the class of concave densities or symmetric single-barrier densities
the first two eigenvalues of (1.4)-(1.5) satisfy

(1.6)
λ2

λ1

≥ 4

and in the class of symmetric single-well densities we have,

(1.7)
λ2

λ1

≤ 4

In (1.6) and (1.7) equality holds if and only if % is constant. Hórvarth
then showed that (1.6) and (1.7) holds also for non-symmetric densities.
The scope of my research report with respect to the manuscript [7] is
to provide fully detailed proofs of the theorems, lemmas and corollaries
presented in this manuscript. We will begin with the preliminary sec-
tion to introduce definitions and statements of theorems. Some of the
known results will be stated without proofs. The two main theorems
will be stated and proved in the last section. In the first part we deal
with the Dirichlet problem for Schrödinger operators and the second
part with Dirichlet problem for vibrating strings. I will include proofs
of results that are not stated in [7] but are relevant for this research.
I will show that there exist an optimal single-well potential in some
compact set. The existence of an optimal single-barrier density can be
proved in a similar manner.

2. Preliminary Definitions and basic results

We let

(2.1) τu(x) =
1

r(x)

(
− (p(x)u′(x))′ + q(x)u(x)

)
with r(x), q(x), 1

p(x)
∈ L1(a, b) and p(x), r(x) > 0 almost everywhere in

(a, b).
For real λ, every non-trivial solution of u of (τ − λ)u = 0 may be

written in the polar form

u(x) = ρ(x) sin θ(x),
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p(x)u′(x) = ρ(x) cos θ(x),

where θ(.) is called the Prüfer angle and satisfies

θ(x) = arctan
u(x)

p(x)u′(x)

Consider the regular Sturm-Liouville operators Aα,β on (a, b) with
the separated boundary conditions

u(a) cos α− p(a)u′(a) sin α = 0

u(b) cos β − p(b)u′(b) sin β = 0,

α, β ∈ R. It is well known that Aα,β is self-adjoint in L2(a, b) (see
[15],p.199).

Let u(., λ) be the solution of (τ − λ)u = 0 satisfying the initial
conditions,

u(a) = sin α,

p(a)u′(a) = cos α

and θ(., λ) be the corresponding Prüfer angle function satisfying θ(a, λ) =
α. A real number λ is an eigenvalue of A if and if only if

θ(b, λ) = β mod π

As stated in ([15],p.199) we have that

Theorem 2.1. Let τ be a regular Sturm-Liouville expression on (a,b)
with p(x) > 0 and Aα,β a self-adjoint realization of τ with separated
boundary condition and α ∈ [0, π), β ∈ (0, π]. Then the spectrum of
A consists of infinitely many simple eigenvalues and is bounded from
below. If the eigenvalues are arranged such that

λ1 < λ2 < λ3 < . . . < λn →∞,

then the eigenfunction un corresponding to the eigenvalue λn has exactly
n− 1 zeros in (a, b).

The Dirichlet problem (1.1)-(1.2) is a special case of Theorem 2.1
with p(x) = r(x) = 1, q(x) = V (x) whereas the Dirichlet problem
(1.4)-(1.5) is a case with r(x) = %(x), q(x) = 0 and p(x) = 1 when
α = 0, β = π in both cases.

It is well-known (see [5],p.186) that the solutions of the differential
equation

−y′′ = λy

satisfying y(0) = 0 are of the form

y(x) = A1 sin(
√

λx)
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where A1 is a constant. Hence for the differential equation

−y′′ + qy = λy

q ∈ R, the solutions are of the form

y(x) = B1 sin(
√

λ− qx).

3. Special Results

Definition 3.1. A function V is called a single-well function with tran-
sition point at c ∈ [0, π] if V is non-increasing in [0, c] and nondecreasing
in [c, π].

Definition 3.2. A function V is called a single-barrier function with
transition point at c ∈ [0, π] if it is nondecreasing in [0, c] and non-
increasing in [c, π].

Let

AM = {V |0 ≤ V ≤ M, V is a single-well potential with transition at
π

2
},

where M > 0.
Now consider the Dirichlet problem (1.1)-(1.2) with V ∈ AM . The

eigenvalues λ1, λ2, ... arranged such that 0 < λ1 < λ2 < . . . refer to this
problem.

Definition 3.3. An optimal single-well potential V0 ∈ AM is when
λ2 − λ1 is minimal with respect to V ∈ AM .

Proposition 3.4. For each M > 0, there is an optimal single-well
potential V0 ∈ AM .

Proof. Let (fn)n∈N be a sequence in AM . We want to show that (fn)n

has a convergent subsequence in L1(π
2
, π). Since each fn is nonde-

creasing, it has at most countably many discontinuity points. Choose
a1, a2, . . . , in (π

2
, π) such that {a1, a2, . . . , } is dense in (π

2
, π) and none

of a1, a2, . . . , is a discontinuity point of any fn.
Since 0 ≤ fn ≤ M for all n, we can define a subsequence (f1,j)

∞
j=1 of(

fn

)
n

such that
(
(f1,j(a1)

)∞
j=1

is convergent.

Let (f2,j)
∞
j=1 be a subsequence of (f1,j)

∞
j=1 such that

(
f2,j(a2)

)∞
j=1

is convergent. Continuing in this manner we have that for each ak

bounded subsequences
(
fk,j(ak)

)∞
j=1

are convergent.

Consider the diagonal subsequence
(
fnj

)
j
=

(
fj,j

)∞
j=1

. Then
(
fnj

)
j
is

also convergent at ak since it is a subsequence of a convergent sequence
at ak. .i.e. there is f such that

fnj
(ak) → f(ak)
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as j →∞. Next we show the limit f is a nondecreasing function.
Since all fn are nondecreasing, it follows that f(aj) ≤ f(ak) if aj ≤ ak

which implies f is nondecreasing.
For x ∈ (π

2
, π) define

f(x) = sup{f(aj) | aj ≤ x}
If x = ak, then this coincides with the above definition since f is
increasing. Let ε > 0 be given, then there is k such that ak ≤ x and

|f(ak)− f(x)| < ε

by definition of f(x). f(x) is also nondecreasing by definition.
For a continuity point x ∈ (π

2
, π) of f, choose akm , akl

such that

akm → x

from below and

akl
→ x

from above. This is possible since {ak | k ∈ N} is dense in (π
2
, π).

Then

f(akm) = lim inf
j

fnj
(akm) ≤ lim inf

j
fnj

(x) ≤ lim sup
j

fnj
(x)

and

lim sup
j

fnj
(x) ≤ lim sup

j
fnj

(akl
) = f(akl

)

since the fnj
’s are nondecreasing functions. But

f(akm) → f(x)

and

f(akl
) → f(x)

since f is continuous at x. Hence

f(x) ≤ lim inf
j

fnj
(x) ≤ lim sup

j
fnj

(x) ≤ f(x)

which implies

lim
j

fnj
(x) = f(x)

Thus we have shown that fnj
(x) → f(x) ∈ AM a.e. in L1(π

2
, π) and by

Lebesgue’s Dominated Convergence Theorem,

lim
j→∞

∫ π

π
2

|fnj
(x)− f(x)|dx =

∫ π

π
2

lim
j→∞

|fnj
(x)− f(x)|dx = 0

Similarly we can construct a convergent subsequence
(
− fnj

)∞
j=1

of

(−fn)n∈N on a dense subset of (0, π
2
).
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The set {λ2(V )− λ1(V ) : V ∈ AM} is bounded below. So there is a
sequence (Vn)n∈N ⊂ AM such that

lim
n→∞

(
λ2(Vn)− λ1(Vn)

)
= inf{λ2(V )− λ1(V ) : V ∈ AM}

Since we have shown that every sequence in AM has a convergent sub-
sequence, we may assume that there is V0 ∈ AM such that

lim
n→∞

Vn = V0

in L1(0, π).
For the differential equations

−y′′ + V0y = λy

and

−y′′ + Vny = λy

the complete knowledge of the set of solutions can be obtained if we
know the fundamental matrix of the associated first order system (see
[5]p.69,[13]p.69). The solutions depend on the parameters of these
differential equations. The solutions y(x, λ) of

−y′′ + V (x)y = λy

with boundary conditions y(0, λ) = 0 and y′(0, λ) = 1 depend an-
alytically on λ and continuously on V. The eigenvalue equation is
y(λ, π) = 0. Hence by Rouché’s theorem the eigenvalues depend con-
tinuously on V. Then, for the first and second eigenvalues

lim
n→∞

(
λ2(Vn)−λ1(Vn)

)
= inf{λ2(V )−λ1(V ) : V ∈ AM} = λ2(V0)−λ1(V0)

�

Definition 3.5. We normalize the eigenfunctions yn corresponding to
eigenvalues λn such that yn > 0 for small x > 0 and

(3.1)

∫ π

0

y2
n = 1

Proposition 3.6. Consider the Dirichlet problem (1.1)-(1.2) with V ∈
L1(0, π). If y1, y2 are respectively the first and second eigenfunction then
y2

y1
is decreasing on (0, π).

Proof. We only need to show that
(

y2

y1

)′
< 0. y1 has no zeros and is

positive in (0, π) by Theorem 2.1. y2 has an inner zero x0, 0 < x0 < π,
and y2 > 0 in (0, x0) and y2 < 0 in (x0, π).
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(y2(x)

y1(x)

)′
= y1(x)−2

(
y′2(x)y1(x)− y2(x)y′1(x))

then (y2(x)

y1(x)

)′
=y1(x)−2

∫ x

0

(y1(t)y
′′
2(t) + y′2(t)y

′
1(t))dt

− y1(x)−2

∫ x

0

(y2(t)y
′′
1(t) + y′1(t)y

′
2(t))dt

by fundamental theorem of calculus and the fact that yn(0) = 0 for all
n. Substituting y′′n = (V −λn)yn in the above equation for n = 1, 2 and
simplifying we get∫ x

0

y1(t)y
′′
2(t)dt =

∫ x

0

y1(t)(V (t)− λ2)y2(t)dt

=

∫ x

0

V (t)y1(t)y2(t)dt−
∫ x

0

λ2y1(t)y2(t)dt

∫ x

0

y2(t)y
′′
1(t)dt =

∫ x

0

y2(t)(V (t)− λ1)y1(t)dt

=

∫ x

0

V (t)y1(t)y2(t)dt−
∫ x

0

λ1y1(t)y2(t)dt

Then (y2(x)

y1(x)

)′
=

1

y2
1(x)

∫ x

0

(λ1 − λ2)y1(t)y2(t)dt < 0

since λ1 < λ2 and y1, y2 > 0 on (0, x0).
Similarly on (x0, π),

(y2(x)

y1(x)

)′
= −y−2

1 (x)(

∫ π

x

(y1(t)y
′′
2(t)dt + y′2(t)y

′
1(t))dt−

∫ π

x

(y2(t)y
′′
1(t) + y′1(t)y

′
2(t))dt)

)
= − 1

y2
1(x)

( ∫ π

x

y1(t)(V (t)− λ2)y2(t)dt−
∫ π

x

y2(t)(V (t)− λ1)y1(t)dt
)

= − 1

y2
1(x)

∫ π

x

(λ1 − λ2)y1(t)y2(t)dt < 0

since λ1 < λ2 and y1y2 < 0 on (x0, π). �

Following from the above proposition we have points x± with

0 ≤ x− < x0 < x+ ≤ π

such that ∣∣y2

y1

∣∣ < 1
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for x ∈ (x−, x+) and ∣∣y2

y1

∣∣ > 1

for x ∈ (0, x−)∪ (x+, π). Note that we take x− = 0 if y2

y1
does not attain

the value 1 on (0, x0) and x+ = π if y2

y1
does not attain the value −1 on

(x0, π).
From above ∣∣y2

y1

∣∣2 < 1

for
x ∈ (x−, x+)

which implies

y2
2

y2
1

< 1

i.e.

(3.2) y2
2 − y2

1 < 0

for x ∈ (x−, x+) and similarly

(3.3) y2
2 − y2

1 > 0

for x ∈ (0, x−) ∪ (x+, π).

Proposition 3.7. Consider the Dirichlet problem:

−y′′(x, t) + V (x, t)y(x, t) = λ(t)y(x, t)

with boundary conditions

yn(0, t) = yn(π, t) = 0.

The derivative of the n-th eigenvalue λn(t) with respect to t, λ̇n is given
by

λ̇n =

∫ π

0

V̇ y2
ndx

where the eigenfunctions yn are normalized as in (3.1) and V (x, t) ∈
L1(0, π) is a potential function that depends integrably on x and differ-
entiably on t.

Proof.
−y′′n(x, t) + V (x, t)yn(x, t) = λn(t)yn(x, t)

for each eigenfunction yn(x, t) and its corresponding eigenvalue λn(t).
Differentiating the above equation with respect to t we get

−ẏ′′n + V̇ yn + V ẏn = λnẏn + λ̇nyn
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multiplying by yn we get

(3.4) −ẏ′′nyn + V̇ y2
n + V ẏnyn = λnẏnyn + λ̇ny

2
n

Integrating with respect to x from 0 to π,
(3.5)∫ π

0

−ẏ′′nyndx+

∫ π

0

V̇ y2
ndx+

∫ π

0

V ẏnyndx =

∫ π

0

λnẏnyndx+

∫ π

0

λ̇ny
2
ndx.

The first term becomes∫ π

0

−ẏ′′nyndx = −ẏ′nyn

∣∣π
0

+

∫ π

0

ẏ′ny
′
ndx

=

∫ π

0

ẏ′ny
′
ndx

= ẏny
′
n

∣∣π
0
−

∫ π

0

ẏny
′′
ndx

= −
∫ π

0

ẏy′′ndx

=

∫ π

0

(λn − V )ynẏndx

after integrating by parts twice and using the boundary conditions and
the fact that

ẏn(0, t) = ẏn(π, t) = 0.

Hence

λ̇n =

∫ π

0

V̇ y2
ndx

�

Proposition 3.8. For M ≥ 4, an optimal V0 ∈ AM is a step function
with at most one jump on (0, π).

Proof. Let V0, V1 ∈ AM be single-well potentials. Define

(3.6) V (x, t) = tV1(x) + (1− t)V0(x).

then

(3.7) V̇ (x, t) = V1(x)− V0(x)

The derivative of λn with respect to t, λ̇n, is given by Proposition 3.7
which implies

(3.8) (λ2 − λ1)̇ =

∫ π

0

(V1(x)− V0(x))(y2
2(x, t)− y2

1(x, t))dt.
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It is shown in Proposition 3.4 that there is an optimal potential which
we now take it to be V0 ∈ AM .

We distinguish 3 cases:
(1) x− ≤ π

2
< x+

Let

V1(x) =

{
V0(x−) on (0, π

2
)

V0(x+) on (π
2
, π)

On (0, x−) ∪ (x+, π)

V1(x)− V0(x) =

{
V0(x−)− V0(x) ≤ 0 for x ∈ (0, x−)
V0(x+)− V0(x) ≤ 0 for x ∈ (x+, π)

since V0(x∓) is a minimum of V0 respectively on (0, x−] and [x+, π).
On (x−, x+) for x ∈ (x−, π

2
),

V1(x)− V0(x) = V0(x−)− V0(x) ≥ 0

since π
2

is the transition point of a single-well. For x ∈ (π
2
, x+)

V1(x)− V0(x) = V0(x+)− V0(x) ≥ 0

also by the fact that V1(x+) is maximum of V0 on (π
2
, x+).

By the optimality of V0 the derivative (λ2−λ1)̇ must be nonnegative
at t = 0:

0 ≤ (λ2 − λ1)̇ =

∫ π

0

(V1(x)− V0(x))(y2
2(x, 0)− y2

1(x, 0))dx

Since the product (V1(x)−V0(x))(y2
2(x, 0)−y2

1(x, 0)) is non-positive by
above and inequalities (3.2), (3.3), this is possible only when V1−V0 = 0
i.e. when

V1 = V0

almost everywhere. i.e. the optimal potential V0 must be a step-
function with the only jump at π

2
. This proves the proposition in this

case.

(2) π
2

< x−.
Let

V1(x) =

{
V0(

π
2
) on (0, x−)

V0(x+) on (x−, π)

then V1 ∈ AM .

V1(x)− V0(x) = V0(
π

2
)− V0(x) ≤ 0

on (0, x−),
V1(x)− V0(x) = V0(x+)− V0(x) ≤ 0
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on (x+, π) and

V1(x)− V0(x) = V0(x+)− V0(x) ≥ 0

on (x−, x+) since V0 is non-decreasing on (π
2
, x+) ⊃ (x−, x+). Define V

as in (3.6). Then

V̇ (x, t) = V1(x)− V0(x)

V ∈ AM if 0 ≤ t ≤ 1. Then by the optimality of V0 the derivative

(λ2 − λ1)̇ must be non-negative at t = 0 :

0 ≤ (λ2 − λ1)̇ =

∫ π

0

(V1(x)− V0(x))(y2
2(x, 0)− y2

1(x, 0))dx

But the product (V1(x)− V0(x))(y2
2(x, 0)− y2

1(x, 0)) is non-positive on
(0, π). This is only possible when

V1 = V0

i.e. if V0 is a step function with the jump at x−. We want to show that
the transition point must be at π

2
.

Let

(3.9) V2(x) =

{
0 on (0, x−),
M on (x−, π).

Recall that ∫ π

0

y2
2(x, 0) = 1

and ∫ π

0

y2
1(x, 0) = 1

by normalization condition. Then

0 =

∫ π

0

(y2
2(x, 0)− y2

1(x, 0))dx

=

∫ x−

0

(y2
2(x, 0)− y2

1(x, 0))dx +

∫ π

x−

(y2
2(x, 0)− y2

1(x, 0))dx

the first term is positive by equation (3.3) which implies the second
term is negative. i.e.∫ x−

0

(y2
2(x, 0)− y2

1(x, 0))dx > 0,∫ π

x−

(y2
2(x, 0)− y2

1(x, 0))dx < 0.
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With V defined as

V (x, t) = tV2(x) + (1− t)V0(x)

by the optimality of V0 = V1

0 ≤ (λ2 − λ1)̇ =

∫ π

0

(V2(x)− V0(x))(y2
2(x, 0)− y2

1(x, 0))dx

=

∫ x−

0

(V2(x)− V0(x))(y2
2(x, 0)− y2

1(x, 0))dx

+

∫ π

x−

(V2(x)− V0(x))(y2
2(x, 0)− y2

1(x, 0))dx

= −V0(
π

2
)

∫ x−

0

(y2
2(x, 0)− y2

1(x, 0))dx

+ (M − V0(x+))

∫ π

x−

(y2
2(x, 0)− y2

1(x, 0))dx

the first term is non-positive since the integral is positive by above,
the second term must be non-negative. i.e. M − V0(x+) ≤ 0 since the
integral is negative. i.e.

M ≤ V0(x+)

But M is the upper bound which implies

V0(x+) = M

and

V0(
π

2
) = 0

i.e. the optimal potential V0 must be of the form V2. We will show this
is impossible.

The second eigenfunction of the potential V2 (Equation 3.9) can be
expressed by

y2(x) =

{
A sin(

√
λ2x) on (0, x−),

B sin(
√

λ2 −M(π − x)) on (x−, π).

The constants (A, B) 6= (0, 0) must be chosen such that y2 is continuous
at x−. The only inner zero x0 is on (x−, x+), so on (0, π

2
) y2 6= 0 since

π
2

< x− < x0. This is only possible when√
λ2

π

2
< π

i.e.

λ2 < 4
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For M ≥ 4, λ2 −M < 0 which implies

0 = y2(x0) = B sin(
√

λ2 −M(π − x0))

is impossible.
(3) x+ < π

2
( similar to the above case )

�

Let

BM = {% | 1

M
≤ % ≤ M,% is a single-barrier density with

transition point at
π

2
},

where M > 1.
We now consider the Dirichlet problem (1.4)-(1.5). The eigenvalues

λ1, λ2, . . . arranged such that 0 < λ1 < λ2 < ... refer to this problem.

Definition 3.9. An optimal single-barrier density %0 ∈ BM is when λ2

λ1

is minimal with respect to % ∈ BM .

The existence of an optimal single-barrier density can be proved in
similar way as in Proposition 3.4 for the single-well potential.

Definition 3.10. We normalize the eigenfunctions un such that un > 0
for small x > 0 and

(3.10)

∫ π

0

u2
n%dx = 1

Proposition 3.11. Consider the Dirichlet problem (1.4)-(1.5) with
0 < % ∈ L1(0, π). If u1, u2 are respectively first and second eigenfunction
then u2

u1
is decreasing on (0, π).

Proof. We only need to show
(

u2

u1

)′
< 0. On (0, x0)(u2(x)

u1(x)

)′
=

1

u2(x)
(u′2(x)u1(x)− u2(x)u′1(x))

=
1

u2(x)

( ∫ x

0

(u1(t)u
′′
2(t) + u′2(t)u

′
1(t))dt

−
∫ x

0

(u2(t)u
′′
1(t) + u′1(t)u

′
2(t))dt

)
=

1

u2(x)

∫ x

0

(u1(t)u
′′
2(t)− u2(t)u

′′
1(t))dt

=
1

u2(x)

∫ x

0

(λ1 − λ2)%(t)u1(t)u2(t)dt

< 0
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by the fundamental theorem of calculus and the fact that un(0) = 0
for all n. We used the fact that u1 > 0 and u2 > 0 on (0, x0) in the last
step. Similarly on (x0, π)(u2(x)

u1(x)

)′
=

1

u2(x)
(u′2(x)u1(x)− u2(x)u′1(x))

= − 1

u2(x)

∫ π

x

(u1(t)u
′′
2(t) + u′2(t)u

′
1(t))dt

+
1

u2(x)

∫ π

x

(u2(t)u
′′
1(t) + u′1(t)u

′
2(t))dt

= − 1

u2(x)

∫ π

x

(u1(t)u
′′
2(t)− u2(t)u

′′
1(t))dt

= − 1

u2(x)

∫ π

x

(λ1 − λ2)%(t)u1(t)u2(t)dt

< 0

since u1 > 0 and u2 < 0 on (x0, π). �

Then it follows that there exist x±, 0 ≤ x− < x0 < x+ ≤ π such that

(3.11) u2
1 − u2

2 < 0

on (0, x−) ∪ (x+, π) and

(3.12) u2
1 − u2

2 > 0

on (x−, x+).

Proposition 3.12. For the Dirichlet problem:

−u′′(x, t) = λ(t)%(x, t)u(x, t)

with boundary conditions

un(0, t) = un(π, t) = 0

for all t and n. The derivative of the n-th eigenvalue λn(t) with respect

to t, λ̇n is given by

(3.13) λ̇n = −λn

∫ π

0

%̇u2
ndx

where the eigenfunctions un are normalized as in (3.10) and %(x, t) ∈
L1(0, π) is a density function which depends integrably on x and differ-
entiably on t.
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Proof.

−u′′n(x, t) = λn(t)%(x, t)un(x, t)

for each eigenfunction un(x, t) and its corresponding eigenvalue λn(t).
Differentiating the above equation with respect to t we get

u̇′′n + λ̇n%un + λn%̇un + λn%u̇n = 0

Multiplying by un and integrating with respect to x from 0 to π we get∫ π

0

(
u̇′′nun + λ̇n%u2

n + λn%̇u2
n + λn%u̇nun

)
dx = unu̇

′
n

∣∣π
0
−

∫ π

0

u̇′nu
′
ndx

+ λ̇n

∫ π

0

%u2
ndx +

∫ π

0

λn%̇u2
ndx +

∫ π

0

λn%u̇nundx

= −u̇nu
′
n

∣∣π
0

+

∫ π

0

u′′nu̇ndx + λ̇n +

∫ π

0

λn

(
%̇u2

n + %unu̇n

)
dx

=

∫ π

0

(
u′′n + λn%un

)
u̇ndx + λ̇n +

∫ π

0

λn%̇u2
ndx

which gives

λ̇n = −λn

∫ π

0

%̇u2
ndx.

after integrating twice by parts and using boundary conditions un(0, t) =
un(π, t) = u̇n(0, t) = u̇n(π, t) = 0.

�

Proposition 3.13. For M > 1, an optimal density %0 ∈ BM is a step
function with at most one jump on (0, π).

Proof. Let %0, %1 ∈ BM be single-barrier densities. Define

(3.14) %(x, t) = t%1(x) + (1− t)%0(x)

Then

(3.15) %̇(x, t) = %1(x)− %0(x)

The derivative of λn with respect to t, λ̇n is given in Proposition 3.12.
Then (λ2

λ1

)̇
=

λ̇2

λ1

− λ2

λ2
1

λ̇1

= −λ2

λ1

∫ π

0

%̇u2
2(x, t)dx +

λ2

λ1

∫ π

0

%̇u2
1(x, t)dx

=
λ2

λ1

∫ π

0

(
%1(x)− %0(x)

)
(u2

1(x, t)− u2
2(x, t))dx
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There exist an optimal density giving the minimal ratio λ2

λ1
which we

now take it to be %0 ∈ BM . We distinguish 3 cases:
(1) x− ≤ π

2
< x+

Let

%1(x) =

{
%0(x−) on (0, π

2
)

%0(x+) on (π
2
, π).

On (0, x−) ∪ (x+, π),

%̇ = %1(x)− %0(x) =

{
%0(x−)− %0(x) ≥ 0 for x ∈ (0, x−)
%0(x+)− %0(x) ≥ 0 for x ∈ (x+, π)

since %0(x−) and %0(x+) are maxima of %0 respectively on (0, x−) and
(x+, π). On (x−, π

2
),

%1(x)− %0(x) = %0(x−)− %0(x) ≤ 0

since %0(x−) is the minimum of %0 on (x−, π
2
). On (π

2
, x+),

%1(x)− %0(x) = %0(x+)− %0(x) ≤ 0

since %0(x+) is the minimum of %0 on (π
2
, x+). So

%1(x)− %0(x) ≤ 0

on (x−, x+). % ∈ BM if 0 ≤ t ≤ 1. By the optimality of %0,
(

λ2

λ1

)̇
must

be nonnegative at t = 0 :

0 ≤
(λ2

λ1

)̇
=

λ2

λ1

∫ π

0

(
%1(x)− %0(x)

)(
u2

1(x, 0)− u2
2(x, 0)

)
dx

But the product
(
%1(x)− %0(x)

)(
u2

1(x, 0)− u2
2(x, 0)

)
is non-positive by

above and inequalities (3.11) and (3.12). This is only possible when
%1 − %0 = 0. i.e. when

%1 = %0

hence the optimal density %0 must be a step function with the only
jump at π

2
. This proves the result in this case.

(2) π
2

< x−
Let

%1(x) =

{
%0(

π
2
) on (0, x−)

%0(x+) on (x−, π).

Then %1 ∈ BM . On (0, x−),

%1(x)− %0(x) = %0(
π

2
)− %0(x) ≥ 0

since %0(
π
2
) is the maximum of %0. On (x+, π),

%1(x)− %0(x) = %0(x+)− %0(x) ≥ 0
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since %0(x+) is the maximum of %0 on (x+, π). So

%1(x)− %0(x) ≥ 0

on (0, x−) ∪ [x+, π). On (x−, x+),

%1(x)− %0(x) = %0(x+)− %0(x) ≤ 0

since %0(x) is a non-increasing function on (π
2
, x+) ⊃ (x−, x+).

% ∈ BM if 0 ≤ t ≤ 1. Then by the optimality of %0,
(

λ2

λ1

)̇
must be

nonnegative at t = 0 :

0 ≤
(λ2

λ1

)̇
=

λ2

λ1

∫ π

0

(
%1(x)− %0(x)

)(
u2

1(x, 0)− u2
2(x, 0)

)
dx

but the product
(
%1(x)− %0(x)

)(
u2

1(x, 0)− u2
2(x, 0)

)
is non-positive by

above and inequalities (3.11) and (3.12). This is only possible only
when %1 − %0 = 0. i.e. when

%1 = %0

hence the optimal density %0 must be a step function with the only
jump at x−. Now with

%(x, t) = t%2(x) + (1− t)%1(x),

where

%2(x) =

{
M on (0, x−)
1
M

on (x−, π).

Recall that ∫ π

0

u2
1(x, 0)%dx = 1

and ∫ π

0

u2
2(x, 0)%dx = 1

by normalization condition in (3.10). Then

0 =

∫ π

0

(
u2

1(x, 0)− u2
2(x, 0)

)
%dx

=

∫ x−

0

(
u2

1(x, 0)− u2
2(x, 0)

)
%dx +

∫ π

x−

(
u2

1(x, 0)− u2
2(x, 0)

)
%dx

But u2
1 − u2

2 < 0 on (0, x−) by inequality (3.11) and % > 0. Hence∫ x−

0

(
u2

1(x, 0)− u2
2(x, 0)

)
dx < 0
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∫ π

x−

(
u2

1(x, 0)− u2
2(x, 0)

)
%(x, 0)dx =

∫ π

x−

(
u2

1(x, 0)− u2
2(x, 0)

)
%0(x+)dx

> 0

which implies ∫ π

x−

(
u2

1(x, 0)− u2
2(x, 0)

)
dx > 0

since %0(x+) > 0. By the optimality of %0,
(

λ2

λ1

)̇
must be nonnegative

at t = 0 :

0 ≤ λ1

λ2

(λ2

λ1

)̇
=

∫ π

0

(
%2(x)− %0(x)

)(
u2

1(x, 0)− u2
2(x, 0)

)
dx

=

∫ x−

0

(
%2(x)− %1(x)

)(
u2

1(x, 0)− u2
2(x, 0)

)
dx

+

∫ π

x−

(
%2(x)− %1(x)

)(
u2

1(x, 0)− u2
2(x, 0)

)
dx

=
(
M − %0(

π

2
)
) ∫ x−

0

(
u2

1(x, 0)− u2
2(x, 0)

)
dx

+
( 1

M
− %0(x+)

) ∫ π

x−

(
u2

1(x, 0)− u2
2(x, 0)

)
dx

The first term is non-positive since the integral is negative and M is
the upper bound. Hence the second term must be nonnegative i.e.

%0(x+) ≤ 1

M

but 1
M

is the lower bound which implies

%0(x+) =
1

M
and

%0(
π

2
) = M

So the optimal density %0 must of the form %2. We will show that this
is impossible. The second eigenfunction of %2 is given by

u2(x) =

{
a sin(

√
λ2Mx) on (0, x−),

b sin(
√

λ2
1
M

(π − x)) on (x−, π).

Constants (a, b) 6= (0, 0) must be chosen such that u2 is continuous at
x−. Since the zero of u2, x0 is in (x−, x+),√

λ2Mx− < π
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and √
λ2

1

M
(π − x−) > π

which implies

M <
1

λ2

π2

x2
−

and

M < λ2
(π − x−)2

π2
.

Multiplying these inequalities we get

M2 <
(π − x−)2

x2
−

<
π2

4x2
−

< 1

since x− > π
2

which contradicts the fact that M > 1. Hence the case
π
2

< x− is impossible.
(3) x+ < π

2
(similar)

�

4. main results

Lemma 4.1. Define f(t) =
√

t cot(
√

tπ
2
) for real t and let m > 0. Then

the first two solutions of the equation f(t) = −f(t−m) satisfy

t2 − t1 > 3.

Proof. For t > 0,

f(t) =
√

t cot(
√

t
π

2
) =

√
t
cos(

√
tπ

2
)

sin(
√

tπ
2
)

is real since sin θ and cos θ are real for real θ. Hence f is real.
We now show that f(t) is strictly decreasing on the intervals (−∞, 4), (4, 16),

and generally on (4n2, 4(n + 1)2), n ≥ 1. We have

f ′(t) =
1

2
√

t
cot(

√
t
π

2
)− π

4
√

t

√
t csc2(

√
t
π

2
)

=
2 cos(

√
tπ

2
) sin(

√
tπ

2
)

4
√

t sin2(
√

tπ
2
)

−
√

tπ

4
√

t sin2(
√

tπ
2
)

=
sin(

√
tπ)−

√
tπ

4
√

t sin2(
√

tπ
2
)

for t > 0, t 6= 4n2,
Let

g(z) = sin z − z
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g(0) = 0 and g′(z) = cos z− 1 ≤ 0, then g(z) < 0 is a non-increasing
function for z > 0 which implies f ′(t) < 0. i.e. f(t) is decreasing for
t ∈ (4n2, 4(n + 1)2), n ∈ N ∪ {0}.

For t < 0,
√

t =
√
−(−t) = i

√
−t.

f(t) =
√
−(−t) cot(

√
−(−t)

π

2
)

= i
√
−t cot(i

√
−t

π

2
)

=
√
−t coth(

√
−t

π

2
) ∈ R

since
√
−t and coth(

√
−tπ

2
) are real.

Then

f ′(t) =
− cosh(

√
−tπ

2
)

2
√
−t sinh(

√
−tπ

2
)

+
( −π

4
√
−t

)√−t(sinh2(
√
−tπ

2
)− cosh2(

√
−tπ

2
))

sinh2(
√
−tπ

2
)

= −
2 cosh(

√
−tπ

2
) sinh(

√
−tπ

2
)

4
√
−t sinh2(

√
−tπ

2
)

+
−π
√
−t(−1)

4
√
−t sinh2(

√
−tπ

2
)

=

√
−tπ − sinh(

√
−tπ)

4
√
−t sinh2(

√
−tπ

2
)

Let
d(z) = z − sinh z.

Then d(0) = 0, d′(z) = 1 − cosh z < 0 for z 6= 0, and hence d(z) is a
decreasing function which is negative for z 6= 0. It follows that f ′(t) < 0
for t < 0, and hence f(t) is a decreasing function of t for t < 0.

Consider h(t) = f(t) + f(t−m) for m ≥ 0. Let t1 and t2 be the first
two zeros of h(t).

Claim 1 : t1(m) ∈ (1, 4) and t2(m) ∈ (4, min{m + 4, 16}) for all
m > 0.

f(t) and f(t −m) are both decreasing so h(t) = f(t) + f(t −m) is
also decreasing for all m ≥ 0. f(t) has poles at t = 4n2 and f(t −m)
has poles at t = m + 4n2 for integers n ≥ 1. For n = 1, f(t) has a pole
at t = 4. As

t → 4−, f(t) → −∞
and

t → 4+, f(t) →∞
Then h(t) = f(t) + f(t −m) → ±∞ as t → 4±. So h(t) has a pole at
t = 4.
Let t0 be the first zero of f(t). Then h(t0) = f(t0) + f(t0−m) > 0 and
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h(t) < 0 as t → 4−. So there is t1(m) ∈ (t0, 4) such that h(t1(m)) = 0.
Hence t1(m) ∈ (1, 4) for all m ≥ 0 since t0 = 1.

We want to show that t2(m) ∈ (4, min{m + 4, 16}) for all m > 0.
f(t) is decreasing and has exactly one zero between any two poles. So
h(t) is also decreasing and has exactly one zero between any two poles.
Hence the second zero t2(m) ∈ (4, min{m + 4, 16}) for all m > 0.

Claim 2: f(t1(m)) < 0 and f(t2(m)) > 0 for 0 < m < 8.

0 = h(t1(m)) = f(t1(m)) + f(t1(m)−m))

But f(t1(m)) < f(t1(m) − m) since f(t) is decreasing on (−∞, 4).
Hence we must have f(t1(m)) < 0 and f(t1(m)−m) > 0.

t2(m) ∈ (4, 7) if m ≤ 3 from the claim above. So f(t2(m)) > 0 for
m ≤ 3 since f(t) is decreasing on (4, 16) and f(t) = 0 at t = 9.

For 3 < m < 8 at t = m + 1, f(t−m) = 0. So

h(m + 1) = f(m + 1) > 0

since m + 1 < 9. f(9) = 0 so

h(9) = f(9−m) < 0

since 1 < (9 − m) < 4 if m > 5. Hence t2(m) ∈ (m + 1, 9) which
implies f(t2(m)) > 0 if m > 5. h(m + 1) = f(m + 1) > 0 if 3 < m ≤ 5.
But there is a pole at t = m + 4 ≤ 9. So t2(m) ∈ (m + 1, m + 4) if
3 < m ≤ 5. Hence f(t2(m)) > 0 for 0 < m < 8.

Claim 3: Fix m, so that ti(m) = ti for i = 1, 2 then f ′(t2−m) < f ′(t2)
for 0 < m < 8.

f ′(t) =
1

2
√

t
cot(

√
t
π

2
)−

√
t(1 + cot2(

√
t
π

2
))

π

4
√

t

=
1

2t

√
t cot(

√
t
π

2
)− π

4

(
1 +

1

t
[
√

t cot(
√

t
π

2
)]2

)
then

(4.1) f ′(t) =
1

2t
f(t)− π

4

(
1 +

1

t
f 2(t)

)
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where t 6= 0. So we have expressed f ′(t) as a function of f(t).

f ′(t2 −m)− f ′(t2) =
1

2(t2 −m)
f(t2 −m)− π

4(t2 −m)
f 2(t2 −m)

− 1

2t2
f(t2) +

π

4t2
f 2(t2)

= − f(t2)

2(t2 −m)
− π

4(t2 −m)
f 2(t2)−

1

2t2
f(t2)

+
π

4t2
f 2(t2)

=
1

(t2 −m)t2
f(t2)

(
− t2

2
− πt2

4
f(t2)−

t2 −m

2

+
π

4
(t2 −m)f(t2)

)
=

1

(t2 −m)t2
f(t2)

(m− 2t2
2

− π

4
mf(t2)

)
since f(t2) = −f(t2 − m). t2 > m + 1 since t2(m) ∈ (m + 1, 9). So
t2 −m > 1 > 0, f(t2) > 0, m− 2t2 < 0 by Claim 2 which implies

(4.2) f ′(t2 −m) < f ′(t2)

Claim 4: f ′(t1 −m) > f ′(t1) for 0 < m < 8.
We show that

f ′(t1 −m) > −π

4
and

f ′(t1) < −π

4
.

f ′(t1) +
π

4
=

f(t1)

2t1
− π

4t1
f 2(t1)

< 0

since f(t1) < 0 so f ′(t1) < −π
4
.

f ′(t) +
π

4
=

f(t)

2t

(
1− πf(t)

2

)
Since f ′(0) must be finite, 1− πf(t)

2
= 0 when t = 0. 1− πf(t)

2
is increasing

with t since f(t) is decreasing. So 1 − πf(t)
2

and t have the same sign

which implies 1− πf(t1−m)
2

and t1 −m have the same sign. Then

f ′(t1 −m) +
π

4
=

f(t1 −m)

2(t1 −m)

(
1− πf(t1 −m)

2

)
> 0

since f(t1(m)−m) > 0. Hence f ′(t1 −m) > −π
4
.
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Claim 5: t1(m) and t2(m) are increasing functions in m. For i = 1, 2

differentiating
f(ti(m)) = −f(ti(m)−m)

in m we get

(4.3) f ′(ti(m))t′i(m) = f ′(ti(m)−m)(1− t′i(m))

From (4.3) f ′(ti(m)−m) and f ′(ti(m)) are always negative so (1−
t′i(m)) and t′i(m) must have the same sign. If t′i(m) < 0, 1− t′i(m) > 0
which contradicts the fact that (1 − t′i(m)) and t′i(m) must have the
same sign. Hence t′i(m) > 0 and 1− t′i(m) > 0.

From (4.3) for i = 1 we get

f ′(t1(m))t′1(m) = f ′(t1(m)−m)(1− t′1(m))

> f ′(t1(m))(1− t′1(m))

from the Claim 4 above. Hence

t′1(m) <
1

2

for 0 < m < 8. From (4.3) for i = 2 we get

f ′(t2(m))t′2(m) = f ′(t2(m)−m)(1− t′2(m))

< f ′(t2(m))(1− t′2(m))

from Claim 3. Hence

t′2(m) >
1

2
for 0 < m < 8. So

(4.4) t′1(m) <
1

2
< t′2(m).

then
(t2 − t1)

′(m) > 0

i.e the function t2 − t1 increases with m. For 0 < m < 3,

h(1) = f(1) + f(1−m) > 0

and
h(m + 1) = f(m + 1) < 0

since f(t) is decreasing with t. Hence t1(m) ∈ (1, m + 1) since h(t) is
also decreasing. So

lim
m→0

t1(m) = 1

and
lim
m→0

t2(m) = 4
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by Claim 1. So

lim
m→0

(t2(m)− t1(m)) = 3.

Hence t2 − t1 > 3 for 0 < m < 8. Note that t2 jumps at m = 0. For
m > 8, t2(m) ∈ (9, min{m + 4, 16}) and t1(m) ∈ (1, 4). So t2 − t1 >
5 > 3. Hence t2 − t1 > 3 for all m > 0.

�

Theorem 4.2. Let V be a (not necessarily symmetric) single-well po-
tential on [0, π] with a transition point at a = π/2. Then the first two
eigenvalues of the Dirichlet problem (1.1)-(1.2) satisfy

λ2 − λ1 ≥ 3

with equality if and only if V is constant. If a 6= π/2, there are single-
well potentials V with λ2 − λ1 < 3.

Proof. It was shown in Proposition 3.8 that for M ≥ 4 the optimal V0

must be of the form

V0 =

{
0 on (0, π

2
),

m on (π
2
, π).

or

V0 =

{
m on (0, π

2
),

0 on (π
2
, π).

for some m ≥ 0 since the potential can be shifted and the difference
in eigenvalues is unaffected. Since the differential equations of the
two potentials yield the same eigenvalue we deal only with the first
form of V0. The eigenfunction corresponding to the eigenvalue λ can be
expressed as

y(x) =

{
C sin(

√
λx) on (0, π

2
),

D sin(
√

λ−m(π − x)) on (π
2
, π).

The nonzero constants C, D have to be chosen such that y(x) is C1-

smooth at π
2
. This is possible if and only if the ratios y′

y
are the same

from both sides i.e.

(4.5)
√

λ cot(
√

λ
π

2
) = −

√
λ−m cot(

√
λ−m

π

2
)

The eigenvalues are real solution λ of (4.5). We allow cases when both
sides of the equation are infinite. But by Lemma 4.1 λ2 − λ1 > 3 if
m > 0. Hence the optimal V0 (where λ2 − λ1 = 3) is when m = 0 i.e.
the optimal potential V0 must be constant. This proves the Theorem
in the case when the transition point a is at π

2
.
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Suppose π
2

< a < π. Let

V (x, t) =

{
t if x ∈ (0, a),
0 if x ∈ (a, π).

Then for t = 0, the eigenfunctions are given by

yn(x, 0) = An sin nx.

Using the normalization condition we get

1 = A2
n

∫ π

0

sin2(nx)dx =
A2

n

2

∫ π

0

(1− cos 2nx)dx

=
A2

n

2
x
∣∣π
0
− sin 2nx

2n

∣∣π
0

=
A2

n

2
π

i.e.

An =

√
2

π
.

Then y1(x, 0) =
√

2
π

sin x and y2(x, 0) =
√

2
π

sin 2x.∫ a

0

(y2
2(x, 0)− y2

1(x, 0))dx =
2

π

∫ a

0

(sin2 2x− sin2 x)dx

=
1

π

∫ a

0

(
(1− cos 4x)− (1− cos 2x)

)
dx

=
1

π

∫ a

0

(cos 2x− cos 4x)dx

=
1

π

(sin 2a

2
− sin 4a

4

)
=

sin 2a

2π
(1− cos 2a) < 0

since sin 2a < 0 and 1− cos 2a > 0 for π
2

< a < π. Then by (3.8)

(λ2 − λ1)̇ =

∫ a

0

(y2
2(x, 0)− y2

1(x, 0)dx < 0

so for small t > 0 the single-well potentials V (x, t) gives an eigenvalues
gap λ2 − λ1 < 3.

For a = π, we can choose

V (x, t) =

{
t if x ∈ (0, 2π

3
),

0 if x ∈ (2π
3

, π).
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to get λ2 − λ1 < 3. By symmetry we can find a single-well potential
that gives λ2 − λ1 < 3 for a < π

2
.

�

Lemma 4.3. Define f(λ) =
√

λ cot(
√

λπ
2
) for real λ and let m > 1.

Then the first two positive solutions of the equation f(λ) = −f(λm)
satisfy

λ2

λ1

> 4

As solutions we allow values of λ for which f(λ) and f(λm) are infinite.

Proof. Let
√

λπ
2

= t and
√

m = d. Then f(λ) = 2t
π

cot t and f(λm) =
2td
π

cot td. Hence we need to show that the first two positive zeros t1
and t2 of the function

(4.6) h(t) :=
2t

π
cot t +

2t

π
d cot(td)

satisfy the inequality

t2 > 2t1.

cot t is a decreasing functions (0, π), (π, 2π),etc and cot(td) is a de-
creasing functions (0, π

d
), (π

d
, 2π

d
),etc for d > 1. There is exactly one zero

of h between any two poles (i.e. 0, π
d
, 2π

d
, π, etc.). Hence h(t) is also a

decreasing function and has exactly one zero on (0, π
d
). At t = π

2d
,

h(t) =
2t

π
(cot t + d cot td) =

2t

π
cot t > 0

So there is t1 ∈ ( π
2d

, min{π
d
, π

2
}) such that h(t1) = 0 since h(t) is a

decreasing function. The next pole of h is at min{2π
d

, π}. Hence there

is t2 ∈ (π
d
, min{2π

d
, π}) such that h(t2) = 0. Since we are only interested

in the first two solutions, we will not consider other poles.
t1 and t2 satisfy

2ti
π

cot ti = −2ti
π

d cot tid

which implies

(4.7) tan ti = −1

d
tan(tid).
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Claim 1: If d > 1 is increasing then t1 decreases and t1d increases
with d.

∂

∂s

(
− 1

s
tan(ts)

)
= −

(1

s
sec2(ts)t + (− 1

s2
) tan(ts)

)
= −

( ts

s2 cos2(ts)
− sin(ts) cos(ts)

s2 cos2(ts)

)
= −2ts− sin(2ts)

2s2 cos2(ts)
< 0.

So −1
s
tan(t1s) decreases as s increases. Choose ε > 0 such that for all

d′ ∈ (d, d + ε), t1d
′ ∈ (π

2
, π). Hence

tan t1 = −1

d
tan(t1d) > − 1

d′
tan(t1d

′),

tan t′1 = − 1

d′
tan(t′1d

′).

If t1 ≤ t′1, then

tan t1 = −1

d
tan(t1d) > − 1

d′
tan(t1d

′) ≥ − 1

d′
tan(t′1d

′) = tan t′1

So tan t1 > tan t′1 which leads to contradiction since tan t is increasing
on (0, π

2
). Hence t1 > t′1 and t1 decreases as d > 1 is increasing.

τ = t1d is the first solution of

(4.8) tan τ = −d tan
τ

d

and t1 is the first solution of

tan t = −1

d
tan(td).

We showed that t1 decreases as d > 1 is increasing. The above equa-
tions are similar except that in (4.8) d is replaced by 1

d
. 1

d
decreases

as d increases. So the first solution τ1 of (4.8) increases as d increases.
Hence t1d < t′1d

′ which shows t1d increases as d > 1 is increasing. Note
that it can be shown that for 0 < d < 1, t1 ∈ (π

2
, π) and t1d ∈ (0, π

2
).

Claim 2: For 1 < d ≤ 3, t1 < 3π
4d

.
Since t1d increases with d, it is sufficient to only check it for d = 3.

t1 ∈ ( π
2d

, min{π
d
, π

2
}) = (π

6
, π

3
).
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tan t1 = −1

3
tan(3t1)

= −1

3

tan(2t1) + tan t1
1− tan(2t1) tan t1

= −1

3

2 tan t1
1−tan2 t1

+ tan t1

1− 2 tan2 t1
1−tan2 t1

=
tan3 t1

3
− tan t1

1− 3 tan2 t1
.

So

2 tan t1(1−
5

3
tan2 t1) = 0,

which implies

tan t1 =

√
3

5
< 1

so t1 < π
4

= 3π
4d

. Hence t1 < 3π
4d

for 1 < d ≤ 3.

Claim 3: For 1 < d ≤ 3, t2 > 2t1.

For d = 3, t2 = π
2

since h(π
2
) = 0. So it is true for d = 3 since t1 < π

4
.

For 1 < d < 3, t1d < 3π
4

by Claim 2. So 2t1d ∈ (π, 3π
2

) for all 1 < d < 3.

Consider cases: (i) 1 < d ≤ 3
2

t2d ∈ (π, min{2π, πd}) = (π, πd). Hence t2d ∈ (π, 3π
2

).

(ii) 3
2

< d ≤ 2

t2 ∈ (π
d
, min{2π

d
, π}) = (π

d
, π).

h
(3π

2d

)
= cot(

3π

2d
) < 0.

So t2 ∈ (π
d
, 3π

2d
). Hence t2d ∈ (π, 3π

2
).

(iii) 2 < d < 3
t2 ∈ (π

d
, 2π

d
). cot(π

2
) = 0 so

h(
π

2
) = d cot(

π

2
d) > 0

and

h
(3π

2d

)
= cot

(3π

2d

)
< 0

since cot(3π
2d

d) = 0. Then t2 ∈ (π
2
, 3π

2d
) which yield t2d ∈ (πd

2
, 3π

2
). Hence

t2d ∈ (π, 3π
2

).
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For all the above cases if t1 ≤ π
4
, then t2 > 2t1 since t2 > π

2
. In each

case, t2 is a unique zero of h in the intervals (π
d
, 3π

2d
) and (π

2
, 3π

2d
).

When t1 > π
4
,

2t1d, t2d ∈
(
π,

3π

2

)
.

On (π
2
, 3π

2d
), tan t is increasing and −1

d
tan(td) is decreasing with t where

td ∈ (π, 3π
2

). For d > 1

tan2 t1 < d2 tan2 t1 ⇒ 1− tan2 t1 > 1− d2 tan2 t1

When π
4

< t1 < π
2
, 1− tan2 t1 < 0 and 1− d2 tan2 t1 < 0. Then

(4.9)
1

1− tan2 t1
<

1

1− d2 tan2 t1
.

Then by (4.7),

−1

d
tan(2t1d) = −1

d

2 tan(t1d)

1− tan2(t1d)

= −1

d

−2d tan t1
1− d2 tan2 t1

=
2 tan t1

1− d2 tan2 t1
.

From inequality (4.9)

tan 2t1 =
2 tan t1

1− tan2 t1
<

2 tan t1
1− d2 tan2 t1

,

so

−1

d
tan(2t1d) > tan 2t1

Assume t2 ≤ 2t1. Then

tan t2 = −1

d
tan(t2d)

≥ −1

d
tan(2t1d)

> tan 2t1

which implies tan t2 > tan 2t1 contradicting the fact that tan t is in-
creasing on (π

2
, π). Hence t2 > 2t1.

Claim 4: For d > 3 we also have t2 > 2t1.

t1 < π
4

for d = 3, hence t1 < π
4

for d > 3 since t1 decreases as d
increases. Hence t2 > 2t1 if t2 ≥ π

2
. So we will consider the cases for

which t2 < π
2
.
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t1 ∈
(

π
2d

, min{π
d
, π

2
}
)

=
(

π
2d

, π
d

)
and t2 ∈

(
π
d
, min{2π

d
, π

2
}
)
. At t = 3π

2d
,

h(t) =
2t

π
(cot t + cot(td)) =

2t

π
cot t > 0.

Hence t2 ∈ (3π
2d

, min{2π
d

, π
2
}) since h is a monotone decreasing function

(π
d
, 2π

d
). If 2t1 ≤ 3π

2d
then t2 > 2t1 since t2 > 3π

2d
. We consider the case

when 2t1 > 3π
2d

.

Consequently 2t1 ∈
(

3π
2d

, π
2

)
and t2 ∈

(
3π
2d

, π
2

)
for 3 < d ≤ 4. So

2t1d, t2d ∈ (3π
2

, 2π) if 3 < d ≤ 4. tan t is strictly increasing on (3π
2d

, π
2
)

and −1
d
tan(td) is strictly decreasing with t where td ∈ (3π

2
, 2π). Simi-

larly we get 2t1d, t2d ∈ (3π
2

, 2π) for d > 4.

tan2 t1 < d2 tan2 t1

which implies

1− tan2 t1 > 1− d2 tan2 t1.

t1 < π
4
, so 1− tan2 t1 > 0. By (4.7)

d2 tan2 t1 = tan2(t1d) < 1

since 3π
4

< t1d < π. Hence 1− d2 tan2 t1 > 0. Then

1

1− tan2 t1
<

1

1− d2 tan2 t1
.

By (4.7),

−1

d
tan(2t1d) = −1

d

2 tan(t1d)

1− tan2(t1d)

= −1

d

−2d tan t1
1− d2 tan2 t1

=
2 tan t1

1− d2 tan2 t1
.

By the above inequality

tan 2t1 =
2 tan t1

1− tan2 t1
<

2 tan t1
1− d2 tan2 t1

,

so

−1

d
tan(2t1d) > tan 2t1
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Assume t2 ≤ 2t1, then

tan t2 = −1

d
tan(t2d)

≥ −1

d
tan(2t1d)

> tan 2t1

so tan t2 > tan 2t1 contradicting the fact that tan t is increasing on
(3π

2d
, π

2
). Hence t2 > 2t1. This proves the entire Lemma. �

Remark 4.4.
lim
d→1

t2(d) = π

so
lim
d→1

t2(d)d = π.

but there is a pole at π. Hence

0 = lim
d→1

h(t2(d)) = lim
d→1

(2t2(d)

π
cot t2(d) +

2t2(d)

π
d cot(t2(d)d))

so there are solutions for which f(λ) and f(λm) are infinite.

lim
d→1

t1(d) =
π

2

then

lim
d→1

t1(d)d =
π

2
.

lim
d→1

h(t1(d)) = lim
d→1

(2t1(d)

π
cot t1(d) +

2t1(d)

π
d cot(t1(d)d))

but there is a zero at π
2

which shows that there are solutions for which

f(λ) and f(λm) are zero. This shows that t2
t1

= 2 if d = 1. i.e. λ2

λ1
= 4

for m = 1.

Theorem 4.5. Let % be a (not necessarily symmetric) single-barrier
density function on [0, π] with transition point a = π

2
. Then the first

two eigenvalues of the Dirichlet problem (1.4)-(1.5) satisfy

λ2

λ1

≥ 4

with equality if and only if % is constant. If the transition point a 6= π
2
,

there are single-barrier densities % for which λ2

λ1
< 4.

Proof. It was shown in Proposition 3.13 that the optimal density %0

must of the form

%0 =

{
1 on (0, π

2
),

m on (π
2
, π).
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or

%0 =

{
m on (0, π

2
),

1 on (π
2
, π).

for some m ≥ 1 since when multiplying density by an appropriate con-
stant the ratio of eigenvalues in unaffected. The differential equations
of the above densities yield the same eigenvalues so we deal with the
first form. The eigenfunctions are given by

u(x) =

{
c sin(

√
λx) on (0, π

2
),

d sin(
√

λm(π − x)) on (π
2
, π).

Non-zero constants c and d must chosen such that u is C1-smooth at
π
2
. This is only possible when the ratio u′

u
coincides from both sides at

π
2
. So

(4.10)
√

λ cot(
√

λ
π

2
) = −

√
λm cot(

√
λm

π

2
)

The eigenvalues are real positive solutions of the above equation. We
allow cases when both sides are infinite. But by Lemma 4.3 the first
two eigenvalues satisfy λ2

λ1
> 4 if m > 1. Hence the optimal density %0

is obtained when m = 1 (see Remark 4.4) i.e. %0 must be a constant.
This proves the Theorem in the case when the transition point a is at
π
2
.
Suppose 0 < a < π

2
. Let

%(x, t) =

{
t if x ∈ (0, a),
1 if (a, π).

As in the case of the single-well potential the eigenfunctions are given
by un(x, 1) = kn sin nx where kn > 0 for t = 1. By normalization
condition ∫ π

0

%(x, 1)u2
n(x, 1)dx = 1,

we get

k2
n =

2

π
.
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Then for t = 1 :(λ2

λ1

)̇
=

λ2

λ1

∫ π

0

%̇
(
u2

1(x, 1)− u2
2(x, 1)

)
dx

=
2λ2

πλ1

∫ a

0

(
sin2 x− sin2 2x

)
dx

=
2λ2

πλ1

( ∫ a

0

(1− cos 2x)dx−
∫ a

0

(1− cos 4x)dx
)

=
2λ2

πλ1

(
(a− sin 2a

2
)− (a− sin 4a

4
)
)

=
2λ2

πλ1

(cos 2a sin 2a

2
− sin 2a

2

)
=

λ2

πλ1

sin 2a(cos 2a− 1)

< 0

since sin 2a > 0 and cos 2a < 1 for 0 < a < π
2
. So for small t > 1 there

are densities %(x, t) for which the eigenvalue ratio λ2

λ1
< 4. Similarly for

π
2

< a < π the single-barrier density function

%(x, t) =

{
1 if x ∈ (0, a),
t if x ∈ (a, π).

gives λ2

λ1
< 4. For a = 0, the single-barrier density function

%(x, t) =

{
1 if x ∈ (0, 2π

3
),

t if x ∈ (2π
3

, π).

gives λ2

λ1
< 4. By symmetry for a = π, the single-barrier density function

%(x, t) =

{
t if x ∈ (0, 2π

3
),

1 if x ∈ (2π
3

, π).

gives λ2

λ1
< 4. �
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