\triangle STUDI OF THS NOLKING HOLDINGS OF THE CHISI GOLD PRODOCBE

A Thesis presentod for tio Dagros of Dootor of Soicuec in the Enivorsity of the ilitwatorerand. dehaasabarg, by Micheol Fioerge foara.

Axgu it. 1943.
Soope of this stuady 1
Historical Notes on the instriat 3
SRCTION I. New Consort Gold Mines, Woorakeap
Historioal 5
Situation 6
Phyaiography aud urainage 7
Climate 7
Goneral Geology af the Aree 9
The fiocke Present in the Area
The Fostwall 700 ks
The Hanging in il 100 ks
The Consort "Lir"
The [ogatite "Jykes" 15
48
43
50
Structural Geolggy and the relation of the Structures to zones of Nineralintion 56
The Ore Bodion: That r lodes oi vecurroze
(L) The Controf TyEe of Ore nocurrozes craneral Putrogyaphy of the jrees Rock ilterat.on 92
97
107(2) The Freotare"ticofernGuneralPetrography of the Orennock illeration112
116
124
(د) The sorth "Heel"CeneralPetrography of the Oreshock Alteration(4) The Fault "Keefs"Potrography of the Orae132${ }_{135}$
IWDEX - coatinued
Conclution:
Clasaification and Gunorai buture and ixploration
SECTIOA II: Nem Consort Gold Mines - Shebe Section Fietorical144
Ituatioc. Pbyoiography and Drainago 145
Climate 147
General Geology of the Area 100
The liocke Present in the Aree The ithales The Bars

 The"Z.K.O."

 "The Green "Sobist"

 The Grey "Sohist"

 The Dyker
 The Ore Bodies: Thoir Ielationsthe forial irectureThe iwarthopjo lracturesThe Z.K.D.The Insimbi FractureThe Malvina jreoturoThe Elattory ieofThe Birthday sracturesThe Intombl bractureThe Southorn Crose, Z.X. Jiseure and Amadorectures259
The Umfean yracture
26%
26%
The Testorn Crobs Practures 25.3
Sheba ie. t
Prospecting 64The Ola Shota, or Golden Guarry Line214
210
234
233
240
242
240The Ores: Various Types of brecture Minerali-sation(1) In the Groen "Schisty"GenoralPetrography of the Oree291279
INDEX - continued
(2) In the shalesGoogralPotroprapay of the Oros
(3) In the Sary
Pinparal
Potrography of the Oros 唔
ConclurionInarifloation aud GonoralFuture and ixpleration$\begin{array}{r}319 \\ 324 \\ \hline\end{array}$
General Concluding Femarks 327
Table 1: Stenderu Soroen Youh sisen and oerraspond- ing μ dimonuions of perticies 331
Bibliography 332

Plate No.

> Genorll Geological Map of the Marbertor
> Geslogical Jap, Nom Consort fold Mines, Ltd.
> Geological Yap of the hebe Hille area
> Geoloeical Map. Tew Consort wolu Mines Chobe Section
> Fertical Geolopical Jross Soctions. New Consort Cula fines, Lid.
> Vertical Genlogical Cross ections, New Conscit Gold ines - L'hebe Suction
> Y - XI
> III - XII

LXIII

Auriferous Arsonopyritic Ore, Fin Consort
Gold Yines, Lid. Iig. 3
Photomicrographe of thin sections of footwall rocks. ligs. 1-3

XXI
Photomicrographs of thin sections of hangingwall rocks. Fige. l-3

XXXII
Photomicragraphe of thin sections of the Soneort bar. Fige. 1.2

XXXIII
Photomicrographe of trin sections of
the pegmatitos yan thoir wall rooks. Fige. 1-3.

DXYIV
(Complote list of Plates - continuce)
Photonierographe of eoctions out from the Contact Ores. Figs. 1-3

Photomiarourephs of eections cut fron the Contact Ores. Fige. 1-328X2V I
Photomicrographs of seetions out from the Fracture Ores. 11ge. 1-4 2XXVII
Photomicrographs of cections cut from the Fault Ores. 1ige. 1-3 XXXIII
Mov Consort Gold Yines - Shobe Sectiou
Photomicrographs of thin soctions of the sholes. yiga. 1.í $x \operatorname{cosix}$
Photomicrographe of thin bections of the bare. 1gA. 1-4
x
Photomicrographs of thin sections ofthe green "schists". Kige. 1-3at
Photonicrograph of thin section of the gray Echistgi" Fig. 1 2III
Photomicrograph of thin ecction of tite dykes. Fig. is Fhotomicrographs of sections cut fromhotomicrographs of sections cut iro
the green echist opes. Vigs l-4
Photomiorogranhs of sections out from the green "eohist" ores. Higs. biu XLIV
Photomiorographes of suctions cut from the green schist" ores. Vigs. i-3 $x / 1$
Photomiorogreohs of sectione cut from the shale orws. rigs. 1-3 XLVI
Photomicrugraph of asection cut from the bar ores. XLVII

Samen al thingindz
The mining distrint of the Earborton area is of considerable extent, and presents a bewildering variety of probleas in ore copositiun. In addition to this, the rocke of the aina, boing of extreme age, and heving ausfered intence alteration, conntiture in thonselves nattor for a great deal of inyestigation, offoring what ic prabably the finest material of its kind in South Ifrice. The strusture of the district is a great doal nore complex then is generally realised, and it is unfortunato that up to the presuat. litils or so datailed geological work has been done or recorded, ovan on the nines. It is therefore obvious that a detailed etudy of the tjpe of this dissertation must necessarily be coafined in ite acope.

It is proyosed io deal with the two areas eonstitating what is now knom se the Nen Cozsort Gold Mines, Lti. This Company operatise the Wam Consort Cold Mines in the Jamestown roke at Yoordkap, and the lle Consort Gald Hin: - Shebe Seotion in the Yoodjes roake at Shoba. This lattor in actually a separate afne, but is oporated for arre of control ab a section of the Fen Consori Mincs.

As the ore deposity in the minob un or consideration ure complex. this roport will doal with the rooke in thair immediate vicinity only, with the ores theacelves. and with their mode of oscurronoe. The general struotural relations of the rocis in the dietrict have been
recontly examinec by members of the Unina Governmont Goologioal Eurvey, but their findinge have not jot been publiched. As this atudy is concerned with the mining properties only, it is not possible to enter into a detasled discuseion of the teotouice of the district, siace insufficiont field information of the neceseary dotailed nature is available. Where some sepect of the regional fectonica is exposed by the aine stractures, this will be nentionet.

It is unfortunnte that nore dotailed work has not been dore on the gold deposits in the Prinitive Rocizn of the Union, as sucir work would be of undoubted value in consection with otudies of the thand ores.

Hietarigal Notan an the 位striat

The Sarbertos Loidifjela, though not by any moans the earliest in the Jaion, has been worked aince the year 1884 . Whon the Natal colonist, Grahan Barber, dincovered gold-bearing quart voing in the kille eoar the present site of Barberton.

Until 1886, the diggere worked mainly in the hill of the loodies area, but in that jear Edwin Bray discovered the original Shoba Mive ia the highly diesectod aree now known af the faebe idills. A tronendons ruin follumed this discovary, and aining activities sproal ail over the district.
yeny "mines" aprang into boing, and of course the majurit: did not survive the test of time. The increase in the price of gold has led to the reopening of many of these ebaridoned workingli. Reveut work hes nhown that lack of gold or alucontruity of the doponits has not by any means always been the reeson for thoir abandonment.

Later, the ore body constituting the Shebe scotion of the present hem Consort Geld hinet was discovored in the Zwarthopje Valley. See Flate III.

The maic Consort ore bodies were not discorored unt1l sore time later, when work started on the "Shires" reof, and some very rich ore wes mined.

The disooveries of goid in the berberton Distriot
geve a trwmendorn illlip to prospecting throughout the country, and thus led finally to the discovery and oxploitation of the fand deposite.

The following are sume intereeting ligares of gold output from the Barberton District in the early daye:-

$\begin{aligned} & 1885-6 \\ & 1807 \end{aligned}$	$\frac{17}{25,269}$
1888	49.017
1889	35,002
1090	33,710
1891	66.598
1892	69,761
1093	70,282

Since the Barbarton Coldfields hed suck a groat influence on the carly oxpansion and oponiag up af the Union, it is rogrettable that more koowledge of the oarly history of the field is not available. Occanionally. frageente of fact and legend eacrge to ahow that the Barborton District had an intonsely intoreating aarly history.

One of the rossons for the abanconant of many of the mians in the district has undoubtediy been the feet that the ore below the water table has almost invariably been refrectery. Phis is due in part to the presence of refractory ninoralo, and in part to the feot that the gold irequently occurs in minute particles onclosed in gangue material.

S30710.1 I

Now Consort Gold Himes, Noordtrap

Snation

Iem Consors Gold lines Moordkn

Biatorian

The early history of what now conetitutes the llow Coneort Mine is somewhat obscure. It apperontly consisted of several mines: the Consort Mine, the Eatente Minc, the Prince Jonsort and the Mald of de Kaap Mineo.

Not long before 1929 it cansisted of two propertion? the Maid of de Kaap and the Cunsort Mnes, the lattor includiag the Prince Consort and Entente Siaes.

In April, 1929, the two properties wore comblaca. forming the Mow Consort Goid Zinur. Ltd.

Prior to Δ pril. 1929, the Consort mill had orushod 224,140 tons at on avorage grule of 17.1 duts./ton, to recover 122,600 fine ounces of gold. The old Maid of de Keap mill hed then crashed 147,660 tons of an avorage gre of $21.38 \mathrm{dritg} / \mathrm{/ton}$, to recover 132,640 ouncess of fine golc.

Since April, 1929, the two mines have beon comblaed se the Now Consort Gold Mineb, Ltd. From April, 19\%9. to Junc, 193j, the combined mill crushod 304,146 tons at an average grade of 10.9 dwte./ton, to jield 133,666 ounces of fine gold. From that time to the ond of Junc, 1941, 760,157 toas were crushed at an everage gracie of
5.5 dwis./.on, to yield 170.225 ounces of finc gold. Thus from the commencomert of oparations to Junc, 1941, the mines now constitutiog the New Consort Gold Yines, Ltd. have crushed a little undor 1,500,000 tonn of ort, and produced 560.129 ounces of sine gold.

As the ure from the New Consort Gold Mine onntalns an appreciebin proportion of arsenopyrite and gold in the form of minute particles, it lies almajs boen more or less refractory. Fer some tize soncentrates wore roasted, and arsenious oxide was proluced and markoted. "ow, however, the sands only are ruasted, and no byproduct is produced.

Siltuntion

Tro Nom Concort Mino is situated at Noordkanp. some 11 miles due acrth of Barborton. It is on the sunthern slopes of the foothills of the trooodil. Poort granite ranges, in the sorthern monutaiaous border of the De Kaap Falley.

The elevation of the aine offices is 2250^{\prime} above mean sea lovol, so that the mine is not in what is strictly defined an the Low Veld, which includes the country from sea lovel to an elevation of 2000°.

Physingenphy and Urainace

As has been stated above, the Now Consort Gold Mine fo sitented on the southorn clopes of the foothills of the Crooodil. Poort Ranges. Between these foothilly and the De Lasp Valley rase the Noordkap Kivior, Which is just within the southorn boundary of the proporty (see Plates I \& II.) This river rans, in sanorli, due east, and the drainage of the mine property is tiorefore southwarde, for the most part, towards the river. The ares is highiy dissocted, and the oreoks are genorally dry for the greator part of the jear.

Plate I showe the location of Noordkap and the Few consozt Mine, and the Goolugical Plen, Plate II, shows the drainage ajsten. The Photograph on Plate XXIII is a Visw of the New Consort Mine from the rising ground sefreen the hoordkapp Rivor Palley and the Do Keap Valloy. This indicatos the nature of the torrain.

climate

In oumer, shado tomperaturee af ovor $100^{\circ} \%$. aro frequentiy recordod, and the fairly heary rainfall takes the form rainly of covero storas experienced during the monthe from Saptember to April. The winter climate is
idoal, boing seldom too hot for comicrt, and freasing tomporatures are rarely apporioneod. Malaria fover and horte aiokness are fairly comon during sumer month, particularly in the lower lyius ground.

Gararel fonlogrof shatra

The New Consort Gold Miae is rituatod in the belt of Javestown rocke whish strotchos from tho Urakonaborg near Kaapecie Hoop cent-nvutheastwards towards the Shebe Hille. Plate I showe clearly bow this belt is bounded both north and south oy the "01d Granite". That to the north of the Jemoctown rocke is known as the Crocodile Poort or Nolepruit Granite. and that to the south an the Do Rear Valley Granito. plate I is a copy of the map isaued by the Goologion Survey with Memoir Ro. 9, with some altorations in the Shebe Hille eres, whure mapping of the uino proporty hes proved this to be nocnseary.

The Jamestomn rocks in this arce consist of basia solists, sorpontiaes, and allied rooke with come quartsities and thilu bands of conglomoratus. In tho viciaity of the Concort ikne thore is also $=$ stratu of bleok shaly rocke, altored to horafels, oto.. which are atated by Hall ${ }^{l}$ to belong to the Modios Sorime.

The Jamentown rocke shom eridence of intonso thermal and dynamic motamorphim, which munt be dre to the intrucion of the "0lder Greaites" which fiall ${ }^{3}$ show are intrusive into both Jamestow and Moodian

[^0]rooke of the swasilasd Syston.
It has boen pointed outl that the Nolupruit and De Raep Valley Granites show eseral disforant char actoriotios, and fiall oonoludes, thorsfore, that nopeciel oonditions of ooncolidatiou extated over the De kanp Valley aroa," Thic is true, bui it will bo ahown later that the do Kaap Valley Granito is younger than the Nolapruit type, probably conaidnrably joungar.

The rocks around the New Consort Miro have thus been first fatruded, folded and altered by the Nelepruit Granito. Later oam the intrusion of the to Kaep Valley bons, the effecte of which were suparinpased apon those of the Holepruit Granite. It is largoly this lattor intrusion whioh bae givon rino to the complar atruotural conditioze obsorred to the "qrkings of the Consort Gold Miac. It is almo - lattor intrucion whioh has been responsible, for
-. most rart. for the mineralisation of the distriot. Within the nino bounderies, the recte exposed are of two wain types, vis.i- a lowor basio echiotose sorios and an uppor altored shalj sorios, now largoly rearyatallised to a jointed hornfuls. The ountact sone betreen these is the horison apen which the

[^1]nialng lo done.
The general struoture appeare to be that of a sjacliae pitchiag gently eastrards. The wiae workinge are situeted on the northera slopes of the Noordkaap uiver vallej, as can be seon by referonce to plate II. The geaoral dip in this area is southemards and southeastwards. The aree south of the river has not jot been thoroughly examined, but it in known that thore ara outcrops of what would seen to be the south liab af an overtarned ejnolfne, on the northorn liab of which the workinge are situated. This atructure. together with the intrioate ninor folding axposed in the worisings, is probably due to the intrusion of the It Reap Vallos Granite, with the oldor Molapruit Granite mase acting es the atationary jew of the "vico". Hall ${ }^{i}$ considera the foitwall basio sohiste to be intencely autamorphosed basic rocks intrusive into the lioodies seaimente, to whioh lattor group ho eseigns the hangine wall "ahalen" of the Consort area. There is no evisonce in the Consort Mine workjags to support this iden. the oontact botweon the rocke is often sharp, but it is equally frequently gradational, showias altornating laminations of the two types as thin es $\mathrm{i}^{\prime \prime}$. There are lonses of the shais rook ilthia the schints. and here again both sharp and gradationai contects aaj

Op. oit., p. 107. p. 114.
bo obcorvod. The lanjations and othor intornal structares of the rock in these lenses ore parallel to the genoral. atratifloation. Nowhore have apophyees or veinlets of the lower besic rocke bean found ponctrating the hanging wall, and nowhore have any phonom mone beon obsorted whioh wight be intorproted as indicating an iatrusive rolationohip. Magative evidence of this kind is not nceossarily oonclusive. but it mast be birne in mind that the nine moridige have thoroughly exposed the conteot over a soneidorable ares. Little wort hes boen done in the hanging wall rooke, but ihat whioh has beon dose also dieclases nothing wich couid be intorprotud is indicating ea intrusive relatiosidip.

Within the footwall schirte, apart from the lenses of hornfulsio rocics of a type similar in ovory way to the hanging wall rocke above montionco, thore oocur bede of quertaitic and conglomoratic rocke. These rolations tend rather to indicate that the sohista, are altored basle lave flows, altoratiag with sudimontary types. It is also somenhat doubtiul is the hanging wall rosk belongs to the Moodice iorice. It scoas far more 11 kely that it is one of the sodimontary bods of the jamestima Serios. The area botween the Nen Consort Mines and Lureica shoulo be subjected to further eareful examination in ordor te chect fall':
atatementl to the effect that a portion of the "Lily Liao" branches off and finally passes an a long tongues of highly altered sedimentary rock e into the demostom series at Reroka.

Thus it would seen that Hall's tabulation an page 109 of Memoir No. 9 of the Geological Survey requires son revision.

Yotemorphice effects in the rook e exposed on the mine property appear to bear little or no relation to the io Reap Valley Granite, and are probably mainly due to the older Relepruit Granite 1atrmeion. (Cl. Geological Surrey Memoir Mo. 9, p. 164.) The sohlato deity often shown in the footwall. rooks is parallel so the contact of the De Rap Valley Granite when this intrusive is within a mile, and whore the otrnoture is not complicated by the presence of other rooks.

Near the western and couthrestorn boundaries of the property is a prominent exposure of quartiftos and conglomerates. apparently conformable with the monists which they andorlic. South of the Nosrdianan Haver them strike southeast, but nortimards the strike becomes north-eonth with an easterly dip, and finals apparently turns again towards a northeast strike.
$1_{0 \text { p. cit., p. 114, p. } 203 .}$

This indisates that the genoral structure is that of an eantorly pitohlae ajncline.

At most plecee the contect sons botween the sohiste and the ovorlying homfole showe signs of conaiderable hyarothormal alteration. This usually fakes the form of intence allicification and roplece mout of the hornfele at and near the eonteot. The procers somotimes oxtende as much as 100 feot into the hanging mall hornfols, trough the avorege is sone 4 to 8 iost. This prooess resuite in an intenculy hard. brown to blecis or greenish cherts baed. loonlly known as the Concort "bar". Thic siliajfication !a related to the mineralimation of the oontost zono.

The footeall rooke ore localls known as "echiot" and the hanging wall as "shalo".
"yjkos" of pegeatitic metorial are comonly found cutting both "schisti" and "shales". Some of these conotitute a parallel aysten, and othere of sinilar type occuip faulto of considorably lofor age than the mineralisation. These pegatites are thorefore conefderably younger than the period of niweraliseo tion. The intrisione wonld secm to have beea forned by processes of partially replacment and partially intrusive noture. They are not alwaye atriotly dykes. as isolated lenses of segnetitic material are nome times found aligned in a somon plane.

Tha Fioatrall Boaka

Underlying the "ahales", these rocke are vary persistent and of considerable thickness, up to 8.000 foet.

In genoral, the uppor part of the footwall rooise is more or leos without intercalations of othor rocke. with the oxcoption of thin bands and lenses of silloified "shalos", of which further mention will bo made subsequently. Towards tho lowor part of the footwell rocke, howover, bands, lonses and layors of quertsitic and conglomoratic rocke of varying thickneas becomes gradually more abundant until north of the northermoot aine boundary line these beoom the predominating reck. These quartsitic and conglomoratic rockn, howevor, occur to a negligible extent within the mine proporty.

Towards the harging wall conteot, however, thin bands of "shales" become fairly comon. Most of these bands are lonticular, and mort are only a fom anches to a fon fant in thiokness. Ono has boon oxposed vith a thickness of over 100 feet, but the average is nuch saaller. In some placer these bands become so frequent noar the "contact" that the latter becomes more or lans gredational. The averege thickness of these intercelated bands of hornfolaic naterial decresses as the min "shale" body is approached, thue atill further cocontuating the gradational nature of the contact.

Such conditions somotímes sake contect devolopment, ouch as is practised on the Nem Consort Mine, Bomewhat difficult. Those bande and lenses within the footwall rocke have almost all beon so silicified an to adopt the oharactoriatios of the Consort "bar" matorial. In some pleose, where the contact sune is in the form of an aiternating marios of "eohiet" and "shalu" lainetions iron fin to f^{n} in thioknesto the whole nase has beon silicifiod, rosulting in a rather hancsome rosk with alternating green and ohooolate coloured chorty bands. This rock is known as "Bantard Bar". The bands and lenses of altered "shalo" in the schiste conforn to the genoral etructure.

For the mont part, howeror, the "schist-shale" contect is well dofined and oharp, asually with a this lajor of talcoes mattor on the contact plane.

The "schiat" is mostly a oryotalline rook, and is massive, without foliation. Such purtions are gonorally botter named aphibolites. In places, however, whers Intense 100 al shear has been notive, the rock has bocome taloose sid thoroughly ioliated. See Plate XCII, Iig. 4.

The ommonatit fecies found anong the footwall rocks is one which is fairly herd and tough, is a groenish gray colour, and is as a genoral rule without sohietositr. This rook almost invariably shows nore or leas parallel undulating planee which are coated with a thin
layor of talc. These may be th to lin apart, and are evidently planes al.ong which nome novemeat has teicon plece at the etage just jaet that at whioh nowage relioves the strain.

This rock consiste almust ontírely of a folted mase of greouish needles which are casily distinguishable in the hand specimen. They range frou thim. to 4 mm . in length, and irnquontly ocent in radiating groups. Sometimes they are arranged in all asinuths in parallel planes, producing a fairly well marked scinistosity. This, however, is not usual.

In thin section this rock is seen to consist mainly of felted mascos of radiatiag tremolite nosilue. These are genorally colourless, but oscasionally show very faint ploochroism, from colourless to a pale greon. The tranolite needles are geiorally bent, and show signs of considerable strain. Somotinop thore is some colourleas isotropic material interstitial to the treaolite, and this usually show diasinct signs of crystallisation to form antigorite, which is also soun hore and there replacing tromolite. Irequently en approciable propertion of andesine felspar occure with the tresolite. This his well developed oleavage, bet. as is usual in such rocks, the polyejnthotic twinning is poirly doveloped. Magnotite as irrogular graina. sometimes within the tromolite cleavages, and as ginute nctahedra, is univernal, as is also rutile.
usually in the form of minute needles.
Rarely the rock har an almost doleritic texture, with andesine lathe, and woll developed cryatale of augite. This latter minoral exhibits several types of twinning, of which the comonest is simple twinning on (100), as illustrated in Figure 1. Comon is another type which is sontimes simple and sometimes lame: 'ar and

rigure 1. polyaynthetic on (110).

Figure 2.

Pigure 2 is a trpical basal section of such a cryatal. A third type is a compound trin, with planes parallel to the sleavages, giving a cryatal of the type illustrated in Figure 3. lamellar twinning on (001) has not bsen obedrred.

When this augite is obser-

rigure 3. ved, it is seen frequently to be in course of oplacement by tremolite needles. Occasionally the augite and the tremolite aan be seen in course of replacement by green chlorite and saall amounte of brom pleochroic biotite.

Very commonly the tremolite can be scon to be in course of alteration to talc. This is partioularly
rel show when the rock show many shear surfaces. Som specimens of the rock consist mainly of green, strongly ploochroio hornblende, with green chlorite.

Fairly common in scotions of the footwall rocks is soisite, and occasionally patches rich in epidote are found. The occurrence of this epidote is interesting. in th t it has oconsionally given rise to oonzusion in prospecting operations where valuations are made by means of a fan. Then patches rich in epidote are amp plod in the oxidised material exposed in eurfece prosporting, panning sometimes fields a "tail" of whet at a cursory glance appears to be cold. Closer inspection reveals it to be epidote. For some unknown reason thin material has come to be known locally as "blenutk".

In places where the footwall rock e hare been sibjocted to intense shear. i.e. near fault e or folds, the rock sometimes boomer a highly fissile and rehistoce mass of talc, and is very soft and "soapy". Where tho shear has not been so intense, sections show tremolite boiling replaced by 81 ne masses of tic. ${ }^{l}$ In the extreme oas. the rock is $s 0$ soft and fissile as to be selfsupporting only over a very narrow span. A section of this rook out parallel to the cohistosity is mainly
$\mathrm{I}_{\text {Geological Surrey Memoir Mo. 9. p. } 202 .}$
more or lesa isotropic, with neodle-shaped oryatals of talc hore and there. A suction eut at right angles to the schistosity revenls that the roci constats of bande of coarse end fine telc. The ifne bands consist of ninute plates of extrine thinness, lying in parallel plenes, while the coarse bands consist of tale oryatale up to inm. diamotor, lying in all direotions, but mainly at right argles to the planes of sohistosity. These crystals or piates are those which give rise to the needlo-like forms seon in the seritions out parallal. to the sohistosity. The talc pletes show the usual olearage, low reliof and high birofringonce. It is bjaxial negative with an axiul angle of about 30°. This rouk is a talc sohist.

Very rarely, near the conthestorn bonndary of the proporty, spocimens are found whioh show the rock to have boon subject to faermatolyois and high temporature hydrothormal agencies. Hore the rock conaists of a mass of matted cryatals of grcen, highly pleochrois ohlorite. some of which show the charecteristic bline interforence colours of ponninite. Large ideomorphio erystals of tourmaline are aburdent. These have en avarage dianter of 3m. and a leagth of up to 20 m. They occur individually, very rarely an radiating groups. The tourmaline is in seotion strongly plese chroic from light brown to dart greenính brown, the
innor parta of the orjotals buing much lighter in colour than the outer. Along the boandaries of the toumalina crystele is a solvedge of brown biotite. The tourmaline has the properties of the iron-rioh sohorlite varioty. A apecimen of this rock is show in Pig. 2 on Plate XXIX.

Noar the western boundary of the property another specimen has been found showing ofidonce of pasumatolyois. This rock is a strikingly handsowe salmon pink with irregular jellowish patchen, and contains abundant oryetals of green tourmaline. Those occur individually, very rarely as radiating groups. On the weathered surface the tourmaline oryatais stand out well. prom ducing a rock of striking appearance. Eranination of the fresh surface of the rock showe the matriz to be exceodingly fino-grained and occasiomally finoly banded. This banding doos sometimes persist in the form of lighter and derkor bands directly across the tourmalino orystale, which average 4m. in dianoter and 2 cm . In length, though crystals up to lun. z 20m. have been seen. Figare 4 shows nore or less the appoar
 anoe of the banded areas. In thin soction the tourmaline is colourless and not pleochroic. It is uniexiel negative, and its refractive

Indicer and birefringence fall within tho dravite range. The matrix consiste mainly of finoly fibrolanollar antigorito, with fairly abundant tiny orjatais of aineral which is pleochroic from light muve to colourless. This aineral oocure only in tiny grains, and is olouded with sericite; its optioal proportios have sherefore not been datermined. It occure in bands and strings in the matrix, and these persist through the tourmaline orystals, constituting a beantiful example of holicitic atructure. Rafor to Plato XIX, Iig. 1.

111 ecctions of the footwall rooks ahom the presence of more or less antigorits devaloping at the exponse of the tremolite. In sume areas this process hes devaloped to the point of conplete rupicocmont of the trenolito, resulting in a massive sorponifino rosk. The trenolite rock passes gradually over to the sor pentinc. The diatribution of these areas of roplecomont is irregular, and the causes of this process are not apparent. ${ }^{1}$ As there is no sharp contact between the treaolite rock (amphibolito) and the sorpentino, apooimens sheming all stages of roplecement are reodily found, and some of the internediaie stages show the prosence of muscorite and serioite, both of whish
$1_{\text {Goological }}$ Survey Memoir No. 9, p. 20%.
irequently persist into the sorpentine. In the massive serpentíne rocke occasional very thin crose-fibre voinlets of chrysotile are found, but these are very poorly developed within the boundaries of the mine property. At one point in the aine workinge a apocimon of chrysotile asbestos with fibres 9 iachen lons wes found, but this was in the fors of an isolated "pooket". The serpentine as typically dovelopai is a soft green rock, consisting of a fibrolancllar nass of antigorita, containing a fow anall irragular grains and octahedral arystals of magnetite. These somotimes show palinpsest pyrozene forms, and somotines those of olivine, though this mineral itsoli hes not beou found in the sootions. Fairly onmonly found in the sor pontine rock are suall grains of muscorite aloe. Very raroly in the serpentine bastito peoudomorphe after pyrozene can be seon.

Another type sonetínes notioed among the footrall rocks is one consisting of tremolite oundes, With sericite and muscovite mica. This rook is more or loss schistose, and lyiag in all dircotions in the planes of schistosity are tounaline orystals avo. aco ing im. I 2om. This tourneline is black in the had specinen, and in thin soction is strongly pleochroio from light brown to dark greon-brow. This rock is illustrated in Fig. 3. Plato XXIX.

The footwall rocks as a genoral rule weathor fairly deoply, and in the valley of the Foordicap Hiver outcrops are not plentiful. Here thore is a fairly deep soil which is generally quite heavily impregnated with white to brown magnesite, which also occurs as voialote in oracke. On tho hill slopes these rocks, though weathered, form nany boulders and loose rooks lying eabedded in the soil.

The "fontrall rooke" or "sohiste" of the Fen Consort Mine thus consist of a number of allied types whioh may be listed as follows:Aphibolites
Tremolito-andesíne rocks or plagioolase anphibolites
Chlorite schists
Sorpontine and antigorito sohiste
Chlorito-touralino schists
Tale sohiats
Altered doleritic rocke?
Iremolitetulc sohists, otc.
Thin sections of all these rocks show widence of intense struse.

Trcoolite schists or amphibolitns of the type found on the nine are generally formed in one of two waye: by metanorphiom of sillocous nagneeian li:nootones, or of pyroxenites, etc. The original roois ic not always deterainable. The ocourrence of soisite here and there arcuen the presence of a lime lolepar
in the criginal rook. These tromolite rocks, thergfore, are probably derived from a syatem of rocks of pyrozenitic and coritic tjpes.

Chlorite in motamorphic rooks of the kind found in this ares is usually the resuit of nineralogical changer in pyrozenitic and amphibolitic rooks.

It is evident that olivine was not common in the original rocke, on account of the almost complote absence of carbonates ozcopt where lator minoralising solutions have been active. Most of the serpentine has beon formed aither direstly from pyromenes or from the tranolite. Oriag to the fact that the dircot formation of entigorite from a pyrorenitic or porido titic rock requires a considerable ecoess of water. which is not available under the oircuastances obtaining, talc is fomed as well, so that in varinue stages antigoritotalo rocks and tremolite-antigoritctalo rocke rosult. Most of the talc in the fom of the tale sohists found is essentiaily a stress aineral developing under more localised condition, as is shown by the parallel arrangement of the flakes.

The occasional ocourrence of a rock consisting of a green hornblende with andesine folspar show that at least parts of the original rock were of basio com position. This horriblende-andesine conbination constikuter the rook classed as a plagioclaso-smphibolite, which is characteristic of the higher gredes of
motanorphime of bacic rock.
The apidote is generally devolopad at an earlior stege from the aane rookn, in the form of albite-epidote: chlorite ochists wh - lator dovelop into albito-epidoté horabloade schiots. In the nore adraneed atages the horablende develop: further with the reselt that the folspar becomes more basio, paesing to andestue. The epidote, however, usually survivos, at least in part. in the nost adrancod stages of notamorphism.

It is to be axpected that folding, orvohiag and heating of rook messos such as taker plece during intrusion and concomitant notenorphicm would facilitato the ponotration of $\mathrm{B}-a$ and liquide into the intraded rookn. This is somanl j eough reoognised, in so far as aineralisation is concoraed. It fo, howeror, oommon in metnmorphio aureolur to find ovidences of paemaso tolytic effeote some distance from any exposed iatro aive. Such are the developaent, for exmple, in pleces on the Nen Consort property, of rocke conoluting almost ontírely of ohlorite and toumalíne. The doralopmont of such rocks arguen the iotroduction of oonaiderable quantities of Inorine and boron, which aen best be brought atont by pneunatolysis. 1

In view of the somerhat variod natare of the rocks locally known as "schiste". Surther roforence to

Lharkor, A., Yetamornhiam, p. 118, p. 209.
these rooks will be mide undor the acme "footwall rocks." The fhotondorographs on Plate IXI are of thin scotions of the footwall roaks.

Th Buading Thll ioner.

These rooks are locelly called "shalou", but as this torm is far from correct, it will no longor bo used.

The roak conotituiting the hanging well of the Corsort theei is that which is shown on the map socom panying Goological Surtey Memoir No. 9, and on Plate I of thie volum, as branching off from the lloxdios Sorles acar Suroka into the undorlying dematome rooiz. Montion of this point hes alreeay been mede. On the Map and Plato I , these rocks are shom as rapwaly ondicel at a point reat i : the Now Consort Miso. Raforence to Plate Il will show that this does not truly roprocent the position. It oan be scen that tices roote rest upon the "footwall rooke" with a highly folded contcot. which wotually constitutes the concort reot. The attitude of this conteot show that the geacrel strow ture is that of en overtumed sjaclias, the trough of whioh is socupied by the manging wall rocike.

The formation of thie eyacline in the rooke proviously intruded, tiltod and motenorphosed by the Faiapruit Granito is evidently dxe to the intrueion of the nearby to Raap Valley stook. The intrusion of this maes has produced comprecaion effcots in tho FCm Consort aree and in the Shobe Rills. In the New Conmorl area, thif has minly takon the form of aptilting. overturning and fracturing of the rooke to the north
of the bose. The axis of this overturning is oithin the Fon Consort Gaid Minos proporty, and atrikas a little south of east, pituhing eastwards.

Dotalle of the atructures on the inde proports will bo deult ilth in a subeequent ohaptor.

The manging wall rooke are of rolativoly vory howe genouve oharacter; that is, no latorcalatione of difforeat types have bues axposed within tho mino bourdari though allght obengos withis the rook mace 19 - 18 aro aomon enough. Theas rocke as genorally axpoed aro Ifno greined, hard, derk gray to bromp-bleuk orjesilliaes They irequontly show diotiac: otratiform featuros ohiol
 Mesh of the "stratificetion" reen io thou rooks io ectually foliation eue to orionted biotito floken. ir regular jointing io somotimes 20 will developod as to mik the aftitude of the rocke difficalt to doforifno. In many cases no aign of jointiog or stratiliontion reaine, and the rock io muaive and oryatalline.

These rocke meqiher fairly deoply ond near the surface such fostures on jointing, "stratifiostion" end foliation beoome nocentratod, somotimes to suoh on extent es to give the rocke a dietinotly shaly cypeer ance. The marive variotice somosimes, on suterope, show peoulier aurfece features due to thoir minoralogical compoaition.

The hanging wall roake gemorally conolot mainly of
complataly reoryatalisead quarts, zomotimon aronded inth alneto liquid iooluaions and somatimes olear. but almese showing definito oigne of intence atrain. The guarts oocure both as írregular staped gralas and as lentiolee. which are cilgned in the folfation planes. there is alvaye a considaroblo emont of brewn, itghis plocohroto blotito, varying from som 1 be to 70% by volumen, and avoragine about 25%. The biotito, whon in la propor. tion relative to the quarts, is intorntitial to tho lattor, and vice verea. Alwaje, howor, the biotite hae a rory mail dofined parallal arrungement. This produces a doliaito sohistosity whioh is uounlly par allel to the ecaorel etratification. small mounts of pale gron pleochroio ohloritic adce arim aimost alwaye precoat. cenorally ao an altoration produot of tin blo tito. Magnotito as duct and as minuto ootehoers is always prosent, is are siroons. These lottor are gen orolls anclosed in tho biotite. 14 which they have given rice to rery woll devaloped pleoghrolo haloes. The sircose ahow sigme of matormurn edgen.

Almost univereally found in those rooks is an mphibolo coorrring oc coloular orjatale. often in realating groups, and arranged without regurd to the parollelitm of the quarte loatioldo and biotito llakee; that io, giving a diotinot doouseate atructnre. Thore necales cen aften be soen is benci apeoimen. Thise ninoral is colourleun in thin contion, and shows the
usual aphibole oleavagis and croscenctions. The oryaiale are alxost alwaye aimple twins, with (010) es the composition planc. Occasjonally this twinaing is laallar. There is a diatinot (OO1) parting, and astinotion $\% C$ is about 220 . It has high birefringesee. and is blaxial poiftive with as axial anclo of some 66°. This ainoral is probably pargasito.

Comon, though not universal, is andriusito, oceurr Ing ao irregular and hleded oryctala, usually muoh 000 roded, without regard to the gonoral parallal arrangemon Grains of this minoral invariably contain inoixulor of quarts, muscoifto, eto.. but no orjotale of the oh! untalite type have beon obsorted.

Únrdiorite is very comon, oocurring an fairly large orjutals, contaiaing inclusions of quarts and biotite, aid altoring to blotito.

Cosasionally tiny oryatals of amosine can be dio corned.

In the masuive and loss diotinotly soilated oceup rences the weathered surfece sombtimes showe peouliar irregular ridges up to $\mathrm{i}^{\prime \prime}$ high and $\mathrm{f}^{\prime \prime}$ wide. Thew aro generelly due to the cordiorite. (lise Plate XIX, Mig. 1. Sowetimen in the strongly folfated types, andalueite oryatale give rise to peenliar meathored surfeces.

This rock oan genorally be beut dosoribod se quartr-biotite schist, while the mavive varioties. without distiact parallel arrangement of the biotite,
may be olased as horafole.
In 200 arees the rook is oromed olth pinito 00 plotoly i.eotropin dodcoahedre of almandíco-sposeartito garnot, uevally with many miavte inolualume in the costre, and of avorage dicmeter abont lim. These fro quently counr as motacryate in atriage parallol to tho genoral folfation, whioh is usually sharply beat in their inediate vioinity. This type would beat be ocllode quarty-biotite-garnot sohiet.

Somemet raroly found in tho hanging wall rooks are cmall oryotals of pleochroio brownish greon sehor lite tomrmalíno.

Sorioite io vary irequantly found, guaorally in ascoofation with cordiorite, and bleded oryatels of ohloritoid are gonorally though eoarsaly distribyted.

At one plean, nemely in the intropplen cootion of the alno. the hanging well rock contains a great aumber of white bodies. giving the rook a moulose texturo. Those average tim. dianctor and aremp to lam. In thioknoes. They always lio with the lare dimoasions in the genoral folfation planes. five matriz botween the opote is the usual follatod aggregato of quarts and biotito. With tournalinu, megretito, sireon, par ganite, garnots, otc. The whito opote ure megregatee of very ine grainod querts, cordiorlto, solelto. apatite, soriolto and mucovito, usuali, with a 11 ttlo
magnotite duat. and completaly wishout blotite. The mecoerite in these apote is gonorally aligned parallel to the genoral sohistosity. The boundaries of the apote grade off into the matrix over a dietance of about tmm. Fig. 2 on Plato $20 X$ illustrates a ppeoimon of thim rock.

In some places the hanging wall rock coatain conaiderablc amounts of diopaldo. and whare this is the case the rook looelly consisto almost ontiroly of quarts and diopaide.

In hard apecimon, the rook is somotimes woll banded, with altornatiag modiven and fico graiaed lminm tiony, avoraglag about f " is thlokneas. The bomadaries botrom these are sharp. The coarsor gralacd beads consiat of the usual quarts-biotito cohiat. while tho fiaer grained parts consiat mainly of vary sise biotite witb a litile intoratitial quarts. In these ifno laiac tions the blotito flazee show parallal arrangenont in the plane of genorel lanination and soliation.

Woborl has decortbod the typloal "shald" 00 a folspathic niea sohist, somotimos containing nicroolino and mieroperthite. This opinion was probably based upon infonstion gained trom bedly colcoted apooimons. an feleparis are in genoral vary rere in these rocks. asoopt in the olose proxinity of pegmititio intruaione.

IPrivate Roport.
W. E.N. Zolly ${ }^{1}$ rofore to the hanging wall rook as a "hard, dark, compact chert or silicified horastuno, which in places gives way to a dark chiastolite slate." Almost all of the sections of these rocks shon a very wall defined sohistosity due to the quarts-biotite alignont; nowhere has a cherty texture been seen, and the aene "ohiastolite slate" is olearly e nisnomer. probably adopted from the Geologioal Survey Mcmir 10. 9^{2}. Such andalusite eu is presont is not of the ohicotolite form. This nane probably originated due to the appoarance of some hand apecimens of the rock, in which needlei of pargasito aphibole are very frequontly Visjisle. It is interesting in this conneotion to axanino the "injorophotographe" on Plate LV in the Goologionl Survej Meaoir No. 9, in comparison with Mig. 1 on Plate XXXII of this work.

Hall refers ${ }^{3}$ to aillimanite in a desoription of these rock. This ainoral hes not been obsoivel in any of a large auber of reotions cut from specincas taken on the New Consort Miae property. He refers also in the same place to "biotite hornfolses" and "chiastolite slates" as occurring in this area. Noithor of these

Memoir of Geological, Mining and Metallurgical Conditions at Nem Consort Gold Mines, Ltd., dated at Noordkap, 24 March, 1930. P. 1
${ }^{2}$ Pp. 155, 203. 245.
3p. oft. . p. 159.
names is well ohosen. On page 163 of the eare work ho states that there is auch ohiastolite 1 long needles or losenge-shaped crosesections is these roch, Feforonce to thib joint has already bean made above.

The study of motamorphism, giviag rice to rooks of the type oxemplified by these, usually requires postule tion of conaitions concerning which knoviedge is very soanty. Cortain conclusions concoraing the nature of the original rock and the prooseses by whioh it has reeched its present condition oen, howerer, be drawn without too much risk.

In generul, for reconetitation, reerjetalilieation and altaration if rock messes, solution mast neossarily anter into the seessas, if only as a local, temporary and transitional phese. It must, in feot, bo loanl ad temporary, otherwise the identity of the rock would be completely destroyed at an carly stage, and this is the ease only at en advanoed grade of motamorphim. Solution and rucryatallication proceares must be of vory restrioted naturo, as difiusion is linited to a raletivoly suall soale. Thus rocks originally of line grain and with narrow laminations are more aasily and rapidly reconstituted than those with coarse grain aad broed bands. The oomposition of the original rnok may vary from point to point and this proporty, awing to the narrow limits of diffucion, frequently persiste right
through to advasoed stages of metanorphisa. Thus the hangiag wall rocks show bands of the usual quarts-biotito. schist, with oocesional bands of very ifo grained, mainly biotitic matorial. These lattor probably woro lsainetions of more soricitic and ohloritic neture, with little quarte.

It mast also be borne in aind that cohistonity due to alignmont of tabular or oolumer minorals in motsmorphosed rooke need sot necessarily be due sainly to gronth of oryatals with thoir maximum dimodsione it right angles to the dirontion of an ilpoeed ebiast. Sach schistosity can casiig be dovolonod by the apiliac. tion of heat orily, without strase taking any rually aigaificant part.

Thus in 11 rock with a marbed fisaility, the production of tobrelar minerals anch as hiocito at an oardy atago of motanorphici produces a sohistone strusture which is parallel to the original bedding, due to the tondency of the oryotale to grow along bediding and lation tion pianos as baing the line of loast reaiatence. Somolifues es motamorphicu adranoes rehiotcilty is a new proporty with direotion imposed by exterach forses. Thun th Nem Cocsort hanging wall rocke genorally have - dolinito cohintosity, due to aligniont of biotite 11akes and quarts lentiolis, parallel to the origiaal etratification. Hore the sohiotose atruoture follows
the folding and has not been induced diroctly by external forces. When the structure of the original rock has beon more or less obliterated and flesility is reduced, due to the formation of more or less int rlookding oryetals. dcenssate struoture results krom the gropth of such onlumar minerals as the pargasite anphibole at higher eracies of notamorphien in a dofinito expediont to aininise the production of intornal shoaring strassec.

Argilleceous cedimonte, unlose they have a calcar eous content, arfi genoralily poor in lime and richor in magnesia. This if due to the feot that is the cournc Oi deet . of the primary rooke a considerable propoition - ac ifze is carried anay in eolution as oar honate, while the mgresie is not so easily renoved, and thoreforn passes into the argilleceous product. Limoaito also pasten into the argilleccous product in ainilar manzer. Most of the constitreats of argilleceous rocke result from processes of weathoring inoluding cheaical cotions taking place at low temperatures and ovor reletivoly long poriods, and as thoy exist ic a ifine atate of divialon, are gunerally in equilibrim. Motamorphim thus takes the form of gradual reedjustmont to risiug tenperature, and uaually to inoreasing preasure.

The lisonite is at an early atage roduced to flae grains and notahedra of magnotito, which for the nost part persist into the hicher grades of motemorphien aith littls farthor chenge. One of the firat new products
formed is biotite, from the ohlorite, corioite, iron ores and ratile of the sedimant. The formation of this biotito In aligninent at lowor prosoares or at an early stage has already beon mentioned. If kaolin io prosent. some of the ainerals formed at an early atage arn alnainíu silicates, such as andelusite, cordierito, or both. Gadaluaito is formed by the docomposition of keolín, but cordierite requires also the presence of chlorite. Froa the first these nineials, unlike tho biotite, take large orystal form anoloaing portions of uadigested rock saterial. Whereas cordiorite with ite fooble force of oryntailisation gonorally falle to noquirs erjatal tym and ojoot its inclusions, andelnoito at higher greaes of notamorphisu takes on definito oryetal forme and ejects or segregates its inclusions to become the ohiantolite type. Motanorphise in this aroa cannot, thorefore, have advanoed to any vory high grade. This efves some support to the idea that the motcrorphim is in the main due to the Noloprust Granito mase.

The quarts contont of the original rook gonerally reorystalifses at a stage soon after the formation of the biotite and beopacs a mass of more or less intor. locking orystals with the biotite ilakes, oto.. intor stitial to them.

Muscovito is oomon in suok rocke only near granito or pegratite controts whore more or less pnownatolytic agoncles have bsen operative.

As the matenorphime pragressos boyond the stage above outlinea, the nature of its course depende upon the ratio of aluaine to magnesias that is, on the proportion of soricitic to ohloritic conatituents in the original rock. It is mainly from thuse that nem anorals are formed in tice early stages, and the lator course of the recotione dopends upon whioh is exhaneted first. In this connection it must be renembored that diffusion and solution tako plece within a restrioted range, and thorefore localised aroas will shom alightly difforing sories of resoticas. If ohlorito is abundant the andalusite begins to ohange to cordieriter and the fometion of now forromagnesian illicates oommences. These uarally are a rhonbio pyrozone and almadínc-p.rrope garnot. If line is prosent as aphibole forms in plese of the rhombio pyrozenc. Within the rantricted linite of diffusion, pyrozene and andaluaite are matralijy ore olvaite, and pyrosene does not fore until the andelyaito has gone. In the cese undor considderation there has evidently beon onough lime prescent for the fornation of the pargasite anphibole. It is here of interest to reark that the andaluaite orratale in these rooke are alwost always corroded to amoh an oxtont that a oryatal outline is rare. The aphibisle has beon formed at the stage where the rook has lent its originel pissility, and thas oscurs in all dircetions, giving the decusate structure.

Garnot and cordiorite are also mitually ozolusiva, and the former is asnally formed only whore the ocsarroace of cordierite is separated, at least bojond the linits of diffusion. Thas cordierite is most abradantly found in the more massive facies of the rock in which garnots are very rare, and the garnots are found mainly in the sohistose types in चhich cordiorite is sparse.

Garnot is dofinitaly a stress minoral and it is. nador the oirounstanoes obtaining in the area ander consideration, neually a aixud almandinc-sposeart type. The formation of garnot is genorully fecil' atlad by the prosence of more or less manganesc, in this caso sufficient to Jiald a garnot of nixed alman copesnar tito varioty. The fect that garnot is usually a stress ninoral is intoresting in that it indicates that as the grade of motemorphise rose, the offect of strese inoreased; hence the bending and folding of the biotitoquarts schistose folia about the garnot orjstals.

The ocosaional presence of diops!de in a rook consisting almost entiroly of quarte and diopaide indicates that spots in the original rock had a oonsiderable limomagnesia content.

The jrosess of solution and recrystallisation is gradual throughout the roak maco and passes through definite atagen only at given points. It is apparently aotive at locallaed pointe, and ite offecto spread and eigrate at a rate controlled by the temporaturo
diffusion rate function. Whare the process is inter ruptod at a vory oarly etage the result is ramaily a spotive slate, with the apote conolating minly of an amorpious glasey miterial which has not had a chance to reorystallise. When the temperature and cooling conditions are axitable it is posaible the his mater ial may oryatellise auficiontly to jield n. agnisable minorals.

The spotted rock scen in the Witkopyios ares is unusual in that the "apots" are suporimposed upon and oridently wore forsed aftor the constitution of the quarts-biotite schist rook. an this ares thore is a considorable occurrence of pegmititic matorial in the footwall and it oen only be aupposed that this intrusici took place at a atage whon the min motanorphia was coupleted but before the rocks hed cooled apprcoiably. It is thus concoirable that this lator intrunion wes able to produce a sufficient rise in teaperatiure to cause the formation of the "spoto" within the alroedy altered rook. it mast be borne in find in this conncotion that a metanorphosed rock is only in equilibrive at the last stage of the netemorphio procesen, and ceuses to be so when the teaperature falls again. The propence of auscovite within the "spots" anggeste that paomatolytic agencies from the pogatitio matorial assistod in the genoral solution and reoryatallisation processes ocourring in the insipient "scoondary" mote-
morphism, As this apotted rook is not found anymore olso, it is ovident that the pognatitic matorial of this area is oither of silghtly carlior age than that found in the "dykes" elsemhere on the property, or is of considorably groator axtent than one fis lod to suppose by the exprasures.

It is thus ovident that the original rocks which. yent to form what is now the New Consort Mine banging wall sorion of quarts-biotito and quarty-biotito-qarnot sohists and hornfole wes a fiesile argillacoous rock -ith occesional finor leminations, and containiag iron ores, rutilo, soricite, moh ohlorite and quarts. kaolin, a littlo lime, and in places limo-magnosía minerals. This would therefore be a more or less romal vundy shale.

The photomiorographe on Plate XXII are of cin cootions of the hanging wall rooks.

The Connort "Bare"

At the coateot of the hanging wall and footrall rock, whother there is metallic mineralisation or not. there is almost always a devalopaont of what is know as the Coasort "Bar". This may be anywtere froc 1 inch to 80 foet in thiokness, but is more manally from 2 to 6 feet.

In its comonest form this "bar" is an axooodinaly hard, dark brown rock with very sine grain. It is goncrally of cherty appearance, though iadividuel graias of vitreous quartz can reequantly be distinguished in hand spocimen. It gonorally has a more or lese conchoidal iracture and is translncent in thin chips. In some oases it is so fino grained as to tako on a distiact "ohooolater" appearance. Dounlly this rook is 81 naly lanizated with some bands of brown chorty quarte, and others of more or $10 s s_{\text {vitreous quarts. These } l \text { leine }}$ tions range from $/ 25^{n}$ mpwarde in thíchess, and are often individually pareistoai over soveral feet. The "bar" is frequontly inteasely foided and fraotured, and is somotimes ninoralisoc.

The brown bands in this rook consiut mainly of equigranalar quarts, with a great many minute Dlakes of brown pleochroic biotite. These biotite flakes aro arranged parallel to the bandiag. Other minorals prosent are soisite, muccoritu, rutile, a little apatite, suricite, a little greeniebr brown toarnaliau,
and magnotito, both is finc dust and as minute ootehedra. Cccasional grains of $x\{: 00$ ean also be fornd. The "ahocolatey" variotios ari merely finer grained than the others, ond contain possibly a littlo more biotite. It is ovidontly the minuto Nakes of biotito combined with the fineness of the quarts graine that art responsible for the appearance of the rock.

The bands of vitreous quaris scon in hand spensizen can be seen in thin section to consist of vainlete of almost olear vein quarts. This is a good doal coarser in grain than the romainfer of the rock, and the grains are mostly more or lens free from inclueions. This voin quarts and the other show some sigas of strain. The veinlote are parallel to the genoral "stratifisation".

In some pleces there is a littlo pyrrhotito diosominated throughout the rock, and where this is the oase the proportion of greenish-brow pleochroic tourwaline is highor. This is obviously due to somewhat lator hypothormal agoncies.

It is evident that this rock has bsen frrmed by the intonse silicification of the hanging wall rooke in a narron sons on the oontaot, by the panenga of solutions of feirly high tomperature and high silloe content up the oontact undor the impervious blanket of hanging wall rocke. The siliolication process has repluced with fine gralned quarts most of the
minerals in the rook, with the general exception of some of the proviously orionteu crystals of biotite, of which vestiges atill remain. Simultaneously with the general silicification in the "bar" sone, the solitions have ponetrated and paesed along fractures on tho foliation planes of the quarts-biotite schist, dopisiting thin quarte voinlots.

The solutions responsible for this ailicifioation were apparently post-pogratitic, but mainly pre-mineralination. In places the later stages of "bari formation here beon overlapped by the metallic aineralisation stage, renlting in banded aineralised bar, a speciwon of which is lisustrated on Plate Xix, Fig. 3. Doposition of economically important minerals has, as shall be soen lator, occurred in some places and not in others. In the ainoralised areas $1:$ is sometimer evident that the sineralisation stage has consicerably overlapped the "bar-forming" ailicification stage, resulting in intensoly mineralised har material with hands, stringers and voinlats of the arsenopyrito-gold deposition. It seoms, therefore, that the solutions responcible for the "bar" silicification were a part of the nineralisation cycle, but belonged to the early atage when they wore highly siliceore. Deposition and roplaconent by silica took pluce with greater ease, and consequently was more wicespread than the later deposition of mo tallic minerals, owing to the fact that silice way in
higher concontration in the solutions in the earlier atages than the metallic oompounds in the later ones. Thus while "bar-forning" silicification and ropleow ont was widespread, the deposition of metallic ninerals in economically important amounts required the occurrence of locally favourable condítions.

As has been mentioned proviously, the contact botweon hanging and footwall rooks has sometimes boon gredational over several feet, the oontsot sond cjnsisting of altarnating laninations of the two rock types. in such areas the "Jar" development has ombraced the contact sone, resulting in a handsome rock made up of alternato chocolate-brown and bright groon laniations. This type is locally called "Bastard Ber". Sonotimes where this is developed, the true "bar" exisis on its hanging wall side, on the lower contact of the main body of hengiug wall rocks, but nore often the solutione heve not penetrated through the contact sone, and no "bar" hae been devolopea.

In hand specimen the "Bastard Bar" is vory hard, and ht 1 a more or less conchoidal fracture. The width of the alternating hard brown ohorty bands and bright green eofter bands variee from t^{n} to $1^{\prime \prime}$ or more. The brown oherty bands are of siallar nature to he ordinary brown bar, but the green ones are neen in thin section to be osmposed mainly of a vary pale green mumuvite alca, with soricite, biotite, minuto octahedra of
magnetite, soisito, - little apatite, and nome rutile. There ie asually also a fair anount of green ohlorite. If many pleces these green bands are impregnated with fine grains of quarte, by which mineral the others are in course of roplacement. Most of the ainerale in thow laninations are orionted in the plane of baming, probably due to shearing forces active before and $\mathrm{dv}_{\mathrm{i}} \mathrm{ing}$ altoration and silioffication. These fames have also resulted in a goud deal of ainute folding in the softer green bands. Thin veinlets of more or lese olcar vein quarts are also found in this rook in both greon and brown laminations. Some speoimore show reananta of unrepleaed tremolito in the greon parts of the rock.

On the outcrops this banded rock often prosenica a yeouliar appearasce die to the fact that the soffor green parts weather out, leaving the hardor cinorty and siliccous fortions.

The "Batard Bar" has ovidontly been fornod in the same manaer as the ordioary bar, oxcept that in the former case tide contect sone conelated of thín leminations of hangings and footwall rooks.

In some places in the nine there ore bande of hanging well rook, from 2 to 15 leet in thickness, occurring within the footwall rocke, near the main contact. This results in a sort of magnifiod transition sone up to 80 foot $w i d e$. In such cases the true confact has the nornal "tar" developmont, while the beads of

Langing wall rock below aro generally complotely trangDormed into "bar" material. Thore late faulting hae taken place in ach areas, controt driving is troulo sone, good desl of crose-cutting is required to maice sertoin that the work is boing done on the main contact.

Yoation has already been made of the flet that lajers and lenses of hanging wall rock somotimes oocur well within the bedy of the footwall rocks. Exoopt where they are very thiok, these also are uauclly corplotoly altored to "bar" material. So far no motallic nacrelisation of importance has been found in connootion with these ocourronces, but such night quito poraibly exiet. Further reforunce to this point will be made later.

In one or two places in the mine, notably whore therc are occurrences of "South fleof" (which will bo dealt with later,) the bar in very thick, sometimes ap to 80 foot. In such cases the rock is asually bleok and dietinctly vitreous, ob aing in cortas lights dofinite banding, which in hand opecimon can be seon to be due to alight difforences in grain sise. This typs. like the others, consiste mainly of saall graine of vitreous quarte. In thin seotiou this rock can be seen to be somposed alsost entirely of querts. Some laninae are crowded with ninute perticles and orystals of
magnotite, biotite, tourmaline and macosite, and consist of fine iriforlocking quarts grains. Bore and there are narroe sones containing large amounte of mognotite and biotite. The other laninae consist of the coarsor oin quarte, with but fen incluaions. The boundaries between the varioue bande are very akarp. This type of "bar" is ovidoutly formed at poiats whore the ailioification and ropleccaont have beon abnormily intensa, resulting in the almest complote ropiacement of al: incluaiors other then the magnotite. This procoss is probably connected with the formation of the Soutil Loci, and will be furthor discussed lator.

Photomicrographe on Plats xXIII iiluatrate apooimeas of the Consort "Bar" . Suatard Bar."

The Rerontike "Dgken"

These have two modes of ocsurronoe, both later than the inoralisation oyole. Ono form is that in which the pegnatites consist of dykes occupying faults which often have a sonsiderable displacment on the mineralised horison. This type my be up to $20 n$ fcet thick and may be persisiteat for 1000 feet or more on strike. No farlting has baon found which outs and displaces the pegratites, and as there has been a corsidureble amount of faulting of different ages in the area, these pegnutites must be considerably joungor than 'o mineralisation cyole.

The other type of oceurrence is in the form of irragular and apparerily isolatad lanses of pegnetitio material oocurring along dofinito sonce. These are on - strike of about 40° east of north, and have varions irregular dips. These sones are not parallel to any definite faultiag goten and generally have no difplaoco ment. In faet, a drive passing through one of these sones betweon lenser of pegnatite revonied oo disturbance in the rocks. In another case a drive following - reef horison in the footwall out acrose the "inne" of one of these pagsatites, and no fracturiag or dioturbence oould be sound. These pegnatites cut corose mineralised horizons with no uffect othor than 10001 minoralogical changes in thoir vicinity, so they too are later than the mincralisation ojole.

Disturbance in the country rocky on oither aide of the pegmatitic intrusjons is irequently noticod in tho form of folding, usually of a verj localised bature. This folding is gonoraily in the form of dres and conpression folds near the pegmatite contaot. Thís type varies in thickness from 20 feet to 150 feot, but avarages some 50 to 80 feat.

The rook forning both these types is apparently the same, and they are probably of sinilar age.

The escond type, as its mode of ocourrence would suggest, is oxocedingly irrogelar in thiokness, porsistency and attitude. In fact, the only feature of a more or lees regulur kind evidenced is that of ocourrance aloag cortain fairly woll dofinod sones. It is, of course, possible that the exposures are such that the pegatite leases in a givon sone nay be inter conneoted, but nost of the iaformation secms to point to an cocurronce of irregular disconnoctod leases. If this is so, it is dificult to postulate thoir mode of formation and method of eatry and enplacmont.

The pegatite boales of both modes of ocourranes are occasionally vory coarse grained. Towards the niddle of a large djke, individual oryatals of folapar may reach 10 cm . In diamotor, though this is exceptional. Makes anc booke of nuscorite up to 20 m . In diametor are fairly common in large bodien. Genorally epeaikingo
however, the grain sise ranges from lam. to 10 . and is exor-dizey irregular, the frosh rock is usually vory hard and of mediun gray colour, gonerally with ensilf distinguishable srystale of plagioclese, quarts and muscovite. Siome of the quarts has in hand speciman a definite dull chorty appuarance. Sucll ildee of biotito are rarely found.

These pegatites usually have a very sharp sonteot with the country rocks. Along the conteut plase there is irequently a voin, some in thickness, of ular vitreons quarts. It is sometiaes evident in tho care of the lenticular bodio occupjing no recogierble fracture or fault, that there has beon som morcmont on the sone ∂f intrusion prior to injection. This tekes the form of definite dras in the country rook, and the devalopnent of gouge lavers between the pers watitic matter and the diaturted country rook. As hes been pointed out abore, ench movement must have been local and very liaitod.

Signe of elteration of the country rooke are uavally to be found in the neighbourhoxd of the fegeatites, but this extenis gencraily for only a for feot. Docasionally, in the foctwall rooks, altoration may extend 30 foet srom a pegeatite body oni.j 15 soet thack. Such cases, however, are not common.

Ir thin ecotion the pegratito rock is seen to be composed of quarts, oligoclase, orthoolase and matizto,

With a little aphean and very rerely biotito. Occaciganally the mascovite content is as high as 40f, but gonorally it is mach lower. Occasionally sirecen can be scon, and in the muscorite they are surrounded by haloes which are pleochroic from aimost colourless to a pale blue. Soricite is fairly comon, often es en altoration product of orthoclase, though the rook is gonomally vary fresh.

If: specimens of thene yr griatites shom ovidonce of Intense crushing and etrain. The quarts orystale always show strain shadown, and are irequently made ap of intorlocking lentioular graith of oryehed and par tially rooryotallised matorial. Hes: of the folopar crystals are broken up, and the fragmonts nore or leas scattored and bent. While the macoovite is ustally moh bont and ofton orushed and comsinuted. Mortar atruture 1.) vory beautifully shomis throughont, and the crushed "mortar" irequeatly occupios arose as groat as or greater then those occupied by the largor crjotals. The aroas which have a chort.y appearance in hand spcoimen are made up of this matorial.

It is likuly that therie charact $i=$ istics aro due to some novemont having taken pleoc along the sones and faulte scoupied bj the pegrailites aubsequent to their intrueion.

The degres of alteration of the country rooks vibich
has takon place in the vicinity of tic pegnatites varies greatly, and generally cioes not eytead more than a fom foet from the contest. The usual aiteration of the footwall rocks takes the form of the appearance of a little mecovite, comotimes alifuted in the planes of cohistosity, some orthoclase and serioite, and the partial roplacement of trmolite by biatite.

As has been mantioned ahove, the altoration sometimes extends far into the footwali rocks. In suah! casee the altored rock oonninte almost ont'rely of biotite flekes, 1 to 2 me . It dianetor, without Rirceis, and coatainire roments of areplaced treaolite, with - Little musoor!te, chlorite and rarcly soiaite. Four nal:ne of the ereen-byoun schcrilte variety is also sometimes seon in this rock, wila the orisinal ainor ainerals, such as maguetite, reain more or less knaliered.

Alteration of the hanging well rooks usually reanlts in a poculiar mixture of atrained quarts, with orthoclase, oligoclase, a little auscovite, tourmaliac and magnetito. At a glanue this rosk in thin esetion is vory similar to the pogmatites thasalves. Almost alwayE, however, it shows palispseat schístosity, oontaíne tourmaline, and more mageotite, is lese intonsely ornehed, and is ifner grained than the pegatites. In iand sisocimen, ite appoarance is not much differoat
from that of the unaitered hanging wall rock farther away from the contact, exoept that it is coarsor grained, has a more vitreous luetre, and is less diutinctly sohistose.

The pegmatites, as would be expected, produce little effeot on the "bar". The only alteration which can be seon is in a belt scne 2man. vide along the very oharp contact which the intrusions have againut the "bar". This belt consists of excoudingly fine graired, orushod. oherty quarts with tiny grains of mescovite, oligoclame. orthoclase, seriolte and aphenc. More than 2san. away from the contert the "bar" is unaltered. This alterstion is largaly due to the crushing of the "bar" in the imediate vicinity of th contact. Such crushing and coninution allow the entrance of solutions for a short distance, brit these fall to ponotiate farther than the -1dth of the crashed sone.

No wetallic mineralisation has been sound assooiatal with the intrusion of the pegnatites. Gold values wors found in pegautite rock at one point, but this was apparently due to a fragment of Eineralised sountiry rook "onclosed" within the intruaive matorial in the naturn of a eaall "horse".

The pegantita rook is locally known as "grasite".
Fhutomiorographe on Plate XXIV are of thin seotionn of these pegnatites, and of their wall rocke.

Striatural Gonlagy and the Binction al the straptweas

to Zanas of Mancellentian

The mine workinge are aituated on the northern or lower limb of what would seen to be a complicated ovor turnod ajoolive pitohing in a direction some 30° south of east.

Little or nothing is known about the southorn or upper limb, as very little work hes been done there. The ruacse for this will be seen when the nature of the ore deposition and the reascas for ite loonlicetion are pointed out. It is known, howeror, that the area south of the Noordkanp Rivor, on the nouthera límb, is highly coaplex, probably more so then thet on the northern limb.

In general, outcrops ere not casly qellowed, not only becanse the "bar" ofton does not ontorop conepiouously, but also becsuse of the slope of the ground surfece. Outcrops oft on "orcop" considerible die" tances down the hill slopes, and talus and rubhle frequontly confuse the surface goology. Fortuantely, the "bar" outcrop has ofton been tronchoi, and there are a great meny old adite and ourfeco wiaseo whish. aro of inestimable value in trains structures on surfuce. The presence of a good doal of thick grasa and thora sorob also mere urfeoe mapping difficult. Surface goology must thorefore be to a oortain extent
inforred irom undergrjund exposuroe, but as there are a great many of these liberally distributed over the property at shallon dopths, this is unlikely to canso serious orror.

In this desoription, constant roferonce will be made to the geological map on Plate II and to the vertical cross-sections on Plates $\boldsymbol{\nabla}$ to XI. The positione of these sections are narked on the map.

The nine is dirided into two main parts by a largo fault sone known es the Bluojecket Pault. This fault is sometimes a fairly olean break, but is more ofton a sories of frsetures occurring more or less parallol to one another within a sone soms 200 fant vide. It does not have atraight course, and is partially oooupied by prgmetite. This fault is post-minoralisation in age, but is anong the sarifer of the faul to belonging to this stage. It hes a horisontal displacesont of some 3500 feei, and ita vortical displecoment. though reverse in direction, is not definitely known in mount. The rocks approaching the fault whow the offoots of drag for considorable dietancer. At one point in the Bluejeoket zone, about nidway between the diapleced "bar" blooks, a horse exinte between the two eain fresture planes in this area. This horse is a portion of the contact sone, containing hanging and footwall rocke and a portion of bar. This block is intensely folded, as would be expeoted, but, boing
broken off frou the Iraura Section (see Maid of de Xeap Section on Plate II), it is miseralised. The outerop of this horse is marked by a small open cast working, and there is also some undorground development and stoping. It is said that sose of the finest apeoimens of visible golic from the aine were found in this area, but the Bluojackot hed not boon worked in recent jears.

Le the Bluejacket Fault has frectured a more or less mineralised area, sose of the gold boaring material has naturaliy boen dragged into the fault sonc. Phenzaune of this type. as will be seen lator, are excoodingly common in this area. The result of this procews fo that the fault gouge, brecois and orushod material are sonetimes sufficiently lich to be of economic velue. This is, of courso, not so common in the case of the Bluojacket fault as it is in the case of the othor faulte with smallor displacment, whore dilution is less. One of the branches of the Bluejacket Fault. however, sose 400 feet northwest of the Bluejectet workings, has been worked to a sall extent on surface.

Tre block north of the Rluejeckot Pault constituten what is now known as the Maid of de Kasp Soction. Before the analganation of all thene workings this was the well-know Wain of de Kaap Mine, figuree of whose production hapo already been given.

This part of the mine is rolatively simple as
compared with that south of the Bluejacket Panlt; such folding as existe is not comploz, and the faulting is rolatively simple. The surves soen in the outcrops mappan on Plate Il are due almost ontirely to the topography.

Though there are a great many faile, both norvel and reverne, in the Mald of de Kaap Section, there are only two worthy of montion, namely, the Ivaira fionit and the Yain Reef Pault. These are loth shown on plaa and scetions. They are aterp south-dipping, the Ivaure Fault at somo $50-70^{\circ}$, and the Main Foof lault at some $60-70^{\circ}$. Both are nore or lese parallal to the Bluojeoket Failt, both have revarse throws, and both are lator then the Bluejeotot, though probably formed by later adjustuante oonnocted with it.

The Mala Roei liault, which io also known as the McoDonald's Ienit, Hus been traced on surfece for same $30 n 0$ fcot. On Plate II ite outcrap io shown fairly straight from the east ond to the MacDonald's open cast working, frow where it turne southwards. This is due only to the effeot of the topography. As can be seen from the sections, this fault parsues of no moans straight course; it is, howevor, remarkably regular In comparison with the otiers. The horisontal and vortical emponente of its dieplecement deorease from the surface downwards, but this decrease is not rapid.

This fault travorsen and displaces the minoralised sone known as the Yain Reef Eection of the Maid of de Kaap. This Main Reef Soction, therefore, consiste of a Einoralised sone, not contisuous, out and displaced by a reverse fault into two parte. On the outorop both parts heve boen worked open cast, forming the North and South Quarries. The ocourronce of this fault of thin the mineralised sono is probsbly due to the fact that the ninoralisation in this area, forming ordinary and South Reef, is essociated with complez ayetems of fractures, which have caused a sone of weakness, and this sone has jielded to the stresses oausing the fault. As the fault has occurred to a greut oxtent -ithin a minoralised sonce a good part of it in tho vicinity of the "bar" horison contains matorial rich onough to be of economic value. This is ofton the i.see botween the two faultod blocks, and in such anses the fault has boen stoped as wall as the conteof blocks on each side. This gives rise to peouliar Z-shaped utopes.

Contrary to what mould be axpectod, fault matorial contaiaing gold in otopable amovata ocours in the fenlt sone outeide the area onslosed by the two contsot blocke. This oan be seca in the MocDonald's Scotion, and on the section on Plate VII. F'his is prool that the present displacement on the farlt is ouly the
resultant of soveral movemanis, and that at one time the diaplew ment was nuch greator than it is now. The moveaent on this fault was, therofore, of an owoillatory nature. At firat sight the nineralisation at the MeoDonald's Scetion, where thore is an opin cast and wonsidorable amounts of undereround Etoping, is diffioult to sxplain oa the asoumption that the fault is of post-aineralisation ago. It can be spon, howovor, in the section on Plate P . that MacDonald's 4 Levol, the lowest. is net far berl m the position whore the conteot sone ses bofore orosios The natury of the material atopod at MacDonald's also proves this to heve beon dragged into the fault sone, which is hore som 6 to 10 soet wide.

It 10, of course, inpossible to state whothor the osoillatory movemont on this fault was such that ninoralised naterial night have inen aragiged fato the part above the conteot where both feult valls conaist of hengiag wall rook, though this is cuite poncible. Mo work has been done on the fault in this sone. It is likely, howevor, that any such ocourrence which night axist would be of less value than similar ones in the footwall as, owing to the more resistant nature of the hanging wall rocks, the fault shear esae is only a veltor of inches wide whore both walls consist of the latter.

The Iraura Feult has not beon traced as far on
aurface as hat the Main Reef fiault. This is dus to orsop on the hillside, weathering and the presonce of tal.as. In the west, it appeare to ond againet the pegratite djke occupying the Bluojecket "ault. This fault has in general alightly flattor dip then tho Kain Heof Fanlt, but it is far lose reguiser, and dip and atrite vary greatly, as can be ween on the seotions.

The rortical dipplacenont on thje fault decreabes fairly rapidly frow the surface downerdi; the horlsontal component, on the othor hand, incruases conajiorably. Nowhere has the offeut of these faults on the pegmatites been seen. The occurrenco of this fault in a Einoralised sone is similar to that of the Main Reof Pault.

Minoralised material has been found on the Iveure Fault botwees the displaced "bar" segmente, out has genorally beon too 10 w in value to be of any inportance. Nowhere has such material been found on this fault outside the sone of dieplecernont. These two facts combide to whow that the morement on this fault has beon far less of an oscillatory nature (oith consequiatly less grinding offect) than that on the Main Heef Pault.

The conteot block south of the lvaure fault is known as the Ivaura Scotion, while that north of it is terned the Ivaura A or O^{\prime} Dond' Seation. The Ivaris 1 sestion is the same as the O'Nond's, but in the early
days these wore not cunaceted, and wore not thought to be the oane fault block. Reference to the seotions shows that this should heve been obvious. It was also not known until direct underground connection was nade some jears ago thes thio Ivaura 1 is the sane as the couth block of the lialn fieef section. The part of the mine north of the Bluojeoket fault oen thus best be divided into two parte: the Ivaura and the Main Reef Scotions, each consisting of a faulted, irregularly aineralised sone.

The Ivaura Sootion thus comprises the Ive ure and Iveare A, or O'Dowd's. At present the lower levile of the north block are oulled Iveure A and the uppor levisis. above 8 Leval. 0^{\prime} Dowd's. The southern portion of the Ivaura Section has been morked on surface in the form of a suall open cast, which is known as the "Granite Quarry" because a considorable amber of striagers of pegnatite from the nearby Bluejecket Fanlt were oscountered. The stoping on this contact extends from the quarry in irregular patohes to 13 Lavel, as shown on Plates V and V1. This atoping is, howevor, not by any rieass continuous. The largest stoper area is between 5 and 13 Levels, bat this dees not eicer clearly on Plate Γ. es the shoot pitohes castwerds. It is elear, however, from Plate $\bar{\square}$ that the main stoping iv associated with areas in which distinc
folding and steopor dipe occur. Lotually, this inoralisation is associated with fracturing in the footwall rocics just below the contact. The fracturing is irregre lar, and forme a complicated branching eystex, minoralising a width sometimes up to 15 fest. Some branches convarge on the "bar". while others branch off into the footrall, and recently considorable anounts of reclenation have been done on there latter in the old stopes.

Where there is a distarbance in the rocks. suoh as that at and below the "Granite Quarry", and that in the vicinity of 5,8 and 10 Levals, such iracturing, as would be expected, io more intense, with cons cyuontly more intense ninoralisat. 3. In areas whore the rocks are relativoly little distarbed, the frsoturiag is but weakly doveloped, with consequent weak aicoralination. Where thore has been folding, the fracturing and shear iag which occur genoraily oaly in the footwall rooks as boing less resistant to such stresses, tend to concontrate, naturally anough, in the neighbourhood of the contect and the "bar". In other pleoes where there has been little or no folding, such frecturing as has acted as passages for the hydrothereal solutions has not been concentrwied in any one snne, boing rathar scattored and, of course, far lese intonse. Thus intense mineralimation of economic value is associated
genorally in this part of the wine with gentle foldirs in the "bar" ho-izon, with consequent fracturigg in the weaker footwall rocks. Kilsewhere, sporadio valuer are occasionally found ngar the contact, and well in tie fostwall on irragular and imporsistent fractures. In the lower section of the mine, as will be seen later. where the eolding is far more intense, the relative movement between hanging and footwall rocks in the vicinity of the conteot hes resulted in an intensely shoared and fractursd sons just belom the "bar". Pasenge of solutions in this area, therefore, has been confined to a sone jxat bolow and Fithin parts of the "bar". With the hangilg wall rocke actiag as on inpermaable blanket. In thin area, therefore, the henging wall rocks have confined the solutions to the contact sone by virtue of thoir imporneability. while in the Maid of de Kaap Soction the solutions have beem less closoly conifined to the vioinity of the conteot. and then only by virtue of the fact that the footwall rooke near the contact fracture and shear onder atrase With greator ease than do the hanging wall rocks above. In the O'Dond's Seotion, the association ni econoaic ninoralisation with gentle folding at and below the quarry is olearly shown on Plate ∇. The quarry is actually on a serice of fractures below the contact. In the Ivaure \triangle Scotion this assooiation is startlingly slearly portrajed. The main stopiug is between 11 and

12 Lovals. On the way down the Ivaura A incliaed shaft from 10 Lsvol. it is readily seon that the dip ie nowo $35-40^{\circ}$ samn to point just above 11 Level. Between 11 and 12 Levels the dip is nearor 50°, and the whole area is atoped out. Bolow 12 Leval the dip drope sharply to some 30°, and the stoping stope abruptly. A little distance nast of the shaft there is a snail erea botweon 18 and 13 Levols whore tho dip is steopor, and hore again there is a considurable amount of ground stored out.

The two parts of the Main zicef Section, anoth and wouth of the fault, have both bean worked extensivoly from open cast workings on surface more or less continanuisly down to 8 Level. Platie VI shows very clearly the relation between disturbance on the contact and the oxtant of atoping. In this ares tho atoping has continued nowe distance from the fault on both north and south aides, and it is oriaent that the disturbed and uinoralised sone has oxtendoc farther on otrike hore then in the Ivaura ares. In some pleces in the Main Roef Scotion, fractures from the footwall rooke just bolon the contact have ponotrated the bar into the hanging wall rocks. In sone cases those irbotures, produced by rolative movement in the vicinity of the contect in disturbed areas, have poraisted ir tha hanging wall rocks just above the "bar" for quibconsldersble distance. These fractures havo beon minoralised in the Heir zoei section, gizing rise to
a blotohed tjpe of wineralination locally known as South Reef. This bas been extensivoly stoped io sone placee. (Soe Plates VI and VII.) Occasionally in such areas four jarallel horizons, one above and one below the "bar" in ewh fault block, have been worked, as is show on Plate VII.

只抽ween 12 and 16 Levels in the Main Ksof Section. ac is seen on Plate IX, there is a considerable amonat of frasturing just below the contect aoar the Main koof Fanlt. This has been opened up rolatively reoently. and in places has prored to be oxceodingly rich. This sove is also more or less along the line of interseotion of the Hain fieef Fault and the contect horison.

Fartion east in the Maid of de Kaap Sootion, where there hec bean little or no disturbance, thore has boen sinilarly little or no minoralisation.

Thus in that part of the niue north of the Bluc jacket Fault, the nain faulting a probably due to Jield to strese in areas which have heen previonaly weakened by gentle folding. fracturing and eineralisetion. It is more or less oharactoristio of this part of the nine that the faulting is fairly simple, the folaing geitlo, and the minoralisation assuoiatud with sjeteme of fractures which are relatad to the folding. The ifps of the contact horisoa in the luid of de Kaap Soction range from vertical to 20° south.

The frecturing in thin part of the mine, though often oomplex, rsains definitely in the category of fracture eysteme, while the corresponding sones in the lower part of the wine, which is mench closer to the do Imap Granite and therefore far more intensely orer folded and farited, belone to the sategory of sheared sones. As would be sxpeoted, the fractured and oonsequently mineralised areas in the uppor section of the nine jield a muoh mallor tonange per clain ovor the aree than do the intensely folded and shared areas searor the granito. This is compensated, howevei; the shear sones below the contact in the southern parti of the mine offor a widor and froer passage for solutions than do the tight and often talo-lined and gougo-illed fractures of the northern part. Minernlieation along these fractures is, therefore, whare conditions ore rendered anusually favourable by fracture intersection or "forking", often of amasing richness. Hecently places have been found on these $1:$:octures where thore is a solid sone of rook up to 1 inoh wide, so inprognatel with fine native gold as to posesse a dull jellow colour. Such places are sometines as much as 50 foot by 10 er more. It is on record ${ }^{l}$ that one atope in the old Maid of de luap Mine assayed lia of gold for

Lyineral Jiosouroes of the Union of Jouth Afrioa, 3rd Edition, 1940. P. 165.
a short time. This richnese of tho northern part of the wiae is reflested by the past production ligures already given, as well as by recent returns. Parts of the eouthern seotion of the aine have also yieldud fabulously rioh ore, but this is not so coman as it is in the Maia of de Kaap Section.

South of the Bluejacket Fault the struotures are much mor sumplex, bocoming increasingly so toward the south, that if. toward the do Kaap Valley Granite. These structures ala increase in complesity frow west to easi., as can readily be seen by a blance at the sections on M..ates ∇ to XI .

Broadly apeaking, the structure sonth of the Blao 'acket Fanlt is'a series of anticifnes and synoliney, In places omplicated by faulting. For purposes of description it will be best to start from the Prince Consort Section, just south of the Bluejacket Pault. and work progressively southwards and southeastwards, examining each fold in turn. In this was the continulty of the struotures from the Maid of de Reap southrarde to the Noordkaap Kiver will best be brought out.

The whole process of mineralivation of this lorer and intentely folded part of the mine bis nges
upon the series of anticlifues and syaclines. As bas beon stated on page 68, "the shear soaes below the contact in the southern part of the aine offer a wider and freer passage for solutions than do the tight and often talc-lined and gougo-filled fractures of the northorn part."

It is olcar from what has been stated thet the fontwall rocks field more easily to stress than do the harder and more resistant hanging wall rocks. Thus when folding takes place, drag and difforential movomont are bound to occur in the footwall rocke, in the vicinity of the contact. The aror intense the foldinge the more pronounced will this offeot be. The result of this fs that the footwall rocke holow the contact in the highly folded southern part of the nine are not traversed by a sories of anastanosing irectures as they are in the Maid of de Kaap Section, but rather bwoome Intensely sheared for frow 4 to 8 feet bolow the contact. This shearing sometines takes the form of vast numbers of closely apaced shoar plancs, more or less parallel with the contect; sonetimes the rook is reconstituted to become a talc sohist, and snme times it becones a tremolite schist with a high proportion of talc, and with the tremolite nesdles lying in all asimuths in planes paraliol to the contact. Mineralisation of such rocke resulte in
a banded ore of the typ 1llustrated on Plate xXX, Fig. 3.

The result of all this, an ie stated above, is a shear sone from 1 to 10 feet wide just relon the bar. which offors a rolativaly froe pascage for hydrothancel solutions which impragnate the sheared und fractured rock. This shearing is, of oourse, bound to affeot the "bar" to a certain extent, and the lowor part of the latter also sometimes shows the effests of the movements. The process of "bar" formation was more or less contemporaneous with the lator part of these novements, and the earlier part of the mineralieation ojele also overlapped these processes to a cartain extent. Contemporaneous with the shearing, cortain amount of fracturing also takes place.

As the sheared and folded aroas offored a fairly easy passage for solutions, while confining tita beneath the impermeable hanging wall, the orests of the anticlines wore the aftes of a cortain degree of slomine up and stagnation of solutions, with consequont doposition. Papenfusl has mentioned this principle of the confinement of solutions bencath an impormoable hanging wall in cornection with the Consort Minc. It follums, therefore, that though a cortain amount of minaralisa-

1Trane. G.S.S.A., Vo1. 37. 1934. Pp. 279-287
tion took place at odd locally favourable spote, the heaviest deposition took place within the oreste of the anticlines. This is found to be the care throughout the southern folded purtion of the wine, and though mineralisation leading to ore of economic value natur ally coes not ocour all along the anticlines. it is noverthelees the caes that the richost and best ore is foand on and near the arssta of anticlinal folds. The shape of these folds has to a certain exteat been nodified sinco mineralisation, and this occasionally leads to some anomalies. In these cases the metalife ainerals oen be shown to have beon dopositeá after at loast the major part of the foldifog had taken placse.

As the rock cooled sonewhat, rosiduai stresses suporinposed foulting on the folds as the sone of plasticity began to rocedo. This has resulted in some minor faults which carry mineraligation not of the "dragged in" varioty. 01 course, after the winor alisation ojele had beon corppleted, a good deal of minor foulting of various kinds took place, and these later faults have added considerably to the complexity of the position. Many of them took place very shortly aftor nineralisation had been completed, and "reof has occasionally been dragged onseiderable dictances into the fault sones. These have often corfitituted ore bodies of no minor inportance.

The Prince Consort Section, a part of the old Consort property, is still relativaly little disturbed. It can be soon on Plates II and XI in section and plan reapectively. This area has been fairly thoroughly oponed up, but has gioldod oaly a relativoly suall tonnage of ore. The areas which have bees stoped show that the najor ourt of the mineralisation was associated with frectures some 5 to 30 feet below the "bar". In 800 places where devolopment on the "bur" has shown no values, oross-cute into the footwall have intersected ireotures carrying payable values. This is particularly the case in the geatly flexed area just north of the point where the Prince Consort outcrop crosses fros the north to the south tank of the Consort Croek, son 1000 feet along the outcrop from the Bluejecket Pault. Towards the east and of the Prince Consort Scotion. the offect of drag on the Bluojaciet Fault is vary much in evilence. The average dip of the reel horison in the Prince Consort area is some 45° not ch.

Not far bolon the botton of the Frince Consort workinge the cuntest turne u_{F} again to an east dip on the north llank of the Retty Ruarry Antioline. This fold is not sharp, and does not appear to be very persistent. though thore is insuificient data enocorning ite behaviour in depth. Its south Nank dipe south at some 35°, and it has a fairly stoop
pitch in southeasterly direction. On the crest of this rnticline on surface there is a cuall opon enst working, frow which the fold has bsen named. Thore is little known whout this fold below the floor of the quarry, though it is said that fairly good values wore found in the quarry itsolf.

South of the Betty Quarry, the outerop turne sharply south, and takes on a dip ranging from east through vertical to some 80° west on the northeasi flank of tho Hard Cash Anticline. This lattor is a oloyed overturned fold whioh can be treoed on aurface for some 1500 foet. Little work hee boen done on the east líab, but a considorable amount of dovelopaont. some stoping and some open cast whrk have been cone on the west limb, whioh is gonerally nearly vortioal. The point at which the crest of this anticline pitches below surface has not been definitely looated, as it is on a fairly atoop hill slope, and is covered by surface debris. The atopiag in this area in the lard Cesh workings has beon done mainly in tho "bar" itself, whicin at this point is some 5 to 16 foet thicis and carries most of the minoralisation. Talues in these workinge are in genoral low, boing of the ordor of 3 to 4 dwte./ton. Plates II, X and XI show the relations of the Prince Consort, Botty Quarry and Hard Cash occurrences. The axis of the fiord Gash

Anticline runs about 12° east of south, and the pitch is irrogular to the sorth. No work has jot been done on the ereot of the fold undorground, though this is one of the prospects which should be followed up. The west limb of this anticline runs parallel to the east limb until it reaches a point southeast of the Witroppies Garry. From here the outcrop turns westwares, miontaining a mest to sonthwest dip to the Witkoppios workings, in wich the dip is some 25° south.

The IItkoppies workinge are situated near the trough of the overturned ayncline, of which the south linb forms the north and lower flank of the overturned Intormediate Antioline. This, as will be seon later. is not a particularly favourable location for minerallsation, and valuce have gonerally boon low. The ajnoliae on the lower liab of which the IIticoppies workinge are situated has a definite nexure in the vicinity of the workiags, and it is probably the associated fracturing in the footwall rooke which has been the cause of such ainoralieation as has taken place in thif arme. This structure is shown on Plate II. from whioh ann also br seen the way in which the upper limb of the litkoppies ayncline turns to for the northeast flank of the over turaed Intorncilate Anticline. It is the hanging vell rocks in the itikoppies 8jncline above the workings which show the spotted characteristic alroady desoribed,
and it is in the area surrounding the Witkoppiee. Sotty Fuarry and Prince Consort workings that nost oocurronces of the epidote locally known as "bismuth" have been found.

The Intermediato Anticline, which is ovorturaed, and whose urial plane genoraly dips wast at about 35°. is almost parallal to the Hard Cash Antiolinc. Nowhore hes any work beon done on the formor fold, whose ceenr rosce and form are shown on Plates ∇ to II. Tho pitoh in irrogular in a south-southeasterly direction.

As can be seen from the Platen, the Intemediate Aaticline flows enoothly into the almost symotrical fold known as Shires' Antiolinc. The Menks of this fold dip at some $30-1.0^{\circ}$, and the axis lies in a southeast dircotion, with a pitch of some $10-20^{\circ}$ to the southeast. The Shires' Antioline has been split nore or less parallel to ite axial plane by a fault which hore and thore coritaine shoared and ornahed matorial. rioh enough to be mined. This pealt is thue in one reapoot sinilar to the Main Bool Fault. There is but little dioplacement of the fold. The Shires' workings, whioh are aitusted on the crest of the antioliae and are known as Shires' Bact, were anong the first to be operated in this area, and though no records are avallable, it is stated that the ore mined from the top of the fold was rich ancugh for direot export to kagland.

The stoping has been done from a. w.ilt in the ereak bea. and is on the crest of the fold itself. jrest to the east of section CH in Plate VIII. The stops is fairiy flat, and follows thw fold unceraesth the "bar" along the axis.

Just went of the oreek a little stoping has bous done on the south flant of the Shires' Antioline. is what is known shires' West. These workings did not Held such high grads ore as thone in Shires' Latt, as they are ejembat too far down the Nenk of the fold.

South of the Shires' Anticliae is a gmotrical syooline whioh in turn gives way to what is chuma as the C Ininee Anticline, the last of these folde which can be seen on surface.

The C Winse Aaticline pitcher dow balow surface sone 50 C foet east of No. 1 Shaft, whioh is suak on the south Mank of the fuld. Nc. 6 Shaft, at an bo soen on Plate IK. is sunk in the haging wall roeis above the sold. At li Level. this ahaft meots the contact. This anticline has been wuch brokea up by faulting, and is complicated by a cortain mount of ainor folding. Piōtes IX, X and $X I$ illustrate this foature. These oheracteristios have considorably onhanoed the diflicultion attondant upon openiag ap thin area. None of the faulting is on large soalo, but it is suffioiont to make devolopmant difficult.

In the early days of mining a good deal of dovolepmont and stoping, both underground und opon cast, were done Ou and near the ereot of the C Winse anticline, from Which fairly high grede ore was obtained. As this work wes near surface in more or less wathored matorial. umch of it hae becone incocesaible, due to caving. Plato X shows an area in whici exmination of the Shires' Aatioline ha commaced from a orosesout from the workinge on the C Winee Anticline. This oromp-cut traverses the ajpaline betwoer the two folds, and showe - bcautiful crose-section of the atructures. Such oronp-cuts do away with much usoless dornlopaoni around the troughs of synclines, and cers be used Where the structures are reasonably well understood.

It is the south flank of the C Winge Antioline. With the foldine developed on it. that hae been not thoromehly onened an and is best know. This nonstitutes whet is known as the Cmean Consort Scotion of the mine.

Wost of No. 1 Shaft, shom on Platos II and VII. this saction of tud zine is little distarbed, and that almost ontiraly by minor strike faults, mostly with a reverse throw of from 3 to 25 fcet . In the viciaity of No. 3 Shet and restwards, the dip is 800540° coath of surfsoe, !latteniug to about $26-30^{\circ}$ around the 9th lovel.

Ganorally spoakiug, the stoping whioh has been done west of Nj. 1 sheft hae been on small isolated "blobs" of aineralised ground. These have ovidontly been formed at localised points where conditions have been favourable for aeposition. Most of the ore from this part of the wine was of modium grade. At one plece wast of No. 3 Shaft, there is atope covering a large area. records show tinat the ore wes audim to lon grade. but as no work hes boen donn in this area for some jears, little is known concorning the conditions of mineralisation. Fest of this shaft the ground is undisturbed, apari from the gentle plattening in the dip. The workings do not go far enough west io give any definite information oonceraing the stractures towards the trough of what would appear to be the main ayneline. The only indication found undorground with regard to this point is the coasiatont genoral duerease in dip southwarcis, on the lowor levels. From No. 1 Shaft eastwards the structures rapidly assume beniluering comnlications.

Plate FII, drawn on the axis of No. 1 Shaft. shows the contact to maintain a stuady dip from sarn face, at the outcrop of the south Mank of the C Wines Anticline, ulow to a point some 30 feet above 6 Level. hbove this point a little stoping has been done here ana there, but none of it is very extennive. At the point eentioned (about the elevation of 5 Level)
oomplications suadonly appear in the form of a fault zone at the northern lifit of a well-defined anticlinal etracture. This fold first becomes noi!ceabie above 6 Lovel. some 200 feot west of No. 1 Shaft. Here it starts as a local flatterang, bucoming more compressed eastwards as the shaft is approached.

This fold, which is now known as the 7 Lovel Pold, pitches gently but orratically eastwards, and has beon follnoed some 700 feet erst of Yo. 6 Shaft. Ite exle strikes about 30° south of east, and it becomes steacily more complicated towards the eant; that is, towards the area in which all the folds from the Hard Cash Antioline southwards would seem to be converging. This area is likuly to produce some interesting atructural proolems, and probebly also a eood deal of ore.

The 7 Level Fold in the vioinity of No. 1 Shaft is eplit along the orest ?.ina by a vertical fault. which at this point has a down throw on the south sice of some \& to 5 foot. This displeoenont increases rapidly eastwards, and the anticline thus bocomen aplit into two distinct parte, of which the upper estends some 350 feet cestwards without noticeable pitch, before it "flattens out" and becomes inaistinguishable in the maze of strike faulte between 4 and 6 Lovols, just seat of No. 6 Thaft. This upper half of the anticline has been fairly thoronghly stoped out, and it is known
that the stopes in the folas in thin area and above No. 1 Shaft wore ozceodingly rich. Eastwards from this shaft the vertical fault splite into soveral branohes which persist with varying dips to a point at least 500 foot cest of No. 6 Shaft. Such conditions suporimposed on increasingly oomplioatod folding natur wly result in very complex structurel conditions. When, as is the ouse here, the folcis are mincralised and the faults often contain "iragged in" reef mattor of coonomic value, the workjugs become very complicated and diffioult to understand without long and painetaking exalnation.

The fault which splits in swo the 7 Lerel Yold near No. 1 Shaft has a displacement of some 40 foet at a point abuut 300 foet east of the shaft. Hore the southern half of the anticline is, by reason of its eastward pifich and the focroased diaplacement on the fault, below the elevation of 6 Level. while the northorn helf remaing juet above 4 lovel. In this area, therefore, the exietence of the southern hall of the fold was not reoognised until recently, with the result that it had not been opened up between this point and that at which ite piteh bringe it to the elevation of 7 Level. some 500 fest farther east. In thic vicinity, also, it was fourd recontly that on the fault between the mineralised northorn and southorn halres of the
fold there war rich reef matter dragged frow the displaced olements. This was stoped in an area where. as far as the contact sone was concerned, there was a "blank" on 6 Level for a considerable dietance. Iig. 5 (p. 83) illustrates the conditions in this area.

It is probable that etoping on 4 Level stopped at the point A, partially owing to deoreasa in grade, and partially owing to the difficulty of handling broken ore. At the point B in the fault stope there is an interesting exposure of a syeten of tension jointing. brought about by the flexure aear the fault. 6 Levol drive passen frow south to north tinrough the fault sone at a puint a short distance west of the soction plane of Fig. 5. At this point it so happened that the fault carried no mineralised matorial.

Approaching No. 6 Shaft, the northern hall of the fold disappeare. while the southern hal pitohes down to 7 Level and gradually becomes more complex and overturned toward the south, due to an "underthrust" from that dírection. Tastwarde, as can be scen on Plater iX, 8 and $X I$. the overturned fold beoomes ro cumbent and more nearly olosed, with considerable complication due to minor pont-nineral faulting. The upper or north limb of this fold has been a fairly oonsistent and high grace gold carrier for a distance along the axis of sure 700 fost. Payable values are also associated with the lower limb in the vicinity of the area shown on Plate XI.

E Eanging wall rocks
\square jootwall rocke
—Contact sone ("Lar")
sume Stoped out
[18. 5

This is probably due to the abnormally intence abeariag and tension frecturing in this area. Ono part of 7 Lavel east of Section un on Plate XI is confurine on account of the feet that here the rocumbent fold ouddenly pitohee upwards toward the cast for ahort diatence, and the workings, whioh for some distance wost of thin point are on the upper lisb, are suddenly found to be on the lower; that is, the stope hanging wall ohanger unddonly from hanging wall rocke to fontwall roske. This ahange takes plece or or a horisontel distance of about 20 foot. In thif cannection it mut be noted that in this area the lower and upper liabs are separated only by about 10 feot of footmell rookn.

Work io at present io progress in an attempt to foilon this fold exstwares. It booomes inorcasingly complex, and is muck afeturbed by faulting in all dirootions.

Just east of Io. 6 Shaft on the elevation of 3 Level, enother inla begine to take shape, becouing more woll defined es it fe followed castwarde. Thio fold, known as the 3 Level Anticlino, pitohes gently but orratioally eantwardf, and the exic lies in a southoarterly direotion. The oroat area of thin antioline hes been atopou at odd pointe cact of To. 6 Shaft. (C8. Plate X.) Southeartwarde, the 3 Level Antioline convorges with a branch of the atoop atrito
fenlt groviously montioned in connection with the? Level fold. This rolation iz seen juet above 4 Lovel. which is here on the faslt. (Soe Plates X and XI.) At one foint unaugh mineralfeod neterial has benn dragged down on the fault for the latter to be etoped from 4 Level.

Etiil farther oast, the fault hae split into sevoral branchos which have broken up the sold in a manner which, owing to insafficient ezposaras, is not get fuily underatood. 4 Level at this poiut ic atill boiow the crast, and the fault here axposed consists of a zone some 10 feot wide, in which there are very distortea horses of highly mineralised "bar" and foitrall ruck, draged to the elovation of 4 Levol by oscillatory movements. Pig. 6 is a skotch (not to scale) of the appearance of the fault sone ay exposed in a wince following it dowi from 4 Lovel. owing to

the nature of the ocourrance, it caryot be oxpected to peraist any distance bslow this level.

On Plate IX a large stape is nhown botween 21 and 3 Levels, well in the suswall. This etope does not reach the "bar" and is wholly within the footwall rookn. The ainoralised sone at this point was some 50 feet wide and extended fer a distance of some 200 feet on strike. As can be seen in the section, the occurrencu is in an area whioh is but little folded. The minoralised zone consisted of a great many branching and intorlacing fracturee, all more or less parallel to the contact. which at thim point is not aiseralised. This is evidently an ocouzrence of a type siallar to those found in the Maid Main Keel Section, and suoh bodies may be expected to ocour at odd points whore folding is not intense, in the pert of the mine sonth of the Rluojacket Fault.

It has beon mentioned that at some places well Within the footwall rocks there occur lenticular bodies of hanging wall rocks which have, for the most part. been convorted to "bar" material. On Plate IX thore is shown a loag oross-out north on 7 Level. This paness through footwall rooke for its ontire leagth, with the excoption of orie or two this and impersintent bands of hanging wall rock whioh have been converted to brown cherty "bar".

Junt eant of this section there is, on 8 Lerel. a similar crosp-cut north which extonds some 800 foet. Most of the rock exposed is footwall rook, except towards the end. where the last 150 feet or $s 0$ of the ceosecut are in hanging wall rook and "bar" mattor. The laninations in this rock show that its south dip is deorsasing northwards; that is, it is oonforaing more or less to the general anticlinal structure of the contact abnve it. As this band of imperneable rook appears to be fairly persistent. it was considered likely that mineralisation of the same type as that on the main contact might exiet on amallor senle is the vicinity of itm lower contact. I drill hole confirmed this idea when it jielded core containing some gold from the fontwail rock just below this band, which here would seem to have a true thickness of sone 100 feet. This area han not jet been opened up and examined, and though the aise of any ore body here would definjtely be controlled by the extent of the lens of hanging wall rock, utc., it siould be investigated.

The above whows that throughoat the aine tho occur rence of pajable ore bodies is intimately rolated to the structures, and that oven with a compiex set of conditions such as are above described, cortain areas in which ore bodies are likely to be fclad can be
selsoted and examined, wile others may be more or less neglected in the knowledge that any occurrences therein are likely to be seal, of lower grade, and therefore not to be deliberately sought for by closely spaced development.

In a mine exhibiting structures and faulting conditions such as ere exposed in the Im consort Gold Minos, itu.. the construction and maintenance of more or less simplified glace sheet models is of inestimable assistance in the mining operations, as well as in the solution of the goolacical problems, which are of daily occurrence.

The inllowigg statement relative to the Nor Consort Gold Mines, Ltd. "The dip being fairly flat, ore shoots have appreciable areal extent, thus approaching 81 at reel condition e of the Sabio--Pilgrin' B Hent recionnl require n no comment, except that it has obviously been mande in complete ignorance and without avon the slightest basis of investigation. Imadiatoly subsequent to the abovequoted statement appears the following: "The locality being disturbed by fairly large faults, some doubt exists whether only one horizon is being exploited." From the foregoing, darcrintion it can be readily appreciated that any such doubt can have but little

1-ineral Resources of the Union of South Africa, ard Ledition, i940. ?. 165.
foundation.
Hall states, "in spjte of the nearly alwaje very regular atructure an occarioual roll in the dip is noticed, uxtending jver \& few yarde only and assooiated with higher values in the reef. ${ }^{n l}$ Such a statonent can apply only to very limitod parte of the hacen Consort seation, which is the anjeot of his desoription. He states further, with racgard to the "bar". nit is a vary inforn undliforentiated rook, true from or showing only the slightest trace of ninoralisation, and coasisting wholly of silica." ${ }^{2}$. With regard to the first anu lust purts of thie statement, the deceription of the "bar" alreadj given ehows that these are not corroct; with ragard to the midale fart, it must be repeated that in the Bard Jabh Eection tin mineraliead bnid is wholly witain the "bar", and in the other parts of the oine the lower pe^{-t} of the "bar" is irequentis intensely mineralised.

On page $24 g^{3}$ Hall otates that the date of the - Lding is the Consurt area is postorior to that of the reel as well as to that of the underiying bacic rock. In this sonnection it must be borne in mind that the "roof' is actually basic festrall rook which

[^2]has beon minoralised along froctures and whoar sones formod as a corollary of the folding. Ho cotually also noten here that folding is associated with higher gold values. Inmediately afterwarde he states, "ihe payable shonts......assume the shape of lences, whish are not dofines by any atruotural features..."

Hall states on page 249^{2} that the reei itsolf is probably a matamorphosed and mineralised sedinontary rock, eigne of the orieinal bedding of which are silil, cocasionally seeh. 'The natiare of the reof render: this statement exoeedingly ualikoly, as the ainoralised whoote grade off laterally and away from the bar into footwall rocks, and as will be seen later, it is actually made up of these rooks, mineraliwed and altered. His whole disousaion on the origin of this reef does not atana under rocant investigation. Ho assorts ${ }^{2}$ that the presence of "grenitio voing" in the Top Uine, which now constitutes Shirea', Witkoppies, Hard Vash and Prince Consort, "shows that they are the ore bringers." Thene 'voins" or pegratítes can -vergwhere be shown to be later than the ainuralinetion, and they hanr no reletion to its klad or degree.

The Intente Mine, whioh Mall desoribes on pages
lop. oit.
${ }^{2} 0$ p. cit.. p. 249.

249 and 2501 , is now known an the litroppies Section. Ho ataturk here. "There in no defined reef, but gold cocure in mall mint more or less all over the workinge, is usually free milling and not viable; this would apply to a thickness of about 40 feet." As has been montlonea before, these workings are situated under a flexed overturned syncing, and the ainoralies dion is probably due to the tension fracturing mesogiated with the flexure.

Hall gives no description in Geological Survey Meaner loo. g of the Maid of do Kep Miro, one of the vol. important in the dietriok.
$1_{0 p, \text { dit. }}$

The Ore Bodias: their loies al Oquemnon.

Fonr types of ore body have bser. acumerated as oocurring in the New Consort Gold Kines, Ltd. These are:-
(1) The Conteot TJpe
(2) The Fracture "Reefs"
(3) The South "Reof"
(4) Tho Fault "Reofs"

The relation botween these typer has already boos domaribog, and their mode of oocurrence outlined. In this chaptor they will be alscussed in further dotall.

Gancral

This type of ajnoralisation is fonad malaly in the southern parte of the aine. e.g., Prince Concort. .f Betty Ruarry, Hard Cash. Shíres' and Pueen Consort. It is treically developed in areas where the folding is fairly intonse, with the consequont dievelopmont of shoart sones in which the ore is developed undor and partially -ithin the "ber". The roourrence of this type of ore dovolonmont is intimatoiy assooiatod with the folded areas, not only in so far as the developmont of the shear sons solution passage is concerned, but also in the mattor of localiaction within the antiolinon.
(It irequently happens that where the inteasity of the folding locally desreases, the sone of shoar gives Wej to njetene of definite fractures which jield ore Jodies of Type 2 in the foregoisg list. This is knows to occur in the Quean Consort Soction between 2f and 3 Lovale at No. 6 Shaft, in one place in the Shires'Horth workings, in Thtroppies and in Prince Consort.)

The tjpe of ore occurrence hare indor revion thas been the source of most of the ore aiaed from the consort area, and has been the source of all but a little of that mined from the portion of the sine couth of the Rluejacket Pault.

This contact type of ore development is oharenter ised by an indefinite lower linit, as the intonaity of the aineralisation grades off downards into the footvall rocks. The payable none is, howevor, soldon mort then 5 foet wide, and is maually some 3 to 4 foot. The uppor limit is zore sharply defined. for though the uinoralisation shades off upwards intn the "bar". the gradation is naturally more rapid.

In some places the "bar" is cumpletely barroa, but this is goaerally the case where mineralisation has sot been very intense and gold values are of the order of 3 to 5 dive. /ton over the stope width. In such cuser no eign of mineralisation is visible to the naked eje. though the presence of arsonical micorals is shown by
the fact that the rock gives off the charactoristic garlic odour when it is struck with a pick. In those pleces the sheariag has not beeu unusually intense, or there has been no stagnation of solutions, and the niaeralication hat beon confined to the footwall rocke just bolow the contect.

The comon case in the more highly mineralised areas is that in which fine grained sulphides, mainly aroonopyrite, are visible in the footwall rook, while thore are bands and etringers of the same aineral in the lower part of the "bar". Such aroas way show gold values up to 40 drits.jiton in places.

Harely the lower part of the "bar" prosents a banded appearance in which there aro altereating bands, up to 1 inch wide, of alast massive arecnopyrite and the "bar" material. In such cases the footwall rook below the "bar" also contains bance and stringnrs of fine grained sulphice. Cocasionally in intensely mineralised areas of this type, gold associatod with the sulphider can be soen with tie naked oye. Guch occurrences aro, of course, characterisad by febulously high gold values.

As has been mentioned abore, the mineralised band frequontly fooludes a part of the "bar" as woll as the sheared sone in the footwell rocis juat bolow. In hand spocimet, minoralised "bar" is the usual very hard,
browaish, laminated cherty rock with the addition of bands, stringers and lenser of eulphides. these lapes are always parallel to the original lamian on, and rangt from a sorios of tiny erains to solid masaive lajers oi sulphide. sonotimes up to 1 inch in thickness. In the lese intonsely and modoratoly mineralised areas the areenopyrite which constitutes the chiof sulphide can alnost almaje be seen to occur as acfoular orjatals from 1-5m. in leagts and frow $\cdot 1-0.5$ ma. in thiokness. These are sometimes so numorous as to cosult in a folted mass withis the sulphide lajers, which individually are soldom more they thisk. Suci a minoralised son in the "bar" may b. a foot or more thick. and the altornating besds of coi lose vitreous vein quarts, brown ohorty quartz, ace watted arsenopjrite needes rosult in a very handsome rock. This occurronce of arscno pyrite noedles constitutes what is locelly known es "ncedlepoint" ore, and is frequently rich in gold.

Occasionally where the "har" is not very thick. the impregnation has extended locally for a fom inches into the overlying hanging woll rock. In such cases the ainorslisotion of thif rock is not intease and usually tokes the form of odd arsenopyrite needles arranged in all directions in the places of sohistosity.

The nature of the ninernlised footwall rock in the sheared sone deponds mpon the nature of the rook
before minoralisation, the degree of shearing to which it has boen subjouted, and the intensity of the manoralieation in that particular area.

Usually the shearing in the area just below the "ber" is not severe onough to form the talc schist sean sometimes in the vioinity of faulfs, but where it has done so that area has genurally not been mineralised. This is in somen cares probably due to the fact that the intensely sheared and recrjstallised talo rock offors little freodom of movement to the solutions, whan moxld tend to go where the passage is ascior,

The common care is that in which the various tydes of footwall rock have yicldal along norw or less und ing planes parellel to the contact. These are in ths nature of gliding or shear planes, and their number depends upon the intensity of the shearing. whioh in tarn is releted to the dagree of folding; they are spaced at distences ranging frow in to 2 or 3 inches. Thas the sone up whioh the solutions heve passed conefste of more or less unaltered footwall rook traversed by a fairly large number of cracke and shoar planes. in general parallel to the contaut with the imporions hanging well. The result of mineralisation, therofore, in the formation of stringars and vinlets of quarts. arsonopyrite, otc. paralle? to the contect. \triangle cortin amount of replacenent of the rook takes place betweon
the passager. The degret of development of sulphide layers uaturally aepends upon the intensity of the minor Lisation, which varies greatly fron place to place.

Fhere minoralisation bes been weak, o distinct bends or lenses of sulphide are formed, only grains and acicular crystals ecottered throughout the rock. In hard apecimen such rocke are dark graj, fairis hard. and asually masaive, though the shoar planes can often still be sean.

The arsenopyritin occure in thase rooks in a manner aimilar to ifunt in which it is found in the "bar".

Sum where aineralisation of the footwall rooke bas been δ jaisาse, munh ohlorito and pale green mioe have been formed, and in such cases the rook consists of alterneting lajers and lenses of green ohloritic matter and folted masses of arsenopyrite neeales.

Ratrocreviby of the fures

The most abundaut sulphide is arsenopyrito. the occurrence of this sineral dopends upon the degres to which the wineralinetion has progressed. Where this has not been very intense, arsenopyilite exists mainly as scatiered needlef. most of whicb lio with thoir lonf axes in the foliation and sheer planes ia the "bar" and footwall reck. The gapgue ninerals have been repleced Tithout regard to grain boundaries or crack.

The only sontrol exerted over the orientation of the needles anyeare to havs been the foliation and shear planes, which in the "bar" are not really very distinct planes of maknepf. The arsenoryrite noedles are of all sizen, from $1-5 \mathrm{~mm}$. in length, bei maintain a ratio of leneth to maximm lateral dimension of abcat $10: 1$. Their tormiuations are nejclly indistinct, while the oross-sectione are the no.mal diamond shape to be axpected from their orthorhombic habit. The only oryatal form observed is the prim. No signs of any twirning have been obseryed, but t'iers is an occasional parting plene parallol to the base.

Where the rinerelisetion has beon intense, the ersazopyrite needlen morge toguther, interfering with nomal oryctal developaent, and resulting in fairly solid masses. Such nazses vory often incluce partioles of unreplsced gangue. All gangue minerals, with the excertion of tourmaline, appear to be subjoct to ro placment by arsenonyrite. In cases where the latter mineral has become more or leas masnive, it has occasionslly out the eangue. in the included particles and outside the masa, in the for of thin vainlets sloug atrons cracike. Cleavages in the biocite and tremolite are only rarely the sites of such veinlets.

In the folded areas amell drab folds from in to 2 foot in width arn often found in the "bar" and the
underlying footwall rooke. In suca cases the banas and lenses of arsenopyrito follow the contortions faithfully. though varying in thicicness from orest to trough, as is natural. In such cases the arsenopyrite needles in the ricinity of the axial plane uf the fold are almost invariably alignod with their long axes in thn planes of shear, and parullel to the fold axis. On the linbs of the folus, on the lices of misimum bending, the acedles Lie with their long axes in ull uirections, in planes parallal to the lamination auc shear planes. Mewhore, even in the sharpest of these drag folds, heve any arsenopyrite neoules showing such features as beading. strain or fracturing been observed.

In cases whery these drag folde have heon heavily mineralised, the more or lass nassive arsenopyrite bands. vainlets ana lonses often oontain rounded grains of gangue minerals. In some cases such grains are cut by a saries of cracke in uirections radial te the fold axis. Tnese are obviously aue te the tensile stresses set up during folding, ana are filled with thin veinlets of arsenopyrite.

The ebure fiats prove that the deposition of at least the arsenopyrite was later then the foldiag. which exerted soure control over it. This leade support to the gutural statenent that the nineralisation is Nibject to cosigiderable control by the folaing.
a relatively umall proportion of the arsenopyrite presuat, where it is not maseive is in the form of irregular graine without crystel outlines. Where the aranopgrite occurs is this fors it also more often existe us veinlete along gargue mineral boundaries. waich it penctrates while disasicing the oleavages.

Arsenorgrite ganerally occurs by itself, being raraly in cuatact with uther sulphices.

The second sulphide present, in order of abur is pyrshotite, wijich, however, occurs in very muob swaller mount than the arsenopyrite; in fac pyrrhotite is in eeneral rare, though locally abumb. i. This sincral is isually associatod with mach maller amounts of chalcofyrite. These two minurals appear to be of nuch the same ase. though it is porsible that deposition of chalcoyrrite persisted a little longor than did that of pyrrhotite. This latter can ofton be found without the forwer, but chalcopjrite has not been seen apart from pyrrbotite.

Anclosed in, and occirring as irregular eiongated bladed crystule parallel to one of the orystallographio direction: of the ijrrhotite. is pentisadite. This mineral is very uncomman, and has been suen occurring onis in the manner ubova mentioned. It usually occurs
as minate grains similar to those from Sudbury, pictured on Abb. 54. p. 126 of the second volume of Sohneidorhbian and Iundohr's "Lehrbuch der Eresikroskopie. ${ }^{n 1}$

Pyrrhotite is found only us irregular grains, usually intarstitial to the gangue minorals, Hich it penetrates as very fine voinlets along craces and cleavages. It very ofter penctrates far into the cleavages of mica and tremolite, roplacement of which progressus cutwards from these veinlets. Chalcopyrite is often associated with the pyrrhotite, both in the largor allotriomorphic grains and in the fine veinlote.

The arsenopyrite is later than and replaces both pyrrhotite and chalcopyrite. Sometimes the armenopy rite, in replacing the latter two minerals, assumes its characteristic crystal form, and it is not possible to say from sucy instances whether the pyrrhotite is boing replacad by, or is moulded on the arsenopyrite. There are many examiles, howover, in which the arsenopyrite has not assumed crystal outlines at its contact with pyrrhotite, and here the convex boundary relations of the former to the latter mineral show the relationship. In such cases it is sometimes evicent that the chalcopyrite is not so easily replaced sy the invading arsenopyrite, which engulfs the surrounding pyrrhotitu. encloser islands of chalcopyriti, and is iadonted by
$1_{\text {Borlín, }} 1931$.
promontories of the sam mineral. In cases where the arsonopyrite has not assumad the crystal form, it sometimes replaces pyrrhotite voinlets in cracks in the ganguc, and sometimes also penctrates the main pyrrhotite masses in the form of short, irregular veinlots.

Fear the surface in some of the workings. pyrriotite is being replaced by irregular and rounded soned particles of marcasite. This is the usual course of alteration of pyrrhotite masses near the water table.

In some places, paltioularly in the Sueen Consort Section, stibnito occurs in spots whioh fortanataly are relatively small and rare. In sucin place this sulphide is often far more ebandant than the othors, and maj constitute up to 40% of the ore rock. Neases of practically pure stibnite 1 foot by 4 inches have boen found. When such places are net with, the ore is stacked underground, as the stibnite, if sont to the plant, has an appreciable detrimantal offect on the extraction processes.
?olished specimens of this ore show the stibnite to occur as irregular messes and veluiets intorstitial to and roplaciag the gangue minerale, and moulded on arsenupyrite, which it does not appear to replace. It frer,dently cocurs as vinlets along the boundaries of arsenopyrite nredles. The stibnite masses generally consist of a large number of irregular interlocking
grains which are strongly anisotropic, and often shew polyeynthetic trinaiug.

Sometimes enclosed in the stibnite are mall rounded grains of tetrahedrite, veialete of which can also be seen cutting the former. This mineral has not been found slsewhere than in the areas in whioh atibnite occurs. A large number of specimons of the conteot type of ore have bean polished and exanined, but nowhere has pyrite been seon. This is probubly the only hydrothermal gold deposit in the country which contaius no pyrito.

Gold is not often ssen in polished sections, oxeopt in those cut from particularly rich selected mpeuimons. When one considers that a $20 \mathrm{dwc} / \mathrm{d}$ on ore aserded as rich. and that of it the gold actuvily makes up a very eall proportion by voluse, this is net aurprising.

Most of the gold particles seen in the sections are in the form of rounded blebs, of average diameter abcut $7-10 \mu$. With maiy sailor and a fow largar, up to about 30μ. These are ueually in the gengue ninor als, and not directly associated with any sulpuide. They are ususlly orowded on the shear planes, which are about 5 man. to anan. In width. These gold particles are usually associated in the shear planes with quarts. suscovite, sericite, talc, a little caluite and biotite. It is likely that if thesu minute particles wore onw clased in some such gangue as quarts, inatead of the
-leavei minerals with whioh they are associated, the reaidues in the oyanide plant would be a good doal bighor than they are. In this connoction it is futoresting to note thet:

Many of these gold particles are therefore well begond the prectical grinding range, and most would not be liberated or exposed, were they not associated with
 a good many particles of aise much larger than the above. as is proved by the faot that gold can sometimes be scon with the naked oje in hand specimens. The oomonest. bumover, are such as those above desoribed, and it mat be remombered that these were seen in sections out from selcoted rich ore. It is likely that many of the difficulties encoiuntered in the treateent of gold ores in the Barberton district are due to the extramely ine state of division of the gold, which seems to be the case to a greater or lesser extert in all the mines.

Less comonly, rounded and irregular shaped blebs of gold are found onolosed in arsonopyritu. This is usually the case whore the sulphide is more or less masive. Particles nocnrring in this way are gonerally
larger than those onclosad in gangue, but are not so numorous. These average in dianeter some 25μ.

Somotimes gold is found in voinlets outting erseno pyrite, but this is rare. Much more ooman, though not often oncountered, are compoeite graine of golic and arsenopyrite. In such cases gold particles up to 40μ in mean dimension have been sean. The junction line between the gold and arsenopyrite in these grains is usually straight, apparently being one of the arsenopyrite crjetal faces. The nature of the particles is such that they uggest that deposition of the gold and arsonopyrite was more or less simultaneous, with the arsonopyrite fraing a crystal face againat the gold. The other boundarios of the arsunopyrite grais egainst the gangue are usually not orystal facoo, but are irrogular.

These focts indicate that the doposition of gold was more or luse contemporancous with that of arsanopyrite, though probably persisting somewhat longer. It 18. at any rate, true that gold values are usually more or less proporional to the amount of arsenopyrite presont in t.ie rock.

Pie. 7 shows the probable order of doposition of the metallic minerals in the contact tjpe of ore, the thickess of the lines indicating roughly the amount of the minerale ooncerned.
y
unime

Book lliteration

The question of alteration of the rocks surrounding these ore bodies is not quite of the usual type, sinve these bodies are really in the nature of a more or less intense impragnation of a shear sonc. This being the case, the actaal ore bodies have their upper and lower linity defined only by pajable gold ralues. Thus the intensity of aineralisation and inpreguation grades off gradually into hanging and footwall rooks. Sulphides and gold do oocur outside the ore bodies, but in seell quantitios. Within the ore bodies theaselves thore is, therefore, much material which comes under the head of altored country rock; that is, all the lanine tions of rock between the bands, striagers and lerses of sulphides are actually marely an intensely altored par allel of the less alterad matorial outside the linits of the econoaically valuable sone.

Thus the study of country rock alteration resolves itself iato an exanination of the changes brought about in the "bar" and the footwall rocks by the passage of hydrothereal solutions, and this includes the gangue metorial within the are sone itself. The gaigue ninorals ir. the mined ore are thus for the most part the sem as those in the "wall reok".

The most noticeuble offect of the passage of ninuralising solutions ulong the "bar" itself is the intro-
duction of tournaline, which usually takes the form of crystals of all sises frim lam. to 2 m . in length. These occasionally show crystal boundaries, but generally do not. the touraaline is of the green-brown pleochroic and soned schorlite varioty, and secus to have beon doposited ot about the suma time as the pyrrhotite and chalsopyrifo, with which it is vory frequently associated. (Cf. page 44 of this volme.) Tourmaline is replaced by the later sulphides only on very rare occesions, and then oaly in an incipient manaer along crackn. Graies of tourmaline are sometimes onclosed in messes of oulphides. Thn sulphides and tuarmaline are somotines found only in the clear quarts veinlete, and somotimes onlf in the brown cherty layors.

Sone quarts appears to have been introduced more or less throughout the period of minoralisation, and it is this quarts in the form of veialets ulong shear planes which sometimes contains tournaline and sulphides. It snons likely also that a cortain a mount of recrybtallisation of quarts existing in the "bar" prior to minoraisation has tekon place, ss the grains in the minoralised "har" usualiy show somewhat less straio and are larger than thwee in the amainorslised apecimons.

The biotite. frequentl. including sireons, whioh is sometines found in the "bar" is in goneral little affeoted, except by pyrriotite. which tende to form
voinlete in its cleavage plancs.
Other minerals found in anull amounts are mascovite, apatite, rutile, chloritoid, magnutite, and soricite.

It ie clear, tharefore, that the passage of the nineralising solutions has had but little effoet on the "bar". apart frow the introjuction of the sulphides with accompanying tourmaline and quarts.

In the "Bestard Bar" the passage of solutions has had practically no offect on the cherty ailicoons lajers. and vory little on the softer bands which pricr to uinerslisation consisted mainly of muscorite, sericite and ablorite, with a little biotito, otc. Most of tho sulphides it mineralised "Bastarr her occur in the soft laninations together with tourmaline acd some quarts. These softer green bands in minerulised specinons contiln more green chlorite than do those in unaineralised examples.

Before the footrall rocke wore penotrated by minoralising solutions they were shoared near the conteot. and the effect of this shearing was to inorease the gount of talc present.

Bosides sulphides, a good doal of quarts and the some green-brown tournaline as mentioned above heve been introduced during ainoralisation, replacing the pro-axisting tremolite, antigorite, talc, otc. Minoralised specimens of these rocks contain a good
decl of green ohlorite. forned chiefly at the expense of the tramolite. Sonotimes whore tbis replecament is in its facipient stages, the tremolite ueedles have takon on a pale green colour, and bocome slightly pleoobrois. Biotite is aiso sometimes found roplacing trerolite. The other ainorals present are sanall amonnte of muscorite, sarioite, epidote, soisito, rutile, ohlorin soid, and magnotite.

Caloite voinlotes duo to a mach later poriod of ectivity are sometimes found outting the rock and roplec ${ }^{2}$-g tremolite, cblorito, otc.

The passage of minoralising solutions through these rocks, thorefore, hes had very faint offocts upon the eiaerals existing in the noighbourhood of the channels. The main result of minoralisation has been the introduatior of matorial without bringing about drastio ohanges in the constitation of the surrounding rooke.
F. H. Hatsh ${ }^{1}$ gives a briof genoral description of the Fen Consort ore bodies. It nust be noted in this oonneotion that at bhat time it was not recognised that ore bodies of different types existed on the property. and hio dercriztion refero to the "contact" type of doposit.
M.E.R. Kollf ${ }^{2}$ ilso salled to notice the presence
> $1_{\text {South Miricen Mining Joarnall, }}$ 1694. pp. 304-5. "Notes on the de Xaap Goldíelds."
> ${ }^{2}$ monoir of Goological. Mining and Motallurgical Conditioas at Nem Coasort Gold Mines, Ltd., dated at Mnnrdkann. it Vameh. 1930.
of different typer of ore bndios, and, at the same time. did not appear to reoognise the fact that the mineralised sone is part and pareol of the two rook types, hamoly. the hanging wall and footwall rocks.

Hall ${ }^{1}$ states, "the motalif compounds comprise pyrites, pyrrhotito, arsenical pyrites, and probably also antimonite. copper pyrites, and bianuth ore." One of the noteworthy features of the ore is the absines of pyrite, and while bianuth ore may be present in sinute quantities, none has beon observed by the prosent writor. Hall also doscribes the roof ot a motanophosed and minoralisod sodimentary rosk, "of which the originel bedaing phases can still be tracod. ${ }^{2}$ it is considered that the deseription given in this volue in more probable.

The gold deposite of the Barborton distriot have beon olessified by hall into two types, the scoond of which he oalle "Imprognation rowfs, with no dofinite hanging or fostrall-Kaid of de Raap type." [o deearthoe "Impregnation reofs" as uinoralived seaímentary sonos tant shede off into the country without oloarly narked etructural limitations. The Maid of de Xeap

LGeological Sarrey Memoir Mo. 9. p. 24 . ${ }^{2}$ Ibid. . p. 49.
$3_{\text {Frans. G. S.8. A. . Vol. 37, }}$ 1934. Pg. 171-204. "Minaral Tieal th in the outside Districts of the Tranevaal.

Roof he ioscribos as a bleck minoralísed hornfole. These statononte do not constituto en catirely setisfectory description of the conditions.

Photomicrogruphs on Plates XXXI and XXXI 1llngtrate specimons of the entact type of ore.
 Genoral

This typo of occurrence his jielded a someWhat sailer tonnage of ore then the cratact reofs. In compensation, howover, the ore from the formst has, in genoral, been of highor grade than that from the lattor typa. This is reflected in the tonarge and grado figures, givon on page 5 of this volumo, for tho vale of de keap and Uomsort Kince. Most of the ore fren the formor wime has apparoatly come from froctere "resfo", while the contect ore bodies jiolded nost of that from the old Consort Mine.

As already atatod, the frectures whioh have givon rice to most of the ore besies in the laid of de Raap Section are usually associated with sanes of minor folding. Thej ire planes along which the relative more mont botwesn hanging and footwall rocks, brought about by the folding, has occurred. Ae this folding is not fatonse, the sorios of fraotures has not seveloped

Into the sheared sone obaracteristic of the southorn part of the aine, bat has gone unly to the stage whers twore is a series of uracks und fractures in the footwall rocks, nore or less parallel to the contect. Tio width of the zone affocted is usually from 5 to 12 fost, but may exceptionally reach 30 feet. Nithin this none there occurs a complox series of anastowosing fractures. oranohing, splittiag and rojoining in a bewildering man. r. Sometimes there may bo four or five within a Width of as many foet. and occasionally only one may be found. Talc is usually presont on the frecture planes, but the rock on either side has been little affected, owing to the fact that there has bees but littlo novemunt. Occasionally branches aplit off inte the fontwall for 30 to 40 foci, sonetimes carrying gald all the vay. In other pleces iraotures may pede trate the "bar" and give rise to minoralisation is the overlying hanging wall rocks. This is the type of ore body know as South kicef.

A comon case is that in wich two or more braches -oalerse at the lawer contiact of the "bar". Which they say then follow for consicierable dist nees. The intensity of the fracturirg is usually greatest vithin - Sow feet of the "bar". often on its lowor sontact.

In places where the iractures are widely sop-rated, the inpregnation of the walls due to the passage of
solutione along the fracture pasages hud =ot overlapped, and "channels" of waste are then included between wineralised zones.

Usually there is no "filling" in the fractures, so that the ore bodies are not veins. Smetimes in sones of abnormally intense shear, fracturing or breociation. that ie. in the vicinity of fracture intersoctions nad splite, sone quarts is found in the nature of a filling or "cement"; this, howevor, is always of limited distribation and neagre derelopment.

In general. the ory bodies consist of impragnated and rineralised footwall rock on withor sico of a fracture or within and outside a Iructured sone. Osually the fructures are viajble as cracki with slight signe of drag it the rock for an inch or so on either aide, and with filme of talc on the plames of mutcmont. Impregnation of tae walle may oxtend as meh as li foot above and below a frecture, bat the average distance is nearer 3 feet. Often the sone of impregnation on the hanging wall siide extends up to, and sometimes an inch or so intu, the "bar". though this is gororally ainerslised only whon the fractures are very olose to it.

In the 1 ow and modium grade ore the rock presents little or no evidence of alteration to the naked eye. but when the degree of aineralisation is high the ore can be seon to contain a considorable umber of rounded
blobs of arsonopyrite, averaging abont l-iam. In diamoter. These are genorally irregalarly and somewhat sparsely distributed. It is only in the very high grade ore in the vicinity of fracture intersections and splits that arsonopyrite becomes noarly massive. Such cases aro not very onmon, and it is therefore a very noticeable feature that the fracture ores in general do not contain as high a proportion of arsenopyrite as do the contact ores of similar gold cisitent. It is unusual to see "ayers or stringer of arsenopyrite in fracture ore, which more comonly contains this mineral as irregularly distribated blebs. In this ore, toc, arsenopyrite in the coionler or "needepoint" form is rare. It is obvious thet more intense shearing, with consequent greator ease of passage for solutions and impregnation of the rock favour deposition of arsonopyrite in greater proportion, and allow the attuiment of orjatal forms.

Pyrrhotite cen ofton be segn in the fracture ores. usually as a illni on shear planes, and in cracks and oleavages. This wineral il siten present in the abrence of arsonopyrite and gold. which are generally co-aziatent, and which exhibit a mor or less constant ratio in amount.

In the richer iracture ore bodies. ill-delined sones occur in which the aineralisation has taken an
axtraordinary turn. In these sones gold occurs in large anoucts and is often the only "motallic" constituent. It generally occurs on the fracture planes, and has penetrated along oracks and cleavages, sometías as moch an inch into the walls, producing an irregular sone of impragnation, in which the gold occasionally coats the walls of the shear planes for several square feet with a thin conts rous fila known as "paint gold". Many exceedirgly beautz ful specimena have been found in such areas. The only unusual fature which is obsorved in these zones of gold impregnation is that the rock is generally a coarse grained amphibolite, but wothing has been seen which would socount for such local precipitation of gold, almost ontirely without the sulphides which are olsowhere always associatod with it. In the imediate vicinity of the gold-inpregnated sone. the amphibolite is ofter more or less bleached.

It is apparent that the differences between the contact and fracture types of "reof" in mode of origin and of mineralisation, though considerable, ars only really a matter of degree.

Ratragraphy at the Org:

The gancue mineral. in the fracture ores are for the nost part those found $1:$: the unaltered footwall rooks. The truolite has been little altered except
in the innediate neighbourho of the fracture planes. where a cortain amount of talc hses been developed. Chlorite can sometimes be found replacing tremolite and biotite in the neighbourhood of the ore minerals. jometimes ohloritisadion of the tremolite gives it a definito green s,olour and faint pleochroiam. Antigorite is common, occurriag between the tremolite laths. Ohloritoid occure as lath-shaped crystalu, most often seen in the antigorite masses, and biotite is common, thorgh not plentiful except in the viciaity of the pegnatites. Magnetite as inute octahodra and as irrogular graine is almost universel, as are ting needles of rutile.

In ail specimens of the ores thare is a considerable amount of green-brown pleochroic tourmaline, associated with the sulphides wich have imregnated the iracture walls. It generally does not shom definite orjstal boundaries, but is distinctly sonet, with the cores of the grains a slightly lighter colour than the edges. This mineral was apparently duposited in the earlior and highor-temperature stages of mineralisation, and is penotrated along oracks by lator sulphides which are sometimes also moulded on it. Grains of biotite are soaetimes ben: round the tourwaline crystals. Topas wes also evidently deposited in the earlier stages, and often occurs in association with and poikilitically included by grains of sulphide. It ie usually found
in abnormaliy intensoly uineralised ureas. A little anscorite is found here and thero, sometimas in parallel intergrowth with tiotite, especially in apeoizens taken in the vicinity of the pegatitos. Here and there, aggrogatee of opidote, soísite and serioite havo apparently boen fomed at the expease of felspars.

In the heavily ineralised areas at fracture intor sections, etc.. quarts is very comon, nostly as veinlets from $1 / 16^{\prime \prime}$ to $1^{\prime \prime}$ in thicicness. This mineral does nut appear to have penctrated the iracture walls to any extent, but occurs as allling or cesent in the iraciures and iracture breccia, associated with tour naline, ohlorite, biotite, ratile, topas, muscovite, and ore minerals. It sometimes shows sigus of shoar along the voin, showing that movewont has occurred, probably during the early stuges of nimeralisation. In the "closed" fracturen gnarte does cot occur. Within and on the edges of the quarte veinlets, arsenopyrite cometimes occurs as acioular crystals up to 2ma. in loagth. This is the only condition in which arsenopyrite in this form is found in the fracture ores. The aoioular orystalline forw of armanozyrite is oridently doveloped in thin area where intense shearing or local brecciation have resulted in more or 1 yes freedom for growth without restriction. In such areas it is natural that mineralisetion would be unusually intense. The old time minore'
idea thet "ncealepoint" arsenonyritu was a sign of high gold values, therefore, has some sound baels.

Specimens of ore from the vicinity of pegratites show the tremolite in corrse of replacenent by biotite, and to lessor extent by muscovite, which is somotimen in parallel intererow th with the blotite. filis latter. When repleoing tremolite, is often optically parallel. to it; that 2 s . its cleavages in thin aretion are parallal to those of the grain of trenolite being replaced. Many of the voinlets of sulphides found is biotito cleavages have in this maraer been "taken over" from the tremolite, which is ciften roplacen by sulphides clong its oleavagos. This process can be soen in internadiate stager in many sections of the ores. In other pleces where the replening biotite is not parallel with the treaolite, the cleavage vainlets of sulphides onclosed by the latier penetrate into the biotite, gntitinf ecron its oleavapen. Zirnons, surrounded by sleoohroic haloos, are sometinea found in this bintite. These must have been introduced by the pegatites, an they are not nomally found in the ampaibolito.

Calcite, coidently nonsiderably later in cge than the mineralisation, is often found se films on shear planes, and in cracks and joints.

The most abundant motallic uineral is again arsomopyrits, but, es hai alreaay boen mentioned, its mode
of cocurrence in these ores is different from that in the centact ores. In the muderately minerallsed areas arsenopyrite occurs as rounded blobs, generally more or less ovoid in shape. These usually have a mean dianoter of some 1.5 me. . though some up to 8 mm . In dianetor have beon found. Is polished section they can be seen to consist of agerseates of allotriomorphic individuals. The blobs almost always have "frayed" outlines, due to the presence of many minute veinlets penetruting some 50μ into the surrounding gangue material. The growth of the blobs has ovidently taken place by a procsse of roplacement, starting from these vainlets whici are generally more or less kangential to the main mass. Blotis of arsenopyrite aris sometimes in contact with ting other sulphides and gold, byt most of them are isoiated. In the more highly mineralised areas these grains of arsenopyrite sometimes conlesce to forn mases which coually include particles of gangue.

Arsonopyrite in these ores often occurs as thin voi-lets in cracks and cleavages in the gangue minerals. This feature is probably due to the foot that the cracke and cleavages have been "sprene" in the rock without its having been shoared on a wholesale a ile, and so allowed indiscriminate growth and replaceneni. Binilar phonomena, as will be seen later, have also affeoted the deposition of the gold in the rame way.

Where mineralisation has beon very intense; that is, whure the rock has been abnormally intensely fractured and brecoiated at fracture intersections and splits. arsenopyrite is found withia and on the adges of quarts fillinge in the noedle form. The noedles are about 1.5 by $\cdot 15 \mathrm{~mm}$. This gives further support to the idea that for the devalopment of such orystal form the arsanopyrite requires considorabla freedon for growth. Whore such freedom exists, gold tend to form as more or less spherical blebs, showing that there has been little or no external control exertod over its growth. When its dovelopment is subject to external interieronce, it responas immodiatoly and conforas to the oparings arailable. Dotalle of the oceurrence of the gold undor these conditions in the fracture "reefe" will be givon lator.

Pyrrhotite is common, though not abundent, in this type of ore. It generally occurs as thin veinlets in oracke and cleavages i, the gengue ninorals, often associated with lenpor amounts of chaloopyrite. These two minerals seen to be of about the same age, though in these ores deposition of chaloopyrite appears to have porsisted longer than was the case in the contact ores. Barely bleder of oubanite can be seon in the chalcopjrite. Slangated and orionted erystals of peatlandite
cen also sometimes be found unclosed in the pyrrhotite. In these ores similar ralations between arsenopyrite and pyrrhutite to those in the contact ores can be observed. Hlere and there, however, pyrrhotite and chalcopyrite veinlots can be found cutting eorges l,lobs of areonopyrite. This shows that there has ieen raiho: more overlap in the times of deposition of these minsrals in the fractured aroas than was the case in the sheered contact ore bodies.

Stibnite is said to occur in the irvoture "reefs", but no specimens were found for examination. Galena was found in one place In the Ivaura A Seotion. Ae this minoral was observed in only one polished section. nothing is known about its distribution, other than that it is rare. It is evidently leter than arsenapyrito. which it penetrates $a s$ thin voinlete, and whose graia bonndaries are a favourite site of depisition.

Sphulerite is also occasionally found, usually associated with pyrrhotite and chalcopyrito.

Cold is occusionally found in the gangue ainorals as rounded blebs of average diameter about 15 u . Such occurrences are not common, and appear to be confined to the shear planes on the sractures. This mineral is often found arsooiated with heavj arsenopyrite aineralisation, both ar isolated particles and associated with the sulphide grains. Then oncl seed in arsenopyrito.
the goid occure as irreguler grains and blebs ranging in sise from 2μ to 30μ, and as miante veinlets irom 1μ :o 10μ in thicsness. Mucb of this is liberated for oxtrastion only by the roasting tn which mach of the sillod ore is sebjected. Some gold occurs as irregular masees intorstitial to the tremolite needles. In such cases manses up to 200μ in mean dimension have beon sean. The commonet mode of occurrence axhibited by gold is that of thin veinlets in trapolite and bio tito oleavages and partings. In some plases, purticular Iy whers gole ovenre in the absence of other sulphides. thosie are so numerous as to inpart a dull jellon colour to the rocis over a width of an inch or more. Theae vainlets range in thickness from 4μ to 8μ and are largely liberated for solution in the reduction plant by virtue of their occurrence on cleavage plames. Some tínes more or less continuous veinlets of gold 6 to 8 p thicis are found on the fracture planes.

In these ores irregular shaped particles of gold ap to 30μ in average dianeter are often found in intimate association with both pyrrbotite and chalcopyrite. This inature wac not obsorved in the other ore types. In this carnection it is interesting to note that pyrrhotion and chalcopyrite are often fourd in oleavejes and on :rectur planes in rook barren of gole.

Here again. jyrite wes not observed in the large number of specinene examired.

Bock Alteration

It ie evident from the above description that in this care, as in that 0 ? the contact oree, the question of wall rock alterction does not arise. This il due to the fact that the ore body is an ill-defined sone of impregnation which grader off in intensity into luanging and footwall. The wall rocks are virtually those which occur outside the arsa in which nineralisation is sulficiently intense to constitute oconomicully valuable ore.
"Hook alteration". thereforis, can refor only to the effocts produosd on the proexisting rock by the pessegs of mineralising solutions; this phenomonon occurs both inside and outside the ore bodies, in differeat degrees of intensity, and includes the introdyotion of gold and other wetallic winerals.

Therefore, this question has beon adoquataly deult with in the foregoing text.

Weber, in a private report made on specimens arbbitted for microscopic eramination in 1932-3, montions the presance of pyrite. Although sone 100 specinens ware polished and exanined by the writer, no occurresces of this miseral were o serped in the contact or frecture
ores. In the sam report. liuber described the treaolite as "non-pleochroic hornblendu". Lle also notes the presence of bornite and corellite, neither of which were ubserved by the present vriter. Bornite and pyrrbotite are usually mutually exclusive, waile covellite in generolly of supergene origin. Neber mentious also that analyses of the ores showed a trace of lend, thouch he observed no lead mineral in his sootions. This lead is probably due to the sall amount of galena occasionally present. In his report. Weber states that the mica (biutite) has varying reiractive indices, other optical proporties and composition, and he suggests as the reason the conjoint occurrence of mascovite and paragonite. The existence of the latter mineral is somewhat doubtful, ad the peciliarities obsorred by Weber are probably to be accounted for by the intricato parallel intergrowth of nuscovite and biotite nicas. together with a certain degree of ohloritieation. It is ovident that the spouimeris sent to llober wore unfortunately selocted, as his deseription shows that almost all of them were from abnormal spots, either near pogeatites, or in unusualls intensely fractured, sheared, and consequently altered areas. He makes the common mistake of trying to deducs tos much from microscopic date without the assistance of field
evidence of any kind.
$\Delta 11$ prevlous dencriptions of the Consort area show that no diotinction batweon the "contact" and "fracture" types of ore body was observed. This is strange in vion of the considorable difforences oxhibited bstween these types, as seen in the southern and northern parts of the mine, respeotively.

Photomicrographs cE Elato xXXVII are of apeoímenc of irecture ores. They show the differences in the natire of mineralisation botweon this type and the contact typo.

(3) The South "RME" Genaral

Little or no South "real" is bolag worked
at present, ${ }^{1}$ but a considerable tonnage was mined fre ore bodien of this kind in the apper levels of the old Maid oi do Kap Mine sone years ago. These worklugs oan be seen on the geologioal noctions, Plates V-XT. in some cases stoping was done on both the fracture "reefs" bolon the "bar" and the South "reef" above. Wheru this happened in the vicinity of the Main Roel Fault on 6 Level, the workjnge beoome somewhat complicated, copo cially when work has also beon dono on the fault planc.
${ }^{1}$ Ootober, 1942.

The relation between ocourrences of South "reef" and structures is similar to that between the fracture "reefen and structures, as it sueas that South "reef" is maraly a local auxiliary of the fraoture "reess". In pisces, fractures in the footwall rocks cut at an acute angle across the "bar". and then persist wlong the upper contect of the latter and the hanging wall rocks. It is apparontly such fractures that hava givoa rise to South "reef" mineralisation. Nothing of the type of South "reef" has been found in those parts of the aine if which the contact type of ore has been developed.

It is a generally, though not univarsally, applicable rule that where South "resf" oocurs the "bar" is abnormally thiss sometimes up to 100 foet, and is of a slightly differeut oharaotor from the normal ohoso-late-brama or banded tjpe. In thene arces the "har" is generally dark grey or almost black, well-joiated, has a conchoidal fracture, a more or lens vitreous lustre, and shows indistinot laninations. It is the type desoribed on pages 40-9 of this volume as oonsisting almost ontirely of quarts. with a slight difforance of grain eise in the laminations and with thin bands, stringers and chains of ninute orystals of toumaline and occasionally of biotite. it la oidently an unesually inteasely silicifind form. Pig. 3. Plate

2ajill. is a photomicrograph of a spocinen of this type of "bar".

It is probable thut cortain aroas, due to local weakness, were more ausceptible to fracturing and sillaification than others. This rasulted in both the abnormal thicknoss and the unusually intanse ailioifiostion of the "bar" at these pointa. By the sane token the fractures in the focitwall rocks in the slightly folded areas were onabled in theee placss to spread up into end along the hanging wall rock noar the contact. These fractures were then leter minoralised to form South "reel" at the same time as mere those in the footwall rocks which gave rise to the fracture "reefs". It 1s quite possible of corrse, that this fracturing oztending into the hanging wall rooite was partially responsible for the looally intonse silicuifiontion. In this conncotion it has already been stated that the "bar" fonction, folding, fracturing and notulleation ware more or lans contínuous and overlapping processes.

Individual bodies of Sonth "reef" have apparently nover porsiated for any grat dietance on oither etrike or dip, and their gold valuen have generally been more erratic and not as high as those of the fracture and contsot "reefe". Such foatures would be axpeoted from the nature of their origin, and from the fact that they occur in but slightiy iractured hanging wall rocke,

Which at the best are not exactly favourable host rooke for hydrothormal mineralisation.

The width of the mineralised sone in bodies of Soutt "reef" is, es would be expected, rolatively snal!, seldom over 2 feot. In hand specimen the ore is hard, dark gray to aimont black, is composed nainly of more or less fine grained vitreous quarts containing thin veinlets ond Nattoned blebs, some 1-2m. in mean dieEater, of sulphidec arranged slong easily disoornible frecture planee. The oocurresces are generally along the upper contact of and just within the thick bleokish "bar". The iracture planse are, in general, more or less parallel to the contact.

All the known occurroncer of South "reef" are in the Maid of de Keap Section of the mine. Apparontly in the southern part, nearer the de Xapp Valley Granite, the relative morement iadnced at the controt by the folding wan taken up in the shear sone in the footwall rock; no ingnifioant fracturing extended into and along the bangine wall rooks, whioh were in this area deepor in the "plastic sono", and consequently less susceptible to oracking and fracturing.

Patrogranhy of the Oren

The gengue material of these ores is that of the "bar" previously decoribed on pages 48-9. It ocin-
siste of a mosaio of more or loes olear quarts in kltornating laminations of finer and coarser grain, with strings of tiny oryetale of green-brcwn tourmaline and ainute remant flakes of biotite, with ohloritoid, ruille and muscorite. The toumaline was oridently deposited in the foliation planes by the solutions whioh brought about the "bar" ailicification and introduced the folfation vainlete of coarser quarts.

Outting this naterial parallel to the foliation and lanination planes are fractures, whish can be olearly seen in thin soction. Along the fracture plunes are strings, voinlots and aggregates of mall grains of the seze green-brown tourmaline. This ainoral was ovidently introduced in all the New Consort Mine ores by the carlier aineraliaing solutions, both during and aftor tha "bar"-forming stage. Ascociated with the tournaline nlets, graine, aggregates and rounded blebs of Ars, and aggregates of topas. The veinlete and sisonyeiod crystale of sulphides have their mejor dimensions is and parallel to the frectures, while the rounded biubs, averaging some imm. x lina. in sise, are lattened in the direotion of the fruoture planes. I fon wellorystallised needles of aresnopyrito arn found lying With their lung ases in all aircotions in the irnotures. There appears to have been little penetration of the ireoture walls by the introduced ninerals, though the
quarts in the vioinity is coarser in grain and lees atrained than that in the unninoraliesd parts, indicating a ourtain degree of rearrangement and recryatallisation.

The sulphide voinlets, orystals and blobs conaist almost antirely of arsenopyrito. The voinlate and erystals have sharp, clean-out boundaries, but the blebs have "frajed" outlines similar to thoee found in the fracture ores, and frequently include particles of gangae minerals, genorally topas and/or tournaliae. The ocear rance of arsonopyrite is limited to the frecture plane and a sone some 2 mm , on each side, wile the individual fractures may be t^{n} to 1^{n} apart over a width of 1 focit or 80.

A little pyrrhotite, associated with a lessor mount of ohalcopyrite. is alwaye prosent, gonorally as irragular partioles interstitial to the touraline graine, as voinlots on the fractures, and in the gangue minorals In the walls. It is mortly sarlior than and aubjoot to roplacement by arsonopyrite, though in some places the two are apparently contonporanoous.

Gold is found as irregular grains ranging in nean dianoter from about 15 to 25 in the fracture plenes, both alone and enclosed in arsonopyrito.

Hoak llitaration

The rearks on this subjeot in the acction on the fracture "reefy" apply equally woll in thic case. In the case of the South "reef" there has been vory little penetration of the walls of the individual frectures within the fracture sone, and the mont noticeable ohange food is a slight increase in the grain aise of the quarts mosaic. Most of the altoration associated With the minoralisation tekes the form of the iatroducfion of tomrealine, topas, oto., and anlphides, along the freoture planes.

As the ponotration of the walls (a natitor of a couple of nillisetres only) has been very much lous In this case than in that of the fracture "reefo". the upper and lower boundaries of the ninoralised sono are fairly sherp. Onteide this sone no elfecte ef the passage of the ninoralising molntione as distinct frow the varlior "bar"-forning coletions are visible.

Mo mentiva of the South "reer" ooourronces has beon mede in previous litorature.

(4) Thr Panlt NReats"

Gamern

These occurrences sannot really be ro-
garded as a separate and distinotive tjpe of minerslisation, as they are formed by the faulting of the types already described, and should therefore be regarded as - lock variation of the primary ore type concerned. Por conveníance of description, however, they are here treated at asparate type of occurrence.

In the Maid of de Rasp Section there are several ocourrerces of this typo, ohielly on the Main Hool Fault, ak has been mentioned before.

They are sommonest, however, in the Queen Consort Section of the mine, where the ore bodies have beon subjected to a considerable degree of faulting. (C\&. 1ig. 5. pege 83.) It is mainly thr se occurrences in the Guean Consort Scotion that will be dealt with. because they offor better fsoilitios for examination. and bocause the primary ore type ooncorned is of such nature as to aimplify the deteraination 0 !" the muin objoct of the examination, vis.. the rature and mode of origin of the occurrences.

Where faults have cut the ore horison in the Now Convort Gold Miaes. Ltd. dreg phenonena are almost alweys present, and in the case of the Maid of de Kapp Section, oscillation on the faults has given rise to a fairly wide sheared sone, containing reol matter draggad In and orashed pg. Yost of the faulte in the Queen Consort Seotion have apparently not had an oscillatory
movement, and whes the faulted sone on the conteot had proviouely bean ninernlisod, real mattor oan of:an be traced direotly from the fault block on one aide, contiauonely through the dras area, along the fault, to the fanlt blook on the other aide. This is probably duo to the faults' having taken place very shortly after the rock had maerged from the plastic sone into the sone of fracture ; that is, vory shortly after nineralisation. When such phenozene are encountered, the first inpressionc produced are those of sharp monoclinal folde. The fault sones con, however, be found in the hangingand footwall rocks above and bolow, and the fact that the faults in these arees have not been mineralised fixes thoir age as post-minoralisation. It is probahly true that the approximate rolative age of these faulte, dated from the anergence of the rock from the plastio sone, can be doternined by the rolative mounts of dras phonomena produced, when no other age oritoria are available. Pigure 5, rage 88, gives a fairly gool idea of the gonoral conditions prevalliag.

Where the faulte have had ocoillatory movemente, the reef material dregeed into the fault sones may occur outoide the area enclosod by the contact horisone in the fault walls. This is the case on the Main Reef Pault and on soveral in the 2moen Consort Scotion, for example, that illustrated in Pis. 6, page 85, in which
the oontact horisons on both aides of the sault sone are abore the olovation of 4 Levol. Naturally onough, apecimens of reef nattor taken from faults of this type show more ovidence of orushing and shoaring than do those taicon from faulte whioh have not beon the sites of oroillatory moremonts.

As the reof matorial draged into the fanlts is the same as that of the faulted ore bodies, it is not noceseary to describe in dotall the potrography of the ores in these bodier, oxoopt in so far as such features as throw light on thoir mode of origin are concorned.

Patrography of the Oren

The main fontures in whioh the gangue minorals in these ore bodies diffor from those in the primary types are, firstly, the fect that signs of intense crushing and strain are always viaible in the quarts presont. and seconaly, the abnormal anourt of tale in the ores. The quarts in all apcoimens of the fault ores in which it is found shows, as is only to be expeoted, suoh ohereotoriatios as the developaont of a little intergranular "nortar". orushing and aquesaine out, ard mary extinetion to a atrikingiy well deralopod oxtont. The dovelopmant of abnornal amounte of tale where such of the forit ore body consiste of footrall rock is also
to be expected. This in sometimes so far dovaloped as to make mining of the bodies difficult. since the high talc content lessanc the coherence and consequently the strength of the rook, and causee sloughing off of alabs from stope hanginge and footwalls.

The tourmaline orystels in the ores are often broken, and the parts dinplaced relative to one another. Such phenomene are, of couree, wuoh nore marled in the case of faults having oscillatory moremonts than in the case of those with simple movencats. Where the erystals are cracked and the parts but little displaced, the cracke are occunied by quarta, oaloite (a late niaeral). aed serioite.

In many of the "sinple" faults in the Ameen Consort Section the morement has vidently heen more or less gradual and "gentlo". since the banded "contect" oro can be traced with its leminations practionly unbriken, thsugh somerbat thinsed out, frow the undisturbed area into the sone of fault reef. In such cases the attitude of the arsenopyrite needles lying with their long axes in all directions in the shear and lanation planes is retained in the still banded fault ors. Many of the needlen, however, arn bent, and some cracked and brokon, with their component parte dieplaced rulative to one enother. The bent oner urually ahow wary extinotion under oronsed nicsls in polished eeotion. The pyrrho
tite, chelcopyrite and gold, of course, show no reoogniseble ovidence of the dintortion. Some of the arsonopyrite noedles have had the sharp edges, whioh were exposed to the grinding action of the relative novement in tio rock, ronnded off so that basel seetions present the appoarance of flasor struoture in the shearod matrix.

One apeoimen was found in whion there mae a considerable amount of pyrite. Thif is the only one from this mine in whioh pyrite was observed, and it care from - fault on 6 Level in the Queon Consort foction. Kxarfaction in poliehed section revesled the presence of a good deal of pyrrhotite with chaloopyrite, occurring in the uanal mannor as voinlota and írregular blots, arsonopyrite in the forn mainly of alightly rounded off and distorted neodles, and a considorable caount of pyrite in the form of well aevaloped cubes, py-itohodra, and combinations of both, with an average else of tum. The pyrite occure in sones. some ${ }^{2}$ wide, following the genoral banding of the rock, replaces pyrrhotite, and sarrounds but apparently dowe not raplace arsonoprrito.

In view of the surbar of seotions of the ores out and oxenined. it is imporsible to escape the conolusion that this pyrite is oonaidrrably later than and does not belong to the main mineralifation process whioh geve rine to the various typer of ores found in the Nom Consort Gold Mines, Ltd. it cancot therofore be proporly included in a description of the primary ores.

Ro mention of the ocourronec of ore mattor in fault soner on this mine has beon made in provions litaraturn. The photoniorographe on Plate .ixnill are of apooimans of fault sone ores, and illuatrate sose of the fostures deseribod aboro.

Concturion

Glumiliantion and finnerl.

From the foragoing it is evident that the course of the minoralisation refleots a more or lese continuous hydrothermal process startiag at high tem peratures and pressures, probably towards the and of the folding and orunpling brought about by the intrasion of the de kaap Vallej bose. Dteady deorease in prossures and drop in temperatures are also reflected by the sequence of mineraly deposited, though the and of the main process took place at temperatures and pressures -till fairly high. Hall ${ }^{1}$ classes this as a "contact deposit" depeading for its origin on the Older Granite In whose oonteot aursole it occurs. In genoral this deposit may be olassed as partially pyromotasomatic and partially hypothermal, ohiofly the upper limit of the latter. Fe deposits of sinilar tjpe have beon desoribed.

Most of the complexity of the ares is due to the Solding, netamorphic and minoralisation processes caused by the de Kaap Valley Granite, superimposou apon the motemorpisic offects due to the pro-existing Nolopruit, Granite.
$1_{\text {Geological Survoy Miemoir No. 9. p. } 249 .}$

Throughout the distriot the rast majority of the gold doposite may be directly attributod so the intrusion of the de \&aap Valley Granite, aromad whose contact they are groaped. Many of those which are not in close froximity to this intrusion are associated with structures produced by it, and are suporiaposed apon features Which may be attributed te the Molspruit Grunite -apparsatiy of the ene or siollar age as the simasilaad Granite. Thue the wajor gold mefallisation is due to the de Iaap Falloy Granite, showing that ite volatile producta ware of a romenhat difforent nature from those of the oldor felsprit and Masiland intrusions. It seas reasonablo. therefore, to assume greater ilffor ences in origin between the two granite intrusion oycles than is iaplied by Hall's statement, i "the difforence betweon the granite of Barborton and that around Belspruit suppiorts the impression that speoiai conditions of oonsoliantion existod over the de Inap Valley area." further treatment of these points will be found later in the portion of this report douilng with the Shebe Seotion of Mow Gonsort Gold Kines, Ltd.

IGeological Surrey Momoir No. 9, p. 114.

Pintura ana zonloration

The morkings, particularly the atoping, near the outcrops and near the sarface in general are fairly extensive, while those at greater depths are not so large. Thin has caused some to exprean the opinion that surface earichnent has boen operatlie, and others the opinion that valnez in general are decreasing in depth.

The lirst opiaion fs based apon ignorance, for no signe heve been found to eucgest that processes of surface enrichment have alfected the ore bodies, and no ovidence in support of such an idea is apparont.

In connection with the idea that gold values are deoreasing in depth. it must be rememhered that the surface workinge, or those olose to surfice, ropresent In thenselver a conaiderable vertical range (actually abont 1000 fent, oven neglecting the effect of tha Bluojacket Fault, and this is large in comparison with the depth of working ovor which gold valaes are supposed to be dearoasing.) Also it muet be borae in wind that the arear on and near surface hare been subjected to more rigorous prospeoting than those at depth. There aposars to te no reason to approse that enld valuen aro decreasing af the dietnace from the surfuce increaces and as the sourco of the minaralfsetion is approsched. firptly of account of the nature of the deposit. soconaly
bocaure gold deposition lejeads upon the presence of suitable structiaral conditions, and thirdly bocaure the distancee examined below the present surface bear no relation to the depositional range at the time of intrasion of the de Raap Valley Granite.

It is connidered that if favourable structures of the tyje desoribed are follored up in a doternined and intelligent manner, there 18 no doubt that gold produotion from the Mew Consort Mine may continue for a oonaidereble neriod. Conditions for the doposition of large and valuable ore bodier appoar to be particularly favourable in the area southeast of the collar of No. 6 Sheft, and south of the kein Raei and Ivaura 1 bodies.

The area southeact of the collar of llo. 6 Shaft could bert be opened up frum one or more of the lower level: of the Pieen Consort Section by driving, if necespary blindly, into the area, followeli by dianond drililige, and later by up and down-dip devolopment. In general. however, the ore bodies have greater atrike than dip dimensions, and are therofore most coonomioally expoeed by direct and irequent "down-dip" dovelopment. ar opposed to the jest rystam of long drives at level intorrals of 80 feet or so. Such devalopmont would also field cheaply the information required concerning the depth of the trough of the main Jonsort Sjnoline, whose south limb ajpeare to crop out south of the

Noordicaap Rivor.

88CTION II

Fen Consort Gold Mineo - Shabe Soction.

Section LI

Men Consort Gold Minns - Shere Section

Bintorion

Many jears aso, the group of workings, mainly in the Jwartkopje Valloy, now known as the New Consort wold Mines - Shoba Section, was a part of the old Sheba Minc, and was worked in conjunotion with the group of aicne in the Shoba Valley. The old Shobe Gold Mining Company wont into liquidation in 1927.
hfter 1932, however, work in the Zwartkopje Pallej was rosumed as a separato concern undor the nane of Nestorn Exploration (Pty.) Ltc. In 1937, the property was taken over by the Lestern Traneraal Consolidated Mines. Ltd., and has since been worked as a section of the Now Consort Gold Mines, Ltd.

Fron 180% to 1090 mining at Shobe wes consined to the 0ld Sheis or Coldon Querry area, then owned by Masers. Lenis and Marke. It wae not until 1899 that mining comenced in the Zwart kopjo Valley.

These morkinge were ot one tiwe apparently oporated by eeparate mall workers, but the early history is vague, and no records can be founc. It is not fossiblo to obtain acurate figures for the early production from the zwartiopje Falley miner, as their reoorde are
included vith those of the wince in the Chebe Valley. from January, 1887, to August, 1936, howerar, it is known thet $1,354,547$ ounces of inne gold, valued at nearly $26,000,000$ hed been produced from the sthebe area.

Pro June, 1937, to Junc, 1941, 1.e.. while operetions were under the control of the Lastern Traseaal Consolideted Mines, Ltd., the Now Consort Golu Mines Sheba Seotion ailled 203,960 tons of ore at an ararage grade of 5.01 dirte./ton to produce 25.259 ounces of fino gold in consentrates.

Sltmation. Phyciography and Precionge
These wortings are near the Old Shebe or Golden Quarry Mine. The position of the various workiage round Shebe rolative to the Ner Consort Mine and to Barberton can be seen by reforonce to Plate I. The corial haiage transporting ore across the Sheba H1lls ${ }^{1}$ to the For Consort Mine, where the ooncentrator is lncated, is 6 niles long.

The 01a Shobe or Goldon Quarry Mine and ite associatud workíge, vis.. Edwin Bray, 111 Desperandus, Anaío Iortunc, Orient. Manba and Margaret, are eituated on the northorn slopr of the Shebe Valley, while the
$\mathrm{l}_{\text {This terie is used in the sense in which it is amploged }}$ by Hall in Geclogical Survey Memoir No. 9. See n. 37 .
workiage of the Sheta Scetion of Now Consort Cold Maes. Ltd. are situated on the sonthern slopes of the sare Valley, in the tributary valley ocoupied by Sajman's Creek, and at the head of Bnixiti Valley. These locefions can be found on Plate IIl.

The conatry in and around the area in question is vory highly dissected. With hill slopes in places at an angle of 50°. For the most part the hills are more or less anoith and coverod by grass and aparse bush, the latter abundent and laxuriant in the oroeks on the hillaides and in the valleys. The geologioal structure, as will be scen lator, has exerted a very dofiaite control over the physiogrephy the $^{\text {drainage. }}$

The genoral drainace on the cine property is Sayman's Greek. flowing from meet to cast. Near the east boundery it turne northwarde to join the west-to cant-flowing Shobe Creok. These united ari oalled Fover Croek, which llows eantwares to join Figtree Creek; this, in turn, finally joias the Queen's Kiver at Shobe Biding. The slopes of the valleys occupiod by these oreake are vars steep and oonaiderably cut up by intornittent tributary stroms.

The colden Valley Croek flow in genorel northwards to join the Woordkapp Rivor. The features montioned above can beat be anderatond by ruference to Plate III.

Glinte

The Shebe Scotion mine offices are 3400^{5} above mean sea lovel, considerably higher than those of the New Consort, but the climate is much the same. In the yumer the valleje, owing to the stoepness of their walls, are frequently oppressively hot, while in vintor, though cold eange are exporienced, the climate is generally more or less ideal.

After the heavy emmor etorns, which rake up the greater part of the considerable annual rainfall. the oreoks become for a fen houre raging torrente, whioh may cause consicerable danage to rosds anu uthor structures.

The photograph. Plate XXVIII. is a Vion of the 3wartkopjo Valley, losking east from the hoad of Snyman's Creok.

Malaria foror is comon in the Shobe area ia sumner monthe, though apparentiy out so much so it it is in the vioinity of Noordkeap.

Pamenl Canlogy of the Aret

The area ubraced by the mine property includes a conformable sories of rooks, some of somewhat doubtinl origin. This conformability continues through intense folding. The nature and cocurrasce of the rocke will be dfecusesed in dotail later. At cortain horisons ocour perainteat beds, ranging froa cherts to quartsites, which are more resistant then the intervening rocke. Tracing of these bede, whioh have become known as "bars". reveals very clearly the complex structures of the area.

The aine boundarior include a rolatively small portion of the Sheba Rille, and a description of this part alone cannot give a true idea of the general etate of affairs. Plate III is atrnctural and drainage map of the greater part of the Sheba, Hille area. It shows rainly the bars, with some aditional dotail in the vicinity of the mine property. The portion of this map outaide the confines of the mize bouncaries has been compiled from ecrial photographs and from rough reoonnaisance mapping, and thorefore showe little in the way of dotails. The positions of the bars have boen marked to briag out the folded strnoture of the aree. This plan shows etrikingly clearly the control which has been esercised by the roaiotant bars ovor the arainage anc goneral phyaiography.

Hall hes described the folded structures exhibited in the Sheba Hills, and in so far as the area north of the Shape Bar is concerned, nothing hes been noticed in the sketchy reconalesance surveys made by the writer that would throw doubt upon his conclusions. Fro the Sheba Bar southwards, however, particularly within the small area enclosed by the aline bmadaries. Hall's mapping as shown in his sketch on page 173 of Gaologionl Surrey Memoir No. 9 must be modified to a considorab' extent.

Hall ${ }^{2}$ has assigned the rocks in the whole of the Sheba Hills to the Hoodies Series. It is believed, however, that the recent examination made by members of the staff of the Union Government Geological Survey hes resulted in further subdivision, to include a portion of the rock in what they have called the Figtree Sorice. This does not, in foot cannot, aficot 4 aras within the aline boundaries, and as the report this recent work by the Geological Survey has not be ublishod no further reference to this point will be haul.

The detailed work done by the writer was conitined to the are shown on Plate IF. so that only general

Geological Sunnis Monodic Mo. 9. p. 170.
${ }^{2}$ Idea.
3 October, 1942.
remarks can be made in connection with areas outside these limits.

The rooks within the ares studied in detail are mainly black to dark gray, well bedded argillaceous types, locally called shapes. There occur also yearsiotont, hard, blear and banded cherty horizons rang ing in thickness from 5 to 100 feet, and commonly known as the "bare". Associated with the bars are grey talcose schist and green siliceous rocks locally known es "green echists". These rocks occur as a conformakie series, and mapping of the bars therefore reveals the general structure of the ares.

In his sketch ${ }^{1}$ and on the map accompanying the Memoir, Hall has shown the Southern Cross and Zwartkopje Bare as repetitions by folding of the Sheba Bar. He has also made statement to this effect. ${ }^{2} \triangle$ quite different state of affairs is show on Plates III and IV of this work.

Frow Plate III it can be sean that the Sheba Ear in this ares appears to and indefinitely at a point near the confluence of former and Migtree Creaks. dotually, 28 will oe soon later, it becomes somewhat indefinite in places just east of the Golden Quarry.

1Geologioal Surrey Memoir No. 9, p. 173. 21bid. Pp. 190, 251, 253.

South of the Shebe Bar near Figtree Croak thore is found an indesinito bnecea forruginous churty horison upon which are situated the workinge of the Royel Shobe Miac. There appears to be no oounostion betweon the Shebe Bur, which where it is mell developed is usually a light grayish banded chort, and the Poyal Shoba Bar.

The Southern Cross Bar cannot be traoed farthor east than is shown on Plates III and IV. Towards the Pairtiow Mine in the rent, the Southorn Cross and 2 : thopje Bare approash one another, and finally conloscs to form a vortox, es is shown on Plato III. This fact. tocsther with the ropetition of the rooke between these bare shows that the Southern Groses and Zwurthopjo Bars are one and the sane horison ropoated by isoclinal folding. The Pairviow Mine is sitrated In the disturbed ares in the shales on the axis of the fold, and has not, expesed ang of the "bar" rooks in ite vorkings, showing that the pltah of the fold is not low towards the went. The Zuartkopje Bar onds indeínitely at the point shom on Plate III. South of these bars oscure thit hoowe as the Ulundi isar, a banded forraginous chort horison not unlike the ñoyel Shobe Bar.

The mont important omiseion in Holl' a mps is thet of the Hospital and Hospital North Bare and
their associated rucks, shown on ?late IV. These bare are ideatical with, though not as persiatons as, those cocurring in the Southern Grobs - Zwartiopje group. and ere associuted in the shme way with an exuotly similer suite of rxis. (m the south ount not of the Swartkopje Bar, and on the north contact of the Southern Cross Bar there occurs a zone fron 1 to 12 inches wide, in which is foand strongly sheared shule such as would be produced by the relative sovement consequent upon such folding as would onues the repetition of the bods seon on Plate IV. Kractly sínilar phenomons are found assooisted with the Lospital Bars. The sheared sone on the Zuartcopje Ear-shaie cuatect is locally known as the Z.X.O. (2wartkopje Outcrop), and when intersested by aineralised fracturee is somotimes itself of coononic - eluo.

Le can be soen on Plates III and IV, there is a sharp sigerag fold in the Olundi Bar at a point southsoutheast 0 : the 2warticopje Sibait. This sfructure is not duplicated in the Zwartikopje - Southern Crose group. and it cennot be followed in the shales north of the Olundi Bar, owing to "creop" on the hillaide, and to fairly doop weathoring. South of the Zrartkopje Bar, however, and due vest from the Intombl garry, Plate IV shuwe the onourrence of angie blaok ohert horison nome $2 C$ foot thiok, which axibits a etructare viuilar

In oise and shape to that on the Ulundi Bar. The black chort horison gradually gives place eantwerds to a harcened sone in the ohalos.

Som 300 foet cast of the coordinato line $z=-32000$ ' thore occure on the Jwartkopje Ber a peculiar sone in Fhioh the ohort thicinnese is some 90 foot, as compared with the nomel thiokness of 30 -odd foet on either side of it. It a crons-cy, uoderground this thickening can be seen to be due to internal isoclinal foldiag. Eistraordinerily anough, drive on the north contect of the bar in this ares showed no abnornal disturbance.

Almost diroctly north of this area the Southern Crose ber shows a ponuliar structure on the ontorop. In this case undergroind work in the vicinity eouth of tho Southern Cross Ear dia showed no abnomalities. This structure, due to the presence of tajus and to there heving teen acertain emount of "oreep" on the hilliddo, canant be sufficiontly olearly scon on the outcrop to allow af its belag thoroughly examinod and its nature dotermined. It is in this vicinity that the rocks associated with the Hoopital Bars appoar to lose their identity ou surface.

The aignificence of these minor structures in tha Ulundi. Zwarticopjo and Southorn Cross Bart, and in tho chort horison just eouth of the Zwartropje Bar. is difficult to see, chiefly because they cunnot be
followed up in the adjoining rocks either on surface or underground. It is possible that they are merely local irregularities produced by the southward bending which affects all the rocks in the sheba Hills toward the west.

Hall has described the duplication of the bars, and decided that it is produced by strike folding, as opposed to dip folding. Nothing has appeared in the recent work to throw doubt upon this general conclusion. or to suggest an alternative. He has decided also that the folding is due to the compression of a portion of the Hoodies Series by the intrusion of the de Rap and Crocodile Pourt or Molapruit Granites. This is true enough as far as it goes, but it does not tell the whole story. There are also some points of interest in connection with the folding which Hall hes either missed, or feline to bring to notice.

The Woodstock bar has apparently not bon duplica.ed by the isoclinal folding which her affected most of the area. The next bar soutimards is the hard giurteite horizon known as the Oluthe Lar. This bod shows devidone of the intense pruasuro by a form of doubled isoclinal fold. giving rise to four duplications, vie..

LOp. oft. . Pp. 172-179.
froa north to south: the Joe's Lack, Bevieanskop, Intormediote, and Victory Hill Bars. South of E : sorípe, however, ocoure anothar more or lese untuided horison, the Sheba Bar, and nest in ordor southwards are the Hoapitel Forth, Howital. Sonthern Cross, and Zwartkopjs Bars. Difect folded relations between theee oan be seen only in the ceec of the latter two. bat the goneral nature, ocourrence and relationshipe of theoe horisone are sufficiont justifioation for the essumption that they are one and the sane horison, duplicateo by isoclinal folding more or jess aimilar to that which hay effected the duplication of the Cluthe Bar. The Hospital and Hoapital Ro sh Bare cannot be treood to any point whors direut x^{\prime} tionoilp with the 2martkopje asd Sonthern Crose Barw, or with one anothor, can be eutablishod. As has been stated before, howver, in the case of the almost ozectiy aimilar Zrartkopjn Southorn Cross group, a definite rolation betwoen the two bare can be shown. The occurrence of the Hospital and Hoepital Morth Bars is somowhot pussling, porticularly toward the west where. togethor with their associated sohist and othor rocke, they appear to die out. So fer, insuffioient undorground openings have been made to anable the position to be olerified, ond acourste surfeoe observation is not possible. Their nature, relations and eesocistions, howevor, ere such
that the conclunion that the Zwartkopfo. Southom Croes, Hospital and Hospital North Bars are merely folded ropetitions of one more or leas conilinuous horison is anyly justisied. It secis possible that the indoter ninato westward onding of the Hospital ~ Hospital North sories is a partially hidden vortex which may heve been brought to its present position ty acre or less ciosed oblique dip folding ef the alreads strike-folded serien. Thus tho yairvion vortez of Southorn Uross and Zwartkopje Bars monld be merely one of two outcrnps of tite same strike fold vortox. If this is tis vasc, it is possible that irrogularitios in lie intensity of the dip folding night sause the Hospital ber to meet the Southorn Gross Bar baiow the Insiabi workings, and then later to meparate irom it again, to form at greater depthe the dip fold voriex which would probably have a low angle of pitch. Such a condition seoms to be suggested by the work so fa: done on the lowor lovels of the Insimbi workings.

It 1. Interesti.ag to note here that in the northsouth sone some 600 foot cast of the $x=-36000^{\prime}$ ooordinate line, both the imartkopjo - Southorn Croes and the Hospital - Hospital North groupe shom evidenoe of intriceto minor isoclianl foluing superimposed upon the mein structure. Plets IV showe thio feature.

Dig. 1 illustratos diagromatically the hypothesis above outlined, and showe how the peculiar atructures on tho Southern Cross and Zwartkopjo Bars some 300 feot east of the coordinate line $x=-32000$ night a'pount for the indetorinato woatwird ending of the Hospital Hospital North group.

Hg. 1
Sonth of the Zwartiopje Bar oocur the Ulundi Bar. anothor zore or less unfolded horison. Wo vatieinctory axplanation hes bseu found for this apparontly ordored succeseion of "unfolded - intencely folded - unfolded intensely folded - unfolded" horisons. It is olear, howovar, that the rook nass as a whole has not been uniforly foldad on mase, but difforont portions have been affected to differect degreen.

The ontire series from the 解chatook Bar through to the Ulundi Bar exhibite a distinct ourvature, convex
to the northwost. This feature bocomen progressively mort sharply dofised and less gradual from northwest to southeast rosulting, in the case of the Zarartropje Southorn Cross group, in a sudden change of strike irom alnost true enst-mest to s5me 25° south of wost, as snon on Plates III and IV. Plate I shows that south and southeast 0 ! Berberton another distinot and opposite chenge in oirike takes plece, with the reunlt that in the Moodies Eills ares soutimest of the town tho strike is again more ncerly east-jest. Loosl compression folds seon in the Victory Hill Bar in Golden Valley have beon caused by this beadius.

Eadjustant of the atresses giving rise to this folding has resulted in the irectures oonupied by the soríes of doleritic dykes seen on Plates III and IV to be lyiag in plaves more or less radial to the ourvatnre.

The nineralised fractures in the New Comeort Gold Mine - Sheba Soction are independmat of the ieoclinally folded atructures of the rocke, and are apparatily of considerubly later age then most or all of this folding. yarthermore, as will be seen later, the neture and displeosent of these fracturen io such that they cennot have been consed by oompreselve strees coting in an east-west direction. They vould sock, howover, to heve beon offocted to o cartaía extent by the lator
boading, flaxing and consequent rolative movement descritad on pages 157 and 154.

Only one fault of any :Iportance has been found in the mine aros, vin.. Mao'n Fault, which has on the tare a norial dioplacemont whose horisontal oomponont is sore 80 to 100 fect to the south, on the footrall or cest side. This falt strikes nore or loss northwestsoutheast, and dipe at sum $70-75^{\circ}$ to the southwest. It can be traced on surface, and can be found on all the unargroand lovels down to and including Zwartkopje 11 Level. Throughout this vertical range its dip, strike and dieplacemont are rolativoly uniform. On Zwartizopjo 12 Lovol, some 70 feot vertically bolon 11 bevel, no aign of the usual strong break hes been found, and the esual displacmant is not seen in the contect horizons there exposed. So far no explanation of this condition has been fonnd. Mac's fault is luter in age then the mineralised iractures and has itself not ectod as a passage for ineralising solvtions; it is tharefore probably later in age than the nineralleation period.

It is ovident, as will be shown lator, that the synter of minoralisod fractures has beon formod by a shearing strees actiag in a north-mouth direcilion, arparently with a olociarise rotational offeot. as seon looking from eest to mest. These stresses must have
taken place aftor the oomplotion of the isoolinal folding. whon the rocks had aserged from the plantic zone in whiot this doformation took placs. It is lifely, therefore, that there was sore lapse of time and probahly some cooling off in there rocke between the poriods of isoclinal folding and of fracturing. Appar ently the whole rook aese was aubjected to a ronowed stress aftor the ebatement of the folding movenoats. The general mans of rocke in the Shebe Hills ares is more or less argillaceous and homogineous, apart from the narrow sones occupied by the bars and their associated rocke. These bars and the rocice with them are structurally etronger and nore compotont than the: and fino grilned, almost argilleceous quartsites costaining them. It fs atural, therofore, that the greator part of such fracturing as occurs would be centred around and gonerally assoulated with the tar ocourrences.' phis is, in fact, the case, and though some ainor fracturing ocscurs vell awas frok the bars, most of it is intimatoly associated with them.

Apart from the lar ocourrences above described, there are founc large numbers of bands and lonses of ohorty and quartsitic bar matoríal of relatively anall uxtont, throughout the rocke if the Shoba Hills. Unet
$l_{\text {Goologioal Surrey Memoir lio. 9, p. } 234 .}$
of these ocourronces uit to be found in the shaily rocks south 0 : the Shebe Bar.

In gencral the dip of the rocke in the Shebe Hills aree is southwards and southeastwards. The Shebs Bar goaerally dipe at about $45-60^{\circ}$, tio Hospital Rar sop at about 55-650, and the Southern Cross - 2wartropde group at about 65-750. In the aroe enclosed by th, nine boundaries cast of the coordinato line $z=-32000$, the strike of the imarthopjs - Soushern Cross group is very steady and alnost exactly cast-west. To the mest, of oourse, the strike turns more towards the southwest.

The bars in general have been the oontrolling factor in the developaent of the phyaiography of the area, especially in the case of the quartaite bars north of the Shebe Bar. The gountain ranges in the Sheba Bille, therefors, follow the bar structures, and auch streas as froses these rages, e.g. Folden Yalley, do so along lines of meakness produced by faultiag, by minor dras and compression folding, and by local thianing out of the resistent horisons. In the photograph on Plate XXIII the range to the loft of Snyman's Creok has as its "upine" the Zmartropje - Southern Crose grouf of rosistant rock.
socurste mpping in this mountainous oountry is sonowhat difficult unless thore are a fair number of underground workiags or deep trenches axposing the
rocks boneath the sone of weathering and "creep". An excellent illustration of thic is provided in the adit on 4 Level in the Birthday Section. The portal of thie adit io on tha south elope of the Zwartkopjo Vallej. and the oross-out goes due north to the Zwartiopje Rar. Here, as has been nentinned before, the dip is sume 70° seuth, but where exposures on surfece ore found the dip is uniformly about $5 c^{\circ}$ north. This foature eztends aone 40 feet into the adit cross-out to a point where it can be seen to be due aimply to surfno oreop and overturning on the south-sloping hillside.

The history of the rocke of the Shebe fillls aros after deposition of a nore or less oonformble suocecesion is protably nore or less as follows: a portion of the Moodies (and Figtreo) rocks wore caught up and abracond in the intrusion of the oldest of the old Granitus, and comprossod between the masses now conetituting the Crocodile Poort ir Nolopruit Granite in the north, and the Swasiland Graulf: in the sonth. This compression brought about the metemorphise and intense isoclinal folding found in the jhebe fills aron, probably taking place as a sorios of surget onuping the sucoessive stages of the folding. This som proseion in a north-eouth dírection gave rise to a eeries of tieht folds with their axee in goneral in an

162

rooks beneath the sone of weathering and "creop". As ecosilent illastration of this is provided in the adit on 4 Levol in the Birthdey Soction. The purtal of this adit is on the south slope of the Zraetkopje Fallej. asd the orose-cut goes due north to the Zwartiopjo Bar. Bore, as has boen mentioned bofore, the dip is some 70° south, but where asposares on surface are found the dip io aniforily aboat 50° north. This fnature axtords sone 40 feet into the edit cross-cut to a point where it can be soen to be due sinply to surface creap and overtariaigs on the south-uloping hillside.

The history of the rooke of the Shobe fille aree after aoposition of a nore or less conformble mocesnion is probably nore or less as folloms: a portion of the Hoodies (and Figtree) racke wore caught ap and anbreced in the intrusion of the oldest of the Old Granitos, and conprossed botwoon the nasses now conetituting the Crooodile Poort or Moloprait Granite io the north, and the Swasiland Granite in the sonth. This compression brought about the metemorphime and intense isociinal folding found in the Shobe Hills area, probably taking plece as a sorion of aurget onusfing the suecessive steges of the folding. This oom prosiaion in a aorth-usth díroction gave rise to a sories of tight folde with thoir axes in goneral in an
cast-menterly alrection. Apparantly the erea between Burberton and Lurcka was nost affected, probably by an unexposed northward offshoot of the Fwasiland Granite. Arparontly little matallic mineralisation resuited from these activífies, except or the Swasilana aide, though most of the metamorphian of the rocks in the district is to be attributed to this stage i.. ihoir history. Later, after a partial cooling and consolidation, thero was apparontly a reaumption of activity, or another aurge at or in the vicinity of the root aree of the Crocodil. Poort or Rolspruit Granitc. This brought about the fracturing of the Fhebe Hills area, with, as has been stated before, concentration of fracturing in the giofalty of the ogapotont groupe.

After a furthor lapee, not of long daration, the injection of the de Kacp Falley boss took pleoe. This onuese a heating up of the surrouting rooks, and apper ently tonk plase as "foroing acide" prosess rather then as a transgressional intrision. This produeed the southward beading of the westorn portion of tae Shebe Hills rocks, and at the sare time gave rise to the folding, and oonsequent sheariag and fracturing, of the rooke in the Hoordkeap ares.
wuriag the clobing etages of the anplecment and coasolidation of the de Kap Velley Grenite, the hydro themal casuctions iaprognated the surroundiag rocke,
dopositiag cold, suljhides and silicates of varions ldads wherovor conditions happened to be favourable. Though the nature of the enanations may have varied to - sortain nxtont fros place to place, it is probable that the difforence in the idinds of doposits found in difforant ereas is due to the difforoncos in local are tornal conditions alfocting deposition. There are, as will be seen lator, certain featurus commen to most of the doposits in the dintriot, and such sinilerities are casily cocountud for by the above hypothesis.

Later rectifustment: aro probably the cauce of the iractures ocouplad by the dykes found in the vioinits of the Shaba morkinge.

The Rocka Irreant in the Area

The Shales

Plates $I V$ and XII-XXVI show the distribution and apparently little disturbed mode of occurrence of these rocks. They constitute by fer the commonest rooks in the aree included by the mine boundaries.

On the surface, these rocis are usually fairly soft. and of a brown colour iue to weathering. Thej are vers well bedded, but not sufficiently fiesile to be classed as eletes, and they have two purfeotiy developed systens of joints. These vary in din and strike, but are genorally at angles of $40-00^{\circ}$ to one another, and to the bodaing planes. Neathering accentuates the jointh to depthe of 100 feet or so, and neer the surfuce perfoct rudy rhombohodral-shaped joint blocike are very common.

In soac aroas there is found a syeten of utrong joiste striking roughly in the magnotio meridian and dipping steoply east or west. In a fow cuses thero appears to have been a very little movemant on these planes, whici then constitute variety of sheeted sone. This is eidently a late pheamenon, et least postiracture, and probably in many aeser porst-minoralisation in age. This type of frectured sens or fracture 1 ons of those used in a rasarkable "theory" whioh has been developed in a miaguided atempt to acoount for the gold distribution in certain areas in the Berberton
dietrict. This "theory" is virtually to the offeot thet there are averal sjatons of fracturen which oocur orer considarable areas and which are found at exactly ragular intervals, to be mensared to the foot by tape. Theso iraoturen, sccording to the "theory", apart from their oocurrence at regular intervals, have a conatant dip and strike, and so may be "projected" for oonaiderable distancep. (AB usen be sean on the maps and scotfons ecoompanying this work, the known aurifurous iractures are subjoct to rapid and considerahle ahanges in dip wad strike.) gome of these are supposed to "bring in" the areennpyrite siong sortain sones onnfined to the underaide of others: still oibars are kold respocsible for the introduction into the ore bodies of a parlioular type of flac grained. meseive pyrite, knomas as "controlling fracture pyrite", und of eold. While jot anathor type is regerded as the source of a green tale. and wo on. locording to thi "theory", these verious frecifures noed not necessarily oarry their particalar mineral themselves, but oaly introduce it into alnorilised sonen on other frecteres. In fuct, they apparently do not even need to be visible, but are "there" if the ainoral concoraed is pronent. for exemple, if one of the known auriferous vains or freoturne is berron in somo parte and aineralised in othors, as is usually the sasu, and if in one of the ninoralised sones there
ocomre "coatrollinc frecture pyrite", thes the mineralisation in that sone or shoot is caid to here beoz "brought in" by a "controlling fracture". one of the types used In the "theory'. In such canos the "controlliog iracturo" can often not be pointed ont, and does aot itself carry oither gold or the pyrite. Intersectione of the vurious typoe of "fractures" are plotted on paper, and than eoorohed for at resular iatertalo. This "theory" was for a time applied at the Shebe Seotion of lla Consort Gold Mines, Ltd.. and mome work was done with it as a beafs. Undor oaroful sorutiny, howover, it failed to sterd. in spite of, or perhape bewase of. ite rest and intricate ranifications and modifications. The atrong nurth-sonth joints mentioned above wre one of the eystems of fractures used, and wore known for the purpoes of the "theory" as "Main Cress Irseturee". They are undoubtedly sonetines found in the mell rocks of gold beariog reins in the viciaity of rich sinoots, but this association is probebly acoidental; they are apporently a later manifostatio of the sone of meeknose whioh hes becs the cause of the locully intouse bresciation near the rein fiecture. This locelly iatense breccistion is often the site of intease niooralisation rich in gold. The "Main Crosses" them selves, humevor, do not carry gold and shom no elgne of wor having acted as solution channels. In fact. in some cases they car be seen to extond through the
miseraifised area, and to cut the voin filling.
The ranifications of the "theory" are such thet it can be made to account for almost any mineraliead patch or shont without much aifficulty. This "thoory" has beon appliod to soveral aines in the barberton district. gonerally to the disadrantage of their owners, who have in sone caeea beoune patheticelly uonvinced of fte infallibility, oven while losius profits. If the diecovery of rich gold bodies were as easy as the exposients of the "theory" would have it, wining in the Barberton district would be a far less risky vonture than it is.

Though it is of no practical value, anc is without any sound basis, this "theory" and some of its fallacios are explained here, siace it hae appareatly been coadosed by the Geological Surver in ooazection $\begin{aligned} & \text { ith the Now }\end{aligned}$ Cluthe Hine. 1 Careful and oritical examination will oortainly prove it to have es little value there as it hed in the shebe Section of Now Consort Gola Hines. Ltd.

When fresh, the shales are black or dark graj. very woll bedded rocke of shaly character. Some por©ions are exceodingly fine grained, while others are almost arenaceous. Thene types alternate in lajers from
$1_{\text {Mineral }}$ Bemourcen of the Union of Snuth Afrise. 3rd Bdition, 1940. P. 165.

1 inch to 50 foet in thickeness, and do not show gradetíonal facion, but have sharp contaots on beading plases. The fine grained type is uaually black and finoly laminated, while the more coarse grained lajers are a dark gray, smotímes a browish colour, and more sassive.

The foldine of the rooke in the Sheba idills by the de Keap Oranite has bean the cause of a series of elide planes or frectures in the sholes parallel to the bedding. These are known as "formation" freotures, and though having líttle dienlecement, are somotímes porsistent of ther individually or as eroupe for consicor able distences. Thoy are in places ainoralieed, but owing to thoir boing parallel to the bodaing, and to thoir mall displacement, they have but littlo breocio tion and orushing associated with them. The shales are, of course, poor host rocks for hydrothonal minoralisation, and allow of heary denosition only in such ereen where more or lese intense brecoiation pormits easy eatry and passage of solutions. The "formation" fractures. therefore, are ant usually sufficiontly minaralised to be of value, though they bare in many places actod as solution passeges, and do cocosionally show amall gold values. The same applies to some joint planos which have been oponed and filled with som of the voin minerals. Whore "formation" fractures intersect other oldur freotures
which usually out acrose the bedding in both striko und dip, they show some little displacement, and the intorsection sone is sonetimes intensely mineralised, ani carrioe high gold valuep. This in often the case even when the oldor irwoture itsel doen got oarry gold in sufficient quantities to rern mining away fram the intersection sone. Such phenomens are obviously due to the losally intense orvahing and brecaiation of the shales, Which has taken place in the vicinity of the intersection of the fractures.

The shales in general confora accurately to the genoral cast-west strike and south dip of some 70°, and show no internal disturbance apart from the "formetion" fractures, and the fold mentioned before in conncotion With the chort band south of the Zmarthopjo Bar. This shows that in the first deformation they must have toon well in their plastic sone, and folded cesily as a body.

No false bedding in the coarser layers, ripple markings, or other such siegn of shallow wator doposition heva been found.

On ecrount of the intense folding to whioh the area has beer subjected. it is not possible with the date available to cetormine mith any degree of cer tainty the age rolations of the recke preseat.

In thin seotion the oily difforonce betwoon the coarse and fine grained layors in the shales is that
of grai^{-}size.
The coarser grainea layors conolst mainly of rounded and subanguiar grains of very clear quarts and finoly crystalline chort. These particles are motly equidimensional and heve an cirarage dianoter of felsme. Those which are sensibly elongatea have their longer dimensions in the bedding planes. The natrix io excoedingly finc grained and appoars to consist minly of quarts and sericite. There are present a for flakes of pale groen shloritio mica and of muscovitn, while there is an appreciable ansunt of rutile as ainute needlen, tiny fragular masses of brownish iron oxides. grains of hemat'te, and some irregulor grains of what appears to be graphite.

Many of the quarta graine are oracke, and all show strain phonomena. Additional ovidence that the rock has been rubjected to shear and compression is providad by the fact that the matrix is curved uround the quartz and chert grains. This shocr and coupression is probably to be attributed to the folding which has affected the area.

The lins grminad layars are identical in constitution with the coortor grained parts, except that the sizo of the quarte and chert particles averages about 0.01 - 0.02 man . . and there is a slightly highor propor tion of the dark ninerale. higher propoitior of the
particles are eluagated ino the beading planes than ic the case in the coarser grained nateríal.
the contect betrioen the two types is very sherp. anc is a bedding plane. There is apparently no aradetional sone at the contret of the two types, though each diaplay: a certaia degree of variation : a grain size. As a general rule there is a sone scac 0.03 . wide in he fiae grained lajer at the contact which is very dar 1 iloured. This is due ou a lesal inerease in the amunte of iron oxides and graphite present.

No mase recryatallisatioc suoh se thet charactor istic of the Consort Mine area ic ovideat in these rocis. This is asturul enough in vion of their greutor distance frow the intrusive granites, though this is not roally enough to acucient for the great difference in the nature of the rocke.

In the proxinity of the bars, these rocics show unmistareably the offecte of the nheer due to the reletive movamont on tise ber-ekule contact. induced by the folding. Eviderce of thic is the rounding of the grains with resultant more ?enticulur shape, dovelopecat of agreat meny shear planes, and alterf is es by bydrotherral solutions whioh have impregnated those sones effocted by the shearing. Thens solutions have been iaponsible for nericitisation, removal and ro-dopositior, epparently as purite, of good deal of the iron
oxides, with consequent lightening of the owlour, and the introduction of considerable amounts of calcite. The calcite has for the most part replaced the matrix. but hes in many places also begun to corrode the quarts and chert grains.

Where pyrite has bon deposited it is usually in the form of aggregates of pyritohedra, and in thin seelion these can be seen to have in placer a barter some $0.01=$. Wide, of radiating, fibrous quarts ais ohloritic mice. Such borders occur on those boundarins of the pyrite masses cutting across the beodirg, -nt on those parallel to the bodajng; that in, the radiating quarts has its, along ion in general paraiinl to the bedding.

These rocks are in general probably best called indurated shale.

Hall refers to these rocks variously as "shall cerboneceous or graphitic black rocks", "black slate" and "black thales".

Photomicrographs on Plate XXXIX ore of thin seetions of the stales.
lOp. doit.. pp. 256, 259, 260, 261.

The Bars

The bars occurring within the mine property are, frow north to south: the Sheba Bar, shown in the northwest corner of the map, plate IV; the Hospital North Bar; the Hospital Bar; the Southern Cross Bar; and the Bartkopjo Bar.

111 but the Shobe Bar are usually black, black and white, or black and pale green. finely laminated short horizons. The Sheba Bar wise it occurs on the mine property is usually a gray or gray and white banded chert horizon, usually somewhat coarser in grain than the others.

The Sheba Bar procure on the mine property over a relatively short distance on strike. Over this length it has on averse tilckness of some 20 foot, and dips at 50° to the southsant. Some prospecting has been dune in the rocks anderijige the horizon. fur t the only work at present in progress in this arne is some div rance north of the bor in the fine grained shall quartsines.

The Hospital North and Hospital Bars occur as shown on Plate IV. Their average thickness is som 10 leet. Towards the eastern pert of the property they are continious on surface. but towards the wort they become

10ctober, 1942.

Lentioular and dicoontínuous. This if partioularly so in the case of the Hoopital Bar. The group of rock: inoluding these two bars is in ono plece, east of the coordinate Line $x=-36000$, affocted by ninor interaal isoclinal folaing whioh resulte in tho complineted series of onterops shown on Plate IV. On the surfece these bers are conspicuous, owing to their reelstant charactor. Thay are, howevor, not as couspionous at the othors, owiag to their sacllor thioknoss and to their discontínuoun naíure. for some reason, 00 fer not known, no frectures of economic importance have been lound associated with this group. This is probably the reemon why thoy have hitherto ascaped notice.

The Southern Crose Bar, within the liaite of ite occurrance, is continuous both on surface and ander ground, With the exception of one plese toward the weet edge of the mep. Plate IV. Its thioknese variee irom 5 to 100 feet, but the averege is about 20 feet. Ite strike and dip are in gonoral var; steody, theugh there ore small looul variations, as sea be soen on Heter XII - XXVI, and on Blate IV. Lant of the polint whors Snyman' Croek crosses the ?aistkojje - Euthern Crose group. the southern Crose bar thate out and dirappears. Just west of the point whore the greek orossee the Southern 0 -oss Ber, the letter nhow evicence of ninor
isoclinal folding ainilar to though got we oztensive as that affocting the Hospital Bay group. This phenomenon has complicated the conditions in the underground workinge on the Malvina Iracture. Some 500-odd feet west of the coordinate line $3=-36000^{\prime}$, portion of the Southorn Crose Ber splite off iato the overlying green "sohiot". The peculiar structure seen on the Southern Cross Bar somo 300 feot cant of coordinate line x --32000 has el ready been mentioned. Fear the went odge of the Inp. Plate IV, the Southorn Cross Bar thins out and diseopears, but reappears egein farther west near the vortez already described.

The Zwartkopje Eer is in almost ovory rospoot ainilar to the Southern Croms Bar except that it porsiste over a greater distance on strike and does not at anj point within its limitn thin out and dieappoar. ather underground or on surfaco. In gearyal oocurrence ad in appearance it is axactly ainilar to the Southern Cross Bar. In fact. all four of these bare are axeotly similar in nature and appearance. Such irregulorities as occur on the Zrartkopje Bar have already been meationed. Its strike and dip, like those of the Southern Cross Bar, are vory steady. in examination of the sections, Plates XIJ-XXII, will convey a good iden of the general oconrronoe of thene rooks. Thair oontecte againat the other rocke
are inveriably vory sharp, and in the case of the bar shale contmot the.e ure, as hes beon mentioned proviously, considerable aigan of shear.

In the green "sohists" ocourriug in the Hospital Hospital Morth and the Cwartkopje - Southern Cruss groups, there are invariubly strimgere and lenses of black chart fuentical with that of the burs. Thase atringere ana lenses vary in langth from $\overline{6}$ inches to 100 fest, and in thicuruse from inch to ef feot. The nubber of such occurrences in the green "sohist" docreases away from the bars, and they aro not usually found extending more thas hall way to the gray schist. In attituce they conform to the general bedding and larination, and by their intricate folds raoging in width from inch to 4 foet show the extent and nature of the interal folding and ceformation of the rooke in theee groups.

Almott all of the fractures on which mining oporathons have been siccoensfully conducted on the Shebe Seotion of Now Consort Gold Hires, Ltd. are more or lose aircoily acooilated with the Zwartiopje - Sonthera Grose group of rooks. The fect that the rolntive peraintence, oonticuity, and degree of developaent of theen berb io mory or leen in the folluming descending order: Cuartkopje Lar, Hospital North Bar, Southern Croes Bar and Hospital Bar, socus to lond some support
to the hypothesis outlined in cunneotion with lig. 1 (jage 157).

These rocks, owiag to thoir well sovelopoc formetion jointing ade cleavage, occabzual cross jciating and resiotant nature. generally gite rise to blooky outcrops, which in the cece of the isarticopje. Sonthorn Crows group occupy the crost cf a very prominent ricse diviaiug the Juartiopje and wheba Falloje. Ca the outcrop they are squatines aark, but nore usually light colourea, owing to incipiont blewhing and lime iucrustetion. Undergrounc, however, they are almost always jot black, und the ix. Ition jointias and olearage are cloarly viaible. betreen joint planes the rocis is masaive and has a concboidal frasture. It is very hard. though brittle. In most cuses it consiota of a wase of very sino grained blects short, crics-arossed by innumarabin thin voialete of alear vítreous quarts. In some places the bar meterial bonsiats of alternste laminations from $1 / 16$ inch to 1 lineh vide, of blacis and pale grean chert, while in other onaes the lminetluas are alterantely bleck and white, and the rook is often very handsonc. Ihe cuatecte of the various laninatiors are always very marp.

In sone casey, neually where the chort is very sine grajnes and jot bleci, it contaias leminations frow $1 / 16$ jach to timot in thicknoss, which havo a
faint brasey "opalescence."
The chert stringers which have already beop monticuca as occurring in the green "schist" are never bunded, and are always black and more or less homagansous.

One case hmen been found in which a chert stringer In the green "sobist" underlying the Houpital Bar is black and contains vest numbers of whit couciretions or sphoroids of avorage dianetor about l-1 hmm. These are often flattened, occur in woll defined bances in the chort, and can cometines be soen with the aaked oje to have a concentric structere.

In the shales stringors of black ohert sivilar to that in the bars are very i.mmonly found. These vary in thicmess from 1 inch to 2 feot, and in longth from 2 foet to 40 or 50 foet, and they occur always parillel to the shale bedding. Their contacte with the shale above and belor ree sharp, while along their length they thin out gradually and aisappear. The chert band proviously mentioned as occurring south of the zwart. ipje Bar and shown on Plate IV is larger than the others. kastwards its charecter changes; it becones ooerser in grein and fiaally gives way to a herdened silionoun band In the shale. It is thus evident the the conditions whioh gavo rime to the chert deposition on the bar horisono were locally present from time to time during the deposition of both the shales and the grees "echint".

In hand spooimon the black ohert iruquently shows faint lanination due to slight chenges in grain sise. In general this material coseiste of microcrystallico ohert with an average sise of individual grain ranging frow 0.006 to 0.02 m . It contain a groat may minete inclusions of other minerals, notully rutile, greanbrown touraline, graphite and hemútite. It is always orise-crossed in all directions by veinlets of clear quarts. These have an average thickness of some 0.06 to 0.1 mm. . and are evidently due to silifing of orncke caused during the fracturing of the surrouading ronke. or during the folding. Nost of these voinlsts cut across the direction of bedding, and when the chert is fairly well laninated or foliated, due to alignment of inclusions, these reinlets bulge and branch out into and between the foliae.

In many bjecimans the inclubions shom peculiar characteristics which would appour to suggent an organic origin for part of thís naterial. In a arout many specimens round and llattened blotchen of average diemeter about 0.2 mm . are visible in thin usction. Within these blotches the proportion of inclusions is much higher than it is in the aurrounding material, end the chert within the rounded apote is much finar grained then that outalde. In some places these spote are so numeroue thet the are in contect with one another, and
the coarser and clearer chert occupies the interstitial spaces. In other places, spots of similar size and shape, but almost free of inclusions, are found. in these cases the chort in the spots has about twice tho graln sise of that outside.

There are iavariably a groat many isolateic sryatale of calcite prosent in the chert. These cro usually seon in thin section as woll doveloped diamond- or parallelo gram-whaped orystals. Generally the nuelof of the ouloite crystale consist of aggregates of small grains. while the borders are continuously orystalling. The contre and outer parte are in optioal continuity, and the avorage sise of the solid grains is some 0.15 to 0.2ma. Many of these graina have a chert oort in tho auclers, and some of those of this type are incomplete. The skeleton orjstals are usually bout trice the size of the solld ones.

Pyrite as woll developed orystals and at rounded grains is almost always presont, and appears to havo bana introduced into the pro-axisting cherty material. Such pyrite particles are almost always partially surrounded by a border some 0.02 mm . wide of radiating fibrous quarts and chloritic mica. Thess bordore are generally developed only on those bounderies of the pyrite which cut sherpiy acroes the ohart bedding; thet iw the flores eppear to be able to develop along,
and not coross, the chert lamiastions.
As has been mentioned beforn, some parte of the chort contain lainations whish have a faint bracey solunr. In thin sention such opecizens can be seen to contain vast nuabers of spherical opeque inclusions. generally arranged parallel to the laminaticne. Theet inclusions heve an average diameter of 0.00 cmm . and are proved by examination of polished sections to consist of pyrite. These are evidently of origin contenpormocous with that of the chert and are probubly due to the action of becteria. Chort of this type does not show the larger rounded spots described above, but does cuntain later caloite and pyrite orystalin of the sane type, and is also cut by nmorous thin clesr quarts vaialets.

The pale green laminations seen in meny speoimens of the bark. as diatinct from the chort otringors in shale aud green neohist", consist of ci.grt which io freer from inclusions and coarser in grain than the bleok varioty. Such incluvions at there are eppear to consist mainly of mall flakeo of chloritio and white mica. Graphito and other bleot opaque inclucions arr -beant. These laninations nave very sharp contacte againet the black leminatione with which thej occur. These pale green laminetions contais calcite end pyrito crystals, and are out by quarts veinlots in the eam
manaer so che sther types.
In some placen (soe above) the bari consist of altornating bleck ad white laniactions. Thin seotions जhow that the wite lanine corsiet of quarts. At the conteots aith the black laninat'ons this material is chorty, but thero is a progressive increase in grain aize inwards, and in the niddle the quarts giaios exhibit cronulated boundaries with a littlo mortar and atrain phonomene, and hevo as avorage diwotor of sanc 0.4. Close to the contects with the biack lamination are tiny lenses of the black chert enclosed in the white material. These lie parallel to the contacts. the mode of origin of these mito laminac is diffioult to sue, ard the ouly possibility which ifte in with the facte would soen to be thet of rapid depositiar along formation orack by hot colutions with an aboormally high allice content - so high, in feot. ar almout to constitute a silica molt.

One thick chert airinger in the green "wohiat" andorlying the Rospital Bar exhibits an unusual feature in that it contains white ooncretions. The chert is the usual vory fine grained bleok type containiag a great many minuto inclusion of homatite, rutile, gruphito, otc. It also oontaine round and flattenct spote up to imm. in diamoter, in which the chort grain is aboormally fiac, and in which the proportion of
ainate dark inolusions is unuually high. Some parts of this chert, however, also contain round and slightly slattened white concretions, spheroids or oblites. The bands of chert which contain these bodies are sharply dofined against those which do not, and apart fros the presonce of the round white bodies, show no abmornal foatures. The waite bodies consisi malaly of resses of scolites, with occasionally some zoisite, in radiating sasses. The errangeront of these minorals anggests that the development of the soolitee started at the boundarios, and from the ruclous when thore is one. May of those bodies onatain round ohert nuclei. while some heve a nuclous ecesiating of a call radiatIng sibrous quarts spheroid, and othors are only partially somploto. A fow of those bodies consint of altornating shalls of sizer and coarser ohert with intervening ringe of seolitoc.

Thene bodies are obviously not in their origian condition, and the seoliteo have ovidently rapleced some othor nineral. The sphoroids are froqueatly cut by thia veinlets of quarts and caloite. These veinlete ofton contain also a pale green chloritic nineral. and tiny oryatals of grean-brow tourmaline.

It soems juetifiable io oonclude from the above ovidence that the chert horison: (bare and othorn) exposed on the mine proporty are at loest portially of
organic origin. It is probable that they are due partly to the action of sulphur ane silica bacteria, and partly to the activities of silica-sucre ing organisms. The aphorolds described above may arid! ally have bean 281itic in character.

Hell's description of these bars is confused to - certain extent by his correlating the Shobe Bar with the Southern Cross and Zwarticpjo Bars, while the dercription of the microscopic features is somerinat sketchy and incomplete, and so give e no information for aomparalive purposes.

Photomiorographs on Plato XL are of sections of the bare.

Th " "Fake."

This is the name given to a narrow sone of shear on itu ber-shale contacts. It moans "Zuartiopjo Outcrop", and applies particularly to the sone on the contact of the \%wartkopje Bar and the shames. It refers here, however, to the shear zones fousd on the other ber-shale contacts as well, and is used to designate the rock in the sone es well as tho sone itself.
lOp. cit.. pp. 190-181.

The 2.R.O. Is found on the ber-phale contacts of ell the bert on the wine property with the exception of the Snobs Bar, whose shale contact shown no such phenomanor. It rill be shown later that the Z.K.O. owes its origin to shearing along the plane of waknons formed by the bar-ahele contact. Its formation is due to the relative movement which has taken place at this horizon consequent upon the isoclinal folding. It han already been pointed out that Hell's interpretation ${ }^{1}$ of the relation between the Sheba Bar and the other bars is incorrect, and that the isoclinal folding which has caused one chert horizon to give rice to the bars, from the Hospital Forth Bar to the Ywartkopje Bey, has ovfuently not affected the Sheba Bar. This statement in borne out by ti. feet that the relative movement which has giver rise to the formation of the Z.E.O. bars apparently not been motive on the Sheba Bar-chale contest, which is just as mich a plate of wakes an that on the Fraction fe and other bare. In this connection it is interesting to note that the conglomerates and other rocks overlying the thebe Bar at the Golden Quarry line are ont present in the ares shown of Plate IV. Altogether, therefore, the occurrence of the Z.X.C. lend export to the cugesetion already
$1_{0 p .}$ oft., p. 173.
made to the effect that the rocks in alfferont parte of the Shobe Eille have been affected to varying degrees by the folding, and have not been all folded together. The mechanice of the frocess by which this took place, however, are not apparent from date obtainable on the nise property.

The 2.Z.O. is a one of altered rock on or very close to the bar-shalo contect, as explained abave. It varies in width from an jach or two to 2 or 3 feet. The bar at the contact is gener ally not uoticeably affacted, and the shouring has therefore teken piace Within the physically weaker shele. The intencity of the slteration and other effects of the ahearing docrease gradmally awey fron the cuatact, but the anme 2. Y. O. refors to that bend which is diatinguishable In hand specimon. Docasionalig a narrom bead of shale is found just ritbin the her, and in such ceser this appears to heve boen tice site of most of the relative moverent, and has assumed the shersoterintios of the 2.R.O. In some casue where winoraliesd fractures traperfe the eheared zoric, the latter is unficiontly aineralised to be of local oconomic value. harely. a branch of a Tineralifen iraclure $\begin{aligned} & \text { Will } 10110\end{aligned}$ the Z.X.O. for a short distance, and is euch auses gold valuen er fairls goud. It saems probable that the original gold discovery on burface was of this type.

This occurronce, on boing :oll wed up, proved to be iapernistent, but led to the oponing up of the main zwartkonfe iracture nyste. 't ie likely thet it wae In this way that thin horizon cane by its anse.

The rock in the fatensely wheared and altered parte ic usually a soft fomy brown matorial. Which ovon in hana upocisen ohowe distinct ovidesce of ite arigin by atoaríng. It generally hae a sombt anajy "fool". oring to fot tolo ocytent. Thio materiol coes not grace oif into the apparently unaltored seale. but is gonerally sharyly ceilnou against it. The roletive movenent was alnost all taken up in a ourrou sone, and its whebring effoct within this sons wes therefore very sovere. ite apparently unaltored shales bordering on the $2 . X . O$. h wover, do show evidence of shoar, al de doperited on pace 17 c of thie work.

Thin soctions of the !..…C. proper shom it to consint moinly of fine grained ohluritio and soricitic natter. This meterioi occurs at emase of ninute flaker all oriented in the direction of shear: that 1s, narallol to the ber-ahole contact. A thin sectson of thic rucic under croored ajcols, thorefori mifinguiches as e mess. There ore considerable number of minute opeque inclusions, and there hare been arranged in strínge, onnlosine lonticular and "rolled in" masses of the rock seteriol, thas showing quite
clearly that the relative movement which has formed this rook has been considerable, and the shear intense. Here and there flakes of talc up to 0.4 mm . in maximum dimension have been formed, and they invariably occur with their long dimensions in the shear planes. quarts is fairly common in the form of lenticles flattened in the ammo direction. These lenticles have been so sheared and crushed that vaguely defined arous within them extinguish in irregular and shadowy manner, giving the mineral a peculiar "spotty" appeararice. These particles are evidently the romains of crushed ana sheared quarts and chert grains in the original shale. Very istle calcite has been introduced into this rock by the later solutions which have affected the less intensely sheared shapes nearby. This is to bo zone" since the nature of the material is such ti Lld not be easily penetrated by solutions: : shelly also the reason why mineralisation SI the i.h.0. Is seldom intense, usually patchy, and does not piraist vary far.

The Grann "Bghiste"

This is the name givon to a peculiar group of rocks of which some mention has alroady boen mado. They occur in four main horizons on the mine property. and are the host rocke of some of the most important soses of mineralisation.

Plates IV and XII-XXI show the mode of ocourrence 01 these rucks, adjacent to the bare which soparate thom from the shales. The groen "schists" are the most if portent nember of the Hospital - Hoapital Borth and乡warthopjo - Southorn Crose groups, and their distributiod expoorts the concoption of isoclinal folaing as tha origin of the repoated succession. The four main h6. ons of green "schist" are therefore actually ro poifitions of one bed, and are porsistont as far as the exposures on the nine property show. 111 four horisons shom the same genoral and nicroscopio charactoristios.
\triangle rook of somowhat sinilar charactor underlies the Shobe Bar at the hoad of Goldon Valloy. This "schist", howevor, is apparantly not parsiatent for any greut distance on strike, it is not present in the workinge of the Goldon Marry Mino.

The prean "schista" whon fronh are nsually vory hard, and of a more or lese silliceous cheractor. Their nature varios groatly from plece to place, as will bo dee sribod later, but thoy havo almost always a more or
less bright grann colour. Prosh apecimons seldow exhibit suc? characteristice as are suggesteo by the name they bear locally, but such foliation as parte of them poseses is accontuated by weathoring which gonorally reaults in a reddioh and greenish, more or loss foliated outorop.

In the Zwartkopje - Southern Cross group the south green "schist", that is, that undorlying the Zwartkopjo Bar, has an average thickess of some 80 to 90 feet. though variations from 40 to 150 feet do ocour. The nortin groen "scuist". that is, that overlying the Southern Crose Bar, shows siailar variations in thickaess, but the average is sommhat siallor than that of the south "schist". The two groen "schist" horisons occurriag in assooiation with the Hospital and Hocpital North Bars are in genoral of somewhat smallor thicknesm then those in the Zwartiopje - Southern Cross group.

The contact botwoen the bare and the greon "cohiat" is invariably sherp, though eshibiting a good dal of complication due to minor drag folding, dircotly related, probably. to the main isoclinal folde. As has beon etated bofore, howevor, lonses and etringors of bar matorial are almost alway found in tho grean "wohist". often far as 40 to 50 foot from the ber contact. Similar occurronces of green "sohist", however, have aover, to the knomloage of the writer, buen found within the bare.

The oontacts of the green "mohist" horisone with the interveniag gray "sohiate" are lese colinite. In sone ceses these contncts are vory sharp, but by far the nore comon case is that in which there occurs a transition sone enywhore from 6 inches to 10 foot in width, in which alternating laninations and lonend of the two rock types, from tinch to 1 foot or 10 in thickness, ocerur. Vory often such treasition soaes show widance of conaiderable shear and relative ncrosent, and are traversed by large numbers of thin veinlots of clear vitreous and light gray, nore or less spaline or cherty quarts, of which wore will be ceid later. These voinlete are in goneral parallel to the contact sone.

Sometínes, as is shown on Plates XIII and XVIII, - Lans of grey "schist" is found within the groen. Such occurranoos are apparently not common, though they are probably more so than is suczasted by the ralativaiy fon openíge. These lenses vary from 2 feet to 10 or 15 seet in thicicaess. Of moh morn frequent ocourreace are lauses of green "uchiot" eaclosed in the gray. Buch are shown on Plates XII-XXIII. These are of thicknoss varjing from 1 foot to 20 foet or more, and are probably of greater sbundance then is show on the Plates, sinoe openinge in the gray "echist" are not numerous. In sows ceses the grey "echiet" enoloses bodies of green
"echist" whioh thomselven enclose lences of the gray rock, and in efem places in the uppor levele of the zwartkof $\begin{aligned} & \text { Forkings the gray "schist" sone contains }\end{aligned}$ more of the green rock in the form of thin lenses than It does of the gray. Cases have also been found in which portions of the gray "sohint" branoh off into the green. These may he nomal stratigraphic relations, or they maj be duv to the tight folding whioh has offooted the area.

The rook type most commonly found in the green "guhiat" sones is a pale green, very hard, more or less siliceous natorial. It has in general a conchoidal fracture and a dull shertj appearance. It í bometimes traversed parallel to the stratification dircotion by banas of white or light gray quarts of cherty appeoranco. These are ofton lonticular in form and avorage about inch in thickncos. The rock is usually olso traversed is all diroctions by thin ($1 / 16$ inch $)$ voinlets of later vitroous voin quarti and calcite. Mention has alroady boen made of the fact that lenses of bleck chort aro often found in this rock.

This seotion show the rassive pale green rock to conoiot mainly of irregular quarts grains, all of which show undrlating oxtinction and other evidence of intense ahearing and crushing to aurked dagrme. Some of the quarts grains are up to 2 mm . In dianetor, while
others oncur as aggregates of interlocking graing. 111 contain vast numbers of ninute liquid inclusions, gonerally arranged in two directions at about 60° to one another. These lines of inclusions are frequently bent and ourved. Mortar is often found botween the quarts graing. and consiets of soricito, small flakes of mes corite, good deal of pale green cilorito, some rutile neodles, and quarts. Masses of soricite, chlorite, ete. are always found intorstitial to the quarts grains and al 18 their bounderies.

Thore are occasionally found anall froah grilia of olfgoclace-anacing folsper, ohowíng both Carlebed and albite twinning.

Caloito and dolomito as woll formed, often sorind orjatals, and es 1 ine grained aggregatos, roploce the other ainorals in all epeciment to egreater or lesser axteut. Thece winorals as wall as quarts frequontly oocur an thin voinlets outting acrose all the other ninorals.

In some places aggregetes, up to lm, scross, of minute needles of rutile ocour. These are usually associated with abnomally large amounts of pale green chlorite, tiny ootahedra of magnotite, subes of pyrite. and masses of serioits.

In many places the rock has a bandec eppecranoe. with bright groon folia from $1 / 16$ inch to 6 incher in
thiomene, parallol to the main stratification. In som. cence the more or less macoive rosk containe many thin fol:a of this tjpe close together. Bright graen beads are of coman ocourronce in this rock, and are socasionally up to 1 foot in thicknoss, though they aro more often about 2 inches. This matorial has a woll doveloped ochiotooity: is bright greon, fairly soft, and the folis are often corored with films of brown rutile. There is thus a gradual transition from the masive pale green rock to the foliated vivid gruen type. This latter is probably the souree of the nano. green "achiat".

The transitional type in which the more or lose masife rock contains layers and lonses of bright green schítose material jiolds in this section informe tion which givesiclue to the origin. ! these rocks. The bright greon echiotose lamations conclat of grean ohlorite, sericite, flakes of maccorite and talc witi - great many vory thín otringors and files of niaute grains of rütile. Vory little quarts and calcite socur in theen layort, which owe thoir form to intones shoar combined with hydrothernal asancios. The netorial is so foliatea and the miaerals so arranged that the scotion cxtinguichos us mase undor croseed aicols. These bright greon lajers ofton contain lenticles and rounded and flattened masses of yiarts, which also
penabionally occurs as lonticular stringers. Nil these quarts mesee are olongated in the direction of movement, and their anture is of considerable interest. At first alght they appear to be a coarse chert. Careful acratiay, however, reveale that they are crushed, shoarad and cominated quarts grains and aggragatos. Sometimes the outer parts of the quartz messes are very fiac grained, or apparently continuous, while in othor onses the whole mane han bsen comainuted, and the individual particles more or leas rotated relative to one another. by the action of the shear. In some cases the core or nucleus can bu neen to hava been cruahed up, but the individual particlen have suffered hardly any rolative rotation. Thus the crushed and cominated obaracter. of the celatral portion of the grain oan only be secu when it is near the extinction positios. In other positions relative to the vibratio dircotions of the polericer and analyser, the rolative rotation whioh has effocted the ting osmiputed partioles is insufficient to show under eronsed aicollis, and the mess does not appear to be ibnorsal. In sime cases the individual tiny particles axtinguish jant cftor ons anothor. siviag the mant E a whole an undulatory axtinction. This feature is obviously the next stage after ordinary unduleting extinction in a grain which has not jot been actually crashed.

Occasionally what at first sight appears to be a aass of coarse chort shows intorlocking areas in which the indiviqual particles oxtinguish at noarly the samo position. Such cases are oridently masser of intor locking quarts grains which have been oominuted, but in which the individnel crushed grains have not beon sufficiontly roteted by the shearing moverant to oblitorate the original texture Heoryetallisation has taken plece to a aull oxtent during the orusting and shearing. so that the crushed and oonnisuted particles interlock with one another.

When the bright green echl tow metgrial is of fair thickness. that is, more than th or no, it ofton containe roundod and flattened masses of quarte scattored through it. Thene are invariably so soveraly oruehod as to show no lign of their original structure.
Irequently, hemovor, the noft vivia groen rook oonteline no quarts. In a few csses, later and probsbly hydrothermal activity has apparently ounsed the solvtion of some of the intensely strained quarts masean. With radeposition of the 311.32 an radiating masses of ohaicodonic matoris. Sugh masken, of ton more or less sphoralitic. are quite comion in some speoimens.

Thus the massive rock. Without the sohistose bands. shows relatively little sign of aruahing: that is. such aigne are linited to the undulatory extinetion of the quarts and the derelopment of a little mortar.

As the schistose, obviously intensuly sheared folsa aro appronchod, the masuive miterial nows the effectu of more sevore strain. In a mass of grean "wchiat" which contains a high proportion of the soft bright greon layors, the effecte of shear are overywhore ovident, and in some cases quarts grains and aggregates are crushod and cormiauted even in the massive pale greon matorial. this is, of course, due to the fact that the shear stressen havs boen reliered in the soft schistose lajers, and the neighbouring rock has naturally buen affected to a cortain axtent.

Hore and there in the massive rock, graine of what is clearly aicrocryatalline chert of the bar type ars found. This fact, together with the occurronce of the abovementioned black chert. Atringers in the green "sohiot", points to the conclusion that the acconsion of the rooke is: shales, bar, green "schist" paront rock, and gray schíst parant rock, in that orcor.

It soams likely from the above that the rocke Whish finally became whet is now locally knowis as the green "echist" were a sediaentary group. It would seom that this group consisted ohiefly of a sand sediment containing a good many impurities, incluaing some forraragnoaian constituonts, "black rand", and clayoy materiul. Hore and there a local resurption of the conditione giviag rise to tho bar deposition was the
cause of the many blacic chert striagere. Here and there, there oocurred lajers or patches and lenses of more or less iapure muday matorial containing iron, titaniun, magnesium, and aluainiun minorals, in a clayey mass. These occurred sonotimes as thin ianinatione and somgtimes as layers a foot or mure in thicknoss, and would naturally contaln odd sand graias.

During folding and metasorphiem the first process affecting this group aftor consolication was apporontly incipient recryntallisation. Daring the poriod of feoclinal folding, however, good deal of intornal movement with consequent interal sirceses resulted. The intricate folding of the thin bleck ohort stringore sbows this very ciearly. Faturally oncugh, most of the interal stresaes wore ralioved by movenent in the clayey or maddy, and mineralogically mere complex layers. whioh were less rosistant than the more masive seady parts. This proces3, bogether with a cortain amount of intoran chenjcal raction and recryalallisation, rewnited in what are now the brichi green cohiatose portions of the rock. The swind iserore would to less aflocted. With the results deceribod above. Aftar or duriag the lattor part of these procenser there was stage when the rocks were affeated by hydrathermai golutioris which iatrodioed quarts and carbonatea in cracks, and caused a cortain degreo of rearragemeat
of the minerals in the rocks.
In places, notably near the contact with the gray schist, this lant procees hos sometimes renulted in the elrost complete reflacoment of the rock by sorioite, carbonates, and aecondary quarts. This type is fairly soft, masmive, ond hes oolour whioh can best be described as "khaki". Muok of the carbonate in this type is siderite, and this is probably the source of the colour.

In some pleces reorystallisation has complotely reoonstituted the rock, with the result that ats original features have been comrlotely oblitorated. Aftor the reorystalilsation, whioh must have ta's place late in the motemorphic processes, hydrothormal cetion bas so altored the rock that the products of reorystallisation have beon ohanged intil their origiaal nature is unrecognisable. This rock is gozornily more or lese massive, hard, and har a very palo groon oolour. Lying in all diroctions in the meseive groundmass are alongated oryatals whioh are more or lees transparent in hand ancolmon, and which have a darker green colour thar, the groundmans, and vary in length from 2 mm . to 5am.

In thin ocetion the groundmase ic coon to be somposed mainly of fine grained chorty quarts with a gosd coal of sericite, ohlorite, and rutile noedes, the
whole mace being dusted with minute opaque inclusions. Calcite and dolomite, the latter as isolated, gecerally zoned, crystals, are abundant, the calcite frequently occurring in the form of thin veinlets.

The elongated crystals are distinguished in thin section only by virtue of the fact that the microorystallis quarts which makes up the greater part of them hus a slightly coarser grain size than that in the grounams, that the sericito is less abundant but occurs as maces, that some mall flukes of muscovite sro prosent. and that the opaque inclusions are almost completely absent. No trace of the original nature of the motecryste remains.

No descriptions of these rocks have been found in previous literature, and the only reference to their nature which has been discovered is that made by Hall ${ }^{l}$ wherein he states that the green "sohiste" are probably - form of "siliceous slate".

Photomicrographs on Plate XIi are of apeoinens of the green "echiste".

Geological Survey Memoir No. 9. p. 256.

The Grar "Sahiat"

Some montion of the occurrence of this rock has alreedy boen made in the previous chaptor. It ourire botweon the north and south groen "schist" horisons in both Zmartkopjo - Southorn Cross and Hocpital - Hompital North groups. Is the 10 wr group its thiokness aver ages about $100-110$ seot. In some places it contains bands of green "schist", and in others itsell oceurs as bands in the green rock.

The nature of the contacts betweon the groy and green "sohinte" has already beon describod. In general, the former is a soft rock of gray to grayish fawn colour, and whes it is nomal. it is usually more or lose massive, but has occasional white laminations and voinlots of calaitic matorich. Lo a rale it has a alightly soapy "foel", due to the presence of e omall amount of chloritic or talcose mettor. Where it has been subjocted to locally intonse shear, howovor, e.c. in tia viciaity of fault or frecture, it is usmally otrongly folioted, apparantly tulcose, and has a woll doveloped schistosity. This type is unusually soft. and has little coherence in aine opoaings.

The gonoral occurrence of this rock suggests that its shape, atc., have bean largely controlled by the neighbouriag hardor graen "schiate", and that it hes always been more plastic and lese reaistast theo these
reck.
For the most part the groy rock is not ochistoce, excopt whore it has beon locally more intonsely vheared. This occare near faulte and fractures, and in irrogular sones where the relative moremont due to the folding has caused it to jield.

This reck as a gonoral rule woathors to a far greater dopth than do the greon "sohista", and it Jiolds, undor the lafluonce of surfece processes, a soft modius brows mass of chloritic clayay matorial, lisely divided sciboantob, and iron oxides.

The gray "schist" horison associated with the Hospital - Hospital North group is in overy wey sinilar to that ocourring in the martkopjo - Southora Cross group, except that its varietions in thiokness ero somonhat greator. This stratua is locally distiagainhed as the "soopstone" horison, though it is atrictly not a ateatitic rook at all. Where road intorsect it, it is occasionally the source of nome trouble during the rainy season, on account of the vory slippory surfese it forms when wot.

As has already boen statod, there occurs undor the Shebe Bar at the heed of Golden Vallej a stratum of greon "sohist". Imodiatoly anderlying this lattor bed there is a belt of rock, 50 to 80 foet thick, very ainilar to the "wartkopjo eray "schist". This, like
the greon "uchist", is not found in the Goldon Puarry vorkinge, and is thorefore apparently not as porsiatont on trike as are those similar rocks ocourring in aseo oiation with the imarthofjo - Southarn Crose and Hospital - Hospital North groups.

In thin section the massive gray "schist" is suen to oonsist almost ontircly of carbonates, mostly caloite with some dolonite and a little of what is apparoatly sidorite. Calaito occur ae irregular aggregatos; as mesees of interlocking grains, individually up to in. In dinotor, forning a mosaic; as isolatod orystala is quarts masses; as irregular grains interlocking witha quarts moseic; intorstitial to quarts graias; and as lator thin voinlots. Dolomito genorally ocours as woll doveloped, gererally soned and often isolatad oryetals, while siderite occure as irrogular grains sontteroä indiscriminately throughout the rock.

Quarts in a fine mosaic somotimes ocours as irro gular masmes, as littlo patohen, and as indivicual sull grains enclosed in the oarbjate masses.

Irragular grains and orgatals of pyrito are fairly comon, and are unually arsociated with some pale greon chlorite. In the vioinity of suoh arase a fom tiny grains of agnotito aro also usually to be fomac.

Universal in all specimens of this rock are aggregates anc etriugors of minute rutile nocales.

Almost all specimons of the gray "sohist" are orisecrossed by vainlet B of calcite and clear quarts approzimately len. Wide, while in a fow spocimens veinlecs. about . 01 mm . Wide, of a pecu.' paidentified isotropic mimeral are faírly comon.

Onivorsal thongh infroquent in the general mosaic are isolated clear grains of oligoolase-andesine folspar.

Occesional tiny orystals of pleochroic grean-brow tourmalize can be found in most spocineas.

Approaching a fault, fracture, or other sheared sone. the rook becumer less massive and more nearly schistose. In specimons which have not jot coquired a good schistosity, thin scotio how the quarts grains and mosajcs to have boon nomemhet 1 lattoned; the prosence of a considerable amount of a peculiar. very nearly colourlsse, chloritic mineral with exceedingly low birefringence is also shown. This níaral aseally ocoens in stringers on what are probably shear or alide planes, and its elongation is generally along the directions of thee planes.

Where the rock has been intensely sheared, it aquires a woll defined schistosity, and it is, of course. this type whioh hes given it its neme. Speoisees of this sheared type usually shom in head specinon a spotted appearance, with aore or leas clear spots up to lnam. in dismoter in a soft, "sonpy", fine grained
natrix. Lxanination of this soctions shows that the carbonater and quarte no longor form a monac, bat occur as sore or lecs 'molatea, rounded and flattened blobs in a extrix of the peculiar chloritio ninornal described aboro. It is these blobs which give rise to the spotied appearance. Sometimes between two blubs or leatioles in the plane of shear there is atriat of winute calcito and quarts particles, probably ground off the grains of thene minerals.

Talc is raroly found as amall flakos in this rosk.
Fho carboate and quarts graine in such sheared apscinoas always show such phonowona an strain shadows, eto.

If pean fairly clear that the gray "schist" is a more or jesn reorjstalilsod impure oarbonate rook, and that much of the recrgetalliation took place at lonut partially under the influonce of hyarothurmal agoncios. It is schistose and desorres its ame only whore it has Jielud locelly to intense shear, with the consequeat ohange and reconatitution above doscribod.

The only roforence to the natnre of the gray "cohist" which the writer has been able to 1 iad in provions literature is that of A . Freedman. ${ }^{1}$ He appoars to ragerd this rook as intrusive inio ite nelghbours, but falle to state

1Private report, 1936.

Whother the two occurrences in Zwartkoje - Southern Cross and Hoopital - Hospital North groups are the same or two difioront íatrusions. His oonalusion is obvicurly orroneous, and is probably based on the fact that vat appear to be"apophyses" of the gray rock occasionally extend into the greon, as has beon stated above. Those are probably due to the effects of the folaing, though it is posibible that they are normal atratigraphio roletions. It is ovident that lreedman did not have accoes to aicroecopic data.

Higure 1 on Distn xyil is of a specinou of the gray "echift".

The iykes

As can be seon on Plate IV. there are thrse wken which cut across the rocks on the wine property. All thene are practically verticel, and atrike a little west of true north. This doviation in strike from true north increaser gradually but progreasively from the sastern to the westorn ajkes.

The most anstorly of the thro has on average thicinese of come to 6 feet, is exposee of aevoral pointe underground sown to Zwart copje 7 Lovel, ane can be traco nithout much difficulty on Burfoce, except where it is in sheles on esteap bill slops.

The aoxt dyke westwarde is known as the Idrin Bray Dyke, on account of ita occurrence in the idvin Bray, or lirst. workjags on the Shebe Bar. This dyik has an avor age thickness of some 25 foet on the Ken Consort Gold Mines - Sheba Section property, and is exposed at numorous points down to Zwartkopje 12. Lovel. On Zuartkopje 11 Lovel a branch of tinis intrusion same 8 inchos thick is exposed.

The most westerly of the three dykee has an average thickness of roughly 30 foet, and is exposed in the Intombi. Birthdey and Restern Cross morkinge.

These intrusions woather deoply to form a noft jellowish-brown clayey matorial.

The point where the most mestorly dyco orosses the Zartkopjo - Southorn Croas group of bars and "schisto" is marked by a distinot gap ir lue ridge formeu by these rock. This, the thickest of the three djies. b. had a ninor control over the surfece dreinage sonth a) he rosd to the Fairvi/w Mino. as is ahown on Plote IV. His dyke branobes in two pleces: in the Intonbi. and in the llentorn Crues workiagn. In the lower Intombi leveln, fairig porsietont branoh som 5 foot thiok is exposed, sbout 25 feet most of and more or less parallel to the main intrusion, while in the fiestern Crose workings, tie dyke "iorke" into two practically equal parts, of which the westorly one can be casily
trued, at least to the point whore it intersects the Sheba Bar.

All these dykes are made ny of more or less massive. fine grained, dark gray, doleritic material, and show wail developed chilled margins of a light gray colour up to about 8 inches in width. The thin branch of the covid Bray Dyke already motioned as exposed on 3martkenje 11 Level is outiroly made ap of this light gray chill ot material.

The rock in these dyke has well developed, blocky jointing parallel to and at right angles to the mellon. Those joints are generally filled by thin films of white calcitic and magnositic matter.

The contact e of the dyke r with the country rock e almpet always carry water to greater or lesser extent, and this results. even is the case of the deep exposures. in mors or less oxidation and alteration in the viciaitj) of these planes. The "deming up" of eurfece water by the dykes often results in locally luxuriant vegetation and lines of trees along their outiorops.

The reason for the occurrence of these dyko-silled fractures. more or less radial to the later beading of the laoclinally folded reckon, has already boon reformed to on page 150 of this volume.

Trans. Cool. Soc. of S.A.. Vol. EX, 1917. Pp. 1-36. "The Contact Belt of the Older Granite."
are of similer nature to those exproseed above.
The fractures and the intruaions filliag thom are lator than, and bear $n=$ relation to the aieoralised frectures, or to the prosesses which have led to the conomic mícoral coponition. ${ }^{1}$
C. J. Alford ${ }^{2}$ apparently coasidored these dykes to be of pre-mineralisation age.

De a gonoral rule, the dyke intruaions have had little direct effoct on the wall rocke, as fer as oan be seen with the raked oje. Such direct offects as they do have appeer to be confined for the eost part to the ssonce of thin veinlote of coft chloritic entter in cracke in the wall rocke acerby. These effuote are no.icoable in the shales, the greas "pchiste". and the gray "echiste". but not in the bars, whioh appear to here been more or less Impormeable to emanetions from the intrusions. None of the eonatry recizs show any noticeable affeots of heat in the vioiaity of the djkes.

Indirmolly, howevor, the wall rocks, with the exception of the bars, have ouffored conciderable alteration. which io due to the effecte of the move-
$1_{\text {Cf. Geological Survey Liomoir No. 9, p. } 235 .}$
 1690. No. "Geological Features of the De Kaap Golcisiolds."
mont of moteoric wators and sclations along the dyte contacto.

Thin sectinas cut fron specimas takon well savide the djies show that the rocks wore of a boloritic acture prior to thoir alteration by later, mainly meteoric but possibly partinlly lato agractic, nolutions. Plagioclase folspar grains up to about 0.1 man dianoter coustitute econsiderable proportion of the rock, but they are sauscuritised and roplaced hy calcite as fine masees and aggrogater to such an oxtoat that thoy are barely recognineble, and no crjetal sufficiently free irci alteration to allor of definite deteruination war found in eny of the uriter's sections. All that can be stated is that the plagioclase is of the pro dominently calcic group. No original ferromagacoian -icerals remaic. thoigh their past existence is caily enough soen; they have been completely repleced bj fine messes of an almost colourless chloritic ninural with very low birsfringence. These chloritic mames forn paeudamorphe after pyroxones and oceasionally after amphibolos, and are casily seen in this section under plane polerised light, on account of the fact that they only raraly contain calcite, and conalet of practicalls pure chloritic eatter.

Minute irragular graios and octaledra of magnotite
are fairly comon, as are anall grains and aggregates of pyrite.

The iunst is aunally out by thin (about 0.15 mon) voin' ts of oaloite. with exbordinato clear quarts.

Some 4 to o inches from the malls of the intrailons. thet io. in the innor part of the ohilled border, the rock conaiats chicily of a folted mase of brachos of ncealen. apperontly plagioclase acariag connlotion of oryatal form, undor control of the albito ininaiag law. This mase is, of course, alec hichly saussuritised and to a coniderable sxtoat replaced by caloite, whiuk. Whon it occurs es individuals from 0.1㗐. In dienotor aywards. oxhibite porfect palimpsect taxturos of tho repleced falspar groups. The forromganian ninorale have boon roplmoed by obloritic mattor in the same way es heve those in the nonal rock, the only dilformae being the emailor sise of the ohloritic peendomorphe concorncd. Magnotite and pyrite ocour in those parts of the dykes in the same saceser as they do in the inmor. nore completely orystalliand parte.
buenination of sections cut from near the outor cago of the chilled margia shows this motorial to conalst chiofly of a light bromish-grey glasay meterial. containing a oonsiderable number of ninuto ologentod cryatals. probably of plasioolace folapar. This roik
is to a very great oxtent replaced by irregular nasseo of culcite, quarts and the vory pale chloritic minural. Microbcopic examination of the country rocke close to the dyke contacts shows the presence of irregular masses und veinlets of the chloritic minural alroady montioned, high dearee of replacement by calcite, and a abuormal contont of pyrite, pyrrbotite, and occaBionally chalcopyrite in the form of small irrogalar masses. Farther away from tho djike contacte, the amounts of calcite and sulphidos docrease rapidiy. but the chlorite, in the form mostly of thin volalets, persiste ins much greator distances from the iatrusive. It soems probable thet the chlorite voinlets are the altored remains of voinlots of various types emanating more or leas directly from the dykus. The formation of the chloritic matter in these vainlete, and in the intrusions themeclres, mainly at the oxpense of forromagnesian winorals, is mort probably aue te late magnatic colutions, while the selcite inpregnetion and replecement is to be accounted for by the circulation of moteoric eolutions in the frectured contact sones.

Ligurn i on Plate XII is a photonjcrograph of a apecimen taken from one of these duken.

ThnOrn Bodies: Their tiolatione

The Ancial lingtpre

The ocourreace of this irnofure is sisown on Plater IV and XII= XI.

In so far as toneage niged ia concorned, the Aorial Fracture itsolf has not the importance of some of the othors, but from a struotural point of view, an undorstanding of its occurmace and rolations is of great value on account of its connection with the zwartkopje Frectures, from which a very large tonnage of high grade ore has baen mined.

The outcrop 0: the Aerial Fracture is in the shales north of the Souther Frose Bar; its strike is roughly as shown on Plate IV, and it dips south-southreat at en average of some 400. Underground oporations have show it to have a very regular strike, and the curveture shown on the outcrop is due to the conbined offocte of the topography and the attitude of the fruotare.

The outcrops of fractures in the shales cannot to easily traced without trenching, since the fracture filijeg is usually more or leas ineigaificant, and ia not rocognisable on surfacu, particularly on a hillsiae, Where the relations are obscured by creop and by doposits of talus.

It is proboble that this iractare ostonds ferther towards the rest then is shown on the Plates, but andorground oxploration has not bees extenced farther on account of low gold ralues. The freoture carries pajable gold values in the shales over a rulatively short distance on strike, as is shown by the stoping iatersected by vortionl scotions IJ and KL. Why tho payable gold values are conlined to this aerrom sone is not appareat. partially, perhaps, bocause little information cen be obtained, as the iracture has not been stoped in the shales in recent jears. Both cest and weat of this area, devalopmont north of the Sentrorn Cross Ber hes rerialed notuing of interet.

The winurulised shoot exteads continuously in the shales from the unterop to the Southern Cross Bar, and has beon thoroughly atoped in this area. The avorege stoping width is some 40 inchos.

Lestwards the exteat-a the fractarg is nacortain. siuce gold values in the vicinity of the Somthern Cross Bar and in the sorth grees "schiot" east of the shoot are too low to justify furthor devalopmeat. It doen seen likely, howevor, that the atoping and quarrying on and near the Zwartiopjo Bar at the Zmartkopjo Quarry are on a minoralised sune which owes its exiftonoe to the Aerial Yracture, or one or more of ite bremohes. Ae this area strictl; inlle within the pro-
viace of the Zmartkopje workings, it will be more fully dealt with later. It is show on section $\triangle B$ (Plato XII.)

As the Aerial fracture upproaches the S.juthern Orose Bar down dip, it splite into two and sa, otimes three branches. This charactoristic is shown on the sections, particnlarly on Plate XVI. The various branches cut the bar and pase into the north green "schiat", and thence through the gray "schist" towards the ?wartiopje Bar. each of them exhibitiag a tendoocy in the "schist" sone to oplit uy into sevoral branchos. In some cases two or nore of the primary brancher have been exposed and folloren. . the appermost has beon stoped to a considorablu it in the north grean "schist", and oven in the gray "echist" zons, Which is anusuel. In this case it is probably due to the fect that in this area the gray "achist" zone contains se bande and lenses - high propostion of the ereen rock. which is the hout of almest ull the coonomic misoralisation in the "schist" sons.

111 the frastures in this region show a marised tondoncy to suffer "rofraction" on passage from ose rook type to anothor with difforent physical properties. This is only to be expected, but is ovidonced in 1 very striking manner in the case of fracturas pasaige from green to gray "echiat". and vice varne. This "refreotion" does not affect the strike to the extont to mich

Viace of the Zmartkopje workings, it will be more fully doalt with later. It is shown on cection ΔB (Plate ill.)

As the Aorial fractare approaches the Southere Cross Ber down dip. it splits into two and sometimes three branches. This charactoristic is show on the scotions, partioularly on Plate XI. The various branchos cut the ber and pase into the north greon "schiat". and thence through the gray "schist" towarde the Zwartkopje Bar, nach of them oxbibitiag a tondency in the "schist" sone to split ap into several branchos. In some ceses two or more of the primary branchos have been oxposed and followed, and the uppernost has been atoped to a conaidorabls axtent in the worth green "schist", and oven in the gray "schist" sono, which is masual. In this case it is probably due to the fact that in this ares the gray "echist" sone containe as bands and lasese - high proportion of the groon rock, which is the host 0 ! almost all the economic minoralisaion in the "rehist" sone.

111 the iractures in this ration shom a marked tondency to suffer "rofraction" on passage from one rock type to anothor with different phyeical propertios. This is only to be expocted, but is evidenced in a vory striking menner in the case of frectures passing from groen to gray "sohist", and vice verne. This "rofreotion" does not affect the strike to the extent to wioh

It does the dip, and the iractures genorally have a muts seallor dip in the greon "schist" than they do in the gray. This phomomon is to be explained by the tondency of the greon "schist" to fracture cleanly along the suallest possible distance corose its thicknose, and that of the gray "rohist" to side and shear vaguely in any direction, but prodomiaantly along its "stratification" direction.
$\Delta 11$ the branches of the Aeriel Practure. like othor frectures which will be described lator, are the aites of a marked aísplecoment on thoir mall rocks. This, of course, can be seen by the drag evident in the shaies and "schiste", but most clearly on the bar horisons. The bars gonorally fracture "olean". brucciate to a very sanll extent, and seldom show the effecte of drig. The displacenont of all south-dipping frectures in the area is normal. as can be seon on the Platos, and rangas from 5 foet to 80 foet. In the case of the branoles of the Aerial Practure, it is generally from 5 foet to. excaptionally, es much as 40 foot, horisontally along the fracture strike.

It is obvious that the lise of intorsection of the Nerial Practare sono and the Southera Cross Bar will have a more or leas hat mostarly pitch, and this stote of affaire is brought out by a glance at the sections.

Pletes 2 X to XXIII. In the area wost of scotion OP (Plate IIX) the Aerial Practure is not definitoly known to ocoar on or near surface, but the irsctures rolated to it and occurring in the "schist" group in the Zwartkopje workings are known to peraist mach farthor down the wistorly pitching Lerial Prasture-bar-"schist" group intorseotion song. This can be seen on Plates XX-LXIII.

These frectures comstitute what is known as the znartkepje systen. Hi. Ircedmasl has stated that aftor the irectures have passed tiarougt the gray "sohist" lron the south green. they eator nore grees "echist", and the valuey reappear. In this coanecotion noto the reforence on the nazt page to anothor statomat b 'as made in the sam report.

The Tharthupla Benctioner

Thic system of fractures has yielded at loast an large a tonange of ore as has any otbar ircotare or oyaten of fractures on the property, and the g ld content of the ore mined from thie syste has probably not been surpassed by that mined fros any other.

The stoping on this system of fractares is confined almost entirely to thet part of it which is included by

IPrivate roport, lysu.
the south green "sohist". though a suall proportion is in the zwartknpje Bar, and is the shales a fow foot south of the bar. The Zwartkopje workings are not on any one fracture, but are on a series of fractares which. with the oxception of one, the lowest or Main B iago Practure, can be shown to be directly rolated i. the Aorial Iractare. The Mia Hanlage Fractiare, the is. thet which is exposed for some difisace along the 7 Lovel bar drive, has been folliomed ap to tho Southora Crose Bar (see Plate XIX), and no direct rolation botzeen this and the 10 :ial Fracture is apparont. (日. Praedran ${ }^{1}$ states that the frectures have not been proved to extend beyord the gray "schist" frow the sonth green.) It does, however, have all the characteristio comen to the other Zimartkopje fracturas, and on further arploration would probebly be foand to be a branch aplitting off the Lorial Iracture noaror to surfacs. Plates XIII-XXIII illustrate the conditions applying.

The ganersi trand in the zartkopje morkings hat - llat mestorlg fitch, parallelliag, as would be expeoted, the intersection sone of the Lerial Practure aystem and the bar-"schist" group. At first sight, the Zwartkopje workings would seem to be on a system of independent fractures, and the stopes on the various individuals

Iprivate roport. 1936.
appear to be succersively off-sot towards the west on the lower monbers of the groing. Careful oxamation, and the preparation of the sories of vertical sections, howevor, lerds to the explanation outlined above.

The costorn and of the 2warthopje workings is the discovery site of thaje ore bocies, and now forms the Zanartiopjo Guarry. At this point and soar distance towards the west, the stoping, some 6 to foet wide. is in and under the Zwartkopje Bar, and not acrass the south green "schist". This io due to the habit of sore of the fractures of turaing domi on approaching the bar. and then following down the bar itself, or the bai-green "schist" contact for some distance. This characteristic is a'so shown at a lower level, as can be seon on Plates XIII-XVI.

When the Asrial Fracture asstom passes from the sorth shales through the bar-"schist" group, it aplits info many branchos, and bocumes highly conplex, eabh individual itrolf ofton aplittiaf up. The brancher somotjees rejoin lower dom, and the systom is coaplicated by the preseace of compleantery morth-dipping. nore or less iapersistont, fractures such as are nhown stoped out on Ylates XVII, and XIX to XXII. Hall's desoription ${ }^{1}$ of the Zerartiopje shows that no genoral

1Goolopicel Survej $=$ Enoir No. 9. page 255.
intor-relationship of the fractures was recognised. Most of those branchos show the "rofraction" foature already roforred to, when they pass from one ronk type to anothor, and the main changes in dip and etrike take place in the vicinity of the "martikopjo Bar.

Some of the min fracturos pass atraight through the ber into the shales, but great many tond to turo down into, or along the footwall contact of, the bar. Others steepen considerably ahen thoy approsoh the bar. while others flatten, for exemple, the Main Healage Fracture. In some cases the fractures Ration on approaching the bar. through which they then ent, to turn up and assune a north dip in the sonth shain: in others the iractures split up into soveral branches imeodiatoly they ontor the shales. The condition dioncribed are best undorstood by reforence to Plates XIILUIII. All those fractures which actually cut the Zartkopjo Ber have on it a normal displacmont of some 5 to 30 feet.

The complementary north-dippiag froctures do at as a genoral rule parsist on strike for more than 150 fest or so, and there heve a reverse dieplacement on the tar, asually of the order of 5 to 10 feet.

The ralations betreen the north- and south-dippias fractures are auch es would be expected from a complomentery systen in which one momber is far more strongly
doveloped than the other; that in, the aorth-dipping fractures are dofinitoly eubordinate to the main sorthdipping ones, and are gonerally bounded approximately along strike line: by the latter. Siomtinos the northdipping fractures seon to branch off the main southdipoing ones, which they also occasionally, but very raroly, out and displece. In some sures the complemontary ejstems are so devoloped ss to result in e step-like suocession of fractures in the grion "echist".

Towarde the west. the whole systen graduelly dies out notil so further trace of it cun be followed nost of the section ilne IZ (Plase XXIV.)
Δ great deai of atoping and devolopaent has bean done on this highly complicated ayston of frastures, and on each fracture the stopiog is naturally sonswhat irmagular, as the gold volues are by no mease ssasiatont. Tho altimete rosult is that the vorkjags are a voritable labyriath, which muat be very oarefully studied before any somblance of order cmarges from the appareat chaos. As the sections show, howeror. the ore bodice belons to - definite, and by no means chaotic, syatea, and almost every one can be nhown to be dircotly releted to the others. A genoralised vion of the 3martropjo "shoot" in that of a broed wedge, with the apar at sur face at tide Zunrtkopje Quarry. Hore the oxtont of the wark on strix. is a few foet, while the lowent fracture

In the ajstem, the Main Haulage Iracture, has been continmorely etoped for some 900 feot along the strike. The "shoot", however, consists, of courso, of a series of ovorlapping and off-sot ore bodies which are directly faterconncoted and intor-rolated, naually north of tho ore sone shioh is mithin the south green "eshiet".

Most of the ore has been eined from the overlapping syster: of south-dippiag fractures in the south grean "schist". These have dipa varying fron 20 to 55°, and are often stoped continuoursly on dip from the bar to the green-gry "echist" resintact. As can be seoa on the scetions, hurever, many of the fractares have been nised from the bar into the groen "schist". but not all the way to the gray "echist". Many of these ircotures turn down into or under the zeortinnje Bar, and in sevorai cases the stoping has followed the down, with sucte rosults as are show on Ylates XII-KTI. In geaoral, stopes on aingle fairly woll nineralised sonth-dippina fracture in the green "schist" heve widthe of from 40 Juohes to 15 feot, avoraging some 5 to $\overline{8}$ feot. Where the etoping is in or just under the ber, its -idth is usually abont 8 to 10 feet.

In many cases the frectures pase struight throngh the ber into the soutb shales, and in sach ecses they have oconaionaily been atoped contiamonaly through the bar into the shales. No dofiuite rule oan be otated
in regard to the variation of gold vo .nos in passing from green "schist" into shale oxcopt that values south of the bar are generally not as high es those north of $1 t$.

The Kain Haulage Fracture turns ap after passing through the kertkopje Bar on 7 Level, to assume a north dip. This part of the fracture bes been toped som 30 to 50 feet into the shakes for sum 600 foot on strike. ${ }^{1}$ (See Plates XIX -XIII.)

A for of the north-dipping fractures live been stoped to some extent, and ia some cases have fielded high grade ore. In general, however, they do not constatute the potential value which the south-dippáag fractures do. This is, of course, due to their smiler number and comparatively weak development. It the intersection if north and south fractures, great chambers have sometimes been stop red out. Init is accounted for by the fact that the country rock hae been far more internally crushed, broociatad, shattered and strained. in such areas than is the cease sear a single fracture. and that a cortaie degree of stagnation of solutions -ill occur at such points. These conditions promote more intense solution, replacement and deposition. -lith consequent more intense motallieation. It 4 ems
$l_{\text {C\& , the site on page } 256 \text { of Geological Survey Memoir }}$ No. 9.
likely that narolioved intoraal strain in the wall rocks is one of the main factors promoting these processes. Nothing of the nature of the condition shown by hall in Fig. 23 on poge $25 y^{1}$ has been seon by the writer.

The same rewarta apply to areas in the vicinity of splite in a south fracturc, and bore the abnomally intence strain and bracoiation have rosulted in anch aiferalisation thet the stopea have assumed tio properticie of trenesidons chanbere. (One near the collar of the zwarthopje eub-inclinu zhaft kee a width porpeadioniat to the fracture dip of at least 40 fcot . a leagth down dsp of 90 to 80 feet. and a etrike dimeasion of 200 feet or nore.)

There are some places in the Zwartiopje working Whore only the iatersesifion sone of two frectures has boen atoped, the ore bodies away frem the sone boing too 10 in grade to repay aining and treatmont.

The fractures ehoon on the plan. Plate IT, and on the sections, Plates III-XXVI, do not, of cource, rot pravent the sum total of those present in the 2nortiopjo aree by any neans; those showe are those which hure been ifined, or are othorifisu of inpurtaces. Fisore are many morn. genorally of emall known longth on sirthe and dip. Which carry littlo or no gold, and have

1Geoiogical Surrey Mocoir No. 9.
therwfore not bcon mined. It is possible that some of these way carry gold ia payable quantities whore they are not exposed, tut they generally do not warrant opening up, ar jesides, there are too many for them all to be oxamioud thoroughly without more oncraragoment than they offer.

Ls hay elready bown efated, most of the frectures have been stoped right up to the greun-gray "sohist" contact. The gray "schist" itself is apparently inert. and is almost never the site of econonically important aineralication. The reason for this is probably partílly chemical, bit mainly physical. It is possible that there is som ohemical charscteristic which inhibite minergiisaiion of th., ocosomic hded in the gray "pialat". but whereas iractariag of the grean "schist" sceme alwaye to be accompanied by more or less crushing, shattoriag and brecciation, the gray "mohist" ap:ears to fiold rathor by faternal folding. deformation and shearing, so that oppertunitios for impregation and roplacement is the latter rock aro raroly anything but poor. At the same time there woold sece to be some chemical oharactoriotio, of parts at laast, of the groen "schist" whiob promotes iepregnation and replasencot by hyarothormal solutions, -ith corsequent ocnnomically valueble uineral deposition. Fig. iz illuntrafos the coaditions found on one important fracture in the rogion of dieplacment of
tha greec-cray "schict" coctect.

Iig. ? (Scale alout $1^{n=}$ - 5^{\prime})
Ls a consequence of the abovemantionod feotorn. thore appears to have been in some casce a mort of "demiag ap" procesb active in the viaiaity of tho iractures at and neer the green-gras "sohist" wontect. This has resulteu in fetulously high gold values for - fow foet south of the contact. and in tho conditiome Hhown is Iig. 2. Juch conditions may ia part be dre to the fact tiast the frectures in the gray "ccaist" are "tight", and tond to slow up movment of tho colutions with coneequeat stegnation near the contect. A condition of this cort coubied with the greator amonablility of the etrained. omahed and breceiatad grean "schist" to raplaceacat and \{mpragnation, and
the inhibition of twose prooestes by the gray "sohiat" would secount for the fects as thay are observed. H. Irceaman ${ }^{3}$ hus rejorted occurrences of this type in the zirarticopje worikings, but hes made ro atteapt to explain thom.

Conaitions of this iype are by no meane nuivercal. but hare been sufficiont to ceuse some of the uncerground exploratory dovelopmont in lator years to bo pleced un the grean-igray "schist" sontect, in saaroh of spocitacularly rich "pooicote". A more comnon nfinte of affairy is that olroody montionoa. in whioh tha fructo a are payable on the bar and in the greos "schist". but not ia the rioinity of the groen-gray "schint" contact. It is, thereforin, more logical to place exploratory covelapment on or aear the zmarti kopje Bar-grean "scinist" contact, bowanse if a níaomiliocd ireoture is intorsectou. it cian be fallowed up din ta the gray sohist". wherens in the othor mothod. a berren fracture internocted in the drive may mean any thing or aothing, and it fis in any case masior to raise up a frecture than to winse down it.

Locel very rich pockels such at aro occasionally found on or noer the green-gray "schist" oonteot have bean the suljoot of much juggling ois thu part of the
$1_{\text {Privale ruport. }} 1936$.
"iontrolliag iracturu theory" exponente, in an elfort to socount for them aiter they have been exposed. The occurrence of thure pociets has, howevor, been prodicted on the besis of this "theory" on singularly rare occasions.'

In some places a band or luas of green "sohist" up to 10 or 15 feot in thiokness han been found in the gray "schist" cloas to the contect. In such casos the gold values on a fructure stop short at the eontaot. but if the frectare is followed up into the leas of green "schist". high values over a short distance on dif may again be found. Such occurrences have been the source of a considarable tonnage of ore reclelimed from the old woricinge. which etopped at the graun-gray "sohist" contuct.

It seem parfoctly likoly that gold valmes would be found in the north grcen "sohist" on a fracture which has been stoped in the rocks south of the graj "sohist". Yor this reasos the Main Haulage Ircoture hes boien followel by a ralse through the gres "schint" intic the north grsen and to the Southern Cross Bar. This vesture hass so far hed no success, but in vion of the fuct that frsctures such en the Lerial. Maloiza. and Insiabi ponotrato the gray "schist" and earry payable values in the greon "eshist" and shaler vorth of it, this principle should be followat y p and

Tigorounly examiaed, because, an can bo econ in tho sentiom. $2 c i e r a l$ of the southodifplag frectares in the zmerthepjo workinge offer opfortualtios for eush exploration.

In the lower lovels of the Zwartkopjo Section, where moh of the developments is on the grees-gray "schist" contaet. south- and north-dippiag fractaras of a type similar to those mined above 7 lorel have been intersected. Mont of there, an ces le seen hy reforence to Plates XTIXI-XVIV. are arparently not direotly rolated to the forial syston, though sase of thex. for example. A fow of thuse showi on Platen IVI and XXII. nadoubtedl? ure. The great nejority of the fractures hxposed in thase lowar lovele are barrea. and it seeme probable thet developmont aloag the lines of thet conducted on there lywer levels theuld be roduced in extent, arid the eneryy devoted to searoaing for aime auch occarrence as that ained above 7 Level. Further reference to this polat will be mede leter in connection with the Inaimbi Practuro.

The ore bodion on the green "schiat" have iaceliaito upper and lower linits, and in thees dircotions are bounded orly by the faskecie from peyable to anpajable gold content. Thu fracturos, oven the largest and met persistont, are siten visible only at orake. while somotimen they have a quarte filliag which is
seldon meng than 3 fisbec thicia. Tais quarts is asually cloar, vitreous, his a dars gray colour, and solde costuins mucis it the say of sulphice or other metallic aineralo. wiaich sond ta scunr rather as dissemiations in the green "whist" walls to a aistance of 3 to 16 foet from the irectisu. Gold is sometimes visible in the fon of irragular grains and angeats ap to is iach or, rarely, en mach as 1 inch in dimeter. Pyrito and arsonc -ite, usaally as minute suadles. with a litile pyrrhot. ${ }^{\circ}$ e are the sulphidus acto comsonls found.

In the thales the fractires invariably contain a filling. from i inch to \dot{O} inches in width, and composed of whito quarts and carbouatub, with a little selphde as grains and masess. The sulphices also oocer finciy iiseeniated in the will rocke.

The sume fracture cas often be followed dirütly uloue a olope face fra. the erees "schict" to the obales. ane the truncition from the oue ijpe of mineralicotion to the other is as abrupt of the change of wall rock. In the bas the frectures are guncurally a aarron arnok with Enlphiaes dirsacicatul ofer jaches on each eide.

A stete of affaire cucis as that desoribed above ie aleost anduobtedly cauked malals by the chenion natare of the iracture waile, but partiaily also by the degrec of "effestive permesbility" of the well rocks. The "olfective pornesbility" depeede apon the degrico
of browiati ane monat of residual strain, the extent of the moviment on she frecte o plene, the secree of planticity, and the gonera? paymical one potrological oharscteristios of ise Nill rocke. These feotory sontrol the extent to wisich the frecture sone is filled with gouge or sinilar matorial.

The zakeo.
\triangle fow tone of ore havs been miaed fiom this horizon on tie zuartionje bar-atale contact in the Zwesticupje. Z.K. Fismure, aud Sirthday Sections. (see Plate XXI.) fur the most part it has beell of ? an growe und nar:ow width.

This horison in itself bae not acted as a yareng for niworalisiag solutions, and cerrien suiplicies and cole ouly in tic vicinity of ite intornoction ${ }^{2} y$ an aurifurous freoture. Where one of the gold bearing Iractures passes through the Z.X.O. horison, impregee tion las extenciod up and down the lattor in mome casen for SO or 40 foet. Úcasionally such inpregnations carry unough gold to repay mining and troatmont, but genorally they contain geattered pjrite graias and vary litile gold.

Where one of the fractures turny down in the ber near the Z.K.C.. the lattor is somotimes of soonomic
valne ovor greator areas. Genorally apeaking, howoror, this horison is of very little value, and is of purely incidental importance, nut, in most oases, to be deliberately foilowed and oxplored.

鹃 Inaimbi fracturs

With the exception of the Intoubl, this has been the source of a !orgor tonzage of ore that any ather aingle fracture. It has bwe worked since the earl; dajis, and was discovered on the outcrop on the south side of the Shebe Valley, somemisure went of the Ldein Br:xy Dyke. The nature of the original aarince chowing in not known, but it is likely thet it wen diecoverod by panalng ap the hilleide, since these fractures usually have an conapicuous or recognisable outcrop, except porbaps in an area washed ciean of soil by heevy rainy. Side ocourronce of this fracture is shown on Plates if and XI-XXVI.

Its genoral ocearrence and attitece are vory sinilar to those of the herial frectare, except that ite strike deviates a litile farther from esit-weot, and it io lose rogular in aip. a good doal more is known about the occurresce and minaralioution of this fracture in the shales than is the case with the dorial Frecture, sifice the fomer hes been recently warked

Is this zonc. unc is. in fuct, istill boing so worked. 1
The lasimbi fracture tay beas thoroughly upened up and almast completely utryou out in the shalee from aurfece to the severth lovel, ane from the lloapital Ber group to the Lulvin Bruy yjce.
solon 7 luved tiou velues have net beon so sonale tent, aal so fer uely iasleted apots have been stoped. The area no morkod is more or luss a truncatod triangle With its bese on the nuturop. and its apoz on or just belon 10 Level. is the viciaity of section $A_{1} B_{1}$ (Plate UV.) Down to 7 lovel the frastare bee been almoat concinuousiy vorked up to the dospital Bar, or the "soapstone'. There the bar or bar and urcon "sohlot" are absent. When it enters the "sonystone". that is. the gray "subiot" harizon in tac Hoopital - Hoopital Horth Ear eroup, the lasimbi Frecture seens to tarm more or lens parallel with the atratification, mad becomes so imistinot that it cennot be followed with any degree of curtainty. Several atteapts have been made to discover whether the fracture passes through the "schist" group into the shales to the north, and if so, where. These attempts have berr made on surface as is chom by the trenches marised on Plate IV, and underground by ariving westwards in the shales
lootober. 1942.
north of the Ronpital North Bur. Thess attempte have had no ouscess, and the conclueion fs that if the frecture does cut through this group of bare and "achiste" it mast first go fur sone distence perallel to the stratification before emorging into the shales on the north side. It does scem possible, however, that it doee not ewerge, and that the movemmet on the fracture plane has been absorbor by internal shearing and doformation in the "osepetone".

On the east sidn the moriduge in the shales down to 5 Level ond ageinet the Rdwin Brey Dyke. Which is here vory doeply wouthered and somewhat difficult to drive through. Thus there is a triageglar-shapod block of ground on the frecturn east of the Ledrin Bray Dy ke and north of the Southern Cross Bar which hee not been opened up. Though eppareatly no valnee. were found on the outcrop, this blook is of consider able extent, and should be examined. Belom 5 Level on the east side, the Inaimbi Freoture has been stuped to the Southerd Grose Bar down to 7 Lovol.

The Hoapital - Hospital North Bar group in this a. se has a ralatively llat dip, and coaverges on the Southern Crose Bar. For this reason the line of intorgaction of the former group of bare and "echiste" and the lanimbi Fracture lins elmont direotly duma
the dip of the fracterc. If tho case of the Southern Crose bet, With ite atcep dip, the line of intersection with the frecture pitches weetwarde at cone 35°. Thus the epparent and of the lasiobi Fracture if the sholee would appear to be at or just belor 10 Lorel on the
 to crea up the lacinbi frecture in this arce, .ith 1ittle auccens; the fracture is irregulur. and is one of wevoral. While the Louthern Crose Bar and the flospital Bar eppeer in booxpecteo places. This moule te sue to the ulstarbanye in thio rioinity refurred to in the chapter on the coaeral booloeg of the hrew. Infortanately, values oo the lauinbl Irectare appear to be nost eporedic io this orea, and this complicates the nxpluration problen. af nee there are other berres fractaree in the vicinity. lithont gold velues as a correleting featare, it is often inposible, ehort of di rect uncerground conacotion of the woridinge, to be celtule thet a erive is on the riecht frecture. Thise probles. incidantelly, cyops ap throughoat the pro party; if emein fructure carrioe no cold values at the particylor point at whioli it is intorncotoi, it cenact be dutingaiabod fros the many other barrem frastares. Which are all bos anservus.

Oa the eant side, on 5. ©ni o bevele, the Inalabi iraotare has beed folioned hrough the southorn

Crosy Bar, \quad pyon which it has a normal displacoment of somn 80 feet horisontallj along the fracture strike. and wich showe well developed drag phenomena. iato the rorth Exner "schint" as fer as the gruy "sohist". De 5 Lmol , after paseing thraugh the katia Bray ir iro again ouing to lack of gold valzea. there was some doubt abont the laentilj of the fracture, oven though the hreak secuiped by the dyte asually me no dibplacment on its walle. On 1 lavol it was followed to the gray "Bohist", and nocreional gold values were found. Bolgm" Leval. in the north ereea "nobiet". : vory rich natch wan exnonod, apparently in the viciolty of the intorsoction of t'it Insimbi and a minor fracture. Cn 8 Level tramendoualy rloh ore was aguin encountered in the north grean "sohint", slso in the vioinity of the intermetion of the Inalabi and anothar iraoture. In view of the ralation betwsen the sorial and the ywartkonjo fractnres. It nemm logical to aupyone that the Insinbi firacture night lead to comethiog of a sinilar nature in the nouth grain "sohist" under the 7martknje Bar. It is at last a possibility worth invertigatine, as thorovighly gossible, since its importance. if this susposition should bo corrsct. cannot be overestimetad.

Phongh thoy are not shom on tha plan and sections.
thore are a greut many branch iracturva which aplit off the lasimbi into both hanging and footwail. Thone seldom persiat for more than 40 or 50 fnot, and thoy iarely oarry aconomically inpurtant gold values for more than a fow foet fron the main fraoturo. They are. howavor, of conaiderable inportace, aince the $100 e^{-}$ tion of the richor patches is hirsotiy rolated to them. The shales have apparently acted as a relatively poor host rock for hjarothermal niaeraliention, ascept where unasually intenie shatteriag and breociation have taken place, and it is a geaeral rale that the breceiction abrociatec mith a splitting of the fracture, or -ith as iatersection of the main fractare with enother. is the dite of intence mineralifation leadiag to the daposition of gola in high concentretipe. The prepenco of a lorge number of braches. forning a ajatea of -inor crecise associatea with the main frocturn, appoare to be noceebury for consiotatit gole values sver way appreciable ares. In the case of the lasimbi, such couditzone have beer brought about mainly by the nausually large amount of movement which has tifem place on the fractare.

This, like other fractures in the sheles, alnoet slways has a filling composed of white vein querts and carbonates. This filling is comnonly only inch thick, but wey be up to 8 inches, and in the thicker examples
aimost invariably shuwe comb structurc or rhythmic doposition of carbonates ane quarty, or both. Sulphides, chiefly pjrite and subordinate arsonopyrite. and gold, occur in the filling and dismeninatod as tiny partioles in the wall rocks. Such disecainations may oxtend as much as 5 feet on aither side of the fraotere, bat are asually of conomic value for lesner distances. In fact, the average stoping width is some A to 5 foet. Visible gola is excesedinsiy rare in the shales, and thie ie ulso ure to the feot that it is. except under conditions of unusually serere orushing and fracturing, e.g., near an intorscotion of two or more fracturef. a rolatively fuor host rock for hyirothermal impragnation.

The berren purts of the fracturs in the shales usually carry a filliag composed alsost ontirely of White tu gray carbonates with little quarts, and fro quently with a little mor or less coarcoly srystallitas pyrite, but with ma erenopyrito. In the vicinity of splito or intersections the filling consiste mainly of white quarts with cubordinate carbonates liniag the walls of the rein. A fair monat of more or lese masaive fine Graioed pyrite little arsenopyrite and gold. while the motallic minoruls are also disseninated in the wall rooks. There is thus a dofinite dopositional relatioaehip botroon the rhite vain quarts, the
for of the pyrite, arsenopyrite, and gold. Theee conditions are identical with those exhibited in the cane of the Intombl Fracture, and as the ocenrrences are better eoveloped and more ciear cut in the case of this fracture. further dutailed doscriptions will be given is the chapter dealing with the Intombl Section.

In the green "ronjet" the type of niacralisation found an the Insimbi fracture is exnotly siailer to that on the "wartiogje Ireoture in tio south groen "schist".

The Soluine Eructuca

This frecture is shana oif flate IV. In the ahmes aorth of the Sonthern Cross Bar. Just west of tha point where the bar is oroses by Sayman's Crook.

In goecral occurreace the Kalifan Iractare is Binliar to, though not as itrongl! dovaloped as. the Moriai asd Ineimbi ireotares. It has heen opaned ap from ais aist in the bank of the oreek, and a falr tonnage of o.r has bean atoped from It in the shales. The ircetrye tas buen follored dom dip through the Southers Oross Ber, upon which it hes a nomel dioplacement of sore 15 to 20 feet, horisontally along the etrike of the trecture. sime stoping has been
dune in the noth green "rehist", and the iracture bas boon followed down to the gray "sohiat". Little work hae been doue in reoent years, and values appear to buve juen coisurhat eporadio. liest of the atoped aree the freoture has boan off-set by a fault, and reoustly attempte have bien sace to follor it ap, but with little suocous. The two mado reanons for thio lack of sucoese are: the number of othor and barrea fractures prosent in the arce nake icontifioction of the alin one alnost inpostible; and the local inteace folding of the bar-"senist" group, with corsequent repetition of strate, causes difficultios doe to the faot that the rock succaseion cannot be used an a guide.

Attempte iseve now beon mede to interscot thio fracture by dovalopment at a lowar elovet!on from Suartiopje 7 heral. So farl no oonoluaive result hes buen atteince.

Inctober. 1942.

Sute in the north green "schist", and the fracture hes boen followed down to the erey "schist". Little whrk has bear doae in recent years, aud values appear to have beou socewhet eporadic. West of the itrapod aree the fracture hae been off-set by a fault, and recuntly attoxpts have baen macie to follew it ap, bat with little succees. The two main reasons for this lack of sucusess aro: the number of sther and barron irgotares prosent in tie arau ariz identification of the main one alcost imposaible; and. the local intense folifing of the bar-"schiat" grou?, With conseq"ont reletition of strats, suuses uififoulties dwe to the fact that the rock succeasion caunot be ased as a gnide.

Attempts have now beun made to intorecot thice fruotare by deveiopment at a lower elevation frem Znarthupa 7 invel. So far 1 no conciabive rosalt has beun attainou.
loctober, 1942.

The Pathurl fien

This is the nome given to efracture of soncWhat similar exeneral mode of occurrence to the Lerinl. Insimbi and Yalvisa Ireciures. It occurs is the north ehslec, north green "eohist", and Southorn Crose Ber. about 600 foet went of the Helria frectere.

It hes been opered up from an adit on the road fram the offices to the living quarters, and thers have been a counle of hundred fout of developmont dor:0 on it. Nose of this work was dune in recont years. and so little is known about the grmoral conditi ans. except that a fov gold values wore found; thay ara, Lowever. ircufficiont to warrant furthar work, at loast, at the present tim. No stoping was dose.

If the Insimbi or Malvina Fractures lead to anjthiae of particular valne, further exaniation of thle fractore, and of othar of aimilar kind which are know at sarione nlecur on the profer ty. muld leadiately be warrantel.

The Birthday Iracturea

A considerable tonnage of ore has been stoped in the Birthdey Section, same of it exceedingly rich. A part of the morkings is shom on Plates IV, XXV, and
and CiVI. The openiage extund troa point some 100 foet cest of section $\Delta 1 B_{1}$ (Plate XUV) to a point some 5100 foet west of the large dyice which cute acruse the 2wartiopje - Southorn Srues grani at ive flexure. Moat of the work is in the near viciniby of the green-grey "schist" contact. is very steep, and extends from the surface to a little below 5 Level. which is the seme as the \ln imbi í Level. an average vertical distance of some 500 feet.

The fractures responsible for the ninoraliantion in thie section of the wine form a highly compler systom which is not thoroughly understoud. The mest impertant is actually a complicated branching syetem, which ruau in guneral parallel to the green-gray "schiet" contact. and occurs in a sone up to 20 feet Eide. from the contact into the green "rchist". Many of the brenohes pass off into the gray "schist", while othore face out into the green. This condition so shown on Pletes Xyl and XVY I. Ezam 3 Leval up to the outcrop this syiten hes a great many branchee, and is consequantly fairly con-sietentl, aineralised over a considsrablo ares. thus from the eurface to 3 Lovel, a largi ares bee been fairlf thoroughly stoped, on and near the grceiz-gray "sehiet" contact. It has been saiu lhat it io the cuatact itself which is minerolised, hut ceresul exemine-
thos of the workings show thet it is the mancering. branckiag tracture sjetea which has boen followed and stopad. Fifen the main frastare happene to be on or slase to the cantect, the gray "schiat" is exposed in the stope footwall. giviag the iapression that it is the contact iteolf which has reen ajacd. There are a groch many pleces, howevar, where the fracture syatem has teen followeo and etopedi jato the green "schist". ane thicre is then no grey expesed. It is seldom. however, thet the frecturee are more than 20 foet from the contact. ABsuciateu with this system in sone plecos ars that north-aippine fructuret. These are irragularly distributeu, ava generally have a dip of aome $15-20^{\circ}$. Wharu these northedipping frastures interseot the atwep iracture aysten, there is sometines a sone of jutease miruralibison around the intersection linen. The north fractures themealves usually do not earry payable values for mure than 15 fout or so from the iatursection solle. Steep fractures. dippiag antit or west. und abriking more or lass due north, are also found associated with the main fracture systom. These as a rule do not carry significent gold velues, but their influence on the main fracture systen is seen in the prasence of steap, aarrow, rich shoots of ore along the intersuction sore.

Soth thess latter fracture types. that is, the llet north-difling and the steop crose frectures, are of more frequent occurrasce belon then above 3 Lavel. This feature is much more noticeable in the oase of the stoep crose fractures than it is is that of the flat aurth-dippigg onee.

Belor 3 Level the nain fracture ajstem is aot so well devaloped. and is not as oomples ab it is from 3 bevel to the outcrop. As a result, ite gold values are somewhet sporedically uistributed, ead it hes been stopes to a ruch emeller extent. In fact, elnoot the only payeble rulues found below 3 lovel are in iatersection sones, where sone other irceture is present as wall as the sieep or "contact" frecture system. Between 3 and 5 tavels, almost all of the atoping hes been cone on intursection sones. in whick the frectures proseat are ussally the steep or "contect" fracture. Which in thic area is somonaly single or siaplu. and steop mest-dippias cross frectires. The gold values in these narrow shoots ure often very high inceci, but they soleom extend for wore than a for foet from the liner of intersection. Thins the atopee on there ehoots are comonly of more or lans ejlinarical form, and seldon here a diamoter of more then 20 to 25 foet. The main aboote of this tjpe which have
boun worke in rucent yoary pitoh to the mest. more or lnes parallel to the green-gray "schist" conteol. at as ayelo of from 45 to 65 tegrees.

The ore ingad frem there pipelike shoots, as hes already beon mentionsd. is often vary rich in gold. veluer up to 400 arts./ton being not necomon in individual earylcs. The gold prepont if, boweror. in gunarel. finely divided, and is thorstore seldom viatble to the naled eje; in fact. "Tisible" gold fo the axeoption in the firthday oref. It if puculiar that thie ore, Which is in egreen "echisi". exhbite thie feotere. wher zartionje one of oqual gola content froqueatly contuine the netel ar particlor easily viaible is buld specimen. As a eonernl ruln, the ore conelste of gruers "schist" containine. pjrite and arsonogyrite dio serisinsted throughat, the former often as masase of fine gra.nod enlphise, and the lattar as niaute noedles. oftan as falted cromps. Nasses of stibnite are cormonly found in those orer. often lining rage, bot in the eggragste the oroportion of the mineral in these ores is fortunately low.

Meteoris waters penstrste the fractured rocive in the vicinity of intonely broken-up intersection sones, with the rosult that a certein anount of oxidation has taken plase in the ores mined, and orecks and joints are commonly filled with - red ferruginous mud. Later
cerbonater have also been introduced by the circulating surface waters.

South-dipping fractures of the inartkopje type wore, up to the beginning of 1942. almost unknown in the Birth ley Section. In fact, the only one exposed up to that time showed little or no signs of cejnonic aineralication. Daring the early part of lii. however, a fro tare of this type was exposed in the green "schist" near the Zwart kopje Bar on 5 Level, and exploration on it gave highly encouraging results. Conditions in tho ares are, however, complicated by the presence of other fractures in the shale south of the Zwartkopje Bar, and of fouls, with the result that exploration wat rendered 8 Jowhst ulfificult. It is the oplaion of the writer that such an occurrence is very encouraging, and if it is al. all persistent, should sugar well for the provfoo. $3 f$ the Birthday Section, since it seems likely 28 the fore-runaer of others of similar type nor elevation.
The reason for the difference in the types of fracturing in the Birthday and Zwarthopjo Section of the aline is not readily explained, though it seems likely that the difference in the attitude of the rocks in the two areas, and the guduen change of strike of the 2 wartkopje - Southern Cross group in the Birthed area, are not unrelated to the problem.

The poouliar 2-ghaped fold even on Ilate If in the hardened shale sone south of the Zuartropje Bar has no counterpart in the bar-"echist" grouf, and thin movement aust therefore have been absorbed in the rocks sonewhere in the western part of the Eirthay ares, srobably on the Brartkofje Bar-shale contact. A possible axplanellos of the peculiar system of fractures found in this area would be thet conditione of strain difforent from tihose applyiug in the zwartkopje Section wers thas set up in the rocke in the vicinity of the Birthdes workiags, with the result that the fracturing in this lattor pert of the mine astumed aifferent form.

The Intoubi_Erectura

Ibis fracture has been the source of a very large proportion of the ore which bas hoen miuod on this property, and is, in fact. the chief source at the proseat. Nuch of the ground stoped from the Intombl fracture in previoas yeare was uf a high grade, but at preeent it is muetly of medium ($4-6 \mathrm{dwts} /$.ton) valus. A fon relotively emall blocke of fuirly rich ore are boing morked at present, but they make up a small tonage. The occurrence of this fracture and nome of the workinge on it can be suen on Platen IV and XIIII-XXII.

As shown on the plan. Plate 10 , the ootcrop of the Intombi Fractur curves a good doul. This is mifleading, and is aue to the combiation of rugged topography with steon slopes, and the south dip of 75 to 80° on the fracture. That part of tie frecture southweat of the latombi fuarry has a vory regular strike of some 36° south of west, while northeast of the fuarry it has a similar regular strike. In the immediate vicinity of the opon cut working, however. ite strike is some $60-70^{\circ}$ south of west. Thus north and Bouth of the Guarry it Bulfurb on surface an abrupt change of afrection. Its aip, howevor, romaize remerikably steady throughout.

The Insimbi íracture kaid been wined for sone tive before it was found necussary to pul in the 5 Loval adit from the gorth side of the Zwartiopje Velley, through the hill, to intersect the Insimbi north of the Southern Crose Bar. The portal of thise adit sen be seen on Plate IV, sbout midway between sections IX and YZ. and about 130 foet south of the $j=f^{20000}$ coordinato 1 ine. Then work was commenced on tho adit some excavation in the billeide to the west war made, to socomodate a drillsharpening shop. ithis excavation exposed a fracture oerrying high values, which, on boing followes up, were found to pereist. The original prospecting winze which *es started on the outcrop by the drill shop becane
later the shaft on the fracture which received the name Intimbi. This shaft is steuply inclined (78°), and is nom being auk below the 14 th Level, a vertical dir. lance of now 1500 feet below the collar.

Almost all of the toping on this fracture is west of the shaft, and that which is to the east reacher only down to the 3rd Coral, and extends about 200 feet on stink e. Ore has been stope from the outcrop to 12 Level. and from the shaft about 1000 feet west. This is. of coarse, nut a rastaugular stopej-out block, and on the lower levels it encloses a good many patches which are barren, or siajst so. The jver-all average atoping width is pons 40 inches. though in places, as will bo described later, far greater lathe hi se been found to contain payable ore.
lent of the shaft the fracture has been followed on 1 Laval th a point wert of the dyke. Here, however. It sens to be getting weaker, which is a feature more or lams to be expected. since all the fractures probably awe their origin to the presence of the Zwartiogje southern Cross group of resistant rocks, and are likely to be lore well developed at considerable distances from this group. It is town from the ares phenoms visible 10ctober. 1942.
is the fracture walls thet the fontwall block has moved wostwards rolative to the haaging wall, but thore are no varkers prosent whoreby the amount of the dinplecemont can be fieasurad.

In rocent jears, attempts have beon mado to follow the Intombl Practure from the shaft eastwards towards the Zwartiopje Bar. Up to Ootober. 192, it had bean traocd definitelg to a point some 35 n fat east of the shaft oz the uppor levels. Farthar cast a fracture which is possitly the intombi has been follown from ar adit to the bar, but it carries fon gold values. Tho lewar lovels beve followed the frecture progrosefvely nearar to the wertkojfe Bar, but faulting and "formation fractures" have so complionted conditions on the Intermealete lovels. 1.0., from 4 to 11. thet no enceese has co far reaulted from thíe work. Diamond drllling is more or lens unglese for prospocting in this area. on aecount of the ixponsibility of recognising tho main fracturee in the cores. if they happen not to be mim oralfsed.
raulting of various kinde has complicated developmont on the latombi, particularly on the lower levals. Betroen 7 and y iovels, there is a flat-dipping fanlt of small throw which has smewhat conplicated the stoping in this area. Ihe most troubles jee type of faultiag is that which is of frequent occurreace arouad 9 and 10

Levels. These fauls bave a strike and dip almost exactly the sume as those of the fracture, and are of ton ijlleu with white carbonates and quartz siailar to the fracture filling. Thus, when the freotare is barron in spots. it is difficult to be certain that devolopaent is alrays on it, and not on the faulte. Exploration bolow 12 Level has been complicated by faulte of soveral types. none with a vary large displacement. The dieplacemt is. bowever, sufficient to adu coasiderably to the diffi ultior atteludent upun developaunt,
"he sharp "cink" in the Intombi already noted as ocourring ic the fuarry arou perciste, with modification. coun to the lowest levels at which the freoture has been exponeng. Eith increare in copth, however, the langth eloug btrike of the curve or "kiak" or the Intombi jacreater fainly repiuly, until of tiu L2th hevel it occurs over a distance of some 700 feet, while on the outorgp its length is mone 13 C feot. The abraitness of the changu in strdike, bowever, acereases as the length of the curve incruases. Lis will be ecen, those changes in otrike Lave an infortant bearing on the dietribution of eola values. Die. a (page 253) le a diagramatic illastration of this sondition. The ligure reprosents - rough plan of the strike linea of the fracture at variour levels.
places soar those sonse, sigas of intence shoar are visible in the shales, and the shear planes are gonorally coated with a film of graphitic material.

In the atraight part of the Intombi, that ip, west of the "kink" area, auxiliary fractures with thoir accompanying shoots of ore are relatively widely separated. In the "isink" aren, however, looel unoqual etraine induced by the chengor in strike of the Intombi Fracture have given rise to great numbers of auxiliary fractures. Is the "kinis" slattens out downwards. such strains are smalier, and conbequently the number of carsiliary fractures is swaller. The ultimate result is that the "kjnked" area has in genoral been highly nisoralisea, and the intencity of mincralisation is directly propor tional to the abraptnesi of the changes of strike. Thus a plan showing gold distributival on the Intombi not only ehowe eccurately tho extent of the "Idinked" area, but also refloote, by the change in average gold content from the outcrop to the bottom levols, the gradual flatteniog of the curve. At the same tine the more aparse diftribation of auxiliary frectures in the lower levels due to the less abrupt nature of the "kink" is reflected in the sporedio gold velues recorded. This is on acconnt of the fact that as the groups of axilliary fractures becone more widely eeperated, the win-

Fig. 3
Whera the frocture has conctant strike and is out asexiatad with branch or ausiliary fractures, it unaally has filling from inch to 8 inches in thick nerik, c.mp rnod of ligint to hudium gray carbonates aith sometimes a little pjrjte, ard ic almost invarichly barren. 1 ig. 4 is a evetch of the appearanci of the veis under such conditioze. "the main fracture if, hiwcyer, ofton arsociated with anziziery fractures which have a strike and dip more or lese prallel to that of the shalet. Thuee are jrobably crncks dragead opon on

IIG. 4 planee of wenkueas in the
shales. Thair ocourrence is usually as shown diagramatically in Fig. 5, though there are often more then one on eeck side of the main fracture.

Pig. 5
In aucin arnas the degree of strain and breociation of the shale is unusually great, with the result that sones of this sort form favourable locetions for the pessege of solutions and for impregnation of the walls, Which is rare in the absence of auxiliary freotures on cocount of the relative impormeablility of the shale when it is only slightly brecolated end strained. Also. in the absence of auxilíary fracturing the eain frectare is tight, and ite effectivanose ac a colution pareage is rapidly eliniacted by the coposition of the oarly carbouatos. Taus the later colutione oarrjing silice and the notallic niperale have thoir pasage linited to the more open genec in the viuioity of auxiliary fractures. $A B$ a result the area betreen \triangle and B on
the Intombi Iracture is jig. 5 contains, beaides carbonates, the lator whito vain quarts, fict masses of pyrite, arsonopyrite, and gold, while the wall rocks have been nore or leat replaced and inprognated by the sono minerals. In such areas the voin ofton shows woll developed crustification, with the carbonates lining the walls, and the quarts and other minerals in the middle. Occasionally frageonts of shale are anclosed in the vein filling, und these are alao nauelly coated by a lajer of earbjaater. In some cases the fracturt is compound, and then the above described conditione are repeated in each part. Hig. 6 shows some of the oonditions found in such frectures.

(a)

Fig. 6
Thus t?. coin is often barron of motallic mineral. until a sone such as $A B$ in hig. 5 is enoounterwi, whereupon gold raluer, often very high, are found. In many
oralised sones associated with them fail to ovorlap. loaviag barren or poor aroas in botreen.

The ausiliary fractures thenselves comotimes oarry pajable gold valvor as much as 20 foet from tho main fracture, and in faulted areas this foature adde to the difficultien oncountored in developaont work.

Many of the axiliary fractures persist for as auch as 2.50 feet cown the dip. but of course, little is kncen of thoir porsistonce on strike. Two which were followed by drives on one of the upper lopols wore shown to oxtend for about 50 feut on strike. It is avident that a great many are much amallor than thoso described above, as their effects in some cesor porsiat for only 50 foet or so along the zone of intersection with the Intombi.

There are mineralimed sones found on the intombj which apparontly are not associated with ausiliary fracturfug. These may bo due to locally intonse freoturing and brecciation of the shales in a weak sone. or it maj be that the auxiliary fracturlag is thorn. but has not been observed.

No setisfactory reason has been forme to norumat for the change of strike of the Intombi in tha "kinked" area. Some parts of this sone in the shales ountais an abnornal number of "formation fractures" and che "kinic" aight thorofore be explajacd as "rofraction" of the fructury in paseinit through a shale wore with dif-
foront physical propartios from those poanossed by the rock on ofther aide. Such an explanation, howevor, does not completely satisiy the conditions imposed. firstly by the incrace in wiath of the "alaked" sone on the lower levels, and secondly by the presence of -imilar "kinke" on the Southorn Crose anc Z.K. Kissure Iracturer in a difforent sone in the shales. (Cf. Plate IV.)

The Sonthern Gross Iracture branches off the Intombi into the footwall, and the line of intorsection of these two is marked by wide stopes, in which the records shor gold values to have been high. The ranson for the occurrence of these high values is the neme ns that socounting for the minoralisation associated with auxiliary fraotures. In fact, in all parts of the nino. the interseotion sones of fractures and frecture syateme are. ar is only to be expected. the uiter of relatively intense misoralisation and hoavg gold doposition.

Hall ${ }^{1}$ states that the Intombi and Southorn Croas Fracturee dip at 60°. but coalesce at the g th Level. This does not give a true impression of the state of affairs, since the line of intersection of thane two fractures is irregular, but in general pitchos steoply to the east, and as jot the Southorn Cross Iracture
$1_{\text {Goological Survej Menoir Mo. 9. page } 259 .}$
hes not boes doifilitoly identificd on the ith Levol. (C1. Plates MIV-XXVI.)

The Seathan Crant. 2ul. Sirepuck and Aradoda Practures

These inctures aro nor or less iatimotely ro lated to one enothor, and have somewhat einilur guneral modes of occurreace. The Sonthern Crose is the mot important; it has pruided a largor toanage of ore than the other two together.

Its aeture, as a branch into the footwall from the Intombi Frectare, is shown on Plates IV and XIIII-XXII.

The Southern Cross Practure has a slightly Nattor dip than the Intombi, ad its strike deviates a little farther from west. Thue it gradally leaves the latombi Iractare tomaras the cast, and ite lime of iator sectios with the latter freoture pitches vory steoply eastwards, but is somewhat irrcculer. As has alroedy been mentioaed. this line of intersectica hat frequently been the site of locally intonee mineralisation, with consequent wice stoper. The Southern Cross Iractare duplicates norn or lees the "kink" in the Intombi, but in the caes of the formar. the change of strike is aot so abrapt. The "kdakod" ores on the Southern Cross Iracture has been atoped, bat is highiy conolicated
and difficult to work, owing to the presence of many othor fractures and branches. "formation fructures" ad faults. The "kink" on this fracture is in a difforent shale sone from that in which the Iatombl "hiokn ocenrs, as is shown on Plate IV.

The lowest point at which the Southorn Cross Fracture has been dofiaitoly identified is 4 Level. Which is the same as Intombi 4 Levol, and while attcapte to follum the Iatombi Fracture to the 2vartiopjo Bar have met with 'ittle auccess, the Southorn Cross Iraoture has been treoed on 1 Lovel (the same elovation as Inaiabi E Lovel) right through to tho gray "schist". On this elevation the irgeture has been atoped to some extent in the soute green "schisi" under the "wartkopjo bar.

The minoralisotion characteristics of the Southern Croes frecture are similar to those of the Intombi.

The frecture known as the 2.8. Jiesure (or Zwartkop jo Fiefare) Iraoture branches off into the footrall from the Southern Croes Yracture in much the same way as does the latter from the Intonbi. The Z.X. Fissure Is in most respects sinilar to the Sonthorn Cross Frecture, escopt that it is not so otrong, and is rondered much more comilicatod by splititicg and branching. Although sone feirly high-grade ore hes been stoped from the former. it is rifiefly remarkble for the
difficultier enconntored in axploration and develupent.
a little ore has bean ninad frim tho Aradoda Fraoture on 9 Levok zmartropje, whore it has boen followed from the Zartkopje Bar to the Intonbi Fracture, in whose footwall it lies, and from which it uplite off in a mamaer sindlar to that in which the Southern Cross Fracture does. In geaeral, however, this freoture has Jiolded little more than encouragemont to do ferthor work on it. A ainilar iracture hes beel opened up fram Intombi 4 Level, and these two are corrolated with thr. Southerm Cross Freoture. Such a corrolation, withont defiaite through conacction of wine openiage, is open to considerable doubt, since in an area of this kind, where there are so many frectaren of einiler type. it is quite poseible for two anconseoted dríes. one as little an 30 feot above the other, to be on altogether difforent frocturws, even though all availablo infonation suggeste that thoy ere followiag the same one. This is, of courne, cue to tho abrupt changes in dip and strike to wisch all those fractures are subject. 2s well as to thoir tendency to eplit into two or more branches.

The Umfoan Frantura

Dn 7 Level Znartkopje.a drive eastwarde extonds along the green-gray "enhist" contect from a foint directly aorth of the Zartkopje Lhaft for some 250 feot. when it cuts diagonally sontheastwards acrose the greon "schist" to the Zwartkopje Bar, whose lower contact it then follows for some considerable distance. In this barm"schist" contact drive there was encountered e disturbance which, on boing investigated, turned out to be the point of intersection of a fracture of the Intoabi type in the ehales south of the bar, and the bar itself. This fracture was given the name "unfaen Frecturo". and was followed ap to a point just south of the zwartkopje Shaft. (iee Plate XII.) Up to this point the tractare had hed a very regular sirike similar to that of the Intombi, and e south-southeest dip of some 75°. Inst eouth of the shnit, howeror, it merged loto a "soraction frecture", and it han not been posaible to follow it further. In general the fracture was very oteady, showing foll irregularitios and also fow payable gold values. Those that wore recorded, however, were followee up and stoped.

In the cross-cut from the shaft to the Zmartkopje Bar on 5 Loval. a iracture siniler to the Jiofana, and in about the right position, was found and followod eastwarde, but did not give any oncouragemont in the
way of gole valued. This fractire has bwon correlated with the Unfann, but the remarice grovionely ande in conacotion with other eimilar cases apply equally woll hore.

The Initorn Grome Frectnms

This sories of fractures occurs in the shales north of the 2martkopjo - Southern Cruss and Hospital Hospital North groups, in the vicinity of the point at which the most westerly of the three dykes forks iato two zore or leas equal branches.
\&. fair amount of exploration has been done from adite noer a crepk bed, and at lasst three main frnotures have boen exposed. The euste are shown on Plate IV. A little ore hes beea stoped from the lientern Cross iractures, but the work has been abacioned on account of the irregulerity of the gold values, and there appeare to be no reason to uxpect auch conditions to change in the erea.

One fairly etrong south-dipping fracture has been exposed on tru levale, and has jielded a little ore. but it appoars to carry payable values only noar intor sections with other fracteres, notable of which is one which is vortical, or dipe stoeply north. Along the line of intercection of there tro fratures, both of whioh atrike in genoral esst-west, patohes of rich
ore have been exposed and mined. These patches have. however, been to asl to warrant further work in the vicinity. One other fracture, striking aorth-south, and dipping at some 50° west, has also been opened up, bot this again carries values only in the vicinity of interrections with other fractures.

In the thaler both north and south of the swartkopje - Southern Cross group. in the western part of the mine property (that is, wort of the coordinate line z - -32000) a great many fractures have boon exposed in trenches and road cuttings. Some of these fractures carry fair gold values in places, but for the most part they are too patchy to warrant further attention. These ireotures often occur in groups, the individual members of which strike and dip in all possible directions. One sol group whish is now being opened up will be briony described under the heading of "Prospecting".

Sheba least

Most of the norkinge know by this nest fall outside the area included by the mp. Plate IV. A number of south-dipping freotures of similar

[^3]geueral charactor to the Znartkopje Iractures have been oponed up on both sides of the Goldon Valley, in the rocke underlying the Sheba Bar. Part of this aroa ie shom in the northmest corner of the mp. Nost of thest frectures occur in the somewhat poorly doveleped greon and frey "schjste" which are foune andor the Shebe Bar in thiy ay m, but none of them has stown more than eparwodic low values, ane thes are not now boing prospected.

The only fracture is the area which has jielded ore of payible ofredo occure in the fine and rather ecundy quartziter, sos 1000 odd foet morth of the bar. This fructure has e strike about normal to that of the Shaba Bar, ad dips enst at soas 80°. A relatively narrig shoot has bean followed and stoped from the outcrop about 200 foet etraight down the dip. and seens to be in some wey conneoted with the ocenrrenes of another fiecture which striken nearly catt-wost, and dipe eteeply northwards. The maln frestare has been opened up over a conaiderable diftance on atrike, and the only paysble valuee fourd have been in the one shoot, which is apparently ascociatod with the fatom section of the two frectures meationod.

The nature of the minoraliention of these quarteitic rock: in the Sheba lest aroa is very aimilar to that associated with the Zwartkopfo fractures in the grean
"schist"; that is, the fracture is usually a mere orask without, or at least lith very little. filling, and the ore is formed by impregnation of the wall rocks. Thess the width of the mineralisec zone is indefinite, and the ore contains a fine dissemination of gold and bulphidea, the latter consisting chiefly of pyrite.

Eroppactios

As has already boon stated, the shale, partioularly in the western part of the ane property, contain a vast number of fractures of different types. most of them not persistent for en distance. Many of these contain gold in payable quantities, wayll.j io small patches, but in most 00828 these patches are so small as to put the frecture concerned ont of conp^{2} erelion cz a working proposition. Those which show (10) 1 values, even though it may be at only one point. 1. - generally opened up io one way or another, in order to . amino the extent of the payable mineralisation, if eng. That from tine to time various prospects are worked is variole places. almost all of then to be abandoned after a short time.

The most promising of these prospects to be examined
in 1946° consiste of two main fractures assooiated with sevorel ainor ones. The main fractures are practically vertical. strike about at right angles to the zwartkopje - Southern Crose Ber croup, and occur some 300 feet north and west of the joint whose coordinates on Plate IV are $x=-30003$ and $y=f 27000$. Eoth of the main iractures have been opened up by driviag. and by winging froz eurface, and both huve yiolded oncorraging values. The more westerly of the two hes been followed by driving just under the surfuce to the Zmarthopje Bar. All the ground so far ${ }^{1}$ oposed up is in the oxidised sone. so thet littlo is kown of the uature of the mineralisation, or of the relations of the fractures to one another.

It in known, howaver, that the diatribution of cold valucse as is asual, is wore or leas dependeat upon iracture intercections. At this opot, howevor. payable values are nore widely dístributad tiona has gonerally been found to be the case on the irraguler iractures proviously oxanined in thie area.

1 October. 194%.

The Old Shehe_ar Golden Gurey Mine

The aree enbracing thif aice does not strictly orme into that covered by this work, atad the widter's knowlelge of these workinge is confined to the little which san be gathored during the course of a for short visits to the property. Sowe briof notes on this ares. homever. will bu of interest for the sake of comparison With that unnea end worked by the New Consort Gold Hizes - Sheba Suction.

Tae Olu Sheba line has yialded by far the greater part of the golu which has been efaco from the Shebe Hills area, and the workiogs. shown on the nine flass, age extunsivo. At frebsint, however, only these opundige which ere above the level of wheba Creek are accersiblo, the rest boinc 1 ooded.

The workinge constituting this mine are partially jusit alove, but mairaly below, the Chebe Bar. Above the bar. which in this ming if a sumewhet iadetominato charty tand, a herigon known us the Edwia Braj has been workeí to a smull extunt. It appears to be a fracture which ransere conumhat, but which in the guarry workings usually maris the henging wall of the bar. Just belor tho bar the wurkings are very oxtonsive, and large cpun chambere hove been ntoped. One partioularly large one. loonlly known the lathodral, is still accoseible

In that part which is above the water levol. The large atopes extand for some 50 foet into poculiar gray allicesue rock in the fontmall, and are worked minly on E fracture mbich rans along or clase to the footwall contect of the cherty bar horizon. The wider parts of the rtoping are ansociated with sories of cross fractures, most of which strike at. least 40° off east-west, and afy frow $20 \$ 060^{\circ}$ to the east. Rere again, there lort, the heavient mineralisation is associated with fractre inlerrectione. In this cars the multiplicity of ryitures hee peaulted in e Fide ond more or less Curinnously impregneted sone.

The eroen and ergy "achists" found is the Goldan Valley area are absent in the Quarry workinge, but it is understood that they occir in the Drient Mine workings, weet of the nuar-y.

The Sheba Bar in the wolden Valley aroa, and in the workinge weet of the Dunrry. is uvideatly a fairly well defined chert horison, but in the Golden Quarry vorkinge it ie poorly devoloped, and aot alwaye dietiuguichable. Lart of the iuarry it can be dofinitely traced on aurface for atort diftance only, when it loser its identity and is no longer rean on the mine property. Still farther east, tomards the lioyal Shoba aren. It appurently is again diatinguishable on cur face, but the writer has not exmined it in this part.

Some frectures lying in various attituces have been worked in the shalj quarteitic rocke north of the Stebe Bar, avoag them those keeni as: the Hargeret. Heabe, 曈t-Bifs, and İuroke ity liractures. Others are now in process of oxamination. Those froctares occur in large nambere throughout thin aree, fron the Shoba Bar to pointe north of sareka City, but most of them appoar to corry gold values only in small patobes.

The Oran: Inrion Types of Tratpren Minarelination

(1) Is the Gocen "Bohintan

froneral

The fractures in the green "schiste" are sometimes easily visible an aistinct cracke which ofton hevn no true filling of any kind, and somotimes are prootically impossible to aotornino exactly, owing to the fact that alteration and replacument of the well rocke have progressed to such a point that the break itself is almost complotely oblitorated. Those which are visible as aistinct breake or oracke have naually lsen the sites of some little movemont during aimoralisation. This movenont is probably il reotly dre to the strensen sot ap by the intrusion and subsequont consolidation of the de Kanp Valley boss, and may not noceasarily be in the same dirootion as the original movemont winch gave rize to the fracture displacemout. Vany of the largest Zwartiopje fractures show thie foaturo. and in some cases the hreak is visiblo iaside - curis quarts filling, which may be oniJ finch, or up to 10 inches wide. Inere are may cases whore the fractures huve filliags in which no such ovicense of movement suring minoralisation is evident. these are ofteu barron of gold. In some cases, whore local crushing and rusiunal uniolioped strais are abnomally sovoro,
-. g.. near fracture iotorisections or splite, the roplacemont and altoration of the wall rooke have beon so extensive as to render the detection of individual iracture pianer virtually imposiblo. Thio is genorally the case in the Birtheej ares, whore the mitiplicity of fracture leade to circumstances favourable to suoh conditions.

Where the "schiste" show the eshistose or laninatod strictures already mentioned, dreg phonomene are gonorally associated with the irsoture planes. There phonomone soldom extend more than a foot above and below tho frasture, and are more commonly visible only 3 to 4 incher from the plane of movomont. In some canes extenaive altoration and replasement of the will rooke have obliterated suck structures.

It is evident frof a general inspection oi the fractures and the oree ansociated with thea that at least the major part of the gold doposition took plece at a fairly late stago in the minoralisation, and that where fractures have a macsive quarts filling some later movement, or af least more intonse crushing, otc.. thon is usually assooiatod with a single or uimple fracture, han very ofton boen nocensary for gold to be doposited in oconomically valuable quantitios.

The fractures whioh do not contain gold in payable proportions unfortumately outnumber the more intenvely
matallised ones by a consicerable ratio. These barron fractures usually contain a filling from inoh to 14 inchor wide, composed mainly of dark gray to almost bluish vitreous quartz, with subordinate carbonates. This filling soldon shows signs of moveront having taken plece during minerelisation, is therofore genorally massice, and has a vitroous lustro. In the filling small crystals of pyrite are almost invariably found, while tiny tournalize neealey and large blotchod masses up to \ddagger inch in dianoter of arsenopyrite are not rare. the mall rocks are gonerally more or less siliaisied, and also contain small seattorad eryetale of pyrite. It is genorally accepted or the rine that scettered pyrite occurring as weli formed cryetals is not arsociated diroctly with payable gold veluce unloss other typen of ninoralisation are also present. As will be seen later, thín is borne out by aicroscopic - $\begin{aligned} \\ \text { Idonce. }\end{aligned}$

Those fracturen which are asocinter with payabie gold valuen also ofton contain alilling of quarts and subordinate carbonates. \%his filling maj be from it inch to lo inchos in thickessa, in unually a gray to bluish colour, is not so massive, and has not so vitroous - luntre as that found in the barron fractures. These latter foatures can generally be asorited to the feot
that movenent has taken rlace on the iracture plane during minoralisation. In fact, such movement hes ofter eiven rise to a distinct abear zone or fracture plane within the filling, and the crusinine associated with it is the resson for the somewhat dull lustre of the filling meterial. The filling in euch cases of ten contains scatiared pyrite crystals, together mith masses of lino grained pyrite, foltad massees of minute arsonopyríto needles, and, exceptionally, particles and nuygets of eold. coarse enjugh to be visible in hand specimen. . The gold may be found free in the quartz, or ancloesd in or associated with the rassea of isined prritn.

The woll rocks are generally t_{1} of of intense impragnation and replacoment. to distunces of up to 15 foet from the fracture. This is indicated by the obviour eilicification, deeper grean colour due to the formation of a groa deal of chlorite, end by the digsemination of maseer of fine brained pyrite, argenco pyrite needies, and occarlcuplly fmall partioles of gold. In some cafer the wall rocks heve beea so intensely altered ae to affure a verj dark grenn, almost black colour. Juch conditions are associatod with abnormally high gold values.

The movement which took place on any fracture duriag mineralisation, and the orushing associated with the origiael iracturing, apparently varied to agront
extont frem place to place. Thas one frecture will ohom in difforont parts the charaotoriatice of both barron and ainoralised types aescribed above. Thus the movement and rondjuatmont to allered conditions wes not unifor throughoat the oxtont of anj one fracture, with the reselt that the "olfective pormability" of the Iracture paseage varied a greut ceel irom poiat to point, expocially during the lator (gole-coponiting) atagos of the ninoralisation phame. when some consicorable quastíties of other material mad ciready bean cepositod is and near the passages. Such conditions may have bean controlled to certain axtent by local changes in the charector of the green "schist" wall rock 01 csur: 0 . the "offective parmobility" of the irnoture passage would not in any case be miform all ovor the iracture planc. and in same parte the orushing and fracturing of the wall rocks wouid be a geod coal more interitit than in others. Thus the conditions controlling the natare of the doposition in the freoture parsago and in the surrounaing rocks are highly complicated, and the conditicas leading to coposition of coononic inportence in difforent places on a fracture or ajeton of fractures show little or so regulerity, and aro not ganarully predictable in cotall. In geaoral, hmovor, favourable areas can sometimes be localised by the natare of the frectaring to be axpected therein.

The filling in the fractures usually is not sharply dolined againat the wall rooks, but tonds to grade off into nore or less silicified aatorial. fiemuante of highly altored wall rock mattor can alway be found in the filliag, more espocially towares the edges of the lattor, end it is ovident that the filling hae boen formed rather by roplacenont of iatensely crashed and atrained material in and mear the fracture plane or sone then by filling of an opon passage. In this reepeot these fractures aiffer from cortain of those in the ahales, whore doposition in open passerges hes been - rolativoly important factor. In the groen "achist" ore bodies, residual strain and locally intones fracturing and crushing heve beon the main factors contralliag doporition of economic importance.

In places, notably in the birthdey aroa, fracture filling is not conspicuous. In such aroas the ninoralisation has taken the form rather of iupregation and roplaceneat of a rock mass which has been intonsely cruchod, breceiated and strained in the viciaity of a comploz branching or intersectíng syston of frectures. In places of thin kiod the ore itaelf contaias scattored pyrite crystals, masses of fine grained pyrito, fairly largo quantitios of arsonopjrite in the form of ninuto necales, and gold, gonerally not coerse onounch to be visible in hand specimen. In such sones of relatively
compiez but individually imperaistest fructures, the amount of arsonopyrite doposited is genorally highor than is the case where the fractures themselves are lese complex. but individually constituto more continuous passages. At the same time, coarse gold is far less common, and stibnite besomes more frequcat in occurrence. Areas of this lind are found not only in the Birthday, bat also occesionally in the kwartkonje, where the fracturiag is locally very complex.

As has alroaar been mentioned, the gray "cohist" is completely inort. A fracture which carries high values in the green "schist" becones quite barron immaiatoly it ontors rolid gray "schist". The fracture continuer into and through the luttor rock, and sometines contains anerow (t to inch) filliag of white quarts and cerbonaton, but is not associated with aigaificant replacemant and impregnation of the walls. Docesionally scaltered, well formad orystals of pyrite are prenent both in the filling and in the wall rocks nearby, but it is apperant that the soft, plastio nature of the frecture walls has resulted in no croshing such as that wich hae been the eite of the impregnetion and reolacoment loading to bodies of ecomomia value in the relativaly hard and brittle green "schist".

The question of mall-rock alteration in the case of the green "schist" ores is nimilar to that in the
case of the New Consort orer. Strictly speaking, the area which coses up for consiouretion under the hoading of "wall rock alteration" is that outside, above and below, the fracture plane or filijing. In capes of this sort, however, these zones in the wail rooke of the fractures constitute the ore bodies themselves, since when there is a filling it is gunurelly of ainor importance, and the main volume of ore is in the wall rocks. Such a position must necessarily arise where the ore boin itself consiats of a zone of ippregnation. the intensity of wisch diminishes grauually away fros the source - in this case the fracture ísolf. The wipur and lower or, in genural. the outer linits of the ore bodios are incuefinite, and are uemarcated by gold values only. Thus the wall rocice of the ore bodies are those wish are outsiac the zone of paybble mineralisetion. Ihe alturation and replacement of these mall rocke erc. therofore, almust exactly the sene in uetare. though not so pronounced, as thone of the rooke conatituting the ore hodies proper. The question of wall rock diterction thue doer not arise in the cube of theme ores. since the effects of these processer will alruady have been dealt with in the discusition of the ores.

The above etetuments apply more strictly in the case of the gruen "sohist" and ber ores than in that of the shale ores, since in the lattor case the main gold
values are sore closely associated with the vein filling. In the case of the shale orse to.., howevor, ainoralisetion of economic value occurs in the fracture walls, and the ore bodies proper, therefore, include part of these walls in the form of impregnatod and roplaced shale. Horo wgain, therefore, tha outer limits of the ore are defined by gold valuef only, and are nuro or lees inciefinite. 'ihus no distinction othor than that of intoneity of the procesees active can be made between ores and wall rocke.

Kutrougnty of the Ores

In the very low grade or barren frectures the filling consists mainly of an intorlosking mosaio of quarts grains of an eversge crosesection of about lus. The quarta is gonorilly little strained, and almont in variably containe minute liquid inclunioas as woll as tiay flaces of sericite. In the niddle of the filling this quarts mase also cont ine interatitial masees of soricite. calcite and dolomito oryotals, fair mount of pule groon chlorite, some graine of a pcouliar colour less oh oritic mineral. sone seolites, and scattored crystals of pyrito, which vary in siso fiom 0.2 to 1.0ne. The mose is generully cut in ver'ous directions by thin voinlets of later quarts, somotimes with sone carbonates.

Towarde the outside borders the filliag takos on a greanish colour, ap opposed to the gray oolour pro-
dominant in the middle. This is due to the presence of atill recoognisable remante of the green "schist".
Those remoante are usually highly ecricitised ard chloritised, and sontain grains of crubled and cominutad quarte from the fracture wall rocks. As the greos "schiet" borders of the iracture filling are approached. the number of these remacate increases.

Sanall particlos of magnotite and ntringe axd mascos of rutile, unually associated with talc, groon chlorite. otc., are found in the wall rock romante, and in thoir vicinity.

Tihen one or both fracture walis are gray "schist". the prodartion of corbonatef in the filling lacreases towards the adger of the fillíug. The moxnte of seoliter and the colourlere ohloritic mineral aleo gonorally increase tomards the gray "schist" walls. Those foatures show that the filling has bean formod largely or ontirely by reolocement of crushed, atrajnea and brecciated eaterial in, or in the viciaity of. the frecture plane or zone. As would to expected from the natare of the gray "bchist", its bouniary agnisst the filling is usually aherp und is marked by the prosency of an abnurnal proportion of soolitic minerale. Theoe minerals are often found in hyurotherial doposite which have beon fomed at low to medium temporatiurew, waere the wall rocke contoin a hich proportion of carbonates.

It is noteworthy that zeolites do not occur to any significant oxtent in the impregnated green "echínt".

The pyrite found in the filling usually occurs as anall but well formad crystals, apparently contomporancous in origin with the quarts in the filling and that introduced into the fracture walln Occesioually the pyrite occurs as hollow sholls or skeletal codies, but this is rare in the vioinity of fractures which are not of economic value. Haseivo fine grained pyrite is almost never found in such places.

Some of the quarte in the fillings in these fractures hae e slightly librous or bleded rediating habit. which is gewerully rather poorly doveloped. Many of the largor pyrite ciystals have a narrow bordor of radiating fibrous or blaced quartz. This bordor is usually devoloped on thuse edges of the pyrite orystals which are almost at right angles to the fracture plame. This type of ocourrence is identical with that already cescribed in connection witi the bare. This pjrite ovidontly belongs to an marly stage in the doposition when conaitions were not jet suitable for gald deposition because, as will be seen later. it is earlior then the gold. and is not directly associeted with it.

Liost of the carbonater in the filling of the poorly ainoralised froctures are not of hydrothermal origio; thet is. they are residual from the orushad
wall rock material.
The green "schist" close to the fracture filling is generally intensely sheared, and as a result has a more or less sohistone texture. It is generally more vivid green than that farther away from a fracture, 0,1 account of the formation of green chlorite under the influence of hydrothermal processes. In hand specimen most of the quarts present can be sum n to have a greenish tinge due to this chlorite, and is also more or leas dull and cherty. $\mathrm{I}^{\mathrm{h}} \mathrm{h} \mathrm{s}$ in owing to the shearing and comminuting affect of the original folding processes and of the fracture movement. Tue quartz is generally more or lase finely comminuted ana strained. except that whish has bean introduced by impregnating solutions, and this is olear and unstraice.; Share are usually large mounts of green chlorite. soricite, carbonates, the pale oblorític mineral, and a little topes present in this sheared and altered green "schist". Pyrite occurs as scattered crystals averaging about lan. in diameter. These are generally pyritohecra, and often have the fibrous quarts borders already described. The strings of rutile and the grains of magnetite in the original "schist" appear to have been unaffected by the hydrothermal processes. Size of the introduced quarts has a radiating bladed or fibrous habit. As a general rule the fracture wall rocks are criss-urossed by thin quarts
vainlcte.
The physical effects of the shear on the fractard. and the effects of the impregnating solutions, gradually dicinish away from the fracture, and uenally no traoe of the results of these prooseses cun be found 5 or 6 foot from the iractur plane.

The gray "schist" is geaurally little affeoted by the pasange of hyorutherncl solutions alsec the fracture. and such efiects are generally livited to the introduo Lion for a foot or so of scattersd pyrite crystals, mascue of reolitic midarals. and the colourleas ohloritio anaral.

Inc iracturist which are aseociated wits gold Valuos of conomic importancu show most of the features dogoribee ae cound in en examination of uninaeralised Iracturus. and their envirnns, but with other asd noro intereating elfeote superingosed. It is svident thet the mor heavy attallisation related to the euriforous fractures is aue to the offecte of a later stage of hyurothermal activity. suoh mineralm as tourmalino and tupas belong to the carliar stage, pour in metallic prouncts. It is apperent from the followiag dencription that the later phese of hyarothermal activity rhinh gave rise tu the uefosition of gold and iss assoointue eotulic ainerala took place at considurably lower tem peratures and prossurec, and the effocts of thin phase
are noticeable only in the areas whore such features as abnoraally intoneo cruabing, breociation and strain allowed the molution passages to mantain sufficient pernoability for the later solutions to reach them. Thus the effects of theso later solutions are far less widespread than are those of the solutions of the earlior atage, when little or no gold was depositud. This accounts for the fact that though thore ari present a great many fractures which have obviously asted as solution passages, only a fow carry gold in pajable quantitios, and those only where the offoctive porweability of the passages was maintained to a very late stage. Hence the close association, throughout the area, of sold values and abnortal phywical conditions.

The genoral characteristics of all suriforous fractures in the green "schiste" are more or less the seac. particularly when oomparatively simple fracturing is considered. Yor example, the genoral cheracteristios of the minaralisation of the Zwartiopje fractures are similer to those shown by the herial and Insinbi fractures in the north green "schist". In the cese of the Birthiay Nection, howevor, as has aireudy besa mentionch. the ores show sum notable aifiorences, ana this fact can probably be lest ascribod to the djfferent conditione of fractaricic there existing. For this reason the
following description will deal first with the oree of the Zwartkopje type, and second with those of the Birthday type.

The iseoture filling in intinsely mineralised aroas is an inforesting and nomernat poculiar rock. It is gunerally a grayish colour, but often has a green tinge. owing to the presonce in it of unreplaced remanta of the greon "schint". The roplacoment by quarts of tho crushed and broccinted rock in the fracture sone has very rarely been complete. The filling ofted hes a dull chorty appearance due to crushing and cominin:ion, consequent mon movements during mineralisation. It is often crise-crossed liy veinlets about lw. in thickness of olens vitreous quarts, ovidontly bolonging to a lato atrge of the inderalisation process. In some cases the filling has a banded appearance due to incomplete roplacment along shear planes in the fractured sonn.

The main mass of the filling generally consists of - mosaic of querts graias of evorage sise about 1 m. The quarts usually containe past numbors of tiny liquid inclusions, togethor with many minute flakes of sericite. and is alnost invariably intonsoly strained, sometínow evon crushed and broken up. The grains are ofton soparated by a mortar, consisting chiofly of quarts and soricite. In many plazes the quarts masa conte?ns recogaisable romants of groon "schist". which are more pleritiful
near the adges of the filling than they are near the centre. These remnante may consiat of macees of the crushed und comminuted quarts with chlorito, magnetite. rutile asd talc, or of lenses and irregular masses of bright green chlorite with talc, rutile and magnetite. These romnents are genorally cut across in several directione by thin vainlets of clear quarts. Thoj are ovidently relativaly unaffected and resistant parts of the country rook which have beon neglected in the general replecement of ibe crushed mattor in the fracture sone by the quarte vein material.

Chlorite occurs in the filling as irregular masses, veinlets and stringers, often in considerable abundance around pyrite grains ad masees.
valoite and dolomite are somotimes fairly plontiful. both as isolated grains, orystals and masses, and in the form of voinlets. The lattor somisimes have sarrom selvages of tolc. The aarbonates are more abundant in the vein mattor near the grey "schist" when this rock forme one of the walls. It is probeble. therefore. that nome of the carbonater are of origin aimilar to that of the green "schist" remnants.

Topas sonetimes occurs in the form of small irrogular grains, often ensociated with vory pale groen-brom pleockroic tourmaline needles. These two minorals

- peareatly bolong to the early ateges of ainoralisation. as they are often found around country rook romante and around crystals of pyrite of the wideapread early barren variety.

As has alroady boen montioncel in connoction with the barren frectures, small masses of zaolites are occasionally found, usually near the gray "schint".

The peculiar, alnost colourless, chloritic minoral found throughout the Sheba area is also present in the fracture filling, ospecially near to the gray "schist". Some of this nineral has ovidontly beon forned by altor . O or of the gray "schist". but some is apparontly not formed in this way, as masses of it are presoat in and near the fractures at conaiderable distances from the main gray "schist" bodios, particularly whore the elneralisation has been locally vory intonce. This ainoral is apparontly earlior in origin than most of the pyrito, and is unaffected by the lattor ninoral. which is oftun mouldni on it.

The occurrence of the pyrite and its relation to the othor matallic minerale in these ores is extraor dinarily iatoresting. In the fracture fillings, and in the inpregnated rocke on eithor sico, this ninoral occure in two ways. The first is that whioh is found in all the rocke. Whother thoy are the hoste of coonomically important minoralisation or not: almost always
as small, well formed orjotele, goa orally pyritohodra or combinations of the pJritohedroa and orbs. These orystale vary in average dimension from 0.1 m . to 1.5 mm. . and have already boon noted as occurring in all the rocks in the ares. These often have narrow borders of fibrous or bladed quarts along one or two boundaries, and are not genetically associate a in th gold or inter grown with other sulphides. At least. it is well know that the occurrence of sush pyrite is not ensoainted with gold values, and the writer has not seen it direotly associated with gold in any of the polished soclions of the rock e and ores. Hall ${ }^{l}$ has also noted this feature.

The second type generally does not exhibit oryutal outlines, and its occurrence is almost always associated With the presence of wore or lats gold. This type cere sometimes as skeletal grains or hollow sholls around quarts grains an nuclei. Generally such graiae have an irregular outline, and usually project a arrow varaioular velalets into the quarts cores. A vary com non mode of vecurresce is that of a shell around a nucleus consistfang of a well formed oryetal of the first type of pyrite. In such ceres the shall assumes an outline parallel to that of the core, so that it presents an apparent crystal
$\mathrm{l}_{\text {Geologicei Survey Memoir No. 9, p. } 257 .}$
shape. Somotimes there is a arrow 2000 of querts berweon the first tJpe core, ard the second type shell. such cases sometimer show almosi perfoct exaples of rhythric doposition. Vory commoly a sories of disconsected gangue inclusions takes the plece of the intermediate quarte sone, so that the rocult is a composite pyrite grain with gonally erranged. poidiliticelly enclosed gangue partich.es. These sonal inolusions and intermediate zoner of gareuo are alsost always penetrated from the outeide by minute vormiculer valnlets of the second fyrite. This sucond type of pysite eftea also forms solid eraice w'sthout a core or aucluna. and such graine never present crystol outlines. The outside boundaries of erains of this pyrito aro often surroundad by a very narron selved.ge of chlorite. practically never With the fibrous or bladsd cquarte ofton found ansooiatod with crystals of the ifret type.

Cosipouid or soisel grains of pyrite often occur as masses up to 2 incies by 1 inch. and these comstitute the ifne grained massive pyrite often seen da zucoirons of the ore. In these nasses are also found siceletel and soild erains of the second type of pJrite.

Cold is very coanorly absociated with pyrito of tho second generation, and usually occurs as irroguler hlobe Iram 3 to 150 . is average dimension, onclosed in or ou
the iaeide bordere of stolls of this pyrito, as soad inolusicne in compound graine of the two tjpes, or irnocularly distributed tiroughout solid grains of the seoved generation type. Tiave are a very large number of gold particles in the 8 ize range fron 3 to 8 m in the pyrito masses. In sore caese gold is mouldad on cryatals of pyriti of the firat goneration. It is oniy in oxocodingij rich apecimeas that agy sigaifisant quantity of go. oisure free of pyrite, anit thoa it ganore'ly taken the surm of irraeglar blobe fram 2 to 200 m . and axcoptionally up to 15 ma. in sizo. There are, hovevor. in gich oases. a large number falling in the gailur sige rerges. In connection with the giuroceopio relation betrear gole and secand generation pyrite, it is intorestive to notn [iall' r^{1} statewont, "Ysaible gole is occasionally eeon, but the gold lies mainly in the pyrites, because when this is roneved fron the sasij and slímes no gold is left."

In rome ceses the free gold jccurs as narrow woagoand latb-skaped graine intorsti:ial to partioles of the pecuisar colourless or aearly colourless ohloritic aldorel. When the latter ocours as aggrerates. The gold grains in such coses have average a, eruy!one of sbout $10 \times 50 \mathrm{~m}$. Gold bas nover beon seon faclutad in or
iGoological inerey konoir Mo. 9. p. 28\%.
iatmately associated directly with pyrite of the first generation.

Chalcopyrito is often elso assuciated with pJrite of the secoad cenoration. In fact, it occure in amounts little in excnes of that of gold, ard in an exactly einilar masior. In very risti specinatis, chaloopyrit.e oceurs iree, and intinately intergrame with gold away from pjrite grains. Gold and chalcopjrite are ofton escociated with one anothor io zonai inclusions in our pound pyrite grains, and in inclusions in wasses of second generation pyrite.

Arsenogyrite is zometimes seen in the iracture orns. gonerally as tínj 2 rregular graine. but also as woll formed needer, of avorage size wbut $0 . i \times 0.5 \mathrm{ma}$. These usuellj occur isolateri, but soretimes the second goneration pyrite is moulded on them. while ther in turn are noulded on cryatels of pyrite of the first goneretion. Cold is but raroly associated with the wrsenopyrite grains, and only very fow cases heve beon foen of the former enclosed in the lattor. Masses of arconopyrite neades aro not usually associated with simple fracturas, but are gonarally fou id in areas of higinly complicated irecturing, e.g.. in places in the zmartkofje aree whore fracturer split and branch in an intricate manner, and in the Birthday Section.

```
Author Hearn M
Name of thesis A study of the working properties of the Chief Gold Producer of the Baberton district Eastern Transvaal
1943
```


PUBLISHER:

University of the Witwatersrand, Johannesburg © 2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

[^0]: Coologioal Survey Momoir No. 9, p. 114. CThis ferm is profurable to "0ld Granito". shp. oif., p. 111.

[^1]: ${ }^{1}$ Geological Survey Monoir To. 9. p. 114. p. 136.

[^2]: lugologioal Surpoy komoir No. 9, 1. 247. ${ }^{2}$ Ibid.
 $3_{0 p \text {. cit. }}$

[^3]: 10ctober, 1942.

