ANALYSIS OF THE GENETIC DIVERSITY OF *NEISSERIA MENINGITIDIS* IN SOUTH AFRICA

GARRY BRIAN COULSON

2005

DECLARATION

The experimental work described in this dissertation was conducted under the supervision of Dr. Anthony Smith and Dr. Anne von Gottberg (Respiratory and Meningeal Pathogens Research Unit) National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.

I declare that this dissertation is my own unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University.

.....

..... day of 200...

ABSTRACT

Meningococcal disease is an important cause of morbidity and mortality worldwide, particularly in children and young adults. Epidemics caused by Neisseria meningitidis continue to plague many countries on a global scale, none more so than countries of the African 'meningitis belt', where attack rates can reach up to 1000/100,000 population. It has been well recognized that most epidemic and endemic cases of meningococcal disease are caused by a limited number of genetically defined clonal groups. The objective of this molecular epidemiological study was to genotypically characterize strains of N. meningitidis collected in South Africa from July 1999 to July 2002. Characterization of meningococcal strains belonging to serogroup A, B, C, W135 and Y, by PFGE and MLST allowed us to determine the genetic population structure of *N. meningitidis* in South Africa, and thus identify the predominant clonal groups responsible for the majority of meningococcal disease in the country over this period. The results from the genotypic characterization revealed that the greatest majority of meningococcal disease in South Africa was caused by a strains belonging to only a few "hyperinvasive lineages", most notably strains of the ST-44 complex (lineage III), ST-32 complex (ET-5 complex), ST-11 complex (ET-37 complex), and the ST-1 complex (subgroup I/II) which have all been responsible for major epidemics worldwide. These findings have direct implications on public health decision, particularly with regards to the development of effective intervention and control strategies, and emphasize the need for continuous long-term monitoring of the circulation of these strains in the population.

This dissertation is dedicated to Mom and Dad, who knew just the right combination of kind words of encouragement and a kick in the rear to get me through to the end.

ACKNOWLEDGMENTS

- To Dr. Anthony Smith and Dr. Anne von Gottberg at RMPRU for your guidance and assistance throughout my project, and for giving me the space to work and grow independently as a scientist. Many thanks.
- To Prof. Keith Klugman my sincerest gratitude for your incredible generosity, support and inspiration, and for giving me the wonderful once-in-a-lifetime opportunity to go the Centers for Disease Control (CDC, Atlanta, USA) and work with some of the best scientists around. It's an experience I could never forget.
- To Dr. Mignon du Plessis for always so willingly being available to offer quality advice on all matters, both in and out of the laboratory. And for stocking a legendary sweets cupboard too.
- To Mrs. Arvinda Sooka the sweetest soul on Earth, who almost single-handedly has been responsible for keeping my spirits high during my project with her effervescent personality and constant encouragement. You've been a Godsend.
- To my Heavenly Father for heaping so many blessings upon me during the course of my studies, and smiling so wonderfully upon all my dreams.
- To the staff at RMPRU: Linda De Gouveia, Thomas Rafundisani, Olga Hattingh and Ruth Mpembe - for so gratefully always being available to assist me as I required. Your help was much appreciated.
- To the Respiratory and Meningeal Pathogens Research Unit, National Health Laboratory Service and University of the Witwatersrand for your financial support.

.....my sincere gratitude for making this possible.

PUBLICATION

Coulson, GB, von Gottberg A, Smith A, Klugman K and the National Surveillance Network. Investigation of a Community-Based Outbreak of Serogroup C *Neisseria meningitidis* in South Africa (2003). <u>Communicable Disease Surveillance Bulletin</u>, Nov, p.13-16.

PRESENTATION

Coulson GB, Whitney A, Klugman K and Popovic T. Genotypic Characterization of *Neisseria meningitidis* in the U.S. and South Africa. <u>14th International Neisseria Pathogenic Conference</u>, <u>September 5-10, 2004. Milwaukee</u>, Wisconsin USA.

LIST OF ABBREVIATIONS

>	Greater than
<	Less than
%	Percentage
°C	Degrees Celsius
ml	Milliliter
min	Minute
μl	Microliter
μΜ	Micromolar
secs	Seconds
et al.	And others
i.e.	That is
bp	Base pair
hrs	Hours
ATP	Adenosine triphosphate
CO ₂	Carbon dioxide
CSF	Cerebrospinal fluid
СТАВ	Cetyltrimethylammonium bromide
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleoside triphosphate
EDTA	Ethylenediaminetetraacetic acid
ET	Electropherotypes
LPS	Lipopolysaccharide
MgCl ₂	Magnesium chloride
MLEE	Multi-locus enzyme electrophoresis
MLST	Multi-locus sequence typing
mM	Millimolar
NHLS	National Health Laboratory Service
NICD	National Institute for Communicable Diseases
OMP	Outer membrane protein

PCR	Polymerase chain reaction
PFGE	Pulsed-field gel electrophoresis
RAPD	Random amplified polymorphic DNA
RFLP	Restriction fragment length polymorphism
rpm	Revolutions per minute
SDS	Sodium dodecyl sulphate
SS-PCR	Serogroup-specific PCR
ST	Sequence type
TAE	Tris-acetate-EDTA
TBE	Tris-borate-EDTA
TE	Tris-EDTA
USA	United States of America
WHO	World Health Organization
	and the second se

LIST OF FIGURES

Figure 1.	Diagrammatic Representation of the Classic Gram-negative Cell	
	Envelope	2
Figure 2.	Diagrammatic Representation of the Meningitis Belt of sub-Saharan	
	Africa	23
Figure 3.	Diagrammatic Representation of South Africa Showing the Provinces	
	and their Respective Population Densities	33
Figure 4.	PFGE Dendrogram Showing the Genetic Relationship Among	
	Serogroup A Meningococci in South Africa July 1999 – July 2002	49
Figure 5.	PFGE Dendrogram of Serogroup A Meningococci Showing MLST	
	Associations	50
Figure 6.	PFGE Dendrogram Showing the Genetic Relationship Among	
	Serogroup B Meningococci in South Africa July 1999 – July 2002	55
Figure 7.	PFGE Dendrogram of Serogroup B Meningococci Showing MLST	
	Associations	56
Figure 8	PEGE Dendrogram Showing the Genetic Relationship Among	
Tigure 0.	Serogroup C Meningococci in South Africa July 1999 – July 2002	60
Figure 9.	PFGE Dendrogram of Serogroup C Meningococci Showing MLST	
	Associations	61

Figure 10.	PFGE Agarose Gel showing the Genetic Relationship between	
	Serogroup B and Serogroup C Meningococci of the ST-32/ET-5	
	Complex	62
Figure 11.	PFGE Dendrogram Showing the Genetic Relationship Among	
	Serogroup W135 Meningococci in South Africa July 1999 – July 2002.	65
Figure 12.	PFGE Dendrogram of Serogroup W135 Meningococci Showing	
	MLST Associations	66
Figure 13.	PFGE Dendrogram Showing the Genetic Relationship Among	
	Serogroup Y Meningococci in South Africa July 1999 – July 2002	70
Figure 14.	PFGE Dendrogram of Serogroup Y Meningococci Showing MLST	
	Associations	71

Ø

e Annual

LIST OF TABLES

Table 1.	Provincial Distribution of Meningococcal Isolates per Serogroup	
	Per Year of Study	43
Table 2.	Primer Sequences for Serogroup-Specific PCR	44
Table 3.	MLST PCR Primer Sequences	45
Table 4.	MLST Sequencing Primer Sequences	46
Table 5.	Representative Isolates for MLST – Slide Agglutination and	
	SS-PCR Results	72
Table 6.	MLST Allelic Profiles and Sequence Types (STs)	73
Table 7.	Temporal Variation of the Major Clonal Complexes for Each	
	Serogroup.	76
Table 8.	Geographic Distribution of the Major Clonal Complexes For	
	Each Serogroup	77

CONTENTS

Declar	ation		i
Abstract		ii	
Dedicationiii		iii	
Ackno	wledge	ments	iv
Public	ation an	d Presentation	v
List of	Abbrev	viations	vi
List of	Figure	δ	viii
List of	Tables		X
CHAF	TER 1	: INTRODUCTION AND LITERATURE REVIEW	1
1.1	Genera	al Background of Neisseria meningitidis	1
	1.1.1	Introduction	1
	1.1.2	History	1
	1.1.3	Organism	2
	1.1.4	Classification	4
1.2	Clinica	al Features and Pathogenesis of Meningococcal Infection	4
	1.2.1	Acquisition, Carriage and Transmission	4
A	1.2.2	Invasive Disease/Pathology	6
	1.2.3	Risk factors for Disease	8
1.3	Diagno	osis and Laboratory Identification	9
	1.3.1	Culture Methods	9
	1.3.2	Non-Culture Methods	10
		1.3.2.1 Microscopy and Cell Count	10
		1.3.2.2 Polysaccharide Antigen Testing	10
		1.3.2.3 Polymerase Chain Reaction	11

1.4	Treatr	nent	12
1.5	Preve	ntion	12
	1.5.1	Chemophrophylaxis	12
	1.5.2	Immunoprophylaxis	13
		1.5.2.1 Introduction	13
		1.5.2.2 Polysaccharide Vaccines	14
		1.5.2.3 Conjugate Vaccines	15
1.6	Metho	ods for Typing N. meningitidis	. 16
	1.6.1	Introduction	16
	1.6.2	Phenotypic Methods	17
		1.6.2.1 Serogrouping and Serotyping	17
		1.6.2.1 Multi-Locus Enzyme Electrophoresis (MLEE)	18
	1.6.3	Genotypic (Molecular) Methods	18
		1.6.3.1 Ribotyping	19
		1.6.3.2 PCR-Restriction Fragment Length Polymorphism (PCR-RFLP)	20
		1.6.3.3 Random Amplified Polymorphic DNA (RAPD)	20
		1.6.3.4 Pulsed-field Gel Electrophoresis (PFGE)	21
		1.6.3.5 Multi-Locus Sequence Typing (MLST)	22
1.7	Epide	miology of Neisseria meningitids	22
A	1.7.1	General Introduction	22
÷	1.7.2	Serogroup A Meningococcal Disease	26
	1.7.3	Serogroup B Meningococcal Disease	27
	1.7.4	Serogroup C Meningococcal Disease	28
	1.7.5	Serogroup W135 Meningococcal Disease	29
	1.7.6	Serogroup Y Meningococcal Disease	31
	1.7.7	Meningococcal Epidemiology in South Africa	32
1.8	Study	Objectives	35

