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The antiquity of the use of hunting poisons has received much attention in recent years. In this paper 
we present the results of a pilot study designed to detect the presence of organic compounds, typically 
of less than 1200 Da, from poisonous plants that may have been used as hunting poisons in the past. 
We used ultra-performance liquid chromatography connected to a Synapt G2 high-resolution MS-QTOF 
mass spectrometer (UPLC-QTOF-MS) to provisionally identify plant-based toxins present in (1) extracts 
of fresh plant material, (2) a blind control recipe consisting of three plant ingredients and (3) a Hei||om 
arrow poison of unknown ingredients. Although not all expected toxic compounds were identified, those 
that were identified compared favourably with those reported in the literature and confirmed through 
databases, specifically the Dictionary of Natural Products and ChemSpider. MS/MS fragmentation 
patterns and accurate mass were used for tentative identification of compounds because archaeological 
residues usually contain insufficient material for unambiguous identification using nuclear magnetic 
resonance. We highlight the potential of this method for accurately identifying plant-based toxins present 
on archaeological artefacts and unique (albeit non-toxic) chemical markers that may allow one to infer 
the presence of toxic plant ingredients in arrow poisons. Any chemical study of archaeological material 
should consider the unique environmental degradative factors and be sensitive to the oxidative by-
products of toxic compounds. 

Significance:
• Methodology is presented for the identification of ancient plant-based arrow poisons.

Introduction
Bow hunting with poisoned arrows is well documented among southern African San hunter-gatherers.1-3 Less well 
known is the great variety of toxic plants that were – or could have been – used for this purpose.4-6 Most chemistry 
studies in which the ingredients of San poison arrows have been investigated focused on the more commonly 
known Chrysomelidae family of leaf beetle, which includes the Diamphidia and Polyclada genera.7-10 Few studies 
thus far have been devoted specifically to plant poison ingredients,11,12 and most of these studies are now several 
decades old. Now with the availability of new, more advanced, sensitive and reliable chemical detection techniques, 
we may be able to identify plant-based toxins present on archaeological artefacts. 

Among the Kalahari San, large game is hunted with a bow and poisoned arrows2,13 (Figure 1). This practice is 
widely considered to extend back at least 12 000 years,14 but might be considerably older15. The identification of 
bow and arrow hunting systems can highlight aspects of technological complexity and past cognition.16,17 More 
subtle innovations within hunting systems, such as the introduction of poisons, also have potential to inform on 
past cognitive frameworks and the time-depth of indigenous knowledge systems.4 However, tracing such techno-
behaviours through the Stone Age is not an easy task. The interpretation of bone artefacts as arrow components 
from 37 000 year-old levels at White Paintings Shelter18, 43 000 year-old levels at Border Cave15 and >61 000 
years ago at Sibudu19 pushes back in time the probable invention of bow and arrow hunting. This inference is 
corroborated by the functional interpretations of small quartz artefacts from Sibudu and Umhlatuzana dating to 
between 65 000 and 60 000 years ago.20-23 The great antiquity of the use of certain toxic plants to poison arrows 
is purported from 24 000-year-old levels at Border Cave, KwaZulu-Natal, South Africa.15 At this site, the remains of 
ricinoleic acid – an oxidative by-product of ricin – were discovered on a wooden stick, morphologically similar to 
20th-century San arrow poison applicators.15 Even earlier than this discovery, at approximately 77 000 years ago, 
people at Sibudu Cave (KwaZulu-Natal) constructed their bedding from plants with natural insecticidal and larvicidal 
properties24, implying a practical understanding of the biochemical properties of certain plants. 

In this paper we build on the growing interest in ancient poison chemical characterisation25 and present the results 
of a pilot study designed to detect the presence of small organic compounds, typically of less than 1200 Da (mass 
in Dalton units), from poisonous plants. An ultra-performance liquid chromatography system coupled to a Synapt 
G2 quadrupole time-of-flight mass spectrometer (UPLC-QTOF-MS) was used provisionally to identify known toxic 
compounds through comparison of their accurate masses to those recorded in databases (such as ChemSpider 
and Dictionary of Natural Products) for 11 of the most commonly occurring toxic plants reported in the southern 
African literature. Poison from a 100-year-old bone arrow from northern Namibia as well as a blind control poison 
recipe were subsequently analysed as a proof of concept using the same technique. We highlight the potential of 
this method for accurately identifying plant-based toxins present on archaeological artefacts. 

Background
A diverse group of organic compounds known as secondary metabolites is produced by plants. Secondary 
metabolites defend plants against a variety of pathogens and herbivores26 and are of great importance for medicinal 
drugs, industrial materials and poisons27. 
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Alkaloids, terpenoids and cardiotonic glycosides, the main secondary 
metabolite compounds responsible for the toxicity of arrow poisons26,28, 
are regularly used in small doses for their medicinal qualities in modern 
pharmaceuticals29,30 and have a long history of ethnopharmacological 
use12. Although currently much is known about the active toxins in some 
southern African flora species12,26, many species remain insufficiently 
studied4. In some cases, studies have focused only on certain parts 
of plants such as the leaves or fruit rather than the sap and roots. 
Chemical compounds are distributed differently throughout the plant29 – 
a phenomenon of which the San were aware, as they would only use the 
toxic parts such as the sap of succulent plants4,12. 

San hunters sometimes included additives with their arrow poison. A 
variety of reasons for this practice has been offered, for example, to 
increase the viscosity of the mixture to aid adhesion and to enhance 
the efficacy of the poison.30,31 The additives result in complex recipes 
containing multiple organic components derived from different sources,4 
which makes trying to identify specific toxins in a sample of ancient 
poison challenging. Not only will one expect to see the by-products of 
the oxidative breakdown of the toxic compounds, but identification will 
be complicated by the combination of numerous compounds.25 

Archaeological samples can be divided into inorganic materials and 
organic materials. Inorganic materials include stone tools, pottery and 
metal artefacts. Organic materials can include plant and animal remains 
as well as their deteriorative and biotransformative products. Inorganic 
materials are generally better preserved than organic materials. 
Preservation of organic materials such as plant toxins is significantly 
affected by environmental factors, such as soil pH, temperature, oxygen, 
moisture exposure and substrate, especially if the sample has been 
exposed to these factors over extended periods of time.32 The rate of 
decomposition of organic compounds is variable depending on the class 
and structural type. For example, sugars, starches and simple proteins 

may decompose at a faster rate than lignins and phenolic compounds. 
As such, phytochemical residues present on archaeological artefacts 
may not perfectly resemble a freshly extracted phytochemical profile of 
the parent compound. Any chemical study of archaeological material 
should therefore consider the oxidative by-products of toxic compounds, 
which further complicate the analyses as a result of the complex matrix. 

Materials and methods
Sample preparation

Eleven South African plants 

Eleven plants were selected for this study based on previously reported 
studies that show them to contain toxic compounds of known chemical 
structures, and therefore with known molecular formulae (Table 1). Fresh 
plants were collected mainly from the Walter Sisulu National Botanical 
Gardens and the parts traditionally used for poison preparation by the 
San4 were air dried and used for the analysis. 

Blind test on the control sample

The second part of our study involved a blind test. A poison mixture was 
prepared in the laboratory, mimicking a known San poison recipe. This 
recipe, consisting of three poisonous plant ingredients, was prepared 
in accordance with historical San practices.4,11 The ingredients of 
this recipe were known to only one author (JB), and the sample was 
prepared as follows:

1. The stem and leaves of Acokanthera oppositifolia were boiled in 
water for 8 h until a yellow viscid fluid was obtained. 

2. Once cooled, the latex of Euphorbia tirucalli was added. 

Photo: ©Lyn Wadley

Figure 1: Ju/’hoan hunter in a Nyae Nyae village mixing poison in a hollow bone. The poison is applied to the new arrowheads lying in front of him. 
Swartzia madagascariensis pods are next to the glue stick/poison applicator. 
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3. To this mixture was added the juice of Adenium multiflorum, which 
was obtained by heating a branch of A. multiflorum over a fire until 
the juices oozed out of the cut end. 

4. The ingredients were collected in a glass Petri dish and mixed. 

5. The resulting beige liquid was applied to replica stone and bone 
artefacts and left in the sun to dry for 24 h. 

6. Once dry, the consistency was that of a hard resin. 

These ‘tools’ were chemically analysed approximately 2 weeks after 
preparation. 

Analysis of poison on a Hei||om arrow 
The third part of our study was the examination of a poison sample of 
unknown chemistry taken from a Hei||om arrow, purportedly collected 
by Dr Louis Fourie33,34 in Namibia35,36. This arrow, made available by 
Museum Africa to JB, is unaccessioned, but was found with the Fourie 
collection and is identical to the rest of the Hei||om bone-tipped arrows. 
It is considered to be of equivalent age (± 90 years), and most likely part 
of the same collection. 

Extraction, isolation and analysis

Eleven South African plants
Each plant sample was extracted, isolated and analysed in the same 
way. Each plant was air dried and ground to a fine powder. An amount 
of 1 g of the dried powdered plant material was extracted by stirring for 
1 h with 10 mL of dichloromethane:methanol (DCM:MeOH, 1:1). The 
extraction solvents were of analytical grade and purchased from Fluka. 
The extraction was repeated twice and filtered through Whatman filter 
paper no. 1 before pooling of the solvent extracts. The extracts were 
dried under reduced pressure below 40 °C using a rotary evaporator. 
Samples were stored dry in a temperature-controlled room at 23 °C prior 
to analysis.

Blind control sample 
The replicated stone and bone artefacts held only small quantities of 
poison. Therefore 1 mL of DCM:MeOH (1:1) was added directly to the 
containers holding the poison. Extraction was done by ultrasonication 
of the mixture for 30 min. The extract was filtered and solvents were 
removed in vacuo. Samples were stored in a temperature-controlled 
room (23 °C) prior to analysis. 

Table 1: Fresh plant samples listing the reported toxins and their accurate mass

Sample # Plant name Plant parts used Type of toxin Toxic compound

MW-1-4A
Acokanthera oppositifolia 
(Bushman’s poison)

Leaves and stem Cardiac glycoside
Ouabain (C29H44O12) 
Acovenoside A (C30H46O9)

MW-1-2B
Adenium multiflorum 
(Impala lily) 

Stem Cardiac glycoside
Obebioside B (C38H58O15) 
Hongheloside B (C36H56O14) 
Tetraphyllin B (C12H17NO7)

MW-1-3C Aloe gariepensis Sap
γ-Coniceine (C8H15N)  
Conhydrine (C8H17NO)

MW-1-3F Aloe globuligemma Sap Piperidine
Coniine (C8H17N) 
Conhydrine (C8H17NO)

MW-1-3A
Ammocharis coranica 
(Karoo lily)

Bulb Isoquinoline alkaloid

Lycorine (C16H17NO4)  
Caranine (C16H17NO3)  
Crinamine (C17H19NO4) 
Acetylcaranine (C18H19NO4)

MW-1-2A
Boophane disticha 
(Poison bulb)

Bulb Isoquinoline alkaloid

Haemanthamine/Crinamine (C17H19NO4)  
Lycorine (C16H17NO4) 
Buphanine (C18H21NO4) 
Crinamidine (C17H19NO5) 
Distichamine (C18H19NO5)

MW-1-55A 
MW-1-77

Euphorbia tirucalli 
(Pencil plant)

Latex 
Leaves

Diterpenoid
Phorbol (C20H28O6) 
Diterpene (C20H32)

MW-1-3E 
MW-1-55B

Euphorbia ingens 
(Candelabra tree)

Leaves 
Latex

Diterpenoid Ingenol (C20H28O5)

MW-1-3D
Euphorbia virosa 
(Poison tree)

Latex Diterpenoid Diterpene (C20H32)

MW-1-3B
Strophanthus speciosus 
(Poison rope)

Seeds Cardiac glycoside
Ouabain (C29H44O12) 
Christyoside (C30H44O9)

MW-1-4B
Strychnos madagascariensis 
(Black monkey orange)

Unripe seeds Indole alkaloid C-toxiferine I (C40H46N4O2)

Note: Species listed in bold font are considered to be lethally toxic in relatively small quantities. A complete reference list for the toxic compounds identified in these plants can be 
found elsewhere.4,12
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Poison on a Hei||om arrow
Approximately 2 mg of material was scraped off the 90-year-old 
Hei||om arrow and added to 1 mL DCM:MeOH (1:1). The sample was 
then treated as for the control sample. 

Ultra-performance liquid chromatography QTOF mass 
spectrometry
Compound separation and detection were performed using a Waters 
UPLC hyphenated with a Waters Synapt G2 QTOF instrument. The 
DCM:MeOH dried extracts were reconstituted, first in 100% acetonitrile 
followed by water (0.1% formic acid) such that the final concentration 
was ~1 mg/mL of total crude extract. MS-grade acetonitrile was 
purchased from Romil. Water with 0.1% formic acid was purchased from 
Sigma Aldrich. The extracts were pooled and centrifuged at 10 000 g 
for 10 min to remove particulates. Prior to analyses, the instrument 
was calibrated over a mass range of 50–1200 Da using a sodium 
formate solution, typically to an absolute mass accuracy of <0.5 mDa 
using the Intellistart functionality of the software. The instrument was 
centrally operated and controlled with MassLynx v4.1 software for data 
acquisition. A form of data independent analysis termed MSE was used 
to acquire both low energy (precursor ions) and high energy (product 
ions) utilising a collision energy ramp from 10 V to 40 V over a scan time 
of 0.3 s. An internal control (the lockspray), namely leucine encephalin, 
was directly infused into the source through a secondary orthogonal 
electrospray ionisation probe allowing intermittent sampling (every 
10 s). The lockspray was used to compensate for instrument drift, 
thus ensuring good mass accuracy throughout the duration of the runs. 
Exactly 5 μL of the reconstituted extracts was injected into the UPLC-MS 
system. All the samples were run in both positive and negative ionisation 
modes (Table 2).

Table 2: Parameters of the ultra-performance liquid chromatography 
quadrupole time-of-flight mass spectrometer (UPLC-QTOF-MS) 
system

Liquid chromatography 
system 

Acquity®

Detector Waters Synapt G2QTOF 

Calibration mass range 
50–1200 m/z using sodium formate clusters 
and Intellistart functionality 

Capillary 2.8 kV 

Ionisation mode Electrospray ionisation 

Source temperature 100 °C 

Sampling cone 15 V 

Extraction cone 4 V 

Desolvation temperature 200 °C 

Cone gas flow 100 L/h 

Desolvation gas flow 500 L/h 

Column Waters C18 BEH, 1.7 μm particle size 

Elution scheme 
30-min gradient elution scheme from 98% H2O 
(0.1% formic acid) to 100% acetonitrile  
(0.1% formic acid) 

Resolution ~20 000 FWHM 

Absolute mass error <0.5 mDa

BEH, Ethylene Bridged Hybrid 

Separation was completed using a reverse phase step gradient elution 
scheme from 97% H2O (0.1% formic acid) to 100% acetonitrile (0.1% 
formic acid). The column temperature was kept constant at 40 °C and 
the flow rate was set at 0.4 mL/min for the entire run, giving a total run 
time of 20 min. A Waters UPLC® C18 Ethylene Bridged Hybrid 1.7 μm 
particle size (2.1 mm ID x 100 mm length) column was used. Extracted 
ion chromatograms of the monoisotopic masses for the reported 
toxic compounds (see Table 1) were obtained from the base peak ion 
chromatograms to determine the presence of the target compounds 
in the particular plant sample. The chromatograms indicated the 
pseudo-molecular ion peak because electrospray ionisation is typically 
achieved through the addition or removal of one or more protons, i.e. 
[M+H]+. The mass of common adducts considered included sodium 
and potassium in positive mode as well as loss of water, methoxy and 
acetyl groups. Mass accuracy of precursor ions was used to generate 
elemental formulae which could then be searched and compared against 
those in the literature and databases. The acquired isotopic distribution 
patterns were compared to the proposed elemental formula as further 
confirmation. In addition, product ion spectra (MS/MS fragments) were 
obtained for the target compounds from the various plant extracts and 
blind test samples to further supplement matching of retention time and 
precursor masses giving a high degree of confidence. Fragmentation 
patterns of compounds tentatively identified from accurate mass were 
generated using ChemDraw version 8.0. The fragmentation was used to 
confirm the MS/MS data.

As a first comparative step, the base peak ion chromatograms of all 
the samples were overlaid, which allowed visual identification of any 
obvious common constituents. MarkerLynx and ChromaLynx version 
4.1 software was then used to select compound peaks (molecular 
features possessing a unique retention time–accurate mass pair) from 
the data matrix through spectral deconvolution algorithms, and to 
compare similarities and differences among all the samples. The 11 
plant extracts and the two poison sample extracts were run in duplicate 
and only peaks observed in both runs were considered. Method blanks 
for both the plant extracts and poison samples were run in duplicate for 
background subtraction purposes.

Results
Identification of toxins through UPLC-QTOF mass 
spectrometry
Known toxins reported in 6 of the 11 plants were tentatively identified 
based on their accurate mass and MS/MS fragmentations (product ions). 
However, the occurrence of isomers – structural- and stereoisomers 
(compounds with the same molecular formula) – makes it difficult to 
unambiguously identify compounds based on accurate mass and MS/
MS fragmentation. The positive and negative ion chromatograms were 
obtained for all the plant samples. A selective ion search (extracted ion 
chromatogram) was done using the monoisotopic mass for the selected 
toxic compound and possible adducts, as listed in Table 3. 

To demonstrate the accuracy and speed in identifying known compounds 
in complex matrices such as plant extracts, the UPLC positive mode base 
peak ion chromatogram of an extract of Boophane disticha is shown in 
Figure 2. The extracted ion chromatograms displaying the compound 
peaks for distichamine, haemanthamine/crinamine and buphanidrine 
(and their structures and isotopic distributions) are shown in Figure 3. 

Analysis of archaeological samples and control
Chromatographic overlays of the arrow poison extract and the control 
recipe extracts were visually compared with all the plant extracts. 
However, trying to determine areas of overlap proved to be highly 
complex. The positive and negative base peak ion chromatograms for 
the extracts of the blind control recipe and arrow poison extracts are 
shown in Figure 4a and 4b, and indicate the complexity of these samples. 
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Table 3: Tentative identification of the pseudomolecular ions and adducts of the targeted toxic compounds and compounds not found

Plant
Toxic compound and molecular 

formula
Acquired [M+H]+ Theoretical [M+H]+

Calculated accurate 
mass (Da)

Mass error (ppm) 

Acokanthera oppositifolia Aglycone of acovenoside A (C23H34O5) 391.2459 391.2479 390.2406 5.1

Adenium multiflorum
Aglycone of obebioside B (C25H36O6) 433.2589 433.2584 432.2511 -1.2

Aglycone of hongheloside B (C23H34O5) 391.2459 391.2479 390.2406 5.1

Aloe gariepensis γ-Coniceine (C8H15N) 126.1293 126.1277 125.1204 -12.7

Aloe globuligemma Coniine (C8H17N) 128.1440 128.1434 127.1361 -4.7

Ammocharis coranica

Lycorine (C16H17NO4) 288.1236 288.1230 287.1157 -2.1

Caranine (C16H17NO3) 272.1281 272.1281 271.1208 0.0

Crinamine (C17H19NO4) 302.1397 302.1387 301.1314 -3.3

Acetylcaranine (C18H19NO4) 314.1395 314.1387 313.1314 -2.5

Boophane disticha

Distichamine 
(C18H19NO5) 

330.1343 330.1336 329.1263 -2.1

Haemanthamine/ Crinamine 
(C17H19NO4) 

302.1391 302.1387 301.1314 -1.3

Lycorine (C16H17NO4) 288.1233 288.1230 287.1157 -1.0

Buphanine/ Buphanidrine (C18H21NO4) 316.1544 316.1543 315.1470 -0.3

Crinamidine (C17H19NO5) 318.1349 318.1336 317.1263 -4.1

Results obtained through UPLC-MS and extracted ion chromatograms.
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Figure 2: Positive mode base peak ion chromatogram of Boophane disticha. 
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Figure 3: Extracted ion chromatogram from Boophane disticha showing (a) the extracted peak chromatogram of 330.1343 corresponding to the accurate 
mass of distachamine; (b) the extracted peak chromatogram of 302.1391 corresponding to the accurate mass of stereoisomers haemanthamine 
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MarkerLynx software was used to identify molecular features (retention 
time–accurate mass pairs) between all samples and a total of 13 049 
unique features was identified. The features were compared with 
ChromaLynx software to identify possible markers (molecular features 
common amongst a plant extract and a blind sample). Markers with 
a retention time of 7.04 min and m/z 1185.6515 from the extract of 
A. multiflorum and retention time of 14.49 min and m/z 967.6968 from 
the extract of E. tirucalli were both present in the blind control recipe 
(Figure 5). A marker detected using the software was present in both the 
blind control sample and A. oppositifolia. This compound, however, was 
not exclusive to these extracts because it was also detected in some of 
the other plant samples.

The comparison of the chromatographic overlays of the Hei||om 
arrow poison with all the plant extracts indicated a marker with a 
pseudomolecular ion, m/z 332.9644, common to the arrow poison 
extract and the extract of Strychnos madagascariensis (Figure 6). 
However, ChromaLynx software analysis revealed the presence of 
trace amounts of this ion in Strophanthus speciosus, Euphorbia virosa, 
A. oppositifolia and the control recipe, but not in the sample blank, 
implying that the Hei||om poison is a compound of plant origin. Although 

MS/MS fragmentation was obtained, no conclusive identification of the 
compound could be made based on the fragmentation patterns. The 
other compounds that appeared promising as possible markers through 
visual examination of the chromatograms between the arrow poison 
and S. madagascariensis were eliminated by the MarkerLynx software 
analysis. Only the compound with m/z 332.9644 and retention time 
12.39 min was identified as a common feature in both the Hei||om 
poison and S. madagascariensis. The fragmentation of this molecular 
ion was identical between the arrow poison and the S. madagascariensis 
plant sample (Figure 7), providing further evidence of their similarity. 

Discussion and conclusions
Here we report the results of chemical analyses conducted on three sets 
of material. Firstly, we used extracts from 11 modern plants supplied by 
the South African National Biodiversity Institute and collected from the 
Walter Sisulu National Botanical Gardens. Secondly, we created a toxic 
mixture from three plant extracts and used this mixture as a blind test 
control. Finally, we analysed the poison on an ethnographic artefact, a 
Hei||om arrowhead.
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Figure 5: MarkerLynx results showing (a) a marker at 7.04 min and m/z 1185.6515 between Adenium multiflorum (sample numbers 5 and 6) and the 
control recipe (sample numbers 24 and 25) and (b) a marker at 14.495 min and m/z 967.6968 between Euphorbia tirucalli (sample numbers 
28 and 29) and the control recipe (sample numbers 24 and 25). The mass spectra (top right) confirm the presence of a common compound in 
both extracts.

Research Article Plant-based arrow poison analysis
Page 7 of 10

http://www.sajs.co.za


8South African Journal of Science  
http://www.sajs.co.za

Volume 113 | Number 3/4 
March/April 2017

20140827_MW-1-4B P_BS

20140827_MW-1-5B P_BS

%
%

3

3

2.00

0.61 

235.0792

0.52 

214.9171
4.96 

165.0478

5.87 

471.3467

6.34 

471.3467

7.22 

501.3206

7.37 

501.3206
11.33 

330.3394

12.39 

332.9644

12.52 

358.3629

15.10 

685.4335
15.16 

685.4335

15.22 

685.4335

15.50 

413.2645 19.02 

274.8756

Time

4.49 

467.1927
5.37 

449.1763
8.69 

274.2748

12.39 

332.9644

13.22 

439.3528
15.13 

685.4335

15.53 

393.3012 19.02 

274.8756

2.00

4.00

4.00

6.00

6.00

8.00

8.00

10.00

10.00

12.00

12.00

14.00

14.00

16.00

16.00

18.00

18.00

20.00

20.00

TOF MS ES+ 
BPI 

5.69e3

TOF MS ES+ 
BPI 

8.24e3

Figure 6: Positive base peak ion chromatograms of Strychnos madagascariensis (top) and the Hei||om arrow poison (bottom), visually indicating the 
presence of the common compound with pseudomolecular ion m/z 332. The molecular ions at retention times 15.10 min, m/z 685.4335, and at 
19.02 min, m/z 274.8756, are a result of impurities or are nonspecific to the samples. 

20140902_4B R1 629 (12.372) Cm (627:630)

20140902_4B R1 628 (12.363) Cm (626:630)

20140902_5B R1 629 (12.372) Cm (627.630)

20140902_5B R1 628 (12.363) Cm (626:630)

332.9654

332.9662

149.0289 245.0990

166.9866

165.9889 168.9837
228.9163133.0696

295.1705 324.2879
334.9738

337.0040
m/z

m/z

149.0253

123.0204 165.9819 167.9941
228.9227 299.1263

120

120

140

140

140

140

160

160

160

160

180

180

180

180

200

200

200

200

220

220

220

220

240

240

240

240

260

260

260

260

280

280

280

280

166.9872

300

300

300

300

320

320

320

320

340

340

340

340

2: TOF MS ES+ 
7.97e4

166.9630 245.0901 301.1339

334.9719

335.9857
m/z

m/z

100

100

100

100

0

0

0

0

%
%

%
%

LC-MS (Synapt) facility, UP Chemistry 
1: TOF MS ES+ 

7.97e4

LC-MS (Synapt) facility, UP Chemistry 
1: TOF MS ES+ 

1.09e5

2: TOF MS ES+ 
1.09e5

a

c

d

b

Figure 7: Mass-mass spectrometry fragments for m/z 332.9647 for (a and b) the Hei||om arrow poison and (c and d) Strychnos madagascariensis extract. 

Research Article Plant-based arrow poison analysis
Page 8 of 10

http://www.sajs.co.za


9South African Journal of Science  
http://www.sajs.co.za

Volume 113 | Number 3/4 
March/April 2017

The results show that our method can be used to tentatively identify 
toxins based on comparative overlays with fresh plant material, 
but that no unambiguous associations can be made at this stage. 
Furthermore, not all expected toxins will be detected, for which there 
may be several reasons (which are discussed below). The identification 
of toxic compounds in plants has been typically conducted through the 
purification and isolation of organic compounds followed by detailed 
nuclear magnetic resonance analysis to elucidate their structures. 
This procedure requires large quantities of plant sample and is often a 
tedious and time-consuming process. This method cannot be used for 
determining the toxic plant compounds used in arrow poisons because 
of their small quantities. In order to facilitate the process using limited 
quantities of arrow poison samples, and to confirm the presence of 
reported toxins, we have used accurate MS/MS spectrometry. Our aim 
was to establish whether this technique can be applied to determine 
the presence of the toxic compounds in both known toxic plants and 
arrow poisons, which are sometimes mixtures of ingredients from 
several plants. The UPLC-QTOF-MS technique acquired mass spectral 
data of the reported toxic compounds in extracts of 11 toxic plants in 
both the positive and negative mode electrospray ionisation to ensure 
that most of the compounds were ionised and could be detected. We 
identified 16 of the 28 reported toxins in 6 of the 11 plants analysed. We 
did this by comparing the acquired accurate mass with the theoretical 
accurate mass based on the molecular formula. Further confirmation 
of the structure was achieved through the MassLynx software which 
also generated the molecular formula. The toxic compounds identified 
compared favourably with those in the databases Dictionary of Natural 
Products and ChemSpider, which report the accurate masses.

All identifications of the toxic compounds were made with high accuracy; 
they cannot, however, be unambiguously assigned. For unambiguous 
assignment, full MS/MS fragmentation analysis must be done and 
then compared to pure standard compounds and/or nuclear magnetic 
resonance analysis of the pure isolated compounds. Haemanthamine 
and crinamine, two previously published compounds from B. disticha, 
were identified in the plant extracts. We were unable to determine whether 
both, or either, were present as they are isomeric forms. The similar 
assignment problem applies to buphanine and buphandrine present in 
this plant extract. Two other toxic compounds, lycorine and crinamidine, 
were also identified in our B. disticha extract. Two of three toxins 
reported in published databases, namely the aglycones of obebioside 
B and hongheloside B, were identified in our A. multiflorum extract. All 
four of the previously published toxins (lycorine, caranine, crinamine and 
acetylcaranine) were identified in our extract of Ammocharis coranica. 
However, the two previously published toxins, ouabain and christyoside, 
could not be identified in our S. speciosus extract; γ-coniceine and 
coniine were identified from Aloe gariepensis and Aloe globuligemma, 
respectively, whereas conhydrine, common to both the Aloe species, 
was not identified. None of the toxic compounds previously published 
was identified in any of the Euphorbia species we analysed or in our 
sample of S. madagascariensis. Both ouabain and acovenoside A were 
identified in the highly toxic plant A. oppositifolia. The non-identification 
of toxic compounds in some of our plant extracts may be attributed to 
the geographical area in which the plants were collected. It is known 
that plant species display a variation in their secondary metabolites as a 
consequence of the environmental conditions and geographical location 
in which they are grown and the season in which they are harvested.37 In 
addition, the generic extraction methodology and the use of MS friendly 
aqueous solvents (and additives) may have excluded them according to 
their solubility, or inhibited their preferred ionisation in negative mode. 

To assess the feasibility of the method, we applied the UPLC-QTOF-MS 
approach to the detection of plant-based poisonous compounds in a 
control sample in which three plant extracts were mixed. Two of the three 
plants used in the control sample poison were correctly identified as 
A. multiflorum and E. tirucalli, based on unique markers, namely m/z 
1185.6532 and 967.6968. Indiscriminate markers that are present in 
several plants were found in the control sample as well as in the extract 
of A. oppositifolia. This finding is not unusual as the same chemical 
compounds can occur in several different plant species. 

The UPLC-QTOF-MS results of the Hei||om arrow poison were 
visually compared to chromatograms of the plants analysed with the 
aid of chromatographic overlays followed by analysis with MarkerLynx 
and ChromaLynx software. A marker with a pseudomolecular ion m/z 
332.9650 was common to the Hei||om arrow extract and the extract of 
S. madagascariensis. ChromaLynx software analysis, however, revealed 
the presence of trace amounts of this ion in S. speciosus, E. virosa, 
A. oppositifolia and the control recipe. Although S. madagascariensis is 
not present in the region from which the arrow is thought to have come, 
it may be that the poisonous ingredient or the arrow itself was originally 
obtained through exchange from farther afield. Ideally, other species of 
Strychnos, such as the S. spinosa, should be collected and similarly 
analysed. It is encouraging that we were able to get chemical signatures 
from small samples and that there are clearly identifiable plant-based 
toxins detectable in poisons created more than 90 years ago. This 
bodes well for future work on ethnographic and archaeological material, 
despite the various challenges. These challenges include the limited 
quantities of arrow poison samples likely to be available for analysis 
from archaeologically recovered artefacts, and harsh post-depositional 
conditions that may have caused degradation of organic residues. 
Several other factors such as the variation of secondary metabolites 
between wild and cultivated plants, chemical variation between species, 
the production of certain classes of compounds being restricted to a 
specific plant part (e.g. roots, leaves), and the solvents used for the 
extraction of toxic compounds, all play an influential role and have to be 
taken into consideration. 
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