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Abstract

Amongst the major technological challenges of the twenty first century is the harvesting of re-

newable energy sources. We studied the solar cell performance of the ternary compounds AgAlX2

(X = S, Se and Te) and AgInS2 as promising materials for meeting this challenge. Structural,

electronic and optical properties of the compounds were investigated by means of the density func-

tional theory and many body perturbation theory. Using cohesive energy and enthalpy, we found

that among six potential phases of AgAlX2 and AgInS2, the chalcopyrite and the orthorhombic

structures were very competitive as zero pressure phases. We predicted a low pressure-induced

phase transition from the chalcopyrite phase to a rhombohedral phase. For the chalcopyrite phase,

we found that the tetragonal distortion and anion displacement were the cause of the crystal field

splitting. The bandgaps from the general gradient approximation PBEsol were underestimated

when compared to experiment and accurate bandgaps were obtained from the hybrid functioanl

HSE06, the meta-general gradient approximation MBJ and GW approximation. Optical absorp-

tion from the Bethe-Selpeter equation indicated the presence of bound exciton in AgAlX2. We

estimated the solar cell performance of the compounds using the Shockley and Queisser model

and the spectroscopy limited maximum efficiency approach. We found that apart from AgAlS2,

the estimated theoretical efficiency of the other compounds was greater that 13 %.
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1. Introduction

1.1 Solar cells: the current status

The harvesting of solar energy has been the fastest growing renewable technique over the last

decades. According to the US Department of Energy, the solar energy industry is growing by

2.5% per year [4]. However, it is predicted that fossil fuels will still supply more than 80 % of

the world demand in energy by 2040 despite being the most environmental unfriendly way of

producing energy [4,5]. Sunlight is an enormous underexploited source of renewable energy. The

amount of sunlight received on earth within an hour would be enough to supply the entire world

demand of electricity for a year [6]. Unfortunately the energy produced from photovoltaic (PV)

solar panel represents less than 5% of the world’s consumption. Why is it that a free, clean and an

inexhaustible source of energy as such is still not exploited? What is holding back the growth of

solar energy? The cost of production and the efficiency are the main factors that have prevented

the development of the solar industry. The first generation of PV solar based on silicon wafers has

an efficiency between (15-20) %, but the cost of production is very high. The second generation

also known as thin film solar cells, are based on amorphous and polycrystalline materials, unlike

the first generation. Hence it is more cost effective compared to the fist generation, but is not

as efficient as the former with a typical performance of (10-15) %.

Fossil fuel lobbyists sometimes argue that solar PV is way worse for land use than any other form

of energy harvesting [7,8]. However, it has been shown recently that more land has been lost due

to oil and gas well pads, storage tanks and associated roads developed in North America since

the year 2000 [8,9]. It is predicted that by using PV with performance of about 20 %, only 5.5 %

of the land area of the uninhabited part of Sahara desert covered with PV would power the whole

world [10]. Moreover, if we look at the impact of each of the energy sources, fossil fuels put the

global ecosystem in danger. The carbon dioxide released from the combustion of fossil energy

1
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leads to global warming of the planet unlike renewable energy. It is true that solar technology

requires very huge initial investment, but it is profitable in the long term. It is now a global

concern to reduce the use of fossil energy and develop alternative sources of energy based on

renewable energy. Leaders around the world specially in developing countries such as China and

India have started making considerable investment in solar energy. In the first quarter of 2015 for

example, China added the equivalent of the total French solar capacity to its grid [11]. More than

3.5 million solar home systems have recently been installed in Bangladesh [11]. In the last six

years, solar panels have dropped from $1.90 to less than $1 per watt today [12, 13]. However, in

order to reach an affordable solar technology production, there is a need for alternative materials

which could meet both the challenges of good efficiency and cost effectiveness. These materials

form the third generation of the PV solar cells.

1.2 Ternary compounds based on transition metal chalco-

genides

Ternary compounds based on transition metal chalcogenides (TMCs) are some of the promising

materials which have been explored as potential candidates for the third generation of solar cells.

They are a combination of some elements from group I, III, IV and VI. Their general formula is

AxByXz with A = (Cu, Ag, Au); B = (Al, Ga, In); X = (S, Se, Te) and x, y and z ∈ N∗. They

crystallise in different structures and the most common ones are the ABX2 in tetragonal, or-

thorhombic, hexagonal and rhombehodral structures [1,14–19] and AB5X8 with the space group

F 4̄3m and P 4̄2ma in cubic and tetragonal system respectively [20–22]. The ABX2 chalcopyrites

for example have been subjected to numerous studies due to their potential technological appli-

cations for the harvesting of the solar energy and electronic components [14, 23–31]. Because of

their anisotropy, they are also birefringent materials and can also find applications in non linear
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optics process including second harmonic generation [32, 33]. In solar cell applications, ternary

TMCs are predicted to have a life-time in outer space fifty times longer than that of Si-based

solar cells [1, 34]. Moreover, with their high flexibility and low weight, they could make a good

alternative to Si-based materials in the electronics industry [35]. Wide bandgap chalcopyrites

such as AgAlX2 (X = S, Se, Te) are difficult to use as single junction solar cells. However,

it has been shown recently that the efficiency of a solar cell could be increased by making a

tandem (multi-junction) solar cell [36]. It consists of an association of single junction solar cells

of different bandgaps which allow capturing light with different wavelengths and thus increasing

the efficiency. Their electronic and optical properties can also be tuned easily by doping or by

stress [17, 37–41]. The AgInX2 is also very attractive group of ternary TMCs and could be used

as visible light absorber layers and outer shell sensitizers of multi junction solar cells because of

its high absorption coefficients [42, 43].

1.3 Objectives of the thesis

Motivated by their potential applications in the solar cell industry, a systematic theoretical and

computational study of the structural, electronic and optical properties of the ternary compound

based on TMCs as possible component of solar-energy harvests need to be done. We are specif-

ically interested in the AlAgX2 and AgInS2 families. Very few studies on these groups have been

performed so far contrary to their analogues copper indium Gallium selenide (GIGS) and copper

zinc tin sulfide (CZTS) despite the similarities. The Density Functional Theory (DFT) and Many

Body Perturbation Theory (MBPT) will be used as the main tools of the study. In the first stage,

we will perform a structural phase stability of different potential phases of AlAgX2 and AgInS2.

From the energetic, dynamical, mechanical and elastic stability studies, the most stable phases

will be identified. Further studies including electronic and optical properties will be carried out.

Finally, we will estimate the solar cell performance of those phases.
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1.4 Thesis outline

This thesis is organised as follows: In Chapter 1, we give an idea of the current status of the

solar energy and motivation for our study. An overview of the Density Functional Theory (DFT)

approach is presented in Chapter 2. Chapters 3 and 4 provide some background information

about the different DFT exchange-correlation approximations and MBPT. More details about the

calculation methods are given in Chapter 5. Chapter 6 provides a description of the structure

under investigation. Then, Chapters 7 and 8 are dedicated to the structural, electronic and optical

properties of AgAlX2 and AgInS2, respectively. Based on results from the preceding chapters,

estimation of the solar cells performance of the compounds using different approximations is

presented in Chapter 9. Finally, we summarise the results of our work and give the direction for

future works in Chapter 10. Detailed information on some useful aspects of the work is given in

Appendices.



Part I

Theoretical methods and outline of the

calculations

5



2. The many-body problem: density

functional theory approach

The prediction of the collective behaviour of a large number of interacting particles constituting

the matter is still a cumbersome task for the scientific community. The complexity of such

problem can be circumvented by decoupling the movement of the more massive nuclei from that

of electron. Each of the two sets of particles, is by itself a many body problem. Solving the

many electron problem is referred to as the electronic structure study and it can help predict

the properties (structural, mechanical, dynamical, thermodynamic, electronic and optical) of a

material. Density Functional Theory (DFT) turns out to be, if not only, the most popular and

most successful quantum mechanical approach to solve such problem. Before introducing DFT,

let us recall the many-body problem and DFT predecessor methods.

2.1 Many-body problem

The many-body problem refers to the problem of solving the Schrödinger equation for a system

of atoms and electrons. The energy of such a system is given by the stationary Schrödinger

equation:

Hψ (R1 . . . ,RN , r1, . . . , rn) = Eψ (R1, . . . ,RN , r1, . . . , rn) , (2.1.1)

where Ri is the position of the nucleus i, ri the position of the electron i, N and n are the

6
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numbers of nuclei and electrons of the system respectively and

H =−
N∑
i=1

~2

2Mi

∇2
Ri

+
1

2

N∑
i=1

N∑
j=1
i 6=j

ZiZje
2

| Ri − Rj |
−

n∑
i=1

~2

2m
∇2

ri

+
1

2

n∑
i=1

n∑
j=1
i 6=j

e2

| ri − rj |2
−

N∑
i=1

n∑
j=1

Zie
2

| Ri − rj |
(2.1.2)

= Tn + Vnn + Te + Vee + Ven.

Tn and Vnn are respectively, the kinetic energy and the potential energy of the nuclei. Te and Vee

are referred to as the kinetic energy and potential energy of the electrons respectively. The last

term Ven is the nuclei-electron interaction. Equation 2.1.1 is very complicated to solve exactly due

numerous interactions between particles and it is most often approximated. The most important

approximation used is the Born-Oppenheimer approximation [44]. This approximation uses the

fact that the nucleus is about 2000 times heavier than the electron and the time scales of their

motions are very different. Hence, the wave-function of Equation 2.1.1 can be approximated as

a product of two wave-functions:

ψ (ri,Rj) = ψe (ri,Rj)ψn (Rj) , (2.1.3)

where ψe (ri,Rj) is the electron wave-function and ψn (Rj) the nucleus wave-function. Substi-

tuting (2.1.3) into (2.1.1) yields the set of two equations:

Heψe (ri; Rj) = (Te + Vee + Ven)ψe (ri; Rj) (2.1.4a)

=Eeψe (ri; Rj) ,

Hnψn (Rj) = (Tn + Vnn + Ee)ψn (Rj) (2.1.4b)

=Eψn (Rj) .

Equation 2.1.4a describes the quantum mechanical behaviour of electrons in solids with Ven the

interaction between electrons and nuclei. We can consider it as an external field Vext of a fixed
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nuclei in which the electrons (quantum particles) are moving.

He = Te + Vee + Vext. (2.1.5)

Up to this point, the many electron problem is still difficult to solve because the wave-function

describing a particle does not only depend on the particle itself, but also on what an electron is

doing with each of the other electrons and nuclei in the system. Over the years, the challenge of

the study of electronic structure has been to solve this problem exactly. Many approaches have

been developed such as: Hartree-Fock approach, Thomas-Fermi approach and DFT. An overview

of these approaches will be discussed in the next section.

2.2 The Hartree-Fock approach

In the Hartree approximation, electrons are treated as a fictitious non-interacting particles. The

Hamiltonian can be rewritten as:

H =
N∑
α

hα (2.2.1)

where hα is the sum of the kinetic energy and potential energy of a single electron. The wave-

function associated to this new Hamiltionian is the product of the wave-functions of a single

electron also known as a Hartree product [45]

φ(x1, x2, x3, ..., xN) = ψ1(x1).ψ2(x2).ψ3(x3).......ψN(xN) (2.2.2)

where xi is a generalized coordinate that includes spatial as well as spin degrees of freedom(
ψ(x) = ψ(r)|σ〉

)
. Hence, the energy of a single electron at the spin orbital j is given by

hjψj(xi) = εjψj(xi). (2.2.3)
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Thus, the total energy of the non-interacting electron system is the sum of the energies of the N

non-interaction electron:

〈φ (x1, x2, x3...., xN) | H |φ (x1, x2, x3...., xN)〉 =
N∑
ij

〈φ (x1, x2, x3...., xN) | hjk |φ (x1, x2, x3...., xN)〉

= ε1 + ε2 + ε3 + ........+ εN (2.2.4)

= E.

Unfortunately, this Hartree model fails because it does not account for the Pauli exclusion principle

according to which the true wave-function of any fermionic system has to be antisymmetric with

respect to particle exchange i.e.

φ (x1, x2, x3, · · · , xk, · · · , xp, · · · , xN) = −φ (xN , x2, x3, · · · , xk, · · · , xp, · · · , x1) = (2.2.5)

The Slater determinant is an antisymmetric wave-function [46, 47] and therefore can be used for

describing such a system. For an N electron system, it is the determinant of an N x N matrix of

the single electron wave-function:

φ(x1, x2 . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

...
. . .

...

ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2.6)

For illustration, consider the two electron system, Equation 2.2.6 then becomes

φ (x1, x2) =
1√
2

[ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)] . (2.2.7)

By exchanging the two electrons, the new wave-function is

φ (x2, x1) =
1√
2

[ψ1(x2)ψ2(x1)− ψ1(x1)ψ2(x2)] (2.2.8)

= −φ (x1, x2) .
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If we force two electrons to be on the same state, this yield

φ (x1, x1) =
1√
2

[ψ1(x1)ψ2(x1)− ψ1(x1)ψ2(x1)] (2.2.9)

= 0.

The Slater determinant is then an exact wave-function of N , non interacting, single particles

moving in the field of the effective potential VHF which is the average repulsive potential experi-

enced by an electron due to the (N − 1) other electrons and the nuclei. The Hartree-Fock (HF)

equation is given by [48][
−1

2
∇2
i +

n∑
K

1

|RK − ri|

]
ψα(ri) +

[
occ∑
β

∫
drjψ

∗
β(rj)

1

|ri − rj|
ψβ(rj)

]
ψα(ri)

−

[
occ∑
β

∫
drjψ

∗
β(rj)

1

|ri − rj|
ψα(rj)

]
ψβ(ri) = Eiψα(ri). (2.2.10)

The first term defines the kinetic energy and the potential due to the interaction between a single

electron and the collection of atomic nuclei. The second term is the Coulomb electron-electron

interaction also called the Hartree potential VH , and the last term is the Fock or exchange term

Vx due to the Pauli principle through the anti-symmetric nature of the wave-function. It is a

non-local term and is very important because it cancels out the self interaction introduced by

the second term. The best Slater determinant for approximating the energy is the one which

minimises the expectation value of the HF Hamiltonian through the variational principle.

EHF = min
ψ

[
〈ψ|T + VH + Vx + Vext|ψ〉

]
. (2.2.11)

However, the HF method usually fails to fully describe the many electron system because it does

not included the correlation effects [49]. The energy obtained from the HF method is higher

than the exact ground-state energy of the system. The difference between the two energies is

termed as correlation energy Ec. In the HF approach, each electron feels the average electrostatic

repulsion of the others. This electric field does not included the screening effect [49] which exists
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in real system. Instead, it is the direct unscreened bare coulomb interaction. The screening effect

comes from the fact that the interaction between two electron is weaken by the presence of other

electrons in the system. The average electrostatic repulsion tends to make the electrons more

closer than they should be in the real electron system and thus leads to the overestimation of the

electron-electron repulsion. This is known as dynamical correlation. One could understand why

the HF methods works better for atoms and small molecules where the screening effect is not as

large as it is in solids [50].

Another limitation of the HF approach is the static correlation effect. A single Slater determinant

is not always a suitable way for describing the many-body wave-function. There are other possible

antisymmetric wave-functions which are not necessary written as Slater determinant. Hence, the

Slater determinant constitutes only a subset of all the possible antisymmetric wave-functions

that can be use for describing the many electron system. The HF approach can be improved by

using a combination of several Slater determinants, but the search for the complete basis set of

such wave-functions is a very demanding task. An alternative way of describing the behaviour of

electron system is therefore necessary.

2.3 The density functional theory

‘‘...density functional theory is evident by the fact

that one equation for the density is remarkably simpler

than the full many-body Schrödinger equation that involves

3N degrees of freedom for N electron.’’

Richard Martin [51].

Since the conception and the proof of the fundamental Density Functional Theory (DFT) theorems

by Hohenberg and Kohn, a huge effort has been made to fully elaborated the theory of DFT such
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that it cannot be covered in details in a thesis. Thus, the discussion in this section is just an

overview of DFT. For more details, the readers are referred to the references [45–54] an references

therein. We will start by introducing the notion of electronic density which is the cornerstone of

DFT.

2.3.1 The Notion of electronic density and the Thomas–Fermi model

The wave-function describing the state of one electron within a many-body system of interacting

particles is coupled with that of others and the many-body wave-function of the N particles is

explicitly written as:

φ(rσ) = φ (r1σ1, r2σ2, r3σ3, . . . , rNσN) (2.3.1)

with ri and σi the space and the spin coordinates of the ith particle. The number of electron

with spin σ within the region dr around the point r is defined by n(r, σ)dr and the probability of

finding electrons in that region is a multiple integral over spin and space coordinates defined as:

n(r, σ) = N
∑

σ2,σ3,...,σN

∫
dr2

∫
dr3 . . .

∫
drN |φ(rσ, r2σ2, r3σ3, . . . , rNσN)|2 (2.3.2)

with

n̂(r, σ) =
N∑
k=1

δ(rk − r)δ(σk − σ) (2.3.3)

as the density operator and

N =
∑
σ

∫
dr n(r, σ) (2.3.4)

as the total number of electron. Hence, the state of an electron is completely defined by one

parameter instead of the multi variable wave-function. The density contained exactly the same
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information as the wave-function with the advantage of been easy to manipulate. Thomas and

Fermi were the first to use this notion to estimate the energy of the many electron system. In their

approximation, the system is considered as a homogeneous electron gas with uniform density at

each point of the space. The electron-electron interaction is taken as the classical bare Coulomb

repulsion only. The exchange and the correlation are neglected. Thus, the energy of such a

system is written as [51]

ETF [n(r)] = TTF [n(r)] +
1

2

∫
dr’dr

n(r’)n(r)

|r’− r|
+

∫
dr n(r)Vext(r). (2.3.5)

With the assumption of the classical particles and uniform density, the kinetic energy can be

written as [55]

T =

∫
t(r)dr,

where t(r) is the kinetic energy density. The number of electron with momentum between p and

p+ dp is

dN =
2V

h3
4πp2dp and t =

TTF
V

=
1

V

∫
p≤pF

p

2m
dN = n(r)5/3CF (2.3.6)

with CF = 3h2

10m

(
3

8π

)2/3
. Substituting (2.3.6) into (2.3.5), the Thomas-Fermi energy can be

rewritten as

ETF [n(r)] = CF

∫
dr n(r)5/3 +

1

2

∫
dr’dr

n(r’)n(r)

|r’− r|
+

∫
dr n(r)Vext(r). (2.3.7)

Albeit the TF method is a very simplistic approach, it is found in most cases to be in poor

agreement with the HF approach [56–58]. Moreover, it yields an atomic charge density which is

divergent at the nucleus and does not allow atoms to bind in order to form molecules [57, 59].

Over the years, this model has been subject to improvement in order to reflect the real electron

system. The first attempt was made by Paul Dirac(1930) [51, 56, 60] by adding the exchange

contribution
(
Cx
∫
dr n(r)4/3

)
which was initially neglected by Thomas and Fermi. Later in

1935, Weizsäcker [51, 56] introduced inhomogeneity effect to the electron gas by including a
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correction to the kinetic energy in term of gradient of the charge density. Despite all the efforts

for improvement, this approach did not lead to a complete description of the real inhomogeneous

and interacting system of electrons. Nonetheless, it constitutes a milestone to the exact solution

of the many electrons problem via the use of the electron density. In 1964, Hohenberg and

Kohn [52] used the electron density as a cornerstone for a new theory of many electrons system

which is now known as the density functional theory (DFT). The field of DFT is based on the

Hohenberg–Kohn theorems and the Kohn–Sham equation.

2.3.2 Hohenberg–Kohn theorems

DFT is based on the original idea of Thomas and Fermi [61, 62] which consists of replacing the

complex N-electron wave-function φ (r1, r2, r3, . . . , rN) in the corresponding Schödinger equa-

tion with the much simpler electronic density n(r) as mentioned above. In 1964, Hohenberg

and Kohn [52] came out with an original idea and showed that the many electron problem as

described in the Thomas-Fermi-Dirac model could be seen as an approximation to an exact

theory; the density functional theory. According to Hohenberg and Kohn, the DFT can be ex-

plained(summarised) in two fundamental theorems also known as Hohenberg and Kohn theorems.

Theorem I: The first theorem shows that the ground-state density is the basic variable for deter-

mining the ground-state of any interacting system. It states that:The external potential Vext(r)

is (to within a constant) a unique functional of the ground-state density [52].

This theorem can be proved by considering a set V of external potentials which differ by more

than a constant ( vext(r) 6= vext(r) + const) and leads to a set Ψ of non-degenerate ground-

state wave-functions. N a set of the ground-state density n0(r) as defined by (2.3.2) where the

wave-functions are ∈ Ψ. A a map from V to Ψ and B from Ψ to N :

A : V −→ Ψ, B : Ψ −→ N .

Since the ground-state wave-functions are not degenerated, every external potential v(r) ∈ V
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uniquely determined the ground-state wave-function [63]. The case of the degenerated ground-

states will be tackled in the Section (2.3.3). The one-to-one maps can be proven by reductio

ad absurdum [63, 64]. For the map A, if |ψ0〉 is simultaneously the ground-state wave-function

for two different potentials ∈ V , the corresponding Hamiltonians H and H’ satisfy the following

Schrödinger equations:

H|ψ0〉 = (T + Vee + Vext)|ψ0〉 = E0|ψ0〉 (2.3.8)

H ′|ψ0〉 = (T + Vee + V ′ext)|ψ0〉 = E ′0|ψ0〉. (2.3.9)

Subtracting (2.3.8) and (2.3.9) and calculate the expectation value yields

〈ψ0|(Vext − V ′ext)|ψ0〉 = (E0 − E ′0) (2.3.10)

Recall that

Vext =

∫
drv(r)n(r, σ) (2.3.11)

with the density operator given by (2.3.3). For all the position where |ψ0〉 does not vanish,

(2.3.10) leads to

N∑
i

[(vext(r)− v′ext(r)] = (E0 − E ′0). (2.3.12)

The right hand side of (2.3.12) is constant but the left hand side is not if we keep N-1 coordinate

position fix and leave the remaining vary. More details about this argument can be found in [65].

Hence two potentials ∈ V will always yield to two ground-state wave-functions ∈ Ψ. In the

case of the map B, if we assume n0(r) ∈ N the ground-state density leads simultaneously by

|ψ1〉, |ψ2〉 ∈ Ψ and H1, H2 two Hamiltonians which differ by the external potential. By means of

the variation principle,
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〈ψ1 | H1 | ψ1〉 ≤ 〈ψ2 | H1 | ψ2〉

E1 ≤
〈
ψ2 | T + Vee + V 1

ext | ψ2

〉
≤
〈
ψ2 | T + Vee + V 2

ext + V 1
ext − V 2

ext | ψ2

〉
≤
〈
ψ2 | T + Vee + V 2

ext | ψ2

〉
+
〈
ψ2 | V 1

ext − V 2
ext | ψ2

〉
(2.3.13)

≤ 〈ψ2 | H2 | ψ2〉+
〈
ψ2 | V 1

ext − V 2
ext | ψ2

〉
E1 ≤ E2 +

∫
n0(r)

(
v1
ext(r)− v2

ext(r)
)
dr.

Since |ψ1〉 and |ψ2〉 lead to the same n0(r) by interchanging the two quantities, it follows that

〈ψ2 | H2 | ψ2〉 ≤ 〈ψ1 | H2 | ψ1〉

E2 ≤
〈
ψ1 | T + Vee + V 2

ext | ψ1

〉
≤
〈
ψ1 | T + Vee + V 1

ext + V 2
ext − V 1

ext | ψ1

〉
(2.3.14)

E2 ≤ E1 −
∫
n0(r)

(
v1
ext(r)− v2

ext(r)
)
dr.

By adding Equation 2.3.13 and Equation 2.3.14, we arrive at E1 + E2 < E1 + E2 which is

contradictory. This means that two wave-functions ∈ Ψ cannot yield the same ground state

density ∈ N . Therefore the maps A and B are unique and thus, there is a one-to-one map

between the external potential and the ground-state wave-function in one hand and between the

ground-state wave-function and the ground-state density in the other hand.

Corollary I: Since the ground-state energy of the Hamiltonian is an unique functional of the

electron density n0(r), it follows that all ground-state and excited state properties of a system

are in principle completely determined [51, 60].

Theorem II: The first theorem proves the existence of a one-to-one mapping between the

density and the external potential, but it says nothing about the way that the functional energy

is obtained. According to the second theorem, an universal functional for the energy E[n] in term
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of density n(r) can be defined, valid for any given external potential Vext(r). Hence, the density

which minimises the total energy E[n] is the exact ground-state density [45, 51]. E[n] can be

written as a functional of the density as follow:

E[n] = F [n] + Vext[n] (2.3.15)

with

F [n] = T [n] + Vee[n]. (2.3.16)

F[n] is an universal functional and it is valid for all the system regardless of the number of particles.

Corollary II: The functional for the energy E[n] is alone sufficient to determine the exact ground-

state energy and density. In general, excited states of the electrons must be determined by other

means. According to the variational principle, if F[ñ] is the universal functional associated to the

trial density ñ(r),

F [ñ] +

∫
d3r Vext(r)ñ(r) = E[ñ] (2.3.17)

≥ E[n0]

with E[n0] the exact ground-state energy.

To be eligible as a potential ground-state density, a given density n(r) must satisfy the following

condition [55]:

• Positve i.e. n(r) ≥ 0

• Normalisable i.e
∫

n(r)dr = N

• Vanishes at infinity i.e. n(r −→∞) = 0
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2.3.3 Levy constrained–search formulation

The Hohenberg-Kohn (HK) theorem as presented above required the ground-state wave-function

to be non-degenerated. What happened in the case of degenerated ground-state? With a

degenerated ground-state, there is a possibility of getting a subset ϕ ⊆ Ψ of ground-state wave-

functions which all originated from the same external potential v ∈ V . In that case the expectation

value of v(r) of two elements ψ and ψ′ ∈ ϕ is the same.

〈ψ|Vext|ψ〉 = 〈ψ′|Vext|ψ′〉. (2.3.18)

Considering |ψ〉 as the exact ground-state and making use of the variational principle, it turns

out that

〈ψ′|H|ψ′〉 ≥ 〈ψ|H|ψ〉

〈ψ′|T + Vee + Vext|ψ′〉 ≥ 〈ψ|T + Vee + Vext|ψ〉 (2.3.19)

〈ψ′|T + Vee|ψ′〉+ 〈ψ′|Vext|ψ′〉 ≥ 〈ψ|T + Vee|ψ〉+ 〈ψ|Vext|ψ〉

Substituting (2.3.18) into (2.3.19), it follows that

〈ψ′|T + Vee|ψ′〉 ≥ 〈ψ|T + Vee|ψ〉

≥ FHK [n] (2.3.20)

with FHK [n] the Hohenberg and Kohn universal functional. Thus, the Hohenberg-Kohn theorem

does not stand any longer for the degenerated states.

The Levy minimizaton approach [55,63,64] consists of bypassing the v-represenatability condition

impose by Hohenberg and Kohn and account for all the possible antisymmetric wave-functions

resulting from the same vext(r). Hence, a new one-to-one map is established between the vext(r) ∈

V and all the possible wave-functions |ψ〉 ∈ ϕ with ϕ ⊆ Ψ. Thus, the search for the ground-state

energy E0 can be achieved in two steps; firstly by considering all the wave-functions whose the



Section 2.3. The density functional theory Page 19

density is equal to the ground-state density n0(r) and secondly by finding the one that minimises

the universal functional F[n]

F [n] = min
ψ→n
〈ψ|T + Vee|ψ〉

= 〈ψminn |T + Vee|ψminn 〉. (2.3.21)

It follows that the ground-state energy is

E0[n] = min
ψ→n

F [n] + 〈ψ|Vext|ψ〉 =

[
〈ψminn |T + Vee|ψminn 〉+

∫
n(r)Vext(r)dr

]
, (2.3.22)

hence, with this new approach, the constraint on the non-degenerate ground-state is waived.

2.3.4 Kohn–Sham equation

The definition of the universal functional F[n] from the HK theorem and the Levy constraint

are not sufficient for solving the many-electron problem since it does not suggest any framework

which can be used to get F[n] explicitly. In 1965, Kohn and Sham proposed a practical ansatz

based on a fictitious non-interacting electron system [53]. The idea is to replace the original

system of interacting electron by an imaginary system of non-interaction electron. The auxiliary

system is required to have the same ground-state density as the exact system. The Kohn–Sham

electrons feel an effective potential VKS and satisfied the following Hamiltonian[
−1

2
∇2 + VKS

]
ϕi(r) = Eiϕi(r) (2.3.23)

where ϕi(r) is the Slater determinant because of the non-interacting character of the system

and −1

2
∇2 its kinetic energy operator. Point to note here is that the kinetic energy of the

Kohn–Sham (KS) system is different from the one of the real system since ϕi(r) is not the

ground-state wave-function of the real system. In order to evaluate VKS, let |ψ〉 and |ψ′〉 be

the wave-function associated to the interacting and the non-interacting system respectively. It
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follows that

N∑
i

|ψ|2 =
N∑
i

|ψ′|2 (2.3.24)

since the two system have equal ground-state density. Their universal functionals are respectively

F [n] = 〈ψ|T + Vee|ψ〉

= T [n] + 〈ψ|Vee|ψ〉. (2.3.25)

and

FKS[n] = 〈ψ′|T + Vee|ψ′〉

= 〈ψ′|T |ψ′〉+ 〈ψ′|Vee|ψ′〉 (2.3.26)

= Ts[n] + 〈ψ′|Vee|ψ′〉.

Following the HF scheme, the second term of Equation 2.3.26 can be rewritten as a sum of the

classical electrostatic, U [n], repulsion energy and exchange energy, Ex[n],

〈ψ′|Vee|ψ′〉 = U [n] + Ex[n]. (2.3.27)

Because of the energy difference between the two systems, a correlation energy, Ec[n], is defined

as the remaining part of the energy, E[n], which is not captured in the Kohn-Sham energy

EKS[n]:

Ec[n] = E[n]− EKS[n]

= 〈ψ|T + Vee + Vext|ψ〉 − 〈ψ′|T + Vee + Vext|ψ′〉

= 〈ψ|T + Vee|ψ〉 − 〈ψ′|T + Vee|ψ′〉

= F [n]− FKS[n]. (2.3.28)
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Therefore, Ec[n] is not only the residual potential energy, but also comes from the kinetic energy.

From Equations 2.3.26, 2.3.27 and 2.3.28, F [n] can be rewritten as

F [n] = 〈ψ′|T + Vee|ψ′〉+ [〈ψ|T + Vee|ψ〉 − 〈ψ′|T + Vee|ψ′〉]

= 〈ψ′|T |ψ′〉+ 〈ψ′|Vee|ψ′〉+ Ec[n] (2.3.29)

= Ts[n] + 〈ψ′|Vee|ψ′〉+ Ec[n]

= Ts[n] + U [n] + Ex[n] + Ec[n].

Ec[n] and Ex[n] are very small portion of energy compare to the other contributions of the total

energy. Usually they are written as a unique term Exc = Ex[n] + Ec[n] called as the exchange-

correlation energy. The ground-state can be obtained through the minimization of the total

energy E[n]. We can make use of the Lagrange Multiplier µ, with the constraint that the total

number of particle N of the system is conserved. This leads to

δ
{
E[n]− µ(

∫
n(r)dr−N)

}
(2.3.30)

which can be rewritten in form of Euler equation as

δE[n]

δn
− µ = 0. (2.3.31)

Using F[n] from Equation 2.3.29, it follows that

δE[n]

δn
− µ =

δF [n]

δn
+ vext − µ

=
δTs[n]

δn
+
δU [n]

δn
+
δExc
δn

+ vext − µ (2.3.32)

which leads to

δTs[n]

δn
+ VKS = µ. (2.3.33)

VKS is the so-called Kohn–Sham potential equals to
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VKS =
δU [n]

δn
+
δExc[n]

δn
+ Vext[n]

= VH [n] + Vxc[n] + Vext[n], (2.3.34)

where Vxc[n] is the exchange-correlation potential and VH the Hartree potential defined as

VH =

∫
n(r′)dr′

|r− r′|
. (2.3.35)

From the expression of the potential VKS, it can be seen that any change on the density/orbital

will automatically imply a change on the potential itself. Hence, the Kohn–Sham Equation 2.3.23

can only be solved self-consistently. It is also worth to note that contrary to previous approaches

such as the Thomas-Fermi model, the kinetic energy can be obtained exactly here since the

wave-function associated to the non-interacting system is a Slater determinant. Therefore, from

this point forward, the only unknown part of VKS is the exchange-correlation potential. Luckily,

the exchange-correlation energy accounts for a very small contribution to the total energy [53].

However, it has been shown that some important properties such as the binding energy, the

bandgap, the optical absorption are very dependant on the exchange-correlation energy [47, 49,

55, 66]. Hence, it cannot be neglected and finding the exact or the best approximation for the

exchange-correlation has became one of the major challenge in DFT. A discussion about the

different approximations will be the subject of the next chapter.



3. Exchange–correlation functionals:

“Jacob’s ladder” of density functional

approximations

‘‘Exchange-correlation potential is the ‘bin’ of DFT ...’’ [67]

The construction of an exchange-correlation functional is one of the most challenging problem in

DFT. Its complexity lies on the fact that it contains all unknow parts of the total energy which

are not captured by the kinetic, the Hartree and the external energy in the KS scheme. These

residuels of the real energy included [67]:

• Fermi correlation for electrons of the same spin

• Coulomb effect between electrons of opposite spin

• self-interaction correction

• difference of kinetic energy between virtual and real system ...

Over the year, attempts for improving the DFT accuracy results have led to a complete hierarchy

of exchange-correlation functionals. Perdew refers to this hierarchy as the “Jacob’s ladder” 1

starting from the “Hartree world” to the “Heaven of chemical accurary” [60,68]. An overview of

some of these exchange-correlation functionals will be given in the next sections.

1 The phrase “Jacob’s ladder of density functional approximation” does not have any religious connotation.

Any resemblance to the Babel’s Tower is purely coincidental.
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3.1 The local density approximation

The first attempt for constructing an exchange-correlation was done by Kohn and Sham (1965) [53]

based on the Thomas-Fermi-Dirac theory. The local density approximation (LDA) is considered

as the mother of all the approximations of the exchange-correlation . The main idea is to mimic

the inhomogeneous electronic system by an homogeneous electron gas with uniform density. The

advantage is that the exchange-correlation hole corresponding to the electron gas can be cal-

culated with excellent accuracy because of its local character. With that assumption, the LDA

exchange-correlation energy is

ELDA
xc [n] =

∫
n(r)εhomxc (n(r))dr (3.1.1)

where εhomxc (n(r)) is the homogeneous electron density per atom. In practice, the εhomxc (n(r)) is

decomposed into exchange and correlation terms as

εxc = εx + εc. (3.1.2)

The exchange term εx is given analytical by the Dirac’s expression [69, 70]

εDx [n] = −3

4
(
π

3
)1/3n(r)1/3 = −0.458

rs
atomic units (3.1.3)

where rs =
3

4
πn(r)1/3 is the mean interatomic distance.

The analytic expression for the correlation is not straightforward. Several approaches have been

developed including the Perdew and Zunger parametrisation [70, 71]

EPZ
c [n] = f(x) =

 A ln rs +B + Crs ln rs +Drs : rs ≤ 1

γ/(1 + β
√
rs + βrs) : rs ≥ 1.

(3.1.4)

The most accurate values of Ec[n] have been obtained from the quantum Monte Carlo simulations

of Cerpeley and Alder [72]. In reality the exchange-correlation

εxc[n] =
1

2

∫
nxc(r, r’)

|r− r’|
dr’ (3.1.5)
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is non local, but in this approximation, that aspect is not explicitly taking into account. Con-

trary to what one would have expected, LDA works quite well for many inhomogeneous system.

However, a general trends has been observed that it underestimates the lattice parameter. The

bandgap of semiconductors and insulators is dramatically underestimated. Moreover, van der

Waals interactions present layer in materials, hydrogen bonds crucial in water and biological sys-

tem are poorly reproduce within LDA [49]. This shows that there is still room for improvement

in order to account for the inhomogeneity.

3.2 The generalised gradient approximations

As mentioned in section 3.1, one of the major reason for the failure of the LDA come from the

homogeneous electron gas approximation. A natural way of improving it will be to incorporate

some inhomogeneity in the system by considering higher order terms of derivative of the density.

This is also know as the gradient expansion approximation (GEA). However, it was shown that

taking into consideration higher term of the GEA does not necessary improve the exchange-

correlation functional [53, 60, 73]. Contrary, some important properties already included in the

LDA such that the sum rules were no longer captured in the GEA [51,73]. Notwithstanding, the

lower terms of the GEA tends to preserve and to some extent improve the desired properties.

The generalised gradient approximation (GGA) include the gradient of the density to description

of the exchange-correlation functional. It can be written in the following form [49]

EGGA
xc [n] =

∫
n(r)εhomxc (n(r))Fxc

(
n(r),∇n(r)

)
dr (3.2.1)

where εhomx [n(r)] is the exchange energy per atom of the unpolarised gas and Fxc a dimensionless

parameter also know as the enhancement factor. It is generally written in term of the Seitz radius

rs and the dimensionless reduced density gradient s(r). The consideration of the gradient of the

density (∇n(r)) introduces some non locality in the model though it is hardly capture at longer
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ranges [49]. Numerous GGA flavours have been proposed with the analytic forms of Fxc making

the major the difference. These flavours include but is not limited to:

- the FT97 functional of Filatov and Thiel [74].

- the B88 functional of Becke [75].

- the PW91 exchange functional of Perdew and Wang [76].

- the LYP correlation functional due to Lee, Yang and Parr [77].

- the PBE functional of Perdew, Burke and Ernzerhof [78].

- the AM05 of Armiento and Mattssonn [79],

- the PBEsol functional of Perdew and co workers [80]

However, common GGAs do not describe long-range electron correlations that are responsible for

van der Waals interaction. F. Ricci and G. Profeta [81] demonstrated that the inclusion of van

der Waals dispersive interaction sensibly improves the prediction of the structural properties of

chalcogenides . Suggestions have been made to account for these interactions. As example,

* the DFT-D2 method of Grimme [82] where a semi-empirical dispersion potential is adding

to the conventional Kohn-Sham DFT energy.

* the vdW-DF2 functional of Langreth and Lundqvist et al [83] first proposed by Dion et

al. [84] which used a more accurate semi-local exchange functional and a large-N asymptote

gradient correction in determining the vdW kernel.

It is also important to point out that it is not the physics behind those functionals but the results

obtained from them which guide the choice of the mathematical constructs.
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While comparing GGA to LDA, the former tends to slightly improve on the binding energy, the

atomisation energy, the bond lengths, the angles and the structural energy differences [49,78,79].

Nonetheless, some important properties such that the bandgap and the accurate description of

d and f orbitals of the transition metals are still misleading.

3.3 The hybrid functionals

Hybrid functionals is an active line of research which goes beyond GGA. The KS approach has

the advantage that it is easy to manipulate because of its dependency on one parameter only

namely, the electron density. It is also computational cost effective. Unfortunately the exchange-

correlation within the KS scheme leads to a poor description of the bonding character of molecules

and intermolecular interaction [85, 86]. On the other hand and contrary to DFT, the exact

exchange can be treated with good accuracy in the HF approach. Hybrid functionals consist of

constructing an exchange-correlation which mixes a portion of the exact exchange from the HF

theory with local or semilocal exchange-correlation based on the KS scheme of DFT. Here, the

idea is to exploit the strengths of each of the two methods. This coupling was found very successful

specially on the description of the molecular properties [86]. Moreover, the hybrid methods require

a moderate computational effort to deliver results of an accuracy comparable to that of very

computational demanding methods especially for energetic and electronic properties [87]. Becke

was one of the pioneers to adopt this approach. He gave a theoretical proof of this mixing by

using the adiabatic connection formula [85, 86, 88]

Exc =

∫ 1

0

Uλ
xcdλ (3.3.1)

where λ is an interelectronic coupling strength parameter that controls the strength of the

Coulomb interaction between electron and Uλ
xc the exchange-correlation potential at a given

λ. Hence, the non-interacting KS system (λ=0) is connected to the real interacting system
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(λ=1) through a continuum of partial interacting system (0 ≤ λ ≤ 1). The constraint is that the

partial interacting system must have the same density as the fictitious/non interaction system.

Becke used the simple linear interpolation of Uλ
xc for λ = 0 and λ = 1 to come out with the first

hybrid functional, namely, the half-and-half functional expressed as [85, 86, 88]

Exc =
1

2
U0
xc +

1

2
U1
xc (3.3.2)

where U0
xc is the exchange-correlation of the KS non-interacting system and U1

xc that of the real

system. In spite of the empirical character of this functional, it improves significantly on the

atomisation energy and ionisation energy of many molecular system [86]. Another empirical and

successful hybrid functional is the B3LYP functional

EB3LY P
xc = 0.8ELDA

x + 0.2EHF
x + 0.72∆EB88

x + 0.19EVWN3
c + 0.81ELY P

c (3.3.3)

of Stephens et al [89] where EB88
x Becke’s gradiant, EVWN3

c the Lee-Yang-Parr correlation en-

ergy [77] and ELY P
c the Vosko-Wilk-Nusair correlation functional III [90].

Efforts have also been made to develop parameter-free hybrid functional. As example the PBE0

hybrid functional

EPBE0
xc = aEHF

x + (1− a)EPBE
x + EPBE

c . (3.3.4)

Here the mixing coefficient of the exchange functional was found to be equalled to 1
4

using

the perturbation theory [88, 91]. However, this functional has been found to be computational

demanding because of the slow decay of the exchange at long-range distance [88]. Thus, Heyd

et al [91] suggested to use the error function erf to split the Coulomb operator into short-range

(SR) and long-range (LR) components:

1

r
=

1− erf(ωr)

r︸ ︷︷ ︸
SR

+
erf(ωr)

r︸ ︷︷ ︸
LR

(3.3.5)
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where ω is an adjustable parameter which governs the extent the SR interaction. Subsequently,

this led to the well-known HSE functionals [88, 91]

EHSE
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (3.3.6)

In practice, the HSE functionals yield satisfactory results for solids [1]. We will be using it widely

in Chapter 7 to calculate the bandgap and optical properties of the chalcopyrites AgAlX2 (X =

S, Se, Te)

3.4 The meta GGAs : the modified Becke Johnson poten-

tial

The idea beyond meta GGA is to develop new functional that could incorporated additional non

local information. Here the kinetic energy density (Laplacian of the density) is included in the

expression of the exchange-correlation. As example of those functionals, we have:

- the TPSS and the RTPSS developed by Sun et al. [92].

- the M06L of Zhao and Truhlar [93].

- the new modified Becke Jonhson (MBJ) potential recently implemented by Tran and

Blaha [94].

We are going to stress on the MBJ since it will be widely used in our work. The MBj was

developed by Tran and Blaha [94] for the aims of getting a functional which could be more

accurate than the GGAs, but computationally less demanding than HSE. The MBJ potential is

defined as:

vMBJ
x,σ (r) = cvBRx,σ(r) + (3c− 2)

1

π

√
5

12

√
2tσ(r)

ρσ(r)
, (3.4.1)
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where vBRx,σ(r) is the Becke-Roussel potential, ρσ(r) and tσ(r) are the electron and the kinetic en-

ergy densities. The c parameter depends on the unit cell volume and some free parameters whose

values are obtained according to a fit to experimental data. In general MBJ is very accurate

for the electronic structure calculations of most semiconductors and insulators. Unfortunately,

it looses some fundamental properties of an exchange-correlation although they usually give ac-

curate bandgap. In fact, in the construction of the exchange-correlation, the energy functional

is approximated and the potential is then determined as a functional derivative of the energy

functional, Vxc =
(
δExc[n]
δn

)
. The MBJ potential was originally constructed as an approximate

potential itself [94]. In such cases, it it suggested to use the van Leeuwen-Baerends line inte-

gral [95] or the Levy-Perdew virial relation [96] to obtain the energy. Recently, Gaiduk et al.

showed that the Becke Jonshon potential doest not satisfy those conditions and therefore is not

a functional derivative [97].

3.5 Can DFT do everything?

As establish by Hohenberg, Kohn and Sham, DFT is an exact theory for the ground-state prop-

erties. DFT has been very successful for describing ground-state properties such as lattice pa-

rameters, equilibrium volume, cohesive/formation energy, bulk modulus, elastic constants,...etc.

However, system with d and f orbitals are usually well described within the DFT+U [98], but the

determination of the U parameter is not straightforward. Most often, it is fixed with respect to

the experimental results and therefore cannot be used for hypothetical systems. When it comes

to excited state properties, DFT rarely gives reliable results. As illustrate in Figure 3.1, there is a

large discrepancy between the experimental and the calculated the bandgaps of semiconductors

and insulators. Accurate optical properties are also not directly accessible from DFT calculation.

For example, the onset of the absorption of silicon from random phase approximation (RPA) [101]

is underestimated as shown in Figure 3.2. Moreover, the amplitudes and the positions of the peaks
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Figure 3.1 Experimental versus calculated LDA bandgaps for some sp compounds [99, 100].

are misleading.

Most of these shortcomings with DFT are related to the innacuracy of the KS formalism for

describing the bandgap. Let us recall the notion of fundamental gap. Strictly speaking, the

fundamental gap is the difference between the lowest conduction band energy and the highest

valence band energy of a system [63]. Experimentally, one can get access the fundamental gap

from photoemission and inverse photoemission measurements. Here, the fundamental gap is

defined as the difference between the energy for adding and subtracting an electron from the

neutral N-particles ground-state [51, 63].

Eg = (EN+1 − EN)− (EN − EN−1) . (3.5.1)

Typically, the energy required to remove an electron from a neutral system is the ionisation energy

I = (EN−1 − EN) and that for adding an electron is the electron affinity A = (EN − EN+1).



Section 3.5. Can DFT do everything? Page 32

Figure 3.2 Optical absorption of silicon from the experimental measurement (EXP) and the DFT-LDA

calculations within the random phase approximation (RPA). The image from taking from Ref. [99,100]

The fundamental gap can therefore be rewritten as

Eg = I − A. (3.5.2)

These energies also correspond to the lowest unoccupied molecular orbitals (LUMO) and the

highest occupied molecular orbitals (HOMO). It follows that the fundamental gap is the energy

difference between the (N+1)th KS orbital of a (N+1)-particles system
(
εKSN+1(N + 1)

)
and the

Nth KS orbital of a N-particles system
(
εKSN (N)

)
[46, 63]:

Eg = εKSN+1(N + 1)− εKSN (N). (3.5.3)

This expression is based on the fact that the electron affinity of the N-electron system is equal

to the first ionisation energy of an (N+1)-particles system (AN = IN+1). For the KS system of
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N non interacting particles, the bandgap is defined as

EKS
g = εKSN+1(N)− εKSN (N) (3.5.4)

where εKSN+1(N) is the (N+1)th orbital of the N-particles system. Combining equation (3.5.3)

and equation (3.5.4), the fundamental gap is related to of KS gap through

Eg =
[
εKSN+1(N)− εKSN (N)

]
+ εKSN+1(N + 1)− εKSN (N) = EKS

g + ∆xc. (3.5.5)

∆xc is the missing quantity in the KS approach. One would say that the KS energy under-

goes a jump by a constant when crossing integer particle numbers (from N to N + 1). This

was shown by Perdew et al. and it is known as the derivative discontinuity of the exchange-

correlation functional [102–104]. Thus, the KS eigenvalues are different from the excitation

energies. The fundamental gap can be obtained in this formalism through the knowledge of the

exact exchange-correlation energy and potential. The search of the exchange-correlation func-

tional has led to the Jacob’s ladder as mentioned previously. Each of these functionals have its

strength and weakness especially when it comes to excited properties. Even the HSE functionals,

very powerful for calculations of the bandgaps, fails to predict the electronic properties of small

gap transition metal oxides such as VO2 [105]. Hence, there is a need to go beyond DFT for the

description of the excited state properties. Time-dependant DFT and many-body perturbation

theory (MBPT) are two of the alternative approaches to overcome these limitations. In our work,

we adopt the MBPT and it will be the subject of the next chapter.



4. The Many-body pertubation theory

‘‘Perturbation theory starts from what is known

to evaluate what is not known, hoping that

the difference is small ...’’ [106]

The ground-state total energy is sufficient for the study of structural properties, but we cannot

rely on it for the determination of the excited state properties. This is due to two main reasons:

• the KS DFT scheme usually underestimate the fundamental bandgaps.

• the Fermi’s golden rule [99] in the independent particle picture is not reliable for calculating

the absorption spectra as illustrated in Figure 3.1.

It is therefore necessary to go beyond DFT to get access to an accurate description of excited

properties. A successful method to achieve it is the many-body pertubation theory (MBPT) based

on Green’s function and quasiparticle concepts. Accurate fundamental bandgaps are usually

obtained at the GW level [107–110] while for optical absorption, it is necessary to take into

account electron-hole interactions which can be done by solving the Bethe Selpeter Equation

(BSE) [111,112]. The focus in this chapter is to describe the notion of the Green’s function, the

concept of the self energy and GW approximation, then end up by giving an overview of the BSE.
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4.1 The Green’s function and perturbation theory: the

self-energy

The Green’s function is a mathematical tool to solve partial differential equations. In quantum

physics, the Green’s function can be used to solve Schrödinger-like equation

[H(r)− E]ϕ(r) = 0, (4.1.1)

where H(r) is a Hermitian operator. The Green’s function is defined as the solution of the

equation [113]

[H(r)− E]G0(r, r’, E) = −δ(r− r’), (4.1.2)

with δ(r− r’) the Dirac’s delta function. The Green’s function G0(r, r’, E)1 satisfies exactly the

same boundary conditions as the wave-function in Equation 4.1.1. For an N electron system, the

one particle Green’s function is defined as [46]:

G(xt, x′t′) = −i〈N |Tϕ(xt)ϕ†(x′t′)|N〉 (4.1.3)

where T is the time-ordering operator, |N〉 is the N -electron ground-state and ϕ(xt) and ϕ†(x′t′),

the annihilation and creation field operators respectively. x stands for the spatial r and spin σ

coordinates (x = (r, σ)). G(xt, x′t′) can be interpreted as the probability amplitude for the

propagation of an additional electron from (x’,t’) to (x,t) in a many-body electron system. In

reality, the real wave-function describing a many-body system contains much more information

than the Green’s function itself. But, the Green’s function has the advantage that it can easily

provide useful information directly measured in experiments, such as the inverse photoemission

and the direct photoemission experiments [110]. The information about single particle spectra is

1The notation G0 referring to an unperturbed system by apposition to a perturbed system which will be

introduced later.
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contained in the one electron Green’s function, whereas the electron-hole properties are described

by the two-electrons Green’s function [46]. The single particle Green’s function can be written in

spectral representation in terms of occupation numbers and excitation energies

fn(x) = 〈N |ϕ(x)|N + 1, n〉, εn = E
(n)
N+1 − E

(0)
N if εn > µ (4.1.4)

fn(x) = 〈N − 1, n|ϕ(x)|N〉, εn = E
(0)
N − E

(n)
N−1 if εn < µ (4.1.5)

as:

G(x, x′, ω) =
∑
n

fn(x)f ?n(x′)

ω − εn − iη sgn(µ− εn)
(4.1.6)

with µ the Fermi energy and η is a positive infinitesimal. The Green’s function is then well defined

by Equation 4.1.3 and 4.1.4, but it is still not straightforward to be obtained since the N-electron

interacting ground-state |N〉 is in principle not known. Let us assuming h0 the Hamiltonian of

a non interacting electron system and G0 the Green’s function associated to it. The equation of

motion and the spectral function are respectively[
i
∂

∂ti
− h0(x1)

]
G0(x1, t1, x2, t2) = δ(x1 − x2)δ(t1 − t2) (4.1.7)

and

A(x1, x2, ω) =
∑
i

φ(x1)φ†(x2)δ(ω − εi) (4.1.8)

where φ is the independent particle eigenstate and εi the eigenvalue. For the interacting system,

the equation of the motion[
i
∂

∂ti
− h0(x1)

]
G(1, 2) = δ(1, 2)− i

∫
d3v(1, 3)G2(1, 3, 2, 3+) (4.1.9)

depends on the two particles Green’s function G2 which involves a four field operators

G2(1, 2, 3, 4) = (−i)2〈N |T
[
ϕ(1)ϕ(2)ϕ†(4)ϕ†(3)

]
|N〉 (4.1.10)
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with 1 = (x1, t1) and 1+ = (x1, t1 + δ) where δ a positive infinitesimal number added to the

time variation. The two particle Green’s function G2 itself depends on a three particle Green’s

function G3 and G3 will also depend on G4, hence forming a hierarchy of equations involving

Green’s functions of increasing order: G2, G3, G4, . . .. However, this reformulation in terms

of Green’s functions does not provide a straightforward answer to the many-body interacting

problem. One common practice in Quantum Mechanic is to evaluate such operator using the

perturbation theory. Here, the Green’s function G associated to the interaction system is obtained

by successive approximation as [113]

G (r, r′, E) = G0 (r, r′, E) +

∫
G0 (r, r′′E)V (r′′)G0 (r′′, r′, E) dr′′+∫

G0 (r, r′′, E)V (r′′)G0 (r′′, r′′′, E)V (r′′′)G0 (r′′′, r′, E) dr′′dr′′ + . . . (4.1.11)

generally termed as Dyson equation [46, 49, 60, 110, 113, 114] where G0 refers to the Green’s

function of the unperturbed system. It can also be written in its simplest form as

G = G0 +G0V G. (4.1.12)

It is worthy to point out that in order to use the perturbation theory, the perturbative term V

must be very small as compared to other terms of the Hamiltonian. Looking at this definition, one

question that one might ask is, can this approach be used for solving the many electron problem

where the electron-electron interaction is considered as the perturbative term? Unfortunately,

it is known that the bare Coulomb interaction is very strong especially in the region close to

the nuclei. Hence, the pertubative approach cannot be satisfactory in describing the problem

as defined. However, it is also known that systems of interacting particles can be described in

term of quasiparticles [114]. The quasiparticle (QP) arises from the fact that when an electron

(bare particle) is moving through the system, it repels other electrons and is surrounded by a

positive polarisation cloud. The Coulomb interaction between electrons is then screened by the

correlation motions of other electrons. The association of the screening cloud and the screened

electron form the quasiparticle (dressed particle) as shown in Figure 4.1. Hence, the bare Coulomb
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interaction V between electrons (Figure 4.2a) is replaced by a weak screened Coulomb interaction

W between quasiparticle (Figure 4.2b). The energy possesses by the quasiparticle is termed self-

energy (Σ) [114, 115] and it can be seen as the residual energy between the bare electron and

the dressed electron. Following the definition above, the one electron Green’s function and the

perturbation theory become suitable for describing the many electron interaction system. The

non interacting KS system could be taken as unperturbed (reference) system associated with

G0 and the Σ as the perturbative term. Thus, the Green’s function solution of the interaction

problem is given by the Dyson equation

G = G0 +G0ΣG. (4.1.13)

The Σ is a non-local, non-Hermitian and frequency dependent operator [114]. It contains all the

exchange and correlation effects which were not captured in the reference KS system.

Figure 4.1 Creation of a quasiparticle via interaction between an electron an its polarisation could.

The motion of the quasiparticles is governed by the equation [46]:

h0(r)ϕQP
i (r) +

∫
dr′Σ(r, r′;EQP

i )ϕQP
i (r) = EQP

i (r)ϕQP
i (r), (4.1.14)

where ϕQP
i are the QP states and EQP

i are the complex energies. This equation is known as
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Figure 4.2 a-Strong bare Coulomb interaction between electrons, b-weak screened Coulomb

interaction between quasiparticles.

quasiparticle equation. At a first glance, it is similar to the KS equation

h0(r)ϕKS
i (r) + Vxcϕ

KS
i (r) = εKSi ϕKS

i (r), (4.1.15)

where the exchange-correlation Vxc is replaced by the self-energy Σ. But the two quantities are

actually far away to be the same. Σ is a non-Hermitian, non-local and frequency dependent

operator while Vxc is a local and static operator. Moreover, Vxc is covered in the KS non-

interacting system. Important physical quantities can be extracted from this Equation 4.1.14:

The lifetime of the QP can be obtained from the inverse of the imaginary part of the complex

energy EQP
i . Many important properties of a system such transport and thermalisation can then

be determined from the QP lifetime [116]. The real part of EQP
i corresponds to the QP energy,

thus, it can provide the bandgap and bandstructure of the system. However, the challenge here

is how to calculate Σ accurately. Details about the method for obtaining Σ will be discussed in

the next section.
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4.2 The GW Approximation

Section 4.1 gives a new insight into the many electron problem in terms of the QP following the

quasiparticle equation

h0(r)ϕQPi (r) +

∫
dr′Σ(r, r′, EQP

i )ϕQPi (r) = EQP
i ϕQPi (r), (4.2.1)

where h0(r) defines the unperturbed system and Σ the perturbation term. It is common to

use the non-interacting KS system as the unperturbed system. The idea is that the exchange-

correlation potential already includes some of the exchange and correlation effects in the actual

system. Regarding Σ, since the interaction between the QP is described by the dynamically

screened Coulomb interaction W, Hedin [107] proposed that it can be expressed as perturbation

series in terms of W as

Σ = iGW −GWGWG+ . . . . . . . (4.2.2)

G and W are obtained using a self-consistent procedure from a set of Dyson-like equation also

known as Hedin’s equations [46, 114]:

P (12) = −i
∫
d(34)G(13)G(41+)Γ(34, 2) (4.2.3)

W (12) = V (12) +

∫
d(34)W (13)P (34)V (42) (4.2.4)

Σ(12) = i

∫
d(34)G(14+)W (13)Γ(42, 3) (4.2.5)

G(12) = G0(12) +

∫
d(34)G0(13) [Σ(34)− δ(34)Vxc(4)]G(42) (4.2.6)

Γ(12, 3) = δ(12)δ(13) +

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(67, 3), (4.2.7)

where Γ the vertex function is given by the variation of the inverse of G with respect to the

potential change, P the polarisation function, V the bare coulomb potential and G0 the Green’s

function of the unperturbed system. These equations are very difficult to be solve exactly. By
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truncating the series expansion from Equation 4.2.2 at the first term, we obtain the so-called

GW approximation. At this level of the approximation, the second term of Equation 4.2.7 is

neglected, i.e. Γ = δ, hence,

P (12) = −iG(12)G(21) (4.2.8)

which corresponds to the random phase approximation (RPA) for the screened Coulomb interac-

tion W. Hence, Σ becomes a direct product of G and W. Details about the practical aspect of

GW will be given in the chapter. The GW method is very efficient for calculating the fundamental

bandgap of a broad range of materials. It will be used for calculating the electronic properties

of some of the materials investigated in this work. Single particle Green’s function only provides

information on non-particle conserving excitations such as photoemission and photoabsorption.

Neutral excitations such as the excitonic effect can only be captured by two particle Green’s

function. The next section will give insight to this notion.

4.3 The two-particle Green’s functions: the Bethe Salpeter

equation

In the MBPT, charged excitations corresponding to the addition or removal of electrons from a

material are well described by using of the one particle Green’s function by means of the Hedin’s

equations at the GW level of the approximation. But, neutral excitations such as optical and

energy-loss spectra cannot be treated in the same framework since it they require the use of a

two particles Green’s function. The Bethe Sepeter Equation (BSE) has been a very successful

tool for calculating these properties. It makes use of a two particles Green’s function (Equation

4.1.10) to describe the propagation of the electron-hole pair. Moreover, in the construction of the

polarisation P, the vertex correction has to be considered. In this regard, one has to go through

the second iteration of Hedin’s equation but now considering Σ = iGW in Equation 4.2.7. This
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yields [117]

Γ(12, 3) = δ(12)δ(13) + iW (1+2)

∫
d(67)G(16)G(72)Γ(67, 3) (4.3.1)

with the assumption that

δΣ

δG
≈ iW, (4.3.2)

where W is the screened Coulomb potential based on the RPA polarisation (Equation 4.2.8)

and the change in screening due to the excitation
(δW
δG

)
is negligible. Equation 4.3.1 can be

transformed to an integral equation for polarisation by multiplying with iG(41)G(25) on the left

and integrating over d(12) :

P (345) = iG(43)G(35) + i

∫
d(12)P (312)W0(1+2)G(41)G(25) (4.3.3)

The kernel GGW of the integral in (4.3.3) can be seen as a four-point function, thus, we can also

define a four-point screened Coulom interaction as

W (1234) = W (12)δ(13)δ(24). (4.3.4)

Subsequently, Equation 4.3.3 will be transformed to a four-point integral equation [110, 118]

P (1234) = P0(1234)−
∫
d(5678)P (1234)W (5678)P0(7834). (4.3.5)

Following the description of Onida et al. in Ref [117], we define a new polarisation

P̄ = P + P v̄P, (4.3.6)

where v̄ is the Coulomb potential without long range term in reciprocal space reads

v̄G =

 0, G(q) = 0

v̄G(q) G 6= 0.
(4.3.7)
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Inserting Equation 4.3.3 in Equation 4.3.6, we arrive at the so-called Bethe Selpeter equation:

P̄ = P0 + P0KP̄ , (4.3.8)

where K the kernel of the BSE given by

K(1234) = −iδ(12)δ(34)v̄(13)− iδ(13)δ(24)W (12). (4.3.9)

P0 the polarisation function of independent quasiparticle defined as

P0(12, 1′2′) = G(1′2)G(21′). (4.3.10)

The macroscopic dielectric function εM(ω) is yielded by

εM(ω) = 1− lim
q→0

v(q)χ̂G=0,G′=0(q;ω) (4.3.11)

where χ̂(r, r′;ω) = −iP (r, r, r′, r′;ω). In partice, Equation 4.3.8 is written in the form of eigen-

values equation as [119]

(Ec,k+Q − Evck)ASvck +
∑
v′,c′,k′

〈vck|Keh|v′c′k′〉ASv′c′k′ = ΩSA
S
vck (4.3.12)

where Eck and Evk are the single particle QP energies of the conduction and valence band at a

specific k-point, AS
vck the electron-hole amplitude and ΩS the corresponding excitation energies.

Details about the practical aspect of GW/BSE as well as other properties will be given in the

next chapter.



5. Calculation Methods

The aim of this chapter is to outline the procedure used in calculations in this thesis. Some of the

aspects including, practical solution of the KS equation, geometry optimisation, thermodynamic

stability are in Appendixes A, B and C.

5.1 Electronic bandstructure and density of states

Electrons in an atom occupy a set of orbitals. Within a molecule/solid, these orbitals overlap and

form a energy band known as the fully occupied valence band and the unoccupied conduction

band. However, depending on how they overlap, some of the energy levels may be left empty.

Such forbidden regions are what are known as bandgaps. Materials are classified insulators, semi-

conductors or metal according to the size of the bandgap. For the insulators and semiconductors,

the valence band is completely filled while the conduction is empty. The insulators have bandgap

larger than 3 eV while that of the semiconductors is usually smaller. In semiconductors, some

of the valence electrons can actually move to the conductor band by small excitations. GaAs is

a typical semiconductor with a bandgap of 1.43 eV. Metals do not have a bandgap and their

conduction band is partially filled.

Bandstructure corresponds to the plot of electron energy Ek, solution to Equation A.3.2, at

different k vector (k ∈ reciprocal space). Because of the translational symmetry of the crystal, it

is advisable to plot Ek along the high symmetry point in the BZ. The number of high symmetry

k-points as well as the integration path along BZ depends on the Bravais lattices. All the k-point

paths used in our calculations were automatically generated from the AFLOW software [120].

The density of states (DOS) represent the number of states which can be occupied at each

44
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energy level. In the energy range [E,E + dE], the DOS per unit volume Ω is given as [51]

N(E) =
Ω

2π3

∫
BZ

dk δ(Ei,k − E). (5.1.1)

In the case of complex solids with different atomic species, the contribution of a given atom to

the total DOS is obtained through the projected density of states.

5.2 Optical properties: the dielectric function

The complex dielectric function ε(ω) is the fundamental quantity used to determine optical

properties of a material. It describes the response of the material to electromagnetic radiation.

When an external electric field Eext is applied to an electronic system, it creates an induced

electric field Eind within the system in such a way that the total electric field acting on the

system is

Etot = Eext + Eind. (5.2.1)

The dielectric tensor ε−1 relates the total electric field to the external field:

Etot = ε−1Eext. (5.2.2)

Subsequently, the total potential and external potential are related similarly:

Vtot = ε−1Vext. (5.2.3)

The dielectric function and its inverse can also be expressed in terms of reducible polarisation χ

and irreducible polarisation P as:

ε =
δVext
δVtot

= 1− ν δρ

δVtot
= 1− νP (5.2.4)

ε−1 =
δVtot
δVext

= 1 + ν
δρ

δVext
= 1 + νχ (5.2.5)
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where P and χ are the functional derivatives of the electronic density with respect to the total

potential and the external potential respectively. ν is the bare Coulomb kernel: ν =
4πe2

q2
. The

product of the two polarisations leads to a Dyson-like equation

χ = P + Pνχ. (5.2.6)

The response function as described above is macroscopic since it depends on the external and

the total potential which are macroscopic1 quantities. At the atomic level, the total electric field

e(r,ω)

e(r, ω) =

∫
dr′ε−1(r, r′, ω)Eext(r

′, ω) (5.2.7)

is microscopic. We then need to find a connection between the macroscopic quantities (ex-

perimentally measurable2) and the microscopic ones (obtained from ab-initio calculations). In

momentum space, the macroscopic electric field is

Etot(q, ω) = ε−1
macroEext(q, ω). (5.2.8)

Since the microscopic electric field oscillates in the scale of the unit cell in a periodic system, the

microscopic dielectric function is invariant by a translation of lattice vector R:

ε(r, r′, ω) = ε(r + R, r′ + R, ω). (5.2.9)

In general, the Fourier transform of a function g(r, r′, ω) can be written as:

g(q + G,q + G′, ω) =

∫
drdr′e−i(q+G)rg(r, r′, ω)e+i(q+G′)r′ . (5.2.10)

Therefore, in momentum space, Equation 5.2.7 becomes:

e(q + G, ω) =
∑

G′

ε−1
G,G′

(q, ω)Eext(q + G′, ω) (5.2.11)

1 The total macroscopic electric field follows the periodicity of the external perturbation.
2The macroscopic quantities directly measured in spectroscopy experiments included the electron energy Loss

spectrum(EELS), the absorption, etc
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where G and G′ are the reciprocal lattice vectors. The Fourier transform of e(r, ω) and Etot(r, ω)

are respectively

e(r, ω) =
∑

G

∫
BZ

dq3

(2π)3
e(q + G, ω)ei(q+G)r (5.2.12)

Etot(R, ω) =
∑

G

∫
BZ

dq3

(2π)3
E(q + G, ω)ei(q+G)R. (5.2.13)

Etot(R, ω) can be evaluated using e(r, ω) by integrating over unit cell around the position R:

Etot(R, ω) =
1

V

∫
V (R)

e(r, ω)dr. (5.2.14)

Assuming (G� q)3,

Etot(R, ω) =

∫
BZ

dq3

(2π)3
e(q, ω)eiqR. (5.2.15)

Comparing Equation 5.2.13 and Equation 5.2.15, it follows that the macroscopic averaged field

corresponds to the G = 0 component of the corresponding microscopic field [121]:

Etot(q + G, ω) = e(q, ω)δG,0. (5.2.16)

The external field can also be written as

Eext(q + G, ω) = Eext(q, ω)δG,0. (5.2.17)

Hence,

Etot(q, ω) = e(q, ω) =
∑

G′

ε−1
0G′

(q, ω)Eext(q, ω)δG′0

= ε−1
00 (q, ω)Eext(q, ω). (5.2.18)

3The assumption stands from the fact that the macroscopic field varies on a larger scale that the atomic

distance.
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Equating Equation 5.2.8 and Equation 5.2.18 leads to the connection between the macroscopic

and the microscopic dielectric function

εmacro(q, ω) =
1

ε−1
G=0,G′=0

(q, ω)
. (5.2.19)

For homogeneous system, ε−1
GG′

(q, ω) is diagonal and

εmacro(q, ω) = εG=0,G′=0(q, ω). (5.2.20)

However, in a real solid, the microscopic electric field often varies rapidly over the unit cell

compared to the external field. This is known as the local field effect [122]. As a consequence,

the off-diagonal elements of the tensor ε−1
GG′

(q, ω) are no longer equal to zero. In practice,

εmacro(q, ω) is obtained as follow :

- invert εGG′(q, ω) :→ ε−1
GG′

(q, ω),

- construct ε−1
G=0,G′=0

(q, ω) by taking the diagonal element of ε−1
GG′

(q, ω),

- invert ε−1
G=0,G′=0

(q, ω)→ ε−1
macro(q, ω).

Once the εmacro is known, the absorption (Abs) and the electron energy loss spectrum (ELLS)

are obtained as

Abs(ω) = lim
q→0
=m[εmacro(q, ω)] = lim

q→0
=m

[
1

ε−1
G=0,G′=0

(q, ω)

]
(5.2.21)

and

EELS(ω) = − lim
q→0
=m[εmacro(q, ω)]−1 = − lim

q→0
=m

[
ε−1

G=0,G′=0
(q, ω)

]
. (5.2.22)

Using (5.2.4) and (5.2.5), εGG′(q, ω) and ε−1
GG′

(q, ω) become:

εGG′(q, ω) = δGG′ − νGG′PGG′(q, ω), (5.2.23)

ε−1
GG′

(q, ω) = δGG′ + νGG′χGG′(q, ω). (5.2.24)
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Either P or χ has to be approximated in order to get εmacro. The polarisation P can be calculated

in the KS scheme as

P = χKS + χKSfxcP (5.2.25)

where fxc is the exchange-correlation kernel which expressed the change (functional derivative)

of the exchange-correlation potential with respect to the change of the density n:

fxc =
δvxc
δn

. (5.2.26)

By neglected fxc, PGG′ = χKSGG′ and Equation 5.2.23 becomes:

εGG′(q, ω) = δGG′ − νGG′χ
KS
GG′(q, ω). (5.2.27)

This approximation is known as random phase approximation (RPA). Some of our calculations

will be done at this level of the approximation.

5.3 The GW routine

The GW approximation consist of solving the Hedin’s equations (4.2). Practical implementation of

such equations is very cumbersome and approximations need to be made. There are quite different

levels of approximation starting from a non self-consistent to a fully self-consistent calculation of

the self-energy. The non self-consistent method is also known as the single shot GW (G0W0).

At this level of approximation, the Green’s function G0 is constructed from eigenvalues Ei and

orbitals ϕ of a reference system and the dynamically screened Coulomb potential W0 within the

RPA:

G0(r′, r;E) =
∑
i

ϕ(r)ϕ∗(r′)

E − Ei + iηsng(Ei − µ)
, (5.3.1)

W0(r, r′, E) =

∫
ε−1(r, r1, E)v(r, r′)dr1 (5.3.2)
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where v(r, r′) is the bare Coulomb potential and ε−1 the dielectric function as presented in

Equation 5.2.27 in momentum space. Most often, the HF and the KS system are chosen as a

reference. In our study, we employed the KS reference at the GGA-PBEsol level. In a first-order

perturbation scheme, the eigenvalues are simply obtained thanks to the evaluation of the diagonal

matrix elements [123]:

EGW
i,k = EKS

i,k + 〈ϕKSi,k | Σ(EGW
i,k )− V KS

xc | ϕKSi,k 〉. (5.3.3)

In the vicinity of the KS eigenvalues, the Σ(EGW
i,k ) is expanded at the first order of a Taylor series

as

Σ(EGW
i,k ) = Σ(EKS

i,k ) +
(
EGW
i,k − EKS

i,k

)∂Σ

∂E

∣∣∣∣
EKSi,k

. (5.3.4)

Inserting this expansion in Equation 5.3.3, the QP energies are obtained as

EGW
i,k = EKS

i,k + Z〈ϕKSi,k | Σ(EKS
i,k )− V KS

xc | ϕKSi,k 〉 (5.3.5)

where

Z =
1

1− ∂Σ
∂E

∣∣
EKSi,k

. (5.3.6)

The G0W0 method works quite well for semiconductors and insulators [124], but in some cases,

one has to go beyond this level of approximation. Different approaches can be employed here:

• use a different starting point for the G0W0 calculations such as

– choosing another approximation for exchange-correlation : LDA, GGA, .....

– LDA/GGA+U

– hybrid functionals

for a good approximation of the QP eigenvalues and states.
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• use a semi self-consistent GW (GW0) where the Green’s function is updated from a G0W0

calculation

• use the self-consistent Coulomb hole plus screened exchange (scCOHSEX) scheme and

build the single-shot GW on top of it (scCOHSEX+G0W0) [123].

The fully self-consistent GW is used rarely because of its computational cost and it does not nec-

essary lead to improvement. Generally, GW approaches lead to the improvement on the bandgaps

but not for the response function. This is due to the fact that the polarisation P = GGΓ (Γ = 1)

entering in the calculation of the dielectric function at this level of the approximation does not

incorporate the vertex correction. One has to go beyond the RPA by finding the solution of the

BSE where the electron-hole interaction is included in the polarisation through a second iteration

of Hedin’s equations.

The key quantity extracted from the BSE calculation is the macroscopic dielectric function that

reads [117, 119, 125]

εM(ω) = 1− lim
q→0

vG=0(q)
∑
λ

∣∣∣∑(vck) 〈v, k|e−iq·r|c, k〉A
(vck)
λ

∣∣∣2
Ωexc
λ − ω − iη

, (5.3.7)

where Aλ and Ωexc
λ are the exciton eigenstates and eigenvalues obtained by diagonalising the

resonant part of the two particle Hamiltonian4

Hexc,res
(v,c;k)(v′,c′;k′)

A
(v′,c′;k′)
λ = Ωexc

λ A
(v′,c′;k′)
λ . (5.3.8)

4Neglecting the coupling part of the two particle Hamiltonian is called the Tamm-Dancoff approximation [117]
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In the reciprocal space, Hexc,res written [126]

Hexc,res
(v,c;k)(v′,c′;k′)

=
(
EQP
ck − E

QP
vk

)
δvv′δcc′δk,k′ +

4π

V

∑
G,G′

[
2
δG,G′(1− δG,0)

|G|2
Bk,k
cv (G)Bk′,k′∗

c′v′ (G)

− ε−1(k− k′ + G, k− k′ + G′, ω = 0)

|k− k′ − G|2
Bk,k′

cc′ (G)Bk,k′∗
vv′ (G′)

]
(5.3.9)

= Hdiag,res +Hexc,res +HCoul,res (5.3.10)

where

Bk,k′

n n′(G) =
1

V

∫
unk(r)un′k′(r)e

iGrdr

with u the periodic part of the Bloch wave-functions and V the unit cell volume. Hdiag,res is the

diagonal term, Hexc,res the unscreened short-range exchange term and HCoul,res the Coulomb

term. From BSE calculations, excitonic effects in the optical absorption spectra of semiconductors

and insulators can be quantified. In absorption spectra, the presence of absorption peaks appearing

below the bandgap are an indication of bond excitons. In direct bandgap materials, the binding

energy of the exciton can easily be estimated as the energy difference between the position of

the exciton peaks and the fundamental bandgap estimated from GW calculations. The notions

mentioned in this chapter will be used in the Part II where we will present our results.



Part II

Results and Discussions
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6. Crystal structure description

Before going into details of the calculations, we start by giving a short crystallography description

of the structures under investigation. Chalcopyrite I-III-VI2 compounds (also termed ABC2 ma-

terials) are ternary analogues of binary II-IV zincblende materials where the group II cation in the

zincblende structure is replaced by two cations, A and B, from different groups of the periodic

table, see Figure 6.1. The presence of the two cations, A and B, induces important changes in

the properties of chalcopyrites, despite the structural similarity with the binary analogues. Many

of these differences are important in this study. In terms of structural properties, the symmetry

changes from cubic to tetragonal and the ratio η = c/2a of the lattice parameters c and a changes

from unity. This is known as tetragonal distortion [127]. Moreover, the new atomic environment

constrains the anions to adopt equilibrium positions which tend be at unequal distances from

the cations. Jaffe et al. refer to it as bond alternation and it can be measured by the anion

displacement [127].

u =
1

4
+

(
R2
CA −R2

CB

)
a2

, (6.0.1)

with RCA 6= RCB where RCA and RCB are the distances from the anion C to each of the cations

A and B respectively.

In addition to the structural changes, the bandgaps of the chalcopyrites tend to be smaller than

that of their corresponding binaries. Many authors have predicted such behaviour as a result of

crystal field splitting at the upper most valence band and hybridisation between the d-orbital of

the A cation and p-orbital from the C anion [24, 127–130]. These important changes will be

explored in our study.
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Figure 6.1 Chalcopyrite I-III-VI2 crystal structure. A(blue), B(violet) and C(grey) represent the

cations I, III and the anion VI respectively.

The crystallographic description including the space group and the space group number as well

as the prototype structure, and the identification numbers of the other structures is summarised

in Table 6.1. It is important to point out here that the choice of the phases to investigate is

based on the fact that they were previously observed in other ternary chalcogenide materials.
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Table 6.1 Crystallographic description of the chalcopyrite structures and some other phases of ABC2

materials investigated. The space group and the space group number are in square brackets while the

prototype structures are given as an example of the structures under investigation. Details about the

structures can be found using the identification numbers (IDs) from the Materials Project (MP) [131]

or the Inorganic Crystal Structure Database (ICSD) [132].

Phase Space Group MP or Prototype

ICDS IDs

chalcopyrite(CH-) I4̄2d[122] mp-19833 CuFeS2

icds-52577

orthorhombic(OR-) Pna21[33] mp-21459 β-NaFeO2

icds-51618

rhombohedral(RH-) R3̄m[166] mp-20162 α-NaFeO2

icds-32655

monoclinic C2/m[12] mp-634855 NaNiO2

icds-853177

hexagonal P3m1[156] mp-7885 LiMnSe2

icds-25356

rocksalt Fm3̄m[225] icds-165739 CuAlS2



7. Chalcopyrites AgAlX2(X= S,Se,Te)

The focus of this chapter is to investigate the structural properties of AgAlX2(X= S,Se,Te).

We shall explore the implications of tetragonal distortion and anion displacement. We also

perform a detailed study of the pressure-induced phase transition and structural stability of these

compounds. Furthermore, we explore the ability of different approximations, namely, the GGA

functionals (PBE and PBEsol), the hybrid functional HSE06, the new modified Becke-Jonshon

meta-GGA functional and the GW approximations to describe the electronic and optical properties.

Because of the presence of heavy metals such as Se and Te in the structure of these materials,

spin-orbit coupling (soc) can have an effect on the bandgap by splitting the energy levels around

the Fermi level. Thus, the impact of the soc on the electronic properties is also investigated as

well as the effect of anionic displacement on the optical properties.

We employed the Projector Augmented Wave method (PAW) [133] as implemented in the Vienna

Ab Initio Package [134] for the calculations. The exchange-correlation was approximated by the

GGAs PBE [78] and PBEsol [80], the modified Becke-Jonshon (MBJ) meta-GGA functional [94]

and the hybrid functional HSE06 with the Hartree-Fock screening parameter µ was set at 0.2

Å−1 [91]. We used a Monkhorst-Pack k-point mesh for sampling the Brillouin zone [135]. A

Γ- centered grid of 7x7x7 was chosen and leads to a total energy per atom converged to within

0.1 meV. After a series of convergence tests for the plane wave cut-off energy, 520 eV was

found to be sufficient for our calculations. The high symmetry points for plotting the band

structure and the phonon dispersion curves were generated using the online version of the aflow

software [120]. Structural optimisation can be performed efficiently with GGAs and therefore

the structural optimisation in this study was done by employing the GGAs only. To obtain

the equilibrium structural parameters, the volume and the ion positions of the crystal were fully

relaxed using the PBE and PBEsol approximations. Stability studies were performed by comparing

the cohesive energy of the chalcopyrite phase relative to five other potential structural phases

57
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of AgAlX2; the monoclinic phase with space group C2/m (No. 12), the orthorhombic phase

with space group P21nb (No 33), the trigonal phase in the hexagonal lattice system with space

group P3m1 ( No. 156), the trigonal phase in the rhombohedral lattice system with space

group R3̄m ( No. 166) and the cubic phase with space group Fm3̄m (No. 225). More details

about atomic position are given in Table 6.1. To the best of our knowledge these phases have

not yet been explored as potential stable phases in the AgAlX2 family, although other ternary

chalcogenides such as AgInX2, CuAlX2, CuGaSe2 and CuInSe2 have been predicted to exist in

these structures [136–140]. Recall that the chalcopyrite phase crystallises in a tetragonal structure

with space group I 4̄2d (No. 122). The linear response method within the density function

perturbation theory (DFPT) [141, 142] as implemented in vasp was used for the calculation of

phonon and thermal properties. The phonopy package [143] was used to extract information

from the DFPT calculations. The effect of the excitons on the optical absorption was studied by

means of the many body perturbation theory at the BSE level. The quasiparticle energies entered

into the BSE equation were obtained from single shot G0W0 and the semi self consistent GW0

calculations. 264 conduction bands were used to determine the HSE06 and PBEsol dielectric

function while about 969 bands were needed in GW calculations..

7.1 Structural properties

7.1.1 Structural optimisation

Relaxed structures were obtained after performing a relaxation of the cell volume and ionic posi-

tions until the forces were less than 0.1 eV/Å. To study the equation of state, further calculations

of the total energy at different cell volumes were carried out and the results were fitted by the

third order Birch-Murnaghan equation of state [146]. The resulting equilibrium parameters are

summarised in Table 7.1. The lattice parameter a, the tetragonal distortion η, the anion dis-
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Table 7.1 Obtained structural parameters of AgAlX2(X = S,Se,Te) compared to the available

experimental and theoretical data, PW = Present Work. *CTB stands for Conservation of Tetrahedral

Bonds. For more detail about the method, readers are referred to Ref. [127] and references therein.

Material Method a(Å) η u V0(Å3) B0(GPa) Ref.

AgAlS2

PBE 5.75 0.911 0.293 21.63 63.81 PW

PBEsol 5.66 0.911 0.288 20.69 73.78 PW

Exp. 5.72 0.885 0.290 20.86 - [144]

LDA 5.48 0.994 0.265 - - [145]

”CTB rule”* 0.288 [127]

AgAlSe2

PBE 6.04 0.919 0.285 25.28 52.94 PW

PBEsol 5.91 0.933 0.281 24.00 61.23 PW

Exp. 5.95 0.903 0.270 23.83 - [144]

LDA 5.78 0.996 0.263 - [145]

”CTB rule” 0.287 [127]

AgAlTe2

PBE 6.40 0.955 0.270 31.44 42.21 PW

PBEsol 6.31 0.953 0.265 29.91 49.83 PW

Exp. 6.29 0.940 0.260 29.31 - [144]

LDA 6.22 0.987 0.261 - - [145]

”CTB rule” 0.285 [127]

placement u and the equilibrium volumes per atom, V0, for both PBE and PBEsol show good

agreement with experimental data. For example, the PBEsol volume of 24.00Å3 of AgAlSe2 is

closer to the experimental volume of 23.83Å3 than the PBE volume of 25.28Å3. This accuracy

could be attributed to the fact that PBEsol was specially designed to correct the PBE under-

bonding for solids [80]. It is also worth noting here (see Table 7.1) that the equilibrium volume

per atom of AgAlTe2 is larger than that of AgAlSe2 which in turn is larger than the volume per

atom of AgAlS2. This can be explained by the following: In the same group of the periodic table,

the atomic radius increases with increasing atomic number. S, Se and Te belong to the same
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group; the atomic radius of Te is larger than that of Se which in turn has a larger atomic radius

than S.

The bond lengths of the chalcogenide atoms with the transition metal atoms tend to increase

with atomic radius and hence, the volume per atom of AgAlTe2 is the largest of the series.

Using the bond lengths from the relaxed structures, we estimate the anion displacement from

Equation 6.0.1. u decreases as the lattice bond lengths increase for both GGAs. The results are

consistent with the experimental data with PBEsol giving more accurate values when compared

to experiment. Jaffe and Zunger [127] used the “CTB plus η = ηtet rule” to calculate u as

seen in Table 7.1. A fairly good agreement is found for AlAgS2 while their prediction seems

to overestimate the experimental data for AlAgSe2 and AlAgTe2 . The tetragonal distortion

increases with increment of the bond lengths.

The bulk modulus B0 is defined as the resistance of a material to a uniform compression. Our

calculated results show AgAlS2 has the largest B0 of the series. Overall, the PBEsol is inclined

to increase the moduli compared to PBE. This trend is consistent with the decrease in lattice

parameters and atomic volumes when PBE and PBEsol results are compared, as mentioned earlier.

We could not find any experimental or theoretical bulk moduli for the AgAlX2 (X=S,Se,Te)

family of compounds. However, our results are in the same range as the values calculated in

Ref. [147,148] for the chalcopyrites AlCuX2. From this point forward, PBEsol results will be used

as the GGA functional in the rest of this study.

7.1.2 Phase stability

Stability can be examined in terms of the cohesive energy Ecoh, defined as the energy required

to separate atoms infinitely far apart from a solids by breaking the atomic bonds. Defined as in

Equation C.1.1, the more negative the cohesive energy, the more stable the phase. We show in

Figures 7.1a–7.1c the cohesive energy per atom versus volume per atom for the chalcopyrite and
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the other potential phases of AgAlX2 considered in this study. The chalcopyrite structure has

the lowest cohesive energy among the six phases indicating that it is the energetically favoured

structure at equilibrium. Moreover, a stable phase at a given pressure is the one with the smallest

enthalpy. Figures 7.1d–7.1f depict the enthalpy at different pressures. One can note that the

chalcopyrite phase is the most stable relative to the others at zero pressure.

The transition pressure PT is the pressure at which a structural phase transition is predicted to

occur. It corresponds to the crossing point between two phases when the enthalpy versus pressure

curves cross. From Figures 7.1d–7.1f we note that each of the AgAlX2 systems considered are

predicted to undergo a pressure phase transition. The values of PT are summarised in Table 7.2

and it can be seen that the chalcopyrite structure transforms to the trigonal R3̄m structure with

increase in pressure.
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Table 7.2 Cohesive energy Ecoh (eV) and transition pressure PT (Gpa) for various phases

AgAlX2(X=S,Se,Te). I4̄2d, R3̄m and C2/m refer to the chalcopyrite, the trigonal and the monoclinic

phase respectively.

Space group Ecoh Transition PT

AgAlS2

Fm3̄m -3.41

P21nb -3.81

P3m1 -3.77

I4̄2d -4.16

R3̄m -4.09 I4̄2d → R3̄m 2.79

C2/m -4.06

AgAlSe2

Fm3̄m -3.18

P21nb -3.43

P3m1d -3.48

I4̄2d -4.16

R3̄m -3.72 I4̄2d → R3̄m 2.46

C2/m -3.70

AgAlTe2

Fm3̄m -2.95

P21nb -3.06

P3m1 -3.18

I4̄2d -4.16

R3̄m -3.34 I4̄2d → R3̄m 2.30

C2/m -3.29
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Figure 7.1 Cohesive energy versus volume (a-c) and enthalpy versus pressure (d-f) for the chalcopyrite

(I4̄2d), the monoclinic C2/m, the orthorhombic P21nb, the trigonal P3m1, the trigonal R3̄m and the

cubic Fm3̄m.

7.2 Dynamical stability and thermodynamic properties

A supercell of 64 atoms generated from the optimized unit cell (8 atoms) was used for the cal-

culations of the force constants. The dynamical matrix is then obtained as the Fourier transform

of the force constant matrix:

Dkk′

αβ (q) =
1√

MkMk′

∑
l′

Φαβ(0k, l′k′)eiq[r(l′k′)−r(0k)] (7.2.1)

where Mk are the atomic masses. Subsequently, the normal phonon modes are computed from

the dynamical matrix by solving the eigenvalues problem [141, 143]∑
βk′

Dkk′

αβ (q)eβk
′

qj = ω2
qje

αk
qj (7.2.2)
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Figure 7.2 The phonon-dispersion curves of AgAlX2.

where q and j are the wavevector and the band index respectively. Some details about the

calculation of the force constant within DFPT can be found in Appendix C.3. Keeping in mind

that the word “supercell” mentioned above does not have anything to do with the supercell

method or direct method [149], an alternative approach to the linear response method that we

used throughout our study for the phonon calculations. The implementation of the the linear

response method (DFPT) in VASP only allows the calculation of the force constants at the

Γ point contrary to other DFT codes. phonopy then advised to use a supercell in order to

compensate for the DFT implementation in VASP.

A structure is predicted to be stable with respect to dynamical stability when no vibration modes

have imaginary frequencies. The phonon spectrum along the high symmetry points is depicted

in Figure 7.2. A careful observation shows that apart from the acoustic modes going to zero

frequencies around the Γ point, all the phonon-dispersion curves remain positive throughout the

BZ attesting to the stability of the structures. Moreover, there is not a clear limit between the

acoustic and the optical modes for all the three spectra with AgAlS2 having the highest optical

modes. Phonons contribute to a range of thermodynamic properties including Helmholtz free

energy F , entropy S and heat capacity at constant volume Cv. They can be calculated as
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function of the temperature using the following equations [143, 150]:

F =
1

2

∑
qj

~ωqj + kBT
∑

qj

ln

[
1− exp

(−~ωqj

kBT

)]
, (7.2.3)

S = −kb
∑

qj

ln

[
1− exp

(−~ωqj

kBT

)]
− 1

T

∑
qj

 ~ωqj

exp

(−~ωqj

kBT

)
− 1

 (7.2.4)

and

Cv = kb
∑

qj

(~ωqj

kBT

)2 exp

(~ωqj

kBT

)
[
exp

(~ωqj

kBT

)
− 1

]2 , (7.2.5)

where ωqj is the phonon frequency at the wavevector q and band index j. kB, ~ and T are

respectively the Boltzmann constant, the Planck’s constant and the temperature. F (T ) and

Cv(T ) are displayed in Figure 7.3 up to 500K. Inharmonic interactions are still not significant in

the range of temperature.

Many factors contribute to the heat capacity and are of varying importance. For insulators and

semiconductors, the principal contribution comes from lattice vibrations at low temperature. By

increasing the temperature, electrons get excited and their contribution cannot be neglected.

The population of electrons in the conduction band starts increasing when the thermal energy

KBT (KB, the Boltzmann constant) approaches the energy gap (KBT ∼ Eg). The maximum

temperature in our study was set at 500K which leads to a thermal energy of 0.042 eV. This

value is lower than all the calculated bandgaps (see in section 7.3). We can conclude that up

to 500K, the phonon contribution to Cv is still the most important for the compounds under

investigation.

The Helmholtz free energy is defined as F = U − TS with the internal energy U . Since the

entropy S is an increasing function of the temperature, F should decrease with increasing of



Section 7.2. Dynamical stability and thermodynamic properties Page 66

Figure 7.3 Free energy and Heat capacity of AgAlX2.

temperature. All the three compounds satisfy that condition. F (T ) does not go to zero at 0K

indicating a zero point motion in the systems. Cv(T ) increases rapidly at lower energy [0− 200K]

as predicted in the Debye model [151]. From the room temperature ∼ 300 K, it converges to a

limit close to 200 J/K.mol . This asymptotic behaviour is in agreement with the Dulong-Petit

law which states that Cv(T ) should tend to 3Rn at high temperature with R = 8.31 J/K.mol

the gas constant and n the number of atoms in the unit cell [151]. Each of our unit cells has

n = 8 atoms and leads to Cv(T ) ' 199, 44 J/K.mol which corresponds to the limit obtained in

Figure 7.3b.
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7.3 Electronic properties

Using the PBEsol optimised structural parameters, a systematic study of the density of states

(DOS) and bandstructures were carried out using the PBEsol and hybrid functional HSE06. To

address the issue of band splitting as mentioned in the introduction, we also perform a spin-orbit

coupling calculation with PBEsol. PBEsol yields direct bandgaps at the Γ point of 1.83 eV, 1.11

eV and 1.03 eV for AgAlS2, AgAlSe2 and AgAlTe2 respectively. One can note that when both

η and u decrease, the bandgap decreases as we go from S to Te. With inclusion of soc, the

bandgaps decrease by 0.01 eV, 0.07 eV and 0.11 eV respectively for AgAlS2, AgAlSe2 and AgAlTe2

as seen in Table 7.3. The bandgaps are in the same range as the previous theoretical results

[145], but underestimate the experimental bandgaps as expected. This is a well known problem

when using local and semi-local functionals. Such discrepancies come from the discontinuity of

the functional derivative of the exchange correlation in the Kohn-Sham DFT formalism [66] as

discussed in Chapter 3.

Representative graphs of both the bandstructure with and without soc and the projected density

of states (PDOS) are shown in Figure 7.5 with the Fermi level shifted to the zero. The bandstruc-

tures are calculated along the high symmetry points in the Brillouin zone. The AgAlX2 family

have different bandgaps, but the PDOS analysis shows common features. The PDOS of AgAlTe2

is displayed in Figure 7.5c. The Ag(s), X(p), Al(s) and Al(p) orbitals dominate the conduction

band. The valence band is divided into sub-bands of different width. The major contribution to

the lowest sub-band comes from the chalcogenide s orbitals. For AgAlTe2, which is representative

of the series, the region within the energy range ∼ −6.45 to ∼ −4.99 eV consists essentially of

the Al(s) orbitals. The upper valance sub-band situated in the range of ∼ −4.99 to ∼ 0 eV is

mainly due to Ag(d) and Te(p) with a strong hybridisation between the two orbitals. Hybridisa-

tion plays an important role in the bandgap reduction. In fact, the Ag(d) and Te(p) states which

form the upper most valence band repel each other. This repulsion between the two orbitals
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pushes the valence band up and therefore reduces the bandgap [127]. The higher the repulsion,

the smaller the bandgap. This hypothesis has been verified in most chalcopyrites [127, 130, 152].

A point to note here is that in the PAW method we used to perform our study, the Ag(d) orbitals

are taken as non-core states.

To evaluate the importance of hybridisation in these compounds, Mishra et al. [145] used a LDA

TB-LMTO method to study their DOSs and the bandstructures. In their first assumption, they

considered the Ag(d) states as core states. Secondly they included the Ag(d) contribution to

the bandstructure. A significant reduction of the gap of about 50% was noted. Hence, they

concluded the Ag( d) and X(p) hybridisation plays a crucial role in determining the electronic

properties.

The bandstructure of AgAlTe2 with and without soc are shown in Figure 7.5a and 7.5b. In

contrast to Figure 7.5b, the band splitting can be observed at the valence band around the Γ due

to incorporation of soc. It also contributes to the bandgap reduction as seen in Table 7.3. In

the binary zincblende compounds, Γ15 is the upper most valence band and is triply degenerate.

In chalcopyrite compounds, Γ15 is split into a non-degenerate Γ4 and doubly degenerate Γ5 band

due to the crystal field. The doubly degenerate Γ5 band is split into Γ6 and Γ7 when the soc

is taken into account as illustrated in Figure 7.6. The bandgap is reduced as a consequence of

these band splittings.

Crystal field effects can be evaluated when the soc is turned off and it corresponds to the energy

difference between Γ5 and Γ4, ∆cf = Γ5 − Γ4, as shown in Figure 7.6. Spin-orbit splitting, ∆so,

can be obtained from soc calculation using the quasi-cubic model as reformulated by Rowe et

al. [153] for the case of ternary chalcopyrite crystals:

E1,2 =
1

2
(∆so + ∆cf )±

√[
(∆so + ∆cf )

2 − 8

3
∆so∆cf

]
(7.3.1)

where E1,2 are the energies of the Γ7 levels relative to the Γ6 levels. The calculated values of ∆so

and ∆cf for the three compounds are summarised in Table 7.3. We found that all the AgAlX2
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have a negative ∆cf . It as been shown that for chalcopyrites, when η < 1, Γ4 is above Γ5

and ∆cf is negative. Moreover, ∆cf increases with increasing tetragonal distortion and anion

displacement. Previous studies have shown that ∆cf changes with respect to the amplitude of

the tetragonal distortion following the linear relation ∆cf = 3
2
b(2 − c/a) where c/a is the ratio

between the lattice parameters and b, the deformation potential [154]. Using experimental data,

Shay and Wernick [155] predicted b ' −1.0 eV for I-III-VI2 compounds. Calculated values of

∆cf using the latter relation are given in brackets in Table 7.3. They are slightly smaller than the

previous values, but follow the same trend. Experimental values are not available for comparison.

As for ∆so, all three compounds have positive values and increase with increasing atomic number

of the chalcogenide atom. Thus, the bandgap reduction is more pronounced in AgAlTe2. As in

the case of the crystal field, we could not find experimental or calculated results in the literature.

However, results for other I-III-VI2 compounds also show an increase in the magnitude of ∆so as

we go from S to Te [129, 130].
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Table 7.3 Calculated bandgap Eg (eV), crystal field splitting ∆cf (eV) and spin-orbit splitting ∆so

(eV) of AgAlX2 compared to the available experimental and theoretical data. The calculations in

Ref. [145] were performed using the tight-bonding linear muffin-tin orbital (TB-LTMO) method within

LDA. The values of ∆cf in brackets are calculated using the relation ∆cf = 3
2b (2− c/a).

PBEsol+soc refers to the PBEsol functional with inclusion of spin orbit coupling.

Compounds Method Eg ∆cf ∆so Reference

AgAlS2

PBEsol 1.83 -0.273(-0.267) PW

PBEsol+soc 1.82 0.042 PW

HSE06 3.14 PW

others 1.98 [145]

Exp. 3.13 [145]

AgAlSe2

PBEsol 1.11 -0.245(-0.201) PW

PBEsol+soc 1.04 0.204 PW

HSE06 2.7 PW

others 1.59 [145]

Exp. 2.55 [145]

AgAlTe2

PBEsol 1.03 -0.159(-0.141) PW

PBEsol+soc 0.92 0.645 PW

HSE06 2.34 PW

others 1.36 [145]

Exp. 2.27 [145]

An approach for finding a more accurate prediction of the bandgap is to carry out a hybrid func-

tional HSE06 calculation which is well known for its performance when it comes to nonmetallic

systems [91]. A comparative analysis of the HSE06 bandgap with experimental and other cal-

culated results is presented in Table 7.3. HSE06 slightly overestimates the experimental results

by about 5%, and is a considerable improvement over the dramatic underestimation of PBEsol.

To understand the influence of the chalcogenide atoms on the bandgap of these chalcopyrite

compounds, we plot in Figure 7.4 the bandgap Eg against the equilibrium volume per atom V0.
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Figure 7.4 AgAlX2 bandgap Eg against equilibrium volume per atom V0. The experimental data

(Exp.) can be found in Refs. [145, 156]

From Table 7.3, one can note that AgAlTe2 has the smallest gap irrespective of the functional

used. Moreover, it is known that the atomic volume increases down each group of the periodic

table. Meaning that as the volume of the chalcogenide atom increases, V0 increases. We can

then conclude that for the AgAlX2 compounds, the bandgap decreases with increasing volume of

the chalcogenide atom which allows a degree of bandgap tuning. In Figure 7.7 where we present

the total density of states (DOS) of the three compounds, it can be seen that HSE06 opens the

bandgap. Such modification could be attributed to the changes that occur on the orbitals around

the bandgap while going from PBEsol to HSE06. With LDA and GGA-type of functionals, the

orbitals are sometimes too delocalised and hence contribute to the narrowing of the bandgap.

This is known as delocalisation error [157]. In Cu-based and Ag-based chalcopyrites, the d states

are more localised than the p states [158]. Thus, HSE06 most likely corrects the delocalisation

of the Ag(d) states and therefore opens the gap. Hartree-Fock (HF) type of functionals are

known to localise electrons while GGA-type of functionals delocalise the electrons. By using the
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Figure 7.5 Bandstructure with (a) and without (b) soc and PDOS (c) of AgAlTe2 using the PBEsol

functional. The direct bandgap is located at the Γ point. With exception of the top valence band,

AgAlS2 and AgAlSe2 show almost identical features.

hybrid HSE06 functional which contains both GGAs and HF flavour, delocalisation and locali-

sation can cancel out and lead to an accurate description of orbitals as pointed out in previous

works [157, 159–161].

However, it is known that in first principles calculations, a balance should be found between

accuracy of the result and computational time. As we noted above, HSE overcomes the issue the

underestimation of the bandgap, but if we compare its computational cost to that of the GGA

PBEsol, it turns out that it is very expensive. Bandgaps were then calculated with the MBJ which

is known to be as less demanding as GGA PBEsol and as accurate is HSE. When comparing the

bandgaps from MBJ with those HSE06 calculations (see Table 7.4), it can be seen that MBJ

slightly underestimated the gap of AgAlSe2 and AgAlTe2 while HSE slightly overestimated the
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Figure 7.6 Manified bandstructure of AgAlX2 around the Γ point when soc is included (black) and

excluded (red). Regarding the indexation of the bands we refer to the notation for chalcopyrites used

in Ref. [24, 162, 163].

bandgaps. AgAlS2 gaps from the two functionals are in a very good agreement with those from

the experiments. Figure 7.8 shows that the bandstructures from the two functionals are very

similar. As for PBEsol, the direct bandgap observed experimentally is also predicted by these

functionals.
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Table 7.4 Comparison of the MBJ bandgaps Eg (eV) with those from HSE06 and experimental (Exp.)

data. method.

AgAlS2 AgAlSe2 AgAlTe2

MBJ 3.15 2.38 2.14

HSE 3.14 2.7 2.34

Exp∗. 3.13 2.55 2.27

∗ = Ref. [145]
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7.4 Optical properties

7.4.1 Dielectric function within the independent particle picture

We calculated the frequency dependant dielectric function within the independent particle picture

with local field effects [101]. In an anisotropic crystal, the susceptibility χ varies according

to the polarisation and propagation direction of light. It usually leads to the phenomenon of

birefringence [164]. Hence, due to the tetragonal structure of chalcopyrite crystals, we compute

the dielectric function in the xy plane (ε⊥ = (εx + εy)/2) and along the z axis (ε‖ = εz) as

shown in figure 6.1. Figure 7.9 depicts the real and imaginary parts of the frequency dependent

dielectric function from 0 to 5 eV. The optical region ∼(1.65 eV - 3.1 eV) is shaded in all the

sub-figures. At first glance, one may note a similarity between Figure 7.9a, 7.9c and 7.9e which

show the real parts for the three compounds, and Figure 7.9b, 7.9d and 7.9f which display the

corresponding imaginary parts.

The spectra show that the static dielectric function ε1(0), increases from AgAlS2 to AgAlTe2 as

reported in Table 7.5. This could be linked to the size of their respective bandgaps. In fact,

optical properties and electric properties are strongly related via the dielectric constant. The

polarisation measures the strength of the interaction between the electronic states of the valence

and the conduction bands in the presence of an external electric field. For large bandgap materials,

this interaction is limited and hence leads to a small polarisation and therefore small dielectric

constant. The smaller the band gap, the larger the dielectric constant. A careful examination

of these spectra show an upwards trend from the infrared (≤ 1.65 eV ) to the ultraviolet region

(≥ 3.1eV). With the exception of AgAlTe2, the main peaks are reached either at the edge of the

optical region or in the ultraviolet region for both approximations. It can be observed on the ε2

spectra that the fundamental transitions vary from one system to another and depend on their

respective bandgaps. These transitions are dominated by the Ag(s), Al(s/p) and X(p) states of
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Table 7.5 Static dielectric constant and refractive index.

AgAlS2 AgAlSe2 AgAlTe2

PBEsol HSE06 PBEsol HSE06 PBEsol HSE06

ε⊥1 (0) 6.22 4.90 7.41 5.58 9.22 6.88

ε
‖
1(0) 6.10 4.82 7.31 5.51 9.20 6.85

n(0) 2.48 (1.806)a 2.21 2.72 (1.971)a 2.35 3.03 (2.168)a 2.62

a = Ref. [156]

the conduction band and the Ag(d) and X(p) states of the valence band.

A reduction of the intensity of the peaks and a blue-shift are also observed in the HSE06 compared

to PBEsol. This seems to be a general trend when it comes to the calculated ε(ω) using hybrid

functionals. We could not find in the literature any previous study carried out for the AgAlX2

(X=S,Se,Te) family of compounds using GGAs or beyond GGA methods. However, calculations

and experiments done on other chalcopyrites and quaternary compounds based on chalcogenides

suggest that the dielectric function peaks obtained with hybrid functionals match the experimental

results better than those from GGA functionals [25, 165, 166].

One can also note that the main peaks of ε1(ω) increase in intensity, and shift towards lower

energies as we go from AgAlS2 to AgAlTe2 independent of the functional used. Jayalakshmi et

al. [156] studied the optical properties of these compounds using LDA and reported different

values of ε1(0), but with the same trend from AgAlS2 to AgAlTe2. We attribute the difference

to the functional used. In spite of having the smallest ε2 onset, AgAlTe2 has the highest peaks

with the PBEsol one occurring in the optical range.

A number of quantities which also reflect the interaction of a material with electromagnetic

radiation can be extracted from the dielectric function. We calculated the absorption coefficient

α(ω) and the refractive index n(ω) for the three compounds. The absorption coefficient α is the

measure of the amount of light which can be absorbed by a given medium [164]. As depicted in
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Figure 7.9 Real (ε1) and imaginary (ε2) part of the dielectric function. The dash-line represents the z

component (ε⊥) and the solid line represents the average function along x and y (ε‖ = (εx + εy)/2).

ε1 and ε2 are dimensionless quantities. Throughout the spectra, the peaks in HSE06 are higher than

those for PBEsol.
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Figure 7.10 Absorption coefficient (α) and refractive index (n). Because of the small difference

between ε⊥ and ε‖, only the average α and n are depicted here.
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Figure 7.10, HSE06 calculations predict that these materials start absorbing in the visible range,

but only a very small quantity of energy. From the PBEsol calculations, the absorption is still

moderate for AgAlS2 in the optical range while AgAlSe2 and AgAlTe2 show increasing absorbtion

in the visible range. In summary the absorption is mainly in the ultraviolet range irrespective of

the functional used.

The calculated refractive index showed peaks at 3.36 eV , 3.49 eV and 3.91 eV for PBEsol and

3.06 eV, 3.19 eV and 3.59 eV for HSE06 studies of AgAlX2(X = S,Se,Te) respectively. Their

static values n(0) are also reported in Table 7.5. Experimentally, these properties have not

been determined yet, however our results are slightly larger than of those of their well known

chalcopyrite analogues Cu-III-VI2 which are used in optoelectronics devices [167,168]. The afore-

mentioned features are bandgap dependent, it is noted that the absorption threshold increases

as the bandgap increases while the zero frequency refractive index increases when the bandgap

decreases. This is consistent with observed and calculated relationships between the bandgap

and refractive index of semiconductors [169].

7.4.2 Exciton effect on the absorption

During the absorption of photons by the interband transitions, an electron and a hole are usually

created in the conduction and valence bands respectively. The Coulomb interaction between the

two particles leads to the formation of a new excitation in the crystal also know as exciton. It

has been proved that these excitons can considerably impacted the optical properties of semi-

conductor materials and therefore are very important for opto-electronic applications [164, 170].

The determination of the exciton energy has been a cumbersome task for the scientific commu-

nity. From theoretical point of view, accurate optical properties are not always directly accessible

from first-principle DFT calculations. For example the eigenvalue energies εvk and εck found in

Equation D.0.1 for calculating the absorption spectra correspond to the Kohn-Sham (KS) highest
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occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) respec-

tively. The energy difference between the HOMO and LUMO yields the KS bandgap. However,

as we pointed out early it is now well established that the KS bandgap is underestimated by more

than 50% compared to the experimental measurement. As such, there is a need to go beyond

the standard DFT in order to accurately predict the bandgap and the optical spectra. As we

saw in section 7.3, HSE06 or MBJ can reproduce the correct bandgap, but still do not take the

electron-hole interaction into account. In most chalcopyrite materials, electron-hole interactions

have not received much attention in contrast to the massive effort put into the investigation of

bandgap and electronic properties. Most of the previous works have been limited to the calcula-

tion of the dielectric response function in the independent particle picture with and/or without

local field effect [1,171,172]. This is because of the difficulty of including that interaction in the

calculations.

Excitonic effect can be captured by solving the Bethe-Selpeter Equation (BSE) [111, 112]. BSE

relies on the quasiparticle (QP) energies calculated from the GW approach [109]. The QP energies

are obtained by solving the QP equation (see Equation 4.1.14). Recall that the self-energy

Σ = iGW. (7.4.1)

contained all the exchange and correlations effects among the electrons. At the first order of

the approximation (single shot G0W0), the Greens function G is built from the Kohn-Sham (KS)

orbitals and eigenvalue energies as given by Equations 5.3.1 and 5.3.2 respectively; and Σ by

Equation 5.3.5. For the BSE calculations, a more dense Monkhorst-Pack meshes k-points of

9x9x9 and a cut off energy of 520 eV were used for sampling the Brillouin zones. Ten highest

valence bands and ten lowest conduction bands were found to be sufficient to converge the

positions of the absorption peaks.

Our results in Table 7.6 show an underestimation of the fundamental bandgap despite the large

number of empty bands included in the calculations. Similar results were found by Aguilera et
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al. [166] while studying the bandstructure and optical properties of CuGaS2. They attributed the

underestimation to the fact that an important contribution of the Cu-d electrons at the upper

most valence band leads to a strong hybridasation with the Ga-p orbitals. G0W0 is then not

capable of reproducing these behaviours. In section 7.3, we also found from the PDOS of AgAlX2

that the d and p orbitals from the Ag and chalcogenide atoms respectively were also hybridised at

the top of the valence band. Since both AgAlX2 and CuGaS2 are all chalcopyrite compounds, the

underestimation of the bandgap by G0W0 should also originated from its inability to capture the p-

d hybridisation. We therefore proceed by doing a semi self-consistent GW calculation (GW0) where

screened Coulomb interaction W0 remains at the RPA level and the Green’s function updated

by using the quasiparticle energy from the single shot calculation. The bandgaps obtained from

this approach are also summarised in Table 7.6. An agreement within 4% is found with the

experimental results. Note here that similar results on chalcopyrite materials including CuGaS2

were obtained using the self-consistent Coulomb Hole Screened Exchange followed by G0W0 (sc-

COHSEX+G0W0) [173]. Moreovever, accurate QP energies are sometime obtained at the G0W0

if the HSE06 was used as the reference system These procedures have successfully been used

by some authors [166, 173–176], but we find them too demanding in terms of computational

resources for the cases of the systems of interest.

We present in Figure 7.11 the bandstructure from PBEsol and GW0 of AgAlS2. The two other

structures (not shown here) have similar bandstructures. GW0 approximation shows a direct

bandgap at the Γ in accordance with PBEsol, HSE06, MBJ and the experimental data [145].

The main difference between the bandstructure is the shift from 1.83 eV to 3.22 eV at the Γ.
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Table 7.6 Bandgap from different methods, position of the exciton peak from BSE calculations and

binding energies of AgAlX2. All the quantities are gievn en eV. k and l refer to Ref. [1] Ref. [145]

respectively.

AgAlS2 AgAlSe2 AgAlTe2

PBEsolk 1.83 1.11 1.03

G0W0 2.67 2.12 2.08

GW0 3.30 2.46 2.22

EXP.k,l 3.13 2.55 2.27

First BSE peak 3.09 2.26 2.07

Binding energy 0.21 0.20 0.15
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Figure 7.11 Representative bandstrcture of AgAlX2 from PBEsol and GW0 calculation: Case of

AgAlS2.
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Figure 7.12 AlAgS2 imaginary part of the dielectric function ε2 from GW and BSE calculations.

The neutral electron-hole interaction was included in the calculation of optical absorption by

solving the BSE equation numerically . We presented in Figure 7.12 the imaginary part of the

dielectric ε2 from GW and BSE of AlAgS2. Experimental data are not available for comparison.

The onset of from GW lies at 3.19 eV, 2.44 eV, and 2.10 eV for AgAlS2, AgAlSe2 and AgAlTe2

respectively. The values are in the range their respective bandgaps as seen in Table 7.6. In

Figure 7.12 we observe that the electron-hole interaction leads a reduction in the onset of the

absorption with a peak appearing in the bandgap attesting to the presence of bound excitons

in these materials. In direct bandgap materials, the binding energy of the exciton can easily be

estimated. Here, electrons and holes have the same group velocity (vge=vgh=1
~
∂E
∂k

) since they

appear at the same k vector [164]. Under these conditions, the exciton energy can be estimated

as the difference between the bandgap from GW and the position of the first excitonic peak from

BSE [177]. As summarised in Table 7.6, the excitonic binding energies range from 0.15 eV for

AgAlTe2 to 0.21 eV for AgAlS2. Comparing the bandgaps and the excitonic binding energies, it

we can note that the bigger the bandgap, the bigger the excitonic binding energy. Hence, the

excitonic binding energy should be related to the nature of the chalcogenide atom present in the
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chalcopyrites.

7.5 Summary

The aim of this chapter was to provided a detailed study of the structural, electronic and optical

properties of ternary compounds AgAlX2 (X=S,Se,Te). Thermodynamic and phase stability stud-

ies revel that the chalcopyrite structure is the favoured phase of these materials at zero pressure

and temperature. The GGA-PBEsol functional gives structural properties closer to the experimen-

tal values when compared to the results of PBE. Tetragonal distortion and anion displacement

were calculated and we found them to be the cause of the crystal field splitting. Reduction of

the bandgap and band splitting around the Γ in the Brillouin zone was noted when spin-orbit

coupling was included in our study especially in the case of AgAlTe2. The HSE06, MBJ and GW0

bandgaps were in agreement with experimental results. Optical absorption spectra and optical

gaps were determined from the solution of the Bethe-Selpeter Equation (BSE) in the Tamm-

Damcoff approximation. It predicted the existence of bound excitons in these compounds and

the exciton bounding energies were also estimated.



8. Structural stability and elastic,

mechanical, electronic and optical

properties of AgInS2 under pressure

In this chapter, we are interested in the effect of pressure on different properties of AgInS2

materials. Initially, our intentions was to study the chalcopytite phase only. Motivated by the

stability study on AlAgX2 where we found that apart from the chalcopyrite phases, there were

other low pressure potential phases which might also have interesting properties. We therefore

decided to carry out a detailed study on other phases of AgInS2.All the phases listed in Table

6.1 are considered in the study looking for the most favoured phase at a given pressure. As we

mentioned in Chapter 7, the choice of these structures is based on previous investigations on other

families of ternary chalcogenides. The chalcopyrite, the orthorhombic and the rhombohedral-type

structures have been observed experientially while the others are hypothetical structure. We

used the GGA-PBEsol generalised gradient approximation (GGA), the hybrid functional HSE06

and the modified Becke-Johnson potential (MBJ) as exchange-correlation interaction. The GW

method [109] at the G0W0 and GW0 level was also used to evaluate the bandgaps. From

the previous chapter, we found that GGA-PBEsol is very accurate for describing the structural

properties. Hence, we also used it here for the same purposes. Plane waves with kinetic energy

up to 550 eV were considered in the calculations. For the sampling of the Brillouin Zone (BZ),

Monkhorst-Pack [135] k-point meshes with grids of 7x7x7 were used for the tetragonal and the

rocksalt phase while 6x6x6 and 4x9x8 were used for the orthorhombic and the monoclinic and

the phases respectively. For the hexagonal and the rhombohedral cells which require the inclusion

of the Γ point in order to avoid broken symmetry, the Gamma centered k-point grids centered

7x7x7 and 8x8x6 were used. These parameters were found to be sufficient for energy convergence

86
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to within 0.1 meV per atom. Full ionic relaxation of all the structures were performed until the

total energy was converged to within 0.1 meV. To remain in the harmonic approximation, small

distortions of ±0.01Å were allowed for the elastic constant calculations. Force constants were

calculated using density functional perturbation theory (DFPT) [142] as implemented in the

vasp code. Phonon dispersion relations were obtained from the force constants by means of the

phonopy code [143, 178].

8.1 Structural and energetic properties

We started by performing full relaxation calculations of volume, shape and atomic positions for all

the structures while keeping the lattice type constant. Then a set of self-consistent calculations

at different volumes spanning each predicted equilibrium volume V0 were carried out and a third

order Birch-Murnaghan [146] equation of state (eos) was fitted to the obtained energies as

depicted in Figure 8.1. Information extracted from the eos fits are summarized in Table 8.1.

Comparison to other calculated and experimental results shows that the lattice parameters and

equilibrium volume are in general agreement with our results. As we pointed out in Chaper 6,

being ternary analogues of the binary zincblende structures, chalcopyrite structures are defined

by two extra parameters in addition to the lattice parameters, known as tetragonal distortion

η = c/2a and anion displacement u [24]. We obtained η = 0.97 and u = 0.25 which are in

agreement with experimental data ( η = 0.96 and u = 0.25) [24]. The equilibrium volume V0 of

the orthorhombic (OR-AgInS2) structure is slightly larger than that of the tetragonal chalcopyrite

phase (CH-AgInS2). This trend is confirmed by the experimental results. From Table 8.1, it can

also be seen that at zero pressure and zero temperature, the bulk modulus for the OR-AgInS2

structure is the smallest while the rocksalt structure has the largest bulk modulus of the calculated

values. The bulk modulus B0 of CH-AgInS2 (62 GPa) is in the range of the previously calculated

B0 of 62 and 65 GPa [179]. We could not find any theoretical or experimental values for other
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phases for comparison.
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Figure 8.1 (Color online) Cohesive energy versus volume (a) and enthalpy versus pressure (b) for the

chalcopyrite (I4̄2d), the monoclinic C2/m, the orthorhombic Pna21, the trigonal P3m1, the trigonal

R3̄m and the rocksalt Fm3̄m structures.

At zero pressure and temperature we analyse the stability on the basis of the cohesive energy

(Ecoh) and formation energy (Ef ). The Ef is the energy difference between the cohesive energy

of a solid and that of the its constituents in solid form [183,184]. Gerould et al. [185] noted that

in addition to OR-AgInS2, the binary compounds Ag2S and In2S3 could be present during the

synthesis of CH-AgInS2. We investigated the possible decomposition of AgInS2 into the stable

binary compounds Ag2S [186] and In2S3 [187, 188] according to the chemical reaction

AgInS2 →
1

2
Ag2S +

1

2
In2S3.
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Table 8.1 Lattice parameters a, b, c are given in Å, the volume per atom V0 in Å
3
, the bulk modulus

B0 in GPa, the gravimetric density ρ in g.cm−3 and the cohesive energy per atom Ecoh and the

formation energy per atom Eform in eV. All these parameters are from zero pressure and zero

temperature calculations. The present results are compared to previous calculated (Calc.) and

experimental data (Exp.) where available.

Phase a b c V0 ρ B0 Ecoh Efor

tetragonal (CH) 5.80 5.80 11.33 23.86 4.99 62.40 -3.572 -0.126

5.87a 5.87a 11.20a 24.17a

5.81b 5.81b 11.21b

5.80c 5.80c 11.35c 65c,62c

orthorhombic (OR) 6.69 6. 98 8,18 23.87 4.98 61.43 -3.570 -0.124

6.69a 6.99a 8.27a 24.21a

6.68 b 6.99b 8.25b

6.81d 7.14d 8.33d

rhombohedral (RH) 3.76 3.76 18.75 19.15 6.21 82.94 -3.521 -0.075

3.76e 3.76e 19.35e

monoclinic 6.55 3,76 6.59 20.02 5.94 65.78 -3.481 -0.035

hexagonal 4.48 4.48 5.30 23.02 5.17 63.96 -3.378 +0.068

rocksalt 6.61 6.61 6.61 18.13 6.58 87.35 -3.058 +0.388

a Exp. [180]

b Exp. [179]

c Calc. [181]

d Calc. [182]

e Exp. [17]
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Mathematically, the Ef is

Ef (InAgSsol
2 )) = Ecoh(AgInSsol

2 )

−

[1

2
Ecoh(Ag2Ssol) +

1

2
Ecoh(In2Ssol

3 )
]

4
.

(8.1.1)

The lower the cohesive or the formation energy, the more stable the structure. As can be

seen in Table 8.1, the cohesive energies are ordered as follows: Ecoh(I 4̄2d) < Ecoh(Pna21) <

Ecoh(R3̄m) < Ecoh(C2/m) < Ecoh(P3m1) < Ecoh(Fm3̄m), suggesting that CH-AgInS2 is the

most stable structural phase of the compounds at zero pressure and temperature. It is also

worth noting that CH-AgInS2 and OR-AgInS2 are energetically competitive phases with a well

converged energy difference of about 20 meV. This is an indication that care should be taken

while synthesising any of the two phases. The formation energies show the same trend as the

cohesive energies. The rocksalt and the hexagonal phases have positive formation energies which

indicate that, should it be possible to synthesise these phases, they will at best be meta-stable

and are likely to dissociate into their binary solids.

An appropriate method for analysing the pressure phase transition at zero temperature is to make

use of the enthalpy-pressure relation: H = Ecoh+PV. A pressure phase transition occurs between

two phases when, at a given pressure Pt, the enthalpy-pressure curves cross. The stable phase is

the one with the lowest enthalpy. Figure 8.1b depicts the enthalpy versus pressure curves for all

the structures under investigation. The competition between CH-AgInS2 and OR-AgInS2 can be

noted once again, but CH-AgInS2 remains the zero pressure phase as previously predicted from the

eos. There is a transition from CH-AgInS2 to the rhombohedral (RH-AgInS2) phase at around

1.78 GPa. In the early seventies, Range et al. [17] investigated high pressure transformations of

ternary chalcogenides and observed a high pressure rhombohedral phase of AgInS2 at 2 Gpa, but

their study was limited to structural properties. To the best of our knowledge further studies on

this phase have not been performed so far neither theoretically nor experimentally. The volume

of the two phases as a function of pressure is shown in Figure 8.2. A volume collapse of about

19.30% is observed at this transition pressure. The relaxed lattice parameters of RH-AgInS2
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at the transition pressure (1.78 GPa) are a = 3.74Å, c = 18.55Å which are within 5% relative

error of the experimental values (a = 3.76Å, c = 19.35Å) obtained at 2 GPa [17]. A number

of studies suggested the existence of a high pressure rocksalt phase in chalcopyrite CuAlX2(X

= S,Se,Te) materials. Using an energy dispersion technique, Werner et al. [189] found that the

chalcopyrites CuGaS2 and AgGaS2 undergo pressure-induced phase changes from chalcopyrite

to a NaCl type structure at pressures near 15 GPa. DFT calculations by Addellaoui et al. [18]

predicted a structural high pressure phase transition of CuAlX2(X = S,Se,Te) materials from the

chalcopyrite phase to the rocksalt-type structure. We therefore extended our investigation up

to 100 GPa to search for a possible high pressure rocksalt phase of AgInS2. We found that the

rhombohedral phase has the lowest enthalpy between 1.78 GPa and 93.5 GPa where a structural

phase transition from a rhombohedral to a rocksalt phase takes place, as seen in Figure 8.1b.

Such a high transition pressure is practically difficult to achieve, therefore we focus on the low

pressure (0 - 2.5GPa) phases, namely the chalcopyrite, the orthorhombic and the rhombohedral

phases.

8.2 Dynamical and mechanical stabilities

We study the dynamical stability by investigating phonon dispersions at different pressures. Ac-

curate force constants and phonon dispersion relations were computed using 2x2x2 supercells1

based on the optimised structures at a given pressure using the vasp DFPT interface to the

phonopy code. A structure is dynamically stable when all the normal vibration modes have

real and finite frequencies. Phonon dispersion curves along the high symmetry directions in the

BZ are shown in Figure 8.3. The dispersion curves of CH-AgInS2 and OR-AgInS2 are above

zero frequency as depicted in Figures 8.3a, 8.3d and 8.3f at 0, 1.78 and 2.5 GPa respectively.

1As we mentioned early, supercell does not mean we employed the direct method. For more details, refer to

Chapter 7 and Appendix C.3
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Figure 8.2 Variation of the relative volume with pressure. V0 is the equilibrium volume of the

tetragonal phase at zero pressure and temperature.

Thus they are dynamically stable at these pressures. Figure 8.3g shows the phonon spectrum of

RH-AgInS2 at 0 GPa. Vibration modes with imaginary frequencies are seen near the Γ and the

F points showing that RH-AgInS2 at 0 GPa is dynamically unstable. Negligible imaginary modes

are found at 1.78 GPa (seen in Figure 8.3h) while only positive frequencies are observed at 2.5

GPa as depicted in Figure 8.3i.
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Figure 8.3 AgInS2 phonon dispersion curves at different pressures. Negative frequencies observed

around the Γ and the F points of the rhombohedral structure at zero pressure are an indication of

instability.

Elastic constants were calculated to check for mechanical stability. Under stress, the total energy

at volume V∗, in Voigt notation, is given by [191]:

E(ε) =E(V ∗, ε = 0) + V ∗
∑
i

σiεi

+
V ∗

2

∑
ij

Cij(V
∗)εiεj +O(ε3). (8.2.1)
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Table 8.2 Elastic constants Cij(GPa), bulk moduli B(GPa), shear moduli G(GPa), Young’s moduli

E(GPa), Poisson’s ratio ν and G/B for CH-AgInS2, OR-AgInS2 and RH-AgInS2 at 0, 1.78 and 2.5 GPa.

Pres(GPa). Phase C11 C22 C33 C12 C13 C23 C14 C44 C55 C66 B G G/B E ν

CH-AgInS2 76 75 57 56 23 24 63 18 0.28 49 0.37

79c,84f 79c,97f 64c,52f 64c,61f 18c,23f 22c,28f 69c,62c 13c 0.19c 36c 0.41c

0 OR-AgInS2 97 79 84 46 46 53 13 14 15 61 16 0.26 44 0.38

RH-AgInS2 123 111 61 70 15 -20 -13

CH-AgInS2 82 80 67 64 20 23 70 16 0.22 45 0.39

1.78 OR-AgInS2 102 80 85 55 56 61 12 12 14 68 14 0.20 39 0.40

RH-AgInS2 124 124 73 78 9 -1 2

CH-AgInS2 84 82 69 67 18 22 73 15 0.20 42 0.40

2.5 OR-AgInS2 106 81 89 63 63 69 11 9 12 74 12 0.16 34 0.42

RH-AgInS2 135 124 70 73 8 5 34 91 21 0.23 58 0.39

c Calc. [181]

fCalc. [190]

where σi is the stress, εi is the strain and the Cij are the elastic constants which correspond to the

second derivative of the energy E(ε) with respect to the applied stress evaluated at V∗:

Cij =
1

V ∗

(
∂2E(ε)

∂εi∂εj

)
V ∗
. (8.2.2)

When the applied stress is hydrostatic, the Born stability criteria [192–194] must be applied to the

coefficients [195, 196]

C̃αα = Cαα − P ; α = 1, 2, . . . , 6; C̃12 = C12 + P ;

C̃13 = C13 + P ; C̃23 = C23 + P ; C̃14 = C14

(8.2.3)

Note that in absence of the pressure, C̃ij and Cij are equal. The stability conditions for a tetragonal

system are [197]:

C̃11 − C̃12 > 0, C̃11 + C̃33 − 2C̃13 > 0

C̃ii > 0, 2C̃11 + C̃33 + 2C̃12 + 4C̃13 > 0 (8.2.4)

According to Mouhat et al. [192] the necessary and sufficient mechanical stability conditions for an
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orthorhombic system are:

C̃11C̃22C̃33 + 2C̃12C̃13C̃23 − C̃11C̃
2
23 − C̃22C̃

2
13 − C̃33C̃

2
12 > 0

C̃ii > 0, C̃11C̃22 − C̃2
12 > 0, (8.2.5)

while for a rhombohedral structure the following conditions have to be satisfied [192]

C̃11 − C̃12 > 0,
(
C̃11 + C̃12

)
C̃33 − 2C̃2

13 > 0

C̃44 > 0,
(
C̃11 − C̃12

)
C̃44 − 2C̃2

14 > 0. (8.2.6)

Bulk and shear moduli can be expressed respectively as follows:

BV = 1
9

[
(C̃11 + C̃22 + C̃33) + 2(C̃12 + C̃13 + C̃23)

]
,

GV = 1
15

[
(C̃11 + C̃22 + C̃33)− (C̃12 + C̃13 + C̃23) + 3C̃ ′

]
(8.2.7)

with C̃ ′ = (C̃44 + C̃55 + C̃66).

Elastic constants and moduli are presented in Table 8.2. In order to confirm the reliability of our elastic

constants calculations, we compared our results with other calculated results for CH-AgInS2 at 0 GPa,

the only results available. We are not aware of any experimental data. Fairly good agreement is found

between our calculated elastic constants for CH-AgInS2 and those reported by Verma et al. [190]. The

notable differences could be attributed to the different calculation methods and pseudopotentials used.

The chalcopyrite structure satisfies the mechanical stability criteria as stated above at all three pressures

at which calculations were performed. For the case OR-AgInS2, the stability criteria in Equation 8.2.5 are

satisfied. Their elastic constants C11, C22, C33, C12, C13 and C23 increase with increasing pressure while

C44,C55 and C66 decrease. For the rhombohedral structure, the two first conditions in Equation 8.2.6 are

satisfied at all the pressures. At 0 GPa and 1.78 GPa, C44 <0, hence C̃44 < 0 and
(
C̃11 − C̃12

)
C̃44−

2C̃2
14 < 0. It follows that RH-AgInS2 is mechanically unstable at 0 GPa and 1.78 GPa.

Bulk moduli are also calculated and listed in Table 8.2. However, because of the instability of RH-AgInS2

at low pressure, the bulk moduli were only reported at 2.5 GPa. The bulk modulus of CH-AgInS2 is

consistent with previously calculated values. It can be noted that the bulk moduli increase with pressure
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as expected. Poisson’s ratio ν is associated with the nature of the atomic bonding. For all three

structures, ν is greater than the critical value (ν ≥ 0.25) predicting an ionic character of the atomic

bonding [198]. The G/B ratio is commonly used as a measure of brittleness and ductility of materials.

According to Pugh’s criteria [199], a typical brittle material should have G/B≥ 0.5, otherwise the

material is ductile. Overall, the structures have G/B< 0.5 indicating that the materials are ductile. The

Young’s moduli E are also reported in Table 8.2. At zero pressure, E(CH-AgInS2) > E(OR-AgInS2)

suggesting that CH-AgInS2 is stiffer than OR-AgInS2. It is also worth to note that E decreases under

the effect of pressure and at 2.5 GPa, RH-AgInS2 becomes the stiffest amongst the three structures.

8.3 Electronic and optical properties

We investigated the electronic properties by analysing the band structures and density of states (DOS).

The GGA-PBEsol predicted a zero pressure bandgaps of 0.27 eV and 0.40 eV for CH- and OR-AgInS2

respectively while RH-AgInS2 has a metallic character. These values are very small when compared to

the experimental values which are 1.86 eV and 1.98 eV respectively [200]. This is a well known problem

in the DFT community as we mentioned previously in Chapter 3; employing a semilocal functional

such as GGA-PBEsol can lead to the under-estimation of bandgaps. As in the case of AgAlX2, we

then compute the bandgaps using other functionals (see Table 8.3). Contrary to our expectations,

the HSE06, the single shot GW (G0W0) and semi self consistent GW (GW0) all underestimated the

bandgaps. Even a more dense k-points mesh and cut off energy lead to almost identical results. Similar

shortcomings have previously been raised by Bruneval et al. while studying the bandgap of copper and

indium based chalcopyrite materials [201–203]. They claimed it could be link to the inaccuracy of the

GW for describing some of the orbitals of these atoms.
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Table 8.3 AgInS2 bandgaps (eV) from different approximations. a = Ref. [200], b = Ref. [182]

CH-AgInS2 OR-AgInS2 RH-AgInS2

Exp. 1.87a 1.98b -

HSE06 0.98 1.30 0.72

G0W0 1.21 1.37 0.50

GW0 1.24 1.40 0.55

MBJ 1.73 2.08 0.95

The meta-GGA MBJ functional is also know for predicting accurately the bandgaps for a wide range of

materials [204, 205]. It predicts bandgaps of 1.73 eV and 2.08 eV at 0 GPa for CH-AgInS2 and OR-

AgInS2 respectively. These values are in the range of the experimental ones summarised in Table 8.3.

RH-AgInS2 changes from metal to semiconductor when the GGA-PBEsol exchange correlation potential

is replaced by the MBJ approximation with a 2.5 GPa bandgap of about 0.95 eV. It is important pointing

out that the meta-GGA MBJ combines accuracy and low computational cost which were missing in other

functionals. As we mentioned before, some structural measurements were done on RH-AgInS2, but we

are not aware of any previous experimental or theoretical work that determined its bandgap. We can

note in Figure 8.4 that the bandgaps of CH-AgInS2 and OR-AgInS2 increase with increased pressure

for both the GGA-PBEsol and MBJ potentials. Using GGA-PBEsol, RH-AgInS2 is not sensitive to the

effect of the pressure, remaining metallic at all pressures, but with MBJ a decrease of the bangap can

be noted. The bandstructures and the density of states (DOS) are depicted in Figures 8.5, 8.6 and 8.7.

The calculations were performed without inclusion of spin orbit coupling since it does not have a large

impact on the electronic properties of sulfur based chalcopyrite materials [1, 206]. The bandstructures

are plotted along the high symmetry directions in the Brillouin zone and show that these compounds

are direct bandgap materials. The bandgaps of CH-AgInS2 and OR-AgInS2 occur at the Γ point and

for RH-AgInS2 it is at the F point. The spin polarized DOS’s presented in Figures 8.5b, 8.6b and 8.7b

show that the spin up and spin down DOS’s are symmetric indicating that these compounds are non-

magnetic. Partial DOS show similar features for OR-AgInS2 and CH-AgInS2, but that of RH-AgInS2
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Figure 8.4 Pressure dependant bandgap of the CH-, OR- and RH-AgInS2

looks different, despite the fact that all three compounds have the same atomic coordination. We

predict from our calculations that the shortest distance between Ag and In is 4.05 Å and 3.98 Å for

CH-AgInS2 and OR-AgInS2 respectively, but for RH-AgInS2 it is more than twice as large at 9.22 Å.

This difference in the atomic environment of RH-AgInS2 could explain the contrast in the partial DOS.

For all the structures, the uppermost valence band is dominated by the Ag(d) and S(p) orbitals. The

minimum of the conduction band has mainly S(s), S(p) and In(s) character. These features are usually

observed in chalcopyrite materials [1, 127, 166].



Section 8.3. Electronic and optical properties Page 99

Γ X Y Σ Γ Σ1

KPOINTS
 (a)

−6

−3

0

3

6

E
−E

F
 [e

V]

−1 0 1
TDOS (arb. units) 

 (b)

TDOS up
TDOS down

0.00 0.03 0.06 0.09
PDOS (arb. units)

 (c)

In s 
In p 

0.0 0.2 0.4
PDOS (arb. units)

 (d)

Ag s 
Ag d 

0.0 0.2 0.4
PDOS (arb. units)

 (e)

S s 
S p 

Figure 8.5 Bandstructure, total and partial density of states of the CH-AgInS2 structure at 0 GPa.

Note that because of the small contribution to the bangap coming from the In atoms, the scale on the

x-axis was changed.
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Figure 8.6 Bandstructure, total and partial density of states of the OR-AgInS2 structure at 0 GPa.

The absorption coefficient α is a key property of a material since it measures the amount of electro-

magnetic radiation that can be absorbed by a given medium. It can be described by Beer’s law [164]:

I(z) = I0e
−αz (8.3.1)

where I0 the initial light intensity. Theoretically, it can be obtained from the frequency dependent
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Figure 8.7 Bandstructure, total and partial density of states of the RH-AgInS2 structure at 2.5 GPa.
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Figure 8.8 Absorption coefficient of the chalcopyrite structure (I 4̄2d) and the orthorhombic

structure(Pna21) at 0 GPa and rhombohedral structure(R3̄m) at 2.5 GPa.

dielectric function using the relation

α(ω) =
√

2ω

[(
ε2

1(ω) + ε2
2(ω)

) 1
2 − ε1(ω)

] 1
2

(8.3.2)

where ε1 and ε2 are respectively the real and the imaginary part of the dielectric function. Calculations

for the absorption coefficient were performed within the random phase approximation with local fields
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included using MBJ. In Figure 8.8 the absorption spectra of the three compounds are shown for ω from

0 to 6 eV. The absorption threshold for CH-AgInS2 and OR-AgInS2 occurs at about 1.27 and 2.07

eV respectively. The maximum absorption for CH-AgInS2 and OR-AgInS2 are in the visible range at

0.26x105cm−1 and 0.22x105cm−1 respectively. RH-AgInS2 starts absorbing light in the infra-red region

at 0.95 eV. At the edge of the visible range (3.1 eV), it reaches an absorption of 0.4x105cm−1 and a very

sharp peak located around 5.13 eV can be observed in the spectrum. The high absorption in the visible

range could make RH-AgInS2 more suitable for solar application compared with the other structures.

8.4 Conclusion

The presented studies confirmed that the chalcopyrite phase is the most energetically favoured stable

structure at zero pressure and temperature although the energy difference with the orthorhombic phase

was very small. It also showed that a pressure-induced phase transition from the chalcopyrite to the

rhombohedral occurs around 1.78 GPa. A rocksalt phase occurs at 93.5 GPa contrary to the expectation

from other ternary TMC family of compounds. The high pressure made this phase practically difficult

to achieve. We also found a positive formation energy for the hexagonal and rocksalt phases which

suggest that they are more likely to decompose into their elementary constituents. The chalcopyrite

and the orthorhombic phases remained mechanically and dynamically stable at the selected pressure of

our interest while the rhombohedral structure was only stable above the transition pressure. Accurate

bandgaps could not be obtained from HSE06 and GW methods, but the meta-GGA MBJ functional

predicts bandgaps which are in good agreement with available experimental values.



9. Efficiency limits for AgAlX2 and

AgInS2 photovoltaic absorbers

The aim of this chapter is to estimate the ultimate solar efficiency of the compounds we have been

investigated. The efficiency is calculated using two approaches namely, the Shockley-Queisser

approach and the spectroscopy limited maximum efficiency approach.

9.1 The Shockley-Queisser approach

In the seminal paper of Shockley and Queisser [207], the efficiency was estimated as the ratio of

the maximum power delivered by the cell (Pmax) and the incident solar power impinging on the

cell (Pin):

η =
Pmax
Pin

. (9.1.1)

In the photovoltaic effect [208], photons with energy equal to or more than the bandgap of the

material with which they interact are absorbed by the valence electrons. If the photon energy

is greater than the bandgap, the excess energy is used by the valence electron to migrate the

conduction band where they can move freely. In the Shockley and Queisser (SQ) model, it is

assumed that each photon with energy above the bandgap of the absorber produces an electron-

hole pair. The maximum output per unit area per unit time can be expressed as:

Pmax = EgNph (9.1.2)

where Eg is the bandgap of the absorber and Nph the number of incident photon per unit area

per unit time with energy above Eg. Nph is calculated using the Planck equation of a blackbody

102
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at the temperature of the sun [209]:

Nph =
2π

h3c2

∫ ∞
Eg

E2dE

exp (E/kBTs)− 1
(9.1.3)

where h, c, kB, Ts are the Planck constant, the speed of light, the Boltzmann constant and the

temperature of the sun (Ts ≈ 6000K) respectively. Subsequently, the total incident energy from

sun falling upon on the cell is

Pin =
2π

h3c2

∫ ∞
0

E3dE

exp (E/kBTs)− 1
(9.1.4)

=
2π5(kBTs)

4

15h3c2
. (9.1.5)

The efficiency as function of the bandgap of the absorber is plotted in Figure 9.1. The maximum
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Figure 9.1 Ultimate efficiency from blackbody at 6000 K.

efficiency is approximately 43.87% and occurs at 1.12 eV which corresponds to the bandgap of
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silicon. For the AgAlX2 compounds, this predicts a maximum performance of 23.89%, 17.27%

and 11.02% for AgAlTe2, AgAlSe2 and AgAlS2 respectively.

However, this model is too simplistic and doest not capture some extrinsic factors. For instance,

the solar spectral distributions vary with the atmospheric conditions of the site where the panels

are mounted and the orientation of the panels with respect to the position of the sun (tilt angle).

It is therefore necessary to have a reference solar spectral distribution which can serve as common

basis for comparing solar cell models/prototypes. A common standard solar spectrum model is

the AM1.5 spectrum [210]. In this distribution, the tilt and the zenith angle are 37 ◦ and 48.19 ◦

respectively, the temperature is 300 K and the air mass (AM) is equal to 1.5. The AM describes

the relative path length taken by the sun’s rays through the atmosphere before reaching the

ground [211, 212]. Spectral irradiances from the two models are shown in Figure 9.2 where

the non-homogeneity of the AM1.5 spectrum can be noted. Figure 9.3 shows that the AM1.5

efficiency is higher than that of the blackdody model for materials with bandgap smaller than

1.82 eV. As for the blackdody model, the maximum efficiency (49.08%) is that of silicon. From

1.82 eV upwards, the number of photon absorbed by cell is smaller than that from the blackbody

model.
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Figure 9.2 Blackbody and AM1.5 solar spectral intensity.

In the above models, all photons with energy greater than the bandgap of the absorber are assumed

to produce an electron-hole pair. However, various recombination processes have been inventoried

including radiative and non radiative recombination. Hence, all the generated electrons are not

always converted into current. If we take into take account the recombination processes, the net

current will be the difference between the generated electrons and the recombined electrons:

J = Jsc − J ′
[
e(qV/kBTc) − 1

]
. (9.1.6)

The first term is the short circuit current [213]

Jsc = q

∫
a(E)S(E)dE cos(θ)dθdΩ (9.1.7)

with a(E) the probability of a photon with energy E will be absorbed (the absorptivity), S(E) is

the normal solar radiation spectrum, θ and Ω are the solid and polar angles. The second term is
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Figure 9.3 Comparaison between the blackbody at 6000 K and the AM1.5 efficiency.

the dark or diode current with V the voltage at the maximum power point tracking, q the charge

carrier, Tc the cell temperature and J’ the current recombination rate:

J ′ = Jr + Jnr = Jr/fr (9.1.8)

with fr the fraction of the radiative electron-hole recombination current, Jr and Jnr are the

radiative and non radiative recombination rate respectively.

Jr = qπ

∫ ∞
0

ε(E)Nph(E, Tc)dE (9.1.9)

where Nph(E,Tc) is the a blackbody radiation at the cell temperature Tc and ε(E) the emit-

tance(probability of a photon to be emitted). Emittance and absorptivity are equal since the

probability of an electron to be excited by a photon is equal to that of an electron to be sponta-

neously recombined and emitting a photon according to the principle of the detailed balance [214].
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In the SQ approach, the absorptivity is taken as a step function [215]:

a(E) =

 1 for E ≥ Eg

0 for E < Eg.

(9.1.10)

and the radiative recombination is considered as the dominant recombination process according

to the detailed balance principle where at equilibrium, everything which is absorbed as to be

emitted [207,216]. The implication of this assumption is that fr in Equation 9.1.8 is equalled to

one. Knowing that only the photon with energy greater that the bandgap Eg can be absorbed,

the net current density in Equation 9.1.6 can be rewritten as

J = q

∫ ∞
Eg

AM15(E)dE − qπ
[
e(qV/kBTc) − 1

] ∫ ∞
Eg

Nph(E, Tc)dE. (9.1.11)

Recall that the AM1.5 spectrum already includes the integration over θ and Ω. In order to get

the maximum efficiency, Equation 9.1.11 has to be integrated numerically throughout the AM1.5

spectrum. The module operates at its maximum efficiency when it produces the maximum output

power.



Section 9.1. The Shockley-Queisser approach Page 108

0.0 0.2 0.4 0.6 0.8 1.0
Voltage (V)

0

100

200

300

400

500
C

ur
re

nt
 (A

.m
−2

)

JSC
MPP

power maxcurrent
power

0

100

200

300

400

500

Po
w

er
 (W

.m
−2

) 

VOC

Figure 9.4 J-V and P-V characteristics of silicum (Eg=1.12 eV). VOC is the open circuit voltage JSC

the short circuit current density and MPP the maximum power point.

Figure 9.4 described the J-V characteristic of silicon. The area of the largest possible rectangle

fitted under the J-V characteristic corresponds to the maximum output power. The current

density (JMPP) and voltage (VMPP )at maximum power point (MPP) are 426 Am−2 and 0.79 V

respectively. Thus, the maximum power is 336.54 Wm−2 and leads to an efficiency of 33.65 %.

This value is lower than what was obtained from the previous approximations. The dependence of

efficiency upon the bangdap depicted in Figure 9.5 is obtained by repeating this same procedure

for all the Eg in AM1.5 spectrum. The general trend is that the efficiency is lowered when

accounting for the losses by recombination. Details for calculating the Silicon efficiency can be

found in Appendix E.
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Figure 9.5 SQ efficiency against the bangdap.

9.2 The spectroscopy limited maximum efficiency

The idea of the spectroscopy limited maximum efficiency (SLME) was first introduced by Liping

and Zunger [215]. They postulated that having a strong absorption and a direct bandgap is not a

guarantee of a good solar cell material. Some materials with well positioned dipole forbidden (DF)

direct transitions lower than dipole allowed (DA) direct transitions might have a good efficiency.

Semiconductors can be classified in four optical types (OT) namely OT1, OT2, OT3 and OT4

[215, 217–219] as described in Figure 9.6. The main difference between the SQ efficiency (SQE)

and the spectroscopy limited maximum efficiency lies in the way the fraction of the radiative

electron-hole recombination current fr and the absorptivity a(E) are taking into considerations.
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Figure 9.6 Illustration of the different optical types of transition. In optical type 1 (OT1) materials, a

direct allowed (DA) direct transition (Edag ) is the lowest energy level followed by a dipole forbiden

(DF) direct transition (Edfg ) ie. Edag ≤ E
df
g . In OT2, a DF direct transition is the lowest and a DA the

second lowest. Accordingly, OT3 and OT4 are indirect gap materials where Eig < Edag ≤ E
df
g and

Eig < Edfg < Edag , respectively. Source: Liping et al. Ref. [215].

Instead of the step function, the absorptivity is taken as

a(E) = 1− e−2α(E)L (9.2.1)

with α(E) the absorption coefficient and L the thickness of the thin film. fr is approximated by

fr = e−∆/kBT (9.2.2)

where ∆ = Eda
g − Eg. By considering these modifications, the total current in Equation 9.1.6

becomes:

J = q

∫ ∞
Eg

[
1− e−2α(E)L

]
AM15(E)dE − qπ

fr

[
e(qV/kBTc) − 1

] ∫ ∞
Eg

[
1− e−2α(E)L

]
Nph(E, Tc)dE.

(9.2.3)

The SLME and the SQE of the materials we have been investigated throughout our study namely,

CH-AgAlX2, CH-,OR-and RH-AgInS2 are highlighted in Figure 9.7. From our SQ calculations,

RH-AgInS2 is the most efficient absorber with a a maximum efficiency of 31.42%. CH-AgInS2
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Figure 9.7 Efficiency vs bandgap of AgAlX2, CH-,OR-and RH-AgInS2. The SLME is limited to

AgAlX2. The thickness of the thin film is L=0.5µm.
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and OR-AgInS2 follow with efficiencies of 28.84% and 21.10% respectively. For the AgAlX2

compounds, the SQ model predicts a maximum performance of 18.19 %, 13.36 % and 2.74 % for

AgAlTe2, AgAlSe2 and AgAlS2 respectively. Studying the variation of the efficiency as a function

of thickness of thin film of potential photovoltaic absorbers, Zunger et al. [215] showed that the

efficiency does not change that much for thicknesses greater than 0.5 µm. We choose to use a

thickness of 0.5 µm for our cases. From the spectroscopy limited maximum efficiency (SLME)

model, we obtained 2.71%, 13.33% and 14.42% for AgAlS2, AgAlSe2 and AgAlTe2 respectively.

Recall that the absorption α(E) entering in the calculation of absorptivity a(E) (Equation 9.2.1)

is obtained at the BSE level of the approximation and the BSE was built on top of GW0. Because

we could not get reliable bandgaps of AgInS2 materials from GW, we did not calculate their BSE

absorptions. We therefore limited the calculations of their solar cell performance at the SQ level

where the absorption coefficient is not included. Overall, the efficiency of the compounds of

interest increases as the bandgap decreases for both SQE and SLME. For a given absorber, the

SQEs are relatively higher than the SLME. This is due to the fact that the SQ model does not

account for the non radiative recombination and the absorptivity is set to his maximum value

(a(E) = 1). Contrary to AgAlTe2, the SQE and the SLME of AgAlSe2 and AgAlS2 are very close

to each other. The reason being that AgAlTe2 is OT2 material while AgAlSe2 and AgAlS2 are

OT1 according the classification from Ref. [220]. For OT1 materials, fr = 1 since Eg = Eda
g and

∆ = 0. The difference between the SQE and SLME of AgAlTe2 confirmed that the Shockley and

Queisser well known selection condition for good absorbers is limited. It is only worked for OT1

materials. The very low efficiency of AgAlS2 suggests that it cannot be used as single junction

solar cell absorber. However, such large bandgap materials are indicated for multi junction solar

cells. Multi junction or tandem solar cells are made of materials with different bandgaps. Here,

the total number of absorbed photons is higher than that of a single junction solar cell since each

material absorbs photons with energy higher or equal to its bandgap, and hence increasing the

total cell performance.
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9.3 Conclusion

We estimated the efficiency of the compounds under our investigation using the SQE and the

SLME models. We found that apart from AgAlS2, the other compounds have an efficiency greater

that 13 %.



10. Conclusion and future studies

10.1 Conclusion

The purpose of this work was to investigate various properties of ternary chalcogenide compounds

AgAlX2 (X = S,Se,Te) and AgInS2 in order to provide useful information for their applications as

solar cell materials. The investigation was done by means of different computational tools mostly

based on density functional theory. Our results agree in most cases with the available experimental

data. We hope that our predictions will be confirmed experimentally and/or theoretically in future.

We arrived at the conclusions, written in the following subsections.

10.1.1 AgAlX2

We investigated the structural, electronic and optical properties of chalcopyrites AgAlX2 and

estimated their solar cells efficiency based on the Shockley-Queisser efficiency limit and the spec-

troscopy limited maximum efficiency. For the structural study, we found that the GGA-PBEsol

was the most appropriate exchange correlation functional. Cohesive energy and enthalpy analyses

predicted that the chalcopyrite phase is the most energetic favourable structure at equilibrium

amongst the different phases of AgAlX2. A possibility of a pressure phase transition from the

chalcopyrite to a trigonal phase was also observed. Using the linear response method, we studied

the local stability with respect to lattice vibration. Because of the absence of negative phonon

frequencies along the high symmetry kpoints in the BZ, we reached the conclusion that they were

all dynamically stable at the ground state.

We calculated the electronic and optical properties at DFT and GW levels of the approximations.

The bandstructures and PDOSs from GGA-PBEsol were very similar and the bandgap decreases

114
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from AgAlS2 to AgAlTe2. Tetragonal distortion and anion displacement originated from the

presence of cations Ag and Al in their structures lead to a crystal field splitting at the upper

most valence band contrary to their binary zincblende analogues. By including the spin-orbit

coupling in our calculations, we found some additional splitting of the bands and a reduction

of the bandgap for all the compounds. We attributed this splitting to the presence of heavy

chalcogenide atoms in their structure. Using the quasi cubic model we determined the spin-orbit

coupling and found that it is more pronounced in AgAlTe2. Although PBEsol and PBEsol &

spin orbit coupling succeeded in predicting the crystal field and the spin-orbit splitting, it fails

to predict the bandgap, essential for solar cell applications. This limitation of the GGA-PBEsol

was circumvented by the hybrid functional HSE06 which gave bandgaps in better agreement with

experimental data. Our results predicted that the bandgaps strongly depend on the chalcogenide

atom present in the chalcopyrite compounds. The dielectric response functions from HSE06

calculations have lower intensity and are shifted towards higher energy when compared to PBEsol

values. The compounds start absorbing photon either at the edge or within the visible range and

reach their absorption peaks in the ultraviolet range. The metta-GGA MBJ functional predicts

bandgaps of 3.15 eV, 2.38 eV, and 2.14 eV for AgAlS2, AgAlSe2 and AgAlTe2, respectively.

These values are in good agreement with 3.14 eV, 2.55 eV and 2.27 eV respectively, obtained

from experiments. Similar agreement was found when compared with 3.14 eV, 2.7 eV and 2.37

eV from HSE06, known to be computationally very expensive, whereas the computation time of

MBJ scales as that of LDA and GGAs.

We also calculated the bandgap and optical spectra by means of the many body perturbation

theory at GW and BSE level. The single shot G0W0 method failed to predict the correct bandgaps.

The semi self-consistent GW0 gave bandgaps within 4% agreement with the experimental data.

Quasiparticle energy from GW0 was used for the BSE calculation. From the obtained absorption

spectra, we predicted the existence of bound excitons in all the three compounds with exciton

energies of 0.15 eV, 0.2 eV and 0.21 eV for AgAlTe2, AgAlSe2 and AgAlS2, respectively. Knowing
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the bandgaps and the optical absorptions, we went further to calculate the solar cell efficiency

limits. The Shockley-Queisser model predicted an efficiency of 18.19 %, 13.36 % and 2.74 %

for AgAlTe2, AgAlSe2 and AgAlS2 respectively. With spectroscopy limited maximum efficiency

(SLME) model, we obtained 14.42%, 13.33% and 2.71%, respectively. From the results, we

concluded that SLME is a more effective theoretical technique for selecting potential solar cell

absorbers. Contrary to AgAlTe2 and AgAlSe2, AgAlS2 cannot be used as single junction solar

cell absorber because of its low efficiency. However, it might found applications in intermediate

and/or multi junction solar cell absorbers technology.

10.1.2 AgInS2

The structural, mechanical, dynamical and electronic properties of different phases of AgInS2

were investigated using GGA-PBEsol and MBJ. The efficiency was also estimated using the SQ

model. The effect of the pressure on the properties was carried out at selected pressure of 0,

1.78 and 2.5 GPa. The six phases investigated included the tetragonal (chalcopyrite CuFeS2),

the rocksalt (CuAlS2), the orthorhombic (β-NaFeO2), the rhombohedral (α-NaFeO2), the hexag-

onal (LiMnSe2) and the monoclinic (NaNiO2) phases. As for the case of AgAlX2, we found the

chalcopyrite phase as the most energetically favoured stable structure at zero pressure and tem-

perature although the energy difference with the orthorhombic phase remained very small. The

variation of enthalpy with respect to pressure confirmed that the chalcopyrite is the most ener-

getically favourable structure a zero pressure and zero temperature. A pressure-induced phase

transition from the chalcopyrite to the rhombohedral occurs around 1.78 GPa. This prediction

was in agreement with the experiment measured by Range et al. at 2 GPa. We also found

transition from the rhombohedral phase to the rocksalt phase at about 93.5 Gpa, but this very

high pressure would make it practically difficult to achieve. We also found a positive forma-

tion energy for the hexagonal and rocksalt phases which suggest that they are more likely to

decompose to their elementary constituents. The chalcopyrite and the orthorhombic phases re-
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mained mechanically and dynamically stable at the selected pressure of our interest while the

rhombohedral structure was only stable above the transition pressure of 1.78 Gpa. With the use

of the MBJ functional, we were able to predict accurately the bandgap of the chalcopyrite and

the orthorhombic structures. For the first time, the electronic properties of the rhombohedral

structure were investigated and found that it has a bandgap of about 0.95 eV. From the GW

calculations, the bandgaps of 1.24 eV and 1.40 eV for CH-AgInS2 and OR-AgInS2 respectively

were not in agreement with 1.87 eV and 1.98 eV from the experimental available data. Similar

discrepancy was found in other copper and indium based chacopyrite such as CuInS2 and it was

hypothesised that the orbitals of those atoms are not be well described within the GW method

[202, 221]. Since, reliable bandgap and absorption could not be obtained from GW calculations,

we then limited our efficiency calculation at the SQ model. We found RH-AgInS2 as the most

efficient phase with an efficiency of about 31.42%. CH-AgInS2 and OR-AgInS2 efficiencies were

estimated at 21.10% and 21.10% respectively.

10.2 What next?

1. Most of these studies were done at zero temperature and pressure which are not the

operating conditions of solar cells. Pressure phase transition were investigated in a few

cases, but a complete study requires taking into account the effect of temperature. We

intend to perform, in the future, a pressure and temperature phase transition study on these

compounds. The quasiharmonical approximation could be used.

2. Doping plays an important role on the electronics and optical properties of chalcopyrites.

For example, defect levels could be created in the bandgap and offer a possibility of in-

creasing the absorptivity. Such study may be performed in these materials.

3. It is predicted that a different starting point such as the hybrid functional or the COHSEX
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method for the GW calculation could help to overcome the bandgap underestimation in

AgInS2. We shall explore this possibility since the it allows the used of the spectroscopy

limited maximum efficiency (SLME) method for estimating solar cells performance.

4. There is need to investigate the possibility of using large bandgap materials such as AgAlS2

in intermediate band and tandem solar cells and also estimate the efficiency.



Appendix A. Solving the KS equation

A.1 Self-consistent procedure

If we look back at Equation 2.3.34 and examine the KS potential in more details, one can notice

that the Hartree and the exchange-correlation contribution to the KS potential depend explicitly

on the density itself. Thus, solving the Equation 2.3.23 become a cumbersome task since we have

to construct the KS potential from the wave-function/density that is not known a priori. We can

circumvent this kind of problem by using an iterative method also known as the Self-Consistent

Field (SCF) procedure.
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Figure A.1 Self-consistent iterative procedure for solving the KS equation

As we summarised in Figure A.1, the self consistent iterative procedure consists of constructing

the KS potential from an initial guess of the density. Then solve KS Equation 2.3.23 to get the

total energy Ei. If the SCF convergence criteria is satisfied, the energy Ei minimised the single

particle energy. Otherwise, a new density has to be generated from the wave-function. This is then

used as the new guess for the density and this iteration is repeated until the minimum energy is

obtained. From the ground-state energy, other ground-state properties (forces, formation energy

etc.) can be calculated.
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A.2 Block’s theorem

When solving the KS equation, one has to carefully choose the basis set for representing the KS

orbitals. The choice is guided by the type of materials that one is interested in. For crystalline

solids, the appropriate basis set are plane waves since one can simplify the problem using Bloch’s

Theorem. The collective behaviour of electrons in a single unit cell can be translated to the whole

periodic system of an infinite number of electrons. According to Bloch’s theorem, if the potential

V(r) of the Hamiltonian H has a translational symmetry such that

V (r) = V (r+R) (A.2.1)

with R a lattice vector in the Bravais lattice The eigenstate of H can be written as

ψk(r) = uk(r) exp(ik.r) (A.2.2)

where uk(r) has the same periodicity as the potential V(r) and the wavevector k in the Brillouin

Zone (BZ). As it is a periodic function, uk(r) can be expanded it in terms of a Fourier series

uk(r) =
∑
G

ck,G exp (iG · r) (A.2.3)

where G represents the reciprocal lattice vectors defined such that G ·R = 2πn with n an integer

number. By substituting (A.2.3) into (A.2.2), the electronic wave-function yields

ψk(r) =
∑
G

ck,G exp [i(k + G) · r] (A.2.4)

In reciprocal space, each electron occupies a single state defined by the k vector. An advantage

of using the Bloch’s theorem is that the problem of finding the infinite number of electronic state

is simplified. This is done by finding a finite number of electronic states in the unit cell with

an infinite number of k-points within the BZ. The new problem can be tackled easily. Here,

the wave-functions representing sufficiently close k-points are very similar and thus, they can be
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represented by a single wave-function. Hence, the integral over the BZ can be replaced by a

discrete sum over a grid of k points [222]:

Ω

(2π)3

∫
BZ

. . .Θ(EF − Ek)dk→ 1

Nk

∑
k

fk . . . (A.2.5)

where Θ is a Heaviside step function and fk represents the occupation number which is equal

to 1 for an occupied state and 0 otherwise. There are many ways of sampling the BZ and the

most common one is the uniform sampling method proposed by Monkhorst and Pack [135]. The

number of k-points sufficient for sampling the BZ is obtained through a series of convergence

tests where the total energy of different k-point grids are compared. Convergence is reached

when the energy remains almost constant for different sets of k-point grids. An example is shown

in Figure A.2a below.

Figure A.2 Illustration of the k-points and cutoff energy convergence tests for the case study of

AgAlS2. Convergence was reach when energy difference between two scf step was last then 2 meV. Ki

is the value of the k-point along i direction (i = x, y, z). It can be seen that from Kz=5, there is not a

significant change in energy. Hence, 5 can be taking as the converge value of Kz. Simillar tests should

be performed along Kx and Ky directions. For the cut off energy, it starts converging from Ecut ' 310

eV.
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A.3 KS equation in reciprocal space

For a periodic system, the electronic wave-functions can be written as a Bloch wave function

(Equation A.2.4). If we consider that all the potentials contributing to the KS potential are

periodic, they can also be written as

V (r) =
∑

G

Ṽ (G) exp(iG · r), (A.3.1)

Substituting Equation A.2.4 into the KS Equation ?? and multiplying both sides of the latter by

exp
(
i(k + G′).r

)
leads the KS equation in the reciprocal space

∑
G′

[1

2
|k+G|2δGG′ + VKS(G− G′)

]
ck,G′ = Ekck,G′ (A.3.2)

where VKS(G− G′) is the Fourier transform of the KS potential. In practice, Equation A.3.2 is

solved by diagonalisation. The size of the matrix depends on the number of plane waves included

in the calculation. Because of the infinite number of plane waves, one has to determine how

many of them are sufficient for getting accurate eigenvalues for Equation A.3.2. This number is

defined by the kinetic energy cutoff Ecut defined in such a way that

1

2
|k+G|2 ≤ Ecut. (A.3.3)

As in the case of the BZ sampling, a convergence test of Ecut versus total energy has to be

performed in order to get an accurate Ecut. An example of such a test is given in Figure A.2b.

A.4 Pseudopotential and Projector Augmented Waves (PAW)

The potential in the region around the core of an atom is very deep and leads to a rapid oscillation

of the wave-function compared to the valence region where it is fairly smooth. As a result of this
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oscillation, core and the valence states can hardly be described by the same wave-function accu-

rately. However, it is known that the core electrons are more localised than the valence electrons

and do not contribute that much to the chemical properties of solids and molecules [223]. Hence,

the strong potential around the core can be replaced by a much weaker pseudopotential and the

wave-function by a much smoother pseudo wave-function. The reason being that it requires a

small number of Fourier coefficients if it is to be represented by a plane wave basis set. There

are two different approaches for defining the pseudopotentials. Namely, the empirical method

where the parameters are fitted to the data from atomic or solid state databases, and the ab

initio potential constructed to fit the valence properties calculated for the atoms.

Nowadays, the latter method is the most common used in DFT codes. Several techniques for

generating the pseudopopentials have been developed ranging from the norm-conserving to the

ultrasoft pseudopotentials. Details about these pseudopentials can be found in many seminal DFT

books including that of Richard Martin [51]. However, we will elaborate on a more convenient

method to treat the potential known as the Projector Augmented Wave (PAW) method [224].

The aim of the PAW method is to develop a more accurate method for describing both core and

valence states at a reasonable computational cost, for all the atoms in the periodic table. Within

the PAW method, the valence states are represented by a smooth wave-function in terms of

plane waves. To define a full wave-function, we look for a linear transformation operator T that

links the smooth pseudo (PS) wave-function |ψ̃n〉 of the valence region to the all electron (AE)

wave-function |ψn〉:

|ψn〉 = T |ψ̃n〉 (A.4.1)

A suitable transformation operator should be defined such a way that |ψn〉 only differs from |ψ̃n〉

in the region around the core. Hence, Blöchl [224] defined T as

T = 1 +
∑
a

T a (A.4.2)
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where T a is a local operator defined within an augmentation sphere of radii rac enclosing each

atom a. It is given in terms of the AE partial wave, φai (r), its corresponding smooth PS partial

wave-function φ̃ai (r), and a projector, p̃ai (r), as

T a =
∑
i

(
|φai 〉 − |φ̃ai 〉

)
〈p̃ai | (A.4.3)

where i is an index for angular momentum and magnetic quantum number. Since T a is a local

operator, the PS partial smooth wave-function, the AE partial wave-function and the projector

must be chosen such that:

* φai (r) = φ̃ai (r) for r ≥ rac ,

* |p̃ai 〉 is localised inside the augmentation sphere and orthogonal to the PS partial smooth

wave-function i.e. 〈p̃ai |φ̃aj = δiδj,

* adjacent augmentation spheres must not overlapped.

Inserting the transformation operator (A.4.3) to Equation A.4.1, the AE KS wave-function yields

ψn(r) = ψ̃n(r) +
∑
a

∑
i

(
φai (r)− φ̃ai (r)

)
p̃ai |ψ̃n〉 (A.4.4)

In the PAW method, it is assumed that the core states of an isolated atom are not modified

during the formation of molecules. This is known as the frozen core approximation [225]. An

advantage of this approximation is that the smooth PS wave-function ψ̃n(r) can be used in lieu

of the AE wave-function ψn(r) as variational parameter during the calculations. Moreover, it

enables one to obtain the observable quantities as expectation of values ψ̃n(r). The expectation

value of some operator A is given by [88, 224]

〈A〉 =
∑
n

fn〈ψ̃n|Ã|ψ̃n〉 (A.4.5)
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where n is the band index and fn the occupation number of the state and the PS operator Ã

has the form where n is the band index; fn is the occupation number of the state and the PS

operator Ã has the form,

Ã = T †AT

= A+
∑
i,j

|p̃i〉
(
〈φi|A|φj〉 − 〈φ̃i|A|φ̃j〉

)
〈p̃j|. (A.4.6)

Following the above description, the charge density and the total energy, respectively, are given

by

n(r) = ñ(r) + n1(r)− ñ1(r) (A.4.7)

and

E) = Ẽ + E1 − Ẽ1 (A.4.8)

with n1(r)−ñ1(r) and E1−Ẽ1 vanishing outside the augmentation spheres. Under the constraints

given above, there is a freedom to choose |φai 〉, |φ̃ai 〉 and |p̃ai 〉. In our calculations, we adopted the

Kresse and Joubert [133] derivation as implemented in the Vienna Ab initio Package (VASP) [134].

Here the PS partial wave-function |φ̃ai 〉 is expanded in terms of a linear combination of Bessel’s

functions and the projector is obtained using the Vanderbilt ultrasoft pseudopotential scheme

[226].



Appendix B. Geometric optimisation:

the equation of state

Geometry optimisation involves searching for the most convenient atomic configuration for a given

structure. The structural quantities to be considered include the atomic position, the shape of the

unit cell and its volume. In order to reach the global energy minimum, the optimisation is done in

two steps: Firstly, a full relaxation calculation where the stated parameters are allowed to change

is carried out until the minimum energy is reached following the conjugate gradient algorithm.

A threshold value of the Hellmann-Feyman force on each ion should also be considered. The

Hamiltonian is then diagonalised using an appropriate diagonalisation method such as the Block

Davidson Algorithm [227]. Thereafter, ionic relaxations at different volumes are performed and

fitted to a third order Birch-Murnaghan equation of state (EOS) [146].

E(V ) = E0 +
9V0B0

16

[(V0

V

)2/3

− 1

]3

B′0 +

[(
V0

V

)2/3

− 1

]2 [
6− 4

(
V0

V

)2/3
] (B.0.1)

where E0, V0, B0 and B′0 are the equilibrium cohesive energy, volume, bulk modulus and its

derivatives respectively. The cohesive energy defines the energy required to separate atoms

infinitely far apart from a solid by breaking the atomic bonds [1] and the bulk modulus is the the

resistance of a material subject to a uniform compression.
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Appendix C. Stability

To be used for technology applications, the material has to go through a series of tests in order to

make sure it can resist different kinds of deformations when it is subjected to stress. Theoretically,

the parameters to be checked included but are not limited to the bulk modulus, the cohesive and

formation energy, and, the elastic constants. Lattices dynamics shall also be investigated.

C.1 The formation and the cohesive energy

For the case of chalcopyrites structure with general formula ABC2, the cohesive energy (Ecoh) is

given by

Ecoh =
Esol −N

(
EA
atom + EB

atom + 2EC
atom

)
4N

(C.1.1)

where N is the number of ABC2 units per unit cell and Esol the total energy of the bulk ABC2

system. Ei
atom is the atomic energy of the atom i (i=A, B, C). It corresponds to the total energy

of an isolated i atom and should not be confused with the total energy of the bulk system of i

atoms. In practice, it is approximated as the total energy of a system made of a large unit cell

containing one atom at its center. The large unit cell is adopted in order to avoid interaction

with adjacent cells related to the use of the periodic boundary condition. At the ground-state

(Temperature = 0K, Pressure = 0GPa), it can be used to select the most stable structure of

a material if it exists with different phases. We will come back to it in subsection (C.2). The

formation energy helps to predict the possibility of the formation of a material relative to its

constituents. It is defined as the the energy difference between cohesive energy of a compound

and those of constituents from which it is obtained:

Ef = Ecoh(products)− Ecoh(reactants) (C.1.2)

128



Section C.2. Phase stability Page 129

In the case of ternary compounds, if the compound, say ABC2, is obtained from its elementary

constituents, the formation energy is given by

Ef (ABCsol2 )) = Ecoh(ABCsol2 )−

[
Ecoh(Asol) + Ecoh(Bsol) + 2Ecoh(Csol)

]
4

(C.1.3)

However, the chemical precursors used in the synthesis of a ternary compound can also be binary

compounds. For instance, AgInS2 can be formed from Ag2S and In2S3 following the chemical

process

AgInS2 �
1

2
Ag2S +

1

2
In2S3. (C.1.4)

In this case, Ef is calculated as

Ef (InAgSsol2 )) = Ecoh(AgInSsol2 )−

[1

2
Ecoh(Ag2Ssol) +

1

2
Ecoh(In2Ssol3 )

]
4

(C.1.5)

Positive formation energy is an indication that a material is likely to be transformed to its con-

stituents under the given conditions.

C.2 Phase stability

Under specific conditions, a compound may undergo a pressure or temperature phase transition

from one phase to another. For instance, most of the chalcopyrite materials convert to an

orthorhombic phase at high temperature. The transition is analysed using the Gibbs free energy

G = Ecoh + PV − TS (C.2.1)

where T and P are the independent variables. As we pointed out in the previous subsection, it

can be seen that at the ground-state, the Gibbs free energy turns into the cohesive energy. At T

= 0 K and P 6= 0 GPa, Equation C.2.1 turns into the enthalpy

H = Ecoh + PV. (C.2.2)



Section C.3. Lattice dynamics and thermal properties Page 130

At a constant pressure P, the more stable structure is that with the smaller enthalpy. The

transition pressure Pt between two phases can be determined in two different ways. The first

method involves constructing the common tangent on the energy-volume equation of state curves

of the two phases. Pt is then taking as the slope (Pt = −dE/dV ) of the common tangent. The

second method entails plotting the enthalpy versus pressure curve for the two phases and taking

Pt as the crossing point where the two phases have the same enthalpy. After the transition, the

favourable phase is that with the lowest enthalpy from Pt upwards.

C.3 Lattice dynamics and thermal properties

Phonons can be defined as collective excitation associated with the lattice vibration of a crystal

(periodic system). We will first give a brief summary of the lattice vibration, we adopt the

description and the notation of Ref. [143]. At the ground-state, atoms in a crystalline structure

occupy their equilibrium position r(lk) where l and k denote the unit cells and the atom in

each unit cell. During the vibration, the atoms move from the equilibrium to a new position

R(lk) = r(lk) + u(lk) where u(lk) is the displacement. u(lk) is assumed to be very small

compared to the interatomic distance in order to remain within the harmonic approximation. The

atomic configuration is governed by a crystal potential Φ which can be expanded in Taylor series

around the equilibrium position as

Φ = Φ0 +
∑
lk

Φα(lk)uα(lk) +
1

2

∑
ll′kk′

Φαβ(lk, l′k′)uα(lk)uβ(l′k′) + . . . (C.3.1)

where α, β denote the Cartesian coordinates. The first term of the expansion is constant and

referred to as the equilibrium configuration where atoms are at r(lk) and can be fixed at zero.

The coefficients Φα(lk) and Φαβ(lk, l′k′) are respectively the first and the second order force

constants. Force constants are equivalent to the spring constant in one-dimensional system. The



Section C.3. Lattice dynamics and thermal properties Page 131

first order term Φα(lk) is equivalent to the force acting on an atom

Fα(lk) = − ∂Φ

∂uα(lk)
(C.3.2)

and it goes to zero at the equilibrium. The second order force constant is given by

Φαβ(lk, l′k′) = −∂Fβ(l′k′)

∂uα(lk)
=

∂2Φ

∂uα(lk)∂uβ(l′k′)
. (C.3.3)

Within the harmonic approximation, the higher terms of Equation C.3.1 are negligible. The

dynamical matrix is the Fourier transform of the force constant matrix

Dkk′

αβ (q) =
1√

MkMk′

∑
l′

Φαβ(0k, l′k′)eiq[r(l′k′)−r(0k)] (C.3.4)

where Mk are the atomic masses. The normal phonon modes are obtained from the dynamical

matrix by solving the eigenvalues problem [141, 143]∑
βk′

Dkk′

αβ (q)eβk
′

qj = ω2
qje

αk
qj (C.3.5)

where q and j are the wavevector and the band index respectively. There are two main methods

for the phonon calculations: the direct method also known as supercell approach [228] and

the linear response method sometimes labelled as the Density Functional Perturbation Theory

(DFPT) [141, 142]. The main difference between the two approaches being the way the force

constant is calculated.

The direct method is based on the fact that within the harmonic approximation, for any displace-

ment uα(lk), the force felt by the atom at l′k′ is given by

Fβ(l′k′) =
∑
lk

Φαβ(lk, l′k′)uα(lk). (C.3.6)

Hence, knowing the displacement and the Hellmann-Feynman (HF) forces on all other atoms,

the force constant is obtained as the coefficient of the linear relation above. Using the direct

method, caution should be taken when choosing the size of the unit cell. The method relies on
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short-ranged nature of force constant matrix by supposing that the forces vanish at long range.

The assumption is that the small displacements only affected the atoms within the unit cell.

But, because of the periodic arrangement of the cells, the forces acting on the atoms from the

same cell are possibly influenced by atoms from the other cells. Hence, the unit cell (here the

supercell) should be made as large as possible such that the element of the force constants matrix

are negligible at the boundary of the supercell.

In contrast the to the direct method, the force constant within the linear respond method is

obtained as second derivative of the total energy. The ionic contribution to the total energy can

be easily obtained, however, the electronic contribution requires the sophisticated DFT treatment

of the electronic system. According to the HF theorem [229, 230], when the system is perturbed

by a small displacement uα, the first derivative of the energy is given by

∂E

∂uα
=

∫
nu(r)

∂Vu(r)

∂uα
dr (C.3.7)

and the second derivative as

∂2E

∂uα∂uβ
=

∫
∂Vu(r)

∂uα

∂nu(r)

∂uβ
dr +

∫
nu(r)

∂2Vu(r)

∂uα∂uβ
dr. (C.3.8)

The electronic density derivative ∂nu(r)
∂uβ

can be obtained from the DFT KS scheme. For a pertur-

bation δVKS of the KS potential, the variation of the density is given by [142]

δn(r) = 4<e
∑
v

ψ∗v(r)∆ψv(r), (C.3.9)

where

∆ψv(r) = Pc
1

εv −HKS

PcδVKSψ (C.3.10)

with c and v are the conduction and valence states respectively and Pc the projector over con-

duction states. Practically, ∆ψv(r) can be obtained from the self-consistent solution of the

Stenrheimer-like [142] equation

(εv −HKS)Pc∆ψv(r) = PcδVKSψv. (C.3.11)
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A detailed discussion of the DFPT can be found from the review articles of Baroni et al. [142]

and Gonze [231]. The DFPT is not as computationally straightforward as the direct method,

but it does not require the use of a supercell for the calculation of the dynamical matrix. The

calculations are directly performed in the reciprocal space. Moreover, the so called longitudinal

optical-transverse optical (LO-TO) splitting [150] is not taken into account in the direct method.

LO-TO splitting comes from a dynamical matrix which includes the Born effective charge tensors

and the high frequency static dielectric tensor [231]. The DFPT method is used for our phonon

calculations. Initially, force constants are calculated using the VASP code. Thereafter, by means

of the phonopy code [143] the elements of the dynamical matrix are computed from the

force constant matrix and used as input for the secular Equation C.3.5. Knowing the phonon

frequencies, the phonon contributions to the thermal properties at constant volume of the system

such as the Helmholtz free energy F, the entropy S and the heat capacity Cv can be computed

as functions of temperature [143, 150]:

F =
1

2

∑
qj

~ωqj + kBT
∑

qj

ln

[
1− exp

(−~ωqj

kBT

)]
, (C.3.12)

S = −kb
∑

qj

ln

[
1− exp

(−~ωqj

kBT

)]
− 1

T

∑
qj

 ~ωqj

exp

(−~ωqj

kBT

)
− 1

 (C.3.13)

and

Cv = kb
∑

qj

(~ωqj

kBT

)2 exp

(~ωqj

kBT

)
[
exp

(~ωqj

kBT

)
− 1

]2 , (C.3.14)

where ωqj is the phonon frequency at the wavevector q and band index j. kB, ~ and T are respec-

tively the Boltzmann constant, the Planck’s constant and the temperature. It worth pointing out

that the thermal properties can also be calculated at constant pressure within the quasi-harmonic

approximation (QHA) [232]. However that aspect is not investigated in our work.
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C.4 Mechanical stability: Elastic constant

Elastic constants are of great experimental interest. It can provide useful information about the

structural stability of a material. Elastic constants describe the response of a system when it is

subjected to a strain. Once they are known, some relevant mechanical parameters such as Young’s

modulus, the Poisson ratio, and the bulk modulus can also be determined. Experimentally, they

are calculated from Brillouin scattering or inelastic neutron scattering using the phonon or sound

wave velocity (v = Cij/ρ)1/2 with ρ the density of the material). Within the limits of Hooke’s

Law (small strains), they relate the stresses ε to the strains σ in a linear form

σ = Cijεj. (C.4.1)

Theoretically, they correspond to the second derivative of the total energy of a solid under an

infinitesimal strain:

E(ε) = E(V0, ε = 0) +
1

2
V0

∑
i,j

Cijεiεj +O(ε3) (C.4.2)

with

Cij =
1

V0

(
∂2E(ε)

∂εi∂εj

)
(C.4.3)

and V0 is the ground-state equilibrium volume. With addition of hydrostatic pressure, the volume

of the system changes and the total energy is given by [191]:

E(ε) = E(V ∗, ε = 0) + V ∗
∑
i

σiεi +
1

2
V ∗
∑
i,j

Cijεiεj +O(ε3) (C.4.4)

where V ∗ is the volume of the system at a given pressure. A structure is stable with respect to the

elastic constants when it obeys a certain general condition known as the Born stability criteria [193,194].

These conditions as well as the number of independent elastic constants depend on the symmetry of the

system under investigation. Each specific condition will be stated when necessary in the next chapters.



Appendix D. Frequency dependant

dielectric response functions

The complex dielectric function ε(ω) is the fundamental quantity used to determine optical properties

of a material. It describes the response of the material to electromagnetic radiation. The imaginary

part ε2(ω) is computed by summation over all pairs of occupied and virtual states [233]:

εimαβ(ω) =
4π2e2

Ω
lim
q→0

1

q2

∑
v,c,k

2wkδ (εck − εvk − ω) 〈uck+eαq|uvk〉〈uvk|uck+eβq〉, (D.0.1)

where the indices c and v are restricted to the conduction and the valence band states respectively and

Ω denotes the unit cell volume. The vectors eα are unit vectors for the three Cartesian directions. The

real part is obtained from the imaginary part using the Kramers-Kronig relation [234]

dfghj (D.0.2)

Other frequency dependant dielectric response functions such as the absorption coefficient α(ω), the

refractive index n(ω), the reflectivity R(ω) can be derived from ε1(ω) and ε2(ω) [235] as:

α(ω) =
√

2ω


(
ε2

1(ω) + ε2
2(ω)

)1

2
− ε1(ω)


1

2

, (D.0.3)

n(ω) =
1√
2


(
ε2

1(ω) + ε2
2(ω)

)1

2
+ ε1(ω)


1

2

(D.0.4)

and

R(ω) =

∣∣∣∣∣ [ε1(ω) + iε2(ω)]
1
2 − 1

[ε1(ω) + iε2(ω)]
1
2 − 1

∣∣∣∣∣
2

(D.0.5)
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Appendix E. Si efficiency code

The code is written in Python. The bandgap of silicon is 1.12 eV. The same procedure can be followed

for the efficiency calculation at any bandgap.

”””

n e c e s s a r y modules

”””

from f u t u r e i m p o r t d i v i s i o n

from s c i p y i m p o r t i n t e g r a t e as i t g

from s c i p y i m p o r t i n t e r p o l a t e as i n t e r p

i m p o r t numpy as np

i m p o r t m a t p l o t l i b . p y p l o t as p y l a b

””” g l o b a l v a r i a b l e s

”””

eV = q = 1.60217662 e−19

Kb=1.38064852 e−23

h p l a n c k =6.62607004 e−34

c =3. e8

T c e l l = 3 0 0 .

Tsun = 6 0 0 0 .

””” Planck e q u a t i o n f o r th e s o l a r r a d i a t i o n ”””

d e f Nc (Xg ) :

Kst1 =2.∗((Kb∗ T c e l l )∗∗3 ) / ( ( h p l a n c k ∗∗3)∗ ( c ∗∗2 ) )

F = lambda x : ( x ∗∗2)/( np . exp ( x ) )
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MaxXg=(4.43107249758∗eV ) / ( Kb∗ T c e l l )

v a l F = ( i t g . quad (F , Xg , np . i n f ) [ 0 ] ) ∗ Kst1

r e t u r n v a l F

d e f Diode ( v ) :

””” r a d i a t i v e and non r a d i a t i v e r e c o m b i n a t i o n o f e l e c t o n s ,

t h i n k about an i d e a l d i o d e ”””

c s t=q /(Kb∗ T c e l l )

r e t u r n q∗np . p i ∗( np . exp ( c s t ∗v ) )

i f n a m e == ” m a i n ” :

””” U l t i m a t e e f f i c i e n y assuming t h a t each a b s o r b e d photon

w i l l p roduce an e l e c t r o n−h o l e p a i r .

The sun h e r e i s assuming to be a b l a c k b o d y at 6000K.

More d e t a i l s can be found h e r e

h t t p : / / cdn . i n t e c h o p e n . com/ pdfs−wm/47490. pdf

o r h t t p : / / dx . d o i . o rg / 1 0 . 5 7 7 2 / 5 8 9 1 . Here , e x p e r i m e n t a l data

o f t he s o l a r spectrum a r e c o n s i d e r e d i n s t e d o f th e b l a c k

body assumpt ion . The s t a n d a r d AM1. 5G data a r e used . I t can

download f o r from h t t p : / / r r e d c . n r e l . gov / s o l a r / s p e c t r a /am1 . 5 /

D e t a i l s about th e c o n v e r t i o n from wave l e n g h t to e n e r g y can

be found i n 30Nov . py ”””

AM15data=np . l o a d t x t (” Dat . dat ”)

am15=AM15data [ : , 2 ] ; Lambda=AM15data [ : , 0 ] ; dLambda=0.5

M=l e n ( am15 )

””” c o n v e r t t he w a v e l e n g h t i n e n e r g y ( eV ) and t he am15 i n

e n e r g y u n i t too . ” ” ”

Energy =(( h p l a n c k ∗c )/1 e−9)/Lambda ;
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AM15=((am15∗( Lambda ∗∗ ( 2 ) ) ) / ( h p l a n c k ∗c ) )

Pin=− i t g . s imps (AM15, Energy ∗1e−9);

p r i n t ”The Sun power i s ” , Pin , ”W/m2” ,” ”

””” s h o u l d m u l t i p l y by 1e−9 b e c a u s e t he AM1. 5 [ : , 2 } a r e p e r

namometer . Remember to do th e same d u r i n g t he i n t e g r a t i o n

S (E) dE”””

eg =1.12∗eV ; I n d e x = np . where ( Energy>=eg ) [ 0 ] [ −1 ]

””” np . where ( c o n d i t i o n ) r e t u r n t he p o s i t i o n o f a l l th e e l em ent

whch s a t i s f y th e CONDITION . Here th e c o n d i t i o n i s t he p o s i t i o n

o f a l l th e e n e r g y g r e a t e r than th e gap . S i n c e t he a r r a y Energy

i s s o r t from max to min , [−1] w i l l p i c k l a s t e e n e r g y g r a t h e r

than gap and we i n t e g r a t e AM15 from t h a t e l em en t . More d e t a i l s

abt np . where p l e a s e g o o g l e ! ! ! ! np . where ( x>=1)[0][−1] r e t u r n

th e i n d e x o f l a s t e lemnt x g r e a t e r than 1

and x [ np . where ( x>=1)[0] [−1] ] r e t u r n s i t s v a l u e ”””

N = (AM15/ Energy ) / 1 . 1 2

j s c 1 1 2=Energy [ I n d e x ]∗(− i t g . s imps (N [ : I n d e x ] , Energy [ : I n d e x ]∗1 e−9))

””” Ns h e r e i s the photon f l u x c a l c u t i n g from by i n t e g r a t i n g th e

AM1. 5 s p e c t r a l photon d i s t r i b u s t i o n . The l a t e r i s deducded from

th e th e s p e c t r a l power AM1 . 5 .

N= np . a r r a y ( [ AM15 [ k ] / Energy [ k ] f o r k i n r ang e (M) ] ) ”””

””” t h i s p l o t i s th e photon f l u x from t he sun at th e

e a r t h ’ s s u r f a c e vs e n e r g y ( bandgap ) u s i n g AM1. 5G data ”””

f i g=p y l a b . f i g u r e ( )

ax = f i g . a d d s u b p l o t ( 1 1 1 )
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BE112=Nc ( ( 1 . 1 2∗ eV ) / ( Kb∗ T c e l l ) )

V o l t=np . l i n s p a c e ( 0 , 1 . ,M)

d i o d e=Diode ( V o l t )

J=j s c 1 1 2−d i o d e ∗BE112 ;

l n s 1=ax . p l o t ( Volt , J , l a b e l =’ c u r r e n t ’ , c o l o r =’ red ’ ) ;

ax . s e t y l a b e l (” C u r r e n t (A . $mˆ{−2}$ ) ” , f o n t s i z e =15)

ax . s e t x l a b e l (” V o l t a g e (V) ” , f o n t s i z e =15)

ax . s e t y l i m ( 0 , 5 0 0 ) ; ax . s e t x l i m ( 0 , 1 )

P=V o l t ∗J

Pmax= max ( V o l t ∗J ) ; p r i n t Pmax ;

p o s i t i o n=np . a r r a y (P ) . argmax ( )

p r i n t V o l t [ p o s i t i o n ] ; p r i n t J [ p o s i t i o n ]

e f f =100∗Pmax/ Pin ; p r i n t e f f

j p=J [ p o s i t i o n ]

ax . a x h l i n e ( jp , l i n e w i d t h =1, c o l o r = ’ k ’ , l i n e s t y l e = ’−− ’)

ax2=ax . t w i n x ( )

l n s 2=ax . p l o t ( Volt , P , l a b e l =’power ’ , c o l o r =’ green ’ )

ax2 . s e t y l i m ( 0 , 5 0 0 )

l n s=l n s 1+l n s 2 ; l a b s =[ l . g e t l a b e l ( ) f o r l i n l n s ]

ax . l e g e n d ( l n s , l a b s , l o c =’ best ’ )

vp=V o l t [ p o s i t i o n ]

ax2 . a x v l i n e ( vp , l i n e w i d t h =1, c o l o r = ’ k ’ , l i n e s t y l e = ’−− ’)

ax2 . p l o t ( vp , Pmax , c o l o r =’ red ’ , marker =’d ’ , m a r k e r s i z e =7)

p y l a b . show ( )



References

[1] G. D. Nguimdo and D. P. Joubert, “A density functional (PBE,PBEsol,HSE06) study of the

structural, electronic and optical properties of the ternary compounds AgAlX2 (X = S, Se, Te),”

Eur.Phys. J. B, vol. 88, no. 5, 2015.

[2] G. D. Nguimdo, G. S. Manyali, M. Abdusalam, and D. P. Joubert, “Structural stability and

electronic properties of AgInS2 under pressure,” The European Physical Journal B, vol. 89, no. 4,

pp. 1–9, 2016.

[3] G. D. Nguimdo and D. Joubert, “First principle study of structural, thermal and electronic proper-

ties of the chalcopyrites AgAlX2(X = S, Se,Te),” South African Institute of Physics, pp. 602–607,

April 2015.

[4] US Department of Energy, “EIA projects world energy consumption will increase 56% by 2040.”

https://www.eia.gov/todayinenergy/detail.cfm?id=12251. Accesed: 10 Jan 2016.

[5] J. Mark Perry, “US energy consumption by fuel source, 1949-2040.”

https://www.aei.org/publication/fossil-fuels-will-continue-to-supply-80-of-us-energy-through-

2040-while-renewables-will-play-only-a-minor-role/, December 2013. Accessed: 18 Jan 2016.

[6] N. Geographic, “Solar energy.” http://environment.nationalgeographic.com/environment/global-

warming/solar-power-profile/. Accessed: 19 Jan 2016.

[7] S. Mahan, “Study proves fossil fuels way worse for land use than renewables

0.” http://www.cleantechies.com/2015/07/06/study-proves-fossil-fuels-way-worse-for-land-use-

than-renewables/, july 2016. Accessed: 3 Feb 2016.

[8] B. W. Allred and W. K. Smith, “Ecosystem services lost to oil and gas in north america,” Wetlands,

vol. 2, p. 3, 2015.

[9] S. Ong, C. Campbell, P. Denholm, R. Margolis, and G. Heath, “Land-use requirements for solar

power plants in the united states,” Golden, CO: National Renewable Energy Laboratory, 2013.

140



REFERENCES Page 141

[10] L. A. G. Initiative, “Total surface area required to fuel the world with solar,”

[11] K. Mathiesen, “What is holding back the growth of solar power,” Jan 2016. Accessed:01 Feb

2016.

[12] R. W. Miles, G. Zoppi, and I. Forbes, “Inorganic photovoltaic cells,” Materials today, vol. 10,

no. 11, pp. 20–27, 2007.

[13] M. Energy, “US solar power growth through 2040,” Deloitte Center for Energy Solutions, Septem-

ber 2015.

[14] F. Chiker, B. Abbar, A. Tadjer, H. Aourag, and B. Khelifa, “Full potential calculation of structural,

electronic and optical properties of CdSiP2 and CdGeP2,” Materials Science and Engineering:

B, vol. 98, no. 2, pp. 81–88, 2003.

[15] U. Verma, P. Jensen, M. Sharma, and P. Singh, “Ab initio studies of structural, electronic, opti-

cal and thermal properties of CuAlS2 chalcopyrite,” Computational and Theoretical Chemistry,

vol. 975, no. 1, pp. 122–127, 2011.

[16] V. Jayalakshmi, S. Davapriya, R. Murugan, and B. Palanivel J. Phys. Chem. Solids, vol. 67, no. 4,

pp. 669 – 674, 2006.

[17] K.-J. Range, G. Engert, and A. Weiss Sol. Stat. Comm., vol. 7, no. 24, pp. 1749–1752, 1969.

[18] A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil J.

Alloys Compd., vol. 487, no. 12, pp. 206 – 213, 2009.

[19] F. Arab, F. A. Sahraoui, K. Haddadi, and L. Louail Comput. Mater. Sci., vol. 65, pp. 520–527,

2012.

[20] K. Li, B. Chai, T. Peng, J. Mao, and L. Zan, “Preparation of mathrmAgIn5S8/T iO2 hetero-

junction nanocomposite and its enhanced photocatalytic H2 production property under visible

light,” Acs Catalysis, vol. 3, no. 2, pp. 170–177, 2013.



REFERENCES Page 142

[21] N. Orlova, I. Bodnar, and E. Kudritskaya, “Crystal growth and properties of the CuIn5S8 and

AgIn5S8 compounds,” Crystal Research and Technology, vol. 33, no. 1, pp. 37–42, 1998.

[22] A. Usujima, S. Takeuchi, S. Endo, and T. Irie, “Optical and electrical properties of CuIn5S8 and

AgIn5S8 single crystals,” Japanese Journal of Applied Physics, vol. 20, no. 7, p. L505, 1981.

[23] B. Xu, H. Han, J. Sun, and L. Yi Physica B: Condensed Matter, vol. 404, no. 8, pp. 132–1331,

2009.

[24] A. Zunger and J. Jaffe Phys. Rev. Lett., vol. 51, no. 8, p. 662, 1983.

[25] F. C. Wan, F. L. Tang, Z. X. Zhu, H. T. Xue, W. J. Lu, Y. D. Feng, and Z. Y. Rui Mater. Sci.

Semicond. Process., vol. 16, no. 6, pp. 1422–1427, 2013.

[26] T. Ouahrani, A. Otero-de La-Roza, A. H. Reshak, R. Khenata, H. I. Faraoun, B. Amrani, M. Me-

brouki, and V. Luaña Physica B, vol. 405, no. 17, pp. 3658–3664, 2010.

[27] Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal,

“Fabrication of 7.2% efficient cztsse solar cells using czts nanocrystals,” Journal of the American

Chemical Society, vol. 132, no. 49, pp. 17384–17386, 2010.

[28] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “De-

velopment of czts-based thin film solar cells,” Thin Solid Films, vol. 517, no. 7, pp. 2455–2460,

2009.

[29] N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium

gallium diselenide (cigs) solar cells with indium sulfide buffer layers deposited by atomic layer

chemical vapor deposition (alcvd),” Progress in Photovoltaics: Research and Applications, vol. 11,

no. 7, pp. 437–443, 2003.

[30] F. Kessler and D. Rudmann, “Technological aspects of flexible cigs solar cells and modules,” Solar

Energy, vol. 77, no. 6, pp. 685–695, 2004.

[31] M. Kaelin, D. Rudmann, and A. Tiwari, “Low cost processing of cigs thin film solar cells,” Solar

Energy, vol. 77, no. 6, pp. 749–756, 2004.



REFERENCES Page 143

[32] G. D. Boyd, E. Buehler, F. Storz, and J. Wernick, “Linear and nonlinear optical properties of

ternary a ii b iv c 2 v chalcopyrite semiconductors,” Quantum Electronics, IEEE Journal of, vol. 8,

no. 4, pp. 419–426, 1972.

[33] A. H. Reshak, “Linear, nonlinear optical properties and birefringence of AgGaX2(X = S, Se,Te)

compounds,” Physica B: Condensed Matter, vol. 369, no. 1, pp. 243–253, 2005.

[34] K. P. O’Donnell, Semiconductor spectroscopy and devices, Accessed May 2014.

http://ssd.phys.strath.ac.uk/index.php/.
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[84] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, “Van der waals density

functional for general geometries,” Phys. Rev. Lett., vol. 92, p. 246401, Jun 2004.

[85] A. D. Becke, “A new mixing of hartree–fock and local density-functional theories,” The Journal

of Chemical Physics, vol. 98, no. 2, pp. 1372–1377, 1993.

[86] J. Kim and Y. Jung, “Analytical double-hybrid density functional based on the polynomial series

expansion of adiabatic connection: A quadratic approximation,” Journal of Chemical Theory and

Computation, vol. 11, no. 1, pp. 45–54, 2014.

[87] A. Görling and M. Levy, “Hybrid schemes combining the hartree–fock method and density-

functional theory: Underlying formalism and properties of correlation functionals,” The Journal

of chemical physics, vol. 106, no. 7, pp. 2675–2680, 1997.

[88] M. P. Molepo, Computational Study of the Structural Phase Transitions and Pressure Dependent

Electronic Structure of ZnO. PhD thesis, Faculty of Science, University of the Witwatersrand,

Johannesburg, 05 2012.



REFERENCES Page 148

[89] P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational

absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem.,

vol. 98, no. 45, pp. 11623–11627, 1994.

[90] S. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies

for local spin density calculations: a critical analysis,” Can. J. Phys., vol. 58, no. 8, pp. 1200–1211,

1980.

[91] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened coulomb

potential,” J. Chem. Phys., vol. 118, no. 18, pp. 8207–8215, 2003.

[92] J. Sun, M. Marsman, G. I. Csonka, A. Ruzsinszky, P. Hao, Y.-S. Kim, G. Kresse, and J. P. Perdew,

“Self-consistent meta-generalized gradient approximation within the projector-augmented-wave

method,” Phys. Rev. B, vol. 84, p. 035117, Jul 2011.

[93] Y. Zhao and D. G. Truhlar, “A new local density functional for main-group thermochemistry,

transition metal bonding, thermochemical kinetics, and noncovalent interactions,” The Journal

of chemical physics, vol. 125, no. 19, p. 194101, 2006.

[94] F. Tran and P. Blaha Phys. Rev. Lett., vol. 102, no. 22, p. 226401, 2009.

[95] R. van Leeuwen and E. J. Baerends Phys Rev. A, vol. 51, no. 1, pp. 170–178, 1995.

[96] E. K. Gross and R. M. Dreizler, Density Functional Theory. Springer, pp. 11–31, 1995.

[97] A. P. Gaiduk and V. N. Staroverov J. Chem. Phys, vol. 131, no. 4, p. 044107, 2009.

[98] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-

energy-loss spectra and the structural stability of nickel oxide: An lsda+u study,” Phys. Rev. B,

vol. 57, pp. 1505–1509, Jan 1998.

[99] M. Gatti, “Introduction to spectroscopy..” Lecture Notes, 3rd African School on Electronic Struc-

ture Methods and Applications, Wits University, Jan 2015.



REFERENCES Page 149

[100] P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona Phys. Rev. B, vol. 36, pp. 4821–4830,

Sep 1987.

[101] D. Bohm and D. Pines, “A collective description of electron interactions: Iii. coulomb interactions

in a degenerate electron gas,” Phys. Rev., vol. 92, no. 3, p. 609, 1953.

[102] P. Gori-Giorgi and A. Savin, “Study of the discontinuity of the exchange-correlation potential in

an exactly soluble case,” International Journal of Quantum Chemistry, vol. 109, no. 11, pp. 2410–

2415, 2009.

[103] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, “Density-functional theory for fractional

particle number: Derivative discontinuities of the energy,” Phys. Rev. Lett., vol. 49, pp. 1691–

1694, Dec 1982.

[104] A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Challenges for density functional theory,” Chemical

Reviews, vol. 112, no. 1, pp. 289–320, 2011.

[105] J. E. Coulter, E. Manousakis, and A. Gali, “Limitations of the hybrid functional approach to

electronic structure of transition metal oxides,” Phys. Rev. B, vol. 88, no. 4, p. 041107, 2013.

[106] M. Gatti, “Introduction to many-body greens functions.” Lecture Notes, ELK school - CECAM,

2011.

[107] L. Hedin, “New method for calculating the one-particle green’s function with application to the

electron-gas problem,” Phys. Rev., vol. 139, no. 3A, p. A796, 1965.

[108] M. Shishkin and G. Kresse, “Implementation and performance of the frequency-dependent g w

method within the paw framework,” Phys. Rev. B, vol. 74, no. 3, p. 035101, 2006.

[109] M. Shishkin, M. Marsman, and G. Kresse, “Accurate quasiparticle spectra from self-consistent

gw calculations with vertex corrections,” Phys. Rev. Lett., vol. 99, no. 24, p. 246403, 2007.

[110] N. G. Ondzibou, “Computational study of structural, electronic and optical properties of molyb-

denum chalcogenides,” Master’s thesis, Faculty of Science, University of the Witwatersrand, Jo-

hannesburg, 2014.



REFERENCES Page 150

[111] E. Salpeter and H. A. Bethe, “A relativistic equation for bound-state problems,” Phys. Rev.,

vol. 84, no. 6, p. 1232, 1951.

[112] M. M. Broido and J. G. Taylor, “Bethe-salpeter equation,” Journal of Mathematical Physics,

vol. 10, no. 1, pp. 184–209, 1969.

[113] J. C. Inkson, Many-body theory of solids: an introduction. Springer Science & Business Media,

2012.

[114] W. G. Aulbur, L. Jönsson, and J. W. Wilkins, “Quasiparticle calculations in solids,” Solid State

Physics, vol. 54, pp. 1–218, 2000.

[115] R. D. Mattuck, A guide to Feynman diagrams in the many-body problem. Courier Corporation,

2012.

[116] W. Zheng and H. Zhai, “Quasiparticle lifetime in a mixture of bose and fermi superfluids,” Physical

review letters, vol. 113, no. 26, p. 265304, 2014.

[117] G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body

greens-function approaches,” Rev. Mod Phys, vol. 74, no. 2, p. 601, 2002.

[118] D. Varsano, First principles description of response functions in low dimensional systems. PhD

thesis, PhD thesis, Thesis, University of the Basque Country, 2006.

[119] M. Rohlfing and S. G. Louie, “Electron-hole excitations in semiconductors and insulators,” Physical

review letters, vol. 81, no. 11, p. 2312, 1998.

[120] W. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations: Chal-

lenges and tools,” Comp. Mat. Sc., vol. 49, no. 2, pp. 299–312, 2010.

[121] M. A. Marques, N. T. Maitra, F. M. Nogueira, E. K. Gross, and A. Rubio, Fundamentals of

time-dependent density functional theory, vol. 837. Springer Science & Business Media, 2012.

[122] S. L. Adler, “Quantum theory of the dielectric constant in real solids,” Phys. Rev., vol. 126,

pp. 413–420, Apr 1962.



REFERENCES Page 151

[123] F. Bruneval, F. Sottile, V. Olevano, R. Del Sole, and L. Reining, “Many-body perturbation theory

using the density-functional concept: Beyond the gw approximation,” Phys. Rev. Lett., vol. 94,

p. 186402, May 2005.

[124] M. Shishkin and G. Kresse, “Self-consistent g w calculations for semiconductors and insulators,”

Physical Review B, vol. 75, no. 23, p. 235102, 2007.

[125] L. Reining and G. Onida., “Bse in condensed matter theory.” 2015.

[126] M. Palummo, O. Pulci, R. D. Sole, A. Marini, P. Hahn, W. G. Schmidt, and F. Bechstedt,

“The bethe-salpeter equation: a first-principles approach for calculating surface optical spectra,”

Journal of Physics: Condensed Matter, vol. 16, no. 39, p. S4313, 2004.

[127] J. E. Jaffe and A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconduc-

tors,” Phys. Rev. B, vol. 29, pp. 1882–1906, Feb 1984.

[128] R. R. Philip, B. Pradeep, and T. Shripathi, “Spin orbit and tetragonal crystalline field interaction

in the valence band of cuinse2-related ordered vacancy compound CuIn7Se12,” physica status

solidi (b), vol. 242, no. 5, pp. 1027–1035, 2005.

[129] J. Shay and H. Kasper, “Direct observation of cu d levels in i-iii-vi 2 compounds,” Physical Review

Letters, vol. 29, no. 17, p. 1162, 1972.

[130] S. Chen, X. Gong, and S.-H. Wei, “Band-structure anomalies of the chalcopyrite semiconduc-

tors CuGaX2 versus AgGaX2(X = S,Se) and their alloys,” Physical Review B, vol. 75, no. 20,

p. 205209, 2007.

[131] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,

D. Skinner, G. Ceder, and K. a. Persson APL Materials, vol. 1, no. 1, p. 011002.

[132] A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch Acta Crystallogr., Sect. B: Struct. Sci,

vol. 58, no. 3, pp. 364–369, 2002.

[133] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave

method,” Phys. Rev. B, vol. 59, no. 3, p. 1758, 1999.



REFERENCES Page 152

[134] G. Kresse and J. Furthmüller, “Software VASP,” Phys. Rev. B, vol. 54, no. 11, p. 169, 1996.

[135] H. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone integrations,” Phys. Rev. B,

vol. 13, no. 12, p. 5188, 1976.

[136] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,

D. Skinner, G. Ceder, and K. a. Persson Appl. Phys. Lett. Mater., vol. 1, no. 1, p. 011002, 2013.

[137] Y. Qi, Q. Liu, K. Tang, Z. Liang, Z. Ren, and X. Liu J. Phys. Chem., vol. 113, no. 10, pp. 3939–

3944, 2009.

[138] A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil,

“Structural phase transition, elastic properties and electronic properties of chalcopyrite cualx¡

sub¿ 2¡/sub¿(x= s, se, te),” Journal of Alloys and Compounds, vol. 487, no. 1, pp. 206–213,

2009.

[139] J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent Chem. Mater., vol. 20, no. 22, pp. 6906–6910,

2008.

[140] K.-J. Range, G. Engert, and A. Weiss Solid State Commun, vol. 7, no. 24, pp. 1749–1752, 1969.

[141] R. Heid, density functional perturbation theory and electron phonon coupling,. Institute for Solid

State Physics, Karlsruhe Institute of Technology, 2013. The lecture notes have been published

as a book: Eva Pavarini, Erik Koch, and Ulrich Schollwck (eds.) Emergent Phenomena in Cor

related Matter, Modeling and Simulation, Vol. 3. Verlag des Forschungszentrum Jlich, 2013, ISBN

978-3-89336-884-6.

[142] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal properties

from density-functional perturbation theory,” Rev. Mod. Phys, vol. 73, no. 2, p. 515, 2001.

[143] A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scripta Mate-

rialia, vol. 108, pp. 1–5, 2015.



REFERENCES Page 153

[144] H. Hahn, G. Frank, W. Klingler, A.-D. Meyer, and G. Strger, “Untersuchungen ber ternre chalko-

genide. v. ber einige ternre chalkogenide mit chalkopyritstruktur,” Zeitschrift fr anorganische und

allgemeine Chemie, vol. 271, no. 3-4, pp. 153–170, 1953.

[145] S. Mishra and B. Ganguli Solid State Commun., vol. 151, no. 7, pp. 523–528, 2011.

[146] F. Birch Phys. Rev., vol. 71, pp. 809–824, 1947.

[147] U. P. Verma, M. Sharma, and P. Jensen Zeitschrift für Kristallographie, vol. 226, no. 11, pp. 814–

821, 2011.

[148] Y. Zhan, M. Pang, H. Wang, and Y. Du Curr. Appl. Phys., vol. 12, no. 2, pp. 373–379, 2012.
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[176] F. Karlický and M. Otyepka, “Band gaps and optical spectra of chlorographene, fluorographene

and graphane from g0w0, gw0 and gw calculations on top of pbe and hse06 orbitals,” J. Chem.

Theo and Comp., vol. 9, no. 9, pp. 4155–4164, 2013.

[177] M. Abdusalam, A theoretical investigation of structural, electronic and optical properties of tran-

sition metal chalcogenides. PhD thesis, Faculty of Science, University of the Witwatersrand,

Johannesburg, 12 2015.

[178] “Vasp-dfpt & phonopy calculation.”

[179] J. Krustok, J. Raudoja, M. Krunks, H. Mndar, and H. Collan J. of Appl. Phys., vol. 88, no. 1,

pp. 205–209, 2000.

[180] G. Delgado, A. Mora, C. Pineda, and T. Tinoco Mater. Res. Bull., vol. 36, no. 13, pp. 2507–2517,

2001.

[181] S. Sharma, A. Verma, and V. Jindal Physica B: Cond. Matt., vol. 438, pp. 97–108, 2014.

[182] J. Liu, S. Chen, Q. Liu, Y. Zhu, and Y. Lu Comp. Mat. Sci., vol. 91, no. 0, pp. 159 – 164, 2014.

[183] E. N. Orisakwe, V. Sharma, and J. E. Lowther physica status solidi, vol. 249, no. 5, pp. 1020–1026,

2012.

[184] S. K. Jain and P. Srivastava Eur.Phys. J. B, vol. 86, no. 7, pp. 1–7, 2013.

[185] D. Gherouel, I. Gaied, and M. Amlouk J. Alloys Compd., vol. 566, pp. 147–155, 2013.

[186] A. J. FRUEH, “The crystallography of silver sulfide, Ag2S,” Zeitschrift für Kristallographie-

Crystalline Materials, vol. 110, no. 1-6, pp. 136–144, 1958.

[187] N. S. Rampersadh, A. M. Venter, and D. G. Billing, “Rietveld refinement of In2S3 using neutron

and x-ray powder diffraction data,” Physica B: Condensed Matter, vol. 350, no. 1, pp. E383–E385,

2004.

[188] G. Steigmann, H. Sutherland, and J. Goodyear, “The crystal structure of β − in2s3,” Acta Crys-

tallographica, vol. 19, no. 6, pp. 967–971, 1965.



REFERENCES Page 157

[189] A. Werner, H. D. Hochheimer, and A. Jayaraman, “Pressure-induced phase transformations in the

chalcopyrite-structure compounds: Cugas2 and aggas2,” Phys. Rev. B, vol. 23, pp. 3836–3839,

Apr 1981.

[190] A. Verma, S. Sharma, R. Bhandari, B. Sarkar, and V. Jindal Mat. Chem. and Phys., vol. 132,

no. 2, pp. 416–420, 2012.

[191] T. Hammerschmidt, I. Abrikosov, D. Alfe, S. Fries, L. Höglund, M. Jacobs, J. Koßmann, X.-G.
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Domene, F. Manjón, D. Errandonea, P. Rodŕıguez-Hernández, et al., “High-pressure structural

and elastic properties of tl2o3,” Journal of Applied Physics, vol. 116, no. 13, p. 133521, 2014.

[196] G. SinKo and N. Smirnov, “Ab initio calculations of elastic constants and thermodynamic prop-

erties of bcc, fcc, and hcp al crystals under pressure,” Journal of Physics: Condensed Matter,

vol. 14, no. 29, p. 6989, 2002.

[197] H. Zhai, X. Li, and J. Du Materials Transactions, vol. 53, no. 7, pp. 1247–1251, 2012.

[198] J. Haines, J. Leger, and G. Bocquillon, “Synthesis and design of superhard materials,” Annual

Review of Materials Research, vol. 31, no. 1, pp. 1–23, 2001.

[199] S. Pugh The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

vol. 45, no. 367, pp. 823–843, 1954.

[200] D. Huang and C. Persson Chem. Phys. Lett., vol. 591, no. 0, pp. 189 – 192, 2014.



REFERENCES Page 158

[201] S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-electron self-consistent g w approximation:

Application to Si, MnO and NiO,” Phys. Rev. Lett., vol. 93, no. 12, p. 126406, 2004.

[202] F. Bruneval, N. Vast, L. Reining, M. Izquierdo, F. Sirotti, and N. Barrett, “Exchange and correla-

tion effects in electronic excitations of Cu2O,” Physical review letters, vol. 97, no. 26, p. 267601,

2006.

[203] J. Vidal, S. Botti, P. Olsson, J.-F. Guillemoles, and L. Reining, “Strong interplay between structure

and electronic properties in CuIn(S, Se)2: a first-principles study,” Phys. Rev. Lett., vol. 104, no. 5,

p. 056401, 2010.

[204] D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified becke-johnson exchange

potential,” Physical Review B, vol. 83, no. 19, p. 195134, 2011.

[205] J. Camargo-Martinez and R. Baquero, “Performance of the modified becke-johnson potential for

semiconductors,” Physical Review B, vol. 86, no. 19, p. 195106, 2012.

[206] S. You, K. Hong, B. Lee, T. Jeong, C. Youn, J. Park, and S. Baek J. Cryst. Growth, vol. 245,

no. 3, pp. 261–266, 2002.

[207] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,”

Journal of applied physics, vol. 32, no. 3, pp. 510–519, 1961.

[208] D. Y. Goswami, F. Kreith, and J. F. Kreider, Principles of solar engineering. CRC Press, 2000.

[209] A. Belghachi, “Theoretical calculation of the efficiency limit for solar cells,” 2015.

[210] K. Emery and D. Myers, “Reference solar spectral irradiance: air mass 1.5,” Center, RERD, Ed,

2009.

[211] R. Hulstrom, R. Bird, and C. Riordan, “Spectral solar irradiance data sets for selected terrestrial

conditions,” Solar Cells, vol. 15, no. 4, pp. 365–391, 1985.



REFERENCES Page 159

[212] P. Altermatt, “Altermatt’s lectures on photovoltaics. from

[https://www.pvlighthouse.com.au/resources/courses/altermatt/theaccess on [13-01-2016],”

2016.

[213] T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar

cells,” Electron Devices, IEEE Transactions on, vol. 31, no. 5, pp. 711–716, 1984.

[214] C. A. R. Linge, “Modeling of the intermediate band tandem solar cell: Using the AM1.5 spectra,”

Master’s thesis, Norwegian University of Science and Technology, 2011.

[215] L. Yu and A. Zunger, “Identification of potential photovoltaic absorbers based on first-principles

spectroscopic screening of materials,” Physical review letters, vol. 108, no. 6, p. 068701, 2012.
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