An Analysis of Energy Efficient Building Principles

Craig Anthony Blackstone

2005

9709225V

A project report submitted to the School of Construction Economics and Management,
University of the Witwatersrand, Johannesburg, in partial fulfillment of the requirements for
the Masters Degree in Property Development and Management

Johannesburg 2005

An Analysis of Energy Efficient Building Principles

2005

Declaration

I declare that this research report is my own, unaided work. It is being submitted for the Degree of Masters in Property Development and Management in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

(Craig Anthony Blackstone)

24th day of November 2005

Acknowledgments

The Author expresses sincere appreciation to all of the following people who gave of their precious time;

Dr Alfred Talukhaba

Professor François Viruly

Ken Stucke (Architect)

Mark Napier (CSIR)

Dr Daniel Irurah

Moses Mengu (Managing Director: BOTEC)

Busisiwe Sianga (BOTEC)

Nick Ndaba (BOTEC)

A special thanks to the Wits library staff for their assistance.

Abstract

This research was conducted in order to highlight the misconception that there may be a single answer to the challenges of energy efficient design; a "single elixir that will be the answer to all problems" (Holm, 1996).

Existing literature pertaining to energy efficient design principles was analysed and tested against a well known example of Southern African energy efficient building practice; the Botswana Technology Centre (BOTEC). BOTEC was selected as the case study for this investigation because it was designed to be a living exhibition of energy efficient design and as such a manual or 'elixir' for alternate design.

BOTEC was analysed on site, personal interviews were held with the architect and a questionnaire was circulated to the users of the building in order to observe whether the principles used at the BOTEC building are appropriate and represent the "single elixir, the answer to all problems," with regard to energy efficient design (Holm, 1996).

Although BOTEC appears to perform well, interviews with the users of the BOTEC building suggest that the building does not perform well in winter at all. Interviews with the architectural consultant who worked on the BOTEC building expose a simple oversight in design which leads to 'this building's underperformance in winter'.

In concurrence with Holm therefore, this report ultimately shows that there are no perfect solutions to energy efficient design and by applying a once successful solution without taking cognisance of specific climatic and geological differences, the building will not function correctly.

Table of Contents	pg
Declaration	ii
Acknowledgements	iii
Abstract	iv
Table of Contents	V
List of Tables	viii
List of Figures	ix
List of Graphs	X
Chapter 1.0 Introduction	01
Hypothesis	01
1.1 The Problem	01
1.2 Research Objectives	02
1.3 Scope of Study	03
1.4 Resource Depletion	04
1.5 Sustainability	06
1.6 Energy Efficient Design	07
Chapter 2.0 Literature analysis of Energy Efficient Building Principles	08
2.1 Historical Overview of Climatic Building Design	08
2.1.1 Building Envelope	09
2.1.2 Temperature Control, Lighting and Ventilation	10
2.1.3 High Rise and Air Conditioning	12
2.1.4 Common Oversights	14
2.2 Contemporary Design for Energy Efficiency Buildings	16
2.2.1 Economics of energy efficient design	18
2.2.2 Building Envelope Design.	21

		pg
2.3	Factors Determining Thermal Response	23
	2.3.1 Heat Storage and Insulation	23
	2.3.2 Heat Gain and Orientation	26
	2.3.3 Ventilation	27
	2.3.4 Heat Gain Due to Lighting	28
	2.3.5 Air Conditioning	29
	2.3.6 Energy Efficient Design Elements	31
2.4	Literature Model	33
Chapter 3.	.0 Case Study Analysis: Botswana Technology Centre (BOTEC)	35
3.1	Case Study Methodology	35
3.2	Documents and Direct Observation	39
	3.2.1 General Description	39
	3.2.2 Orientation	42
	3.2.3 Water	43
	3.2.4 Building Envelope	44
	3.2.5 Ventilation	45
	3.2.6 External Screening and Shading	48
	3.2.7 Interior Shading	50
	3.2.8 Lighting	51
3.3	Summation	52
Chapter	4.0 Case Study: Interviews and Questionnaire	54
4.1	Objective of Questionnaire	54
4.2	Methodology	54
4.3	Survey Sample	55

	pg
4.4 Results	56
4.4.1 General Performance	56
4.4.2 Most Disliked Features	57
4.4.3 Most Important Features	67
4.4.4 Heating System	58
4.4.5 Cooling System	59
4.4.6 Lighting	60
4.4.7 Noise	60
4.4.8 Ventilation	60
4.4.9 Windows	61
4.4.10 Finding	62
4.5 Further Investigation	63
4.6 Summation	64
Chapter 5.0 Conclusion	65
References	68
Appendix	70
Appendix A Case Study Analysis: Literature Model	70
Appendix B Case Study Analysis :Questionnaire	72
Appendix C Derivation of Energy intensities of building	77
construction materials by physical units	

List of Tables		pg
Table 1	Energy content of building material	3
Table 2	Energy Consumption	17
Table 3	Cost comparison of home with/without insulated ceiling	20
Table 4	Lighting analysis	28
Table 5	Literature Model	33

List of Figures		pg	
Figure 1	Thermal massing	Author: 2004	9
Figure 2	The Glucksburg Castle	Daniels: 1997	10
Figure 3	Case Study Design Components	Tellis: 1997	36
Figure 4	Solar Window	Author: 2005	42
Figure 5	Wind scoops	Author: 2005	42
Figure 6	Covered Central Court with Water Feature	Author: 2005	44
Figure 7	Image showing metal grating beneath staircase	Author: 2005	45
Figure 8 & 9	Images showing Exhaust system	Author: 2005	46
Figure 10	Drawing showing typical solar chimney	Author: 2005	46
Figure 11	Solar Chimney	Author: 2005	46
Figure 12	Cross section showing Solar Chimney and exhaust system	Author: 2005	48
Figure 13	Exhaust Vents	Author: 2005	48
Figure 14, 15	s, & 16 Shading screens at BOTEC Headquarters	Author: 2005	49
Figure 17	Thermal Massing at BOTEC	Author: 2005	49
Figure 18	Entrance Foyer at BOTEC	Author: 2005	49
Figure 19	North Façade BOTEC	Author: 2005	50
Figure 20	South Façade, BOTEC	Author: 2005	50
Figure 21 & 2	Figure 21 & 22 Cross section at BOTEC Showing Central Court. Author: 2005		51
Figure 23	Internal Shading Author: 2005	Author: 2005	51
Figure 24	Light Trays, BOTEC	Author: 2005	51

List of Graphs		pg
Graph A	Insulation position1	24
Graph B	Insulation position 2	25
Graph 1	General Likes	56
Graph 2	General Dislikes	56
Graph 3	Most important features	58
Graph 4	Heating System	58
Graph 5	Cooling System	59
Graph 6	Lighting	59
Graph 7	Noise Level	60
Graph 8	Ventilation	61
Graph 9	Windows	61