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ABSTRACT 

 
The deployment of optical networks has become inevitably paramount due to the phenomenal 

advancement in the communications industry and the associated extraordinary demand for high 

data throughput. Optical networks provide the needed solution and reliability especially in this era 

where bandwidth-hungry devices are in high demand. The current technical trend seeks to 

increase the optical networks capacity, flexibility and reconfigurability, in order to effectively 

support long haul data transportation. The orthogonal frequency division multiplexing (OFDM) 

technique has been proposed as a viable scheme that can be incorporated so as to greatly enhance 

the overall output of the existing optical transport networks. The OFDM technique has become a 

popular scheme in telecommunications due to its support for high data-rate transmission, 

robustness and spectral efficiency. The scheme is particularly of great interest and very attractive 

for use in optical transport system due to its tolerance to chromatic dispersion. However, with the 

introduction of the OFDM scheme comes the attendant challenges of carrier frequency offsets 

(CFO) and phase noise, which must be adequately addressed in order to ensure optimum 

performance of the coherent optical OFDM communication system.  

This research work therefore, seeks to address the impact of phase noise and carrier frequency 

offset on a non-simplistic, complex and an all-encompassing optical OFDM system model which 

considers the influence of polarization mode dispersion, group velocity dispersions, attenuation 

and other polarization-dependent losses in the optical link. The effectiveness of the algorithms, 

utilized to combat phase noise and carrier frequency offset based on the simplistic optical OFDM 

models in the literature, is verified using the non-simplistic comprehensive system model. Also, a 

closed-form maximum likelihood (ML) method is developed and utilized for phase noise and 

CFO estimation. First, a closed-form ML estimator is derived and implemented for CFO 

estimation in coherent optical OFDM (CO-OFDM) system. Thereafter, this is then extended so 

that the phase noise and the CFO are jointly acquired using the derived closed-form ML method. 



vii 

The closed-form derivations avoid the traditional exhaustive search associated with the traditional 

ML methods and ensure low complexity. 

In a departure from the pilot-based methods mentioned above, the blind subspace-tracking 

algorithm is developed and implemented, as countermeasure to address the impact of phase noise 

in CO-OFDM systems. The subspace-tracking algorithm is based on the fast data projection 

method (FDPM). The FDPM is uniquely combined with a forward-backward linear predictor to 

ensure an efficient adaptive way of estimating the phase noise in the optical system. Also, a 

variable step-size is introduced, which deviates from the constant normalized step-size 

traditionally utilized for the subspace-based algorithms to ensure an enhanced overall system 

performance. 

Furthermore, an efficient constant modulus method for CFO acquisition is introduced. The 

method is implemented using a cost function that ensures robustness against fiber impairments. 

The suitability and efficiency of the constant modulus approach in terms of the system 

complexity, cost-efficiency and overall performance is implemented and investigated while 

considering pertinent impairments along the optical fiber link. The method is adequately 

compared with other prominent methods in terms of system performance and complexity.  

Thus, the impact of the CFO and the phase noise are adequately addressed in this research work. 

The performances of the various methods utilized are verified using computer simulations and 

documented in this thesis. 
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CHAPTER ONE 

 

GENERAL INTRODUCTION 

 
1.1. Background 

The need for high data rate transmission due to the advent of bandwidth-hungry applications has 

necessitated various studies aimed at the provision of reliable, quality and efficient services to the 

satisfaction of communication system’s users.  Modern means of signal transmission through 

light wave dates back to about six decades ago after the possibilities were first demonstrated 

using lasers [1]. The use of optical transmission was seen as a viable and promising option due to 

the phenomenal rise in demand for telecommunication services. Coupled with the huge 

bandwidth offered by the optical transmission system, Kao and Hockham stated in 1966 [2], that 

the then fiber loss of 1000 dB/km, could be reduced to 20 dB/km. This encouraged a burst of 

research into this promising field of communications. 

However, the first commercial fiber-optics transmission system only came to actualization after 

another decade. Around the close of the twentieth century, the first transatlantic optic-fiber cable 

was installed. Although a lower fiber loss was achieved few years later, the need for regeneration 

after short distance of propagation continued to be a great challenge [3, 4]. After the introduction 

of the Erbium-doped optical amplifiers and wavelength division multiplexing, the optic fiber 

technology asserted itself as an appropriate solution for long-haul high capacity transmission. 

Presently, research into this robust field has grown to meet the ever-increasing demand for 

Internet, which doubles in traffic every year. The fiber-optics transmission presents a technology 

with a large available bandwidth. This bandwidth is utilized and shared among multiple 

consumers, using the Wavelength Division Multiplexing (WDM) [5]. The WDM scheme allows 

the simple upgrade of the system capacity and various ways are still being explored to effectively 
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utilize the available bandwidth. There have been numerous studies towards this direction in recent 

years aiming at the possibility of transmitting several Tb/s over one optical fiber.  

The optical communication networks have to contend with issues such as dispersion along the 

transmission link. A dispersion control scheme was being utilized, where dispersion 

compensation modules are placed at the amplifier site to mitigate the impact of dispersion along 

the propagation line [6]. However, the mitigation scheme only performs well when transmitting at 

about 10Gb/s or lower, as the scheme proves inefficient during transmission at a higher rate [7, 

8]. In order to address this inefficiency, electronic equalizers were proposed as alternatives to the 

dispersion compensation modules [9, 10]. Although the deployment was successful to a large 

extent, the major step forward came early in the twenty-first century with the introduction of 

predistortion equalizers. The predistortion equalizers thus enabled transmission over a long 

distance using the standard single-mode fiber (SSMF) without any dispersion compensation [11, 

12]. The introduced equalizers consist mainly of some potent silicon chip encircling a digital 

finite impulse filter (FIR) with taps, high-speed digital-to-analog converter and an optical in-

phase quadrature (IQ) modulator. This breakthrough therefore encouraged more research into 

digital signal processing based optical network transmission as well as the use of coherent 

detection in optical network systems [13]-[16]. 

Recently, the introduction of orthogonal frequency division multiplexing (OFDM) scheme into 

the existing optical communication system was proposed and two major types of optical OFDM 

schemes were proposed to support long-distance transmission without the need of the traditional 

dispersion management. They are the direct-detection optical OFDM (DDO-OFDM), as shown in 

Figure 1.1, and the coherent optical OFDM (CO-OFDM), which shall be discussed further in 

Section 3.2 [17, 18]. Both solutions were promising although the CO-OFDM offers a superior 

performance in terms of polarization-dispersion resilience and spectral efficiency [18, 19]. The 

main advantage of the DDO-OFDM is the ease of implementation, which is simpler and less 

complicated, compared to its CO-OFDM counterpart. [17]. 
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The incorporated OFDM in the CO-OFDM system has grown in popularity and the technique has 

been extensively deployed in various communication schemes and standards. Based on some 

communication preferences, some countries have elected to stick to either the single-carrier 

transmission or the multicarrier transmission mode. However, as extensively discussed in [20], 

the multicarrier transmission offered by the CO-OFDM scheme provide useful advantages in 

areas which are of vital importance in transmission systems, such as bandwidth scalability, 

computation complexity, tight bonding of spectral components, sampling rate and tolerance to 

system imperfection, among others. Hence, the coherent OFDM-based optical system is adopted 

in this research work.  

 

 

 

 

Figure 1.1: The direct-detection optical OFDM (DDO-OFDM) receiver. 

 

Although the proposed incorporation of the OFDM technique into the traditional optical system 

offers useful and pertinent advantages, it however brings in a different measure of challenges, 

which include carrier frequency offset errors and phase noise. OFDM is highly vulnerable to 

these challenges due to its relatively long symbol length compared to that of the single carrier. 

Also the OFDM is highly sensitive to phase noise which originates from the transmit and the 
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receive lasers, which becomes even severe in long haul transmission. To avoid these degrading 

and undesirable challenges, appropriate estimation algorithms and compensation measures need 

to be put in place to achieve the desired system efficiency, robustness and reliability.  

Various algorithms have been proposed in the literature to address the degrading impacts of the 

CFO and phase noise as will be discussed later in this thesis. Methods such as the pilot-aided 

technique, the decision-aided technique, the RF-based scheme as well as the maximum likelihood 

approach, have been utilized for phase noise and CFO estimation in CO-OFDM systems. 

However, these methods come with their inherent challenges such as increased system overhead 

and computational complexity. 

Among the algorithms proposed in this work is a simplified maximum likelihood (ML) method, 

which utilizes only two long training symbols to achieve CFO estimation. Thereafter, a joint ML 

approach is implemented for both CFO and phase noise estimation. This approach is derived in a 

closed-form, to avoid the exhaustive search associated with the traditional ML methods, thereby 

ensuring low-complexity implementation.  

Also, blind algorithms including a subspace-tracking algorithm as well as a constant modulus 

based estimator are developed and implemented as counter-measures for phase noise and CFO in 

optical OFDM systems. The subspace algorithm is implemented adaptively using a forward 

backward linear prediction (FBLP) technique. Also, to achieve enhanced system stability and 

performance, a variable step-size is introduced. The constant modulus algorithm is based on a 

robust cost-function similar to the Godard’s method for blind channel equalization. The algorithm 

is clearly derived and implemented in such a way that only three trial values are required for 

estimation, thus ensuring low complexity and system efficiency.  
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1.2.  Research questions 

As stated earlier, the proposed introduction of the OFDM technique into the core optical transport 

networks is laudable as well as inevitable for scalability, robustness and efficiency. However, the 

inherent drawbacks in the OFDM scheme could greatly hamper all these desired elements if not 

adequately addressed. For the purpose of this research work, the carrier frequency offset error and 

phase noise will be adequately addressed. 

The pertinent questions in this research work, therefore, center on the incorporated OFDM 

scheme in the optical network scenario and how the inherent drawbacks of these hybrid optical 

communications scheme can be addressed. Thus, the following questions are highlighted: 

a) There are simple CFO and phase noise estimation schemes based on fast Fourier 

transforms (FFT) and simple correlation methods reported in the literature, but the optical 

system models considered by those authors are very simplistic and not comprehensive. 

 How will these existing proposed schemes for CFO and phase noise estimation 

fare in a non-simplistic, complex and an all-encompassing system model? 

b) Methods employed so far for carrier frequency estimation and phase noise compensation 

in optical transmission mainly rely on pilot symbols, which result in increase in system 

overhead. 

 How would an ML-based estimator perform using only two long training 

symbols and how effectively will the estimator address the impact of frequency 

offset in optical networks? 

 How suitable and efficient is the use of blind algorithm-based methods in terms 

of system complexity, performance and cost-efficiency especially taking into 

account the fast rate of change of phase noise? 
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 Can the impact of phase noise and frequency offset be addressed jointly? Is the 

overall system performance improved if a different technique is utilized for a first 

stage phase noise estimation before the eventual acquisition of the CFO?  

Since the focal point of the research work is phase noise compensation and carrier frequency 

offset estimation in optical OFDM systems, a thorough survey and analyses of the algorithms 

utilized so far to combat their degrading impacts is conducted. Thereafter, improved, efficient, 

and cost-effective algorithms are therefore proposed and implemented, to address the undesirable 

effects of carrier frequency offsets and phase noise on the optical OFDM scheme. These 

drawbacks are addressed independently and jointly, using various cost-effective and efficient 

algorithms. The analytical and mathematical models developed are executed using the Optilux 

(an optical network simulation platform), and the MATLAB software. A simple research 

implementation chart is shown in Figure 1.2. 

Thus, for the purpose of this research work, the objectives include: 

a) Developing a comprehensive system model for the OFDM-based optical network.  

b) Investigating the impact of carrier frequency offset errors and phase noise, on the overall 

performance of the optical OFDM scheme. 

c) Implementing and investigating the efficiency of existing estimation and compensation 

schemes, which have been utilized to address the impact of carrier frequency offset errors 

and phase noise on the OFDM-based next generation optical networks.  

d) Developing and implementing a better and more efficient analytical model and 

estimation-based algorithm to independently and jointly combat the impacts of the carrier 

frequency offset errors and phase noise in the optical OFDM systems.  

e) Developing efficient blind estimation based algorithms to tackle the degrading effects of 

carrier frequency offsets and phase noise on the OFDM-based next generation optical 

networks. 
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Figure 1.2: Simple research implementation chart. 

 

1.3. Research Original Contribution 

 Derivation, implementation and analysis of a closed-form ML-based estimation for both 

CFO and phase noise acquisition. 

 Derivation and analysis of a constant modulus method, considering the influence of 

impairments along the optical fiber link, for CFO estimation in CO-OFDM systems. 

 Derivation and implementation of a robust cost function to achieve an efficient blind 

estimation in CO-OFDM systems. Also, the performance analysis of an adaptive fast 

subspace algorithm for blind estimation in a practical optical OFDM system is carried 

out. The impact of a variable step-size and a forward-backward linear prediction (FBLP) 

parameter, on the convergence speed, stability and the overall performance of the 

subspace- tracking algorithm is investigated. 
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1.5. Thesis Organization 

The rest of this thesis is organized as follows:  

Chapter two presents the overview of the optical communication system. The major constituents 

of the optical system such as the optical transmitter, the optical receiver, the optical fiber channel, 

are highlighted. Also, a review on the principles of the OFDM technique and the associated 

challenges is presented in this chapter. 

In Chapter three, a survey on the various prominent methods for CFO and phase noise estimation 

as reported in the literature, is carried out. Methods such as the FFT-based estimation technique, 
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the RF-based scheme, the subspace tracking algorithms as well as the constant modulus technique 

are reviewed. 

Chapter four presents the maximum likelihood approach for the phase noise and CFO estimation 

in CO-OFDM systems. First, a closed-form approach for CFO estimation is derived and 

implemented. Thereafter, a joint approach for the estimation of both the phase noise and the CFO 

is described and implemented. 

In Chapter five, an efficient constant modulus scheme for CFO acquisition in CO-OFDM systems 

is presented. The mathematical analysis as well as the derivation is clearly described. 

Chapter six presents a blind subspace method for phase noise estimation. This chapter includes 

the adaptive implementation of a fast subspace-tracking algorithm, the introduction of the 

forward backward linear prediction technique as well as the incorporation of the variable step-

size parameter, to achieve enhanced system performance. 

Chapter seven provides the general conclusion based on all the methods presented in this research 

work as well as possible future research directions. 
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CHAPTER TWO 

THE OPTICAL COMMUNICATION SYSTEM 

2.1. Introduction 

Generally, communication systems always demand that stringent structures, models and 

parameters are effectively put in place, in order to achieve a set quality of service and reliability. 

The optical communication networks is no exception, and the system’s parameters as well as the 

components have to be effectively planned and implemented to achieve the best possible from the 

system. The general designing and modeling also entail effectively addressing various generic 

challenges whose effects may lead to the degradation of signal during modulation, transmission 

and detection process. Typically, the bit error rate (BER) and the signal to noise ratio (SNR) are 

used as figure of merit and for transmission quality assessment in telecommunications. Therefore, 

in a typical optical transport networks, optical signal parameters that determine the signal level 

such as the optical amplification gain, optical transmitter output power, photodiode responsivity, 

and optical noise parameters that determine the BER, must be carefully addressed. The common 

impairments to contend with in optical systems include chromatic dispersion (CD), fiber 

attenuation, polarization mode dispersion (PMD), fiber-nonlinearities, polarization-dependent 

loss (PDL), insertion loss and frequency chirp [20, 21]. Therefore, a deliberate and effective 

design is required to address these challenges during transmission, propagation and detection. The 

major components of the optical communication system as shown in Figure 2.1, will be 

considered in details. 
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Figure 2.1: A simple block diagram of an optical communication system. 

 

2.2. The Optical Transmitter 

Optical transmitters convert the original input, which is an electrical signal, to an optical signal. 

The main activity of the optical transmitter is to generate the optical signal, modulate, and send 

the modulated signal into the fiber link. Optical transmitters, as shown in Figure 2.2, contain 

semi-conductor components through which the light-generation process is achieved under direct 

biasing, by the recombination of electrons and holes in p-n junctions. Semiconductor light 

sources can be classified, depending on the mode of recombination, as either light-emitting 

diodes (LEDs), where the recombination process is mainly spontaneous, or semiconductor lasers, 

in which the recombination process is achieved through stimulated emission. The three main 

processes in semiconductor materials through which light relates with matter include absorption, 

spontaneous emission and stimulated emission. Considering normal conditions, the number of 

electrons in ground state 𝑆1 with energy 𝑈1 is greater than the number of electrons in excited state 

𝑆2 with energy 𝑈2 and their ratio follows the Boltzmann’s statistics in the thermal equilibrium 

[23]:  

𝑆2
𝑆1
= 𝑒𝑥𝑝 (

ℏ𝜛

𝐾𝐵𝑇𝑎
) = 𝑒𝑥𝑝 (

𝑈2 − 𝑈1
𝐾𝐵𝑇𝑎

),                                                                                               (2.1) 

where the product ℏ𝜛  is the photon energy, ℏ  is the Planck’s constant and 𝜛  is the optical 

frequency proportional to the energy difference in the energy levels 𝑈2  and 𝑈1 , 𝐾𝐵  is the 

Boltzmann’s constant, and  𝑇𝑎 is the absorption temperature.  
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Figure 2.2: Block diagram of a simple optical transmitter. 

 

The spontaneous emission rate is given as 𝑑𝑆2,𝑠𝑝𝑜𝑛 𝑑𝑡⁄ = 𝑉1𝑆2 and the stimulated emission rate is 

given as 𝑑𝑆2,𝑠𝑡𝑖𝑚 𝑑𝑡⁄ = 𝐴1𝜚(𝑣)𝑆2, where 𝑉1 is the spontaneous emission coefficient, 𝐴1 denotes 

the stimulated emission coefficient and 𝜚(𝑣) is the spectral density of the electromagnetic energy 

[23]. The spontaneous emission rate and the stimulated emission rate are equalized with an 

absorption rate 𝑑𝑆1,𝑎𝑏𝑠 𝑑𝑡⁄ = 𝑉2𝜚(𝑣)𝑆1 , where 𝑉2  is the absorption coefficient. However, the 

spontaneous emission always dominates over the stimulated emission in the visible or near-

infrared region, in thermal equilibrium at room temperature. 

The condition for which the stimulated emission rate can exceed the absorption rate is when 𝑆2 is 

greater than 𝑆1 and this is referred to as population inversion, although this cannot be achieved 

for systems in thermal equilibrium. This condition called population inversion is an essential pre-

requisite for laser operation. The three main modules needed to sustain stimulated emission and 

to form useful laser output are: the pump source, the active medium and the feedback mirrors. 

The pump can be electrical, like the case of semiconductor lasers, optical or chemical. The pump 

accomplishes the population inversion and the active medium can be of any primary state. The 

gain and the phase matching condition must be attained for the lasing process to be sustainable 

and the intensity inside the cavity can be represented as [20]: 

𝐶(𝐼) = 𝐶𝑜𝑒𝑥𝑝[(𝜂(𝑣) − 𝜑𝑠)𝐼],                                                                                                               (2.2) 
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where 𝜂(𝑣) and 𝜑𝑠 describe the gain and the scattering in the active medium respectively. Also 

the resultant phase matching condition to be attained is described as: 

𝑒𝑥𝑝[−𝑗2𝛽ℒ] = 1, 2𝛽ℒ = 2𝜋𝑟,                                                                                                             (2.3)          

where ℒ is the length of the active medium, 𝑟 is an integer for satisfying the phase matching 

condition, and 𝛽 is the propagation constant given as: 

𝛽 = 2𝜋𝑛𝑟 𝓆,                                                                                                                                            (2.4)⁄  

where 𝑛𝑟  is the refractive index of the active medium and 𝓆 is the free-state wavelength. Also, 

the Lorentzian shape equation can be used to describe the spectral curve of the single-mode 

lasers, which is due to the transition between discrete energy levels. The equation is given as [22, 

23]:  

𝔛(𝜔) =
∆𝜔

2𝜋 [(𝜔 − 𝜔𝑜)
2 + (∆𝜔 2⁄ )

2
]
,                                                                                                 (2.5) 

where 𝜔𝑜  denotes the central optical frequency and ∆𝜔 denotes the laser linewidth, which can be 

expressed as [20]: 

∆𝜔 =
𝑎𝑝𝑓𝐵(1 + ƛ𝑐ℎ𝑝

2 )

4𝜋𝔘
,                                                                                                                          (2.6) 

where 𝑎𝑝𝑓 is the spontaneous emission factor, 𝐵 represents the net rate of stimulated emission, 𝔘 

is the output power and the amplitude-phase coupling parameter is represented as ƛ𝑐ℎ𝑝. 

For the semiconductor laser, the small-signal frequency response is determined by the following 

expression [20, 22]: 

𝐻𝑠(𝜔) =
Ƣ𝑅
2 + ʠ𝑅

2

(Ƣ𝑅 +𝜔 − 𝑗ʠ𝑅)(Ƣ𝑅 −𝜔 + 𝑗ʠ𝑅)
,                                                                                    (2.7) 

where ʠ𝑅 is the damping factor and Ƣ𝑅 is called the relaxation frequency [20]. 

The relaxation frequency is used to determine the modulation bandwidth, although the direct 

modulation of semiconductor lasers causes frequency chirp. Frequency chirp is an instantaneous 

frequency shift from steady-state frequency and can be expressed mathematically as: 
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𝛿𝑣(𝑡) =
ƛ𝑐ℎ𝑝

4𝜋
[
𝛿 𝑙𝑛𝐹(𝑡)

𝛿𝑡
+ Ϥ𝐹(𝑡)],                                                                                                      (2.8) 

where  𝐹(𝑡) denotes the time variation of the output power, Ϥ represents the constant related to 

the material and design parameters, while ƛ𝑐ℎ𝑝 is the amplitude-phase coupling parameter [23]. 

However, external modulation is employed as a way of addressing the chirp problem. The Mach-

Zehnder modulator (MZM), as shown in Figure 2.3, and the electro-absorption modulator (EAM) 

are the two main types of external modulators utilized for this purpose. The material used for the 

MZM possesses electro-optical properties by which the phase of the optical wave propagating 

through it receives a phase modulation proportional to the applied electrical field. Thus, the 

optical power P-out depends on the phase difference between the arms of the modulator. In the 

case of a CO-OFDM system, the IQ MZM is typically used, which consists of two null-biased 

MZMs arranged as shown in Figure 2.4. Also, viable modulation schemes such as the binary 

phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), differential QPSK and on-off 

keying (OOK) with zero/nonzero chirp can be used with these external modulators [20, 22]. 

 

 

 

Figure 2.3: Typical Mach-Zehnder modulator. 
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Figure 2.4: The IQ Mach-Zehnder modulator [22]. 

 

2.3. The Optical Receiver 

The receiver in the optical communication system, as shown in Figure 2.5, serves to convert 

signals from the optical domain to the electrical domain and to effectively recover the transmitted 

signal. The typical optical receiver consists mainly of three stages, namely: the front-end stage, 

the linear channel stage and the data recovery stage. Photo-detectors and preamplifiers are the 

core components of the front-end stage. The high impedance front-end and the trans-impedance 

front-end are the two commonly used schemes in this stage. Also, the photodiodes are important 

part of the front-end stage as they are responsible for the absorption of photons in the incoming 

optical signal and convert them back to the electrical domain. This process achieved by the 

photodiodes is the exact opposite of what takes place in semiconductor lasers. 

 

 

Figure 2.5: Block diagram of a simple optical receiver. 
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In optical communications, the popular photodiodes are the avalanche photodiodes, p-n 

photodiodes, p-i-n photodiodes, and the metal-semiconductor-metal (MSM) photo-detectors [22]. 

The p-n photodiodes, which are typically of reverse biased p-n junction, have the thickness of 

their depletion region less than the absorption depth for incident length. Thus, the photons are 

absorbed outside the depletion region, resulting in slow response speed. The avalanche 

photodiodes are similar to the p-i-n photodiodes, which have intrinsic regions crammed between 

p- and n- type layers, but operated at a very high reverse bias. The MSM photo-detectors utilize 

inter-digitized Schottky barrier contacts on one face of the device, which are compatible with 

optoelectronic integration and planar processing. The channel coupler focuses the optical signal 

onto the photodetector as described in Figure 2.5. Usually, an intrinsic layer is introduced to the 

p-i-n photodiode structure to increase the depletion region as well as to reduce the diffusion 

current component. The p-i-n photodiode can act as a current source, generating the photocurrent 

proportional to the incoming optical signal power, due to the fact that it is reverse biased and has 

very high internal impedance [20]. 

The responsivity of photodiodes is related to the quantum efficiency ∮ , which can be stated as the 

ratio of the number of generated electrons and the number of incident photons. This can be 

expressed mathematically as [20]: 

Ɖ𝑅 =
∮ 𝑞

ℎ𝑏
⁄   ,                                                                                                                                         (2.9) 

where q represents an electron charge and ℎ𝑏 denotes the photon energy. At the receiver, a drift 

occurs due to the lasers, causing the introduction of phase noise in the optical system.  

2.4. The Optical Fiber 

The optical fiber serves the main purpose of conveying optical signals from source to the required 

destination. The typical modern optical fiber has extremely large bandwidth and a low-loss 

characteristic, which enhances high-speed transmission over long distance. The major material in 

the manufacture of the low-loss optical fiber is the pure silica, which is further mixed with other 
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dopants to regulate the refractive index of the fiber. The optical fiber is made of two waveguide 

layers, which are the core and the cladding, both protected by a buffer coating. The core houses 

the majority of the power although some portions do extend to the cladding. Thus, the ray will be 

completely reflected from the core-cladding interface provided the condition below is satisfied 

[20]: 

𝑛𝑜𝑠𝑖𝑛𝜃𝑖 < √𝑛1
2 − 𝑛2

2  ,             𝑛𝑜 = 1,                                                                                           (2.10) 

where 𝑛1 and 𝑛2 are the refractive indices of the core and the cladding respectively and 𝜃𝑖 is the 

angle of incidence. The light-gathering capacity of an optical fiber is defined by 𝑚𝑎𝑥(𝑛𝑜𝑠𝑖𝑛𝜃𝑖). 

This is called the numerical aperture, and can be expressed as: 

𝑁𝐴 = √𝑛1
2 − 𝑛2

2 ≈ 𝑛1√2∆, ∆≪ 1,                                                                                               (2.11) 

where ∆ denotes the normalized index difference, which is given as ∆= 𝑛1 − 𝑛2 𝑛1⁄ . Thus, it can 

be said that a series of total internal reflections, which take place at the core-cladding interface, 

enables light propagation through optical fibers. 

The multimode optical fiber and the single-mode optical fiber are the two major types of optical 

fiber [20]. The multimode optical fiber achieves light transfer through a collection of spatial 

transversal modes. These modes take distinct paths along the fiber link. They are defined through 

a given combination of electrical and magnetic components and occupy different cross section of 

the fiber core. Signal distortion occurs in multimode fiber due to the difference in mode path 

lengths, which causes a difference in arrival times at the receiving point. This occurrence is 

termed as multimode dispersion. However, in single-mode optical fiber, the occurrence of 

multimode dispersion is eliminated, as the number of propagating modes is basically limited to 

one. The radial distribution of the single-mode, which occupies the central part of the optical 

fiber, can be approximated by a Gaussian curve. Therefore, the total number of modes that can 
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propagate through a given optical fiber is determined by the normalized frequency 𝒯 : 𝑀𝑛 =

𝒯2 2⁄ , where 𝑀𝑛 is the number of modes while 𝒯 is large and can be expressed as: 

𝒯 =
2𝜋𝑐𝑓𝑐

𝜆
√𝑛1

2 − 𝑛2
2 ,                                                                                                                           (2.12) 

where 𝑐𝑓𝑐  is the fiber core radius and 𝜆 is the carrier wavelength. The propagation constant 𝜍 

defines the path for each mode propagating through the fiber link and the dependence of the 

electric and magnetic fields on axial coordinate 𝑧, is described through the factor 𝑒𝑥𝑝(−𝑗𝜍𝑧). 

Thus, the following condition must be satisfied by the propagation constant [20]: 

2𝜋𝑛2
𝜆
⁄ < 𝜍 <

2𝜋𝑛1
𝜆
⁄ .                                                                                                                        (2.13) 

The transmission characteristic of the optical fiber can be estimated when the fundamental 

dependence of the mode propagation constant on the optical signal wavelength is known. Hence, 

the normalized propagation constant for this purpose is given as: 

𝑝 =
𝜍2 − (

2𝜋𝑛2
𝜆⁄ )

2

(2𝜋𝑛1 𝜆⁄ )
2

− (
2𝜋𝑛2

𝜆⁄ )
2 .                                                                                                             (2.14) 

The normalized propagation constant 𝑝 is related to the normalized frequency described earlier as 

it is expressed as [22]: 

𝑝 ≈ (1.1428 − 0.9960 𝒯⁄ )2 , 1.5 ≤ 𝒯 ≤ 2.5.                                                                                 (2.15) 

To address the multimode dispersion, the number of propagation modes is limited to a 

fundamental one: 𝒯 ≤ 𝒯𝑐 ≈ 2.405, with 𝒯𝑐  being the cutoff frequency, which is controlled by 

keeping the core radius small and the normalized index difference ∆= 𝑛1 − 𝑛2 𝑛1⁄  between 0.2% 

and 0.3% [20]. 
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2.4.1 Chromatic Dispersion 

Chromatic dispersion is an impairment that characterizes the single-mode optical fiber. This 

results from the differences in velocities among different spectral components in the same mode. 

Chromatic dispersion has two components, namely: material dispersion and waveguide 

dispersion. Indeed, the spectral components of the modulated signals travel at different speeds in 

the fiber-link. This results in some wavelengths arriving before others and therefore causes the 

signal pulse to broaden. The material dispersion is as a result of the refractive index being a 

function of the wavelength, described by the Sellmeier equation [22]: 

𝑛(𝜆) = (1 +∑
𝐵𝑖𝜆

2

𝜆2 − 𝜆𝑖

𝑀

𝑖=1

),                                                                                                                 (2.16) 

where 𝑀 is the number of modes that can effectively propagate through an optical fiber, with 

typical 𝐵𝑖  and 𝜆𝑖  parameters for pure silica being 𝐵1 = 0.6921663 𝑎𝑡 𝜆1 = 0.0684043 𝜇𝑚 , 

𝐵2 = 0.4079426 𝑎𝑡 𝜆2 = 0.1162414 𝜇𝑚, 𝐵3 = 0.8974794 𝑎𝑡 𝜆3 = 0.896161 𝜇𝑚 [22]. 

Due to the fact that the value of the normalized index difference ∆ is usually small, the refractive 

indices of the core cladding are nearly equal. Thus, the light is not strictly confined in the fiber 

core, and the fiber modes are said to be weakly guided. This results in waveguide dispersion. 

However, the general challenge posed by chromatic dispersion may be addressed by changing the 

power distribution across the cross-sectional area through the use of multiple cladding layers [20]. 

 

2.4.2 Polarization Mode Dispersion 

Polarization mode dispersion (PMD) has its origin in optical birefringence. In a perfect fiber, both 

orthogonal polarizations have the same group delays. However, in a practical scenario, fibers 

have some amount of asymmetry due to imperfections in the manufacturing process as well as 

mechanical stress on the fiber after manufacture. The asymmetry breaks the degeneracy of the 

orthogonally polarized modes, resulting in birefringence and a difference in the phase and group 
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velocities of the two modes. In a CO-OFDM, for the mth OFDM subcarrier, a typical single-

mode fiber optical link is usually modeled appropriately in the frequency domain for the two 

polarization components in the fiber, described as [20, 22]: 

𝑍(𝑚) = 𝑒𝑗∅(𝑚)∏𝑒𝑥𝑝 {(−
1

2
 𝑗. 𝛿𝑝⃗⃗⃗⃗⃗. 𝑓𝑚 +

1

2
 𝜏𝑝⃗⃗⃗⃗⃗⃗ ) . 𝜇⃗}

𝐿

𝑝=1

                                                                     (2.17) 

where ∅(𝑚) is  the phase dispersion due to the fiber chromatic dispersion effect , L represents the 

number of PMD/PDL cascading elements described by their birefringence vector 𝛿𝑝⃗⃗⃗⃗⃗  and 

polarization-dependent loss (PDL) vector  𝜏𝑝⃗⃗⃗⃗⃗⃗  and 𝜇⃗ is the Pauli’s vector as detailed in [20]. The 

dispersion 𝑒𝑗∅(𝑚) for this channel can be first estimated and factored out for channel estimation. 

The dispersion can be reduced effectively to a summation of only a few taps of the finite impulse 

response (FIR) model, if its mean PMD value is known. Therefore, channel estimation, dependent 

on the PMD value and the data rate, can be greatly simplified for the optical OFDM system [20]. 

 

2.5.     Principles of the Orthogonal Frequency Division Multiplexing 

The orthogonal frequency division multiplexing (OFDM) technique dates back to about some 

four decades ago when a paper published on the synthesis of band-limited orthogonal signals for 

multichannel data transmission was published by Chang [24], which was later patented in 1966. 

He proffered a principle where messages are transmitted via a linear band-limited channel 

without inter-carrier interference and inter-symbol interference. A year later, Saltzberg presented 

a performance analysis of effective signal transmission in parallel form [26]. There were other 

important contributions to OFDM in the following years by Weinstein and Ebert [26], Peled and 

Ruiz [27] among others. However, Cimini first proffered the OFDM technique as a wireless 

communication solution, in 1985 [28]. The OFDM is currently being employed in several 

wireless technologies and standards such as digital audio broadcasting (DAB), digital video 

broadcasting (DVB), high-rate wireless LAN standard [29]  (IEEE 802.11a) and the IEEE 
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802.16a metropolitan area network (MAN) standard. In recent time, it has been found useful in 

the optical communication systems. 

Orthogonal frequency division multiplexing is a multicarrier modulation technique. Essentially, 

high data rate streams are divided into N parallel streams, each of a lower data rate, which are 

modulated by N different sub-carriers while the symbol duration is being prolonged N times. The 

lower data rate streams are transmitted in parallel, over multiplexed subcarriers, which are 

mutually orthogonal. As long as orthogonality is maintained, there will be no interference 

between sub-carriers i.e. inter-carrier interference (ICI). As shown in Figure 2.6, unlike the 

conventional Frequency Division Multiplexing (FDM) scheme, the spectra of the different 

modulated sub-carriers overlap in OFDM. This makes OFDM an appropriate scheme for 

optimum and efficient use of valuable spectrum. Also, the conversion of frequency-selective 

fading channel into a collection of parallel flat fading sub-channels makes the structure of the 

receiver of OFDM system quite simple.   

            

 

Figure 2.6: The basic spectrum-saving concept of OFDM channels (b) as compared with the 

FDM scheme (a). 
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Local Oscillators (LOs) were used earlier in OFDM implementation. However, the associated 

complexity and high cost made real-life implementation unsuitable. The idea behind the analog 

implementation was extended to the digital domain by using the DFT and IDFT [26], being 

employed majorly to transform data between time domain and frequency domain. The 

introduction and the eventual use of the discrete Fourier transform and its inverse was a major 

breakthrough in OFDM implementation. In practice, however, OFDM systems are implemented 

using a combination of FFT and inverse FFT (IFFT) blocks that are mathematical equivalent 

versions of the DFT and IDFT, respectively, but more efficient to implement. Recent advances in 

very large scale integration technologies (VLSI) also have ensured an easy, cheap and fast 

implementation using FFTs and IFFTs. In this approach, the data stream is divided into blocks of 

N symbols. Each block of data is then subjected to an IFFT and then transmitted. The immediate 

output of the IFFT has to be transmitted one at a time, hence, a parallel to serial conversion after 

the operation. This process, however, is reversed (i.e. serial to parallel conversion) and an inverse 

operation FFT is performed at the receiver. 

 

2.6. The OFDM Transceiver 

Figure 2.7 illustrates the adaptation of the baseband OFDM transceiver IEEE standard 802.11a. 

Each sub-carrier is modulated in phase and amplitude by the data bits in the OFDM system. One 

or more bits are being used in the modulation of each sub-carrier, depending on the kind of 

modulation method adopted (QPSK, 16/64 QAM, BPSK are most commonly used). Different 

coding schemes are used to achieve low SNR and to obtain better system efficiency.  In the 

mapping process, modulated data are assigned to sub-carriers based on sub-carrier assignment 

information obtained from sub-carrier level sensing [30]. These are then serial-to-parallel 

converted and fed into the IFFT, which transforms the data from frequency domain to time 

domain. Each time-domain OFDM symbol is extended by the so-called cyclic prefix (CP) [31] or 
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guard interval in order to combat inter-symbol interference. Typically, guard interval or the cyclic 

prefix of not more than 10% (shown as Ng) of the OFDM symbol duration, as seen in Figure 2.8, 

is employed and later discarded at the receiver. Passing through the Digital-to-Analog (DAC) 

converter, the signal is amplified and up-converted to desired center frequency before 

transmission in the frequency selective fading channel in wireless communication scenario. At 

the receiver, the CP symbols are removed after analog to digital conversion. A crucial 

synchronization process is carried out to estimate and correct carrier frequency offsets of the 

received signal as well as to find the symbol boundaries to prevent inter-symbol interference (ISI) 

and ICI. The FFT of the signal is taken before channel estimation is carried out to evaluate the 

time and frequency domain response, in order to correctly detect and recover the transmitted data. 

The reverse of the other processes at the transmitter is executed at the receiver, before the final 

process of decoding takes place in order to give the binary output signal.  

 

 

 

Figure 2.7: A typical OFDM transceiver. 
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Figure 2.8: Cyclic extension concept with guard interval Ng. 

 

2.7. Major Challenges in OFDM 

Despite the laudable attributes of OFDM, which has resulted in its wide popularity as a 

modulation scheme for high-speed transmission, some major difficulties and drawbacks require 

effective handling and special attention to obtain the best operation possible out of this scheme. In 

subsequent sub-sections, three major issues common in the radio frequency (RF) scenario that 

include; 1) Peak-to-average power ratio (PAPR), 2) Time and frequency synchronization and 3) 

Channel estimation, are discussed. 

 
2.7.1 Peak-to-average power ratio 

 Peak-to-average power ratio, which originates from the fact that an OFDM signal is the 

superposition of a number of modulated sub-carrier signals, is a scenario in OFDM where the 

peak amplitude of the emitted signal is considerably higher than the average amplitude [32]. This 

is a major drawback in OFDM systems, as it causes the digital-to-analog converter in the 

transmitter to be more complex while the efficiency of the power amplifier is reduced and the 

performance of the system degraded. 

Non-linearity of the high power amplifier (HPA) causes in-band distortion, which leads to an 

increase in the bit-error rate (BER) and also out-of-band emission (emission immediately outside 

the necessary bandwidth), causing interference with neighboring channels. 
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These drawbacks, therefore, have necessitated a search for a viable technique to combat PAPR. 

Several techniques have been proposed, to date, which include majorly; clipping and filtering 

[33]-[35], coding [36], inter-leaver technique [37] and peak windowing [38]. In [33], review of 

some major techniques is presented. In the review paper, it is stated that although the criteria for 

selecting a PAPR technique involves many aspects such as PAR reduction capacity, power 

increase, BER increase and complexity, a main consideration is that the cost of extra complexity 

for PAR reduction is lower than the cost of power inefficiency. In [37], a data randomization 

technique is presented, where it is submitted that by interleaving a data frame, the peaks in the 

associated OFDM signal can be compressed. In all of these techniques, PAPR reduction is 

basically carried out at the transmitter. 

 
2.7.2 Channel Estimation 

Before the demodulation of the OFDM signals at the transmitter, a reliable and accurate 

estimation of the channel state information (CSI) is expedient, since the radio channel is 

frequency selective and time–varying in nature for wideband mobile communication systems 

[39]. Channel estimation is necessary for coherent symbol detection in an OFDM receiver.  

Many techniques, which include pilot-based technique, decision direct channel estimation and 

blind channel estimation techniques, have been proposed for dynamic channel estimation with 

their own merits, demerits, and limitations. The blind channel estimation technique is studied in 

[40]-[42]. In [43], block-type and comb-type pilot based channel estimation techniques are 

described. Also, [44] pointed out the downsides of previous works on channel estimation and 

proposed an efficient pilot tone placement scheme applicable to OFDM systems regardless of 

time variation in the channel. Three pilot-aided doubly selective channel estimation schemes that 

exploit the proposed pilot-tone placement were presented.  

In [45]-[47], Decision Directed Channel Estimation (DDCE) schemes are developed. The 

schemes employ both the pilot symbols as well as the detected message symbols for channel 
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estimation. This gives the proposed schemes an edge over previous pilot-based channel 

estimation techniques as the DDCE schemes benefit from the availability of about hundred 

percent symbols, in the absence of symbol errors by employing the detected symbols in 

combination with the sparsely available pilot symbols [48, 49]. 

 
2.7.3 Carrier Frequency Offset 

Despite the robustness of OFDM against frequency selective fading channels, it is sensitive to 

carrier frequency offset errors. Carrier frequency offset error occurs when there is a frequency 

offset or mismatch between the transmitter carrier frequency and the receiver carrier frequency. 

Also, CFO can arise due to relative motion between the transmitter and the receiver. In practical 

systems, the mismatch of the transmitter and the receiver oscillators arises due to oscillator 

instability, which can be as a result of aging, temperature, humidity, pressure and electromagnetic 

interference. Thus, with the frequency offset, the receiver cannot sample correctly at the center 

frequencies of the subcarriers. This leads to ICI, which degrades system performance. 

Many synchronization schemes have been proposed to combat the degrading impact of CFO in 

OFDM systems [50]-[55]. Some of these schemes exploit the redundancy in the cyclic prefix as 

in [50, 51], while the data-aided synchronization technique is also employed in some schemes 

[52, 53]. In [51], conventional carrier frequency synchronization is summarized. It consists of 

four major steps, which include frame detection, coarse frequency offset estimation, and fine 

frequency offset estimation [54, 55]. Some prominent methods used for CFO estimation in the 

literature will be discussed later in this thesis. 

 

2.7.4 Phase noise 

Phase noise 𝜌(𝑡) generated at both transmitter and the receiver oscillators is generally described 

as a continuous time Brownian motion process or a random Wiener process expressed as [57] 
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𝜌(𝑡) = ∫ 𝑢(𝑡) 𝑑𝑡
𝑡

0

                                                                                                                         (2.18) 

where 𝑢(𝑡) is a white Gaussian process with zero mean and variance 𝜎2(𝑡) = 2𝜋ℎ𝑡, while ℎ is 

the combined laser linewidth. As a random Wiener process, phase noise has independent 

Gaussian increments and its power is a monotonically increasing function of time. This means 

that its power could be infinitely large as time increases. However, the phase noise can be 

modeled as a filtered Gaussian random variable if restricted to a finite period. For the purpose of 

analysis and simulation in CO-OFDM systems, the discrete noise model is utilized. As presented 

in [57], the phase noise can be described by a discrete process, which for the 𝑛𝑡ℎ ,  (𝑛 =

0, 1,2… .𝑁)  sample of the 𝑖𝑡ℎ OFDM symbol, is given by 

𝜌𝑖(𝑛) = 𝜌𝑖−1(𝑛 − 1) + ∑ 𝑢(𝑖(𝑁 + 𝑁𝐶𝑃) + 𝑣)

𝑛

𝑣=−𝑁𝐶𝑃

,                                                                  (2.19) 

where 𝑢(𝑣) denotes the independently incremental movement of the phase noise at time instant 𝑣 

and 𝑁𝐶𝑃 is the cyclic prefix (CP) length. 

 

2.8. Optical OFDM system versus RF OFDM system 

The optical OFDM system has its uniqueness and a clear understanding of this enables an 

appropriate and efficient system design for CO-OFDM system. The RF OFDM system has been 

studied extensively for the past two decades, however, due to the peculiarity of the optical system 

and the optical channel, the widely studied RF-OFDM may not be literally translated into the 

optical scenario. The parameters associated with CO-OFDM systems and its channel vis-a-vis 

RF-OFDM systems are discussed below using the typical case of the single-mode fiber optical 

system and the wireless OFDM scheme. 

a) Channel nonlinearity: Nonlinearity does not pose a serious challenge in the wireless 

channel since it is in free space. However, the fiber link is fairly nonlinear. In addition to 

the fiber dispersion, PMD and PDL effects, the optical channel is arguably more 
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complicated than the typical wireless channel. Oftentimes, there is no close-form 

analytical solution for nonlinear transmission in the fiber link. As a result, the numerical 

solutions to the nonlinear Schrodinger equation, which describes the nonlinear wave 

propagation in the fiber, are needed to analyze the performance [56]. The OFDM scheme 

is plagued with high peak-to-average power ratio, and could be thought as inappropriate 

for the optical fiber link with high nonlinearity. However, the chromatic dispersion in the 

link serves a good purpose of mitigating the nonlinearity [57] and it has been shown 

through experiments, the successful transmission of high Gb/s CO-OFDM over long 

distance fiber link [58, 59].  

b) Tolerance to out-of-band emission: The RF channel in wireless systems is closely packed 

as much as possible, due to the scarcity of the spectrum. Strict out-of-band requirements 

are therefore enforced in the wireless OFDM system. However, the wavelength division 

multiplexing devices are usually employed to combine multiple wavelengths in optical 

systems. Thus, any out-of-band emission from the CO-OFDM transmitter is effectively 

removed. Therefore, the CO-OFDM system is more tolerant to the out-of-band emission. 

The knowledge of this is useful for effective design and for addressing challenges such as 

the peak-to-average power ratio in CO-OFDM systems [20]. 

c) Time variation of the channel characteristics: Time selectivity or dispersion is also a 

determining factor as important as the frequency dispersion of the channel [60, 61]. The 

changing rate of the channel characteristics is termed time dispersion and it is described 

in the wireless system as the Doppler frequency from the fast-moving mobile users. On 

the other hand, in the fiber-optic systems, it is characterized as the polarization motion 

resulting from the mechanical disturbance of the optical link. The product of the Doppler 

frequency in wireless systems and the OFDM symbol length defines the extent of the 

time selectivity, while in the optical scenario, it is defined by the product of the 

polarization rotation rate and the OFDM symbol length. Hence, the optical link can be 
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seen as quasistatic. Efficient and appropriate channel estimation can be adopted by taking 

advantage of this important fact. 

d) Amplifier nonlinearity: The major source of nonlinearity in wireless systems is the power 

amplifier, making it important to either have high saturation power RF amplifier or 

operate at a sufficient back-off [20]. On the other hand, the predominant amplifier 

utilized in optical systems is the erbium-doped fiber amplifier (EDFA), which is perfectly 

linear. The reason is because the response duration of the EDFA is milliseconds, thus any 

nonlinearity faster than milliseconds would literally vanish. The importance of this comes 

in the design of CO-OFDM systems, when confronted with the trade-off between the 

optical loss and the RF loss. The former would be chosen because it is more linear. 

During CO-OFDM transmitter design, for example, it would be more viable to minimize 

the RF drive voltage to the optical IQ modulator and optically amplify the signal to 

compensate for the excess loss of the optical IQ modulator [20]. 

 

 

 

 

 

 

 

 

 

 

 

 



30 

CHAPTER THREE 

LITERATURE REVIEW  

3.1. Introduction 

As stated earlier, the focus of this research work is the estimation of phase noise and CFO in 

coherent optical OFDM systems. This chapter therefore presents methods in the literature that 

have been utilized for phase noise as well as CFO estimation in optical OFDM systems. Methods 

such as the FFT-based estimation scheme, pilot-based schemes, RF-based estimation schemes 

and the maximum likelihood algorithm are reviewed. Also, blind schemes such as the constant 

modulus methods as well as the subspace algorithms are reviewed. These reviewed methods 

constitute the main schemes in the literature that are related to the research work reported in this 

thesis. 

3.2. The coherent optical OFDM system 

The block diagram of a typical coherent optical OFDM system is shown in Fig. 3.1. The binary 

inputs to the RF-OFDM transmitter are first encoded, and serial-to-parallel converted. The serial-

to-parallel converted data are mapped and converted to time domain signals by the IFFT 

operation. The resulting signals are digital-to-analog converted and then undergo the filtering 

process, using the low pass filter to address aliasing. The RF-to-optical up-converter block 

transforms the transmit signal from the electrical domain to the optical domain using an optical 

in-phase/quadrature (IQ) modulator, which consists of two Mach-Zehnder modulators (MZMs) 

with a 90 degree phase offset [20].  
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Figure 3.1: The block diagram of a typical CO-OFDM transceiver. 

 

The baseband transmitted OFDM signal after inverse FFT (IFFT) is given as: 

𝑥𝑖(𝑛) =
1

√𝑁
∑ 𝑋𝑖(𝑚)𝑒

𝑗2𝜋𝑛𝑚
𝑁

𝑀−1

𝑚=0

 .                                                                                                          (3.1) 

where 𝑥𝑖(𝑛)  represents the 𝑛𝑡ℎ  sample of the 𝑖𝑡ℎ  OFDM symbol, 𝑁  is the total number of 

subcarriers, 𝑀  is the number of used subcarriers and 𝑋𝑖(𝑚)  represents the data symbol 

transmitted on the 𝑚𝑡ℎ  data subcarrier. The received signal after passing through the optical 

channel can be written as: 

𝑦𝑖(𝑛) = 𝑒
𝑗2𝜋𝜀𝑛
𝑁 𝑒𝑗𝜌𝑖(𝑛)[𝑥𝑖(𝑛)⊗ 𝐶−1(𝑍(𝑚))] + 𝑔𝑖(𝑛)                                                                     (3.2) 

where 𝜀 , ⊗  and 𝐶−1(. )  represent the normalized CFO, the circular convolution and IDFT 

respectively, while 𝑔𝑖(𝑛) is the total ASE noise generated from inline optical amplifiers. The 

connotation 𝑍(𝑚), which is the holistic channel impulse response of the fiber link encompassing 
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the polarization mode dispersion, and other polarization dependent losses, is given by (2.17) and 

repeated here as [20]:  

𝑍(𝑚) = 𝑒𝑗∅(𝑚)∏𝑒𝑥𝑝 {(−
1

2
 𝑗. 𝛿𝑝⃗⃗⃗⃗⃗. 𝑓𝑚 +

1

2
 𝜏𝑝⃗⃗⃗⃗⃗⃗ ) . 𝜇⃗}

𝐿

𝑝=1

                                                                          (3.3) 

where the number of the PMD/PDL cascading elements in the entire fiber link is denoted as 𝐿, 

with each section represented by its birefringence vector 𝛿𝑝⃗⃗⃗⃗⃗ and PDL vector  𝜏𝑝⃗⃗⃗⃗⃗⃗  as detailed in 

[20]. Also, the term 𝜇⃗ represents the Pauli’s vector, while quadratic dependence on frequency is 

assumed. The representation ∅(𝑚) is the group velocity dispersion (GVD), which is primarily a 

phase shift due to distortion in the fiber link and is expressed mathematically as: 

∅(𝑚) = 𝜋. 𝑐. 𝑞𝑓 .
𝑓𝑚
2

𝑓𝑜
2 ,                                                                                                                                (3.4) 

where 𝑞𝑓 denotes the chromatic dispersion in the link, 𝑓𝑚 is the frequency for the 𝑚𝑡ℎ  subcarrier 

while 𝑓𝑜  is the center optical frequency. The laser phase noise 𝜌𝑖(𝑛) is modeled as a Weiner-Levy 

process as expressed in (2.19) as [62]: 

𝜌𝑖(𝑛) = 𝜌𝑖−1(𝑁 − 1) + ∑ 𝑢(𝑖(𝑁 + 𝑁𝐶𝑃) + 𝑣)

𝑛

𝑣=−𝑁𝐶𝑃

,                                                                       (3.5) 

where 𝑢(𝑣) denotes the independently incremental movement of the phase noise at time instant 𝑣 

and can be described as Gaussian distributed with zero mean and variance 𝜎2 = 2𝜋ℎ𝑇𝑠, where ℎ 

is the combined laser linewidth, 𝑇𝑠 is the symbol period and 𝑁𝐶𝑃 is the cyclic prefix (CP) length. 

The expression in (3.2) can be rewritten as: 

𝑦𝑖(𝑛) = 𝑒
𝑗2𝜋𝜀𝑛
𝑁 𝑒𝑗𝜌𝑖(𝑛)𝑠𝑖(𝑛) + 𝑔𝑖(𝑛)                                                                                                    (3.6) 

where 

𝑠𝑖(𝑛) = 𝑥𝑖(𝑛)⊗ 𝐶−1(𝑍(𝑚))                                                                                                                 (3.7) 
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The FFT is performed to recover the received OFDM information symbol, which is given as [63]-

[65]: 

𝑌𝑖(𝑚) = 𝑒
𝑗2𝜋𝜀𝑚
𝑁 . 𝐵𝑖(0)𝑋𝑖(𝑚)𝑍(𝑚) + 𝐼𝐶𝐼𝑖(𝑚) + 𝐺𝑖(𝑚),                                                                 (3.8) 

where 

𝐼𝐶𝐼𝑖(𝑚) = ∑ 𝑋𝑖(𝑘). 𝑍(𝑘). 𝐵𝑖(𝑘 − 𝑚)

𝑁−1

𝑘=0,𝑘≠𝑚

.                                                                                     (3.9) 

and 𝐵𝑖(𝑚) is a function of the distortion due to the laser phase noise, which can be expressed as: 

𝐵𝑖(𝑚) =
1

𝑁
∑ 𝑒𝑗𝜌𝑖(𝑛). 𝑒

−𝑗2𝜋𝑛𝑚
𝑁

𝑁−1

𝑛=0

.                                                                                                     (3.10) 

Also, in (3.8), 

𝐵𝑖(0) =
1

𝑁
∑ 𝑒𝑗𝜌𝑖(𝑛)
𝑁−1

𝑛=0

 ≅ 𝑒𝑗𝛷𝑖 ,                                                                                                            (3.11) 

and it denotes the phase evolution, which corresponds to the time-average of the laser phase noise 

over the 𝑖𝑡ℎ OFDM symbol. 

Thus (3.8) becomes 

𝑌𝑖(𝑚) = 𝑒
𝑗2𝜋𝜀𝑚
𝑁 𝑒𝑗𝛷𝑖 . 𝑋𝑖(𝑚)𝑍(𝑚) +𝑊𝑖(𝑚),                                                                                  (3.12) 

where 

𝑊𝑖(𝑚) = 𝐼𝐶𝐼𝑖(𝑚) + 𝐺𝑖(𝑚).                                                                                                                (3.13) 

Also, the effective signal-noise-ratio (𝑆𝑁𝑅′) is expressed as [66]: 

𝑆𝑁𝑅′ =
E{𝐵𝑖(0)𝑋𝑖(𝑚)𝑍(𝑚)}

2

E{𝐼𝐶𝐼𝑖(𝑚)}2 + E{𝐺𝑖(𝑚)}2
=

σ𝑥
2𝑍2(𝑚)

σ𝑥
2 ∑ 𝐵𝑖

2(𝑘 −𝑚)𝑍2(𝑘)𝑁−1
𝑘=0,𝑘≠𝑚 + σ𝐺

2
,                        (3.14) 

𝑆𝑁𝑅′ =
𝑍2(𝑚)

∑ 𝐵𝑖
2(𝑘 − 𝑚)𝑍2(𝑘)𝑁−1

𝑘=0,𝑘≠𝑚 +
σ𝐺
2

σ𝑥
2

,                                                                                    (3.15)  
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where 𝜎𝑥
2 is the variance of the transmitted information signal, 𝜎𝐺

2  is the variance of the ASE 

noise. Also, 𝜎𝑤
2 = σ𝑥

2 ∑ 𝐵𝑖
2(𝑘 −𝑚)𝑍2(𝑘)𝑁−1

𝑘=0,𝑘≠𝑚 + σ𝐺
2  is the variance of the interference plus 

ASE noise while 𝑆𝑁𝑅 =
𝜎𝑥
2

𝜎𝐺
2 is the original channel SNR without the effect of 𝐼𝐶𝐼𝑖(𝑚). The SNR 

is related to the optical SNR (OSNR) by the expression [16] 

𝑂𝑆𝑁𝑅 (𝑑𝐵) = 10 𝑙𝑜𝑔10[𝑆𝑁𝑅] + 10 𝑙𝑜𝑔10
𝐵𝑓

𝑅𝑠
⁄ ,                                                                          (3.16) 

where 𝐵𝑓 is the central bandwidth while 𝑅𝑠 is the symbol rate [16]. 

From the above expressions, the received signal can be analyzed and the impact of the phase 

noise as well as the CFO can be estimated, evaluated and compensated. 

 

3.3. CFO ESTIMATION METHODS  

As stated earlier the efficient estimation of the CFO in CO-OFDM systems is vital for the overall 

system performance. In the optical domain, the prominent schemes among the methods utilized 

so far for CFO estimation, as related to this research work, are reviewed in this section. 

 

3.3.1 FFT Based Algorithm for CFO Estimation 

In [67, 68], an FFT-based algorithm was proposed for frequency offset estimation in CO-OFDM 

systems. The algorithm has been utilized earlier in [68] but with more computational burden. The 

FFT-based algorithm in [67] therefore implements the algorithm with an improved computational 

complexity. In the paper, only the frequency offset error was considered for estimation, while the 

phase noise error was neglected. Also, the impact of chromatic dispersion as well as the influence 

of polarization mode dispersion was not put into consideration. 

Considering (3.12) in the absence of phase noise, the FFT-based frequency offset (FO) algorithm 

as proposed in [68] is designed as follows: 

1. Compute FO estimate |𝜀̂| using 
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{
|𝜀̂|  = 1 4⁄ 𝜀𝑝𝑒𝑎𝑘                                                                                                                     (3.17)

𝜀𝑝𝑒𝑎𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
[|𝑌(𝑚)|]                                                                                                 (3.18)

 

2. Assume 𝜀 > 0, after compensating 𝑌(𝑚) using |𝜀̂|, then 

𝑌′(𝑚) = 𝑌(𝑚)𝑒𝑥𝑝(
−𝑗2𝜋𝑚|𝜀̂|𝑇𝑠

𝑁
).                                                                                   (3.19) 

3. Repeat the first step once more to get the residual absolute of the FO, |𝜀̂′|. 

4. Compare |𝜀̂′| with |𝜀̂| to determine the sign of FO. This gives, 

𝜀̂ = 𝑠𝑖𝑔𝑛{|𝜀̂| − |𝜀̂′|}|𝜀|̂.                                                                                                           (3.20) 

The FO estimation range of the algorithm in [68] is of bound [−Rs 12,⁄ Rs 8],⁄  where Rs is the 

symbol rate. However [67] proposed an improved algorithm, whose estimation range can be up to 

[−Rs 8,⁄ Rs 8].⁄  Therefore in [67], (3.20) is replaced by (3.21) given as: 

𝜀̂ = 𝑠𝑖𝑔𝑛{|𝜀̂′|𝑡ℎ − |𝜀̂
′|}|𝜀̂|,                                                                                                     (3.21) 

where |𝜀̂′|th denotes the judging threshold for |𝜀̂′| and is given as [67]: 

|𝜀̂′|𝑡ℎ =
1
2⁄ [|𝜀̂′|(𝜀>0) + |𝜀̂

′|(𝜀<0)].                                                                                                     (3.22) 

where |𝜀̂′| is the residual absolute of the FO as stated earlier. 

3.3.2 CFO Estimation Using the Phase Difference Method. 

In [54], an estimation scheme based on the phase-difference method is used for the acquisition of 

CFO in a CO-OFDM system. However, the impacts of the chromatic dispersion and other fiber 

impairments were not considered. The expression in (3.6) is modified for the MPSK symbol 

containing CFO, phase noise and the ASE noise as: 

𝑦𝑖(𝑛) = 𝑒
(𝑗(𝜌𝑖(𝑛)+2𝜋𝜀𝑛+𝜂𝑖(𝑛))) + 𝑔𝑖(𝑛)                                                                                           (3.23) 

            = 𝑟𝑖(𝑛)𝑒
(𝑗(𝜌𝑖(𝑛)+2𝜋𝜀𝑛+𝜂𝑖(𝑛)+𝜗𝑖(𝑛))),                                                                                       (3.24) 

where 𝜂𝑖(𝑛) is the transmitted data phase, 𝜌𝑖(𝑛) is the phase noise, 𝜀 is the normalized CFO, 

𝑔𝑖(𝑛)  is the ASE noise, 𝑟𝑖(𝑛)  is the overall signal modulus while 𝜗𝑖(𝑛)  represents the ASE 

induced phase error, which is assumed to be Gaussian distributed. The CFO estimation algorithm 
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is achieved by averaging the phase difference between adjacent modulation-free symbols [64]. 

The 𝑀𝑡ℎ-order power operation, which is used to remove modulated data phase, is employed 

[13]-[15]. Hence, 𝑦𝑖(𝑛) is raised to the 𝑀𝑡ℎ power, where 𝑀 = 2𝑑(𝑑 = 2, 3, 4… ) is the power 

index. For different types of modulation formats, different values of 𝑀 are required to remove the 

modulated data phase. The resulted signal is expressed as [54]: 

𝑦𝑖
𝑀(𝑛) = 𝑟𝑖

𝑀(𝑛)𝑒
(𝑗𝑀(𝜌𝑖(𝑛)+2𝜋𝜀𝑛+𝜗𝑖(𝑛)+𝜂𝑖(𝑛))).                                                                          (3.25) 

Then by multiplying 𝑦𝑖
𝑀(𝑛) with the conjugate of its 𝑁𝑡ℎ previous signal 𝑦𝑖

𝑀(𝑛 − 𝑁), the CFO 

induced phase difference signal can be obtained as [54]: 

𝑑𝑖(𝑛) = 𝑟𝑖
𝑀(𝑛)𝑟𝑖

𝑀(𝑛 − 𝑁)𝑒
(𝑗𝑀(𝜌𝑖(𝑛)−𝜌𝑖(𝑛−𝑁)+2𝜋𝜀𝑛+𝜂𝑖(𝑛)−𝜂𝑖(𝑛−𝑁)))                                    (3.26) 

Thus, 𝑑𝑖(𝑛) is obtained by multiplying 𝑦𝑖
𝑀(𝑛) in (3.25) with the conjugate of its previous signal 

𝑦𝑖
𝑀(𝑛 − 𝑁) while the phase noise here is assumed to be constant for a few symbol duration, so 

that the term 𝜌𝑖(𝑛) − 𝜌𝑖(𝑛 − 𝑁) in (3.26) can be ignored. Hence, 𝑑𝑖(𝑛)  represents the CFO 

signal corrupted with ASE noise induced phase 𝜗𝑖(𝑛) − 𝜗𝑖(𝑛 − 𝑁) and (3.26) is rewritten as: 

𝑑𝑖(𝑛) = 𝑟𝑖
𝑀(𝑛)𝑟𝑖

𝑀(𝑛 − 𝑁)𝑒(𝑗𝑀
(2𝜋𝜀𝑛+𝜗𝑖(𝑛)−𝜗𝑖(𝑛−𝑁))).                                                                (3.27) 

Therefore the normalized CFO estimation is obtained as: 

𝜀̂ =
𝑎𝑟𝑔(∑ 𝑑𝑖(𝑛)

𝑁
𝑛=1 )

2𝜋𝑀𝑁
.                                                                                                                          (3.28) 

where 𝑎𝑟𝑔(. ) is the phase angle. 

The complexity of the 𝑀𝑡ℎ  power is greatly increasing along with 𝑁 . Also, when the power 

number 𝑀 increases, the required multiplication operations increase as well. This drawback leads 

to the 𝑀𝑡ℎ power operation not being applicable to high order modulation formats [14]. 

  

3.4. Pilot Aided Techniques for Phase Noise Estimation 

The estimation of the phase noise is pertinent to achieve an efficient CO-OFDM system 

performance. Pilot-aided methods are the most prominent techniques utilized for the acquisition 
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of phase noise in CO-OFDM systems. This is due to the random nature of the phase noise as 

described by the Wiener process. In [69]-[72], pilot-aided methods are proposed for phase noise 

estimation and compensation in CO-OFDM systems. Pilot-aided and data-aided phase estimation 

were proposed and compared for coherent optical systems in [69, 70]. In the papers, it was shown 

that as few as five subcarriers are sufficient for pilot-aided phase estimation.  

In all the methods examined in [69]-[71], only the phase noise effect is considered while the 

frequency offset is assumed perfect. Also, in [69]-[71], all the fiber link dispersions, including the 

chromatic dispersion, group velocity and the polarization mode dispersion, were neglected. 

Considering the pilot-aided method employed in [69], the received signal is as described in (3.2) 

while neglecting the CFO in the system. The first step of the pilot–aided method is to compute the 

phase angle difference between the received and the transmitted pilot subcarriers. Then the laser 

phase drift of each OFDM symbol is obtained by averaging the phase difference across all the 

pilot subcarriers. The estimated phase drift can be expressed as: 

𝛷𝑖 =
1
𝑁𝑝⁄ ∑{𝑎𝑟𝑔 (𝑦𝑖(𝑛)) − 𝑎𝑟𝑔 (𝑥𝑖(𝑛))}

𝑁𝑝

𝑛=1

,                                                                               (3.29) 

where arg(. ) is the phase angle of the symbol, 𝑥𝑖(𝑛) is the known transmitted pilot subcarrier 

while 𝑁𝑝 is the number of pilot subcarriers.  

Now considering the case where data subcarriers are used together with the 𝑀𝑡ℎ-power operation, 

where 𝑁𝑠𝑐 is the number of data subcarriers and 𝑀 = 2𝑑(𝑑 = 2, 3, 4… ) is the power index, the 

received signal remains the same as described in (3.2) in the absence of CFO. After averaging 

across all the subcarriers in the OFDM symbol, the estimated phase drift can be written as [73]: 

𝛷𝑖 =
1
𝑁𝑠𝑐
⁄ ∑{arg(𝑦𝑖(𝑛)

𝑀)/𝑀}.

𝑁𝑠𝑐

𝑛=1

                                                                                                 (3.30) 

Also, as implemented in [71], by transmitting a few pilot symbols 𝑥𝑖(𝑛), the common phase error 

(CPE) can be estimated as in pilot-aided methods as [71]: 
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𝛷𝑖 = 𝑎𝑟𝑔(
1
𝑁𝑝⁄ ∑

𝑦𝑖(𝑛). 𝑥𝑖(𝑛)

|𝑦𝑖(𝑛)|. |𝑥𝑖(𝑛)|

𝑁𝑝

𝑛

),                                                                                            (3.31) 

where arg (. )  is the phase angle of the information symbol, 𝑥𝑖(𝑛)  is the known transmitted 

information symbol and 𝑁𝑝 is the number of pilot symbols. 

 

3.5. RF-Based Technique for Joint CFO and Phase Noise Estimation 

In [74], the RF-pilot based estimation method is proposed. The RF-based method is implemented 

in such a way that the CFO can be easily estimated by searching the peak of the spectral samples. 

The system model employed was also simplistic, without considering fiber dispersions and 

attenuations. The pilot scheme utilized introduces some overhead into the system. 

Joint carrier frequency offset and phase noise using RF-based technique is detailed in [75]. In 

order to obtain the optimum compensation performance with low computing cost when 

combining the RF-phase estimation and RF-frequency offset estimation, the joint compensation 

scheme is developed in such a way that the only integral part frequency offset (IFO), needs to be 

estimated by the RF-frequency offset estimates based on the aid of the pre-estimation of the 

fractional part of frequency offset (FFO). After that, RF-phase estimation utilizes a band-rejection 

filter (BRF) filter and compensates all the phase impairments. Three computational steps are 

taken into consideration according to [75]: 

1. The signal discrete spectrum is obtained by performing FFT on 𝑁 received samples. The 

intensity of signal discrete spectrum can thus be formulated as: 

|𝑌(𝑚)|2 = |∑ 𝑦(𝑛) exp (
−𝑗2𝜋𝑛𝑚

𝑁
)  

𝑁−1

𝑛=0

|

2

,                                                                          (3.32) 

2. In order to observe spectral shift and estimate FO conveniently, the discrete spectrum is 

reshaped based on the frequency distribution characteristics of the FFT. 
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3. The FO can therefore be estimated by finding an index of the sample that has the 

maximum intensity value, i.e.: 

𝜀̂ = (𝑓𝑖𝑛𝑑 𝑚𝑎𝑥
𝑚=1,2,…𝑁

(|𝑌′(𝑚)|2) − 𝑁 2⁄ − 1) . 𝑓𝑠𝑐 ,                                                                   (3.33) 

where 𝜀̂ denotes the estimated FO value, 𝑌′(𝑚) stands for the discrete spectral samples after 

reshaping, 𝑓𝑖𝑛𝑑 𝑚𝑎𝑥 (A) represents the operation of “finding the index number corresponding to 

the maximum value of A” and 𝑓𝑠𝑐 represents the spectral resolution. 

To achieve the joint CFO and phase noise estimation, the correlation function is first obtained, 

which is further utilized to estimate the FFO. Thus, the estimate for the FFO is given by [75, 76]: 

𝜀𝐹̂𝐹𝑂 =
arg(𝑃(𝑑))

𝜋
. 𝑓𝑠𝑐 ,                                                                                                                         (3.34) 

where 𝑃(𝑑) is the correlation function given as, 

𝑃(𝑑) = ∑ 𝑦∗ (𝑑 + 𝑛)y(𝑑 + 𝑛 +𝑁 2⁄ ),

𝑁 2⁄ −1

𝑛=0

                                                                                      (3.35) 

where 𝑑 denotes the maximum timing metric [76],  

𝐶(𝑑) =
|𝑑|2

(∑ |𝑦 (𝑑 + 𝑛)  |2𝑁 2⁄ −1
𝑛=0 )(∑ |𝑦(𝑑 + 𝑛 + 𝑁 2⁄ )|2𝑁 2⁄ −1

𝑛=0 )
,                                                  (3.36) 

and (. )∗ stands for the complex conjugate operation. 

In order to avoid unnecessary repeat operations for phase compensation, the estimated FO value 𝜀̂ 

is directly set as the central frequency for the BPF instead of employing a low pass filter (LPF) to 

filter the RF-pilot after IFO correction. In this case, the extracted RF-pilot will include all the 

phase impairments, which are induced not only by the laser phase noise, but the IFO as well as 

residual FFO. The combined phase impairments can be calculated as [75]: 

𝑒𝑥𝑝 (𝑗(2𝜋𝑛𝜀̂ + 𝜌̂(𝑛) + 𝜗𝑖̂(𝑛) )) =
𝑦𝐵𝑃𝐹
′ (𝑛)

𝑎𝑏𝑠(𝑦𝐵𝑃𝐹
′ (𝑛))

,                                                                      (3.37) 

where  𝑎𝑏𝑠(. )  represents the absolute value of the input element, 𝑦𝐵𝑃𝐹
′  is the filtered signal 

(namely the extracted RF-pilot), 𝜀̂ is the estimated FO, 𝜌̂(𝑛) and 𝜗𝑖(𝑛) represent the estimated 
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phase noise of laser linewidth and ASE induced phase error respectively. All the phase 

impairments can therefore be compensated as [75]: 

𝑦̂(𝑛) = 𝑦̅(𝑛). 𝑒𝑥𝑝 (−𝑗(2𝜋𝑛𝜀̂ + 𝜌̂(𝑛) + 𝜗𝑖̂(𝑛) )).                                                                        (3.38) 

where 𝑦̅ denotes the digital samples after FFO compensation. 

 

3.6. Maximum likelihood Method for Phase Noise and Channel Estimation 

In [65], a maximum likelihood (ML) phase estimation and channel estimation for CO-OFDM was 

proposed. The focus was on phase estimation and channel estimation, while the frequency offset 

error was not considered. The use of ML for joint phase and frequency estimation was also not 

considered. The system model employed does not consider the holistic fiber dispersion and 

distortions like the polarization mode dispersion as well as the chromatic dispersion in the 

system. The proposed algorithm is however, a hybrid method as it combines ML with pilot-

assisted method for optimal performance. Assuming perfect frequency synchronization and FFT 

window, the received signal is described in (3.12) as: 

𝑌𝑖(𝑚) = 𝑒
𝑗𝛷𝑖 . 𝑋𝑖(𝑚)𝑍(𝑚) +𝑊𝑖(𝑚),                                                                                                (3.39) 

Also, it is assumed that the channel transfer function and the noise variance 𝛿𝑚
2
 of the combined 

noise interference 𝑊𝑖(𝑚) are known.  

Thus, the search for the optimal phase 𝛷𝑖 becomes an ML problem, that is, the minimization of 

the following likelihood function given by [65]: 

Λ𝑖 = 𝛿𝑚
−2 ∑|𝑌𝑖(𝑚) − 𝑍(𝑚)𝑋𝑖(𝑚)𝑒

𝑗𝛷𝑖|
2

𝑁𝑝

𝑚=1

.                                                                                   (3.40) 

where 𝑁𝑝 represents the number of pilot subcarriers. 

In (3.40), the expression can be expanded as 

Λ𝑖 = 𝛿𝑚
−2 ∑(𝑌𝑖(𝑚) − 𝑍(𝑚)𝑋𝑖(𝑚)𝑒

𝑗𝛷𝑖)

𝑁𝑝

𝑚=1

(𝑌𝑖(𝑚) − 𝑍(𝑚)𝑋𝑖(𝑚)𝑒
𝑗𝛷𝑖)

∗
                               (3.41) 
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Therefore, by expanding (3.40), the minimization of Λ𝑖 with respect to the common phase noise 

𝛷𝑖 results in [65]: 

𝛷𝑖 = 𝑎𝑟𝑔(𝛿𝑚
−2∑𝑌𝑖(𝑚)𝑍(𝑚)

∗𝑋𝑖(𝑚)
∗

𝑁𝑝

𝑚

).                                                                                  (3.42) 

Following the same approach as in (3.40) and (3.42), the ML channel estimate is obtained 

according to [65] by: 

𝑍̂(𝑚) =
∑ 𝑌𝑖(𝑚)𝑋𝑖(𝑚)

∗𝑁
𝑖−1 𝑒−𝑗𝛷𝑖

∑ |𝑋𝑖(𝑚)|
2𝑁

𝑖

.                                                                                                    (3.43) 

In (3.43), it is assumed the phase noise has been obtained from (3.42). If the effect of noise 

variance 𝛿𝑚
2
 is ignored, (3.42) will reduce to the least square (LS) method of [64]. The ML 

method may be preferred over LS method in optical OFDM systems. In wireless system, the 

noise is dominated by the detection circuit thermal noise, which can be assumed constant across 

all subcarriers. However, in the optical system, the dominant noise is the amplified-spontaneous 

noise distributed along many fiber spans. Due to the interaction of PMD and PDL, the noise for 

individual carriers can be different or ‘colored’. Therefore, it is advantageous to use the ML 

method that includes the effect of the colored noise variance [65]. As seen from this ML 

approach, the same procedure can also be assumed in the case of the acquisition of both the CFO 

and the phase noise in CO-OFDM systems.  
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CHAPTER FOUR 

MAXIMUM LIKELIHOOD APPROACH FOR PHASE 

NOISE AND CFO ESTIMATION IN CO-OFDM SYSTEMS 

 
4.1.  Introduction 

Various techniques and algorithms have been proposed to separately combat the degrading 

impact of phase noise and CFO in CO-OFDM systems [68]-[74]. In [69, 70], pilot techniques 

were utilized for phase estimation in CO-OFDM systems. Also, an Mth-power law data-aided 

estimator was implemented in [69]. However, the overall performance of this approach is grossly 

affected by the phase ambiguity associated with the Mth-power law method. The RF method was 

presented for phase noise estimation and compensation in [74]. In the RF estimation approach, 

the phase acquisition is realized by placing an RF-pilot tone in the middle of the OFDM transmit 

spectrum, which is then utilized at the receiver end to reverse any phase noise impairments in the 

system. Also, [75] presents a joint RF-based frequency offset and phase noise compensation 

scheme, in which the frequency offset is split into the integral part (IFO) and the fractional part 

(FFO). During implementation, the IFO was estimated based on the pre-acquisition of the FFO. 

In the approach, the signal discrete spectrum is acquired by performing the fast Fourier 

transforms (FFT) on the received samples. The discrete spectrum is reshaped based on the 

frequency distribution properties of the FFT and the frequency offset is estimated by obtaining an 

index of the sample that has the maximum intensity value. In [67, 68], an FFT-based frequency 

estimation technique was proposed. The technique was implemented by first obtaining the 

estimated absolute value of the frequency offset by identifying the frequency of peak value in the 

signal spectrum. The sign of the frequency offset is then obtained using a piecewise linear 

function of the absolute value of the estimated frequency offset as the judging threshold [68].  
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In [65], the maximum likelihood (ML) scheme was utilized to estimate the channel and the phase 

noise. Also, [63] implemented a joint carrier frequency offset (CFO) and sampling frequency 

offset (SFO) ML scheme where two long training symbols were utilized for the entire estimation 

in the wireless domain. However, for the estimation of CFO and phase noise, the CFO can be 

assumed to vary slowly, therefore will remain constant across a frame, but the evolution of the 

phase noise within a frame results in fast variation and pilot subcarriers are required for efficient 

estimation. 

The focus of this chapter is therefore in two folds. The first part focuses on the estimation of only 

the CFO using ML-based techniques. An ML estimation of the CFO, based on the method in 

[63], is proposed. The proposed method utilizes only two identical training symbols for CFO 

estimation in the frequency domain. The estimation is achieved by exploiting the phase shift 

between the two training symbols. Solving and obtaining a simplified expression for the CFO 

removes the need for the commonly required exhaustive search. Thus, a closed-form solution is 

derived and presented to address the high computational burden associated with ML methods 

[94]-[97]. This reduces system complexity while ensuring an enhanced system performance and 

overall efficiency. The derived ML-based method for CFO estimation in CO-OFDM systems is 

compared with existing ML methods in terms of performance and system complexity. 

The second part considers the acquisition of both the CFO and the phase noise using the closed-

form ML-based estimator, with a cost function that includes the effect of the dominance of the 

amplified spontaneous emission (ASE) noise along the optical fiber link. To achieve this, an 

initial approach, where the closed-form ML algorithm is utilized to acquire both the phase noise 

and the CFO, is considered. Thereafter, another approach, where the derived CML estimator is 

combined with a data dependent technique for the acquisition of both the CFO and the phase 

noise, is then considered. The data-dependent pilot-aided technique differs from the conventional 

pilot aided method where pilot subcarriers are predetermined. This approach is implemented in 

such a way that the phases of the pilot subcarriers are dependent and correlated to the phase of the 
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data subcarriers. The hybrid technique is aimed at improving the overall system performance and 

efficiency, without the additional overhead that is associated with conventional pilot-aided 

methods [71]. The results are compared with prominent existing methods such as the pilot-based 

methods, the FFT-based method and the RF-based method. Pertinent impairments along the fiber 

link such as polarization mode dispersion (PMD), group velocity dispersion (GVD), chromatic 

dispersion (CD) [23] are considered during the modeling and the implementation of the proposed 

estimators.   

 

4.2. The ML-Based CFO Estimation 

4.2.1 Traditional ML Estimation Methods  

For the estimation of the CFO, the received sequence as expressed in (3.6) is considered and 

rewritten as (4.1), given as  

𝑦𝑖(𝑛) = 𝑒
𝑗2𝜋𝜀𝑛
𝑁 𝑒𝑗𝜌𝑖(𝑛)𝑠𝑖(𝑛) + 𝑔𝑖(𝑛).                                                                                                  (4.1) 

In the absence of noise-interference and phase noise, (4.1) can be expressed in the frequency 

domain as  

𝑅𝑖(𝑚) = 𝑒
𝑗2𝜋𝜀𝑚
𝑁 ∑𝑠𝑖(𝑛)𝑒

−𝑗2𝜋𝑛𝑚
𝑁

𝑁−1

𝑛=0

.                                                                                                   (4.2)  

Considering the two consecutive OFDM sequences, which are the same except for a phase 

difference given as [50] 

𝑅2(𝑚) = 𝑅1(𝑚)𝑒
𝑗2𝜋𝜀 .                                                                                                                            (4.3) 

Now including the noise-interference component, then 

𝑌1(𝑚) = 𝑅1(𝑚) +𝑊1(𝑚)                                                                                                                       (4.4) 

𝑌2(𝑚) = 𝑅1(𝑚)𝑒
𝑗2𝜋𝜀 +𝑊2(𝑚)                                                                                                            (4.5) 

Using the observations as expressed in (4.4) and (4.5), it is shown in [50] that the CFO estimation 

can be obtained by 
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𝜀̂ = (
1

2𝜋
)𝑡𝑎𝑛−1 {(∑ 𝐼𝑚[𝑌2(𝑚)𝑌1

∗(𝑚)]

𝑁−1

𝑚=0

) (∑ 𝑅𝑒[𝑌2(𝑚)𝑌1
∗(𝑚)]

𝑁−1

𝑚=0

)⁄ }.                            (4.6) 

In [63], two training symbols are utilized to derive the ML CFO estimator. This is achieved by 

obtaining the ratios of two frequency observations, according to [63] as follows 

𝐷(𝑚) =
𝑋1(𝑚)𝑌2(𝑚)

𝑋2(𝑚)𝑌1(𝑚)
= 𝑒𝑗2𝜋𝜀 + 𝐸(𝑚),                                                                                         (4.7) 

where 𝐸(𝑚) is the error term [63], which is assumed to be Gaussian-distributed with zero mean 

and covariance matrix 𝜎𝐸
2𝐼𝑁 . Therefore, based on the expression in (4.7), the CFO 𝜀 is obtained 

based on the likelihood function 𝑝(𝐷(𝑚)|𝜀), given as [63, 97] 

𝑝(𝐷(𝑚)|𝜀) =
1

(𝜋𝜎𝐸2)𝑁
𝑒𝑥𝑝 {−

1

𝜎𝐸2
∑|𝐷(𝑚) − 𝑒𝑗2𝜋𝜀 |

2
𝑁

𝑚=1

}                                                           (4.8) 

Hence, the CFO is obtained by the following expression 

𝜀̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜀

∑|𝐷(𝑚)− 𝑒𝑗2𝜋𝜀|
2

𝑁

𝑚=1

.                                                                                                  (4.9) 

The CFO ML estimator in (4.9) requires the traditional exhaustive search, which increases system 

complexity, and its performance is highly influenced by channel conditions.  

4.2.2. Proposed ML Based CFO Estimation 

In order to achieve an enhanced CFO ML estimation using only two training sequences, which 

are assumed to be identical, this section proposes an efficient ML estimator, which is further 

implemented in a closed-form. Therefore, considering the observation 𝑌1(𝑚) and 𝑌2(𝑚), in (4.4) 

and (4.5), the value of 𝜀  that maximizes the joint conditional probability density function 

𝑝(𝑌1(𝑚), 𝑌2(𝑚)|𝜀) can be obtained by 

𝜀̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
𝑝(𝑌1(𝑚),𝑌2(𝑚)|𝜀)                                                                                                                  

      = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀

𝑝(𝑌2(𝑚)|𝜀, 𝑌1(𝑚))𝑝(𝑌1(𝑚)|𝜀).                                                                              (4.10) 
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Since 𝜀 gives no information about 𝑌1(𝑚), i.e. 𝑝(𝑌1(𝑚)|𝜀) = 𝑝(𝑌1(𝑚)), then 

𝜀̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
𝑝(𝑌2(𝑚)|𝜀, 𝑌1(𝑚)).                                                                                                      (4.11) 

From (4.4) and (4.5), 

𝑌2(𝑚) = (𝑌1(𝑚) −𝑊1(𝑚))𝑒
𝑗2𝜋𝜀 +𝑊2(𝑚)                                                                                          

                  = 𝑌1(𝑚)𝑒
𝑗2𝜋𝜀 +𝑊2(𝑚) −𝑊1(𝑚)𝑒

𝑗2𝜋𝜀                                                                          (4.12) 

Thus, 

𝑌2(𝑚) − 𝑌1(𝑚)𝑒
𝑗2𝜋𝜀 = 𝑊2(𝑚) −𝑊1(𝑚)𝑒

𝑗2𝜋𝜀                                                                              (4.13) 

In (4.12), 𝑊1(𝑚) and 𝑊2(𝑚) are approximated as Gaussian-distributed, with zero mean and 

variance 𝜎𝑊
2𝑰𝑁 [97], which is independent of ε, so that the probability density function (PDF) 

𝑝(𝑌2(𝑚)|𝜀, 𝑌1(𝑚))  has a mean of 𝑌1(𝑚)𝑒
𝑗2𝜋𝜀 . Therefore, the PDF 𝑝(𝑌2(𝑚)|𝜀, 𝑌1(𝑚))  is 

expressed as: 

𝑝(𝑌2|𝜀, 𝑌1) =
1

(2𝜋𝜎𝑊2)
𝑁
2

𝑒𝑥𝑝 {−
1

2𝜎𝑊2
∑|𝑌2(𝑚) − 𝑒

𝑗2𝜋𝜀𝑌1(𝑚)|
2

𝑁

𝑚=1

}.                                    (4.14)    

The ML estimate for CFO ε is obtained as 

𝜀̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
𝛤(𝜀),                                                                                                                             (4.15) 

where 

𝛤(𝜀) = ∑|𝑌2(𝑚) − 𝑒
𝑗2𝜋𝜀𝑌1(𝑚)|

2
𝑁

𝑚=1

.                                                                                             (4.16) 

The CFO 𝜀 can be obtained in a closed-form to avoid the exhaustive ML search. The expression 

in (4.16) can be expanded and re-written as: 

𝜀̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
𝛤(𝜀) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜀
∑ (𝑌2(𝑚) − 𝑒

𝑗2𝜋𝜀𝑌1(𝑚)) (𝑌2(𝑚) − 𝑒
𝑗2𝜋𝜀𝑌1(𝑚))

∗
𝑁

𝑚=1

,      (4.17) 

which reduces to 
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𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
𝛤(𝜀) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜀
∑ ℜ{𝑌2

∗(𝑚)𝑌1(𝑚)𝑒
𝑗2𝜋𝜀}

𝑁

𝑚=1

+ 𝐶,                                                       (4.18) 

where 𝐶 is independent of the CFO 𝜀. Since ε affects only the phase of {𝑌2
∗(𝑚)𝑌1(𝑚)𝑒

𝑗2𝜋𝜀} and 

not its absolute value, then the maximum of 𝛤(𝜀) is achieved when its phase is zero [94]. Thus, 

2𝜋𝜀 + ∠ ∑ 𝑌2
∗(𝑚)𝑌1(𝑚)

𝑁

𝑚=1

= 0.                                                                                                         (4.19) 

Then the CFO estimate 𝜀 ̂is obtained in a closed-form as: 

𝜀̂ = −
1

2𝜋
. ∠ ∑ 𝑌2

∗(𝑚)𝑌1(𝑚)

𝑁

𝑚=1

.                                                                                                        (4.20) 

After obtaining 𝜀̂, the obtained value can be substituted into (3.8) to compensate the CFO i.e. 

𝑌̂𝑖(𝑚) = 𝑌𝑖(𝑚)𝑒
−𝑗2𝜋𝜀̂𝑚

𝑁 .                                                                                                                     (4.21) 

Hence, the CFO in the system is effectively estimated and compensated. Also, in the development 

of the algorithm, 𝜎𝑊
2 is included due to the dominance of the ASE noise along the optical fiber 

link, to effectively capture the prevailing fiber characteristics. Table 4.1 shows the summary of 

the ML-based CFO estimator. 

Table 4.1: Summary of the ML-Based CFO Estimator 

 

1. For 𝑖 = 1,2, ……… .𝑁 

2.   Obtain 𝑌𝑖(𝑚) after FFT 

3.   Compute 𝑅𝑖(𝑚) using (4.1) 

4.   Obtain 𝑌1(𝑚) using (4.3) 

5.   Obtain 𝑌2(𝑚) using (4.4) 

6.   Compute 𝜀̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀

𝛤(𝜀) using (4.15) [for ML method 1] 

7.   Compute 𝜀̂ = −
1

2𝜋
. ∠∑ 𝑌2

∗(𝑚)𝑌1(𝑚)
𝑁
𝑚=1  using (4.20) [for ML method 2] 

8.   Compute 𝑀𝑆𝐸 = 𝐸[|𝜀̂ − 𝜀|2] 

End 
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4.3. The Proposed ML-Based CFO and Phase Noise Joint Estimation 

This section presents the ML-based estimation methods for the CFO and the phase noise. Figure 

4.1 shows the frame structure, highlighting the data and the pilot positions for the joint phase 

noise and CFO estimation. For the estimation of the phase noise using 𝑀𝑝  number of pilot 

subcarriers, the following are defined.  Set {𝑚1,𝑚2, … .𝑚𝑀𝑝
} of pilot tones to be available at 

each payload OFDM symbol for phase estimation. The CFO is assumed to vary slowly, therefore 

remains constant across each frame, while the phase is estimated at each frame based on available 

pilot subcarriers.  

 

                                     

 

Figure 4.1: The frame structure highlighting the data and the pilot positions. 

 

Hence, from (3.12), the following expression is obtained: 

𝑌𝑖(𝑚𝑝) = 𝑒
𝑗2𝜋𝜀𝑚𝑝

𝑁 𝑒𝑗Φ𝑖 . 𝑋𝑖(𝑚𝑝)𝑍(𝑚𝑝) +𝑊𝑖(𝑚𝑝),    𝑚𝑝 ∈  𝑀𝑝                                                   (4.22) 

In order to obtain the estimate of the CFO 𝜀, the received sequence is considered. In the absence 

of noise-interference and by assuming 𝑒𝑗Φ𝑖 ≈ 1, then in the frequency domain, using the pilot 

structure as described in Figure 4.1, which shows the pilot position for the CFO estimation i.e. 

𝑚𝑐𝑓𝑜,  

𝑅𝑖(𝑚𝑐𝑓𝑜) = 𝑒
𝑗2𝜋𝜀𝑚𝑐𝑓𝑜

𝑁 𝑋𝑖(𝑚𝑐𝑓𝑜)𝑍(𝑚𝑐𝑓𝑜).                                                                                       (4.23)  

Assuming two consecutive OFDM sequences are the same except for a phase difference given as 

[50] 

𝑅2(𝑚𝑐𝑓𝑜) = 𝑅1(𝑚𝑐𝑓𝑜)𝑒
𝑗2𝜋𝜀 .                                                                                                              (4.24) 
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By including the noise-interference component, then 

𝑌1(𝑚𝑐𝑓𝑜) = 𝑅1(𝑚𝑐𝑓𝑜) +𝑊1(𝑚𝑐𝑓𝑜)                                                                                                  (4.25) 

and 

𝑌2(𝑚𝑐𝑓𝑜) = 𝑅1(𝑚𝑐𝑓𝑜)𝑒
𝑗2𝜋𝜀 +𝑊2(𝑚𝑐𝑓𝑜)                                                                                       (4.26) 

Thus, to obtain the CFO 𝜀, the probability density function (PDF) 𝑝 (𝑌2(𝑚𝑐𝑓𝑜)|𝜀, 𝑌1(𝑚𝑐𝑓𝑜)) is 

expressed as: 

𝑝 (𝑌2(𝑚𝑐𝑓𝑜)|𝜀, 𝑌1(𝑚𝑐𝑓𝑜))   =
1

(2𝜋𝜎𝑊2)𝑁
𝑒𝑥𝑝 {−

1

2𝜎𝑊2
. |𝑌2(𝑚𝑐𝑓𝑜) − 𝑒

𝑗2𝜋𝜀𝑌1(𝑚𝑐𝑓𝑜)|
2
} . (4.27) 

The ML estimate for CFO 𝜀 is obtained as 

𝜀̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
Γ(𝜀),                                                                                                                               (4.28) 

where 

Γ(𝜀) = 𝜎𝑊
−2|𝑌2(𝑚𝑐𝑓𝑜) − 𝑒

𝑗2𝜋𝜀𝑌1(𝑚𝑐𝑓𝑜)|
2
.                                                                                (4.29) 

The CFO 𝜀  can be obtained in a closed-form to avoid the exhaustive ML search. Also, the 

variance 𝜎𝑊
2 is included due to the dominance of the ASE noise along the optical fiber link, 

which cannot be ignored. The expression in (4.29) can be expanded and re-written as: 

𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
Γ(𝜀)                                                                                                                                                       

        = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
{2𝜎𝑊

−2 (𝑌2(𝑚𝑐𝑓𝑜) − 𝑒
𝑗2𝜋𝜀𝑌1(𝑚𝑐𝑓𝑜))(𝑌2(𝑚𝑐𝑓𝑜) − 𝑒

𝑗2𝜋𝜀𝑌1(𝑚𝑐𝑓𝑜))
∗
} , (4.30) 

which reduces to 

𝑎𝑟𝑔𝑚𝑖𝑛
𝜀
Γ(𝜀) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜀
{2𝜎𝑊

−2 . ℜ{𝑌2
∗(𝑚𝑐𝑓𝑜)𝑌1(𝑚𝑐𝑓𝑜)𝑒

𝑗2𝜋𝜀}} + 𝐶,                                  (4.31) 

where 𝐶 is independent of the CFO 𝜀. Since 𝜀 affects only the phase of the expression on the right 

hand side of (4.31) and not its absolute value, then the minimum of Γ(𝜀) is achieved when its 

phase is zero. Thus, 

2𝜋𝜀 + ∠{2𝜎𝑊
−2. 𝑌2

∗(𝑚𝑐𝑓𝑜)𝑌1(𝑚𝑐𝑓𝑜)} = 0.                                                                                     (4.32) 
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Then the CFO 𝜀 is obtained in a closed-form as: 

𝜀̂ = −
1

2𝜋
. ∠{2𝜎𝑊

−2 . 𝑌2
∗(𝑚𝑐𝑓𝑜)𝑌1(𝑚𝑐𝑓𝑜)}.                                                                                      (4.33) 

Now for the estimation of the phase noise, considering (4.22) with no CFO, having obtained the 

estimate 𝜀̂ and assuming a perfect compensation, an ML cost function is defined based on (4.22), 

which is expressed as 

Γ(Φ) = 2𝜎𝑊
−2 ∑ |𝑌𝑖(𝑚𝑝) − 𝑋𝑖(𝑚𝑝)𝑍(𝑚𝑝)𝑒

𝑗Φ𝑖|
2

𝑚𝑝∈𝑀𝑝

                                                             (4.34) 

The expression in (4.34) can be expanded and re-written as 

Γ(Φ)                                                                                                                                                                       

     = 2𝜎𝑊
−2 ∑ ((𝑌𝑖(𝑚𝑝) − 𝑋𝑖(𝑚𝑝)𝑍(𝑚𝑝)𝑒

𝑗Φ𝑖)(𝑌𝑖(𝑚𝑝) − 𝑋𝑖(𝑚𝑝)𝑍(𝑚𝑝)𝑒
𝑗Φ𝑖)

∗
)

𝑚𝑝∈𝑀𝑝

, (4.35) 

Γ(Φ) = 2𝜎𝑊
−2 ∑ ℜ{𝑌𝑖(𝑚𝑝)𝑋𝑖

∗(𝑚𝑝)𝑍
∗(𝑚𝑝)𝑒

−𝑗Φ𝑖}

𝑚𝑝∈𝑀𝑝

                                                        (4.36) 

Γ(Φ) = 2𝜎𝑊
−2 ∑ ℜ{𝐶𝑖(𝑚𝑝)𝑒

−𝑗Φ𝑖}

𝑚𝑝∈𝑀𝑝

                                                                                        (4.37) 

where 𝐶𝑖(𝑚𝑝) = 𝑌𝑖(𝑚𝑝)𝑋𝑖
∗(𝑚𝑝)𝑍

∗(𝑚𝑝) and ℜ represents real value. 

Hence, the ML estimate for 𝛷𝑖 is obtained by 

Φ̂𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝛷

∑ ℜ{𝐶𝑖(𝑚𝑝)𝑒
−𝑗Φ𝑖}.

𝑚𝑝∈𝑀𝑝

                                                                                         (4.38) 

Hence, the range of the CPE can be searched across 𝑁Φ  candidate values with step size 𝛼Φ , 

[(−𝑁Φ 2)𝛼Φ⁄ , (𝑁Φ 2 + 1)𝛼Φ,⁄ … (𝑁Φ 2)𝛼Φ⁄ )], to acquire the estimate Φ̂𝑖 . As obtained in (4.33), 

Φ𝑖 can also be obtained in a closed-form, which is expressed as 

Φ̂𝑖 = ∠ ∑ 𝐶𝑖(𝑚𝑝).   

𝑚𝑝∈𝑀𝑝

                                                                                                                     (4.39) 

Thus, the exhaustive search is no longer required, which drastically reduces the computational 

burden and the overall complexity of the system.  
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Furthermore, instead of utilizing the CPE ML estimator derived in (4.39), an efficient data-

dependent pilot-aided (DD-PA) technique is implemented for the laser phase acquisition while 

still utilizing the derived ML scheme of (4.33) for CFO estimation. This approach differs from 

the conventional pilot aided method where pilot subcarriers are predetermined. In this method, 

the phases of the pilot subcarriers are selected in a way that their average phase angle is direct 

opposite of the data carrying subcarriers. This is ensured by the condition expressed as 

𝑎𝑣𝑒⟦𝑎𝑟𝑔(𝑋𝑖(𝑚))⟧𝑀𝑝
+ 𝑎𝑣𝑒⟦𝑎𝑟𝑔(𝑋𝑖(𝑚))⟧𝑑𝑎𝑡𝑎 = 0                                                                    (4.40) 

where 𝑎𝑣𝑒⟦. ⟧ is the averaging operation and 𝑎𝑟𝑔(. ) denotes the phase angle. 

Thus, the average phase angle of the pilot subcarriers is selected by satisfying the condition stated 

above, where 𝑎𝑣𝑒⟦𝑎𝑟𝑔(𝑋𝑖(𝑚))⟧𝑀𝑝
= −𝑎𝑣𝑒⟦𝑎𝑟𝑔(𝑋𝑖(𝑚))⟧𝑑𝑎𝑡𝑎. The CPE is, therefore, obtained 

by adding the phases of the 𝑀𝑝 pilot subcarriers and the corresponding data carrying subcarriers 

using the following expression 

Φ̂𝑖 = (𝑎𝑣𝑒 ⟦𝑎𝑟𝑔(𝑌𝑖(𝑚𝑝))⟧
𝑀𝑝
+ 𝑎𝑣𝑒⟦𝑎𝑟𝑔(𝑌𝑖(𝑚))⟧𝑑𝑎𝑡𝑎) 2⁄ .                                                 (4.41) 

Also, by using the expression in (4.41), the CPE is estimated without prior information on the 

phase of the pilot subcarriers. Table 4.2 shows the summary of the joint ML-based algorithm. 
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Table 4.2: Summary of the Joint ML-Based Algorithm 

 

1. Set pilots 𝑀𝑝 = {𝑚1, 𝑚2,… .𝑚𝑀𝑝
} 

2. For 𝑖 = 1,2, ……… .𝑁 

3.    Obtain 𝑌𝑖(𝑚𝑝) using (4.21) 

4.    Compute 𝑅𝑖(𝑚𝑐𝑓𝑜) using (4.22) 

5.    Obtain 𝑌1(𝑚𝑐𝑓𝑜) using (4.24) 

6.    Obtain 𝑌2(𝑚𝑐𝑓𝑜) using (4.25) 

7.    Compute CFO 𝜀̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜀
𝛤(𝜀)  

8.    where 𝛤(𝜀) = 𝜎𝑊
−2|𝑌2(𝑚𝑐𝑓𝑜) − 𝑒

𝑗2𝜋𝜀𝑌1(𝑚𝑐𝑓𝑜)|
2
 

9. Compute 𝑀𝑆𝐸 = 𝐸[|𝜀̂ − 𝜀|2] 

10. Compensate CFO 𝜀   

11. Compute 𝛤(𝛷) using (4.32) 

12. where 𝛤(𝛷) = ∑ 2𝜎𝑊
−2. ℜ{𝐶𝑖(𝑚𝑝)𝑒

−𝑗𝛷𝑖}𝑚𝑝∈𝑀𝑝  

13. Obtain phase estimate 𝛷̂𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛷
∑ ℜ{𝐶𝑖(𝑚𝑝)𝑒

−𝑗𝛷𝑖}𝑚𝑝∈𝑀𝑝  using (4.34) 

14. Obtain 𝛷̂𝑖 in a closed-form using (4.35) 

15. Obtain 𝛷̂𝑖 using DD-PA method using (4.37) 

16. Compute 𝑀𝑆𝐸 = 𝐸 [|𝛷̂𝑖 −𝛷𝑖|
2
] 

17. End for 

 

 

4.4. Simulations and Discussion 

4.4.1. Proposed ML Based CFO Estimation 

The performance as well as the effectiveness of the proposed method is investigated and 

analyzed. A 20 Gb/s CO-OFDM system, with FFT size 256 and a central wavelength of 1550𝑛𝑚 

is considered, while a 12.5% cyclic prefix is used. The 16-QAM-modulation format is used while 

the sampling duration of the OFDM symbol is set to 28.8ns. The optical system model is 

implemented mimicking a practical scenario with prevailing fiber-link dispersion including 

PDLs, whose effects on optical links are detailed in [23]. The fiber link is 100 𝑘𝑚 span distance, 

standard single mode fiber (SSMF) with fiber dispersion value of 17 𝑝𝑠/𝑘𝑚/𝑛𝑚, loss coefficient 
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of 0.2 𝑑𝐵/𝑘𝑚, and differential group delay of 5 𝑝𝑠/√𝑘𝑚. The EDFA has 16 𝑑𝐵 gain with noise 

figure of 4 𝑑𝐵 and the non-linear coefficient of the fiber is 1.32/𝑊/ 𝑘𝑚. 

In Figure 4.2, the BER performance of the proposed ML-based methods is shown in comparison 

with the existing ML methods. It is clear from the plots that the proposed methods outperform the 

existing ML methods. The CFO is set to ε = 0.2 while the CD is 1700 𝑝𝑠/𝑛𝑚. From the plot, it 

is observed that the proposed ML estimator of (4.15) achieves a BER close to its closed-form 

counterpart as derived in (4.20). This shows that the simplification of the ML method of (4.15) to 

achieve a closed-form estimation has no conspicuous effect on the BER performance.  

The MSE plots of the proposed methods are compared with existing ML methods in Figure 4.3. 

The impact of the CFO on the MSE performance of the ML methods is verified at different 

normalized CFO values of 0.1 and 0.2. Generally, all the compared ML methods offer a fairly 

stable MSE performance at the various CFO values. Also, Moose’s method offers a better 

performance compared to Nguyen-Le’s method at lower OSNR values i.e. (OSNR < 10 dB). At 

increased OSNR values beyond 10 dB, Nguyen-Le’s method outperforms Moose’s ML method. 

However, the proposed ML method offers a superior performance compared to Nguyen-Le’s 

method. This is due to the weighting factor present in the Nguyen-Le’s method, which is greatly 

influenced by fiber-link characteristics. The impact of increased fiber impairments is investigated 

in Figure 4.4. The MSE versus OSNR graph is obtained at CD values of 2200 𝑝𝑠/𝑛𝑚  and 

4000 𝑝𝑠/𝑛𝑚. The plot shows that the ML methods are moderately affected by fiber impairments 

although Nguyen-Le’s method shows instability and high degradation at high OSNR values. 

Also, from the plots, it can be seen that the proposed ML method of (4.15) achieves similar MSE 

performance as its closed-form counterpart of (4.20). 

Finally, in Figure 4.5, the performance of the ML methods over various values of CFO is shown. 

The MSE versus CFO plot shows that the proposed closed-form ML method in (4.20) closely 

approaches it counterpart in (4.15), for all values of CFO. This verifies the fact that the derived 
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simplified ML expression maintains a performance as good as the proposed method in (4.15). 

Thus, a similar performance is achieved while avoiding the traditional exhaustive search, to 

ensure lower computational cost. 

 

 

Figure 4.2:  BER sensitivity for the proposed ML-based estimation algorithms in comparison 

with existing methods. 
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Figure 4.3: MSE comparison of the ML-based estimators at CFO ε = 0.10, 0.20. 

 

Figure 4.4:  MSE performance of the various ML-based estimators under varied fiber 

impairments 
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Figure 4.5: MSE versus normalized CFO graph at OSNR = 15 dB 

4.4.2. The Proposed ML-Based CFO and Phase Noise Joint Estimation  

The mean square error (MSE) plots of the proposed closed-form ML (CML) based schemes are 
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show that the use of the CML scheme combined with the DD-PA phase acquisition technique 

(CML/DD-PA) ensures an improved estimation and overall system performance, which is due to 

the use of pilot subcarriers. The graph in Figure 4.7 also shows the impact of the estimation 

algorithm with different phase noise values of linewidth 400 KHz and 800 KHz, while the CFO is 

set to  𝜀 =  0.10. As seen from the plots, the proposed methods outperform the existing ML 

technique. It is noteworthy that despite both the proposed schemes both utilizes the derived CML 

algorithm for the acquisition of the CFO, the effectiveness of the technique employed for the first 

stage estimation of the laser phase noise essentially impacts the overall performance and 

efficiency of the estimation schemes. 

In Fig. 4.8, the BER performance of the proposed CML-based schemes is compared with an RF-

based joint estimator of [75] and an FFT-based acquisition scheme of [67]. The joint estimation 

scheme in [75] implements an RF-pilot aided phase recovery and frequency estimation method 

for the acquisition of both the laser phase noise and the CFO. The RF-based scheme is compared 

with the proposed CML-based schemes by utilizing a RF-pilot tone with 6.3% of power 

overhead, which is inserted in the center of the OFDM band. A band pass filter (BPF) with 100 

MHz bandwidth is applied to filter out the RF-pilot tone at the receiver. Also, the plot shows the 

implementation of an FFT-based scheme. Before the acquisition of the CFO using the FFT 

method, the laser phase noise is estimated using a conventional pilot-based method proposed in 

[70]. The impact of the CFO, which is set at 𝜀 = 0.1 is shown as well as the perfect scenario 

where CFO 𝜀 = 0, to enable a clear comparison of the impact of the CML-based schemes on the 

CO-OFDM system model used. The combined laser linewidth ℎ is set to 160 KHz. The plots 

show that the proposed schemes outperform the existing ML scheme as well as the FFT-based 

method. Furthermore, from the plots, the RF-based joint scheme outperforms the CML/CML 

scheme. However, the CML/DD-PA scheme, where the DD-PA technique is utilized for the 

acquisition of the phase noise before using the CML algorithm to obtain the CFO, offers a 

slightly better system performance as compared to the RF-based technique. Also for comparison, 
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the CML technique is combined with an RF-pilot phase estimator (CML/RFP). The CML/RFP 

offers a performance close to both the CML/DD-PA and the RF-based joint schemes. However, 

the RF-pilot tone in the CML/RFP as well as the RF-based joint schemes in [75] is grossly 

impacted by the size of the frequency guard band around the DC subcarrier, while the 

effectiveness degrades further under ASE and other fiber nonlinearity related impairments. Table 

4.2 gives the summary of the phase noise and the CFO ML-based algorithm. 

Figure 4.9 shows the MSE versus OSNR plot of the impact of fiber impairments on the overall 

performance of the CML/DD-PA and the RF-based joint estimation schemes. In the scenario 

where the fiber link is assumed compensated with no influence of fiber dispersions, the RF-based 

joint scheme tends to outperform the CML/DD-PA scheme. However, at CD of 1700 ps/nm, the 

CML/DD-PA shows better robustness against dispersion as compared to the RF-based scheme. 

Although the performance of both the CML/DD-PA scheme and the RF-based scheme steadily 

degrades as the CD is further increased, the CML/DD-PA offers a superior overall performance 

in the presence of fiber dispersions.  

In Figure 4.10, the MSE plots of the proposed joint estimation schemes in comparison with the 

existing methods are shown. From the plot, the CML schemes outperform both the FFT-based 

estimator and the ML scheme in [65]. Also, the CML/DD-PA scheme still offers an enhanced 

performance than the RF-based scheme and offers better efficiency as mentioned earlier. Figure 

4.11 shows the MSEs of the estimation schemes as a function of the CFO at OSNR = 15 dB. The 

plots verify the performance of the proposed schemes in comparison with the existing schemes. 

Also, the RF-based joint estimator closely approaches but slightly outperformed by the CML/DD-

PA technique. As a result of the BPF, the complexity of the RF-pilot scheme is significantly 

higher as compared to the proposed schemes. Thus, the CML/DD-PA offers an overall better 

performance and efficiency.  
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4.5. Computational complexity 

The complexity of the ML method proposed in [65] requires the traditional search similar to the 

method in [97]. By referring to (4.38), evaluating the sequence 𝐶𝑖(𝑚𝑝) =

𝑌𝑖(𝑚𝑝)𝑋𝑖
∗(𝑚𝑝)𝑍

∗(𝑚𝑝)  requires 𝑁𝑀𝑝  complex multiplications. The curly bracket in the 

expression ∑ ℜ{𝐶𝑖(𝑚𝑝)𝑒
−𝑗Φ𝑖}𝑚𝑝∈𝑀𝑝  in (4.38) also requires 𝑁𝑀𝑝  complex multiplications, 

𝑁(𝑀𝑝 − 1) complex additions while the required exhaustive search is over 𝑁 candidate values. 

Thus, the overall complexity of the estimator in (4.38) is of the order 𝑂(𝑁2𝑀𝑝). Deriving the 

closed-form expression as in (4.39), the estimator requires 𝑁𝑀𝑝 complex multiplications 𝑁(𝑀𝑝 −

1)  complex additions while the need for the exhaustive search is eliminated. Hence, the 

complexity of (4.39) is of the order 𝑂(𝑁) as the search operation is avoided. This shows that the 

closed-form expression, which enables the avoidance of the traditional ML search, offers a 

considerably lower complexity as compared to existing ML scheme. It is noteworthy that despite 

both the proposed schemes both utilizing the CML estimation approach for the acquisition of the 

CFO, the effectiveness of the technique employed for the first stage estimation of the laser phase 

noise essentially impacts the overall performance and efficiency of the estimation schemes. The 

complexity of the algorithms in terms of complex multiplications and complex additions is 

presented in Table 4.3. Also, Figure 4.12 shows the complexity graph of the considered ML 

methods in terms of the required complex multiplication operations. 

Table 4.3: Complexity comparison for ML methods 

ML Method 
Complex 

Multiplication 
Complex Addition Search 

ML Method [65] and 

[97] 
2𝑁𝑀𝑝 𝑁(𝑀𝑝 − 1) 𝑁 

Proposed method 𝑁𝑀𝑝 𝑁(𝑀𝑝 − 1) − 

Nguyen-Le [63] 𝑁(𝑀𝑝 + 2) 2(𝑁𝑀𝑝 − 1) 𝑁 
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Figure 4.6: CFO estimation MSE for the joint estimation algorithms with laser linewidth of 160 

KHz. 

 

 

Figure 4.7: Phase noise estimation MSE for the joint estimation algorithms with CFO ε = 0.10. 
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Figure 4.8:  BER for the proposed ML-based estimation algorithms in comparison with existing 

methods. 

 

Figure 4.9:  MSE performance of the CML/DD-PA and the RF-based joint scheme under fiber 

impairments. 
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Figure 4.10:  CFO estimation MSE comparison at CFO ε = 0.25 with laser linewidth of 250 KHz. 

 

Figure 4.11:  CFO estimation MSEs versus normalized CFO with laser linewidth of 250 KHz at 

SNR = 15 dB. 
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Figure 4.12:  Complexity comparison of the ML methods considered in terms of the number of 

required operations 

 

4.6. Conclusion 
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the first scheme, where the CML estimator is employed for the estimation of both the laser phase 

noise and the CFO. In the presence of impairments along the fiber link, the CML/DD-PA 

approach exhibits a balanced, low-complexity and better performance over the existing RF-pilot 

based method. Also, it is noteworthy that the effectiveness of the technique employed for the 

laser phase noise estimation impacts the overall performance of the proposed closed-form ML-

based joint acquisition schemes. 
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CHAPTER FIVE 

EFFICIENT CONSTANT MODULUS BASED CARRIER 

FREQUENCY OFFSET ESTIMATION  

 
5.1. Introduction 

In this chapter, a completely blind low-complexity CFO estimation approach for constant 

modulus constellation CO-OFDM systems is proposed, with a cost function similar to the one 

utilized for blind channel equalization in [98]. In [89]-[92], constant modulus (CM) schemes are 

implemented to address the gross performance degradation in [87]. This is achieved by assuming 

that the channel response of two neighboring subcarriers is the same. However, this assumption is 

not valid when the CFO is not estimated perfectly. This, therefore, motivates the implementation 

of the proposed blind CM based CFO estimation algorithm. The approach is implemented in such 

a way that it becomes independent of the assumptions in [89]-[92], to achieve a more robust 

performance in the presence of optical channel impairments. The performance of the proposed 

approach is analyzed and compared with prominent existing methods in a scenario, which mimics 

the practical optical system with an uncompensated fiber link in terms of the mean square error 

(MSE), the bit-error-rate (BER) and the convergence speed. 

The main contributions in this chapter therefore include 

1. The investigation of the performance of prominent constant modulus based blind 

estimation schemes, which have hitherto not been implemented and analyzed in the 

optical domain. The work presented in this chapter therefore investigates how these 

existing constant modulus schemes perform in the optical scenario, with fiber dispersion. 

2. A blind low-complexity CFO estimator is proposed and compared with existing constant 

modulus schemes. In the existing methods, the cost functions are totally dependent on the 

channel characteristics, where it is usually assumed that the channel slowly varies over 
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consecutive symbols. However, the proposed estimator is independent of this general 

assumption. This in fact makes the proposed method robust against channel impairments. 

3. In order to achieve low-complexity, the proposed cost function is derived and 

approximated as a cosine function, so that the CFO estimate is obtained using the curve 

fitting method, where only three trial values are required. 

4. The derived closed-form expression ensures a low complexity similar to the existing 

schemes while offering a superior overall performance. 

5.2. The System Model 

Considering a CO-OFDM system as described in Figure 3.1, the 𝑖𝑡ℎ OFDM transmitted signal is 

given by 𝐗𝑖 = [𝑋𝑖(0), 𝑋𝑖(1)…𝑋𝑖(𝑀 − 1)]𝑇 , where data symbols 𝐗𝑖 are uniformly drawn from a 

constant modulus (CM) constellation. Thus, the received sequence in (3.12), while neglecting the 

phase noise and for easy analysis as well as comparison with existing schemes, can be rewritten 

as: 

𝒚𝑖 = 𝑒
𝑗
2𝜋𝜀𝑖
𝑀

(𝑀+𝑁𝑔)𝐖(ε)𝐂𝐙𝑖𝐗𝑖 + 𝐠𝑖   ,                                                                                                    (5.1) 

where   ε ∈ (−0.5, 0.5)  is the CFO, 𝑁 = 𝑀 +𝑁𝑔  is the total number of subcarriers with 𝑀 

representing the data subcarriers while 𝑁𝑔 denotes the cyclic prefix. The accumulated phase shift 

caused by the CFO on the time domain samples is given by 𝑾(𝜀) =

𝑑𝑖𝑎𝑔([𝑒𝑗
2𝜋𝜀

𝑀
×0, 𝑒𝑗

2𝜋𝜀

𝑀
×1… . 𝑒𝑗

2𝜋𝜀

𝑀
×(𝑀−1)]

𝑇

), whose 𝑖𝑡ℎ element is given as 𝑒𝑗
2𝜋ε𝑖

𝑀
(𝑀+𝑁𝑔). Also, 𝑪 

is the normalized N × N IDFT matrix. The elements of 𝑪 are defined by 𝐶𝑚𝑛 =
1

√𝑁
𝑒
𝑗2𝜋𝑚𝑛

𝑀 , where 

𝑚 and 𝑛  denote the row and column indices respectively and vary from 0 to M − 1 . The 

connotation 𝐙𝑖  is the holistic channel impulse response of the fiber link encompassing the 

polarization mode dispersion, group velocity dispersion and other polarization dependent losses 

[20, 23]. 
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The received sequence 𝒚𝑖 is multiplied by 𝑾∗(𝜀)̅ for CFO compensation using a trial value of 

CFO 𝜀,̅ then fed to the DFT to obtain 

𝐘𝑖 = 𝐂
H𝐖∗(ε̅)𝒚𝑖 ,                                                                                                                                      (5.2) 

where 𝐂 is a unitary matrix. Also, the 𝑚𝑡ℎ element of  𝐘𝑖 can be expressed as: 

𝑌𝑖(𝑚) =
1

√𝑁
∑ 𝑦𝑖(𝑛)𝑒

−𝑗
2𝜋𝑛
𝑁
(𝑚−𝜀̅)

𝑁−1

𝑛=0

,                                                                                                    (5.3) 

where 

𝑦𝑖(𝑛) =
𝑒𝑗
2𝜋𝜀𝑖
𝑁

(𝑁+𝑁𝑔)

√𝑁
∑ 𝑋𝑖(𝑚)𝑍𝑖(𝑚)𝑒

𝑗
2𝜋𝑛
𝑁
(𝑚−𝜀)

𝑁−1

𝑚=0

+ 𝑔𝑖(𝑛).                                                         (5.4) 

Also, as stated earlier, 𝑍𝑖(𝑚) is the comprehensive channel impulse response of the fiber link, 

which includes the group velocity dispersion (GVD).  

 

5.3. Blind Constant Modulus Based CFO Estimation Methods 

Blind constant modulus based CFO estimation schemes have been proposed in the wireless 

domain [87]-[93]. A modest kurtosis-type criterion is used for CFO estimation in [87]. The 

approach exploits the variance of interfering subcarriers and the Gaussianity of a random 

sequence, to derive the proposed cost function. The kurtosis-type estimator is built on the idea 

that if the CFO has not been totally compensated, the distribution of the post-DFT sequence is 

closer to Gaussian than when the CFO has been perfectly compensated. Another blind CFO 

estimation method is presented in [88], which exploits the smoothing power spectrum. In the 

approach, the cost function is based on the similarity of the frequency response between two 

adjacent subcarriers. The method can be utilized for both constant modulus (CM) and non-CM 

signaling.  In [89], an improved method is proposed to address the drawbacks of the kurtosis-

based estimators. In this method, CFO estimation is achieved by minimizing an objective 

function based on the power difference between the received constellation using CM signaling. 
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The performance of this method is shown to be superior to the method in [87], but with similar 

computational complexity. However, these schemes suffer from gross degradation under severe 

channel conditions [90]. The power difference estimator (PDE-T), which is a hybrid time-

frequency domain estimator, is proposed in [91]. The cost function minimizes the power 

difference between subcarriers in two consecutive OFDM symbols and assumes a slowly varying 

channel in the time domain. Recently, the amplitude difference estimator (ADE-T) method [92], 

similar to the PDE-T, was proposed. In the ADE-T method, the CFO estimate is obtained by 

deriving a cost function based on the magnitude of the received sequence with two similar 

subcarriers having the same indexes. The cost function, which is derived by exploiting the 

channel coherence in time, has quasi-regular shape and can be further approximated to achieve a 

closed-form CFO estimation [92]. The ADE-T method is less sensitive to noise and instabilities 

along the channel. In [93], a CFO estimator is presented, whose cost function is derived based on 

the powers of non-diagonal elements of covariance matrix. The information on the CFO is 

embedded in the covariance matrix of the received sequence. The method achieves CFO 

estimation by minimizing the total off-diagonal power induced by the inter-channel interference 

(ICI) in the frequency domain. However, the implementation of this scheme requires large 

number of OFDM symbols, which causes processing delay. Also in [90], a circularly shifted 

covariance (CSC) matrix method was proposed, where estimation is achieved by forcing the out-

of-band elements of the matrix to zero. The covariance matrix obtained has a banded structure 

and the CFO is estimated by minimizing the power of the elements that are outside the band. The 

cost function of this method is dependent on the property of the channel matrix, which makes it 

susceptible to impairments along the channel. The prominent among the existing constant 

modulus based blind estimation methods in the wireless domain are therefore examined and 

derived for CFO estimation in the optical scenario. Also, the prominent methods that are 

examined in the following sub-sections form the basis of comparison with the newly proposed 

method. 
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5.3.1. The power difference estimator (PDE)  

In [89], a blind CFO estimation scheme for OFDM systems with CM signaling is proposed in the 

wireless domain. The scheme, which is referred to as PDE-F, is based on the assumption that the 

channel frequency response is approximately the same for two neighboring subcarriers. Based on 

this assumption, a cost function is derived and utilized for blind CFO estimation in a closed-form. 

Also, it is assumed that the CFO has been perfectly compensated before the DFT stage, thus the 

DFT output is considered to be without ICI. In [91], a similar method, which is referred to as the 

PDE-T scheme, is implemented for CFO estimation in OFDM systems. The method, which is a 

hybrid time-frequency-domain estimator, assumes the channel frequency response varies slowly 

in the time domain. Therefore the resulting sequence after DFT in a noise-free case is described 

as: 

𝐘𝑖|𝜀̅=𝜀 = 𝐙𝑖𝐗𝑖 .                                                                                                                                          (5.5) 

Considering the case of CM signaling, the squared amplitude of the resulting sequence after DFT 

is taken as the squared amplitude of the optical channel frequency response, which is expressed 

as: 

|𝑌𝑖(𝑚)|𝜀̅=𝜀|
2 = |𝑍𝑖(𝑚)|

2,                                                                                                                       (5.6) 

where 𝜀 ̅is the trial value of the CFO as defined earlier. 

Also assuming that the channel response slowly changes in the frequency domain so that |𝑍𝑖(𝑚)| 

and |𝑍𝑖+1(𝑚)| are almost equal, then consecutive subcarriers have equal power [91]. Thus, 

|𝑌𝑖(𝑚)|𝜀̅=𝜀|
2 ≈ |𝑌𝑖−1(𝑚)|𝜀̅=𝜀|

2.                                                                                                           (5.7) 

Based on the above expressions, a cost function is formulated, and the CFO estimation is 

achieved by the following expression 

𝜀̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜀̅∈(−0.5,0.5)

𝐽𝑃𝑓 (𝜀)̅,                                                                                                                   (5.8) 
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where 

𝐽𝑃𝑓(𝜀)̅ = ∑ ∑(|𝑌𝑖(𝑚)|
2 − |𝑌𝑖−1(𝑚)|

2)2,

𝑁−1

𝑚=0

𝑀−1

𝑖=0

                                                                                  (5.9) 

and the assumption in (5.7) is valid for all subcarriers. The CFO is assumed constant over 𝑀 

consecutive OFDM symbols and (5.9) can be expanded and further approximated as [89, 91]: 

𝐽𝑃𝑓(𝜀)̅ ≈ 𝐴 𝑐𝑜𝑠[2𝜋(𝜀 − 𝜀)̅] + 𝐶,                                                                                                         (5.10) 

where 𝐴 and 𝐶  are constants with real values, independent of ε̅ but dependent on the optical 

channel and symbol realization as detailed in [91].  

The curve-fitting method as described in Appendix I [88, 91], can be utilized for the minimization 

process since the cost-function as approximated in (5.10) is sinusoidal. The curve-fitting method 

enables a closed-form estimation of the CFO and the cost function in (5.10) can be evaluated at 

three different points, i.e. ε̅ = 0, 0.25, and − 0.25.  The estimate of the CFO is therefore 

obtained according to [88, 90, 91] as 

ε̂ =

{
 
 

 
 

 

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) 𝑓𝑜𝑟 𝑎 ≥ 0                             

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) +

1

2
 𝑓𝑜𝑟 𝑎 < 0 𝑎𝑛𝑑 𝑏 ≥ 0

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) −

1

2
 𝑓𝑜𝑟 𝑎 < 0 𝑎𝑛𝑑 𝑏 ≤ 0

                                                                        (5.11) 

where a and 𝑏 are obtained by the expressions 

 a = {(1 2⁄ )(𝐽𝑃𝑓(𝜀 ̅ = 0.25) + 𝐽𝑃𝑓(𝜀 ̅ = −0.25)) − 𝐽𝑃𝑓(𝜀 ̅ = 0)}, and 

 b = {(1 2⁄ )(𝐽𝑃𝑓(𝜀 ̅ = 0.25) + 𝐽𝑃𝑓(𝜀 ̅ = −0.25))}. 

 

5.3.2. The amplitude difference estimator (ADE-T) 

In [92], another cost function was proposed for blind CFO estimation in the wireless domain. The 

method is achieved by using a cost-function based on the sum of the products of the signal 
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amplitudes on each pair of equivalent subcarriers from consecutive OFDM symbols. Considering 

the case of CM signaling while assuming a slow time-varying channel response, then  

|𝑌𝑖(𝑚)| ≈ |𝑌𝑖−1(𝑚)|,                                                                                                                               (5.12) 

and the cost-function is described as 

𝐽𝐴𝑡(𝜀)̅ = ∑ ∑(|𝑌𝑖(𝑚)| − |𝑌𝑖−1(𝑚)|)
2.

𝑁−1

𝑚=0

𝑀−1

𝑖=0

                                                                                        (5.13) 

Thus, CFO can be estimated by minimizing the cost-function as 

𝜀̂ = arg min
𝜀̅∈(−0.5,0.5)

𝐽𝐴𝑡 (𝜀)̅.                                                                                                                     (5.14) 

Since |𝑌𝑖(𝑚)|
2 and |𝑌𝑖−1(𝑚)|

2 are independent of ε̅ and ε [92], the cost function is modified as  

𝐽𝐴𝑡(𝜀)̅ = ∑ ∑|𝑌𝑖(𝑚)||𝑌𝑖−1(𝑚)|.

𝑁−1

𝑚=0

𝑀−1

𝑖=0

                                                                                                  (5.15) 

The cost function is further approximated and the closed-form expression of (5.11) is used for the 

CFO estimation. 

 

5.3.3. The circularly shifted covariance method 

A circularly shifted covariance method is proposed in [90] for RF, with the cost-function based 

on the covariance matrix obtained through circularly shifted OFDM blocks in the time-domain. 

The method in [90] is achieved by using the covariance matrix obtained by the circular shifts of 

the received signal. From the banded structure of the covariance matrix in the absence of the 

CFO, the estimate of the CFO is acquired by minimizing the powers outside the band of the 

covariance matrix. The elements outside the band of the covariance matrix are referred to as out-

of-band elements [90]. The sample covariance matrix is generated using the expression given as 

𝑅𝑖(𝜀)̅ =
1

𝑁
𝐅𝑖𝐅𝑖

𝐻 ,                                                                                                                                  (5.16) 
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where 𝐅𝑖 = [𝒚𝑖 , 𝑷𝒚𝑖 ,……𝑷
𝑵−𝟏𝒚𝑖] and 𝑷 is the permutation matrix, which makes 𝒚𝑖  circularly 

symmetric [90]. Assuming a perfect CFO estimation and compensation, the covariance matrix 

can be expressed further as: 

𝑅𝑖(𝜀)̅ = ∑ 𝑍(𝑚)

𝑀−1

𝑚=0

∑ 𝑍𝐻(𝑚)

𝑀−1

𝑚=0

+ 𝑒𝑖 ,                                                                                                (5.17) 

where 𝑍(𝑚) is the optical channel frequency response and 𝑒𝑛 is the error due to the noise along 

the fiber link. Since this method is realized through the circular shift of the time-domain received 

samples, the covariance matrix of the received sample is obtained without time-average, where a 

large number of OFDM blocks are needed. Thus, the cost function is formulated using the first 

column of the covariance matrix and the CFO estimation is achieved using the following 

expression as detailed in [90] 

𝐽𝐶𝑡(𝜀)̅ = ∑‖𝑅𝑖(𝜀)̅ ⊙ 𝐀‖𝐹
2
,

𝑀−1

𝑖=0

                                                                                                            (5.18) 

where ‖ . ‖F  is a Hilbert-Schmidt norm operation, 𝐀 is the matrix whose elements outside the 

band are 1 and elements inside the band are 0, while ⊙ denotes the entry-wise product [90]. Also, 

the cost function can be approximated as shown in Appendix II, according to [90] as 

𝐽𝐶𝑡(𝜀)̅ ≈ 𝐴 𝑐𝑜𝑠[2𝜋(𝜀 − 𝜀)̅] + 𝐵,                                                                                                      (5.19) 

where 𝐴 and 𝐵 are constants with real values, and the CFO is obtained using the expression in 

(5.11) as detailed in [90]. Also, the approximation in (5.19) becomes 𝐽𝐶𝑡(𝜀)̅ ≈ 𝐴 𝑐𝑜𝑠[2𝜋(𝜀 −

𝜀)̅] − 𝐴, without noise. The proof is given in Appendix II as detailed in [90]. 

 

5.4. Proposed Blind CFO Estimation for CO-OFDM Systems 

The schemes described in subsection 5.3.1 to 5.3.3 are implemented in the RF-domain for CFO 

estimation. Also, as summarized above, the various methods are based on a common assumption 

that the channel varies slowly over consecutive symbols. However, this assumption may not hold 
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in the case where the CFO is not perfectly estimated. The approach in [90] deviates from this 

assumption, but is highly dependent on the channel characteristics. Therefore, a cost-function, 

which is independent of the above assumptions i.e. not dependent on the fast or slow varying 

characteristics of a channel, is herein presented for the optical OFDM system. The proposed 

approach is achieved based on the approximation of the constant modulus cost-function similar to 

the one utilized for blind channel equalization in [98]. Hence, the following cost-function is 

proposed for the blind CFO estimation 

𝐽𝐺𝐴(𝜀)̅ = 𝐸{(|𝑌𝑖(𝑚)|
2 − 𝑅)2},                                                                                                          (5.20) 

where R is a constant chosen to guarantee the minimization of 𝐽𝐺𝐴(𝜀)̅. Thus, 𝐽𝐺𝐴(𝜀)̅ should be 

minimized with respect to the trial value of ε, denoted as ε̅, and the CFO estimate is obtained by 

𝜀̂ = arg min
𝜀̅∈(−0.5,0.5)

𝐽𝐺𝐴 (𝜀)̅.                                                                                                                    (5.21) 

In order to achieve a closed-form CFO estimation, the cost-function in (5.20) is therefore 

expanded and expressed as: 

𝐽𝐺𝐴(𝜀)̅ = E{|𝑌𝑖(𝑚)|
4} − E{2𝑅. |𝑌𝑖(𝑚)|

2} + 𝑅2,                                                                             (5.22) 

Substituting (5.4) into (5.3), while assuming the noise due to the ASE of the optical amplifiers is 

minimal throughout the fiber-link, gives: 

𝑌𝑖(𝑚) =
𝑒𝑗
2𝜋𝜀𝑖
𝑀

(𝑀+𝑁𝑔)

𝑀
∑ 𝐵̂𝑖(𝑚)

𝑀−1

𝑚=0

∑ 𝑒𝑗
2𝜋𝑛
𝑀

(𝑚+𝜕−𝑖),

𝑀−1

𝑛=0

                                                                  (5.23) 

where ∂ = ε − ε̅,  𝐵̂𝑖(𝑚) = 𝑋𝑖(𝑚)𝑍𝑖(𝑚) 

Substituting (5.23) into (5.22) gives 

𝐽𝐺𝐴(𝜀)̅ = 𝐸 {|
𝑒𝑗
2𝜋𝜀𝑖
𝑀

(𝑀+𝑁𝑔)

𝑀
∑ 𝐵̂𝑖(𝑚)

𝑀−1

𝑚=0

∑ 𝑒𝑗
2𝜋𝑛
𝑀

(𝑚+𝜕−𝑖)

𝑀−1

𝑛=0

|

4

}

− 𝐸 {2𝑅 |
𝑒𝑗
2𝜋𝜀𝑖
𝑀

(𝑀+𝑁𝑔)

𝑀
∑ 𝐵̂𝑖(𝑚)

𝑀−1

𝑚=0

∑ 𝑒𝑗
2𝜋𝑛
𝑀

(𝑚+𝜕−𝑖)

𝑀−1

𝑛=0

|

2

}+ 𝑅2 ,                (5.24) 
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Thus, 

|𝑌𝑖(𝑚)|
4 = 

1

𝑀4
∑ 𝐵̂𝑖(𝑚1)𝐵̂𝑖

∗
(𝑚2)𝐵̂𝑖(𝑚3)𝐵̂𝑖

∗
(𝑚4)

𝑀−1

𝑚1,𝑚2,𝑚3,𝑚4=0

                                     

                                × ∑ 𝑒
𝑗2𝜋𝜕𝜔
𝑀 𝑒𝑗

2𝜋
𝑀
(𝑛1𝑚1−𝑛2𝑚2+𝑛3𝑚3−𝑛4𝑚4)

𝑀−1

𝑛1 ,𝑛2,𝑛3,𝑛4=0

× ∑ 𝑒
−𝑗2𝜋𝑖𝜔
𝑀

𝑀−1

𝑖=0

 ,          (5.25) 

where 𝜔 = 𝑛1 − 𝑛2 + 𝑛3 − 𝑛4. 

Also, 

∑ 𝑒
−𝑗2𝜋𝑖𝜔
𝑀

𝑀−1

𝑖=0

= {
𝑀, 𝜔 = 𝑀, 0,−𝑀
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

                                                                                             (5.26) 

Hence, (5.25) can be simplified as shown below where 𝑆𝑖1 is a real constant independent of ∂, 

which is obtained by substituting ω = 0, [89]-[92] as defined in (5.25)  

|𝑌𝑖(𝑚)|
4 = 

2

𝑀3
 ℛ𝑒 {𝑒−𝑗2𝜋𝜕 ∑ 𝐵̂𝑖(𝑚1)𝐵̂𝑖

∗
(𝑚2)𝐵̂𝑖(𝑚3)𝐵̂𝑖

∗
(𝑚4)

𝑀−1

𝑚1,𝑚2,𝑚3,𝑚4=0

                                     

                       × ∑ ∑ ∑ 𝑒𝑗
2𝜋
𝑀
𝑛1(𝑚1−𝑚4)𝑒−𝑗

2𝜋
𝑀
𝑛2(𝑚2−𝑚4)𝑒𝑗

2𝜋
𝑀
𝑛3(𝑚3−𝑚4)

𝑛2−𝑛1−1

𝑛3=0

𝑀−1

𝑛2=𝑛1+1

𝑀−1

𝑛1=0

} + 𝑆𝑖1 . 

                                                                                                                                                   (5.27) 

Now define [91] 

𝛷 ≜ {𝑚1, 𝑚2,𝑚3, 𝑚4}  ,                                                                                                                                      

𝛷1 ≜ {𝛷|𝑚1 = 𝑚2, 𝑜𝑟 𝑚3 = 𝑚4}    ,                                                                                                               

𝛷2 ≜ {𝛷|𝑚1 ≠ 𝑚2, 𝑎𝑛𝑑 𝑚3 ≠ 𝑚4}  ,                                                                                                           

where the indices 𝑚1, 𝑚2,𝑚3, 𝑚4 ∈ {0,1, … . ,𝑀 − 1}, 𝛷 = 𝛷1 ∪𝛷2.  

Therefore, (5.27) can be expressed as: 

|𝑌𝑖(𝑚)|
4 = 

2

𝑀3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕𝐷𝑖(𝛷1)} +

2

𝑀3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕𝐷𝑖(𝛷2)} + 𝑆𝑖1 ,                                    (5.28) 

where 
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𝐷𝑖(Ω) = ∑ 𝐵̂𝑖(𝑚1)𝐵̂𝑖
∗
(𝑚2)𝐵̂𝑖(𝑚3)𝐵̂𝑖

∗
(𝑚4)

𝑀−1

𝑚1,𝑚2,𝑚3,𝑚4=0
𝑚1,𝑚2,𝑚3,𝑚4∈ 𝛺

                                                                        

                     × ∑ ∑ ∑ 𝑒𝑗
2𝜋
𝑀
𝑛1(𝑚1−𝑚4)𝑒−𝑗

2𝜋
𝑀
𝑛2(𝑚2−𝑚4)𝑒𝑗

2𝜋
𝑀
𝑛3(𝑚3−𝑚4)

𝑛2−𝑛1−1

𝑛3=0

𝑀−1

𝑛2=𝑛1+1

𝑀−1

𝑛1=0

,                            

and Ω ∈ {Φ1, Φ2}. 

Also, 

|𝑌𝑖(𝑚)|
2 = 

1

𝑀2
∑ 𝐵̂𝑖(𝑚1)𝐵̂𝑖

∗
(𝑚2)

𝑀−1

𝑚1,𝑚2=0

                                                                                                       

                  × ∑ 𝑒
𝑗2𝜋𝜕𝜔
𝑀 𝑒𝑗

2𝜋
𝑀
(𝑛1𝑚1−𝑛2𝑚2)

𝑀−1

𝑛1,𝑛2=0

× ∑ 𝑒
−𝑗2𝜋𝑖𝜔
𝑀

𝑀−1

𝑖=0

.                                                    (5.29) 

If  ω = 0, and using the condition in (5.26), then (5.29) becomes  

|𝑌𝑖(𝑚)|
2 = 

1

𝑀2
∑ 𝐵̂𝑖(𝑚1)𝐵̂𝑖

∗
(𝑚2)

𝑀−1

𝑚1,𝑚2=0

∑ 𝑒
𝑗2𝜋𝑛𝑞
𝑀

𝑀−1

𝑛=0

,                                                                (5.30) 

where 𝑞 = 𝑚1 −𝑚2 and 𝑛1 = 𝑛2 = 𝑛. The expression in (5.30) is therefore independent of ε̅, as 

well as the CFO ε, and is denoted as 𝑆𝑖2. 

Therefore, substituting (5.30) and (5.28) into the cost function in (5.22) gives: 

𝐽𝐺𝐴(𝜀)̅ =
2

𝑀3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕𝐷𝑖(𝛷1)} +

2

𝑀3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕𝐷𝑖(𝛷2)} + 𝑆𝑖1

− 2𝑅.
1

𝑀2
∑ 𝐵̂𝑖(𝑚1)𝐵̂𝑖

∗
(𝑚2)

𝑀−1

𝑚1,𝑚2=0

∑ 𝑒
𝑗2𝜋𝑛𝑞
𝑀

𝑀−1

𝑛=0

+ 𝑅2,                                       (5.31)  

Recalling that (5.30) is denoted as 𝑆𝑖2, i.e., 

𝑆𝑖2 =
1

𝑀2
∑ 𝐵̂𝑖(𝑚1)𝐵̂𝑖

∗
(𝑚2)

𝑀−1

𝑚1,𝑚2=0

∑ 𝑒
𝑗2𝜋𝑛𝑞
𝑀

𝑀−1

𝑛=0

,                                                                              (5.32) 

therefore, 

𝐽𝐺𝐴(𝜀)̅ =
2

𝑀3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕𝐷𝑖(𝛷1)} +

2

𝑀3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕𝐷𝑖(𝛷2)} + 𝑆𝑖1 − 2𝑅. 𝑆𝑖2 + 𝑅

2,                      
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            =
2

𝑀3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕((𝐷𝑖(𝛷1) + 𝐷𝑖(𝛷2))} + 𝑆𝑖1 − 2𝑅. 𝑆𝑖2 + 𝑅

2 ,                                      (5.33) 

and (5.33) can be reduced to 

𝐽𝐺𝐴(𝜀)̅ ≈ Å 𝑐𝑜𝑠(2𝜋𝜕) + 𝐵,                                                                                                                   (5.34) 

where Å = −2 (𝐷𝑖(𝛷1) + 𝐷𝑖(𝛷2)) 𝑀
3⁄ , and  𝐵 = 𝑆𝑖1 − 2𝑅. 𝑆𝑖2 + 𝑅

2. Note that Å and 𝐵 are real 

values and independent of ε̅ and ε, while ∂ = ε − ε̅. 

Therefore, approximating the cost-function in (5.20) eliminates the need for the exhaustive search 

and the CFO estimate can be obtained using the curve-fitting method as described in [88, 91]. The 

minimum of the approximated cost-function in (5.34) is evaluated at three distinct points, ε̅ =

0, 0.25, and − 0.25. Thus, the estimate of the CFO is obtained by 

ε̂ =

{
 
 

 
 

 

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) 𝑓𝑜𝑟 𝑎 ≥ 0                             

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) +

1

2
 𝑓𝑜𝑟 𝑎 < 0 𝑎𝑛𝑑 𝑏 ≥ 0

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) −

1

2
 𝑓𝑜𝑟 𝑎 < 0 𝑎𝑛𝑑 𝑏 ≤ 0

 ,                                                                     (5.35) 

where a = {(1 2⁄ )(𝐽𝐺𝐴(𝜀 ̅ = 0.25) + 𝐽𝐺𝐴(𝜀 ̅ = −0.25)) − 𝐽𝐺𝐴(𝜀 ̅ = 0)}, and 

 b = {(1 2⁄ )(𝐽𝐺𝐴(𝜀 ̅ = 0.25) + 𝐽𝐺𝐴(𝜀 ̅ = −0.25))}. 

The above method thus enables the closed-form estimation of the CFO and reduces the 

computational complexity of the proposed cost-function. Table 5.1 gives the summary of the 

proposed algorithms. 

 

Table 5.1: Summary of the Proposed Algorithm 

 

1. Generate 𝐗𝑖 OFDM signal 

2. Compute 𝒚𝑖  

3. Using a trial value of CFO 𝜀 obtain 𝐘𝒊 (5.2)  

4. Obtain CFO 𝜀̂ for proposed method using three trial values (5.35) 
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5.5. Computational complexity 

The proposed method, the PDE method in [89] for CFO acquisition as well as the ADE method 

are performed using sequences that are obtained as the FFT of the received OFDM symbol with 

complexity of order 𝑂(𝑀). The CSC method in [90] is formulated using the first column of the 

covariance matrix, which is dependent on the FFT operation, with complexity of order 𝑂(𝑀). For 

the ADE-T method, 2𝑀  complex multiplications are required, which is the same as the PDE 

method. The calculation of the norm {‖𝑅𝑖(𝜀)̅ ⊙ 𝐀‖𝐹}, in the CSC method requires 𝑀 complex 

multiplications and 2𝑀 + 1 complex additions [90]. The proposed method involves 2𝑀 complex 

multiplications from 
2

𝑁3
 ℛ𝑒{𝑒−𝑗2𝜋𝜕((𝐷𝑖(𝛷1) + 𝐷𝑖(𝛷2))} in (5.33), which is the same as the PDE 

methods as well as the ADE-T method. Thus, the total number of computational operation 

required by the proposed method is of the same order as the existing methods highlighted in 

section 5.3. The complexity of the considered CM methods, in terms of the required complex 

multiplications and complex additions are presented in Table 5.2. Also, Figure 5.9 shows the 

complexity graph of the CM methods in terms of the required complex addition operations. 

Table 5.2: Complexity of the various CM methods 

CM Method 
Complex 

Multiplication 
Complex Addition 

CSC [90] 𝑀 2𝑀 + 1 

ADE-T [92] 2𝑀 𝑀+ 1 

PDE [89] 2𝑀 3𝑀 + 2 

Proposed Method 2𝑀 3𝑀 + 1 

 

5.6. Simulation and Discussion 

The quadrature phase-shift keying CO-OFDM system is utilized in the computer simulations to 

investigate and analyze the performance of the various estimation methods. The CO-OFDM 

system is based on a central wavelength of 1550 𝑛𝑚, with 𝑁 = 64 subcarriers and cyclic prefix 

of length 16. The sampling rate of 10 𝐺𝑆/𝑠 is utilized and the OFDM duration is 7.2 𝑛𝑠 with 

fiber link loss coefficient of 0.2 dB/km. Existing schemes are compared with the proposed method 
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in terms of mean square error and bit-error rate using Monte Carlo simulations while the 

normalized CFO 𝜀, is assumed to be uniformly distributed in the range (−0.5, 0.5). The optical 

system model is fully implemented mimicking a practical scenario with prevailing fiber-link 

dispersions, whose effects on optical links are detailed in [23]. The fiber dispersion is 17 𝑝𝑠/𝑘𝑚/

𝑛𝑚 while the erbium-doped fiber amplifier is of 16 𝑑𝐵 gain with noise figure of 4 𝑑𝐵 and the 

non-linear coefficient of the fiber is 1.32/𝑊/ 𝑘𝑚.  

Firstly, an independent analysis is carried out on the performance and the behavior of the 

proposed cost function. The constant R can be taken as a dispersion coefficient as described in 

[98, 99], where it becomes dependent on the transmitted data. However, to achieve a blind CFO 

estimation without a priori knowledge of the transmitted signal, R can be taken as a positive real 

constant [99]-[101]. To ascertain the value of R at which the proposed method achieve the best 

performance, the value of R is varied and the MSE plot is shown in Figure 5.1. From the plot, the 

proposed method achieves the best performance at 𝑅 = 1.0  while 𝑅 = 0.5  gives a degraded 

output. Also, in Figure 5.2, the MSE is plotted as a function of R at different OSNRs. It can be 

seen from the plot that 𝑅 = 0.9 offers the best performance at 𝑂𝑆𝑁𝑅 = 15 𝑑𝐵 . However, at 

𝑂𝑆𝑁𝑅 = 22 𝑑𝐵, 𝑅 = 1.0 gives the best performance.  

In Figure 5.3, the BER performance of existing methods in the literature is compared with the 

proposed method as implemented in the optical scenario with CFO ε, uniformly distributed in the 

range (−0.5, 0.5). The effectiveness of the algorithms is demonstrated by showing the scenario 

where there is no CFO in the CO-OFDM system, with the CFO at 0.15. The plot shows the 

performance of the PDE-T method in [91]. The PDE-T method has been shown to outperform the 

PDE-F method [89], therefore it is chosen as one of the methods used for performance 

comparison. Also, the performance of the CSC method [90] and the ADE-T method are shown in 

the plot. The BER and the MSE plots with varying values of CFO are shown in Figure 5.4 and 

Figure 5.5 respectively, at OSNR = 15 dB. It can be seen that the range of the proposed method, 
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like the other methods considered, is limited by the constant modulus constraint. The methods 

give acceptable performance up to 𝐶𝐹𝑂 ≤ 0.25, beyond which there is fast system degradation. 

The estimation range can be increased considerably by employing a second stage iterative 

estimator [102], although this comes with an increased system complexity. The MSE comparison 

of the various existing methods is compared with the proposed method as shown in Figure 5.6 

and Figure 5.7. In Figure 5.6, the plot is obtained with the fiber link of eight optically amplified 

80 𝑘𝑚  fiber spans. From the plot, the ADE-T method achieves a superior performance as 

compared to the other methods including the proposed method at low OSNRs. However, the 

performance degrades at high OSNR values, where it is outperformed by the PDE-T method. The 

CSC method outperforms both the ADE-T and the PDE-T methods at high OSNR values 

although the ADE-T method offers a superior performance at low OSNR value. The proposed 

method is outperformed by the ADE-T method at OSNR < 8 dB. Also, the proposed scheme 

offers a superior performance to the PDE-T and the CSC method for these OSNR values. 

However, at OSNR values greater than 8 dB, the proposed method effectively gives a better 

performance. The effectiveness of the various methods is further investigated under an 

uncompensated fiber-link with a total fiber haul of 1.8 × 103 km. Under this fiber condition, the 

general performance of the various algorithms degrades as shown in Figure 5.7. The plot shows 

that the CSC method suffers greatly under fiber impairments and its performance becomes 

inferior to the other blind estimation schemes. The ADE-T outperforms all the other methods at 

low OSNR values but at increased OSNRs it is outperformed by the PDE-T method and the 

proposed method. 

In Figure 5.8, the plot shows the behavior of various schemes at OSNR = 15 dB, as the fiber 

length is increased up to 2000 𝑘𝑚. From the graph, the performance of the proposed method 

suffers slight degradation with increased dispersion and fiber length. However, it offers a stable 

and efficient performance across the fiber length, compared to the ADE-T method. The plot 
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shows the CSC method as very unstable as compared to the other methods under consideration. 

The performance of the CSC method is greatly influenced by dispersion and impairments along 

the fiber-link of length L. Also, the proposed method achieves a low-complexity, stable and 

efficient performance, which is shown to be robust against fiber dispersions. 

 

 
 

Figure 5.1:  The MSE versus OSNR plot for different values of R. 
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Figure 5.2:  MSE plot of the proposed method as a function of R (OSNR = 15 dB, 22 dB). 

  

  

Figure 5.3:  BER sensitivity for the proposed estimator in comparison with existing methods 

using a compensated fiber link. 
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Figure 5.4:  BER plot for varying values of CFO at OSNR = 15 dB. 

 
 

Figure 5.5:  MSE plot of the various methods showing range limits (OSNR = 15 dB). 
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Figure 5.6:  MSE performance of the various estimation methods using a fiber link of 8 × 80 km 

spans. 

  

  

Figure 5.7:  MSE performance of the various estimation schemes under fiber impairments with 

total haul 1.8 × 103 km. 
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Figure 5.8:  MSE performance of the various estimation methods as function of the fiber length at 

OSNR=15 dB. 

 

Figure 5.9: Complexity graph of the various CM methods. 
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5.7. Conclusion 

A highly efficient totally blind CFO estimation method has been proposed and implemented for 

CM-signaling based CO-OFDM systems. First and foremost, existing blind estimation schemes 

for wireless communication systems in literature have been adapted, derived and implemented in 

the optical scenario. The performances of these existing schemes are further compared with the 

proposed blind CFO estimator. The blind CFO estimation method has been proven through 

analysis and simulation to achieve a superior performance as compared to the prominent existing 

blind estimation schemes. The proposed estimator shows high stability and performance in the 

presence of fiber impairments and dispersion. The proposed cost-function is also approximated as 

a cosine function, thus the CFO is estimated in close-form using only three trial values. This 

ensures that the proposed method achieves a reduced computational complexity similar to the 

existing methods. Therefore, the proposed method offers a balanced and efficient overall 

performance as compared to existing blind estimation methods. 
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CHAPTER SIX 

ADAPTIVE SUBSPACE METHOD FOR PHASE NOISE 

ESTIMATION IN CO-OFDM SYSTEMS 
 

6.1. Introduction 

This chapter focuses on the implementation of subspace-tracking based blind phase noise 

estimation. An efficient adaptive subspace-tracking method is developed and utilized for phase 

noise estimation while mimicking a practical CO-OFDM system. There are various subspace-

tracking methods in the literature [78]-[83] that have been implemented in the RF domain. A 

direct way of estimating a subspace of interest is by applying the singular vector decomposition 

(SVD) on an observation covariance matrix. The direct SVD approach however, results in a high 

computational complexity. To address this, alternative methods have been studied and proposed, 

focusing on the signal subspace tracking while little attention is given to the estimation of the 

noise subspace. A direct modification of the signal subspace, to achieve a low complexity noise 

subspace tracking is not practicable. This is evident in existing noise subspace tracking methods, 

where high instability and inefficiency become inevitable [103]-[104].  

The fast data projection method (FDPM) as reported in [84], offers a low complexity, numerically 

stable, and robust noise subspace tracking. Hence, for the purpose of this study, the subspace-

tracking method utilized is based on the FDPM. In order to achieve an adaptive implementation 

and convergence of the FDPM subspace tracking, the selection of the step-size becomes 

imperative. In [84], the use of a normalized step-size is proposed. Thus, the speed of convergence 

and the overall performance of the algorithm largely depend on the stringent selection of the step-

size. For an enhanced performance, and to achieve a more stable as well as fast convergence, this 

work therefore proposes the use of a variable step-size. Also, to obtain a simple adaptive estimate 

of the phase noise, a prediction parameter is introduced using the forward backward linear 
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prediction (FBLP) technique [107]. The prediction parameter is constructed based on the 

estimates obtained from the noise subspace-tracking algorithm. 

Thus, the main contributions in this chapter include the following 

1. The derivation and the implementation of an adaptive method based on fast subspace 

tracking, for phase noise estimation in optical networks. The method utilizes an 

observation vector that is a subset of the total OFDM subcarrier, in order to adaptively 

estimate the phase noise, which constantly changes over an OFDM frame. The proposed 

method is derived and investigated for CO-OFDM system in a scenario close to practical 

situation, which considers the impact of dispersions and impairments along the fiber link. 

2. Convergence speed and stability are important factors that must be considered while 

estimating any subspace of interest. Existing subspace methods generally utilize the 

regular normalized step-size, which is carefully selected to ensure stability and speed of 

convergence. This work deviates from the use of the normalized step-size by introducing 

an adaptive step-size, for the implementation of the noise subspace-tracking algorithm. 

The unique introduction of the adaptive step-size for use in the subspace-tracking 

algorithm ensures that a stable and faster speed of convergence is achieved while overall 

system performance is enhanced. 

3. To achieve a simple way by which the phase noise can be adaptively obtained based on 

initial estimates of the subspace-tracking algorithm, a prediction parameter is introduced. 

The weighting parameter is derived using the forward backward linear prediction (FBLP) 

technique. The novel combination of the FBLP technique with the subspace-tracking 

algorithm ensures low-complexity and also improves the robustness of the estimation 

algorithm. Thus, the proposed approach is called SS-FBLP and the case where the 

variable step-size is introduced is called SS-FBLP-VSS. 
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6.2. The Subspace Tracking Algorithm 

The subspace-tracking scheme has been studied with wide variety of approaches, and 

computational complexities. Various subspace-tracking algorithms have been employed in 

different applications such as source localization, spectral analyses, antenna array processing, 

system identification, wireless communication systems, adaptive filtering, among others. 

Subspace-tracking algorithms are mainly centered on the estimation of either singular vectors or 

orthogonal basis for a subspace of interest [77]. The particular ability of subspace tracking 

scheme to estimate the subspace corresponding to both the largest and the smallest singular 

values is of paramount interest especially in telecommunication system applications. Also, the 

complexity of the subspace tracking algorithm as well as their numerical stability must be put into 

consideration for optimum and cost effective performance. 

A very pertinent method in the actualization of the subspace tracking algorithms is the Singular 

Value Decomposition (SVD). The SVD is useful in various applications to identify the spectrum 

of a matrix, to carefully resolve the matrix rank problem as well as to determine a certain 

subspace of interest. In [78], an adaptive procedure to update signal subspace estimates was 

proposed. The method is based on an orthogonal iteration variant, which utilizes the 

exponentially windowed sample autocorrelation matrix as an estimate of a covariance matrix R. 

The method employed in [78] was also utilized in [79, 80] while adopting the Rayleigh-Ritz 

approximation in [81]. In [82], a subspace algorithm known as the low rank adaptive filter is 

introduced. This method is achieved by projecting the observed data unto the signal subspace 

instead of the complete data subspace. The Data Projection Method is detailed in [83] and the 

iterative technique is described in the next section. This method provides orthonormal estimates 

and its variant, called the Fast DPM, forms the basis of the subspace method adopted in this 

thesis. 
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6.2.1 Iterative subspace computation technique 

There are various iteration techniques employed to determine singular values and their 

corresponding singular vectors. The power method is considered popular, together with its 

variants. Considering a case with received sequence 𝐲n and let 𝐑 = Ε[𝐲n𝐲n
H] be a symmetric, 

non-negative definite matrix of size N, with SVD that satisfies the following expression [84, 85]: 

𝐑 = 𝐐𝚷𝐐H = [𝐪1, 𝐪2… . . 𝐪N]

[
 
 
 
τ1

τ2
⋮

τN]
 
 
 

[
 
 
 
𝐪1

H

𝐪2
H

⋮
𝐪N

H]
 
 
 

                                                           (6.1) 

where τ1 ≥ τ2 ≥.… .≥ τN ≥ 0  are the singular values of 𝐑  and 𝐪1, 𝐪2, … . . 𝐪N  the associated 

singular vectors. The task therefore is to determine the singular vector corresponding to the 

dominant singular value. Although the power method [86] presents a simple way out, an even 

more easier and encompassing method, which computes the subspace corresponding to the V 

major singular values is the orthogonal iteration. Hence, a sequence of matrices [𝐐(n)], will 

therefore be obtained using the orthogonal iteration technique as shown below, while satisfying 

the condition 1 ≤ V ≤ N. 

In Table 6.1, ortho′norm  represents the orthonormalization, which is achieved using the 

modified Graam-Schmidt (MGS) procedure. There are other methods such as the QR 

decomposition and variations like the Householder, Givens transformations and the Graam-

Schmidt orthogonalization. However, the MGS procedure is more desirable because of its 

enhanced performance and numerical stability [85]. The QR factorization and decomposition as 

well as the orthogonal iteration technique using the MGS, are detailed in [86]. 
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Table 6.1: The Modified Graam-Schmidt (MGS) Orthonomalization Procedure 

 

Initialize with a random orthonormal matrix 𝐐(0) 
      for n= 1,2,… 

 𝐐(n) = ortho′norm[𝐑𝐐(n − 1)] 
 𝚷(n) = diag[𝐐(n)H𝐑𝐐(𝐧)] 

       end 

 
6.2.2 Modifications of the orthogonal iteration 

The focus here is the adaptive implementation of the subspace-tracking scheme. However, there 

are three variations derived from the power method and its orthogonal iteration derivative [85].  

Variant 1: The focus is on the estimation of the largest singular vectors of a matrix. The variant 

is depicted in Table 6.2 

Table 6.2: Orthogonal Iteration Variant 1 

 

Initialize with a random orthonormal matrix 𝐐(0) 
      for n= 1,2,… 

 𝐐(n) = ortho′norm[(𝐈 + β𝐑)𝐐(n − 1)] 

       end 

 

Looking at Table 6.2, the matrix 𝐈 + β𝐑 has the same singular vectors as 𝐑 and the associated 

singular values are 1 + βτV.  

Variant 2: This presents the iteration, which can be used for obtaining the subspace associated 

with the smallest singular values as opposed to Variant 1 as shown in Table 6.3. 

Table 6.3: Orthogonal Iteration Variant 2 

 

Initialize with a random orthonormal matrix 𝐐(0) 
      for n= 1,2,…... 

 𝐐(n) = ortho′norm[𝐑−𝟏𝐐(n − 1)] 

end 
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The iteration in Table 6.3 converges to 

lim
n→∞

𝐐(n) = 𝐐 = [𝐪N, … . . 𝐪N−V+1]                                                                                           (6.2) 

when the condition τ1 ≥ τ2 ≥.… .≥ τN−V ≥ τN−V+1 ≥.… .≥ τN ≥ 0, is satisfied and provided 

𝐐H(0)𝐐 is non-singular.  

Variant 3: The iteration for Variant 3 is illustrated in Table 6.4. The focus also is on the 

computation of the subspace corresponding to the smallest singular values. Hence, if τ1 ≥ τ2 ≥

.… .≥ τN−V ≥ τN−V+1 ≥.… .≥ τN ≥ 0 , then (𝐈 − β𝐑)  has singular values 1 − βτN ≥.… .≥

1 − βτN−V+1 ≥ 1− βτN−V ≥.… .≥ 1 − βτ1 ≥ 0, and singular vectors [𝐪N, 𝐪N−1… . . , 𝐪1].  

Table 6.4: Orthogonal Iteration Variant 3 

 

Initialize with a random orthonormal matrix 𝐐(0) 
      for n= 1,2,…... 

 𝐐(n) = ortho′norm[(𝐈 − β𝐑)𝐐(n − 1)] 

       end 

 

The first and the third variants are more dynamic as it is convenient to toggle between the largest 

and the smallest singular values by just a change in sign. Therefore, these two variants form the 

basis for the actualization of the subspace adaptive technique for estimation as adopted in this 

thesis. 

6.3. Blind Subspace Phase Noise Estimation for CO-OFDM Systems 

6.3.1 The subspace problem 

The subspace problem as described in subsection 6.2.1 is generally approached by assuming a 

condition where the parameter to be estimated remains constant over the entire OFDM frame. 

Thus, the received signal 𝑌𝑖(𝑚) described in (3.8), while assuming perfect CFO synchronization 

can be rewritten as:  

𝑌𝑖(𝑚) = 𝐵𝑖(0)𝑋𝑖(𝑚)𝑍(𝑚) +𝑊𝑖(𝑚),                                                                                                 (6.3) 

where 
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𝐵𝑖(0) =
1

𝑁
∑ 𝑒𝑗𝜌𝑖(𝑛)
𝑁−1

𝑛=0

 ≅ 𝑒𝑗Φ𝑖 ,                                                                                                            (6.4) 

and Φ𝑖 is the CPE, while 𝑊𝑖(𝑚) = 𝐼𝐶𝐼𝑖(𝑚) + 𝐺𝑖(𝑚). Also, in the general subspace problem, the 

estimation converges after several OFDM symbols. However, such assumption does not hold in 

the case of phase noise, which is constantly changing within an OFDM frame. Thus, the adaptive 

algorithm has to converge within an OFDM symbol. In order to overcome the difficulty of 

adaptively estimating the phase noise, an observation vector, which is a subset of the total OFDM 

subcarrier, is utilized. The observation vector is defined as a portion of the received signal, which 

is denoted as 𝑌(𝑗) with length 𝐿, where  𝐿 < 𝑁. This enables the frequently changing phase noise 

to be effectively estimated across 𝑌(𝑗)… . . 𝑌(𝐿 + 𝑗). Hence, the observation sequence on which 

the phase noise subspace tracking problem is based can be defined as  

 𝑺𝑗 = [𝑆𝑗(1)…… . 𝑆𝑗(𝐿)] = [𝑌(𝑗)… . . 𝑌(𝐿 + 𝑗)],                                                                                (6.5) 

Therefore, considering a non-negative covariance 𝑷 with size 𝐿 of the received data sequence 𝑺𝑗 , 

by applying singular value decomposition on 𝑷, the following expression is obtained 

𝑷 = 𝔼[𝑺𝑗𝑺
𝐻
𝑗] = 𝑼𝚲𝑼

𝐻                                                                                                                            (6.6) 

where Λ = 𝑑𝑖𝑎𝑔{𝛾(1), ………𝛾(𝐿)} denotes the diagonal matrix of singular values of 𝑷, whose 

elements are the singular values of 𝑷  satisfying 𝛾(1) ≥ 𝛾(2) ≥. … .≥ 𝛾(𝐷) > 𝛾(𝐷 + 1) ≥

.… . 𝛾(𝐿) ≥ 0  (𝐷 < 𝐿) , while 𝑼  contains the corresponding singular vectors with elements 

𝑢(1)… . 𝑢(𝐿). A simple orthogonal iterative method can be used to estimate the subspace of 

interest, in order to obtain the singular vectors corresponding to the singular values of the matrix 

𝑷. Since 𝐿 represents the rank of the subspace of interest, then the sequence of matrices 𝑼(𝑗) is 

described by the iteration [105] 

𝑼(𝑗) = 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚{𝑷𝑼(𝑗 − 1)},            𝑗 = 1,2, ….                                                                         (6.7) 

where orthonorm represents an orthogonal procedure using the QR decomposition, and given that 

the matrix 𝑼𝐻(𝑗)[𝑢(1)… . . 𝑢(𝐷)] is not singular, then 
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lim
𝑖→∞

𝑼(𝑗) = [𝑢(1)… . . 𝑢(𝐷)].                                                                                                                (6.8) 

As mentioned above, since the aim is to estimate the subspace that contains the smallest singular 

values corresponding to the smallest singular vectors, two variants of the orthogonal iteration are 

presented. These orthogonal iterative methods ensure the realization of such estimates and also 

enable adaptive implementations. The variants are described as follows 

𝑼(𝑗) = 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚{𝑷−1𝑼(𝑗 − 1)},                                                                                                     (6.9) 

𝑼(𝑗) = 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚{(𝑰𝐿 − 𝜇𝑷)𝑼(𝑗 − 1)},          𝑗 = 1,2, …… ..                                                    (6.10) 

where 𝜇 > 0 is the step-size, which is relatively small, while 𝐼𝐿  is the identity matrix. For the 

purpose of this work, (6.10) is adopted since it has a lower complexity compared to (6.9), which 

has a higher complexity due to the matrix inversion. 

In order to achieve an adaptive implementation at an instance where 𝑷 is not available, the 

received vector is obtained sequentially and the matrix 𝑷 is substituted with an adaptive estimate 

𝑷̂𝑗 , which satisfies the condition 𝐸[ 𝑷̂𝑗] = 𝑷. An orthogonal iterative process is then used to 

compute the singular vectors associated with its singular values. The adaptive orthogonal iterative 

algorithm is expressed as: 

𝑼(𝑗) = 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚{(𝐼𝐿 − 𝜇𝑷̂𝑗)𝑼(𝑗 − 1)}.                                                                                      (6.11) 

The parameter 𝜇  used above represents the constant step-size. However, to achieve a better 

stability and speed of convergence, an adaptive step-size 𝜇(𝑗) is utilized, which is defined as 

[106]: 

𝜇(𝑗) = 𝛿. erf (1 − 𝑒−𝛼|𝜏𝑗|),                                                                                                                 (6.12) 

where erf(𝑥) = 2 √𝜋⁄ ∫ 𝑒−𝜎
2𝑥

0
𝑑𝜎 represents the error function operation. The variation rate of 

the adaptive step-size is controlled by adjustment factors 𝛿 and 𝛼, while 𝜏𝑗 = 𝐵𝑗 − 𝐵𝑗−1 is the 

error term. Also, the range of 𝜇(𝑗)  is given as 0 < 𝜇(𝑗)  < 2
𝛾(1)⁄  [106], where 𝛾(1)  is the 

maximum singular value of the covariance matrix. Also, the range of 𝛿 is within the boundary 
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0 < 𝛿 < 2 𝛾(1)⁄  (since 𝛾(1) is the maximum singular value of the covariance matrix), given that 

0 < erf (1 − 𝑒−𝛼|𝝉𝑗|) < 1 [106]. 

 

6.3.2 The prediction parameter 

As 𝑼(𝑗)  is obtained using the adaptive iterative method, its corresponding L columns with 

vectors [𝑢(1)… . . 𝑢(𝐷)] are therefore utilized to construct the prediction parameter 𝑾. In order 

to achieve this, a method based on the minimum-norm solution of the forward-backward linear 

property in [107] is employed. Using the singular values as well as the singular vectors of the 

estimate 𝑼(𝑗), the relationship between the prediction parameter and the covariance matrix is 

derived as follows. 

 Considering a linear prediction parameter described by the column vector 𝑾𝑗  

𝑾𝑗 = [𝑤𝑗(1), 𝑤𝑗(2)……𝑤𝑗(𝐷) ]
𝑇
,                                                                                                     (6.13) 

with [ . ]𝑇  denoting transpose and 𝐷 ≤ 𝐿. Utilizing the prediction parameter in both forward and 

backward direction, the prediction equation can be expressed as [107]: 

[
 
 
 
 
 
 
 
 

𝑆𝑗(𝐷)

       𝑆𝑗(𝐷 + 1)

⋮
       𝑆𝑗(𝐿 − 1)

𝑆𝑗
∗(2)

𝑆𝑗
∗(3)

⋮
        𝑆𝑗

∗(𝐿 − 𝐷)

       𝑆𝑗(𝐷 − 1)

𝑆𝑗(𝐷)

⋮
        𝑆𝑗(𝐿 − 2)

𝑆𝑗
∗(3)

𝑆𝑗
∗(4)

⋮
                𝑆𝑗

∗(𝐿 − 𝐷 + 1)

…𝑆𝑗(1)

…𝑆𝑗(2)

⋮
        … 𝑆𝑗(𝐿 − 𝐷)

        … 𝑆𝑗
∗(𝐷 + 1)

        … 𝑆𝑗
∗(𝐷 + 2)

⋮
     𝑆𝑗

∗(𝐿)

    

]
 
 
 
 
 
 
 
 

 

[
 
 
 
𝑤𝑗(1)

𝑤𝑗(2)

 ⋮
𝑤𝑗(𝐷)

 

]
 
 
 

                                   

                                                                                                                = −

[
 
 
 
 
 
 
 
 
 
      𝑆𝑗(𝐷 + 1)

      𝑆𝑗(𝐷 + 2)

 ⋮
𝑆𝑗(𝐿)
…………
𝑆𝑗
∗(1)

𝑆𝑗
∗(2)

⋮
        𝑆𝑗

∗(𝐿 − 𝐷)

       

]
 
 
 
 
 
 
 
 
 

,    (6.14) 
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which can be written in a condensed form as: 

𝑹𝑗𝑾𝑗 = −𝒂𝑗                                                                                                                                            (6.15) 

Thus, the minimum-norm solution to the expressions in (6.13)-(6.14) is expressed as: 

𝑾𝑗 = −𝑹𝑗
−1𝒂𝑗 ,                                                                                                                                        (6.16) 

where 𝑹𝑗
−1

 denotes the pseudo-inverse of 𝑹𝑗 , which can be expressed as 

𝑹𝑗
−1 = (𝑹𝑗

∗𝑹𝑗)
−1𝑹𝑗.                                                                                                                              (6.17) 

The correlation matrix 𝑷 is also expressed as  

𝑷 = 𝑹𝑗
∗𝑹𝑗;   𝑷̂𝑗 = −𝑹𝑗𝒂𝑗,                                                                                                                     (6.18) 

in linear prediction representation, where 𝑷̂𝑗 is determined from the received data sequence, while 

“*” denotes complex conjugate transpose. From (6.14), the prediction parameter 𝑾𝑗  can be 

expressed as: 

𝑾𝑗 = (𝑹𝑗
∗𝑹𝑗)

−1𝑹𝑗. 𝒂𝑗   ⇒ 𝑾𝑗 = 𝑷
−1 𝑷̂𝑗.                                                                                      (6.19𝑎) 

Therefore from (6.19) and recalling the SVD expression in (6.6), 𝑾𝑗  can be further expressed as  

𝑾𝑗 = (𝑼𝚲𝑼
𝐻)−1 𝑷̂𝑗                                                                                                                            (6.19𝑏) 

Thus, the prediction parameter is obtained as: 

𝑾𝑗 =∑
𝑢(𝑙)

𝛾(𝑙)

𝐷

𝑙=1

. (𝑢𝐻(𝑙). 𝑷̂𝑙).                                                                                                                 (6.20) 

As 𝑢(𝑙) is the efficient estimates of the singular vectors, 𝑾𝑗  also constitutes the estimate of the 

singular vectors corresponding to the smallest singular values of the subspace of interest. Thus, 

the adaptive phase noise estimation is therefore obtained using (6.10), which is expressed as 

[105]: 

𝐵̂𝑗 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒{𝐵𝑗−1 − 𝜇.𝑤𝑗(1)𝐵𝑗−1},                                                                                           (6.21) 

𝛷̂𝑗 = ∠𝐵̂𝑗                                                                                                                                                    (6.22) 
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where ∠ represents the phase angle and 𝐵𝑗  is related to the CPE as expressed in (6.4). Finally, the 

compensation is obtained using the following expression 

𝑌̂(𝑗) = 𝑒−𝑗𝛷̂𝑗𝑌(𝑗)                                                                                                                                   (6.23) 

 

6.4. Pilot Aided Subspace Phase Noise Estimation  

Now considering the case where 𝑀𝑝  number of pilot subcarriers are introduced, where 

{𝑚1,𝑚2, … .𝑚𝑀𝑝
} of pilot tones are available at each payload OFDM symbol. The phase is 

estimated based on pilot subcarriers in OFDM symbols. Hence, the pilot-based estimate is 

obtained as reported in [74] as: 

𝐵́𝑖(0) =
1

𝑀𝑝
∑

𝑌𝑖(𝑚)|𝑋𝑖(𝑚)|

𝑋𝑖(𝑚)|𝑌𝑖(𝑚)|
𝑚∈ {𝑚𝑝}

 .                                                                                                   (6.24) 

Therefore, from (6.24), if 𝑄𝑖(𝑚) is expressed as 𝑄𝑖(𝑚) = 𝑌𝑖(𝑚)𝐵́𝑖(0), then sequence for the 

subspace algorithm with pilot subcarriers becomes 𝑺𝑗 = [𝑆𝑗(1)…… . 𝑆𝑗(𝐿)] = [𝑄(𝑗)… . . 𝑄(𝐿 +

𝑗)]. Thus, the initial phase is obtained using the pilot subcarriers before the final estimation is 

obtained using the subspace approach as described from (6.6)-(6.23). 

Also, the relationship between the prediction parameter and the covariance vector is shown in 

(6.13)-(6.19). It is seen that the prediction parameter is a linear combination of the singular 

vectors of the subspace of interest.  

6.5. Computational complexity 

Using the direct SVD, the number of operations required is generally of order 𝑂(𝐿3). The SVD 

method generally results in high computational complexity with 𝐿2(𝐿 + 2𝐷 + 2) multiplication 

operations and 𝐿(3𝐷2 + 2𝐷) addition operations [84, 85]. However, the proposed method, which 

is based on the FDPM approach, using the normalization process described in Table 6.2, ensures 
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a reduced complexity. The sequence {𝑼(𝑗) = 𝑛𝑜𝑟𝑚[𝑯(𝑗)]} have computational complexity of 

𝑂((𝐿 + 𝐷)𝐷)  since the normalization of a vector requires 𝑂(𝐿 + 𝐷)  operations. Using the 

normalization operation (“norm”) reduces the complexity and ensures that an order of magnitude 

is gained as the use of the “orthonormalize” operation is of complexity 𝑂((𝐿 + 𝐷)2𝐷) [105]. 

Thus, the proposed SS-FBLP method requires 𝐿(3𝐷 + 1) multiplication operations and 𝐿(5𝐷 +

1) addition operations. Also, considering the adaptive estimator in (6.21), the complexity is of 

order 𝑂(𝐷2) due to the fact that the adaptive expression in (6.10) is used rather than (6.9). Using 

(6.9) would have resulted in 𝑂(𝐷3) due to the matrix inversion [105]. The comparison of the 

considered subspace methods in terms of the required multiplication and addition operations is 

presented in Table 6.5. Also, the complexity graph of the subspace methods is presented in Figure 

6.9.  

Table 6.5: Computational Complexity of the Subspace Methods 

Subspace Method Multiplication Addition 

SVD 𝐿2(𝐿 + 2𝐷 + 2)  𝐿(3𝐷2 + 2𝐷)  
SS-FBLP 𝐿(3𝐷 + 1)  𝐿(5𝐷 + 1)  

SS-FBLP-VSS 𝐿(5𝐷 + 2)  𝐿(7𝐷 + 2)  
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The summary of the proposed phase noise estimation algorithm is as shown in Table 6.6. 

Table 6.6: Summary of the Proposed Estimation Algorithm 

 

1. For 𝑖 = 1,2,…… . . 103 

2. Compute 𝑌𝑖(𝑚) (3.12) 

3.       For 𝑗 = 1,2,…… . . 𝐿; 𝐿 < 𝑁   [FDPM to obtain 𝑼(𝑗)] 
4.         Obtain sequence 𝑺𝑗 = [𝑆𝑗(1)…… . 𝑆𝑗(𝐿)] = [𝑌(𝑗)… . . 𝑌(𝐿 + 𝑗)] 

5.         Obtain covariance 𝑷 = 𝔼[𝑺𝑗𝑺
𝐻
𝑗] 

6.         Initialize with a random orthonormal matrix 𝑼(0) 
7.         Available from previous instant: 𝑼(𝑗 − 1) 
8.         Compute 𝜇 

9.         𝒄(𝑗) =  𝑼𝐻(𝑗 − 1)𝑺𝑗 

10.         𝑻(𝑗) = 𝑼(𝑗 − 1) ±  𝜇𝑺𝑗𝒄
𝐻(𝑗) 

11.         𝒃(𝑗) = 𝒄(𝑗) − ‖𝒄(𝑗)‖𝒆′, where 𝒆′ = [𝟏𝟎,… . 𝟎]𝑻 

12.         𝑯(𝑗) = 𝑻(𝑗) −
2

‖𝒃(𝑗)‖2
[𝑻(𝑗)𝒃(𝑗)]𝒃𝐻(𝑗) 

13.         𝑼(𝑗) = 𝑛𝑜𝑟𝑚[𝑯(𝑗)], 
        where norm[.] is the normalization of each column of 𝑯(𝑗) 

14.         Obtain singular vectors [𝑢(1)… . . 𝑢(𝐷)] from 𝑼(𝑗)  for the construction of 𝑾𝑗 

15.         Construct the weighting parameter 𝑾𝑗 = ∑
𝑢(𝑙)

𝛾(𝑙)
𝐷
𝑙=1 . (𝑢𝐻(𝑙). 𝑷̂𝑙) (6.16) 

16.         Compute 𝐵̂𝑗 (6.17) 

17.         Compute 𝛷̂𝑗 (6.18) 

18.       End for 

19. Compute MSE 

20. End 

 

 

6.6. Simulation and Discussion 

The performance of the proposed algorithm is investigated in a 20 Gb/s CO-OFDM system. In the 

simulation, the sampling frequency of the OFDM symbol is 28.8ns, with the length of the 

IFFT/FFT chosen as 256, L = 128, D = 96 while a 12.5% cyclic prefix is used. The quadrature 

phase shift keying modulation format is adopted. The mimicked practical fiber link consists of ten 

spans of 80 𝑘𝑚  standard single mode fiber (SSMF) with fiber dispersion 17 𝑝𝑠/𝑘𝑚/𝑛𝑚 , 

differential group delay of 5 𝑝𝑠/√𝑘𝑚 as well as loss coefficient of 0.2 𝑑𝐵/𝑘𝑚. A total number 
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of 1000 OFDM symbols is used for each bit-error-rate simulation result. Also, optical amplifier, 

EDFA has 16 𝑑𝐵 gain with noise figure of 4 𝑑𝐵 and the non-linear coefficient of the fiber is 

1.32/𝑊/ 𝑘𝑚. The parameters are as shown in Table 6.6. 

Table 6.7: Simulation parameters 

PARAMETER SPECIFICATIONS 

FFT size 256 

Modulation format QPSK 

Data rate 20 Gb/s 

Cyclic prefix 12.5 % 

Sampling frequency 28.8 ns 

Fiber dispersion 17 ps/km/nm 

Differential group delay 5 𝑝𝑠/√𝑘𝑚 

Loss coefficient 0.2 dB/km 

Wavelength 1550 nm 

Amplifier gain 16 dB 

Noise figure 4 dB 

Non-linear fiber coefficient 1.32/W/km 

 

Table 6.8: Acronyms and the description of techniques 

ACRONYM DESCRIPTION OF TECHNIQUE 

SVD Singular Vector Decomposition 

SS-FBLP Subspace Forward Backward Linear Projection 

Technique 

SS-FBLP-VSS Subspace Forward Backward Linear Projection 
Variable Step Size Technique 

 

The FDPM subspace-tracking algorithm depends on the selection of the step-size for stability and 

convergence. In [84], it has been suggested that a value close to unity ensures the needed stability 

and speed of convergence. Therefore, with the range 0 < 𝜇 < 1, the constant step-size parameter 

is varied in this simulation between values of 0.90 and 1.0, to ascertain the most suitable value for 

the SS-FBLP method. Figure 6.1 shows the mean square error (MSE) plot for the SS-FBLP 

method, with varied values of step-size. The MSE of the phase noise is defined as 𝑀𝑆𝐸 =

𝔼 [|∠𝐵̂𝑗 − ∠𝐵𝑗|
2
]. Although the step-size value 𝜇 = 1.0 gives a desirable performance, especially 

for lower values of OSNR, the preferred selection is 𝜇 = 0.98, due to the consistent and stable 
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MSE performance offered at high values of OSNR. Hence, the step-size value 𝜇 = 0.98  is 

utilized for subsequent analysis of the SS-FBLP method. Also, the introduced adaptive step-size 

as described in (6.12) brings new dynamics such as the selection of the appropriate value for the 

adjustment variables 𝛿 and 𝛼. For the purpose of this study, the value of the variable 𝛿 is set to 

unity i.e. 𝛿 = 1, in order to achieve good steady-state performance. The value selected for the 

factor 𝛼 has a more prominent influence on the variation rate of the step-size and the overall 

stability of the SS-FBLP-VSS method. Thus, the most suitable selection for 𝛼 is investigated as 

shown in Figure 6.2, where the value of 𝛼 is varied, starting from 𝛼 = 1. It becomes evident that 

the MSE performance is improved as the value of 𝛼 increases. However, at some point, the MSE 

performance ceases to show any further marked improvement. Hence, the selection of 𝛼 = 50 is 

considered appropriate and this value is used for the subsequent analysis and comparison with the 

SS-FBLP method. 

Figure 6.3 shows the BER performance of the proposed SS-FBLP and the SS-FBLP-VSS 

estimation methods. These methods are compared with the direct SVD method and from the plot 

it is seen that the SS-FBLP follows the performance of the direct SVD method closely. However, 

it should be noted that the SS-FBLP exhibits a significantly lower computational cost in 

comparison to the direct SVD method [85]. The SS-DBLP-VSS at 𝛼 = 50 offers a superior 

performance compared to the SS-FBLP and the SVD methods. This shows that, along with the 

desired stability that the adaptive step-size in the SS-FBLP-VSS method offers, it also comes 

with a more favorable overall performance as compared to the other methods. A direct 

comparison of the proposed algorithms is as shown in Figure 6.4. The methods are implemented 

with the linewidth set to 100 KHz and 400 KHz. In Figures 6.5 and 6.6, the convergence 

behaviors of the proposed methods are shown. In addition, Figure 6.6 also shows the performance 

of the algorithm using pilot subcarriers. From the plot, it can be seen that the MSE performances 

of the proposed methods decrease monotonically and then converge to a steady state. The SS-
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FBLP-VSS converges and attain steady-state faster than the SS-FBLP method. Thus, it can be 

stated that the variable step-size used, accounts for this acceptable convergence behavior. Also, 

the superior MSE performance exhibited by the SS-FBLP-VSS method could be attributed to its 

fast convergence as a result of the adaptive step-size utilized instead of the fixed step-size used in 

the other method. 

In Figure 6.7, the MSE versus the linewidth plot is shown. The performance of the SS-FBLP 

method is compared to the SS-FBLP-VSS method across different linewidth values. It is seen that 

both methods exhibit moderate robustness with increasing linewidth. Also, the graph in Figure 

6.8 shows the behavior of the proposed methods, as the length of the optical channel is increased. 

Although the performances of the proposed methods are affected by the length of the optical 

channel, the methods especially the SS-FBLP-VSS, exhibit smooth decline and fair stability 

across the distance. 

 

 

Figure 6.1:  MSE versus OSNR plot for the SS-FBLP method with varied values of the step-size. 
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Figure 6.2:  MSE performance of the SS-FBLP-VSS method with varied values of the adjustment 

variable 𝛼. 

 

 
Figure 6.3: BER sensitivity for the proposed estimation algorithms in comparison with the direct 

SVD method. 
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Figure 6.4:  MSE performance of the proposed algorithms with linewidth set to 100 KHz and 400 

KHz. 

 
 

 
Figure 6.5:  MSE plot showing the convergence behavior of the proposed algorithms. 
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Figure 6.6:  MSE plot showing the convergence behavior of the proposed algorithms with pilots. 

 

 

Figure 6.7:  MSE versus linewidth plot for the proposed estimation algorithms.  
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Figure 6.8:  Performance of the proposed estimation algorithms with varying fiber length.  
 

 
Figure 6.9:  Complexity graph of the proposed methods as compared to the SVD method.  
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is derived in such a way that the estimate of the phase noise, which is constantly changing over an 

OFDM frame, is estimated adaptively. The adaptive implementation of the phase noise algorithm 

is enhanced by the FBLP method, which ensures low complexity. Also, a variable step-size is 

introduced in the SS-FBLP-VSS method, to achieve better convergence and stability. Results 

show that the proposed methods perform considerably well in the CO-OFDM system, 

implemented in a scenario close to practical environment. The proposed methods achieve 

superior performances as compared to the direct SVD method. Also, the results show that the SS-

FBLP-VSS method offers an enhanced overall system performance compared to its SS-FBLP 

counterpart. Thus, in addition to the better convergence and stability that comes with the 

introduction of the adaptive step-size, an improved overall system performance is also achieved.  
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

This final chapter gives the summary of all the research works that have been carried out, as well 

as possible areas of research for future consideration. 

7.1. Conclusion 

This thesis has focused on methods by which the adverse effects of phase noise and carrier 

frequency offset can be effectively addressed in an OFDM-based optical system. 

In chapter one, the general background and the direction of the research work has been provided, 

highlighting the pertinent research questions, research objectives and the original contributions 

resulting from the research work. 

Detailed discussion and overview of the optical communication system has been provided in 

chapter two. The major constituents of the optical transport networks, which include the optical 

transmitter, the optical receiver and the optical channel have been highlighted and discussed. 

Also, the chapter has discussed the principles of the OFDM, as well as the challenges associated 

with the OFDM scheme. The chapter concludes by discussing the major contrasts between the 

optical OFDM system and the RF OFDM system. 

A detailed survey on the various methods that have been utilized for phase noise and CFO 

estimation in optical OFDM systems has been provided in chapter three. Pilot-aided techniques, 

the RF-based methods, the ML method as well as blind estimation techniques such as the constant 

modulus method and the subspace algorithm have been reviewed. These reviewed algorithms 

form the basis of the methods that are proposed for phase noise and CFO estimation in this 

research work. 

In chapter four, the maximum likelihood approach for phase noise and CFO estimation has been 

discussed, analyzed and implemented. The contributions in this chapter are twofold. First, the 
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estimation of only the CFO is considered. Two identical training symbols are utilized to achieve 

CFO estimation. Thereafter, a simplified ML approach, which eliminates the need for the 

exhaustive search associated with traditional ML methods, is derived and utilized for the 

estimation of CFO and laser phase noise in CO-OFDM systems. Furthermore, to obtain an 

improved performance, the proposed simplified low-complexity ML estimator is uniquely 

combined with an efficient data-dependent pilot-aided (DD-PA) technique, for the acquisition of 

both the CFO and the laser phase noise. The performance of the simplified ML-based estimators 

is compared with existing methods and verified in a 16-ary quadrature amplitude modulation (16-

QAM) CO-OFDM system with PMD, chromatic dispersion and other polarization dependent 

losses along the fiber link. 

Chapter five proposes a blind carrier frequency offset estimation method for coherent optical 

orthogonal frequency division multiplexing (CO-OFDM) systems, using constant modulus 

signaling. The proposed scheme is based on a robust cost-function, which deviates from the 

common assumption that the channel frequency response slowly varies either in time or 

frequency domain. The proposed method adopts a cost-function similar to the Godard’s method 

for blind channel equalization [98]. Using Monte Carlo simulations, the proposed method is 

shown to offer a superior performance compared to prominent existing methods, in a mimicked 

practical optical link scenario. Also, it is shown that the proposed cost-function can be 

approximated and expressed in a closed-form in such a way that the CFO estimate is obtained 

using only three trial values. 

In chapter six, a blind phase noise estimation method for coherent optical orthogonal frequency 

division multiplexing (CO-OFDM) system is considered. Based on the subspace approach, a 

simple and robust method is proposed to adaptively estimate and track phase noise in CO-OFDM 

systems. The idea behind this novel technique is to estimate the singular vectors that correspond 

to the smallest singular values of the noise subspace. A weighting parameter, which is derived 

based on the forward backward linear prediction technique, is subsequently constructed using the 
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obtained singular vectors of the noise subspace, to adaptively estimate the phase noise in the 

system. In addition, a variable step-size is introduced to ensure an improved performance as well 

as stable convergence. Simulation results were shown to demonstrate the effectiveness as well as 

the efficiency of the proposed methods. 

7.2. Future work 

Although this research work has focused on the pertinent issues of phase noise and CFO, which 

adversely affects the OFDM-based optical system, there are other issues and possible areas for 

future considerations. 

Further investigations can be carried out to determine if the subspace algorithm can be effectively 

combined with other algorithms, such as MUSIC and ESPIRIT, to achieve improved performance 

especially in OFDM-based optical transport networks. The MUSIC algorithm has hitherto been 

unattractive in OFDM systems as it involves spectrum searches, which leads to high 

computational complexity. However, the ESPIRIT algorithm, which is an Eigen-decomposition 

based algorithm like its MUSIC counterpart, is known to offer efficient estimation because of its 

high resolution and computational efficiency. These algorithms, especially the ESPIRIT can be 

effectively adapted and utilized for phase noise and CFO estimation in CO-OFDM systems.  

Although there are some works in the literature that have addressed the issue of peak-to-average 

power ratio, more investigations needs to be carried out in the optical domain to improve the 

efficiency of the optical amplifiers, thereby enhancing the overall performance of the optical 

system. 

Also, for enhanced system diversity as well as robustness, the possibility of efficiently 

incorporating the multiple-input-multiple-output (MIMO) technique can be thoroughly 

investigated and implemented. The polarization modes supported in the fiber presents an 

attractive avenue to double the fiber capacity. In [20], the possibility of utilizing a 2 by 2 MIMO 

OFDM transmission in the optical domain, in a bid to achieve an enhanced capacity without 



110 

sacrificing the receiver sensitivity, is reviewed. In [108], a multi-gigabit real-time dual 

polarization CO-OFDM in a 2 by 2 MIMO configuration is implemented. The demonstration 

shows the possibility of the integration of the MIMO configuration into the existing CO-OFDM 

system. However, the few research works reported in literature have hitherto neglected the impact 

of phase noise and CFO on the performance of the proposed system. Therefore, future research 

work can focus effectively on investigating the extent at which the phase noise and the CFO 

impact the CO-MIMO-OFDM system and how they can be efficiently addressed.  
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APPENDIX I 
 
As mentioned in subsection 5.3.1, a CFO estimate can be obtained by minimizing the function 

𝐽𝑃𝑓(𝜀)̅ ≈ 𝐴 𝑐𝑜𝑠[2𝜋(𝜀 − 𝜀)̅] + 𝐶,                                                                                                     (𝐴𝐼. 1) 

Although this can be achieved by using line search, the regularity of 𝐽𝑃𝑓(𝜀)̅ as expressed in (5.10) 

makes it possible to design estimators with low complexity using the curve-fitting closed-form 

solution [88, 91]. Thus, 𝐽𝑃𝑓(𝜀̂) can be evaluated on different points to obtain the values of A, C 

and ε that satisfy (5.10). For instance, if 𝐽(𝑥) is to be evaluated at 𝑥 = −0.25, 0, −0.25, it can be 

seen from (5.10) that an estimate 𝓍̂ can be obtained as follows [88, 91] 

𝓍̂ =

{
 
 

 
 

 

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) 𝑓𝑜𝑟 𝑎 ≥ 0                             

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) +

1

2
 𝑓𝑜𝑟 𝑎 < 0 𝑎𝑛𝑑 𝑏 ≥ 0

1

2𝜋
𝑡𝑎𝑛−1(𝑏 𝑎⁄ ) −

1

2
 𝑓𝑜𝑟 𝑎 < 0 𝑎𝑛𝑑 𝑏 ≤ 0

 ,                                                                      (𝐴𝐼. 2) 

where a is obtained as 

𝑎 = {(1 2⁄ )(𝐽(0.25) + 𝐽(−0.25)) − 𝐽(0)}                                                                                      (𝐴𝐼. 3)   

and 

 𝑏 = {(1 2⁄ )(𝐽(0.25) + 𝐽(−0.25))}.                                                                                                 (𝐴𝐼. 4) 

Therefore, compared with the exhaustive line search, the curve-fitting method has a much lower 

complexity. Also, results have shown that it achieves almost the same performance to that of the 

more demanding line search [88, 91]. 

 

 

APPENDIX II 
 
Since the calculated covariance matrix is circulant due to the circular shifts, the cost function in 

(5.18) is obtained by calculating only the first row of the covariance matrix. Thus, the following 

shows the approximation of (5.19), starting from (1, 𝑝 + 1) − 𝑡ℎ  element 𝜑1,𝑝+1  of the 

covariance matrix [90]. 
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𝜑1,𝑝+1 = ∑ 𝑒𝑗
2𝜋𝜕𝑚
𝑁

𝑁−1

𝑚=0

ℎ𝑚𝑒
𝑗
2𝜋𝜕(𝑚+𝑝)𝑁

𝑁 ℎ∗(𝑚+𝑝)𝑁                                                                                           

= ∑ 𝑒−𝑗
2𝜋𝜕𝑝
𝑁

𝑁−1

𝑚=0

ℎ𝑚ℎ
∗
(𝑚+𝑝)𝑁 − ∑ 𝑒−𝑗

2𝜋𝜕𝑝
𝑁

𝑝−1

𝑚=0

ℎ𝑁−𝑝+𝑚ℎ
∗
𝑚 − 𝑒

𝑗
2𝜋𝜕(𝑁+𝑝)

𝑁 ℎ𝑁−𝑝+𝑚ℎ
∗
𝑚 

         = 𝑒−𝑗
2𝜋𝜕𝑝
𝑁 𝛼𝑝 + 𝑒

−𝑗
2𝜋𝜕(𝑁 2⁄ +𝑝)

𝑁 2𝑗 𝑠𝑖𝑛(𝜋𝜕) 𝛽𝑝                                                                    (𝐴𝐼𝐼. 1) 

where ℎ𝑚  represents the time domain received signal without CFO, 𝛼𝑝 = ℎ𝑚ℎ
∗
(𝑚+𝑝)𝑁 ,  𝛽𝑝 =

ℎ𝑁−𝑝+𝑚ℎ
∗
𝑚 and 𝜕 = 𝜀 − 𝜀.̅ From the above equation, the power, |𝜑1,𝑝+1|

2
, is expressed as 

|𝜑1,𝑝+1|
2
= 4(|𝛽𝑝|

2
+ 𝑅𝑒{𝛼𝑝𝛽𝑝

∗}) 𝑠𝑖𝑛2(𝜋𝜕) + 4 𝐼𝑚{𝛼𝑝𝛽𝑝
∗} 𝑐𝑜𝑠(𝜋𝜕) 𝑠𝑖𝑛(𝜋𝜕) + |𝛼𝑝|

2
               

               = −2 (|𝛽𝑝|
2
+ 𝑅𝑒{𝛼𝑝𝛽𝑝

∗}) 𝑐𝑜𝑠(2𝜋𝜕) 2 𝐼𝑚{𝛼𝑝𝛽𝑝
∗} 𝑠𝑖𝑛(2𝜋𝜕) + 𝛾𝑝                      (𝐴𝐼𝐼. 2) 

where 𝛾𝑝 = |𝛼𝑝|
2
+ 2(|𝛽𝑝|

2
+ 𝑅𝑒{𝛼𝑝𝛽𝑝

∗}).  Re{. }  and Im{. }  represent the real and the 

imaginary parts respectively. To obtain (AII.2), we use the fact that 𝛼𝑝𝛽𝑝
∗𝑒𝑗𝜋𝜕 − 𝛼𝑝

∗𝛽𝑝𝑒
−𝑗𝜋𝜕 =

2𝑗 𝐼𝑚{𝛼𝑝𝛽𝑝
∗} 𝑐𝑜𝑠(𝜋𝜕) + 2 𝑅𝑒{𝛼𝑝𝛽𝑝

∗} 𝑠𝑖𝑛(𝜋𝜕) , 𝑐𝑜𝑠2(𝜋𝜕) = (1 − 𝑐𝑜𝑠(2𝜋𝜕)) 2⁄  and 

𝑐𝑜𝑠(𝜋𝜕) 𝑠𝑖𝑛(𝜋𝜕) = 𝑠𝑖𝑛(2𝜋𝜕) 2⁄ . Also, since 𝛼𝑝 for 𝑀 < 𝑝 ≤ 𝑁 −𝑀 + 1 denotes the element of 

the covariance matrix without CFO, it can be approximated as zero at high SNR, and the cost 

function in (5.18) approximated as 𝐴𝑐𝑜𝑠(2𝜋𝜕) + 𝐵. Likewise, if the OFDM system is noise-free, 

𝛼𝑝 for 𝑀 < 𝑝 ≤ 𝑁 −𝑀 + 1, which is the (1, 𝑝 + 1) − 𝑡ℎ element of CFO-free covariance matrix 

is zero from (5.17). As it follows from (AII.2), it is obvious that 𝐴 = −𝐵 . Hence, the cost 

function can be expressed as 𝐴𝑐𝑜𝑠(2𝜋𝜕) − 𝐴 without any approximation [90].   
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