STRUCTURAL DYNAMICS AND MEMBRANE INTERACTIONS OF THE CHLORIDE INTRACELLULAR CHANNEL PROTEIN, CLIC1

Christos Nathaniel

A thesis submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Doctor of Philosophy.

Johannesburg, 2007

DECLARATION

I declare that this thesis is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

Christos Nathaniel

day of

2007.

This thesis is dedicated to my loving family: Omiros, Anna and Andreas Nathaniel

"Who looks outside, dreams; who looks inside, awakes" Carl Gustav Jung

ABSTRACT

The Chloride Intracellular Channel (CLIC) proteins are a family of amphitropic proteins that can convert from soluble to integral membrane forms. CLIC1 is a member of this family that functions as a chloride channel in the plasma and nuclear membranes of cells. Although high-resolution structural data exists for the soluble form of monomeric CLIC1, not much is known about the integral membrane forms' structure. The exact mechanism and signals involved in the conversion of the soluble form to membrane-inserted form are also not clear.

Studies were undertaken in the absence and presence of membrane models. Analysis of the structure and stability of CLIC1 in the absence of membrane investigated the effect of possible signals or triggers that may play a crucial role in the conversion of the soluble form to integral membrane form. Exposing CLIC1 to oxidizing conditions results in the formation of a dimeric form. The CLIC1 dimer was found to be less stable than the monomeric form based on unfolding kinetic studies. The stability of the dimer was also less influenced by salt concentration, compared with the monomer. The effect of pH on the structure of CLIC1 is of physiological relevance since the movement of soluble CLIC1 in the cytoplasm or nucleoplasm toward the membrane will involve the protein being exposed to a lower pH micro-environment. Hydrogen exchange mass spectrometry was used to study the structural dynamics of CLIC1 at pH 7.0 and pH 5.5. At neutral pH, domain II is more stable than the more flexible thioredoxin domain I. The thioredoxin-fold therefore is more likely to unfold and rearrange to insert into membranes. Because of the high stability of domain II this region is probably where the folding nucleus of the protein is. At pH 5.5 it was found that the $\alpha 1$, $\alpha 3$ and $\alpha 6$ helices, which are spatially adjacent to one another across the domain interface, were destabilized. This destabilization may be the trigger for CLIC1 to unfold and rearrange into a membrane insertion-competent form. The role of the primary sequence and unique three-dimensional structure of CLIC1 in membrane insertion was investigated in a bioinformatics-based study that looked at conserved residue features such as hydropathy and charge. Hidden helical propensities and Ncapping motifs in the α 1- β 2 region were found, which may have important implications for locating putative transmembrane regions.

Analysis of the structure and thermodynamics of CLIC1 interacting with membranes investigated changes in secondary structure, tertiary structure, hydrodynamic volume and thermodynamics when CLIC1 is exposed to membrane-mimicking models. The effect of a variety of conditions such as pH and redox, cysteine-modifiying agents (NEM), ligands (GSH), and inhibitors (IAA) on CLIC1 membrane interaction were studied. It was found that CLIC1 interacted with membranes more favourably at lower pH and that NEM completely inhibited CLIC1 interaction with micelles.

ACKNOWLEDGEMENTS

I would like to acknowledge and thank:

My supervisor, Professor Heini Dirr, for all his guidance, support and the privilege of working in his lab.

Dr. Yasien Sayed for all his assistance with isothermal titration calorimetry.

Mrs. Sylvia McIntyre for all her assistance with the protein purification and helpful discussions.

Mr. Stoyan Stoychev for informative discussions regarding CLIC1.

All the members of the Protein Structure-Function Unit for their encouragement, support and interesting discussions.

Dr. Virgil Woods at the University of California San Diego, USA for hosting and training me on the use of hydrogen exchange mass spectrometry.

Ms. Melissa Brock and Mrs. Krissi Hewitt for assistance with the hydrogen exchange mass spectrometry sample preparation, data reduction and analysis.

The National Research Foundation of South Africa for their financial support.

The University of the Witwatersrand for their financial assistance with the postgraduate merit award.

TABLE OF CONTENTS

	1	page
DECI	LARATION	ii
DEDI	CATION	iii
ABST	TRACT	iv
ACK	NOWLEDGEMENTS	vi
ABBH	REVIATIONS	x
LIST	OF FIGURES	xii
LIST	OF TABLES	xvii
~~~		
CHAI	PTER 1: INTRODUCTION	
1.1 Bi	ological membranes	
1.1.1	Structure and properties	1
1.1.2	Channels and pores	5
1.2 Aı	mphitropic proteins	
1.2.1	Overview	6
1.2.2	Pore-forming toxins	7
1.2.3	Other dual-form (amphitropic) proteins	13
1.2.4	Membrane insertion	15
1.3 G	ST family and the thioredoxin fold: New roles in membrane interaction	17
1.4 Cl	nloride Intracellular Channel protein(CLIC) family	19
1.5 Cl	LIC1 overview	
1.5.1	Distribution and functional role	23
1.5.2	Structure of soluble CLIC1	25
1.5.3	Conversion of soluble CLIC1 to integral-membrane form	29
1.6 0	bjectives	36
CHAI	PTER 2: EXPERIMENTAL PROCEDURES	
2.1 M	aterials	37
2.2 M	ethods	51
2.2 1.1	Plasmid verification	37
2.2.1	Over-expression and purification	20
4.4.4	Over-expression and purification	50

2.2.3	SDS-PAGE	39
2.2.4	Concentration determination	40
2.2.5	SEC-HPLC	40
2.2.6	Preparation and purification of dimeric CLIC1	41
2.2.7	pH adjustment	41
2.2.8	Liposome and micelle preparation	42
2.2.9	Fluorescence studies	43
2.2.10	Far-UV circular dichroism spectroscopy studies	44
2.2.11	Unfolding and refolding kinetics by manual mixing	45
2.2.12	Dynamic light scattering	45
2.2.13	Isothermal titration calorimetry	46
2.2.14	Deuterium exchange mass spectrometry	48
CHAI	PTER 3: RESULTS	
3.1 Pla	asmid verification	55
3.2 Pr	otein over-expression and purification	55
3.3 RI	EDOX effects on CLIC1	
3.3.1	REDOX effects on CLIC1 structure	61
3.3.2	REDOX effects on CLIC1 stability	66
3.4 Ef	fect of pH on CLIC1	
3.4.1	Effect of pH on CLIC1 structure	73
3.4.2	Effect of pH on CLIC1 structural dynamics using hydrogen-deuterium	
exchar	nge mass spectrometry	
3.4.	2.1 Optimisation of CLIC1 proteolytic fragmentation	76
3.4.	2.2 Deuterium on-exchange of CLIC1 at pH 7.0	76
3.4.	2.3 HXMS of CLIC1 at pH 5.5	87
3.5 Tł	nermodynamics of ligand binding	95
3.6 Cl	LIC1 interaction with membrane model systems	
3.6.1	Effects of membrane-mimetic trifluoroethanol	96
3.6.2	Cholesterol-containing liposomes	99
3.6	.2.1 Structural effects	99
3.6	.2.2 Isothermal titration calorimetry	101
3.6.3	Asolectin liposomes	
3.6.	3.1 Structural effects	104

3.6	5.3.2 Thermodynamic effects	109
3.6.4	Detergent micelles	
3.6	.4.1 Structural effects	109
3.6	.4.2 Thermodynamic effects	113
<b>3.7 B</b> i	oinformatics	
3.7.1	Transmembrane region prediction and hydropathy plots	127
3.7.2	Sequence alignments showing charge conservation	130
3.7.3	Helix propensities using AGADIR	130
3.7.4	Phosphorylation sites and signalling motifs	135
3.7.5	Surface area determination	135

#### **CHAPTER 4: DISCUSSION**

4.1 St	ructure and stability of CLIC1 in absence of membrane	
4.1.1	REDOX effect on CLIC1	138
4.1.2	pH effects on CLIC1	140
4.1.3	CLIC1 sequence and structure analysis	149
4.2 In	teraction of CLIC1 with membrane models	
4.2.1	TFE	153
4.2.2	Liposomes	154
4.2.3	Sarkosyl micelles	158
4.2.4	Model for membrane insertion and channel orientation	166

## **CHAPTER 5: REFERENCES**

169

#### ABBREVIATIONS

A ₂₈₀	Absorbance at 280nm
ANS	8-analino-1-naphtalene sulphonate
Са	Alpha carbon
CLC	Chloride channel
CLIC	Chloride intracellular channel
СМС	Critical micellar concentration
DEAE	Diethylaminoethyl
DLS	Dynamic light scattering
DOPG	L-α-phosphatidyl-DL-glycerol dioleoyl
DTNB	5,5'-dithiobis(2-nitrobenzoate)
DTT	Dithiothretol
DXMS	Deuterium exchange mass spectrometry
EDTA	Ethylenediaminetetra-acetic acid
e222	Ellipticity at 222nm
Far-UV CD	Far ultraviolet circular dichroism
$\Delta G$	Gibbs free energy obtained under standard conditions
Grx2	Glutaredoxin 2
GSH	Reduced glutathione
GSSG	Oxidized glutathione
GST	Glutahtione transferase
GuHCL	Guanadinium hydrochloride
hGSTA1-1	Human class $\alpha$ glutathione transferase
$H_20_2$	Hydrogen peroxide
$\Delta H$	Enthalpy change
HXMS	Hydrogen exchange mass spectrometry
IAA-94	Indanyloxyacetic acid 94
IPTG	Isopropyl-D-thiogalactoside
kDa	Kilodalton
LUV	Large unilamellar vesicle
MLV	Multilamellar vesicles
NaCl	Sodium chloride

Na ₂ HPO ₄	Sodium Phosphate
NATA	N-acetyl-tryptophanamide
NEM	N-ethyl maleimide
<b>OD</b> ₆₀₀	Optical density at 600 nm
PC	Phosphatidylcholine
PDI	Polydispersity index
PE	Phosphatidylethanolamine
PS	Phosphatidylserine
PDB	Protein data bank
p <i>I</i>	Isolelecric point
POPC	L- $\alpha$ -phosphatidylcholine $\beta$ -oleoyl- $\gamma$ -palmitoyl
rGSTK1-1	Rat class kappa glutathione transferase
Rmsd	Root mean square of deviation
SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel electrophoresis
SEC-HPLC	Size exclusion high performance liquid chromatography
SCOP	Structural classification of proteins
Sj26GST	Schistosoma japonicum glutathione transferase
SUV	Small unilamellar vesicle
$\Delta S$	Entropy change
TFE	Trifluoroethanol
Ure2p	Yeast prion protein

The IUPAC-IUBMB one and three letter codes for amino acids are used.

## LIST OF FIGURES

Figure 1: The structure of the lipid bilayer and integral membrane protein2
Figure 2: Chemical structure of lipid components and liposome / bilayer structure
Figure 3: Schematic showing the conversion of amphitropic proteins from soluble to integral membrane form
Figure 4: Ribbon representations of amphitropic α-helical proteins highlighting their putative transmembrane regions9
Figure 5: Schematic showing the formation of a β-barrel pore12
Figure 6: Hypothetical model for the solution to membrane conformational change of Bcl-X _L
Figure 7: CLIC1 primary sequence showing position of secondary structural elements
Figure 8: Ribbon representations of the crystal structure of reduced monomeric CLIC1 and Omega class GST27
Figure 9: Comparison of CLIC1 monomer and dimer structures
Figure 10: Ribbon representation of the trimeric form of CLIC432
Figure 11: Graphic representation of possible orientation of CLIC1 transmembrane region
Figure 12: Graphic showing deuterium "on-exchange" with protein50
Figure 13: Flow diagram showing the procedure for protein structure analysis using hydrogen exchange mass spectrometry51
Figure 14: Examples of peptide scoring based on peptide isotope graphs54
Figure 15: Restriction map of pGEX-4T-1 plasmid encoding CLIC156
Figure 16: Restriction digestion analysis57
Figure 17: SDS-PAGE analysis of CLIC1 purification58
Figure 18: DEAE Sepharose anion exchange column elutions60
Figure 19: SEC-HPLC elution profiles of CLIC1 forms62
Figure 20: Fluorescence spectra of CLIC1 forms at pH 7.064

Figure 21: Effect of hydrogen peroxide on tryptophan fluorescence emission using NATA
Figure 22: Far-UV Circular Dichroism spectra of CLIC1 forms67
Figure 23: Unfolding kinetic traces of CLIC1 forms monitored using fluorescence
Figure 24: Unfolding kinetics of CLIC1 monomer and dimer using Far-UV Circular Dichroism
Figure 25: Refolding kinetics of reduced CLIC1 monitored by fluorescence71
Figure 26: SEC-HPLC of reduced CLIC172
Figure 27: Fluorescence and Far-UV CD spectra for CLIC1 at pH 7.0 and pH 5.5
Figure 28: Pepsin fragmentation maps for CLIC1 at pH 7.0 and pH 5.577
Figure 29: Sub-localisation of the deuterium levels of CLIC1 at pH 7.0 after on- exchange at 0° C
Figure 30: Sub-localisation of the deuterium levels of CLIC1 at pH 7.0 after on- exchange at 0° C
Figure 31: Overall deuteration levels of CLIC1 at pH 7.0 after on-exchange at 0° C80
Figure 32: Bar graph showing the percentage deuterium exchange for CLIC1 at pH 7.0 after 10 seconds (rapid exchange)
Figure 33: Representative accumulation graphs for high percentage deuterium exchanging peptides in CLIC1 at pH 7.084
Figure 34: Representative accumulation graphs for low percentage deuterium exchanging peptides in CLIC1 at pH 7.085
Figure 35: Ribbon diagrams showing the degree of deuterium content incorporated at 3 different time points for CLIC1 at pH 7.086
Figure 36: Sub-localisation of the deuterium levels of CLIC1 at pH 5.5 after on- exchange at 0° C
Figure 37: Bar graph showing percentage rapid deuterium exchange for CLIC1 at pH 7.0 and pH 5.591
Figure 38: Ribbon representation of CLIC1 crystal structure showing regions affected by a drop in pH conditions92
Figure 39: Graph indicating difference in number and percentage of deuterium bound on representative matching peptides at pH 7.0 and pH 5.594

Figure 40: Fluorescence spectra of CLIC1 with varying concentrations of TFE97
Figure 41: Far-UV CD spectra of CLIC1 incubated with varying concentrations of TFE
Figure 42: Fluorescence and far-UV CD spectra of CLIC1 incubated with cholesterol-containing liposomes100
Figure 43: Size distribution by volume using dynamic light scattering of CLIC1, liposomes and micelles102
Figure 44: Size distribution by volume using dynamic light scattering of liposomes and micelles incubated with CLIC1103
Figure 45: A representative calorimetric profile of the interaction of cholesterol- containing liposomes with CLIC1 at pH 7.0105
Figure 46: A representative calorimetric profile of the interaction of cholesterol- containing liposomes with CLIC1 at pH 5.5106
Figure 47: Calorimetric titration profile for high concentrations of CLIC1 titrated with cholesterol-containing liposomes107
Figure 48: Fluorescence and Far-UV CD spectra of CLIC1 incubated with asolectin vesicles108
Figure 49: Calorimetric titration profile of the interaction of asolectin vesicles and CLIC1 at pH 7.0 and pH 5.5110
Figure 50: Fluorescence and Far-UV CD spectra of CLIC1 incubated with sarkosyl micelles111
Figure 51: Fluorescence spectra showing the effect of sarkosyl micelles on NATA112
Figure 52: Schematic showing micelle formation and determination of sarkosyl CMC115
Figure 53: Heat of dilution effects for sarkosyl into buffer at 25° C116
Figure 54: A representative calorimetric profile of the interaction of sarkosyl   micelles with CLIC1 at pH 7.0117
Figure 55: Reverse titration calorimetry of sarkosyl micelles with CLIC1119
Figure 56: A representative calorimetric profile of the interaction of sarkosyl micelles with CLIC1 incubated with glutathione120

Figure 57: A representative calorimetric profile of the interaction of sarkosyl micelles with CLIC1 incubated with IAA122
Figure 58: Fluorescence and Far-UV CD spectra of NEM-modified CLIC1124
Figure 59: Thermodynamic trace and fluorescent properties of NEM-modified CLIC1 interacting with sarkosyl micelles125
Figure 60: A representative calorimetric profile of the interaction of sarkosyl micelles with CLIC1 at pH 5.5126
Figure 61: CLIC1 transmembrane prediction graph using Dense Alignment Surface (DAS) method128
Figure 62: Hydropathy plots of thioredoxin-fold domains of selected CLIC, GST and thioredoxin family members
Figure 63: Sequence alignments of thioredoxin-fold domains in CLIC, GST and thioredoxin families indicating residue charge131
Figure 64: Helical propensities and capping motifs by AGADIR sequence analysis of the CLIC family of proteins
Figure 65: Helical propensities and capping motifs by AGADIR sequence analysis of representatives of the GST family of proteins
Figure 66: Helical propensities and capping motifs by AGADIR sequence analysis of representatives of the thioredoxin superfamily134
Figure 67: Ribbon representations showing orientation of Trp35 in oxidized and reduced CLIC1 forms
Figure 68: Graphic representations of CLIC1 residues effected by a drop in pH conditions
Figure 69: Chemical stucture of sarkosyl and micelle formation with protein insertion
Figure 70: NEM chemical structure and CLIC1 ribbon structure showing cysteine residues
Figure 71: Schematic showing proposed transmembrane segment of CLIC1 and its possible orientation within the membrane

## Appendix

Figure A: Sequencing results for CLIC1 plasmid DNA19	0
Figure B: Calorimetric titration profile of the binding of reduced glutathione to CLIC1	1
Figure C: Calorimetric titration profile of CLIC1 titrated with IAA19	2
Figure D: Heat of dilution effects for asolectin into buffer19	3
Figure E: Heat of dilution effects of sarkosyl into buffer at pH 5.519	4

## LIST OF TABLES

`able 1 : Comparison of properties of the CLIC family members24
Cable 2: Effect of salt concentration on the hydrodynamic sizes of the CLIC1   orms
Cable 3: Comparison of percentage deuteration of matching peptides at pH 7.0nd pH 5.5
Second State Second State   Second State Second State