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ABSTRACT 

 

The Chloride Intracellular Channel (CLIC) proteins are a family of amphitropic 

proteins that can convert from soluble to integral membrane forms. CLIC1 is a 

member of this family that functions as a chloride channel in the plasma and nuclear 

membranes of cells. Although high-resolution structural data exists for the soluble 

form of monomeric CLIC1, not much is known about the integral membrane forms’ 

structure. The exact mechanism and signals involved in the conversion of the soluble 

form to membrane-inserted form are also not clear.  

 

Studies were undertaken in the absence and presence of membrane models. Analysis 

of the structure and stability of CLIC1 in the absence of membrane investigated the 

effect of possible signals or triggers that may play a crucial role in the conversion of 

the soluble form to integral membrane form. Exposing CLIC1 to oxidizing conditions 

results in the formation of a dimeric form. The CLIC1 dimer was found to be less 

stable than the monomeric form based on unfolding kinetic studies. The stability of 

the dimer was also less influenced by salt concentration, compared with the monomer. 

The effect of pH on the structure of CLIC1 is of physiological relevance since the 

movement of soluble CLIC1 in the cytoplasm or nucleoplasm toward the membrane 

will involve the protein being exposed to a lower pH micro-environment. Hydrogen 

exchange mass spectrometry was used to study the structural dynamics of CLIC1 at 

pH 7.0 and pH 5.5. At neutral pH, domain II is more stable than the more flexible 

thioredoxin domain I. The thioredoxin-fold therefore is more likely to unfold and 

rearrange to insert into membranes. Because of the high stability of domain II this 

region is probably where the folding nucleus of the protein is. At pH 5.5 it was found 

that the α1, α3 and α6 helices, which are spatially adjacent to one another across the 

domain interface, were destabilized. This destabilization may be the trigger for CLIC1 

to unfold and rearrange into a membrane insertion-competent form. The role of the 

primary sequence and unique three-dimensional structure of CLIC1 in membrane 

insertion was investigated in a bioinformatics-based study that looked at conserved 

residue features such as hydropathy and charge. Hidden helical propensities and N-

capping motifs in the α1-β2 region were found, which may have important 

implications for locating putative transmembrane regions.  

 



 v 

Analysis of the structure and thermodynamics of CLIC1 interacting with membranes 

investigated changes in secondary structure, tertiary structure, hydrodynamic volume 

and thermodynamics when CLIC1 is exposed to membrane-mimicking models. The 

effect of a variety of conditions such as pH and redox, cysteine-modifiying agents 

(NEM), ligands (GSH), and inhibitors (IAA) on CLIC1 membrane interaction were 

studied. It was found that CLIC1 interacted with membranes more favourably at 

lower pH and that NEM completely inhibited CLIC1 interaction with micelles. 
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