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ABSTRACT 
 

Oesophageal cancer (OC) is the third most common malignancy in South Africa (SA), 

affecting 1 in 20 and 1 in 76 black males and females respectively. Squamous cell 

carcinoma (SSC) is an aggressive disease showing a poor prognosis due to late 

diagnosis. Identification of genetic changes associated with these tumours may shed 

light on its pathophysiology and aetiology in SA. The chromosomal status of five OC 

cell lines, established in SA, was assessed to identify possible common chromosomal 

alterations by M-FISH (multicolour fluorescence in situ hybridisation) and specifically 

the fragile site loci, FRA3B and FRA16D by FISH (Fluorescence in situ hybridisation). 

The genes at these loci, FHIT (Fragile Histidine Triad) and WWOX (WW domain 

containing oxidoreductase) respectively, were analysed by RT-PCR (Reverse 

transcriptase polymerase chain reaction). FHIT was aberrantly expressed in four of the 

five cell lines while WWOX expression was normal. The EGFR (epidermal growth 

factor receptor) locus is frequently amplified and this gene is also over-expressed in 

OC. Increased EGFR expression was previously found in three of the cell lines, for this 

reason, particular attention was paid to markers involving the EGFR locus on 7p. An 

interesting marker chromosome seven was identified in one of the cell lines and further 

analysis, using a specific EGFR probe, revealed an amplification unit involving EGFR 

in this cell line. Common translocations involving chromosomes 3 and 1 as well as 3 

and 22 were identified in two cell lines; these may involve a locus involved in OC and 

warrants further investigation.  
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CHAPTER ONE – INTRODUCTION 

1.1 Oesophageal Carcinoma: Epidemiology, molecular biology and 

treatment 

Oesophageal cancer (OC) is the 5th most common cause of cancer death in the world 

(Vos et al, 2003) and is the third most common malignancy in South Africa, the risk of 

developing the disease is estimated at 1 in 20 for black South African males and 1 in 76 

for black South African females (Pacella-Norman et al, 2002). Major cancers of the 

oesophagus in South Africa are squamous cell carcinoma (SCC) and the less frequent 

adenocarcinoma (AD) (Cancer Association of South Africa available at 

http://www.cansa.co.za/registryoesophageal.asp).  

 

Oesophageal carcinoma has been linked to geographically located endemic regions 

such as the Transkei, Johannesburg and the Western Cape (Van Rensburg, 1987). In the 

Transkei it was found that with more than 35 years residence, there is a greater risk for 

women than men to develop OC (Pacella-Norman et al, 2002). Urbanisation is thought 

to be linked to OC incidence through the life-style changes, which have taken place for 

black South Africans such as increased alcohol consumption and cigarette smoking 

(Pacella-Norman et al, 2002). Smoking and alcohol consumption are known major risk 

factors for the development of OC and seem to have independent as well as a combined 

effect (Wang et al, 2004; Pacella- Norman et al, 2002). The tobacco in Transkei is 

home grown along with marijuana, which is more mutagenic than commercial 

cigarettes (Van Rensburg, 1987). It has also been observed that OC incidence is higher 

in those individuals that smoke black tobacco compared to those that smoke blonde 

tobacco. The reason is likely that black tobacco contains a higher content of tobacco 
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specific, carcinogenic, N-Nitroso compounds (Vos et al, 2003). Tobacco is considered 

to be the leading risk factor for OC and seems to contribute to early and late 

carcinogenesis while alcohol seems to contribute to late carcinogenesis (Pacella –

Norman et al, 2002; Vos et al, 2003).  The link between urbanised populations and the 

rural endemic regions such as the Transkei is that urbanised populations are subject to 

economic deprivation and like the poorer rural populations demonstrate restricted diets 

(Pacella-Norman et al, 2002). High risk for OC seems always to be associated with a 

diet based on maize or wheat (Van Rensburg, 1987). The effect of tobacco or alcohol 

consumption on OC risk appears to some extent to be associated with the nutritional 

level as well (Van Rensburg, 1987). Maize contaminated with Fusarium moniliform 

seems to be strongly associated with the development of OC (Van Rensburg, 1987; 

Pacella- Norman et al, 2002) and it seems that a set of micronutrients must be deficient 

for the risk of developing OC to increase. These nutrients include Vitamins A and C, 

riboflavin, nicotinic acid, zinc, magnesium, calcium and folate (Van Rensburg, 1987; 

Jaskiewicz et al, 1987). It has also been suggested that the use of liquid paraffin seems 

to be a significant risk factor for OC in women (Pacella-Norman et al, 2002).  

 

The precise molecular mechanism for the development and progression of OC is still 

unclear (Kuroki et al, 2002). However, certain genetic abnormalities have been 

identified, which appear to play a role in this disease. International research groups 

have shed light on these genetic factors but whether these apply to the South African 

scenario remains to be investigated thoroughly. p53 mutations seem to be a common 

occurrence in SCC and often are dinucleotide transversions, which supports the effect 

of exogenous carcinogens on the development of this disease (Metzger et al, 2004).  
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p53 mutations usually span exons 5 to 8 of the gene and are usually point mutations 

(Metzger et al, 2004). It has been observed that 57% of SCC had p53 abnormalities in 

the surrounding non-malignant tissue supporting the idea that p53 mutation is an early 

event in the development of SCC of the oesophagus (Metzger et al, 2004). Vos et al 

(2003) has found genetic alterations in exons 5 to 8 of p53 in OC patients from the 

Transkei. Only 13% of SCC showed mutations, which could potentially lead to 

structural and functional changes to p53. These findings are in contrast to what 

American and Chinese studies found (Vos et al, 2003). Vos et al (2003) also looked at 

the flanking regions of these exons to look for mutations in the promoter region and 

found many polymorphisms, in particular, either a proline or an arginine at codon 72 in 

exon 4. Arginine at this position is thought to present a risk factor for the development 

of cancer and is associated with Human Papilloma virus (HPV) (Vos et al, 2003). The 

E6 oncoprotein produced by Human Papilloma viruses binds to p53 amino acid 

sequence and results in its degradation and p53Arg alleles are more susceptible to E6 

binding and degradation (Storey et al, 1998). Vos et al (2003) found HPV prevalent in 

71% of their OC samples, however, they did not look at any relationship between the 

HPV and the disease or the prevalent subtype and it was suggested that these factors 

should undergo further investigation. It is thus hypothesised that polymorphisms in p53 

may either contribute to susceptibility or resistance to the development of OC (Vos et 

al, 2003).   

 

Another role for polymorphisms in the development of OC is demonstrated in the Type 

I and Type II metabolic enzymes. Type I metabolic enzymes such as CYP1A2, are 

responsible for activating aromatic hydrocarbons (procarcinogens in tobacco) to their 
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reactive electrophilic forms, which can initiate carcinogenesis (Wang et al, 2004). 

Polymorphisms within the CYP1A2 gene have been found to increase its activity, 

specifically the CYP1A2/Val/Val polymorphism in exon 7, which was found with 

incidences of 2-5% in whites, 19, 8% in Japanese and 22, 3% in Chinese with OC 

(Wang et al, 2004). At the same time the Type II metabolic enzymes are responsible for 

inactivating these reactive electrophilic compounds. Deletion of the gene coding for 

one of these enzymes, GSTM1, is associated with an increased risk for OC (Wang et al, 

2004; Metzger et al, 2004). These findings demonstrate the synergistic relationship 

between genetic susceptibility and environmental factors (Wang et al, 2004). It would 

be interesting to determine the incidence of polymorphisms and deletion of these two 

genes in the South African black population. 

 

SCC of the oesophagus has been shown to demonstrate increased expression of cellular 

growth factors and growth factor receptors such as Epidermal Growth Factor Receptor 

(EGFR). EGFR induces the expression of cyclooxygenase –2 (COX-2). COX-2 has 

been found to be overexpressed in SCC and premalignant lesions (Altorki, 2004). It is 

responsible for inhibiting apoptosis and the tobacco constituent benzo(a)pyrene induces 

COX-2 as well. Cyclooxygenases also play a rate-limiting role in the production of 

prostaglandins, which also have a role in uncontrolled growth (Altorki, 2004). COX-2 

derived prostaglandins have been shown to promote tumour invasion and metastasis 

(Altorki, 2004). EGFR over expression is correlated with a poor prognosis in many 

epithelial cancers (Khalil et al, 2003; Bulgaru et al, 2003). New cancer therapies are 

being designed to target EGFR, such as monoclonal antibodies and tyrosine kinase 

inhibitors. Cetuximab (Erbitux) is a drug currently being tested in phase III clinical 
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trials in combination with radiation or chemotherapy (Khalil et al, 2003). Another 

tyrosine kinase inhibitor, erlotinib (Tarceva), proved in phase II clinical trials to be a 

promising drug targeting EGFR over expression (Bulgaru et al, 2003). Determining 

whether an OC patient is over expressing EGFR may be worthwhile in terms of 

selecting therapy in the future. 

 

Transforming growth factor β (TGF-β) strongly inhibits epithelial cell proliferation and 

many tumour cells lose their sensitivity to this factor (Fukuchi et al, 2004).  The loss of 

sensitivity to TGF- β results in an accumulation of this protein, TGF-β then stimulates 

tumour invasion by promoting angiogenesis and extracellular matrix production, 

inhibiting the immune response (Fukuchi et al, 2004). Lower expression of TGF-β 

specific receptors and Smads (signal transducer proteins in the TGF-β growth inhibition 

pathway) or higher local TGF-β expression was found to be associated with 

oesophageal cancer progression. Blood taken from the azygos vein, the vein responsible 

for venous return from the oesophagus, was analysed for TGF-β levels. Increased levels 

were shown to correlate with metastasis to distant lymph nodes in patients with 

oesophageal cancer (Fukuchi et al, 2004). TGF-β levels in the azygos vein may prove 

to be a useful prognostic marker but needs further research. Thirty five percent of OC 

tumours show over expression of TGF-α (Metzger et al, 2004) as well. 

 

The p16 gene product is responsible for the inhibition of cell proliferation through its 

interaction with CDK6. Loss of p16 expression has been shown in 50% of OC and is 

associated with a poor prognosis (Metzger et al, 2004). The oncogene, Cyclin D1 is 

overexpressed in SCC and is associated with lymph node metastasis, high proliferation, 
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poor response to chemotherapy, and poor survival (Metzger et al, 2004). Table 1 

summarises some of the genes thought to contribute to the development of OC. 

 

Oesophageal carcinoma is an aggressive disease showing poor prognosis and so early 

diagnosis and treatment is in high demand (Mori et al, 2000). Surgery and radiotherapy 

or combined radiotherapy and chemotherapy are the current methods for treatment. The 

late diagnosis results in difficulty to perform surgery and the over all outcome is 

usually poor (Metzger et al, 2004). Further developments in the molecular 

carcinogenesis of this disease could improve the chances for early detection and 

improved therapies. 
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Table 1. Genes considered to be involved in OC development and progression 

GENE CHROMOSOME CHROMOSOME 

ALTERATION 

PK13CA, hTR 3q Gain 

FHIT 3p Loss 

CDH6, CDH12, CDH14 5p15.1-15.2 Gain 

APC, MCC 5q21 Loss 

EGFR, cyclin D1 7p12.13 Gain 

C-MYC 8q24 Gain 

p16 9p21-22 Loss 

c-ras-Ha-1 11q13-15 Loss 

TFDPI 13q34 Gain 

RB1 13q14 Loss 

p53 17p13 Loss 

DCC, DPC4, SMAD2, 

SMAD4 

18q21 Loss 

Table adapted from Metzger et al (2004). APC= Adenomatosis polyposis coli, CDH= cadherin, C-
MYC= c-myc myelocytomatosis oncogene, DPC= dystrophin associated protein complex, EGFR= 
epidermal growth factor receptor, DCC= deleted in colorectal cancer, hTR= human telomerase RNA, 
MCC= mutated in colorectal cancer, PK13CA= gene for catalytic subunit of phosphaticlylinositol-3-
kinase, RB1= retinoblastoma locus 1, SMAD= signal transducer in the TGF-β pathway, TFDPI= 
transcription factor. 
 
 
 
1.2 Fragile sites and cancer 
Fragile sites are chromosomal regions expressed as gaps or breaks appearing under 

specific culture conditions such as folate deficiency or aphidicolin treatment (Yunis & 

Soreng, 1984). Folate deficiency and aphidicolin treatment results in the inhibition of 

DNA synthesis. Rare or heritable fragile sites are found in less than 5% of individuals, 

while common or constitutive fragile sites are found in all individuals (Richards, 2001). 

Fragile sites were originally studied under artificial culture conditions, which raised the 
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concern as to whether they ever occurred in vivo or if they were only artifactual. The 

discovery that the FRA11B fragile site is predisposed to 11q breakage, resulting in 

Jacobsen Syndrome cases, gave the evidence that fragile sites not only occurred in vitro 

but also in vivo (Richards, 2001). The most commonly expressed fragile sites are 

FRA3B, FRA16D, FRA7G, FRA7H and FRAXB (Richards, 2001). The hypothesis that 

fragile sites may be linked to cancer first arose due to the observation that these sites 

seemed to coincide with the chromosome regions frequently altered in cancer (Heubner 

& Croce, 2001). The first real link between fragile sites and cancer was made when it 

was discovered that a translocation involving 3p14 at FRA3B is associated with a 

familial renal cancer (Heubner & Croce, 2001). Since these discoveries twenty years 

ago, much more evidence linking fragile sites to cancer has been uncovered. 

 

Expanded repeats in the DNA sequence of rare fragile sites form part of their molecular 

basis for fragility, however the molecular basis for the fragility of common fragile sites 

remains obscure (Richards, 2001). Studies looking into the sequence of FRA3B have 

given some insight into the reasons for their fragility. Aphidicolin (reversible inhibitor 

of eukaryotic DNA replication) stimulated breaks were found to be within so called 

high flexibility regions, which are thought to contribute to the fragility of FRA3B 

(Mimori et al, 1999). These regions are however unremarkable in sequence except for 

being AT-rich at the high flexibility regions (Heubner & Croce, 2001). These AT 

islands are said to act as scaffold attachment regions involved in genome organisation 

on the nuclear matrix and are preferentially targeted by DNA-alkylating anti-tumour 

drugs (Woynarowski, 2004). These AT sites have been shown to behave differently in 

cancer cells compared to normal cells and are abnormally expanded. This may sensitise 
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cancer cells to AT island targeting drugs, potentially a new cancer therapy 

(Woynarowski, 2004). Since it has been discovered that fragile sites replicate late in S-

phase and gaps and breaks are incompletely replicated regions, this late replication 

could be contributing to fragile site instability (Brown, 2003). Fragile sites are proposed 

to be initiators of amplification of certain regions of DNA by acting as end points for 

the breakage-fusion-bridge mechanism of DNA amplification (Richards, 2001).  

 

Fragile site induction has been shown to increase the frequency of deletion, 

translocation and foreign DNA integration (Inoue et al, 1997). Since these fragile sites 

coincide with chromosomal aberrations in cancer cells, those sites susceptible to 

carcinogen-induced alterations may play a major role in cancer cell rearrangements 

(Inoue et al, 1997). Fragile sites have been seen to interact with each other in 

metaphase, which may facilitate translocation (Richards, 2001). FRA3B has not only 

been found to be the site of a translocation in familial renal carcinoma (Gemmill et al, 

1998) but also in an adenocarcinoma of the oesophagus (Ohta et al, 1996). Deletions 

involving the FRA3B locus are frequent in tissues exposed to the environment, 

indicating FRA3B as a possible “hot spot” for translocations, deletions and its possible 

sensitivity to environmental carcinogens (Richards, 2001). The most common fragile 

sites have been found to encompass genes proposed to be tumour suppressors; FRA3B 

and FHIT; FRA16D and WWOX as well as FRA7G and Caveolin 1 and 2. Since fragile 

sites have been associated with these genes that may contribute to the neoplastic 

process, it is thought that mutation at these fragile site loci may have a causative role in 

cancer (Richards, 2001).  
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Fragile sites are features of most mammalian genomes and specific regions of fragile 

sites seemed to be conserved across species (Heubner & Croce, 2001), indicating that 

they may have a specific function. It is thought that fragile sites are difficult to replicate 

and even small doses of replication inhibitors lead to the stalling of the replication fork, 

which could cause the expression of these fragile sites (Cimprich, 2003).  

 

It has been discovered that the stability of fragile sites is controlled by a checkpoint 

kinase, ATR (Ataxia Telangiectasia and Rad 3 related protein kinase). ATR deficiency 

results in fragile site expression with or without replication inhibitors (Casper et al, 

2002). ATR deficiency in rats results in death and upon looking at the blastocysts, 

massive chromosome fragmentation was observed (Casper, 2002). ATR is responsible 

for the repair of DNA at fragile sites (Brown, 2003). The gene responds to stalled DNA 

replication due to DNA damage during the cell cycle and is responsible for activating 

repair proteins and is thus thought to have a key role in genome maintenance (Casper et 

al, 2002).  

 

It is proposed by Casper et al (2002) that fragile sites are single-stranded breaks 

resulting from collapsed replication forks following inhibition of DNA replication. 

Gaps represent single stranded breaks. Double stranded breaks are likely to be 

secondary events leading to chromosome rearrangements. In a study analysing the 

patterns of fragile site expression in smokers and non-smokers, it was noted that one 

normal individual displayed twice the level of expression as compared with the 

smokers (Stein et al, 2002). This lead to the hypothesis that some individuals in the 

population may have polymorphisms resulting in susceptibility to fragile site 
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expression in stressed DNA replication conditions. Another study looking at genetic 

susceptibility to oral cancer, found that two patients without any history of smoking, 

had enhanced expression of fragile sites, reinforcing this hypothesis (Subhadra et al, 

2003). These individuals may even be ATR deficient and as a result be more 

susceptible to developing cancer, an interesting avenue for further research. 

 

1.3 Nutritional and environmental effects on fragile sites, their genes 

and cancer 

Caffeine, an inhibitor of DNA repair, induces a ten-fold increase in fragile site 

expression (Yunis, Soreng, 1984) and active tobacco exposure results in increased 

expression of FRA3B, which is reversed upon reduction of tobacco exposure (Sozzi et 

al, 1997; Stein et al, 2002). This indicates that the in vivo breakage of fragile sites 

appears to be affected by environmental factors producing DNA damage (Sozzi et al, 

1997; Stein et al, 2002). The DNA damage could be associated with tumourgenesis 

through impaired DNA replication and repair. For example, nicotine has adverse effects 

on DNA replication through its induction of single stranded nicks (Stein et al, 2002). 

Since fragile sites are often associated with oncogenes, individuals with high 

carcinogen exposure and increased fragile site expression are proposed to be pre-

disposed to malignancy (Yunis & Soreng, 1987).  

 

Fragile site expression is induced by folic acid deficiency in vitro; perhaps folic acid 

deficiency could play a role in FHIT disruption through FRA3B expression in vivo, 

since folate plays a role in DNA synthesis, repair and methylation (Heimburger, 1992). 

Folate is involved in the re-methylation of homocysteine to methionine (Hiraoka et al, 
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2004). The methylenetetrahydrofolate reductase (MTHFR) is responsible for directing 

folate into this process. A polymorphism in this gene, the C677T polymorphism, results 

in lowered activity thereby causing genomic hypomethylation and reduced availability 

of pyrimidines and purines for DNA repair and synthesis, specifically in low folate 

status (Ueland et al, 2001; Beilby et al, 2004). This is another gene that has not been 

studied in South African populations with oesophageal cancer. Carcinogens inactivate 

folate co-enzymes, thereby reducing folate activity possibly linking its deficiency to 

cancer development (Heimburger, 1992).  

 

High alcohol intake interferes with folate absorption and results in increased excretion 

through the kidney (Pelucchi et al, 2003). Alcohol also interacts with the MTHFR gene 

(Giovannucci et al, 2003). Some tissues may require higher levels of folate, specifically 

those cells undergoing rapid turnover such as the gastrointestinal tract (Heimburger, 

1992). Nutrient deficiencies are said to place individuals at risk for the development of 

oesophageal carcinoma, especially in conjunction with carcinogen exposure (Van 

Rensburg, 1987, Jaskiewicz et al, 1987). Alcohol intake is known to aggravate mineral 

deficiencies, so does tobacco (Van Rensburg, 1987). Rural endemic regions show 

nutrient deficiencies as well as high exposure to the more carcinogenic, homegrown 

tobacco and marijuana as well as alcohol (Van Rensburg, 1987). Smokers were seen to 

have the highest frequency of fragile site expression, specifically in active smokers 

(Stein et al, 2002). 

 

There is also the influence of fungal infections or toxin exposure due to the primary diet 

of endemic regions for oesophageal carcinoma being maize, which is commonly 
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infected with the Fungus, Fusarium moniliforme. The fungus releases toxins, such as 

Aflatoxin and Fumonisin, which are often detected at high levels in maize foods. Maize 

is often eaten several times a day and so these individuals are exposed to the toxins on a 

daily and long-term basis (Dutton et al, 2001). Exposure to these toxins has been 

correlated with the incidence of oesophageal cancer (Van Rensburg, 1987). Fumonisin 

B1 was found in tissues and blood of patients with oesophageal cancer and was found 

in high amounts within the cancerous tissue itself (Dutton et al, 2001). The exact 

effects are not known but could link it to the aetiology of the disease (Dutton et al, 

2001). 

 

Human Papilloma virus is an important risk factor for the progression of cervical 

cancer. The oncogenic E6 and E7 open reading frames are almost always retained and 

this is important in maintaining malignancy (Thorland et al, 2000). In a study of 50 

oesophageal cancer patients in South Africa, 23 samples had detectable HPV DNA. 

The predominant HPV subtype detected in these OC samples was HPV-11, a lower risk 

subtype (Matsha et al, 2002). The dominant types detected in other international studies 

of OC are usually subtypes 16 and 18, higher risk subtypes (Matsha et al, 2002). It was 

demonstrated that common fragile sites are frequent targets for integration by these 

viruses in cervical cancer specimens and so genes within these regions may be 

disrupted and participate in the initiation or progression of cervical cancer (Thorland et 

al, 2000). The high prevalence of low risk HPV subtypes in South African oesophageal 

cancer supports the hypothesis that HPV integration within fragile sites may be 

disrupting these genes and participates in initiation or progression of cancer. 
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1.4 The FHIT gene and cancer 

The cytogenetic analysis of many solid tumours and tumour derived cell lines revealed 

that the short arm of chromosome 3 is often involved in deletions in cancer (Croce et al, 

1999). The finding of loss of heterozygosity and the fact that they coincided with the 

location of the t(3;8)(14.2; q24) in a familial renal cancer, lead to the discovery and 

cloning of the FHIT gene encompassing the FRA3B fragile site (Croce et al, 1999). 

Alterations in this gene, resulting in the inactivation of both alleles, are frequent in a 

variety of cancers (Mimori et al, 1999; Fang et al, 2001; Stein et al, 2002; Sozzi et al, 

1997). Loss of heterozygosity (LOH) or loss of FHIT expression has been detected in 

oesophageal, head and neck squamous cell carcinoma, non-small cell lung carcinoma, 

oral, hepatocellular, tongue, cervical, ovarian and breast carcinomas (Fang et al, 2001; 

Ohta et al, 1996; Mori et al, 2000; Menin et al, 2000; Virgilio et al, 1996, Tseng et al, 

1999; Tanimoto et al, 2000; Yuan et al, 2000; Lee et al, 2001; Connolly et al, 2000; 

Ozaki et al, 2001; Ingvarsson et al, 1999). It was indicated through these studies that 

loss of Fhit protein not only correlated with tumour aggressiveness but also was 

detected in pre-cancerous lesions, pointing out the possible importance of the FHIT 

gene in the initiation of cancer (Mori et al, 2000). 

 

The FHIT gene is the second largest spanning locus in the human genome consisting of 

more than 1 Mb of DNA (Ishii et al, 2001b). The gene consists of 10 exons transcribed 

into a messenger RNA of 1,1kb. The Fhit protein is 16,8kD and is the human 

diadenosine triphosphate hydrolase (Barnes et al, 1996). This enzyme is homologous to 

the amino acid sequence of the Histidine Triad (HIT) proteins, with little known about 

its function (Barnes et al, 1996). The Histidine triad sequence is the catalytic 
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component of the protein, critical for the activity of Fhit in the hydrolysis of 

dinucleotide triphosphate (AP3A). The HIT sequence also binds zinc, which seems to 

inhibit this function (Barnes et al, 1996). It was thought that increasing levels of AP3A 

in the cell could possibly lead to carcinogenesis through enhancement of signal 

transduction or inhibition of apoptotic pathways (Barnes et al, 1996). It has since been 

shown that although decreased levels of AP3A are linked to apoptosis (Sard et al, 

1999), the tumour suppressor activity of the Fhit protein does not necessarily require 

the catalytic unit as introduction of the FHIT gene lacking the HIT coding sequence 

into cancer cells still resulted in tumour suppression and apoptosis (Sard et al, 1999, 

Siprashvili et al, 1997).  

 

The evidence for FHIT as a tumour suppressor has been growing with numerous 

experiments involving introduction of FHIT into FHIT negative tumour cells. These 

experiments resulted in the induction of apoptosis and upon transplantation into nude 

mice, considerable tumour suppression and prevention of tumour growth was observed 

(Siprashvili et al, 1997; Roz et al, 2002; Dumon et al, 2001; Ishii et al, 2001a; 

Vecchione et al, 2001).  It was also observed that FHIT over expression, that is the 

introduction of FHIT into FHIT expressing cells, did not have this result (Siprashvili et 

al, 1997). The exact mechanism of this tumour suppression is still unknown but 

increased expression levels of pro-apoptotic molecules such as Bak, caspase 8, caspase 

3, caspase 9 was observed as well as Bid, caspase 8 and 9 cleavage was noted (Ishii et 

al, 2001b; Dumon et al, 2001; Sard et al, 1999; Roz et al, 2002). This suggests that 

these molecules are downstream of FHIT in a signalling pathway and induction of 

apoptosis is through the extrinsic or cytoplasmic pathway rather than through the 
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mitochondrial pathway (Roz et al, 2002). The mechanism of induction also appears to 

be independent of p53, since p53 levels were unaffected in these experiments (Sard et 

al, 1999). Recently, Fhit was found to be a target for tyrosine phosphorylation by Src 

protein kinase. Src phosphorylates Y114 of Fhit in vitro and in vivo (Pekarsky et al, 

2004). This phosphorylation may cause gain of function to Fhit and thereby stimulate 

apoptosis by interaction with target proteins, which have yet to be identified (Pekarsky 

et al, 2004). At the same time the exact role of Src in apoptosis is unknown as it is 

associated with apoptosis in thymocytes and 293 cells but inhibits apoptosis in 

fibroblasts and gall bladder epithelial cells. Phosphorylation of Fhit by Src may result 

in loss of tumour suppressor function (Pekarsky et al, 2004). Fhit is further linked to 

apoptosis by the finding that FHIT has an E2F-1 recognition site in the 5’ region (Ishii 

et al, 2004a). E2F is key in cell proliferation and induction of apoptosis. When E2F-1 

was over expressed in oesophageal cancer cell lines, apoptosis was induced by 

increased expression of FHIT (Ishii et al, 2004a). In FHIT deleted cells, E2F-1 had a 

lesser effect on the induction of apoptosis. Fhit protein was also seen to act on the cell 

cycle, arresting it at the G2 phase, as increased levels of p21waf were detected (Sard et 

al, 1999; Roz et al, 2002). Fhit was also found to be associated with microtubules and 

human ubiquitin-conjugating enzyme 9, which is involved in the degradation of S and 

M-phase cyclins (Ishii et al, 2001b).  

 

The FHIT gene is expressed at low levels in most tissues of the body but interestingly 

the highest expression was detected in epithelial cells and tissues (Croce et al, 1999). 

FHIT is inactivated in epithelial tumours and specifically those exposed to 

environmental carcinogens (Croce et al, 1999). This loss of expression seems to occur 
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early in the development of these cancers while, in other cancers, it may be a later event 

corresponding to progression and aggressiveness. Deletion of FHIT usually results in 

the loss of exons and thus loss of full length FHIT transcript and protein (Siprashvili et 

al, 1997). Although some deletions occur within the non-coding introns, reduced FHIT 

expression or loss of expression is still observed in these tumours indicating that the 

introns still affect expression, possibly through the instability of the mRNA (Mimori et 

al, 1999). These deletions, leading to loss of expression, are cancer specific, a hallmark 

of a tumour suppressor (Siprashvili et al, 1997). No point mutations have been detected 

in the gene, indicating that the FRA3B fragile site is probably mechanistically involved 

in the deletion of the FHIT gene (Siprashvili et al, 1997). It is suspected that the 

frequent expansion of these clones with deletions in the FHIT gene, provide cells with a 

selective growth advantage (Siprashvili et al, 1997; Kholodnyuk et al, 2000). 

 

The t(3;8) translocation involving FHIT found in familial renal cell carcinoma disrupts 

intron 2 while the FRA3B site is located over intron 4 and 5 and includes a Human 

Papillomavirus-16 (HPV16) integration site. These sites flank the first coding exon 5, 

which is the most commonly deleted exon, resulting in the loss of functional protein 

due to loss of the first methionine (Ishii et al, 2001b; Kholodnyuk et al, 2000; Druck et 

al, 1997). The mechanism of these deletions in exon 5, which forms greater than 60% 

of the gaps, could be attributed to the homologous recombination between LINE 1 

elements, which have been found to be located near exon 5 (Inoue et al, 1997; Croce et 

al, 1999). Insertions are also detected between exons 4 and 5 resulting in loss of 

expression further indicating the importance of intron sequences for the synthesis of 

Fhit protein (Campiglio et al, 1999). Most breaks have been found to occur in the 
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proximal region of FRA3B between exon 4 and intron 5 as well as telomeric to exon 5 

(Corbin et al, 2002).  

 

The FHIT gene and the FRA3B site thus appear to have an important role to play in the 

development of cancer of tissues exposed to environmental carcinogens.  

 

The FHIT gene and oesophageal cancer 

Loss of heterozygosity studies of gastric cancers detected a high frequency of allelic 

deletion close to exon 5 in FHIT and barely detectable FHIT transcripts (Ohta et al, 

1996). These events were detected in 50% of oesophageal, stomach and colon cancers 

(Ohta et al, 1996). Loss of heterozygosity (LOH) was 80% in SSC of the oesophagus 

and 44% in adenocarcinoma of the oesophagus with the highest incidence occurring in 

heavy smokers, indicating FHIT as a target for carcinogens (Menin et al, 2000). To 

elucidate the level at which these LOH events occur, Mori et al. (2000) looked for LOH 

in primary tumours, mild dysplasia and normal epithelium of the oesophagus in 

individuals with high exposure to carcinogens. Seventy six percent of primary 

oesophageal tumours displayed LOH and the cases of mild dysplasia lacked Fhit 

protein, as did the surrounding normal epithelium. This indicates that loss of FHIT is 

more than likely an early event in oesophageal carcinogenesis (Mori et al, 2000). These 

results were similar to those obtained for studies in lung cancer, indicating cigarettes 

and alcohol as major risk factors (Mori et al, 2000). Fang et al (2001) reported the 

finding of two translocations in an early passage oesophageal adenocarcinoma cell line. 

These translocations resulted in the formation of one non-functional chimeric transcript 

involving 16p13.3 sequences and FHIT. The other translocation resulted in the 
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juxtaposition of the 5’ portion of FHIT on to a region on 4p. These findings provided 

evidence that fragile sites participate in translocations and suggested that translocations 

involving FHIT may not be infrequent events in oesophageal carcinoma (Fang et al, 

2001). 

 

Oesophageal cancer risk has also been related to folic acid, riboflavin and zinc 

deficiencies (Jaskiewicz et al, 1987). Fragile site expression is induced by folic acid 

deficiency in vitro. Perhaps folic acid deficiency could play a role in FHIT disruption 

through FRA3B expression in vivo, since folate plays a role in DNA synthesis, repair 

and methylation (Heimburger, 1992). As stated before, nutrient deficiencies are said to 

place individuals at risk for the development of oesophageal carcinoma, especially in 

conjunction with carcinogen exposure (Van Rensburg, 1987; Jaskiewicz et al, 1987). 

Carcinogens inactivate folate co-enzymes, thereby reducing folate activity possibly 

linking its deficiency to cancer development (Heimburger, 1992).  

 

A Human Papilloma virus-16 (HPV 16) integration site has been mapped within FHIT 

and HPV sequences have been found integrated within FHIT coding sequences (Terry 

et al, 2002). LOH of FHIT was found in cervical carcinomas where there was HPV 

infection (Vecchione et al, 2001) and the high risk for HPV infection in South Africa 

could be associated with FHIT LOH in the oesophagus. However, loss of FHIT 

expression has not yet been associated with HPV integration at the FRA3B locus. SSC 

of the oesophagus has been found to contain a broad spectrum of HPV types, 

suggesting its etiological contribution to oesophageal carcinoma incidence (Lavergne et 

al, 1999). Human embryonic oesophageal epithelial cells infected with HPV 18 and 
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transplanted into nude mice, resulted in the development of oesophageal tumours (Shen 

et al, 2000). This provided further evidence for HPV and oesophageal carcinoma 

etiology and pathogenicity. 

 

The finding, that loss of FHIT occurs in pre-cancerous lesions of the lung, indicates an 

early event and that it seems to be more common than p53 mutation in lung cancer. 

These findings suggested FHIT expression as an indicator of carcinogen induced 

damage and initiation of the multi-step process leading to lung carcinogenesis (Croce et 

al, 1999; Varella-Garcia et al, 1998; Tseng et al, 1999). Many of the findings for 

oesophageal cancer are similar to those of lung cancer (Mori et al, 2000) including 

smoking and alcohol as risk factors for FHIT disruption. This suggests FHIT integrity 

as a marker for cancer risk in individuals with nutrient deficiencies and high carcinogen 

exposure. 

 

Aberrant methylation of normally unmethylated CpG islands at the 5’ promoter region 

of genes is associated with transcriptional inactivation (Sarkar et al, 1993). Methylation 

of the CpG island at the 5’ promoter region of FHIT was found in breast, non-

squamous cell lung carcinoma cell lines, as well as primary tumours. The gene itself 

had no other structural alterations (Sarkar et al, 1993). Methylation of FHIT was also 

found in 5 primary tumours of the oesophagus indicating that although structural 

changes may not be detected, methylation of the 5’ promoter region may exist, thereby 

inactivating transcription of FHIT and subsequent loss of Fhit protein (Tanaka et al, 

1998).  Smoking can be a cause of methylation (Sarkar et al, 1993) and smoking is a 

risk factor for the development of oesophageal carcinoma. Methylation also seems to 
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occur early in disease progression (Zöchbauer-Müller et al, 2001; Tanaka et al, 1998) 

so could possibly act as a marker for early detection or susceptibility where structural 

changes in FHIT are not found. 

 

1.5 The WWOX gene and oesophageal cancer 

FRA16D has frequently demonstrated loss of heterozygosity (LOH) in hormonally 

active tissues including cancer of the testis and breast (Bednarek et al, 2000; Paige et 

al, 2000). The putative tumour suppressor gene, WWOX/FOR, was mapped within the 

LOH region of this fragile site (Bednarek et al, 2000). Src phosphorylates Wwox, like 

Fhit, at the first WW domain and this enhances Wwox binding of the p53 homologue, 

p73 (Aqeilan et al, 2004). Wwox physically interacts with p73 at its first WW domain 

and triggers p73 accumulation in the cytoplasm; loss of WWOX is thought to result in 

reduced apoptotic activity of p73 (Aqeilan et al, 2004). WWOX expression was also 

found to increase when E2F-1 was introduced into oesophageal cancer cell lines and 

induction of apoptosis ensued (Ishii et al, 2004a).  JNK1 is involved in cell survival 

through its transient activation but when JNK1 is activated persistently, apoptosis is 

induced. JNK1 phosphorylates Wwox at its first WW domain, inhibiting Wwox in 

apoptosis (Chang et al, 2003). However, at a certain stage of apoptosis, JNK1 may act 

synergistically with Wwox in facilitating cell death (Chang et al, 2003).  A high LOH 

frequency was detected in SCC of the oesophagus and the most common region of 

deletion was found to be within intron 8, an area prone to breakage in FRA16D as well 

as the site of a translocation breakpoint found in a myeloma (Kuroki et al, 2002). 

FRA16D alterations have also been associated with Aflatoxin B1 (Kuroki et al, 2002), 

the Fusarium moniliforme fungus toxin found on maize plants, which has also been 
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associated with oesophageal cancer incidence through primary diet (Van Rensburg, 

1987). Fhit and Wwox losses in invasive breast tumours are found to be strongly 

correlated, probably because they both encompass common fragile sites (Guler et al, 

2004). This may be true for oesophageal cancer too. 

 

1.6 The five oesophageal carcinoma cell lines 

To analyse the possible roles for FHIT and WWOX in oesophageal cancer in South 

Africa, five oesophageal cancer derived cell lines were used. Professor Rob Veale 

developed the WHCO series of cell lines (Wits Human Carcinoma of the Oesophagus). 

The WHCO series were developed from moderately differentiated tumours from four 

South African black males (summarised in Table 2 in materials and methods). SNO is a 

cell line, which was established from a well-differentiated tumour taken from a 62-

year-old black South African male in 1976. Cytogenetically SNO was found to be 

deficient in group D chromosomes, have excess group E and F chromosomes and a 

subtelocentric marker (Bey et al, 1976).  

 

WHCO1, WHCO3 and SNO have been analysed for over expression of epidermal 

growth factor receptors (EGFR) by binding assays (Veale et al, 1989). The average 

number of receptors for normal epithelial cells is in the region of 2X 105 receptors per 

cell. Two kinds of receptors are usually expressed by oesophageal cancer cells, high 

affinity, associated with stimulation from low concentrations of epidermal growth 

factor (EGF) and low affinity receptors, associated with stimulation from high 

concentrations of EGF (Veale et al, 1989). These three cell lines express only low 

affinity receptors and between 4 and 20 times more receptors per cell than normal 

                                                                                                                                     22 
 



keratinocytes (Veale et al, 1989). WHCO5 and WHCO6 also have over expression of 

EGFR found by binding assays. However this is unpublished data from R Veale. 

 

1.7 Rationale for the project 

1.7.1 Hypotheses 

Numerous events are likely to contribute to the development of oesophageal carcinoma. 

The compound effect of alcohol consumption, smoking, folate and nutrient deficiencies 

and Fumonisin exposure are hypothesised to be linked to an increase in fragile site 

expression. All of these factors have been associated with the increased incidence of 

oesophageal carcinoma. Fragile sites are thought to play a major role in the initiation of 

cancer development through induction of deletions, translocations and viral integration 

leading to inactivation of tumour suppressor genes. It is thus hypothesised that the 

FHIT and WWOX genes, located at two fragile sites, may be disrupted or down-

regulated early in the development of oesophageal carcinoma and detection thereof 

could act as markers for early diagnosis. It is further hypothesised that shared 

chromosomal genetic breakpoints resulting from a common pathway of genetic 

instability may be present in SA oesophageal carcinoma.  

 

1.7.2 Aim and Specific objectives 

This project used a model for oesophageal cancer in the form of the five oesophageal 

cancer derived cell lines. The aim was to assess the chromosomal status in these five 

oesophageal cancer cell lines in order to identify the presence of common chromosomal 

alterations. These common alterations could have resulted from common carcinogenic 
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exposures. The specific aim was to assess the fragile sites FRA3B and FRA16D and 

evaluate the expression of FHIT and WWOX transcripts.  

 

Specific Objectives 

1. To assess the integrity of the FHIT loci using a sequence specific, break apart 

rearrangement probes with Fluorescence in situ Hybridisation (FISH) on 

metaphase preparations from the 5 cell lines. (This probe set was used to 

assess the FHIT locus on interphase cells in a previous unpublished honours 

project by Brown and Stafne). 

2. To assess the expression of the genes at fragile sites, FHIT and WWOX in the 

5 cell lines using reverse transcriptase polymerase chain reaction. 

3. To look for common chromosomal breakpoints and rearrangements in these 

cell lines using Multicolour Fluorescence in situ Hybridisation (M-FISH). 

4. To assess EGFR DNA copy number since EGFR is over expressed in three of 

the cell lines. EGFR is considered as a therapeutic target in cancer. 

 

The FISH, RT-PCR and M-FISH methodology and findings are discussed in the 

following chapters. 
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CHAPTER TWO – MATERIALS AND METHODS 

2.1 SAMPLING 

2.1.1 Cell lines 

Five oesophageal cancer derived cell lines were used for this study. They are listed in 

table 2. The ovarian carcinoma cell line, UWOV2, was used in fluorescence in situ 

hybridisation experiments as a positive control for the break-a-part probe used for 

analysis of the FHIT locus. This cell line was previously found to have a translocation, 

t(3;11), spanning the FHIT locus (Rekhviashvili, 2001). 

 

Table 2. Oesophageal cancer cell lines 

S= Sex, R= Race 

CELL LINE S R AGE GRADE SOURCE YEAR 

WHCO1 M Black 47 Moderately differentiated 

SSC  

Professor R Veale 

(WITS University) 

1986 

WHCO3 M Black 71 Moderately differentiated 

SSC 

Professor R Veale 1987 

WHCO5 M Black 47 Moderately differentiated 

SSC 

Professor R Veale 1988 

WHCO6 M Black 39 Moderately differentiated 

SSC 

Professor R Veale 1989 

SNO M Black 62 Well differentiated SSC Bey et al. (Virus Cancer 

Research Unit, 

Johannesburg) 

1976 
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RNA Isolation 

The cell lines were cultured using standard cell culture protocol developed for the 

WITS cell lines, WHCO1, WHCO3, WHCO5, WHCO6 (R Veale, 1989) and SNO 

(Bey, 1976). The cells were grown in petri dishes and were harvested for RNA isolation 

upon full confluence. RNA was stabilised in RLT buffer from the Qiagen® RNeasy® 

midi kit. The cells were isolated using radiation sterilised scrapers (Nunc®) and lysed 

in 2ml of RLT buffer containing 20µl of β-mercaptoethanol. The cells were 

immediately stored at minus seventy degrees Celsius until further processing. The RNA 

was then extracted using the RNeasy® midi kit protocol. RNA was eluted into 100µl of 

RNase-free water; the elution was then repeated using 50µl of RNase-free water. 

 

Metaphase Preparation 

The cells were grown until the petri dishes were just over half confluent. The day 

before harvesting, the medium was changed.   The cells were then incubated with 

colcemid (Karyomax® Colcemid®, Invitrogen Corporation) at a final concentration of 

0,4µg/ml for 4 hours to induce chromosome condensation and halt the cells in 

metaphase by arresting mitotic spindle formation. The cells were then harvested using 

radiation sterilised scrapers (Nunc®) and poured into tubes for centrifugation at 

900rpm for 10 minutes. The supernatant was removed and 0,5ml of 0,075M KCl 

(Appendix A) was added to re-suspend the cells, and then 7,5ml of 0,075M KCl and 

1ml of Foetal Calf Serum (Sigma®) were added. The cells were incubated for 30 

minutes at 37°C. 5 drops of fixative (Appendix A) were added before centrifugation at 

900rpm for 10 minutes. The supernatant was then removed and the cells re-suspended 

in 5ml of fixative. The cells were then placed at minus twenty degrees Celsius for 1 
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hour. Two more fixative changes were then performed. The pellets were transferred to 

1,5ml Eppendorf tubes and subsequent washes were performed by centrifugation at 

6000rpm for 2 minutes. The cell pellets were then stored at –20 °C until slides were 

made. 

 

2.1.2 Blood 

Peripheral blood samples were isolated from two normal individuals to be used as 

controls for the study. The blood was collected in EDTA BD Vacutainers™ for RNA 

isolation as well as Sodium Heparin BD Vacutainers™ for cell culture. 

 

RNA isolation 

RNA was extracted from blood using the QIAamp® RNA Blood mini kit (Qiagen®). 

The blood was centrifuged at 1000rpm for 10 minutes and the buffy coat was removed 

for RNA extraction. The kit’s protocol was followed but the cells were homogenised 

using a twenty-gauge needle and syringe instead of the Qiashredder™. RNA was eluted 

into 50µl of RNase-free water and stored at -70°C.  

 

Metaphase preparation 

500µl of whole blood was planted in 5ml of complete medium (Appendix A). The 

cultures were incubated for 96 hours at 37°C. At 72 hours, 50µl of methotrexate 

working solution (Appendix A) was added (final concentration of 10-7M) to 

synchronise the cells and the cultures placed back into the incubator for 16 hours. Then 

100µl of thymidine working solution (Appendix A) was added and the cultures 

incubated for 4 and a 1/2 hours. 100µl of Karyomax® Colcemid® (Invitrogen 
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Corporation, 10µg/ml) was then added (final concentration of 0,4µg/ml). Incubation 

was 30 minutes at 37°C. The cultures were then centrifuged at 1000rpm for 10 minutes 

and the supernatant removed. 5ml of 0,075M KCl was added and incubated for 20 

minutes at 37°C, 5 drops of fixative was added before centrifugation. The supernatants 

were removed and 5ml of fixative added. The cells were incubated for 30 minutes at -

20°C. The pellets were then transferred to 1,5ml eppendorf tubes and subsequent 

washes were performed at 6000rpm for 2 minutes. Ten fixative changes were done and 

the cell pellets were stored at -20°C until slides were made.   

 

2.2 RNA EVALUATION 

RNA was evaluated for concentration, purity and integrity by spectrophotometry and 

gel electrophoresis. All glassware used for the preparation of RNA buffers and 

solutions was baked at 200°C for 2 hours prior to use. 

 

2.2.1 Spectrophotometry 

A one in ten dilution was made of each RNA sample to be read by the GeneQuant Pro 

(Amersham Biosciences). Readings were taken at absorbancies of 280ηm and 260ηm. 

These readings were done to check the purity and concentration of the samples 

respectively.  

 

2.2.2 Gel electrophoresis 

Running a 1% denaturing agarose gel (Appendix B) checked the integrity of the RNA. 

1µl of RNA was loaded with a drop of 5X RNA loading dye (Appendix B).  
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2.3 FLUORESCENCE IN SITU HYBRIDISATION (FISH) 

2.3.1 Probe design and production 

Bacterial artificial chromosomes (BACs) 

The bacterial artificial chromosome is based on the Fertility plasmid of bacteria. This 

cloning vector is an artificial, self -replicating chromosome, which can accept an insert 

of about 300kb (Klug and Cummings, 2000). The vector carries an antibiotic resistance 

marker allowing for the selection of those clones carrying the insert. E. Coli serves as 

the host cells for the generation of BAC clones. The BAC clones chosen for this project 

are demonstrated in figure 1 (Obtained from BACPAC resource centre, Children’s 

Hospital Oakland Research Institute, CA, USA). BAC 240 C07 lies centromeric to the 

FHIT locus and BAC 201J24 covers the region centromeric of exon 6 to within intron 8 

(Fig.1). These two probes together are quite distant from each other on the chromosome 

allowing for the detection of breaks, which may occur in a large region including the 

regions of highest fragility. 

 

Culturing of BACs 

200ml of BAC growth medium, LB top agar (Appendix C), was aliquoted into 

autoclaved flasks. 20µg/ml of chloramphenicol (Sigma®) was added to the growth 

medium. 5ml of the 200ml volume was aliquoted into Nunc® tubes for inoculation 

with BACs from frozen glycerol stock cultures (Appendix C). The inoculated medium 

was incubated at 37˚C, orbiting at 200rpm for 2-6 hours. When the medium was turbid, 

the cultures were transferred to the flasks containing 195ml of medium. If they were not 

turbid they were left overnight. The 200ml cultures were incubated at 37˚C, orbiting at 

180rpm overnight. 
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Figure 1. Schematic representation of the FHIT gene, indicating the position of the FRA3B fragile site and BACs used. The positions of the exons are indicated as well 

as the regions of highest instability (pink bars).  Figure adapted from Corbin et al (2002). 
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BAC DNA extraction 

The cultures were harvested by aliquoting them into 50ml Nunc® tubes and 

centrifuging at 5000 rpm for 15 minutes. DNA extraction was done using the Qiagen® 

Plasmid Purification Kit. Utilisation of the QIAfilter™ Plasmid Midi procedure 

resulted in very pure, protein and RNA free insert DNA with no chromosomal DNA. 

The protocol for the kit was strictly followed. The lysate is cleared through the 

Qiagen®-tip 100. Plasmid DNA is bound to the anion- exchange resin, while RNA, 

proteins and other impurities are removed by low salt washing. The high salt buffers 

then elute the DNA. The DNA is precipitated to remove the salt by adding isopropanol 

and centrifuging at 12000xg for 30 minutes at 4˚C. Washing with 70% ethanol 

followed and then centrifugation at 12000xg for 10 minutes at 4˚C. The pellets were air 

dried and re-suspended in an appropriate volume of 1X TE buffer (Appendix C) for the 

size of the DNA pellet. 

 

Estimation of DNA yields 

The concentration and purity of DNA extracted needs to be clarified for the efficient 

labelling of DNA in probe production. This was achieved by agarose gel 

electrophoresis. The spectrophotometer was found to be inaccurate for BAC DNA 

estimation, the readings given, were 2 fold that given by estimation by gel 

electrophoresis and so the latter was used instead. 

 

To estimate concentration of DNA, the sample DNA was compared to a control DNA 

with known concentration. Lambda DNA (Sigma) was diluted to a 1/10 dilution, which 

was approximately 25ng/µl of DNA. 1µl of BAC DNA was loaded into a 2% agarose 
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gel (Appendix C) along with 25ng, 50ng and 100ng of Lambda DNA. The gel was run 

for 10 minutes at 100V. The electrophoresis tank contained 1X TAE buffer (Appendix 

C) in which the agarose had also been dissolved. DNA integrity could be determined by 

the presence of a band of DNA or a smear, in which case the DNA would be degraded.  

  

Labelling of BAC DNA 

The BAC DNA was directly labelled using the nick translation method. This method 

involves the nicking of the two DNA strands by DNase I and the 5’ to 3’ exonuclease 

activity of DNA polymerase removes nucleotides from the point of the nick and 

incorporates labelled nucleotides by its 5’ to 3’ endonuclease activity (Horton et al, 

1996). BAC240C07 was labelled with SpectrumOrange-dUTP (Vysis Inc.) and 

BAC201J24 was labelled with SpectrumGreen-dUTP (Vysis Inc). 

 

The reaction was made up to a final volume of 100µl, which consisted of final 

concentrations of 1x nick translation buffer (Appendix C), 0.01M β-mercaptoethanol 

(BDH), 0.8X nucleotide stock, which contained the fluorescent nucleotides. The 

fluorescent nucleotides were kept in a 50:50 ratio to thymine nucleotides to minimise 

steric hindrance (Appendix C).  210u/ml of DNA Polymerase (Promega), 1µl of a 

0.48µl/1000µl dilution of DNase I solution (Appendix C) for BAC240C07 and 1µl of a 

0.40µl/1000µl dilution for BAC201J24, 2µg/100µl of DNA. The reaction was incubated 

at 15˚C for 2 hours in the Eppendorf Mastercycler. The optimum probe size is 200-

500bp for efficient penetration of the nucleus and hybridisation. The probe size and 

fluorescence incorporation was evaluated by 2% gel electrophoresis. 
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The probe was purified to remove unincorporated nucleotides by co-precipitation with 

20µg of Cot1-Human DNA (Roche). 1/10 volumes of 3M-sodium acetate and 2, 5 

volumes of ice-cold 100% ethanol were used to precipitate the labelled DNA by 

incubating at -70°C for 30 minutes and centrifuging at 13000xg for 30 minutes. The 

precipitated DNA was then washed in 70% ethanol to remove salts by centrifuging at 

13000xg for 10 minutes. The probes were air dried and re-suspended in hybridisation 

buffer (Appendix C), usually 100ng of DNA per 10µl of hybridisation buffer.  

 

2.3.2 Sample preparation 

Cell lines as well as blood cultures were prepared for FISH in the same manner. Cell 

pellets were washed by changing fixative at least six times by centrifugation at 

6000rpm for 2 minutes and removal of the supernatant. The cells were re-suspended in 

fresh fixative each time. These washing steps ensure the sufficient removal of 

impurities and loosen the cytoplasm for more efficient spreading of the chromosomes. 

Glass slides were then washed in methanol, rinsed in distilled water and wiped with 

paper towel. The slides were dipped in distilled water before dropping the cells onto the 

slide using a fine glass pipette and steaming for the appropriate time to obtain sufficient 

spreading of metaphase chromosomes. Passing them through 70, 90 and 100% ethanol 

respectively for 5 minutes each dehydrated the slides. The slides were aged overnight 

before using them for FISH. For long-term use they were stored at -70°C with silica gel 

crystals. However it was preferred to use freshly made slides aged overnight. 
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The slides for the UWOV2 cell line were stored slides from the previous study done on 

this particular cell line. Slides had been stored at -70°C. These slides were dehydrated 

in 70, 90 and 100% ethanol for 5 minutes each before hybridisation. 

 

2.3.3 Hybridisation 

FHIT break apart rearrangement 

100ng of each of the probes BAC201J24 and BAC240C07 were denatured at 96˚C for 

7 minutes and then pre-annealed by incubating at 37˚C for 30 minutes. Pre-annealing 

allows the COT1 human DNA to bind repetitive sequences so that the probe will bind 

specifically. The Cep 3 Alpha SpectrumOrange probe (Vysis Inc.) was denatured for 5 

minutes at 76˚C. The recommended amount of probe was used according to the 

manufacturer’s instructions. The probe for FHIT was then added to Cep 3 Alpha and 

mixed before adding to the slide. 

 

EGFR gene amplification 

The LSI EGFR SO/CEP 7 SG probe from Vysis Incorporated was used according to the 

manufacturer’s instruction.   

 

Samples and washing 

The slides were denatured at 76˚C for 5 minutes and then dehydrated in ice-cold 70, 90 

and 100% ethanol for 5 minutes each. The slides were air-dried and the probes were 

applied to the slide. Hybridisation was overnight or at least 15 hours at 37˚C. Washing 

was done at 42˚C, three washes in 50% formamide (Appendix C) for 10 minutes each, 

one wash in 2X SSC (Appendix C) for 10 minutes and one wash in 2X SSC with 
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Tween® 20 (Appendix C) for 5 minutes. The slides were then stained in DAPI 

(Appendix C) for 15 minutes and washed in DAPI wash solution (Appendix C) for 2 

minutes. The slides were mounted with Vectashield (Vecta Laboratories) and a 

coverslip. The slides were analysed by fluorescent microscope and all images were 

captured using the Genus™ CytoVision 3.0 program from Applied Imaging.  

 

2.4 REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION (RT-

PCR). 

The OneStep RT-PCR kit (Qiagen®) was used for all the PCR reactions done. In a 

twenty microlitre final volume, the PCR reaction consisted of the following final 

concentrations, 1X reaction buffer, 0.4mM dNTPs, 0.8µl enzyme mixture and 0.5ρmol 

forward and reverse primers (Table 4), 500ng-1µg of RNA. Cycling was done on the 

Eppendorf Mastercycler. Blanks were always included to exclude the presence of 

artefacts. PCR products were resolved on 2% agarose gels containing ethidium bromide 

(Appendix C). Primers are summarised in table 3. 

 

2.4.1 GAPDH  

The reaction was performed with the following cycles, 50°C for 30 minutes, 95°C for 

15 minutes, then 35 cycles each of 95°C for 1minute, 56°C for 1 minute, 72°C for 1 

minute and a final extension at 72°C for 7 minutes.  
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2.4.2 FHIT full transcript 

The reaction was performed with the following cycles, 50°C for 30 minutes, 95°C for 

15 minutes, then 35 cycles each of 95°C for 1minute, 62, 5°C for 1 minute and 30 

seconds, 68°C for 3 minutes and a final extension at 68°C for 7 minutes. This longer 

extension time at a lower temperature allowed the extension of the large product while 

the high annealing temperature prevented the formation of spurious bands. 

 

2.4.3 Exon 5  

The reaction was performed with the following cycles, 50°C for 30 minutes, 95°C for 

15 minutes, then 35 cycles each of 95°C for 1minute, 60°C for 1 minute, 72°C for 1 

minute and a final extension at 72°C for 7 minutes.  

 

2.4.4 WWOX full transcript 

The reaction was performed with the following cycles, 50°C for 30 minutes, 95°C for 

15 minutes, then 35 cycles each of 95°C for 1minute, 66°C for 1 minute, 72°C for 1 

minute and a final extension at 72°C for 7 minutes.  
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Table 3. Primer sequences 

GENE  PRIMERS BINDING REFERENCE MANUFACTURER 

GAPDH 

(589bp) 

F 5’ CCC TTC ATT GAC CTC AAC TAC ATG 3’ 

R 5’ CAT GCC AGT GAG CTT CCC GTT CAG 3’ 

   Unknown Genosys

FHIT 

(987bp) 

 

F 5’ 5’ CTT TTT GCC CTC TGT TCC CG 3’ 

R 5’ TGC CTG TCT GAG CCG TTT AGG TC 3’ 

Exon 1 

Exon 10  

Fang et al 2001 MWG Biotech (F) 

Genosys (R) 

EXON 5 

(100bp) 
 

F 5’ ATG TCG TTC AGA TTT GGC C 3’ 

R 5’ CTG GTA CCA CAG GTT TCC TA 3’ 
 

Exon 5 

Exon5 

Fang et al 2001 MWG Biotech 

 

WWOX 

(983bp) 

F 5’ GAG TTC CTG AGC GAG TGG A 3’ 

R5’ GCT CGT TGG AGA AGA GGA T 3’ 

Exon 1 

Exon 9 

Designed in this 

study 

Inqaba Biotec 
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2.5 MULTICOLOUR FLUORESCENCE IN SITU HYBRIDISATION (M-FISH) 

M-FISH was performed using the SpectraVysion™ Assay (Vysis®). The protocol was 

changed very slightly from the manufacturer’s instructions. The pre-treatment buffers 

and wash buffers were made fresh each time instead of making larger volumes and 

storing them as they were found to go off very quickly. 20X SSC (Appendix C), 10X 

PBS and 1M MgCl2 was prepared and stored for up to 6 months. 

 

2.5.1 Sample preparation 

Metaphase slides were prepared fresh, the day before hybridisation to achieve the best 

results. Slides were cleaned with methanol and then with distilled water and dried. A 

few drops of the cell pellets, which had been washed 10 times in fresh fixative, were 

dropped onto slides previously dipped in distilled water and then steamed for an 

appropriate amount of time to adequately spread the metaphase chromosomes. The 

slides were dehydrated in 70, 90 and 100% ethanol for 5 minutes each. The slides were 

aged overnight. Metaphase quality is very important for this technique to work. Slides 

were selected by chromosome colour, spreading and that no cytoplasm should be 

present. Metaphase chromosomes must not overlap and should be grey in colour. 

 

2.5.2 Enzymatic pre-treatment 

20µl of 500µg/ml DNase-free RNase (Roche) was diluted in 80µl of 2X SSC 

(Appendix C). The 100µl of RNase solution was added to the slide and incubated in a 

moist chamber at 37°C for 30 minutes. The slides were washed in 2X SSC twice for 5 

minutes at room temperature. The slides were treated with the pepsin according to 

manufacturer’s instructions for strictly 5 minutes and then washed twice in 1X PBS 
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(Appendix C) for 5 minutes. Fixation was done in formaldehyde according to the 

manufacturer’s instructions; this was done for a strict 2 minutes before washing twice 

in 1X PBS for 5 minutes. The slides were then dehydrated in 70, 90 and 100% ethanol 

for 3 minutes each and air-dried.  

 

2.5.3 Hybridisation 

The probe was pre-warmed at 37°C for 5 minutes and then vigorously vortexed for 

about 1 minute to ensure that all SpectrumFRed probe was re suspended. This step was 

very important for even hybridisation. It was then spun down briefly before aliquoting 

10µl per slide. The probe was denatured at 72°C for 5 minutes. The slides had already 

been denatured at 72°C for 2 minutes and dehydrated in ice-cold 70, 90 and 100% 

ethanol for 5 minutes each. The probe was applied to the appropriate area and incubated 

overnight for at least 18 hours at 37°C in a moist chamber. 

 

2.5.4 Post hybridisation washing 

The slides were washed in 0,4XSSC with 0,3% Tween® 20 (Appendix C) at 72°C by 

agitating the slides for 30 seconds and allowing to stand for 2 minutes. The second 

wash was in 2XSSC with 0, 1% Tween® 20 (Appendix C) at room temperature. The 

slides were agitated for a few seconds and then washed for 30 seconds. The slides were 

air-dried before applying Vectashield (Vecta Laboratories) containing DAPI for M-

FISH (Appendix C). A cover slip was applied. The slides were analysed using the 

Applied Imaging program, Genus™ CytoVision 3.0. Six single band pass filters were 

used to visualise each of the fluorophores, which are listed in Table 4. The software 

allows the capture of each of the six images and a composite image comprising of the 
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computerised pseudo-colours for each of the chromosomes. 10 metaphases were 

analysed per cell line.  

 

Table 4. List of the M-FISH fluorophores and their spectra. 

PROBE EXCITATION PEAK EMISSION PEAK 

SpectrumFRed probes 655nm 675nm 

SpectrumRed probes 592nm 612nm 

SpectrumGold probes 530nm 555nm 

SpectrumGreen 

probes 

497nm 524nm 

SpectrumAqua probes 433nm 480nm 

DAPI 367nm 452nm 
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CHAPTER THREE – RESULTS FOR ANALYSIS OF FHIT LOCUS 

INTEGRITY AND FHIT AND WWOX GENE EXPRESSION 

 

3.1 Fluorescence in situ hybridisation (FISH) for FHIT locus integrity  

3.1.1 Introduction 

FISH is a powerful tool in detecting genetic or chromosomal alterations or 

rearrangements in cancer and has had the highest impact in molecular cytogenetics 

(Popescu, 2000). FISH is most powerful with its ability to couple cytological and 

molecular information directly. With the production of specific oligonucleotide probes 

with incorporated labelled nucleotides, the sensitivity of FISH has been brought to the 

intragenic level. Almost any chromosomal rearrangement, regardless of its complexity 

could be resolved (Popescu, 2000). FISH can overcome the limitation of PCR in LOH 

studies since abnormalities may be analysed on a cell-to-cell basis. 

 

FISH was performed on metaphase cells from the 5 cell lines in order to corroborate 

results obtained on interphase nuclei (Brown & Stafne, 2002, unpublished honours 

work) to that of the metaphases for the integrity of the FHIT locus. The BAC201J24 

and BAC240C07 were used in combination as a break apart probe. Breaks occurring 

between exons one to eight would be detected.  The Cep3 alpha probe (Vysis Inc.) was 

added to this experiment to determine chromosome three copy number.  
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3.1.2 FISH Results regarding FHIT locus integrity 

In normal interphase cells, no break apart signals were detected (Figure 2A and B), 

while break apart of FHIT was found in 20% and 18% of the interphase cells in 

WHCO6 and SNO respectively (during the previous honours project). Figure 3A 

shows the break apart of the probe system in WHCO6 and figure 3B shows a possible 

break or deletion in SNO where one derivative is lost. Table 5 shows the FISH results 

on interphase cells (study previously done: Brown & Stafne, Honours thesis).  

 

In this study, FISH was performed on metaphases of the 5 cell lines. 100 metaphases 

were analysed per cell line. Results are summarised in Table 6.  The FHIT locus was 

analysed in relation to the number of cep3 signals seen in each metaphase. In the 

normal control, two copies of cep3 and two copies of FHIT were seen in 91% of cells 

(Figure 4A) thus the ratio of FHIT to Cep3 is 1. The positive control had two cep3 

signals and two to four break apart signals for FHIT in 100% of the cells, showing that 

the probe design was detecting the break apart of the FHIT locus resulting from a 

translocation within this locus in the UWOV2 cell line (Figure 4B). WHCO1 had 

consistent results for metaphase and interphase analysis. No rearrangement of the 

FHIT locus was detected, there was a double amount of cep3 signals to FHIT signals, 

the FHIT/cep3 ratio is thus 0.5, most likely due to unbalanced rearrangements of 

chromosome three (Figure 5A). In 5% of cells, deletion of FHIT was evidenced with 

two or more cep3 signals and one FHIT signal. FISH on the metaphases of WHCO3 

showed that the FHIT locus was intact and in normal copy number (FHIT/cep3 ratio is 

1). However one copy of FHIT was found to be translocated to another chromosome in 

98% of these cells shown in Figure 5B; this translocation does not seem to involve the 
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FHIT locus as defined by the present probe system. Within this 98% of cells, 5% had a 

partial duplication of the other FHIT locus (Figure 6B). WHCO5 metaphase analysis 

showed four to six cep3 signals and two to four FHIT signals; the Fhit/Cep3 ratio 

being 0,5 showing that FHIT signals relative to the cep3 copy number were once again 

in reduced amount (Figure 7A).   

 

WHCO6 showed no rearrangement of FHIT but three cep3 signals were seen and two 

FHIT signals giving an average FHIT/Cep3 ratio of 0.6. This could be a deletion of 

FHIT relative to chromosome three copy number (Figure 7B). 6% deletion of FHIT 

was detected, where there was normal cep3 copy number and one FHIT signal only. A 

full deletion of one allele of FHIT was defined when the chromosome three 

centromeric probe was present in normal amount (2 signals) and only one FHIT signal 

was present. This was the case for SNO, which has a ratio of 0.4 (Figure 8). Relative 

loss of FHIT signals was however observed in WHCO1, WHCO5 and WHCO6 

wherever the FHIT/Cep3 ratio is less than one.  
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Table 5. Table of Fluorescence in situ hybridisation results on interphase cells. 

 

Slide      Normal Split Extra

red 

Extra 

gree

n 

Full 

Deleti

on 

Other* Average

copies 

of FHIT 

Negative 

control 

91%       0% 0% 0% 2% 7% 2

WHCO1        87% 2% 0% 0% 2% 9% 2

WHCO3        96% 2% 0% 0% 0% 2% 2

WHCO5        91% 1% 0% 3% 0% 5% 3-5

WHCO6        71% 9% 11% 3% 4% 2% 2-4

SNO        67% 5% 13% 2% 5% 8% 2

UWOV2 

Positive 

Control 

0% 100% 3%    0% 6% 9% 2-4

copies 

*Other refers to missing red or green signals, which were not significantly different from the controls 
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Table 6. Fluorescence in situ hybridisation results on metaphase cells 

 
 Slide   Centromeric 3

copy number 

FHIT copy 

number 

FHIT signal 

not with 

Cep 3 

Split FHIT 

Deletion 

Other FHIT to Cep3 

ratio 

Negative 

control 

2 signals 2 signals= 

92% 

0%    0% 2% 0% 1

UWOV2 

Positive 

control 

2 signals 2-4 signals N/A 100% 0% 0% 1 

WHCO1 4- 8 signals 2-4 signals = 

86% 

0%     1% 5% 0% 0,5

WHCO3 2 signals 2 signals = 

98% 

98% 1%    0% 5% 1

WHCO5 4-6 signals  2-4 signals= 

100% 

0%     0% 0% 0% 0,5

WHCO6 3 signals  2 signals = 

80% 

 

0%    0% 6% 0% 0,6

SNO 3-5 signals 2-3signals = 

50% 

 

0%    0% 50% 0% 0,4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Other refers to duplication in WHCO3. 
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B A 

Figure 2. Fluorescence in situ hybridisation results from negative control. A Interphase cell showing the slight separation of BAC 240C07 (red) 
and BAC 201J24 (green) due to the chromatin being less compacted. B Metaphase showing the close position of the probes, BAC 240C07 (red) 
and BAC 201J24 (green). 
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Figure 3. A WHCO6 interphase showing the break apart of BAC201J24 (green) and BAC240C07 (red) i.e. the split of both copies of the FHIT 
gene in one cell and one copy in another cell. B SNO showing two normal copies of FHIT with an extra red (BAC240C07), the derivative 
containing BAC201J24 (green) is likely to have been lost. These images are from the honours study (J Brown, A Stafne, 2002). 

  

A B 
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Figure 4. A Normal control showing cep3 probe fluorescing red with normal FHIT fluorescing yellow (white arrows). B UWOV2 cell line showing 
translocation of BAC201J24 fluorescing green (white arrows), cep3 (red arrows) with BAC240J24 fluorescing red (green arrows) and two extra cep3 
signals (red arrows).  
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Figure 5. A WHCO1 metaphase with two cep3 signals (red fluorescence) with FHIT fluorescing yellow (white arrows) and two extra cep3 signals 
fluorescing red (red arrows). B WHCO3 metaphase with one chromosome three with FHIT (white arrow), translocated FHIT gene fluorescing 
yellow (yellow arrow) and the other chromosome three cep3 (red arrow). 

  

  BA
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Figure 6. A WHCO3 metaphase with one copy of FHIT fluorescing yellow on another chromosome (yellow arrow), BAC201J24 (green fluorescence) translocated (green 
arrow) and BAC240C07 (red fluorescence with cep3 (white arrow) and chromosome three (red arrow). B WHCO3 with FHIT (yellow arrow) on another chromosome, 
partial duplication of FHIT (white arrow) on chromosome three and the other chromosome three (red arrow). 
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  BA

Figure 7. A WHCO5 metaphase with four cep3 fluorescing red with FHIT fluorescing yellow (white arrows) and three extra cep3 signals (red arrows). B 
WHCO6 metaphase, with three cep3 signals (red arrow) and two FHIT fluorescing yellow (white arrows). 
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 Figure 8. SNO metaphase with four cep3 signals (red arrows) and one with 

FHIT   fluorescing yellow (white arrow). 
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3.2 RT-PCR results for FHIT and WWOX 
 
3.2.1 Introduction 

RT-PCR was performed on the cell lines and two controls. This allowed analysis of 

expression of the FHIT and WWOX genes. Aberrant, non-functional transcripts or 

alternatively sliced products would also be detected. A housekeeping gene, GAPDH 

(glyceraldehydes-3-phosphate dehydrogenase) was amplified as a control to verify 

mRNA integrity. RT-PCR was compared for sensitivity in detection of FHIT gene 

aberrations with FISH. Primers for the full FHIT transcript were those described by 

Fang et al (2001). RT-PCR was also performed for the detection of expression of exon 

5 of the FHIT gene using primers designed by Fang et al (2001). Primers for the 

WWOX full transcript were designed using the Primer3 program 

(http://flypush.imgen.bem.tmc.edu/primer/primer3_www.cyi).  

 

3.2.2 Results 

RNA isolation 
 

The RNA extraction from the cell lines was successful. The RNA was found to be 

intact (Figure 9) and in good concentration after gel electrophoresis and 

spectrophotometer readings. The spectrophotometer readings can be seen in table 7. 
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Table 7. Table of RNA concentration and purity 

SAMPLE CONCENTRATION PURITY (260/280 

RATIO) 

C1 198,8ng/µl 1,972 

C2 171,2ng/µl 2,11 

WHCO1 273,2ng/µl 1,876 

WHCO3 476,8ng/µl 1,98 

WHCO5 509,6ng/µl 2,042 

WHCO6 609,2ng/µl 1,94 

SNO 608,8ng/µl 2,008 

 

 

 

 

 

 

 

 

Figure 9. Denaturing gel showing the integrity of the RNA for the 

control sample (C1) and all five cell lines. The 28S, 18S and 5S 

RNAs can be seen.  
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GAPDH RT-PCR 

The five cell lines and two controls had GAPDH amplification confirming that the 

mRNA was intact. (Figure 10). 
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Figure 10. 2% agarose gel showing results for GAPDH RT-PCR, red arrow 

indicates the GAPDH product at 589bp. 
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FHIT RT-PCR 

Normal FHIT transcripts were detected in WHCO1 and WHCO3, however all cell 

lines appear to have down-regulation of the gene in comparison to a normal control, 

this would have to be confirmed by semi-quantitative PCR. Aberrant transcripts were 

detected repeatedly in WHCO1, WHCO5, WHCO6 and SNO (See Fig 11). 
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Figure 11. 2% Agarose gel showing expression of FHIT in one control and the five 

cell lines. An aberrant transcript is seen in WHCO1, WHCO5 and WHCO6 show 

abnormal transcripts only and SNO has two major abnormal transcripts indicated by 

the 1 and 2, these two bands and bands for WHCO1, WHCO5 and WHCO6 were 

extracted for sequencing. 

 

 

Exon 5 RT-PCR 

WHC01, WHC03, WHC05 and WHC06 all have exon 5 expression although 

expression appears to be significantly down regulated, while SNO appears to have lost 

exon 5 (Fig 12).  
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Figure 12. 2% agarose gel showing exon 5 expression by the 
controls and what appears to be lowered expression in WHCO1, 
WHCO3, WHCO5 and WHCO6. SNO has almost no exon 5 
expression. 

 
WWOX RT-PCR 

The expression of WWOX was found to be normal in all the cell lines (Fig 13). It even 

appears that WWOX is being expressed at an increased level in comparison with the 

controls. 
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Figure 13. 2% agarose gel showing expression of WWOX. The 

controls expression seems to be lower as compared with the cell 

lines. 
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3.3 Discussion  

3.3.1 FHIT locus integrity 

It can be concluded from this probe system used for analysis of FHIT locus integrity, 

that in the five cell lines, the FHIT locus was not broken apart by rearrangement except 

in 1% of cells for WHCO1 and WHCO3. This 1% may reiterate the instability of the 

FRA3B region and the susceptibility of FHIT to rearrangement because FISH has a 

high specificity and sensitivity in detecting translocations, especially with break apart 

probes (Gozzetti and Le Beau, 2000). However, the current probe system does not 

span the entire locus and perhaps using a different combination of probes; specifically 

a BAC beyond exon 10 instead of BAC 201J24, more rearrangements, such as internal 

deletions, may be detected. 

 

SNO displayed a consistent deletion of one copy of the FHIT gene as opposed to the 

break apart seen in this line in the previous interphase analysis. This discrepancy may 

be due to the different cell passages used in these two separate studies, the deletion may 

have evolved through passage.  

 

The translocation that was seen in WHCO3 did not affect the FHIT gene but clearly the 

locus was very involved and this shows the instability of the FRA3B region and this 

may have an effect on the down-regulation of expression of the gene in these cells as 

seen in the RT-PCR results. 

 

There was a definite hypo representation of the FHIT loci in relation to cep3 and 

overall ploidy of the cells. This could be representing a deletion of the gene and may 
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have a bearing on growth selection in these cells. The M-FISH results later in the study 

revealed that chromosome three was involved in a number of translocations. The 

particular arms of chromosome three which are involved in these events should be 

elucidated and this may answer the question of FHIT representation as compared with 

the chromosome three copy number.  

 

3.3.2 FHIT and WWOX expression 

FHIT expression appeared to be down regulated in all the oesophageal cancer cell lines 

in comparison to the controls, however this can only be confirmed by semi-quantitative 

RT-PCR (relative quantification). In brief, semi- quantitative RT-PCR refers to the use 

of real time PCR (continuous monitoring of a fluorescent reporter for example, SYBR 

green). It relates the PCR signal of the gene in question in a test sample to that of the 

signal in a control sample, which is compared in turn to that of a housekeeping gene in 

the test and control samples (Kenneth & Schmittgen, 2001).  

 

The expression of FHIT is found to be higher in epithelial tissues (Croce et al, 1999) 

and white blood cells were used as controls, so for true comparison of expression a 

semi-quantitative RT-PCR using normal epithelial cells as controls would be more 

accurate in determining the level of expression. WHCO5 and WHCO6 had transcripts, 

which were smaller than the expected size indicating that they may have non-functional 

fhit protein or may be alternatively spliced. SNO had two major aberrant transcripts and 

did not express exon 5 indicating that SNO more than likely does not have functional 

fhit protein as Exon 5 is most commonly deleted and is the first coding exon (Druck et 

al, 1997). Deletion of this exon results in non-functional fhit protein. Band number 2 
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(Figure11) was cloned and sequenced and the first 120bp showed homology to the 

FHIT wild type mRNA sequence indicating that this aberrant transcript is an FHIT 

transcript (data not shown as sequencing of all the transcripts is still incomplete). 

WHCO1 had one aberrant transcript, which could be an alternatively spliced mRNA or 

mRNA giving rise to non-functional fhit protein. Exon 5 expression seemed to be 

diminished in the other cell lines as well. (This deletion of exon 5 has been confirmed 

in a parallel study using MLPA in the process of publication, Willem et al, 2004). 

 

WWOX was not lost or decreased in these cell lines. They do appear to express WWOX 

at higher levels than the controls, but the implications of this are not known. One 

explanation could be, that possibly like FHIT, WWOX may be expressed at higher 

levels in epithelial tissues than white blood cells and this is being seen in these RT-PCR 

results. This would be verified by semi-quantitative RT-PCR.  
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CHAPTER FOUR – M-FISH ANALYSIS AND ANALYSIS OF 

EGFR DNA COPY NUMBER 

4.1. M-FISH 

4.1.1  Introduction 

M-FISH is a technique used to identify all structural abnormalities of chromosomes 

(Gunawan, 2001; Heng, 2004). It is powerful in the detection of translocations and 

insertions where conventional cytogenetics can only identify 70% of this type of 

abnormality specifically in complex karyotypes typically associated with cancer cell 

lines. For example translocations involving more than two chromosomes. This 

technique will help identify primary and secondary abnormalities and identification of 

loci, which may be involved in tumour development and progression (Gunawan, 2001). 

 

The SpectraVysion Assay (Vysis Inc.) is a 52-probe mixture labelled with five 

fluorophores. The probes are labelled in a combinatorial format where one probe is 

labelled with a combination of two or three fluorophores giving each chromosome a 

distinct colour when analysed using an imaging system. The five fluorophores used are 

SpectrumRed, SpectrumGreen, SpectrumGold, SpectrumFarRed and SpectrumAqua 

(Vysis Inc.) and then counterstained with DAPI. These fluorophores are visualised 

using six single-band pass filters. Cross talk between filters must be kept to a minimum 

to prevent inaccurate results. The Genus™ program from Applied Imaging puts the five 

images captured into a composite image of pseudocolours. The metaphases are 

karyotyped automatically by chromosome size and colour. Abnormalities are analysed 

by using the fluoromap. Although this is a commercially available kit, the technique is 

difficult technically in terms of sample preparation as well as image acquisition and 
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analysis. Metaphases have to be of exceptional quality, chromosome length, colour and 

spreading are very important for the technique to work. The capture of metaphase 

images is very time consuming and the analysis of these images for abnormalities is 

also exceptionally time consuming. 

 

This technique was used to analyse genome integrity and identify possible marker 

chromosomes, which are common between the cell lines. These marker chromosomes 

could be involved in carcinogenesis of oesophageal cancer and may help identify 

genomic regions, which should be further analysed in oesophageal cancer. 

 

4.1.2 RESULTS 

The M-FISH results for each of the cell lines gave complex karyotypes, highlighting a 

number of structural abnormalities. Composite karyotypes representing the common 

abnormalities of ten cells for each of the cell lines are summarised in table 8. A 

common translocation between chromosomes one and three was found in WHCO5 and 

SNO (highlighted in red) (Figure16). A translocation involving chromosomes 3 and 22 

are common to WHCO3 and WHCO5 (Figure 15 and 16) as well. A trisomy 21 was 

common to WHC01, WHOC3 and WHCO6 (highlighted in blue). Translocations 

involving chromosomes 11, 13 and 22 seem to be common as well (highlighted in 

purple). WHCO5 is highly polyploid. It is also noted that chromosome 3 is highly 

involved specifically in SNO and so are chromosomes 9 and 12. 
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Table 8. Table of M-FISH results. Composite karyotypes of recurring 

abnormalities in 10 cells analysed per cell line. 

Oesophageal 

cancer cell 

line 

M-FISH analysis 

WHCO1 Trisomy 1, 2 and 3, t(5;19), t(6;12), t(6;13), t(7;18), 50% 

trisomy 12, t(1;14), t(7;14), t(15;19), t(5;19), aneuploidy 20, 

t(19;21), t(8;22), XXY 

WHCO3 t(1 ;11;15), trisomy 2, t(5;8), t(8;9;20), t(7;9;16;18), trisomy 

12, t(6;12), t(13;14;20), t(9 ;13;20), trisomy 14, t(15;22), 

t(11;15 ;22), trisomy 17, t(13;21), t(3;16;22), X 

WHCO5 t(1;3), t(1;19), t(2;9), t(3;22), t(5;19), t(9;19), t(9;14), t(2;11), 

t(3; 11 ;13;22), t(8;14;18), t(7;15), t(15;Y), t(2;19), t(3; 11;22), 

t(4;10;22;X), XY 

WHCO6 t(1;18), t(5;10), aneuploidy 7, t(9;15), t(10;14), trisomy 12, 

t(17;19), monosomy 21, t(6;22) , YY  

SNO t(1;3), t(1;16), t(2;X), t(1;2), t(3;20), t(3;12), t(3;9), t(1;5), del 

6, t(2;8;7;11 ;20), t(3;7), t(2;8), t(9;16), t(3;10), t(10;22), 

t(4;11), t(11;13;22), t(12;21), t(2;11;13), t(14;22), t(14;19), 

t(12;15), t(6;17), t(8;18), monosomy18, t(5;19), trisomy 20, 

t(20;21), t(14;22), t(15;y)  del X, XXY 

Note: This table represents the consistent aberrations from 10 cells analysed for each 

cell line. Thus it is not exhaustive in describing translocations occurring in these cell 

lines. 
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A

B

Figure 14. A M-FISH on a normal female control. B M-FISH on WHCO1 showing the remarkable 
t(6;13), t(6;12), tri 12, t(1;14), t(5;19). Note that this image is the most representative karyotype out of 
10 cells.   
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A

Figure 15. A WHCO3 with t(1;15), t(5;8), t(8;9), trisomy 12, t(9;20;13), t(11 ;15 ;22), trisomy 17, t(13;21). B 
WHCO6 with t(1;18), t(5;10), aneuploidy 7, t(9;15), t(10;14), trisomy 12, t(17;19), monosomy 21, t(6;22), YY. 
Note that this image is the most representative karyotype out of 10 cells.  
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A

Figure 16. A WHCO5 with (1;3), t(1;19), t(2;9), t(3;22), t(5;19), t(9;19), t(9;14), t(2;11), 
t(3;11;13 ;22), t(8;14 ;18), t(7;15), t(2;19), t(3;11;22), t(4;10 ;22;X). B SNO with t(1;3), t(1;16), t(2;X), 
t(1;2), t(3;20), t(3;12), t(3;9), t(1;5), del 6, t(2;7;8;11;20), t(3;7), t(2;8), t(9;16), t(3;10), t(10;22), 
t(4;11), t(11;13;22), t(12;21), t(2;11;13), t(14;22), t(14;19), t(12;15), t(16;17), t(5;19), t(20;21), t(15;y), 
del X.  Note that these images are the most representative karyotype out of 10 cells. Note the common 
t(1;3) marker of WHCO5 and SNO. 
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4.2 Analysis of EGFR gene amplification 

4.2.1 Introduction 

FISH was also performed on the cell lines for analysis of the epidermal growth factor 

receptor (EGFR) gene on chromosome seven. This gene is commonly over expressed 

in oesophageal carcinomas (Metzger et al, 2004) and in WHCO1, WHCO3 and SNO 

(Veale et al, 1989). The use of this probe (LSI EGFR SO/CEP7, Vysis Inc.) would 

help establish if the over expression is as a result of gene amplification in these cell 

lines. The probe is a combination of a probe for EGFR gene and a centromeric 7 

probe; Cep 7 acts as a control for chromosome 7 copy number to establish true gene 

amplification as opposed to aneuploidy. The results are summarised in Table 9. 

 

4.2.2 FISH results for EGFR gene amplification 

100 interphase cells were analysed for each cell line as well as 10 metaphases. 

WHCO1 showed aneuploidy for chromosome seven; approximately 5 to ten signals for 

both the centromeric probe and EGFR were seen in 100% of the cells (Figure 17A). 

That means that the EGFR/cep7 ratio is 1. In the metaphases of WHCO1 one could see 

that chromosome 7 copies were not all normal as reflected by their size (Figure 17B). 

WHCO3 had three copies of both chromosomes seven and the EGFR gene 

(EGFR/cep7 ratio is 1), seen in metaphase and interphase cells (Figure 18). The 

remaining cells had two or four copies. WHCO5 also has chromosome 7 aneuploidy so 

the EGFR/cep7 ratio is 1, with 4-7 centromeric seven and EGFR signals seen in 100% 

of cells (Figure 19A). Metaphases also showed that there are derivative chromosome 

seven copies (Figure 19B). WHCO6 had 3% of cells with an amplification of the 

EGFR gene. Two of these cells had mild amplification with the EGFR/cep7 ratio being 
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approximately 4 (Figure 20A) and one cell showed high amplification with the 

EGFR/cep7 ratio being approximately 6 (Figure 20B). However this is not significant, 

as 97% of the cells analysed had an EGFR/Cep7 ratio of 1 and no amplification was 

found in the metaphase cells analysed (Figure 21A and B). SNO had a significant 14% 

of cells showing mild to high amplification of EGFR where the EGFR/cep7 ratio was 

approximately 6 (Figure 22A). In three out of 10 metaphases analysed, the 

amplification could be seen down the length of the chromosome suggesting the 

formation of a homogenously staining region (HSR) (Figure 22B) the other seven 

metaphases all had a partial amplification (Figure 23). It was noted that the cells 

showing amplification were smaller in size. The remaining 86% of cells had 

aneuploidy with 5-8 signals for each probe.  

 

Table 9. Summary of EGFR FISH results 

OC Cell 

line 

Chromosome 7 copy 

number 

EGFR gene 

amplificatio

n 

EGFR/Cep3 

ratio 

WHCO1 100% aneuploidy (5-10 

copies 

0% 1 

WHCO3 100% aneuploidy (3-4 

copies 

0% 1 

WHCO5 100% aneuploidy (4-7 

copies 

0% 1 

WHCO6 97% aneuploidy (5-7 

copies 

3% 1 

SNO 86% aneuploidy (5-8 

copies 

14% high 

amplificatio

n 

6 in the 

14%  
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Figure 17. A Interphase cell from WHCO1 showing aneuploidy for chromosome seven, centromeric seven fluorescing green and EGFR gene fluorescing 

red. B Metaphase cell from WHCO1 showing multiple chromosome 7 copies. 
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Figure 18. A Interphase cell from WHCO3 showing three copies of chromosome seven (green fluorescence) and three copies of EGFR gene (fluorescing 

red). B Metaphase cell from WHCO3 showing the three copies of chromosome seven and the EGFR gene. 
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Figure 19. A Interphase cells in WHCO5 showing aneuploidy for chromosome 7. B Metaphase cell for WHCO5 showing chromosome 7 and derivatives 

of 7 (centromeric 7 fluorescing green and EGFR gene fluorescing red).  

  

 BA
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Figure 20. A WHCO6 interphase cell with mild amplification of the EGFR gene (Red fluorescence) where there is not quite more than twice the amount 

of red signals to green (centromeric 7). B WHCO6 interphase cell with high amplification of the EGFR gene. 
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Figure 21. A WHCO6 interphase cell showing aneuploidy for chromosome 7(centromeric 7 fluorescing green, EGFR fluorescing red). B WHCO6 

metaphase cell with aneuploidy of chromosome 7. 
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BA 

Figure 22. A Interphase cell from SNO with amplification of EGFR, red signals are more than twice the green (centromeric 7). B Metaphase showing 
the amplification of the EGFR gene (red signals) down the length of chromosome 7, the amplification unit seems to include the centromere (green 
signals), with the centromeric signal in triplicate along the chromosome. 
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Figure 23. SNO, metaphase showing aneuploidy for chromosome 7 (centromeric 7 fluorescing 

green and EGFR fluorescing red) and partial amplification on one chromosome (red arrow) and a 

neighbouring interphase cell showing amplification of EGFR fluorescing red (white arrow).
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4.3 Discussion 

4.3.1 What is shown by M-FISH? 

The common chromosomes involved in translocations in all of the cell lines were 

chromosomes 3, 8, 9, 12, 11, 13 and 22. This may correlate with some of the known 

affected genes in OC such as myc on 8q24, cyclin D1 on 11q13 and p16 on 9p21. 

Chromosomes 11 and 13 both have key oncogenes, cyclin D1 and the Retinoblastoma 

gene is on chromosome 13q14. Chromosome three was often involved in translocation 

and it would be valuable to map these translocations, specifically the t(1;3) common to 

WHCO5 and SNO, chromosome 3q gains may be important as 3q hosts the PK13CA 

and hTR oncogenes so it would be valuable to further investigate these loci. 

Chromosome 3q gains and 3p losses have been detected in OC samples by CGH 

(comparative genomic hybridisation), loss of 3p correlated with a poor prognosis 

(Kwong et al, 2004).  

 

Chromosome 12 was often involved in the form of trisomy, there is CGH data 

suggesting involvement of chromosome 12p gains in oesophageal cancer progression 

and it may indicate a poor outcome (Kwong et al, 2004). It may be interesting to further 

define which parts of chromosome 12 are involved. Chromosome one was almost 

always involved in translocation, translocations were occurring in WHCO1, WHCO3, 

WHCO5, WHCO6 and SNO with various different partner chromosomes. Losses on 1p 

and gains in 1q have been detected by CGH; however there did not seem to be a 

correlation with clinical stage or disease progression (Kwong et al, 2004; Shiomi et al, 

2003). Some of these breakpoints may be worthwhile analysing in greater detail. 

Chromosome 9 is highly involved in translocations and an important gene in the 
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literature, which may be involved in OC, is p16 located on 9p. The chromosome 7 

marker in SNO tied in with EGFR amplification unit seen in the FISH results for EGFR 

amplification. As far as the FRA3B and the FRA16D loci are concerned, chromosome 

three rearrangements were common and definitely could be involving this fragile site. 

Chromosome 16 did not display many rearrangements at all and does not seem to be 

displaying fragility of this region in keeping with WWOX expression seen in this study. 

 

Our focus on characterising chromosomal rearrangements in this study was driven by 

the importance of detecting translocations in malignancies as these rearrangements pin 

point critical genes involved in the pathogenesis of malignancies. This is demonstrated 

in Ewing’s Sarcoma, characterised by the t(11;22)(q24;q12) involving the  FLI1 gene. 

This translocation is found in 80-90% of these tumours (Stegmaier et al, 2004). It is 

also demonstrated in the haematological malignancy, Chronic Myeloid Leukaemia, 

which is caused by the t(9;22) resulting in the BCR/ABL fusion transcript. These 

translocations activate oncogenic pathways, which propagates the malignancy. If key 

rearrangements could be detected in more malignancies such as OC perhaps more 

effective diagnostics and treatments may be developed. 

 

No solid conclusions can be drawn from these complex results, however the results are 

useful as they have highlighted some genomic regions, which may be involved in OC 

and further support the rationale to further map and identify breakpoints. Further 

analysis will be made using various other techniques to establish what some of these 

abnormalities may mean; specifically the t(1;3) and t(3;22) breakpoints, which may 
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harbour a gene or genes at play in OC like the t(11;22) in Ewings sarcoma. Whether 

these events are primary or secondary abnormalities needs to be elucidated.  

 

4.3.2 EGFR over expression 

The over expression of the EGFR gene in WHCO1 and WHCO3 was not due to gene 

amplification. WHCO5 and WHCO6 did not show EGFR gene amplification either but 

SNO had amplification of the EGFR gene and this is likely to be paralleled by over 

expression of EGFR. DNA amplification of this region by itself did not seem to 

provide a selective growth advantage since they were in a small percentage, however it 

would be interesting to observe percentages in later passages. Over expression of 

EGFR in WHCO1, WHCO3, WHCO5 and WHCO6 had to be due to up-regulation of 

transcription by other mechanisms. It is still important to establish whether EGFR is 

over expressed in tumours as it is often associated with a poor prognosis (Khalil et al, 

2003). With the development of the monoclonal antibodies directed at blocking these 

receptors as well as tyrosine kinase inhibitors targeting EGFR, this could be a 

promising factor for targeted therapy and assist in selecting therapy for patients with 

oesophageal cancer if over expression is detected. These results indicate that over 

expression of EGFR in OC may not always be due to gene amplification and in terms 

of diagnostic testing, EGFR over expression must be established perhaps not by FISH 

for EGFR amplification but other techniques such as immunohistochemistry for the 

detection of the EGFR protein.  
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CHAPTER FIVE – GENERAL DISCUSSION 

5.1 Gene integrity within fragile sites and their role in oesophageal cancer 

The cell lines WHCO1, WHCO3, WHCO6 and SNO were near diploid, extra Cep3 

signals were seen with the BAC probes due to unbalanced rearrangements of 

chromosome three as evidenced by M-FISH. FHIT deletion status in SNO was 

evaluated relative to the near diploid status of the cell line, one copy of the gene was 

deleted and this was considered a full deletion of FHIT since two or more cep3 signals 

were detected. The FISH results for the remaining cell lines did not show deletions 

occurring within the locus with the probe system used in this study. However intragenic 

deletions are likely to be occurring in WHCO1, WHCO5 and WHCO6 where RT-PCR 

detected aberrant transcripts. This suggests that this particular probe combination is not 

sensitive in detecting all FHIT alterations but is still useful for the detection of 

translocations. Other BAC combinations may enable the detection of intragenic 

deletions, which may have escaped the BAC probe system used in these FISH 

experiments.  

 

The translocation of chromosome three p near the FHIT locus in WHCO3 and the 1% 

break apart signals detected in WHCO1 and WHCO3 show that there is definite 

instability in the FRA3B region. The under representation of FHIT signals relative to 

the cep3 signals may still be indicative of hemizygous deletion equivalent and the 

lowered expression detected by RT-PCR may have biological consequences such as a 

growth advantage to these cells. This hypothesis has been supported by the finding that 

hemizygous deletion of FHIT results in a loss or reduction of Fhit protein expression in 

numerous human cancers (Ishii et al, 2001b).  
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The M-FISH results showed that chromosome three was involved in unbalanced 

rearrangements. Seen in conjunction with the FISH results, this suggests chromosome 

3p or 3q unbalanced representation. In future studies, specific chromosome arm paints 

for 3p and 3q respectively, will determine which arm is present in these unbalanced 

rearrangements and will clarify whether this correlates with the under representation of 

FHIT, detected by FISH or if the FHIT locus is deleted by itself. Determining which 

chromosome three arm is involved in rearrangement and further mapping of 

translocation break points will also clarify the involvement of FRA3B, even where the 

FHIT locus is not affected, since the FRA3B site extends beyond the FHIT locus 

(Becker et al, 2002). 

 

RT-PCR proved to be more sensitive than FISH, with the current probe design, in 

detecting FHIT alterations and three out of the five cell lines showed definite aberrant 

transcripts, WHCO5 and WHCO6 both expressed smaller products. SNO expressed a 

number of aberrant transcripts and did not express exon five, which is the most 

commonly deleted exon and is required for functional protein synthesis. SNO was thus 

expressing a non-functional Fhit protein.  

 

The RT-PCR results also appeared to show down-regulation of the gene in comparison 

with controls, however this would have to be validated by a semi-quantitative RT-PCR 

comparing with controls having the exact starting RNA amount or by real time PCR 

using an external standard.  
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These cell lines all expressed WWOX and M-FISH did not reveal any significant 

rearrangements involving chromosome 16 indicating little involvement of this gene and 

the FRA16D site in these cell lines. WWOX could still be investigated in fresh tumour 

specimens due to the limitations of using cell lines for analysis of cancer. 

 

 It is thus concluded that these combined FISH and RT-PCR results showed that there 

might be a role for FHIT in the pathogenesis of oesophageal cancer in South Africa. 

Four of the five cell lines showed altered expression of FHIT. The limitations and draw 

backs of using cell lines for the analysis of cancer, such as the acquired changes 

occurring in cell culture, requires that this study be carried over to fresh tumour 

specimens to establish a definite role for FHIT in OC initiation or progression.  

Investigation of FHIT expression is under way in fresh tumour specimens.  

 

5.2 M-FISH and EGFR gene amplification 

The M-FISH has highlighted some chromosomal rearrangements, which are common to 

the five cell lines; these chromosomal rearrangements are worth looking at in more detail 

and may pinpoint genes, which are involved in OC development. Specifically the t(1;3) 

was common to WHCO5 and SNO as well as another translocation involving 

chromosomes 3 and 22 common to WHCO3 and WHCO5. These two common markers 

are very interesting, and the breakpoints on chromosome 1, 3 and 22 will be further 

investigated. The high involvement of chromosome 9 is also worth investigating as it was 

rearranged in four of the five cell lines (Summary in table 10). This study, being the first 

M-FISH study on OC cell lines in SA, has therefore highlighted some genomic regions, 

which should be analysed more intensively and should be examined in future studies on 
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fresh OC tumour specimens. The interesting marker chromosome 7, showing a triplicate 

banded pattern, detected in SNO was found to be an amplification unit involving the 

EGFR locus as well as chromosome seven centromere. The over expression of EGFR has 

been detected in SCC of the oesophagus in various studies. Chromosomal gains have also 

been shown using cDNA microarray techniques in the 7p12.13 region where the EGFR 

gene is situated (Metzger, 2004). A previous study on WHCO1, WHCO3 and SNO used 

ligand-binding assays to determine the number of EGFR receptors on the cell surface and 

showed that all these cell lines had over expression of this receptor (Veale, 1989). The 

EGFR gene was only amplified in SNO, the other cell lines had aneuploidy of 

chromosome seven and there seems to be unbalanced rearrangements of chromosome 

seven when analysing the M-FISH results. Mechanisms other than gene amplification 

might be responsible for EGFR over expression. These results show that other tests 

should be considered to assess EGFR over expression in OC, specifically if it is used in 

order to determine prognosis and treatment options for patients with OC in the future. 
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    WHCO1 WHCO3 WHCO5 WHCO6 SNO

FHIT LOCUS Deleted with respect 

to chr 3 copy number: 

FHIT/Cep3 ratio 0,5 

Translocated and 

FHIT/Cep3 ratio of 1. 

Deleted with respect 

to chr 3 copy number: 

FHIT/Cep3 ratio 0,5 

Deleted with respect 

to chr 3 copy number: 

FHIT/Cep3 ratio 0,6 

Deleted: FHIT/Cep3 ratio 0,4 

FHIT EXPRESSION  Normal and Aberrant 

transcript detected  

Normal Aberrant transcript

only 

 Aberrant transcript 

only 

Aberrant transcripts 

WWOX 

EXPRESSION 

Normal     Normal Normal Normal Normal

M-FISH common

abnormalities 

 Trisomy 12 Trisomy 12 

t(11;22), t(8;9;20), 

t(7;9;16;18), 

t(9;13;20), t(3;16;22),  

 

t(1;3)  

t(2;9), t(9;19), t(9;14) 

t(3;11;13;22) 

t(3;11;22) 

 

Trisomy 12 

t(9;15) 

t(1:3) 

t(3;9) 

t(11;13;22) 

EGFR 

AMPLIFICATION 

Aneuploidy 7 

EGFR/Cep7 ratio of 1 

Aneuploidy 7 

EGFR/Cep7 ratio of 1 

Aneuploidy 7 

EGFR/Cep7 ratio of 1 

Aneuploidy 7 

EGFR/Cep7 ratio of 1 

Amplification 

EGFR/Cep7 ratio of 6 

Table 10. Summary of results for FISH, RT-PCR and M-FISH. Important common abnormalities are highlighted 



 

6. APPENDICES 
 

APPENDIX A 

 

Cell culture buffers 

Complete medium 

500ml RPMI 1640 medium (Sigma®) 

10% 50ml Foetal Calf Serum (Sigma®) 

1% Streptomycin-Penicillin (Highveld Biological)  

 

PHA (Phytohemagglutinin) Stock 

1mg PHA 

1ml of SABAX water 

Store at 4°C for one month 

 

Methotrexate (MXT) Stock solution 

0,1ml of MXT Lederle IV (Wyeth SA) (25mg/ml) 

9,9ml of SABAX water 

Store at 4°C 

 

Methotrexate working solution 

1ml of stock solution  

9ml SABAX water 

Store at -20°C 
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Thymidine Stock solution 

4,8mg Thymidine (Sigma®) 

10ml sterile medium 

 

Thymidine working solution (100x dilution) 

1ml thymidine stock solution 

99ml medium 

 

0,075M KCl 

2,8g KCl (BDH) 

500ml distilled water 

Incubate at 37°C 

 

Fixative 

3 parts methanol 

1 part glacial acetic acid (Merck® Laboratory Supplies) 

Keep ice-cold  
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APPENDIX B 

RNA buffers 

10X FA buffer 

200mM 3-[N-morpholino] propanesulfonic acid (MOPS) (Free Acid) 

50mM sodium acetate 

10mM EDTA 

pH 7 with NaOH 

Using DEPC water 

 

1X FA buffer 

100ml 10X FA buffer 

900ml DEPC water 

 

DEPC water 

0,1ml DEPC (Diethyl pyrocarbonate, Sigma®)/ 100ml water 

Shake vigorously 

Incubate at 37°C for 12hours 

Autoclave to remove DEPC 
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1% Denaturing agarose gel 

0,51g Agarose (Whitehead Scientific) 

50ml 1X FA buffer 

0,54ml of 37% Formaldehyde (Merck® Laboratory supplies) 

0,5µl Ethidium bromide 

 

5X RNA loading dye 

16 saturated aqueous bromophenol blue 

80 500mM EDTA pH 8 

720 37% formaldehyde 

2ml 100% glycerol 

3084 formamide 

4ml 10X FA gel buffer 

RNase-free water up to 10ml 
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APPENDIX C 

LB top agar – per litre 

10g Bacto® tryptone (DIFCO) 

5g Bacto® yeast extract (DIFCO) 

5g AAR® NaCl (SMM Instruments) 

Autoclave 

 

Frozen Stock cultures 

Glycerol solution 

65% Glycerol (vol/vol) (Merck® Laboratory Supplies) 

0.1M MgSO₄ (Merck® Laboratory Supplies) 

0.025M Tris.Cl, pH 8 (Merck® Laboratory Supplies) 

 
TE (Tris/EDTA) buffer 

10mM Tris HCl, pH 7,4 (Merck® Laboratory Supplies) 

1mM EDTA, pH 8,0 (Merck® Laboratory Supplies) 

 

2% Agarose gel 

2g multi purpose agarose (GIBCO®) 

100ml 1x TAE buffer 

1µl Ethidium bromide 

Heat until clear 

Pours 3 gels 

 

Bromophenol blue loading dye 

 
0.1% Bromophenol Blue (Merck® Laboratory Supplies) 

0.1M EDTA (Merck® Laboratory Supplies) 

50% Glycerol 

Make up volume with distilled water. 
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1xTAE buffer 

40mM Tris-acetate (pH 7.6) (Merck® Laboratory Supplies) 

1mM Na₂EDTA (Merck® Laboratory Supplies) 
 

10X Nick translation buffer  

0,5M Tris-HCl pH8.0 (Merck® Laboratory Supplies) 

50mM MgCl₂ (Merck® Laboratory Supplies) 

0,5mg/ml Bovine Serum Albumin (Boerhinger Mannheim) 

 

0,1M β-mercaptoethanol 

0.1ml β-mercaptoethanol (BDH) 

14,4ml double-distilled water 

 

10x nucleotide stock - SpectrumOrange 

0.5mM dATP (Boerhinger Mannheim) 

0.5mM dGTP (Boerhinger Mannheim) 

0.5mM dCTP (Boerhinger Mannheim) 

0.25mM dTTP (Boerhinger Mannheim) 

0.25mM SpectrumOrange d-UTP (Vysis Inc.) 

 

10x nucleotide stock – SpectrumGreen 

0.5mM dATP (Boerhinger Mannheim) 

0.5mM dGTP (Boerhinger Mannheim)  

0.5mM dCTP (Boerhinger Mannheim) 

0.25mM dTTP (Boerhinger Mannheim) 

0.25mM SpectrumGreen d-UTP (Vysis Inc) 
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DNase I solution 

3mg DNase I (Boehringer Mannheim) 

0.5ml of 0.3M NaCl 

0.5ml glycerol 

Store at -20˚C 

 

Hybridisation buffer 

50% deionised formamide (Appendix C) (Saarchem) 

2x SSC 

10% dextran sulphate (Sigma®) 

50mM sodium dihydrogen orthophosphate (Saarchem) 

pH to 7,0 with disodium hydrogen orthophosphate (Saarchem) 

Store at -20˚C 

 

Hybridisation solutions 

 

Denaturing buffer 

35ml deionised formamide (Saarchem) 

5ml phosphate buffer 

5ml 20x SSC 

5ml distilled water 

pH to 7 with concentrated HCl 

 

Deionised formamide 

1 spatula full Analytical grade mixed bed resin AG 50-X8 (BioRad®) for every 100ml 

formamide (Saarchem) 

Place on stirrer for 2 hrs 

Filter with Whatman® No1 filter paper 

Store at 4ºC 
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Phosphate buffer 

Solution A: KH₂PO₄ (Saarchem) – 4,5g per 500ml, pH to 4,51 

Solution B: Na₂HPO₄, 2H₂O (Saarchem) – 5,94g per 500ml, pH to 8,97 

For 100ml add 41,3ml solution A and 58,7ml solution B 

PH to 7.0 

Autoclave 

  
 
 

Wash buffers 
 
50% formamide 

20ml 20x SSC 

80ml distilled water 

100 ml formamide 

pH to 7 with HCl 

 
 
20x SSC 
 
3M NaCl (SMM Chemicals) 

0.3M sodium citrate (SMM Chemicals) 

Adjust to pH 7.0 with concentrated HCl 

Autoclave and store at room temperature 

 

2X SSC with tween 

2X SSC 
0.05% Tween® 20 (Merck Laboratory Supplies) 
 

DAPI (4’, 6-diamino-2-phenylindole) stock solution 

0,2mg/ml DAPI (Serva) 

2x SSC 
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DAPI working solution 

100 ml 2x SSC 

100µl DAPI (0.2µg/ml) 

 

DAPI wash solution 

2x SSC: 5ml 20x SSC in 50ml 

25µl Tween® 20 (Merck Laboratory Supplies) in 50ml 

 

M-FISH buffers 

2X SSC 

10ml 20X SSC pH 7.0 

90ml distilled water 

 

10X PBS 

80g NaCl 

2g KCl 

14,4g Na2PO4 

2,4g KH2PO4 

800ml distilled water 

pH to 7,4 with HCl 

Adjust to 1litre 

 

1X PBS 

20ml 10X PBS 

180ml distilled water 
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0.4X SSC/0.3% tween 

1ml 20X SSC pH 7 

47,5ml distilled water 

150µl Tween® 20 (Merck Laboratory Supplies) 

Make sure pH is 7 and then adjust to 50ml 

 

2X SSC/0.1% tween 

5ml 20X SSC 

42,5ml distilled water 

50µl Tween® 20 (Merck Laboratory Supplies) 

 Make sure pH is 7 and adjust to 50ml 

 

Vectashield with DAPI 

42ng DAPI per ml of Vectashield (Vecta Laboratories) 
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