THE CROSS-TRAINING EFFECT BETWEEN SWIMMING AND RUNNING

Georgia Mandilas

```
P research report submitted to the Faculty of Health Sciences,
    liversity of the Witwatersrand, in partial fulfilment of the
                                requirements for the degree
                            of
    Master of Science in Medicine (Exercise Science)
```


DECLARAT ION

I, Georgia Mandilas declare that this research report is my own work, except to the extent indicated in the acknowledgements. It is being submitted for the degree of Master in Science in Medicine in the field of Exercise Science, University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.
G.mandilas

$3^{\text {nd }}$
day of
April 1997

TABLE OF CONTENTS

Page
LIST OF FIGURES (i)
LIST OF TABLES (i)
ACKNOWLEDGEMENTS (iii)
ABSTRACT (iv)
CHAPTER 1: LITERATURE REVIEW 1
1.1 INTRODUCTIDN 1
1.2 PHYSIOLOGICAL RESPONSES COMPARED IN
SWIMMING AND RUNNING1
1.2.1 Physiological responses during submaximal work 2
1.2.2 Physiological responses during maximalwork3
1.2.3 Reasons for the differences in physiological responses during running and swimming 4
1.3 Differences in muscle morphology between swimmers and runners
1.3.1 Muscle fiber types 7
1.3.2 Muscle fiber proportions in swimming and running 7
1.3.3 Muscle morphology and the concept of cross-training
1.4 EFFECTS OF LONG-DISTANCE TYPE TRAINING IN ONE MODE OF ACTIVITY ON PERFORMANCE IN ANOTHER MODE OF ACTIVITY 10
1.4.1 Training specificity and multi-mode athletes 13
1.4.2 Methodological problems in the research area of training specificity and cross-training 14
1.4.3 Training mode and $V O_{z}$ max test specificity 16
1.4.3.1 Training mode and mode of $V O_{2}$ max. test 16
1.4.3.2 Reasons for contradictory evidence in the field of specificity of $V O=m a x . t e s t i n g$ 19
1.4.3.3 Changes in performance versus changes in $V O_{2} \max$. 22
1.4.3.4 The relevance of $V D_{\text {a }}$ max. 23
1.5 THE EFFECTS OF SHORT-DISTANCE (INTERVAL) TYPE TRAINING IN ONE MODE OF ACTIVITY ON PERFORMANCE IN ANOTHER MODE OF ACTIUITY 24
1.6 RESEARCH EVIDENCE ALLUDING TO A CROSS-TRAINING EFFECT 28
1.6.1 The interplay between peripheral and central adaptations: an explanation for a cross-training effect 30
1.7 CONCLUSION 36
1.8 FUTURE RESEARCH RECOMMENDATIONS 36
CHAPTER 2: INTRODUCTION 38
CHAPTER 3: METHODS 41
3.1 Subjects 41
3.2 Procedures 42
3.2.1 Testing 42
3.2.1.1 Running economy 42
3.2.1.2 VO= max 42
3.2.1.3 Wingate anaerobic power 43
3.2.1.4 Dynamometry 43
3.2.1.5 Swimming and running performance
responses 44
3.2.2 The training program 45
3.3 STATISTICAL ANALYSIS 48
CHAPTER 4: RESULTS 49
4.1 Swimming 49
4.1.1 Physiological changes (shoulder dynamometry) 49
4.1.2 Performance changes (swim time-trials) 50
4.2 Running 51
4.2.1 Physiological changes 51
4.2.1.1 $V O_{=}$max and running economy 51
4.2.1.2 Knee Dynamometry 52
4.2.1.3 The Wingate test 53
4.2.2 Performance changes 54
4.2.2.1 Run time trials 54
CHAPTER S: DISCUSSION 56
S.1 Swimming 56
5.2 Running 56
CHAPTER 6: CONCLUSION 64
REFERENCES 65

LIST OF FIGURES

Figure Page
1 Pre- and post-training 100m swim times 50
2 Pre- and post-training 200m swim times 51
3 Pre- and post-training 400m run times 54
4 Pre- and post-training 800m run times 55
LIST OF TABLES
TablePage
1 Physical profile of subjects 42
2 Testing order of swim and run time trials 45
3 Description of the 12 week, swimming training program 47
4 Mean (\pm SD) values for shoulder flexionisokinetic tests495 Mean (\pm SD) values for shoulder extensionisokinetic tests50
6 Mean (\pm SD) values for weight, VO $=$ max. and running economy before and after swim training 52
7 Mean (\pm SD) values for knee flexion isokinetic tests 52
8 Mean (\pm SD) values for knee extension isokinetic tests 53
9 Summary of the Wingate test results before and after swim training 53
10 Summary of repeated-measures Analysis of variance on run and swim performance measures 55

ACKNOWLEDGEMENTS

Many thanks to my supervisor, Professor G. Rogers, for all his guidance and support, and for all the knowledge I gained during the research period.

Thank you to the Johannesburg Civic Centre, Cardiac Rehabilitation unit; and to the Witwatersrand Technikon Biokinetics centre for the use of their AKRON isokinetic machine.

Thank you also to my friend, D. Aggliotti, for all her computer expertise and for the use of her computer during the research period.

Finally, a major thank you to the Health and Racquet Club Group and to Cecil Grigst for the use of their facilities during the training period.

ABSTRACT

This investigation examined the cross- training effect of swim
training on middle distance running performance. Eight,
healthy, untrained subjects (mean age \pm SD $=24.63 \pm 2.77$ yrs)
participated in a 12 week swim training program. Before and
immediately following the training period, measurements were
made of: maximal oxygen consumption (voz max.) (treadmill);
anaerobic capacity (wingate test); knee and shoulder muscle
strength (isokinetic dynamometer); loom and $200 m$ swim time-
trials; and $400 m a n d ~$
$V O=$ max. increased from a mean of $42.06 \pm 5.1 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$. to $45.39 \pm 5.05 \mathrm{ml} / \mathrm{kg} / \mathrm{min} .(8.13 \% ; \mathrm{p}<0.005)$. The $100 \mathrm{~m}, 200 \mathrm{~m}$ swim times and the 400 m , 800 m run times improved significantly in response to the swimming training (p< O.OOO1).
Dynamometry showed significant increases in power and work
during knee flexion at an angular velocity of bo ofsec; knee
extension at 245 s/sec; and during shoulder flexion and
extension at 195 and 245 s/sec. The Wingate test however, did
not show any changes after the training period.

```
A cross-training effect by swim training on running performance was attained among the untrained, non- competitive swimmers of this study. While mode of activity was non- specific, a training response was attained by keeping the intensity and volume of the swim training specific to middle distance run training.
```


CHAPTER 1

LITERATURE REVIEW

1.1) INTRODUCTION

Crosstraining has been defined as deriving benefits in the performance of one mode of activity, through training done in another mode of activity (Claussen et al, 1973; Saltin et al, 1976). One has to expand this definition when considering the disciplines of biathlons and triathlons. Crosstraining in the context of these activities, becomes a question of establishing the ideal amounts of training in each of the two or three sport modes for optimising performance and minimising the occurance of overuse injuries (0'Toole et al, 1989).

1.2) PHYSIOLOGICAL RESPONSES COMPARED IN SWIMMING AND RUNNING

Differences in some physiological responses during swimming as compared to running, may explain the existence or absence of a cross-training effect between swimming and running. Thus, this literature review will begin by briefly investigating this topic.

```
1.2.1 Physialogical responses during submaximal work
```

During submaximal work oxygen consumption, cardiac output, stroke volume, heart rate, minute ventilation, and arteriovenous oxygen difference were similar im swimming and in running (Holmer et al, 1972a, 1974a). Only mean blood pressure was constantly higher during submaximal swimming when compared to submaximal running.

Dn the basis of these findings, Holmer et al (1974a) concluded that the cardiorespiratory system responded to increased workloads in a similar pattern during both swimming and running.

Reilly et al (1990) also reported that central cardiovascular responses to a stepwise increment in swimming intensity were similar to observations during land ergometry.

This occured in spite of dissimilar posture, respiratory mechanics, external hydrostatic pressure, and heat dissipation between the two sport modes.

Contrary to the above, Magel (1971) found submaximal heart rate to be lower during swimming than during running. This finding suggested that the use of a heart rate- voz relation determined on dry land exercises was invalid for prediction of energy expenditure in water.

```
1.2.2 Physiological responses during maximal work
During maximal work though, oxygen consumption; cardiac
output; heart rate; ventilation and arterio-venous oxygen
difference were consistently lower in swimming (Holmer et al,
1972a, 1974a; Magel & Foglia, 1975; Gergley et al, 1984;
Svedenhag & Seger, 1992).
```

Some research however, has shown maximal oxygen consumption (VOz max.) during swimming to be similar to $V O_{2}$ max. during running. This will be debated further in an ensuing section of this literature review.

Maximal swimming stroke volume has been found to be similar to maximal running stroke volume. Also, blood lactate and oxygen extraction values from circulating blood in exercising leg have been found to be the same for maximal swimming and running (Holmer et al, 1974a).
 maximal swimming and running have been found to be approximately the same. Also, oxygen capacity and oxygen content of arterial blood were similar during both swimming and running (Holmer et al, 1974a).

```
In addition, Holmer et al (1974a) found that calculated dead
space was lower and alveolar ventilation was higher during
both submaximal and maximal swimming when compared to running.
On the basis of the above findings, Holmer et al (1974a)
concluded that during maximal swimming gas exchange is
sufficient to maintain an oxygenation of arterial blood
similar to that observed during maximal running.
```

Maximal respiratory exchange ratios (R) values were the same
for running and swimming. The R value at a given submaximal
workload was lower during running than during swimming.
(Holmer et al, 1974a).

One needs to consider though, that only five subjects were used in the Holmer et al (1974a) study. In addition, the subjects entered the study with a higher degree of prior running training compared to swimming training. This may have influenced the individual hemodynamic responses to maximal work.

```
1.2.3 Reasons for the differences in physiological responses
during swimming and running
```

```
According to the research of Stemberg et al (1967) and Gergley
et al (1984), a reason for the differences in maximal VO= ;
cardiac output; and heart rate between swimming and running
may be the smaller working muscle mass involved in swimming as
compared to running.
```

Svedenhag et al (1992) suggested that the lower maximal heart rate found in swimming may be due to an increase in heart volumes that occured in swimming when compared to running.

The smaller muscle mass and lowered thermoregulatory demands for the skin circulation in swimming have been cited as causes of a less dilated vascular bed in swimming, which in turn would cause an increase in peripheral resistance. This could explain the higher mean blood pressure exhibited during submaximal and maximal swimming, since cardiac output remains unchanged or is lowered (Holmer et al, 1974a).

Differences in running and swimming $V O=m a x$. values have also been explained in terms of differences in perfusion pressure in working leg muscles when comparing swimming and running (Holmer et al, 1972a, 1974a). The lower perfusion during swimming may result in a reduced blood flow and oxygen transport, and thus a lower $v 0_{=}$max. (Holmer, 1972a)

```
Also, Svedenhag et al (1992) states that a longer muscular
contraction duration during maximal swimming could limit
muscle blood flow and thus result in a lower cardiac output
and consequently a lower VO= max.
```

Bonen et al (1980) have suggested that the differences in the oxidative capacities of the muscles employed during swimming and running may constitute an additional reason for the difference between treadmill and swimming $V O_{2}$ max.

1.3) Differences in muscle morphology between swimmers and runners

Peripheral adaptations to training have been shown to be specific to the type of training program utilised, and to be as essential for cardiovascular performance during exercise as any central factors (Saltin et al, 1976). The training principle of specificity is based upon the data presented by Saltin et al in 1976. It is relevant therefore, to discuss the differences between swimmers and runners at the muscular level when investigating cross-training between swimming and running.

```
1.3.1 Muscle fiber types
```

Different proportions of fast and slow twitch fibers in a
muscle dictate wether the muscle has predominantly fast or
slow contractile speeds, and determine its predominant means
of producing energy (Reilly et al, 1990).
Studies have also shown that the recruitment pattern during
exercise of increasing intensity is: Type I > Type IIa > Type
IIb; and that moderate intensity exercise can be used to train
Type II fibers- provided the duration is sufficient to deplete
glycogen in the Type I fibers that are initially used (Reilly
et al, 1990).

Furthermore, high intensity exercise seems to recruit both Type I and Type II fibers, with Type II fibers experiencing glycogen depletion more rapidly than Type I fibers (Saltin et al, 1976; Reilly et al, 1990).

```
1.3.2 Muscle fiber type proportions in swimming and running
```

When comparing swimming and running, Nygaard and Nielsen (1978) reported 40% Type I; 41% Type IIa; and 19% Type IIb fibers in swimmers.

Reilly et al (1990) cites the study of Mero et al (1983), who found that elite run sprinters had 66.2% of Type II fibers.

Interestingly, 28% of the fast twitch fibers were Type IIb and mearly 40% were Type IIa.

```
On the other hand, the research of Costill et al (1976)
indicates that middle distance runners have an even
distribution of fast and slow twitch muscle fibers.
More importantly, Maglischo (1982) suggested that sprint
swimmers should have less Type I fibres than sprint runners,
because the duration of sprint swims is longer. Distance
swimmers however, should have more Type IIa fibres than
distance runmers. The swimmers that Maglischo investigated had
30- 68% of Type I muscle fibers.
```

```
The above-mentioned research alludes to the specificity of
swimming and running training adaptations on the morphology of
muscle, yet the large range of values reported in the
literature make it difficult to draw any conclusions as to the
specificity of muscle morphology for each sport mode.
```

1.3.3 Muscle morphology and the concept of cross-training
Although no conclusions can be drawn from the above
discussions, four pertinent issues arise with regard to cross-
training and muscle morphology:

```
a) Since both Type I and Type II fibers are involved in high
intensity, middle-distance swimming and running; muscle
morphology may be a factor that could be utilised to obtain a
cross-training effect between these two activities. For
example, if training in swimming is of a sufficient intensity
and duration; and produces a muscle contraction speed to
recruit similar proportions of Type I and Type II fibers as
those recruited in running- then a cross-training effect
between swimming and running may be exhibited. The cross-
training effect though, might depend on the number of muscle
fibers common to both swimming and running actions.
```

b) The reported proportion of Type IIa muscle fibers in swimmers and the shorter middle distance running events are similar (Nygaard et al, 1978; Reilly et al, 1990). Thus, a cross-training effect between swimming and shorter middle distance running might be attained if this particular fiber type is recruited during training.
c) Different distances/ events in swimming and running recruit different muscle fiber types. For example, Type IIa fibers would be of more importance to a 200 m and 400 m runner than to a 100 m sprinter (Reilly et al, 1990).

Therefore, improvement or maintenance of 200 or 400 m run performances may not occur if swim training involves longdistances that primarily recruit Type I fibers. A crosstraining effect may however be seen if swim training involves short-distances and medium to high intensity work-bouts(since, this type of training would recruit a high proportion of Type IIa fibers).
d) An even distribution of Type I and Type II muscle fibers, (as occurs in runners of middle-distance events), may allow for the possibility of a cross-training effect between middledistance running and equivalent swimming.

1.4) EFFECTS OF LONG-DISTANCE TYPE TRAINING IN ONE MODE DF ACTIVITY ON THE PERFORMANCE IN ANOTHER MODE OF ACTIVITY

Most of the studies in the field of crosstraining have investigated long-distance duathlons and triathlons, or the effects of long-distance type training in one mode of activity on the performance of another mode of activity.

More specifically, many studies have trained a single group of subjects in one mode of exercise and then tested for training effects in two or more exercise modes (Clausen et al, 1970, 1973; McArdle et al, 1971, 1978; Davies \& Sargeant, 1975; Rasmussen et al, 1975; Saltin et al, 1976; Stromme et al, 1977; Magel et al, 1978; Wilmore et al, 1980; Gwinup, 1985).

```
The evidence of these particular studies strongly suggest a
large, specific, peripheral component to training; and support
the view that training adaptations are specific to the mode of
training.
In contrast however, some studies involving endurance- type
training programs, do show evidence of a non- specific cross-
training effect.
Pollock et al (1975) compared the effects of a running;
walking; and cycling, endurance-type training programs over 20
weeks on treadmilll; bicycle ergometer and walking voz max.
The sedentary, middle-aged subjects of this study trained at
85 - 90% of their maximal heart rate, and training intensity
was kept similar across all three training regimes. At the end
of the training period a cross-training effect was evident,
since the walking and running training groups improved
significantly in the cycling VO= max.
```

Their cycling $V O_{=}$max. values however, were lower than those of their running and walking tests. In contrast, the cycletrained group performed equally well on all three modes of testing after 20 weeks of bicycle training.

The researchers concluded that training improvements were independent of mode of training when frequency, duration and intensity of training were held constant.

In analysing the previous two studies, one needs to consider that leg strength and endurance have been shown to play an important role when performing a cycle $V D_{z}$ max. test (Faulkner et al, 1971). These two physical fitness components (i.e. local muscle strength and endurance), may thus also play an influential role with respect to attaining a cross-training effect between two modes of activity.

```
Loy et al (1995) when reviewing dissimilar modes of training,
stated that a cross-training approach will involve some
central adaptation transfer, particularly for beginners or
those with lower levels of aerobic fitness.
```

```
Loy et al though also stated that cross-training effects do
not exceed those induced by activity-specific training,
especially at higher levels of fitness.
```

```
Roberts and Morgan (1971) compared the training effects of
endurance running, cycling and swimming; and found that the
running training produced the greatest improvement. These
researchers however, used specific heart rates as a measure of
training intensity. Therefore, training loads between groups
may not have been equal due to the presence of wide individual
variations in maximal heart rate (Pollock et al, 1975). The
use of percentage of maximal heart rate as a measure of
training intensity, may have been a more valid approach.
```

1.4.1 Training specificity and multiple mode athletes
Furthermore, certain cross-sectional studies on "multiple
mode" athletes (eg. triathletes) support the concept of
training specificity.
Kohrt et al (1987a) for example, tested the tethered swimming,
ergometer cycling and treadmill running $V O_{2}$ max. of 13 male
triathletes (of varying ability levels), prior and following a
6 week period of training. These researchers found that
treadmill $V O_{=}$max values were higher than those of cycling,
which in turn were higher than swimming $V O_{2}$ max values.

```
Also, the triathletes' VO= max values in each different sport
mode were higher than recreational athletes in the particular
sport mode; but were lower than values of elite athletes in
each individual sport mode.
Kohrt et al (1987a) thus suggested that if the triathletes had
experienced a general training response, similar VO= max
values might have been expected in all three sport modes.
Therefore, it was concluded that the results of this study
indicated a specific training response.
```

This conclusion was confirmed by further research by Kohrt et al (1989), when investigating fourteen triathletes over a 10 month period, to monitor adaptations to training for a triathlon.
1.4.2 Methodological problems in the research area of training specificity and cross-training

The two preceding studies (Kohrt et al, 1987a and 1989) however, allude to certain methodological problems in the research area of training specificity and cross- training:

```
1.4.2.1) The triathletes in the studies of Kohrt et al (1987a
    and 1989) were not tested in an untrained state.
```

Thus it is difficult to accurately ascertain how these triathletes adapted to the research training period, since there already existed a prior training effect.
1.4.2.2) Differences in training volume; total energy cost of training regimen; and relative training intensity between subject training groups, may also influence results and help explain contradictory research (Pollock et al, 1975; Lieber et al, 1989).

```
In this regard, Kohrt et al (1989) mentioned that the mean
weekly training volumes (for each sport mode) reported by the
triathletes of his study, were lower than those normally seen
in athletes training only in one sport mode. Therefore, it may
have been the case that the triathletes did not achieve as
high a cycling or swimming vOz max relative to running when
compared to trained cyclists or swimmers because of
differences in training volumes.
```

Pechar et al (1974) in comparing the effects of treadmill and cycle ergometer training on treadmill and cycle ergometer $V O_{2}$ max. , also made mention of the methodological problem of training intensity.

Abstract

These researchers pointed out that although 85% of maximal heart rate was used to equate work intensity for both training groups, the general cardiorespiratory response was less during cycling than during treadmill training. This is due to the lower stroke volume that occurs during cycling (Faulkner et al, 1971). This dissimilarity between the run and cycle trained groups may have resulted in the two groups training at different intensities.


```
1.4.3 Training mode and VOI= max test specificity
Many of the studies cited above have used va= max as the
criterion measure of change. Three considerations must thus be
addressed:
```

1.4.3.1 Training mode and mode of VOF max test
Most research evidence shows higher va $=$ max values in the
specific activity an athlete is trained in, when compared to
other sport activities (Faulkner et al, 1967, 1971; Holmer et
al, 1972b, 1974a; Stromme et al, 1977; Gergleyet al, 1984;
Kohrt et al, 1987a). The research of Hermansen and Saltin
(1969); and Hermansen et al (1970) have also confirmed vo=
max. specificity to the mode of testing.

```
Findings of the above studies indicate that peripheral factors
and the recruitment of specifically trained muscles, play an
important role in the attainment of a high VO= max value.
This is supported by Magel et al (1978) who showed that
improvement in peak VO= with arm-cranking training was
entirely due to an increased (a-v)0= difference.
```

Thus, it seems that training in a particular activity elicits
the recruitment of specific muscle groups, fibers and
metabolic procesess; and unless these are totally involved
during a $V O_{玉}$ max test, attainment of an optimally high VOz max
will not be achieved.
If $V D_{2}$ max. testing is mode specific, it may be a factor
contributing to the variable results of cross-training
studies. For example, using only a treadmill $V D_{2}$ max. test to
measure the effect of a running training program on swim
performance, may "mask" any cross-training effects.

However, research exists that contradicts the training specificity for $V O_{=}$max. testing:

Magel and Faulkner (1967); and Dixon and Faulkner (1971) did not observe any differences in $V O_{z}$ max. during treadmill running and tethered swimming.

```
Astrand and Saltin (1961), found higher VOz max values in
uphill running on a treadmill than during skiing, when
investigating cross-country skiers.
```

Carey et al (1974), measured aerobic capacity in 5 Harvard Varsity crew members and found the same $V D_{z}$ max values during rowing and uphill treadmill running.

Lieber (1989), formulated the following hypothesis as a result of his research on the effects of run-training and swimtraining on treadmill $V O=$ max:

If two subject groups are trained in different exercise modes at nearly similar absolute exercise intensity that is sufficient to cause central circulation adaptatation; and then are tested in a mode that elicits sufficient central circulatory demands, training specificity for $V D_{\mathbf{z}}$ max. will not be demonstrated.

```
Holmer et al (1974b) further state that it is the intensity
and specificity of swimming training that should determine the
closeness of a trained individual's swimming and running VO=
max values.
```

```
1.4.3.2 Reasons for contradictory evidence in the field of
    specificity of VO= max testing
Researchers have cited some reasons for contradictory evidence
in the field of specificity of VOs max. testing:
```

i) $V O_{\approx} \max$ measurement protocol

The influence of different swimming and running VO max. test procedures on research results cannot be ignored- i.e. Voz max. is specific to the exercise protocol employed (Holmer 1972b, 1974b; Pechar et al, 1974; Svedenhag et al, 1992). Subjects need to be exerted to similar relative workloads in the different sport-specific voz max tests. For example, as mentioned by Stromme et al (1977), skiing on a flat, horizontal track will not exert a subject to a similar relative workload as that for running on an incline.

```
Similarly, Bishop et al (1989) found that two athletes in
their study with relatively high oxygen consumptions, were
able to achieve relatively high oxygen consumptions for both
swimming and running. These researchers suggested that this
finding indicates the feasibility of achieving the same
exercise intensity (or relative workload) in water as on land.
```

```
Furthermore, high motivation and the ability to judge exertion
from previous workouts were cited by these researchers as key
factors in achieving the same exercise intensities and
metabolic rates in water as on land.
```

In addition, the type of ergometer used in the $V O_{\mathbf{I}}$ max test
may influence the result attained. For example, a rowing
ergometer may not simulate the exact power mechanics that
occur in "free" or actual rowing (Stromme et al, 1977).
ii) Subject level of fitness

Astrand et al (1961); Ekblom and Hermansen (1968a); McArdle et al (1971); Holmer et al (1972a, 1974a); Saltin et al (1976), have all shown that swimming $v O_{2}$ max values are lower than running $V O_{2}$ max values among recreational swimmers.

```
This finding however, is not conclusively evident among
trained and elite swimmers. Faulkner (1967); Magel et al
(1967, 1975); Dixon et al (1971), found no difference between
the running and swimming voz max values of elite swimmers.
In contrast however, Holmer et al (1974b) showed that even
elite swimmers attain a slightly lower VO= max. during
swimming as compared to during running.
```

It must be noted however, that the study of Holmer
investigated middle and long distance swimmers; while the
research of Magel et al (1967) was concerned with elite,
sprint swimmers.

```
Differences between running and swimming VOz max values, seem
smaller among elite swimmers when compared to less trained or
recreational swimmers (Holmer, 1972a; Magel et al, 1975). The
inability of recreational swimmers to maintain a high venous
return during swimming, (probably due to limited blood flow
through the muscles of the arms, shoulders and chest), may be
an explanation for this finding (Magel et al, 1975). This
explanation is supported by Dixon et al (1971) who showed that
the lower VO= max. of recreational swimmers was due completely
to a lower cardiac output.
```

Another explanation involves the muscle mass used and the patterns of muscle recruitment. Clarys (1985) found that top swimmers showed a greater use of the trunkal muscles, including gluteus maximus as compared to recreational swimmers. This utilization of a greater muscle mass may be a factor allowing top swimmers to attain a higher $V O_{=}$max. in the water and thus reducing the difference between their running and swimming $v O_{z}$ max.

```
Research has also shown that non-trained individuals achieve a
higher VOz max during running than during cycling and swimming
(McArdle and Magel, 1970; Dixon et al, 1971; Holmer 1972a;
Pechar et al, 1974; Magel et al, 1975).
iii) Training effect prior to testing
Magel et al (1967), when investigating highly trained
swimmers, found higher vO= max. values during free swimming
than during running. This finding was ascribed to the
influence of the long period of swimming training between vo=
max. sessions. The research of McArdle et al (1970) and Holmer
et al (1972b) also support the concept that differences in VO=
max. values when comparing different exercise modes, may be
influenced by the subject's prior experience with the
particular form of exercise.
```

1.4.3.3 Changes in performance versus changes in $V O=\max$.
A training program may cause changes in performance, without a
concurrent increase in $V O=$ max values (Kohrt et al, 1989;
O'Toole et al, 1989; Costill et al, 1991). This may be
particularly applicable to short-distance (interval type)
training and activities, that primarily utilise oxygen-
independent energy pathways.

This notion is supported by Kohrt et al (1987a), who showed that $V D_{\text {a }}$ max. is a good predictor of endurance running or cycling (not swimming) performance, only when a heterogeneous subject group is investigated.
1.4.3.4 The relevance of $V O_{\text {a }}$ max.

This study will utilise a middle-distance training protocol. Therefore, the relevance of $v O_{2}$ max may not be as significant as it would be for a long-distance (endurance) training protocol.

Montpetit et al (1981) and Bishop et al (1989), showed a linear relationship between swimming $V O_{=}$peak and treadmill VOI peak. This may be relevant to the present study, since a) an individual with a high (or low) treadmill VO_{2} max. should have a high (or low) swimming $V O_{\text {(}}$ max; and b) a change in treadmill $V O_{\text {a }}$ max. following swimming training, would imply a change in swimming $V O_{2}$ max. in the same direction as that of the treadmill $V O_{=}$max.

1.5) THE EFFECTS OF SHORT-DISTANCE (INTERVAL) TYPE TRAINING IN ONE MODE OF ACTIVITY ON PERFORMANCE IN ANOTHER MODE OF ACTIVITY

```
There seems a lack of research evidence when one examines
the literature on the effect of short-distance (interval) type
training in one mode of activity on performance in another
mode of activity.
```

Magel et al (1975) investigated the effect of an interval swim
training program on college, recreational swimmers
during treadmill running and tethered swimming. These
researchers found that after 10 weeks of swim training, the
experimental group demonstrated significant increases in
swimming $V O_{a}$ max.; maximal ventilation; maximal swim period.
No significant improvement, however was noted in treadmill $V O_{2}$
max. These findings support the specificity of $V O_{=}$max. and
associated responses to interval swim training.
In the study by Magel et al (1975) though, maximum treadmill
run time increased after the 10 weeks of swim training. This
finding supports the concept that training in one mode of
activity can improve performance in another mode of activity,
without a concomitant increase in $V O_{=}$max.

```
Subsequent research by Magel et al (1978), confirmed their
previous results regarding the specificity of adaptations to
arm training. The research assessed the effect of 10 weeks of
interval arm training for 20 min/day, 3 days/wk, on arm
ergometer and treadmill running vO}= max. and relate
responses. Training intensities were set at 85% of each
subject's maximal heart rate as determined in the initial arm
ergometry test.
```

Following the arm training, peak VO= values for arm ergometry improved while treadmill $V O_{=}$max. values remained unchanged. These findings support the importance of peripheral factors in determining the metabolic adaptation to specific exercise training.

These researchers proposed several possible mechanisms in attempting to explain the improvement in aerobic capacity following arm training: a) increased maximal cardiac output; b) more effective distribution of the cardiac output to active muscles; $c)$ improved oxygen utilization by the trained muscles; and d) a combination of improved circulation and enhanced cellular capacity for aerobic metabolism.

However, Magel et al (1978) found an increase in max $(a-v) D_{=} d i f f$. without a change in maximal cardiac output following arm training.

```
This indicated that the improvement in aerobic capacity was
dependent more on cellular metabolic capacity.
```

On this basis, Magel et al opted for an integrated view-point when explaining improvement in aerobic capacity with specific forms of training. More specifically, these researchers stated that the improvement in aerobic capacity probably depends upon a balance between the size of the muscle mass exercised and the degree to which the training loads the central circulatory system.

The research data of Gergley et al (1984) also support the specificity of training adaptations, and suggest that local (peripheral) adaptations contribute significantly to the improvement in peak oxygen consumption. These researchers evaluated the effect of a 10 week, interval, arm- training program on the peak $V O_{=}$of tethered swimming; swim-bench swimming and treadmill running. In this study, twenty five, recreational swimmers were divided into control; swim trained (S-trained); and swim-bench pulley trained (SB-trained)
groups. The SB-trained group showed the greatest improvement
in post-training peak $V O_{=}$using the swim-bench test, followed
by the tethered swim test.

```
The S-trained group showed similar increases in swim-bench and
tethered swimming peak vO= . Both training groups though,
showed no change in treadmill peak VO=.
```

These findings indicate that arm training elicits a specific
training response. One must consider however, that only
running peak VOz was measured in the study by Gergley et al.
An improvement in other indicators of running performance may
have occured without a concomitant increase in running peak
$V O_{2}$ especially since an interval, short-distance type
training program was utilised by Gergley et al.

```
Furthermore, Clausen et al (1973) examined the central and
peripheral (local) circulatory changes after 5 weeks of
interval- type arm training as compared to interval- type,
bicycle ergometer training. This study showed specific
adaptations to both arm and leg training.
```

Clausen et al suggested that their findings reflect the
greater potential of arm muscles for local improvement; and
that central circulatory changes occur in proportion to the
amount of muscle mass used during the training. These
researchers concluded that cardiovascular adjustments
are different during exercise with small muscle groups as
compared to during exercise with large muscle groups.

1.6) RESEARCH EVIDENCE ALLUDING TO A CROSS- TRAINING EFFECT

```
Some research studies have shown evidence of cross-training
effects. Korht et al (1987b), investigated a group of
triathletes and reduced their cycling and swim training by 60%
and 72% respectively. At the end of a three month period,
running and cycling VOz max had decreased, yet swim VOz max
had been maintained. The researchers of this study used the
concept of cross-training as one possible explanation for
their results- i.e. that swimming capacity could be maintained
by non-specific training (running). The alternate explanation
given by the researchers was that a smaller volume of training
is necessary to maintain swim vo= max than that required to
maintain running and cycling VO= max.
```

A study by Lieber et al (1989) controlled for the variable
effect of absolute training volume and intensity between
subject training groups and showed evidence of a cross-
training effect. This research involved 37 sedentary males,
randomnly assigned to 3 groups: run-training, swim-training
and a control group. A treadmill $V 0_{=}$max was performed by all
subjects prior to and following an 11 week, long-distance
(endurance)-type training program.

```
Both training groups were set the same training intensity:- a
heart rate that corresponded to 75% of each individual's
maximal heart rate (as obtained during the initial VO= max
test). Therefore, training groups in the different exercise
modes, trained at the same relative intensity and absolute
volume.
```

Furthermore, the target heart rate for the swim training group was adjusted downward by 6 bt/min. This adjustment was based on the observation that face immersion with regular ventilation in water decreases the heart rate (Magel et al, 1982).

These researchers found no difference in the increase in treadmill $V O_{\text {a }}$ max between the runners and swimmers. It was thus concluded that when training intensities and volumes are kept similar between training groups of the different exercise modes, there exists support for the concept of cross-training.

The results of this study suggest that the training response may not only be influenced by training in different modes of activity; but also by training intensity, training volume, fitness levels, and muscle mass involved during training.

```
1.6.1 The interplay between peripheral and central
adaptations: an explanation for a cross-training effect
In discussing research findings, Lieber et al (1989) proposed a unique way of viewing training specificity. These researchers suggested that training specificity is a reflection of the interplay between peripheral and central adaptations. More specifically, Lieber et al stated that support for the concept of training specificity seems to occur when training elicits muscular peripheral adaptations without accompanying central (CVS) adaptations. This situation arises when a relatively small muscle mass is trained; and when the total metabolic demand during training is insufficient to cause significant CVS adaptation.
```

This viewpoint is supported by the research of Magel et al (1978) that has been previqusly discussed in this review. These researchers agree that when the effective muscle mass trained is limited, as in arm work, the improvement in aerobic capacity is largely the result of peripheral adaptations since the total metabolic demand/stress during arm work may be insufficient to cause central circulatory adaptations.

```
Therefore, it may be suggested that the arm ergometry (AR)
training in the Magel et al (1978) study, at 85% of AR maximal
heart rate (which is equivalent to 50% of running VO= max.),
was insufficient to elicit a significant central adaptation.
This suggestion is supported by the observation that 88% of
the enhanced arm ergometer VO= max. shown in the study, was
due to increased arterio-venous oxygen content difference- (an
indication of peripheral adaptations).
```

This integrated view of the interplay between peripheral and central adaptations to specific training, is also supported by the research of Ekblom et al (1968b) and Saltin et al (1976). Clausen et al (1973) added to this viewpoint by suggesting that central and peripheral adaptations may counteract each other; and that this antagonism may explain some of the conflicting research in the field of circulatory effects of training.

```
The "Lieber et al" viewpoint may be applied to the research of
Davies et al (1975). These researchers investigated the effect
of one-leg training on a bicycle ergometer, over a period of }
weeks. The following improvements in a cycling vo= max. test
were found: right leg alone: 16%
    left leg alone : 12%
    both legs together: 4%
```

```
This research thus supported the concept of training
specificity. In applying the Lieber et al viewpoint, one may
explain the results reported by Davies et al (1975) in the
following way: Since the quantity of exercising muscle mass
was small, the CVS adaptations that resulted from one- leg
training may have not been sufficient enough to cause the CVS
adaptations necessary to produce similar voz max. improvements
for two- leg exercise.
```

The study of Rathnow and Magnum (1990) was similar to that of Lieber et al (1989), since both studies accurately controlled the training intensity and volume of the different training groups in their studies. The findings of Rathnow et al though, support the concept of training specificity. The effect of a multi-modal endurance training program as opposed to a single mode training program on aerobic power, was investigated.

```
Twenty, sedentary subjects were randomnly assigned to either a
ten week multi-modal (walk/jog; cycle; arm crank) training
program or to a ten week single mode (walk/jog) training
program.
Training workloads were set (and validated by indirect
calorimetry) for all three modes of exercise, such that energy
expenditures for the single mode and multi mode groups were
equivalent. Furthermore, all subjects trained at 50-60% of
their peak VO= for each exercise mode.
```

```
After the training period, the single mode training group
showed a greater treadmill VO= peak than that of the multi-
mode training group. However, the single mode group showed no
changes in their peak VOz for cycle ergometry and arm
ergometry. There were no changes in peak VDz for all three
exercise modes, in the multi-modal training group.
```

Rathnow et al (1990) explained these findings on the basis that central responses to exercise are highly dependent upon peripheral vascular modifications, and not only on cardiac adaptations. Therefore, although total duration and intensity of the workouts in their research were theoretically sufficient to change peak $V O_{2}$, no limbs received stimuli sufficient to induce peripheral vascular adaptations. Thus, no actual changes in peak $V O=$ occured.

The contradictions in the findings of the Lieber et al (1989) and Rathnow et al (1990) studies, may be due to:

```
a) The different training intensities of the two studies.
Subjects trained at a higher intensity in the Lieber et al
study.
```

```
b) The one study compared a swim training program to a running
training program, while the other study compared a walk/jog;
cycle; arm ergometry program to a walk/jog training program.
In this context, one might consider that arm-ergometry
training involves different mechanics and muscle groups to
those involved in free swim training.
```

The research of Roberts and Alspaugh (1972) and Pechar et al (1974) support the findings of Lieber et al (1989). These studies demonstrated similar improvements in peak $V O_{2}$ with treadmill and cycle testing after a period of treadmill running training.

Rathnow et al (1990), highlight another factor present in the above two studies, that may contribute to explaining the variable results of cross-training studies - i.e. as opposed to other studies, high-speed, grade running was utilised in the training regimes of Roberts et al (1972) and Pechar et al (1974). This difference could produce variable results, because of variation in muscle groups utilized or motor unit recruitment. For example, uphill high speed running approximates cycling muscle action more than does low speed, flat grade running.

```
A cross-training effect is also evident in the research of
Eyestone et al (1993), who found that recreational runners can
maintain their running VO= max. and 2-mile run time by water
running or water cycling. The effect of the water running or
water cycling training was similar to that of regular running
training, and maintenance of VO= max. and run-time occured
regardless of fitness level. These researchers emphasized that
maintenance effects can only be achieved if the water cycling
or running are performed at an intensity, duration and
frequency equivalent to that of running training.
Hickson et al (1985) also supported the notion that the
intensity of alternative training needs to be similar to
actual running training intensity in order to maintain running
VOz max. and performance levels.
```


1.7) CONCLUSION

```
Research in the field of cross-training (especially pertaining
to short-distance type training), seems equivocal.
Comparing different research data and their conclusions
becomes difficult, since studies have used:
i) subject groups of different fitness levels; ii) different
VO= max. testing protocols; iii) different absolute and
relative training intensities; iv) different exercise modes;
and v) different amounts of muscle mass exercised in the
various training modes.
```


1.8) FUTURE RESEARCH RECOMMENDATIONS

The following areas need further investigation in the context of cross-training studies:
i) The effect of training regimens on performance specific tests, as opposed to the effect on $V O=$ max. tests.
ii) The effect of short-distance (interval) training programs in one mode of activity on another mode of activity.
iii) More studies are needed where training intensity, volume, and energy expenditure are accurately controlled and measured within and among different training groups of the study.

```
iv) Running in water elicits different physiological responses
to swimming in water (Bishop et al, 1989; Svedenhag et al,
1992). The cross-training effects between running in water and
running on land need to be investigated.
v) Many investigators suggest that the type of muscle fiber
composition of athletes is explained by genetic factors and
natural selection of athletes, rather than by training program
factors (Shenkman et al, 1989).
However, it would be interesting to examine the influence of
different types of muscle fiber compositions on the ability of
an athlete to exhibit a crosstraining effect.
```


CHAPTER 2

INTRODUCTION

Cross-training has been defined as deriving benefits in the performance of one mode of activity, through training done in another mode of activity (Claussen et al, 1973). One has to expand this definition when considering the newer disciplines of duathlons, biathlons and triathlons. Cross-training in the context of these activities, becomes a question of establishing the ideal amounts of training in each of the two or three sport modes for optimising performance and minimising the occurance of overuse injuries (0'Toole et al, 1989).

Most of the studies in the field of cross-training have investigated long-distance duathlons and triathlons, or the effects of long-distance type training in one mode of activity on the performance of another mode of activity. The effects of middle distance type training in one sport mode on the performance of another sport mode however, have been less extensively researched.

```
Furthermore, the evidence of many studies strongly support the
principle of training specificity which suggests that training
adaptations are specific to the mode of training (McArdle et
al, 1971, 1978; Roberts & Morgan, 1971; Clausen et al, 1973;
Davies & Sargeant, 1975; Magel et al, 1975, 1978; Rasmussen et
al, 1975; Stromme et al, 1977; Wilmore et al, 1980; Gergley et
al, 1984; Gwinup, 1985; Kohrt et al, 1987a, 1989).
```

Some studies however, have shown a cross-training effect between two exercise modes (Roberts \& Alspaugh, 1972; Pechar et al, 1974; Pollock et al, 1975; Korht et al, 1987b; Lieber et al, 1989; Eyestone et al, 1993).

One should consider though, that most studies have used changes in maximal oxygen consumption (VO max.) as the major measure of response. It may be the case that performance in one activity may improve through training in another activity, without a concurrent increase in $V 0_{2}$ max. (Kohrt et al, 1989; 0•Toole et al, 1989; Costill et al, 1991).

This may be particularly applicable to short-distance type activities that utilise large portions of anaerobic energy.

```
This study will aim to assess the cross-training
effects between short-distance running and swimming, by
investigating the influence of interval swim training
on middle-distance type running events and on treadmill
VO}=\operatorname{max.
```

The reasons for investigating the topic of cross-training, include:
i) The efficacy of training in a multi-disciplinary sport, such as the biathlon, where individuals compete over short distances in swimming and running, at different times.
ii) The use of low impact, multi-sport training as a means of distributing strain over different body parts and reducing overuse injuries.
iii) The use of appropriate activity during the active rest macrocycle of a periodized training programme.
iv) The use of appropriate activity during the recovery of an injury related to running activities, i.e. the use of a low impact activity, like swimming, to prevent total detraining during the rehabilitation of an injury.

CHAPTER 3

METHODS

3.1 Subjects

Fourteen, sedentary subjects aged between 21 and 30 years, initially volunteered to participate in the study. Complete data however, were obtained from only eight subjects (4 males; 4 females). The physical profile of these subjects is depicted in Table 1. Six subjects could not adhere completely to the training program and testing due to illness and work commitments.

All subjects were in an untrained state at the beginning of the study. Subjects had not exercised for a minimum period of twelve months, with the exception of one subject (three months). Furthermore, the subjects had minimal prior experience in a structured running or swimming training programme.

Each subject signed a statement of informed consent, and ethical clearance for the study was obtained from the Committee for Research on Human Subjects, University of the Witwatersrand.

Table 1: Physical profile of subjects $(n=8)$

	MEAN	\pm SD
AGE (years)	24.63	2.77
HEIGHT (cm)	167.34	7.22
WEIGHT (kg)	62.60	13.87
VO_{2} Max. (ml/kg.min)	42.06	5.10

3.2 Procedures

3.2.1 Testina

The following responses were measured before and after a 12 week swimming training program, within a 14 day period:
3.2.1.1 Running economy. After a 10 minute warm-up period, each subject ran on a motorised treadmill (Powerjog ElO UK) at a measured submaximal load (12 kph, 0\% elevation) for 5 minutes, while steady state oxygen consumption (VO=) was measured. Oxygen consumption was measured by an on-line system (Oxycon 4 Mijnhardt, Netherlands), every 30 seconds. Running economy (RE) was calculated from:

```
RE = VO (ml/min.kg); Velocity (km/min)
```

3.2.1.2 $V O_{=}$max. An intermittent incremental treadmill protocol was used to measure $V O=$ max.

The speed of the treadmill was kept constant at 13.0 kph and the elevation changed by 1% increments. $V O_{z}$ max was attained when the steady state $V D_{=}$changed by less than $1.5 \mathrm{ml} / \mathrm{min} . \mathrm{kg}$ with a 1% increment in elevation. Running $V O_{2}$ max was measured because this study wished to examine the influence of swim training on running physiology and performance.
3.2.1.3 Wingate anaerobic power. A Cateye Cyclosimulator
(model cs 1000 , Japan) cycle ergometer was used to assess
anaerobic capacity. After a 5 minute warm-up, an appropriate
load and a gear ratio was selected which yielded a
predetermined optimal power output (Bar-Or, 1987). After a 5
minute rest the subject pedalled as hard and as fast as
possible for 30 seconds. Power output was recorded every 5
seconds.
3.2.1.4 Dynamometry. Muscle function was assessed using an Akron Isokinetic Dynamometer (3000 C; United Kingdom). Torque during knee extension/ flexion and shoulder extension/ flexion was measured for both the right and left lower and upper limbs respectively. Three measurements were performed on each limb:
a) 15 seconds at 60 o/sec.; b) 25 seconds at 160 o/sec. for
the legs and at 195 o/sec for the shoulders; and c) 35 seconds
at 245 o/sec. The latter testing velocity was used as a
measure of muscle endurance.

A warm-up period of sub-maximal load repetitions was used to warm-up the appropriate muscle groups before the start of each strength test.
3.2.1.5 Swimming and running performance responses. A 100m and a 200 m swim time trial were performed four times on four different days. Similarly, a 400 m and a 800 m time trial were run four times on four different days. Running and swimming time trials never took place on the same day.

The order of the testing for the runs and the swims was randomised (refer Table 2), but the order in the post-training phase of testing was kept the same as that which occured in the pre-training testing phase.

```
All four time trials for each distance were averaged, and a
coefficient of variation was calculated. The coefficient of
variation did not exceed 10% for any of the time trials,
before as well as after training. During the pre- and post-
training testing period, every third day was a rest day in
order to avoid fatigue.
```

Table 2: Testing order of swim and run time-trials

Testing session		1		2		3		4	
Test mode		Run Swim (metres)							
Subjects	1	$\begin{array}{r} 800 \\ 400 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 200 \\ \hline \end{array}$	400	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$
	2	$\begin{aligned} & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$
	3	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$
	4	$\begin{array}{r} 400 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 800 \\ 400 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 200 \\ & \hline \end{aligned}$
	5	$\begin{aligned} & 400 \\ & 800 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 400 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 200 \\ & \hline \end{aligned}$
	6	$\begin{aligned} & 400 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 400 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 200 \\ & \hline \end{aligned}$
	7	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$
	8	$\begin{aligned} & 800 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$

* The first distance run or swum appears on the top line Only one sport mode was tested per testing session

3.2.2 The training programme

The 12 week training period was based on a periodized programme. The first four weeks consisted of aerobic based training, followed by eight weeks of interval training, of progressively increasing intensity.

The first four weeks were implemented as a general conditioning phase and allowed subjects to get familiarized with swimming training. Thus, the intensity of training during this phase was kept low to moderate- (50 - 75% of maximum effort). The following eight weeks involved more intense, short-distance, interval type training- (80 - 100% of maximum effort).

```
Training intensity was established by applying the concept of
percentage effort. At the start of the training programme and
thereafter at four weekly intervals, each subject swam at
maximal pace over 100m and over 200m. The times recorded were
indicative of }100\mathrm{ percent effort.
```

Percentages of maximum effort were then expressed as training
times via use of the following formula:
$A=B(200-E) / 100 ;$ where $A=$ training time (secs); B =
time-trial (secs); and $E=\%$ effort.
An attempt was made to equate training intensity for 100 m and
200m swimming, to that of training for 400 m or 800 m running.

Subjects were timed during their training sessions in order to ensure that each subject adhered to the designated training effort. In this way training intensity was kept equivalent for all subjects, thus maintaining the training principle of individuality.

The training principle of overload and progression were applied on a weekly basis, when training volume and/or training intensity were increased. Every fourth week however was a regeneration week, when training intensity was kept constant and training volume was reduced. During the regeneration week, time trials were performed so that training progression could be adjusted for increases in fitness levels.

```
Table }3\mathrm{ describes the swimming training programme that was
used in this study. As can be seen from the last two columns
of Table 3, short training intervals were used to primarily
activate short-term energy pathways via phosphagen stores and
glycogen. Thus, the energy pathways activated during the swim
training were equivalent to those activated during 400m and
800m running.
Subjects were also asked to record their morning, resting
heart rate daily, during the }12\mathrm{ week training period. Morning
heart rates above 8O bt/min. had to be reported. This type of
feedback was used to prevent training during illness.
```

Table 3: Description of the 12 week swimming training programme

WEEK	FREQUENCY - times/week	VOLUME - total distance (m) per session	INTENSITY - $\%$ of peak pace	Shortest interval (m) per session	Longest interval (m) per session
1	$3-4$	1150	$50-70$	100	150
2	$3-4$	1400	$65-75$	100	150
3	$3-4$	1750	80	175	200
4	2 times	500	Time-trials	100	200
5	$3-4$	1500	$80-85$	75	150
6	$3-4$	2000	$85-\max$	25	125
7	$3-4$	2550	$80-85$	50	250
8	2 times	550	Time-trials	100	200
9	$3-4$	2300	85	50	150
10	$3-4$	2700	$90-\max$	25	150
11	$3-4$	2950	$90-95$	100	175
12	2 times	$2200-1500$	90	50	175

3.3 STATISTICAL ANALYSIS

All pre- and post-training values were compared using the
t-test for dependent data. In addition, all run and swim
performance results were tested for significance by repeated-
measures analysis of variance. The null hypothesis was
rejected at the 5% level.

CHAPTER 4

RESULTS

4.1 Swimming

```
4.1.1 Physiological changes (shoulder dynamometry)
```

```
Table 4 and s depict pre- and post-training mean values for
peak torque; power and work measures during shoulder flexion
and extension isokinetic tests. Measures of power and work at
195 O/sec and at 245 %/sec showed significant improvements
after swim training.
```

Table 4: Mean (\pm SD) values for shoulder flexion isokinetic tests

PEAK TORQUE ($\mathrm{Nm} / \mathrm{kg}$)			
Speed (deg/sec)	60	195	245
Pre-training Post-training	$\begin{array}{ll} 1.01 & (\pm 0.18) \\ 1.07 & (\pm 0.14) \end{array}$	$\begin{array}{ll} 1.02 & (\pm 0.24) \\ 1.05 & (\pm 0.17) \end{array}$	$\begin{array}{ll} 1.02 & (\pm 0.27) \\ 1.03 & (\pm 0.20) \end{array}$
POWER (Watts)			
Speed (deg/sec)	60	195	245
Pre-training Post-training	$\begin{array}{ll} 48.35 & (\pm 22.73) \\ 50.07 & (\pm 21.06) \end{array}$	$\begin{aligned} 95.70 & (\pm 49.63) \\ 106.86 & (\pm 51.89)^{\star \star} \end{aligned}$	$\begin{array}{ll} 93.50 & (\pm 49.31) \\ 99.68 & (\pm 50.77)^{\star} \end{array}$
WORK (Joules)			
Speed (deg/sec)	60	195	245
Pre-training Post-training	$\begin{array}{ll} 359.45 & (\pm 173.25) \\ 367.54 & (\pm 148.41) \end{array}$	$\begin{aligned} & 1152.59(\pm 613.87) \\ & 1282.93(\pm 618.39)^{* \star} \end{aligned}$	$\begin{array}{ll} 1559.78 & (\pm 817.17) \\ 1736.79 & (\pm 809.59)^{*} \end{array}$
Post-training	367.54 ($\pm 148.41)$	1282.93 ($\pm 618.39)^{* *}$	1736.79 ($\pm 809.59)^{*}$

[^0]** Significant differences between pre- and post-training values ($p<0.001$)

Table 5: Mean (\pm SD) values for shoulder extension isokinetic tests

PEAK TORQUE ($\mathrm{Nm} / \mathrm{kg}$)			
Speed (deg/sec)	60	195	245
Pre-training Post-training	$\begin{array}{ll} 0.98 & (\pm 0.24) \\ 0.96 & (\pm 0.17) \end{array}$	$\begin{array}{ll} 0.91 & (\pm 0.19) \\ 0.91 & (\pm 0.14) \end{array}$	$\begin{array}{ll} 0.90 & (\pm 0.16) \\ 0.90 & (\pm 0.15) \end{array}$
POWER (Watts)			
Speed (deg/sec)	60	195	245
Pre-training Post-training	$\begin{array}{ll} 42.19 & (\pm 21.50) \\ 43.06 & (\pm 20.31) \end{array}$	$\begin{array}{ll} 76.14 & (\pm 45.18) \\ 87.74 & (\pm 47.56)^{\star \star} \end{array}$	$\begin{array}{ll} 68.97 & (\pm 40.81) \\ 79.65 & (\pm 45.20)^{\star} \end{array}$
WORK (Joules)			
Speed (deg/sec)	60	195	245
Pre-training Post-training	$\begin{array}{ll} 311.37 & (\pm 157.42) \\ 322.66 & (\pm 159.58) \end{array}$		$\begin{array}{ll} 1165.14 & (\pm 685.34) \\ 1329.01 & (\pm 742.65)^{\star} \end{array}$

* Significant differences between pre- and post-training values ($p<0.05$)
** Significant differences between pre- and post-training values ($p<0.005$)
4.1.2 Performance changes (Swim time trials)

The 100 m swim times improved by 20% after swim training. This change was found to be significant (p < O.OS). Similarly, the 200m swim times improved by 22% ($p<0.05$) (Figures 1 and 2).

Fig. 1 : Pre- and post-training 100 m free-style swim times (sec)
(* Significant differences between pre- and post-training values - p<0.05)

Fig. 2 : Pre- and post-training 200 m free-style swim times (sec)
(* Significant differences between pre- and post-training values - $\mathrm{p}<0.05$)

4.2 Running

4.2.1 Physiological changes
4.2.1.1 VO= max and Running economy

Pre- and post-training values for weight, $V O=$ max and running economy are shown in Table 6.

Significant differences between pre- and post-training values were evident only for $V_{=}=\max (p<0.005)$.
4.2.1.2 Knee Dynamometry

Results for power and work at 60 g/sec changed significantly during knee flexion tests after swim training (Table 7). Significant changes were also found for power and work measures during knee extension at 245 O/sec (Table 8).
Table 6: Mean ($\mathrm{SD} \pm$) values for weight, VO_{2} Max. and running economy before and after swim training

VARIABLE	PRE-TRAINING	POST-TRAINING		
Weight (kg)	62.60	(± 13.87)	63.40	(± 13.45)
VO_{2} Max. ($/ / \mathrm{min}$)	2.68	(± 0.88)	2.87	$(\pm 0.89)^{\star}$
VO_{2} Max. (ml/kg.min)	42.06	(± 5.10)	45.39	$(\pm 5.05)^{\star}$
Running economy (ml/kg.km)	173.98	(± 9.05)	182.11	(± 18.51)

*Significant differences between pre- and post-training values ($p<0.005$)
Table 7: Mean (\pm SD) values for knee flexion isokinetic tests

PEAK TORQUE ($\mathrm{Nm} / \mathrm{kg}$)			
Speed (deg/sec)	60	160	245
Pre-training Post-training	$\begin{array}{ll} 1.73 & (\pm 0.16) \\ 1.83 & (\pm 0.25) \end{array}$	$\begin{array}{ll} 1.72 & (\pm 0.17) \\ 1.80 & (\pm 0.28) \end{array}$	$\begin{array}{ll} 1.55 & (\pm 0.21) \\ 1.54 & (\pm 0.22) \end{array}$
POWER (Watts)			
Speed (deg/sec)	60	160	245
Pre-training Post-training	$\begin{array}{ll} 75.58 & (\pm 25.36) \\ 82.54 & (\pm 24.61)^{\star} \end{array}$	$\begin{array}{ll} 135.16 & (\pm 47.55) \\ 149.05 & (\pm 45.17) \end{array}$	$\begin{array}{ll} 135.42 & (\pm 48.00) \\ 142.26 & (\pm 45.70) \end{array}$
WORK (Joules)			
Speed (deg/sec)	60	160	245
Pre-training Post-training	$\begin{array}{ll} 538.30 & (\pm 166.47) \\ 587.35 & (\pm 184.03)^{\star} \end{array}$	$\begin{aligned} & 1606.93(\pm 557.26) \\ & 1785.34(\pm 556.01) \end{aligned}$	$\begin{array}{\|ll} 2213.21 & (\pm 771.93) \\ 2305.72 & (\pm 725.87) \end{array}$

[^1]Table 8: Mean (\pm SD) values for knee extension isokinetic tests

* Significant differences between pre- and post-training values ($p<0.05$)
4.2.1.3 The Wingate Test

No significant changes were found with the Wingate Anaerobic
Power Test after compared to before swim training (Table 9).
Table 9: Summary of Wingate Test results before and after swim training

TEST MEASURE	PRE-TRAINING		POST-TRAINING	
Peak Power (W)	670.63	(± 222.71)	722.88	(± 236.93)
Peak Power (W/kg)	10.48	(± 1.71)	11.34	(± 2.38)
Mean Power (W)	530.09	(± 182.37)	555.80	(± 169.99)
Mean Power (W/kg)	8.26	(± 1.43)	8.71	(± 1.33)
Power loss $(\%)$	29.34	(± 10.48)	31.04	(± 11.41)

```
4.2.2 Performance changes
```


4.2.2.1 Run time trials

The 400 m run times showed a 6% improvement after swim training. This change was found to be statistically significant (p < O.O5) (Figure 3).

Similarly, the 11% improvement in the 800m run times was found to be significant (p < 0.005) (Figure 4).

Fig. 3 : Pre- and post-training 400 m run times (sec)
(* Significant differences between pre- and post-training values - $p<0.05$)

Fig. 4 : Pre- and post-training 800 m run times (sec)
(* Significant differences between pre- and post-training values - p<0.005)

```
In addition, repeated- measures analysis of variance was
applied to all the run and swim performance responses (Table
10). The analysis confirmed that the differences between all
pre- and post- training repeats for all run and swim time
trials were significant (p<0.0001).
```

Table 10: Summary of repeated-measures analysis of variance on run and swim performance measures using a general linear models procedure

PERFORMANCE MEASURE	100 m swim times	200 m swim times	400 m run times	800 m run times
F-RATIO	14.75	73.17	60.71	40.33
R-SQUARED	0.82	0.96	0.95	0.93
P-VALUE	0.0001	0.0001	0.0001	0.0001

CHAPTER 5

DISCUSSION

5.1 Swimming

The shoulder dynamometry results indicate that the 12 week swimming program elicited an upper limb training response. Significant changes were found in power and work at higher testing speeds (195 o/sec and 245 O/sec), during shoulder flexion and extension (Table 8 and 9). Thus, shoulder flexor and extensor muscles showed improvement in power output and muscle endurance following swim training.

The swim training also resulted in a significant improvement of the 100 m and 200 m swim times (Figures 1 and 2). This confirms that the swim program elicited a significant training response.

5.2 Running

```
Interval swim training elicited changes in running based
physiological measures. Treadmill vO= max improved after 12
weeks of swim training (Table 3). The improvement indicated a
change in oxygen- dependent energy producing pathways.
```


Abstract

This result is in agreement with the research of Holmer et al (1974b) and Lieber et al (1989). Contrary to the results of this study though, Magel et al (1975) found no significant improvement in treadmill $V O_{=}$max. among recreational swimmers, after ten weeks of interval swim training. The research of Gergley et al (1984) and Clausen et al (1973) provide additional evidence to support the findings of Magel et al (1975) and the principle of training specificity.

Reasons for contradictory research with regard to the specific response of $V D_{z}$ max. to training mode may include:
i) The dissimilar $V O_{z}$ max. testing protocols utilised by the different research laboratories.
ii) Subject level of ability and trained state.

This factor has been shown to influence research results (Reilly, 1990). Clarys (1985) showed that trained elite swimmers utilise a greater muscle mass than less trained, recreational swimmers during swimming. This may influence oxygen consumption and training energy expenditure values, which in turn makes it difficult to compare studies involving swimmers of dissimilar fitness and ability levels.

The present study only investigated untrained, non-elite swimmers. Thus, the results may apply only to individuals of a low fitness level.

```
iii) The training program utilised
The different training program intensities, volumes and
durations applied by the various researchers may also explain
some of the disparity among research evidence.
In addition, subject groups within a cross-training study may
be training at dissimilar intensities. This possibility was
pointed out by Pechar et al (1974) who stated that an
intensity of 85% of maximal heart rate (MHR) during cycling
training may not be the same as that of 85% MHR during
treadmill training, since the general cardiorespiratory
response is less during cycling than during treadmill
training.
```

The study of Lieber et al (1989) though, ensured that absolute training volume and relative training intensity of their swimand run- training groups were similar. More specifically, these researchers examined the effect of 11 weeks of endurance training in running and swimming, on treadmill VO_{I} max. The increase in treadmill $V D_{2}$ max. of the run- trained group was found to be no different to the increase achieved by the swimtrained group.

Lieber et al concluded that when training intensities and volumes are kept similar between training groups of different exercise modes, a cross-training effect can occur.

```
The improvement of treadmill vOz max. after swimming training,
found in the present study, also indicates an improvement in
swimming vaI max. This statement is based on the research of
Montpetit et al (1981) and Bishop et al (1989) who found a
linear relationship between swimming voz peak and treadmill
VO= peak for recreational swimmers.
```

The fact that running economy did not show any changes after swim training was expected, since swim training has been shown to not influence running efficiency.

Swim training also influenced the Knee flexion and extension isokinetic dynamometry (Table 6 and 7). Knee flexion tests showed significant changes in measures of power and work at 60 o/sec. In contrast, knee extension tests showed significant improvements in levels of power and work at higher speeds (245 ध/sec). Thus an increase in muscle power output and the ability to perform a greater amount of work was evident in the knee extensors and flexors after swimming training. Muscle strength around the knee joint, as measured by peak torque values at 60 $\quad / s e c$ though, did not change with swimming training.

```
The findings of the dymamometry tests of this study indicate
that power output of the knee and shoulder, flexor and
extensor muscle groups can be improved through interval swim
training. Swimming training was also shown to improve muscular
endurance of the knee extensors and of the shoulder flexors
and extensors. These increases may have contributed to the
improvements in swimming and running performances
(Figures 1 - 4).
```

The Wingate test did not show any differences between preand post -training values. Considering that run and swim performance responses improved, the Wingate test may not have been specific enough to depict changes in oxygenindependent energy pathways after swim training.

A training program may cause changes in performance without a concurrent increase in $v 0_{=}$max values (Kohrt et al, 1989; O'Toole et al, 1989; Costill et al, 1991). This is applicable to short distance training that primarily utilizes oxygenindependent energy pathways.

This study thus also measured run performance times after a period of short distance swim training. A cross-training effect of swim training on running performance was clearly demonstrated by the 400 m and 800 m run performances.

Run times improved significantly after swimming training (Figure 3 and 4; Table 4).
In support of this finding, Kohrt et al (1987b) also found
evidence of cross- training in their research. These
researchers reduced cycling and swim training among
triathletes by 60% and 72% respectively. At the end of a three
month period, running and cycling voz max had decreased, yet
swimming vo max had been maintained. Kohrt et al cited cross-
training as one possible explanation for their results, i.e.
swimming capacity could be maintained by non-specific training
(running).

A cross-training effect was also demonstrated in the research findings of Roberts et al (1972) and Pechar et al (1974).

Similar improvements in peak $V O_{z}$ with treadmill and cycle testing were demonstrated in these studies after a period of running training. Furthermore, Eyestone et al (1993) found that recreational runners can maintain their running $V O_{z}$ max and two-mile run time by water running or water cycling that is of an intensity, duration, and frequency equivalent to that of land running training.

Magel et al (1975) however, found no change in treadmill vo= max in recreational swimmers after ten weeks of interval swim training. Maximum treadmill run time though, increased. Thus, in support of the present study, run performance responses improved after swim training.

```
A viewpoint proposed by Lieber et al (1989) and supported by
Ekblom et al (1968); and Magel et al (1978) will be used to
offer a possible explanation for the results of this study.
This viewpoint suggests that training specificity is a
reflection of the interplay between peripheral and central
adaptations- i.e. training specificity seems to occur when
training elicits muscular peripheral adaptations without
accompanying central cardiovascular adaptations. This
situation arises when a relatively small muscle mass is
trained; and when total metabolic demand / load during
training is insufficient to cause significant central
adaptations.
```

In applying this viewpoint, the swimming training program used in the present study may have recruited a large enough muscle mass and may have demanded a sufficiently high level of metabolic activity to cause significant central adaptations. In this way, the swim training intensity (load) and volume that was applied elicited muscular peripheral adaptations with accompanying central adaptations. Thus a cross-training effect was exhibited.

```
However, one must consider that this explanation was used to
explain cross-training in studies that investigated endurance
type training programs. Thus, it may not be applicable to this
study which utilised an interval training program.
```

```
The improvements in the 400m and 800m run times may
also be attributed to the energy systems stimulated during
swimming training. The short traiming distances and moderate
to high training intensities used in this study, were
specifically chosen to primarily stimulate oxygen-independent
metabolism via phosphagen stores and glycolysis. In this way,
the same primary energy system that is used during the 400m
and 80Om run was "traimed" in the water.
```

It follows, that if similar energy systems involved in one mode of activity are stimulated during training in another mode of activity and if sufficient overlap between functional muscle fibres exists between swimming and running, a crosstraining effect may be elicited.

Thus, the training intensity; frequency; and duration used in this study's swim program may have been equivalent enough to those of running training for 400 m and 800 m events. Consequently, a cross-training effect between swimming and running was attained.

The present study supports the conclusion of Lieber et al (1989) that training specificity may not only be influenced by training in different modes of activity; but also by training intensity, training volume, and fitness level.

CHAPTER 6

CONCLUSION

Cross- training may help prevent overuse injuries and overtraining. Cross- training may also be effectively utilised in the rehabilitation of an injury. Research in the field of cross- training however, seems equivocal due to the following methodological issues:
a) Subject fitness level; b) $V O_{2}$ max. testing protocols;
c) Volume, intensity and duration of training programs; d) Energy expenditure during training sessions; and e) the size of the muscle mass exercised.

This study found a cross- training effect between swimming and running with untrained, non-competitive swimmers. While mode of activity was non-specific in this study, a training response was attained by keeping the training intensity and volume of the swim training specific to middledistance run training.

REFERENCES

1) Astrand, P.O. \& Saltin, B. 1961. Maximal oxygen uptake and heart rate in various types of muscular activity. J. Appl. Physiol, vol. 16, 977-981.
2) Bar - Or, 0. 1987. The Wingate Anaerobic Test. An update on methodology, reliability, and validity. Sports Med, 4, pp. 383.
3) Bonen, A., Wilson, B.A. \& Yarkony, M. 1980. Maximal oxygen uptake during free, tethered, and flume swimming. J. Appl. Physiol, vol. 48, no. 2, pp. 232-235.
4) Bishop, P.A., Frazier, S., Smith, J. et al. 1989. Physiological responses to Treadmill and water running. Physician Sports Med, vol. 17, no. 2, g. 87.
5) Carey, P., Stensland, M., and Hartley, L.H. 1974. Comparison of oxygen uptake during maximal work on the treadmill and the rowing ergometer. Med. Sci. Sports Exerc., vol. 6, PP. 101-103.
6) Clarys, J.P. 1985. Hydrodynamics and electromyography: ergonomic aspects in aquatics. Appl Ergonomics, vol. 16, pp. 11-24.
7) Clausen, J.P., Trap- Jensen, J. and Lassen, N.A. 1970. The effects of training on the heart rate during arm and leg exercise. Scand J Clin Lab Invest. vol. 26, pp. 295-301.
8) Clausen, J.P., Klausen, K., Rasmussen, B. et al. 1973. Central and peripheral circulatory changes after training of the arms or legs. Amer. J. Physiol. vol. 225, no.3, pp. 675682.
9) Costill, D.L., Daniels, J., Evans, W. et al. 1976. Skeletal muscle enzymes and fiber composition in male and female track athletes. J. Appl. Physiol. vol. 40, pp. 149-154.
10) Costill, D.L., Thomas, R., Roberts, A. et al. 1991. Adaptations to swimming training: influence of training volume. Med. Sci. Sports Exerc. vol. 23, no. 3, pp. 371-377.
11) Davies, L.T.M. and Sargeant, A.J. 1975. Effects of training on the physiological responses to one- and two- leg work. J. Appl. Physiol. vol. 38, no. 3, pp. 377-381.
12) Dixon, R.W. and Faulkner, J.A. 1971. Cardiac outputs during maximum effort running and swimming. J Appl. Physiol. vol. 30, no. 5, pp. 653-656.
13) Ekblom, B. and Hermansen, L. 1968a. Cardiac output in athletes. J Appl. Physiol. vol. 25, pp. 619-625.
14) Ekblom, B. Astrand, P-ロ., Saltin, B. et al. 1968b. Effect of training on circulatory response to exercise. J. Appl. Physiol. vol. 24, pp. 518-528.
15) Eyestone, E.D., Fellingham, G., Goerge, J. et al. 1993. Effect of water rumning and cycling on maximal oxygen consumption and 2-mile run performance. Amer J Sports Med. vol. 21, חo.1.
16) Faulkner, J.A. 1967. What research tells the coach about swimming. AAHPER, Washington.
17) Faulkner, J.A., Roberts, D.E., Elk, R.L. et al. 1971. Cardiovascular responses to the submaximum and maximum effort cyeling and running. J. Appl. Physiol. vol. 30, pp. 457-461.
18) Gergley, T.J., McArdle, W.D., DeJesus, P. et al. 1984. Specificity of arm training on aerobic power during swimming and running. Med. Sci. Sports Exerc. vol.16, no. 4, pp. 344354.
19) Gwinup, G. 1985. Weight loss without dietary restriction: efficacy of different forms of aerobic exercise. Amer. J. Sports Med. vol. 15, pp. 275-279.

Abstract

20) Hermansen, L. and Saltin, B. 1969. Oxygen uptake during maximal treadmill and bicycle exercise. J. Appl. Physiol. vol. 26, ק. 31-37.

21) Hermansen, L., Ekblom, B. and Saltin, B. 1970. Cardiac output during submaximal and maximal treadmill and bicycle exercise. J. Appl. Physiol. vol. 29, pp. 82-86.
22) Hickson, R.C., Foster, C., Pollock, M.L. et al. 1985. Reduced training intensities and loss of aerobic power, endurance and cardiac growth. J. Appl. Physiol. vol. 58, p. 492-499.
23) Holmer, I. 1972a. Dxygen uptake during swimming in man.
J. Appl. Physiol. vol. 33, no.4, pp. 502-509.
24) Holmer, I. and Astrand, P-D. 1972b. Swimming training and maximal oxygen uptake. J. Appl. Physiol. vol. 33, pp. 510-513.
25) Holmer, I., Stein, E.M., Saltin, B. et al. 1974a. Hemodynamic and respiratory responses compared in swimming and running. J. Appl. Physiol. vol. 37, no. 1, pp. 49-54.
26) Holmer, I., Lundin, A., Eriksson, B.O. 1974b. Maximum oxygen uptake during swimming and running by elite swimmers. J. Appl. Physiol. vol. 36, no. 6, pp. 711-714.
27) Kohrt, W.M., Morgan, D.W., Bates, B. et al. 1987a. Physiological responses of triathletes to maximal "tethered" swimming, cycling and running. Med. Sci. Sports Exerc. vol. 19, по. 1, pp. 51-55.
 Effects of reduced training on the physiological profile of triathletes. Abstract. Med. Sci. Sports Exerc. 19 (Suppl.), g. 548.
28) Kohrt, W.M., O'Connor, J.S. and Skinner, J.S. 1989. Longitudinal assessment of responses by triathletes to swimming, cycling and running. Med. Sci. Sports Exerc. vol. 21, กロ. 5, pp. 569-575.
29) Lieber, D.C., Lieber, R.L. 1989. Effects of run- training and swim- training at similar absolute intensities on treadmill $V O_{z}$ max. Med. Sci. Sports Exerc. vol. 21, no. 6, pp. 655-661.
30) Loy et al. (1995). Benefits and practical use of cross training in sports. Sports Med. vol. 19, no. 1, pp. 1-8
31) Magel, J.R. and Faulkner, J.A. 1967. Maximum oxygen uptakes of college swimmers. J. Appl. Physiol. vol. 22, pp. 929-938.
32) Magel, J.R. 1971. Comparison of the physiologic response to varying intensities of submax. work in tethered swimming and treadmill running. J. Sports Med. \& Phys. Fitness, 11, pp. 203-212.
33) Magel, J.R. and Foglia, G.F. 1975. Specificity of swim training on maximum oxygen uptake. J. Appl. Physiol. vol. 38, กo. 1, PP. 151-155.
34) Magel, J.R., McArdle, W.D., Toner, M. et al. 1978. Metabolic and cardiovascular adjustment to arm training. J. Appl. Physial. vol. 45, pp. 75-79.
35) Magel, J.R., McArdle, W.D., Weiss, N.L. et al. 1982. Heart rate response to apmea and face immersion. J. Sports Med. vol. 22, pp. 135-146.
36) Maglischo, E. 1982. Swimming Faster. A comprehensive guide to the Science of Swimming. Mayfield Publishing Co. Ltd, Palo Alto, C.A.
37) McArdle, W.D. and Magel, J.R. 1970. Physical work capacity and maximum oxygen uptake in treadmill and bicycle exercise. Med. Sci. Sports Exerc. vol. 2, pp. 118-123.
38) McArdle, W.D., Glaser, R.M., Magel, J.R. 1971. Metabolic and cardiorespiratory response during free swimming and treadmill walking. J. Appl. Physiol. vol. 30, no. 5, pp. 733738.
39) McArdle, W.D., Magel, J.R., Delio, D.J. et al. 1978. Specificity of run training on $V O_{=}$max and heart rate changes during running and swimming. Med. Sci. Sports Exerc. vol. 10 , pp. 16-20.
40) Mero, A., Luhtanen, P., Komi, P.V. 1983. A biomechanical study of the sprint start. Scand J. Sports Sci, 5, pp. 20-28.
41) Montpetit, R.R., Leger, L.A., Lavoie, J.M. 1981. Vo peak during free swimming using the backward extrapolation of the oxygen recovery curve. Eur J. Appl. Physiol. vol. 47, pp. 385391.

4J) Nygaard, E. and Nielsen, E. 1978. Skeletal muscle fibre capillarisation with extreme endurance training in man, in Swimming Medicine IV, eds. Eriksson, B.O., Furberg, B., University Park Press, Baltimore, P. 282-293.
44) O'Toole, M.L., Hiller, W.D.B., Douglas P.S. 1989. Applied Physiology of a Triathlon. Sports Med, vol. 8, no. 4, pp. 201225.
45) Pechar, G.S., McArdle, W.D., Katch, F.I.et al. 1974. Specificity of cardiorespiratory adaptation to bicycle and treadmill training. J. Appl. Physiol. vol. 36, no. 6, pp. 753756.
46) Pollock, M.L., Dimmick, J., Miller, H.S. 1975. Effects of mode of training on cardiovascular function and body composition of adult men. Med. Sci. Sports Exerc. vol. 7, no. 2, pp. 139-145.
47) Rasmussen, B., Klausen, K., Clausen, J.P.et al. 1975. Pulmonary ventilation, blood gases and blood PH after training of the arms or the legs. J. Appl. Physiol. vol. 38, pp. 250256.
48) Rathnow, K.M. and Mangum, M. 1990. A comparison of singleversus multi-modal exercise programs: Effects on aerobic power. J. Sports Med. \& Phys. Fitness. vol. 30, pp. 382-388.
49) Reilly, T., Secher, N., Snell, P. et al. 1990. Physiology of Sports. E \& F.N. Spon, Great Britain.
50) Roberts, J.A. and Morgan, W.P. 1971. Effects of type and frequency of participation in physical activity upon physical working capacity. Amer. Corr. J. vol. 25, pp. 99-104.
51) Roberts, J.A. and Alspaugh, J.W. 1972. Specificity of training effects resulting from programs of treadmill running and bicycle ergometer riding. Med. Sci. Sports, vol. 4, pp. 610.
52) Saltin, B., Nazar, K., Costill, D.L. et al. 1976. The nature of the training response; peripheral and central adaptations to one-legged exercise. Acta Physial. Scand. vol. 96, pp. 289-305.
53) Shenkman, B.S. and Saraeva, L.A. 1989. Relationship of various types of fibers in skeletal muscle as a factor affecting the efficacy of endurance training. Sports Training, Med. and Rehab, vol.1, pp. 101-103.
54) Stenberg, J., Astrand, P-0., Ekblom, B.et al. 1967. Hemodynamic response to work with different muscle groups, sitting and supine. J. Appl. Physiol. vol. 22, pp.61-70.
55) Stromme, S.B., Ingjer, F., Meen, H.D. 1977. Assessment of maximal aerobic power in specifically trained athletes. J. Appl. Physial. vol. 42, no. 6, pp. 833-837.
56) Svedenhag, J. and Seger, J. 1992. Running on land and in water: comparative exercise physiology. Med. Sci. Sports

Exerc., Vol. 24, No. 10, pp. 1155 - 1160.
57) Wilmore, J.H., Davis, J.A., D'Brien, R.S. et al. 1980. Physiological alterations consequent to twenty week conditioning programs of bicycling, tennis and jogging. Med. Sci. Sports Exerc. Vol 12, pp. 1 - 8.

[^0]: * Significant differences between pre- and post-training values ($p<0.05$)

[^1]: * Significant differences between pre- and post-training values ($\mathrm{p}<0.05$)

