

A Consumer Premises End

User Interface for

OSA/Parlay Applications

Thabo Machethe

A project report submitted to the Faculty of Engineering, University of the

Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of

Master of Science in Engineering.

Johannesburg, December 2005

 i

D E C L A R A T I O N

I declare that this thesis is my own, unaided work, except where otherwise

acknowledged. It is being submitted for the degree of Master of Science in Engineering

in the University of the Witwatersrand, Johannesburg. It has not been submitted before

for any degree or examination in any other university.

Signed this ___day of____________20___

Thabo Machethe

 ii

A B S T R A C T

The NGN is a multi-service network which inter-works with the Public Switched

Telephone Network (PSTN), the voice network and the data network provided by

Internet. Through network independent APIs such as OSA-Parlay, the NGN slowly

migrates and converges Telecoms and IT networks, voice and Internet, into a common

packet infrastructure. The OSA/Parlay group defines a softswitch architecture which

provides network independent APIs or SCFs that enable cross network application

development The Parlay softswitch provides connectivity to underlying transport

networks for application providers. The standard specifies the interaction between

application providers and the softswitch. However, the standard does not specify an

interface to regulate the interaction between service providers and the consumer/end user

domain. This means that applications housed in the service provider domain have no

defined interfaces to manage service delivery to the consumer domain. For most service

providers, the lack of a non-standardized API set impedes efforts to decrease application

creation and deployment time. This research investigates the design and implementation

of a standard consumer interface which can be used by application providers within an

OSA/Parlay system to deliver service content to end users. The main objectives with

regard to the functionality provided by the interface include the integration of facilities

which will assist application providers to manage end user access and authentication (to

enable users to establish a secure context for service usage), subscription (to handle the

subscription life cycle), and service usage management (to enable the initiation and

termination of services). The TINA-Consortium (TINA-C) has developed a service

architecture to support the creation and provisioning of services in the NGN. The TINA

architecture offers a comprehensive set of concepts and principles that can be used in the

design of NGN services. The architecture consists of a set of reusable and interoperable

service components encapsulating a rich and well defined set of APIs aimed at supporting

the interaction between application providers and consumers. TINA’s session concepts,

information structures, interfaces and service components can be used to support the

design of a consumer premises end user interface for OSA/Parlay. This research also

aims to explore the feasibility of using the TINA API within an OSA/Parlay system to

support consumer domain service delivery. In order to implement the consumer interface

for Parlay applications, the ability of the TINA service architecture to provide Access and

Authentication management; Subscription and Profile management; and Service Usage

management was investigated. The report documents the design and implementation of

an OSA/Parlay consumer interface utilizing TINA service components and interfaces.

 iii

A C K N O W L E D G E M E N T S

The following research was performed under the auspices of the Center for

Telecommunications Access and Services (CeTAS) at the University of the

Witwatersrand, Johannesburg, South Africa. This center is funded by Telkom SA

Limited, Siemens Telecommunications and the Department of Trade and Industries

THRIP programme. This financial support was much appreciated.

I would like to thank my supervisor Prof. Hu Hanrahan for his guidance and support

throughout the duration of this research project, and my colleagues at CeTAS for their

valuable counsel during this research. I would also like to thank my parents, whose

support has always been unwavering and without whom the opportunities I have received

in life would never have been possible, and my sisters for their continued love and

support. Finally, I would like to thank my girlfriend and close friends for their love,

support and patience throughout my time as a master’s student. Without all these people,

I would not have been able to achieve my goals and aspirations.

 iv

T A B L E O F C O N T E N T S

DECLARATION ... I

ABSTRACT ... II

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS ... IV

LIST OF FIGURES... VIII

LIST OF TABLES... I

1 INTRODUCTION... 1

1.1 INTRODUCTION TO THE NGN ... 2

1.2 NGN SERVICE PROVISIONING .. 3

1.2.1 How have services been developed and delivered before the NGN?...................................... 3

1.2.2 How has this changed with the advent of the NGN?... 3

1.3 NGN SERVICE ARCHITECTURE .. 4

1.3.1 Distributed Network Intelligence.. 4

1.3.2 Architectural Layering.. 5

1.3.3 Open Services Interface/API... 6

1.3.4 Context Aware Service Delivery in the NGN.. 8

1.3.5 Personal Mobility ... 10

1.4 PROBLEM STATEMENT ... 11

1.5 PROJECT REPORT OBJECTIVES ... 12

1.6 STRUCTURE OF THE REPORT .. 13

2 LITERATURE REVIEW... 15

2.1 THE OSA/PARLAY ARCHITECTURE.. 15

2.1.1 The Framework (or Framework Interfaces) ... 15

2.1.2 OSA/Parlay Service Capability Features (SCFs) ... 16

2.1.3 OSA/Parlay and Context Awareness .. 20

2.1.4 Supported Services ... 20

2.1.5 The OSA/Parlay Business Model.. 21

2.1.6 Limitations of the OSA/Parlay Service Architecture .. 22

2.1.7 Current Problems Deploying OSA/Parlay Applications .. 23

2.1.8 Implementing an End User Interface as a Solution .. 24

2.2 THE TINA SERVICE ARCHITECTURE .. 24

2.2.1 The TINA Business Model .. 25

2.2.2 TINA Service Components and Interfaces .. 28

 v

2.2.3 The TINA Session Concept ... 36

2.3 TINA AND CONTEXT AWARENESS... 39

2.4 TINA AND PERSONAL MOBILITY ... 40

2.5 OVERALL CONTRIBUTIONS OF TINA TO OSA/PARLAY ... 41

2.5.1 What support can a TINA Derived Consumer Interface give to Parlay Applications 41

2.5.2 What can it allow users to do? ... 42

2.5.3 Proposed Service Architecture ... 43

3 REQUIREMENTS SPECIFICATION FOR THE OSA/PARLAY END USER INTERFACE 45

3.1 REQUIREMENTS FOR ACCESS AND AUTHENTICATION MANAGEMENT.. 45

3.2 SUBSCRIPTION AND PROFILE MANAGEMENT REQUIREMENTS.. 46

3.3 SERVICE USAGE MANAGEMENT REQUIREMENTS ... 46

3.3.1 Service Usage Management Feature Sets... 47

3.4 CONTEXT AWARE SERVICE DELIVERY REQUIREMENTS ... 48

3.5 SUMMARY .. 48

4 DESIGN OF THE ACCESS AND AUTHENTICATION API ... 49

4.1 ACCESS AND AUTHENTICATION INTERFACES ... 49

4.1.1 The i_Initial interface ... 50

4.1.2 The i_Authenticate interface... 51

4.1.3 The i_Access interface .. 52

4.2 PROPOSED IMPLEMENTATION SCENARIOS.. 53

4.2.1 Contact a Provider ... 54

4.2.2 Login to a Provider... 56

4.2.3 Logout from a Provider .. 60

4.3 CHAPTER SUMMARY .. 61

5 DESIGN OF THE SUBSCRIPTION AND PROFILE MANAGEMENT API 63

5.1 SUBSCRIPTION AND PROFILE MANAGEMENT INFORMATION .. 63

5.2 SUBSCRIPTION AND PROFILE MANAGEMENT INTERFACES ... 67

5.2.1 The i_Subscribe interface ... 67

5.2.2 The i_SubscriberInfoMgmt Interface.. 68

5.2.3 The i_ServiceContractInfoMgmt interface ... 70

5.3 PROPOSED IMPLEMENTATION SCENARIOS.. 73

5.3.1 Subscribe a New Customer (Becoming a Subscriber) .. 73

5.3.2 Modify Subscriber Information... 76

5.4 CHAPTER SUMMARY .. 79

6 DESIGN OF THE SERVICE USAGE MANAGEMENT API ... 81

6.1 INITIATING AND TERMINATING A SINGLE PARTY SERVICE SESSION .. 81

6.1.1 The i_Access Interface.. 82

 vi

6.1.2 The i_SSManage Interface.. 82

6.1.3 The Basic Feature Set... 83

6.1.4 OSA/Parlay Interfaces .. 83

6.1.5 The IpAppLogic interface ... 83

6.1.6 Proposed Implementation Scenarios .. 86

6.2 INITIATING AND TERMINATING MULTI PARTY SERVICE SESSIONS... 90

6.2.1 The TINA Multiparty and MultipartyInd Feature Sets ... 91

6.2.2 The i_Invitation interface ... 93

6.2.3 OSA/Parlay Interfaces .. 94

6.2.4 Proposed Implementation Scenarios .. 95

6.3 CONTEXT AWARE SERVICE DELIVERY... 102

6.3.1 Device Characteristics.. 102

6.3.2 User Preferences .. 103

6.3.3 User State ... 103

6.3.4 Proposed User Context Implementation Scenario.. 104

6.4 CHAPTER SUMMARY .. 107

7 IMPLEMENTATION ENVIRONMENT... 108

7.1 THE CORBA DPE ... 108

7.2 NETWORK IMPLEMENTATION ... 109

7.3 IMPLEMENTATION RESULTS.. 110

7.3.1 Access Session APIs: .. 110

7.3.2 Subscription and Profile Management ... 111

7.3.3 Service Usage Management ... 112

7.3.4 Context Awareness ... 112

7.3.5 Personal Mobility ... 112

8 CONCLUSION ... 114

8.1 DISCUSSION ... 114

8.2 CONCLUSION.. 115

8.3 RECOMMENDATIONS FOR FUTURE WORK .. 118

8.3.1 Content Adaptation... 119

8.3.2 Federation .. 119

REFERENCES ... 121

APPENDIX A ... 1

A.1 ACCESS AND AUTHENTICATION... 1

A.2 SUBSCRIPTION AND PROFILE MANAGEMENT ... 2

A.3 SERVICE USAGE MANAGEMENT .. 4

A.3.1 Single Party Services ... 4

 vii

A.3.2 Single Party Services ... 5

APPENDIX B.. 7

B.1 THE USER LOCATION CASE.. 7

B.2 UPDATING USER CONTEXT DURING ACCESS SESSION SETUP... 9

B.3 IDL SPECIFICATION FOR I_USERCONTEXTMANAGEMENT INTERFACE .. 10

APPENDIX C ... 12

C.1 ASUAP... 12

C.2 PA.. 14

C.3 SPF.. 16

C.4 UA... 18

C.5 SSUAP ... 25

C.6 SF .. 31

C.7 SUB... 32

C.7 APP .. 36

C.8 UA2... 38

 viii

L I S T O F F I G U R E S

FIGURE 2.1: THE OSA/PARLAY SERVICE ARCHITECTURE... 19

FIGURE 2.2: THE OSA/PARLAY BUSINESS MODEL.. 22

FIGURE 2.3: THE TINA-C BUSINESS MODEL .. 27

FIGURE 2.4: THE SERVICE COMPONENTS IN THE TINA SERVICE ARCHITECTURE ... 29

FIGURE 2.5: LIFETIME DEPENDENCIES AMONG SESSIONS. REDRAWN FROM [4] ... 38

FIGURE 2.6: THE HYBRID OSA/PARLAY-TINA SERVICE ARCHITECTURE .. 44

FIGURE 4.1: ACCESS AND AUTHENTICATION MANAGEMENT USE CASE SCENARIOS 54

FIGURE 4.2: CONTACT A PROVIDER SEQUENCE DIAGRAM .. 56

FIGURE 4.3: LOGIN TO A PROVIDER SEQUENCE DIAGRAM .. 58

FIGURE 4.4: LOGOUT FROM A PROVIDER... 61

FIGURE 5.1: SUBSCRIPTION AND PROFILE MANAGEMENT USE CASE SCENARIOS ... 73

FIGURE 5.2: SUBSCRIBE A NEW CUSTOMER SEQUENCE DIAGRAM .. 75

FIGURE 5.3: MODIFY SUBSCRIBER INFORMATION SEQUENCE DIAGRAM ... 78

FIGURE 6.1: TINA'S SERVICE SESSION COMPONENTS AND PARLAY'S GENERIC MESSAGING SCF................ 85

FIGURE 6.2: SINGLE PARTY SERVICE USAGE MANAGEMENT USE CASE SCENARIOS 86

FIGURE 6.3: INITIATE A SERVICE SESSION SEQUENCE DIAGRAM .. 87

FIGURE 6.4: TERMINATE A SINGLE PARTY SERVICE SESSION SEQUENCE DIAGRAM 89

FIGURE 6.5: TINA SERVICE SESSION COMPONENTS AND PARLAY'S GENERIC AND MULTIPARTY CALL

CONTROL SCFS ... 94

FIGURE 6.6: MULTIPARTY SERVICE USAGE MANAGEMENT USE CASE SCENARIOS....................................... 95

FIGURE 6.7: INVITE A USER TO JOIN A SERVICE SESSION SEQUENCE DIAGRAM .. 97

FIGURE 6.8: JOIN A SERVICE SESSION WITH AN INVITATION SEQUENCE DIAGRAM 99

FIGURE 6.9: TERMINATE A MULTIPARTY SERVICE SESSION SEQUENCE DIAGRAM 101

FIGURE 6.10: USER CONTEXT MANAGEMENT USE CASE SCENARIOS ... 104

FIGURE 6.11: UPDATE USER CONTEXT (TERMINAL CAPABILITY UPDATE) SEQUENCE DIAGRAM 106

FIGURE B.1 UPDATE USER CONTEXT (USER LOCATION UPDATE) SEQUENCE DIAGRAM 7

FIGURE B.2 USER CONTEXT UPDATE DURING ACCESS SESSION SETUP ... 9

 i

L I S T O F T A B L E S

TABLE 1: ACCESS AND AUTHENTICATION MANAGEMENT INTERFACES, OPERATIONS, AND ATTRIBUTES....... 2

TABLE 2: SUMMARY OF SUBSCRIPTION AND PROFILE MANAGEMENT INTERFACES, OPERATIONS, AND

ATTRIBUTES .. 3

TABLE 3: SUMMARY OF SINGLE PARTY SERVICE USAGE MANAGEMENT INTERFACE, OPERATIONS, AND

ATTRIBUTES .. 4

TABLE 4: SUMMARY OF MULTIPARTY SERVICE USAGE MANAGEMENT INTERFACES, OPERATIONS, AND

ATTRIBUTES .. 6

TABLE 5 FIELDS CONTAINED WITHIN THE LOCATIONS DATA STRUCTURE. REDRAWN FROM [35] 11

 i

1 I N T R O D U C T I O N

In today’s telecoms and IT infrastructures access to services is provided through a variety

of access networks. For example, telephony is usually accessed through the PSTN,

mobile telephony or messaging through a GSM network, and the Internet through an IP

network. The range of applications is increased through steps already taken to standardize

access to services through a single service delivery platform [1, 2]. In particular, the

Parlay Group, an open, multi-vendor telecoms forum has been organized to create

network independent APIs in order to enable cross network application development [1].

The APIs form the interface between the application layer or Service Network and the

core network. Applications are logically positioned in the Service Network and can be

deployed independent of the core network and access network that the end user is using.

This means that instead of the current approach where applications are tied to one

specific network (PSTN, Mobile, IP) applications can be accessed and used from

different types of networks or domains [3]. The end user domain and its interface to

Parlay-based applications has however received little attention. The Parlay standard only

specifies the interaction between a service provider and a network connectivity provider.

Along with network independent APIs, service architectures to support the rapid creation

and delivery of cross network applications have been developed. One such is the TINA-C

service architecture developed by the TINA-Consortium (TINA-C) [4]. The TINA-C

architecture provides a set of concepts and principles to be applied in the specification,

design, implementation, deployment, execution, and operation of software components in

large scale distributed networks. The main goal of the TINA-C architecture is to ensure

separation of service network and communication network concerns by hiding underlying

transport network technologies from end users, application developers and application

service providers. In the context of this research it is important to note that the TINA-C

service architecture documentation provides a detailed description of the end user

domain. This is done by describing a set of end user domain related components and their

interactions with a service provider network.

The convergence of the IT and telecoms infrastructures facilitated by Parlay and the

TINA-C offers new opportunities to Telcos in terms of service delivery. Currently, the

telco is able to provide national and international services by federating with other

operators. The value-added services are primarily voice-centric, examples include

freephone, voicemail, conference calling, operator assistance and customer calling.

Simple data services such as fax and e-mail also operate over this network using circuit

connections [5].

 2

Telcos will be able to deliver a range of services to end users through a single access

network. For example, access to telephony, mobile telephony, and Internet may all be

offered in a single service. This will imply the availability of more data-centric services

such as video on demand (VoD) and multiparty video conferencing to end users.

Furthermore, new types of services may also be offered. One such is the Context-driven

service, which allows the delivery of a service (service components, parameters and

content) in differing ways depending on the context. For example, a service delivery

context may be user preference (audio/video quality), terminal capability (display

resolution, color depth, network card) or network capability (end to end QoS level) [6].

Another is the Location-based service, which allows the delivery of a service based on

the geographical location of an end user. For example, a freephone service could be

offered at a conference for anyone within the area where the conference is being held.

The location based service could also be used to, for example, notify subscribers of a

“buddy” when other “friendly” subscribers are within the same geographical region [7].

In this project, we examine the design of an end user interface for applications using the

Parlay gateway for connectivity. We propose that in this implementation the user should

be allowed to access cross-network services through a single customizable user interface.

It is proposed that service components specified in the TINA-C service architecture be

used. Furthermore, the end user interface should accommodate Next Generation network

capabilities such as context awareness, location based service delivery, and personal

mobility. This implementation must also allow the user greater involvement in service

management, for example the user should be able to change service profiles within

permitted limits, and to subscribe on line to new services. The system will be illustrated

through a proof of concept case study.

1.1 Introduction to the NGN

The NGN can be thought of as a packet-based network where the packet switching and

transport network are logically and physically separated from the service or application

network [8].

Most of the present NGN paradigms implement a softswitch architecture where the

switching functionality is distributed across several nodes. All emerging NGN

architectures share a common goal of rapid service creation and delivery. Softswitch

architectures such as Open Services Access (OSA) or Parlay achieve this through the

separation of service intelligence into service dependent and service independent logic

across an open Application Programming Interface (API) [9]. The re-use of service-

independent logic across the API by third party application service providers facilitates

rapid service creation and delivery. TINA-C’s service architecture, describes a set of

feature-rich interfaces and operations useful in third party service provision. A subset of

these interfaces are implemented to provide the functionality required in this project.

To allow for independent service development and delivery, as well as for changes in the

communications technology, it is necessary for the application/service network to be

decoupled from the transport network [8].

 3

This report documents the design and implementation of an end user interface to support

the delivery of multimedia multi-party OSA/Parlay services to end users or consumers.

The main focus in this hybrid architecture will be the definition of consumer domain

components and interfaces for use in end user access and usage of 3
rd

 party multimedia

services.

1.2 NGN Service Provisioning

1.2.1 How have services been developed and delivered before the NGN?

Service provision in traditional Networks has usually been tightly coupled with the

network elements and access devices specific to that network. This has led to services

only being accessible to consumers with customer premises equipment (CPE) specific to

the access and core networks. Cross network services utilizing multiple transport

networks were uncommon and usually complex to develop. The major thrust of

traditional network service providers has been to offer the mass market basic transport of

information between end users involving narrowband voice calls, and simple data

services such as fax and email, with various voice centric value-added capabilities such

as freephone, operator assistance, and customer calling [15].

In traditional networks, the telecommunications environment consisted almost

exclusively of telecommunications monopolies in which public Telcos acted as both

network operators and service providers. Value added services were often developed

completely within a single service provider’s domain operated by the Telco. The relative

speed at which services could be created and deployed was limited by a lack of

availability of skills in the market. This was due to the fact that the telecommunications

infrastructure was mostly based on vendor specific network equipment with proprietary

interfaces. New value added services required skilled telecommunications experts with

extensive knowledge on proprietary network technologies [30]. Niche and short-lived

value-added services were often overlooked by Telcos as being commercially unfeasible.

The cost involved in rolling out specialized services used by a handful of customers for a

short duration of time could not be justified [5].

1.2.2 How has this changed with the advent of the NGN?

The traditional view of services is changing, while existing services remain part of

service providers’ offerings, more advanced broadband multimedia and information

intensive services are also becoming available. With the advent of the NGN, a

 4

convergence of the previously independent networks is taking place. The NGN facilitates

for several types of convergence; application convergence, network convergence, and

access device convergence. The focus in this research is application convergence.

Application convergence indicates an aggregation of traditional service provider (or

application provider) domains into a single domain capable of delivering multi-network

services. This aggregation is facilitated by an architectural layering system which allows

for application developers in the NGN to abstract from the underlying transport network

in the design and implementation of application layer services. This allows for the

development of services utilizing multiple transport network capabilities and

functionalities, as well as the provision of services to multiple access network end users.

Several key factors have contributed to the shift from traditional vertically aligned

networks to today’s horizontally aligned NGN architecture, the next section presents

some of the most relevant of these factors.

1.3 NGN Service Architecture

One of the primary goals of NGNs is to provide a ubiquitous and open multi-provider

telecommunications environment that can support multiple types of services and

management applications over multiple types of transport. This section describes three

critical characteristics of this Next Generation environment.

1.3.1 Distributed Network Intelligence

Increasing competition and the gradual convergence of IT and telecoms technologies has

led to an increased focus on the rapid creation and deployment of advanced multimedia

telecoms services with enhanced functionality utilizing different network technologies,

end systems, communications protocols, operating systems, and programming language

environments [37]. In an NGN services environment, a key technology solution to this

problem is the Distributed Processing Environment (DPE). The main goal of a DPE is to

enable distributed processing between services in a geographically distributed

telecommunications system without concern for the underlying environment. This

location transparency allows for the distribution of service intelligence across the

network and the uncoupling of network intelligence from physical network elements.

Commonly, DPEs which offer abstraction from the heterogeneity of the underlying

environment (in terms of heterogeneous hardware, systems platforms, programming

languages, and management policies) are referred to as middleware [37]. Several

architectures such as CORBA, COM/DCOM, and Java RMI that provide distribution

transparency and support to distributed applications have been defined. In this research,

CORBA is used to provide the required DPE functionality.

 5

1.3.2 Architectural Layering

The concept of architectural layering is central to NGN environments. The NGN

infrastructure uses a layering system similar to that in the internet stack to separate

functionality. Five principal layers are used [38]:

• Application Layer.

• Service Capability Functionality (SCF) Layer.

• Network Service Capability Functionality (NSCF) Layer.

• Switching Layer.

• Transmission Layer.

The application layer contains basic functions and service features that can be logically

combined to create applications/services. The most important characteristic of this layer

is that services and connection control are separated from the transport network. Feature

servers and Application servers are utilized to create NGN compatible Intelligent

Network services and 3rd party service provider applications respectively.

The Service Capability Functionality (SCF) layer provides open and secure API which

provide multi-network capabilities to 3rd party application developers. The APIs are used

to communicate with resources from the underlying transport networks. They enable the

setup of call legs and connections in various types of networks. JAIN, 3GPP, and Parlay

define examples of SCF layer API. Using OSA/Parlay to model the SCF layer we can say

that network capabilities provided by the APIs are housed within SCFs (Service

Capability Functions) implemented in a softswitch. The combination of the Application

and SCF layers form the NGN Service Architecture.

The Network Service Capability Functionality (NSCF) layer consists of components

implementing the capabilities to address and control network entities and special

telecoms resources such as, for example, media gateways, interactive voice response

systems, and mailbox systems. The NSCF layer provides stream flow binding for SCFs in

the SCF layer.

The Switching Layer provides the means to route transport flows. The Transmission layer

provides “the means of carrying high volumes of packets as well as TDM streams

between elements such as switches” [38]. The switching and transmission layers form the

NGN transport network. In the remainder of this paper, we focus only on the application

and SCF layers.

 6

1.3.3 Open Services Interface/API

Another essential aspect of the NGN architecture is open, secure, and standardized

architectures and interfaces. NGNs provide an application layer which allows for the

abstraction of underlying transport network functionality through standardized open

APIs. In this context, an API is a means by which a programmer writing an application

program can make requests of an underlying communication infrastructure. By using

standard APIs, NGN applications can be built with standard programming languages and

tools. This helps to shorten the time span for service development. Open APIs also enable

the provision of services to a broader market of users because they allow the deployment

of NGN services onto multiple networks. In the following sections, we describe four API

environments:

• 3GPP OSA and Parlay.

• Java APIs for Integrated Networks (JAIN).

• Telecommunications Information Network Architecture (TINA).

The main focus in this paper is the OSA/Parlay Architecture. We explore the TINA

architecture to discover its suitability as a supporting architecture for OSA/Parlay. We

discuss key concepts resulting from these API environments and briefly touch on the

JAIN initiative.

1.3.3.1 OSA/Parlay

The main purpose of the OSA/Parlay architecture is to facilitate the convergence of

wireless, PSTN, and IP networks through transport network technology independent

APIs. The OSA/Parlay API allows enterprises to access and control a selected range of

Network Service Capability layer functions. The set of API are grouped into a single

logical gateway, which may be physically distributed among multiple servers.

A consequence of the introduction of the OSA/Parlay API is the simplification of

telecommunications application development. The abstraction provided by the APIs to

Network Service Capability layer functionality allows application developers to disregard

programming aspects related to specific transport network technologies. This aids the

rapid creation and deployment of NGN applications.

The API is composed of two major types of interfaces, Framework interfaces and Service

interfaces which are grouped into Service Capability Features (SCFs). The SCFs provide

OSA/Parlay applications with generic functionality to access and use network resources.

Hence the SCFs hide the distributed complexity of the underlying network from the

applications.

 7

The OSA/Parlay standard describes two major roles within its business model, an

enterprise operator (who manages 3
rd

 party applications), and a gateway operator (who

manages the framework and SCFs). A standardized API is detailed to support the

interaction between these roles. It is important to note that an API to regulate the

provision of OSA/Parlay applications to the consumer domain is not specified. The main

focus in this research is to explore the design and implementation of a standard end user

interface which can be used by enterprise operators/application providers within an

OSA/Parlay system to deliver applications to end users.

1.3.3.2 The TINA Architecture

The main goal of the TINA-C service architecture is to provide a set of concepts,

principles, rules and guidelines for the construction, deployment and operation of NGN

services. It is important to note that in contrast to OSA/Parlay, the TINA service

architecture defines a complete business model within the application layer. TINA

defines a set of administrative domains, as well as their roles and responsibilities within

the application layer. The TINA-C service architecture also identifies a set of reusable

and interoperable service components to be used in a Distributed Processing Environment

(DPE) in order to build services as well as how these components interact and can be

combined to support the instantiation, management, and use of NGN services [4]. These

service components encapsulate the functionality provided by the TINA API set to enable

the administrative domains to carry out their defined roles and responsibilities. In the

context of this research, we intend to explore the feasibility of utilizing the TINA service

architecture to define an end user interface for Parlay.

The TINA-C architecture is composed of four main sub-architectures, the service

architecture, network resource architecture, computing architecture and management

architecture. The service architecture’s major concern is the definition of service

independent aspects that mainly support the service session segment such as service

management, user subscription management, charging and accounting for service usage.

For instance, in a Video on Demand (VoD) service functionality to start, stop, suspend or

resume a movie, as well as to monitor accounting information would be provided. Within

the NGN architectural layering model, the service architecture conforms to the

Application and SCF layers. The service architecture accommodates NGN service

requirements by hiding underlying transport network technologies from end users,

application developers and application service providers. The TINA service architecture

provides a well defined API defining the interaction between the service provider and

consumer domains. For this reason, the focus on TINA in this research will be on the

service architecture.

The network resource architecture mainly deals with resource control. The control and

management of network resources in a transport technology independent way is

described here. The main concern is the connection management in order to service

requests made by applications from the service architecture. This part of the architecture

spans both the NCSF and Switching layers [18].

 8

The software or computing architecture ensures the development of interoperable and

portable software components by defining a Distributed Processing Environment (DPE)

[5]. The management architecture provides concepts and principles for effectively

managing services, networks and computing infrastructures.

The TINA architecture has not been widely embraced by industry, and has largely

remained at the research level. As such no telco implementations exist, however, a

sufficient number of trial outputs do exist which validate the architectural concepts and

principles. These trials also validate the well-defined set of TINA interfaces.

1.3.3.3 JAIN

JAIN provides a set of integrated network and resources APIs and a framework for

building integrated services that span the public switched telephone network (PSTN),

wireless, and packet networks. The API defines a programming interface to next-

generation converged networks and as such is designed to hide the details of the specifics

of the underlying network architecture and protocols from the application programmer

[19, 50]. The API is also independent of network signaling and transport protocols. Thus

applications may use various call control protocols and technologies such as SIP, H.323,

SS7, INAP, and others [50, 53, 54]. Using the JAIN API services may be easily deployed

on a PSTN, packet (IP or ATM) network, a wireless network, or a combination of these

without affecting their integrity.

The main components of JAIN include Java Call Control (JCC), Java Coordination and

Transaction (JCAT) and Connectivity Management (CM), which reside in the

communications network. The Java Service Logic Execution Environment (JSLEE) and

Service Creation Environment (SCE) reside in the Application Service Provider domain.

The JAIN community also cooperates closely with Parlay/ETSI/3GPP in the specification

process, and their Parlay/OSA APIs realized in Java are referenced in the standard. The

objective is to produce ‘one API for one developer community’ and the widespread

adoption of one single open API throughout the telecommunications industry [53].

Towards this goal, the JAIN SPA specification aims at mirroring the Parlay standard by

producing a JAVA based API replica of the Parlay Framework and SCFs.

1.3.4 Context Aware Service Delivery in the NGN

The emergence of the NGN brings about new possibilities for service delivery. One such

is context aware service provision. In this section we explain context awareness in service

delivery and detail some reasons why it is important in an NGN environment.

 9

1.3.4.1 Why is Context Important in an NGN Environment?

The NGN promises a pervasive computing environment in which users are able to access

computation and information from anywhere, at any time. One of the main factors

differentiating pervasive services from others is the inherent variability within pervasive

environments. There are three factors that contribute to this variability [25]:

• Device Heterogeneity. Client devices have different modalities and use different

presentation formats. Hence, the same content is often presented differently on

different devices.

• Network Infrastructure: There is large variation in the physical characteristics of

wireless channels and this affects the performance perceived by the end user. This

is due not only to the number of different such technologies available today but

also to inherent properties of wireless channels like multi-path fading problems,

distance between client and base stations, and interference problems resulting

from shared spectrum.

• User Context: Services available to the user may change over time and with the

user’s location. For example, services accessed in a professional environment are

very different from the ones accessed in a home environment.

Heterogeneity and mobility pose new challenges for information delivery applications in

a pervasive environment. To meet the demands in this heterogeneous environment, it is

necessary for the information to be customized or tailored according to the user's

preferences, client capabilities and network characteristics [32].

1.3.4.2 What is Context?

The inherent variability in pervasive environments provides new challenges and

opportunities for service providers. One such opportunity is the capability to deliver

services based on context. In this research context can be defined as [27]:

“Context is any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and the

application themselves.”

According to this definition, almost any information available at the time of an

interaction can be seen as context information (e.g. the current time and date, the usage

history, the user profile, the temperature at the user location, the position of the user, etc).

We however, use the following characteristics to categorize context [25]:

 10

• Network Characteristics: refers to the information about the network

infrastructure, including access network, bandwidth and QoS.

• Device Characteristics: refers to the information about the hardware device,

which include the device type, processor speed and type, memory capacity, screen

resolution and depth, and operating systems.

• User Context: includes all the user characteristics related to the user’s

environment. User context can be manually and/or automatically acquired.

The User Context is divided into:

• User Preferences: refers to information about the human user, including browsing

preference, language preferences, display preferences, QoS preferences, age

group and gender.

• User State: is composed of three attributes: the physical location of the user

(ie.outdoors/indoors, building,); the state of the applications that she is currently

accessing (eg. application specific information, server specific information); and

which devices are active in her environment.

The main benefit of context aware service delivery is that services can adapt themselves

to better suit the needs of the user and their task. For example, [33] notes several

applications for context aware service delivery such as:

• presenting the context information itself as content to the user (e.g. a maps

showing the current position).

• adaptation of presentation of information and services to a user (e.g. a GUI

suitable for the mobile phone the user is using currently).

• triggering actions on the occurrence of context events.

• tagging context to information for later retrieval (e.g. weather information when

taking a picture in order to let the photo lab adjust the development process).

1.3.5 Personal Mobility

A further capability offered by the NGN is personal mobility. This section introduces the

concept of personal mobility and gives some reasons as to why it is important.

 11

1.3.5.1 What is Personal Mobility?

Universal Personal Telecommunications (UPT) [55] describes personal mobility as the

ability of a user to access telecommunications services at any terminal based on a

personal identifier and the capability of that network to provide those services in accord

with the user’s service profile. Personal mobility “enables users to use services that are

personalized with their preferences and identity ubiquitously, independently of both

physical location and specific equipment.” [4], such that, “the level of service obtained is

dependent only on the capabilities of the access equipment and/or method, and

restrictions imposed by the retailer and subscription.” [4].

1.3.5.2 Why is Personal Mobility Important?

In an NGN environment, the convergence of multiple transport networks, service

networks and access devices has led to an explosion in the number of devices able to

access the same services. Unlike the traditional vertical networks, such as the IN, PSTN,

or Mobile networks, where only a few devices of very similar capability were able to

access a service network with services designed specifically for that network, the NGN

model is based on a horizontal model which provides a single service network which can

be accessed by a multitude of devices [15]. This means that users of NGN services are

likely to access services based on device preference (rather than an inability of the device

to connect to the service). Their preference may be based on device capabilities such as

screen size, resolution, or simply the accessibility of the device at the current time. It is

therefore important that unless the capability of a device is insufficient, or some service

provider or user imposed restrictions are in place, NGN users’ ability to access services

not be limited by the type of device they use to access a service.

1.4 Problem Statement

This research investigates the design of a multi-service end user interface to support

OSA/Parlay application creation and provisioning to the consumer domain. Given the

limitations and current difficulties faced in the creation and provisioning of OSA/Parlay

applications, the problem can be stated as:

• How can OSA/Parlay Applications be delivered to the Consumer Domain

using a standard Consumer to Service Provider API set?

 12

The project intends to explore the feasibility of using the TINA service architecture to

support the design and implementation of a Consumer to Provider API set for

OSA/Parlay Applications.

The project also aims to explore how context awareness and personal mobility can be

integrated into service delivery. Using the TINA service architecture, it is intended that

an end user interface incorporating context awareness and personal mobility as well as

providing consumer premises management functionality for OSA/Parlay applications can

be implemented. Therefore the following subproblems can be stated:

1. Can the TINA Service Architecture provide the required functionality to design

and implement a Consumer to Service Provider API set for OSA/Parlay

applications?

2. How can context awareness and personal mobility be integrated into the

OSA/Parlay Consumer to Provider API set using the TINA Service

Architecture?

We intend to take the following steps to deal with the main problem:

1. Define a complete system of administrative domains and business roles within the

OSA/Parlay application layer. With the definition of a consumer domain/role as

the main focus.

2. Provide a well defined relationship between the administrative domains and

business roles. Since the OSA/Parlay standard already defines a relationship

between the service provider and connectivity provider domains/roles, the

definition of a relationship between the consumer and service provider

domains/roles is the main focus.

3. Design a set of APIs based on the defined relationships to govern the interaction

between the different administrative domains. The interaction between the service

provider and connectivity provider roles is standardized by Parlay, this research

focuses on the definition of an API to support the interaction between the

consumer and service provider roles/domains.

4. Implement an OSA/Parlay end user interface based on the defined APIs.

1.5 Project Objectives

The main objective in this research is the design and implementation of a consumer

interface for OSA/Parlay applications. We state several other objectives with regard to

the functionality we would like the OSA/Parlay consumer interface to provide:

 13

1. The OSA/Parlay consumer interface should provide an Access and Authentication

API which allows for service providers to manage consumers’ access to services,

as well as for the authentication of users and service providers during access.

2. The OSA/Parlay consumer interface should provide Subscription Management

API to allow service providers to manage the set of consumers subscribed to their

services.

3. The OSA/Parlay consumer interface should provide Service Usage Management

API to support the initiation and termination of OSA/Parlay services by

consumers.

The main goals of this research with respect to enabling context awareness in service

delivery is to:

• develop a services platform that will support the creation, deployment and

management of context-aware services.

• allow personalized and adaptive delivery of services.

• support context-aware features (including location-awareness).

1.6 Structure of the Report

Chapter 2: In this chapter we review the Parlay service architecture. We provide an

overview of the Parlay’s Framework and SCFs, support for context awareness, and the

Parlay business model. Parlay’s limitations with respect to consumer premises service

provisioning are highlighted. We also provide an overview of TINA’s business model,

computational model, session concept, and ability to support context awareness and

personal mobility is given. The main aim of the TINA review is to determine the

feasibility of utilizing TINA service concepts and principles to support the construction

of a consumer interface for the OSA/Parlay service architecture. The chapter concludes

with a presentation of the system concept for the proposed OSA/Parlay consumer

interface.

Chapter 3: The requirements for the OSA/Parlay consumer premises end user interface

are presented. Requirements in the areas of the Access and Authentication, Subscription

and Profile management, and Service Usage management, and context awareness are

presented.

 14

Chapter 4: A lightweight enterprise, computational, and information view of the Access

and Authentication API segment of the consumer interface is presented. The interfaces

and service components for access and authentication management are described. Use

cases and sequence diagrams are then used to show the component interaction used to

realize the access and authentication functionality in the consumer interface.

Chapter 5: This chapter details the design of a subscription and profile management API

for Parlay’s end user interface using TINA concepts, information structures and

interfaces. The subscription and profile management APIs provide the service provider

with the capability to manage the set of consumers subscribed to their services.

Chapter 6: The Service Usage management API are presented in a similar fashion to the

previous two chapters. This chapter describes service usage and focuses on how the end

user interface is linked to OSA/Parlay applications.

Chapter 7: In this chapter we discuss the implementation environment used to realize the

OSA/Parlay consumer interface. We discuss the distributed processing environment used

to implement the service components.

Chapter 8: The paper closes with a conclusion chapter consisting of a summary of the

paper, a discussion of the results, and recommendations for future work.

 15

2 L I T E R AT U R E R E V I E W

In this chapter we first review the Parlay service architecture. We provide an overview of

the Parlay architecture with reference to the Framework and Service Capability Features,

support for context awareness, and the Parlay business model. Parlay’s limitations with

respect to consumer premises service provisioning are also highlighted. Next, the TINA

service architecture is reviewed. An overview of TINA’s business model, computational

model, session concept, and ability to support context awareness and personal mobility is

given. The main aim of the TINA review is to determine the feasibility of utilizing TINA

service concepts and principles to support the construction of a consumer interface for the

OSA/Parlay service architecture. The chapter concludes with a discussion of the proposed

end user interface for OSA/Parlay applications.

2.1 The OSA/Parlay Architecture

The OSA/Parlay Architecture enables application convergence through the specification

of open standard APIs which allow access for applications to transport network

functionality in a manner independent of the transport network used. In this section, we

look at the OSA/Parlay interfaces, their structure, and how they can be used to utilize

multi-network transport functionality.

2.1.1 The Framework (or Framework Interfaces)

The framework provides applications with service access and authentication capabilities.

It is also responsible for the management and administration of the SCFs offered by the

OSA/Parlay gateway. It is important to note the difference between the definition of

Service and “Application”. In the scope of Parlay, Services refer to APIs/SCFs that

provide the network resource abstraction to be used by Applications, which then use

these resources intelligently to access multiple networks. In this paper however, the term

Service will be used interchangeably with “Application”, whereas OSA/Parlay SCFs will

 16

only be referred to as either APIs or SCFs. The OSA/Parlay framework mainly consists

of the following interfaces [11];

• Authentication

Once an off-line service agreement exists between the application provider and the

framework, the application can access the authentication interface. The application

must be authenticated before it is allowed to use any other OSA interface. Multiple

authentication techniques are supported to authenticate access by application

providers to SCFs.

• Discovery

After successful authentication the application may access the Framework’s

Discovery interface for a list of available SCFs. The client application and

Authentication Framework then negotiate a service agreement defining conditions of

use for the discovered SCF.

• Event Notification

OSA/Parlay Applications may register callback interfaces with the Framework, and

vice versa, for the purpose of event notification. The framework event notification

mechanism is used to notify the application of SCF related events that have occurred

and the application event notification interface is used by services to inform the

application of a service related event.

• Integrity Management

The Integrity Management interface is used by the OSA/Parlay framework to monitor

SCF load conditions, and to inform the application of SCF load condition changes or

failure. A load balancing policy is agreed upon by both the application and

framework before SCF use. The framework may also monitor the load conditions of

applications and take appropriate action based on the load balancing policy in case of

application failure or load condition change.

The Integrity Management interface may also be used by the application to report

load conditions to the framework. Applications may also use this interface to query

SCF load conditions.

2.1.2 OSA/Parlay Service Capability Features (SCFs)

The Service Interfaces provide the interfaces which expose the capabilities of the

underlying transport networks. The current specification details 14 main SCFs:

• Call Control

 17

• Generic Call Control SCF

• Multi-Party Call Control SCF

• Multi-Media Call Control SCF

• Conference Call Control SCF

• User Interaction

• Mobility

• Terminal capabilities

• Data session control

• Messaging

• Connectivity Management

• Account Management

• Charging

• Presence and Availability Management

• Policy Management

These APIs expose much of the core functionality of the underlying telecommunications

network to an application developer, enabling the creation of new applications that use a

standardized set of APIs. Most important to this research are the call control, terminal

capabilities, mobility, and generic messaging API. These SCFs are summarized below.

2.1.2.1 Generic Call Control

The Generic Call Control Service (GCCS) provides the basic call control service for the

API [39]. It allows calls to be initiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for

today's Intelligent Network (IN) services in the case of a switched telephony network, or

equivalent for packet based networks. The API for generic call control does not give

explicit access to the legs and the media channels. This is provided by the Multi-Party

Call Control Service. Furthermore, the generic call is restricted to two party calls, i.e.,

only two legs are active at any given time. Active is defined here as 'being routed' or

connected.

 18

2.1.2.2 MultiParty Call Control (MPCC)

The Multi-party Call Control service enhances the functionality of the Generic Call

Control Service with leg management [40]. It also allows for multi-party calls to be

established, i.e., up to a service specific number of legs can be connected simultaneously

to the same call.

2.1.2.3 MultiMedia Call Control (MMCC)

The MultiMedia Call Control service enhances the functionality of the MultiParty Call

Control Service with multimedia capabilities [41]. To handle the multi-media aspects of a

call the concept of media stream is introduced. A media stream is bi-directional media

stream and is associated with a call leg. These media streams are usually negotiated

between the terminals in the call. The multi-party Call Service gives the application

control over the media streams associated with the legs

2.1.2.4 Conference Call Control (CCC)

The Conference Call Control Service enhances the multi-media call control service [42].

Each Conference Call Control interface inherits from a Multi Media Call Control

interface, which in turn inherits from Multi Party Call Control. It is possible to implement

conference call control without any multi-media features, using only those inherited

methods which come from Multi Party Call Control, in addition to the Conference Call

Control methods. The conference call control service gives the application the ability to

manipulate subconferences within a conference. A subconference defines the grouping of

legs within the overall conference call. Only parties in the same subconference have a

bearer connection (or media channel connection) to each other (e.g., can speak to each

other).

2.1.2.5 Mobility

The User Location service (UL) provides a general geographic location service [35]. UL

has functionality to allow applications to obtain the geographical location and the status

of fixed, mobile and IP based telephony users. UL is supplemented by User Location

Camel service (ULC) to provide information about network related information. There is

also some specialised functionality to handle emergency calls in the User Location

Emergency service (ULE).

2.1.2.6 Terminal Capabilities

The Terminal Capabilities SCF enables the application to retrieve the terminal

capabilities of the specified terminal [34]. Additionally it is possible for the application to

request notifications when the capabilities of the terminal change in some way.

2.1.2.7 Generic Messaging

The Generic Messaging Service interface (GMS) is used by applications to send, store

and receive messages [44]. GMS has voice mail and electronic mail as the messaging

mechanisms. The messaging service interface can be used by both.

Figure 2.1 illustrates the positioning of applications, the framework and SCFs within the

OSA/Parlay architecture. The network resource layer is also shown to illustrate the

relationship between the Parlay SCFs and various network resources.

En te rp rise O p e ra to r

N e tw o rk C o nnec tiv ity P ro v ide r D om a in

In te rne t
A pp lica tio n

2

A p p lic a tio n

N

..
.

Pa r la y G a tew a y AP Is

F ram e

W ork
SC F 1 SC F 2 ... SC F 3

N e tw o rk R eso u rce P ro v id e r D om a in

IM SSF

C AP

S SF

IN AP

R esou rce

R esou rce

In te rfa ce

N e tw o rk R esou rce AP Is

. ..

Figure 2.1: The OSA/Parlay Service Architecture

The capability of the Parlay SCFs to provide context awareness is discussed in the next

section.

2.1.3 OSA/Parlay and Context Awareness

The Parlay Gateway provides a powerful set of SCFs that can be used to provide context

awareness. Below are the categories of context as defined in Chapter 1, and the SCFs that

may be used to support their implementation:

Network Characteristics: No SCF specifically provides network characteristics

information.

Device Characteristics: The Terminal Capabilities SCF can be used to retrieve terminal

information.

User Preferences: No mechanisms exist in OSA/Parlay to obtain user preference

information.

User State: Physical location information can be retrieved using the Mobility SCF.

Presence and Availability Management SCF can be used to support the management of

users and their terminals’ states as well as advanced service availability.

The next section presents a listing of the types of services that can be supported using

Parlay’s SCFs.

2.1.4 Supported Services

Below is a collection of the types of applications that can be supported by an OSA/Parlay

gateway:

• Basic Voice Services

Allows the delivery of basic voice services and value added voice services such as

voice, call waiting, call forwarding. The GCCS, MPCCS, MMCCS, CCCS, GUIS

can all be used to enable this service type.

• Data Services

Allows for the setup of data connections within an IP network to setup services

such as the internet, and web browsing. Can be supported using the Data Session

SCF.

• Generic Messaging Services

Supports the delivery of voice mail, email, fax mail, pages, and internet. Users

may access, as well as be notified of, various message types (voice mail, email,

fax mail, etc.), independent of the means of access (i.e., wireline or mobile phone,

computer, or wireless data device). Can be supported using the Generic

Messaging SCF.

• Multimedia Services (ie. video streaming, video conference) –

 21

Multimedia Services allow multiple parties to interact using voice, video, and/or

data. This allows customers to converse with each other while displaying visual

information. It also allows for collaborative computing and groupware. Can be

supported using the Multimedia Call Control SCF and/or Conference Call Control

SCF.

• Location Based Services

Location based services allow services to be delivered based on the user’s

location. Can be supported using the User Location SCF.

• Context Aware Services

Services delivery dependent on user preference, or status. Can be supported using

the Mobility, Terminal Capability, and/or Presence and Availability Management

SCF.

In the next section, a business model for the Parlay service architecture is presented.

2.1.5 The OSA/Parlay Business Model

Figure 2.2 illustrates the OSA/Parlay business model. The OSA/Parlay architecture

defines an incomplete business model which describes the relationship and interfaces

between the service provider and network connectivity provider only. In the OSA/Parlay

specification these roles are defined as the traditional network operator providing access

to SCFs and the Enterprise Operator who provides 3
rd

 party applications which are

located in what is referred to as the Enterprise Domain.

The OSA/Parlay architecture pays little attention to the consumer domain. The

OSA/Parlay specifications only detail the interaction between the 3
rd

 party applications,

the SCFs, and Enterprise Operators [11]. In the OSA/Parlay model, the enterprise

operators act in the role of subscriber of services (SCFs) and the 3
rd

 party applications act

in the role of users or consumers of services. The framework itself acts in the role of

retailer of services. However, the interfaces between an enterprise operator and the 3
rd

party applications in its domain are outside the scope of the Parlay API [11]. This gives

the enterprise operators the capability to dynamically create, modify and delete the client

applications and service contracts belonging to its domain. The next section elaborates on

Parlay’s limitations with regard to the lack of a consumer domain.

 22

Consumer Domain

(Undefined in Parlay)

Enterprise Operator Domain

 Network Connectiv ity P rovider Domain

Framework Parlay Service

C lient

App lications

Enterprise

Opera tor

Adm in Tools

Framework

Operator

Adm in

Service

Supplier

Adm in Tools

Figure 2.2: The OSA/Parlay Business Model

2.1.6 Limitations of the OSA/Parlay Service Architecture

OSA/Parlay defines an API between two business domains, a service provider (otherwise

known as the Enterprise Operator domain in OSA/Parlay) and a network connectivity

provider. OSA/Parlay does not however identify an API between a consumer and the

service provider domain. This means that 3
rd

 party applications housed in the service

provider domain have no defined interfaces to manage service delivery to the consumer

domain. The OSA/Parlay model does not specify how applications manage user access,

authentication, and usage. In addition, no explicit model for user subscription and profile

management is given. In the next section we discuss how the lack of a standard consumer

to provider API in the OSA/Parlay model hinders application deployment and efficient

service delivery to the consumer domain.

 23

2.1.7 Current Problems Deploying OSA/Parlay Applications

The lack of a standardized set of APIs to support end user service access and usage

management presents a number of significant concerns for service providers. For most

service providers, the lack of a non-standardized API set impedes efforts to decrease

application creation and deployment time.

Without the necessity to conform to a standard platform, most of the systems used by

service providers are created independently. This means that varying systems and access

methods are implemented, creating independent “proprietary” implementations in the

service provider domain [28, 29]. Currently, this is the case with OSA/Parlay applications

as no standard platform incorporating common service functionality such as

Authentication, Access, Subscription exists to support Service Provider to Consumer

domain service delivery and management.

Furthermore, it may also be the case that even internally, different development teams for

a single service provider may create applications with their own unique systems (ie,

authentication, subscription, etc) and each with its own unique method of access or use.

This places a heavy burden on both maintenance of existing services and the

development of new services for the following reasons [29]:

• Tight Coupling -- This creates a situation where there is a very tight coupling

between the applications developed by different development teams and/or

application providers and the systems they use to deliver services to users. This

means that similar services may be delivered in a non-uniform manner to users,

each with a different way of performing the same task.

• Low Reusability -- Application developers must work with a wide variety of

systems, each with its own unique access methods and behaviors. This makes it

difficult to build a new application in a standardized and repeatable way, and can

often make the potential introduction of a new service prohibitive from a cost and

risk perspective.

• Limited Service Personalization -- For example this method of proprietary

bundling creates a situation where a user cannot personalize access, or service

usage for her set of subscribed services, because “proprietary” access and usage

mechanisms are in place for the same or different service provider offerings.

Service personalization is therefore limited due to a lack of interworking service

delivery systems. However, to build services that maximize growth and

profitability of the subscriber base, more needs to be done in terms of

understanding and improving individual user experiences through increasing

personalization and diversification, and making the services respond to user needs

in a dynamic, on demand fashion [28].

• Multi-way Service Provider partnerships for more complex services are

difficult to support [28]. The lack of a standard platform makes it complex for

proprietary systems to interwork with each other.

 24

All of these problems are barriers to offering new services profitably, and often the

business case for many new services cannot be justified.

2.1.8 Implementing an End User Interface as a Solution

In order for service providers to address the highlighted issues, it is essential that an end

user or consumer domain interface for service access and usage management be

introduced. Rapid service creation and deployment as well as uniform service delivery of

OSA/Parlay applications can be facilitated by the development of an end user interface

with the appropriate functionality. Through the use of reusable service independent logic,

an end user interface can allow service providers to rapidly introduce new OSA/Parlay

services.

It is therefore proposed that an end user interface be introduced between the OSA/Parlay

Enterprise domain (ie. the Service Provider Domain) and the Consumer domain. The

main aim of the consumer domain interface would be:

• The provision of a standardized set of APIs to support end user access and usage

of OSA/Parlay applications, as well as the management of end user subscriptions

and profiles in order to provide authenticated usage, service customization, and

context aware service delivery.

Introducing a standardized way of creating and deploying new services allows for a

normalization of the application development methods and toolsets such that efficient

gains may be achieved leading to significant increases in efficiency. New services can be

created in a greatly reduced timeframe because a standard agreed mechanism for

accessing the common service logic can be used. This means common skill sets, toolsets

and processes can be brought to bear on new developments. As projects are completed

and deployed, new projects become lower risk and more predictable. Development teams

(both inside and outside the organization) can work to a common, agreed upon set of

interfaces to the core systems that underpin a new service [29].

2.2 The TINA Service Architecture

In order to define an end user interface for OSA/Parlay, we examine the TINA service

architecture. TINA provides a well defined model for the construction, deployment, and

operation of NGN services. We examine the TINA business model to determine whether

it can be used in providing a more complete OSA/Parlay business model. The section

also examines TINA’s computational object model to determine whether the functionality

it provides in delivering TINA services to the consumer domain can be adapted to deliver

 25

OSA/Parlay services. The session concept is then introduced as a means of grouping

common consumer-provider interactions. We discuss its relevance to OSA/Parlay

applications and consider how it can be used to assist consumer-provider interactions in

Parlay. The section concludes with a discussion of Personal mobility followed by a

discussion of the overall contribution TINA can make to the definition of a Consumer to

Provider API set for the OSA/Parlay service architecture.

2.2.1 The TINA Business Model

The TINA-C service architecture presents a set of business roles and responsibilities

which provide a high-level description of the business situation in which

telecommunications services are provided. [10] describes the scope of the service

architecture with respect to the initial set of business roles and business relationships. The

following terminology is used in the description of the business model [12]:

• A stakeholder is a representative of an organization or person responsible for a

portion of the TINA system.

• An administrative domain is a portion of the TINA system owned by a single

stakeholder. Several business roles may be aggregated by one administrative

domain.

• A business role is a role in an administrative domain performed by a stakeholder.

A stakeholder may perform several business roles in a single administrative

domain. For example a telecom operator may act as a retailer, while providing

services to consumers.

• A reference point (RP) classifies the relationship between business roles.

TINA defines a set of business roles. In comparison, OSA/Parlay defines two business

roles, an enterprise operator, and a connectivity provider. The first step outlined in the

previous chapter in order to create a consumer interface for Parlay is to “define a

complete system of administrative domains and business roles within the OSA/Parlay

application layer”. Thus, the TINA defined business roles may be useful in

accomplishing this goal. Below is a summary of the defined business roles:

• The Consumer role is performed by a stakeholder who consumes services

provided in a TINA system. A consumer may be an individual, a private

household, small or large business, and all kinds of companies. The broker and

retailer roles provide services for consumers to use [4]. This definition of a

consumer role can also be used within the Parlay application layer to represent the

consumers.

 26

• The Broker role provides stakeholders with information that enables them to find

other stakeholders (administrative domains) and services in the TINA system.

• The Retailer role provides stakeholders in the consumer role with access to

services. This is the key role in the TINA services environment. The major

responsibility of the retailer is to provide the unified management of services, in

terms of subscription and accounting. Retailers act as intermediaries for service

and connectivity providers in order to present a single point of contact to the

consumer. However, it is not uncommon for the retailer and service provider role

to be managed by a single stakeholder. In telecommunications, often telecom

operators bundle their own services such as video/voice conferencing, and at the

same time provide retailer services by managing user subscription, and access to

services.

In OSA/Parlay, an enterprise operator would interact with a retailer to provide

services to a consumer domain. We suggest that the TINA retailer be incorporated

into the OSA/Parlay business model to provide the functionality required by an

enterprise operator to interact with the consumer domain to provide services.

• The Third party service provider aims to support retailers or other third party

providers with services meant for use by consumers. An example of a 3
rd

 party

service provider could be a music provider who does not sell music directly to

consumers, but instead offers its products through a music retail store. This role is

comparable to OSA/Parlay’s enterprise operator.

• The Connectivity provider manages the underlying transport network. The

connectivity services are not directly offered to consumers, but have to go through

retailing. In Parlay, the framework and SCFs would fulfil this role.

Figure 2.3 illustrates the relationship between the different administrative domains, while

at the same time highlighting the reference points between domains. Note that any given

company may be a combination of any or all of these five domains. The consumer,

retailer, and third party service provider business roles are mostly within the scope of the

TINA-C service architecture. The business relationships of these roles with the

connectivity provider are within the scope of the network resource architecture [13].
Although TINA-C assumes a one to one mapping of business roles such that each

reference point shown in figure 2.3 should have its own documentation, the only RP

which has been completely defined and standardized by TINA-C is the Ret-RP between

Customer and Retailer.

We therefore focus on the Ret RP and the consumer and retailer business roles. These

roles provide the necessary high level functionality required by OSA/Parlay application

providers to deliver services to end users. Using the Ret RP, TINA defines the following

high level requirements for the consumer business role [24]:

1. obtaining location of retailers, service providers and other consumers.

2. initiating service relationships that include service providers and other consumers.

3. indicating availability to the service provider (for receiving invitations).

 27

3 rd Party

Service

Provider

Consumer

Broker

Retailer

Network Connectivity Provider

TCon

Bkr

3PtyRet

TCon

Bkr Bkr

T
C
on

C
onS

C
onS

Bkr

3Pty

Rtr

CSLN LNFed

Figure 2.3: The TINA-C Business Model

And for the service provider role, the following high level requirements are defined:

4. manage (de)registration to obtain various services by consumers.

5. authorization prior to usage.

6. maintenance of session-level user service profiles and treatment policies.

7. session management, communication to establish and maintain the association list

of parties and resources that partake in a session with session owners and session

policy information for the purpose of establishing access to the session.

In this research, the first step in solving the main problem is to define a relationship

between the consumer and service provider domains within the Parlay architecture.

TINA’s Ret-RP provides a well defined set of APIs to support the interaction between a

retailer and a set of consumers. It can be used to provide the consumer to service provider

API set required in the implementation of an end user interface for Parlay. It is therefore

suggested that TINA’s Ret RP to be used to define the consumer to service provider API

set. The next section describes the computational model used to support the TINA Ret

RP.

 28

2.2.2 TINA Service Components and Interfaces

In order to realize the relationship specified by the Ret RP, TINA provides a set of

service components that can be used in service creation and management. The service

components provide functionality which can be manipulated to support service delivery

between a consumer and provider domain. These components are distributed across

different network elements and administrative domains. They provide access, service and

communication session related functionality.

The components are separated according to their business administrative domain and

session type. Access related components support interfaces which provide universal

access to services. Usage related components support interfaces which allow users to use

a service. Figure.2.4 illustrates the possible grouping of the service components within

the end user interface in relation to Parlay’s enterprise operator/3
rd

 party application

provider domain. Their location in terms of the retailer, service provider, and consumer

domains is also shown. It is important to note that figure 2.4 utilizes the TINA business

model to illustrate the possible arrangement of a hybrid OSA/Parlay-TINA service

architecture. The main aim here is to illustrate the positioning of the service components

within the TINA system (ie. in relation to the consumer, retailer and 3
rd

 party service

provider domains). However, Section 2.5.3 provides a formal description of the proposed

business model, as well an illustration of the system concept based on that model. It must

also be noted that only the most relevant service components to this research are

mentioned. The list of components and supported capabilities presented here is by no

means exhaustive. However, the TINA-C Service Architecture specification [10],

presents a greater number of service components, and each in greater detail. The

following sections present detailed descriptions of the TINA service components and

their purpose.

2.2.2.1 Access Session User Application (asUAP)

An API to control end user Access and Authentication to OSA/Parlay applications is not

specified within the Parlay standard. Furthermore, end users have no mechanism through

which they may discover available service from a service provider. Authorized access to

a service provider and their services is necessary to allow for the setup of a secure service

usage context between a consumer and service provider. One of the main objectives in

this research is to provide this functionality.

 29

C on sum e r D om a in 3 rd P a rty

S e rv ice

P ro v id e r

B a s ic V o ic e

S e rv ic e s

M u lt im ed ia

S e rv ic e s

D a ta

S e rv ic e s

U se r

In te r fa c e

R e ta ile r D om a in

A cces s S e ss io n C om pon en ts

a sU AP

P A

SP F

SU B

D a ta b a s e

S e rv ice S e s s io n C om po ne n ts

S F

ssU A P

U A

Figure 2.4: The service components in the TINA service architecture

In TINA, an access session related User Application is located in the consumer domain

and is the first point of contact for a user. It supports access session setup and

authentication. The asUAP is defined to model a variety of applications in the User

domain. It represents one or more of these applications and programs and can be used by

human users, and/or other applications in the user domain. A UAP can be either or both

an access session related (asUAP) and service session related (ssUAP) service

component. The asUAP provides capabilities for:

• the user to discover a service provider.

• the initiation of authentication of an individual user and/or a consumer domain.

• the user to discover available service offerings from a provider.

• the user to request the setup of a usage context.

 30

• the user to request service and user information.

The asUAP collaborates with the PA to provide an Access and Authentication

management system for end users within the consumer domain. In conjunction with the

SPF and the UA, these components provide a complete Access and Authentication

management system within the TINA service layer. The main function of the asUAP is as

a ‘first contact’ to the user to support the initiation of access and authentication requests.

The PA is discussed next.

2.2.2.2 Provider Agent (PA)

The Provider Agent (PA) is defined as the user’s end-point of an access session within

the consumer domain. The PA supports a user accessing its UA and making use of

services. The following capabilities are supported by the PA:

• convey request for discovering a service provider.

• set-up a trusted relationship between the user and the provider through

authentication (an access session between the consumer and service provider

domain).

• convey request for discovering available service offerings (either anonymously or

as a recognized user).

• support usage context setup.

• convey request for service and user information.

2.2.2.3 User Agent

A User Agent (UA) represents a user in the provider’s domain and supports the user in all

his/her interactions with the service provider. It is the provider domain’s end-point of an

access session with the user. The UA supports the following capabilities:

• support the setup of a trusted relationship between the user and the provider (an

access session). The provider may or may not know the identity of the user. (In

the case of anonymous users ‘Trust’ is not guaranteed by identifying the user, but

may be ensured by, for example, pre-payment.).

• convey request for discovering available service offerings (either anonymously or

as a recognized user) to the Subscription manager (SUB).

 31

• setup a usage context for a user.

• convey request for service and user information to the SUB.

• manage the user’s preferences (choices or constraints) on service access and

service execution. (These would be determined during access session setup).

• provide access to a user’s user profile. (The user profile is a dynamic object which

contains all information that is used directly within the access session for

authorization decisions, constraints and customization of the access session. It is

defined at the start of the access session and terminated at the end of the access

session.).

• resolve the service execution environment for the user through the user profile,

allowing him/her to use services from many different types of terminals. This

requires resource configuration information of the user system (which includes

terminals and their access points being used by or available for the user; access to

this information is restricted by the user.) This includes support for personal

mobility.

• manage invitations received by the user according to policy. This includes support

for personal mobility.

• accept invitations from users to join a service session.

• deliver invitations to a terminal, previously registered by the user.

• allow the anonymous user to register as a user of the provider (i.e., set-up a

contract with the provider for longer than a single access session).

• convey user requests during subscription management to the SUB.

2.2.2.4 Service Provider Framework (SPF)

No standardized set of Parlay interfaces have been defined to guide the interaction

between the application server and end user applications seeking to access and use 3
rd

party applications. The addition of the SPF is meant to support these activities, however,

an API to access the application server remains undefined. It is therefore suggested that a

similar point of access to the application server as the Parlay gateway’s framework API

be implemented. In this section, we introduce the Service Provider Framework (SPF) and

define its functionality as required.

The Service Provider Framework is modelled after TINA’s IA service component and

OSA/Parlay’s Framework and is intended to support the access and usage of 3
rd

 party

application services by end users implementing the TINA based end user interface. Its

main functions are:

 32

• authenticate the requesting domain and set up a trusted relationship between the

domains (an access session) by interacting with the PA.

• establish an access session, but allowing the requesting domain to remain

anonymous when the user is unknown.

Besides access and authentication management, the SPF can be extended to support the

deployment, configuration, activation, deactivation and withdrawal of service instances.

It is important to note however that the only the SPF’s access and authentication

management functionality is implemented in this project.

2.2.2.5 Subscription Manager (SUB)

One of the objectives outlined in Chapter 1 was the provision of a Subscription and

Profile management system for Parlay. This was due to the fact that Parlay offers no API

support for subscriber management. The standard does not specify how a service

provider/enterprise operator manages the online or offline subscription of consumers to

services. In order to authorize access to the service provider domain and the services

offered therein, as well as to set, monitor and enforce limits on the use of those services

based on some policy, it is necessary that a service provider be able to differentiate

between users and their assigned rights and privileges in terms of service usage. TINA

defines a subscription component which can be used for the management of subscribers,

subscriptions, and users for a whole set of services provided by a service provider.

The Subscription Management Component (SUB) can be considered as the provider

domain's control point of subscriber, user and subscription lifecycle. The SUB, working

together with the UA, provides a complete system for user and service profile

management within the provider domain. The main functionality offered by this

component is:

• creation, modification, deletion and query of subscribers.

• creation, modification, deletion and query of subscriber related information

(associated end users, end user groups, etc.).

• creation, modification, deletion and query of service contracts (definition of

service profiles).

• retrieval of the list of services, either the ones available in the provider domain or

the subscribed ones.

• retrieval of the service profile for a specific user (or terminal or NAP).

To achieve the outlined objective of providing Subscription and Profile management

functionality to the Parlay service architecture, it is important that the SUB component be

incorporated into the consumer interface.

2.2.2.6 Service Session User Application (ssUAP)

The consumer’s initial point of contact during service usage is the Service Session User

Application (ssUAP). The ssUAP supports all user interactions with the service provider

outside of an access session. It represents a variety of applications in the User domain

that interact with OSA/Parlay services and support the service session. The service

session UAP is service specific and logically supports a combination of session controls;

• initiating/terminating the session.

• inviting other participants to join.

• joining an existing service session.

The main reasons why we use the ssUAP instead of the asUAP in service session related

interactions are:

• Separation of concerns (access session vs. service session).

• Service specific downloads -- the ssUAP may be required to download service

specific data (ie. codecs) to run a service.

2.2.2.7 Service Factory (SF)

A Service Factory (SF) is a service-specific object, which manages the lifecycle of

service session computational objects (i.e. App Call Manager, App Call Object and App

Call Leg) for an OSA/Parlay service type. The SF is critical in achieving the outlined

objective of initiating and terminating Parlay applications. The SF supports capabilities to

create and delete these objects. A request to create a service session of a particular service

type (ie. generic, multiparty, multimedia, conference) results in the creation of one or

more object instances. The SF can create and initialize the instances according to rules

imposed by their implementation under the OSA/Parlay specification. Requests to create

new service objects are typically made by an OSA/Parlay Application (App).

2.2.2.8 OSA/Parlay Applications (App)

Within the system of TINA service components, OSA/Parlay applications are represented

by the App service component. This object encapsulates the service logic required for a

functioning application. Depending on the type of call control functionality it requires, an

 34

App has a different set of call managers, call objects, and call legs. The App supports the

capability to:

• Request the instantiation of OSA/Parlay call objects.

• Request the termination of OSA/Parlay call objects.

• Request connection setup from the OSA/Parlay gateway.

• Request connection teardown from the gateway.

This section presented a set of TINA service components used to encapsulate the

functionality provided by the TINA’s Ret Ref Pt. The Ret Ref Pt defines an API set

which can be used to manage the provision of services between a retailer and consumer

domain. It is proposed that the service components presented be used to implement an

end user interface utilizing the Ret RP APIs to support consumer-provider service

provision in OSA/Parlay. Figure 2.4 illustrated the proposed arrangement and the roles of

each component have already been described. The functionality provided by the service

components can be used to achieve the objectives outlined in Chapter 1. The asUAP, PA,

SPF, and UA, provide the necessary functionality to implement an Access and

Authentication management system for the end user interface. The service session or

access session UAPs, UA, and SUB provide the necessary functionality to implement a

Subscription and Profile management system. The initiation and termination of Parlay

applications can be facilitated by the ssUAP, UA, and SF. The next section presents the

TINA Ret RP APIs.

2.2.2.9 TINA Interfaces

To provide the functionality specified for each service component, the Ret RP specifies a

set of interfaces. These interfaces are generally grouped according to their session type.

The session concept is introduced in the following section. In this section we present a

general overview of the Ret RP APIs used in this research, a more detailed description is

provided in the relevant design chapters. The following interfaces are defined for the

Access Session:

• i_Initial

Allows a consumer to contact a provider as well as to request authentication.

• i_Authenticate

Supports user and/or domain authentication.

• i_Access

 35

Provides consumers with access to services once they have been authenticated.

The user may view available services and start service sessions using this

interface.

The following interfaces are defined for Primary Service Session:

• i_Access

In terms of service management, this interface can be used to initiate a service

session.

• i_SSManage

Supports the creation and deletion of service related objects.

• i_Invitation

Supports user invitation scenarios.

• The Basic Feature Set of Interfaces

A limited version of this feature set is used in this project. The functionality

utilized allows a consumer to terminate a service session.

• The Multiparty Feature Set of Interfaces

Allows consumers to initiate and terminate multiparty service sessions.

• The MultipartyInd Feature Set of Interfaces

Supports the initiation and termination of multiparty service sessions.

The following interfaces are defined for Ancillary Service Session:

• i_Subscribe

Allows consumers to subscribe and unsubscribe to services.

• i_SubscriberInfoMgmt

Allows subscribers to manage their information.

• i_ServiceContractInfoMgmt

Allows subscribers to create a service contract and to manage information related

to it, such as service templates and service profiles.

• i_SubscriberInfoQuery

Allows a subscriber to query information about end users currently associated

with the subscription.

 36

The following section introduces the session concept.

2.2.3 The TINA Session Concept

One of the core concepts arising from the TINA service architecture is the definition of

sessions. Sessions can be useful as a means for grouping specific activities between end

users of OSA/Parlay services during a specific period of time. Three types of sessions are

defined, the access, service and communication sessions. The interactions required to

discover and request services are captured under access. On the other hand, those that

control service behavior or deliver stream content are captured under usage. Stream

content delivery supported such as QoS and connection setup is provided by the

communication session [4].

2.2.3.1 Access Session

In the TINA architecture, all interactions between a user and a provider are executed

within the context of a session. The architecture distinguishes between an access session

and a service session. The access session is used to initiate a secure dialogue between two

domains through user authentication. Authentication takes place using agreed upon

algorithms between the authenticating domains (consumer and provider). The access

session also allows for the setup of user context information such as terminal

configuration (primarily for service usage management), as well as the discovery of

provider service offerings. After the access session is successfully completed, the user

can start a service session in which he can select one or more services to use. The access

session maintains state about the user’s association to the provider and about his

involvement in a service session. A user may be involved in many service sessions at the

same time, and an access session maintains state about his involvement.

The asUAP, PA, SPF, and UA enable the realization of an access session within the

TINA system. In this research, we intend to explore their suitability in providing access

session functionality within an OSA/Parlay system.

2.2.3.2 Service Session

The service session can be used by a consumer to interact with active OSA/Parlay

services. It represents a single activation of a service and encapsulates information and

functionality required to activate, control and manage services. A service session is

decomposed into a usage service session, which provides a confined view for each user

 37

of the service session, and a provider service session, which holds a universal view. The

usage service session represents the across domain relationship between two domains.

The provider service session contains service capabilities common to multiple members

of the service session, and represents the core service logic necessary to execute service

requests while maintaining the session for multiple participating domains [4].

TINA differentiates between primary and ancillary service sessions. In this context, a

service invoked in a primary service session can be characterized by a multimedia

conference, and an ancillary service, an online subscription. Primary service sessions will

generally require that Parlay applications request connection setup from the gateway. In

such instances, the SCFs can be used to provide generic or multiparty multimedia

connectivity. Users in a service session have the necessary information and capabilities to

negotiate Quality of Service (QoS), security contexts, user contexts and the use of service

and communications resources during service provision [14]. Ancillary services are

separated architecturally because they are an obvious source of competitive

differentiation among providers. By categorizing them as services, it becomes possible

for a service provider to manage their deployment and provision to users in a manner

consistent with that of primary services [23].

TINA also defines number of feature sets (FS) and interfaces which can be used to

provide generic service session functionality. The complexity of the service offered by a

service provider determines the feature sets that the domain must support. For example,

within a FS, interfaces providing single party or multi party call capabilities are defined.

Parlay application requiring multiparty functionality within a service session must

implement the TINA multi party feature set. Feature sets are discussed in more detail in

Chapter 3.

The ssUAP, UA, SF, and SUB enable the realization of a service session within the TINA

system. In this research, we intend to explore their suitability in providing service session

functionality within a Parlay system.

2.2.3.3 Communication session

A communication session provides a service-oriented view on the end-to-end stream

connections in the transport network between the participants of a service session.

Typically, the service session specifies a stream connection to be set up between parties

in terms of QoS (quality of service) parameters and abstract medium descriptions. The

communication session is not relevant to this research as connectivity within our model is

provided by the OSA/Parlay gateway. End to end stream connection setup is handled by

the SCFs within the Parlay model. Therefore, we only explore the feasibility of

integrating TINA’s access and service session model into the OSA/Parlay service

architecture.

Figure 2.5 illustrates the lifetime dependencies between sessions for which the following

general principles can be applied [4]:

 38

• A service session cannot exist without the access session of the party holding the

ownership of the service session (ownership can be transferred between session

parties).

• An access session can encompass many service sessions.

• A service session can encompass many communication sessions.

• A communication session cannot exist without a service session.

• A communication session can only be controlled by a single service session to

avoid control conflicts.

The session concept is important because it separates the different concerns of service

access and usage, and promotes the distribution of service functionality [20]. The

separation of the provider and usage service session supports the distribution of service

logic whereas, the separation of access session and service session allows the access and

service management methods to vary based on changing user context.

C S 1

C S 2 C S 4

C S 3

A S 1

A S 2

S S 2

S S 1 S S 3

U se r A

U se r B

P ro v id e r 1

P ro v id e r 2

s ta rt

s ta r t

s ta rt

s ta rt

s ta r t

s ta r t

s ta r t

s ta r t

s ta r t

e n d

end

en d

e nd

e nd

e nd

end

e nd

end
jo in

in v ite

A S : A c c e s s S e s s io n

C S : C om m un ica tio n S e ss io n

S S : S e rv ic e S e ss io n

T IM E

end

Figure 2.5: Lifetime dependencies among sessions. Redrawn from [4]

 39

Service delivery requirements can therefore be tailored to meet the changing needs of a

user. For example, usage context such as location, device type, or date and time, may

influence service access and usage aspects such as service discovery or registration,

authentication, and QoS [21].

2.3 TINA and Context Awareness

The TINA Service architecture supports context aware service delivery by defining data

structures and types that are user context related. Below is a listing of the different types

of context and the TINA data structures that are used as enablers:

Network Characteristics: TINA provides no explicit support for service delivery based

on network characteristics [14].

Device Characteristics: TINA defines terminal related data structures t_TerminalConfig

and t_TerminalInfo that enable service delivery based on device characteristics.

The t_TerminalConfig is a structure containing the terminal id and type, the network

access point id and type, and a list of terminal properties, t_TerminalInfo and

t_ApplicationInfoList.

The t_ApplicationInfoList provides a list of the applications that are available on the

terminal.

The t_TerminalInfo gives details on the type of terminal, the operating system type and

version, the network cards available on the terminal, the maximum number of network

connections which can be supported by the terminal, as well as memorySize (amount of

RAM in megabytes), and the disk capacity in megabytes.

It is important to note however that TINA has no mechanisms to convey and manage (on-

line) information about current terminal capabilities from the terminal to an application

without querying the consumer domain [4]. TINA can only retrieve information about

terminal capabilities directly from the consumer. Unlike OSA/Parlay, no functionality to

retrieve terminal capabilities from the network exists.

User Context: TINA defines t_UserCtxt, which is a data structure which is used to pass

user context to the retailer, as soon as an access session has been established.

• User Preferences

TINA subscribers can define their preferences through policies selected during the

negotiation of a service contract (which describes the terms of provision of a

service). Using a subscription service profile, subscribers are able to tailor a

service’s behavioural characteristics to their specific requirements and needs

based on a service specific template [10]. End users are granted with

 40

customization capabilities through the definition of a user service profile,

constrained by the subscriber’s preferences.

• User State

The t_UserCtxt data structure informs the service provider about consumer

domain information such as available interfaces during the access session.

2.4 TINA and Personal Mobility

Personal mobility as defined in Chapter 1, is important in providing services to end users

at any terminal. The UPT definition Error! Reference source not found. requires that

users be able to access services from any terminal and the network to be able to support

the provision of those services to any terminal. Currently, the OSA/Parlay architecture

has no standard API to enable personal mobility. The architecture lacks the capability.

The TINA service architecture on the other hand provides inherent support for personal

mobility. However, in order to enable personal mobility within the OSA/Parlay network,

TINA specifies the following requirements [4]:

• Users should be able to access the system from any terminal, subject to

restrictions imposed by the service provider and by the service subscriber. To

“access the system” includes: to initiate access sessions, to initiate service

sessions, and to receive invitations to service sessions at a specified terminal.

• Users should have the ability to register so that service invitations are sent to a

terminal specified in the registration. That is, the registration will result in

invitations to join a service arriving at the terminal specified.

• Conditions may be applied to this registration, for instance, a user may register at

different terminals for different services, different callers, different times of day,

etc. The architecture should allow the support of this conditional registration, but

it is a service provider issue to define and implement the actual conditions that are

supported.

• Users may respond to a service invitation on a different terminal than the one

specified for getting the invitation.

• The user should be able to “access the system” according to the service provider’s

and user’s own preferences, as much as possible, independent of the terminal

used. The delivery of a service is subject to terminal and network capabilities. For

example, a user may not register a POTS telephone for a video service as it does

not have the capability to receive video streams.

By adhering to these requirements when implementing the end user interface, personal

mobility can be integrated into the OSA/Parlay service architecture.

 41

2.5 Overall Contributions of TINA to OSA/Parlay

TINA defines an architecture for telecommunication applications. A major limitation of

the TINA-C effort is that it mainly takes into account advances in distributed computing

technologies, aiming only at supporting highly intelligent terminals in the NGN without

taking account of backward interoperability with the legacy service platforms [14,17,19].

Even though TINA ideas are not sufficient for all kinds of services, the architecture still

provides a comprehensive set of concepts and principles that may be useful in the design

and implementation of an end user interface for OSA/Parlay applications.

2.5.1 What support can a TINA Derived Consumer Interface give to Parlay

Applications

The proposed end user interface can provide OSA/Parlay applications with the following:

1. A logical separation of roles in the application and SCF layer to support the

provision and deployment of OSA/Parlay services. It provides a model where

Consumer, Service Provider, and Connectivity Provider are logically separated

into different administrative domains, and the responsibilities of each domain are

defined. The OSA/Parlay service architecture does not define any responsibilities

for any roles other than the service provider and the connectivity provider.

2. The specification of a consumer provider relationship to govern service access

and usage within the Parlay system. The TINA Ret Ref. Pt provides a highly

defined description of the responsibilities of the service provider and consumer

domain within an interaction.

3. An integration of the session concept into the OSA/Parlay service architecture.

The session concept replaces the traditional call and connection concepts of

telecommunications, and is more suited to multimedia and multi-party services

[12]. The session model clarifies the purpose of the interactions and interfaces

between a user and a provider.

4. The specification of a generic service independent API set (TINA Ret RP)

between the consumer and service provider domains to support the provision and

deployment of OSA/Parlay services.

5. The definition of a component specification which simplifies service creation by

encapsulating the functionality provided by the Ret RP API into reusable and

interoperable service objects. This separates service independent logic from

service specific logic. Interfaces for Authorization, Subscription, Profile, Usage,

and Access management are detached from service specific logic and placed onto

 42

a single service delivery platform for use by all services in the Parlay enterprise

operator domain. This decreases the development time for OSA/Parlay

applications because the application provider may reuse the standard service

components and need only develop the application specific logic when creating

new services.

6. The definition of an API and component specification to support Access and

Authentication management.

7. The definition of an API and component specification to support Subscription

management.

8. The definition of an API and component specification to support Service Usage

management, specifically the initiation and termination of OSA/Parlay services by

end users.

9. Support for context awareness through the definition of the UA and SUB. The UA

has the capability to setup a usage context, as well as make service delivery

decisions based on a user profile which amalgamates a user’s preferences, and

usage context. The SUB provides facilities for a user to register their preferences.

10. The provision of inherent mechanisms to support personal mobility.

Other benefits of a standard OSA/Parlay consumer interface include:

• Standardized Service Access and Usage.

• Elimination of Duplicated Functionality in the Service Provider Domain.

• Reduced Software Cost and Maintenance.

2.5.2 What can it allow users to do?

The proposed end user interface would be made up of a set of TINA APIs and service

components designed to provide essential functionality not only to OSA/Parlay

applications but to the end users in the consumer domain. Access session and Service

session functionality is separated to simplify the interaction between users and service

providers. Using TINA access session scenarios as a guide we propose that the end user

interface’s access session APIs would allow users in an OSA/Parlay environment to:

• Locate and contact a service provider.

• Login and logout of the service provider domain.

• Setup the default context required for control of the service session.

• Discover service offerings.

 43

• Terminate an access session.

• Terminate active service sessions.

• Join a service session from the access session.

The Service Session APIs would allow users to:

• Initiate and terminate a service.

• Invite a user to join a service session.

• Join an existing service session with an invitation.

The Supplementary Service Session APIs would enable users to perform:

• Subscription Management (subscribe, modify, and release services offered by

providers).

• User and Service Profile Management (create, modify, and delete profiles).

• Query subscriber, service, and profile information.

2.5.3 Proposed Service Architecture

This chapter reviewed the OSA/Parlay service architecture and summarized the

capabilities offered by its SCFs as well as the types of services it can support. We also

took a look at the Parlay business model where two roles, an enterprise operator and a

connectivity provider, were identified. It was then noted that the Parlay standard does not

define a consumer role within the business model. The problems caused by the lack of a

consumer interface were then summarized. We then reviewed the TINA service

architecture to determine whether it could provide Parlay with the necessary support to

define a consumer domain and the functionality required for its realization within the

Parlay architecture. The main results of the TINA review was the definition of a business

model, an consumer/provider API set, a component model, and a session model which

could all be used to support the definition and implementation of a consumer interface for

Parlay applications. Support for context awareness and personal mobility was also

discovered. We then illustrated a system where TINA’s service components and Parlay

applications were combined to form a hybrid service architecture which incorporated

TINA’s consumer and retailer domains into the Parlay business model.

In this section we formally propose a service architecture to support the implementation

of Parlay’s consumer interface. Figure 2.6 illustrates the logical separation of roles. The

main difference from the figure.2.4 is the addition of the retailer domain into the

enterprise operator domain. This is meant to more closely align our business model with

that provided by the Parlay standard. In the remainder of this report, the retailer,

 44

enterprise operator, and service provider terms will be used interchangeably, except when

referring to non-retailer elements or API such as the Parlay applications.

C o n s u m e r D o m a in E n te rp r is e O p e ra to r /3 rd P a r ty S e rv ic e

P ro v id e r

P a r la y

A p p lic a t io n

P a r la y

A p p lic a t io n

P a r la y

A p p lic a t io n

U s e r

In te r fa c e

 N e tw o rk C o n n e c t iv ity P ro v id e r D o m a in

F ra m e w o rk S C F s

R e ta ile r D o m a in

A c c e s s S e s s io n C om p o n e n ts

a s U A P

P A

S P F

S U B

D a ta b a s e

S e rv ic e S e s s io n C o m p o n e n ts

S F

s s U A P

U A

Figure 2.6: The Hybrid OSA/Parlay-TINA Service Architecture

The consumer domain consists of an asUAP, ssUAP, and a PA which are all collocated

within the user’s terminal. This means that the architecture only caters for consumer

devices which are DPE enabled.

The next chapter presents the requirements for the design and implementation of the

consumer interface. The chapter is divided up based on the functionality specified in the

research objectives.

 45

3 R E Q U I R E M E N T S S P E C I F I C AT I O N F O R T H E

O S A / PA R L AY E N D U S E R I N T E R FA C E

This chapter presents a high level requirements analysis of the OSA/Parlay end user

interface. Requirements for the design of Access and Authentication, Subscription and

Profile management, and Service Usage management APIs are presented. These APIs are

based on interfaces and operations defined in the TINA Retailer Reference point

specification [23]. We also take a look at context aware service delivery and discuss what

is required to integrate them into the consumer domain interface. The requirements for

the integration of personal mobility into the consumer interface were discussed in the

previous chapter (see Section 2.4).

3.1 Requirements for Access and Authentication Management

The access and authentication APIs cover the interactions required for the consumer and

service provider domains to establish a service usage context. To establish a service

usage context, the service provider requires the consumer to be authenticated and

thereafter to maintain information about their context. The access and authentication

APIs should provide [4]:

• Location transparent discovery of a particular service provider and their

services.

• Customized access to OSA/Parlay services, the interaction between the service

provider and consumer is customized by previously arranged role specific

profiles, taking into account the end user’s preferences or terminal capabilities.

• Mobility, ubiquitous access to the system of OSA/Parlay services, irrespective of

the terminal being used and the point of attachment to the network.

• Secure access, the means to create a secure binding between the consumer and

service provider.

Chapter 4 presents a design of the Access and Authentication APIs based on the above

design goals. A detailed description of how each requirement is fulfilled is given.

3.2 Subscription and Profile Management Requirements

In order for service providers to offer services to end users, it is essential that they have

sufficient information to handle end users, subscribers, and the subscription life cycle.

The Subscription and Profile Management API is expected to fulfil the following high

level requirements [4]:

Management of subscriber related information

• Addition or removal of subscribers.

• Query and modification of subscriber related information.

• Assigning rights and/or privileges to subscriber related entities (e.g. end users,

terminals, or Network Access Points (NAPs)).

• Removing assigned rights and/or privileges to subscriber related entities.

Management of service related information

• Creating, modifying, and deleting service profiles. This includes addition and/or

removal of subscribed services from a service profile.

• Retrieving service profile and service contract information.

• Query and modification of service related information.

This section presents a high level view of the basic requirements of the Subscription and

Profile Management API. Chapter 5 presents a detailed description of their design.

3.3 Service Usage Management Requirements

The service usage management API’s cover the interaction between the consumer and

service provider domains during the use of a service session (based on policies agreed

upon in the service contract). In the context of a service session, different services offer

end users with differing functionality specific to the type of service. Due to a desire to not

restrict the functionality offered by services, the service usage management APIs do not

cover these types of service specific functions. The focus here is on providing generic

service independent functionality to support consistent service usage management for all

types of Parlay services.

3.3.1 Service Usage Management Feature Sets

The TINA service architecture supports service usage management by providing generic

service session control methods that can be used in both single and multi-party service

interactions. The generic service session control methods are categorized according to

feature sets. Services requiring some specified service session functionality must

implement interfaces within a corresponding feature set. This section describes the

feature sets used in this research to implement the generic service session functionality

used to support OSA/Parlay application usage.

The basic feature set (BasicFS) is used by all applications and provides the generic

service session functionality required to initiate and control a single party session. The

BasicFS is suitable for single-party applications like e-mail.

The MultipartyFS allows multiparty support for service sessions. It supports requests for

multiparty control actions such as inviting a user to a service session.

The MultipartyFS supports operations to invite others to join, as well as to end a

multiparty service session [23]. It supports the session providing information on events

that have happened to other participants, eg. another party is leaving the session; and the

session indicates to all other components that a user is about to exit (see Section 3.2.1.).

In the following sections interfaces supporting multiparty operations are discussed.

The MultipartyIndFS allows indications to be sent to users in a multiparty session when

an action is about to be taken shortly. For example, an indication would be sent to all

users in a session when the session is about to be ended. By implementing the

MultiPartyFS and MultipartyIndFS, multiparty applications such as call conferencing can

be supported by the consumer interface.

Using the TINA Feature sets, the service usage management APIs will be required to

provide the following service session functionality:

• Initiate and terminate single party service sessions.

• Initiate and terminate multiparty service sessions.

Chapter 6 presents a design of the Service Usage Management API.. The chapter is split

into two parts, the first describes the initiation and termination of single party service

sessions, and the second, multiparty service sessions. A detailed description of the

implemented Feature Sets and the interfaces used to support them is given.

 48

3.4 Context Aware Service Delivery Requirements

In order to integrate context into the delivery of OSA/Parlay services, the following

requirements should be met:

• Service delivery should be adaptable based on terminal capability.

• Service delivery should be adaptable based on user preference.

• Service delivery should be adaptable based on user state.

In Chapter 6 (Section 6.3) the implementation of context awareness in consumer interface

is presented.

3.5 Summary

In this chapter, we detailed the requirements for the implementation of the consumer

interface. The first section outlined the requirements of the end user interface with respect

to the enablement of access and authentication methods for OSA/Parlay service

providers. In the second and third section, requirements for the enablement of service

usage management, and subscription and profile management methods respectively were

outlined. The chapter concluded with a specification of the requirements for

incorporating context awareness into the end user interface.

 49

4 D E S I G N O F T H E A C C E S S A N D A U T H E N T I C AT I O N

A P I

This chapter presents the design of an access and authentication management API for

Parlay’s consumer interface using TINA interfaces. The access session scenarios are

supported by the enterprise operator to allow a consumer to request the establishment of

an access session. They are the initial point of contact for the consumer, and allow him to

authenticate himself and the enterprise operator as well as to establish the access session.

The access session also allows the consumer to discover services, initiate usage of those

services, and register the consumer’s context with the operator. The following section

provides a detailed description of the TINA Ret RP access session scenarios using

sequence diagrams and an explanation of the class structures and methods used to

implement the scenarios.

4.1 Access and Authentication Interfaces

To provide consumers with access to the service provider domain, the end user interface

require APIs that provide the capability to:

• Transparently locate a specified service provider and their services.

• Establish secure access, the means to create a secure service usage context

between the consumer and service provider.

• Provide customized access to OSA/Parlay services, the interaction between the

service provider and consumer is customized by previously arranged role specific

profiles, taking into account the end user’s preferences or terminal capabilities.

(Note that determining the profile is not part of access session functionality, but

done in a specific service session).

• Provide Personal Mobility, ubiquitous access to the system of OSA/Parlay

services, irrespective of the terminal being used and the point of attachment to the

network.

 50

To meet these requirements, we use the retailer reference point specification [23], which

defines the required interfaces between the service provider and the consumer premises,

as well as essential operations and parameters useful in these interactions. Only those

retailer reference point interfaces that provided the required functionality between the

consumer and service provider domains were utilized in this research.

The naming convention used in the research for interfaces is as follows; the same

interfaces are usually used by both the consumer and service provider domains, however,

when an interface is implemented by the service provider, the word ‘Provider’ is added to

the interface name. For example, the i_Initial interface is known as the i_ProviderInitial

interface when implemented by the service provider.

4.1.1 The i_Initial interface

The i_Initial interface is a consumer’s initial interaction point with the enterprise

operator. The contactProvider() method allows the consumer to transparently locate a

specified provider using a naming service offered by the DPE. The user is required to

input the name of the provider, after which a reference to the service provider’s

i_ProviderInitial interface is returned. Upon receipt of a reference to the

i_ProviderInitial interface, a user may request for an access session to be setup using this

interface.

The requestAccess() method allows the consumer to identify himself to the provider, and

establish an access session. This method takes as input parameters a userId, and a set of

userProperties which include the user’s password. Depending on whether the user has

already setup a secure context for service usage with the service provider (ie. through

authentication), the provider returns a reference to an authentication interface

(i_ProviderAuthenticate), or an access session identifier, asId and a reference to the

i_ProviderAccess interface (the asId is generated using the setupAccessSession()

method which is described shortly).

If the consumer has not already been authenticated, then a reference to the

i_ProviderAuthenticate interface, which may be used to authenticate the user to the

provider, is returned. After authentication, the requestAccess() method can be invoked

again to retrieve the reference to the i_ProviderAccess interface.

Once a user has been authenticated, the setupAccessSession() method can be invoked.

This method allows the service provider to generate the access session identifier, asId and

return a reference to the i_ProviderAccess method, which is used to list and start

OSA/Parlay services.

In order to provide ubiquitous access to the system of OSA/Parlay services, irrespective

of the terminal being used and the point of attachment to the network, the following

approach is used [4]:

• The user provides the PA with his/her user name and retailer name.

 51

• The PA contacts a (DPE) naming service, which is able to find the interface

reference of the SPF.

• The PA requests to the SPF that an access session be set-up with the UA,

providing the user name to the SPF. Security procedures are executed between PA

and SPF. The SPF returns a reference to the UA.

• The access session is then established. The PA can perform further requests (e.g.,

to start a service) to the UA.

4.1.2 The i_Authenticate interface

The i_ProviderAuthenticate interface allows the consumer and service provider to create

a secure service usage context through authentication. It provides a generic mechanism

for authentication which can be used to support a number of authentication protocols

[23]. The methods provided by the i_ProviderAuthenticate interface may be used for

mutual authentication where both the consumer and provider domains are authenticated,

or one sided authentication where only the cosumer or provider domain is authenticated.

It is not necessary for the authentication protocol to identify the individual consumer.

The getAuthenticationMethods() method provides a generic request mechanism through

which the consumer domain can ask the service provider for a list of supported

authentication methods. This method takes as an input parameter the desiredProperties,

which is a list containing the properties that the consumer wishes the requested

authentication method to support, and returns authMethods, which is a list of

authentication methods which match the desiredProperties, and which the service

provider supports. If the authMethods list returned is empty then the provider does not

support any methods matching desiredProperties, or the provider does not wish to allow

the consumer to authenticate using a method with the desiredproperties. Once the

authMethods list is returned, the consumer domain selects a method to use during

authentication.

Once a suitable authentication method has been agreed between the consumer and the

provider, the consumer invokes the authenticate() method to transport authentication

data (including the selected authentication method) to the provider. This method takes as

input parameters an authentication method, authMethod, which is used to identify the

authentication method proposed by the consumer, and authenData, which contains

consumer attributes to be authenticated. The consumer may also request specific

privileges from the provider using privAttribReq parameter.

The provider returns the following parameters to the user: privAttrib is returned in

response to the request for specific privileges. If the provider wishes to authenticate the

consumer further, then continuationData is returned with challenge data for the

consumer. The user may examine their authentication status using authStatus. The

 52

consumer can be in one of three states represented by authStatus during authentication,

authSuccess, authFailure, authContinue, or authExpired (in which case the provider did

not receive a response within a certain timeframe). If the consumer’s status is

authSuccess, then authentication has completed successfully and the user may re-invoke

the requestAccess() method to setup an access session. If the consumer’s status is

authFailure, then authentication has completed unsuccessfully, and the consumer cannot

establish an access session.

In the case where the consumer’s status is authContinue, the continueAuthentication()

method may be invoked. It allows the consumer to continue an authentication protocol,

started using authenticate(), and pass authentication data to the retailer. This method

returns the same output parameters as authenticate(), however the only input parameter

passed to the provider is authenData.

4.1.3 The i_Access interface

The i_Access interface provides consumers with controlled and customized access to

OSA/Parlay services. It provides a collection of methods through which a consumer may

retrieve service, and user information as well as access session information. The user may

also start a service using this interface.

Customized access to OSA/Parlay services is provided in part by the setUserCtxt()

which allows the consumer to inform the enterprise operator about interfaces in the

consumer domain, and other consumer domain information. (e.g. user applications

available in the consumer domain, operating system used, etc). The method passes

userCtxt which is a structure containing domain configuration information and interfaces.

The service provider uses this method to gather context information in order to provide

context awareness in service delivery. The setUserCtxt() method denotes the end of

access session setup. If this operation is not called successfully, subsequent methods may

fail. It is important to note that the information provided by the user in the setUserCtxt()

method is not used independently to provide context aware service delivery but is rather

used in conjunction with other context information provided in the user profile.

Controlled access to services is provided by the listServices(), and startService()

methods. startService() is used to start a service session. This method is discussed in the

service usage management chapter (see Section 6.1.1). The listServices() method allows

an end user (known or anonymous) to request a list of the whole range of available

services offered by a service provider. The method takes as input parameters

desiredProperties, which is used to specify the type of services the user would like to

view, and a howMany parameter which is used to limit the number of services which are

returned by the provider. The only output parameter returned is a serviceList. This is used

to return a list of retailer services matching the desiredProperties parameter.

The i_ProviderAccess interface also provides consumers with the ability to terminate an

access session. endAccessSession() allows the consumer to end the access session. If any

 53

service sessions exist, the consumer will be requested to terminate them first before

ending the access session. The only input parameter is the access session Id, asId, no

output parameters are returned.

Appendix A.1 provides a summary of all the interfaces, operations, and attributes

presented in this chapter.

4.2 Proposed Implementation Scenarios

The following section provides detailed descriptions of the main use cases in the access

and authentication process. These include contact a service provider, login to a service

provider, and logout from a service provider as presented in figure 4.1. Each use case

presented in this section is followed by a Message Sequence Chart (MSC) which shows

the interaction between the service components in order to realise the use case.

The following roles are identified during an access session [4]:

• End user requests access to services and uses service content. Usage charges may

be at no cost, or its cost may be assigned to a subscription contract (a portion of

the overall charge or the entire charge according to the agreed contract). Only an

end user can be invited to participate in a service. An end user can be a person, a

terminal or a network access point (NAP).

• Subscriber administers subscription contracts on behalf of the consumer domain.

Their responsibilities include: contract negotiation, arranging end users, and

setting subscriber constraints on the service to limit end user capabilities.

Subscribers may be responsible for payment of charges incurred by end users. A

subscriber cannot administer anonymous users. A physical entity, such as a

person, may be both an end user and a subscriber. The subscriber does not feature

in this chapter but is included for completeness.

• Anonymous user is unknown or unrecognized by the access provider. An

anonymous access user may initiate and utilize services that are free or where

payment guarantees are supplied on-line. An anonymous user cannot assign usage

to a subscriber. By invoking ancillary services such as subscription, an

anonymous user may become a subscriber and/or end user. This requires

permanent records in the provider domain and a capability to identify the user.

This identity would allow the user to act as end user or subscriber. Anonymous

users cannot be invited to service sessions because they do not have resolvable

names.

• Service provider offers primary and ancillary services and also supplies service

content to end users. The service provider retains knowledge about end users and

subscribers associated with the consumer domain, such as subscriptions, user

profiles and constraints. A service provider enforces certain policies in the access

 54

session which are derived from agreements set in the subscriber contract. Policies

are held in the user profile.

In the use case shown below, the consumer role aggregates the anonymous and end users.

Consumer

Contact a Provider

Login to a Provider

List Available Services
Service

Provider

Logout from a Provider

Figure 4.1: Access and Authentication Management Use Case Scenarios

To illustrate the activities described within the use case, we define message sequence

diagrams. The MSC diagram shows the object interaction between service components in

a chronological order. The sequence diagrams describe the service components, their

interfaces, and methods. The MSC diagram for contacting a service provider is shown in

Section 4.2.1.1, the login and logout from a service provider diagrams are shown in

Section 4.2.1.2 and 4.2.1.3 respectively.

4.2.1 Contact a Provider

Once a user has subscribed to services offered by a particular service provider, to access

their subscribed services, the subscriber must first contact the service provider. An

anonymous user may also contact a service provider. However, the anonymous user may

only use services which do not require subscriber access. In this use case the user may be

 55

a subscriber or an anonymous user. The following scenario describes the steps required to

contact a service provider.

Description:

A user requests to access the service provider domain by specifying an appropriate

provider name (providerId). On completion, the specified service provider has been

contacted and the user can login using a username and password in order to access the

provider’s services.

Pre-Condition:

The asUAP and the PA must be present in the user’s domain.

The UI must have a reference to the asUAP’s i_Initial interface.

The asUAP must have a reference to the PA’s i_Initial interface.

The SPF must have a reference available to its i_ProviderInitial interface.

Post-Condition:

The PA has an access interface reference to the SPF’s i_ProviderInitial interface. An

access session has not been setup by the user.

4.2.1.1 Message Sequence Diagram

This example shows the user making contact with a provider. This scenario supports user

mobility by allowing the user to contact a specific provider from any terminal.

1. The user starts an access session related UAP by invoking the contactProvider()

method on the i_Access interface. He supplies the provider name he wishes to contact.

2. The asUAP requests the PA to contact the provider, giving the provider name.

3. The PA gains a reference to an i_ProviderInitial interface of a provider specific

Service Provider Framework (SPF) using a location or naming service. The PA returns

success to asUAP. The asUAP notifies the user through the User Interface (UI).

 56

UI asUAP PA

1: i_Access::startAccess()

2: i_Initial::contactProvider()

3: Request SPF IR from Naming Service

Figure 4.2: Contact a Provider Sequence Diagram

4.2.2 Login to a Provider

Once a subscriber or anonymous user has contacted a provider, they can only access

services through logging into the service provider’s domain. An unknown or invalid

username and password automatically logs users into the service provider domain as

anonymous users. In that case no user authentication is necessary, however, domain

authentication must still be performed. The case below describes a scenario where the

user has been registered with the service provider.

Description:

A user logs into the provider domain by specifying a valid user name and password. The

user authenticates him/herself to the SPF. On completion, the service provider can

correctly identify the user by a user name, and the UA has an up to date user profile

containing information about the current user’s domain characteristics (ie. Interfaces, user

applications, operating systems, etc).

Pre-Condition:

The asUAP, PA, SPF, and UA are present in their respective domains.

Each component has made available the required access session interface references.

 57

The asUAP has a list of authentication methods which are supported by the SPF.

Post-Condition:

The UA has generated the access session identifier, asId, and an access session between

the PA and UA has been setup. The UA is personalized to the user and has knowledge of

interfaces of the PA.

4.2.2.1 Message Sequence Diagram

1. The user uses the User Interface to request to log in to the provider. The User Interface

requires the user’s user name (userId) and password (userProperties). These are passed

as input parameters to the requestAccess() method which is invoked on the asUAP.

2. The asUAP invokes the requestAccess() method on the PA. This method takes as

input parameters the user name and password, and returns as output parameters,

references to the PA’s i_Access and i_ProviderAuthenticate interfaces, and an access

session identifier, asId.

If the user is required to authenticate themselves, a reference to the PA’s i_Authenticate

interface will be returned, otherwise, the i_Access interface reference is returned and the

user is allowed to setup an access session. In the latter case, the access session identifier,

asId is also returned.

3. The PA invokes requestAccess() on the provider specific SPF to establish an access

session that allows the user access to the provider’s services. This method has the same

input and output parameters as the previous invocation on the PA, except the interface

references returned are to the SPF’s i_ProviderAccess, and i_ProviderAuthenticate

interfaces. At this point if the user has not yet been authenticated, the provider will not

allow an access session to be set-up, until the user is authenticated.

If the user has already been authenticated, then a reference to the SPF’s i_ProviderAccess

interface is returned, otherwise the i_ProviderAuthenticate interface is returned and the

user is informed that authentication is necessary before an access session to the provider

can be set-up.

4. The i_ProviderAuthenticate interface provides a generic set of operations that can be

used to ‘transport’ authentication information (ie.authentication algorithms) between the

authenticating domains.

In order to use these methods for authentication, both domains must know the

authentication method they will use to generate the authentication data. The asUAP

requests the PA to find out the authentication methods the provider supports. This method

takes as an input parameter the desiredProperties, which is a list containing the properties

that the consumer wishes the authentication method to support, and returns authMethods,

which is a list of authentication methods which match the desiredProperties, and which

the provider supports.

 58

UI asUAP PA SPF UA

1: i_Initial::requestAccess()

2: i_ProviderInitial::requestAccess()

3: i_ProviderInitial::requestAccess()

4: i_ProviderAuthenticate::getAuthenticationMethods()

5: i_ProviderAuthenticate::getAuthenticationMethods()

7: i_ProviderAuthenticate::authenticate()

6: i_ProviderAuthenticate::authenticate()

8: i_ProviderAuthenticate::continueAuthentication()

9: i_ProviderAuthenticate::continueAuthentication()

10: i_ProviderInitial::requestAccess()

11: i_ProviderInitial::requestAccess()

12: i_ProviderInitial::setupAccessSession()

13: i_ProviderAccess::setUserCtxt()

14: i_ProviderAccess::listServices()

15: i_ProviderAccess::listServices()

16: i_ProviderAccess::listServices()

Figure 4.3: Login to a Provider Sequence Diagram

 59

5. The PA request a list of the authentication methods the provider supports. The list of

authentication methods is forwarded to the asUAP.

6. The asUAP uses the authenticate() operation to select an authentication method and

pass authentication data to the PA. The asUAP may also request specific privileges on

behalf of the user from the provider.

7. The PA passes the selected authentication method and authentication data to the SPF.

The SPF then processes the authentication data. If further authentication is required then

the SPF informs the asUAP using the authStatus parameter, and requests it to respond to

some challengeData. Authentication may then proceed using the

continueAuthentication() method.

8. The asUAP responds to the challengeData, processing.

9. The PA forwards the results to the SPF. If the authStatus is returned as authContinue,

then the PA and asUAP must continue to process the challengeData returned by the

continueAuthentication() method. This loop continues until the authentication status is

successful (authSuccess), or a authFailure, or a authExpired is returned. The former

means the user has failed to authenticate. The latter means that responses must be

generated within a certain timeframe, and the PA did not respond quickly enough. They

may attempt to authenticate again, restarting the authentication process by calling

authenticate().

Upon successful authentication of the user by the SPF, the SPF returns a reference to its

i_ProviderAccess interface when the requestAccess() method is invoked. This interface

will be used in subsequent access session interactions with the SPF. Similarly, the PA

also returns a reference to its i_Access interface.

10. Now that a secure context between user and provider has been established, the asUAP

again requests that the access session is established. This operation returns the PA’s

i_Access Interface Reference to the asUAP.

11. The PA invokes requestAccess() on the provider specific SPF to establish an access

session that allows the user access to the provider’s services.

Since the user has already been authenticated, a reference to the SPF’s i_ProviderAccess

interface is returned, as well as an access session Id, asId, generated by the UA, which is

used to identify the access session.

12. The SPF contacts the UA and requests the setup of an access session with the

authenticated user. The SPF provides some user specific information (ie.userId) to the

UA. The UA generates a unique access session identifier asId and returns it to the SPF.

13. The PA completes access session setup by invoking the setUserCtxt() operation on

the i_ProviderAccess interface. This gives the user’s UA some information about the

user’s domain, such as interface references, and device information.

The user’s UA acknowledges the receipt of this user’s domain information. Once the PA

receives the UAs confirmation, the access session can be officially considered to be

established.

 60

The PA informs the asUAP of the successful establishment of the access session. The

asUAP in turn will inform the user.

14. The user requests a list of available services from the service provider. He specifies a

list of desired properties.

15. The asUAP forwards the request.

16. The PA requests a list of services from the UA on behalf of the user. A list of services

matching the user’s desired properties is returned.

 (It is assumed that the UA has an up to date list of available services from the SUB.)

4.2.3 Logout from a Provider

Description:

A user logs out of the provider domain. All access and/or service sessions are terminated

upon completion.

Pre-Condition:

The asUAP, PA, and UA are available in their respective domains.

The user has an access session setup between the PA and UA.

Post-Condition:

All access and service sessions are terminated. All access and service session identifiers

are invalid.

4.2.3.1 Message Sequence Diagram

1. The user uses the User Interface to request a list of active service sessions. The User

Interface requires the user’s user name (userId) and password (userProperties).

2. The asUAP forwards the request by invoking the listServiceSessions() method on the

PA.

3. The PA requests a list of service sessions from the service provider. The UA returns a

list of service sessions, ssIdList.

Note: The user may terminate the service sessions at this point. An example of this can be

seen in Chapter 6, Sections 6.1.6.2 and 6.2.4.3.

 61

UI asUAP PA UA

1: i_Access::listServiceSessions()

2: i_Access::listServiceSessions()

5: i_Access::endAccessSession()

3: i_ProviderAccess::listServiceSessions()

4: i_Access::endAccessSession()

6: i_ProviderAccess::endAccessSession()

Figure 4.4: Logout from a Provider

4. The user requests to end the access session. The user inputs an access session Id, asId.

5. The asUAP forwards the request.

6. The PA forwards the end access session request to the UA. Any active service sessions

are terminated forcibly at this point.

The UA considers the access session finished (deletes associated interfaces and user

context) and returns an acknowledgment to the PA.

The PA deletes the interfaces associated to the access session and forwards the

acknowledgment to the UAP, which in turn informs the user of the completion of the

logout process.

4.3 Chapter Summary

The Access and Authentication management API were presented in this chapter with the

assistance of interface descriptions, use case diagrams, and sequence diagrams. The

functionality provided by the API was discussed with reference to the requirements

specified in the previous chapter. Three TINA Ret RP interfaces were introduced, the

i_Initial, i_Authenticate, and i_Access interfaces. Each of these interfaces played a role

 62

in supplying the Access and Authentication functionality required by Parlay’s end user

interface. The i_Initial interface provided methods that allowed for the transparent

location of a service provider and their offered services. The PA implements the method

which allows a specified service provider to be located using a naming service offered by

the DPE. The i_Authenticate interface supports the establishment of a secure service

usage context between the consumer and service provider. It provides generic methods

which can be used for authentication. Controlled and customized access was provided

using the i_Access interface. i_Access offers a method which allows a user to offer

consumer domain information such as current user applications, operating systems used.

This information is used by the UA to setup a usage context for the specific user. Service

delivery to a specific user is then based on the usage context. i_Access also allows a user

to discover services. The provision of ubiquitous access to the range of Parlay services

from any terminal is insured by the presence of a PA on the specified terminal.

 63

5 D E S I G N O F T H E S U B S C R I P T I O N A N D P R O F I L E

M A N A G E M E N T A P I

This chapter details the design of a subscription and profile management API for Parlay’s

end user interface using TINA concepts, information structures and interfaces. The

subscription and profile management APIs provide the Parlay enterprise operator with the

capability to manage the set of consumers subscribed to their services. Using the

subscription API users can subscribe, modify and release services offered by providers.

Using the profile management API users can manage user, device, and service

information. The profile management feature supports context aware service delivery by

allowing users to customize their services. This chapter presents a detailed view of the

implementation of the subscription and profile management APIs used in this research.

The following section presents an information model which can be used to model user,

subscriber, and subscription related entities. Thereafter, detailed descriptions of the

subscription and profile management interfaces are presented. A use case view follows

and the chapter concludes with a summary.

5.1 Subscription and Profile Management Information

The subscription information model is used by service providers to support the handling

of end users, subscribers and subscriptions in a service provider domain. The model is

used to represent the entities and relationships required in subscription management. The

model includes the following main entities [10]:

• Subscriber:

It represents an entity (a person or organization) that signs a contract with the

retailer for the provision of a (set of) service(s). This class contains all the

information related to the subscriber that is independent from the services it is

subscribed to. It includes subscriber identification, address, contact points, etc.

• End user/Entity:

It represents a user of a set of service(s). An end user is assigned privileges and

access to service content by a subscriber. End users cannot subscribe to new

 64

services. Only an end user can participate in a service. An end user is usually a

person, however, it can also be a terminal or a network access point (NAP). The

terms end user and entity are used interchangeably to describe a user, terminal, or

NAP.

• Anonymous user:

It represents a user who is unknown to the service provider and is not yet

subscribed to any services. An anonymous user may become a subscriber and/or

end user.

• Subscription Assignment Group (SAG):

It represents a group of users, terminals or NAPs (Network Access Points)

associated to, and defined by, a subscriber who share a common service profile

(the SAG service profile).

• Subscription Contract:

It represents the agreement for the provision of a service to a subscriber. It

describes the terms of the agreement. This class does not describe service specific

information but the conditions of the contract for the provision of the given

service. This can include payment mode, bank account information, etc.

• Service Description:

It represents the service specification produced by a standardization body,

industrial forum or group of companies. It described a particular service type.

• Service Template:

It describes the generic information and behavioral characteristics of a service

instance (of a specific service type) as offered by a service provider. The template

contains a service description from which a service provider may set configurable

and non configurable service information.

• Service Profile:

It represents the tailoring of a Service Template to the specific requirements and

needs of a subscriber. The service profile contains a modified service template

containing user configured fields. This represents the user’s preference

information.

• SAG Service Profile:

It is a customization of a service profile for a SAG.

 65

• Service Contract:

It describes the terms of the provision of a specific service to a subscriber. It

collects the service, and SAG service profiles, defining the agreed service

characteristics, the generic ones for the provider and the specific ones for each

SAG respectively.

• User Profile

The user profile is a dynamic object which contains all information that is used

directly within the access session for authorization decisions, constraints and

customization of the access sessions (within access session bindings) and service

sessions.

Using the above descriptions, the following can be said about subscription management:

A subscriber subscribes to one or more services by signing a subscription contract.

Subscription contracts may be signed with more than one service provider. Each contract

represents an agreement between a subscriber and a single service provider for the

provision of one or more services. It constitutes the service independent part of the deal.

This is where specifics such as payment mode, subscription period, and consumer bank

account information are conveyed.

For each service in the subscription contract the subscriber signs a service contract. This

constitutes the service specific part of the subscription, and allows the subscriber to set

conditions on service delivery. The service contract details the terms of the provision of a

specific service to a particular subscriber.

Each service has a service description which is used for the description of service types,

and instances. Service types are described using parameters in the service description

common to all services of that type , and service instances are describe by parameters

specific to each instance. For example, a video calling service type could have a common

service parameter, ‘devices allowed to access service’, which would restrict access

devices to only DPE enabled devices and restrict access to devices such as gsm

cellphones. This would be a non-configurable parameter applying to all users of the

service from that provider. A service instance could have a parameter, ‘max. no.of parties

in session’, which could be set by a subscriber to any preferred value within some

provider imposed restrictions. A service description is contained in a service template.

This would represent a configurable parameter and thus allow users to specify their

preference.

The subscriber uses the service template to examine and set service specific information

and behavioural characteristics before signing a service contract. Using the service

template, the subscriber may look up and configure the service description, as well as

other generic information. A service description is contained within a service template,

and a service template is contained within a service profile.

Once a subscriber has customized a service profile by configuring the service description

in a service template, they may assign the service profile to a set of entities, which

include users, terminals, or network access points (NAPs) to create a subscription service

 66

profile. An entity is the same as an end user. If a subscriber does not wish to grant the

whole set of entities the same service characteristics or privileges, they may create groups

for some entities called subscription assignment groups (SAG) and assign to each SAG a

customized service template to create a SAG service profile. By default, the subscription

service profile is assigned to a SAG including the whole set of entities. The SAG service

profile is therefore just a customization of a service profile for a specific SAG.

A subscriber completes the subscription process by defining a service contract. A service

contract aggregates the subscription, SAG and user service profiles to define a complete

set of service characteristics and privileges for all entities.

An end user’s privileges and capabilities during an access and service session are

restricted by a user profile. The user profile aggregates three other objects that describe

information specific to an end user [4]:

• Usage Context:

Specifies a configuration of consumer domain interfaces, network access and

terminal equipment information such as capabilities which defines the user’s

domain. A usage context details the configuration of the user domain in order to

gain access and/or use services according to a service contract. For each access

session there will be a specific usage context for the user (this may change

depending on the user’s current terminal, or NAP as well as a host of other

consumer premises information such as current applications), and it will constrain

the invocation of service sessions within that access session.

(The usage context is set at the completion of access session setup using the

setUserCtxt() method on the i_ProviderAccess interface.)

• Service Profile:

Specifies whether or not an end user can invoke a service and the characteristics

of the service when invoked. It contains information that specifies retailer

imposed constraints and subscriber imposed constraints. If an end user has been

given the right to customize their services then the end user’s preferences are also

included in the service profile (in the form of the user service profile). This

information may be altered by the subscriber. The service profile may be

constrained by a usage context since subscriber and/or provider constraints may

include device information (ie. type, installed applications, etc), network access

points, and/or consumer domain interfaces.

• Session Description:

Specifies an existing service session which the user is either active in, or entitled

to join or schedule. A session description is created when a user creates a service

session (either joining an existing service session or after receiving an invitation).

A session description may be constrained by the usage contexts and service

profile. A user profile may have many session descriptions, one for each service

session. In this research the session description is defined using TINA’s

 67

t_SessionInfo structure. This data structure is described in the TINA Ret

Reference pt specification [23].

5.2 Subscription and Profile Management Interfaces

5.2.1 The i_Subscribe interface

The i_Subscribe interface allows the creation of a subscription contract for a subscriber.

It defines operations for:

• discovering available services.

• subscribing and unsubscribing to services.

• initiating the agreement of a service contract.

In order to subscribe to services, a consumer must first discover the available service

offerings from the provider. The listServices() method is used by a consumer to request

all the services available from a provider. The consumer may represent an anonymous

user wishing to become a subscriber, a subscriber wishing to subscribe to a new service,

or an end user wishing to view available services. This method takes as input parameters

desiredProperties, which is used to specify the type of services the user would like to

view and howMany, which is used to limit the number of services returned by the

provider. Only one output parameter, serviceList, is specified. This is used to return a list

of retailer services matching the desiredProperties parameter.

To subscribe to new services, new user (anonymous user) and already existing users

(subscriber) use the subscribe() method.

The subscribe() method creates a subscription for a new or existing customer. The

anonymous user lists the services he/she wants to contract using serviceList, along with

some initial subscriberInfo detailing his/her particulars (ie.name, address). An existing

user specifies a subscriberId along with a serviceList. The method returns: a unique

identifier for the subscriber, subscriberId (only in the case of an anonymous user) and

interfaces for subscriber information management, i_SubscriberInfoMgmt,. and service

contract management, i_ServiceContractMgmt (in both cases). These two last items are

included in the interfaceList structure. A customer may then use the reference to the

subscriber information management interface to organize his/her entities and thereafter,

the service contract management interface to initiate the agreement of a service contract

with the provider. The subscription is only complete (ie. usage of a service may begin)

once a service contract has been negotiated.

 68

When a subscriber no longer wishes to use a service, he/she can use the unsubscribe()

method. This procedure withdraws a subscription or a list of service contracts. The list of

services the subscriber wants to unsubscribe, serviceList, and a subscriberId are input

parameters. If this list is empty, that means the withdrawal of all the services, and thus

the subscription. A list of services, unsubscribedServices, listing the services that have

been unsubscribed is returned.

5.2.2 The i_SubscriberInfoMgmt Interface

This interface allows the management of the information related to a particular

subscriber. This interface can be used either by the subscriber or by the enterprise

operator on behalf of the subscriber. Using the UA, the service provider may for example

retrieve user information in order to set service delivery context or to authorize a user

request. It provides operations for:

• creating and deleting entities (end users, terminals, and NAPs).

• creating and deleting SAGs.

• assigning/removing entities to/from a SAG.

• listing entities and SAGs corresponding to that subscriber.

• querying and modifying the subscriber information.

5.2.2.1 Creating and deleting entities (end users, terminals, and NAPs).

A subscriber cannot use services, to use services a subscriber must assign usage rights to

an end user. An end user is usually a person, however, it can also be a terminal or a

network access point (NAP). The subscriber and user entity may or may not be the same

person, however, a subscriber may assign usage rights to more than one entity.

The createSAEs() method is used to create a set of entities, where each entity is

characterized by its identifier (entityId), entityName, and a set of properties. (The entityId

is a union type which can be switched between userId, terminalId, and napId.) The

subscriber specifies an entityList, and a subscriberId. Each entity in the entityList is

mapped to the subscriberId and an entityIdList, containing the entityId‘s of all the created

entities is returned.

 69

The deleteSAEs() method deletes a set of entities. A subscriberId and an entityIdList are

specified, and each entity is removed from all the SAGs it could be assigned to and then

deleted.

5.2.2.2 Creating and deleting SAGs.

If a subscriber does not wish to grant the whole set of entities the same service

characteristics or privileges, they may create groups for some entities called subscription

assignment groups (SAG) and assign to each SAG a customized service template to

create a SAG service profile. By default, the subscription service profile is assigned to a

SAG including the whole set of entities. The SAG service profile is therefore just a

customization of a subscription service profile for a specific SAG.

SAGs are used by subscribers to differentiate preferred service characteristics and

privileges for entities. A subscriber creates a SAG and assigns a set of entities to it. When

a SAG is no longer useful, the subscriber may delete it, and perhaps create a new, more

functional one.

The createSAGs() method creates a set of SAGs, where each SAG is characterized by its

identifier (sagId), a sagDescription (a textual description of the characteristics of the

group), and an entityIdList (containing the list of entities composing it).

The subscriber inputs a sagList, and a subscriberId. The sagList must contain a non-

empty entityIdList and sagDescription for each SAG. The entityIdList specifies the

entities he/she wishes to include in a particular SAG. The sagDescription is used to

remind the subscriber of the purpose of the SAG when assigning a service profile.

The consumer interface then maps each SAG in the sagList to the subscriberId to create

sagIds for each SAG. A sagIdList, containing the sagId’s of all the created SAGs is

returned to the subscriber.

The deleteSAGs() method deletes a set of SAGs. The entities belonging to that SAG are

not deleted.

5.2.2.3 Assigning/removing entities to/from a SAG.

Once a subscriber has created a set of SAEs and included them in a SAG(s), he/she may

wish to add or remove them. The assignSAEs() method assigns a list of entities to a

SAG, and the removeSAEs() method removes an entity list from a SAG. To add a SAEs

to a SAG, the subscriber provides a subscriberId, an entityIdList, and a sagId in

assignSAEs(). The same parameters are specified when removing a SAEs from a SAG.

 70

5.2.2.4 Listing entities and SAGs corresponding to that subscriber.

Once a subscriber has created a set of SAEs and SAGs, he/she may wish to view them.

The listSAEs() method lists a set of entities assigned to a SAG, and the listSAGs()

method returns a set of SAGs for that subscriber. To list SAEs, the subscriber provides a

subscriberId, an entityIdList, and a sagId in listSAEs(). The same parameters except the

entityIdList are specified when listing SAGs.

5.2.2.5 Querying and modifying the subscriber information.

The getSubscriberInfo() method can be used to return information about a specific

subscriber. Subscriber information such as account number, name, address, monthly

charge, payment record, credit information, date which its subscription expires on, the list

of subscribed services and the list of defined SAGs can be retrieved. A subscriberId is

required as input.

The setSubscriberInfo() operation modifies the information about a specific subscriber.

Only name and address fields are modifiable. The rest are updated only by SUB as a

result of other operations such as: createSAGs, subscribe, etc

A subscriber may wish to only view his/her list of subscribed services. This functionality

is provided by the listSubscribedServices() method which requires a subscriberId to

return the corresponding subscriber’s list of services (serviceList).

5.2.3 The i_ServiceContractInfoMgmt interface

This interface is used to manage the information related to a service contract. This

includes the subscription service profile, the SAG service profiles (service profiles for

users belonging to a specific SAG), and the user service profiles. From the service

provider’s perspective, this interface provides access to the service profile which as

mentioned earlier, along with the usage context and session description determines a

user’s privileges and capabilities during an access and service session. The negotiation of

a service contract is also facilitated by this interface. It provides operations for:

• retrieving and setting the service template.

• creating, modifying, and deleting service profiles.

 71

• retrieving service profile and service contract information. This information

includes the associated service profiles.

5.2.3.1 Retrieving and setting the service template.

A subscriber uses the getServiceTemplate() method to return a serviceTemplate. A

serviceId corresponding to the requested service template is specified as input. Using a

serviceTemplate, the subscriber may look up and configure a serviceDescription, as well

as other generic information.

setServiceTemplate() is used to set user configurable parameters in the service

description part of the service template. The method takes as input a serviceId, and a user

configured serviceTemplate and returns a serviceProfileId. The serviceProfileId

corresponds to the service profile containing the modified service template. It can be used

when assigning a service profile to a SAG. Each invocation of the setServiceTemplate()

method results in the creation of a new service profile. If the serviceId given already has

a service profile assigned, then a new service profile must be created. A service may be

identified with more than one service profile.

5.2.3.2 Creating, activating, and deleting service profiles

Once a subscriber has customized the service description in a service template, they may

assign the template to a set of entities, which include users, terminals, or network access

points (NAPs) to create a service profile. If a subscriber does not wish to grant the whole

set of entities the same service characteristics or privileges, they may create subscription

assignment groups for some entities and assign to each SAG a customized service

template to create a SAG service profile.

Before assigning a set of service profile to a set of SAGs, a subscriber may wish to see

the available list of service profiles. The getServiceProfiles() method takes as input a

subscriberId, serviceId, and returns a serviceProfileList.

A subscriber may assign a service profile to a list of SAGs and SAEs by invoking the

assignServiceProfile() method. The subscriber specifies a serviceProfileId, a sagIdList..

The service profile to be assigned is identified by a serviceProfileId, and the SAGs are

identified by the sagIdList. All SAGs and SAEs assigned to this service profile will have

the same set of characteristics and privileges as defined in the service template.

If a subscriber wishes to remove a service profile assignment to a list of SAGs, they must

invoke the removeServiceProfile() method. It takes as input a serviceProfileId, and a

sagIdList. The end user interface compares the sagIds against those registered for that

 72

serviceProfileId and removes any common SAGs. A sagIdList of all the SAGs that could

not be removed is returned.

Once a service profile is assigned to a list of SAGs, a subscriber may activate it. The

activateServiceProfiles() method activates a set of service profiles specified by the

subscriber in a serviceProfileIdList. The deactivateServiceProfile() method can be used

to reverse the operation. It takes a serviceProfileIdList as input.

At some point the subscriber may wish to delete a set of service profiles. The

deleteServiceProfiles() method deletes a set of service profiles and their associated

SAGs. It takes as input a serviceProfileIdList.

5.2.3.3 Creating and retrieving service contract information.

A subscriber completes the subscription process by defining a service contract. A service

contract aggregates the service profile, SAG service profile and user service profiles to

define a complete set of service characteristics and privileges for all entities.

The subscriber may view service contract information before or after signing a service

contract using the getServiceContractInfo() method. The subscriber inputs a

subscriberId, and a serviceContract is returned. The returned serviceContract contains a

serviceId, accountNumber, a serviceProfileList, a sagServiceProfileList, and other

particulars (e.g. start time, authority limit, etc).

When a subscriber wishes to create a service contract, she may invoke the

defineServiceContract() method. The subscriber specifies a serviceContract, and a

serviceProfileIdList is returned. A successful invocation of this method indicates the

completion of the subscription process.

Appendix A.2 provides a summary of all the interfaces, operations, and attributes

presented in this chapter.

5.3 Proposed Implementation Scenarios

Subscriber

List Available Services

Subscribe a new Customer

Modify Subscriber

Information

Service

Provider

List Subscribed Services

Figure 5.1: Subscription and Profile Management Use Case Scenarios

Figure 5.1 presents the use cases implemented in the subscription and profile

management scenarios. The following sections describe these use cases, and use

sequence diagrams to illustrate how they function.

5.3.1 Subscribe a New Customer (Becoming a Subscriber)

Description:

A new customer is subscribed to the provider. He/she contracts a number of services, and

defines contract and subscriber information. Upon completion, the subscriber’s service

profile is activated.

Pre-Condition:

The customer is not previously subscribed to the provider.

Post-Condition:

The subscriber has an active service profile.

5.3.1.1 Message Sequence Diagram

1. The anonymous user requests to view the list of services the provider is offering.

2. The ssUAP passes the request on to the UA.

3. The UA requests the list of provider services on offer. At the end of this invocation the

SUB returns the list, and thereafter the UA returns the list to the ssUAP, which returns

the list to the UI therefore satisfying the user request.

4. The anonymous user requests that a new subscriber be created. The user request

includes a list of the services the new customer would like to subscribe to along with

subscriber information required by the provider in order to create the subscriber account

(for instance, user identification and billing information).

The subscriber id is returned as a result as well as a list of service templates describing

the properties of each offered service.

5. The ssUAP passes the request to the UA.

6. The UA requests the SUB to create a new subscriber with the given subscriber

information and list of services. Upon completion, a new subscriber identifier is created.

7. The user requests a service template. He/she inputs a service identifier.

8. The ssUAP forwards the request to the UA.

9. The UA requests a service template from the SUB.

10. The user requests configurable service parameters in the service template to be set up.

11. The ssUAP forwards the request to the UA.

12. The UA requests the SUB to configure the service template. Upon completion, the

SUB creates a service profile and returns the service profile identifier to the user.

The subscriber may repeat steps 7 – 9, to create new service profiles for the same service

or configure service templates to create new service profiles for other services.

13. The user requests the creation of new subscription assignments for each of the entities

(ie. Users or terminals) that could make use of the contracted service.

14. The ssUAP passes the user request onto the UA.

15. The user’s request for new subscription assignments is passed on to the SUB. Upon

completion, the list of assigned entity identifiers is returned. These identifiers are unique

in the provider domain. The SAE list is stored in a database and then returned to the user.

16. The user requests the creation of new SAGs. The user specifies a SAG list where each

SAG is characterized by its identifier, a textual description of the characteristics of the

group, and the list of entities assigned to it.

17. The ssUAP passes the user request onto the UA.

 75

UI ssUAP SUBUA

1: i_Subscribe::listServices()

2: i_Subscribe::listServices()

3: i_Subscribe::listServices()

4: i_Subscribe::subscribe()

5: i_Subscribe::subscribe()

6: i_Subscribe::subscribe()

9: i_ServiceContractInfoMgmt::getServiceTemplate()

7: i_ServiceContractInfoMgmt::getServiceTemplate()

8:i_ServiceContractInfoMgmt::getServiceTemplate()

10: i_ServiceContractInfoMgmt::setServiceTemplate()

11: i_ServiceContractInfoMgmt::setServiceTemplate()

12: i_ServiceContractInfoMgmt::setServiceTemplate()

13: i_SubscriberInfoMgmt::createSAEs()

14: i_SubscriberInfoMgmt::createSAEs()

15: i_SubscriberInfoMgmt::createSAEs()

16: i_SubscriberInfoMgmt::createSAGs()

17: i_SubscriberInfoMgmt::createSAGs()

18: i_SubscriberInfoMgmt::createSAGs()

19: i_ServiceContractInfoMgmt::assignServiceProfile()

20: i_ServiceContractInfoMgmt::assignServiceProfile()

22: i_ServiceContractInfoMgmt::assignServiceProfile()

23: i_ServiceContractInfoMgmt::defineServiceContract()

24: i_ServiceContractInfoMgmt::defineServiceContract()

25: i_ServiceContractInfoMgmt::defineServiceContract()

Figure 5.2: Subscribe a New Customer Sequence Diagram

 76

18. The creation request is forwarded to the SUB. The SUB assigns the list of entities to

the SAG and stores the assignment in a database. Upon completion, a list of SAG

identifiers is returned to the subscriber. These identifiers are unique in the provider

domain.

19. The subscriber requests the ssUAP to assign a service profile to a list of SAGs. The

subscriber specifies a service profile identifier, and a list of SAG identifiers.

The subscriber may obtain service profiles by invoking the listServiceProfiles() method.

20. The ssUAP forwards the request to the UA.

21. The UA forwards the request to the SUB. The SUB assigns the SAGs, and contained

SAEs to the service profile.

22. The User requests the ssUAP to define a new service contract. This contract includes

contractual information, the set of service profiles for each requested service. The agreed

Service Contract defines the conditions of the service provision for each of the service

subscriptions.

23. The ssUAP passes the request to the UA. Upon completion, the returned service

contract is saved by the UA in the subscriber’s profile.

24. The UA passes the SUB the service contract information. A list of Service Profile

identifiers for each subscribed service is returned and the subscriber is now registered to

use services.

5.3.2 Modify Subscriber Information

Description:

This use case describes how the subscriber can modify their service profile. The

subscriber modifies the service profile by adding and deleting information (SAEs and

SAGs) from the service profile.

The main aspects that can be modified are SAGs, SAEs and assignment of SAEs to

SAGs. This event trace shows first how new SAEs are defined and assigned to existing

SAGs, then how existing SAEs are removed from a SAG and finally how some are

deleted. The subscriber is already subscribed to the provider and has contracted some

services. A number of SAGs and SAEs have been previously defined for the subscriber.

Pre-Condition:

The customer is already subscribed to the provider and has already contracted some

services. A number of SAGs and SAEs have been previously defined for the subscriber.

Post-Condition.

None.

5.3.2.1 Message Sequence Diagram

1. The user requests the creation of new subscription assignments for each of the entities

(ie. Users or terminals) that could make use of the current service by invoking the

createSAEs() method on the ssUAP. Optionally, the user could include a service id to

identify a chosen service when invoking the method while that service is not active.

2. The ssUAP passes the request to create new SAEs onto the UA. Upon completion, the

UA updates the subscriber’s profile by modifying the list of SAEs.

3. The user’s request for new subscription assignments is passed on to the SUB. Upon

completion, the list of assigned entity identifiers is the returned value. These identifiers

are unique in the provider domain.

The list is passed back to the user interface.

Now the new SAEs are assigned to an existing SAG:

Note: SAEs can also be assigned to a SAG using the createSAGs() method.

4. The user asks for the list of SAGs defined for the subscriber.

5. The ssUAP passes the request onto the UA.

6. The UA requests a list of SAGs on behalf of the user. A subscriber id is passed to

identify the subscriber.

A list of SAG identifiers is returned and passed back to the user interface.

7. The user requests that a list of SAEs be assigned to an existing SAG. An subscriber id,

entity list, and a SAG id are input parameters for this method.

8. The ssUAP passes the request onto the UA. Upon successful completion the UA saves

the new SAE/SAG mapping.

9. The user’s request for the assignment of SAEs to a new SAG is passed on to the SUB.

Upon completion a new SAE/SAG assignment is logged, however, no objects are

returned.

Removal of SAEs from a SAG:

10. The user requests a list of SAEs assigned to a specific SAG. The SAG identifier is

one of the input parameters.

11. The ssUAP passes the request on to the UA.

 78

UI ssUAP SUBUA

1: i_SubscriberInfoMgmt::createSAEs()

4: i_SubscriberInfoMgmt::listSAGs()

7: i_SubscriberInfoMgmt::assignSAEs()

10: i_SubscriberInfoMgmt::listSAEs()

13: i_SubscriberInfoMgmt::removeSAEs()

16: i_SubscriberInfoMgmt::deleteSAEs()

2: i_SubscriberInfoMgmt::createSAEs()

3: i_SubscriberInfoMgmt::createSAEs()

5: i_SubscriberInfoMgmt::listSAGs()

6: i_SubscriberInfoMgmt::listSAGs()

9: i_SubscriberInfoMgmt::assignSAEs()

8: i_SubscriberInfoMgmt::assignSAEs()

11: i_SubscriberInfoMgmt::listSAEs()

12: i_SubscriberInfoMgmt::listSAEs()

14: i_SubscriberInfoMgmt::removeSAEs()

15: i_SubscriberInfoMgmt::removeSAEs()

17: i_SubscriberInfoMgmt::deleteSAEs()

18: i_SubscriberInfoMgmt::deleteSAEs()

Figure 5.3: Modify Subscriber Information Sequence Diagram

 79

12. The UA asks the Sub for a list of SAEs on behalf of the user. A list of entity

identifiers is returned and passed back to the user interface.

13. The user requests the removal of a list of SAEs from a SAG. An entity list and a SAG

id are input parameters to this method.

14. The ssUAP passes the request on to the UA. Upon completion the UA logs the

removal of SAEs by updating the service profile.

15. The UA requests the removal of a list of SAEs from the SUB on behalf of the user.

The Sub removes the entities from the SAG.

Deletion of SAEs:

16. The user requests the deletion of SAEs from any SAG they could be assigned to. No

SAG identifier is required for this method.

17. The ssUAP forwards the request to the UA. Upon completion the UA logs the

removal of SAEs in the subscriber’s profile.

18. The UA forwards the request to the SUB. This causes the SAEs to be removed from

any SAG they could be assigned to. The subscriber information is updated in the

subscriber database.

5.4 Chapter Summary

The consumer interface’s Subscription and Profile management APIs were presented in

this chapter. First, an information model describing all the objects involved in the

subscription lifecycle process was given. The interaction between consumers and

subscription objects such as subscription assignment groups, service profiles, and/or

service contracts, etc, was defined. Based on the defined interaction, the i_Subscribe,

i_SubscriberInfoMgmt, i_ServiceContractInfoMgmt, and i_SubscriberInfoQuery

interfaces were defined. The i_Subscribe interface provided operations that supported the

creation of subscription contracts for a subscriber. The i_SubscriberInfoMgmt interface

was defined to support the management of information related to a particular subscriber.

It provides operations to support the creation and deletion, assignment, removal, and

listing of SAEs, and SAGs. The i_ServiceContractMgmt interface provided methods to

support the management of information related to a subscriber’s service contract with the

service provider. The service contract includes the subscription service profile, SAG

service profiles, and user service profiles. To retrieve subscription information for a

particular end user, the i_SubscriberInfoQuery interface is implemented. The chapter

concluded with a description of the proposed implementation scenarios, where the

interaction between end users and subscribers and the service provider through the

consumer interface was illustrated through the “Subscribe a new customer”, and “Modify

subscriber information” scenarios. These scenarios were modelled using use cases and

 80

the behaviour of service components implementing the interfaces was illustrated through

sequence diagrams.

 81

6 D E S I G N O F T H E S E RV I C E U S A G E M A N A G E M E N T

A P I

In this project report the service usage management API merges the TINA and Parlay

service architectures into a hybrid Parlay/TINA application environment. In order to

access network connectivity, applications must interact with the Parlay gateway, and to

access the consumer domain, a TINA interfaces must be used. An interworking of the

two service architectures is required and this chapter describes how this is achieved.

With service usage in Parlay’s consumer interface there are two main scenarios. One is

single party service usage which implements the TINA’s BasicFS, and the other is

multiparty service usage which implements TINA’s MultipartyIndFS. The service usage

management APIs are required to provide functionality which enables end users to:

• Initiate and terminate single party service sessions.

• Initiate and terminate multiparty service sessions.

6.1 Initiating and Terminating a Single Party Service Session

When a service session is started, it retrieves user profile information acquired during

access session setup and subscription. The information is used to provide context

awareness during service delivery as well as to customize the service for a user. A service

session can only be instantiated via an access session. The service session then remains

active while that access session is active, and when the access session is ended, active

service sessions must be ended. Both multiparty and single party service sessions are

initiated in the same way. The main difference is in the way they are terminated and the

number of connections each is allowed to have. The following sections describe the

interfaces and methods used in initiating a service session. An example of a generic

messaging service using the Generic Messaging SCF is given to illustrate the initiation

and termination of a single party service session.

 82

6.1.1 The i_Access Interface

A user may only start a service session from within an access session. The user should

already be authenticated, and therefore have a reference to the i_ProviderAccess

interface. This interface provides consumers with secure and controlled access to

OSA/Parlay interfaces and was introduced in Chapter 4.1.3. It provides a collection of

methods through which a consumer may retrieve service, user and access session

information. The user may also start and terminate a service using this interface.

To start a service session the user invokes the startService() method. The method takes

as input parameters a serviceId, which is used to identify the service the consumer wishes

to start, an app structure containing information on the application (ie. Application name,

version, serial no., etc), and uaProperties which is used to pass user preference

information before the service is started. The only output parameter returned is the

sessionInfo structure which contains the service session id, ssId, generated by the UA,

purpose, a string describing the purpose of the session, a partyId, which is used for

multiparty services, state which describes the current state of the session, and properties

which gives some properties of the current session. Along with the service profile, and

the usage context, the sessionInfo data structure is also used to make authorization

decisions for the user during the service session.

6.1.2 The i_SSManage Interface

The i_SSManage interface is an interface designed by the author to manage the lifecycle

of service specific components. It is a combination specific methods from TINA’s

i_SSCreate and i_SSManage interfaces. It is only implemented by the SF. Generally, the

UA uses this interface to request the creation or termination of a service and the App uses

it to request the creation of service specific OSA/Parlay interfaces.

The createSSession() method allows the UA to request the creation of a new service

session using the SF. To create a service the service factory requires that the UA provide

a serviceId, userId, some information about the app (app), user preference information

(uaProperties), and after the service is initiated the method returns a sessionInfo structure

(which is described in Section 6.1.1). The UA generates a sessionId, ssId and passes it to

the consumer domain through sessionInfo. The rest of the information in sessionInfo may

be generated by the App and SF, however this is left to the service provider to decide.

The App uses the createIpAppInterface() is a method designed by the author to request

the creation of service specific OSA/Parlay interfaces. The method takes a list of

interfaces, interfaces, and a serviceId, as inputs and returns references to the created

interfaces as outputs. The SF uses the serviceId to determine whether the interface

creation requests by the App are valid (we assume that the service provider maintains a

list of service Ids and allowed Parlay interfaces). Upon completion the Application may

perform operations on the requested interfaces.

 83

The endSSession() method allows the UA to request the deletion of a service session.

The SF deletes references to any OSA/Parlay interfaces that were in use during the

service session (the App is informed that the references are no longer valid using the

releaseIpAppResources() method in Section 6.1.5).

6.1.3 The Basic Feature Set

In Chapter 3.2.1, we discussed Feature Sets. This section elaborates on the

implementation of the BasicFS to support a single party service session. The BasicFS

implements the i_BasicReq interface as a means to support user requests to terminate a

single party service session. Using the endSessionReq() method an end user may request

the termination of a service session. The sessionId, and userId are taken as inputs and no

output parameters are returned. The sessionId identifies the session to be ended. The

userId identifies the user requesting to end the session and is used to check the validity of

an endSessionReq(). An endSessionReq() is used for both single and multiparty service

sessions. In a multiparty service session, the endSessionReq() is followed by an

endSessionInd() and endSessionReq() (see Section 6.2.1). After this request completes

successfully, the session will end. (In a multiparty service session, the session may not

end until other users are notified.)

6.1.4 OSA/Parlay Interfaces

When initiating and terminating single party service sessions, call control functionality is

provided by the OSA/Parlay call control SCFs. Depending on the type of service in use,

one of three types of call control mechanisms can be launched for a single party session.

6.1.5 The IpAppLogic interface

The IpAppLogic interface represents the OSA/Parlay application logic. In this project,

the IpAppLogic interface provides an interworking between the TINA and OSA/Parlay

specific logic. The Parlay specific logic can generally be associated with a pattern of

three objects: the IpAppCM, IpAppCO, and IpAppCL. These are callback interfaces

which correspond to the Call Manager(CM), Call Object (CO), and Call Leg (CL)

connectivity provider interfaces respectively in the OSA/Parlay gateway. The callback

interfaces provide a mechanism by which the gateway interfaces can return results and

notifications to the Application (IpAppLogic). Application interfaces are instantiated by

 84

the SF, which must co-ordinate their creation and deletion. App invokes operations on

Gateway objects using the IpCM, IpCO and IpCL. The CM, Call, or Call Leg objects

may return results and notifications to the Application via the respective callback

interface. For example IpCO returns notifications via IpAppCO which forwards the

notification to the Application. In this research the App component is a generic

representation of all OSA/Parlay applications that may use the consumer interface.

Therefore, no service specific logic is implemented however the examples that are given

later show how service specific logic could be integrated.

The IpAppLogic interface utilizes both TINA and OSA/Parlay interfaces. The TINA

interfaces provide support for interactions with the consumer interface while the

OSA/Parlay interfaces provide support for interactions with the Parlay gateway. The

interfaces required to interact with the Parlay gateway are specified in the Parlay

standards, and thus are not described here. The following TINA methods are

implemented for the IpAppLogic interface.

• joinSessionReq()

• inviteUserReq()

• joinSessionWithInvitation()

• joinSessionInd()

• endSessionReq()

• endSessionExe()

These methods are described in the coming sections. Two user defined methods are also

implemented within the IpAppLogic interface. The initiateApp() method instructs the

App to start a service session by initiating the creation of service specific interfaces. Once

invoked the method takes as input the sessionInfo structure (see.Section 6.1.1), and

returns a list of interfaces, interfaceList which contains the callback interfaces required to

interact with the gateway. The list is dependent on the type of services offered (ie.

context awareness, generic or multimedia services, etc) and the SCFs subscribed to by the

Application.

Once an application is involved in a service session it will require the creation of callback

interfaces to interact with the OSA/Parlay gateway. The App requests the creation of

callback interfaces from the SF and references to created interfaces are returned using the

passReferences() method.

Upon termination of a service session the SF may request the application to release all

references to interfaces that were in use during that session using the

releaseIpAppResources() method. This method takes a sessionId as input.

 85

6.1.5.1 The Generic Messaging SCF

The Generic Messaging SCF (GMS) can be used by OSA/Parlay applications to provide

voice mail and electronic mail messaging. The GMS is represented by the

IpMessagingManager, IpMailbox, IpMailboxFolder and IpMessage interfaces.

Applications that use the GMS must implement the IpAppMessagingManager interface to

provide a callback mechanism. The GMS will be used to illustrate the initiation of a

simple messaging service.

Consum er Dom ain En te rp rise O pe ra to r/3 rd Party Se rv ice

P rovide r

Parlay

App lica tion

User

In terface

 N etwo rk Connectiv ity P rov ide r Dom ain

Framework

Generic M essaging SCF

Reta ile r Dom ain

Service Sess ion C om ponen ts

SF

ssUAP

UA

IpAppLog ic

IpAppM essag ing

M anager

IpM essaging

M anager
IpM ailbox IpM a ilboxFo lde r IpMessage

Figure 6.1: TINA's Service Session Components and Parlay's Generic Messaging SCF

Appendix A.3.1 provides a summary of all the interfaces discussed in Section 6.1.

Figure 6.1 illustrates the relationship between TINA’s service session service

components and the Parlay Generic Messaging SCF’s IpCCM, IpCall, and their

corresponding call back interfaces.

 86

6.1.6 Proposed Implementation Scenarios

Initiating a service session using the consumer interface is the same for both single and

multiparty users. Differences only arise during service usage when a user is to be invited

to the service session. Figure 6.2 presents the use cases for the single party service usage

management scenarios. These are described using sequence diagrams in the following

sections.

Terminate a Single Party

Service Session

Consumer

Initiate a Service Session

Service

Provider

Parlay

Gateway

Figure 6.2: Single Party Service Usage Management Use Case Scenarios

6.1.6.1 Initiate a Service Session

Description:

A user starts a new service session. On completion, a service session is started and the

user is ready to invite other users to join him/her in the session.

Pre-Condition:

The ssUAP, UA, SF, and App are present in their respective domains.

A list of available services (along with serviceIds) is accessible to the user. An access

session exists between the PA and UA in the provider domain.

The App has access to the necessary OSA/Parlay gateway SCFs.

Post-Condition:

A service session exists between the ssUAP and UA. The SF has generated the necessary

service session identifiers. The ssUAP has access to the UA’s service session interface

references. Only a single user is involved in the session.

 87

Message Sequence Diagram

UI ssUAP UA SF App::

IpAppLogic

IpAppMessaging

Manager

IpMessaging
Manager

IpMailboxIpMailbox IpMailbox

Folder

IpMessage

1: i_Access::startService()

2: i_ProviderAccess::startService()

7: enableMessagingNotification()

11: new()

12: openFolder()

5: new()

6: passReferences()

3: i_SSCreate::createSSession()

4: initiateApp()

8: messagingEventNotify()

9: (forward event)

10: openMailbox()

13: getInfoProperties()

14: getMessage()

15: new()

Figure 6.3: Initiate a Service Session Sequence Diagram

1. The user uses the User Interface to request the ssUAP to initiate a Parlay application.

2. The ssUAP requests from the UA a new service session of a particular service type

(i.e. Generic, Multimedia, etc). Other properties for the service can be specified. The

ssUAP may also give the interface types and references it will support in the session. The

UA may perform various personalization actions before continuing. The UA may return

unsuccessful and raise an exception to the ssUAP if the service request is declined.

3. The UA requests the SF to create a new service session for a particular service type

requested by the user.

4. The SF initiates the 3
rd

 party application by invoking the method initiateApp. The App

returns a list of interfaces corresponding to callback interfaces that it requires to interact

with the gateway.. (The SF is responsible for the management, creation and deletion of

 88

all objects required to run the service. For example, each time the application logic

requires the instantiation of an interface to interact with the Parlay gateway, the SF takes

on the responsibility to create it and delete it when its function is complete. A complete

definition of this interface is however outside the scope of this research.)

5. The SF uses the interfaceList to create an IpAppMessagingManager callback interface.

6. The SF passes a reference for the IpAppMessagingManager interface to the .App

7. The App requests the GMS to enable the notification mechanism so that events can be

sent to the application.

8. The IpMessagingManager passes the new mail event to its callback interface on the

application side, the IpAppMessagingManager.

9. The IpMessagingManager informs the Application (IpAppLogic) of the arrival of new

mail.

10. The Applciation requests the IpMessagingManager to create a new mailbox (ie.

IpMailbox interface)

11. Assuming that the criteria for creating a mailbox is met, the IpMessagingManager

creates it.

12. The Application requests a folder to be opened and returns a reference to that folder.

13. The Application requests all of the folder information properties.

14. The Application requests a message from the opened mailbox folder.

15. Assuming that the criteria for creating an object implementing the IpMessage

interface are met, the message is created.

6.1.6.2 Terminate a Single Party Service Session

Description:

A user ends the service session that he/she created. On completion all participants of the

service session are removed and the user is ready to start a new service session.

Pre-Condition:

The components required to sustain a service session for all participants are present in

their respective domains.

Post-Condition:

Accounting information is returned to all parties that were involved in the session.

 89

Message Sequence Diagram

ssUAPUI ssUAP App::

IpAppLogic

SFUA App::

IpAppLogic

SF IpAppMessaging

Manager

IpMessaging

Manager

IpMailboxIpMailbox

1: i_BasicReq::endSessionReq()

5: messagingNotificationTerminated()

9: mailboxTerminated()

2: i_ProviderBasicReq::endSessionReq()

3: endSessionReq()

4: disableMessagingNotification()

6: (forward event)

7: endSessionExe()

8: close()

10: (forward event)

11: i_SSManage::EndSSession()

12: releaseIpAppResources()

13: (delete references)

Figure 6.4: Terminate a Single Party Service Session Sequence Diagram

1. The User Interface requests the session to be ended by invoking the endSessionReq()

on the ssUAP..

2. The request is passed on to the UA. The return value of this invocation is the

accounting information for the requesting user.

3. The UA requests the Application to end the service session. The return value of this

invocation is the accounting information for the requesting user. The UA stores this

information in the user’s profile.

4. The App requests the GMS to disable the notification mechanism

 90

5. The IpMessagingManager notifies the IpAppMessagingManager.that messaging

notification has been disabled.

6. The IpAppMessagingManager informs the Application (IpAppLogic) of the

termination of messaging event notification.

7. The UA sends an Exe to the Application instructing it to end the session. The

Application passes Accounting information back to the UA with this invocation,

thereafter, the service session specific interfaces are made unavailable and all accounting

is stopped.

8. The Application requests that the mailbox be closed.

9. The IpMessagingManager notifies the IpAppMessagingManager.that mailbox has been

closed.

10. The IpAppMessagingManager informs the Application (IpAppLogic) of the

termination of the mailbox.

11. The SF is informed that the session is about to end and eventually releases the

Application specific resources.

12. The SF releases all application resources and instructs the Application that references

are no longer valid. In this case the reference to the IpMessagingManager interface.

13. The App deletes all references that were in use during the session.

6.2 Initiating and Terminating Multi Party Service Sessions

Both a multiparty and a single party service session are initiated in the same way

however, the number of connections in a multiparty service session is limited only by the

connectivity operator’s policy whereas a single party service is limited to one connection.

This section describes the implementation of interfaces and methods to support

multiparty connectivity in services. First, an implementation of the TINA multiparty

feature set is discussed, followed by a look at OSA/Parlay’s generic call control and

multiparty call control SCF. The section concludes with examples of a service integrating

the TINA multiparty feature set and OSA/Parlay’s generic call control and multiparty call

SCFs. Scenarios illustrating the initiation and termination of the integrated service are

detailed.

 91

6.2.1 The TINA Multiparty and MultipartyInd Feature Sets

In Section 3.3.1 we described the Multiparty and MultipartyInd feature sets. In this

section we describe the interfaces used to implement the functionality provided by the

feature sets.

6.2.1.1 The i_PartyMultipartyReq interface

The i_PartyMultipartyReq is a TINA interface which allows the MultipartyFS to support

the execution of generic request operations such as:

• Request that a user is invited to join the session.

Using the inviteUserReq() an end user may request that another user is invited to join the

session. It is used to invite a single specific user to join the session. The requesting user

provides a resolvable name and address of the invitee in the userDetails structure and his

own userId. invitedUserDetails contains the userId of the invited user, and a list of his

userProperty’s. The userPropertys may allow the provider domain to locate the invited

user, e.g. by including a reference to the service provider to contact for the user,

(although the userId should be sufficient to locate the user). An invitationId parameter is

used to identify the invitation request. The party may wish to cancel the request, and can

use the invitationId to identify the invitation to be cancelled. The method returns an

invitationReply which is the invited user’s reply to the invitation.

The joinSessionReq() method allows an end user to request to join an existing service

session. The method takes as input parameters a userId, to identify the user, serviceId,

which is used to identify the service the consumer wishes to join, a sessionId, to identify

the existing session, an app structure containing information on the application (ie.

Application name, version, serial no., etc), and uaProperties which is used to pass some

user preference information before the service is started.

6.2.1.2 The i_PartyMultipartyInd interface

The i_PartyMultiPartyInd interface allows TINA’s MultipartyIndFS to support session

indications that an action will be taken shortly. Supported actions are:

• a user is going to end the session.

• a user has been invited to join the session.

• a user is going to join the session.

 92

The functionality provided by the complete interface is detailed in [23], however, only a

subset of that functionality is implemented in this research.

The endSessionInd() method is used to indicate that a service session is about to end

shortly, and corresponds to the endSessionReq() (see BasicFS in Section 6.1.3), and

endSessionExe() methods. It takes as input a sessionId, and an indId. The sessionId is

used to identify the session to be ended. The indId provides an indication id for the

session. No userId is required since an endSessionInd() invocation means that an

endSessionReq() method was invoked and a userId was found to be valid.

The inviteUserInd() method is used to indicate that a user has been invited to join a

service session and corresponds to the inviteUserReq() invocation. It takes as input

parameters a sessionId, an indId, and userDetails. The sessionId is used to identify which

session the user has been invited to join. The userDetails parameter is used to provide

other users with some details about the invited user.

The joinSessionInd() method is used to indicate that a user is about to join a service

session shortly, and corresponds with a joinSessionWithInvitation() or

joinSessionReq() invocation. It takes the same parameters as inviteUserInd(), however

it also returns an isValid parameter of type Boolean which can be used to indicate

whether an invitation is valid or not.

6.2.1.3 The i_PartyMultipartyExe interface

The i_PartyMultipartyExe interface allows the user to terminate a multiparty service

session. The functionality provided by the complete interface is detailed in [23], however,

only a subset of that functionality is implemented in this research. The

i_PartyMultipartyExe interface implements the endSessionExe() method which is used

to terminate a service session. The method corresponds to the endSessionReq() (see

BasicFS in Section 6.1.3) and endSessionInd() methods, and is only invoked once the

session has determined that an endSessionReq() is allowed. Once invoked the session

must be ended. endSessionExe() takes a sessionId, and userId as an input parameter, and

returns no output parameters.

6.2.1.4 The i_PartyMultipartyInfo interface

The i_PartyMultipartyInfo interface allows the session to inform the party domain of

changes in the state of the session and its participants [23]. It allows the session to inform

other users of actions such as:

• another party having joined the session.

• a user having been invited to join the session.

• a user having decided to end the session.

 93

All the methods provided by the i_PartyMultipartyInfo interface correspond to methods

in the i_PartyMultipartyInd interface.

inviteUserInfo() corresponds to the inviteUserInd() and inviteUserReq() methods. It is

used to send the invited user’s user information to all other participants of the current

service session.

joinSessionInfo() corresponds to the joinSessionInd() and joinSessionReq() methods. It

is used to send information about the user who has joined the service session.

endSessionInfo() corresponds to the endSessionExe(), endSessionInd(), and

endSessionReq() methods. It is used to send information about an existing service

session which has ended.

The inviteReplyInfo() is different to the other Info operations defined on this interface

because it does not correspond to a Req operation. It is sent to all the parties in the

session, when a reply to an invitation is received from an invited user.

6.2.2 The i_Invitation interface

This interface allows its clients to send invitations to the user’s UA or cancel them, as

well as view sent invitations or use them to join an existing service session.

The invite() method allows users to send an invitation to join a service session to be sent

to a specified user. An identifier for the service the user is being invited to join, as well as

the name of the inviting party, the purpose of the session, and the reason for the

invitation, are included in an invitation data structure.

A user can view a list of sent invitations by invoking the listSessionInvitations() method.

The method takes a userId as an input and returns an invitationList data structure.

To join a session with an invitation an end user must invoke the

joinSessionWithInvitation() method. It takes as input an invitationId and app structure.

The invitation is the same as that sent using the invite method, while the app is a structure

containing information on the application. Both anonymous and known users may invoke

this method. Both sets of users are the appropriate rights and privileges according to their

user status. A sessionInfo structure is returned.

Invitations may be cancelled by invoking the cancel() method. It takes a userId, and

invitationId as input and returns no output.

 94

6.2.3 OSA/Parlay Interfaces

6.2.3.1 The Generic Call Control SCF

The Generic Call Control SCF is described in Section 2.2.2.1. For the purposes of this

discussion, we describe in more detail the interfaces required for its proper function on

both the service provider and connectivity provider sides. The GCCS is represented by

the IpCallControlManager and IpCall interfaces that interface to functionality provided

by the NSCF layer. Applications that use the GCCS to provide connectivity must

implement the IpAppCallControlManager and IpAppCall interfaces to provide a callback

mechanism which can be used to handle responses and reports. During the service

session, the App service component requests access to the Application interfaces from the

SF. The SF manages the lifecycle of both the IpAppCallControlManager and IpAppCall

interfaces. The GCCS will be used to illustrate a basic two party voice call service. In the

first scenario a user invites another user to join a service session. The second scenario

illustrates the termination of a service session.

C o n s u m e r D o m a in E n t e r p r i s e O p e r a t o r / 3 r d P a r t y S e r v i c e

P r o v i d e r

P a r l a y

A p p l i c a t i o n

 N e t w o r k C o n n e c t i v i t y P r o v i d e r D o m a in

F r a m e w o r k

R e t a i l e r D o m a in

I p A p p L o g i c

I p A p p C a l lC o n t r o l

M a n a g e r

I p A p p C a l l

U s e r

I n t e r f a c e

S e r v i c e S e s s io n C o m p o n e n t s

S F

s s U A P

U A

I p A p p M u l t i p a r t y

C a l l L e g

I p A p p M u l t i p a r t y

C a l l

I p A p p M u l t i p a r t y

C a l l

C o n t r o lM a n a g e r

M u l t i p a r t y C a l l C o n t r o l S C F

G e n e r i c C a l l C o n t r o l S C F

I p C a l lC o n t r o l

M a n a g e r
I p C a l l

I p M u l t i p a r t y

C a l l L e g
I p M u l t i p a r t y C a l l

I p M u l t i p a r t y C a l l

C o n t r o lM a n a g e r

Figure 6.5: TINA Service Session Components and Parlay's Generic and Multiparty Call Control

SCFs

 95

6.2.3.2 The Multiparty Call Control SCF

The Multiparty Call Control SCF is described in Section 2.2.2.2. The MCCS implements

the IpMultipartyCallControlManager, IpMultipartyCall, and IpMultipartyCallLeg

interfaces which allow it to create multiparty sessions involving more than two users.

Applications must implement the IpAppMultipartyCallControlManager,

IpAppMultipartyCall, and IpAppMultipartyCallLeg interfaces to interact with it. The

MCCS will be used to illustrate a scenario where a user uses an invitation to join an

already existing service session.

Appendix A.3.2 provides a summary of all the interfaces presented in Section 6.2. Figure

6.5 illustrates the relationship between TINA’s service session service components and

the Parlay Generic Call Control SCFs IpCCM, IpCall, and their corresponding call back

interfaces. Parlay’s Multiparty Call Control SCF is also shown.

6.2.4 Proposed Implementation Scenarios

Consumer

Terminate a Multiparty

Service Session

Join a Service Session with

Invitation

Invite a User to Join a Service

Session

Parlay

Gateway

Service

Provider

initiate connection setup or termination

Figure 6.6: Multiparty Service Usage Management Use Case Scenarios

The multiparty service usage management use case scenarios are illustrated in figure 6.6.

Their function is shown using sequence diagrams in the following chapters.

 96

6.2.4.1 Invite a User to Join a Service Session (Initiate a Multi Party Service

Session)

Description:

A user participating in a service session invites another user participating in the same

service session to direct communication. The invitation contains sufficient information

for the UA to locate the service session and allow the user to join it. On completion, the

inviting user is receives a reply indicating an acceptance or refusal of the invitation.

Pre-Condition:

The ssUAP, Inviter’s UA (user A), Invitee’s UA (user B), and App are present in their

respective domains. A service session exists for the user sending the invitation. It is not

necessary for the invited user to have an active access or service session.

Post-Condition:

The inviting user has a reply to the invitation. A service session may or may not be setup

between user A and user B.

Message Sequence Diagram

1. The User (inviter) uses the UI to request connection setup to another user. The UI

instructs the ssUAP to issue an invitation to a potential participant (invitee) to join a

session. The inviter supplies a resolvable name/address of the invitee.

2. The ssUAP instructs the UA to invite a user to join the session.

3. The UA provides a resolvable name and address of the invitee and instructs the

application to begin routing the call.

4. This message is used to deliver the invitation request to the invitee’s UA. Also in this

case a response is requested.

The Invitee’s UA may perform some actions before continuing. For example, the UA

may check the user profile within the UA for a policy on invitations.(A user may for

example set the policy to reject all invitations from unknown users.) The policy will then

determine the UA actions and interactions with other objects.

5. The invited user replies to the invitation. Note that in the diagram it is assumed that the

invitee accepts the invitation. In this case, a connection will be setup between the two

parties.

6. The App indicates to all other UAs that a new user has been invited.

 97

IpCCMUI ssUAP Inviter's UA SF App::

IpAppLogic

IpAppCall IpCall Invitee's

UA

other UAs

1: i_PartyMultipartyReq::inviteUserReq()

3: inviteUserReq()

12: createCall()

4: i_ProviderInvitationDelivery::invite()

2: i_ProviderPartyMultipartyReq::inviteUserReq()

5: (invitation outcome)

7: (invitation outcome)

8: (invitation outcome)

9: (invitation outcome)

The user is notified
that the invitation was
accepted and that
connection setup is
under way

10: i_SSCreate::createIpAppInterface()

11: new()

13: new()

14: routeReq()

15: routeRes()

16: (forward event)

17: routeReq()

18: routeRes()

19: (forward event)

21: deassignCall()

6: i_ParyMultipartyInd::inviteUserInd()

20: i_PartyMultipartyInfo::inviteUserInfo()

Figure 6.7: Invite a User to Join a Service Session Sequence Diagram

7. The App informs the Inviter’s UA of an invitation reply.

When the invitation has been successfully delivered the App sends an inviteUserInfo() to

the i_PartyMultipartyInfo interface of all the UAs that are currently involved in the

session, (except the requesting party). However, in this case the Generic Call Control

SCF is used so only two users can be involved in a service session.

 98

8. The invitation reply is forwarded to the ssUAP.

9. The invitation reply is forwarded to the user. The user is notified that his invitation was

accepted and a connection between himself and the invited user is about to be setup.

10. The App requests the SF to instantiate a new IpAppCall object.

11. The SF creates an object implementing the IpAppCall interface

12. The App requests the IpCallControlManager to create an IpCall object

13. The IpCallControlManager creates an IpCall object.

14. The App requests the IpCall object to route a call to the inviter (the inviting user).

15. The IpCall object returns a message indicating that the inviter answered the call.

16. The message is forwarded to the App.

17. The App requests the IpCall object to route a call to the invitee (the invited user).

18. The IpCall object returns a message indicating that the invitee answered the call. At

this point a connection has been successfully setup between the two users.

19. The message is forwarded to the App.

20. The App informs all other UAs with information about the invited user.

21. Since the application is no longer interested in controlling the call, the application

deassigns the call. The call will continue in the network, but there will be no further

communication between the call object and the application. (The application may

continue to monitor call events if it so wishes by invoking the enableCallNotification

method on the IpCallControlManager)

In the example above an access session already existed between user B’s PA and UA. If

user B is NOT currently in an access session with the UA, then there are several

alternatives as to what happens. The alternatives are:

• UA stores the invitation until the invited user establishes an access session. When

he does establish an access session, the invitation is delivered as above

or

• UA delivers the invitation to a registered terminal. (The terminal would have been

selected by the user to receive invitations when no access session was present)

6.2.4.2 Join a Service Session with Invitation (Establish a Multi Party Service

Session)

Description:

A user (user B) participating in a service session accepts the invitation from another user

(user A) to engage in direct communication with him/her. User B joins this session from

 99

any terminal, from which he has established an access session. The inviting user is

informed of the decision of the invited user. On completion, the two users have a

connection setup and may engage in direct communication with each other and users

already involved in the session are informed of the new user.

Pre-Condition:

A service session utilizing the MPCCS has been setup by the inviter (user A).

An access session has been setup by the invitee (user B).

Post-Condition:

User A and User B are involved in the same service session.

Message Sequence Diagram

1. The user sends a request to the ssUAP to join a session with an invitation.

2. The ssUAP forwards the request to the UA.

UI ssUAP Invitee's

UA

App::

IpAppLogic

IpAppCall IpAppCallLeg

 B

IpMultiparty

CCM
IpMultiparty

Call

CallLeg A CallLeg B Inviter's UAIpAppCallLeg

 A

1: i_Invitation::JoinSessionWithInvitation()

2: i_ProviderInvitation::JoinSessionWithInvitation()

3: i_ProviderPartyMultipartyInd::joinSessionInd()

4: i_ProviderPartyMultiPartyInd::JoinSessionInd()

5: i_ProviderInvitation::JoinSessionWithInvitation()

6: createCallLeg()

7: new()

8: eventReportReq()

9: routeReq()

10: eventReportRes()

11: forward event

Figure 6.8: Join a Service Session with an Invitation Sequence Diagram

 100

3. The UA requests a check on the validity of the invitation (i.e. does the session still

exist?...Can a new user join the session?, etc) from the App. If the invitation is no longer

valid, the UA will reject the request.

4. The App forwards the request for a check on the validity of the invitation to the

Inviter’s UA. The inviter can then choose to allow the invitation, or to deny it. In the case

of a denial, an exception is raised, and the User must begin a new service session. In the

case of an acceptance, a connection is setup and the user is allowed to join the session.

5. Assuming the invitation is still valid, the UA forwards the requests to join a session, to

the App.

6. The App requests the IpMultipartyCall to create an IpCallLeg object for the user B.

7. The IpMultipartyCall creates an IpCallLeg object.

8. The App requests the IpCallLeg object for user B to inform the application when the

call leg answers the call.

9. The call is then routed to user B’s call leg.

10. Assuming the call is answered, the object implementing user B's IpCallLeg interface

passes the result of the call being answered back to its callback object. At this point a

connection has been successfully setup between the two users. (Note: There may be other

users currently active in the session or other users may still join the session.)

11. The message is forwarded to the App.

6.2.4.3 Terminate a Multi Party Service Session

Description:

A user ends the service session that he/she created. On completion all participants of the

service session are removed and the user is ready to start a new service session.

Pre-Condition:

The components required to sustain a service session for all participants are present in

their respective domains.

Post-Condition:

Accounting information is returned to all parties that were involved in the session.

 101

6.2.4.4 Message Sequence Diagram

UI ssUAP Invitee's

UA

App::

IpAppLogic

IpAppCall IpAppCallLeg

 B

IpMultiparty

CCM

IpMultiparty
Call

CallLeg A CallLeg B Inviter's UAIpAppCallLeg

 A

1: i_Invitation::JoinSessionWithInvitation()

2: i_ProviderInvitation::JoinSessionWithInvitation()

3: i_ProviderPartyMultipartyInd::joinSessionInd()

4: i_ProviderPartyMultiPartyInd::JoinSessionInd()

5: i_ProviderInvitation::JoinSessionWithInvitation()

6: createCallLeg()

7: new()

8: eventReportReq()

9: routeReq()

10: eventReportRes()

11: forward event

Figure 6.9: Terminate a Multiparty Service Session Sequence Diagram

1. The User Interface requests the session to be ended by invoking the endSessionReq()

on the ssUAP.

2. The request is passed on to the UA. The return value of this invocation is the

accounting information for the requesting user.

3. The UA requests the Application to end the service session. The return value of this

invocation is the accounting information for the requesting user. The UA stores this

information in the user’s profile.

4. The App sends an indication about the request to end the session to all the UA’s

participating in the session.

5. The UA sends an Exe to the Application instructing it to end the session. The

Application passes Accounting information back to the UA with this invocation,

thereafter, the service session specific interfaces are made unavailable and all accounting

is stopped.

6. The App passes the instruction to end the session to the respective UAs. (However, no

connection exists at this point.)

 102

7. The application terminates the call.

8. IpCall informs the callback interface that the call was successfully ended.

9. The message is forwarded to the Application.

10. All other participating UA’s are informed about the session being ended and

accounting information is exchanged.

11. The SF is informed that the session is about to end and eventually releases the

Application specific resources.

12. The SF instructs the App to releases all references to the callback objects. (These

references will no longer be valid)

13. The App deletes all references.

6.3 Context Aware Service Delivery

In order to support context aware service delivery, a new interface defined by the author

is implemented. The i_ContextManagement interface implements a set of methods

which can be used to access context information. The methods implemented are

categorized according to context type and are shown below:

It is important to note that the consumer interface’s support of context awareness is not

completely service independent, but requires supported OSA/Parlay applications to

already have subscriptions to SCFs which provide context awareness. Applications may

be requested by the end user interface to provide different types of context information

based on which SCFs they are subscribed to. For example, if an application is not

subscribed to the mobility SCF, location based service delivery cannot be provided by the

consumer interface.

6.3.1 Device Characteristics

The Terminal Capabilities SCF (TCS) can be used to retrieve terminal capability

information. The following user defined methods are implemented to support the retrieval

and reporting of terminal capability information to and from the UA:

• getTerminalCapabilityInfo() is used to retrieve terminal capability information

from the TCS. One input parameter is specified, entityId, and one output

parameter t_terminalConfig, which contains terminal capability data. (see Section

3.4.1)

• monitorTerminalCapabilityReq() is used to request for terminal capability

reports when the capabilities change. Only one input parameter, entityId, is

specified. There are no output parameters.

 103

• monitorTerminalCapabilityReport() provides periodic reports on terminal

capabilities when the capabilities change. Only one input parameter

t_terminalConfig is specified.

• monitorTerminalCapabilityStop() is used to stop the monitoring of changes in

terminal capability information of an entity. It takes an entityId as a parameter.

Appendix B.2 shows the login to a service provider sequence diagram (excluding the

authentication part) with added context awareness provided by the terminal capability

SCF. In this diagram, the UA requests added terminal capability information to

supplement that provided by the PA and sets a monitor to provide reports in case of a

change in capability.

6.3.2 User Preferences

User Preference information is obtained during the subscription phase when negotiating

the service contract. It is the only manually obtained context component.

6.3.3 User State

6.3.3.1 User Location Information

Physical location information can be retrieved using the Mobility SCF.

• getLocationInfo() requests a report on the location of a set of end user. It has one

input parameter, entityIdList. and returns locations which specifies the location(s)

of one or several users.

• monitorLocationInfoReq() requests periodic reports on the location of a set of

end users. It has one input parameter, entityIdList, and no output parameters.

• monitorLocationInfoReport() returns periodic reports on the location of a set of

end users. It has one input parameter, locations.

• monitorLocationInfoStop() terminates the periodic reporting of user location

information for a set of end users. It has one input parameter, entityIdList, and no

output parameters.

 104

6.3.3.2 Application Environment

Determining the state of the user’s application environment is partially handled using the

t_ApplicationInfo structure in the t_TerminalConfig. The parameters are passed from the

user to the consumer domain to the service provider during access session setup (see.

setUserCtxt() in Section 4.1.3).

6.3.4 Proposed User Context Implementation Scenario

Get Terminal Capabilities

Monitor Terminal Capabilities

Get Location Information

Monitor Location Information

Consumer

Service

Provider

Update Context Information

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Figure 6.10: User Context Management Use Case Scenarios

6.3.4.1 Update Context Information

Description:

A User Agent participating in a service session requires an update of context information

before making a decision on service delivery. The UA requests the App for updated

information as well as periodic updates whenever any changes in context occur. Upon

completion, the UA has updated its context information and will receive updates

periodically when context changes.

 105

Pre-Condition:

The App is subscribed to the SCF providing the requested context information.

Post-Condition:

The UA receives periodic updates from the App whenever context changes.

Alternate Flows:

The UA is participating in an access session setup and no service sessions exist. The UA

requests the App for updated information as well as periodic updates whenever any

changes in context occur. Upon completion, the UA has updated its context information

and will receive updates periodically when context changes.

Message Sequence Diagram

1. The user requests terminal capability information. He/she specifies the entityId for the

specified terminal.

2. The ssUAP forwards the request to the UA.

3. The UA requests the Parlay Application (App) to retrieve terminal information using

the Terminal Capability SCF.

4. The App retrieves the terminal capability of the specified terminal.

5. The user requests terminal capability reports when capabilities change.

6. The request is forwarded to the UA.

7. The UA forwards the request to the Parlay Application.

8. The Application requests the SF to create an IpAppExtendedTerminalCapabilities

callback interface.

9. The SF creates an IpAppExtendedTerminalCapabilities callback object.

10. The SF passes the reference to the callback object to the Application.

11. The terminal capabilities changes are started to be monitored.

12. The terminal capabilities have changed and they are reported as requested.

13. The report is forwarded to the Application.

14. The application forwards the report to the UA. The UA may store the terminal

capability information at this point.

15. The UA forwards the report to the ssUAP.

16. The ssUAP forwards the report to the user.

17. The user requests the terminal capability monitoring to stop.

 106

UAUI ssUAP App::

IpAppLogic

IpAppExtended

TerminalCapabilities

IpAppUserLocation IpUserLocation IpTerminalCapabilities IpExtended

TerminalCapabilities

SF

1: i_ContextMgmt::getTerminalCapabilityInfo()

2: i_ProviderContextMgmt::getTerminalCapabilityInfo()

13: (forward notification)

3: getTerminalCapabilityInfo()
4: getTerminalCapability()

8: i_SSCreate::createIpAppInterface()

9: new()

10: passReferences()

11: triggeredTerminalCapabilityStartReq()

12: triggeredTerminalCapabilityReport()

5: i_ContextMgmt::monitorTerminalCapabilityReq()

6: i_ProviderContextMgmt::monitorTerminalCapabilityReq()

7: i_ProviderContextMgmt::monitorTerminalCapabilityReq()

14: : i_ProviderContextMgmt::monitorTerminalCapabilityReport()
15: i_ContextMgmt::monitorTerminalCapabilityReport()

16: i_ContextMgmt::monitorTerminalCapabilityReport()

17: i_ContextMgmt::monitorTerminalCapabilityStop()

18: i_ProviderContextMgmt::monitorTerminalCapabilityStop()

19: monitorTerminalCapabilityStop()

20: triggeredTerminalCapabilityStop()

Figure 6.11: Update User Context (Terminal Capability Update) Sequence Diagram

 107

18. The request is forwarded to the UA.

19. The UA forwards the request to the Application.

20. The Application stops the terminal capability monitoring.

The updating of Location Information is performed in the same way. Appendix B gives

an example of Location Information updating.

6.4 Chapter Summary

This chapter presented the end user interface’s Service Usage Management API. The

main purpose of this API is to initiate and terminate single and multiparty OSA/Parlay

applications. Both single and multiparty OSA/Parlay services were initiated using

TINA’s i_Access, and i_SSManage interfaces, and terminated using the BasicFS.

However, the multiparty service termination scenario required the support of the

Multiparty and MultipartyIndFS. The single party scenarios were illustrated using the

Parlay’s Generic Messaging SCF, whereas the multiparty scenarios were illustrated using

the generic and conference call control SCFs. Users involved in multiparty service

sessions were also allowed to invite other users to join them, as well as use received

invitations to join already existing service sessions. These features were supported by

TINA’s Multiparty and MultipartyInd FS which provided methods to support user

invitation requests, the distribution of indications and information of session events such

as ending of a session, a user being invited, or a user joining a session, to all users

involved in a session. TINA’s i_Invite interface supported the multiparty invitation

scenarios by providing methods to allow clients to send invitations, as well as view sent

invitations or use them to join existing service sessions.

An integrated view of the hybrid OSA/Parlay – TINA service architecture was provided

by using sequence diagrams and use cases to describe the interaction between the TINA

service components and Parlay’s Applications and SCFs for the single and multiparty

service initiation and termination, as well as the invitation scenarios.

The chapter concluded with a discussion of Context Awareness. A new author defined

interface to support context awareness in the consumer interface was created. The

i_ContextManagement interface provides a set of operations which can be used by to

access context information from Parlay’s Terminal Capabilities, and User Location SCFs.

The behaviour of service components implementing this interface and their interaction

with OSA/Parlay applications and SCFs was shown using sequence and use case

diagrams.

 108

7 I M P L E M E N TAT I O N E N V I R O N M E N T

In this chapter we discuss the implementation environment used to realize the

OSA/Parlay end user interface. We also discuss the distributed processing environment

used to implement the service components.

7.1 The CORBA DPE

NGN applications are typically distributed in a heterogeneous environment that

comprises different hardware platforms, operating systems, databases, and network

protocols. CORBA is a distributed computing architecture, which supports the

development of systems for heterogeneous computing environments. It supplies a set of

abstractions and services needed to realize practical solutions for the problems associated

with distributed heterogeneous computing [45]. CORBA provides the following for

distributed application developers:

• Implementation independent interface definition

CORBA defines an Interface Definition Language (IDL) to support the separation of

interfaces from distributed object application implementations. IDL provides high

level definitions for all methods on the distributed objects. It is not a programming

language and thus objects and applications cannot be implemented in it. The main

purpose of the IDL is to allow object interfaces to be defined in a manner that is

independent of any particular programming language [45].

• Programming language transparency

CORBA supports multiple language mappings for OMG IDL so that different parts of

a system or application can be implemented in different programming languages. For

example, in C++, IDL interfaces are mapped to classes, and operations are mapped to

member functions of those classes. Similarly, in Java, IDL interfaces are mapped to

public Java interfaces. This arrangement allows applications implemented in different

programming languages to interoperate. The language independence of IDL is critical

to the CORBA goal of supporting heterogeneous systems and the integration of

separately developed applications [45].

 109

• Location transparency

CORBA provides location transparency, which means that an object is identified

independently of its physical location and can potentially change its location without

disrupting the system. The CORBA Object Request Broker (ORB) provides the

necessary mechanisms for this transparency. Generally, an ORB enables

communication between components over a network.

• Automatic code generation to deal with remote invocations

Vendor specific IDL compilers create language specific representations of IDL

defined constructs such as constants, data types, and interfaces. The generated code

for the client side, that is, the code invoking an operation on an object, is known as

the client stub. Client stubs allow a request invocation to be made via a normal local

function call. The server-side generated code is called the skeleton. A skeleton allows

a request invocation received by a server to be dispatched appropriately [45].

• Access to standard CORBA services and facilities such as [45, 46, 48]:

• Naming

• Trading

• Notification

• Transaction

• Persistent State

• Security

7.2 Network Implementation

The real-time ACE TAO ORB [48], a CORBA Version 3.0 compliant Object Request

Broker (ORB), was used to provide the distributed processing mechanism for the

implementation. In this implementation, all computational objects and interfaces were

developed in C++. The service components were compiled and installed on a TAO

version 1.3.3 ORB on a Linux SUSE 9.0 operating system. A fundamental requirement of

the consumer interface is to be able to distinguish between service components and their

interfaces. The hybrid OSA/Parlay – TINA service architecture therefore supports a

framework for referencing components. In order to simulate the distributed NGN

environment each component utilizes a CORBA reference resolution mechanism called

the IOR (Interoperable Object reference) which provides location transparency, and

location independence. An IOR allows an application to make remote method calls on a

CORBA object. Once an application obtains an IOR, it can access the remote CORBA

 110

object. The IOR contains all the information needed to route the message directly to the

appropriate server.

Each service component is installed in a separate directory and stores an IOR for each of

the interfaces it has implemented. Object references are non-transparent to applications,

but they contain information that ORBs require to establish communication between

service components.

Object references can be made available in several ways. The following examples

provide some approaches however they are not all inclusive. They can be published in a

shared folder to be read by client applications, or to a known location in the server's

document root using a servlet or CGI script, enabling client programs to easily retrieve

stringified references from the Web server using the HTTP protocol [45, 46], or through a

Naming Service [46, 48]. In this research, we implemented all the components on one

machine and thus we publish an object reference by converting it to a string and writing it

to a file stored in the same directory as the relevant service component. Initially, the

asUAP has a reference for the PA, and the PA has a reference for the SPF, however,

service components generally acquire object references in response to successful

operation invocations. For example, the PA receives an object reference for the UA’s

i_ProviderAccess interface after the successful invocation of a requestAccess() method.

In this research, the functionality of the consumer premises end user interface was tested

according to the sequence diagrams presented in Chapters 4, 5, and 6. The next section

presents a discussion of the results.

7.3 Implementation results

The OSA/Parlay end user interface’s functionality was tested by implementing the

computational objects and examining whether they were able to execute the interface

methods correctly and in the sequence specified in the proposed implementation. The

results are presented in this section.

7.3.1 Access Session APIs

The main goal of the access session components is to establish a secure context between

the consumer and service provider thereby allowing an end user access to services in a

controlled manner. The consumer domain service components were able to successfully

initiate contact with the service provider on behalf of the user.

In terms of authentication, the combination of usernames (userId) and passwords

(userProperties) for known users can be used by service providers to support user

 111

authentication. Domain authentication was emulated by invoking the sequence of

authentication methods prescribed in the proposed implementation scenarios, however,

no actual authentication algorithms were implemented.

The setup of default context was achieved by passing terminal and application

information between the consumer and service provider domains. It was assumed that

this information was known by the PA and passed to the UA during access session setup.

A service provider could use the UA to provide context by storing the application and

terminal information and examining the stored information at the appropriate times (ie.

when starting a service, or receiving an invitation).

Consumer service discovery was successfully emulated by passing parameters that allow

a user to select desired properties of a service, and returning a list of matching services,

and service ids based on the specified desired properties.

Access session termination was successfully emulated by implementing the sequence of

termination operations as specified in the “logout of a provider” scenario in Chapter 4.

7.3.2 Subscription and Profile Management

With regard to the management of subscriber, information structures designed for

subscription and profile management as shown in Chapter 5 were successfully passed

between the service provider and consumer. The interfaces, methods, and attributes

proposed in the sequence diagrams were successfully implemented. The consumer

interface successfully emulated user subscription by passing subscriber information,

service templates, SAE lists, SAG lists, service profiles, and service contract information

between the consumer and service provider domains. This was done using the ssUAP,

UA, and SUB components as proposed in the design.

The sequence of operations proposed to support the modification of subscription

information were also successfully implemented. Therefore, the system provides service

providers with the necessary information structures to be able to acquire consumer

subscription information, and using the defined relationships between the structures,

provide the necessary mappings within a database to manage user and service

information. With regard to the consumer, the end user interface supports the passing of

subscription information to the service provider. This includes preference information

regarding services and consumer premises entities. Consumers are also able to modify

their subscription information (ie. service profiles, SAG and SAE lists, service templates,

etc) through a comprehensive set of operations as specified in Chapter 5.

 112

7.3.3 Service Usage Management

The main aim of the service usage management API was to support single and multiparty

call connection setup for OSA/Parlay applications. Using the ssUAP, users were able to

request the initiation and termination of single and multiparty service sessions from the

service provider’s UA, SF, and App components across the DPE as specified in the

proposed implementation scenarios. Invitations were successfully passed between

domains during the emulation of the invite user and join a service session scenarios. The

provision of context awareness was supported by the UA. Using the set of available

operations and subscription identifiers (ie. subscriberId, entityId, etc), service providers

implementing the consumer interface can use the UA to access any consumer information

stored by the SUB. This means that the UA can access any subscription information and

use it to make decisions regarding service delivery context. The SF successfully emulated

the creation of OSA/Parlay specific interfaces by creating dummy object references and

passing them to the App when requested.

7.3.4 Context Awareness

The provision of context awareness in service delivery is discussed in the previous

sections. It was stated Section 7.3.1, that user state (the state of the applications in the

user’s environment) and device characteristics information is provided by the PA to the

UA during access session setup.

The provision of user preference information is also supported. Interfaces, operations,

and data structures to support user preference information storage are defined and

implemented, however, no specific services are demonstrated. It is left to the service

provider to support user preference by specifying configurable and non configurable

service related information within the service template, and thereafter allow the consumer

to define preference by modifying the configurable information when negotiating the

service contract. The implementation of the i_ContextManagement interface is suggested

and not implemented as the ‘proof of concept’ did not go as far as to link the Parlay

consumer interface with an actual gateway.

7.3.5 Personal Mobility

To provide personal mobility within a Parlay service system, we stated that the

requirements specified in Chapter 2.3 would have to be met.

• Users should have the ability to register so that service invitations are sent to a

terminal specified in the registration.

 113

This is covered during subscription. Operations and information structures are

provided to allow a subscriber to register a set of terminals, each of which is

allowed to access services according to some assigned rights and privileges. The

implementation of a registration object accessible to the UA is necessary for this

requirement to be fulfilled, however, this was not possible due to time constraints.

• Users may respond to a service invitation on a different terminal than the one

specified for getting the invitation.

Users are allowed to list their invitations from any terminal which they are

currently using, therefore, a user may list an earlier stored invitation on any

chosen terminal, and use it to respond to a service invitation.

• The user should be able to “access the system” according to the service provider’s

and user’s own preferences, as much as possible, independent of the terminal

used. The delivery of a service is subject to terminal and network capabilities.

The OSA/Parlay architecture provides functionality to request for terminal

capability. Terminal capability information is also given by the user during access

session setup. Before initiating a service session, the user’s UA can check the

user’s preferences and whether the user’s terminal is capable of participating in

the service session and takes appropriate action. (User preference is specified

during subscription).

 114

8 C O N C L U S I O N

8.1 Discussion

This report examined service creation and delivery in the NGN, specifically the rapid

creation and delivery of cross network applications enabled by network independent

APIs. The main focus was on the OSA/Parlay service architecture. The OSA/Parlay

Architecture enables application convergence through the specification of open standard

APIs which allow access for applications to transport network functionality in a manner

independent of the transport network used. They also provide a powerful set of Service

Capability Functions that can be used to provide context awareness and location based

service delivery.

OSA/Parlay does not however identify a consumer or service provider domain in its

application layer. This means that 3
rd

 party applications housed in the service provider

domain have no defined interfaces to manage service delivery to the consumer domain.

The OSA/Parlay model does not specify how applications manage user access,

authentication, service usage or subscription and profile management.

The lack of a standardized set of APIs to support end user service access and usage

management presents a number of significant concerns for service providers. Without an

API to support user access to services, service providers cannot offer secure, customized

access to the set of OSA/Parlay services. Operations to support user and domain

authentication are necessary to ensure the establishment of a secure usage context

between the consumer and service provider. Also, in order for service providers to offer

services to end users, it is essential that they have sufficient information to handle end

users, subscribers, and the subscription life cycle. This requires a subscription

management API within the consumer domain to be implemented. Customized access to

services can then be arranged by taking into account context information such as end user

preferences. It is also important for service providers to be able to provide users with the

ability to manage their services during service usage. Parlay offers no API to initiate or

terminate a service, or even to invite other users to join an existing service.

The main research problem was to design and implement a standard consumer interface

which could be used by application providers within an OSA/Parlay system to deliver

service content to end users. The main objectives with regard to the functionality

provided by the interface included the integration of facilities which would assist

application providers to manage end user access and authentication (to enable users to

establish a secure context for service usage), subscription (to handle the subscription life

 115

cycle), and service usage management (to enable the initiation and termination of

services). The integration of NGN capabilities such as context awareness, location based

service delivery and personal mobility into the consumer interface was also examined.

In order to achieve the defined objectives we explored the feasibility of using the TINA

service architecture within an OSA/Parlay system to support consumer domain service

delivery. The TINA architecture provided a comprehensive set of concepts and principles

that could be used in the design of NGN services. Mainly the TINA service architecture

provided a logical separation of business roles and administrative domains within

Parlay’s application layer. This allowed us to define a business model which provided a

high level definition of the OSA/Parlay consumer interface. The model logically

separated the Consumer, Service Provider/Enterprise Operator, and Connectivity

Provider/Parlay Gateway, and assigned responsibilities to each. TINA’s Retailer

Reference point [23], was then used to specify the relationships between the roles in

order to define a generic service independent API set between Parlay’s consumer and

enterprise operator domains. TINA’s component model was then used to define a set of

reusable and interoperable service components which encapsulated the generic APIs to

provide Access and Authentication, Subscription, and Service Usage management

functionality to the OSA/Parlay consumer interface. The encapsulated API also provided

inherent support for personal mobility. Support for context awareness was provided by

the subscription and profile management API which allowed users to register their

preferences. The Access API also allowed a user to send some consumer domain

information which could be used to provide context during service delivery. TINA’s

session model was integrated into the end user interface to clarify the purpose of

interactions between consumers and service providers. The implementation of the

component model, and Ret RP interfaces using a set of implementation scenarios

provided a reusable consumer interface for the Parlay service architecture. The

implementation was demonstrated by deploying the service components over a

distributed computing platform.

8.2 Conclusion

This project set out to describe the need for a consumer to service provider interface to

support the provision of OSA/Parlay applications in an NGN environment. An

underdeveloped OSA/Parlay service architecture lacking the necessary functionality to

provide efficient service delivery between the consumer and service provider domains

provided the basis for this study. In conclusion, we can say that this research has

demonstrated that TINA concepts and principles are useful in the design and

implementation of APIs to support consumer premises service delivery in an OSA/Parlay

environment. Utilizing the TINA service architectures rich set of features and

comprehensive API, we were able to design and implement a standard Consumer to

Provider API set for Parlay applications. The interface provided the generic logic

 116

required to support OSA/Parlay service delivery by providing an interworking between

TINA and OSA/Parlay specific logic.

The OSA/Parlay consumer interface allows for the specification and management of a

relationship between a service provider and a set of consumers within the Parlay service

architecture. An important conclusion we can make is that the end user interface provides

the necessary logic to support the creation and provision of a diverse set of Parlay

applications through use of generic and reusable service logic. Within the research,

Parlay applications implementing the Generic Messaging, Generic Call Control,

Multimedia Call Control SCFs were demonstrated, however, the end user interface is

capable of providing support to any applications implementing other SCFs. Using

TINA’s business model, reusable service components, session concept, and Retailer

Reference Point, the consumer interface is able to provide the following functionality to

any applications with access to the relevant Parlay SCFs:

• Access and Authentication

The access and authentication API allows consumers to transparently locate a

OSA/Parlay service providers and request the establishment of an access session.

The functionality provided by the API are encapsulated by the asUAP, PA, UA,

and SPF computational objects. The asUAP and PA are the initial point of contact

for the consumer, and allow him/her to authenticate him/herself and/or the

consumer domain to a service provider specific SPF, as well as to establish a

secure and controlled access session to the system of OSA/Parlay services. The

PA provides ubiquitous access to the system of OSA/Parlay services, irrespective

of the terminal being used and the point of attachment to the network. The access

session also allows the consumer to discover services, initiate usage of those

services, and register the consumer’s context with the service provider through a

UA. Registration of consumer context provides a user with the opportunity to

customize access to services, and for the service provider to customize the

delivery of services based on the end user’s preference and/or terminal

capabilities.

• Subscription and Profile Management

The subscription and profile management APIs provide OSA/Parlay service

providers with capabilities to manage the set of consumers subscribed to their

services, and subscribers with the capability to manage their services and service

entities. Using the subscription API users can subscribe, modify and release

services offered by providers. Using the profile management API users can

manage user, terminal, NAP and service information and preferences. The

functionality provided by the API are encapsulated by the ssUAP, UA, and SUB

service components. The subscription and profile management API allow

subscribers to control context information by defining their preference when

negotiating a service contract. This allows subscribers to tailor a service’s

behavioural characteristics to their specific requirements and needs.

 117

We can conclude that without the subscription API the OSA/Parlay service

providers would be unable to identify or authenticate users as no previous user or

subscriber information would be available. Access to services would be limited to

anonymous users, complicating service delivery as well as billing. Context

awareness would also be limited. Only dynamically obtained information from

the OSA/Parlay gateway would be accessible, meaning that users would be unable

to register their preferences and would therefore be unable to customize services.

• Service Usage Management

The service usage management APIs cover the interaction between the consumer

and service provider domains during the use of a service session (based on

policies agreed upon in the service contract). These API are key to the

interworking between TINA and OSA/Parlay specific logic as they interact with

OSA/Parlay applications to initiate connection setup and management with the

gateway on behalf of consumers. The functionality provided by these API enable

consumers to initiate and terminate single or multiparty multimedia service

sessions. Their functionality is encapsulated by the ssUAP, UA, and SF service

components. An App component is used as a generic representation of

OSA/Parlay services.

• Context Aware Service Delivery

The integration of context aware service delivery into the OSA/Parlay consumer

interface was a key problem in this research. To deal with this problem we

provided a definition of context and required that service delivery be adaptable

based on the defined context. Using TINA’s information structures and

subscription API we were able to support service delivery based on user

preference and user state (ie. user domain specific information). Dynamically

obtained context such as Terminal and User state (ie. Location information) was

provided by the Parlay SCFs, it should be noted however that obtaining dynamic

context was suggested but not implemented. In conclusion, we were able to

provide adaptable service delivery based on a defined context, incorporating

device characteristics and user context, by exploiting available information

structures within the TINA API and suggesting a set of interfaces to interact with

service capability functions within the Parlay gateway, in order to create a unified

context management system within the Parlay end user interface.

• Personal Mobility

Personal mobility was also a key feature which we intended to integrate into the

consumer interface. Achieving this objective was facilitated by the TINA service

architecture’s inherent support for personal mobility. The integration of personal

mobility into the consumer interface provides end users with the ability to

 118

ubiquitously access customized services independently of physical location or

specific equipment.

It is important to realize that the Interfaces and operations presented within this research

to provide the abovementioned functionality present a guideline which can be used by

service providers to provide standardized functionality within Parlay’s consumer domain.

The defined end user interface is by no means intended to provide an exact solution,

however, it is expected that the defined service components and APIs will provide a

framework which service providers can ‘build around’ with some degree of freedom. For

example, although during access an authentication sequence is described, no formal

algorithms are prescribed. The implementation specifics with regard to Access and

Authentication, Subscription, and Service Usage are left to the enterprise operator.

8.3 Recommendations for Future Work

The goal of this project was to provide a “Proof of Concept” case study which explored

how TINA concepts could be used to support the provision of service in an OSA/Parlay

environment. The study mainly explored how the generic functionality defined by TINA

in the areas of access and authentication, subscription and profile management, and

service usage management could be interlinked with OSA/Parlay applications to increase

efficiency in service creation and deployment.

The consumer interface could have been extended by including generic logic to handle

the addition and deletion of services. It was initially hoped that the SPF would be able to

take up a similar role as the OSA/Parlay Framework within the consumer interface. This

would have implied a ‘priority’ role for the SPF in service registration. Another

responsibility would have been integrity management of OSA/Parlay applications. It may

be worthwhile to explore the role of the SPF in terms of monitoring application load

conditions, and taking appropriate action according to load condition changes or in the

case of failure, as well as service registration.

In terms of service usage management, the API could be extended to enable session

mobility. Session mobility allows a user that has an active session on a particular terminal

to move that session to another terminal. In order to enable session mobility, the

consumer interface is required to allow a user to suspend a service session on a terminal,

and resume participation using a different terminal. Furthermore, the end user interface

must assess how the requirements of the service match the capabilities of the new

terminal and access point and adapt the way the service content is delivered to the end

user [4]. The next section examines content adaptation and considers some important

issues for its enablement.

 119

8.3.1 Content Adaptation

The NGN amalgamates different types of media designed for use on different types of

devices. However, different types of media such as images, audio, and video are usually

designed with specific devices in mind [26, 28]. The OSA/Parlay consumer interface

currently considers the terminal capability of a device receiving multimedia content,

however, it makes no effort to adjust the content according to attributes such as screen

size, or processing power. In order for the interface to provide an efficient service to

users with devices that are wide ranging in capability, it is important that media

adaptation technology be integrated. For appropriate multimedia presentations to be

displayed on different devices, [27] states that the following issues need to be addressed:

• Multimedia information model for adaptation.

• Media authoring and processing techniques for adaptation.

• Mechanisms for reliably detecting device capabilities and network bandwidth.

• Standard approaches to describe and exchange context information.

• An adaptation agent that analyzes the context information, calculates the

adaptation cost, and selects different adaptation strategy.

• A framework to integrate all of the above technologies.

To fully support NGN services, the end user interface must implement a generic, service

independent media adaptation unit taking into account the above factors.

8.3.2 Federation

Since one of the main goals of this research is to provide a standardized API for

OSA/Parlay applications, it can be assumed that should this goal be achieved, a multitude

of service providers will eventually utilize the end user interface for service creation and

provision. An important issue concerning the interface then is how two or more service

providers utilizing the end user interface would federate to provide services to end users.

Service providers have to be confident that only appropriate external users are provided

access to service content, and that the access granted is consistent with the rights and

privileges specified for that user in a profile. In terms of the access and authentication,

and service usage scenarios, questions that may arise are:

• Which other service providers and users can be trusted?

• What types of credentials and requests can be accepted?

In terms of subscription and profile management, questions that may arise are:

 120

• What user and/or service information can be shared?

• How can the overlapping rights and privileges of a user across service provider

policy boundaries be managed?

 121

R E F E R E N C E S

[1]The Parlay Group, Homepage at http://www.parlay.org, Last Accessed

28 July 2006.

[2] 3GPP TS 22.127 v5.0.0, "Service Requirement for the Open Service

Access (Release 5)", June 2001,

http://webapp.etsi.org/exchangefolder/ts_122127v050300p.pdf, Last

accessed July 28, 2006.

[3]UMTS Forum, “3G Portal Study -- A Reference Handbook for Portal

Operators, Developers and the Mobile Industry”, Report No. 16,

November 2001.

[4]TINA-C , “Service Architecture”, Deliverable version 5.0, June 1997.

[5]P. Nana, “On a hybrid TINA-Parlay service architectecture for next

generation networks”, MSc(Eng) Project Report, University of the

Witwatersrand, Johannesburg, 2003.

[6]A. Liotta, A. Yew, C. Bohoris, and G. Pavlou, “Delivering service

adaptation with 3G technology”, Center for Communication Systems

Research, Univ. of Surrey,

http://www.ee.surrey.ac.uk/CCSR/Networks/

[7]O. Risnes, “Developing Advanced Parlay-Enabled Value Added

Services”, OSA/Parlay and Convergent Services Delivery Platforms

Forum, December 2003,

http://www.telenor.com/rd/pub/not03/N_76_2003.pdf, Last Accessed

28 July 2006.

[8]“Next Generation Network Intelligence”,

http://www.mobilein.com/NGN-1.htm. Last accessed 07 December

2005.

[9]R. K. Prasad, “QoS provisioning to a SOHO telecommunications client

using a DPE-enabled gateway”, MSc(Eng) Project Report, University

of the Witwatersrand, Johannesburg, 2004.

[10] TINA-C, “Service Component Specification”, Deliverable 1.0 b,

January 1998, http://www.tinac.com, Last accessed 07 December

2005.

 122

[11] ETSI ES 202 915-3, “Open Service Access (OSA); Application

Programming Interface (API); Part 3: Framework (Parlay 4)”, ETSI

Standard V1.2.1, August 2003.

[12] C. Egelhaaf, K. Eckert, P. Loosemore, N. Quinn, and G. Gylterud,

“Technology Assessment of Middleware for Telecommunications”,

Eurescom Project P910, April 2001.

[13] F. Steegmans (ed.), C. Abarca, J. Forslow, T. Hamada, S. Hogg, H. J.

Beom, D. S. Kim, H. Y. Lee, and N. Natarajan. “TINA Network

Resource Architecture,Version 3.0”, TINA-C, Febr. 1997; public. File:

/u/tinac/resources/viewable/nra_v3.0.ps. Last accessed 07 December

2005.

[14] TINA-IN Work Group RFP, “IN access to TINA services &

connection management (IN-TINA Adaptation Unit)”, Response of

Alcatel, Deutsche Telekom, France Télécom and Lucent Technologies,

1999

[15] J. C. Crimi, “NGN Services (A White Paper)”, Telcordia

Technologies, , http://www.mobilein.com/NGN_Svcs_WP.pdf, Last

accessed 07 December 2005.

[16] P. Falcarin, C.A. Licciardi, “Technologies and Guidelines for Service

Creation in NGN”, December 2003

http://phoenix.labri.fr/documentation/sip/Documentation/Papers/Progr

amming_SIP/Paper_Publication_and_Draft/VOL03.pdf, Last

Accessed 28 July 2006.

[17] Y-C Shou, “Control and management of a customer premises network

with a DPE-enabled residential gateway”, MSc(Eng) Project Report,

University of the Witwatersrand, Johannesburg, 2004.

[18] H. E. Hanrahan, “A Comparative Study of Telecommunications

Architectures: Methodology and case studies”, South African

Telecommunication Networks and Applications Conferernce

(SATNAC), George, South Africa, September 2003

[19] J. Bakker, J.R. McGoogan, W.F. Opdyke, and F. Panken, “Rapid

Development and Delivery of Converged Services Using APIs”, Bell

Labs Technical Journal, July-September 2000

[20] I. Venieris, F. Zizza, T. Magedanz, (Eds.), “Object Oriented Software

Technologies in Telecommunications: From Theory to Practice”, John

Wiley & Sons, 2000.

 123

[21] R. Christian, “Providing User Context Support for Next Generation

Network Services”, MSc(Eng) Project Report, University of the

Witwatersrand, Johannesburg, 2005.

[22] TINA-C, “Overall Concepts and Principles of TINA,” Deliverable

version 1.0, February 1995, http://www.tinac.com, Last accessed 07

December 2005.

[23] TINA-C, “Ret Reference Point Specification”, TINA-C Document

Version: 1.0, 1998, http://www.tinac.com , Last accessed 07 December

2005.

[24] TINA-C, “Business Model and Reference Points”, TINA-C

Document Version 4.0, 1997, http://www.tinac.com, Last accessed 07

December 2005.

[25] D. M. Sow, G. Banavar, J. S. Davis II, J. Sussman, and M. R.

Rwebangira, “Preparing the Edge of the Network for Pervasive

Content Delivery”, Workshop on Middleware for Mobile Computing,

November 16, 2001.

[26] N. Chan Wah and T. Pek Yew, “QoS and Delivery Context in Rule-

Based Edge Services”, 7th

International Workshop on Web Content Caching and Distribution

http://2002.iwcw.org/papers/18500015.pdf, Last accessed 07

December 2005.

[27] Z. Lei, and N. D. Georganas, “Context-based media adaptation for

pervasive computing”, Canadian Conference on Electrical and

Computer Engineering (CCECE 2001), Toronto, May 2001.

[28] N. B. Sheridan-Smith, J. Soliman, D. Colquitt, J. R. Leaney, T.

O’Neill, and M. Hunter, “Improving the user experience through

adaptive and dynamic service management”

[29] Rococo Software, “An Introduction to OSA/Parlay, a white paper

from Rococo Software”,

http://rococosoft.com/docs/osa_parlay_wp.pdf , Last accessed 07

December 2005.

[30] M. Walkden, N. Edwards, D. Foster, M. Jankovic, B. Odadzic, G.

Nygreen, G. Gyterud, C. Moiso, S.M. Tognon, and B. de Bruijn,

“Open Service Access – Advantages and opportunities in service

provisioning”, Eurescom project P1110, January 2002.

 124

[31] G. Berhe, L. Brunie, and J. Pierson, “Modeling Service-Based

Multimedia Content Adaptation in Pervasive Computing”, Conference

on Computing Frontiers, Proceedings of the 1
st
 conference on

Computing frontiers, April 14-16, 2004.

[32] A. Held, S. Buchholz, and A. Schill, “Modeling of Context

Information for Pervasive Computing Applications”, Proc. Of the 6th

World Multiconference on Systemics, Cybernetics and Informatics

(SC12002), Orlando, FL, USA, Jul 14-18, 2002.

[33] M. E. Anagnostou, M.A. Lambrou, E. D. Sykas, “Context aware

service engineering in support of future business networks”, ICCS,

Institute of Communication and Computer Systems, Computer

Networks Lab, Athens, Greece,

http://context.upc.es/Papers/ContextCOCONET.pdf, 2003, Last

accessed 07 December 2005.

[34] ETSI ES 202 915-7, “Open Service Access (OSA); Application

Programming Interface (API); Part 7: Terminal Capabilities SCF

(Parlay 4)”, ETSI Standard V1.2.1, August 2003.

[35] ETSI ES 202 925-6, “Open Service Access (OSA); Application

Programming Interface (API); Part 6: Mobility SCF (Parlay 4)”,

ETSI Standard V1.2.1, August 2003.

[36] ETSI ES 202 915-14, “Open Service Access (OSA); Application

Programming Interface (API); Part 14: Presence and Availability

Management SCF”, ETSI Standard V1.1.1, January 2003.

[37] D. Adamopoulos, “A Structured Approach to the Development of

Telematic Services Using Distributed Object-Oriented Platforms”,

Phd Thesis, University of Surrey, UK, November 2000.

[38] H. E. Hanrahan, and D. Mwansa, “A Vision for the Target Next

Generation Network”, School of Electrical and Information

Engineering, University of the Witwatersrand, Johannesburg,

September 2003.

[39] ETSI ES 202 925-4-2, “Open Service Access (OSA); Application

Programming Interface (API); Part 4:Sub-part 2: Generic Call

Control SCF (Parlay 4)”, ETSI Standard V1.2.1, August 2003.

[40] ETSI ES 202 925-4-3, “Open Service Access (OSA); Application

Programming Interface (API); Part 4:Sub-part 3: Multiparty Call

Control SCF (Parlay 4)”, ETSI Standard V1.2.1, August 2003.

 125

[41] ETSI ES 202 925-4-4, “Open Service Access (OSA); Application

Programming Interface (API); Part 4:Sub-part 4: Multimedia

Multiparty Call Control SCF (Parlay 4)”, ETSI Standard V1.2.1,

August 2003.

[42] ETSI ES 202 925-4-5, “Open Service Access (OSA); Application

Programming Interface (API); Part 4:Sub-part 5: Conference Call

Control SCF (Parlay 4)”, ETSI Standard V1.2.1, August 2003.

[43] ETSI ES 202 925-8, “Open Service Access (OSA); Application

Programming Interface (API); Part 8: Data Session Control SCF

(Parlay 4)”, ETSI Standard V1.2.1, August 2003.

[44] ETSI ES 202 925-9, “Open Service Access (OSA); Application

Programming Interface (API); Part 9: Generic Messaging SCF

(Parlay 4)”, ETSI Standard V1.2.1, August 2003.

[45] M. Henning, and S. Vinoski, “Advanced CORBA Programming with

C++”, Addison-Wesley Professional, 1
st
 edition, February 1999.

[46] G. Brose, A. Vogel, and K. Duddy, “JAVA Programming with

CORBA, Advanced Techniques for Building Distributed Applications”,

John Wiley & Sons, 3rd Edition, June 2001.

[47] P. Moodley, “Parlay Gateway Emulator for Performance Studies”,

University of the Wiwatersrand, School of electrical and information

engineering, 2004.

[48] Object Computing, Inc. “TAO Developer’s Guide”, Version 1.3a,

2003. See also http://www.cs.wustl.edu/~schmidt/TAO.html, Last

Accessed 28 July 2006.

[49] Centre for Telecommunications Access and Services, “South African

Telecommunications Information Network Architecture (SATINA).”

Last accessed 07 December 2005, http://www.satina.ee.wits.ac.za.

[50] S. Beddus, S. Davis, and G. Bruce, “Opening up networks with JAIN

Parlay”, IEEE Communications Magazine, vol. 38, no. 4, pp. 136 –

143, April 2000.

[51] ETSI ES 202 925-1, “Open Service Access (OSA); Application

Programming Interface (API); Part 1:Overview (Parlay 4)”, ETSI

Standard V1.2.1, August 2003.

 126

[52] A. J. Moerdijk, and L. Klosterman, “Opening Networks with

OSA/Parlay APIs: standards and aspects behind the APIs”, Ericsson,

March 2002.

[53] P. Kuuppelomaki, and A. Mustonen, “Open architectures in

telecommunications convergence”, Satakunta Polytechnic,

http://trc.pori.tut.fi/tots/

Open%20architectures%20in%20telecommunication%20and%20IP%

20convergence.pdf , Last Accessed 07 December 2005.

[54] The JAIN Community, “The JAIN APIs: Integrated Network APIs for

the Java Platform”, January 2002,

http://java.sun.com/products/jain/WP2002.pdf , Last Accessed July 28,

2006.

[55] ITU-T Recommendation F.850, “Principles of Universal Personal

Telecommunication (UPT)”, March 1993, http://www.itu.int/rec/T-

REC-F.850-199303-I/en, Last Accessed 28 July 2006.

 1

A P P E N D I X A

S U M M A R Y O F IN T E R F A C E S , M E T H O D S , A N D

A T T R I B U T E S

A.1 Access and Authentication

Interfaces Supported Methods Attributes

contactProvider() providerName

requestAccess() userId

userProperties

asId

i_Initial

setupAccessSession() userInfo

asId

sIOR

getAuthenticationMethods desiredProperties

authMethods

authenticate authMethod

authenData

privAttribReq

privAttrib

authStatus

i_Authenticate

continueAuthentication authenData

privAttrib

continuationData

authStatus

setUserCtxt() userCtxt

listServices() desiredProperties

howMany

serviceList

i_Access

startServices() (see Service Usage)

 2

endAccessSession() asId

Table 1: Access and Authentication Management Interfaces, Operations, and Attributes

A.2 Subscription and Profile Management

Interfaces Supported Methods Attributes

listServices() desiredProperties

howMany

serviceList

subscribe() serviceList

subscriberInfo

subscriberId

interfaceList

I_Subscribe

Unsubscribe()** subscriberId

subscriberInfo

serviceIdList

unsubscribedServices

createSAEs entityList

subscriberId

entityIdList

deleteSAEs subscriberId

entityIdList

createSAGs subscriberId

sagList

sagIdList

deleteSAGs subscriberId

sagIdList

assignSAEs subscriberId

entityIdList

sagId

I_SubscriberMgmt

removeSAEs Same as assignSAEs

 3

listSAEs subscriberId

entityIdList

sagId

listSAGs subscriberId

sagIdList

getSubscriberInfo subscriberId

setSubscriberInfo subscriberId

listSubscribedServices subscriberId

serviceList

getServiceTemplate serviceId

template

setServiceTemplate serviceId

template

spId

getServiceProfiles userId

serviceIdList

serviceProfileList

assignServiceProfile spId

sagIdList

saeIdList

removeServiceProfile Not Implemented

activateServiceProfile spIdList

deactivateServiceProfile Not Implemented

deleteServiceProfile Not Implemented

getServiceContractInfo Not Implemented

i_ServiceContractInfoMgmt

defineServiceContract serviceContract

spIdList

Table 2: Summary of Subscription and Profile Management Interfaces, Operations, and Attributes

 4

A.3 Service Usage Management

A.3.1 Single Party Services

Interfaces Supported Methods Attributes

i_Access startService** serviceId

app

uaProperties

sessionInfo

createSSession serviceId

userId

app

uaProperties

sessionInfo (contains ssId)

createIpAppInterface interfaceList

ssId

endSSession ssId

i_SSManage

releaseIpAppResources ssId

i_BasicReq endSessionReq ssId

userId

IpAppLogic initiateApp sessionInfo

interfaceList

Table 3: Summary of Single Party Service Usage Management Interface, Operations, and Attributes

 5

A.3.2 Multi Party Services

Interfaces Supported Methods Attributes

inviteUserReq**

userId

invitedUserDetails

invitationId

invitationReply

i_PartyMultipartyReq

joinSessionReq userId

serviceId

sessionId

uaProperties

sessionInfo

endSessionInd** sessionId

indId

inviteUserInd Not Implemented

i_PartyMultipartyInd

joinSessionInd** sessionId

indId

userDetails

isValid

I_PartyMultipartyExe endSessionExe** userId

sessionId

inviteUserInfo Not Implemented

joinSessionInfo Not Implemented

endSessionInfo Not Implemented

I_PartyMultipartyInfo

inviteReplyInfo Not Implemented

Invite Invitation

reply

i_Invitation

listSessionInvitations** userId

invitationList

 6

joinSessionWithInvitation** invitationId

app

sessionInfo

cancel userId

invitationId

Table 4: Summary of Multiparty Service Usage Management Interfaces, Operations, and Attributes

 7

A P P E N D I X B

U P D A T I N G O F C O N T E X T

B.1 The User Location Case

UI ssUAP UA SF App::

IpAppLogic

IpUserLocation IpUserLocation IpTriggeredUser

Location
IpAppTriggeredUser

Location

1: i_ContextMgmt::getLocationInfo()

10: i_ContextMgmt::monitorLocationInfoReq()

19: i_ContextMgmt::monitorLocationInfoReport()

20: i_ContextMgmt::monitorLocationInfoStop()

2: i_ProviderContextMgmt::getLocationInfo()

11: i_ProviderContextMgmt::monitorLocationInfoReq()

18: i_ContextMgmt::monitorLocationInfoReport()

21: i_ProviderContextMgmt::monitorLocationInfoStop()

3: getLocationInfo()

12: i_ProviderContextMgmt::monitorLocationInfoReq()

17: : i_ProviderContextMgmt::monitorLocationInfoReport()

22: monitorLocationInfoStop()

23: triggeredLocationReportingStop()

4: i_SSCreate::createIpAppInterface()

6: (forward request)

7: locationReportReq()

8: locationReportRes()

9: (forward result)

5: new()

13: (forward request)

14: triggeredLocationReportingStartReq()

15: triggeredLocationReport()

16: (forward report)

Figure B.1 Update User Context (User Location Update) Sequence Diagram

 8

1. The user requests user location information.

2. The ssUAP forwards the request to the UA.

3. The UA requests the Parlay Application (App) to user location using the Mobility SCF.

4. The Application requests the SF to create an IpAppUserLocation callback interface.

5. The SF creates an IpAppUserLocation callback object.

6. The App requests the IpAppUserLocation object to retrieve the user location

information.

7. The IpAppUserLocation object requests the user location.

8. The IpUserLocation object provides a user location report.

9. The report is forwarded to the IpAppLogic.

The report is then forwarded to the user. This is not shown here.

10. The user requests user location reports when location changes.

11. The request is forwarded to the UA.

12. The UA forwards the request to the Parlay Application.

(At this point we assume that the SF has already created the

IpAppTriggeredUserLocation callback object)

13. The App requests the IpAppTriggeredUserLocation object to setup user location

information monitoring.

14. The user location changes are started to be monitored.

15. The user location information has changed and is reported as requested.

16. The report is forwarded to the Application.

17. The application forwards the report to the UA. The UA may store the user location

information at this point.

18. The UA forwards the report to the ssUAP.

19. The ssUAP forwards the report to the user.

20. The user requests the user location monitoring to stop.

18. The request is forwarded to the UA.

19. The UA forwards the request to the Application.

20. The Application stops the user location monitoring.

 9

B.2 Updating User Context during Access Session Setup

UI asUAP PA SPF UA IpTerminal

Capabilities

1: i_Initial::requestAccess()

2: i_ProviderInitial::requestAccess()

3: i_ProviderInitial::requestAccess()

4: i_ProviderInitial::setupAccessSession()

5: i_ProviderAccess::setUserCtxt()

6: getTerminalCapability()

Figure B.2 User context update during access session setup

1. The user uses the User Interface to request to log in to the provider.

2. The asUAP invokes the requestAccess() method on the PA.

3. The PA invokes requestAccess() on the provider specific SPF to establish an access

session that allows the user access to the provider’s services.

We assume the user has already been authenticated.

4. The SPF contacts the UA and requests the setup of an access session with the

authenticated user.

5. The PA completes access session setup by invoking the setUserCtxt() operation on the

i_ProviderAccess interface. This gives the user’s UA some information about the user’s

domain, such as interface references, and terminal capability information.

The user’s UA acknowledges the receipt of this user’s domain information. Once the PA

receives the UAs confirmation, the access session can be officially considered to be

established.

6. The UA requests terminal capability information from the Terminal Capability SCF.

 10

(We assume that the UA is authorized to communicate with the SCF.)

The PA informs the asUAP of the successful establishment of the access session. The

asUAP in turn will inform the user.

In the above scenario, if we assume that the UA is authorized to request information from

the SCF, then the UA may also request terminal capability and user location reports as

shown in the update user context management scenarios.

B.3 IDL Specification for i_UserContextManagement Interface

interface i_UserContextManagement{

 void getTerminalCapabilityInfo(

in TINASubCommonTypes::t_EntityId entityId,

out TINAAccessCommonTypes::t_TerminalConfig terminalCap

);

 void monitorTeminalCapabilityReq(

in TINASubCommonTypes::t_EntityId entityId,

);

 void monitorTerminalCapabilityReport(

in TINAAccessCommonTypes::t_TerminalConfig terminalCap

);

 void monitorTerminalCapabilityStop(

in TINASubCommonTypes::t_entityId entityId,

);

 void getLocationInfo(

in TINASubCommonTypes::t_EntityIdList entityIdList,

in TpUserLocationSet locations

);

 void monitorLocationInfoReq(

 11

in TINASubCommonTypes::t_EntityIdList entityIdList,

);

 void monitorLocationInfoReport(

in TpUserLocationSet locations

)

 void monitorLocationStop(

in TINASubCommonTypes::t_EntityIdList entityIdList,

)

};

TpUserLocationSet locations is defined in the Parlay Mobility SCF common data

definitions and contains fields as shown by the following table:

Field Type Description

UserID TpAddress The address of the user

StatusCode TpMobilityError Indication of error

GeographicalPosition TpGeographicalPosition Specification of a position

and an area of uncertainty.

Table 5 Fields contained within the locations data structure. Redrawn from [35]

 12

A P P E N D I X C

IDL S P E C I F I C A T I O N F O R C O N S U M E R IN T E R F A C E

The following section presents a complete listing of all the interfaces, methods, and

attributes implemented for each of the service components using the Interface Definition

Language (IDL). The TINA data definition IDLs are found in [4],[10], and [23]. The

Terminal Capability and Mobility data definition IDLs are found in the corresponding

OSA/Parlay SCF standards [34],[35].

C.1 asUAP

#include "TINAUserInitial.idl"

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderAccess.idl"

module asUAP{

 interface i_Initial {

 void startAccess(

 in TINAUserInitial::t_ProviderId providerId

);

 };

interface i_Access{

 void requestLogin (

 inout TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_UserProperties userProperties,

 out TINAAccessCommonTypes::t_AccessSessionId asId

);

 void discoverServices(

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 13

 void endAccessSession(

 in TINAAccessCommonTypes::t_AccessSessionId asId

);

 };

};

 14

C.2 PA

#include "TINAUserInitial.idl"

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderInitial.idl"

#include "TINAAuthenticationTypes.idl"

#include "TINAProviderAccess.idl"

module PA{

 interface i_Initial {

 void contactProvider (

 in TINAUserInitial::t_ProviderId providerId

);

 void requestAccess (

 inout TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_UserProperties userProperties,

 out Object PAAccessIR,

 out Object PAAuthenticateIR,

 out TINAAccessCommonTypes::t_AccessSessionId asId,

 out string authenticateReply

);

 };

 interface i_Authenticate{

 void getAuthenticationMethods (

in TINAAuthenticationTypes::t_AuthMethodSearchProperties

desiredProperties,

out TINAAuthenticationTypes::t_AuthMethodDescList

authMethods

);

 void authenticate(

 in TINAAuthenticationTypes::t_AuthMethod authMethod,

 in TINAAuthenticationTypes::t_securityName securityName,

 inout TINAAuthenticationTypes::t_opaque authStruct,

 out TINAAuthenticationTypes::t_AuthenticationStatus authStatus

 15

);

 void continueAuthentication(

 inout TINAAuthenticationTypes::t_opaque authStruct,

 out TINAAuthenticationTypes::t_AuthenticationStatus authStatus

);

 };

 interface i_Access{

 void discoverServices(

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void startService (

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINAProviderAccess::t_ApplicationInfo app,

 in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 in TINAProviderAccess::t_StartServiceSSProperties ssProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 void endAccessSession(

 in TINAAccessCommonTypes::t_AccessSessionId asId

);

 };

};

 16

C.3 SPF

#include "TINAUserInitial.idl"

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderInitial.idl"

#include "TINAAuthenticationTypes.idl"

#include "TINAProviderAccess.idl"

module SPF{

 interface i_ProviderInitial{

 void requestAccess (

 in string userId,

 in TINACommonTypes::t_UserProperties userProperties,

 out TINAAccessCommonTypes::t_AccessSessionId asId,

 out Object SPFAuthenticateIR_obj,

 out Object UAAccessIR_obj,

 out string authenticateReply

);

 };

 interface i_ProviderAuthenticate{

 void getAuthenticationMethods (

in TINAAuthenticationTypes::t_AuthMethodSearchProperties

desiredProperties,

out TINAAuthenticationTypes::t_AuthMethodDescList

authMethods

);

 void authenticate(

 in TINAAuthenticationTypes::t_AuthMethod authMethod,

 in TINAAuthenticationTypes::t_securityName securityName,

 inout TINAAuthenticationTypes::t_opaque authStruct,

 17

 out TINAAuthenticationTypes::t_AuthenticationStatus authStatus

);

 void continueAuthentication(

 inout TINAAuthenticationTypes::t_opaque authStruct,

 out TINAAuthenticationTypes::t_AuthenticationStatus authStatus

);

 };

 interface i_ProviderAccess{

 void joinSessionWithInvitation (

 in TINAAccessCommonTypes::t_InvitationId invitationId,

 in TINAProviderAccess::t_ApplicationInfo app,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 };

};

 18

C.4 UA

#include "TINAUserInitial.idl"

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderInitial.idl"

#include "TINAProviderAccess.idl"

#include "TINASubCommonTypes.idl"

module UA{

 interface i_ProviderInitial {

 void setupAccessSession (

 in TINAAccessCommonTypes::t_UserInfo userinfo,

 out TINAAccessCommonTypes::t_AccessSessionId asId,

 out string sIOR

);

 };

 interface i_ProviderAccess{

 void setUserCtxt (

 in TINAProviderAccess::t_UserCtxt userCtxt

);

 void discoverServices(

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void startService (

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINAProviderAccess::t_ApplicationInfo app,

 in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 19

 in TINAProviderAccess::t_StartServiceSSProperties ssProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 void endAccessSession(

 in TINAAccessCommonTypes::t_AccessSessionId asId

);

 };

 interface i_PartyMultipartyReq{

 void joinSessionReq(

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINACommonTypes::t_SessionId sessionId,

 in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 void inviteUserReq (

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_UserDetails userDetails,

 out unsigned long invitationId,

 out TINACommonTypes::t_InvitationReply invitationReply

);

 };

 interface i_Invitation {

void invite (

 in TINAAccessCommonTypes::t_SessionInvitation invitation,

 out TINACommonTypes::t_InvitationReply reply

);

 void cancel (

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_InvitationId invitationId

);

 void joinSessionWithInvitation (

 in TINAAccessCommonTypes::t_InvitationId invitationId,

 in TINAProviderAccess::t_ApplicationInfo app,

 20

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 void listSessionInvitations (

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_InvitationList invitationList

);

 };

 interface i_PartyMultipartyInfo{

 oneway void inviteUserInfo (

 in TINACommonTypes::t_SessionId sessionId,

 in TINACommonTypes::t_UserDetails userDetails,

 in unsigned long invitationId

);

 oneway void endSessionInfo (

 in TINACommonTypes::t_SessionId sessionId

);

 oneway void joinSessionInfo (

 in TINACommonTypes::t_SessionId sessionId,

 in TINACommonTypes::t_UserDetails userDetails

);

 oneway void inviteReplyInfo (

 in TINACommonTypes::t_SessionId sessionId,

 in unsigned long invitationId,

 in TINACommonTypes::t_InvitationReply reply

);

 };

 interface i_PartyMultiPartyInd{

 void joinSessionInd (

 in TINACommonTypes::t_SessionId sessionId,

 in unsigned long indId,

 in TINACommonTypes::t_UserDetails userDetails,

 in boolean isValid

);

 void endSessionInd (

 21

 in TINACommonTypes::t_SessionId sessionId,

 in unsigned long indId,

);

 };

 interface i_BasicReq{

 void endSessionReq (

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId

);

 };

 interface i_PartyMultiPartyExe{

 void endSessionExe (

 in TINACommonTypes:: t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId,

out any accountInfo

);

 };

 interface i_SessionInfo{

 void sessionEnded (

 in TINACommonTypes::t_GlobalSessionId globalSessionId,

 in TINACommonTypes::t_PartyId partyId,

 in any AccountingInfo

);

 };

 interface i_ProviderSubscribe{

 void listServices(

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void subscribe(

in TINASubCommonTypes::t_Subscriber subscriberInfo,

 22

 in TINASubCommonTypes::t_ServiceIdList serviceList,

 out TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINACommonTypes::t_InterfaceList interfaceList

);

 void unsubscribe(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

in TINASubCommonTypes::t_Subscriber subscriberInfo,

 in TINASubCommonTypes::t_ServiceIdList serviceIdList,

out TINASubCommonTypes::t_ServiceIdList

unsubscribedServices

);

 };

 interface i_ProviderSubscriberMgmt{

 void listServices (

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void listSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINASubCommonTypes::t_SagIdList sagIdList

);

 void listSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_SagId sagId,

 out TINASubCommonTypes::t_entityIdList entityList

);

 void listSubscribedServices(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINAAccessCommonTypes::t_ServiceList service_list

);

 void createSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_EntityList entityList,

 out TINASubCommonTypes::t_entityIdList entityIdList

);

 23

void createSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_SagList sagList,

 out TINASubCommonTypes::t_SagIdList sagIdList

);

 void assignSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityList,

 in TINASubCommonTypes::t_SagId sagId

);

 void removeSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityList,

 in TINASubCommonTypes::t_SagId sagId

);

 void deleteSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityList

);

 void deleteSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_SagIdList sagIdList

);

 void setSubscriberInfo(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_Subscriber subscriberInfo

);

 void getSubscriberInfo(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINASubCommonTypes::t_Subscriber subscriberInfo

);

 };

 interface i_ProviderServiceContractMgmt{

 void assignServiceProfile(

 in TINASubCommonTypes::t_ServiceProfileId spId,

 in TINASubCommonTypes::t_SagIdList sagIdList,

 in TINASubCommonTypes::t_entityIdList saeIdList

);

 24

 void activateServiceProfiles(

 in TINASubCommonTypes::t_ServiceProfileIdList spIdList

);

 void defineServiceContract(

 in TINASubCommonTypes::t_ServiceContract serviceContract,

 out TINASubCommonTypes::t_ServiceProfileIdList spIdList

);

 void checkServiceProfile(

 in TINACommonTypes::t_UserId userId,

 in TINASubCommonTypes::t_ServiceProfile serviceProfile,

 out boolean accepted

);

 void getServiceProfiles(

 in TINACommonTypes::t_UserId userId,

 in TINASubCommonTypes::t_ServiceIdList serviceList,

out TINASubCommonTypes::t_ServiceProfileList

serviceProfileList

);

 void getServiceTemplate(

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 out TINASubCommonTypes::t_ServiceTemplate template

);

 void setServiceTemplate(

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINASubCommonTypes::t_ServiceTemplate template,

 out TINASubCommonTypes::t_ServiceProfileId spId

);

 };

};

 25

C.5 ssUAP

#include "TINASubCommonTypes.idl"

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderAccess.idl"

module ssUAP{

 interface i_Access {

 void startService (

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINAProviderAccess::t_ApplicationInfo app,

in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 };

 interface i_PartyMultipartyReq {

 void joinSessionReq(

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINACommonTypes::t_SessionId sessionId,

 in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 void inviteUserReq (

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_UserDetails invitedUserDetails,

 out unsigned long invitationId,

 out TINACommonTypes::t_InvitationReply reply

);

 };

 26

interface i_Invitation{

 void joinSessionWithInvitation (

 in TINAAccessCommonTypes::t_InvitationId invitationId,

 in TINAProviderAccess::t_ApplicationInfo app,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 void cancel (

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_InvitationId inviteId

);

 void listSessionInvitations (

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_InvitationList invitationList

);

 };

 interface i_BasicReq{

 void endSessionReq (

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId

);

 };

 interface i_PartyMultiPartyInd{

 void endSessionInd (

 in TINACommonTypes::t_SessionId sessionId,

 in unsigned long indId,

);

 };

 interface i_PartyMultiPartyExe{

 void endSessionExe (

 in TINACommonTypes:: t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId,

out any accountInfo

);

 };

 27

 interface i_Subscribe{

 void discoverServices(

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void subscribe(

 in TINASubCommonTypes::t_Subscriber subscriberInfo,

 in TINASubCommonTypes::t_ServiceIdList serviceIdList,

 out TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINACommonTypes::t_InterfaceList interfaceList

);

 void unsubscribe(

 in TINASubCommonTypes::t_Subscriber subscriberInfo,

 in TINASubCommonTypes::t_ServiceIdList serviceIdList,

out TINASubCommonTypes::t_ServiceIdList

unsubscribedServices

);

 };

 interface i_SubscriberMgmt{

 void listServices (

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void listSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINASubCommonTypes::t_SagIdList sagIdList

);

 void listSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_SagId sagId,

 out TINASubCommonTypes::t_entityIdList entityIdList

);

 28

 void listSubscribedServices(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINAAccessCommonTypes::t_ServiceList service_list

);

 void createSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_EntityList entityList,

 out TINASubCommonTypes::t_entityIdList entityIdList

);

 void createSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_SagList sagList,

 out TINASubCommonTypes::t_SagIdList sagIdList

);

 void assignSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityIdList,

 in TINASubCommonTypes::t_SagId sagId

);

 void removeSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId

 in TINASubCommonTypes::t_entityIdList entityIdList,

 in TINASubCommonTypes::t_SagId sagId

);

 void deleteSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityIdList

);

 void deleteSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId

 in TINASubCommonTypes::t_SagIdList sagIdList

);

 void setSubscriberInfo(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_Subscriber subscriberInfo

);

 29

 void getSubscriberInfo(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINASubCommonTypes::t_Subscriber subscriberInfo

);

 };

 interface i_ServiceContractMgmt{

void assignServiceProfile(

in TINASubCommonTypes::t_ServiceProfileId spId,

 in TINASubCommonTypes::t_SagIdList sagIdList,

 in TINASubCommonTypes::t_entityIdList saeIdList

);

 void activateServiceProfiles(

 in TINASubCommonTypes::t_ServiceProfileIdList spIdList

);

 void defineServiceContract(

 in TINASubCommonTypes::t_ServiceContract serviceContract,

 out TINASubCommonTypes::t_ServiceProfileIdList spIdList

);

 void checkServiceProfile(

 in TINACommonTypes::t_UserId userId,

 in TINASubCommonTypes::t_ServiceProfile serviceProfile,

 out boolean accepted

);

 void getServiceProfiles(

 in TINACommonTypes::t_UserId userId,

 in TINASubCommonTypes::t_ServiceIdList serviceIdList,

out TINASubCommonTypes::t_ServiceProfileList

serviceProfileList

);

 void getServiceTemplate(

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 out TINASubCommonTypes::t_ServiceTemplate template

);

 void setServiceTemplate(

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINASubCommonTypes::t_ServiceTemplate template,

 out TINASubCommonTypes::t_ServiceProfileId spId

);

 30

 };

};

 31

C.6 SF

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderAccess.idl"

module SF{

 interface i_SSManage {

 void endSSession (

 in TINACommonTypes::t_SessionId sessionId

);

 void createSSession (

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINACommonTypes::t_UserId userId,

 in TINAProviderAccess::t_ApplicationInfo app,

 in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo,

);

 void createIpAppInterface(

 in TINACommonTypes::t_InterfaceList ipAppInterfaceList,

 out TINACommonTypes::t_InterfaceList parlay_Interfaces,

 out string reply

);

 };

};

 32

C.7 SUB

#include "TINAUserInitial.idl"

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderInitial.idl"

#include "TINAProviderAccess.idl"

#include "TINASubCommonTypes.idl"

module SUB{

 interface i_Subscribe{

 void listServices (

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void subscribe(

 in TINASubCommonTypes::t_Subscriber subscriberInfo,

 in TINASubCommonTypes::t_ServiceIdList serviceList,

 out TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINACommonTypes::t_InterfaceList interfaceList

);

 void unsubscribe(

 in TINASubCommonTypes::t_Subscriber subscriberInfo,

 in TINASubCommonTypes::t_ServiceIdList serviceIdList,

out TINASubCommonTypes::t_ServiceIdList

unsubscribedServices

);

 };

 interface i_SubscriberMgmt{

 void listServices (

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 33

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void createSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_EntityList entityList,

 out TINASubCommonTypes::t_entityIdList entityIdList

);

 void createSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_SagList sagList,

 out TINASubCommonTypes::t_SagIdList sagIdList

);

 void assignSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityIdList,

 in TINASubCommonTypes::t_SagId sagId

);

 void removeSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityIdList,

 in TINASubCommonTypes::t_SagId sagId

);

 void deleteSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_entityIdList entityIdList

);

 void deleteSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_SagIdList sagIdList

);

 void listSAGs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINASubCommonTypes::t_SagIdList sagIdList

);

 void listSAEs(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 34

 in TINASubCommonTypes::t_SagId sagId,

 out TINASubCommonTypes::t_entityIdList entityIdList

);

 void listSubscribedServices(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINAAccessCommonTypes::t_ServiceList service_list

);

 void setSubscriberInfo(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 in TINASubCommonTypes::t_Subscriber subscriberInfo

);

 void getSubscriberInfo(

 in TINASubCommonTypes::t_AccountNumber subscriberId,

 out TINASubCommonTypes::t_Subscriber subscriberInfo

);

 };

 interface i_ServiceContractMgmt{

 void assignServiceProfile(

in TINASubCommonTypes::t_ServiceProfileId spId,

 in TINASubCommonTypes::t_SagIdList sagIdList,

 in TINASubCommonTypes::t_entityIdList saeIdList

);

 void activateServiceProfiles(

 in TINASubCommonTypes::t_ServiceProfileIdList spIdList

);

 void defineServiceContract(

 in TINASubCommonTypes::t_ServiceContract serviceContract,

 out TINASubCommonTypes::t_ServiceProfileIdList spIdList

);

 void getServiceTemplate(

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 out TINASubCommonTypes::t_ServiceTemplate template

);

 void setServiceTemplate(

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 35

 in TINASubCommonTypes::t_ServiceTemplate template,

 out TINASubCommonTypes::t_ServiceProfileId spId

);

 void checkServiceProfile(

 in TINACommonTypes::t_UserId userId,

 in TINASubCommonTypes::t_ServiceProfile serviceProfile,

 out boolean accepted

);

 void getServiceProfiles(

 in TINACommonTypes::t_UserId userId,

 in TINASubCommonTypes::t_ServiceIdList serviceIdList,

out TINASubCommonTypes::t_ServiceProfileList

serviceProfileList

);

 };

};

 36

C.7 App

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderAccess.idl"

module App{

 interface IpAppLogic{

 void initiateApp(

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_UserProperties userProperties,

 in TINAAccessCommonTypes::t_SessionInfo sessionInfo,

 out TINACommonTypes::t_InterfaceList ipAppInterfaceList

);

 void joinSessionReq(

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINACommonTypes::t_SessionId sessionId,

 in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 void inviteUserReq (

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_UserDetails invitedUserDetails,

 out unsigned long invitationId,

 out TINACommonTypes::t_InvitationReply reply

);

 void joinSessionInd (

 in TINACommonTypes::t_SessionId sessionId,

 in unsigned long indId,

 in TINACommonTypes::t_UserDetails userDetails,

 out boolean isValid

);

 void joinSessionWithInvitation (

 in TINAAccessCommonTypes::t_InvitationId invitationId,

 in TINAProviderAccess::t_ApplicationInfo app,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 37

 void passReferences (

 in TINACommonTypes::t_InterfaceList parlay_Interfaces

);

 void releaseIpAppResources (

 in TINACommonTypes::t_SessionId sessionId

);

 void endSessionReq (

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId

);

 void endSessionExe (

 in TINACommonTypes:: t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId,

out any accountInfo

);

 };

};

 38

C.8 UA2

#include "TINASubCommonTypes.idl"

#include "TINAUserInitial.idl"

#include "TINACommonTypes.idl"

#include "TINAAccessCommonTypes.idl"

#include "TINAProviderInitial.idl"

#include "TINAProviderAccess.idl"

module UA2{

 interface i_Initial {

 void setupAccessSession (

 in TINAAccessCommonTypes::t_UserInfo userinfo,

 out TINAAccessCommonTypes::t_AccessSessionId asId,

 out string sIOR

);

 };

 interface i_ProviderAccess{

 void setUserCtxt (

 in TINAProviderCommonTypes::t_UserCtxt userCtxt

);

 void discoverServices(

in TINAProviderAccess::t_DiscoverServiceProperties

desiredProperties,

 in unsigned long howMany,

 out TINAAccessCommonTypes::t_ServiceList services

);

 void startService (

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINAProviderAccess::t_ApplicationInfo app,

 in TINAProviderAccess::t_StartServiceUAProperties uaProperties,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo,

 39

);

 void joinSessionWithInvitation (

 in TINAAccessCommonTypes::t_InvitationId invitationId,

 in TINAProviderAccess::t_ApplicationInfo app,

 out TINAAccessCommonTypes::t_SessionInfo sessionInfo

);

 };

 interface i_PartyMultipartyReq{

 void inviteUserReq (

 in TINACommonTypes::t_ParticipantSecretId myId,

 in TINACommonTypes::t_UserDetails invitedUser,

 out unsigned long invitationId,

 out TINACommonTypes::t_InvitationReply reply

);

 };

 interface i_Invitation {

void invite (

 in TINAAccessCommonTypes::t_SessionInvitation invitation,

 out TINACommonTypes::t_InvitationReply reply

);

 void cancel (

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_InvitationId inviteId

);

 };

 interface i_PartyMultipartyInfo{

 oneway void inviteUserInfo (

 in TINACommonTypes::t_SessionId sessionId,

 in TINACommonTypes::t_UserDetails userDetails,

 in unsigned long invitationId

);

 oneway void endSessionInfo (

 40

 in TINACommonTypes::t_SessionId sessionId

);

 oneway void joinSessionInfo (

 in TINACommonTypes::t_SessionId sessionId,

 in TINACommonTypes::t_UserDetails userDetails

);

 oneway void inviteReplyInfo (

 in TINACommonTypes::t_SessionId sessionId,

 in unsigned long invitationId,

 in TINACommonTypes::t_InvitationReply reply

);

 };

 interface i_PartyMultiPartyInd{

 void joinSessionInd (

 in TINACommonTypes::t_SessionId sessionId,

 in unsigned long indId,

 in TINACommonTypes::t_UserDetails userDetails,

 out boolean isValid

);

 void inviteUserInd(

 in unsigned long indId,

 in TINACommonTypes::t_UserDetails userDetails,

 in TINACommonTypes::t_SessionId sessionId

);

 void endSessionInd (

 in TINACommonTypes::t_SessionId sessionId

 in unsigned long indId,

);

 };

 interface i_BasicReq{

 void endSessionReq (

 in TINACommonTypes::t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId

);

 };

 41

 interface i_PartyMultiPartyExe{

 void endSessionExe (

 in TINACommonTypes:: t_UserId userId,

 in TINACommonTypes::t_SessionId sessionId,

out any accountInfo

);

 };

};

 42

