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ABSTRACT 

The effects of self-discharge on the performance of symmetric electric double layer 

capacitors (EDLCs) and active electrolyte enhanced supercapacitors (AEESCs) were 

examined by incorporating self-discharge into electrochemical capacitor (EC) models during 

charging and discharging. The effects of self-discharge on the performance of asymmetric 

ECs were also studied by including applicable self-discharge mechanisms into mass transfer 

and charge conservation equations during charging and discharging. Sources of self-

discharge in capacitors are several impurities, side-reactions, redox reactions and electric 

double layer's (EDL's) instability. Incorporation of self-discharge into symmetric and 

asymmetric EC models, created a platform to reduce the number of experiments to determine 

the minimum allowable amount of impurities and redox species in components of the device 

for maximum performance. It was observed that key self-discharge parameters to be tuned in 

order to suppress the EC self-discharge rate are concentration of the shuttle impurities, 

concentration of redox species, and the thickness of the separator. Tuning key self-discharge 

parameters of a symmetric device with both side-reactions/redox reactions and EDLs 

instability self-discharges, improved first and second charge-discharge cycle efficiency 1E

and 2E . Thes charge-discharge cycle efficiencies ( 1E and 2E )were enhanced from 38.13% 

and 38.14% to 80.54% and 81.56% respectively, compared with 84.24% and 84.25%, 

respectively in similar capacitor without self-discharge. The tuning process also improved the 

energy efficiencies 1E and 2E of the asymmetric device with both side-reactions/redox 

reactions and EDL's instability self-discharges from 67.21% and 75.00% to 87.21% and 

88.70% respectively, compared with 90.72% and 90.82%, respectively in a similar capacitor 

without self-discharge. Energy loss by self-discharge in the symmetric capacitor with tuned 

key self-discharge parameters was reduced from 28.38Wh in untuned to 5.60Wh, while that 

of the asymmetric capacitor with tuned key self-discharge parameters was reduced from 
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59.53Wh in untuned to 7.43Wh. Fast charging and discharging of the EC greatly reduced the 

self-discharge rate, compared with slow charging and discharging. In symmetric and 

asymmetric capacitors, both EDL's instability and side-reactions and/or reactions self-

discharges occurs in significant measure but side-reactions or reactions contributed to the 

majority of the self-discharges. It was shown that models that incorporated self-discharge 

give more practical evaluation of voltage decay and energy dissipation during self-discharge. 

The influence of different charging current densities, charging times and several structural 

designs on symmetric EC performance such as capacitance, energy density and power 

density was investigated through modelling and simulation. The effects of different 

charging current densities, charging times and several structural designs on asymmetric EC 

performance via modelling and simulation can be investigated, and the results would be 

similar. The difference between symmetric and asymmetric ECs is that symmetric use the 

same type of electrode while asymmetric use different types of electrodes. Clear 

understanding of the effects of different structural design variables and operating 

conditions on capacitors’ performance will guide in optimal design and fabrication of high 

performance ECs. The operating conditions and design configurations examined are 

charging current density, charging times, electrode and electrolyte effective conductivity, 

electrode thickness and electrode porosity. It was revealed that ECs with low electrode and 

electrolyte effective conductivities can only be effectively charged at a low current density 

for extended periods of time. ECs with high concentrations of impurity ions and redox 

species exhibit high self-discharge rates, which result in voltage decay after charging. 

Reduction of charging time by charging the EC fast, greatly reduced the rate of self-

discharge compared with the slow charging process. The simulation showed that the 

typical electrode length scale over which the liquid potential drop occurs and electrode 

utilization can be used as a design parameter to optimize electrode thickness (effective 
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thickness) of the EC which should function within a specific current density range. This is 

also a guideline that can be used to determine the optimum electrodes thickness (100% 

electrodes utilization), optimum charging current density and optimum charging time for 

cells of a given voltage, electrode's thickness, and electrodes and electrolyte’s effective 

conductivities. The energy density of the capacitor with specific electrodes and electrolyte 

effective conductivities was increased 2.125, 4.750 and 10.75 folds by reducing the 

electrode's thickness 1.33, 2.00, and 4.00 folds, respectively. The power density of the 

capacitor, with specific electrodes thickness, and given electrode and electrolyte effective 

conductivities charged at a specific current density, increased by a factor of 10, 100 and 

1000, when the charging rate was increased 10, 100 and 1000, times respectively. The 

power density of the capacitor with specific electrodes thickness, and a given electrodes 

and electrolyte effective conductivities, also increased approximately eleven-fold when the 

electrode's thickness was reduced four-fold under a given charging conditions. The ragone 

plots generated for different electrode sizes via modeling and simulation, can be used to 

select optimum electrode dimensions to attain certain energy and power densities 

specifications. Theoretical expressions for performance parameters of different ECs were 

optimized by writing MATLAB scripts to solve them and also via the MATLAB R2014a 

optimization tool box. Performances of different kinds of ECs at given circumstances were 

compared through theoretical equations and simulation of various models, subject to the 

conditions of device components using optimal BMoptK and EoptK , as well as the symmetric 

EDLC experimental data. The storable energy Ech, maximum energy density EDmax and 

power density PDmax of symmetric and asymmetric EC using suitable electrode mass, 

operating potential range ratios and proper organic electrolyte (optimum BMoptK and EoptK ) 

were 562.78Wh, 382.42Wh/kg & 76.29W/kg and 1304.30Wh, 837.00Wh/kg & 167W/kg, 

respectively.  Estimations of performance parameters were feasible and achievable once 
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details of electrodes mass ratio, operating potential range ratio and specific capacitance of 

electrolyte are known. Performances of asymmetric EC with suitable electrode mass and 

operating potential range ratios using aqueous electrolytes, and that with suitable electrode 

mass, operating potential range ratios and organic electrolyte with appropriate operating 

potential range and specific capacitance were 2.20 and 5.56 folds, respectively, greater 

than those of symmetric EDLC and asymmetric EC using the same aqueous electrolyte. 

This enhancement came together with reduction in cell mass and volume. Storable and 

deliverable energies of the asymmetric EC with suitable electrode mass and operating 

potential range ratios using proper organic electrolyte were also a factor of 12.9 greater 

than those of symmetric EDLCs using aqueous electrolyte reduction in cell mass and 

volume by a factor. Storable energy, energy density and power density of asymmetric 

EDLCs with suitable electrode mass and operating potential range ratios, using proper 

organic electrolyte, were a factor of 5.56 higher than those of similar symmetric EDLCs 

using aqueous electrolyte reduction in cell mass and volume by a factor 1.77. These results 

can obviously reduce the number of experiments needed to determine the optimum 

manufacturing state of ECs. They also demonstrated that introduction of an asymmetric 

electrode and organic electrolyte was very successful in improving performance of the EC 

with reduction in cell mass and volume. Introduction of an asymmetric EDLC with the 

same type of electrode, and suitable electrodes mass ratio, working potential range ratios 

and proper organic electrolyte, equally enhanced the performance of a conventional 

symmetric EDLC using aqueous electrolyte with reduction in cell mass and volume. These 

results can be a guideline for design, fabrication and operation of electrochemical 

capacitors with outstanding performance in terms of high storable energy, energy and 

power densities. 
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CHAPTER ONE 

 

1.0 Introduction 

 

Electrochemical Capacitors (ECs), also known as supercapacitors or ultracapacitors, has been 

the subject of great researches in recent years, owing to their potentials as electrical energy 

storage devices. ECs are typically classified into three categories based on their different 

energy storage mechanism: electric double layer capacitors (EDLCs), pseudocapacitors, and a 

hybrid type obtained by the combination of EDLC and pseudocapacitor. EDLCs store electric 

charges electrostatically through reversible adsorption of electrolytic ions onto active 

electrode materials. The electrode materials are electrochemically stable and have high 

accessible specific surface area to form the electric double layer at electrode/electrolyte 

interfaces accessible to ions present in the electrolyte [1–5]. The charge storage mechanism 

of EDLCs is physical without chemical reactions (redox reactions) in the electric double 

layers forming near the interface of electrode/electrolyte, thus, the process is highly reversible 

and the cycle life is essentially infinite [6].  

 

Pseudocapacitors store energy through fast surface oxidation-reduction (redox) reactions as 

well as possible ion intercalation in the electrode [4,7–10]. Some ECs utilize fast reversible 

redox reactions at the surface of active materials. This describes exactly what is referred to as 

pseudo-capacitive performance, which performs higher than carbon materials employing 

solely double layer charge storage, giving an explanation for the great attention to these 

categories of systems. Consequently, pseudocapacitors usually supply higher energy density 

at the cost of shorter cycle lives and lower rates compared with the EDLCs [8,11]. Conway 
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[12] identified the following three kinds of pseudocapacitive mechanisms as a result of 

different physical processes and with different types of materials:  

(1) Underpotential deposition which occurs when a monolayer formed by metal ions such 

as lead on the surface of a gold electrode [13] was adsorbed on the surfaces of a 

different metal under a potential higher than their redox potential.  

(2) Redox pseudocapacitance which takes place when ions are adsorbed 

electrochemically on the surface of materials like RuO2 with concurrent faradaic 

charge transfer occurring.  

(3) Intercalation pseudocapacitance occurs when ions intercalate into layers created by 

redox-active materials with concomitant faradaic charge transfer taking place 

unaccompanied by any crystallographic phase change. Indistinguishable connections 

between potential and the extent of charges stored or released due to 

adsorption/desorption process at electrode/electrolyte interface [14] exist in these 

three kinds of mechanisms. Pseudo-capacitors, like batteries, often exhibit a lack of 

stability during cycling as a result of the presence of redox reactions. 

Asymmetric or hybrid electrochemical capacitors, have appeared recently by merging 

pseudocapacitors and EDLCs [4,15–21]. In asymmetric/hybrid ECs, one carbon-based 

electrode stores charge physically in electric double layers whereas, the other electrode is 

redox-active and stores charge through reversible chemical reactions [4,15–21]. In 

asymmetric ECs, the pseudocapacitive electrode works as the energy source and the carbon-

based electrode works as the power source [4,15–21]. The merits of ECs compared with other 

electrical energy storage devices are high power density, long cyclelife, high efficiency, and a 

wide range of operating temperatures, environmental friendliness, and safety. ECs also serve 

as a bridge for power/energy gap of conventional dielectric capacitors [22], and are 
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specifically suitable for applications that demands high power for a few seconds [4,12,23–

25].  

 

ECs are generally comprised electrodes (usually carbon coating on a current collector), 

separated by a non-conducting porous membrane, and plunged in electrolyte. The electrodes 

and separator are soaked or saturated with electrolyte solution, which allows movement of 

ionic current between electrodes while prohibiting electronic current from discharging the 

capacitor [26]. When the system is charged, anions of electrolyte are electrosorbed on a 

positively polarized electrode and cations on the negative one, giving rise to an electric 

double layer at each electrode. Separation of charge happens on partial or complete polar 

separation of positive and negative electric charges at the electrode–electrolyte interface, and 

thus generating what has been explained by Helmholtz as the double layer capacitance C [27–

29]: 

       or                                                                 1.1                                         

where εr  is the electrolyte dielectric constant, ε  is the dielectric constant of a vacuum, d is 

the double layer effective thickness (charge separation distance) and A is the electrode 

surface area.  The amount of the energy stored in electrochemical capacitor, E is the directly 

proportional to its capacitance: 

                                                                                                                            1.2 

The voltage during charge/discharge process of the capacitor is decided by equivalent series 

resistance. Generally, power P is the rate of spending energy and is usually given by: 

                                                                                                        1.3 
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where I is applied current and V is applied voltage and ESR is equivalent series resistance 

(total resistance by capacitor's components to current flow) [6,22,30].  

Ions in electrolyte solution diffuse across the separator into the pores of the electrode of 

opposite charge due to attraction forces of unlike charges in accordance with nature. The 

electrodes were designed and built in a manner to avert recombination of charge carriers, thus 

creating a double-layer of charge at each electrode. The electric double-layers, together with 

increased surface area and a reduction in gap between electrodes, permit EDLCs to acquire 

higher energy densities in comparison with the traditional capacitors [6,7,12].  

In order to construct electrochemical capacitors with superior key parameters and optimal 

design for necessary high energy and power densities, high energy efficiency and long 

lifecycle, mathematical models and theoretical basis which emerge from fundamental 

principles of physics and electrochemistry for its design and optimization is inevitable. The 

models and theoretical basis are also to the subject to electrodes thickness, strong dependence 

of specific capacitance of electrodes on their potential, temperature distributions, mechanisms 

of self-discharge, type and value of electrodes material conductivity and conductivity of 

electrolyte in electrode pores. This will facilitate the design of ECs with desired properties, 

capable of replacing the batteries.  

 

1.1 Electric Double Layer Capacitors 

 

EDLCs store electrical energy and charge physically in the electric double layer forming at 

the interface between a high surface area activated carbon electrode and liquid electrolyte 

accessible to ions in electrolyte [1–5,12,27,31,32]. These kinds of electrochemical capacitors 

have drawn reasonable awareness in recent years due to their promises in commercial 

applications that demands high power density and long-term cycle stability, for example 
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electrical energy storage devices for high power applications such as hybrid electric vehicles 

and load-levelling [1–5,23,32]. These important features are warranted by the double-layer 

charging mechanism, which depend on physical ion adsorption/desorption in the Helmholtz 

layer of electrolyte as presented in Figure 1.1 below. It  does not need  slow-moving solid-

state ion insertion/de-insertion reactions which also result in change in electrode volume and 

capacity reduction with cycling [33–35]. One of the major challenges in the field of 

electrochemical capacitors is to improve their restricted energy density as a sequel to 

electrostatic surface charging mechanism. Some recent findings concerning ion adsorption in 

microporous carbon with pores in nanometre range could assist in obtaining blueprint for the 

earnestly desired high energy density ECs. This justifies the reason for focusing today’s 

EDLCs research mainly on improving their energy retention and performance and broadening 

temperature windows into the range that batteries cannot operate upon [7]. 

 

Figure1.1: A diagrammatic representation of electric double layer capacitors (EDLCs) with 

the charge storage mechanism [36]. 

EDLCs electrodes in reality are made of nanoporous or mesoporous carbons with a large 

surface area to increase capacitance and stored energy. The performance of EDLCs is 
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controlled by a combination of electrode material and morphology as well as electrolyte 

material. It also greatly relies on the choice of electrolyte made up of salt dissolved in solvent 

into its component ions. Besides, electrode materials pore size distribution equally has great 

influence on performance of EDLCs. It has been accepted that micropores of less than 2 nm 

subscribe significantly to emergence of an electric double layer [37–39], and that pores 

smaller than the ions normally do not contribute to double layer capacitance [4,40]. 

Moreover, porous electrodes must also be electrochemically accessible for ions. Thus, 

mesopores with a diameter within the 2 to 50 nm range are obligatory for fast dynamic charge 

due  to the easier accessibility to ions [1,40–43]. The choice of electrolyte significantly 

affects the effective electrical resistance of ECs, and the two main factors that influence 

electrical conductivity of electrolytes are (1) the concentration of electrolyte and its capacity 

to separate into cations and anions working as free charge carriers and (2) the movability of 

the separated ions in electrolyte solution [44]. 

 

1.2 Pseudocapacitors 

 

In order to increase the low energy density which is a crucial restriction to EDLCs 

technology, sizeable focus in exploring pseudocapacitive materials has emerged [45]. 

Pseudocapacitors require the movement of charges across the electrode-electrolyte interfaces 

and consequently the reduction and oxidation state of electrochemically active ions can 

equally be switched on the electrodes throughout redox reactions [46–48] as shown in Figure 

1.2 below. The fast and reversible redox reactions related with pseudocapacitive-based 

materials, result in high specific capacitances and corresponding high energy densities, which 

are higher than convectional EDLCs by one order of magnitude [12,45]. It is highly 

advantageous to enhance the energy density of ECs to approach that of batteries, which could 
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authorize their application as main power sources [49,50].  Pseudocapacitance is formed by 

faradaic charge movement to or from species adsorbed at/in successful contact with an 

electrode surface or producing the electrode surface.  

 

Figure1.2: A diagrammatic representation of pseudocapacitors with the charge storage 

mechanism [36]. 

Nevertheless, charge movement and build-up on an electrode surface form electrostatic 

stresses, which probably result in mechanical strain inside the electrode leading to a decrease 

in charge storage capacity. Pseudocapacitors are normally deprived of their capacity (fading) 

with repetitive charging and discharging much more rapidly compared with the EDLCs. High 

charge/discharge rates equally seem to create additional stress, resulting in smaller and 

ineffective device lifetime. Oxides and hydroxides pseudocapacitive materials like RuO2, 

Co3O4, Ni(OH)2, MnO2, Fe2O3, and Fe3O4 are now explored for development of ECs with 

increased specific capacitances and high energy densities [51–55]. Three types of faradaic 

phenomena occur with pseudocapacitive electrodes: reversible adsorption such as adsorption 

of hydrogen on the surface of platinum or gold, redox reactions of transition metal oxides and 

reversible electrochemical doping–dedoping in conductive polymer electrodes [12]. 
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1.3 Asymmetric/Hybrid Electrochemical Capacitors 

 

Asymmetric/Hybrid electrochemical capacitors have appeared recently via a combination of 

pseudocapacitive electrodes and EDL electrodes as shown in Figure 1.3 [4,15,16,18–21,56–

58].  These have been investigated largely to profit from both the merits of electrode 

materials in enhancing the overall capacitors performance [6,59,60]. In these hybrid ECs, 

electrical double-layer capacitance and faradaic capacitance mechanisms take place 

concurrently, but one presents a greater task compared with the other. The essential 

properties required in electrode materials to achieve a large capacitance in both mechanisms 

are large surface area, suitable pore-size distribution, and high conductivity. In asymmetric 

ECs, a carbon-type electrode which stores charges physically in electric double layers, plays 

the role of power source, while a redox-active electrode that stores charges via reversible 

chemical reactions serves as the energy source [4,15,16,18–21,56–58].  

 

Figure1.3: A diagrammatic representation of asymmetric or hybrid ECs with the charge 

storage mechanism [36]. 

Two types of hybrids exist; the first one is the ‘‘hybrid electrode’’ whereby pseudocapacitive 

or faradic and non-faradic materials are integrated into a single electrode so as to utilize the 
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advantage of each charge storage mechanism [61], while the other one is the ‘‘hybrid device 

or hybrid combination’’ where a pseudocapacitive or faradic electrode and non-faradaic 

electrode one are used together in a single ECs [62]. These hybrid properties can prevail over 

the energy density restriction inherent in normal electrochemical capacitors, because they 

utilize both methods of a battery-type (Faradaic) electrode and an EDL-type (non-Faradaic) 

electrode, yielding larger working voltage and capacitance [6,63]. These structures are 

capable of doubling or tripling the energy density in comparison with that of normal ECs. 

Nevertheless, ion exchange rates at pseudocapacitive electrodes have to be increased to levels 

of EDL-type electrodes so as to equilibrate the two systems. 

 

1.4 Materials of Electrochemical Capacitors 

 

ECs fundamentally consist of two electrodes immersed into electrolyte and are isolated from 

electrical contact by a semipermeable membrane serving as separator. The separator is a non-

electric conducting membrane that permits flow of charged ions but disallows electric 

contact. The electrodes and separator are impregnated with electrolyte solution which allows 

for movement of ionic current between electrodes while restricting electronic current from 

releasing charge and energy  stored in the ECs [26]. The prpose of the separators is to prevent 

direct movement of electrons between the two electrodes, that is, it must be an electronic 

insulator, but also has to allow easier transmission of ions to complete the electric circuit. 

Current collectors conduct electrical current from the electrodes. A good separator is 

electrochemically stable, of high porosity, high thermal and chemical inertia [12]. 

Furthermore, the separator needs to be as thin as possible and relatively inexpensive in terms 

of cost since the separator is not active in capacitors [12]. The thinness of the separator is 

constrained by the following conditions: 1) electrical short circuit risk owing to free carbon 
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particles that will likely provide a contact between the electrodes [64].  2) mechanical 

strength so as to permit the winding processes [12]. 

 

1.4.1 Electrode Materials 

 

The overall performance of electrochemical capacitors is decided by both the electrode 

material and electrolyte used. Three basic classifications of electrode materials are used for 

ECs depending on the application of energy storage and needed capacitance ranges exists [25, 

28, 47]: 1) Materials used in EDLCs are carbon aerogel, activated carbon, carbon fibres and 

carbon nanotubes; 2) Materials used in pseudocapacitors are transition metal oxides and 

conducting polymers; and 3) Materials used in hybrid ECs are carbon materials, metal oxides 

and conductive polymers. There is great focus on nanostructured materials that have larger 

surface area and enhanced capacitive performance features for ECs electrodes. Synthesis of 

these materials is now well acknowledged as the crucial factor through which high 

performance ECs could emerge. 

Nanostructured materials have the potential to impact greatly on the performance of 

electrochemical energy storage devices because their smaller dimensions permit higher ion-

diffusion/electron-transfer rates and consequently high power. These materials could 

potentially increase the diffusion rate of ions due to smaller transport distances within the 

particles, improved transportation of electrons, changing electrode potential by altering 

chemical potentials of ions and electrons for very small particles [28, 47]. This is also due to 

the constitution of increased extensive solid solutions for ions intercalation as merited, in 

comparison with micrometer-sized materials. Other types of materials frequently used for 

ECs electrodes are composite materials obtained by integrating two or more component 

materials.  
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1.4.2 Layered Materials 

 

 

Layered nanomaterials can be seen naturally or synthesized in the laboratory in to suite 

certain applications. Some key layered materials occurring naturally includes graphite, 

graphene, clays and layered hydroxides (LDHs); while others have been synthesized through 

chemical combinations of some atomic species like boron nitride (BN), transition metal 

oxides (TMOs), LDHs, and transition metal dichalcogenides (TDMs) [65]. The most usual 

materials are three-dimensional and the atoms which make up their structures are arranged in 

regular, crystalline patterns, filling space like stacks of oranges. However, there is another 

category of materials where the atoms are arranged in flat layers and heaped on top of each 

other like sheets of paper in a stack. These layers were thought to be inseparable from each 

other until recently, when new techniques to separate out individual two-dimensional layers 

of material were developed. A customary path to production of layered nanomaterials is 

known as exfoliation. This is a process whereby individual layers in a bulk material are 

separated out either chemically, or through mechanical abrasion. This category of materials 

represents the largely unutilized source of two-dimensional (2D) systems with exotic 

electronic properties and high specific surface areas required for improved sensing, catalysis, 

and energy storage applications [66]. Other kinds of layered compounds like transition metal 

dichalcogenides (TMDs), transition metal oxides (TMOs), and other 2D compounds (BN, 

Bi2Te3, and Bi2Se3), LDHs have also been synthesized. Several hundreds of layered materials 

are now recognized in nature. 

A large family of 2D materials known as MXenes are produced by exfoliation of the A-

element from layered ternary carbides, such as Ti3AlC2 and other MAX phases [67] were 
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recently discovered [68,69]. The M is an early transition metal, A is an A group element and 

X is C or N. The MXenes produced to date, through Ti3C2 [68], Ti2C, Ta4C3, (Ti0.5Nb0.5)2C, 

(V0.5Cr0.5)3C2 and Ti3CN [69] are, in many aspects graphene-like, forming piles of sheets and 

scrolls. They are equally good electrical conductors [68–72] and are predicted to have high 

elastic moduli [73]. Electrochemical intercalation of Li ions between the MXene sheets yields 

these solids promising materials for Li ion battery anodes and hybrid electrochemical 

capacitors [74–76]. However, there have been no reports of chemical intercalation or large-

scale delamination of MXenes or any other transition metal carbides to date. 

Layered Carbon Nanomaterials  

 

Carbon is a very adaptable material which occurs naturally in different structural forms. It is 

the third most abundant element in the universe, after hydrogen and helium. The exceptional 

properties of carbon nanomaterials can be tracked down from the hybridization of carbon; 

electrons in the innermost shell of carbon atoms make up an electron ‘core’ adequately 

enclosed to allow the outer electrons to mix with other atoms to create a linear or one-

dimensional (1D), plane or two-dimensional (2D) and tetrahedral or three-dimensional (3D) 

materials. Most common layered carbon materials are graphite and graphene. Graphite has a 

layered structure where atoms are arranged in a hexagonal pattern within each layer, with 

each atom having three neighbours. 

Clay Materials  

 

The term clay generally implies a natural earthy, fine-grained material which grows plasticity 

when mixed with water. The chemical structure of clay is a usually mixture of different 

metals like aluminium with materials such as silicon and high concentrations of oxygen.  
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1.4.3 Electrolyte Materials 

 

The electrolyte, which is electrolyte salt and solvent, is one of the principal parts of ECs that 

gives the ionic conductivity and therefore make an easier charge compensation on each 

electrode in the capacitor. The electrolyte inside ECs not only performs a key function in 

EDL emergence in EDLCs and the reversible reduction-oxidation process for charge storage 

in pseudocapacitors, and it equally determines the EC's performance. The features of 

electrolyte that affects EDL capacitance and pseudocapacitance, energy/power densities and 

the ECs cycle-life are ion type and size; ion concentration and solvent; communication 

between ion and solvent; communication between electrolyte and electrode materials; and the 

potential range [39]. 

 

Different types of electrolytes have been developed and reported in literature, and are 

basically classified as either liquid electrolytes or solid/quasi-solid-state electrolytes. The 

liquid electrolytes are again categorized into aqueous electrolytes, organic electrolytes and 

ionic liquids (ILs), whereas solid or quasi-solid state electrolytes are widely grouped into 

organic electrolytes and inorganic electrolytes [77]. The perfect electrolyte that possesses all 

the features presented above is yet to be developed, for each one has its own merits and 

demerits. For instance, ECs with aqueous electrolytes have both high conductivity and 

capacitance with restricted working voltage range due to small decomposition voltage of 

aqueous electrolytes. Organic electrolytes and ILs can operate at higher voltages but have 

lower ionic conductivity, whereas solid-state electrolytes are free of the potential leakage 

problems associated with liquid electrolytes, but they equally have low conductivity [77]. 
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Raising the ECs voltage is more effective with regard to energy density enhancement 

compared with increasing electrode capacitance because energy density is proportionate to 

the square of capacitor voltage. Furthermore, electrolytes/solutions play a critical function in 

setting up other crucial properties required in real-life use of ECs like power density, internal 

resistance, rate performance, operating temperature window, cycling lifetime, self-discharge 

rate and toxicity [78]. Thus, greater preference should be given to the development of novel 

electrolytes/solutions with wide potential windows, compared with that of novel electrode 

materials. The ECs operating voltage range is largely determined by the electrochemical 

stable potential window (ESPW) of the electrolytes when electrodes are stable within the 

working voltage range. 

 

1.5  Motivations of the Current Study 

 

In order to develop electrochemical capacitors capable of replacing batteries, worldwide 

research efforts are presently targeted at increasing the energy density by optimizing the pore 

size distribution of nano-porous carbon materials, as well as harnessing the use of non-

aqueous electrolytes. In the breakthrough work of Gogotsi and co-workers [39], they 

synthesized carbide-derived carbon materials with unimodal micropores [77] smaller than 1 

nm. They noticed that these carbide-derived carbon materials display an exceptional 

capacitance increase in acetonitrile organic electrolyte, compared with other carbon materials 

with pore sizes greater than 2 nm where capacitance is slightly enlarged as pore size 

increases. These results contradict the long-held idea that pores smaller than the size of 

solvated electrolyte ions are not involved in the energy storage process. This exceptional 

capacitance increase in subnanometer pores is ascribed to the desolvation of electrolyte ions 
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entering subnanometer pores [37,39] as substantiated by experimental study via ionic liquid 

electrolyte with no solvation shell within electrolyte ions [78].  

 

Higher energy density could be achieved by increasing either the electrodes capacitance (by 

using high capacitance electrode materials) or the voltage window of electrolyte (via use of 

non-aqueous electrolytes with larger electrochemical window stability). It has been presented 

that to increase the voltage window to enhance the energy density is a more judicious 

approach, considering that energy density is proportional to voltage squared. In addition, 

there are few or no problems associated with an increase in the RC-time constant on growing 

capacitance to attain higher energy density [79]. 

Quantitative modelling has also been utilized to predict the theoretical restrictions of energy 

and power densities for electrochemical capacitors. Experimental and theoretical studies to 

determine the restricting factors that prohibit ECs from attaining their theoretical limit have 

also created novel insights in approaches to optimize capacitors design. While there has been 

consistent interest in developing enhanced electrode materials to increase energy densities, 

theoretical models suggested that it is the ion concentration and breakdown voltage of 

electrolyte that often limit the energy densities of ECs [80–82]. Furthermore, additional 

research suggested that the power densities of ECs can also be limited by electrolyte [83,84].  

Thus, research results emphasize that the optimization of electrolyte is as important as that of 

the electrode in order to attain the energy and power densities closer to theoretical limits of 

electrochemical capacitors.  

The characteristics of ECs has made it very competitive for applications in electric hybrid 

vehicles and digital communication devices such as mobile phones, digital cameras, electrical 

tools, pulse laser techniques and uninterruptible power supplies as well as energy storage in 

solar cells [7,31]. Unfortunately, some challenges such as low energy density, high cost, and 
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high self-discharge rate, have limited wider applications of ECs [85]. ECs are used when 

there is a high power demand, not only for power buffer and power saving units, but also for 

energy recovery [4,7,23–25]. Cordless tools like screwdrivers and electric cutters using ECs 

are already available in the market [23]. The transportation market will be a major target of 

ECs manufacturers in the coming years, including hybrid electric vehicles and  metro trains 

which are already using the technology [85].  

 

Mathematical modelling and simulation will be the key to success in designing tomorrow’s 

high-energy and high-power devices. Varieties of models of symmetric and asymmetric 

electrochemical capacitors have been presented in the literature [86–97], but none was 

derived and solved subject to a particular mechanism or combination of distinct mechanisms 

of self-discharge. Mathematical theory that goes beyond equivalent circuits and couples 

charging to mechanics, energy dissipation, and uses physics and chemistry of solvents and 

ions in nanopores, electrode materials as well as the electron and ion transport in capacitors 

electrodes is inevitable. Notwithstanding numerous studies to enhance ECs performance, 

there are not many perspectives to comprehend theoretical aspects of calculation of energy 

density based on electrode electrochemically active material. Therefore, it is very difficult to 

predict the capacitors electrochemical performance, and so almost all studies, obtained the 

most excellent conditions for the utmost performance value using trial and error, which is 

neither effectual nor reliable. The big number of variables to be examined and the various 

competing processes involved, makes intuitive forecast very difficult, and experimental 

attitudes are normally time consuming and expensive. On the other hand, meticulous physical 

modelling and precise numerical models will make the design and optimization of electrode 

morphology easier and the recognition of the ideal electrolyte more structured and efficient. 

This research work is motivated by these knowledge gaps, and is therefore set to develop 
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from first the principles of physics and electrochemistry. This required mathematical models 

and theoretical basis for design and optimization of  the desired high-energy density and  

power density, high energy efficiency and long lifecycle subject to more realistic 

assumptions. 

 

1.6 Aims and Objectives of the Research 

 

The main objectives of this research work are: 

 To develop a mathematical description of mass transfer, energy transfer and charge 

conservation in symmetric and asymmetric  electrochemical capacitors and 

parameters of processes which occur therein subject to physical, electrical, 

electrochemical and parameters of electrode materials, electrolyte, as well as the 

design of electrode, separator and entire ECs; 

 To build a theoretical basis for calculations, control, and improvement of energy, 

capacity, power, cycle-life, charge-discharge cycle efficiency and energy retention of 

various types and designs of symmetric and asymmetric ECs with simultaneous 

accounts of physical, electrical, electrochemical properties of electrode materials and 

structures the design of electrodes and separator; 

 To study the effects of self-discharge on the performance of  ECs by incorporating a 

specific self-discharge mechanism or combination of different self-discharge 

mechanisms into ECs models during charging and discharging processes; 

 To provide realistic alternatives to the time-consuming task of numerous  

experiments, by providing guidelines for the design and optimization methodology for 

ECs, with wide range of applications, using a modeling approach; 
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 To determine optimum electrode structural parameters and fabrication conditions, 

such as mass ratio, type, and electrochemical reaction of active material that will yield 

maximum ECs performance; 

 To optimize ECs energy and power densities, cycle life,  capacity, and the energy 

efficiency of charge–discharge cycles, subject to type and value of effective 

conductivity of electrodes and electrolyte, electrode thickness, porosity and specific 

capacitance, separator thickness and porosity and the values of ECs charge and 

discharge currents; 

 To develop optimal process design parameters for electrochemical capacitors of 

different applications. 

 

1.7 Structure of the Thesis 

 

The structure of this thesis is as follows.  

 Chapter One is the introductory chapter and contains: Research background and 

materials of electrochemical capacitors (ECs), motivation and justification of the 

study, research aims and objectives.  

 Chapter Two provides an overview of fundamental concepts and existing models 

for electrochemical capacitors, current status of the modelling and simulation of  

electrochemical capacitors, energy and power density of ECs, EC heat production 

and heat modelling, and challenges in modelling electrochemical capacitors. 

Chapter Two also reviewed the basic concepts of energy losses in ECs, self-

discharge and distinguishable mechanisms of self-discharge in electrochemical 

capacitors, energy dissipation during ECs self-discharge and progress made in 

EDLCs and pseudocapacitors self-discharge.  
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 Chapter Three presents the derivation of: 

(i) symmetric electric double layer capacitor (EDLC) model;  

(ii) model of symmetric electrochemical capacitors with only composite electrodes; 

(iii) model of symmetric ECs with only redox couple electrodes;   

(iv) model of an asymmetric ECs with capacitor-type electrode and composite 

electrode; and  

(v) models for optimization of performance-prospects assessment of various ECs in 

terms of energy and power densities.  

 Chapter Four presents the analytical solution of:  

(i) symmetric electric double layer capacitor (EDLC) model without self-discharge; 

(ii) symmetric electric double layer capacitor (EDLC) model with self-discharge; 

(iii) asymmetric ECs using a capacitor-type electrode and a composite electrode 

without self-discharge, (iv) asymmetric ECs using a capacitor-type electrode and a 

composite electrode with self-discharge; and  

(v) symmetric ECs with only redox couple electrodes. Chapter  Four also presents 

the numerical solutions of: (i) model for EDLCs without self-discharge, (ii) model 

for EDLCs with self-discharge, and  (iii) model for asymmetric ECs using 

composite electrode with self-discharge. 

 Chapter Five provides the results and discussions of: 

(i) effects of self-discharge on the performance of symmetric electric double layer 

capacitors  (EDLCs) and active electrolyte enhanced supercapacitors (AEESs) from 

modelling and simulation;  

(ii) effects of self-discharge on the performance of asymmetric/hybrid 

electrochemical capacitors from modeling and simulation; 
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(iii) effects of operating conditions and design configurations on the performance 

of ECs; and  

(iv) optimization of EC design parameters and operating conditions for high energy 

and power performances. 

 Chapter Six finally provides a summary of the key findings of the present 

research, conclusions drawn from the results, contributions to knowledge and the 

recommendations for future work. 



 

21 
 

CHAPTER TWO 

 

2.0 Literature review 

 

The literature review was presented in two parts as follows: 1) mathematical modelling and 

simulation of supercapacitors; 2) understanding performance limitation and suppression of 

leakage current or  self-discharge in electrochemical capacitors. These reviews have been 

published as stated in list of publications, and were presented in this thesis with permission 

from the publishers shown in appendices A1 and A2, respectively.  

 

2.1 Mathematical Modelling and Simulation of Supercapacitors 
 

Most part of this section has been published as a chapter in book by I.S. Ike and S. E. Iyuke, 

“Mathematical Modeling and Simulation of Supercapacitors” In “Nanomaterials in Advanced 

Batteries and Supercapacitors”,: Nanostructure Science and Technology, 2016, pp 515-562; 

DOI: 10.1007/978-3-319-26082-2; Online ISBN: 978-3-319-26082-2. "Copyright notice and 

permission was obtained from Springer", and was presented in appendix A1.  

 

The main performance parameters of capacitors are mass/area specific capacitance, energy 

and power density, rate capability and cycling stability [98]. It is desirable to reduce 

equivalent series resistance (R) and increase capacitance (C) and operating voltage window 

(V) in order to increase the device's energy and power densities. The maximum operating 

voltage window (Vm) attainable in ECs is solely dependent upon the type of electrolyte used, 
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and this voltage is limited by the thermodynamic stability of electrolyte.   The maximum 

operating voltage window Vm for ECs using aqueous electrolyte is 1 V.  A thin, high surface-

area EDL with a high surface area of about 200m
2
/g and very little charge separation (δ~10Å) 

[12] is a necessity for achieving larger double-layer capacitance. Figure 2.1 below depicts 

components of electrochemical capacitors. A good separator is electrochemically stable, of 

high porosity, high thermal and chemical inertia, and its thickness needs to be as thin as 

possible and relatively inexpensive. Although separator thinness is constrained by the 

electrical short circuit risk due to free carbon particles that will obviously provide a contact 

between electrodes [64]. The mechanical strength should also be high enough as to permit 

winding processes.  

 

 

Figure 2.1: Illustration of basic components and design of an EDLC. Arrows indicate the 

direction of movement for cations and anions [99].  

* "Reprinted from Electrochimica Acta , Vol 55, F. Favier, Julia Kowal, Dirk Uwe Sauer, 

Modelling the effects of charge redistribution during self-discharge of supercapacitors, 7516-

7523, Copyright (2010), with permission from Elsevier ".  
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The electrode thickness and internal area, porosities and particle sizes of active material, and 

materials selected for electrolyte and electrode, are design elements that can be more 

accurately investigated with microstructural models, such as that described by Verbrugge and 

Liub [91]. Characteristics and parameters of processes occurring in ECs are closely 

interrelated and dependent on physical, electrical, electrochemical and crystallographic 

parameters of electrodes and electrolyte materials, and the design of its components and the 

capacitor as a whole. Therefore, modelling of capacitor for determination of its energy, 

capacity, and other operation characteristics, is inconceivable without a proper account of its 

component parameters. The majority of researchers do not consider the physical, electrical, 

and structural properties of electrode materials and other components while modelling and 

estimating  the capacitor’s parameters, hence the discrepancy between theoretical and 

experimental measurements of parameters of real-life capacitors [89]. Most of the existing 

models were developed on the assumption that an energy storage mechanism is solely by an 

electric double layer and overlooks side reactions at the boundary [100]. Even in models 

which accounted for these chemical side reactions [88,97,101], the reactions were 

oversimplified by not incorporating the temperature consideration into the models. 

Furthermore, the effect of pores and their different sizes has been not been handled 

qualitatively and no specific model has accounted for all necessary factors in a critical way. 

Thus, it is significant to recognise the setbacks in available models and then derived models 

based on first principles with a view to compensating for discrepancies in the modelling.  

 

A model developed from a first principles view is able to forecast internal temperature and 

interfacial electric field in real life, so as to promote more realistic lifetime predictions. This 

also promote the process of designing ECs as compared to other electrical energy storage 

devices with the aim of maintaining a bus voltage around specific extents for arbitrary 

loading distributions, and to aid in development of porous structures that warrants quicker 
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rates of releasing  stored charge and energy [3]. Available models for ECs and other energy 

storage devices are presently incapable of precisely predicting internal temperature rises 

inside  the capacitor, interfacial field and temporal voltage reaction for arbitrary charge-

discharge current distributions. 

 

In this review, we considered progress made so far in the field of modelling and simulation of   

electrochemical capacitors by looking at two basic kinds of ECs and their hybrid capacitors. 

Their charge mechanisms were discussed with the aim of utilizing the most effective ways to 

obtain improved capacitor performance. The available models of ECs were reviewed and the 

merits and challenges of each kind discussed with the view to utilizing the relative 

advantages and compensate for disadvantages, in order to realize synergic and more realistic 

models which incorporate thermal models that account for temperature distribution inside a 

cylindrical and rectangular structured supercapacitor. The main objectives of this review are 

to develop mathematical descriptions of characteristics of  symmetric and asymmetric ECs 

and parameters of processes therein, subject to physical, electrical, electrochemical and 

parameters of electrode materials, electrolyte and the design of components and the capacitor 

as a whole; to build a theoretical basis for calculations and improvement of parameters of 

various types and designs of symmetric and asymmetric ECs, with simultaneous accounts of 

the properties of electrode materials and structure parameters and separator; to provide an 

ideal alternative to the time-consuming task of conducting numerous experiments, by 

providing guidelines for design and optimization methodology for ECs with wide range of 

applications using  a modelling approach ; to optimize the parameters of ECs subject to the 

type and value of the electrode's conductivity, porosity and specific capacitance, conductivity 

of electrolyte, separator thickness and porosity and values of charge and discharge currents of 

ECs.  
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2.2 Current status of electrochemical capacitors modelling and simulation. 

 

Theoretical models for electrochemical capacitors begin with the original Helmholtz model to 

mean-field continuum models, surface curvature-based post-Helmholtz models and the recent 

atomistic simulations. Realistic models of ECs can be built using high stage of progress in 

classical and quantum molecular dynamics methods as well as parallel high performance 

computing. The categories of EC models have been suggested by authors/researchers: 

empirical, dissipative transmission line, continuum models (Poisson-Nernst-Planck 

equations), atomistic models (Monte Carlo, molecular dynamics), Quantum models (ab initio 

quantum chemistry and Density Functional Theory, DFT) and simplified analytical models. 

Each method has been developed to acheive various outcomes and, each displays various 

advantages and challenges. 

 

2.2.1 Empirical models 

 

This equivalent circuit model is frequently called a three-branch model and assumes that the 

long-term branch capacitance only accounts for differences in the charge for a maximum time 

of 30 minutes while the immediate branch depends on voltage. The earliest observed models 

which considered changes of capacitance over time were produced by Zubieta and Bonert 

[102]. Empirical models are better in estimating accurately an EC’s electrical behavior than 

ordinary RC circuit and also it allows the users it to readily integrate the model into his/her 

system simulations. The empirical models could also be utilized in the characterization of 

self-discharge and/or leakage current parameters [103]. 
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Ban et al [22] presented simple mathematical models incorporating voltage-independent 

parallel leakage processes and electrochemical decomposition to explain the behaviors of 

ECs during charging and discharging, in order to give a fundamental understanding of the 

behaviors of capacitors on operations through experimental validation. Experimental data 

were simulated to obtain the desired values of parameters such as specific capacitance and 

equivalent series resistance from which both energy and power densities can be calculated 

using the models. The simulated parameters value, considering both parallel leakage and 

solvent decomposition, could be used to predict the EC's self-discharge, shelf-life, 

performance/efficiency losses, as well as the limiting workable cell voltage. The models are 

therefore useful in evaluating and diagnosing supercapacitors, as well as a tool for 

understanding of the charging–discharging behavior of supercapacitors.  

 

Figure 2.2: Proposed equivalent circuits of a double-layer capacitor at a constant current 

charging (a) and discharging (b) in the absence of parallel leakage phenomena and chemical 

disintegration of the solvent. K: electric switcher; Resr: equivalent series resistance; Icell: 

constant current for charging or discharging the capacitor; Vcell: capacitor cell voltage; Cdl: 

double-layer capacitance; Vsc: voltage across the Cdl; and isc: current used to charge or 

discharge respectively [22].  
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* "Reprinted from Electrochimica Acta , Vol. 90, Shuai Ban, Jiujun Zhang, Lei Zhang, Ken 

Tsay, Datong Song, Xinfu Zou, Charging and discharging electrochemical supercapacitors in 

the presence of both parallel leakage process and electrochemical decomposition of solvent , 

542-549, Copyright (2013), with permission from Elsevier ".  

 

The model could also be useful in obtaining the esential parameters of the capacitors, such as 

equivalent series resistance and capacitance based on recorded curves of charging–

discharging. A schematic diagram of an electrical equivalent circuit of EDLCs during 

charging/discharging at a constant cell current in the absence of parallel leakage and solvents 

chemical disintegration is shown in Figure 2.2 below.  

 

If capacitors are charged to a designed cell voltage of max
cellV , a discharge process at a constant 

current (Icell) can be started immediately, as shown in Figure 2.2b. Figure 2.3 shows the 

schematic diagram of electrical equivalent circuit of EDLCs for constant current 

charging/discharging with involvement of parallel leakage phenomena and solvent chemical 

disintegration. The models developed by Shuai et al [22] could be used to explain charge and 

discharge characteristics of capacitors involving the voltage-independent parallel leakage 

process and solvent disintegration as suggested by its ability to reasonably fit experimental 

data. However, there is a slight mismatch/difference that might have originated from 

experimental trivial factors such as the effect of gaseous evolution, dissolution of current 

collectors, electrolyte crystallization in the separator, assembly quality, etc. at the discharge 

curves in particular.  
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Figure 2.3: Proposed equivalent circuits for a double-layer capacitor at a constant current 

charging (a) and discharging (b) in the presence of electrochemical decomposition of the 

solvent. K: electric switcher; Resr: equivalent series resistance; Rlk: parallel leakage 

resistance; ilk: parallel leakage current; Icell: constant current for charging or discharging; Vcell: 

capacitor cell voltage; iF: current of solvent electrochemical decomposition; Cdl: double-layer 

capacitance; isc: current used to charge or discharge the double-layer capacitance; VF: 

electrode potential of the solvent electrochemical decomposition; and Vsc (=VF): voltage 

across the double-layer capacitance, respectively [22].  

* "Reprinted from Electrochimica Acta , Vol. 90, Shuai Ban, Jiujun Zhang, Lei Zhang, Ken 

Tsay, Datong Song, Xinfu Zou, Charging and discharging electrochemical supercapacitors in 

the presence of both parallel leakage process and electrochemical decomposition of solvent , 

542-549, Copyright (2013), with permission from Elsevier ".  

 

The main setbacks of these models are their small quality for: conditions of operation which 

are quite different from those utilized in obtaining the parameters [104] and its inability to 

predict in extended time range when heat produced within the system alters the capacitors' 

electrical behaviors. Since these models were not derived from basic capacitor physics, they 
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are unable to estimate temperature growth within the system and can only be correct if 

temperature rise is negligible. On this understanding, it is unrealistic to utilize the models in 

the accurate prediction of a real life electrochemical capacitor.  

 

2.2.2 Dissipation transmission line models 

 

The pore structure of the electrodes mitigates ionic motions to regions situated deep into a 

pore and results in a nonlinear growth of terminal voltage. It is therefore beneficial to use  

models which explain movement and steady-state reaction of the electrolyte portion since its 

mass region is presented to first order by a simple resistor. The earliest porous electrode 

models that handled EDLC with a porous electrode’s wall as a transmission line of shared 

electric double-layer capacitor and electrolyte resistance were developed by de Levie [105]. 

The effect of ion depletion on the charging rate of porous electrodes deserves further scrutiny 

for several reasons: 1) It will improve understanding of performance limits of double-layer 

capacitors as a function of device parameters. For instance, depletion can occur in both 

electrodes and separator, and tuning geometry may improve power and linearity. 2) Study of 

this phenomenon raises fundamental questions about the relationship between adsorption and 

transport of ions in nanoporous conductors and the influence of differing ion mobilities on 

these effects. 

 

Figure 2.4: De Levie’s transmission line equivalent circuit for an electrolyte filled conducting 

pore [106].  
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* Reprinted with permission from Journal of The Electrochem. Soc., 157 (8) A912-A918 

(2010). Copyright 2010, The Electrochemical Society. 

 

 

Figure 2.5: (Colour online) Extension of circuit model outside pore [106].  

* Reprinted with permission from Journal of The Electrochem. Soc., 157 (8) A912-A918 

(2010). Copyright 2010, The Electrochemical Society. 

 

The de Levie model treats pore as a distributed RC circuit Figure 2.4 and states that voltage 

and current vary with respect to time t and position x along pores. De Levie assumed that 

concentration throughout the entire pore is constant, but the different solution environment 

outside of the pore must also be considered. The bulk solution between the pore entrance 

mark and the midpoint between the working and counter electrodes mark ought to be handled 

as a series of discrete resistors, with each resistance dependent on salt concentration at that 

specific position, so as to estimate voltage outside the pore as in Figure 2.5 above. 

 

 

Figure 2.6: One dimensional pore [107].  
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© (2010) IEEE. Reprinted, with permission, from [N. Bertrand, J. Sabatier, O. Briat, J.-M. 

Vinassa, IEEE Trans. Ind. Electron. 57 (12) (2010) 3991]. 

 

 

Figure 2.7: Half porous electrode model discretization [107].  

© (2010) IEEE. Reprinted, with permission, from [N. Bertrand, J. Sabatier, O. Briat, J.-M. 

Vinassa, IEEE Trans. Ind. Electron. 57 (12) (2010) 3991]. 

 

The ruling expressions for ECs shown in this section, consider EDLCs with a rough portion 

of the electrode/electrolyte interface, and without voltage and temperature variations of the 

parameters. The capacitor is explained by a one-dimensional (1-D) pore as shown in Figure 

2.6 above.This model has revealed that dependency of electrode conductivity on its operation 

is small, and as such the losses produced by the electrode’s internal ohmic resistance are 

negligible. The 1-D discretization of former equations, in n layers, resulted to an electrical 

circuit. Wires and the separator effect, which was neglected in the past, has now been 

considered by RS resistance in series with the pore model, as shown in Figure 2.7.  

 

The EDLC is a physical component which has a demanded capacitance, parasitic inductance 

as a result of the geometry, resistances owing to the internal resistances of electrons and ions 

and resistance due to current leakages between its electrodes. The equivalent series resistance 

ESR which is the summation of the series and parallel resistances Rs and Rp, respectively are 
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accountable for electrical losses that produce ECs heating. The main transmission-line model 

utilized in the description of the frequency characteristics of capacitance and series 

resistance, which ignored voltage and temperature variations subject to capacitance and series 

resistance has previously been developed by de Levie [105]. A simple model that accounts 

for extra linear variation of capacitance with tension has also been suggested by Zubieta et al. 

[102]. Dougal et al. [108] and Belhachemi et al. [109] have used comparable models whose 

capacitance consists of steady portion Co and linear voltage variant one UKC VV . , where 

Kv is a coefficient that is dependent on applied technology.  

Conclusively, current and energy for a particular voltage are considerably more than the 

expectations from classical equations in the instance of steady capacitance. Values of 

capacitance and resistance vary with frequency spectrum and the performance can obviously 

be estimated with the Impedance Spectrum analyzer [110]. In order to consider the voltage, 

temperature and frequency reliabilities, a simple equivalent circuit was derived by Rafik et al 

(Figure 2.8) by combining De Levie frequency model and Zubieta voltage model and the 

inclusion of more functions to account for temperature dependence.  

 

Figure 2.8: Equivalent circuit for capacitance and series resistance dependences as a function 

of frequency, voltage and temperature [103].  

* "Reprinted from Journal of Power Sources, Vol. 165, Issue 2, Bor Yann Liaw, H. Gualous, 

R. Gallay, A. Crausaz, A. Berthon, Frequency, thermal and voltage supercapacitor 



 

33 
 

characterization and modelling, Pages 928-934, Copyright (2007), with permission from 

Elsevier ".  

 

The series resistance consists of the electronic part, which is due to internal ohmic resistance 

in electrodes and the ionic part, which emerges from the mobility of ions in electrolyte. The 

major merit of the dissipative transmission line model is its capacity to produce acceptable 

access among pore structures and response time in the field of ECs. It also gives a first-order 

estimation of exponential growth/reduction in voltage level, while considering a steady 

current of charging and discharging cycle. It is built upon the physical structure of interface, 

instead of merely matching experimental measurements by integrating the passive circuit 

element. Nevertheless, this approach accounts for a small area of interfacial dynamics and is 

basically utilized in specific aims like the improvement of electrodes synthesis [111], the 

study of self-discharge characteristics [112], and the prediction of electrode surface 

impedance [113]. 

 

2.2.3 Continuum models (Poisson-Nernst-Planck Equations). 

 

The very precise modeling method presently available utilized Poisson–Nernst–Planck (PNP) 

electrodiffusion theory to be the boundary of electrode and electrolyte, while 

physicochemical parameters became dependent on local surroundings rather than being 

constant, because the value of the electric field at the boundary is quite big. The PNP theory 

can estimate electrolyte properties correctly only if physicochemical parameters are 

independent of the local surroundings. Figure 2.9 represents the schematic model of EDL 

structures while considering an electrode that is positively charged for an instance.  

Helmholtz [114] initial proposal of an EDL model that consists of simple separation of 
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charges at the electrode/electrolyte interface like the convectional parallel capacitor in 

determining capacitance without considering the surface potential and the electrolyte 

concentration [115] is as represented in Figure 2.9a below. The Helmholtz model structure is 

like the structure of conventional capacitors using two planar electrodes separated by a 

dielectric.   

 

Ions which are opposite to the sign of electrons on an electrode are distributed in the area of 

thickness higher than the Helmholtz layer (H), rather than being packed close at the electrode 

surface as demonstrated in Figure 2.9b. Chapman developed and solved the Poisson-

Boltzmann equation steady-state manner in order to estimate electric potential in the diffuse 

region. This theory estimates wrongly huge ionic concentrations and the potentials of minute 

portions of 1V even with very dilute solutions. It can thereore hardly be utilized to model real 

ECs with the potential of 1V at the surface and an electrolyte concentration of 1 mol/L, since 

ions were taken as point charges, whereas their sizes are specific in real life [116]. 

 

 

Figure 2.9: Schematics of the electric double layer structure showing the arrangement of 

solvated ions near the electrode/electrolyte interface in the Stern layer and the diffuse layer. 

(a) Helmholtz model, (b) Gouy-Chapman model, and (c) Gouy-Chapman-Stern model [117]. 

* "Reprinted (adapted) with permission from H. Wang, L. Pilon, J. Phys. Chem. C 115 

(2011) 16711. Copyright (2011) American Chemical Society". 
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Stern in 1924 integrated the Helmholtz and Gouy-Chapman models to obtain the Gouy–

Chapman–Stern EDL theory which was generally utilized in the evolution of EDLCs. This 

model clearly explained ion concentration in the stern and diffuse layer as clearly seen in 

Figure 2.9c. Grahame [118] modified the Stern’s model by noting that ions adsorption at the 

surface of the electrode results in a double layer of different thicknesses in the Stern layer 

region [12]. This model derived by Stern and Grahame is known as the Stern model [119]. 

Wang and Pilon produced a three-dimensional (3D) model from continuum theory for 

characterizing EDLCs with organized electrode structures having meso-pores and critically 

considered 3-dimensional electrode morphology, definite size of ions, stern and diffuse 

region, and variations of electrolyte dielectric permittivity with local electric field [120]. Pairs 

of boundary conditions to estimate the Stern region, without characterizing it within 

electrolyte environment, was developed and utilized in estimating the electrode configuration 

of CP204-S15 mesoporous EDLC that was previously synthesized and described by Woo et 

al [120]. This created the possibility of simulating EDLCs with 3-dimensional organized 

electrode structures which correctly considered the stern and diffuse layers, the definite size 

of ions, and the variation of electrolyte permittivity on the local electric field [121]. 

 

2.2.4 Atomistic models (Monte Carlos molecular dynamics) 

 

Molecular modelling is very significant for the optimal design of EDLCs. The notable merit 

of this method of modelling is it allows the estimation of processes that are not immediately 

apparent experimentally. For instance, the orientation of ions in electrolyte [122] and 

alteration of the electrode form as result of polarization [12] are essential conditions that 

affect electrode capacitance and are hardly determined from experiment. The interwoven 
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effect of these variables can be comprehensive and utilized in the design optimization of new 

EDLCs through exact simulations and physical modelling. Because of complex interactions 

among electrode and electrolyte properties, together with its effect on energy and power 

densities generally, active optimization of EDLCs design remains a serious concern. The 

electrolyte should be used simultaneously with specific pore geometries and sizes is an 

illustration of design considerations [116,118,119]. When ions have various kinetic sizes 

during charging and discharging, then models need to be derived for these specific 

electrolytes and the optimum size of pores in each electrode shall be different [120,121,123]. 

Electric conductivity of room temperature ionic-liquid electrolytes RTILs can be increased by 

introducing organic solvents while using optimal concentration of electrolyte [124,125] but 

another issue on optimization here becomes the influence of pore size on power density 

[126]. The energy density of EDLCs can be improved by using pores of a diameter that is 

approximately equal to the diameter of the ions [5,116]. Power density will be restricted by 

the high diffusion resistance created by small pores. 

 

Molecular modelling will obviously enhance the comprehension of equilibrium and the 

dynamic processes taking place in an EDLC on atomic state, though its accuracy depends 

largely on the authenticity of the force fields applied, in explaining molecular behavoirs in 

the fluid phase and force fields of the electrode modelled. Monte Carlos (MC) simulation that 

relies on statistical mechanics via the significant choice of phase space of the molecular 

system and molecular dynamics (MD), are the most acceptable molecular simulation methods 

[107,127] MC simulation is restricted to estimation of equilibrium properties since it is based 

on statistical mechanics, while MD simulations evaluate Newton’s equations of motion for 

several molecular systems, which properties are averaged over a short simulated time to 

estimate the system’s properties. Another merit of MD simulations is its ability to estimate 

dynamic properties like diffusion of ions. Introducing electrode polarizability which 
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improves surface charge within  the regions through induced charges which finally grows the 

field and capacitance [128], is cogent both for numerical variance generated between 

predicted results and correct representation of the basic physical aspect affecting capacitance 

and  dynamics that occur in EDLCs. Erroneous small capacitance value, as compared with 

experimental results, will result if electrode polarization is ignored. 

 

An important field of research in molecular modelling that has recently drawn more attention 

and which will guide in the characterization of novel EDLCs with improved energy density, 

is the simulation of surface functionalities and nano-surface tuning simultaneously with the 

optimum choice of RTIL electrolyte size. Simulations of RTILs at planar surfaces has 

revealed important understanding of the EDL structure and assisted in describing 

experimental differences noticed in differential capacitance, though this knowledge can not 

be utilized when designing EDLCs with high energy density because these types of 

electrodes have small surface areas and are not suitable. Porous electrodes are preferable for 

providing high surface areas, but are certainly controlled by several physics from a simulation 

perspective. The state of development of classical and quantum molecular dynamics and the 

use of parallel high performance calculations, permit the construction of realistic models of 

such systems. The consistent classical consideration of EDL at the boundary of metal and 

ionic liquid was performed in reference [129]. The molecular dynamics simulation of solid 

electrolytes with carbon nanotubes was carried out by Chaban et al [122]. This classic model 

makes it possible to satisfactorily describe the ionic subsystem of the electrolyte, but does not 

provide information on the electron subsystem of the material of the electron–hole conductor 

of the electrode. 

 

Molecular dynamics (MD) simulation presents the most basic and modifiable method for 

analysing molecular behaviours and has been widely utilized in modelling electro-osmotic 



 

38 
 

flow [123–126,130,131], as well as treating higher charge densities which are of great 

significance in EDLCs [132–134]. However, computational cost makes this an unrealistic 

method of handling time and length scales which are obtainable in several applications. 

Calculating long-range Coulombic relationship and using boundary conditions creates 

challenges and an alternative approach is urgently required. Using results of quantum 

molecular dynamics calculations of Lankin et al. [135], estimates of the maximum specific 

capacity of an electric double layer on a defect-free graphite electrode surface has been 

estimated and the estimation correlated well with all existing experimental data.  

 

Investigation of the density functional theory (DFT) investigation revealed a bell-shaped 

curve resulting from co-ion elimination and the introduction of a counter-ion without 

capacitance growth [136]. This observation in DFT computations is expected due to 

simplified RTIL ions in the constrained local model, as well as the chosen pore size. Huang et 

al. [137] presented exohedral an ECs model for spherical electrodes and cylindrical 

electrodes in order to explain the relative capacitance and size of either OLC or CNT. The 

origin of the curvature effect in EDL is yet to be fully been understood. Capacitance increases 

with decay in the size of electrodes as displayed by even theoretical models. Limited 

investigations have been done on the dependency of differential capacitance changes on 

potentials in ECs with OLC/CNT-based spherical electrodes and RTIL electrolytes, while 

attention has also been focused on proving that different C-V profiles were noticed in 

capacitors with planar electrodes [138–142]. 

 

Potentials of RTIL-based capacitors operating in large temperature windows enhance its 

applicability during strong conditions due to excellent thermal stability [137,143], and several 

research groups have utilized capacitor’s temperature dependence on capacitance. Some 

theoretical and experimental research showed that capacitance grows with temperature 
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[137,144], while some showed that capacitance decays with growth in temperature [145,146]. 

Others showed even a complex capacitance-temperature dependency. Lin et al. [147] 

demonstrated of recently that capacitance of ECs using OLC electrodes and RTIL electrolytes 

increases together with increases in temperature, while that of vertically aligned CNT 

electrodes with RTIL electrolytes react independent of temperature. MD simulations were 

utilized in modelling electrochemical capacitors with RTIL electrolyte and OLC/CNT 

electrodes to be dependent on temperature in order to obtain molecular understanding into 

temperature variations of capacitance [148,149]. 

 

A Monte Carlos investigation revealed that a change in position of counter-ions on a charged 

surface and packing of ions in particular, demonstrated the influence of EDL on temperature 

reliability near charged pore wall [150]. MD simulations, use several kinds of carbon 

electrodes to produce comprehensive molecular understandings of behaviour of RTIL-based 

ECs capacitance. The capacitance of capacitors with porous electrodes was shown to agree 

well with a particular form of RTILs, general features of pores and the applied potential. 

Most of the research forecast that capacitance decreases with increases in temperature or at 

least produces a complex behaviour between capacitance and temperature [143,146,150,151] 

as presented in MD simulations by Vatamanu et al. [146]. Monte Carlo simulations by Boda 

and Henderson [151] revealed a bell-shaped profile for capacitance-temperature relationships. 

Recent research with vertically aligned CNT electrodes and RTIL electrolytes showed that 

capacitance was almost invariant with temperature [147]. Thus, deeper studies are required in 

order to confirm concrete explanation of how temperature depends on capacitance as well as 

basic mechanisms that produce this process. Feng et al. [148] noticed that capacitance of 

EDL near the CNT electrode is almost independent of temperature within the range of 260K 

and 400 K, which agreed well with new research results by Lin et al. [147]; though they 

noted that capacitors' power, charge and discharge rates that severely rely on ion mobility 
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instead of packing cannot be evaluated from the obtained temperature reliance on 

capacitance. 

 

Nano-pores have more charge storage capability compared with planar electrodes since the 

overall charge on the electrode is equilibrated by a single portion of ions not being 

overshadowed [152]. Optimal energy density is dependent on pore diameter and optimum 

pore diameter grows with voltage [153]. The electrode polarization which improves the 

surface charge through induced charges that lead to growth in the electric field strength and 

capacitance are crucial features that must be integrated into molecular models aimed at 

precisely matching its results with experimental results and exactly reflect real-life devices. 

 

Comparatively, transport influences were modelled to a small level and opinions for utilizing 

these influences to improve EDLC performance were omitted. Since the modelling of ions 

transport effects has not be given due attention in the past, extensive research in molecular 

modelling should be broadened to place more emphasis on ionic transport, charge and 

discharge kinetics and to determine and enhance the efficiency of dense RTIL electrolytes in 

carbon electrodes of nano-pores. Again, simulations that can accurately estimate kinetics 

during different charge and discharge rates will certainly improve the optimization of energy 

and power densities. EDLC transport was derived to learn the effects of polarization 

relaxation, temperature, electrode shape, and ionic size only. Introducing organic solvent to 

RTILs electrolytes results in improved electrolyte function by increasing ionic conductivity 

and relative permittivity, and also reduces viscosity and ESR but responds with a decrease in 

density of ions that lowers capacitance. Simulations of very complex structures of electrodes 

like a 3-dimensional, hierarchical porous system that has not yet been accounted for, has to 

be introduced in molecular models so as to realize a high level of reality and to create a 

plarform to further enhance EDLC performance [154,155]. Similarly, pseudocapacitors and 
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hybrid capacitors with battery-type and EDLC electrodes are fields of research that are now 

drawing considerable attention, though realistic models for these capacitors are presently 

constrained to small MD simulations [156,157] and ab initio computations [158]. Developing 

active models in these directions will certainly be required for the accurate identification of 

situations and materials that could result in enormous advantages in EDLC performance. 

 

2.2.5 Quantum models (Ab initio quantum chemistry and DFT) of electrochemical 

capacitors. 

 

Recent research attention on ionic liquids appears justified, following unique simulations of 

behaviours such as electrolyte with small vapour pressure, all round functionalities and 

electrochemical potential range. Enormous efforts have been channelled into investigation of 

ionic liquid electrolyte capacitance changes with pore size in mini-nanometres region.   

Kornyshev and co-researchers [159] described unusual growth as image forces which 

exponentially block repulsion of similar-charged counter-ions within a small pore model of 

charged ions in a metallic slit pore. De-en and Jianzhong [136] addressed the issue of the 

microscopic attitude of the interface of electrode and electrolyte and capacitance dependence 

on pore size using classical density functional theory (c-DFT). De-en and Jianzhong 

discovered the enormous capability of the c-DFT approach in giving microscopic insights 

with little molecular coverage and calculation cost, and also the capability to handle a wider 

pore size window as compared with bigger ionic size scales.  

 

Basic ideas and applications of c-DFT to electrolyte environments have recently been 

explained in some reviews [160,161]. They pointed out that the mathematical background of 

c-DFT is similar to well-known electronic DFT [162]. c-DFT for electrolytes expresses free 
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energy to be dependent upon the local densities of ions and solvent molecules instead of 

presenting the system energy to be dependent on the density of electrons. The simplicity of 

this theoretical model also enhances observation of the origin of the oscillation of capacitance 

in ionic liquid electrolyte and provides a full understanding of core parameters in a large 

range of environments. c-DFT suggests a small gap that causes the density profile of ions to 

interfere with EDLs between two charged surfaces, together with strong vibration-like 

profiles in the density of ions near a charged surface [163,164]. c-DFT is expected to be 

capable of estimating very complex forms of capacitance-potential curves with its charging 

processes and the changes in curvature shape with pore size, since the model for ionic liquid 

replicates real-life situations [165]. 

 

A total image of capacitance during transit into pore sizes from microscopic range to 

mesoscopic scales (>2 nm) is provided by c-DFT simulations, and capacitance virtually 

becomes independent of pore size, if pore size goes beyond a few nanometres. Modelling of 

EDLC behaviour in the past relied on dividing pore size frames into several sizes, such as 

below 1, 1-2, and 2-5 nm, etc. [77,166], which becomes irrelevant as it produces a steady 

change of structure and capacitance of EDL while pore size varies on c-DFT application. 

Absolute agreement with experimental results shows that c-DFT accounted for the most 

significant physics in the system. c-DFT research has not addressed the issues of the size of 

solvent molecules, solvent polarity, concentrations of ions, ionic charges, cations-anions size 

disparity and shape of electrode, which are important parameters that will improve 

comprehension of EDLCs with organic electrolyte [167,168]. It is important to consider the 

influence of these parameters while matching integral capacitance with differential 

capacitance [169]. The c-DFT method is the state-of-the-art method used by experimentalists 

to determine surface area and pore size distribution of real porous materials [170,171] and 

can handle modelling difficulties with how to confirm an estimation of interactions between 
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the structure and capacitance in real porous material and specific electrolyte. Consequently, 

c-DFT modelling can account for all phenomena of EDLCs charge storage, such as 

calculation of porosity, capacitance as well as charge and discharge kinetics. c-DFT is not yet 

able to account fully for complex porous electrodes and the estimation of perfect electrolyte 

and porous design to optimize energy and power densities of real-life EDLCs. A particular 

difficulty from a modelling view-point is the provision of the estimation of relationships 

between structure and capacitance in real porous material and specific electrolyte.  

 

2.2.6 Simplified analytical models. 

 

This kind of model is derived on the basis of the fundamentals of electrochemistry and 

physics of ECs. Algebraic and differential equations were utilized in characterizing the 

controlling properties of the chemical and physical processes (charged species transport and 

electrochemical reaction rate) of the system [88,101,107,127,172,173]. The ECs fall into two 

categories on basis of chemical and physical processes that accounts for total capacitance of 

the system: EDLC which stores charge electrostatically and pseudocapacitor which stores 

charge by fast and quick reversible chemical reaction. Several areas of ECs like the effect of 

side reactions [127], electrode pore structure [107,172], and estimation of specific energy and 

power [173] were investigated using these assumptions. Karthik et al. [89] developed a 

reduced models for EC analysed with scaling arguments, calibrated and validated with 

experimental data, without accounting for the equation of change of energy and heat 

generation, by assuming that temperature effect and side reactions are negligible and the 

system was assumed to be isothermal.  
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Major efforts related to EDLCs have been directed towards understanding the influence of 

electrode thickness and pore structure on energy density and device capacity. Efforts toward 

developing pseudocapacitors have mostly focused on creating different electrode materials 

with most emphasis given to metal oxides [4,89] and some effort goes toward the 

understanding of charge/discharge behaviour of these redox couple electrodes [12]. Devices 

in which two electrodes exhibit the same capacitive behaviour are known as symmetric 

capacitors [89]. If the capacitive behaviour of the two electrodes is different, the device is 

known as an asymmetric capacitor. 

 

Analytical solutions for electrode voltage as a function of discharge current have been 

previously developed by Srinivasan and Weidner [87,88,90]. Discharge of a redox couple 

electrode is controlled by diffusion of a mobile ion through the film. The kinetic expression at 

this interface has been given previously presented [172,173] and was extended to hybrid 

asymmetric supercapacitors by John A et al. [90] as shown in Figure 2.10b. In the case of 

redox couple electrodes in hybrid asymmetric supercapacitors, the state of charge remains 

between approximately 0.4 and 0.6. The model for the redox couple electrode is generic, and 

could be applied to describe any electrode, as long as parameters such as initial ion 

concentration and diffusivity are known. Diffusivity values that were previously reported by 

experimental methods [109] were utilized while making the assumption that diffusivity is 

constant.  
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Figure 2.10: Schematic representations of a) the symmetric supercapacitor and b) the hybrid 

asymmetric supercapacitor with electrode dimensions not drawn to scale [90]. 

  

2.3 Energy and power density of electrochemical capacitors.  

 

Different electrochemical energy storage devices can be compared using their respective 

energy and power densities and any advantage that hybrid asymmetric ECs (Figure 2.10a) 

possess over symmetric ECs (Figure 2.10b) can be demonstrated. The energy and power 

densities are dependent on the capacitor's mass. The mass of symmetric EC is given as the 

mass of each porous electrode, and electrolyte inside each electrode and inside the separator: 

eSSeDSSDDS LLALALm   022                                                                         2.1 

where A is the capacitor cross-sectional area, D is the density of electrodes with EDL, SL is 

the separator’s thickness, S is the density of separator, e is the density of electrode, 0 is the 
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porosity of electrode and S is the porosity of separator. The difference between the mass of 

the hybrid asymmetric EC and the symmetric EC is that the former only has one electrode 

with EDL, with a dense redox couple electrode as the positive electrode: 

RReSSeDSSDDH ALLLALALm   0                                                             2.2 

where R is the density of redox electrode.  

The energy and power densities are calculated by integrating cell potential over cut-off time, 

or time required upon discharge for two electrode potentials to equal one another, which 

varies with discharge current density celli  as given below: 


Ct

cell
cell dtV
m

iE
0

                                                                                                                  2.3 


Ct

cell
cell dtV
mt
iP

0
                                                                                                                  2.4 

where cellV  is the cell potential, Ct is the cut-off time and m is the mass of either capacitor, 

representing either Sm or Hm . The moment the electrode parameters are known and the 

potential profile has been simulated, the dependency of the energy and power densities on the 

discharge rate could be determined. These models are generally applicable to any double-

layer and redox couple electrode, so long as the properties of the materials are known. 

 

The main advantage of the of this analytical model is its ability to describe electrical 

functioning of ECs using partial differential equations that explains the electrochemical and 

physical processes within the capacitor. This method is more flexible to in accommodating 

more parameters and sets of complementary equations and does not rely on empirical 

evidence to any great degree. However, this type of model makes it very difficult to estimate 

aging phenomena of battery and EC models which have the same analytical modelling 

approach as stated by Doyle et al. [173]  in their article. This is basically because non-
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homogeneity of electrolyte at the interface and integration of thermal variables were not 

considered when deriving the analytical model.  Kazaryan et al. [89] developed models for 

calculations, control, and improvement of energy, capacity, power, and other parameters 

important for the safe and long operation of various types and designs of asymmetric 

electrochemical capacitors (heterogeneous) with simultaneous accounts of physical, 

electrical, electrochemical properties of electrode materials, designs, and spatial structures of 

electrodes and separator. They assumed that a negative electrode does not have self-

discharge, and that the potential for a positive electrode being non-polarizable does not 

change during charging and discharging and so is constant along the coordinates of the 

positive electrode.  

 

Jin et al. [174] developed a model for a simple planar EC, from where they showed that 

polarization density and electrolyte solution are absolutely critical and cannot be ignored in 

model derivation. Also, they noted that modelling of the surface contact area is of important 

concern since most of the charges are stored in such a small portion that its movement is 

dependent on several variables like electric and thermal fields, concentrations of species and 

impurities.  Julian et al. [119] developed a three-dimensional model for ECs with cylindrical 

mesoporous electrodes to study the effects of the following: pore radius, electrolyte 

permittivity, porosity, ions effective diameter, and characteristics of electrolyte on diffuse 

layer capacitance.  They proved that reduction of the ion effective diameter and radius of 

pores produced great growth in diffuse layer gravimetric capacitance. Ganesh and Sanjeev 

[175] derived from the first principles of ionic movement one-dimensional (1D) and two-

dimensional (2D) models of an EC with no faradic reaction using isotropic transport 

properties to explain the recovery of potential during relaxation after discharge/charge and its 

dependence on current and concentration, as well as failure of the EC during charging at high 

currents and low concentrations of electrolyte.  
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Conductivity of the electrode during charging and discharging may change in wide a range, 

subject to specific capacitance parameters, type of conductivity, and electrophysical 

parameters of the electrode. The change has a considerable effect on both capacitance and 

other parameters of electrochemical capacitors. The parameter changes must be taken into 

considerations in order to obtain more precise results. Numerous nonlinear influences should 

be expected, both in the near-surface layers of walls and in wall pores, subject to the 

anisotropy of the electrode, as well as the different dimensions and forms of pores. The 

capacitances of the EDL from the side of the the electrolyte and to side of the electrode are 

serially connected with each other, and parameters of wall pores [176] perform a major role 

in changes in electrode total capacitance. 

 

Kazaryan et al. [89] developed an analytical model of asymmetric ECs which made it 

possible to calculate energy, capacity, power parameters, energy efficiency of charge-

discharge cycles of capacitors subject to the type and value of the conductivity of electrodes, 

conductivity of electrolyte, thickness and specific capacitance of electrodes, and values of 

capacitors charge and discharge currents. They also observed that growth of the volumetric 

specific capacitance of electrode produces growth in specific energy parameters of capacitors 

and growth of polarization and depolarization energy losses which manifest as heat. The 

major portion of energy losses resulted from polarization resistance of electrodes and 

electrolyte, while the remaining portion is due to depolarization of electrodes’ potentials.  

They also noticed that the energy efficiency of charge-discharge cycles of ECs depends 

significantly on the conductivity of the electrode and electrolyte, thickness of the electrode, 

and the value of charge-discharge currents. An increase in conductivity of the electrode and 

electrolyte decreases nonlinearly the polarization and depolarization losses of energy during 

ECs charging and discharging.  
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2.4 Heat production and heat modelling of electrochemical capacitors. 

 

Electrochemical capacitors are usually charged and discharged at a very high rate, which will 

obviously produce a great amount of heat within the capacitor. This condition of increased 

temperature will certainly increase capacitance and self-discharge, while equivalent series 

resistance (ESR) will be decaying [103,128,175,177,178]. ECs encounter “self-heating” 

which is promoted with growth in the electric field and temperature during charging and 

discharging. The activity of self-heating increases the temperature of the capacitor by 

enhancing non-reversible side reactions that reduce the electrolyte’s ionic conductivity. This 

alone generates more heat over time and creates thermal runaway. During EDLC charging 

and discharging, the amount of electric charge is transformed to heat, and the heat production 

rate varies with the condition of operation, material of construction and capacitor’s design 

[179]. Severe high temperatures result in the following: increased aging rate of capacitors  

[161–164,167–171,176,179–184], increased self-discharge rates [180–183], increased cell 

pressure, and possibly electrolyte evaporation [183]. The resistance of ECs increases and its 

capacitance decreases as it ages, which results increase in temperature and voltage in 

capacitors [184], which can cause voltage imbalance and unfavourable overvoltage of 

individual cells, when cells are serially connected [179,180]. Thermal modelling is very 

useful in estimating the temperature of operations, thermal functioning of new ECs and 

development of thermal management plans for existing EC designs. 

 

The design and fabrication of modern day capacitors and their cooling plans greatly rely on 

the success of thermal simulation models. It is therefore essential to obtain mathematical 

descriptions of mechanisms that generate heat in the system. Estimation of the electrical 
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heating functioning of capacitors could be very challenging due to the very large series of 

processes like ionic and electronic transport, heat and mass diffusion, and the involvement of 

heterogeneous structures. Temperature distribution in supercapacitors depends on losses of 

power and energy within the devices. The relationship between the rate of heat generation 

during the continuous charge-discharge processes and temperature T (M, t) at a specific 

position in the EC, is mainly controlled by the heat diffusion expression as previously 

presented by Guillemet et al. [178]: 

    
  q

t
tMTCtMTMk p 






,,                                                                    2.5                                                   

The heat generation rate q is caused by the following: 

    • Transportation of electrolyte ions that are in electrodes and separator, and transportation 

of electrons in current collectors and electrodes. 

    • Reversible and irreversible reactions at the electrode/electrolyte interface of porous   

structures. 

    • Thermal contact, electrical ohmic resistances of layers, and polarization and 

depolarization resistances. 

Guillemet et al. [178] using their model performed thermal analysis on ECs, pointed out that 

the highest temperature is attained at the centre of the device as envisaged.  

 

d’Entremont and Pilon [185] derived a physical model that describes the diffusion of 

electrons, heat production, and heat transport in EDLCs while charging and discharging. 

Their model is significant because it estimates spatial and temporal changes of various heat 

production rates and temperature within EDLCs from basic principles. It also considered 

irreversible Joule heating, as well as three reversible heat production rates coming from ion 

diffusion, steric effects, and changes in the entropy of mixing. The reversible heat production 



 

51 
 

rates are exothermic on capacitor charging, endothermic while discharging it, and localized in 

the electric double layers.  

They developed the thermal model in order to understand the diffusion of electrons, heat 

production and heat transport in EDLCs at constant current charge and discharge cycles 

[185].  They achieved this by formulating irreversible Joule heating and reversible heat 

generation formula for EDLC, and were able to reproduce experimental data previously 

reported in literature thus providing some verification to their model. The energy equation 

developed by d’Entremont and Pilon [185] is expressed as equation 2.6 shown below: 

  revirrp qqTk
t
Tc  


 .                                                                                            2.6 

where irrq and revq  are irreversible and reversible heat production rates; jEirr qq ,  ; and

TScSsEdErev qqqqq ,,,,   . The heat production rates jEq , , dEq , , sEq , , cSq ,  and TSq , are the 

effects from Joule heating, ion diffusion, effects of steric, mixing heat with the concentration 

gradient and mixing heat with the temperature gradient respectively. 

They noticed that the Joule heating term jEq , is irreversible because the value remains 

positive while dEq , and sEq , account for reversible heat production since their value can be 

positive or negative. Movement of ions when charging capacitors is directed towards 

reducing electric potential energy to create EDLs and heat energy is released in the process. 

During the capacitor’s discharging process, transportation of ions is controlled by diffusion 

and steric effects since EDLs are at rest and fluxes then move towards the increase in electric 

potential and heat energy is absorbed. 

 

Heat energy is liberated when the potential energy of ions is reduced and there is effective 

contribution to the heat production rate because of chemical potential gradients, partial molar 

entropy and temperature. Heat is also liberated when solvent and/or ions molecules reduce 
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the entropy as predicted by Schiffer et al. [128]. Irreversible Joule heating alone will 

obviously result in linear temperature growth but further reversible heat production will cause 

the temperature profiles to oscillate, since reversible heat production is exothermic on 

charging and endothermic on discharging.  

 

Furthermore, the increase in oscillation amplitude associated with ion diffusion was 

approximately twice that of either steric effects or heat of mixing with concentration gradient. 

The temperature evolution they predicted remarkably resembles the one noticed 

experimentally by Guillemet et al. [178] and Gualous et al. [186], which showed that the 

physical model pictured physical processes controlling heat functioning of EDLCs. Burheim 

et al. [187] observed from experimental results that smaller thermal conductivity of wet and 

dry electrodes using OLC materials largely showed that high effective pore volume is 

destructive to heat conduction, and must be taken into consideration when designing and 

fabricating electrodes from materials that have big pore volume or small packing density. 

Modelling internal temperature distribution of ECs on a very high cycle in a commercially 

sized unit showed that a temperature slope of many degrees is dependent on the internal 

ohmic resistance of the device with electrode materials expected to be wetted in long run.  

 

2.5 Modelling challenges of electrochemical capacitors. 

 

 

The simple charging and discharging operation of  an EC requires comprehensive 

information on the impact of its geometry on the capacitor’s functioning, the effects of 

electrons and ions on electric potential, and the effects of temperature and electric field on 

chemical reactions at the electrodes’ surface. The process of modelling an ECs system 
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includes representation of a porous separator immersed in electrolyte, electrodes, interface of 

electrodes and electrolyte and contacts at the boundary of the electrode and current collector. 

Each stage/layer is required to be modelled separately, while handling pores of heterogeneous 

structure with different a interface and also the interface between the electrode and 

electrolyte. The kinetics within supercapacitors is mainly determined by temperature and 

electric field at the interface. It is always necessary to begin with a plane system and 

gradually increase the complexity of the model so as to describe and specify such a complex 

system.  

 

Development of big signal models, which is on the assumption that temperature is constant is 

a significant route because it permits physics of the interface at steady temperature to be 

proved first at the starting stage. Effective optimization of EDLC is difficult, because of the 

complex interactions among electrodes and electrolyte features, and their effects on the entire 

energy and power performance of the capacitor. The effect of adsorption of ions to the 

electrode surface, kinetics of electrons, transport processes in solvated ions in pores of 

different geometries and sizes, and the electrolyte to be used with a pore of a given 

geometries and sizes are factors to be considered in the design of EDLCs. Prediction of 

surface tuning and its surface functionalization, along with the optimum choice of RTIL 

electrolyte subject to size, is a significant field of study for molecular modelling.Greater 

focus on this aspect might aid in the design of new EDLCs with improved energy densities. 

Predictions of RTILs with planar surfaces described the experimental difference in 

differential capacitance, but when designing EDLCs with improved performance, it is 

difficult to use, since porous electrodes are preferred due to their large surface area but are 

unfortunately controlled by greatly differing physics.  

The process of thermal runway is the main factor that is not included in all available models 

of ECs. The methods of all existing models neglected this heating process and also, through 



 

54 
 

oversimplifications, restrained the incorporation of thermal variables.  These models cannot 

be utilized to investigate the influence of capacitor design and the operation of heat 

production during constant-current charge and discharge cycles. It is therefore difficult to 

develop a plan to control heat generation for the electrical energy storage device which would 

keep the capacitor’s functioning temperature constant and at a comfortable range. Models 

which modify the assumptions in available analytical models were built upon by designating 

electrolyte solutions using heat generations, charge redistribution, self-discharge, polarization 

and depolarization losses of energy, as well as taking due account of the key parameters of 

capacitor components and other factors in a rigorous manner. The model captures physical 

and electrochemical phenomena by considering charge conservation and energy, along with 

the relevant composite relations for EDL charging and faradic reaction. It has to do the same 

thing for all layers and groups within the device at macro and micro scales. However, 

charging and discharging of capacitors demands knowledge of the effect of capacitor 

geometry, contributions of electrons and ions to electric potential and chemical reactions 

subject to electric field and temperature.  

 

2.6 Summary 

 

Modelling and simulation remains the key to success in developing novel electrochemical 

capacitors with improved energy and power densities. Mathematical theory that moves 

beyond equivalent circuits to couple charging to mechanics, energy dissipation, and the use 

of physics and the chemistry of solvents and ions in nanoporous electrode materials, as well 

as electronic and ionic transports in ECs electrodes, is required. It is therefore necessary, 

subject to more realistic assumptions, to develop from the first principles of physics and 

electrochemistry, the required model and theoretical basis for the design, optimization and 
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fabrication of ECs of  the desired energy and power densities, energy efficiency and long 

charge-discharge life. These models should be derived subject to: (i) electronic, atomic, and 

molecular polarization of solvent; (ii) deformation of external electron shells of ions and 

molecules of electrolyte in EDLC; (iii) changes of conductivity and density of electron levels 

on the electrode surface subject to potential; (iv) formation of the volume spatial charge in 

near-surface layers of the electrode matrix; and (v) strong electrode capacitance influence on 

potential so as to increase the accuracy of the theoretical calculations of parameters and an 

explanation of results from experiments for different capacitors in a wide range of operating 

voltages.  

 

Results in literature generally show a basic relationship between EC components, but few 

existing models are currently able to take due account of EC parameters and other factors like 

internal temperature rise and interfacial electric field in a rigorous manner, hence the 

discrepancy between the results of theoretical and experimental measurements of parameters 

of real-life ECs. Investigation of temperature effects on performance of IL-based ECs with 

surface-curved electrodes performed by Guang Feng et al. [148] revealed that capacitance of 

ECs with CNT electrodes was almost invariant with temperature due to little variation in 

EDL structure. The capacitance of an OLC-based capacitor increases with temperature due to 

the reduction in EDL thickness with growth in temperature. This was exactly the same as new 

experimental results obtained  by Lin et al. [147]. They also noted that actual capacitor 

performance in terms of power and charge/discharge rates, which heavily rely on the mobility 

of ions instead of ion packing, cannot be predicted from the capacitance behaviour with 

temperature. This is because of the introduction of polarization effects by metallic walls that 

could provide a complete understanding of the formation of the superionic state 

[139,146,175]. Moreover, lifetime expectancy and performance of EDLC decays irreversibly 

because of heat production via polarization and depolarization energy losses, the internal 
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ohmic resistance of electrodes and the resistance of ions in electrolyte.  The self-heating 

processes increase the temperature of the capacitor and irreversibly catalyse side reactions 

which decay conductivity of ions in electrolyte, assuming all other factors are the same. 

These processes generate more heat which results in heat runaway with time. 

 

The thermal model is crucial because it estimates spatial and temporal changes in various 

heat production rates and temperature within EDLCs fundamentally and accounts for 

irreversible Joule heating and the three reversible heat production rates resulting from ion 

diffusion, steric effects, and changes in entropy of mixing. Models incorporating the thermal 

model will therefore present the needed internal temperature distribution profile that will aid 

in designing electrode materials, predicting charging and discharging temperatures. It will 

also assist in the development of heat management/cooling plans for existing and new EDLC 

designs, as well as their conditions of operation. Equally, the integrated model will present 

the needed ECs temperature profile that could be utilized in the determination of optimum 

loading of the device, without compromising the amount of ions through irreversible 

chemical reactions or generation of gases in electrolyte. Models of electrochemical capacitors 

that integrate heat and electric fields subject to type and value of electrodes conductivity, 

conductivity of electrolyte, electrodes thickness, porosity and specific capacitance, separator 

thickness and porosity, values of charge and discharge currents as well as the effects of self-

discharge were proposed in this review.  

 

 

2.7 Understanding Performance Limitation and Suppression of Leakage Current or 

Self-Discharge in Electrochemical Capacitors: A Review 
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Reproduced from Journal of Phys.Chem.Chem.Phys., 2016, 18, 661 with permission from the 

PCCP Owner Societies shown in appendix A2. 

 

2.8 Self-Discharge 

 

ECs like other energy storage devices, experiences self-discharge in the charged state owing 

to the thermodynamic driving force of higher free energy in the charged state, compared with 

the discharged state [12]. Self-discharge can be regarded as the volume of current density of 

spontaneous recombination of non-equilibrium charge carriers in ECs. The rates of 

spontaneous recombination of non-equilibrium charge carriers in electrode and electrolyte 

inside the electrode are also identical. The reduction in voltage when fully charged ECs are at 

rest (open circuit situation), produces a loss of power and energy densities due to the effects 

of self-discharge effect [12]. Figure 2.11 shows the schematic illustration of the self-

discharge process in electrochemical capacitors.A degree of self-discharge in capacitor in a 

state of rest will  obviously create undependability in the capacitor, especially when 

employed for critical purposes [4,189]. The self-discharge problem has since been identified 

and relatively large number of investigations were directed towards comprehension of its 

mechanism. For EDLCs whose electrodes are carbon materials, self-discharge behaviours 

could be affected by surface functionalities which contribute to the charge storage process by 

redox reactions on active materials. It has been reported that the degree of oxygen retention 

via physical adsorption or acidic functionalization on carbon surface might affect self-

discharge rates in EDLCs [12,190]. A greater concentration of complexes on the electrodes 

surface would grow self-discharge rates, predicting that these complexes are the catalysing 

redox reactions in carbon materials [2,190,191]. 
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Figure 2.11: Schematic illustration on the self-discharge process (Note: ΔE-potential field; 

∂c/∂x-concentration gradient of ions) 

 

A large reduction in leakage current  and self-discharge was noticed when functional groups 

on the electrodes surface were detached from the electrodes via an unorthodox thermal 

application in favourable conditions [2,190]. Typical pseudocapacitive electrode materials are 

transition metal oxides like ruthenium oxide (RuO2), magnetite (Fe3O4), Nickel(II) oxide 

(NiO), and manganese (IV) oxide (MnO2) and conducting redox polymers like polyanilines, 

polypyrroles, and polythiophenes, and the electrical energy storage processes in 

pseudocapacitors is illustrated  in Figure 2.12 below. The major difference of EDLCs as 

compared with other types of ECs is that no chemical redox reaction is associated with the 

energy storage process and charges are stored only on the electrodes surface. 
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Figure 2.12 Mechanism of charge discharge process for symmetric EDLC and energy storage 

mechanism for pseudocapacitor [192]. 

* Reprinted with permission from ECS J. Solid State Sci. Technol., 2013, 2, M3101–M3119. 

Copyright 2013, The Electrochemical Society. 

 

In comparison, fundamental self-discharge in pseudo-capacitive materials differs from carbon 

materials that display double-layer capacitance. This is because the charge transfer process in 

pseudo-capacitive materials is faradaic in nature as discussed earlier and involves various 

oxidation states which may correspond to different solid phases [193]. The reduction in 

potential of a completely charged pseudocapacitor over time is because of the diffusion-

controlled process of self-discharge, which is fixed when a higher surface area conducting 

materials like graphite is available [194], thus creating a relaxed state of oxidation [12]. 

Increased active prismatic sites due to higher surface area were thought to be an agent that 

quickens the rate of self-discharge [195]. Another feasible approach to investigate self-

discharge is to shift Nernst potentials for water decomposition. It was claimed that unwanted 

disintegration of electrolyte might take place on an electrode surface owing to the change of 

water decomposition potentials resulting from dissolved H2 and O2, which possibly 
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accelerates self-discharge of the entire capacitor when at rest. [95] The metallic impurity in 

electrolyte also significantly influences the self-discharge process [196–198]. Ions of Fe have 

been reported to show greater effect than other common metallic impurities on self-discharge 

rates, because of the shuttle effects of iron whereby Fe2
+ ions are oxidised at anode and Fe3

+ 

ions are reduced at the cathode [197].  

 

Recently the influence of charge redistribution on the self-discharge outline of EDLCs with 

porous carbon electrodes has been investigated [99,112,199]. The use of high surface area 

activated carbon tends to form pores of different sizes, ranging from macro to micro level. 

Thus, electrode charging/discharging cannot proceed evenly along the pore wall due to 

voltage gradient, which appears to result in self-discharge in an open-circuit state. The 

challenge of utilizing ECs as an alternative power source to batteries lies in their poor energy 

retention due to their fast self-discharge rate [200–202]. It should be noted that, in an ideal 

situation, a polarizable electrode without any leakage in an ideal situation does not encounter 

self-discharge, since self-discharge will only occur as a result of faradaic electron-transfer 

processes at and below maximum potential obtained during charging or when electrodes are 

not properly sealed up and some leakages exist. 

 

2.9 Distinguishable mechanisms of self-discharge. 

 

Obtaining an understanding of ECs mechanism(s) of current leakage or self-discharge, and 

the subsequent derivation and solution of ECs models, subject to a particular mechanism or 

combination of distinct mechanisms of self-discharge, is the only solution to problems of ECs 

self-discharge. Although self-discharge rates are presented for new arrangements, there is no 

methodical investigation in literature considering the fundamental principles of loss of charge 
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over time. Reduction and elimination of inherent self-discharge and the energy loss rate is 

crucial to investigation of ECs, self-discharge since great capacitance is needed in 

implementations of electric vehicles or cross-breed electric vehicles. Conway et al. [193,203] 

suggested mathematical models which indicated that distribution of self-discharge relied on 

three likely procedures of self-discharge as a guide to finding out the ECs self-discharge 

mechanism, which has been a major challenge for capacitors applications. It should be 

emphasized that their model was derived for a single electrode and not for entire capacitor 

and so the self-discharge outline of electrodes in the entire device will most likely to be 

different.  

 

An ECs known as Active Electrolyte Enhanced Supercapacitor (AEESC) has recently been 

presented by a number of research groups. In this type of ECs, the redox active types that 

produce great pseudocapacitance are disbanded in electrolyte, instead of being coated on the 

electrode's surface. Roldan et al., for instance  introduced hydroquinone (HQ) into H2SO4 

electrolyte of ECs using activated carbon or carbon nanotubes electrodes [204]. The electrode 

specific capacitance grew from almost 320 F g-1 in H2SO4 to 901 F g-1 in HQ/H2SO4 redox 

mobile electrolyte. The introduced HQ was oxidized into p-benzoquinone (BQ) near the 

anode [205] on charging, and p-benzoquinone BQ was reduced again to HQ on discharging 

the capacitor. Similarly, ferricyanide (Fe(CN)6
4−), iodide (I−), methylene blue and p-

phenylenediamine are equally used as redox mobile electrolytes and they greatly improved 

the ECs performance [206–210]. However, earlier studies were basically concentrated on the 

enhancement of specific capacitance by instigating mobile electrolyte and influences of 

mobile electrolyte on ECs. The self-discharge phenomenon was completely ignored [211], 

whereas the self-discharge rate is the implication of the energy sustainability of the energy 

storage system. Capacitors with a large measure of self-discharge are of little/no real-life use, 

because of the fast loss of stored energy. 
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Unfortunately, most scientists have not presented self-discharge rates of their active 

electrolyte enhanced supercapacitors and utilising a few illustrations it was discovered that 

self-discharge of AEESCs were quicker compared with those of EDLCs [22]. Since a high 

self-discharge rate is an inherent attribute of AEESCs, ignoring it will certainly result to 

overestimating the viability of the capacitors. Situations arising in self-discharge processes, 

which ought to be identified in correlation to the option of an exploratory blueprint and a 

fundamental principle of explaining its outcomes are as follows: (1) Self-discharge due to 

overcharged potentials of polarized electrodes, (2) Parasitic redox reaction of impurities like 

oxygen groups and metals in electrolyte and electrodes, (3) Possible short-circuit of anode 

and cathode from improperly sealed bipolar electrodes, (4) Non-uniformity of charge 

acceptance along surface of electrode material pores. 

 

2.9.1. Self-discharge due to overcharged potentials of polarized electrodes. 

 

When electrodes are polarized to overvoltage, the disintegration of electrolyte start to 

generate gases [95]. If an ECs has been charged higher than its electrolyte disintegration 

potential capacity, self-discharge that correlates with an unconstrained reduction in 

overvoltage owing to extra-charging current, emerges from a steady release across the 

double-layer, until the overvoltage approaches zero. If cell voltage is too high, the 

electrochemical decomposition of the solvent may occur due to limited electrode material 

stability and/or the solvent’s thermodynamic decomposition windows. The electrochemical 

decomposition of the solvent could produce gaseous products, leading to a pressure build-up 

inside the cell, thereby causing safety concerns and self-discharge [184,212–219]. Shuai et al. 

[22] introduced straightforward mathematical models to explain ECs charging and 
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discharging behaviors in the presence of electrochemical decomposition of solvent at 

constant cell current. They demonstrated from their models that it is better not to charge cells 

to the thermodynamic voltage of solvent decomposition for safe operation. They also pointed 

out that the build-up of product gasses such as O2 and H2 in a closed cell if, using aqueous 

electrolyte, may lead to mass transport limitations and also pressure build-up, which will 

have some impact on safety.  

 

Electrolyte decomposition-motivated self-discharge mathematically presented by Pillay and 

Newman [85], showed that small concentrations of break-down O2 and H2 in EDLCs could 

move the Nernst potentials for water disintegration in a way  that electrolyte disintegration  

may occur on the surface of the charged electrode and cause self-discharge when the charged 

capacitor is at rest. Ban et al [22] emphasized that for safe operation of the supercapacitor, it 

is better not to charge it to solvent thermodynamic decomposition voltage. They also noted 

that a build-up of product gasses such as O2 and H2 if using an aqueous electrolyte in a closed 

cell, may lead to mass transport limitations as well as pressure build-up, which will cause 

safety concerns, and self-discharge. 

 

2.9.2. Parasitic redox reaction of impurities like oxygen groups and metals in electrolyte 

and electrodes.  

 

Some species of ions in electrolyte are capable of being oxidized or reduced during reaction 

and, as a result, strengthen concentration of ionic species close to the electrode surfaces [12]. 

If ECs electrode materials and/or its electrolyte has adulterants which could be oxidized or 

reduced around a potential window, analogous to potential difference over capacitors during 

charging, the ECs then change to be reasonably non-polarizable. If the concentration of 
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adulterants available in the system is very low, redox self-discharge is referred to as 

diffusion-controlled. There is a ‘shuttle’ influence with ‘red’ and ‘ox’ types for redox 

adulterants; adulterants like Fe2
+, Fe3

+, O2, and H2O2 exchanges, interchanges and disperses 

between the EC’s anode and cathode. The metallic impurity in electrolyte also influences 

significantly the self-discharge process [196,197,220]. The presence of ions such as Fe, Mn, 

and Ti in electrodes of asymmetric ECs brings about the following: (i) an increase in leakage 

and/or self-discharge current, (ii) a decrease in discharge energy, storable energy, and 

coulombic efficiency, and (iii) a decrease in the overpotential progression of hydrogen and 

oxygen on negative and positive electrodes and capacitor operating voltage in general. 

During the long-time operation of the supercapacitor, the gradual transfer of impurities from 

carbon plates to the electrolyte and positive electrode will result in the destabilization of the 

EC’s parameters and reduction of its cycle life. 

 

Once the EC is charged, charges over the electric double layer should be conserved so as to 

store energy; electrons could move through the electric double layer and discharge stored 

charge via redox reactions on the electrode surfaces as presented in Figure 2.13a. The effect 

of these reactions is noticeable as leakage current that subsequently leads to self-discharge 

effects. Tevi et al [221] showed that an extremely-thin membrane of non-conducting 

substance could be used on the electrode surface to stop electron migration and decrease the 

escape of current in a bid to avert impending self-discharge as presented in Figure 2.13b.  
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Figure 2.13 Diagrammatic illustration of the electrode-electrolyte interface in electrochemical 

capacitors; (a) chemical reaction at electrode surface leads to loss of charge, (b) 

implementation of thin stopping membrane reduces rate of migration and improves energy 

stocking potential [221]. 

* "Reprinted from  J. Power Sources, Vol 241, T. Tevi, H. Yaghoubi, J. Wang and A. Takshi, 

Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in 

supercapacitors, 589–596 , Copyright (2013), with permission from Elsevier ".  

 

The basic cause of leakage current is faradic reactions at the electrode surface [193] and its 

value corresponds to the response measure. The measure of electron migration is dependent 

on the redox reaction decay potential E0, and applied voltage, V over double membrane. The 

leakage current grows more rapidly along with growth in applied voltage since the faradic 

reaction rate is related largely to over-potential in the Tafel equation [222]. Tete et al. [221] 

through their experiments demonstrated that deposition of the blocking layer could be utilized 

in making more competent ECs for implementations that require higher charge storage 

retention time, since leakage current was reduced by 78%, while specific capacitance and 

energy density was also reduced by 56%.  
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The results of research by  S. A. Kazaryan et al. [220], showed that in order to increase the 

accuracy of theoretical calculations and also provide for proper explanation of experimental 

results of energy parameters and self-discharge shuttle current in asymmetric ECs during 

their modelling, it is appropriate to note that oxidation and reduction of shuttle ions take place 

in the electrodes near surface layers. It also depends on the structure of the separator, 

temperature of electrolyte, and other parameters of the capacitor’s components. Besides, 

theoretical calculations of the self-discharge shuttle current become more complicated 

because oxidation and reduction take place in the porous volume of electrodes. S. A. 

Kazaryan et al. [197] carried out research on the effect of shuttle self-discharge determined by 

manganese and titanium ions on energy parameters, and charging and discharging voltage of 

asymmetric ECs. They established that in shuttle self-discharge of ECs with electrolyte 

containing manganese and titanium, mostly 

4MnO , Mn2+, Ti3+ and TiO2+ ions, respectively 

were involved. They showed that in a stationary condition and at electrolyte’s temperature T 

= constant, self-discharge current density SDISJ , is expressed using a continuity equation by 

the following formula: 
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where e is electron’s absolute charge, Z is rate of charge variation when ions are 

oxidized/reduced, N is the total concentration of shuttle ions in electrolyte, d is the thickness 

of separator, S  and S are surface rates of oxidation and reduction of ions, respectively, D

and D are coefficients of diffusion of oxidized and reduced ions respectively. Also, shuttle 

self-discharge current SDISI  determined by iron ions Fe2+ and Fe3+ are expressed by: 
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where FeN  is total concentration of iron ions Fe2+ and Fe3+ in electrolyte, S is surface area of 

separator, 3FeS is surface rate of oxidation of ions Fe2+, 2FeS  is surface rate of reduction of 

ions Fe3+, 3FeD and 2FeD are coefficients of diffusion of Fe3+ and Fe2+ ions in separator filled 

with electrolyte. Again, quasi-maximum value of self-discharge current they obtained 

equation 2.9: 

d
SNeDI Fe

SDIS 2
                                                                                                                     2.9 

Faradaic charge transfer could be created by confined overcharging or adulterants [95]. If 

faradaic phenomenon is diffusion controlled, potential variations correspond to the square 

root of self-discharge time t [193]. Pseudo-capacitive faradaic reactions for capacitors using 

activated carbon electrodes were explained [223,224]. 

 

There are two fundamental types of self-discharge mechanisms in electric double-layer 

capacitors (EDLCs) [85,193,225–227]. One has the driving force of the anionic concentration 

gradient, xc  / (c is ionic concentration, varying with distance x from interface of electrode 

and electrolyte), and the other is driven by potential field, VU  (V is voltage held by 

EDLCs). Self-discharge is a spontaneous process in which ions diffuse out of the double 

layer to reach its equilibrium of disorder [85,193,225,226] during which the voltage of ECs 

will decrease accordingly and energy stored in the double layer of packed ions will also 

dissipate. Chemical reactions barely exist in double layer charge structures, and so, the 

driving force for self-discharge will either be the concentration gradient, xc  / or the 

potential field, ΔU [85,225,226].  
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Zhang et al. [226] proposed and demonstrated the reliability of divided potential driving 

(DPD) model 

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expexp in fitting and characterizing this type of self-

discharge, where the potential field is the dominating driving force for SWNT–TEABF4 ECs 

self-discharge, and fV and sV are the first and second single potential-driving process (SPD), t 

is time, f is potential-driving self-discharge of the first SPD process (electrolyte ions with 

slower self-discharge rate) and f is potential-driving self-discharge of the second SPD 

process (electrolyte ions with faster self-discharge rate). The causes of DPD self-discharge 

model instead of single exponential decay 






 




tVV exp  is still not clear but is predicted to 

be closely related to recognizable groups fastened to the SWNT surface, because 

heterogeneity on electrode surface chemistry would create two types of interactions between 

ions and electrode at the electrode/electrolyte interface. 

 

Properties of carbon materials are greatly affected by chemisorbed oxygen in the form of 

various functional groups [228] and  altering the quantities and species of attached functional 

groups, properties of carbon materials such as hydrophilicity [229] or electro-conductivity 

[230,231] can be manipulated. Thus, the performance of electrode materials in various areas 

such as electrocatalysts [232], gas adsorption [233], gas sensing [234,235], thermal sensing, 

composite strengthening [236–238], and electrochemical performance [239,240] can be 

effectively manipulated. They were able to gain insight into the triggering effects of the 

surface functional groups on DPD self-discharge performance and to tune self- discharge by 

means of surface chemistry modification by tracing SWNT ECs self-discharge performance 

with varied functional groups.  
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Zhang et al. [241] reported that self-discharge mechanisms of ECs built with single-walled 

carbon nanotubes (SWNTs) demonstrated the effects of surface chemistry on self- discharge 

by its interference in electrostatic interaction between electrolytic ions and the SWNT 

surface, and also explored the tunability of self-discharge. They also showed that divided 

potential driving process is the result of functional groups which create relatively weak 

bonding between ions and the charged electrode surface, making ionic diffusion out of 

Helmholtz layers much easier. Nohara et al. [12,242,243] investigated self-discharge 

characteristics of an EDLC constructed with polymer hydrogel electrolyte formulated from 

connected potassium poly (acrylate) (PAAK) and an aqueous solution of potassium 

hydroxide KOH. The possible side-reactions are predominantly as follows [12,244]: (i) 

shuttle effects by adulterants in carbon material or leftover oxygen (ii) hydrogen and oxygen 

advancement for aqueous solution (iii) decomposition of electrolyte constituent, etc,.  These 

outcomes strongly predict that PAAK is linked to the prevention of side reactions like the 

shuttle effect by adulterants and micro-short circuit by fine carbon fibres. Shinyama et al. 

[243] showed from their experimental result that the self-discharge reaction is effectively 

prevented by confinement of redox shuttle substances like nitrogen-containing compounds in 

the sulfonated polyolefin (S-PO) separator until the concentration of redox shuttle substances 

becomes more than the confining strength of the S-PO separator. 

 

The shuttle effects between the capacitor electrodes is the main explanation for fast self-

discharge of active electrolyte enhanced supercapacitors (AEESCs), as designated by the 

investigation of a single electrode and also shown in Figure 2.18 below. The quicker self-

discharge process in AEESCs is due to the migration of electrolysis products of active 

electrolyte which are soluble in electrolyte and diffuse from one electrode to another through 

the separator during charging/discharging. The AEESCs fast self-discharge due to the shuttle 

effect of ions are suppressed by using an ion-exchange membrane as a separator or choosing 
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a special active electrolyte, which is convertible into insoluble species during charge-

discharge cycles. 

 

Figure 2.14: Schematic illustration of the mechanism of charge and self-discharge of active 

electrolyte improved supercapacitor, AEESCs [245].  

*Reprinted with permission from [L. Chen, H. Bai, Z. Huang and L. Li, Energy Env. Sci, 

2014, 7, 1750–1759] - Published by The Royal Society of Chemistry. 

                                                                                                                                                                                                                                                               

Chen et al. [245], in attempt to stop defection of mobile electrolyte between two electrodes, 

originated two fundamental master plans: (1) utilization of an ion-exchange membrane 

separator which is capable of stopping defection of mobile electrolyte in ECs  as shown in 

Figure 2.19a; and (2) utilization of a peculiar mobile electrolyte that is transformed to non-

soluble species which are adsorbed onto electrode during electrochemical reaction 

(electrolysis) in the charge phenomenon as shown in Figure 2.19b. They confirmed from their 

experimental result that when Nafion® 117 membrane separators or CuSO4 mobile 

electrolyte were used, self-discharge of AEESs was greatly reduced to the barest minimum. 

This result demonstrated that the EC fast self-discharge process can be successfully 

suppressed by applying an ion-exchange membrane separator or CuSO4 mobile electrolyte. 

This gives insights to the modern day design of capacitors with great capacitance and high-

ranking energy retention. 
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Figure 2.15 Two master plans for preventing the defection of the mobile electrolyte among 

electrodes: (a) Utilizing ion-interchange layer separator; (b) Using a peculiar mobile 

electrolyte that is transformed into insoluble sorts on charge phenomenon [245].  

*Reprinted with permission from [L. Chen, H. Bai, Z. Huang and L. Li, Energy Env. Sci, 

2014, 7, 1750–1759] - Published by The Royal Society of Chemistry. 

 

Wang et al. [246] reported hybrid ECs that utilizes both faradaic and capacitive energy 

storage in the same device using soluble redox species. They also showed that a polarizable 

electrode in a charged device retards diffusion of oppositely charged redox ions to mitigate 

self-discharge and also showed that the cell does not require an ion-exchange membrane 

separator for short time-scale energy storage. Recently, Chun et al. [247] reported on an 

aqueous redox-enhanced ECs with low self-discharge without an ion-discriminating separator 

due to adsorption of soluble redox couples in a charged state to the activated carbon 

electrode, as compared with devices that utilise inert electrolyte. They showed that the 

obtained low self-discharge is due to physical adhesion of oxidized species throughout the 

activated carbon surface to prevent cross diffusion, and also that negatively charged oxidation 

products are electrostatically kept in the double layer of a positively charged electrode.   

 



 

72 
 

2.9.3. Possible short-circuits of the anode and cathode from improperly sealed bipolar 

electrodes (leakage current). 

 

ECs are potential energy storage devices due to their long life cycle and power density but are 

limited by high leakage current or self-discharge, which they exhibit in some real-life 

implementations [85]. The leakage is basically influenced by redox reactions at the electrode 

surface from where electrons move across the double layer. Tete et al. [221] have shown 

experimentally that a thin-blocking layer coating on the electrode's surface enhances energy 

retention ability by reducing current leakage, but compesates with a reduction in specific 

capacitance. Tevi and Takshi [248] developed a model that has straightforward quantum 

mechanical and electrochemical processes occurring throughout self-discharge activity to 

simulate the discharge outline and specific energy of ECs with blocking layers of different 

thicknesses. This model utilized basic physical and electrochemical representations of redox 

reactions at the electrode-electrolyte interface while examining the influence of the blocking 

layer on EC features. It was noticed that the model was able to describe outcomes from their 

earlier experiments [221]. It might possibly be employed as an instrument to predict 

electrochemical conducts of the blocking layer for specific width in existing EDLCs. Thus, 

this might play a role in choice of the optimum blocking layer material and width to minimize 

leakages for given applications. 

 

2.9.4. Non-uniformity of charge acceptance along the surface of electrode material pores 

(charge redistribution). 

 

This is a perceivable self-discharge over comparably small times, resulting from the 

interference of polarizing currents at porous-carbon electrodes due to non-uniformity of the 
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charge receipt down and within pores. Recent papers [99,199,249] explained a model of 

charge redistribution inceptively suggested by Conway et al. [193] in porous electrodes. The 

model illustrates that the ‘memory’ effect of charge redistribution, which is contrary to self-

discharge, might result from voltage growth. EC voltage reduces during the charging process 

due to the charge redistribution phase and grows during discharging as a result of charge 

redistribution. The voltage changes of this EC are due to finite conductance of electrolyte at 

outer pores which leads to a voltage drop along the electrode thickness. Therefore, it takes 

charges much less time to move through the macro-pores at the electrode entrance than meso-

pores and micro-pores, which are at electrode bottom. Due to this fact, superficial portions of 

pores are charged or discharged faster compared with the interior portion, and this produces 

ion concentration gradients in ECs. 

 

Principally, if enough time is allowed after tye charging process, capacitance will evacuate 

charge from larger pores that are inceptively completely charged [250]. If EDLCs were 

charged and discharged to zero voltage, its voltage voluntarily regains itself at resting 

situations to a fragment of the inceptive voltage value [196,199,251]. The ‘memory’ and 

‘self-discharge’ influences that are available after the EDLC charging and discharging 

process and with regards to energy acquired or released, cannot be comprehensively 

described. De Levie presented that charge/discharge phenomena do not occur with an 

equivalent time constant in every part of electrode material [105], because of restricted 

conductance of electrolyte that causes voltage decay along pores. However, when the 

capacitor is briefly charged, the majority of ions remain situated at the pore mouth, leading to 

a definite ion concentration gradient alongside the pores.  

 

Experiments and modelling by Kaus et al. [99] clearly showed that most of the perceived 

reduction in voltage is not due to genuine self-discharge, because self-discharge is 
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authentically ascribed to the process in which charge bearers are consumed in side reactions 

and were not obtainable/accessible for discharge. Kaus et al. [99] noticed that very prolonged 

charging time results in a considerable decline in voltage of the capacitor in storage 

conditions, due to the redistribution effect which happens alongside pores, providing ions 

with sufficient time to move to extensive pore designs like meso- and micro-pores as was 

clearly shown in Figure 2.16 below. In fact, “self-discharge” should be employed very 

cautiously [249] as ECs voltage change while at rest and cannot be completely characterized 

by self-discharge. Self-discharge phenomena form only a portion of ECs voltage decays 

while at rest [99,249] unlike in battery technology, where self-discharge is the sole reason for 

open circuit voltage decay and charge loss. The EDLCs voltage increase and proportionally 

fast decay are basically due to charge redistribution phenomenon in pore formation and its 

interfaces [252]. Charge redistribution is a process in EDLCs where charge bearers are 

distributed or relaxed due to concentration slopes [99,107,249]. This differs from self-

discharge whereby charge bearers are subject to side reactions and are consumed as in 

pseudocapacitors or asymmetric capacitors that employ metal oxides and conductive 

polymers. 
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Figure 2.16 Schematic illustration of  ion dispensation model for various charge periods: left, 

long charging; right, short charging [249]. 

* "Reprinted from J. Power Sources, Vol. 196, J. Kowal, E. Avaroglu, F. Chamekh, A. 

Šenfelds, T. Thien, D. Wijaya and D. U. Sauer, Detailed analysis of the self-discharge of 

supercapacitors , 573-579, Copyright (2011), with permission from Elsevier ".  

The charge bearers are not consumed. They sink down into the pores [249]. ECs charge 

redistribution emerged from electrode pores, which are normally compact with large exterior 

areas at the interface of electrode and electrolyte. This improves the charge stored inside 

capacitors, which in turn create notable spreading and defection restrictions during charging 

and discharging [105,253]. In line with the physics of supercapacitors, the interface 

electrochemistry illustrates that RC web where resistors mainly show resistances to carbon 

molecules, ECs illustrate capacitances in electrodes and electrolyte [102] and can describe 

capacitors behaviours [254]. In addition to ECs physics [105,199,252,255], ECs equivalent 

circuit models can also be used to understand charge redistribution procedures.  

In order to minimize model difficulty, straightforward equivalent circuit models that normally 

have a minimum of two RC branches to consider ECs charge redistribution have been 

proposed [99,104,254,256–259]. Available works on the charge redistribution of ECs, which 

concentrated solely on procedures of charge redistribution and voltage decay or gain 

throughout charge redistribution, were probed in [193,199,248,252], while those of low ionic 

mobility in supercapacitors micro-pores was suggested in [260]. Based on results by Kowal et 

al. [249], extreme carefulness is needed in order to use the term “self-discharge” more 

accurately. In earlier research articles, a mathematical model of an EC's self-discharge 

processes could be sufficiently represented by taking capacitor to be a capacitance C in 

parallel with steady leakage resistance PR  [206]. 
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2.11 Progress made in EDLCs and pseudocapacitors self-discharge. 

 

It is appropriate to use cleaner electrode materials and materials of other components in 

capacitors and also to make use of advanced technology in their manufacture, in order to 

reduce self-discharge. However, as the purity of activated carbon powders increases and new 

manufacturing technologies of capacitor components are employed, the overall cost grows 

and competitiveness declines. Most importantly, very low self-discharge or an outstanding 

energy retention potentiality could be obtained by modification of electrode/electrolyte 

design and several other approaches which are presented in Table 2.1. 

 

Table 2.1: Chronology of research dedicated to self-discharge in electric double layer 

capacitors (EDLCs) and pseudocapacitors. 

Researcher(s) 
 

Year Supercapacitor  
type 

Self-discharge 
Mechanism 

Approach used 

S. Nohara et 
al. [242] 

2006 Symmetric 
EDLCs  
 

Leakage current due to 
shuttle reactions by 
adulterants and micro-
short circuit by carbon 
fibres 

Use of  cross-linked potassium poly (acrylate) 
and high polymer content of polymer hydrogel 
electrolytes 

SA Kazaryan 
et al [261], 
SA Kazaryan 
et al [197,220] 

2007, 
2007, 
2008 

Asymmetric 
supercapacitors 

Shuttle effect due to 
impurities  

Use of carbon powder (pure) with specific 
capacitance and design for carbon plate 
manufacture 

K. Chiba et al 
[213] 

2011 Symmetric 
EDLCs  

Redox ions shuttle 
effect 

Use of linear sulfones electrolyte systems: Ethyl 
isopropyl sulfone (EiPS) and Ethyl isobutyl 
sulfone (EiBS) 

K. Chiba et al 
[262] 

2011 Symmetric 
EDLCs  

Redox ions shuttle 
effect 

Introduction of methyl substituent into both the 
4th and 5th positions for the 2, 3-butylene 
carbonate (2,3BC) electrolyte system 

M. Kaus et al 
[99] and J. 
Kowal [249] 

2010, 
2011 

Symmetric 
EDLCs  

Redistribution of 
charge carriers into 
deeper micropores 

By allowing enough charging and discharging 
time (between 2 hours and 5 days)  

S. Ban et al 
[22] 

2013 Symmetric 
EDLCs  

Leakage process and 
electrochemical 
decomposition of 
solvent 

The anode and cathode bipolar electrodes are 
properly sealed and the cells are not charged to 
a thermodynamic voltage of solvent 
decomposition. 

T. Tevi et al 
[221] 

2013 Symmetric 
EDLCs  

Electron transfer and 
leakage current 

Use of an ultra-thin layer of insulating material 
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F. Soavi et al. 
[263] 

2014 An IL-based 
EDLCs 

Current leakage and 
charge redistribution 

Use of  ILs with pure N-butyl-N-methyl-
pyrrolidinium  bis 
(trifluoromethanesulfonyl)imide (PYR14TFSI) 
and N-methoxyethyl-N-methylpyrrolidinium 
bis(trifluoromethanesulfonyl)imide  

Q. Zhang et al. 
[241] 

2014 SWNT based 
symmetric 
EDLCs  

Functional group-
dependent self-
discharge 

Method of electrodes surface chemistry 
modification 

B. Wang et al. 
[246] 

2014 Hybrid Redox-
supercapacitors 

Diffusion of the 
oppositely charged  
ions 

Use of soluble redox species (electrolytes ) to 
mitigate self-discharge 

L. Chen et al. 
[245] 

2014 Asymmetric 
supercapacitors 

Defection of the active 
electrolyte (shuttle 
effect) 

Use of ion exchange membrane separator or 
CuSO4 active electrolyte 

T. Tevi and A. 
Takshi [248] 

2015 Symmetric 
EDLC 
supercapacitors 

Charge loss by 
Faradaic (redox) 
reactions at electrode 
surface. 

Use of thin blocking layer that reduces kinetics 
of redox reactions 

S. Chun et al 
[247] 

2015 Redox EDLCs Cross diffusion of 
oppositely charged  
ions 

Use of soluble redox sorts that produce 
negatively charged oxidation products  that are 
kept electrostatically in the double layer of 
positive electrode; and use of physical 
adhesion of oxidized sorts throughout activated 
carbon surface to prevent cross diffusion 

 

2.12 Summary  

 

 

The use of cleaner electrode materials and components from other capacitors, together with 

the use of advanced technology in their manufacture, will reduce self-discharge. Many 

impure shuttle ions penetrate into the crystal lattice of active materials during a capacitor’s 

operation which decays capacity parameters, the life cycle of positive electrodes and entire 

capacitors, as well as creating increased leakage current/self-discharge current.  

 

Modeling of complete self-discharge by an equivalent circuit produces acceptable simulation 

outcomes and permits assessment of self-discharge and losses in stored energy for various 

ECs. Short-circuiting between cathodes and anodes, due to improperly fastened bipolar 

electrode specifications, was seen as an insignificant origin of self-discharge. No single 

mechanisms of the self-discharge process can fully explain the practical processes of an EC’s 
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self-discharge, especially with large capacitance. A hybridized procedure of ECs self-

discharge is urgently needed. Tuning self-discharge rates of SWNT ECs is feasible via 

surface chemistry modification and is a significant step in the study of self-discharge in ECs 

which will benefit potential applications for energy storage. 

 

The self-discharge process in ECs can also be effectively suppressed by utilizing an ion-

interchange layer (ion-exchange membrane) separator or CuSO4 mobile electrolyte that is 

convertible to an insoluble species by electrolysis during charging. This will help in an up-to-

date blueprint of ECs with great capacitance and improved energy sustainability. It is 

appropriate to develop a new general theory of self-discharge for modern electrochemical 

capacitors, in order to progress technology for the manufacture of ECs of different kinds, 

create new ECs with optimal designs and improve energy capacity and operation parameters, 

subject to their different self-discharge mechanisms. It was proposed in this review that EC 

models should be developed and solved subject to combination of distinct mechanisms of 

self-discharge during charging, discharging and storage condition, in order to enhance the 

performance. 
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CHAPTER THREE 

 

3.0 Derivation of the Models 

 

3.1 Homogeneous/symmetric electric double layer capacitors with electric double layer 

(EDL) electrodes. 

 

Figure 3.1: A symmetric electric double layer capacitor (EDLC) showing various functional 

layers on macroscale 

 

3.1.1 For the negative electrode of electric double layer capacitors.  

 

The following assumptions were made in order to simplify the model: 

1) The rates of generation of charge carriers (charge generation) are much smaller than the 

rates of recombination of charge carriers (self-discharge);  
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2) The electrodes are carbon plate based on activated carbon powders with p-type 

conductivity,ie., it is electron conductivity;  

3) The electrodes have self-discharge;  

4) The concentrations of ions of electrolyte and conductivity of the electrode's pore do not 

vary during charging and discharging;  

5) Capacitance depends very little on the value of potential;  

6) The temperature is constant and uniform;  

7) There were no ohmic (short-circuiting) leakage currents among cathodes and anodes in 

unsuitable  secured bipolar electrodes;  

8) Side-reactions or reactions of active redox species, several impurities and the instability of 

the electric double layers are responsible for self-discharge processes; and  

9) All thermal influences were ignored.  

Density changes of the electric charges  tx,1  and  tx,2  of an electrode during charging 

and discharging of electrochemical capacitors (ECs) are determined by equations of 

continuity given below [12,89]:  

 
     txRtxGtxJdiv

t
tx ,,,,

111
1 


                                                                                 3.1

 
     txRtxGtxJdiv

t
tx ,,,,

222
2 


                                                                            3.2 

where  tx,1  and  tx,2  are charge densities of free carriers in the electrode and 

electrolyte, respectively;  txJ ,1  and  txJ ,2  are current densities in the electrode and 

electrolyte respectively;  txG ,1  and  txR ,1  are rates of generation and recombination of 

charge carriers in the electrodes respectively;  txG ,2  and  txR ,2  are rates of generation and 

recombination of charge carriers in electrolyte, respectively. 
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Rate of generation and recombination of charge carriers in the electrodes and electrolyte are 

respectively presented as: 

 txG ,1 =  txJVG ,1                                                                                                                   3.3 

 txR ,1 =  txJVR ,1                                                                                                                     3.4 

 txG ,2  =  txJVG ,2                                                                                                                 3.5 

 txR ,2 =  txJVR ,2                                                                                                                    3.6 

where  txJVG ,1 ,  txJVR ,1 , and  txJVG ,2  ,  txJVR ,2  are current densities of generation and 

recombination of charge carriers in electrodes and electrolyte, respectively.  

Electric charge in any point of the electrode with DEL should be compensated and is given 

as: 

 txJVG ,1 =  txJVG ,2  =  txJVG ,                                                                                             3.7 

 txJVR ,1  =  txJVR ,2  =  txJVR ,                                                                                              3.8 

Case one. 

When an electrode is polarizable and has electron conductivity in a solid matrix, the electric 

double layer (e/Z+) consists of electrons (e) and positive ions (Z+), and current densities 

 txJ ,1  and  txJ ,2  are determined by the formula given below: 

       txDtxEtxJ pe
s
ne ,,, 111                                                                                          3.9

     txDtxEtxJ l
ne ,,, 222                                                                                     3.10 

where De and D+ are diffusivity coefficients of main charge carriers of matrix and positive 

ions of EDL respectively; s
ne and l

ne are conductivity of electrode and electrolyte 

respectively;  txE ,1  and  txE ,2  are electric field intensity in electrode solid matrix and 

electrolyte, respectively. 
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Case two. 

When an electrode is polarizable and has hole conductivity in a solid matrix, the EDL (e/Z+) 

consists of electrons (e) and positive ions (Z+), and current densities  txJ ,1  and  txJ ,2  are 

determined by the expression below: 

       txDtxEtxJ ep
s
ne ,,, 111                                                                                       3.11

     txDtxEtxJ l
ne ,,, 222                                                                                         3.12 

Recall that potentials  tx,1  and  tx,2  are related to  txE ,1  and  txE ,2 by expressions 

given below: 

   
 
x

txtxtxE





,,, 1
11


                                                                                          3.13 

   
 
x

txtxtxE





,,, 2
22


                                                                                         3.14 

where  tx,1  and  tx,2 are potential (in relation to pzc) of solid matrix and electrolyte in 

the area of EDL. Examining the dependence of the parameters of EDLC whose solid matrix 

has electron or hole conductivity on polarizable electrodes potential, conductivity of solid 

matrix of electrode is represented as: 

pn
s
ne epen  00                                                                             3.15 

where 0n  and 0p are equilibrium concentrations of free electrons and holes of the solid matrix  

( in the area of pore walls), respectively; n  and p  are effective mobilities of electrons and 

holes of the solid matrix, respectively, n  and p are dependent on the porous structure and 

electrophysical properties of pore walls. Conductivity of liquid (electrolyte) in electrodes 

should also be represented as: 







   00 neZneZl
ne                                                                                           3.16  

where 

0n  and 

0n  are equilibrium concentrations of positive and negative ions of electrolyte 

in the pores of the electrode respectively; eZ+ and eZ− are the amount of charges of positive 
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and negative ions, respectively;  and  are effective mobilities of positive and negative 

ions, respectively. Conductivities in the electrode solid matrix pore walls and electrolyte in 

the pores of the electrode solid matrix are respectively determined by[89]: 

  pn
s
ne epnne  00                                                                                              3.17 

  





   00 neZnneZl
ne                                                                                  3.18 

where ∆n and  n are non-equilibrium concentrations of free electrons and positive ions in 

polarizable electrode pores. 

The polarizable electrode is electrically neutral, not withstanding that the electric charge is 

accumulated in it during the capacitor’s charging process. The electric neutrality is always 

retained in the elementary unit v  of the capacitor, i.e. 

       0,, 21 dvtxtxv 


                                                                                        3.19 

The capacitance of EDLC may be adequately characterized by the formula of capacitance of 

a capacitor with flat plates  fcC : 

d
A

C fc
0

                                                                                                                       3.20 

where ε is the dielectric permittivity of the medium between the plates; 0 is the dielectric 

constant; A is surface area of the capacitor’s plate, and d is distance between the plates. 

It follows from equations 3.17, 3.18 and 3.19 above that density of non-equilibrium charges, 

potentials of polarizable electrode solid matrix and electrolyte are related by: 

   txdCtxd V ,2, 11                                                                                                           3.21 

   txdCtxd V ,2, 22                                                                                                           3.22 

where CV  (F/cm2) is specific (by area) capacitance of  electrode;  tx,1 and  tx,2  are the 

potential (in relation to the pzc) of the negative electrode matrix and electrolyte in the area of 

EDL respectively. 



 

84 
 

It again follows from Equations 3.21 and 3.22 that ∆n (x,t), ∆p (x,t), ∆n+(x,t), and ∆n− (x,t) are 

related to each other by these expressions [89]: 

 
e

txCn V ,2 1                                                                                                                3.23 

 
e

txCp V ,2 2                                                                                                                  3.24 

 
 

 
eZ

txCn V ,2 2                                                                                                                3.25 

 
 

 
eZ

txCn V ,2 1                                                                                                              3.26 

Substituting the values of non-equilibrium charge carriers from Equations 3.23-3.26 into 

Equation 3.17 and 3.18 and considering Equations 3.13 and 3.14, we obtain expressions for 

conductivity of the polarizable electrode's solid matrix and electrolyte in electrode pores for 

the above-mentioned cases respectively: 

Case one. 

 
p

V
n

s
ne ep

e
txCne 


 0

1
0

,2









                                                                          3.27 

 
  









 







 


 0

2
0

,2 neZ
eZ

txCneZ Vl
ne                                                                         3.28 

Case two. 

 










e
txCpene V

pn
s
ne

,2 1
00


                                                                                 3.29 

 
  









 







 


 0

2
0

,2 neZ
eZ

txCneZ Vl
ne                                                                         3.30 

It was assumed that conductivity of the electrode matrix under consideration is electron (case 

one), and also that G(x,t) = 0. By substitution of appropriate expressions from equations 3.27, 

3.28, 3.21, and 3.22 into Equations 3.9 and 3.10 in place of s
ne , l

ne ,  txd ,1 and  tx,2 , we 

obtain the expressions for  txJ ,1  and  txJ ,2  respectively: 
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 
      

x
txCD

x
txep

e
txCnetxJ Vep

V
n
























,2,,2, 11
0

1
01





                             3.31 

 
 

 
    

x
txCD

x
txneZ

eZ
txCneZtxJ V

V





















 









 ,2,,2, 22
0

2
02





                  

3.32 

The specific capacitance VC at great deviations of capacitor electrode potential from potential 

of pzc becomes a function of potential in Equations 3.31 and 3.32, i.e,  VV CC  . Although, 

results of research of capacitances of different types of electrochemical capacitors with EDL 

showed that at small deviations of electrodes potential, value of  VC  depends very little on 

value of potential. On substitution of Equations 3.31 and 3.32 into Equations 3.1 and 3.2 

subject to Equations 3.21 and 3.22, and after necessary transformation, we obtain the given 

system of differential equations: 

 
 

   
 

 



































x
txDCep

e
txCnediv
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tx

eneVp
neV

n
neV

,2,2
2

1, 111 

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



      

 
 neV

VR

C
txJ

2
,

                                                                                                                                                3.33 

 
 
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 








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
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
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


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
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

 DCneZ
e

txCneZdiv
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neV

neV

neV
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


 2,2
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1, 22    
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 neV
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txJ
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



2
,,2 






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                                                                                                     3.34 

where  txne ,  is specified as    txtx ,, 21   . 

Assuming that capacitance does not depend on capacitor electrode potential and that 

concentrations of charge carriers in pore walls and electrolyte of EDL respectively is greatly 

lower than the equilibrium concentrations, then capacitance is no longer a function of 

electrode potential. 



 

86 
 

 
e

txCn V ,2 1
0


                                                                                                                   3.35

 


 
eZ

txCn V ,2 2                                                                                                                  3.36 

 Introduction of the notations: 

Ve
s
ne CD21                                                                                                                    3.37

V
l
ne CD 22                                                                                                               3.38  

where 1 and 2 are electrodes and electrolyte effective conductivities  respectively. The 

electrolyte effective conductivity in electrodes ( e2 ) and separator ( sp ) respectively is  

presented by Newman, [264] as:  

   electrodesinCD eV
l

e
5.1

2 2                                      3.39

   separatorinCD spV
l

sp
5.1

2 2                                                3.40 

where e is porosity of electrodes , sp is porosity of separator. 

Recall that electronic current  txJ ,1 and ionic current  txJ ,2  are given by equations 3.41 and 

3.42 respectively: 

   txtxJ ,, 111                                             3.41

   txtxJ ,, 222                                            3.42 

The total current in the electrodes is the sum of the electronic current  1J and ionic current

 2J , and the entire current in the separator is carried by ions. For conservation of overall 

charge, we note that:  

021 JJJ                                                                                                        3.43 

From equations 3.41 and 3.42, it can be written that the sum of electronic and ionic currents, 

potential drop in solid and liquid-phase, and in the separator where the entire current is by 
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ions with migration current as the dominating mechanism are: 

   
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2
2

1
1

,, J
w

tx
w
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ee













                                   3.44

 
1

0
1 ,


 ewJtx                                                                                                                      3.45

 
2

0
2 ,


 ewJtx                                                                                                                      3.46 

 
2

0
2 ,




sp
s

wJ
tx                                                       3.47 

Conventionally, effective conductivity of electrodes is considerably larger than the 

effective conductivity of electrolyte in the electrochemical capacitors [93]. Thus the 

potential drop in the solid phase is considerably smaller than the potential drop in the 

liquid phase. The potential drop in the liquid phase of each electrode during charging or 

discharging can, at most, be equal to half of the entire cell voltage. It can then be written 

that:  

 
2

,2
cellVtx                       3.48    

The limit of potential drop and electrodes length [ ew ] over which the liquid potential drop 

occurs are determined by the following expression: 

0

2

0

2

22
][

J
V

J
Vw cellcell

e


                                                                                                        3.49 

The typical length scale [ ew ] over which the liquid-phase potential drop happens on 

electrodes, can be defined as the minimum value among electrode thickness ew and 

electrode length [ ew ] over which the liquid potential drop occurs: 
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2                                    3.50                                        

The ratio of electrode thickness ew to length scale [ ew ] over which liquid phase potential 

drop occurs on electrodes, which is the determining factor for estimating the length scale in 

electrodes for the liquid phase potential drop is determined by: 

  cell

e

e

e

V
wJ

w
w

2

02


                                               3.51 

Electrodes utilization u in the capacitor with electrolyte of specific effective conductivity

2  and electrodes thickness ew charged at a given current density 0J is given as:  

%100.
2

%100.1%100.][
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2

e

cell

e

e

wJ
V

w
wu 


                                                                        3.52 

Using the approximations and notations of Equations 3.35 & 3.36, and Equations 3.37 & 3.38 

respectively, Equations 3.33 and 3.34 now becomes: 

     
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x
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2
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

 
                                                                                    3.54 

Multiplying Equation 3.53 by 2  and Equation 3.54 by 1 , and subtracting Equation 3.54 

from 3.53 term by term, one differential equation for potential  txne ,  of negative electrode 

is obtained as below [89]:  

     

V

VRnene

C
txJ

x
tx

t
tx ,,,
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2
2 




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
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
                                                                                    3.55

 12

212









VC
                                                                                                                  3.56 

     txJtxJtxJ VRVRVR ,,, 21                                                                                                3.57 
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Equation 3.55 describes the variation of electrode potential with space and time, it is 

applicable to both Case one and Case two since the only difference is whether the 

conductivity is by electron or hole. The solution of Equation 3.55 subject to the specific or 

combination of different mechanisms of self-discharge makes it possible to investigate 

influence of mechanisms and parameters of self-discharge capacitor performance. It is 

therefore, possible to obtain the potential dependence of a polarizable negative electrode on 

its overall dimensions, physical, electrochemical, and capacitance parameters, at any point in 

time t during capacitor charge and discharge using the solution of differential Equation 3.55. 

 

3.1.2 Self-discharge mechanisms in symmetric and asymmetric electrochemical 

capacitors. 

 

It was assumed that the sources of self-discharge here are side-reactions, or reactions of 

active redox species and several impurities in electrodes, electrolytes, separator, current 

collectors of the device and various functional groups on CNTs electrodes. Side-reactions 

perform a largely dominant role in considering the mechanism of self-discharge. The side-

reactions, or reactions of the active redox species, several impurities and the electric double 

layer’s instability are responsible for the self-discharge processes. 

The shuttle self-discharge current density of ECs has previously been given by Kazaryan et al  

[198] as: 








 













DD
DD

ss
ssw

eZNJ

sp

VRM                                                                                            3.58                                                                                                                        

where e is the electron’s entire charge, Z is the rate of charge's change when ions are oxidized, 

N is the entire concentration of shuttle ions in electrolyte, (mol/cm3), spw is the separator 
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thickness, s+ is the surface rate of ionic oxidation, (cm2/s), s− is the surface rate of ionic 

reduction, (cm2/s), D+ is the diffusivity coefficient of oxidized ions in the separator’s pores 

filled with electrolyte,(cm2/s), D− is the diffusivity coefficient of reduced ions in the 

separator’s pores filled with electrolyte, (cm2/s). 

 

Some mechanisms of self-discharge in symmetric and asymmetric electrochemical 

capacitors are explained by the following equations: 

 

Some mechanisms for reversible reactions into soluble components, one insoluble component 

and reversible redox active species into either soluble or insoluble species of self-discharge in 

symmetric and asymmetric ECs are explained by equations 3.59, 3.60 and 3.61 respectively: 

 enOx e ⇌  R                                                                                                                  3.59 

  enM e
n  ⇌  M                                                                                                             3.60 

P  ⇌   enHnQ ee                                                                                                           3.61 

whereOx  is the oxidized species, R is the reduced species, M is the metals such as iron, 

manganese, and titanium, etc., en is the number of electrons transferred per molecule of 

reactant, P is the redox active species, Q is the reduced species, H is the hydrogen ion and 

e  is the electrons.  

The condition in which expression 3.59 is precisely followed is determined by obtaining the 

solution of Fick’s second law (equation 3.62) [265,266] under initial condition that

    OxiOxOx CtCtxC  ,0, , and the boundary conditions that     OxiOxOx CtCtxC  ,0,  and 

    OxOxOx CtCtxC  ,, : 

   
2

,
2

,

x
C

D
t

C txOx
Ox

txOx









                                                                                                3.62 

where OxD is the diffusion coefficient of oxidized species Ox , (cm2/s), OxC is the concentration  
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of reactant in oxidized form, (mole/cm3), OxiC is the initial concentration of oxidized species 

Ox at the start of self-discharge, t is time, (s) and x is the distance from electrode surface, 

(cm).  

The total charge Q is given by Faraday's law due to the fact that reactant reduction or 

oxidation progresses to completion throughout anodic or cathodic scan: 

0nFVCQ                                                                                                                              3.63 

whereV is the volume of the  solution, (cm3), 0C is the initial concentration of the reactant, 

(mole/cm3). Equation 3.62 is solved and the oxidized species concentration and total charge

 tQ  and  txOxC , moving to the solution from the negative electrode is respectively given as 

[265]: 
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where m is the diffusion parameter which is evaluated by specific cell initial voltage,  txOxC ,  is 

the oxidized species concentration, (mole/cm3), A is electrode area, (cm2), l is the entire 

thickness of the separator and anode, (cm), OxD is the oxidized species diffusion coefficient, 

(cm2/s) , F is the Faraday constant and (C/mole), T is temperature, (0K). 

Applying the conditions and terms for which m >1 is negligibly small, Equation 3.65 

becomes: 
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Thus the entire current density, liberated by the reversible redox reaction self-discharge due 

to the soluble products in solution  tJVR1 and potential decay by self-discharge  tD  is 

respectively given as: 
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where C is the capacitance. 

Since dissolved ions of impurities and redox species undergo diffusion and migration/shuttle 

processes, the overall self-discharge will be the summation of diffusion and migration/shuttle 

self-discharge current densities, which is shown in equation 3.58 and 3.67: 
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              3.69                                                                                                                                                                                                                      

The boundary conditions of this task during the capacitor discharge are as follows: 

 
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and the initial condition is as follows: 

  

  0
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The boundary conditions of this task during the capacitor charge are as follows: 
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and the initial condition is as follows: 
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  

  0
0, netne tx                                                                                                                      3.75 

 

3.1.3 For the separator 

 

Conductivity of the liquid matrix (electrolyte) in the separator should be represented as: 

spsp
l
sp neZneZ 





   00                                                                                                 3.76 

where 

0n  and 

0n  are the equilibrium concentrations of positive and negative ions of 

electrolyte in the pores of separator respectively; eZ+ and eZ− are the values of the charges of 

the positive and negative ions of electrolyte respectively; sp and sp  are effective 

mobilities of the positive and negative ions in the separator, respectively. The conductivity of 

electrolyte in the pores of the separator when the polarizable electrode is with p-type 

conductivity is determined, is by the given expression below: 

  spsp
l
sp neZnneZ 





   00                                                                                  3.77 

where  n is the non-equilibrium concentration of the positive ion of electrolyte in the pores 

of the separator.Using Equations 3.10, 3.14, and 3.22 or 3.32, and the same approximation 

Equation 3.36 and notation Equation 3.40, it could still be shown that potential in the 

separator  txsp ,  is given as: 
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Vsp
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spsp CD 22                                                                                                               3.79 
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3.1.4 For the positive electrode of electric double layer capacitors.  

 

Case one. 

When the electrode is polarizable and the solid matrix has electron conductivity, EDLS (p/Z-) 

consists of electrons (p) and negative ions (Z-), current densities  txJ ,1  and  txJ ,2  are 

determined by the formula given below: 

     txDtxEtxJ l
pe ,,, 222                                                                                          3.80 

       txDtxEtxJ pe
s
pe ,,, 111                                                                                      3.81 

where D  is the diffusivity coefficient of the negative non-equilibrium ion of electrolyte; s
pe

and l
pe are conductivities of the electrode and electrolyte of the capacitor, respectively; 

 txE ,1  and  txE ,2  are the electric field intensities in the solid matrix and electrolyte of the 

electrode, respectively. Similarly, the model equation for potential  txpe ,  of the positive 

electrode is obtained as below: 
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It is therefore possible to obtain the dependence of the polarizable positive electrode on its 

overall dimensions, physical, electrochemical, and capacitance parameters at any point of 

time t during charging and discharging of the capacitor, using the solution of differential 

Equation 3.82. The boundary conditions of this task during discharging of the capacitor are as 

follows: 
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and the initial condition is: 
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The boundary conditions of this task during capacitor charging are as follows: 
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and the initial condition is: 

  

  0
0, petpe tx                                                                                                                      3.89 

 

3.2 Homogeneous/symmetric electrochemical capacitors with only composite electrodes.  

 

Figure 3.2: A symmetric electrochemical capacitor cell with only composite electrodes 

showing various functional layers on macroscale 
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3.2.1 The negative electrode of electrochemical capacitors with only composite 

electrodes. 

 

The following assumptions were made in order to simplify the model: 

1) The rates of generation of the charge carriers (charge generation) is very small compared 

with than rates of recombination of charge carriers (self-discharge);   

2) The electrodes are the synergistic hybridization of the battery and capacitor components in 

single composites electrodes using active carbon material and metal oxides nanoparticles. 

This will increase the capacitance and conductivity of the electrodes;   

3)The faradaic reaction occurs within positive and negative electrodes;  

4) The electrodes have self-discharge;  

5) The concentrations of the electrolyte ions and the conductivity of the electrodes  change in 

a small range. The type of conductivity of the electrode’s pore do not change during charging 

and discharging; 

6) The capacitance depends very little on the value of potential;  

7) Transport phenomena in the electrolyte phase are presumed to follow dilute solution 

theory [267] for binary electrolytes that have one-phase solvent;  

8) The coefficient of diffusivity is taken to be independent of salt concentration; 

 9) Every other possible reaction and influence of temperature changes were ignored, that is, 

temperature is constant and uniform.                             
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The changes of the electric charge densities  tx,1  and  tx,2  of the electrode during 

capacitor charging and discharging are determined by the given expression of continuity 



 
     txRtxGtxJdiv

t
tx ,,,,
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1 
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t
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                                                                              3.91 

where  tx,1  and  tx,2  are the charge densities of free carriers in the electrode solid 

matrix and electrolyte;  txJ ,1  and  txJ ,2  are the current densities in the electrode and 

electrolyte;  txG ,1  and  txR ,1  are the rates of generation and recombination of the charge 

carriers in the electrode;  txG ,2  and  txR ,2  are the rates of spontaneous generation and 

recombination of the charge carrier respectively. 

 Case one 

When the electrode solid matrix has electron conductivity, the charge (e/Z+) consists of 

electrons (e) and positive ions (Z+), and current densities  txJ ,1  and  txJ ,2  are evaluated by 

the expressions given below: 

           txJStxMtxDtxEtxJ ffpe
s
ne ,,,,, 11111                                                   3.92

           txDtxJStxMtxEtxJ ff
l
ne ,,,,, 22222                                              3.93 

where De and D+ are the diffusivity coefficients of the main charge carriers of the electrode 

and positive ions respectively; s
ne and l

ne are the conductivities of the electrode and 

electrolyte, respectively;  txE ,1  and  txE ,2  are the electric field intensity in the electrode 

solid matrix and electrolyte, respectively;  txM ,1 and  txM ,2  are the diffusion ionic current 

in the solid matrix and electrolyte, respectively;  txJ f ,1  and  txJ f ,2  are the faradaic transfer 
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current in the electrode solid matrix and electrolyte, respectively. The electric field intensity 

in the electrode solid matrix and electrolyte  txE ,1 and  txE ,2  are related to potentials 

 tx,1  and  tx,2  by the following expressions: 
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where  tx,1  and  tx,2  are the potential (in relation to pzc) of the electrode solid matrix 

and electrolyte, respectively. Considering the dependence of parameters of the 

electrochemical capacitors with the electrode whose solid matrix has electron or hole 

conductivity, conductivities of the electrode solid matrix and liquid (electrolyte) are 

represented respectively by the following expression: 

pn
s
ne epen  00                                                                                                               3.96







   00 neZneZl
ne                                                                                                      3.97 

where 0n  and 0p are the equilibrium concentrations of free electrons and holes of the 

electrode solid matrix; n  and p  are the effective mobilities of the electrons and the holes of 

the electrodes solid matrix, that depend on the parameters of the porous structure and the 

electrophysical properties of pore walls ; 

0n  and 

0n  are the equilibrium concentrations of 

positive and negative ions; eZ+ and eZ− are values of the charges of positive and negative ions 

of electrolyte;  and  are the effective mobilities of positive and negative ions 

respectively. 

If the electrode is assumed to have p-type conductivity, conductivities in the walls of the  

solid matrix pores and electrolyte are determined by the following expressions [89]: 
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ne                                                                             3.99 

where ∆n and  n are the non-equilibrium concentrations of the free electrons in electrode 

and the positive ion of electrolyte, respectively. It follows that the density of non-equilibrium 

charges and the potentials of the electrode solid matrix and electrolyte are related by: 

   txdCtxd V ,2, 11                                                                                                         3.100 

   txdCtxd V ,2, 22                                                                                                         3.101 

where CV  (F/cm2) is the specific (by area) capacitance of the electrode;  tx,1  and  tx,2

are potential (in relation to the pzc) of the electrode matrix and electrolyte, respectively. 

Again, it follows from Equations 3.100 and 3.101 that ∆n (x,t), ∆p (x,t), ∆n+(x,t), and ∆n− (x,t) 

are interrelated by the following expressions: 
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By substituting the values of the non-equilibrium charge carriers Equations 3.102-3.105 into 

Equations 3.98 and 3.99, we obtain expressions for conductivities of the electrode’s solid 

matrix and electrolyte in its pores for the above-mentioned case: 
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Case two 
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The faradaic current transfer,  txJ f ,1  and  txJ f ,2  in the electrode solid matrix and 

electrolyte, respectively are given in form of the Butler-Volmer equation: 

            12112101 ,,exp,,exp, UtxtxfUtxtxfitxJ caf                     3.110 

        1101 ,exp,exp, UtxfUtxfitxJ necneaf                                                3.111 

Also  txJ f ,2  is given as: 

        1102 ,exp,exp, UtxfUtxfitxJ necneaf                                               3.112 

where      txtxtxne ,,, 21   ,  and  txJ f ,1 =  txJ f ,2 =  txJ f , , 0i is the exchange current 

density of the faradaic reaction, f is equal to 
RT
F , F is Faraday's constant, R is the universal 

gas constant, T is the absolute temperature, a and c are the anodic and cathodic transfer 

coefficients for the reactions respectively, and 1U is the equilibrium potential of the faradaic 

reaction. 1U is a function of the state of charge, which can be expressed by , the fraction of 

oxidized species in the electrode. The ionic diffusion current in the electrode solid matrix and 

electrolyte  txM ,1  and  txM ,2  are given by the expressions: 
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where  txM ,1 =  txM ,2 =  txM , , ls
ne = l

ne is the conductivity of electrolyte in the electrode,

sC is the electrolyte concentration, s is the stoichiometric coefficient of cations in the 

electrode, 0
t is the cation transference number ,  is the number of cations into which a mole 

of electrolyte salt dissociates, n  is the number of electrons transferred in the electrode 
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reaction, and z is the number of cations. When another variable, Qf, the faradaic charge of 

the electrode is introduced,  , the state of the charge in the faradaic reaction, , the fraction 

of oxidized species in the faradaic reaction and  txJ f ,  are related by the following 

equations given below: 
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                                                                                                                3.117 

where Qf,red is the faradaic charge of the completely reduced electrode; fS is the specific 

surface area for the faradaic redox reactions and Qf,oxd is the faradaic charge of a fully 

oxidized electrode. Equation 3.117 shows the rate of accumulation of the faradaic charge 

within the electrode to the faradaic transfer current. For the sake of simplicity, Equations 

3.111, 3.115, and 3.117 are combined into a single equation given below: 
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Again, in the concentrated solution theory field, salt mass balance results in equation 3.119: 

       
 txJ

F
tS

tF
tCS

x
txCD

t
txC

f
fnedds

s
s ,

2
1

2
1,, 00

2

2























                                          3.119 

where and s are the electrode and separator  porosity respectively, dS and dC  are the 

specific surface for EDL capacitance per unit of the electrode volume; (cm2/cm3) and EDL 

capacitance per area of the electrode, (F/cm2) .    

Assuming that the conductivity of the electrode solid matrix under consideration is the 

electron-type (case one) and that G(x,t) = 0, substituting the appropriate expressions from 

Equations 3.106, 3.107, 3.94, 3.96, 3.101, 3.102, 3.111 and 3.113 into Equations 3.92 and 

3.93 in place of ls
ne , l

ne ,  txd ,1  and  txd ,2 , we obtain the equations for  txJ ,1  and 

 txJ ,2  as shown: 



 

102 
 

 
     

0
11

0
1

01
,2,,2, iS

x
txCD

x
txep

e
txCnetxJ fVep

V
n 
































             

        
  

2

20 ,ln
,exp,exp

x
txC

z
t

n
s

F
RT

txftxf s
ls
ne

necnea


























           3.120 

 
 

 
   

0
22

0
2

02
,2,,2, iS

x
txCD

x
txneZ

eZ
txCneZtxJ fV

V 

























 









 



  

        
  

2

20 ,ln
,exp,exp

x
txC

z
t

n
s

F
RT

txftxf s
l
ne

necnea


























          3.121 

The specific capacitance VC of electrodes at great deviations from the potential of pzc, 

becomes a function of potential, i.e.,  VV CC   in Equations 3.120 and 3.121. Results of 

research of the capacitances of different types of EDLCs showed that the value of  VC  

depends very little on the value of potential at small deviations of an electrode’s potential. 

When Equations 3.120 and 3.121 are substituted into Equations 3.90 and 3.91 subject to 

Equations 3.100 and 3.101, and after transformation, we get the differential equations:  
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where  txne ,  is specified as    txtx ,, 21    
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On the assumption that capacitance does not depend on the potential of  the electrochemical 

capacitor electrodes and concentrations of charge carriers in the walls of electrode pores and 

the electrolyte of EDLC is significantly lower than the equilibrium concentrations, that is, 
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Introducing the notations that 
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where 1 and 2 are the effective conductivities of the electrode and electrolyte respectively. 

Using Equations 3.124 & 3.125 and notations 3.126 & 3.127, Equations 3.122 and 3.123 

becomes: 
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Multiplying Equation 3.128 by 2  and 3.129 by 1 , and subtracting Equation 3.129 from 

3.128 term by term, one differential equation for the potential  txne ,  of the electrode will 

be obtained, as shown below. 
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Equation 3.130 is to be solved simultaneously with Equations 3.117 and 3.118 using the 

necessary boundary and initial conditions, and the solution(s) will be presented in chapter 4 

which presents solution of the models.  
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The boundary conditions of this task during the capacitor discharging are as follows: 
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 and the initial condition are: 
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The boundary conditions of this task during the capacitor charging are: 
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and the initial conditions are: 
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3.2.2 The separator 

 

Again, it could be shown that the potential in the separator  txsp ,  is given as: 
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3.2.3 The positive electrode of electrochemical capacitors with only composite 

electrodes. 
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Because of the symmetrical feature of the two electrodes, expressions for the positive 

electrode with the necessary boundary and initial conditions could similarly be obtained as 

shown.  
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Similarly, Equation 3.148 is to be solved simultaneously with Equations 3.152 and 3.153 

using the boundary and initial conditions, and the solution(s) will be presented in chapter 4 

which presents solution of the models.  
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The boundary conditions of this task during the capacitor discharging are as follows: 
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 and the initial conditions are: 
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The boundary conditions of this task during the capacitor charging are as follows: 
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and the initial conditions are:  
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3.3 Heterogeneous/asymmetric electrochemical capacitors with a negative EDLC 

electrode and positive composite electrode. 
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Figure 3.3: An asymmetric electrochemical capacitor with a negative EDL electrode and 

positive composite electrode showing various functional layers on macroscale 

 

3.3.1 The negative electrode of electrochemical capacitor with EDLC electrode. 

 

Because this electrode and its charge and discharge process is the same as in the symmetric 

EDLC, the model equation and the necessary boundary and initial conditions for the negative 

electrode are exactly the same. 
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The boundary conditions of this task during capacitor discharging are as follows: 

 
 

0011
,,0 J

x
txtJ x

ne 



 


                                                                                            3.169

 
 

022
,, J

t
txtwJ

newx
ne 



 


                                                                                          3.170                                                                                                                                

and the initial condition is: 
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The boundary conditions of this task during capacitor charging are: 
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and the initial condition is: 
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  
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3.3.2 The separator 

 

Again it could also be shown that potential in the separator  txsp ,  is given as:
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3.3.3 The positive electrode of electrochemical capacitors with composite electrode. 

 

It has been previously derived in an earlier section that expressions for the potential of the 

positive electrode of the electrochemical capacitors, with a composite electrode and the 

necessary boundary and initial conditions, are set for the positive electrode is as shown 

below: 
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Equation 3.177 is to be solved simultaneously with Equations 3.181 and 3.182 using the 

boundary and initial conditions, and the solution(s) will be presented in chapter 4. 
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where ddV CSC  . 

The boundary conditions of this task during capacitor discharging are as follows: 
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and the initial condition are: 
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The boundary conditions of this task during capacitor charging are: 
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and the initial condition are: 
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3.4 Homogeneous/symmetric electrochemical capacitors with only a redox couple electrode.  

 

 

Figure 3.4: A symmetric supercapacitor cell with only redox couple electrodes showing 

various functional layers on macroscale 

 

3.4.1 The negative electrode of electrochemical capacitors with redox couple electrode. 
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The following assumptions were made in order to simplify the model: 

1) Physical properties such as the diffusion coefficients, transference number are not 

dependent on electrolyte concentration; 

 2) The exchange current density is not concentration dependent;  

3) Isotropic materials properties are assumed because the experimental data are available, but 

those of nonisotropic are not yet available;  

4) The double layer contributions is very small and negligible;  

5) The faradaic reaction occurs within positive and negative electrodes;  

6) The electrodes have self-discharge;  

7) The concentrations of ions of electrolyte and the conductivity of the electrodes change in a 

small range.  The type of conductivity of the electrode’s pore does not change during 

charging and discharging;  

8)  Transport phenomena in electrolyte phase are taken, followed by dilute solution theory 

[267] consists of a binary electrolyte with one-phase solvent; 

 9) Charge storage through insertion/deinsertion inside the agglomerates is considered at 

microscale and adsorption/desorption is assumed to be negligible;  

10) Every other  possible reactions and influence of temperature changes were ignored, as  

temperature is constant and uniform.                             

In the context of concentrated solution theory [267], knowing that discharging in the redox 

couple electrode is controlled by diffusion of the mobile ion through the film [268], a mass 

balance on salt leads to the conclusion given below: 
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The mobile ion diffusion into the redox couple electrode maintains the reaction at the 

film/separator interface, at newx  . The kinetic expression was given previously [96,269] as: 

    110 expexp UfUfiJ necneaCell                                                                3.197 

and is extended to the hybrid asymmetric electrochemical capacitor as: 

      110 exp1exp UfUfiJ necsneasCell                                                     3.198 

where CellJ is the cell current density, (A/cm2), ne  is the potential of the negative electrode; 

0i  is the exchange current density of the faradaic reaction; f is equal to
RT
F , F is Faraday's 

constant; R is the universal gas constant; T is the absolute temperature; s is the state of 

charge given by  01  Cs ; a  and c are the anodic and cathodic transfer coefficients for 

the reactions respectively.  1U is the equilibrium potential of the faradaic reaction and 1U  is 

dependent on the state of charge, which can be expressed by , the fraction of oxidized 

species in the electrode;   is electrode porosity; dS  and dC  are the specific surface for EDL 

capacitance per unit of electrode volume, cm2/cm3 and EDL capacitance per area of 

electrode, (F/cm2), and VC is specific capacitance per area of electrode, (F/cm2). 

Assuming that effect of double layer charging in the electrode is negligible, Equation 3.196 

will be expressed as: 
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The boundary conditions of this electrode during capacitor charging are as follows: 
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The boundary conditions of this electrode during capacitor discharging are: 
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and the initial condition is given: 
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The solution of equation 3. 199 will be presented in chapter 4 which presents solution of the 

models.  

 

3.4.2 The positive electrode of electrochemical capacitors with redox couple electrode. 

 

Similarly, a mass balance on salt in the positive redox couple electrode is expressed as: 
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Similarly, the boundary conditions of this positive electrode during capacitor charge are as 

follows: 
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and the initial condition is given as: 
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The boundary conditions of this positive electrode during capacitor discharging are as 

follows: 
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and the initial condition is given as: 
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The solution of equation 3. 199 will be presented in chapter 4 which presents solution of the 

models.  

 

3.5 Theoretical modelling for performance of electrochemical capacitors in terms of 

energy and power densities. 

 

Choi and Park [270] recently presented theoretical expressions for the performance 

parameters of different types of electrochemical capacitors such as: a capacitor-type electrode 

system using aqueous electrolyte; a capacitor-type electrode system using organic electrolyte; 

symmetric capacitors; asymmetric capacitors using aqueous electrolyte; asymmetric 

capacitors using organic electrolyte; and a BatCap capcitor system.  

 



 

116 
 

Additional expressions for storable energy of a symmetric EDLC using organic electrolyte

soE _ , specific energy density of a symmetric EDLC using organic electrolyte soED _ and 

specific power density of a symmetric EDLC using organic electrolyte soPD _ were derived in 

this section. This is to facilitate the comparison of the performance parameters of the 

symmetric EDLC using organic electrolyte, one capacitor-type electrode with organic 

electrolyte and one capacitor-type electrode with aqueous electrolyte. Storable energy, 

specific energy density and specific power density of an asymmetric EC using aqueous 

electrolyte presented by Choi and Park [270] were expanded and modified. Again, storable 

energy, specific energy density and specific power density of an asymmetric EC using 

organic electrolyte, were expanded and modified. The expansions and modifications are to 

facilitate the comparison of all these performance parameters for different types of 

electrochemical capacitors. 

 

3.5.1 Symmetric electrochemical capacitor with aqueous electrolyte 
 

Choi and Park [270] also presented storable energy in a symmetric capacitor of capacitor-

type electrodes using aqueous electrolyte sE , energy density per symmetric capacitor of 

capacitor-kind electrodes unit mass using aqueous electrolyte sED and power density per 

symmetric capacitor of capacitor-type electrodes unit mass using aqueous electrolyte sPD

respectively as: 
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where sq is the amount of charge stored in a symmetric EC of capacitor-kind electrodes, 

using aqueous electrolyte, 1q is the amount of charge stored in a single EC electrode using 

aqueous electrolyte. maxV is the capacitor’s maximum working potential range using 

aqueous electrolyte; 1
11

22
mmmms  is the mass of the symmetric capacitor of capacitor-

type electrodes using aqueous electrolyte; t is time of the charge or discharge process; maxI

is the maximum current for each electrode. The maximum working potential range of the 

capacitor using aqueous electrolytes is lower than that of similar capacitors using organic 

electrolytes, while the conductivity is higher than that of those using organic electrolytes. 

 

3.5.2 Symmetric electrochemical capacitor with organic electrolyte 

 

 

The most straightforward EC is assembled employing two equal electrodes (symmetric) with 

equal mass, equal capacitance and basically the energy storage mechanism is via emergence 

of the electric double layer. Virtually all EDLCs fall into this category, because their energy 

storage mechanism is entirely electrostatic and current is not reliant on the potential. Thus, 

applied voltage to a symmetric EDLC, with a cathode and anode of the same mass, will 

equally break between positive and negative terminals, since the two electrodes have 

identical charge capacities. However, it is necessary to emphasize that this assertion is only 

justifiable for symmetric EDLC systems made of two equivalent electrodes [271,272]. In 

reality, capacitance distinctions exists between polarized electrodes of one capacitor [272], 

notwithstanding that they are constructed with the same material and of equal weight.  
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The storable energy of a symmetric EDLC using organic electrolyte soE _ , energy density per 

unit mass of the symmetric EDLC using organic electrolyte soED _  and the power density per 

unit mass of the symmetric EDLC using organic electrolyte soPD _ respectively were derived. 

This is to facilitate a comparison of the performance parameters of symmetric EDLCs using 
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where soq _ is the amount of charge stored in the symmetric EC of capacitor-type electrodes 

using organic electrolyte; maxV is the capacitor maximum working potential range using 
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organic electrolyte;    1_
1_1_

_ 22 o
oo

so m
mm

m  is the mass of the symmetric capacitor of 

capacitor-type electrodes using organic electrolyte; t is the time of the charge or discharge 

process; maxI is the maximum current for each electrode; 3k is the ratio of maximum operating 

potential range between aqueous and organic electrolytes; 4k is the ratio of specific 

capacitance between capacitor-type electrodes in aqueous and organic electrolyte; EK is a 

constant associated with electrolyte and is dependent on 3k and 4k . 

 

3.5.3 Asymmetric electrochemical capacitor with aqueous electrolyte 

 

Mass balance is employed in this system so as to guarantee that the electrodes function in the 

most effective potential window to achieve the highest capacitor specific energy by enlarging 

its operating voltage. The calculation of theoretical specific capacitance of asymmetric-

hybrid ECs from electrodes specific capacitances must be performed subject to the electrodes 

mass ratio [21]. The storable energy of asymmetric EC using aqueous electrolyte asE , energy 

density per unit mass of asymmetric EC using aqueous electrolyte asED and power density per 

unit mass of asymmetric EC using aqueous electrolyte asPD respectively were expanded and 

modified as shown below. The expansions and modifications are to facilitate comparison of 

all these performance parameters for asymmetric EC using aqueous electrolyte, symmetric 

EDLC using aqueous electrolyte and one capacitor-kind electrode with aqueous electrolyte.                                                                                                                                                                           
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where asq is amount of charge stored in asymmetric EC with aqueous electrolyte, maxV is 

capacitor maximum working potential range in aqueous electrolyte, cbas mmm  is mass 

of asymmetric capacitor using aqueous electrolyte, bm is mass of battery-kind electrode, cm

is mass of capacitor-kind electrode, bV is working potential range of battery-kind 

electrode, cV is working potential range of capacitor-kind electrode, maxI is maximum 

current for each electrode, 1k is ratio of mass of battery-kind electrode to total mass of 

battery-kind and capacitor-type electrodes, 2k is ratio of operating potential range of 
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battery-kind electrode to that of capacitor maximum working potential range in aqueous  

electrolyte, BMK is coefficient associated to battery-kind material and depends on 1k and 2k . 

Note, that the maximum working potential range of capacitor using aqueous electrolytes is 

lower than that of similar capacitor using organic electrolytes, while the conductivity is 

higher than that of those using organic electrolytes. 

 

3.5.4 Asymmetric electrochemical capacitor with organic electrolyte. 

 

The storable energy of asymmetric EC using organic electrolyte asoE _ , energy density per unit 

mass of asymmetric EC using organic electrolyte asoED _ and power density per unit mass of 

asymmetric EC using organic electrolyte asoPD _ respectively were expanded and modified as 

shown below. The expansions and modifications are to facilitate comparison of all these 

performance parameters for asymmetric EC using organic electrolyte, symmetric EDLC 

using organic electrolyte, one capacitor-kind electrode with organic electrolyte, symmetric 

EDLC using aqueous electrolyte, and one capacitor-kind electrode with aqueous electrolyte.                                                                                                                                                                                                                                                    
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where asoq _ is amount of charge stored in asymmetric EC using organic electrolyte, max_oV is 

the capacitor maximum working potential range in asymmetric EC using organic electrolyte,

coboaso mmm ___  is mass of asymmetric capacitor using organic electrolyte, bom _ is mass 

of battery-kind electrode using organic electrolyte, com _ is mass of capacitor-kind electrode 

using organic electrolyte, boV _ is working potential range of battery-kind electrode in 

asymmetric EC using organic electrolyte, coV _ is working potential range of capacitor-kind 

electrode in asymmetric EC using organic electrolyte, max_oI is the maximum current in the 

asymmetric EC using organic electrolyte, 3k is ratio of maximum operating potential range 

between aqueous and organic electrolytes, 4k is the ratio of specific capacitance between 
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capacitor-kind electrodes in aqueous and organic electrolyte, EK is a constant associated to 

electrolyte and depends on 3k and 4k .        

                                                                                                                      

The summary of the relationships for parameters from theoretical equations for purpose 

of capacitors performance comparison is as follows: 
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3.5.5 Optimization of ECs design parameters and operating conditions for high energy 

and power performances. 
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In order to maximize storable energy, energy and power densities of electrochemical 

capacitors, we need to maximize the values of coefficient associated to battery-kind 

material in asymmetric ECs with aqueous electrolyte BMK  and constant associated to 

electrolyte in asymmetric ECs with organic electrolyte EK subject to realistic constraints. 

These coefficients are given as equations 3.220 and 3.216, respectively. The constraint 

equations by Choi and Park were also modified as shown below, in order to capture 

realistic conditions and the limitations inherent in electrochemical energy storage systems. 

It is necessary to maximize the following coefficients subject to their respective 

constraints:   

Maximize   2
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where 05.01  is the realistic minimum value of 1k for EC systems as explained in [90] and

05.02   the realistic minimum value of 2k for EC systems as explained in [90]. 

Maximize 2
3

4

k
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Subject to: 
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44

33
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where 3.03  is the realistic minimum value of 3k for EC systems as explained in  

[270,273,274] and 5.04  is the realistic maximum value of 4k for EC systems as explained 

in [270,273,274].  

 

The models developed above are validated in the next chapter with experimental data 

reported by the following research groups in literature: Kazaryan et al [89], Ma et al [275], 

Sun et al [276] and Zhao et al [277]. 
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CHAPTER FOUR 

 

4.0 Solutions to the Models 

 

4.1 Homogeneous/symmetric electric double layer capacitors (EDLCs) 

 

For the negative electrode of supercapacitors with an electric double layer electrode 
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and the initial condition are: 
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The boundary conditions of this task during capacitor charging are: 
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and the initial conditions are: 
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This equation 4.1 can first be solved by assuming no self-discharge, ie,   0,
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with inhomogeneous boundary conditions  
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0 netne t  ,which are the same as equtaions 4.3, 4.4 

&4.5 and 4.6, 4.7 & 4.8 for capacitor's discharging and charging process, respectively.   

 

4.2 Homogeneous/symmetric electrochemical capacitors without self-discharge. 
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4.3 The Separator 
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The boundary conditions of this task during capacitor's discharging are as follows: 
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Equation 4.10 was solved analytically subject to boundary and initial condition equations 4.3, 

4.4 and 4.5 respectively as presented in appendix B, to obtain a solution for the negative 

electrode without self-discharge as equation 4.13: 
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Similarly, the positive electrode without self-discharge is expressed as: 
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Also, equation 4.11 was solved using the separation of variables subject to the boundary 

conditions equation 4.12 to obtain solution for potential in the separator as equation 4.17: 
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The voltages  txV , of the electrode without self-discharge as a function of its thickness and 

time of charging and discharging is given as [12]:   
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On substituting 0 xandwx ne into equation 4.13, equation 4.18 becomes: 

 
 

  
































































 








1 12

12

2

22
12

12
2

0
0

2exp11
6
1

2
,

n Vne

neV

Vne
ne C

t
w
n

n
wCt

Cw
JVtwV







 4.19                                  

where







0

0 neV   and the sign 00 
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J (“–“) represents the process of capacitors 

discharging and sign 00 
VneCw

J (“+“) represents the process of the capacitors charging. When 

effective conductivities of both electrode and electrolyte are the same, that is   21 , 

equation 4.19 is expressed as follows: 
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If we assume that during charging and discharging of the capacitor, the concentration of ions 

of electrolyte and the conductivity of electrodes change in a narrow range. The type of 

conductivity of the walls of the  polarizable electrode pores does not change. The value of 

potential  tx,  as a function of the capacitor’s position will be expressed as follows: 
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Electromotive force (voltage of device) of capacitors, SU  is determined as [89]: 

     tttCwwwU nepeVpespneS ,0,0,,,,,                                                                  4.22 

It should be noted that real-life positive electrodes in symmetric supercapacitors are polarized 

during their charge and discharge in a wide ranges of potentials [12,89,270]. As a result, we 

note that the potential of negative and positive electrodes changes during charging and 

discharging, but depends on the coordinates in the range of pesp wxw  . From Equations 

4.19 we obtain the analytical expression for the voltage of the capacitor without self-

discharge during charging and discharging by constant current as: 
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where 
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0 nepeSU   is the capacitor voltage at t = 0; and the sign 00 
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J  (“–“) 

represents the process of the capacitor discharging and sign 00 
VneCw

J  (“+“) represents the 

process of the capacitor charging and pene ww  . The supercapacitor has specific internal 

resistance  2
int cm , which is determined by the resistances of the current collector of 

electrodes and the separator (which was not taken into account during calculations), and of 

the electrodes. Specific internal resistance was not included in equations for electrodes 

potential and voltage, because it was considered during derivation of expression for 

electrodes potential voltage. It was only included in the equation for capacitor's voltage since 

the entire cell contains current collectors and separator. Therefore, supercapacitor voltage 

during charging and discharging is expressed as: 
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4.4 Homogeneous/Symmetric electrochemical capacitors with self-discharge. 

 

For the negative electrode of supercapacitors with only an electric double layer electrode 

(EDLs) self-discharge 
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For the inhomogeneous equation
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Equation 4.25 was solved analytically using the boundary and initial condition equations 4.3, 

4.4 and 4.5 respectively as shown in appendix C, to obtain the solution for the negative 

electrode with only the electric double layer (EDL) instability self-discharge as equation 

4.26: 
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capacitor discharging. Similarly, the positive electrode with only the electric double layer 

(EDL) instability,  self-discharge is given as: 
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where the sign 00 
VpeCw

J  (“–“) represents the charging process of the capacitor and sign 

00 
VpeCw

J (“+“) represents the discharging process of the capacitor. On substituting newx 

and 0x into equation 4.26, equation 4.18, the voltage  txV , of the electrode with only the 

electric double layer (EDL) instability self-discharge as a function of its thickness and time of 

charging and discharging is given as:  
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where 
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0 neV   , the sign 00 
VneCw

J (“–“) represents the discharging process of the 

capacitor and sign 00 
VneCw

J (“+“) represents the charging process of capacitor. When 

effective conductivities of the electrode and electrolyte are the same, that is, 1 = 2 = , 

equation 4.30  becomes: 
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If we assume that during charging and discharging of the capacitor, the concentration of ions 

of electrolyte and conductivity of the positive and negative electrodes change in a narrow 

range, and the type of conductivity of the walls of the polarizable electrode pores does not 
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change, the value of potential  tx,  as a function of the capacitor’s position is expressed as 

follows:    
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where 
0

ne and 
0

ne are the  potentials of the negative electrode of the supercapacitor before 

charging and discharging;
0

pe and
0

pe  are the potentials of the negative electrode of the 

supercapacitor before charging and discharging; sp and sp are the specific electric resistance 

and effective conductivity of the separator and new , spw and pew are the thickness of the 
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negative electrode, separator and positive electrode, respectively. The sign 00 
VpeCw

J  and 

00 
VneCw

J  (“–“) represents charging process of the capacitor and sign 00 
VpeCw

J and 

00 
VneCw

J (“+“)  represents discharging process of the capacitor.  It should be noted that real-

life positive electrodes in symmetric capacitors, during their charge and discharge, are 

polarized in a wide range of potentials [12,89,270]. Therefore, the potential of both the 

negative and positive electrodes change during charging and discharging, but this depends on 

the coordinates in the range of pesp wxw  . 

The electromotive force (voltage of device) of supercapacitors is determined as [89]: 

     ttwtCwwU nepepeVspneS ,0,,,,,                                                                      4.33 

From Equations 4.32 we obtain an analytical expression for the emf of supercapacitors with 

self-discharges during charging and discharging by constant current. This is given as: 
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where 




 

00
0 nepeSU   is the capacitor’s voltage at t = 0; and the sign 00 

VneCw
J (“–“) 

represents the discharging of the capacitor and sign 00 
VneCw

J (“+“) represents the charging 
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of the supercapacitor and pene ww  . Because the supercapacitor has specific internal 

resistance  2
int cm , which is determined by the resistances of the current collectors of the 

negative and positive electrodes and resistance of the separator (which was not taken into 

account during calculations), the supercapacitor voltage during charging and discharging is 

expressed as: 
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For electrochemical capacitors with both reversible redox reactions of redox species and 

electric double layer (EDLs) instability self-discharges   
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If both the reversible redox reactions and the electric double layer (EDLs) instability self-

discharge are present, equation 3.68 in chapter three was subtracted from equation 4.27 to 

obtain the expression for negative electrode as: 
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is potential decay  tD  due to reversible redox 

reactions self-discharge. Similarly, voltage  txV , of the electrode with both the reversible 

redox reactions and the electric double layer (EDL) instability self-discharges as a function of 

its thickness and time of charging and discharging is given as:  
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where

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
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0 neV   , the sign 00 
VneCw

J  (sign “–“) represents the discharging of the capacitor 

and sign 00 
VneCw

J (sign “+“) represents charging of the capacitor. Also, when effective 

conductivities of electrodes and electrolyte are the same, that is   21 , equation 4.37 

becomes: 



 

138 
 

 
V

VR

n Vne

neV

Vne
ne C

J
C
t

w
n

n
wCt

Cw
JVtwV 



























































 








1

2

22

2
0

0 2
2exp11

6
1, 


 
















 

































































 
 




2

2

2
1

2

3

2

3 exp81
2

2exp121
l

tD
C

nFVC
C
t

w
n

n
wCt OxOx

n Vne

neV 






    4.38   

From Equations 4.35 we obtain an analytical expression for the voltage of the supercapacitor 

with both the reversible redox reactions and the electric double layer (EDL) instability self-

discharge during constant current charging and discharging. This is given as: 
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where




 

00
0 nepeSU  is the voltage of the capacitors at t = 0; and sign 00 

VneCw
J  (sign “–“)  

represents discharging of the capacitor and sign 00 
VneCw

J  (sign “+“) represents charging of 

the capacitor charging and pene ww  .  

Specific internal resistance was not included in equations for the electrodes potential and 

voltage, because it was considered during derivation of the expression for electrodes potential 

voltage. The voltage of capacitors with both reversible redox reactions and electric double 

layer (EDL) instability self-discharge, while considering specific internal resistance
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 2
int cm  of electrodes current collectors and resistance of separator during charging and 

discharging is expressed as: 
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4.5 Heterogeneous/Asymmetric electrochemical capacitor with negative EDLC 

electrode, positive faraday electrode and without self-discharges. 

 

The voltages  txV , of the electrode without self-discharge as a function of its thickness and 

the time of charging and discharging is given as [3]:  
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1,                                                                                 4.18 

On substituting 0 xandwx ne into equation 4.13, equation 4.18 becomes: 
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where

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0 neV  , the sign 00 
neneCw

J (sign “–“) represents discharging of the capacitors and 

sign 00 
VneCw

J  (sign “+“) represents charging of the capacitors charging. When the effective 

conductivities of the electrode and electrolyte are the same, that is,   21 , equation 4.41 

is expressed as follows: 
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For the redox couple electrode in the asymmetric supercapacitor system, the potential 

remains constant during charging/discharging of the system due to redox reaction on the 

surface of the redox couple electrode following the Nernst equation [12,89,270]. Hence, we 

assume that the potential of the positive electrode does not change during charging and 

discharging, but depends on the coordinates in range of pesp wxw  . 

The electromotive force (voltage of device) of supercapacitors, SU is determined as [89]: 

     ttwtCwwU nepepeVspneS ,0,,,,,                                                                      4.43 

From Equations 4.21 we obtain an analytical expression for the voltage of the supercapacitor 

without self-discharge during constant current charging and discharging as: 
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where 




 

00
0 nepeSU   is the voltage of the capacitor at t = 0; and the sign 00 

VneCw
J (“–“) 

represents discharging of the capacitor and sign 00 
VneCw

J (“+“) represents charging of the 

capacitor.  
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Specific internal resistance  2
int cm  was not included in the equations for the potential 

and voltage of the electrodes, because this was considered during derivation of expression for 

the electrode’s potential voltage. Since the entire supercapacitor contains current collectors 

and the separator whose internal resistances were not considered in the model’s derivation,  

the cell's voltage during charging and discharging is expressed as: 
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4.6 Heterogeneous/Asymmetric electrochemical capacitor with negative EDLC 

electrode, positive faraday electrode and with self-discharges 

 

The voltages  txV , of the electrode with only an electric double layer (EDL) instability 

self-discharge as a function of its thickness and time of charging and discharging is given as 

[12]:  

      ttwtwV nenenene ,0
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1,                                                                                4.18 

On substituting 0 xandwx ne into equation 4.21, equation 4.73 becomes: 
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where 







0

0 neV  , the sign 00 
neneCw

J  (“–“) represents the discharging process of the 

capacitor and sign 00 
VneCw

J  (“+“) represents the charging process of the capacitor. When 

the effective conductivities of the electrodes and electrolyte are the same, that is,   21 , 

equation 4.46 becomes: 
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For the redox couple electrode in an asymmetric supercapacitor system, the potential remains 

constant during charging/discharging of the system due to redox reaction on the surface of the 

redox couple electrode following the Nernst equation [12,89,270]. It is therefore assume that 

the potential of the positive electrode does not change during charging and discharging and 

does not depend on coordinates in the range of pesp wxw  . 

The electromotive force (voltage of device) of the supercapacitor, SU is determined as [89]: 

     ttwtCwwwU nepepeVpespneS ,0,,,,,,                                                               4.48 

From Equation 4.32 we obtain the analytical expression for the voltage of the supercapacitor 

with only an electric double layer (EDL) instability self-discharge during constant current 

charging and discharging. This is given as: 
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where 




 

00
0 nepeSU   is the voltage of the capacitor at t = 0; and the sign 00 

VneCw
J (“–“) 

represents discharging process of capacitor and sign 00 
VneCw

J (“+“) represents the charging 

process of the capacitor.   

Specific internal resistance  2
int cm  was not included in the equations for the potential 

and voltage of electrodes, because this was considered during derivation of the expression for 

the electrode’s potential voltage. Since the entire supercapacitor contains current collectors 

and a separator whose internal resistances were not considered in models derivation, the cell's 

voltage during charging and discharging is expressed as: 
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Similarly, 4.49 and 4.50 for capacitors with both reversible redox reactions and the electric 

double layer (EDL) instability is given as: 
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The expression to describe how the cell voltage decays with time by self-discharge processes 

during asymmetric charging of the capacitor is given as: 
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where SU is the cell upper voltage for the fully charged state without self-discharge.                         
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4.7 Heterogeneous/Asymmetric electrochemical capacitor with positive EDLC electrode, 

negative faraday electrode and without self-discharge. 
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For a redox couple electrode in an asymmetric supercapacitor system, potential remains 

constant during charging/discharging of the system due to redox reaction on the surface of the 

redox couple electrode following the Nernst equation [12,89,270].  

The electromotive force (voltage of device) of supercapacitors is determined as [89]: 

     ttwtCwwwU nepepeVpespneS ,0,,,,,,                                                               4.54 

From Equations 4.21 we obtain analytical expression for the the voltage of supercapacitor 

without self-discharge during constant current charging and discharging. This is given by: 
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where nepeSU  

0

0  is the voltage of the capacitor at t = 0; and the sign 00 
VpeCw

J (“–“) 

represents the process of capacitor discharging and sign 00 
VpeCw

J (“+“) represents the 

process of the capacitor charging.  

Because the supercapacitor has specific internal resistance  2
int cm , which is determined 

by the resistances of the current collectors of negative and positive electrodes, and the 

resistance of the separator (which was not taken into account during calculations), the 

supercapacitor voltage during charging and discharging is expressed by: 
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4.8 Heterogeneous/Asymmetric electrochemical capacitor with positive EDLC electrode, 

negative faraday electrode and with self-discharge effects. 

 

For the redox couple electrode in an asymmetric supercapacitor system, potential remains 

constant during charging/discharging of the system due to the redox reaction on the surface of 

the redox couple electrode following the Nernst equation [12,89,270].  

The electromotive force (voltage of device) of supercapacitors, SU  is determined as [89]: 

     twttCwwwU nenepeVpespneS ,,0,,,,,                                                               4.54 

From Equations 4.54 we obtain the analytical expression for voltage of the supercapacitor 

with only the EDL’s self-discharge during constant current charging and discharging given 

as: 
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where nepeSU  

0

0  is  the voltage of the capacitor at t = 0; and the sign 00 
VpeCw

J  (“–“) 

represents the process of the capacitor discharging and sign 00 
VpeCw

J (“+“) represents  the 
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process of the capacitor charging. Because the supercapacitor has specific internal resistance

 2
int cm , which is determined by the resistances of the current collectors of negative and 

positive electrodes, and the resistance of  the separator (which was not taken into account 

during calculations), the supercapacitor voltage during charging and discharging is expressed 

by: 
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Similarly, 4.57 and 4.58 for capacitors with both reversible redox reactions and an electric 

double layer (EDL) instability self-discharge becomes: 
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4.9 Homogeneous/Symmetric electrochemical capacitors with only faraday electrodes 

 

For the negative electrode of supercapacitors with redox couple electrode 
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The boundary conditions of the negative electrode during capacitor charging are as follows:
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and the initial condition is given as follows: 

0
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The boundary conditions of the negative electrode during capacitor discharging are as 

follows: 

0,0 





x
Cx s                                                                                                                4.65 

 01
,









s

Cells
ne D

J
x

Cwx                                                                                                 4.66 



 

149 
 

and the initial condition is given as: 



  0
0,0 CCtAt t                                                                                                                4.67 

Equation 4.61 was solved analytically, subject to boundary and initial condition equations 

4.62, 4.63 and 4.64 respectively as presented in appendix D, to obtain the solution for the 

negative electrode without self-discharge as equation 4.68: 
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The time needed for the electrochemical capacitor to be fully charged or discharged scalet is 

obtained by expressions previously derived by Samosundaram et al [93] as: 
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Note that the potential drop in the solid and liquid-phase and in the separator, where the 

entire current is ionic and which is dominated by migration current is respectively given by: 
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The potential drop in the solid phase is considerably smaller than the potential drop in the 

liquid phase and this potential drop in the liquid phase of each electrode during charging or 

discharging can at most equal to approximately half of the entire cell voltage. This is given 

as:  
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The limit to the potential drop and the length of the electrode [ ew ] over which the liquid 

potential drop occurs, are determined by the following expression: 
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The typical length scale [ ew ] over which the liquid-phase potential drop happens on the 

electrodes can be defined as the minimum value of the electrode thickness ew and the length 

of the electrode [ ew ] over which the liquid potential drop occurs: 
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Electrodes utilization u in capacitor with electrolyte of specific effective conductivity 2  and 

electrodes thickness ew charged at a given current density 0J is given as:  
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The ratio of electrodes thickness ew to length scale [ ew ] over which liquid phase potential 

drop occurs on electrodes, which is determining factor for estimating the length scale in 

electrodes for liquid phase potential drop is determined by: 
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The maximum stored energy ( maxE ), the maximum electric charge stored in maxQ  and the 

energy required for the symmetric electrochemical capacitor to be charged (without 

accounting for the ohmic internal resistance losses) to the voltage value of upper operating 

emf SchE   in  the emf operating range of andUSch SdisU  are respectively given as follows:  
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22
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                                                                                                           4.72 

 SdisSch UUCQ max                                                                                                           4.73 

where C is the capacitance of the electrochemical capacitor , SchU is the cell voltage at the 

charged state and SdisU is the voltage at the discharged state. Because capacitors have internal 

ohmic resistance, a portion of the stored energy, known as the ohmic loss of energy,  R
chE  is 

dissipated during capacitor charging.  

The value of the ohmic loss of energy R
chE during constant current  chI charging is 

calculated by the following formula: 

  chch
R
ch tRIE 2                                                                                                                      4.74 

where R is the internal ohmic resistance. 

A portion of energy SchE called effective energy  eff
SchE  was stored in the capacitor, while 

another portion, known as the loss of energy in polarization resistance ( Rpol
chE ), was dissipated 
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at the polarization resistance of the capacitor.  The value of energy dissipated at the 

polarization resistance of capacitor Rpol
chE  is determined by the expression: 

eff
SchSch

Rpol
ch EEE                                                                                                                   4.75 

Some of the stored energy, known as depolarization loss of energy  dpol
chE , changes into heat 

during the depolarization of charged capacitors, and the capacitor’s energy after 

depolarization is  ap
SchE . The value of the energy loss due to depolarization is determined by 

the following expression: 

ap
Sch
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dpol
ch EEE                                                                                                                   4.76 

The value of aggregate energy  chE during symmetric capacitor charging is therefore given 

by the following expression: 
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chSchch EEEEEEE                                                                            4.77 

For symmetric discharging of ECs, the calculation of delivered energy  SdicE  during the 

discharging of  capacitors, (without accounting for ohmic internal resistance losses), is 

obtained from the following expression: 

 
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UUCE 

                                                                                           4.78 

where SbdisU and SedisU are  the cell voltage before and at end of the discharging process. The 

residual electric charge  SadisQ , which is retained in capacitors after discharging, also depends 

on the values of the discharge current and effective conductivities of the electrodes and 

electrolytes, and is determined by the expression given below: 

  dischSlor
ap
SdisSadis QQUUCQ                                                                                        4.79 

where SlorU is the supercapacitor's lower operating voltage value, and  

Slor
Sadisap

Sdis U
C
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The residual energy stored in capacitors after discharging,  SadisE  is determined by the 

following expression 

 
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SlorSedis
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UUCE 

                                                                                                        4.81 

A portion of residual energy SadisE was lost during redistribution of the electric charge of the 

double electric layer along the thickness of the polarizable electrode after discharging and 

energy ap
disE  was retained in the capacitor and is calculated by the formula given below 
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A portion of stored energy in the capacitor  Rpol
disE  was dissipated at internal polarization 

resistance during discharging and is determined by the following formula 
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dis EEEE                                                                                                      4.83 

Again, a portion of the energy  dpol
disE  is dissipated at polarization resistance during potential 

depolarization of the electrode after capacitor discharging and is determined by the 

expression given below:  

ap
disSadis

dpol
dis EEE                                                                                                                  4.84 

When the capacitor is being discharged by constant current disI , a portion of energy R
disE  

dissipated at the internal resistance and is determined by the following  formula: 

disdis
R
dis tRIE 2                                                                                                                       4.85 

The value of energy released to the load  disE  during discharging of the symmetric capacitor 

is therefore determined by the formula: 

R
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During charging and discharging of the capacitor, energy losses occur which are determined 

by the following: polarization resistance  Rpol
dis

Rpol
ch EE , ; ohmic resistance  R

dis
R
ch EE , ; and 

depolarization of  the polarizable electrode  dpol
dis

dpol
ch EE ,  after capacitor charging.  

The mass of the symmetric EDLC is the mass of each porous electrode, separator, and 

electrolyte inside each electrode and separator, and is determined by: 

espspenespspnenesy wwAwAwM   022                                                                   4.87 

where A is the cross-sectional area of the capacitor, new is the thickness of the 

negative/positive electrode, ne is the density of the negative/positive electrode, spw is the 

thickness of the separator, sp is the density of the separator, 0 is porosity of  the 

negative/positive electrode e is the density of electrolyte, and sp is the porosity of the 

separator. 

The energy density EDsy and power density PDsy of the symmetric EDLC are dependent on 

the mass of the capacitor and are given by the following expressions: 

sy

ch
sy M

EED                                                                                                                             4.88 

chsy

ch
sy tM

EPD                                                                                                                        4.89 

Similarly, the effective energy density eff
syED and the effective power density eff

syPD of the 

symmetric EDLC are respectively given by: 

sy

Scheff
sy M

EED                                                                                                                           4.90 

chsy

Scheff
sy tM

EPD                                                                                                                       4.91 

The aggregate polarization loss of energy ERpol  during charging and discharging is 

determined by the following formula 
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0
0100

ch

Rpol
dis

Rpol
ch

ERpol E
EE 

                                                                                                    4.92 

The aggregate depolarization loss of energy Edpol  and the aggregate ohmic loss of energy 

ER  during charge and discharge of the capacitor are respectively determined by the 

expressions 

0
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where selfdis1E and selfdis2E is the total energy loss by self-discharge during charging and 

discharging respectively. 

Taking into consideration the fact that during capacitor charging, energy  chE  is spent and 

energy delivered to the load during discharging is  disE , the energy efficiency of the first 

charge–discharge cycle can be determined by the formula given below: 

0
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1 100
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E E

E
                                                                                                                     4.96 

A new parameter of energy efficiency of the charge–discharge cycle  2E  which takes 

account of energy ap
disE that is retained in the capacitor after discharging and a pause is 

introduced, shows that a portion of the energy stored during the capacitor charge is retained 

in the capacitor during discharging. 

The energy efficiency of second charge–discharge cycle of 2E  is determined by the 

expression: 

0
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4.10 Numerical solutions of the models 

 

4.10.1 Numerical solutions of the models for EDLCs without self-discharge effects 

 

Finite difference scheme for Crank-Nicolson Method  
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The boundary conditions are:  
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Substitute equations 4.98 and 4.99 into equation 4.1 while assuming self-discharge to be zero 

(   0,

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C
txJ

), we obtain: 
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Equation 4.102 was solved subject to the boundary conditions equations 4.100 and 4.101 as 

presented in Appendix E to obtain equation 4.103:   
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Equation 4.103 is written in matrix form as equation 4.98:   
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and finally    n
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The matrix inversion is very time consuming and computationally inefficient. The matrix 

1n
iA  is tridiagonal and can be decomposed into the product of the two other matrices such 

that A=LU, and the matrix form is equation 4.106: 
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where d1=2+2r, lndn-1=pn-1=-r and dn=2+2r-lnpn-1 for 12  nxn . 

Note that we work from n=1 to n= nx sequentially. 
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Step one gives: 

w1=q1 and 11 2   xnnnn nnforwlqw  . 

Step two involves working backwards from n=nx-2 to n=1: 
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4.10.2 Numerical solutions of the models for EDLCs with self-discharge effects. 

 

Substitute equations 4.92 and 4.93 into equation 4.1, is obtained with the self-discharge term: 
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Equation 4.107 was solved subject to the boundary conditions equations 4.100 and 4.101 as 

presented in Appendix F to obtain equation 4.108:   
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Equation 4.108 is written in matrix form as equation 4.109:   
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and finally    n
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Again, the matrix inversion is very time consuming and computationally inefficient. The 

matrix 1n
iA  is tridiagonal and can be decomposed into the product of the two other matrices 

such that A=LU, and the matrix form is equation 4.111: 
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where rd 221  , rpdl nnn   11  and 1222 1   nxnforplrd nnn . 
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Note that we work from nxnton 1  sequentially. 
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Step one gives: 

w1=q1 and 11 2   xnnnn nnforwlqw  . 

Step two involves working backwards from 12  ntonxn : 
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4.10.3 Numerical solutions of the models with composite electrode and self-discharge 

effects. 
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The boundary conditions of this task during the capacitor discharge are as follows: 
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and the initial conditions are: 
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Finite difference scheme for the Crank-Nicolson Method  
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The boundary conditions equations 4.121, 4.122, 4.123 and 4.124 are  
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Substitute equations 4.127, 4.128 and 4.129 into 4.111; equation 4.131 into 4.119; and 

equations 4.127, 4.132 and 4.133 into 4.130 respectively to obtain: 
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Equation 4.138, 4.139 and 4.140 were solved, subject to the boundary condition equations 

4.93, 4.94, 4.96 and 4.97 as presented in Appendix G, to obtain equations 4.141 and 4.142 

respectively:   

n
iVR

n
if

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i JsJuagCGhCHbBA   111111 lnln               4.141 

n
if

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i JeddqvCVCQ    1111                                                            4.142 

Equations 4.141 and 4.142 are written in matrix form as equations 4.143 and 4.144 

respectively:   
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And finally: 
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Further, equation 4.139 is given as:  
n
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n
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n
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However, the matrix inversion is very time consuming and computationally inefficient. The 

matrices 1n
iA  and 1n

iQ are tridiagonal and can be decomposed into the product of the two 

other matrices such that A=LU. There the matrices 1n
iA  and 1n

iQ are now written as 

equations 4.148 and 4.149 respectively: 
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For equation 4.148, rd 221  , rpdl nnn   11  and 1222 1   nxnforplrd nnn , 

and for equation 4.149, 221 d ,   11 nnn pdl  and

1222 1   nxnforpld nnn  . 

Note that we work from nxnton 1 sequentially. Let 
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Step one gives: 

w1=q1 and 11 2   xnnnn nnforwlqw  . 

Step two requires working backwards from 12  ntonxn : 
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4.11 Optimization of ECs design parameters and operating conditions for high energy 

and power performances 
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In order to maximize storable energy, energy and power densities of electrochemical 

capacitors, we need to maximize the values of the coefficient associated to battery-type 

material in asymmetric ECs with the aqueous electrolyte BMK  and the constant associated 

to the electrolyte in asymmetric ECs with the organic electrolyte EK subject to realistic 

constraints. These coefficients are given as equations 3.214 and 3.210 respectively. The 

constraint equations by Choi and Park were also modified as presented below, in order to 

capture realistic conditions and limitations inherent in electrochemical energy storage 

systems. The following coefficients should be maximized, subject to their respective 

constraints:   

Maximize   2
21 11 kkKBM                                                                                             3.214    

Subject to: 




0.7<k<
0.5<k<

22

11




                                                                                                   3.232          

where 05.01  is realistic minimum value of 1k for EC systems as explained in [90] and

05.02   realistic minimum value of 2k for EC systems as explained in [90]. 

Maximize 2
3

4

k
kKE                                                                                                         3.210 

Subject to: 








44

33

k<0
1<k



                                                                                                      3.233       

where 3.03  is the realistic minimum value of 3k for EC systems as explained in 

[270,273,274] and 5.04   is the realistic maximum value of 4k for EC systems as explained 

in [270,273,274]. 

 

Equations 3.210 and 3.214 were solved subject to constraint equations 3.232 and 3.233 

respectively by writing MATLAB scripts to optimize the objective functions BMK and EK  

shown in Appendix H4 - H6 and using the MATLAB R2014a optimization tool box. 
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Optimum value of parameters 1k , 2k , 3k , 4k , BMK and EK together with experimental data in 

Table 5.1 were used to solve and simulate the symmetric EDLC model given by equation 

3.49 under different conditions, subject to the boundary and initial condition equations 

3.64, 3.65 and 3.66, respectively, using the MATLAB scripts shown in Appendix H4 - H6. 

The optimal values of parameters 1k , 2k , 3k , 4k , BMK and EK were used to solve and simulate 

asymmetric EDLC and asymmetric EC models given by equations 3.124, 3.112 and 3.113 

under different conditions subject to boundary and initial condition equations 3.128, 3.129, 

3.130, 3.131 and  3.132 & 3.133, respectively, using MATLAB scripts shown in Appendix 

H4 - H6. Optimal parameters 1k , 2k , 3k , 4k , BMK and EK were used to compute the 

performance parameters of different types of  EC models under different conditions for 

performance comparison purposes. Finally, optimum values of 1k , 2k , 3k , 4k , BMK and EK

were also substituted into performance parameter equations 3.223–3.231 in order to 

compare the results from these equations with those computed from simulation of different 

types of capacitor models. The results of the various performance parameters from 

simulations were compared with the resultant performance parameter equations to 

ascertain the extent of their agreement.     

 

4.12 Model Validation of the electrochemical capacitor 

 

The experimental results of two symmetric button electrochemical capacitors with composite 

electrodes Mn3(PO4)2//Mn3(PO4)2 using aqueous 1molL-1 Na2SO4 electrolyte and aqueous 

2molL-1 KOH electrolyte [275] are used to validate the symmetric models. Also, symmetric 

electrochemical capacitors with nitrogen-doped rapeseed activated carbons (N-RCs) 

composite electrodes and 1100CNFs webs electrodes with aqueous 0.5molL-1 and 1mol L-1 
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Na2SO4 electrolyte respectively [276] and [277] are used to validate the symmetric models. 

Similarly, experimental results of two button asymmetric electrochemical capacitors with 

composite and activated carbon electrodes Mn3(PO4)2//AC using aqueous 1molL-1 Na2SO4 

electrolyte and aqueous 2molL-1 KOH electrolyte [275] are used to validate the asymmetric 

models. These capacitors are charged and discharged at different current densities, and the 

performance parameters measured at the various current densities. The material synthesis, 

electrodes preparation and supercapacitors fabrication were detailed in literature Ma et al [275], Sun 

et al [276] and [277], which are briefly explained below. 

The experimental data were obtained by testing symmetric and asymmetric cells. In the 

works of Ma et al [275], the electrodes contained a mixture of 80wt% of manganese 

phosphate Mn2(PO4)2, 7.5wt% of acetylene black, 7.5wt% of graphite, and 5wt% of 

polytetrafluoroethylene (PTFE), pasted onto a nickel foam current collector. For the 

asymmetric button device, Mn2(PO4)2 and activated carbon served as electrodes, and for the 

symmetric button device, Mn2(PO4)2 were used as electrodes. Each electrode contained 

85wt% of active material, 10wt% of acetylene black and 5wt% of PTFE on a nickel form 

current collector. The separator (glass micro-fiber filter paper) was in between the two 

electrodes soaked in either 1molL-1 aqueous Na2SO4 solution or 2molL-1aqueous KOH 

solution [275].  

In the work of Sun et al [276], the electrodes contained a mixture of 80wt% of nitrogen-

doped rapeseed residues activated carbons (N-RC2),10wt% of carbon black and 10wt% of 

polyvinylidene fluoride (PVDF), coated on a 1.0cm2 nickel foam current collector. For the 

symmetric button device, N-RC2 were used as the electrodes. The N-RC2 electrode fitted 

with a separator (thin polypropylene film) and 0.5molL-1 aqueous Na2SO4 solution 

electrolyte,  were symmetrically assembled into the electrode/separator/electrode construction 

(sandwich-kind devices) [276]. In the work of Zhao et al [277], the CNFs were prepared in 
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the form of self-sustaining webs by thermal conversion of electrospun polyacrylonitrile 

(PAN) nanofibers in NH3 atmosphere via stabilization and carbonization in a convectional 

tube furnance. The CNFs webs, glass fiber papers and Ni foils were cut into pieces of 1x2cm 

size and used as the electrodes, separator, and current collectors respectively. The CNFs webs 

were directly  pasted on the glass fiber papers soaked in 1molL-1 aqueous Na2SO4 solution 

electrolyte, and were sandwiched between the pieces of Ni foils and the edges were sealed 

with polytetrafluoroethene [277].   

The experimental results of the two button symmetric device fabricated with Mn2(PO4)2// 

Mn2(PO4)2 electrodes [275], presented in Tables 4.1 and 4.2, will be used alongside models to 

determine the level of agreement between models and experiments. Again, experimental data 

of the button symmetric device, fabricated with N-RC2//N-RC2 electrodes [276] presented in 

Tables 4.3, will be used to determine the level of agreement between models and 

experiments. Also, experimental data of the symmetric device, fabricated with CNFs //CNFs 

electrodes [277] presented in Tables 4.4, will be used to determine the level of agreement 

between models and experiments.  Similar results of two coin asymmetric devices of different 

electrodes thickness, fabricated with Mn3(PO4)2//AC electrodes, presented in Tables 4.5 and 

4.6, will also be employed alongside models to see the extent of their agreement. Note that 

input data of these experiments, such as charging and discharging times, electrodes and 

electrolyte effective conductivities, cell voltage, cell mass and electrodes thickness, were 

used to calculate the performance parameters (specific  capacitance, energy density and power 

density) from the models. 
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Table 4.1:Experimental results of the performance parameters of the symmetric capacitor 

with Mn3(PO4)2 composite electrodes and aqueous 1molL-1 Na2SO4 electrolyte and voltage of 

1.6V [275] 

Symmetric cell with Mn3(PO4)2//Mn3(PO4)2 electrodes and aqueous 1molL-1 

Na2SO4 electrolyte charged and cell voltage of 1.6V 

Current 
density 
(A/g) 

Charging 
time (s) 

Discharging 
time (s) 

Specific  
capacitance 
(F/kg) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

0.50 200.0 175.0 53700 19.09 392.78 
1.00 100.0 80.0  53100 18.88 790.33 
2.00 50.0 37.5 52600 18.70 1602.86 
3.00 30.0 25.0 52000 18.49 2465.19 
4.00 25.0 20.0 51400 18.28 3193.80 
5.00 20.0 15.0 50800 18.06 3989.20 
10.00 15.0 10.0 47700 16.96 8033.68 

 

Reproduced in part from RSC Adv., 2016,6, 40077- 40085 with permission of The Royal 

Society of Chemistry, which was presented in appendix A3. 

Table 4.2: Experimental results of performance parameters of a symmetric capacitor with 

Mn3(PO4)2 composite electrodes and aqueous 2molL-1 KOH electrolyte and voltage of 1.6V 

[275] 

Symmetric cell with Mn3(PO4)2//Mn3(PO4)2 electrodes and aqueous 2molL-1 

KOH electrolyte charged and cell voltage of 1.6V 

Current 
density 
(A/g) 

Charging 
time (s) 

Discharging 
time (s) 

Specific  
capacitance 
(F/kg) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

0.50 175.0 155.0 48400 17.21 399.72 
1.00 95.0 50.0  47700 16.96 803.37 
2.00 45.0 15.0 47100 16.75 1603.41 
3.00 30.0 10.0 46500 16.53 2400.00 
4.00 20.0 7.5 45900 16.32 3193.04 
5.00 10.0 5.5 45200 16.07 3990.07 
10.00 5.0 5.0 42700 15.18 8037.63 

 

Reproduced in part from RSC Adv., 2016,6, 40077- 40085 with permission of The Royal 

Society of Chemistry, which was presented in appendix A3. 
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Table 4.3: Experimental results of performance parameters of a symmetric capacitor with 

nitrogen-doped rapeseed activated carbons (N-RCs) composite electrode and aqueous 

0.5molL-1 Na2SO4 electrolyte and voltage of 1.8V [276] 

Symmetric cell with N-RC2//N-RC2  electrodes and aqueous 0.5molL-1 

Na2SO4 electrolyte charged and cell voltage of 1.8V 

Current 
density 
(A/g) 

Charging 
time (s) 

Discharging 
time (s) 

Specific  
capacitance 
(F/kg) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

0.25 200.0 150.0 62500 13.55 399.80 
0.50 100.0 50.0  56250 10.88 790.33 
1.00 50.0 25.0 55000 9.70 1380.86 
2.00 20.0 7.5 53750 8.49 2230.19 
3.00 15.0 5.0 52500 7.28 3031.86 
5.00 5.0 3.0 51250 6.46 4240.20 
8.00 2.5 2.0 50700 5.69 6401.00 

 

Table 4.4: Experimental results of performance parameters of a symmetric capacitor with 

1100CNF webs electrodes and aqueous 1molL-1 Na2SO4 electrolyte and voltage of 1.8V [277] 

Symmetric cell with 1100CNF web//1100CNF web electrodes and aqueous 

1molL-1 Na2SO4 electrolyte charged and cell voltage of 1.8V 

Current 
density 
(A/g) 

Charging 
time (s) 

Discharging 
time (s) 

Specific  
capacitance 
(F/kg) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

0.5 400.0 230.0 64666.7 29.1 450.0 
1.0 125.0 75.0  55555.6 25.0 1000.0 
2.0 50.0 45.0 51555.6 23.2 2000.0 
4.0 30.0 14.0 48000.0 21.6 3700.0 
8.0 10.0 10.0 43111.1 19.4 7200.0 

 

Table 4.5: Experimental results of performance parameters of an asymmetric capacitor with 

Mn3(PO4)2 composite electrode, AC electrode and aqueous 1molL-1 Na2SO4 electrolyte and 

voltage of 1.6V [275] 

Asymmetric cell with Mn3(PO4)2//AC electrode with  Mn3(PO4)2, aqueous 

2molL-1 Na2SO4 electrolyte and cell voltage of 1.6V  

Current 
density 

Charging 
time (s) 

Discharging 
time (s) 

Specific  
capacitanc

Energy 
density 

Power 
density 
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Reproduced in part from RSC Adv., 2016,6, 40077- 40085 with permission of The Royal 

Society of Chemistry, which was presented in appendix A3. 

Table 4.6: Experimental results of performance parameters of an asymmetric capacitor with 

Mn3(PO4)2 composite electrode, AC electrode and aqueous 2molL-1 KOH electrolyte and 

voltage of 1.6V [275] 

Asymmetric cell with Mn3(PO4)2//AC electrodes with  Mn3(PO4)2, aqueous 

2molL-1 KOH electrolyte and cell voltage of 1.6V 

Current 
density 
(A/g) 

Charging 
time (s) 

Discharging 
time (s) 

Specific  
capacitance 
(F/kg) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

0.50 175.0 125.0 41900 14.89 400.03 
1.00 75.0 55.0  41200 14.65 800.24 
2.00 35.0 25.0 40600 14.43 1599.02 
3.00 25.0 22.0 39900 14.19 2397.75 
4.00 20.0 10.0 39300 13.97 3204.07 
5.00 12.5 7.5 38600 13.72 3984.50 
10.00 2.5 2.5 37100 13.19 8048.81 

 

Reproduced in part from RSC Adv., 2016,6, 40077- 40085 with permission of The Royal 

Society of Chemistry, which was presented in appendix A3. 

  

(A/g) e (F/kg) (Wh/kg) (W/kg) 
0.50 200.0 120.0 46800 16.64 399.36 
1.00 100.0 45.0  46200 16.42 798.81 
2.00 62.5 32.5 45600 16.21 1598.79 
3.00 50.0 15.0 55000 16.00 2400.00 
4.00 37.5 12.5 44300 15.75 3194.37 
5.00 25.5 12.5 43700 15.54 3996.00 
10.00 10.0 10.0 41800 14.86 7984.48 
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CHAPTER FIVE 

 

5.0 Results and Discussions 

 

Results were discussed here in four parts, namely: the effects of self-discharge on the 

performance of symmetric electric double layer capacitors and active electrolyte enhanced 

supercapacitors; the effects of self-discharge on the performance of asymmetric/hybrid 

electrochemical capacitors; the effects of operating conditions and design configurations on 

the performance of electrochemical capacitors; and the optimization of design parameters and 

operating conditions of electrochemical capacitors for high performance. Three of these parts 

from have been published as stated in the list of publications, and were presented in this 

thesis with permission from the publishers shown in appendices A4, A5 and A6, respectively. 

  

5.1.1 The Effects of Self-Discharge on the Performance of Symmetric Electric Double 

Layer Capacitors and Active Electrolyte Enhanced Supercapacitors: Insights from 

Modelling and Simulation. 

 

In order to either simplify the models, or to facilitate a solution of the models, all the existing 

models of EDLCs were built on the assumption that either the electrodes or the capacitor do 

not have self-discharge. All existing models equally fail toexhibit significant responsibility of 

current in presenting the mechanism of self-discharge. Whereas numerous models for 

symmetric ECs have been developed, to the best of my knowledge, there has not been a 

general model that incorporated self-discharge and solved, subjects to self-discharge. The 

purpose of this section is to discuss the effects of self-discharge on the performance of 

symmetric EDLCs and AEECS by incorporating self-discharge into the models during the 
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charging and discharging processes. It was presumed that the coefficient of diffusivity in the 

solid and solution phases, and the transport number are not dependent on electrolyte 

concentration. It was also assumed that sources of self-discharge here are side-reactions or 

reactions of active redox species and several impurities in the electrodes, electrolytes, 

separator, current collectors of the device and various functional groups on CNTs electrodes. 

Side-reactions perform a very dominant role in considering the mechanism of self-discharge. 

The side-reactions or reactions of the active redox species, several impurities and instability 

of the electric double layers, are responsible for self-discharge processes. This will provide a 

platform on which to study the effect of each self-discharge parameter and how they could be 

adjusted to improve the performance of EDLCs and active electrolyte enhanced 

supercapacitors (AEESCs).  

 

5.1.2 Discussions 

 

The experimental data used in simulations were based on the works of  Kazaryan and co-

worker [89], Staser and Weidner [90] and [265] as presented in Table 5.1 . Reasonable values 

were assumed for unavailable parameters based on literature. The symmetric device 

discharged to 0.00V was charged by constant current to upper voltage of 1.20V for the 

charging duration (tch) of 5hrs. Thereafter it was discharged by constant current from 1.20V 

to lower voltage of 0.00V for the discharge duration (tdis) of 5hrs. The electrode effective 

conductivity α1 was varied in the simulation as follows: 0.0005, 0.0010, 0.0050, and 

0.0500S/cm, while the following charging conditions were also considered 0.0053A/cm2 for 

18000s, 0.0533A/cm2 for 1800s, 0.5330A/cm2 for 180s and 5.3300A/cm2 for 18s. Selection 

of the charging conditions is based on the fact that low current density needs longer time, 

while high current density needs shorter time. The first current density was multiplied by 
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factor of 10, 100 and 1000 while charging time was divided by the same factor to get the 

second, third and fourth conditions, respectively. The potential difference of negative and 

positive electrodes under is 0.60V and – 0.60V respectively, hence their potential before and 

after charging was assumed to be 0.00V & 0.00V and 0.60V & – 0.60V, respectively. 

 

The three cases examined here are as follows:  

(1) Device without self-discharge,  txJVR , =0;  

(2) Device with only electric double layers (EDLs) instability self-discharge,  txJVR , = VRJ

;and  

(3) Device with both EDLs instability and the side-reactions or redox reactions of active 

redox species self-discharges,  txJVR , = VRJ +  tJVR1 .  

Simulation and computation of the performance parameters of the EDLC without self-

discharge, with only the EDL’s instability self-discharge, and with both side-reactions/redox 

reactions and the EDL’s instability self-discharge during charging and discharging, were 

performed. The simulation and computation of the performance parameters of EDLCs with 

self-discharge during charging and discharging were also performed, with tuned key self-

discharge parameters. The purpose of calculation of these parameters is to clearly reveal the 

effects of self-discharge on the performance of devices with self-discharge.  

 

Table 5.1: The model parameters used for simulation of the effects of self-discharge on the 

performance of symmetric electric double layer capacitors and active electrolyte enhanced 

supercapacitors 

Parameters  Units Separator  Positive 
electrode 

Negative 
electrode 

Applied current density, J0 A/cm2       – 0.00533   [89]          – 

Capacitance per unit volume, Cv F/cm3       – 400  [89] 400  [89]  
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Electrode thickness, ew  cm       – 0.2  [89]  0.2  [89]  

Electrode visible surface area, A cm2       – 6290  [89]  6290  [89]  

Electrode effective conductivity, 1  S/cm       – 0.0005- 0.05 [89]  0.0005-0.05 

[89]  

Electrolyte effective conductivity, 2  S/cm       – 0.05  [89]  0.05  [89]  

Separator’s thickness, spw  cm 0.05  [89]           –          – 

Electrode density, e  g/cm3  1.0 [90]  1.0 [90]  

Electrolyte density, l  g/cm3  1.25 [90]  1.25 [90]  

Separator density, sp  g/cm3  0.95 [90]           – 

Electrode porosity, e        –       – 0.25 [90]  0.25 [90]  

Separator porosity, sp        – 0.70 [90]          –         – 

Specific internal ohmic resistance, int  Ωcm2          – 9 [89]  9 [89]  

Oxidized species concentration, OxC  mole/cm3          – 0.0003 [265]       – 

Oxidized species diffusivity, OxD  cm2/s          – 0.000018 [265]       – 

Thickness of separator and anode, l  cm 0.25 [265]       –       – 

Volume of reduced species, V cm3       – 0.1 [265]       – 

Number electrons transferred, n         –       – 2        – 

Ideal gas constant, R  J/mole 

K, 

      – 8.31447       – 

Faraday constant, F  coul/equi

v 

 96487       – 

Absolute temperature, T  0K       – 298       – 

Electrode potential before charging,
0

e  

V       – 0 [assumed]  0 [assumed] 

Electrode potential before discharge
0

e  
V       – 0.6 [assumed] -0.6 [assumed] 

Charge and discharge time, t S       – 18000       – 

Pi,         –       – 22/7       – 

 

The potential profiles in Figure 5.1 shows that the surface layer of electrodes are charged 

more efficiently, compared with the central part as expected, and are more noticeable in 

capacitors with low electrode and electrolyte effective conductivities. This was due to the fact 
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that in devices of low electrode and electrolyte effective conductivities, there was great 

resistance to ionic charge movement through various electrode pores, thereby creating high 

potential during charging time, but the potential decays after a long pause, when ions move 

deep inside smaller pores. In the case without self-discharge, the electrode was charged to 

designed potential as shown in Figure 5.1a, compared with only the EDL’s instability self-

discharge, where the electrode was charged to potential slightly below target potential as seen 

in Figure 5.1b. 

In the case with both side-reactions/redox reactions and the EDL’s instability self-discharge, 

the electrode was charged to a potential much below the target potential as presented in 

Figure 5.1c. For example, the electrode of the capacitor with electrode and electrolyte 

effective conductivity 21   = 0.05S/cm was charged to – 0.60V, – 0.55V and – 0.40V in 

the case without self-discharge, with only the EDL’s instability self-discharge and with both 

side-reactions/redox reactions and the EDLs instability self-discharge respectively, as shown 

in Figure 5.1.  
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Figure 5.1: Potential distribution profiles within the negative electrode of different electrode 

and electrolyte effective conductivities values 1 and 2 as a function of position after 

constant current charging process for (a) capacitors without self-discharge (b) capacitors with 

only the EDL's instability self-discharge, and (c) capacitors with both side-reactions/redox 

reactions and the EDL's instability self-discharge. 

Similarly, potential profiles of an electrode of different electrode and electrolyte effective 

conductivities at the end of constant current discharging process of capacitors without self-

discharge, with only the EDLs instability self-discharge and with both side-reactions/redox 

reactions and the EDLs layers instability self-discharge follow the same pattern as shown in 

Figure 5.2. The electrode of capacitors without self-discharge, with only the EDLs instability 

self-discharge and with both side-reactions/redox reactions and EDLs instability self-

discharge was discharged to 0.00V, 0.05V and 0.20V respectively in the device with 21   = 

0.05S/cm as shown in Figures 5.2a, 5.2b and 5.2c respectively.  

The effects of charge redistribution was present in both charging and discharging processes in 

the three cases under consideration, but were more noticeable in capacitors with low 

electrode and electrolyte effective conductivities. For instance, the voltage of the capacitor 

with 21   = 0.05S/cm, at the end of the charging process, was 1.55V, 1.50V and 1.35V in 

the device without self-discharge, with only the EDL’s instability self-discharge and with 

both side-reactions/redox reactions and the EDL’s instability self-discharge respectively, but 

decreased to 1.20V after a long pause. Similarly, voltage of the same capacitor at the end of 

the discharging process was – 0.35V,–0.30V and – 0.15V in the device without self-

discharge, with only the EDL’s instability self-discharge and with both side-reactions/redox 

reactions and the EDL’s instability self-discharge respectively, but increased to 0.00V after a 

long pause.  
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In the three conditions considered, there was levelling of the charge (potential decay) along 

the electrode’s thickness after the capacitor charging process and another levelling of the 

charge (potential growth) along the electrodes thickness after the capacitor discharging 

process. The levelling processes resulted in energy loss and gain, which is dependent on the 

parameter and mode of charging and discharging of the electrodes, in line with results in 

literature [89,278,279].  

 

Figure 5.2:  Potential distribution profiles within the negative electrode of different electrode 

and electrolyte effective conductivities values 1 and 2 as a function of position after 

constant current discharging process for (a) capacitors without self-discharge (b) capacitors 

with only EDLs instability self-discharge, and (c) capacitors with both side-reactions/redox 

reactions and EDLs instability self-discharge. 

Figure 5.3 depicts EC voltage dependence on time during the constant current charging 

process in a device without self-discharge, with only the EDLs layers instability self-

discharge and capacitors with both the side-reactions/redox reactions and EDL’s instability 

self-discharge. The voltage of devices with low electrode and electrolyte effective 
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conductivities were charged from 0.00V to values higher than the target upper voltage of 

1.20V and then reduced to 1.20V after a long pause, because of high charge redistribution in 

the capacitor’s electrodes. Charge redistribution was negligible in capacitors with high 

electrode and electrolyte effective conductivities, since their voltage did not reduce, but 

remained approximately the same after a long pause. The voltage of the capacitor electrode 

and electrolyte effective conductivity 21   = 0.05S/cm at the end of the charging process 

was 1.20V, 1.15V and 1.00V in the capacitor without self-discharge, with only the EDL’s 

instability self-discharge and capacitors with both side-reactions/redox reactions and EDL’s 

instability self-discharge respectively, as shown in Figure 5.3.  A voltage drop of 0.05V and 

0.20V were experienced in capacitors as a result of only the EDL’s instability self-discharge 

and both side-reactions/redox reactions and the EDL’s instability as seen in Figure 5.3b and 

5.3c, respectively.  

 

Figure 5.3:  Electrochemical capacitor voltage dependence on time during 18000s duration of 

constant current charging process for (a) capacitors without self-discharge, (b) capacitors 
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with only the EDL's instability self-discharge, and (c) capacitors with both side-

reactions/redox reactions and the EDL's instability self-discharge. 

In the same way, devices with low electrode and electrolyte effective conductivities were 

discharged to values below the target lower voltage of 0.0V and then increased to 0.0V after 

long pause, because of high charge redistribution in the capacitor’s electrodes as shown in 

Figure 5.4. The voltage of the capacitor of 21   = 0.05S/cm at the end of the discharge 

process was 0.00V, – 0.05V and – 0.20V in the capacitor without self-discharge, with only 

the EDL’s instability self-discharge and both side-reactions/redox reactions and the EDL’s 

instability self-discharge respectively, as shown in Figure 5.4. The same capacitor with only 

the EDL’s instability self-discharge was entirely discharged to the target lower voltage within 

17000s against 18000s, while that with both side-reactions/redox reactions and the EDL’s 

instability self-discharge was within 15000s because of self-discharge as shown in Figures 

5.4b and 5.4c. 
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Figure 5.4: Electrochemical capacitor voltage dependence on time during 18000s duration of 

constant current discharging process for (a) capacitors without self-discharge, (b) capacitors 

with only the EDL’s instability self-discharge, and (c) capacitors with both side-

reactions/redox reactions and the EDL’s instability self-discharge. 

Figure 5.5 present the profiles of voltage dependence on time for constant current charging of 

capacitors with different electrode and electrolyte effective conductivities from 0.00V to 

1.20V. It follows from Figure 5.5 that the capacitor’s voltage profiles during charging and 

discharging were nonlinearly dependent on time, and this nonlinearity dependence on time 

reduced as the effective conductivity of the electrodes was increased. The device without 

self-discharge was charged from 0.00V to target voltage of 1.20V within target charging 

time, as shown in Figure 5.5a; whereas the device with only the EDL’s instability self-

discharge was charged from 0.00V to 1.15V, which was less than the target voltage within 

the target time as seen in Figure 5.5b. The capacitor with both side-reactions/redox reactions 

and the EDL’s instability self-discharge was charged from 0.00V to 1.00V, which was also 

less than the target voltage of 1.20V within the target time as seen in Figure 5.5c.  
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Figure 5.5:  Electrochemical capacitor voltage dependence on time during 18000s duration of 

constant current charging process from 0.0V to 1.2V for (a) capacitors without self-discharge, 

(b) capacitors with only the EDL's instability self-discharge, and (c) capacitors with both 

side-reactions/redox reactions and the EDL's layers instability self-discharge. 

It follows from Figure 5.6 that an increase in charging current density and a reduction in 

charging time reduced voltage drop in capacitors with self-discharge, provided that the 

effective conductivities are high enough to permit easy movements of charges through 

electrodes at such a high rate. Capacitors with only the EDL’s instability self-discharge were 

charged fast from 0.00V to 1.18V within the target time as seen in Figure 5.6b. Also, 

capacitors with both side-reactions/redox reactions and EDL’s instability self-discharge were 

charged fast from 0.00V to 1.10V within the target time as shown in Figure 5.6c.  

It is important to note that when capacitors were charged and discharged fast, energy loss by 

self-discharge was reduced to the barest minimum as long as electrodes and electrolyte 

effective conductivity were high enough and concentrations of impurities were not increased 

in the course of enhancing electrode and electrolyte effective conductivity, as shown in 

Figures 5.6b & 5.6c and 5.8b & 5.8c. The fast charging process reduced the voltage drop in 

the capacitor with only the EDL’s instability self-discharge and those with both side-

reactions/redox reactions and the EDL’s instability self-discharge from 0.05V to 0.02V and 

0.20V to 0.10V respectively. 
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Figure 5.6:  Electrochemical capacitor voltage dependence on time during 180s duration of 

constant current charging process from 0.0V to 1.2V for (a) capacitors without self-discharge, 

(b) capacitors with the only EDL's instability self-discharge, and (c) capacitors with both 

side-reactions/redox reactions and the EDL's instability self-discharge. 

The device without self-discharge was discharged from 1.2V to the target lower voltage of 

0.0V within the target discharging time (18000s) as shown in Figure 8a; while those with 

only the EDL’s instability self-discharge were discharged from 1.2V to 0.0V within 17000s, 

quite before the target discharging time as shown in Figure 5.7b. capacitors with both side-

reactions/redox reactions and instability self-discharge were also discharged from 1.2V to 

0.0V within 15000s, well before the target time as seen in Figure 5.7c. This fast discharging 

reduced the voltage drop in capacitors with only the EDL’s instability self-discharge and 

those with both side-reactions/redox reactions and the EDL’s instability self-discharge as 

shown in Figures 5.8b and 5.8c respectively.  
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Figure 5.7:  Electrochemical capacitor voltage dependence on time during 18000s duration of 

constant current discharging process from 1.2V to 0.0V for (a) capacitors without self-

discharge, (b) capacitors with only the EDL's instability self-discharge, and (c) capacitors 

with both side-reactions/redox reactions and the EDL's instability self-discharge. 

In comparison, it took capacitors with self-discharge more than the target charging time to be 

fully charged as seen in Figures 5.5b, 5.5c, 5.6b and 5.6c, while devices without self-

discharge were completely charged within the target charging time as presented in Figures 

5.5a and 5.6a. Also, it took fully charged capacitors with self-discharge a shorter time than 

the target discharging time to be completely discharged by self-discharge, as was evident in 

Figures 5.7b, 5.7c, 5.8b and 5.8c. 

Figure 5.9 shows that at the end of 18000s constant current charging of the capacitor of

21   = 0.05S/cm without self-discharge, the voltage was 1.2000V as seen in Figure 5.9a. 

The voltage of a similar capacitor, with only the EDL’s instability self-discharge charged 

under the same conditions, was 1.1490V at the end of  the charging process as shown in 

Figure 5.9b. The voltage of a similar capacitor with both side-reactions/redox reactions and 
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the EDL’s instability self-discharge was 1.0700V under the same charging conditions as 

depicted in Figure 5.9b. It follows from Figure 5.10 that whereas the voltage of a device of 

= 0.05S/cm and 2 =0.05S/cm without self-discharge at the end of the 180s constant 

current charging process was 1.2000V as seen in Figure 5.10a, that of similar device with 

only the EDL’s instability self-discharge, charged under the same conditions was 1.1996V at 

the end of the charging process as shown in Figure 5.10b.   

 

Figure 5.8: Electrochemical capacitor voltage dependence on time during 180s duration of 

constant current discharging process from 1.2V to 0.0V for (a) capacitors without self-

discharge, (b) capacitors with only the EDL's instability self-discharge and (c) capacitors with 

both side-reactions/redox reactions and the EDL's instability self-discharge. 

Also, the voltage of a similar capacitor with both side-reactions/redox reactions and the 

EDL’s instability self-discharge was 1.1525V under the same charging conditions as depicted 

in Figure 5.10b. This shows that when capacitors with self-discharge were charged fast, by 

increasing applied current density and reducing charging time without any increase in 

concentrations of impurities, 0.0505V and 0.0825V respectively were conserved by charging 
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the capacitors with self-discharge fast (180s) as presented in Figures 5.10b and 5.10c. Both 

capacitors with and without self-discharge liberate some portion of their storable energy as 

polarization resistance energies Rpol
chE and Rpol

disE during device charging and discharging. Also, 

they all liberate some portion of their storable energy as depolarization energies dpol
chE and

dpol
disE during capacitors charging and discharging respectively.  

 

Figure 5.9: The voltage  tUS dependence on time for symmetric EDLCs with effective 

conductivities of 0.05S/cm during 18000s duration of constant current charging process from 

0.0V to 1.2V for (a) capacitors without self-discharge, (b) capacitors with only EDL's 

instability self-discharge, and (c) capacitors with both side-reactions/redox reactions and 

EDL's instability self-discharge. 

These energies are considerably dependent on the effective conductivity of the electrodes and 

electrolyte conductivity 1 and 2 , and are more evident in capacitors of low electrodes and 

electrolyte effective conductivities. Again, ohmic resistance energies R
chE  and R

disE are released 

due to internal ohmic resistance during capacitor charging and discharging.  
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Equations 4.72, 4.78, 4.75 – 4.76, 4.83 – 4.84, 4.88 – 4.89, and 4.95 – 4.97 were used to 

calculate performance parameters of the devices in the cases presented in Tables 5.2 – 5.4. It 

follows from Table 5.2 that total energy loss by polarization resistance, depolarization and 

internal ohmic resistance in the capacitor without self-discharge during charging and 

discharging was 17.21Wh; and 24.72Wh and 55.06Wh in similar a capacitor with only the 

EDL’s instability self-discharges and both side-reactions/redox reactions and the EDL’s 

instability self-discharges respectively. Energy loss by only the EDL’s instability self-

discharge and both side-reactions/redox reactions and the EDL’s instability self-discharge 

during charging and discharging, amounted to 9.73Wh and 28.38Wh respectively, as 

presented in Table 5.2.  

Storable energy in the device with only the EDL’s instability self-discharge and both side-

reactions/redox reactions and the EDL’s instability self-discharge, was 96.50Wh and 

70.24Wh respectively, as compared with 101.20Wh in a similar device without self-

discharge. Also, deliverable energy in the two capacitors with self-discharge was 90.86Wh 

and 50.56Wh respectively, while in a similar device without self-discharge it was 100.10Wh. 

Capacitors with self-discharge lost portions of energy by self-discharge during charging and 

discharging.  In the first and second charge–discharge cycles 1E and 2E , the energy 

efficiencies of the three capacitors were 84.24% & 84.25%, 72.33% & 72.34% and 38.13% & 

38.14% in device without self-discharge, with only the EDL’s instability self-discharge, and 

with both side-reactions/redox reactions and the EDL’s instability self-discharge respectively. 
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Figure 5.10:  The voltage  tUS dependence on time for symmetric EDLCs with effective 

conductivities of 0.05S/cm during 180s duration of constant current charging process from 

0V to 1.2V for (a) capacitors without self-discharge, (b) capacitors with only the EDL's 

instability self-discharge, and (c) capacitors with both side-reactions/redox reactions and the 

EDL's instability self-discharge. 

Side-reactions/redox reactions self-discharges in the device with a high concentration of 

redox species, contributed the majority of self-discharge in symmetric EDLCs and AEESs as 

presented in case 3 of Table 5.2. When products of redox reactions are insoluble in 

electrolyte solution, they adsorbed onto electrodes which resulted in the suppression of self-

discharge and enhanced device capacitance, as presented and explained in the work of Chen 

et al and Ike et al [245,280]. It follows from equations 3.52 and 3.62 that reduction of the 

concentration of impurities ions and redox species and the increase in the separator thickness, 

reduced the current densities of only the EDL’s instability self-discharge and both side-

reactions/redox reactions and the EDL’s instability self-discharge VRJ and 1VRJ to     4.0x10-

4A/cm2 and 9.58x10-5A/cm2 respectively.  
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Table 5.2: Parameters of symmetric EDLCs without self-discharge, with only the EDL's 

instability self-discharge, and with both side-reactions/redox reactions and the EDL's 

instability self-discharge during charging and discharging processes.  

S/N Parameter Unit                                       α2 = 0.05 S/cm 
Case 1:Without 
Self-discharge 
and wsp = 0.05cm  

Case 2: N = 
1020cm-3, wsp = 
0.05cm , and VRJ
=1.25x10-3A/cm2 

Case 3: N =1020cm-3, 
wsp = 0.05cm, VRJ
1.25x10-3A/cm2 and 

OxD =1.8x10-5cm2/s,

OxC =3.0x10-4 

mole/cm3, 1VRJ  = 
9.58x10-4A/cm2 

             α1              α1                  α1  
0.0005 0.0500 0.0005 0.0500 0.0005 0.0500 

1 ESch Wh 87.240 101.20 82.210 96.500 66.786 70.242 
2 ESdis Wh 45.110 100.10 39.392 90.862 17.447 50.557 
3 Iselfdis A 0.0000 0.0000 0.7862 0.7862 2.8092 2.8092 
4 Qselfdis Ah 0.0000 0.0000 13.967 15.743 54.428 66.987 
5 Eselfdis Wh 0.0000 0.0000 13.879 9.7336 34.497 28.377 
6 ERpol Wh 26.140 1.0840 29.479 4.8039 21.025 1.1184 
7 ER Wh 4.4820 16.050 4.4812 16.047 4.4812 16.047 
8 Edpol Wh 4.1410 0.0820 2.4701 0.1327 28.170 15.517 
9 ETloss Wh 34.750 17.210 42.309 24.717 70.173 55.058 
10 EDsy Wh/kg 30.992 35.957 29.204 34.282 23.726 24.953 
11 PDsy W/kg 6.1829 7.1734 5.8263 6.8393 4.7333 4.9782 
12 δEselfdis % 0.0000 0.0000 14.879 8.5707 36.403 27.386 
13 δET % 38.430 15.776 45.934 21.047 74.493 52.930 
14 ηE1 % 54.600 84.241 34.416 72.334 6.8300 38.130 
15 ηE2 % 54.620 84.245 38.763 72.340 7.2474 38.144 

 

Tuning the key self-discharge parameters as in Table 5.3 reduced the energy loss in the 

capacitor with only the EDL’s instability self-discharge and both side-reactions or redox 

reactions and the EDL’s instability self-discharge during charging and discharging to 3.02Wh 

and 5.60Wh respectively. The tuning effect reduced self-discharge and increased storable 

energy in the two capacitors, with self-discharge to 98.22Wh and 95.84Wh respectively, 

while deliverable energy was equally increased to 97.06Wh and 92.37Wh respectively as 

shown in Table 5.3. The first and second charge–discharge cycle energy efficiency of the 

capacitor with only the EDL’s instability self-discharge and both side-reactions/redox 
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reactions and the EDL’s instability self-discharge increased to 81.48% & 82.01% and 77.00% 

& 77.53% respectively as shown in Table 5.3.  

Table 5.3: Parameters of symmetric EDLCs without self-discharge, with only the EDL's 

instability self-discharge, and with both side-reactions/redox reactions and the EDL's 

instability self-discharge during charging and discharging processes.  

S/N Parameter Unit                                         α2 = 0.05 S/cm 
Case 1:Without 
Self-discharge 
and wsp = 0.1cm  

Case 2: N= 
1019cm-3, wsp = 
0.1cm , and VRJ
=4.0x10-4A/cm2 

Case 3: N =1019cm-3, 
wsp = 0.1cm, VRJ
=4.0x10-4A/cm2 and 

OxD =1.8x10-6cm2/s,

OxC = 3.0x10-5 

mole/cm3, 1VRJ = 
9.58x10-5A/cm2 

              α1               α1                 α1  
0.0005 0.0500 0.0005 0.0500 0.0005 0.0500 

1 ESch Wh 87.240 101.20 85.820 98.224 84.286 95.842 
2 ESdis Wh 45.110 100.10 43.354 97.059 40.651 92.365 
3 Iselfdis A 0.0000 0.0000 0.5032 0.5032 0.9058 0.9058 
4 Qselfdis Ah 0.0000 0.0000 4.4696 5.0378 8.4960 9.0643 
5 Eselfdis Wh 0.0000 0.0000 4.6672 3.0250 8.5410 5.6005 
6 ERpol Wh 26.140 1.0840 10.068 1.0840 9.1089 0.1500 
7 ER Wh 4.4820 16.050 4.4812 16.047 4.4812 16.047 
8 Edpol Wh 4.1410 0.0820 16.537 0.1487 16.325 2.5296 
9 ETloss Wh 34.750 17.210 35.753 19.633 43.876 24.327 
10 EDsy Wh/kg 30.992 35.957 27.562 31.545 27.068 30.780 
11 PDsy W/kg 6.1829 7.1734 5.4986 6.2933 5.4003 6.1407 
12 δEselfdis % 0.0000 0.0000 5.0902 2.7686 9.2304 5.1263 
13 δET % 38.430 15.776 38.993 17.969 41.560 22.267 
14 ηE1 % 54.600 84.241 43.708 81.479 38.770 77.003 
15 ηE2 % 54.620 84.245 58.826 82.014 54.658 77.530 

 

Further tuning of these key self-discharge parameters as shown in in Table 5.4, reduced 

energy loss in the device with only the EDL’s instability self-discharge and both side-

reactions/redox reactions and EDLs instability self-discharge further to 0.94Wh and 1.11Wh 

respectively. Storable energy in these two capacitors with self-discharge was further 

improved to 100.89Wh and 99.52Wh respectively, compared with 101.20Wh in the device 

without self-discharge, as presented in Table 5.4. The first and second charge–discharge 

cycle energy efficiency of the capacitor with only the EDL’s instability self-discharge and 
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both side-reactions/redox reactions and the EDL’s instability self-discharge improved to 

83.98% & 84.22% and 80.54% & 81.56% respectively. Figures 5.11 and 5.12 depict voltage 

decay on the storage time of the symmetric EDLC with different electrodes effective 

conductivities and different self-discharge processes. The time to entirely discharge the fully 

charged capacitor on storage by different self-discharge processes, greatly depends on the key 

self-discharge parameters. 

Table 5.4: Parameters of symmetric EDLCs without self-discharge, with only the EDL's 

instability self-discharge, and with both side-reactions/redox reactions and the EDL's 

instability self-discharge during charging and discharging processes.  

S/N Parameter Unit                                      α2 = 0.05 S/cm 
Case 1:Without 
Self-discharge 
and wsp = 0.1cm  

Case 2: N = 
1018cm-3, wsp = 
0.1cm , and VRJ = 
4.0x10-5A/cm2 

Case 3: N = 1020cm-3, 
wsp = 0.1cm, VRJ = 
4.0x10-5A/cm2and 

OxD =1.8x10-6cm2/s,

OxC = 3.0x10-5 

mole/cm3, 1VRJ = 
9.58x10-5A/cm2 

             α1               α1                    α1  
0.0005 0.0500 0.0005 0.0500 0.0005 0.0500 

1 ESch Wh 87.240 101.20 87.150 100.89 85.820 99.520 
2 ESdis Wh 45.110 100.10 45.067 99.746 42.310 95.990 
3 Iselfdis A 0.0000 0.0000 0.0504 0.0504 0.4530 0.4530 
4 Qselfdis Ah 0.0000 0.0000 0.4470 0.5038 4.4734 4.5300 
5 Eselfdis Wh 0.0000 0.0000 2.4694 0.9439 4.4300 1.1067 
6 ERpol Wh 26.140 1.0840 9.7421 2.6039 8.8120 2.7950 
7 ER Wh 4.4820 16.050 4.4812 16.047 4.4812 16.050 
8 Edpol Wh 4.1410 0.0820 3.0961 0.5286 20.245 2.6540 
9 ETloss Wh 34.750 17.210 17.789 16.720 37.968 17.020 
10 EDsy Wh/kg 30.992 35.957 28.053 32.401 27.560 35.090 
11 PDsy W/kg 6.1829 7.1734 5.5966 6.4641 5.4983 7.0003 
12 δEselfdis % 0.0000 0.0000 0.5169 0.2807 4.8315 2.5380 
13 δET % 38.430 15.776 19.587 15.363 41.409 20.538 
14 ηE1 % 54.600 84.241 47.995 83.980 42.835 80.540 
15 ηE2 % 54.620 84.245 61.474 84.224 56.673 81.560 

 

It follows from Figures 5.11a, 5.11c and 5.11a that the fully charged symmetric EDLC with 

the electrode's effective conductivity 1 =0.05 S/cm and only the EDL’s instability self-

discharge under conditions presented in case 2 of Tables 5.2, 5.3 and 5.4, took 14.0 days, 
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136.6 days and 137.7 days respectively, to be completely discharged by self-discharge. 

Voltage of the fully charged symmetric EDLC of 1 =0.05S/cm with both side-

reactions/redox reactions and the EDL’s instability self-discharge under conditions in case 4 

of Table 5.2 decayed sharply to approximately 1.05V within 27.7h of storage (1.2days) as 

shown in Figure 5.11b.  

 

Figure 5.11: Dependence of voltage  tUS decay on time of storage for symmetric EDLC of 

different electrodes effective conductivities with (a) only the EDL's instability self-discharge 

with VRMJ 1.25x10-3A/cm2, (b) both side-reactions/redox reactions and the EDL's instability 

self-discharge with VRMJ 1.25x10-3A/cm2 and 1VRJ =9.58x10-4A/cm2, (c) only the EDL's 

instability self-discharge with VRMJ = 4.0x10-4A/cm2, and (d) both side-reactions or redox 

reactions and the EDL's instability self-discharge with VRMJ = 4.0x10-4A/cm2 and 1VRJ

=9.58x10-5A/cm2. 
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After this quick decay, the voltage remained fairly constant for several days before 

subsequent slow decay. It took this capacitor under storage conditions 38.8 days to be 

completely discharged by self-discharge alone as pictured in Figure 5.11b. It follows from 

Figures 5.11d and 5.12b that the voltage of a fully charged symmetric EDLC with               

1 = 0.05S/cm and both side-reactions/redox reactions and the EDL’s instability self-

discharge, but with tuned key self-discharge, remained almost constant at 1.2V for 92.6 days 

and 925.9 days respectively, before decaying. It took this capacitor 135.4 days and 1365.7 

days respectively to be entirely discharged by self-discharge as shown in Figures 5.12a and 

5.12b. Incorporation of self-discharge in the capacitor's models created an avenue for a more 

accurate estimation of the energy parameters during charging, discharging and on storage. 

 
Figure 5.12: Dependence of voltage  tUS decay on time of storage for symmetric EDLC with 

different electrodes effective conductivities and (a) only the EDL's instability self-discharge 

with VRJ = 4.0x10-5A/cm2 and (b) both side-reactions/redox reactions and the EDL's instability 

self-discharge with VRJ = 4.0x10-5A/cm2 and 1VRJ = 9.58x10-5A/cm2. 
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The above results and analysis showed that self-discharge has a significant role in the 

stability of ECs’ parameters during charging and discharging, and the method of charging and 

discharging is important in getting optimal energy parameters. This model with self-discharge 

could be used to explain self-discharge experimental results available in references 

[197,198,245]. It can also be used to study the effects of each self-discharge parameter on the 

capacitor’s overall performance and how the key-parameters can be tuned to improve device 

performance. The model presented a more realistic estimate of the potential drop and energy 

loss in ECs, since it considered, in addition to energy loss by polarization and depolarization 

resistance, both side-reactions/reactions of active redox species and the electric double layers 

instability self-discharge during charging and discharging processes.  

 

5.2 The Effects of Self-Discharge on the Performance of Asymmetric/Hybrid 

Electrochemical Capacitors: Insights from Modeling and Simulation. 

 

In order to bridge the gap between theoretical and practical understanding of this subject, we 

incorporated the self-discharge term into asymmetric ECs mass transfer and charge 

conservation equations for capacitors during charging and discharging, by assuming that self-

discharge was not zero. Our ultimate motivation was to develop a platform to study self-

discharge effects in asymmetric ECs via modelling and simulation, by incorporating self-

discharge into the model equation while charging and discharging. This will enhance 

evaluation of the effects of self-discharge and its key parameters on the overall performance 

of ECs. The effects of varios kinds of self-discharge can be studied by incorporating a 

combination of various expressions for self-discharge mechanisms obtainable in asymmetric 

ECs. We assumed that side-reactions or reactions of active redox species and several 

impurities and electric double layers (EDLs) instability are responsible for self-discharge 
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processes, and ignored the existence of ohmic leakage currents among cathode and anode. 

The EDL's instability self-discharge can be caused by the presence of functional groups or 

impurities in electrode materials, shuttling of electrolyte impurities among electrodes, charge 

redistribution and attractive force from opposite ions in the electrolyte phase.  

 

5.2.2 Discussions 

 

The data operated upon are based on the experiment variables of Kazaryan et al. [89] and 

Staser et al. [90]. As presented in Table 5.1 a sensible figure were presumed, based on 

literature for unavailable parameters.The EC discharged to 0.8V is charged by constant 

current to an upper voltage of 2.0V for the charging duration (tch) of 5 hours. Thereafter it is 

discharged by a constant current from 2.0V to a lower voltage of 0.8V for the discharging 

duration (tdis) of 5 hours. We carried out simulations on the asymmetric electrochemical 

capacitor’s self-discharge parameter with the device design described in Table 5.1. Electrode 

effective conductivity α1 was varied in the simulation as follows: 0.0005, 0.0010, 0.0050, and 

0.0500S/cm, while the following charging conditions were also considered 0.00533A/cm2 for 

18000s, 0.05330A/cm2 for 1800s, 0.53300A/cm2 for 180s and 5.33000A/cm2 for 18s. The 

choice of the charging conditions is based on the fact that low current density needs longer 

time, while high current density needs shorter time. The first current density was multiplied 

by a factor of 10, 100 and 1000 while charging time was divided by the same factor to get the 

second, third and fourth conditions, respectively.  

In order to validate the model accuracy, experimental results of two button asymmetric 

electrochemical capacitors Mn3(PO4)2//AC composite electrodes using aqueous 1molL-1 

Na2SO4 electrolyte and aqueous 2molL-1 KOH electrolyte [275] were used to validate the 
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asymmetric models. The devices were charged and discharged at different current densities 

and times (different rates), in order to confirm the effects of the charging and discharging rate 

on the device’s self-discharge rate. Plots of the voltage of the button device against charging 

and discharging time were used to verify the validity of the models. The fabricated button 

devices were charged from 0.0V to 1.6V, and thereafter discharged from 1.6V to 0.0V. 

 

The presence of redox species or impurities in the electrodes or electrolyte will produce 

oxidized molecules at a positive electrode (anode) during the capacitor charging process. 

These oxidized molecules will spread across the separator and get to the negative electrode 

surface where they are readily reduced, because cathode potential falls by way of charging 

EDLs as presented in equations 3.53, 3.54 and 3.55. The quantity of charge leaving the 

negative electrode into solution grows exponentially as shown in Figure 5.13a, generated 

from equation 3.61.  

 

Figure 5.13: (a) Amount of charge moving from negative (cathode) electrode of asymmetric 

ECs into the solution over time due to redox reactions self-discharge using Equation 4.36; (b) 
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potential change in negative electrode over time due to redox reactions self-discharge using 

Equation 4.52; and (c) the potential change over time due to both the EDL's instability and 

redox reactions self-discharge. 

 

It follows from equations 4.36 and 4.39 that the device negative electrode potential and 

voltage reduced exponentially over time, due to migrations of redox species or impurities  in 

electrolyte as shown in Figures 5.13b and 2c.  

 

It was noticed that the concentration of oxidized molecules and the entire thickness of the 

separator and positive electrode substantially affects the rate of shuttle self-discharge. 

Equations 4.51 and 4.52 show that the voltage of the asymmetric cell decays exponentially by 

self-discharge during charging as evident in Figure 5.13d. 

This decay was very sharp at the initial phase of the self-discharge process (within the first 

10min (600s)), when the concentration of redox species or/and shuttle impurities was high 

and thereafter became linear throughout the remaining charging duration as shown in Figure 

5.13d. It was noted the that concentration of redox species or/and shuttle impurities and the 

entire thickness of the device separator and anode greatly determine the rate of self-discharge. 

 

During the device charging, redox species/impurities in electrodes or electrolyte undergo 

galvanostatic electrolysis to produce oxidized molecules on the surface of the positive 

electrode (anode). These oxidized molecules migrate through the separator to the surface of 

the negative electrode (cathode). These oxidized species are readily reduced at the cathode 

surface, where they increase the negative electrodes’ operating potential window above the 

electrochemical range of the solvent, thereby speeding up the self-discharge process. Thus, 

migration of the redox species/impurities and electrochemical products were, to greater 
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extent, the causes of self-discharge in asymmetric ECs. This clearly shows that efficiency of 

the capacitor’s charging and its voltage is significantly dependent on the self-discharge rate in 

the device. Asymmetric capacitors with high electrodes and electrolyte effective conductivity 

( 1  2 = 0.05S/cm) without self-discharge were charged to the target upper voltage (2.0V) 

within the stipulated charging time, whereas similar capacitors with self-discharge were 

charged to a voltage below the target upper voltage (1.8V) within stipulated  charging time 

due to self-discharge, as shown in Figures 5.14a and 5.14c respectively. ECs with low 

electrodes and electrolyte effective conductivity ( 1  2 = 0.0005S/cm) without self-

discharge were charged 2.0V within the target charging time, while similar capacitors with 

self-discharge were charged to 1.8 V within the same time, as seen in Figures 5.14a and 5.14c 

respectively. The voltage profiles of the device with high electrode and electrolyte effective 

conductivities increased linearly during charging, as compared with the nonlinear increase in 

the device with low electrodes and electrolyte effective conductivities.  

 

Figure 5.14: The voltage dependence on time in ECs with different parameters charged for 

18000s from 0.8V to 2.0V in (a) capacitors without self-discharge; (b) when devices with 
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different parameters are discharged for 18000s from 2.0V to 0.8V in capacitors without self-

discharge; (c) charging with self-discharge; and (d) when devices with different parameters 

are discharged for 18000s from 2.0V to 0.8V for capacitors with self-discharge. 

This clearly showed that the charging efficiency of the capacitor, its voltage and time is 

greatly dependent on the electrodes and electrolyte effective conductivities 1 and 2 . Similar 

ECs with self-discharge were not charged to target voltage within the target charging time 

(18000s) due to self-discharge and additional time is needed to achieve that. 

 

Similarly, capacitors without self-discharge were discharged to 0.8V within the stipulated 

discharging time; whereas similar capacitors with self-discharge were discharged to 0.8V in a 

shorter time (15000s) than the target due to self-discharge loss, as evident in Figures 5.14b 

and 5.14d respectively.  

In order to study the effects of the charging and discharging rate on the self-discharge 

process, ECs were charged and discharged faster for 30min (1800s), 3min (180s) and 0.3min 

(18s)  by multiplying the effective conductivities and applied current densities by a factor of 

10, 100, and 1000 respectively. The charging condition in ECs with electrodes and electrolyte 

effective conductivities of 0.5S/cm, 5S/cm and 50S/cm was applied at a current density of 

0.0532A/cm3 for 1800s, 0.53200A/cm3 for 180s and 5.32000A/cm3 for 18s respectively. When 

the EC with self-discharge was charged at a current density of 0.05320 A/cm3 for 1800s, the 

device voltage at the end of the charging process was 1.88V due to self-discharge as shown in 

Figure 5.15c, compared with 1.80V when charged at 0.00532A/cm3 for 5hrs (18000s) as seen 

in Figure 5.14c. The voltage of similar capacitors without self-discharges when charged for 

30min (1800s) at the rate of 0.05320A/cm3 was 2.0V as shown in Figure 5.15a.  
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In the same manner, when the EC with self-discharge was discharged at a current density of 

0.0532A/cm3 to 0.8V, it took it 1580s due to self-discharge as shown in Figure 5.15d, 

compared with 15000s discharge duration for rate of 0.00532A/cm3 as seen in Figure 5.14d. 

A similar capacitor without self-discharge, discharged its voltage to 0.8V within the target 

discharge time (30min (1800s)) at the same rate as shown in Figure 5.15b. 

 

Figure 5.15: The voltage dependence on time in ECs with different parameters charged for 

1800s from 0.8V to 2.0V in (a) capacitors without self-discharge; (b) when devices with 

different parameters were discharged for 1800s from 2.0V to 0.8V in capacitors without self-

discharge; (c) charging with self-discharge; and (d) when devices with different parameters 

were discharged for 1800s from 2.0V to 0.8V in capacitors with self-discharge. 

When the EC with self-discharge was charged at a current density of 0.5320A/cm3 for 3min 

(180s), the voltage at end of the charging process was 1.95V due to self-discharge as seen in 

Figure 5.16c, in comparison with 1.88V in a similar device charged at 0.0532A/cm3 for 

30min (1800s) as seen in Figure 5.15c. Again, the similar device without self-discharge 
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effects was charged to 2.0V at the end of 3min (180s) charging as shown in Figure 5.16a. 

When the capacitor with self-discharge was discharged 0.8V at the rate of 0.5320A/cm3, it 

took it 170s to discharge its voltage as seen in Figure 5.16d, compared with 180s it took the 

similar device without self-discharge at the same rate as shown in Figure 5.16b. It took a 

similar capacitor with self-discharge 1580s to be discharged to the target lower voltage at a 

rate of 0.0532A/cm3 as depicted in Figure 5.15d. These results clearly showed that charging 

capacitors fast with higher current density and less time reduced the self-discharge rate and 

the consequent voltage losses.  

 

Figure 5.16: The ECs voltage dependence on time when devices with different parameters 

were charged for 180s from 0.8V to 2.0V in (a) capacitors without self-discharge; (b) when 

devices with different parameters were discharged for 180s from 2.0V to 0.8V in capacitors 

without self-discharge; (c) charging with self-discharge; and (d) when devices with different 

parameters were discharged for 180s from 2.0V to 0.8V in capacitors with self-discharge.  
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A further increase in the capacitor’s charging rate to a current density of 5.3200A/cm2 for 

0.3min (18s), improved the voltage at the end of the charging duration to 1.9950V as 

presented in Figures 5.17b, compared with 1.95V when charged at a rate of 0.5320A/cm2 for 

3 min (18s) as in Figures 5b. Similar capacitors without self-discharge were charged to 2.0V 

at the same rate as shown in Figure 5.17a. Similar capacitors with self-discharge were 

completely discharged to 0.8V at the same rate within 17.6s as depicted in Figure 5.17d, 

compared to the 18s it took similar capacitors without self-discharge at the same rate as seen 

in Figure 5.17b.  

Fast charging of ECs with self-discharge at current densities of 0.0532A/cm2 for 1800s, 

0.5320A/cm2 for 180s and 5.3200A/cm2 for 18s, reduced the voltage drop from 0.200V to 

0.120V, 0.120V to 0.050V and 0.050V to 0.005V respectively. Figure 5.18 depicts the 

voltage decay in asymmetric ECs with different electrodes effective conductivities over time 

due to both redox reactions and the EDL’s instability self-discharge during the charging 

process at different charging conditions. 

 

Figure 5.17: The ECs voltage dependence on time when devices with different parameters are 

charged for 18s from 0.8V to 2.0V in (a) capacitors without self-discharge; (b) when device 
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with different parameters are discharged for 18s from 2.0V to 0.8V in capacitors without self-

discharge; (c) charging with self-discharge; and (d) when devices with different parameters 

are discharged for 18s from 2.0V to 0.8V in capacitors with self-discharge. 

 

It follows from Figures 5.18a and 5.18b that the voltage drop at the initial stage of the 

charging processes (600s and 60s respectively) was very sharp for charging rates of 

0.0053A/cm2 for 18000s and 0.0532A/cm2 for 1800s. This is because redox products have 

enough time to migrate from one electrode to another, thereby increasing the self-discharge 

rate. For a charging condition of 0.5320A/cm2 for 180s, the voltage drop was very small 

within the first 6s and thereafter the voltage became approximately constant throughout the 

remaining time as shown in Figure 5.18c. When the capacitors were charged at a current 

density of 5.3200A/cm2 for 18s, the voltage drops were so insignificant that their profiles 

remained constant throughout the duration as presented in Figure 5.18d. 

 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

1.7

1.75

1.8

1.85

1.9

1.95

2

T i m e   ( s )

V
 o

 l 
t a

 g
 e

 , 
U

 s
 ( 

V
 )

a

 

 

0 200 400 600 800 1000 1200 1400 1600 1800
1.88

1.9

1.92

1.94

1.96

1.98

2

T i m e   ( s )

V
 o

 l 
t a

 g
 e

 , 
U

 s
 ( 

V
 )

b

 

 

0 20 40 60 80 100 120 140 160 180
1.94

1.95

1.96

1.97

1.98

1.99

2

T i m e   ( s )

V
 o

 l 
t a

 g
 e

 , 
U

 s
 ( 

V
 )

c

 

 

0 2 4 6 8 10 12 14 16 18
1.95

1.96

1.97

1.98

1.99

2

T i m e   ( s )

V
 o

 l 
t a

 g
 e

 , 
U

 s
 ( 

V
 )

d

 

 

u s ( 1 = 0.05 S / c m )

u s ( 1 = 0.005 S / c m )

u s ( 1 = 0.001 S / c m )

u s ( 1 = 0.0005 S / c m )

u s ( 1 = 0.5 S / c m )

u s ( 1 = 0.05 S / c m )

u s ( 1 = 0.01 S / c m )

u s ( 1 = 0.005 S / c m )

u s ( 1 = 5 S / c m  )

u s ( 1 = 0.5 S / c m )

u s ( 1= 0.1 S / c m )

u s ( 1 = 0.05 S / c m )

u s ( 1 = 50 S / c m )

u s (1 = 5 S / c m )

u s (1 = 1 S / c m )

u s (1 = 0.5 S / c m )



 

206 
 

Figure 5.18: The voltage decay over time in asymmetric electrochemical capacitors with 

different electrodes effective conductivities by both redox reactions and EDLs instability self-

discharge after the device was charged from voltage of 0.8V to 2.0V at current density of (a) 

0.0053A/cm2 for 18000s charging time; (b) 0.0532A/cm2 for 1800s charging time; (c) 

0.5320A/cm2 for 180s charging time; and (d) 5.3200A/cm2 for 18s charging time.   

Figure 5.19 shows voltage decay of asymmetric ECs with the same electrodes effective 

conductivity over time, by both redox reactions and the EDL’s instability self-discharge 

during the device’s charging process to 2.0V at different charging conditions. When the 

capacitor with electrodes effective conductivity of 0.05S/cm was charged at a current density 

of 0.0053A/cm2 for 18000s, 0.0532A/cm2 for 1800s, 0.5320A/cm2 for 180s and 5.3200A/cm2 

for 18s, its voltage dropped from 2.000V to 1.800V, 2.000V to 1.980V, 2.000V to 1.998V 

and 2.000V to 1.9998V respectively, as seen in Figures 5.19a, 5.19b, 5.19c and 5.19d. Actual 

voltage drops by self-discharge during charging at the four different conditions were 0.200V, 

0.020V, 0.002V and 0.0002V respectively. It was clearly seen from Figure 5.19 and the 

above discussion that the capacitors’ voltage drop for conditions in Figure 5.19c and 5.19d 

were negligible.  

It follows from Table 5.5 that the energy loss in the asymmetric EC with electrode effective 

conductivity of 1 = 0.0500S/cm and 0.0005S/cm by only the EDL’s instability self-discharge 

during the  charging and discharging processes, was 21.99Wh and 22.49Wh respectively. 

Energy loss by EDLs instability self-discharge reduced along with an increase in the 

capacitors’ electrode effective conductivity 1 . Total energy loss ETloss in the EC with self-

discharge was 44.49Wh and 86.41Wh in the device with 1 =0.0500S/cm and 0.0005S/cm 

respectively, compared with 22.51Wh and 63.99Wh in a similar EC without self-discharge.  
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Figure 5.19: The voltage decay over time in asymmetric electrochemical capacitors with 

electrodes effective conductivity of 0.05S/cm by both redox reactions and the EDL's 

instability self-discharge after the devices are charged from voltage of 0.8V to 2.0V at a 

current density of (a) 0.0053A/cm2 for 18000s charging time; (b) 0.0532A/cm2 for 1800s 

charging time; (c) 0.5320A/cm2 for 180s charging time; and (d) 5.3200A/cm2 for 18s 

charging time.   

 

Storable energy of the EC with self-discharge was 225.38Wh, 218.63Wh, 185.83Wh and 

156.99Wh, while deliverable energy was 217.77Wh, 189.09Wh, 116.74Wh and 63.56Wh. 

Storable energy of similar a EC without self-discharge was 234.58Wh and 166.00Wh, 

whereas deliverable energy was 233.15Wh and 71.72Wh. The first and second charge–

discharge cycle efficiencies 1E and 2E of the EC with 1 =0.0500S/cm and 0.0005S/cm and 

only the EDL’s instability self-discharge during charging and discharging were 84.98% & 
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85.11% and 26.74% & 49.51%, respectively; and 90.72% & 90.82% and 41.13%  & 62.65% 

respectively in similar a EC without self-discharge as presented in Table 5.5 

 

Table 5.5:  Parameters of asymmetric ECs in Case 1 without self-discharge; and Case 2 with 

self-discharge and N = 1020cm-3 and VRMJ = 1.25x10-3A/cm2 during capacitors charging and 

discharging. 

S/N Parameter Unit α 2= 0.05S/cm 

Case 1: Without Self-

discharge and 

wsp=0.1cm   

Case 2: N=1020cm-3 , 

wsp=0.1cm and VRJ

=1.25x10-3A/cm2 

α 1 (S/cm) α 1 (S/cm) 

0.0005 0.0500 0.0005 0.0500 

1 ESch Wh 165.99 234.58 156.99 225.38 

2 ESdis Wh 71.724 233.15 63.562 217.77 

3 Iselfdis A 0.0000 0.0000 0.7862 0.7862 

4 Eselfdis Wh 0.0000 0.0000 22.485 21.990 

5 ETloss Wh 63.991 22.506 86.414 44.485 

6 EDasy Wh/kg 74.666 107.56 62.523 91.531 

7 PDasy W/kg 14.933 21.512 12.505 18.306 

8 Masy kg 2.5791 2.5791 2.5791 2.5791 

9 ηE1 % 41.131 90.723 26.744 84.980 

10 ηE2 % 62.653 90.823 49.514 85.106 

 

It follows from Table 5.6 that the energy loss in the asymmetric EC with 1 = 0.0500S/cm and 

0.0005S/cm by both the EDL’s instability and redox reaction self-discharge during charging 

and discharging was 59.53Wh and 87.88Wh respectively. Total energy loss by self-discharge 

in the EC with 1 =0.0500S/cm and 0.0005S/cm was 63.61Wh and 126.45Wh respectively, 

compared with 22.51Wh and 63.99Wh in similar a EC without self-discharge as seen in 

Table 5.6. Storable energy of the EC with self-discharge was 214.48Wh and 147.17Wh in 

device with 1 = 0.0500S/cm and 0.0005S/cm respectively; whereas deliverable energy was 
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209.37Wh and 61.27Wh respectively. The first and second charge–discharge cycle 

efficiencies 1E and 2E of asymmetric ECs with 1 =0.0500S/cm and 0.0005S/cm and both 

EDL’s instability and redox reaction self-discharges was 79.57% & 82.03% and 18.05% & 

31.95% respectively; compared with 90.72% & 90.82% and 41.13%, 62.65% respectively in 

similar ECs without self-discharge as seen in Table 5.6. Storable and deliverable energies 

were lower because of the high rate of self-discharge due to migration of soluble redox 

reaction products from one electrode to another.  

 

Table 5.6: Parameters of asymmetric ECs in Case 1, without self-discharge; and Case 2 with 

self-discharge and N = 1020cm-3, VRMJ  = 1.25x10-3A/cm2, 1VRJ  = 9.58x10-4A/cm2, OxC = 

3.0x10-4mol/cm3 and OxD = 1.8x10-5cm2/s during capacitors charging and discharging. 

S/N Parameter Unit                            α2 = 0.05S/cm 

Case 1: Without 

Self-discharge and 

wsp=0.1cm   

Case 2: N=1020cm-3 , wsp= 

0.1cm and VRJ = 1.25x10-

3A/cm2 and 1VRJ = 9.58x10-

4A/cm2, OxC = 3.0x10-4mol/cm3 

and OxD =1.8x10-5 cm2/s  

           α1 (S/cm)                α1 (S/cm) 

0.0005 0.0500 0.0005 0.0500 

1 ESch Wh 165.99 234.58 147.17 214.48 

2 ESdis Wh 71.724 233.15 61.265 209.36 

3 Iselfdis A 0.0000 0.0000 5.6186 5.6186 

4 Eselfdis Wh 0.0000 0.0000 87.875 59.533 

5 ETloss Wh 63.991 22.506 126.45 63.608 

6 EDasy Wh/kg 74.666 107.56 58.716 87.303 

7 PDasy W/kg 14.933 21.512 11.743 17.461 

8 Masy kg 2.5791 2.5791 2.5791 2.5791 

9 ηE1 % 41.131 90.723 18.047 79.574 

10 ηE2 % 62.653 90.823 31.945 82.026 
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Figure 5.21 presents the charging and discharging times of Ma et al [275] asymmetric device 

with Mn3(PO4)2//AC electrodes using 1 molL-1 Na2SO4  and 2molL-1 KOH aqueous 

electrolyte at different current densities. It follows from Figure 5.20 that the charging and 

discharging time of the device reduced as the applied current density was increased. It was 

shown that when the device with 1 molL-1 Na2SO4 aqueous electrolyte was charged and 

discharged at a current density of 0.5A/g, the time it took it to be charged to 1.6V and 

thereafter discharged to 0V was 200s and 120s respectively, as shown in Figures 5.20a and 

5.20b. The device was discharged faster and the difference in the values of charging and 

discharging times (80s) was due to self-discharge, since the values of charging and 

discharging current density were the same. 

 

When the same device was charged and discharged at a current density of 10.0A/g, it took the 

device 10.5s and 10.0s to be charged to 1.6V and discharged to 0.0V respectively. The 

difference in charging and discharging times due to self-discharge was reduced to 0.5s, 

because the self-discharge rate reduced as a result of the increased charging and discharging 

rate. 

Similarly, when the device with 2 molL-1 KOH aqueous electrolytes was charged and 

discharged at a current density of 0.5A/g, it took it 175s and 125s to be charged to 1.6V and 

discharged to 0.0V respectively, as shown in Figure 5.20c and 5.20d. The difference in 

charging and discharging times due to self-discharge was 50s. When it was also charged and 

discharged at current density of 10.0A/g, it took it 2.5s and 2.0s to be charged to 1.6V and 

discharged to 0.0V respectively. The difference in the charging and discharging times due to 

self-discharge reduced to 0.5s. This also showed that charging and discharging ECs faster 

reduced the self-discharge rate significantly.  
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Figure 5.20: (a) The charging time of a button asymmetric EC with 1 molL-1 Na2SO4 aqueous 

electrolyte solution charged at different current densities; (b) The discharging time of a 

button asymmetric EC with 1 molL-1 Na2SO4 aqueous electrolyte solution discharged at 

different current densities; (c) The charging time of a button asymmetric EC with 2 molL-1 

KOH aqueous electrolyte solution charged at different current densities; (d) The discharging 

time of a button asymmetric EC with 2 molL-1 KOH aqueous electrolyte solution discharged 

at different current densities. [The straight lines in Figure 5.20 does not necessarily mean that 

voltage is directly proportional to charging or discharging time]. 

 

Figure 5.21 presents the comparison of charging and discharging times of the simulation with 

the experiment of Ma et al [275] for asymmetric ECs with Mn3(PO4)2//AC electrodes using 1 

molL-1 Na2SO4  and 2molL-1 KOH aqueous electrolyte at different current densities. It was 

seen that the charging and discharging time from simulation and Ma et al experiments agreed 

to a large extent as depicted in Figure 5.21.  
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Figure 5.21: (a) Comparison of charging time of simulation with experiment in asymmetric 

EC with 1 molL-1 Na2SO4 aqueous electrolyte at different current densities; (b) Comparison 

of discharging time of simulation with experiment in asymmetric EC with 1 molL-1 Na2SO4 

aqueous electrolyte at different current densities; (c) Comparison of charging time of 

simulation with experiment in asymmetric EC with 2 molL-1 KOH aqueous electrolyte at 

different current densities; (d) Comparison of discharging time of simulation with experiment 

in asymmetric EC with 2 molL-1 KOH aqueous electrolyte at different current densities 

densities. [The straight lines in Figure 5.21 does not necessarily mean that voltage is directly 

proportional to charging or discharging time]. 

 

In order to study the effects of some self-discharge parameters on the self-discharge rate, the 

concentration of functional groups in electrodes or impurities ions in electrolyte was reduced, 

which resulted in a reduction of the EDL’s self-discharge current density. Reduction in the 

concentration of the redox species and redox species coefficient of diffusivity also resulted in 

a reduction of redox reaction self-discharge current density. It follows from Table 5.7 that 

0 50 100 150 200 250
0

0.5

1

1.5

C h a r g i n g     t i m e  ( s )

V
 o

 l 
t a

 g
 e

   
( V

 )
a

 

 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

D i s c h a r g i n g    t i m e  ( s )

V
 o

 l 
t a

 g
 e

   
( V

 )

b

 

 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

C h a r g i n g    t i m e  ( s )

V
 o

 l 
t a

 g
 e

  (
 V

 )

c

 

 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

D i s c h a r g i n g    t i m e  ( s )

V
 o

 l 
t a

 g
 e

   
( V

 )

d

 

 

E x p: J 0 = 0.5 A / g

S i m: J 0 = 0.5 A / g

E x p: J 0 = 2.0 A / g

S i m: J 0 = 2.0 A / g

E x p: J 0 = 5.0 A / g

S i m: J 0 = 5.0 A / g

E x pt: J 0 = 0.5 A / g

S i m: J 0 = 0.5 A / g

E x p: J 0 = 2.0 A / g

S i m: J 0 = 2.0 A / g

E x p: J 0 = 5.0 A / g

S i m: J 0 = 5.0 A / g

E x p: J 0 = 0.5 A / g

S i m: J 0 = 0.5 A / g

E x p: J 0 = 2.0 A / g

S i m: J 0 = 2.0 A / g

E x p: J 0 = 5.0 A / g

S i m: J 0 = 5.0 A / g

E x p: J 0 = 0.5 A / g

S i m: J 0 = 0.5 A / g

E x p: J 0 = 2.0 A / g

S i m: J 0 = 2.0 A / g

E x p: J 0 = 5.0 A / g

S i m: J 0 = 5.0 A / g



 

213 
 

tuning the self-discharge parameters enhanced the performance and efficiency of ECs by 

reducing charge and energy losses due to self-discharge during charging/discharging. The 

tuning operation enhanced EC storable energy to 245.09Wh and 168.96Wh in device with 1

=0.0500S/cm and 0.0005S/cm respectively, whereas deliverable energy was 244.02Wh, and 

74.67Wh respectively as presented in Table 5.7. Energy loss in the capacitor by the self-

discharge process during charging and discharging was reduced to 7.43Wh and 18.26Wh 

respectively, while the total energy loss was reduced to 23.94Wh and 68.70Wh respectively.  

 

The first and second charge–discharge cycle energy efficiencies 1E and 2E of devices with 

electrodes effective conductivity 1 = 0.0500S/cm and 0.0005S/cm and self-discharge, were 

enhanced to 90.46% & 90.80% and 40.79% & 62.05% respectively; compared with 90.72% 

& 90.82% and 41.13% & 62.65% in similar capacitors without self-discharge as seen in 

Table 5.7. Storable and deliverable energies of the capacitors with tuned self-discharge 

parameters and insoluble redox reaction products were higher than those of similar capacitors 

without self-discharge. This is because redox reaction products are insoluble and adsorbed 

onto the cathode, thereby increasing the energy capacity of the device as evident in Table 5.7. 

Thus, reduction of shuttle impurity concentration and use of redox-active species that 

produces insoluble products suppresses the rate of self-discharge.  

Table 5.7: Parameters of asymmetric ECs in Case 1, without self-discharge; and Case 2 with 

self-dischargeN =1019cm-3, VRMJ = 4.0x10-4A/cm2, 1VRJ =9.58x10-5A/cm2, OxC =3.0x10-5mol/cm3 

and OxD = 1.8x10-6cm2/s, during capacitors charging and discharging. 

S/N Paramete Unit                                      α2 = 0.05S/cm 
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r Case 1: Without Self-

discharge and wsp= 0.1cm   

Case 2: N=1019cm-3 , wsp = 

0.1cm, VRJ = 4.0x10-4A/cm2, 

1VRJ =9.58x10-5A/cm2, OxC = 

3.0x10-5mol/cm3 and OxD = 

1.8x10-6cm2/s 

          α1  (S/cm)               α1 (S/cm) 

0.0005 0.0500 0.0005 0.0500 

1 ESch Wh 165.99 234.58 168.96 245.09 

2 ESdis Wh 71.724 233.15 74.670 244.02 

3 Iselfdis A 0.0000 0.0000 0.9078 0.9078 

4 Eselfdis Wh 0.0000 0.0000 18.263 7.4290 

5 ETloss Wh 63.991 22.506 68.702 23.939 

6 EDasy Wh/kg 74.666 107.56 80.287 113.75 

7 PDasy W/kg 14.933 21.512 18.057 26.551 

8 Masy kg 2.5791 2.5791 2.5791 2.5791 

9 ηE1 % 41.131 90.723 40.792 90.458 

10 ηE2 % 62.653 90.823 62.054 90.789 

 

The voltage decay of fully charged ECs under storage conditions with different electrode 

effective conductivity and both the EDL’s instability and redox reactions self-discharge, 

follows the profile shown in Figure 5.22. It took completely charged capacitors with different

1 under storage and the self-discharge parameters presented in case 2 of Table 5.6, 38.7 

days, 38.0 days, 34.3 days and 31.3 days respectively, to be entirely discharged to 0.8V by 

self-discharge as shown in Figure 5.22a. Also, it took completely charged similar capacitors 

with different 1 under storage and tuned self-discharge parameters as in case 2 of Table 5.7, 

135.4 days, 133.1 days, 121.2 days and 112.8 days respectively to be fully discharged to 0.8V 

by self-discharge as seen in Figure 5.22b. It was noted that the key self-discharge parameters 

to be tuned to enhance the performance and efficiency of ECs are the concentration of the 

electrode’s functional groups or impurity ions in electrolyte, concentration of oxidized 

species, and the total thickness of the separator and positive electrode.  
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Figure 5.22: The voltage decay due to self-discharge in capacitors with different electrodes 

effective conductivity 1 under storage condition after charged to 2.0V for (a) devices with 

parameters(N=1020cm-3,wsp=0.1cm, VRJ =1.25x10-3A/cm2, OxC =3.0x10-4mol/cm3, OxD = 

1.8x10-5cm2/s and 1VRJ =9.58x10-4A/cm2); and (b) devices with modified self-discharge 

parameters (N=1019cm-3,wsp=0.1cm, VRJ =0.0004A/cm2, OxC = 3.0x10-5mol/cm3, OxD = 1.8x10-

6cm2/s and 1VRJ =9.58x10-5A/cm2). 

 

Tuning the self-discharge key parameters enhanced the energy retention capability of ECs 

with electrode effective conductivity 1 =0.0500, 0.0050, 0.0010 and 0.0005S/cm from 38.7 

days, 38.0 days, 34.3 days and 31.3 days to 135.4 days, 133.1 days 121.2 days and 112.8 days 

respectively. It was also noticed that quick charging and discharging of capacitors 

significantly reduced the self-discharge rate and energy loss during the operation as shown in 

Figures 5.15, 5.16, 5.17 and 5.18, compared with slow charging and discharging as seen in 

Figure 5.14.  
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5.3 The Influences of Operating Conditions and Design Configurations on the 

Performance of Symmetric Electrochemical Capacitors 

 

This section discusses the effects of different charging current densities, charging times, 

electrode and electrolyte effective conductivities, and structural parameters such as the 

thickness of electrodes, porosity, separator thickness and porosity on the performance of 

symmetric ECs. Mathematical representation of mass transfer and charge conservation 

equations of electrochemical capacitors during charging and discharging, based on the work 

of Kazaryan et al. [89] were derived and used to perform this task. It was assumed that side-

reactions or reactions of active redox species and several impurities and the electric double 

layers’ (EDLs’) instability are responsible for self-discharge. The EDLs’ instability self-

discharge is due to the presence of functional groups or impurity ions in the electrode 

materials, shuttling of electrolyte impurities among electrodes, charge redistribution and 

attractive force from opposite ions in the electrolyte phase. A couple of numerical 

experiments were performed using MATLAB R2014a, in order to examine the influences of 

various operating conditions and design configurations on EC capacitance, energy density 

and power density. The simulation results obtained could be employed to optimize the design 

of ECs for practical applications.  

 

5.3.2 Discussions 

 

In order to validate the model accuracy, simulation curves of the length over which the 

liquid potential drop occurs in electrodes ][ ew were compared with those of experimental 

data reported by Ma et al. [275] and Sun et al. [276], as well as those of Kazaryan et al. 
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[89] data. All developed models were also validated with experimental data reported by 

following research groups in literature: Kazaryan et al. [89], Ma et al. [275], Sun et al. 

[276] and Zhao et al. [277]. The experimental data of two symmetric button 

electrochemical capacitors Mn3(PO4)2//Mn3(PO4)2 composite electrodes using aqueous 

1molL-1 Na2SO4 electrolyte and aqueous 2molL-1 KOH electrolyte [275] was used to 

validate symmetric models. Also, experimental data of a symmetric capacitor with 

nitrogen-doped rapeseed activated carbons (N-RCs) composite electrodes and 1100CNFs 

webs electrodes with aqueous 0.5molL-1 and 1mol L-1 Na2SO4 electrolyte respectively 

[276] and [277] was used to validate the symmetric models. The performance parameters 

to be measured and determined at various current densities are charging time, discharging 

time, specific capacitance, energy density and power density. Plots of specific capacitance 

and specific energy and the specific power of fabricated symmetric button devices reported 

by Ma et al. [275], Sun et al. [276] and Zhao et al .[277] were also used to verify the 

validity of the models. The fabricated button devices were charged from 0.0V to 1.6V and 

1.0V, and thereafter discharged from 1.6V and 1.8V to 0.0V, respectively.  

In the simulation, the EC was charged from its lower voltage of 0.0V to the upper voltage 

of 1.2V. The porous electrode theory that does not consider the electrode's diverse 

microstructure like morphology, pore forms, pore dimensions, and the pore linkages for a 

One-Dimensional model was used. The data operated upon were based on experiment 

variables of Kazaryan et al.[89] and Staser et al.[90] presented in Table 5.8 and sensible 

figures were assigned, based on literature, to the parameters which are unavailable. The EC 

discharged to 0.0V and was charged by constant current to the upper voltage of 1.2V for 

the charging period (tch) of 5h. Thereafter it was discharged by a constant current to the 

lower voltage of 0.0V for a discharging period (tdis) of 5h. The mass transfer and charge 

conservation equations of each capacitor’s component during the charging and discharging 
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processes were considered, and the current collector’s resistance were ignored due to their 

high conductivity.  

Table 5.8: The model parameters used for simulation influences of operating conditions and 

design configurations on the performance of symmetric electrochemical capacitors 

Parameters name Parameter’s 

symbol 

Units Positive 

electrode 

Negative 

electrode 

Applied current density J0 A/cm2 0.00533   [89]          – 

Capacitance per unit volume Cv F/cm3 400  [89] 400  [89]  

Electrode thickness  cm 0.2  [89]  0.2  [89]  

Electrode visible surface area A cm2 6290  [89]  6290  [89]  

Electrode effective conductivity  S/cm 50 [assumed] 50 [assumed] 

Electrolyte effective conductivity  S/cm 0.5  [89]  0.5  [89]  

Separator’s thickness  cm 0.05  [89] ]          – 

Electrode density  g/cm3 1.0 [90]  1.0 [90]  

Electrolyte density  g/cm3 1.25 [90]  1.25 [90]  

Separator density  g/cm3 0.95 [90]           – 

Electrode porosity          – 0.25 [90]  0.25 [90]  

Separator porosity      – 0.70 [90]           – 

specific internal ohmic resistance  Ωcm2 9 [assumed] 9 [assumed] 

 

Generally, solid-phase conductivity is reasonably greater than liquid-phase conductivity in 

electrochemical capacitor. Thus, the solid-phase potential drop is considerably lower than 

that of the liquid-phase during the capacitor’s charging or discharging. The electrodes of the 

device are similar in terms of composition since it is a symmetric EC. The total current in the 

electrodes is a total of electronic current 1J and ionic current 2J , whereas the entire current in 

the separator is ionic. The total current at the electrode/separator interface is purely by ions, 

whereas total current at the interface of the current collector/electrode is purely by electrons. 

ew

1

2

spw

e

l

sp
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sp

int
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 In the subsequent sections, modelling and simulation was used to present the effects of using 

different design variables/configurations and operating conditions like charging rate and time, 

electrodes and electrolyte effective conductivities, electrode thickness, electrode porosity and 

separator porosity on the performance of the EC during charging and discharging. 

Furthermore, the EC’s performance was presented on ragone plots for several design 

variables and operating conditions. These plots could be used to obtain optimum design 

parameters and operating conditions for realistic application, because every utilization has a 

definite energy and power density that match exactly with an area on the ragone graph.  

 

5.3.1.1 Effects of concentration of impurity ions and active redox species in capacitor’s 

components 

 

Side-reactions or reactions of active redox species and several impurities in the electrodes, 

electrolytes, separator, current collectors and various functional groups on CNTs 

electrodes are sources of the ECs self-discharge processes. Also, migration of impurity 

ions or redox species from one electrode to other and the instability of the electric double 

layers are responsible for self-discharge processes, but side-reactions perform a dominant 

role in the EC’s self-discharge processes. If the concentration of impurity ions and redox 

species in the device is high, the rate of self-discharge will be high and cell potential and 

voltage will decay due to self-discharge as presented in Figure 5.23. High concentrations 

of impurity ions and redox species in the device leads to a high rate of self-discharge 

caused by diffusion of ions in the EDLs, migration/shuttling of products of redox reactions 

from one electrode to another and consumption of negative charges on the cathode. It 

follows from Figure 5.23 that the capacitor of electrode and electrolyte effective 

conductivities of 21   = 0.05S/cm without self-discharge, was charged to a potential of 
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– 0.6V as in Figure 5.23a, while a similar device with only EDL’s instability self-discharge 

and both side-reactions/redox reactions and EDL’s instability were charged to a potential 

of – 0.55V and – 0.40V as seen in Figures 5.23b and 5.23c, respectively.  

 

Figure 5.23: Potential distribution profiles within electrode of different electrode and 

electrolyte effective conductivities values 1 and 2 as function of position after constant 

current charging of capacitors (a) without self-discharge (b) with only EDLs instability self-

discharge, and (c) with both side-reactions/redox reactions and EDLs instability self-

discharge. 

 

5.3.1.2 Effects of charging current density and charging time (charging rate) 

 

In order to carry out a more accurate comparison of the parameters of ECs with various 

charging rates, charging current densities and charging times are selected so as to make 
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sure that the multiplying factor of current density is equal to the division factor of charging 

time. This is significant since the increase in the EC’s charging current density and 

reduction in charging duration results in a change of the device voltage operating range 

and energy parameters. The rate of the change is related to electrode parameters and the 

value of the capacitor’s applied current density. For instance, the charging condition with 

capacitor electrode’s effective conductivity of 1 =50S/cm, electrolyte effective 

conductivity of 2 =0.05S/cm, and 0.2cm electrode thickness can be increased from 

0.00533A/cm2 for 18000s by multiplying the current density and dividing the charging 

time by a factor of 10, 100 and 1000, respectively. This results in the following charging 

conditions: 0.0533A/cm2 for 1800s, 0.533A/cm2 for 180s and 5.33A/cm2 for 5.062s as 

shown in Table 5.9. 

 

Generally, potential drop in the solid-phase is significantly lower than that in the liquid-

phase, because solid-phase conductivity is significantly larger than liquid-phase 

conductivity in electrochemical capacitors. At high charging or discharging rates, 

charging/reaction occurs much faster close to the electrode/separator interface and the 

remaining portion of the electrode is not utilized due to the small time scale. Thus, the 

length over which the liquid potential drop happens ( ][ ew ) is not the entire electrode 

thickness, but a width determined by the applied current density. The length corresponds to 

the degree of electrode utilization at a given applied current density. This length can be 

employed as design parameter to optimize electrodes thickness in capacitors designed to 

function under specific current ranges. The length ][ ew decreases along with increases in 

the current density for specific electrode and electrolyte effective conductivities and 
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electrode thickness as presented in Tables 5.9–5.12. This is also clearly seen in equation 

4.120.   

Table 5.9: ECs component scales for different applied current densities 0J , A/cm2 and 2 = 

0.5S/cm 

Parameters and its 
Expressions 

=50S/cm, =0.5S/cm, =0.2cm, =1.2V and
=0.05cm  
Current Density,   (A/cm2) 
0.00533 0.05330 0.53300 5.33000 

(cm) 
5.629x101 5.629x100 5.629x10–1 5.629x10–2 

(cm) 
2.000x10–1 2.000x10–1 2.000x10–1 5.629x10–2 

(V) 
2.132x10–5 2.132x10–4 2.132x10–3 6.000x10–3 

(V) 
2.132x10–3 2.132x10–2 2.132x10–1 6.000x10–1 

(V) 
5.330x10–4 5.330x10–3 5.330x10–2 5.330x10–1 

 
3.553x10–3 3.553x10–2 3.553x10–1 1.000x100 

(s) 
1.801x104 1.801x103 1.801x102 5.062x100 

 

The charging rate is estimated as the amount of applied charging current per unit of area 

and time (A/cm2s), and this shows the speed with which capacitors are charged or 

discharged. The charging or discharging time (time scale) of electrochemical capacitors 

decreases along with an increase in applied current density as presented in Tables 5.9–

5.12. For example, the charging time of a similar capacitor with electrodes effective 

conductivity of 1 =50S/cm, electrolyte effective conductivity of 2 =0.05S/cm, and 0.2cm 

electrode thickness using four different current densities ( 0J =5.33x10-3A/cm2, 5.33x10-

2A/cm2, 0.533A/cm2 and 5.33A/cm2) are 18011.3s, 1801.100s, 180.100s and 5.062s 
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respectively as shown in Table 5.9. The applied current density to effectively charge a 

capacitor is largely dependent upon electrodes and electrolyte effective conductivities as 

well as electrodes thickness. This is supported by equations 4.116 and 4.117.  

Figure 5.24 depicts the solid and liquid-phase potential drops in capacitors of the same 

electrode thickness charged at various current densities and electrode and electrolyte 

effective conductivities. Since solid and liquid-phase potential drops varies with three 

variables (applied current density, electrodes thickness and effective conductivity) 

according to equations 4.116 and 4.117,  potential drops in the device, charged at different 

applied current density, were presented in terms of the electrode effective conductivity, 

electrolyte effective conductivity and electrode thickness. The potential drop value for 

each applied current density at every point along the electrode thickness was equally 

shown in Figure 5.24. For example, when a capacitor with electrodes and electrolyte 

effective conductivities 1 =50S/cm and 2 =0.5S/cm was charged at four different current 

densities ( 0J = 5.33x10-3A/cm2, 5.33x10-2A/cm2, 0.533A/cm2 and 5.330A/cm2), solid and 

liquid-phase potential drops were 2.132 x10-5V, 2.132 x10-4V, 2.132 x10-3V & 6.0 x10-3V 

and 2.132 x10-3V, 2.132 x10-2V, 0.2132V & 0.600V respectively as presented in Table 5.9 

and Figures 5.24a and 5.24c respectively. The liquid-phase potential drops when the device 

was charged at a current density of 0.533A/cm2 and 5.330A/cm2 were both half of cell 

voltage (0.600V). The plot of current density of 0.533A/cm2 was not shown in Figures 

5.24b and 5.24d, because its value was equal to that of 5.33A/cm2. Similarly, the liquid-

phase potential drop in the device with 2 =0.005S/cm charged at the four current densities 

was 0.020V, 0.600V, 0.600V and 0.600V, respectively as presented in Table 5.10. Again, 

The liquid-phase potential drop in the capacitor with 2 =0.005S/cm was 0.200V and 
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0.600V in the first and last three densities respectively, as shown in Table 5.11, and was  

0.600V in all the four current densities as presented in Table 5.12. 

 

Figure 5.24: Solid-phase potential drop in capacitors of the same electrode thickness 

charged at various current densities and of electrode and electrolyte effective 

conductivities of (a) 1 = 50S/cm and 2 = 0.50S/cm; (b) 1 = 5S/cm and 2 = 0.05S/cm; 

liquid-phase potential drop in capacitors of the same electrode thickness charged at various 

current densities and of electrode and electrolyte effective conductivities of (c) 1 = 

50S/cm and 2 = 0.50S/cm; and (d) 1 = 5S/cm and 2 = 0.05S/cm. 

Table 5.10: ECs component scales for different applied current densities 0J , A/cm2 and 2

= 0.05S/cm 

Parameters and its 
Expressions 

=5S/cm, =0.05S/cm, =0.2cm, =1.2V and
=0.05cm  
Current Density,   (A/cm2) 
0.00533 0.05330 0.53300 5.33000 

(cm) 
5.629x100 5.629x10–1 5.629x10–2 5.629x10–3 
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(cm) 
2.000x10–1 2.000x10–1 5.629x10–2 5.629x10–3 

(V) 
2.132x10–4 2.132x10–3 6.000x10–3 6.000x10–3 

(V) 
2.132x10–2 2.132x10–1 6.000x10–1 6.000x10–1 

(V) 
5.330x10–3 5.330x10–2 5.330x10–1 5.330x100 

 
3.553x10–2 3.553x10–1 1.000x10–1 1.000x100 

(s) 
1.801x104 1.801x103 5.069x101 5.069x10–1 

 

Similarly, the solid-phase potential drop in the capacitor with electrodes and electrolyte 

effective conductivity 1 =0.500S/cm and 2 =0.005S/cm when charged at the four current 

densities was 2.132 x10-3V, 6.0 x10-3V, 6.0 x10-3V and 6.0 x10-3V, respectively as shown 

in Figures 5.25a and 5.25c. The plots of the capacitor charged at current densities with 

0.0533A/cm2 and 0.5330A/cm2 were not shown in Figure 5.25a and 5.25c because their 

values were the same as that of 5.330A/cm2. It was seen that the liquid-phase potential 

drop in the capacitor with electrolyte effective conductivity of 2 =0.005S/cm, when 

charged at the four current densities were all high. The liquid-phase potential drop at a 

current density of 5.33x10-3A/cm2 was 0.200V, while the liquid-phase potential drop at the 

other current density was half of the cell voltage (0.600V). Again, the solid-phase potential 

drop in the capacitor with electrodes and electrolyte effective conductivity of 1 = 

0.0500S/cm and 2 = 0.0005S/cm, when charged at the four current densities was 6.0 x10-

3V, while that in the liquid-phase was 0.600V as presented in Table 5.12 and Figures 5.25b 

and 5.25d. 

Also, plots of the capacitor charged at a current density of 0.0053A/cm2, 0.0533A/cm2 and 

0.5330A/cm2 were not shown in Figure 5.25b and 5.25d, because they coincided with that 
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of 5.3300A/cm2. The liquid-phase potential drops when the device was charged at the four 

current densities were all equal to half of the device voltage (0.600V). 

Table 5.11: ECs component scales for different applied current densities 0J , A/cm2 and 2 = 

0.005S/cm 

Parameters and its 
expressions 

=0.5S/cm, =0.005S/cm, =0.2cm, =1.2V and
=0.05cm  
Current Density,   (A/cm2) 
0.00533 0.05330 0.53300 5.33000 

(cm) 
5.629x10–1 5.629x10–2 5.629x10–3 5.629x10–4 

(cm) 
2.000x10–1 5.629x10–2 5.629x10–3 5.629x10–4 

(V) 
2.132x10–3 6.000x10–3 6.000x10–3 6.000x10–3 

(V) 
2.132x10–1 6.000x10–1 6.000x10–1 6.000x10–1 

(V) 
5.330x10–2 5.330x10–1 5.330x100 5.330x101 

 
3.553x10–1 1.000x10–1 1.000x100 1.000x100 

(s) 
1.801x104 5.069x102 5.069x100 5.069x10–2 

 

This shows that it was not effective and realistic to charge the capacitor with electrolyte 

effective conductivity of 2 = 0.0005S/cm at the four current densities examined, since the 

liquid-phase potential drop was up to half of the cell voltage. Also, it was not effective to 

charge the capacitor with electrolyte effective conductivity of 2 = 0.0050S/cm at current 

densities of 5.33x10-2A/cm2, 0.533A/cm2 and 5.330A/cm2 because the liquid-phase 

potential drop was also half of the device voltage. Again, it was ineffective for the 

capacitor with electrolyte effective conductivity of 2 =0.0500S/cm to be charged at 

current densities of 0.5330A/cm2 and 5.3300A/cm2. It was also unrealistic for the device 
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with electrolyte effective conductivity of 2 =0.5000S/cm to be charged at a current density 

of 5.3300A/cm2
, because the liquid-phase potential drop in the device was half of the cell 

voltage.  

 

Figure 5.25: Solid-phase potential drop in capacitors of the same electrode thickness 

charged at various current densities and of electrode and electrolyte effective conductivity 

of (a) 1 = 0.5000S/cm and 2 = 0.0050S/cm; (b) 1 = 0.0500S/cm and 2 = 0.0005S/cm; 

liquid-phase potential drop in capacitors of the same electrode thickness charged at various 

current densities and electrode and electrolyte effective conductivity of (c) 1 = 

0.5000S/cm and 2 = 0.0050S/cm; and (d) 1 = 0.0500S/cm and 2 = 0.0005S/cm. 

The effective charging time of the capacitor with electrodes and electrolyte effective 

conductivities 1 = 50S/cm and 2 = 0.50S/cm, at current densities of 5.33x10-3A/cm2, 

5.33x10-2A/cm2, 0.533A/cm2 and 5.33A/cm2 are 1.801x104s, 1.801x103s, 1.801x102s and 

5.062s, respectively as presented in Table 5.9 and Figure 5.26a. Also, the effective 

charging time of the capacitor with electrodes and electrolyte effective conductivities 1
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=5.00S/cm and 2 = 0.05S/cm, at the same current densities are 1.801x104s, 1.801x103s, 

50.6900s and 0.5069s, respectively as presented in Table 5.10 and Figure 5.26b.  

 

Figure 5.26: Charging times of capacitors of the same electrode thickness and of electrode 

and electrolyte effective conductivity charged at various current densities with (a) 1

=50S/cm and 2 = 0.500S/cm; (b) 1 =5S/cm and 2 =0.050S/cm; (c) 1 = 0.500S/cm and 2

= 0.005S/cm; and (d) 1 = 0.050S/cm and 2 = 0.0005S/cm. 

Again, the effective charging time of the capacitor with electrodes and electrolyte effective 

conductivities 1 =0.500S/cm and 2 =0.005S/cm, charged at the same current densities was 

1.801x104s, 5.069x102s, 5.069s and 0.05069s, respectively as presented in Table 5.11 and 

Figure 5.26c. The effective charging time of the capacitor with electrodes and electrolyte 

effective conductivities 1 =0.050S/cm and 2 =0.0005S/cm, charged at the same current 

densities was 5.069x103s, 50.69s, 0.507s and 5.069x10–3s, respectively as presented in 

Table 5.12 and Figure 5.26d. It follows from these results and equation 4.113, that the 
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capacitor’s charging time reduced with an increase in applied current density because 

higher current density means a higher charging rate.  

Table 5.12: ECs component scales for different applied current densities 0J , A/cm2 and 2

= 0.0005S/cm 

Parameters and its 
expressions 

=0.05S/cm, =0.0005S/cm, =0.2cm, =1.2V and
=0.05cm  
Current Density,   (A/cm2) 
0.00533 0.05330 0.53300 5.33000 

(cm) 
5.629 x10–2 5.629 x10–3 5.629 x10–4 5.629 x10–5 

(cm) 
5.629 x10–2 5.629x10–3 5.629 x10–4 5.629 x10–5 

(V) 
6.000 x10–3 6.000x10–3 6.000 x10–3 6.000 x10–3 

(V) 
6.000 x10–1 6.000 x10–1 6.000 x10–1 6.000 x10–1 

(V) 
5.330 x10–1 5.330 x100 5.330 x101 5.330 x102 

 
1.000 x100 1.000 x100 1.000 x100 1.000 x100 

(s) 
5.069 x103 5.069 x101 5.069 x10–1 5.069 x10–3 

 

Figure 5.27 depicts the voltage decay in the asymmetric EC of the effective conductivities 

of different electrodes over time, due to both redox reactions and the EDL’s instability 

self-discharge, when charged from 0.00V to 1.20V at different charging conditions. It 

follows from Figures 5.27a and 5.27b that the voltage drop at the initial stage of self-

discharge (600s and 60s respectively) was very sharp for charging conditions of 

0.0053A/cm2 for 18000s and 0.0532A/cm2 for 1800s. This was because redox products 

have enough time to migrate from one electrode to the other, where they consume negative 

charges and diffuse into EDLs, and increase the self-discharge rate there. When the 
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capacitor was charged at 0.5320A/cm2 for 180s, the voltage drop was very small at the first 

6s and thereafter the voltage became approximately constant throughout the remaining 

period as seen in Figure 5.27c. When the capacitors were charged at an applied current 

density of 5.3200A/cm2 for 18s, voltage drops were so insignificant that their profiles 

remained constant throughout the duration as shown in Figure 5.27d. Reduction of 

charging time by charging the EC fast with a high current density greatly reduced the rate 

of self-discharge during charging, compared with slow charging with low current density. 

 

Figure 5.27: The voltage decay in symmetric ECs of different electrodes effective 

conductivities over time due to both redox reactions and EDLs instability self-discharge after 

devices were charged from 0V to 1.2V at current density of (a) 0.0053A/cm2 for 18000s 

charging time; (b) 0.0532A/cm2 for 1800s charging time; (c) 0.5320A/cm2 for 180scharging 

time; and (d) 5.3200A/cm2 for 18s charging time.   
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5.3.1.3 Effects of electrodes and electrolyte effective conductivities 

 

In order to study the effect of various effective conductivities of the electrode and 

electrolyte on the EC’s performance, solid and liquid-phase potential drops and the length 

over which liquid potential drop occurs in electrodes ][ ew under given operating conditions, 

were considered in devices of different effective conductivities. The value of current 

density that should be used to successfully charge an EC is largely determined by the 

effective conductivities of the electrode and electrolyte, as well as the electrode’s 

thickness. In fact, the applied current density to effectively charge an EC is mainly 

determined by the effective conductivities of electrolyte and electrodes thickness, because 

electrode conductivity is usually very high compared with electrolyte conductivity in ECs.  

Figures 5.28 depicts the length over which the liquid potential drop occurs in electrodes

][ ew of devices of different effective conductivities and different current densities. It 

follows from Figure 5.28 that the length over which the liquid potential drop occurs in a 

capacitor with given electrode and electrolyte effective conductivities charged at different 

current densities, decreased along with the increase in current density. It follows from 

Figure 5.28a that the capacitor with an electrodes thickness of 0.200cm and electrolyte 

effective conductivity of 0.500S/cm and 0.050S/cm, should not be charged with current 

density greater than 1.500A/cm2 and 0.150A/cm2 respectively, because this will result in a 

high liquid-phase potential drop. For a given current density to be effective in charging a 

capacitor of a given thickness and electrolyte effective conductivity, the length over which 

the liquid potential drop occurs in electrodes ][ ew must be equal to, or more than the 

electrode’s thickness.  
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Figures 5.28b shows the length over which the liquid potential drop occurs in electrodes

][ ew in simulation of the study of the experiments of Kazaryan et al. and Sun et al. with 

electrolyte’s effective conductivity of 0.060S/cm, 0.050S/cm and 0.051S/cm, respectively. 

It follows from Figure 5.28b that the effective current density for the capacitor is less than 

or equal to 0.150A/cm2, less than or equal to 0.180A/cm2 and less than or equal to 

0.250A/cm2, respectively. Figure 5.28b shows that the mean relative error between the 

lengths over which the liquid potential drop occurs in electrodes determined from 

simulation of the model, Kazaryan et al. and Sun et al. experimental data, was equal to 

1.8% and 2% (highest relative error was 4% and 6% respectively).  

 

Figure 5.28: The length over which liquid potential drop occurs in electrodes ][ ew of device 

of different effective conductivities at different current densities from (a) Simulation in this 

study; (b) simulation in this study, and experimental data from Kazaryan et al and Sun et al 

(c) simulation in this study, and experimental data from Ma et al 1- with 1 molL-1 Na2SO4 

and Ma et al 2- with 0.5 molL-1 Na2SO4 aqueous electrolytes; and (d) simulation in this 
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study, and experimental data from Kazaryan et al, Sun et al, Ma et al 1- with 1 molL-1 

Na2SO4 and Ma et al 2- with 0.5 molL-1 Na2SO4. 

The mean relative error between the lengths over which the liquid potential drop occurs in 

electrodes, is determined from simulation of the model, Ma et al. 1 and Ma et al. 2 

Experimental data was equal to 2% and 3% (highest relative error was 6% or 7%) as 

shown in Figure 5.28c. Comparison of the lengths over which the liquid potential drop 

occurs in electrodes was determined from simulation of the model, Kazaryan et al., Ma et 

al. 1, Ma et al. 2 and Sun et al. Experimental data were also presented in Figure 5.28d.     

Figures 5.29 depicts the effective thickness of electrodes in a capacitor of different 

electrolyte effective conductivities charged at different current densities. Figure 5.29 

shows that the effective thickness of electrodes in a capacitor with the electrolyte's 

effective conductivity of 0.5S/cm, decrease as applied current density increases. For 

example, the effective thickness of electrodes in the capacitor with electrolyte's effective 

conductivity of 0.500S/cm, when charged at a current density of 1.000A/cm2, 1.500A/cm2, 

2.000A/cm2, 3.000A/cm2, and 6.000A/cm2 was  0.300cm, 0.200cm, 0.150cm, 0.100cm and 

0.050cm respectively, as pictured in Figure 5.29a. In addition, the effective thickness of 

electrodes in the capacitor with electrolyte's effective conductivity of 0.050S/cm, when 

charged at a current density of 1.000A/cm2, 1.500A/cm2, 2.000A/cm2, 3.000A/cm2, and 

6.000A/cm2 was 0.030cm, 0.020cm, 0.015cm 0.010cm and 0.005cm, respectively as 

shown in Figure 5.29b. The effective thickness of the electrodes in the capacitor with 

electrolyte's effective conductivity of 0.005S/cm and 0.005S/cm, charged at the same 

current density was 0.003cm, 0.002cm, 0.0015cm 0.0010cm & 0.0005cm and 0.0003cm, 

0.0002cm, 0.00015cm 0.0001cm and 0.00005cm, respectively as pictured in Figure 5.29c 

and 5.29d. The power density (rate of charging and discharging) of the device with the 

electrolyte's effective conductivity of 0.5000S/cm and electrodes thickness of 0.200cm, 
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expected to be charged at a current density of 1.500A/cm2, can be increased by reducing 

the electrode’s thickness to 0.150cm, 0.100cm and 0.050cm, and increasing the applied 

current density to 2.000A/cm2, 3.000A/cm2 and 6.000A/cm2 respectively. Every charging 

current density of the capacitor, with electrolyte of a given effective conductivity, has a 

corresponding optimum electrode thickness (effective thickness) that results in 100% 

electrodes utilization with little or no potential drop in the liquid phase. 

 

Figure 5.29: Electrodes effective thickness in capacitor with a given electrodes thickness and 

different electrolyte effective conductivities, charged at different current densities: with 

effective conductivities (a) 1 = 5S/cm and 2 = 0.500S/cm; (b) 1 = 5S/cm and 2 = 

0.050S/cm; (c) 1 = 5S/cm and 2 = 0.005S/cm; and (d) 1 = 5S/cm and 2 = 0.0005S/cm. 

Figure 5.30 depicts the utilization of electrodes in capacitors with the same electrode 

thickness and different electrolyte effective conductivities charged at different current 

densities. Figure 5.30a shows that the electrode's utilization in capacitors of 0.200cm 
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electrode thickness and electrolyte of effective conductivity of 0.5S/cm, are greater than or 

equal to 100% when charged at a current density range of 0.000A/cm2 – 1.500A/cm2. 

When the device was charged at a current density of 1.500A/cm2, the electrode's utilization 

was 100% as shown in Figure 5.30a. When the capacitor with 0.200cm electrodes 

thickness and electrolyte of effective conductivity of 0.050S/cm was charged at a current 

density range of 0.000A/cm2 – 0.200A/cm2, the electrode's utilization was greater than or 

equal to 100% as pictured in Figure 5.30b.  

 

Figure 5.30: Electrodes utilization in capacitor with a given electrodes thickness and different 

electrolyte effective conductivities, charged at different current densities: with effective 

conductivities (a) 1 = 5S/cm and 2 = 0.500S/cm; (b) 1 = 5S/cm and 2 = 0.050S/cm; (c) 1 = 

5S/cm and 2 = 0.005S/cm; and (d) 1 = 5S/cm and 2 = 0.0005S/cm. 

When the capacitor’s electrolyte effective conductivities are 0.0050S/cm and 0.0005S/cm, 

the electrodes’ utilization were greater than or equal to 1% and 0.100% respectively, when 
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charged at a current density range of 0.00A/cm2 – 1.500A/cm2 as shown in Figures 5.30c 

and 5.30d. Figure 5.30 shows that the electrode’s utilization in the device with electrolyte 

of specific effective conductivity, the electrode’s thickness decreases’ along with an 

increase in the applied current density.   

In order to increase the power density (rate of charging and discharging per mass) of the 

capacitor without compromising energy density, effective conductivities of electrodes and 

electrolyte must be high enough, and high current density, with corresponding effective 

thickness of electrodes, must be selected. Since electrode conductivity is usually quite high 

in ECs [93,281,282], the solid-phase potential drop is mostly very small and 

negligible[93]. For instance, when the EC with 1 = 50S/cm and 2 = 0.500S/cm was 

charged at high current density of 5.330A/cm2, the potential drop in the solid-phase was 

0.006V, while that in the liquid-phase was 0.600V as presented in Table 5.9. The solid-

phase potential drop in the device with electrodes and electrolyte effective conductivities

1 = 5S/cm & 2 = 0.050S/cm, 1 = 0.500S/cm & 2 = 0.005S/cm and 1 =0.050S/cm & 2

=0.0005S/cm, charged at a current density of 5.330A/cm2 was 0.006V as presented in 

Tables 5.10–5.12; whereas the liquid-phase potential drop was 0.600V as shown in Tables 

5.10–5.12.  

It was clearly shown in Figure 5.24 and Table 5.9 that when the capacitor with electrolyte 

effective conductivity of 0.500S/cm was charged at high current density like 5.330A/cm2, 

the length over which the liquid potential drop occurs ( ][ ew ) was smaller than the 

electrode's thickness and the liquid-phase potential drop became up to half of the cell 

voltage (0.600V). This implied that it was ineffective to charge such a device at 

5.330A/cm2 for the expected charging duration, since half of the cell voltage would be lost. 

On the same note, it was not effective to charge the capacitor with electrolyte of effective 
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conductivity of 0.050S/cm at current densities of 0.533A/cm2 and 5.330A/cm2 for the 

expected charging duration. This is because the length over which the liquid potential drop 

occurs ( ][ ew ) is smaller than the electrode’s thickness and potential drops are half of the 

cell voltage. For the same reasons, it was ineffective to charge the capacitor with 

electrolyte of effective conductivity of 0.005S/cm at current densities of 0.0533A/cm2, 

0.5330A/cm2 and 5.3300A/cm2 for the expected charging duration. 

 When the device with electrolyte of effective conductivity of 0.0005S/cm was charged at 

current densities of 0.0053A/cm2, 0.0533A/cm2, 0.5330A/cm2 and 5.3300A/cm2, the 

lengths over which the liquid potential drop occurs ( ][ ew ) are very small compared with 

the electrode’s thickness, and the potential drops were half of the cell voltage as seen in 

Table 5.12 and Figure 5.25d. Thus, the device with electrolyte of low effective 

conductivity (0.0005S/cm) cannot be charged effectively at these four current densities for 

the expected duration, because the electrode’s utilization was extremely low. It can be seen 

from the above discussions that the speed at which ECs can effectively be 

charged/discharged is greatly dependent on the effective conductivities of electrode and 

electrolyte.  

Plots in Figures 5.28, 5.29 and 5.30 could be used to select electrode dimensions to achieve 

at least 100% electrode utilization with minimum or no potential drop in the EC at a 

specific current density and effective conductivities. When a device with thicker electrodes 

was charged at a high current density, the length ][ ew became considerably smaller than the 

electrode’s thickness, and resulted in device inefficiencies due to high potential drops. The 

potential drops and inefficiencies were most notable when the device with thicker 

electrodes and electrolyte of low effective conductivity was charged at a high current 

density. 
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5.3.1.4 Effects of electrode thickness 

 

The thickness of the positive and negative electrodes of the symmetric EC under 

investigation is 0.200cm as presented in Table 5.8 [89]. In order to effectively examine the 

effects of various electrode thicknesses on the EC’s performance, capacitance per kg or cm2, 

the energy and power density of the capacitor with different electrode thicknesses from 

0.050cm to 0.200cm were simulated. All other design variables of the model are kept 

constant. The capacitance per square centimetre of the symmetric EC increased linearly 

together with the increase in the electrode thickness as clearly shown in Figure 5.31a. This is 

because the EC with a thicker electrode of similar accessible porosity, holds greater 

electrolytes in its pores and has the ability to store more charges during the charging process. 

Thus, ECs with thicker electrodes have larger specific capacitance. Moreover, increase in the 

electrode’s thickness results in steeper growth in capacitance per cm2 at low applied current 

densities. The capacitance per kilogram of ECs grows almost parabolically as electrode width 

becomes thicker as presented in Figure 5.31b, provided that the thickness did not exceed the 

electrode’s effective thickness determined by the length ][ ew . For example, specific 

capacitance per kilogram of the capacitors with electrode thickness of 0.200cm, 0.150cm, 

0.100cm and 0.050cm was 1.7876x105F/kg, 1.7265x105F/kg, 1.6161x105F/kg and 

1.3558x105F/kg, respectively.   
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Figure 5.31: Specified capacitance of various electrode widths at various current densities in 

Farad (a) per square centimetre (cm2), and (b) per kilogram of electrochemical capacitor.  

Capacitance per kilogram of ECs decays almost parabolically with increase in the electrode’s 

thickness, when the electrode width goes beyond its effective thickness. Specific capacitance 

per kilogram of the device with 0.200cm, 0.150cm and 0.100cm electrode thickness was 

1.319 times, 1.273 times and 1.192 times that of the device with an electrode thickness of 

0.050cm. The increase in specific capacitance per kilogram with electrode thickness was 

higher at low current density than high current density. The lower rate at high current density 

was caused by fast charging rates that occur near the electrode/separator interface, leaving the 

remaining part of the electrode unutilized. Figures 5.31a and 5.31b shows that specific 

capacitance of the device with a given electrode thickness, reduced as applied current density 

increased.   
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Figure 5.32 presents the variation of specific capacitance per kilogram and the specific 

energy of the symmetric device using two different aqueous electrolyte solutions with applied 

current density for simulation of the study and experiment of Ma et al. [275]. Specific 

capacitance per kilogram of the device with 1 molL-1 Na2SO4 and 2 molL-1 KOH aqueous 

electrolytes was highest when charged at low current density, but decreased along with 

increase in the current density as pictured in Figures 5.32a and 5.32c respectively. The 

specific energy of the symmetric device with 1 molL-1 Na2SO4 and 2 molL-1 KOH aqueous 

electrolytes was also highest when charged at a low current density, and decreased as current 

density was increased as shown in Figures 5.32b and 5.32d respectively. Specific capacitance 

and specific energy of the symmetric device with 1 molL-1 Na2SO4 aqueous electrolyte were 

higher than those of the device with 2 molL-1 KOH aqueous electrolytes, because effective 

conductivity of 1 molL-1 Na2SO4 aqueous electrolyte (0.092S/cm) is higher than that of 2 

molL-1 KOH aqueous electrolyte (0.075S/cm). 

Similarly, Figure 5.33 presents the variation of specific power and the ragone plot of the 

symmetric device with two different aqueous electrolytes solutions, with applied current 

density for the simulation of the model and experiment Ma et al. [275]. It was clearly shown 

in Figures 10b and 10d respectively, that the specific power of the symmetric device with 1 

molL-1 Na2SO4 and 2 molL-1 KOH aqueous electrolytes was also lowest when charged at low 

current density, and increased as current density was increased. Figure 5.32 and 5.33 shows 

that mean relative error between specific capacitance of a button device from the simulation 

of model and experimental data of Ma et al. [275] in the cells was equal to 2.3% (highest 

relative error was 6%). The difference between simulation and experiment was related to both 

experimental and modelling assumptions. In the experiments, the mass of the two electrodes 

were taken as the mass of the device, but the mass of electrodes, together with the mass of the 

separator and electrolyte were included in the simulation.  
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Figure 5.32: Variation of specific capacitance per kilogram of symmetric button capacitor 

with charging current density in device with Mn3(PO4)2 composite electrodes and different 

aqueous electrolytes (a) 1 molL-1 Na2SO4, (b) 2 molL-1 KOH; and variation of specific energy 

of symmetric button capacitor with charging current density in device with aqueous 

electrolytes (c) 1 molL-1 Na2SO4, and (d) 2 molL-1 KOH.   

Again, the porous electrode theory used in the present study did not account for the 

heterogeneous microstructure of electrodes like morphology, pore size, and pore connections. 

Also, the 1-D model employed will cause a slight deviation of the experiment from the 

modelling. Comparison of the specific capacitance and specific energy density of the device 

verified the validity of the models.  

Figure 5.34 presents the variation of specific capacitance per kilogram, specific energy, 

specific power and the ragone plot of the symmetric device using aqueous electrolytes 

solution with applied current density for the simulation and experiment of Sun et al. [276]. 

The specific capacitance per kilogram and specific energy of the device with 1 molL-1 
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Na2SO4 aqueous electrolyte were highest when charged at a low current density, and 

decreased with the increase in the charging current density as depicted in Figures 5.34a and 

5.34b respectively.  

 

Figure 5.33:  Variation of specific power of symmetric button capacitor with charging current 

density in device with Mn3(PO4)2 composite electrodes and different aqueous electrolytes (a) 

1 molL-1 Na2SO4, (b) 2 molL-1 KOH; and ragone plot of symmetric button capacitor with 

aqueous electrolytes (c) 1 molL-1 Na2SO4, and (d) 2 molL-1 KOH.   

Conversely, the specific power of the symmetric device was lowest when charged at a low 

current density, but decreased as the charging current density was increased as shown in 

Figure 5.34c. It was clearly seen in Figure 5.34d that the device has the lowest specific power 

at the highest specific energy, and increased as specific energy decayed until it attained the 

highest value at the lowest specific energy.  
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Figure 5.34:  (a) Variation of specific capacitance per kilogram of symmetric button capacitor 

with charging current density in device with nitrogen-doped rapeseed activated carbons (N-

RCs) composite electrodes and 0.5 molL-1 Na2SO4 aqueous electrolytes; (b) variation of 

specific energy of symmetric button device 0.5 molL-1 Na2SO4 aqueous electrolytes; (c) 

variation of specific power of symmetric button device with 0.5 molL-1 Na2SO4 aqueous 

electrolytes; and (d) ragone plot of symmetric button device with 0.5 molL-1 Na2SO4 aqueous 

electrolytes.  

Figure 5.35 presents the variation of specific capacitance per kilogram, specific energy, 

specific power and the ragone plot of the symmetric device using aqueous electrolytes 

solution with applied current density for simulation of the model and experiment of Zhao et 

al. [277]. The specific capacitance per kilogram and specific energy of the device with 1 

molL-1 Na2SO4 aqueous electrolyte decayed from the highest values at low current density to 

the lowest values at high charging current density as shown in Figures 5.35a and 5.35b 

respectively. However, the specific power of the symmetric device increased from the lowest 
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value at a low current density to the highest value at a high charging current density as shown 

in Figures 5.35c. The device’s specific power was lowest at the highest specific energy, and 

increased to the highest value at the lowest specific energy as seen in (the ragone plot) Figure 

5.35d. It is obvious from the discussions and Figures 5.33, 5.34, 5.35 and 5.36 that the high 

effectivity conductivity of the electrolytes yielded high specific energy and power. 

 

Figure 5.35:  (a) Variation of specific capacitance per kilogram of symmetric button capacitor 

with charging current density in device with 1100CNF webs electrodes and 1 molL-1 Na2SO4 

aqueous electrolytes; (b) variation of specific energy of symmetric button device with 1 

molL-1 Na2SO4 aqueous electrolytes; (c) variation of specific power of symmetric button 

device with 1 molL-1 Na2SO4 aqueous electrolytes; and (d) ragone plot of symmetric button 

device with 1 molL-1 Na2SO4 aqueous electrolytes.  
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0.928kg, 1.616kg, 1.186kg and 2.815kg respectively. The mass of the device with electrodes 

thickness of 0.200cm, 0.150cm and 0.100cm was 3.034 times, 2.356 times and 1.678 times 

that of the device with 0.050cm electrodes thickness; whereas the specific capacitance per 

kilogram of the device with 0.200cm, 0.150cm and 0.100cm electrodes thickness was 1.319 

times, 1.273 times and 1.192 times that of 0.050cm electrode thickness. At low current 

densities, using thicker electrodes resulted in larger capacitance per kilogram of ECs, but 

thinner electrodes will have more specific energy when charged for the same period of time. 

This is because thicker electrodes have more electrochemical accessible pores to store 

charges, and need more time to fill the entire pores in the electrodes. Electric charge will 

enter smaller pores at lower rate and require more time to fill all the electrochemical 

accessible pores, while charging time was enough for all the electrochemical accessible pores 

in the thinner electrodes to be completely filled. Also, the mass ratio of the device with the 

thickest electrodes to one with the thinnest electrodes was 2.3 times larger than the specific 

capacitance per kilogram ratio of the device with the thickest to one with the thinnest 

electrodes. Energy density is described as energy per unit capacitor mass and unit time.     

 

It follows from Figure 5.36 that when capacitors of the same electrode and electrolyte 

effective conductivities with different electrodes thickness were charged at different current 

densities, their energy densities were the same in different charging conditions, provided that 

effective conductivity of the electrode and electrolyte were very high. For instance, when the 

device with 0.05cm electrodes thickness and effective conductivities 1 50S/cm and 2

0.50S/cm was charged at current densities of 0.0053A/cm2 for 18000s, 0.0533 A/cm2 for 

1800s, 0.5330 A/cm2 for 180s, and 5.3300 A/cm2 for 18s, energy density was 430Wh/kg in 

the four charging conditions presented in Figures 5.36a – 5.36d. Similarly, the energy density 
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of the device with electrodes thickness of 0.100cm, 0.150cm and 0.200cm charged at the four 

charging conditions was 190Wh/kg, 85Wh/kg and 40Wh/kg respectively. 

 

Figure 5.36: Energy densities of ECs with electrode and electrolyte effective conductivities

1 50S/cm, 2 0.50S/cm and different electrode thicknesses charged at current density of 

(a) 0.0053A/cm2 for 18000s, (b) 0.0533A/cm2 for 1800s, (c) 0.5330A/cm2 for 180s, and (d) 

5.3300A/cm2 for 18s. 

It is clear from Figure 5.36 and the discussions above, that energy density of the capacitor 

decreases with the increase in electrodes thickness in all the charging conditions examined. In 

addition, the energy density of the capacitor with effective conductivities 1 50S/cm and

2 0.50S/cm charged at a current density of 0.0053A/cm2 for 18000s, increased from 

40Wh/kg to 430Wh/kg when the electrode thickness was reduced from 0.200cm to 0.050cm. 

When the charging condition of the device, specific electrode thickness and effective 

conductivities was changed as presented in Figure 5.36, the energy density remained the 
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same. The power densities of the electrochemical capacitor with the same effective 

conductivity and different electrode thicknesses, charged at different current densities are 

depicted in Figure 5.37. 

Power densities of capacitors charged at a specific current density increased as the electrodes’ 

thickness was reduced. The power density of the capacitor also increased as the applied 

current density was increased. When the current densities of the EC with the same electrode 

and electrolyte effective conductivities and different electrode thicknesses were increased and 

charging times also reduced by the same factor as discussed earlier, the power densities were 

also increased by the same factor as presented in Figure 5.37.  

 

Figure 5.37: Energy densities of ECs with electrode and electrolyte effective conductivities

1 50S/cm, 2 0.50S/cm and different electrode thicknesses charged at current density of 

(a) 0.0053A/cm2 for 18000s, (b) 0.0533A/cm2 for 1800s, (c) 0.5330A/cm2 for 180s, and (d) 

5.3300A/cm2 for 18s. 
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For example, the power density of the capacitor with the electrode’s thickness of 0.2cm and 

effective conductivities 1 50S/cm and 2 0.50S/cm, charged at 0.0053A/cm2 for 18000s, 

was increased from 8W/kg to 85.5W/kg by reduction of the electrode’s thickness from 

0.200cm to 0.050cm as depicted in Figure 5.37a.  

Similarly, when the charging rate of the device with an electrodes thickness of 0.200cm was 

changed from 0.0053A/cm2 for 18000s to 0.0533A/cm2 for 1800s, the power density was 

increased from 8W/kg to 80W/kg and from 80W/kg to 855W/kg when the electrodes 

thickness was reduced from 0.200cm to 0.050cm respectively as seen in Figure 5.37b. In the 

same manner, when the capacitor charging rate was changed from 0.0533 A/cm2 to 0.5330 

A/cm2 and 5.3300A/cm2, the power density was increased from 80W/kg to 800W/kg and 

800W/kg to 8,000W/kg, respectively. 

Power density was also increased from 800W/kg to 8,550W/kg and 8,000W/kg to 

85,500W/kg by making the electrodes thinner from 0.200cm to 0.050cm as shown in Figures 

5.37c and 5.37d. The power densities of the capacitor with different electrode thicknesses and 

the same effective conductivities 1 50S/cm and 2 0.50S/cm, charged at 0.0053A/cm2 for 

18000s were increased by a factor of 10, 100 and 1000 when the charging rate was increased 

to 0.0533A/cm2, 0.5330A/cm2 and 5.3300A/cm2 respectively as presented in Figures 5.37a – 

5.37d.  

It was clearly shown in Figures 5.32, 5.33 and 5.34 that in the device with given electrodes 

thickness and effective conductivities of the electrodes and electrolyte, that whereas specific 

capacitance and specific energy are decreased, along with an increase in current density, 

specific power was increased. This is because the increase in the current density without a 

corresponding increase and decrease in the effective conductivities and electrodes thickness, 

results in underutilization of electrodes, increased inefficiencies due to non-uniform charging 
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and potential drops in cell. Therefore, it is very important to determine and employ optimum 

current density to charge/discharge the capacitor with a given electrodes thickness and 

effective conductivities of electrodes and electrolyte in order to achieve optimal performance.   

The ragone plots in Figure 5.38 presents the effects of charging different capacitors of the 

same electrode and electrolyte effective conductivity and different electrodes thickness at 

different conditions, by using higher current densities as explained earlier. It was shown from 

the plots that the power densities of devices in conditions described in Figures 5.38b, 5.38c 

and 5.38d were ten-fold, a hundred-fold and a thousand fold respectively, of those in the 

condition shown in Figure 5.34a. For example, when the EC of effective conductivities 1

50S/cm and 2 0.500S/cm and electrodes thickness of 0.050cm was charged at 

0.0053A/cm2, 0.0533A/cm2, 0.5330A/cm2 and 5.3300A/cm2, the power density that 

corresponded to the energy density of 400Wh/kg was 36W/kg, 360W/kg, 3,600W/kg and 

38,000W/kg respectively as seen in Figures 5.38a – 5.38d.  

The last three power densities were 10-fold, 100-fold and 1000-fold of first one respectively. 

Similarly, power densities that correspond to energy density of 300Wh/kg in the first 

charging condition in a similar EC with electrode thickness of 0.050cm, 0.100cm, 0.150cm 

and 0.200cm was 63W/kg, 29W/kg, 18W/kg and 13W/kg, respectively as shown in Figure 

5.38a. Also, power densities that correspond to the energy density of 300Wh/kg in the second 

charging condition of the device were 630W/kg, 290W/kg, 180W/kg and 130W/kg 

respectively, as shown in Figure 5.38b. The power densities of the capacitor in the third 

charging condition presented in Figure 5.38c was 6,300W/kg, 2,900W/kg, 1,800W/kg and 

1,300W/kg respectively, while that in the fourth charging condition shown in Figure 5.38d 

was 63,000W/kg, 29,000W/kg, 18,000W/kg and 13,000W/kg respectively. The ragone plots 

of devices with diverse electrode thicknesses portrayed in Figure 5.38 can be used to select 
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electrode dimensions to achieve a given energy and power density specifications. Use of 

thicker electrodes resulted in higher capacitance per kilogram and higher capacitor’s mass as 

well. Therefore, the overall effect of thicker electrodes obviously results in lower energy and 

power densities as shown in Figures 5.36, 5.37 and 5.38 respectively, since energy and power 

density are defined as energy and power per capacitor mass and unit time. 

 

Figure 5.38: Ragone plots of electrochemical capacitors with different electrode thicknesses 

and electrodes and electrolyte effective conductivities 1 50S/cm, 2 0.50S/cm charged at 

current density of (a) 0.0053A/cm2 for 18000s, (b) 0.0533A/cm2 for 1800s, (c) 0.5330A/cm2 

for 180s, and (d) 5.3300A/cm2 for 18s. 

Moreover, energy loss due to polarization and depolarization resistance to electrode potential 

during the charging process decreased with reduction in the electrode’s thickness, together 

with an increase in electrodes and electrolyte effective conductivities. It was also supported 

by the fact that specific capacitance per kilogram of the device with the thickest electrodes 
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was 1.319 times that with thinnest electrodes, while the mass of the device with the thickest 

electrodes was 3.034 times that with thinnest electrodes.      

For electrodes and electrolyte materials of specific effective conductivities and given cell 

voltage, electrodes optimum thickness (effective thickness), charging current density and 

charging time for optimum specific capacitance, specific energy and specific power were 

easily obtained from equations 3.44 and 3.46, as well as Figures 5.29 and 5.30. For example, 

the capacitor with 0.200cm electrode thickness and electrolyte of 0.500S/cm effective 

conductivity has optimum electrodes thickness of 0.200cm (100% electrodes utilization) and 

optimum charging current density of 1.500A/cm2, as pictured in Figures 5.29a and 5.30a 

respectively. Thus, equations 3.44 and 3.46 can be used to determine optimum electrodes 

thickness, optimum charging current density and optimum charging time for the cell of given 

voltage, electrodes thickness, electrodes and electrolyte’s effective conductivities.       

 

5.3.1.4 Effects of electrodes and separator porosities 

 

The impact of using various electrode porosities on the symmetric EC's performance was 

examined in this section. Porosity in this context is described as a fraction of the pores 

volume over the entire volume. The porosity of the capacitor's electrode under study is 

0.25 as contained in data source [89]. It was assumed that porosity increased at the same 

rate as the electrochemical accessible surface area is increased. This assumption was based 

on the fact that the electrode interfacial electrochemical accessible area is a linear function 

of porosity. It follows from equations 3.33 and 3.34 that electrolyte effective conductivity 

inside the electrode and separator are respectively dependent upon the electrode and 
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separator porosities. Electrolyte effective conductivity inside the electrode and separator 

increases along with the increase in porosity.  

Specific capacitance increased with the increase in electrodes porosity for all current 

densities, because the EC with the electrode of larger electrochemical accessible porosity has 

more accessible pores to store energy, hence larger capacitance. For instance, capacitance per 

kilogram and per unit area was 1.25 times and 2.00 times respectively, larger when the 

accessible porosity of electrodes was doubled from 0.25 to 0.50 respectively. For all current 

densities considered, capacitance per kilogram increased approximately parabolically with 

the increase in electrode accessible porosity, which increased with the increase in electrodes 

thickness. Capacitance per unit area increased linearly with the increase in electrode 

accessible porosity. The effective mass of the electrode reduced with the increase in 

electrodes accessible porosity, and more electrolytes were accommodated since more 

accessible pores were available. Thus, the EC with higher electrodes and separator porosities 

has a smaller mass compared with a similar device of lower accessible porosities.  

 

5.4 Optimization of design parameters and operating conditions of electrochemical 

capacitors for high energy and power performances 

 

In this section, the theoretical and computational features of the different electrochemical 

capacitors were presented through computation of storable energy, specific energy density 

and specific power density. Theoretical expressions for these parameters were optimized, 

subject to their appropriate constraint equations, which captured the realistic conditions 

and limitations inherent in various electrochemical energy storage systems via the 

MATLAB R2014a optimization tool box and writing MATLAB scripts to solve the 
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optimization. The performance of the different kinds of ECs at given circumstances were 

compared through theoretical equations and simulation of various models from the data of 

our symmetric EDLC, subject to the conditions of the device components using optimal 

coefficient associated to battery-type material and constant associated to electrolyte 

material . The variation of the electrochemical device performance with electrode and 

electrolyte manufacturing conditions, like electrode mass ratio, type, reaction of active 

material, electrolyte potential operating range and specific capacitance was effectively 

demonstrated from the theory and simulation of various models.  

 

5.4.2 Discussions 

 

In order to verify the validity of the optimum parameters obtained from optimization via 

the MATLAB R2014a optimization tool box, the ECs storable and deliverable energies, 

specific energy and power were computed using the optimum parameters and our derived 

symmetric EDLC model. The EDLC was charged from its lower voltage of 0.000V to the 

upper voltage of 1.200V. The data employed were based on the experiment variables of 

Kazaryan et al. [89] and Staser et al. [90] as presented in Table 5.1 and reasonable figures 

were assigned, based on literature, to parameters that are unavailable. The capacitor 

discharged to 0.000V was charged by constant current to an upper voltage of 1.200V for a 

charging duration (tch) of 5 hours. It was thereafter discharged by constant current to a 

lower voltage of 0.000V for the discharging duration (tdis) of 5hours. The mass transfer and 

charge conservation equations for each capacitor’s component during the charging and 

discharging processes were considered and the current collector’s resistance was ignored 

due to  its high conductivity.  

BMoptK

EoptK
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Although expressions for storable energy, energy density and power density of symmetric 

EDLC represented by equations 3.211, 3.212 and 3.213 do not contain parameters 1k and 2k

, the mode of operations of the symmetric EDLC shows that the ratio of mass of one 

electrode to the mass of the two electrodes defined here as 1k is 0.500, while the ratio of the 

working potential range of one electrode to the maximum working potential range of the 

the device defined here as 2k is also 0.500. Thus, 1k and 2k values were presented in case 1 

of Tables 5.14 – 5.20 as 0.500 for comparison purpose, but were not used in the calculation 

of parameters in the tables. In cases 2, 3 and 4 of Table 5.14, EDLCs were operated as 

asymmetric devices by using the same type of material with different masses as positive 

and negative electrodes causing the voltage applied to the cell to split unevenly between 

both terminals. Therefore, they were considered like the asymmetric EC with 1k , 2k , 3k and

4k  parameters as presented in Table 5.14. In case 2 of Tables 5.15, 5.16 and 5.17, it was 

assumed that the potential of the positive electrode changes very little or undergoes 

galvanostatic electrolysis  0 bV during charging and discharging as presented in 

[89,90,245]. The ratio of working potential range to cell maximum working potential then 

becomes  negligible  02 k .  

Table 5.13 presents the comparison of expression for the performance parameters of 

various electrochemical capacitors, using aqueous and organic electrolytes, respectively 

and operated under different conditions. 

Table 5.13: Comparison of expression for performance parameters of various 

electrochemical capacitors using aqueous and organic electrolytes, respectively 

S/
N 
 

Electrochemical 
capacitor systems  

 
 

Expression for performance parameters 

Storable energy  
(Wh) 

Energy density (Wh/kg) Power density (W/kg) 
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Figure 5.39 depicts the profile of coefficient associated to battery-type material, KBM as a 

function of mass and operating potential window ratios of a battery-type electrode, 1k and

2k respectively. It follows from Figure 5.39a and 5.39b that the value of the coefficient 

associated with battery-type material, KBM increases as 1k and 2k is reduced from 1.000 to 
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0.000 and become highest at 1k = 2k = 0. It was shown in Figures 5.39a and 5.39b that the 

value of KBM was 0.500 when 1k = 0.500 and 2k =0.700, and was lower than 0.500 when the 

value of 1k >0.500 and 2k >0.700. Figure 5.39c and 5.39d shows the portion of the plot for 

which the value of KBM is equal to and higher than 0.500, it was presented that when value 

of 1k  0.500 and 2k  0.700, value of was KBM 0.500. 

 

Figure 5.39: Profile of value of coefficient associated to battery-kind material, KBM as 

functions of mass and operating potential window ratio factors of battery-kind electrode, 1k

and 2k respectively for (a) 3-D side view plot of limits 1k<0 1  and 1k<0 2  ; (b) 3-D 

front view plot of limits 1k<0 1  and 1k<0 2  ;(c) 3-D side view plot of limits 1k<0

0.5 and 2k<0 0.7 ; and (d) 3-D front view plot of limits 1k<0 0.5 and 2k<0 0.7   

It follows from Table 5.14 that symmetric EDLCs built with electrodes of the same mass 

and the same charge capacity have applied voltage shared evenly among electrodes as 

presented in case 1. The symmetric EDLC can be operated as asymmetric ECs by 

employing capacitor-type electrodes with different mass [19,21,283]. This can also be 
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achieved by using equal capacitor-type electrodes with different charge capacities due to 

the different adsorption strengths of ions in each electrode [84] or due to different cations 

and ions sizes and charges contained in the electrolyte [284].  Asymmetric ECs that 

emanated from using capacitor-type electrodes with different mass were presented in cases 

2 and 4 of Table 5.14.The maximum energy and power densities EDmax and PDmax of the 

symmetric EDLC of 1.2V using aqueous electrolyte were enhanced from 38.81Wh/kg and 

7.74W/kg to 68.78Wh/kg and 13.72W/kg respectively, by using electrode mass and 

operating potential window ratios 1k = 0.050 and 2k = 0.080 as shown in case 2 of Table 

5.14; while storable and deliverable energies remained unchanged (101.22Wh and 

100.91Wh). 

Storable and deliverable energies Ech and Edis of the symmetric EDLC were enhanced from 

101.22Wh and 100.91Wh to 201.22Wh and 200.69Wh respectively by using organic 

electrolyte of twice the operating potential range and half the specific capacitance of 

aqueous electrolyte respectively, as shown in case 3 of Table 5.14. Similarly, maximum 

energy and power densities of the device EDmax and PDmax, were improved to 74.57Wh/kg 

and 14.88W/kg, respectively. 

The plane for the coefficient associated to battery-type materialKBM 0.500 shown in 

Figure 5.40 is to facilitate comparison of the energy densities of symmetric and 

asymmetric capacitors EDs and EDas. It follows from equation 3.211 that has a more 

dominating influence on the value of KBM than because is squared in the expression for 

KBM. The value of KBM for asymmetric capacitors must be higher than 0.500 for storable 

energy and the energy density EDas must be higher than that of symmetric capacitors using 

the same aqueous electrolyte. It follows from Figure 5.40 that the mass of the battery-type 

electrode must be less than 0.5 and the operating potential window of the battery-type 



1k

2k 2k

1k
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electrode must be less than 0.707 ( ) of the entire potential operating window of 

asymmetric capacitors with aqueous electrolyte for value of KBM must be higher than 

0.500.  

 

Figure 5.40: Profile of mass and operating potential window ratio factors of battery-kind 

electrode 1k and 2k respectively, for coefficient associated to battery-kind material BMK 

5.0 .  

The first and second charge–discharge cycle efficiency 1E and 2E of the symmetric 

capacitor were enhanced from 84.24% and 84.25% to 91.80% and 91.81% respectively, as 

seen in case 3 of Table 5.14. When the symmetric EDLC consists of electrode mass and 

operating potential window ratios 1k = 0.050 and 2k = 0.080, together with organic 

electrolyte of twice the operating potential range and half the specific capacitance of 

aqueous electrolyte respectively, its storable and deliverable energies Ech and Edis of the 

symmetric EDLC were enhanced to 335.33Wh and 334.48Wh respectively. Also, the 

maximum energy and maximum power densities of the device EDmax and PDmax, were 

improved to 216.18Wh/kg and 211.12W/kg, respectively, as presented in case 4 of Table 

5.14.  

2k 5.0
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The asymmetric EDLC with electrodes of different mass, but with suitable mass and 

operating potential range ratios using aqueous electrolyte has 1.800 times the energy and 

power densities of a convectional symmetric EDLC using the same aqueous electrolyte, as 

seen in case 2 of Table 5.14. When the symmetric EDLC consists of electrodes of the same 

mass and capacity with organic electrolyte of twice the operating potential range and half 

the specific capacitance of aqueous electrolyte respectively, its storable and deliverable 

energies are twice those of a similar device using aqueous electrolyte. The device's energy 

and power densities are 1.9 times those of a similar device using aqueous electrolyte, as 

seen in case 3 Table 5.14. The asymmetric EDLC that consists of electrodes with suitable 

mass and operating potential range ratios, together with organic electrolyte of twice the 

operating potential range and half the specific capacitance of aqueous electrolyte has 3.300 

times the storable and deliverable energies of a convectional symmetric EDLC using 

aqueous electrolyte. The energy and power densities of the asymmetric EDLC are 5.560 

times those of the convectional symmetric EDLC using aqueous electrolyte as seen in case 

4 Table 5.14. 

Table 5.14: Parameters of symmetric EDLC using aqueous electrolyte, asymmetric EDLC 

using aqueous electrolyte, and asymmetric EDLCs using organic electrolyte with voltage 

windows of 1.200V, 1.200V, and 2.400V & 4.000V, respectively, during charging and 

discharging processes in cases 1, 2, 3 and 4 

S/N Param

eter 

Unit                                   α1= 0.05S/cm and α2 = 0.05S/cm 

Case 1 Case 2 Case 3 Case 4 

Symmetric 
EDLC with 

1k = 0.50, 2k
= 0.50, Vmax 
= 1.2V 

Asymmetric 
EDLC with 1k
= 0.05, 2k = 
0.08, Vmax = 
1.2V 
 

Asymmetric 
EDLC with 1k = 

0.5, 2k = 0.5, 3k = 

0.5, 4k = 0.5,     
Vmax = 2.4V 

Asymmetric 
EDLC with 1k = 

0.05, 2k = 0.08,

3k = 0.3, 4k = 0.5,

Vmax = 4.0V 
1 Ech Wh 101.22 101.22 201.22 562.78 
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2 Edis Wh 100.91 100.91 200.69 560.06 

3 EDmax Wh/kg 38.810 68.781 74.566 382.42 

4 EDeff  Wh/kg 35.957 63.725 71.713 354.31 

5 PDmax W/kg 7.7425 13.722 14.876 76.294 

6 PDeff W/kg 7.1734 12.713 14.307 70.684 

7 ηE1 % 84.241 84.241 91.794 97.500 

8 ηE2 % 84.251 84.251 91.795 97.603 

9 Mele,pe kg 1.2580 0.0315 1.2580 0.0315 

10 Mele,ne kg 1.2580 1.2580 1.2580 1.2580 

11 MCell kg 2.8149 1.5883 2.8149 1.5883 

 

Table 5.15 presents the parameters of symmetric EDLCs and asymmetric ECs of 1.2V 

voltage using aqueous electrolytes during the charging and discharging processes. Two 

different asymmetric ECs using a capacitor-type negative electrode and positive battery-

type electrode with mass and operating potential range ratios 1k = 0.500 & 2k = 0.000 and 1k

= 0.050 & 2k = 0.080 respectively, were examined as presented in Table 5.15. It follows 

from case 2 of Table 5.15 that storable and deliverable energies of an asymmetric EC with 

the same voltage and 1k value were 234.58Wh and 233.15Wh, respectively, compared with 

101.22Wh and 100.91Wh respectively in the symmetric EDLC. The maximum energy and 

power densities EDmax and PDmax of an asymmetric EC with the same voltage and 1k  were 

enhanced to 87.11Wh/kg and 17.42W/kg respectively, compared with 38.81Wh/kg and 

7.74W/kg respectively in the symmetric EDLC. The first and second charge–discharge 

cycle efficiency of the asymmetric EC 1E and 2E in case 2 of Table 4 was enhanced to 

90.72% and 90.82% respectively. Similarly, when the optimum value of the battery-type 

mass and operating potential range ratios optk1 = 0.050 and optk2 = 0.080 were used as 

presented in case 3 of Table 5.15. Maximum energy and power densities EDmax and PDmax 

of the asymmetric EC were improved to 150.54Wh/kg and 30.11W/kg respectively. The 
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capacitor storable energy, deliverable energy and first and second charge–discharge cycle 

efficiency remained the same as shown in cases 2 and 3 of Table 5.15.  

The asymmetric EC assembled and operated as described in case 3 of Table 4, enhanced 

the energy and power densities EDmax and PDmax to 3.900 times those of the symmetric 

EDLC. It was noticed that changes in the value of the coefficient associated to battery-type 

material BMK changed only the energy and power densities, while storable energy, 

deliverable energy and efficiency remained unchanged as shown in cases 2 and 3 of Table 

5.15. The improvement in energy and power densities at the specific value of the constant 

associated with electrolyte material EK was due to the improved value of coefficient BMK

The asymmetric EC with the battery-type electrode with suitable mass and operating 

potential range ratios using aqueous electrolyte ( BMK =0.94), stored and delivered 2.320 

times the energies of a similar symmetric EDLC using the same electrolyte. The energy 

and power densities of this device were a factor of 3.900 greater than those of a similar 

symmetric EDLC using the same aqueous electrolyte.  

Table 5.15: Parameters of asymmetric EDLC and asymmetric ECs using aqueous 

electrolytes and voltage windows of 1.200V during charging and discharging processes in 

cases 1, 2 and 3 

S/N Paramete

r 

Unit                                   α1= 0.05S/cm and α2 = 0.05S/cm                                                

Case 1 Case 2 Case 3 

Asymmetric EDLC 
with 1k = 0.05, 2k
= 0.08, Vmax = 
1.2V 

Asymmetric EC with

1k = 0.50, 2k = 0,   
Vmax = 1.2V 
  

Asymmetric EC with

optk1 = 0.05, optk2 = 

0.08,Vmax = 1.2V 

1 Ech Wh 101.22 234.58 234.58 

2 Edis Wh 100.91 233.15 233.15 

3 EDmax Wh/kg 68.781 87.111 150.54 

4 EDeff  Wh/kg 63.725 83.317 143.98 

5 PDmax W/kg 13.722 17.422 30.108 
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6 PDeff W/kg 12.713 16.663 28.797 

7 ηE1 % 84.241 90.723 90.723 

8 ηE2 % 84.251 90.823 90.823 

9 Mele,pe Kg 0.0315 1.2586 0.0723 

10 Mele,ne Kg 1.2580 1.2580 1.2580 

11 MCell Kg 1.5883 2.8155 1.6292 

 

It follows from equation 3.196 that organic electrolyte can only enhance the energy density 

of ECs when the value of constant associated to electrolyte material EK is higher than 1 in 

comparison with aqueous electrolyte. Figure 5.41a presents the area of stipulated 

requirement for the constant associated to electrolyte material to be greater than or equal to 

1( 1.0EK ) as functions of 3k and 4k ratios. It was shown in Figure 5.41a, 5.41b and 5.41c 

that the value of the constant associated to electrolyte material EK is lowest (1.000) when 

the ratio of the maximum operating potential window among aqueous and organic 

electrolytes 3k and the ratio of specific capacitance of the capacitor-type electrode in 

organic electrolytes to that in aqueous 4k are equal to 1, that is when 3k = 4k =1.000. The 

constant associated to electrolyte material EK increases along with the reduction in 3k and 4k  

It follows from Figure 5.41b and 5.41c that the value of EK when 3k = 0.100 and 4k = 0.100 

is 10, and 5 when 3k = 0.200 and 4k = 0.200. 

Apart from maximization of the coefficient associated to electrode material BMK via the 

optimal values of 1k and 2k , performance of the asymmetric EC can also be enhanced by 

using organic electrolyte with the maximum constant associated to electrolyte material EK

through the maximum values of 3k and 4k . The asymmetric EC with the battery-type 

electrode mass ratio 1k = 0.500, the operating potential range ratio 2k  0, the maximum 

operating potential window ratio among aqueous and organic electrolytes 3k = 0.500, and 
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the specific capacitance ratio of the capacitor-type electrode in aqueous and organic 

electrolytes 4k = 0.500, were assembled as presented in case 2 of Table 5.16. It was noticed 

that the asymmetric EC of 2.400V and the same 1k improved storable and deliverable 

energies to 467.99Wh and 467.98Wh respectively, as presented on case 2 of Table 5.16, 

whereas the maximum energy and power densities were improved to 170.01Wh/kg and 

34.0W/kg respectively. The first and second charge–discharge cycle efficiency of the 

asymmetric EC e 1E and 2E presented in case 2 of Table 5.16, was 95.54% and 95.60%, 

respectively. Storable and deliverable energies of the asymmetric EC of 2.400V and the 

same 1k using organic electrolyte were improved to 4.620 times those of the asymmetric 

EDLC using aqueous electrolyte, while the maximum energy and power densities were 

improved to 4.38 times those of the asymmetric EDLC using aqueous electrolyte. 

Similarly, the maximum energy and power densities of the asymmetric device described in 

case 4 of Table 5.16 were enhanced to 293.80Wh/kg and 58.76W/kg, respectively. 

 

Figure 5.41: (a) Profile of stipulated requirement 1.0EK as function of 3k and 4k ratios; (b) 

3-D front view profile of value of constant associated to electrolyte material EK as a 
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function of 3k and 4k ratios; and (c) 3-D side view profile of value of constant associated to 

electrolyte material EK as a function of 3k and 4k ratios. 

Energy and power densities enhancement in the capacitor in case 4 of Table 5 was a factor 

of 7.600 greater than those of the convectional symmetric EDLC using aqueous 

electrolyte. It was observed in Tables 5.15–5.17 that when the constant associated to 

electrolyte material EK was varied, energy density, power density, storable energy and 

deliverable energy were changed, but variations in the coefficient associated to the battery-

type material BMK resulted in changes in only the energy and power densities. When the 

value of EK was constant and BMK was increased as described in cases 3 of Table 5.16, 

only energy and power densities were enhanced. An increase in the value of the constant 

associated to electrolyte material EK improved all performance parameters: efficiency, 

storable energy, deliverable energy, energy density and power density.   

Table 5.16: Parameters of asymmetric EDLC using aqueous electrolyte and asymmetric 

ECs using organic electrolytes and voltage windows of 1.200V and 2.400V & 2.400V, 

respectively, during charging and discharging processes in cases 1, 2 and 3 

S/N Paramete

r 

Unit                                       α1= 0.05S/cm and α2 = 0.05S/cm                                                

Case 1 Case 2 Case 3 

Asymmetric EDLC 
with 1k = 0.05, 2k = 
0.08, Vmax = 1.2V 

Asymmetric EC with

1k = 0.50, 2k = 0, 3k = 

0.5, optk4 = 0.5,        

Vmax = 2.4V  

Asymmetric EC with

optk1 = 0.05, optk2 = 

0.08, 3k = 0.5, optk4 = 

0.5, Vmax = 2.4V 
1 Ech Wh 101.22 467.99 467.99 

2 Edis Wh 100.91 467.98 467.98 

3 EDmax Wh/kg 68.781 170.01 293.80 

4 EDeff  Wh/kg 63.725 166.21 287.24 

5 PDmax W/kg 13.722 34.002 58.760 

6 PDeff W/kg 12.713 33.243 57.449 

7 ηE1 % 84.241 95.545 95.545 
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8 ηE2 % 84.251 95.601 95.601 

9 Mele,pe kg 0.0315 1.2586 0.0723 

10 Mele,ne Kg 1.2580 1.2580 1.2580 

11 MCell Kg 1.5883 2.8155 1.6292 

 

The ratio of the maximum operating potential window among aqueous and organic 

electrolytes 3k and the specific capacitance ratio of the capacitor-type electrode in aqueous 

and organic electrolytes 4k in the asymmetric device using Li-ion salts containing organic 

solvent are approximately 0.300 and 0.500, respectively ( 3.03 k and 5.04 k for Li+ ion). 

The implication is that the operating potential window of organic electrolyte consisting of 

li-ion salt is almost 3.330 times that of aqueous electrolyte, while the specific capacitance 

of the capacitor-type electrode in aqueous electrolytes is more than twice that of organic 

electrolytes. Figure 5.42 depicts the profile of the constant associated to electrolyte 

material EK as functions of 3k and 4k ratios for ranges of 1<k3.0 3 and 4k<0  0.5. It was 

shown in Figures 5.42a and 5.42b that the maximum value of the constant associated to 

electrolyte material EK was 5.56 when 3.03 k and 5.04 k , and minimum (1.0) when

0.13 k and 4k 1.0.   

Two different asymmetric ECs were assembled and operated with different 3k , 4k , 1k and 2k

as described in cases 2 and 3 of Table 5.17. In these cases, it was assumed that the 

operating potential range of organic electrolyte was two and half folds (2.500 folds) that of 

aqueous electrolyte, while the specific capacitance of electrodes in organic electrolyte was 

two-fifth folds (0.400 times) that in aqueous electrolyte. Thus, the value of 3k and 4k were 

given as 0.400, in these two cases. When the asymmetric EC was assembled and operated 

as explained in case 2 using organic electrolyte, storable and deliverable energies were 

improved to 584.67Wh and 584.58Wh, respectively. Also, maximum energy and power 
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densities were improved to 191.92Wh/kg and 38.38W/kg, respectively. Storable and 

deliverable energies were enhanced by a factor of 5.780 compared with those of the 

asymmetric EDLC of the same 1k using aqueous electrolyte, while the maximum energy 

and power densities were enhanced by a factor of 2.790 compared with those of the 

asymmetric EDLC of the same 1k using aqueous electrolyte. 

 

Figure 5.42: (a) 3-D front view profile of value of constant associated to electrolyte 

material EK as function of 3k and 4k ratios for ranges of 1<k3.0 3 and 1<k5.0 4 ; and (b) 

3-D side view profile of value of constant associated to electrolyte material EK as function 

of 3k and 4k ratios in range of 1<k3.0 3 and 1<k5.0 4 . 

First and second charge–discharge cycle efficiency 1E and 2E  of the asymmetric EC was 

equally improved to 96.40% and 96.43% respectively. In the same manner, energy and 

power densities of the asymmetric EC assembled and operated with a maximum value of

BMoptK = 0.94 (at optk1 =0.050 and optk2 =0.080) as described in case 3 of Table 5.17 using 

organic electrolyte were improved to 365.43Wh/kg and 73.09W/kg, respectively. Energy 

and power densities improvement in the asymmetric EC were a factor of 5.300 greater than 

those of the asymmetric EDLC using aqueous electrolyte.   
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Using organic electrolyte with a higher operating potential range is one of the appropriate 

approaches to improve the EC’s storable energy, energy density and power density, and 

several studies on the application of organic electrolyte in combination with asymmetric 

configuration have been conducted [247,285–287]. The asymmetric EC with a battery-type 

electrode of suitable mass and operating potential range, organic electrolyte with a two-

fold operating potential range of aqueous electrolyte and half of the electrode specific 

capacitance in aqueous electrolyte, stored approximately 2.000 times the energy of the 

asymmetric EC using aqueous electrolyte as shown in case 3 of Table 5.16.  

Table 5.17: Parameters of EDLC using aqueous electrolyte and asymmetric ECs using 

aqueous electrolytes and voltage windows of 1.200V and 3.000V & 3.000V, respectively, 

during charging and discharging processes in cases 1, 2 and 3 

S/N Paramete

r 

Unit                                          α1= 0.05S/cm and α2 = 0.05S/cm                                                

Case 1 Case 2 Case 3 

Asymmetric EDLC 
with 1k = 0.05, 2k = 
0.08, Vmax = 1.2V 

Asymmetric EC with

1k = 0.50, 2k = 0, 3k
= 0.4, 4k = 0.4,
Vmax = 3.0V 

Asymmetric EC with

optk1 = 0.05, optk2 = 

0.08, 3k = 0.4, 4k = 

0.4, Vmax = 3.0V 
1 Ech Wh 101.22 584.68 584.68 

2 Edis Wh 100.91 584.58 584.58 

3 EDmax Wh/kg 68.781 191.92 365.43 

4 EDeff  Wh/kg 63.725 188.50 358.87 

5 PDmax W/kg 13.722 38.383 73.086 

6 PDeff W/kg 12.713 37.700 71.774 

7 ηE1 % 84.241 96.402 96.402 

8 ηE2 % 84.251 96.431 96.431 

9 Mele,pe kg 0.0315 1.2586 0.0723 

10 Mele,ne kg 1.2580 1.2580 1.2580 

11 MCell kg 1.5883 2.8155 1.6292 

 

The energy and power densities of the asymmetric EC with a proper mass and operating 

potential range are also approximately 2.000 times those of similar asymmetric EC using 
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aqueous electrolyte as presented in case 3 of Table 5.16. Storable energy of the asymmetric 

EC with suitable mass and operating potential range, organic electrolyte with 2.500 times 

the operating potential range of aqueous electrolyte and two-fifths of electrode specific 

capacitance in aqueous electrolyte was approximately 2.500 times that of a similar 

asymmetric EC using an aqueous electrolyte as presented in case 3 of Table 5.17. The 

maximum energy and power densities of the device were a factor of 2.430 greater than (as 

seen in case 3 of Table 5.17) those of a similar asymmetric EC using aqueous electrolyte 

shown in case 3 of Table 5.15.  

When self-discharge was incorporated into the asymmetric EC with suitable a electrode 

mass and operating potential range ratios using aqueous electrolyte ( BMoptK ), it stored and 

delivered 214.48Wh and 209.36Wh, (case 2 of Table 5.18) respectively, compared with 

96.50Wh and 90.86Wh stored and delivered respectively by the symmetric EDLC with 

self-discharge as presented in case 1 of Table 5.18. Storable and deliverable energy losses 

as self-discharge in the asymmetric EC with self-discharge are 20.10Wh and 23.79Wh, 

respectively. The asymmetric EC with a maximum coefficient associated to battery-type 

material BMoptK = 0.94, organic electrolyte of twice the operating potential range of aqueous 

electrolyte, half the electrode specific capacitance in aqueous electrolyte and self-

discharge, stored and delivered 428.96Wh and 418.72Wh respectively, as presented in 

Table 5.18. Its storable and deliverable energies are twice those of a similar asymmetric 

EC with self-discharge using aqueous electrolyte; whereas the energy and power densities 

are 1.950 folds (280.51Wh/kg and 56.10W/kg) those of a similar asymmetric EC with self-

discharge using aqueous electrolyte.  

When the asymmetric EC with self-discharge used suitable electrode with a maximum 

coefficient associated to battery-type material and a maximum constant associated to 
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electrolyte material ( BMoptK and EoptK ), it stored and delivered 5.560 times (1192.50Wh and 

1164.00Wh) the energies of similar asymmetric devices using aqueous electrolyte. 

Similarly, its energy and power densities are also 5.560 times (799.97Wh/kg and 

159.97W/kg) those of a similar asymmetric capacitor using aqueous electrolyte as seen in 

Table 5.18. In comparison, the difference in the value of parameters in Tables 5.18 and 

5.19 were due to self-discharge inherent in the device presented in Table 5.18. For 

instance, maximum storable energy and energy density in the device without self-discharge 

(case 4 of Table 5.19) was 1304.26Wh and 837.00Wh/kg respectively, while those of the 

device with self-discharge (case 4 of Table 5.18) was 1192.50Wh and 799.97Wh/kg, 

respectively.  

Table 5.18: Parameters of symmetric EDLC using aqueous electrolyte, asymmetric EC 

using aqueous electrolyte, and asymmetric ECs with self-discharge using organic 

electrolytes and voltage windows of 1.200V, 1.200V, 2.400V and 4.000V, respectively, 

during charging and discharging processes in cases 1, 2, 3 and 4. 

S/N Paramete

r 

Unit                                                 α1= 0.05S/cm and α2 = 0.05S/cm 

Case 1 Case 2 Case 3 Case 4 

Symmetric 
EDLC with 1k = 

0.50, 2k = 0.50,
Vmax = 1.2V, 
with  only EDLs 
instability self-
discharge  

Asymmetric EC 
with optk1 = 0.05, 

optk2 = 0.08, 
Vmax = 1.2V with 
EDLs instability 
& redox reactions 

Asymmetric EC 
with optk1 = 0.05,

optk2 = 0.08, 3k = 

0.5, 4k = 0.5
Vmax = 2.4V with 
EDLs instability 
& redox reactions 

Asymmetric EC 
with optk1 = 0.05, 

optk2 = 0.08, optk3

= 0.3, optk4 = 0.5, 

Vmax = 4.0V with 
EDLs instability & 
redox reactions 

1 Ech Wh 96.502 214.48 428.96 1192.5 

2 Edis Wh 90.862                                                                                                                                                                                                                                                              209.36 418.72 1164.0 

3 EDmax Wh/kg 38.605 143.88 280.51 799.97 

4 EDeff  Wh/kg 35.282 116.43 227.03 647.35 

5 PDmax W/kg 7.7016 28.771 56.10 159.97 

6 PDeff W/kg 6.8393 23.285 45.405 129.46 

7 ηE1 % 75.596 67.218 74.794 78.426 

8 ηE2 % 75.601 75.500 82.471 86.158 
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9 Mele,pe kg 1.2580 0.0723 0.0723 0.0723 

10 Mele,ne kg 1.2580 1.2580 1.2580 1.2580 

11 MCell kg 2.8149 1.6292 1.6292 1.6292 

 

The maximum coefficient associated to battery-kind material BMoptK is 0.940, while that 

associated to electrolyte material EoptK is 5.560. The asymmetric EC with proper mass and 

operating potential range, organic electrolyte of 3.330 times the operating potential range 

of aqueous electrolyte and half the electrode specific capacitance in aqueous electrolyte (

BMoptK and EoptK ) stored 5.560 time the energy (case 3 of Table 5.19) of a similar 

asymmetric EC using aqueous electrolyte as shown in case 4 of Table 5.19. Energy and 

power densities in this configuration were also a factor of 5.560 greater than those of a 

similar asymmetric EC using aqueous electrolyte as seen in Table 5.19. Storable and 

deliverable energies of this asymmetric device was 1304.26Wh and 1296.31Wh, 

respectively, while energy and power densities were as high as 837.00Wh/kg and 

167.40W/kg, respectively as presented in Table 5.19.  

Table 5.19: Parameters of asymmetric EDLC using aqueous electrolyte, asymmetric EDLC 

using organic electrolyte, asymmetric EC using aqueous electrolyte and asymmetric EC 

using organic electrolyte with voltage windows of 1.200V, 4.000V, 1.200V and 4.000V 

respectively, during charging and discharging processes in cases 1, 2, 3 and 4. 

S/N Parame

ter 

Unit                                          α1= 0.05S/cm and α2 = 0.05S/cm 

Case 1 Case 2 Case 3 Case 4 

Asymmetric 
EDLC with

optk1 = 0.05, 

optk2 = 0.08,     

Vmax = 1.2V 

Asymmetric EDLC 
with optk1 = 0.05, 

optk2 = 0.08, optk3

= 0.3, optk4 = 0.5,
Vmax = 4.0V 

Asymmetric EC 
with optk1 = 0.05, 

optk2 = 0.08, and  

Vmax = 1.2V 

Asymmetric EC 
with optk1 = 0.05, 

optk2 = 0.08, optk3

= 0.3, optk4 = 0.5,

Vmax = 4.0V 
1 Easch Wh 101.22 562.78 234.58 1304.3 

2 Easdis Wh 100.91 560.06 233.15 1296.3 
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3 EDmax Wh/kg 68.781 382.42 150.54 837.00 

4 EDeff  Wh/kg 63.725 354.31 143.98 800.53 

5 PDmax W/kg 13.722 76.294 30.108 167.40 

6 PDeff W/kg 12.713 70.684 28.797 160.11 

7 ηE1 % 84.241 97.500 90.723 97.505 

8 ηE2 % 84.251 97.603 90.823 97.631 

9 Mele,pe kg 0.0315 0.0315 0.0723 0.0723 

10 Mele,ne kg 1.2580 1.2580 1.2580 1.2580 

11 MCell kg 1.5883 1.5883 1.6292 1.6292 

 

A summary of the performance parameters of various electrochemical capacitors using 

aqueous and organic electrolytes were presented in Table 5.20. It is obvious from Table 

5.20 that the energy and power densities of the asymmetric EDLC using aqueous 

electrolyte were a factor of 1.800 higher than those of the symmetric EDLC using aqueous 

electrolyte, while storable energies are the same with a reduction in the device mass and 

volume by a factor of 1.770. Also, energy and power densities of the asymmetric EDLC 

using organic electrolyte were a factor of 1.800 greater than those of the symmetric EDLC 

using organic electrolyte, while storable energies are the same with reduction in device 

mass and volume by a factor of 1.770. Storable energy of asymmetric EC with aqueous 

electrolyte was a factor of 2.320 greater than that of the asymmetric EDLC using aqueous 

electrolyte with an increase in device mass and volume by a factor of 1.030, whereas 

energy and power densities of the asymmetric EC with aqueous electrolyte were a factor of 

2.200 higher than those of the asymmetric EDLC with aqueous electrolyte. Also, energy 

and power densities of the asymmetric EC with organic electrolyte were a factor of 2.200 

greater than those of the symmetric EDLC with organic electrolyte, whereas its storable 

energy of the asymmetric EC with organic electrolyte was a factor of 2.320 greater than 

that of the asymmetric EDLC using organic electrolyte with reduction in device mass and 

volume by a factor of 1.770.  
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Energy and power densities of the asymmetric EC with aqueous electrolyte were 3.880 

times those of the symmetric EDLC using aqueous electrolyte with a reduction in the 

device mass and volume by a factor of 1.770, whereas storable energy of the asymmetric 

EC with aqueous electrolyte was 2.320 times that of the symmetric EDLC with aqueous 

electrolyte. Similarly, energy and power densities of the asymmetric EC with organic 

electrolyte were 3.880 times those of the symmetric EDLC with organic electrolyte, 

whereas its storable energy of the asymmetric EC with organic electrolyte was 2.320 times 

that of the symmetric EDLC with organic electrolyte. Storable energy, energy density and 

power density of the symmetric EDLC using organic electrolyte were a factor of 5.560 

greater than those of the symmetric EDLC using aqueous electrolyte with the same device 

mass and volume. Storable energy, energy density and power density of the asymmetric 

EDLC using organic electrolyte were a factor of 5.560 greater than those of the 

asymmetric EDLC using aqueous electrolyte with the same cell mass and volume. Again, 

storable energy, energy density and power density of the asymmetric EC using organic 

electrolyte were a factor of 5.560 higher than those of the asymmetric EC using aqueous 

electrolyte with the same cell mass and volume. 

In addition, storable energy of the asymmetric EC with organic electrolyte was a factor of 

12.900 greater than that of the symmetric EDLC with aqueous electrolyte with a reduction 

in cell mass and volume by a factor of 1.730, while energy and power densities of the 

asymmetric EC with organic electrolyte were a factor of 21.60 greater than that of the 

symmetric EDLC with aqueous electrolyte.  

Table 5.20: Summary of performance parameters of various electrochemical capacitors 

using aqueous and organic electrolytes, respectively 

S/ Electrochemical capacitor systems  Performance parameters 
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N 
 

 
 

Storable energy  
(Wh) 

Energy density 
(Wh/kg) 

Power density 
(W/kg) 

1 Symmetric EDLC with  aqueous 
electrolyte, 1k = 0.5, 2k = 0.5 and 
1.2V 

22.101SE  81.38SED  743.7SPD  

2 Asymmetric EDLC with  
aqueous electrolyte, 1k = 0.05,

2k = 0.08, and 1.2V 

22.101asE  

 
78.68asED  72.13asPD

 

3 Asymmetric EC with  aqueous 
electrolyte, 1k = 0.05, 2k = 0.08, 
and 1.2V 

58.234asE  54.150asED  11.30asPD  

4 Symmetric EDLC with organic 
electrolyte, 1k = 0.5, 2k = 0.5, 

3k = 0.3, 4k = 0.5 and 4.0V 

78.562
soE  78.215_ soED  05.43_ soPD  

5 Asymmetric EDLC with organic 
electrolyte, 1k = 0.05, 2k = 0.08, 

3k = 0.3, 4k = 0.5 and 4.0V 

78.562_ asoE  42.382_ asoED  68.76_ asoPD  

6 Asymmetric EC with organic 
electrolyte, 1k = 0.05, 2k = 0.08, 

3k = 0.3, 4k = 0.5 and 4.0V 

30.1304_ asoE  
0.837_ asoED  40.167_ asoPD  

 

The summary of the relationships for parameters from simulations for purpose of 

capacitors performance comparison is as follows: 

= 5.56                                                                                                                           5.1 

= 5.56                                                                                                                     5.2 

= 5.56                                                                                                                     5.3 

= 2.3 = = 0.42                                                                                                    5.4 

= 2.2 = = 0.39                                                                                        5.5 

= 2.2 = = 0.39                                                                                         5.6 

= 12.9 = 5.56 = 2.31                                                                                      5.7 

= 21.6 = 5.56 = 2.20                                                                            5.8 

= 21.6 = 5.56 = 2.20                                                                            5.9 

 

The summary of the relationships for parameters from theoretical equations for purpose 

of capacitors performance comparison is as follows: 

soE _ sE

soED _ sED

soPD _ sPD

asE sE asE soE _

asED sED asED soED _

asPD sPD asPD soPD _

asoE _ sE asE soE _

asoED _ sED asED soED _

asoPD _ sPD asPD soPD _
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                                              3.212                                                             

                           3.213                                                               

                           3.214                                                                        

                                                                   3.215 

                                                            3.216  

                                                           3.217 

    

                                                3.218  

                                                 

                                   3.219  

                                                     

                                          3.220 

It was clearly seen from equations 3.211,  3.212 and 3.213 that storable energy , 

energy density and power density of the symmetric EC using organic 

electrolyte were a factor of 5.560 greater than ( =5.56 , =5.56 and

=5.56 ) those of the similar symmetric EC using aqueous electrolyte. It was also 

obvious from equations 3.218, 3.219 and 3.220 that storable energy , energy density

and power density of the asymmetric EC using aqueous electrolyte were factors 

of 0.360, 0.340 and 0.340 respectively, less than ( = 0.360 , =0.340 and

=0.340 ) those of the symmetric EC using organic electrolyte. Storable energy

, energy density and power density of the asymmetric EC using aqueous 

electrolyte were factors of 2.000, 1.890 and 1.890, respectively, greater than ( =2.000
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, =1.890 and =1.890 ) those of the symmetric EC using aqueous 

electrolyte.  

Equations 3.218, 3.219 and 3.220 show that storable energy , energy density

and power density of the asymmetric EC using organic electrolyte were 5.560 times 

( = 5.560 , = 5.560 and = 5.560 ) those of the asymmetric 

EC using aqueous electrolyte; and were also 2.000, 1.890 and 1.890 times respectively 

those of the symmetric EC using organic electrolyte. Storable energy , energy density

and power density of the asymmetric EC using organic electrolyte were 

equally factors of 11.080, 10.500 and 10.500 respectively, higher than those of the 

symmetric EC using aqueous electrolyte.  

Results from the simulation showed that storable energy, specific energy density and 

specific power density of the asymmetric EC using aqueous electrolyte were respectively a 

factor of 2.300, 2.200 and 2.200 higher than those of the symmetric EC using the same 

electrolyte. It again shows that storable energy, energy density and power density of the 

asymmetric EC using aqueous electrolyte was respectively a factor of 0.420, 0.390 and 

0.390 less than those of the symmetric EC using organic electrolyte. Storable energy, 

energy density and power density of the symmetric EC using organic electrolyte were a 

factor of 5.560 higher than those of the similar symmetric EC using aqueous electrolyte. 

Storable energy, energy density and power density of the asymmetric EC using organic 

electrolyte were a factor of 5.560 greater than those of a similar asymmetric EC using 

aqueous electrolyte. Storable energy, energy density and power density of the asymmetric 

EC using aqueous electrolyte were respectively factors of 2.320, 2.200 and 2.200 higher 

than those of the asymmetric EDLC using aqueous electrolyte. Again, storable energy, 

sE asED sED asPD sPD

asoE _ asoED _

asoPD _

asoE _ asE asoED _ asED asoPD _ asPD

asoE _

asoED _ asoPD _
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energy density and power density of the asymmetric EC using organic electrolyte were 

respectively factors of 2.320, 2.200 and 2.200 higher than those of the asymmetric EDLC 

using organic electrolyte. Also, storable energy, energy density and power density of 

asymmetric EC using organic electrolyte were factors of 12.90, 21.60 and 21.60 

respectively, greater than those of the symmetric EC using aqueous electrolyte. The 

simulation results were summarised in equations 5.1–5.9 and presented in Table 5.19. The 

results from the simulation agreed reasonably with results from theoretical equations. and 

A slight difference observed was due to different densities for the capacitor-type and 

battery-type electrodes in simulations, while the same density was used in theoretical 

equations. The degree of agreement between the simulation results using data from our 

symmetric EDLC model (equation 4.1) presented in case 1 of Tables 3 and 5.18 and those 

from the proposed procedure and methodology is reliable.  

The analysis and discussions above comprehensibly revealed that the asymmetric EC has 

superior electrochemical performance compared with the symmetric capacitor using the 

same aqueous electrolyte. The asymmetric EC with suitable electrode mass and operating 

potential range ratios is able to store and deliver twice as much energy than those of the 

symmetric EDLC and, in addition, have more than twice the energy and power densities of 

the symmetric EDLC using the same aqueous electrolyte. It was also very clear that 

assemblage of he asymmetric EC configuration, together with organic electrolyte, has 

superior capacity to enhance the performance of electrochemical devices, in line with 

earlier reports by several researchers [285,288].  

The asymmetric EC, with the proper electrode mass and operating potential range ratios, 

together with the use of organic electrolyte of appropriate operating potential range and 

electrode specific capacitance has over five-times the storable energy, deliverable energy, 

energy density and power density of the similar asymmetric EC using aqueous electrolyte. 
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The superior performances of the asymmetric EC are in terms of storable and deliverable 

energies, energy and power densities as well as charge–discharge cycle efficiency, as 

presented in Table 5.19. A symmetric EDLC using the same type of electrode with 

different mass, and with suitable mass and operating potentials range ratios, also has 

superior capacity to store more energy than conventional symmetric EDLC using the same 

aqueous electrolyte as seen in Table 5.14.     
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CHAPTER SIX 

 

6.0 Conclusions and Recommendations 

 

6.1 Conclusions 

 

Conclusions were presented in four parts namely: the effects of self-discharge on 

performance of symmetric electric double layer capacitors and active electrolyte enhanced 

supercapacitors; the effects of self-discharge on performance of asymmetric/hybrid 

electrochemical capacitors; the effects of operating conditions and design configurations on 

performance of electrochemical capacitors; and the optimization of design parameters and 

operating conditions of electrochemical capacitors for high performance. 

Theoretical basis and models for calculations, control, and improvement of performance of 

various types and designs of the symmetric and asymmetric ECs with simultaneous account 

of physical, electrical, electrochemical properties of electrode materials and structures design 

of the electrodes and the separator were developed. The effects of self-discharge, operating 

conditions and design configurations on performance of different types of ECs during 

charging, discharging and on storage condition was discovered from modeling. Guideline to 

determine optimal process design parameters for maximum performances of electrochemical 

capacitors of different applications, subject to type and value of electrodes, electrolyte and 

separator's properties, as well as values of applied current densities were developed using a 

modeling approach. 
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6.1.1 The Effects of Self-Discharge on the Performance of Symmetric Electric Double 

Layer Capacitors and Active Electrolyte Enhanced Supercapacitors: Insights from 

Modelling and Simulation 

 

The effects of self-discharge on the performance of symmetric EDLCs have been studied 

through inclusion of self-discharge, via a combination of different self-discharge 

mechanisms, into capacitors’ mass transfer and charge conservation equations during 

charging and discharging. The contributions of each key self-discharge parameter on 

capacitor performance and how they could be tuned to improve device performance, can be 

easily studied using the model. First and second charge–discharge cycle energy efficiency

and  of similar capacitors without self-discharge was 84.24% and 84.25%, while that of a 

device with self-discharge was less. Thus, energy efficiency of EDLCs without self-discharge 

was higher than that of similar EDLCs with self-discharges.  

 

Side-reactions or redox reactions self-discharge contributed the majority of self-discharge in 

symmetric EDLCs and AEESs when the concentration of redox species that produces soluble 

products during the charging process are high. The quick self-discharge process was caused 

by the migration of soluble products of redox reactions from one electrode to another through 

the separator during the charging/discharging process. Tuning key self-discharge parameters 

reduced energy loss by self-discharges from 28.38Wh to 1.12Wh in a device with both side-

reactions/redox reactions and EDLs instability self-discharge. Storable energy was improved 

from 70.24Wh to 99.52Wh in the capacitor with self-discharge, compared with 101.20Wh in 

the device without self-discharge. Similarly, first and second charge–discharge cycle energy 

efficiencies and of the capacitor with both side-reactions/redox reactions and EDLs 

1E

2E

1E 2E
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instability self-discharge improved from 38.13% and 38.14% to 80.54% and 81.56% 

respectively .  

 

It was noticed that capacitors with self-discharge took a longer time to be charged to target 

voltage than those without self-discharge, while fully charged capacitors with self-discharge 

discharged all stored energy faster than those without self-discharge. This is because earlier 

stored charges are lost by self-discharge during the charging process, while the fully charged 

device loses part of the stored charge by self-discharge. The effects of self-discharge during 

capacitor storage was negligible since it took a fully charged capacitor, in all conditions 

studied, a minimum of 14.0 days to be entirely discharged by self-discharge, hence self-

discharge in the storage condition can be ignored.  

From the above results, ignoring self-discharge in symmetric EDLCs models amounts to 

over-rating the capacitor's performance. It was discovered that key self-discharge parameters 

needed to be tuned to suppress the self-discharge rate, are the concentration of shuttle 

impurities, concentration of redox species, and thickness of the separator. It was noticed that 

the EDLs instability self-discharges, which is predominant in EDLCs, are caused by 

functional groups or impurities in electrode materials, shuttling of electrolyte impurities 

among electrodes, charge redistribution and attractive force from opposite ions in the 

electrolyte phase. In AEESs, both EDLs instability and side-reactions, or reactions self-

discharge, were present in reasonable measures, but that of the redox reactions contributed 

the majority, due to migration of redox reaction soluble products from one electrode to 

another. In summary, it was observed that the effects of self-discharge are to large to be 

ignored in EC models. Models with self-discharge presented a more realistic estimate of 

potential drop and energy loss during operations. 
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6.1.2 The Effects of Self-Discharge on the Performance of Asymmetric/Hybrid 

Electrochemical Capacitors: Insights from Modeling and Simulation. 

 

The effects of self-discharge were incorporated into the asymmetric ECs model during 

charging and discharging using an applicable specific self-discharge mechanism and a 

combination of different self-discharge mechanisms. The effects of self-discharge on the 

performance of asymmetric ECs were studied via simulations of the model which emerged. 

The first and second charge–discharge cycle energy efficiency and of the device with 

electrodes effective conductivity =0.05S/cm and both EDLs instability and redox reactions 

self-discharge was 79.57% and 82.03% respectively, compared with 90.72% and 90.82% in a 

similar capacitor without self-discharge. Energy loss in the asymmetric EC with electrodes 

and electrolyte effective conductivity =0.05S/cm and both EDLs’ instability and 

redox reactions self-discharge during charging and discharging was 59.53Wh.  

 

Key self-discharge parameters to be tuned in order to suppress the self-discharge rate in the 

asymmetric devices are concentration of impurity ions, concentration of impurity oxidized 

species and total thickness of the separator and positive electrode. Moreover, energy 

efficiencies and of the device with both EDLs’ instability and redox reactions self-

discharge, and tuned self-discharge parameters, was enhanced to 90.46% and 90.79% 

respectively. The energy loss of both EDLs instability and redox reactions self-discharge in 

the device with tuned key self-discharge parameters was 7.43Wh. The capacitor with both 

EDLs’ instability and redox reactions, self-discharge using untuned self-discharge parameters 

with soluble redox reactions products  and using tuned self-discharge parameters with 

insoluble redox reactions products,  stored 214.48Wh and 245.33Wh energy respectively, 

compared with 234.58Wh stored in similar capacitors without self-discharge. These 
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capacitors also delivered 209.36Wh and 244.02Wh energies respectively during the 

discharging process, in comparison with 233.15Wh delivered by a similar capacitor without 

self-discharge. Storable and deliverable energies of capacitors with tuned self-discharge 

parameters and insoluble redox reaction products  were higher than those of similar 

capacitors without self-discharge. Thus, the reduction of shuttle impurity concentration, and 

the use of redox-active species that produces insoluble products, suppresses the rate of self-

discharge. The modification of key self-discharge parameters improved the asymmetric EC’s 

energy efficiency, storable energy and deliverable energy.  

 

It was noticed that when the asymmetric EC was charged and discharged at speed, the rate of 

self-discharge reduced greatly, compared with slow charging and discharging processes 

because there was not enough time for shuttle self-discharge and charge redistribution to 

occur when charged quickly. Incorporation of self-discharge into the asymmetric ECs model, 

created a platform to examine the effects of self-discharge parameters during charging and 

discharging with a view to  improving performance. In asymmetric capacitors, side-reactions 

or reactions of active redox species self-discharge contributed the majority of self-discharge, 

compared with that of EDLs instability, because soluble products of redox reaction shuttles 

from one electrode to another. The asymmetric ECs performance is obviously over-rated 

when self-discharge was completely neglected in the models. The charging time of 

asymmetric EC’s significantly depends on the self-discharge rate, which decays its voltage 

and energy, increases charging time and causes deterioration in the device. Models that 

incorporate self-discharge give a more practical evaluation of potential decay and energy 

dissipation during self-discharge.  
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6.1.3 The Influences of Operating Conditions and Design Configurations on the 

Performance of Symmetric Electrochemical Capacitors 

 

Mathematical models were used to determine the effects of different charging current 

densities, charging times, electrode and electrolyte effective conductivities, electrode 

thickness, and electrode porosities on the symmetric EC’s performance parameters like 

such as capacitance, energy density and power density. Successful charging of the EC 

using current density is greatly dependent on the device’s electrodes and electrolyte 

effective conductivities, as well as the thickness of electrodes. Also, In addition, the speed 

with which the EC can be effectively charged is dependent on the charging current density, 

effective conductivity of electrodes and electrolyte as well as the electrode’s thickness. For 

ECs to be charged very fast, they must have thin electrodes and high electrode and 

electrolyte effective conductivities to permit effective charging without potential drops at 

such a rate. Therefore, ECs of low electrode and electrolyte effective conductivities cannot 

be charged effectively at high current density, because potential drops becomes as high as 

half of cell’s voltage at such a rate. Conversely, ECs with thin electrodes and high 

electrode and electrolyte effective conductivities are effectively charged at a high current 

density in a time range of a few to micro seconds and will have high power densities. The 

typical length scale  over which the liquid potential drop occurs, can be used as a 

design parameter to optimize the electrode’s thickness (effective thickness) for ECs 

designed to function under given current density spans.  

ECs with a high concentration of impurity ions or redox species exhibits a high self-discharge 

rate, and charging ECs fast greatly reduced the self-discharge rate, compared with slow 

charging, provided that the electrode’s and electrolyte’s effective conductivities are high 
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enough. Electrodes utilization u can also be used to determine the optimum 

thickness/effective thickness of the electrodes, optimum current density and charging time in 

a cell of specific voltage and effective conductivities of electrodes and electrolyte. This 

guideline can be used to determine optimum electrodes thickness (100% electrodes 

utilization), optimum charging current density and optimum charging time for a cell of given 

voltage, electrodes thickness, electrodes and electrolyte’s effective conductivities. It is 

therefore recommended that for a device with given electrodes and electrolyte effective 

conductivities expected to be charged at a certain current density, the electrode’s thickness 

must be equivalent to the electrode’s effective thickness (100% electrodes utilization) at the 

given current density, in order to avoid deadweight that reduces specific energy and power. 

Also, it is very important to use the optimum current density to charge/discharge the 

capacitor with a given electrodes thickness and effective conductivities of electrodes and 

electrolyte, in order to avoid underutilization of the electrodes, increased inefficiencies and 

potential drops, and achieve high energy and power densities.   

Energy density of a capacitor with given electrodes and electrolyte effective conductivities 

was increased in 2.13, 4.75 and 10.75 by reducing the electrode’s thickness in 1.33, 2.00, 

and 4.00 respectively. The power density of the capacitor with specific electrodes 

thickness and very high electrodes and electrolyte effective conductivities ( 50S/cm 

and 0.50S/cm) charged at a specific current density was increased by a factor of 10, 

100, 1000 without compromising energy density by increasing and reducing the current 

density and charging time by the same amount. The effective mass of the electrodes 

reduces as accessible pores are increased; thus, the EC with higher electrodes and separator 

porosities has a smaller mass than a similar device with lower accessible porosities. The 

Ragone plots of electrochemical capacitors with diverse electrode thicknesses and different 

electrode and electrolyte effective conductivities, charged at different current densities for 
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different times can be used to select electrode dimensions to achieve a given energy and 

power density specifications.  

 

6.1.4 Optimization of electrochemical capacitors design parameters and operating 

conditions for high energy and power performances. 

 

Modified theoretical expressions for different electrochemical capacitors facilitated 

comprehensive comparison of the performance parameters of various capacitors 

categorized in terms of electrolyte type and electrodes symmetry. The maximum value of 

the coefficient associated to battery-type material was 0.94 at = 0.05 & = 

0.08, while the constant associated to electrolyte material was 5.56 at = 0.30 &

= 0.50. Estimations of storable energy Ech, deliverable energy Edis, maximum energy 

density EDmax and maximum power density PDmax were feasible and achievable once 

details of the electrode’s mass ratio, operating potential range ratio and electrode specific 

capacitance in the electrolyte of  the device were known.  

The asymmetric EC with suitable electrode mass and operating potential range ratios has 

over twice the storable energy, deliverable energy, energy density and power density of the 

symmetric EDLC using the same aqueous electrolyte with a reduction in cell mass and 

volume by a factor of 1.73. In addition, storable energy, deliverable energy, energy density 

and power density of the asymmetric EC with proper electrode mass and operating 

potential range ratios, together with organic electrolyte of an appropriate operating 

potential range and specific capacitance were a factor of 5.56 higher than those of a similar 

asymmetric EC using aqueous electrolyte with a reduction in cell mass and volume by a 

BMoptK optk1 optk2
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factor of 1.73. Storable energy and deliverable energies of the asymmetric EC with a 

suitable electrode mass and operating potential range ratios, together with proper organic 

electrolyte were a factor of 12.90 greater than those of the symmetric EDLC using aqueous 

electrolyte, while its energy and power densities were a factor of 21.60 greater than those 

of the symmetric EDLC using aqueous electrolyte with a reduction in cell mass and 

volume by a factor of 1.73. The asymmetric EDLC with a suitable electrode mass and 

operating potential range ratios using proper organic electrolyte has more than five-times 

(5.56) the performance parameters of a similar symmetric EDLC using aqueous electrolyte 

with a reduction in cell mass and volume by a factor of 1.73. Also, the asymmetric EC 

with a suitable electrode mass and operating potential range ratios using proper organic 

electrolyte has more than twice (2.20) the performance parameters of the symmetric EDLC 

using organic electrolyte with a reduction in cell mass and volume by a factor of 1.73.  

Optimal design requirements for an asymmetric EC using aqueous electrolytes are: the 

mass ratio of a battery-type electrode to the mass of two electrodes in aqueous electrolyte 

should be 1:19; the ratio of the working potential range of a battery-type electrode to 

maximum working potential of the device with aqueous electrolyte ought to be 1:12. 

Optimal design requirements for an asymmetric EC using organic electrolytes in addition 

to mass and working potential range ratio are: the ratio of maximum working range of 

aqueous electrolyte to that of organic electrolyte should be 1:3.33; and the ratio of specific 

capacitance of capacitor-type electrodes in aqueous electrolyte to that of capacitor-type 

electrodes in organic electrolyte should be 1:2.  

These results obviously reduce the number of experiments needed to determine the 

optimum manufacturing state of an electrochemical energy storage device. These analyses 

and simulations intelligibly demonstrated that the institution of asymmetric electrodes and 

organic electrodes was very successful in improving the ECs’ performance with a 
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reduction in cell mass and volume. The introduction of asymmetric EDLCs with the same 

type of electrode, but suitable electrodes mass and working potential range ratios, and 

proper organic electrolyte, enhanced the performance of conventional symmetric EDLCs 

using aqueous electrolyte with a reduction in cell mass and volume. These results could be 

a good guideline for the design and fabrication of ECs with outstanding performance in 

terms of storable energy, energy density and power density.  

 

6.2 Contributions to knowledge 

 

The following are areas of contribution to knowledge from this study: 

 Incorporation of self-discharge into the electrochemical capacitor’s model created a 

platform to study the effects of key self-discharge parameters and determine the 

minimum allowable concentration of impurities and redox species in a device’s 

components for optimal performance.  

 Models with self-discharge also created an approach to reduce the number of 

experiments required to determine the minimum impurity or redox species 

concentration and the optimum total thickness of the separator and anode. 

 A guideline that can be used to determine optimum design configurations and 

operating conditions for optimal performance of electrochemical capacitors was 

created, using typical length scale over which the liquid potential drop occurs, 

effective electrodes thickness and electrodes utilization . 

 The necessity to determine and employ the optimum current density to 

charge/discharge a capacitor with a given electrode thickness and effective 

conductivities of electrodes and electrolyte in order to avoid the underutilization of 
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electrodes increased inefficiencies and potential drops, and achieve high energy and 

power densities was shown.   

 The generated ragone plots of ECs with different electrode thicknesses and 

electrode and electrolyte effective conductivities charged at different current 

densities for different times, can be used to select electrode dimensions to attain 

specific energy and power density specifications. 

 The research created an avenue to reduce the number of experiments needed to 

determine the optimum electrode mass and operating potential range ratios, 

together with proper organic electrolyte for optimal performance of electrochemical 

energy storage devices.  

 The study presented guidelines and requirements for the design and fabrication of 

electrochemical capacitors of outstanding performance in terms of high energy and 

power densities with a reduction in device mass and volume.  

 

6.3 Recommendations 
 

 

Based on the contributions of this study, time constraints and the necessity to investigate 

beyond the set aims and objectives of this research, the following recommendations were 

made: 

1)  The models should be extended to incorporate the heat generation term, in order to 

facilitate  estimation of the temperature of operations, thermal functioning of new 

devices and the development of thermal management plans for existing ECs designs. 

2)  Symmetric electric double layer capacitors that operate as asymmetric capacitors using 

the optimum  electrodes mass and potential range ratio should be fabricated and their 
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performance examined to ascertain the degree of improvement, compared with 

convectional EDLCs.  

3)  An asymmetric capacitors with the optimum battery-type mass ratio, potential range 

ratio, maximum potential range of aqueous electrolyte to organic electrolyte, and ratio 

of capacitance of capacitor-kind electrode in aqueous electrolyte to organic electrolyte 

should be fabricated and characterized to confirm its level of superiority. This could 

be implemented by fabricating the device using the optimum mass and potential ratios 

and organic electrolyte determined in this research. 
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Appendix B 

 

Homogeneous/symmetric electrochemical capacitors without self-discharge. 

For the homogeneous equation , with the inhomogeneous boundary and 

initial conditions, it becomes                                                                   B1 

Using the Fourier Cosine series solution method, we seek a Fourier Cosine series solution of 

the form [289,290]:                                                         B2   

where   and    

On differentiating equation B2 with respect to t and x once and twice respectively, we have 

 

 

and   

Writing the PDE in terms of the Fourier cosine series requires determining the formulas for 
Fourier cosine coefficients of  and in terms of the Fourier 

coefficients of . Computing the Fourier coefficients of  needs 

integrating the term by parts twice as below: 
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                                                                                               B3 

To compute the n = 0 Fourier coefficients, we just use direct integration:

 

 

Since and are not equal to zero (non-zero), we obtain  

 

Also computing the Fourier cosine coefficients of as follows: 
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represented by Fourier cosine series as:   

                                               B6 

where , 

 

Also, comparing equations B2 and B6 at t=0, we have 

                                                                                                   B7 

On solving equations B5 and B7 we have 

 

, Since , 

                                                                                                 B8 

Recall that and integrating and taking limit 

from 0 to , we obtain, 

 

                                                                                                     B9  
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                                                                                  B10  

Again,  

 

, since  

                                                                                                            B11 

Recall that . 

Integrating by parts, we obtain

                                                           B12 

Substituting equation B12 into equation B11, we obtain 

                                          B13 

Substituting equations B10 and B13 into equation B3, we finally obtain 
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                                                                               B15 
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Appendix C 

 

Homogeneous/Symmetric electrochemical capacitors with self-discharge. 
 

For the negative electrode of supercapacitors with electric double layer electrode 

For the inhomogeneous equation having the self-

discharge with inhomogeneous boundary conditions  ,  and 

an inhomogeneous initial condition , the inhomogeneous equation becomes:

                                                                                       C1 

Using the Fourier Cosine series solution method, we seek a Fourier Cosine series solution of 
the form [289,290]: 

                                                                                       C2 

where   and    

On differentiating equation C2, we have 

 and   

Writing the PDE in terms of the Fourier cosine series requires determining the formulas for 
Fourier cosine coefficients of  and in terms of the Fourier 

coefficients of . Computing the Fourier coefficients of needs 

integrating the term by parts twice as below: 
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To compute the n = 0 Fourier coefficients, we just use direct integration: 

 

 

Since and are not equal to zero (non-zero), we obtain  

 

Also computing the Fourier cosine coefficients of as follows: 

 , when n=0 
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Substituting the Fourier cosine coefficients of and into equation 

C2, we have:  

                                                                                  C3 

Again, , where , 

 

Since the right hand side of the PDE is not zero, we obtain: 

                                             C4 

Again, since , , the function can be 

represented by Fourier cosine series as:   

                                            C5 

where ,  

 

Also, comparing equations C2 and C5 at t=0, we have 

                                                                                                    C6  

On solving equations C4 and C6 we have:           
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                                                                                    C7 

Recall that and integrating and taking limit 

from 0 to , we obtains:  

 

                                                                                                     C8 

Substituting equation C8 into equation C7 and using , we obtain 

                                                                      C9 

Again, , ,  

since  

                                                                     C10 

Recall that .                              

Integrating by parts, we obtain

                                                           C11 
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Integrating the above, we obtain:  
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                                                                                                                        C12 

And       

 

                                                                                                            C13 

Substituting equation C12 into equation C9 and equations C11 and C14 into equation C10, 

and using ( ), we obtain: 

                                                                      C14 

                   

                                      C15 

Substituting equations C14 and C15 into equation C12, using and 

rearranging appropriately, we obtain the solution for negative electrode with self-discharge 

due to only electric double layer (EDL) instability: 
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                                                                                                 C17
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Appendix D 

 

Homogeneous/Symmetric electrochemical capacitors with only faraday electrodes  
 

For the negative electrode of supercapacitors with redox couple electrode 

                                                                                                   D1 

The boundary conditions of this negative electrode during the capacitor charge are as follows:

                                                                                                                         D2

                                                                                                     D3 

and the initial condition is given as follow: 

                                                                                                                   D4 

The boundary conditions of this negative electrode during the capacitor discharge are as 

follows: 

                                                                                                                 D5 

                                                                                                  D6 

and the initial condition is given as follow: 

                                                                                                                 D7 

Using the Fourier Cosine series solution method, we seek a Fourier Cosine series solution of 

the form [289,290]: 

                                                                             D8 

where   and    
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On differentiating equation C3 with respect to t and x once and twice respectively, we have 

, and  

Writing the PDE in terms of the Fourier cosine series requires determining the formulas for 

Fourier cosine coefficients of  and in terms of the Fourier 

coefficients of .Computing the Fourier coefficients of  needs 

integrating the term by parts twice as below: 

=  

=

 

 

 

To compute the n = 0 Fourier coefficients, we just use direct integration: 
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Also computing the Fourier cosine coefficients of as follows: 

 , when n=0 

Substituting the Fourier cosine coefficients of and into equation 

D1, we have:     

    D9 

Again,                                                                      D10 

Where  

 

Since the right hand side of the PDE is not zero, we obtain 

                                                D11 

Again, since , , the function  can be represented by 

Fourier cosine series as: 

                                                                        D12 

where ,  

Also, comparing equations D9 and D12 at t=0, we have 
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                                                                                                D13 

On solving equations D8 and D6 we have 

, Since , 

                                                                                         D14 

Recall that  and integrating and taking limit from 0 to , we obtain 

,  

                                                                                                                             D15 

Substituting equation D15 into equation D14, we obtain the expression below: 

                                                                             D16 

Again,  

, since

                                                                       D17 

Recall also that .                                                 

Integrating twice with respect to x, we obtain
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                                                                                                                 D18 

Note again that  

Integrating the above, we obtain 

                          

                                                                                                                   D19 

And again                               

Integrating  twice with respect to x, we 

obtain: 

                                                                          D20  

Substituting equation D18 and D20 into equation D17, we obtain 

                                                                                                             D21 

Again, substituting equation D19 into equation D16, we obtain: 

                                                                                 D22 

Substituting equation D21and D22 into equation D8, we obtain: 
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Appendix E 

 

Numerical solutions of the models for EDLCs without self-discharge effects 
 

 

Finite difference scheme for Crank-Nicolson Method  

                                                                                       E1  

 
                                                                                                           E2 

                                                            E3 

The boundary conditions are  

                         E4 

                 E5 

Substitute equations E2 and E3 into equation E1 while assuming self-discharge to be zero (

), we obtain: 

                                                    E6 

From boundary equations E4 and E5, we obtain: 

                                                                                                                E7 

                                                                                                              E8 

                                                                                                               E9 

                                                                                                             E10 

From equation E6, we obtain; 
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                                                       E11 

                          E12 

 

Substitute equations E7, E8, E9 and E10 into equations E11 and E12 separately for i and 

i=nx, and re-arrange to obtain the boundary conditions equations as: 

                                                                 E13 

                                                          E14 

                                                               E15 

                                                            E16 

 
Equation E12 can be written in matrix form as: 

= 

                                                E17 

This two matrices have nx-1 rows and nx+1 columns, which is a representation of the nx-1 

equations and nx+1 unknowns. The two remaining equations come from the boundary 

conditions. 

Using the boundary conditions equations E15 and E16, we can write a system of equations in 

the form: 
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where and  are known square matrices; and and are known vectors , where the 

details of the boundary conditions have been fully incorporated. In this case, we write: 

   as  

+ =  

 
                                                                                                                  E19 

and similarly  
 

+ =  

 
                                                                                                                  E20 

Equation E18 is then written as   
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= 

+            E22 

 Andfinally                                                              E23 

But the matrix inversion is very time consuming and computationally inefficient. The matrix 

 is tridiagonal and can be decomposed into the product of two other matrices such that 

A=LU 

=  

 

                                                                               E24 

 
where d1=2+2r, lndn-1=pn-1=-r and dn=2+2r-lnpn-1 for . 

Notice that we work from n=1 to n= nx sequentially. 











































rr
rrr

rr

rr
rrr

r

2220000
22000

022000

000220
00022
0000022















































1

1
1

1
2

1
3

1
2

1
1

n
nx

n
nx

n
nx

n

n

n























































rr
rrr

rr

rr
rrr

r

2220000
22000

022000

000220
00022
0000022



































n
nx

n
nx

n
nx

n

n

n













1

2

3

2

1  

































rk

jr nn

2
0
0

0
0

2 0
1

0 

   n
i

n
i

n
i

n
i

n
i

n
i AaaA    1111

1n
iA











































rr
rrr

rr

rr
rrr

r

2220000
22000

022000

000220
00022
0000022







































100000
010000
001000
00000
00010
000001
0000001

1

2

4

3

2

nx

nx

l
l

l
l

l









































nx

nxnx

nxnx

nx

d
pd

pd
p

d
pd

pd

000000
00000

0000
00000
00000
00000
00000

21

32

4

3

22

11

12  nxn



 

344 
 

Let  

First step gives: 

w1=q1 and  . 

Second step involves working backwards from n=nx-2 to n=1: 
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Appendix F 

 

Numerical solutions of the models for EDLCs with self-discharge effects 
 

Substitute equations E2 and E3 into equation E1, we obtain with self-discharge term: 

                                          F1 

From equation E22, we obtain; 

                                           F2 

                  F3

 

Substitute equations E7, E8, E9 and E10 into equations F2 and F3 separately for i and i=nx, 

and re-arrange to obtain the boundary conditions equations as: 

                                            F4 

                                     F5 
 

                                                     F6 

                                                F7 

 

Equation F6 can be written in matrix form as: 
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                                       F8 

 
These two matrices have nx-1 rows and nx+1 column, which is a representation of the nx-1 

equations and nx+1 unknown. The two remaining equations come from the boundary 

conditions. Using the boundary conditions equations F6 and F7, we can write a system of 

equations in the form: 

                                                                                     F9  

where and  are known square matrices; b  is a constant; and ,  and  are 

known vectors , where the details of the boundary conditions have been fully incorporated. In 

this case, we write: 

   as  
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                                                                                                                   F10 

 
and similarly  

































rrr
rr

rrr
rrr

22
022

0
220

022









































































n
VRnx

n
VRnx

n
VR

n
VR

n
nx

n
nx

n

n

J
J

J
J

b

1

1

0

1

1

0









n
VRi

n
i

n
i

n
i

n
i

n
i

n
i bJaAaA    111

1n
iA n

iA 1n
ia n

ia n
VRiJ

































rrr
rr

rrr
rrr

22
022

0
220

022













































1

1
1

1
1

1
0

n
nx

n
nx

n

n



















































rr
rrr

rr

rr
rrr

r

2220000
22000

022000

000220
00022
0000022















































1

1
1

1
2

1
3

1
2

1
1

n
nx

n
nx

n
nx

n

n

n













































 

rk

rjr n

0
0

0
0

2 1
0

111   n
i

n
i

n
i aA 



 

347 
 

+ +b =  

 
                                                                                                                   F11 

Equation F9 is then written as   

                                                                                        F12 

= 

 

+ +b

                                                                                                                                 F13 

and finally                                                          F14 

But the matrix inversion is very time consuming and computationally inefficient. The matrix 
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 is tridiagonal and can be decomposed into the product of two other matrices such that 

A=LU 

=  

 

                                                                               F15 

 
where ,  and . 

Notice that we work from  sequentially. 

Let  
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Appendix G 

 

Numerical solutions of the models with composite electrode and self-discharge effects 
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The boundary conditions of this task during the capacitor discharge are as follows: 
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                                                                                            G10          

                                                                                          G11    

                                                                                                                      G12 

                                                                                                        G13 

and the initial condition is as follows: 
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                  G24 

                             G25 

            G26 

 

Substitute equations G16, G17 and G18 into G3; equation G20 into G8; and equations G16, 

G21 and G22 into G9 respectively to obtain: 

 

                                     G27 

                                                                                                                   G28 
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From the boundary equations G23, G24, G25 and G26, respectively we obtain: 

                                                                                                              G30 

                                                                                                                G31 
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                                                                                                             G33 

                                                                                                          G34 

                                                                                   G35
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From equations G27, G28 and G29 respectively, we obtain: 
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Substitute equations G30, G31, G32, G33, G34 and G35 into equations G36 and G37 

separately and re-arrange to obtain for i and i=nx: 
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Equations G41, G42, G43 and G44 can be re-written as: 
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From equation G47, we can write in the matrix form that: 

+s                  G49 

Also, we can write from equation G48 in matrix form as: 

+d = 

+e                    G50 

Using the boundary conditions equations G45, G46, G47 and G48, we can write system of 

equations for equations G49 and G50 respectively in the form: 
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where , , , , and are known square matrices, , , , , and 

 are known vectors where the details of the boundary conditions have been fully 

incorporated in this case. 

LHS of equation G49 is now written as: 
 

+ + 

+  
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Similarly the RHS of equation G49 is written as: 
 

+ + 
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Also LHS of equation G50 can be written as: 
 

+ +  
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Similarly the RHS of equation G50 will be written as: 
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Equations G50 and G51 are then written respectively as: 
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+  

                                                                                                     G59 

 

= 

+  

                                                                                    G60 

 
And finally we have, 
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     G61

                                                  G62 

Also, recall that equation G37 is given as:  

                                                                                                                G37 

But the matrix inversion is very time consuming and computationally inefficient. The 

matrices  and are tridiagonal and can be decomposed into the product of two other 

matrices such that A=LU. There the matrices  and are now written respectively as: 

=  

                                                                               G63 

=  

                                                                               G64 
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For equation G63, ,  and , 

and for equation G64, , and

. 

Notice that we work from sequentially. Let 

 

Also, let  

 

First step gives: 

w1=q1 and  . 

Second step involves working backwards from : 
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Appendix H 

 

Appendix H1: MATLAB scripts for analytical numerical solutions of EDLCs models 

with and without self-discharge  

 

phine_charge=0.6;phine_discharge=-0.6;cv=400;t0=0;Jvr=0.00125;t=18000; 
wne=0.2;J0=0.00533;alpha1a=0.0005;alpha2a=alpha1a;alpha1b=0.001;alpha2b=alp

ha1b;alpha1c=0.005;alpha2c=alpha1c;alpha1d=0.01;alpha2d=alpha1d;alpha1e=0.0

5;alpha2e=alpha1e;phi0=0.6;phip=1.4;V_0=0.8;V_1=2.0;n1=2;F=96487;c=3e-4; 

l=0.25;A=6290;C=400;D=1.8e-5;la=0.2;lb=0.05;va=A.*la;vb=A.*lb;V=10e-1; 
q=(n1.*A.*F.*V.*c).*(1-(8./pi.^2).*exp(-(pi.^2.*D.*t)./l^2))*1/3600; 
J=q/A.*t;Jvr1=(2.*F.*V.*c)./t.*(1-(8./pi.^2).*exp(-(pi.^2.*D.*t)./l^2)); 
phi=phi0-Jvr1.*t./cv; 
betaa=(alpha1a*alpha2a)/(cv*(alpha2a+alpha1a)); 
betab=(alpha1b*alpha2b)/(cv*(alpha2b+alpha1b)); 
betac=(alpha1c*alpha2c)/(cv*(alpha2c+alpha1c)); 
betad=(alpha1d*alpha2d)/(cv*(alpha2d+alpha1d)); 
betae=(alpha1e*alpha2e)/(cv*(alpha2e+alpha1e)); 
Aa=sqrt(betaa);Ab=sqrt(betab);Ac=sqrt(betac); 
Ad=sqrt(betad);Ae=sqrt(betae);a=J0/(wne*cv); 
h=Jvr/cv; 
syms n x pi t s 
ba=cv*x.^2*(alpha2a+alpha1a)/(2*alpha1a*alpha2a); 
bb=cv*x.^2*(alpha2b+alpha1b)/(2*alpha1b*alpha2b); 
bc=cv*x.^2*(alpha2c+alpha1c)/(2*alpha1c*alpha2c); 
bd=cv*x.^2*(alpha2d+alpha1d)/(2*alpha1d*alpha2d); 
be=cv*x.^2*(alpha2e+alpha1e)/(2*alpha1e*alpha2e); 
ca=cv*x*wne/alpha1a; 
cb=cv*x*wne/alpha1b; 
cc=cv*x*wne/alpha1c; 
cd=cv*x*wne/alpha1d; 
ce=cv*x*wne/alpha1e; 
da=cv*wne.^2*(2*alpha2a-alpha1a)/(6*alpha1a*alpha2a); 
db=cv*wne.^2*(2*alpha2b-alpha1b)/(6*alpha1b*alpha2b); 
dc=cv*wne.^2*(2*alpha2c-alpha1c)/(6*alpha1c*alpha2c); 
dd=cv*wne.^2*(2*alpha2d-alpha1d)/(6*alpha1d*alpha2d); 
de=cv*wne.^2*(2*alpha2e-alpha1e)/(6*alpha1e*alpha2e); 
e=2*cv*wne.^2/pi.^2; 
fa=(1/alpha1a+(-1).^n/alpha2a); 
fb=(1/alpha1b+(-1).^n/alpha2b); 
fc=(1/alpha1c+(-1).^n/alpha2c); 
fd=(1/alpha1d+(-1).^n/alpha2d); 
fe=(1/alpha1e+(-1).^n/alpha2e); 
ia=((-1).^n*(alpha2a+alpha1a))/(alpha1a*alpha2a); 
ib=((-1).^n*(alpha2b+alpha1b))/(alpha1b*alpha2b); 
ic=((-1).^n*(alpha2c+alpha1c))/(alpha1c*alpha2c); 
id=((-1).^n*(alpha2d+alpha1d))/(alpha1d*alpha2d); 
ie=((-1).^n*(alpha2e+alpha1e))/(alpha1e*alpha2e); 
ga=exp(-(pi.*n.*Aa./wne).^2.*t./n.^2); 
gb=exp(-(pi.*n.*Ab./wne).^2.*t./n.^2); 
gc=exp(-(pi.*n.*Ac./wne).^2.*t./n.^2); 
gd=exp(-(pi.*n.*Ad./wne).^2.*t./n.^2); 
ge=exp(-(pi.*n.*Ae./wne).^2.*t./n.^2); 
ja=ia*((1-exp(-(pi.*n.*Aa./wne).^2.*t-t0))./n.^3); 
jb=ib*((1-exp(-(pi.*n.*Ab./wne).^2.*t-t0))./n.^3); 
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jc=ic*((1-exp(-(pi.*n.*Ac./wne).^2.*t-t0))./n.^3); 
jd=id*((1-exp(-(pi.*n.*Ad./wne).^2.*t-t0))./n.^3); 
je=ie*((1-exp(-(pi.*n.*Ae./wne).^2.*t-t0))./n.^3); 
phinea=phine_charge-a*(t+ba-ca+da-

e*symsum(fa*ga*cos(n.*pi.*x./wne),n,1,1)); 
phineb=phine_charge-a*(t+bb-cb+db-

e*symsum(fb*gb*cos(n.*pi.*x./wne),n,1,1)); 
phinec=phine_charge-a*(t+bc-cc+dc-

e*symsum(fc*gc*cos(n.*pi.*x./wne),n,1,1)); 
phined=phine_charge-a*(t+bd-cd+dd-

e*symsum(fd*gd*cos(n.*pi.*x./wne),n,1,1)); 
phinee=phine_charge-a*(t+be-ce+de-

e*symsum(fe*ge*cos(n.*pi.*x./wne),n,1,1)); 
phinea18000=subs(phinea,t,18000); 
phineb18000=subs(phineb,t,18000); 
phinec18000=subs(phinec,t,18000); 
phined18000=subs(phined,t,18000); 
phinee18000=subs(phinee,t,18000); 
phinea1=phine_charge-a*(t+ba-ca+da-

e*symsum(fa*ga*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(ja*cos(n.*pi

.*x./wne),n,1,1); 
phineb1=phine_charge-a*(t+bb-cb+db-

e*symsum(fb*gb*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(jb*cos(n.*pi

.*x./wne),n,1,1); 
phinec1=phine_charge-a*(t+bc-cc+dc-

e*symsum(fc*gc*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(jc*cos(n.*pi

.*x./wne),n,1,1); 
phined1=phine_charge-a*(t+bd-cd+dd-

e*symsum(fd*gd*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(jd*cos(n.*pi

.*x./wne),n,1,1); 
phinee1=phine_charge-a*(t+be-ce+de-

e*symsum(fe*ge*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(je*cos(n.*pi

.*x./wne),n,1,1); 
phinea118000=subs(phinea1,t,18000); 
phineb118000=subs(phineb1,t,18000); 
phinec118000=subs(phinec1,t,18000); 
phined118000=subs(phined1,t,18000); 
phinee118000=subs(phinee1,t,18000); 
phinea2=phine_charge-a*(t+ba-ca+da-

e*symsum(fa*ga*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(ja*cos(n.*pi

.*x./wne),n,1,1)+Jvr1.*t./cv; 
phineb2=phine_charge-a*(t+bb-cb+db-

e*symsum(fb*gb*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(jb*cos(n.*pi

.*x./wne),n,1,1)+Jvr1.*t./cv; 
phinec2=phine_charge-a*(t+bc-cc+dc-

e*symsum(fc*gc*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(jc*cos(n.*pi

.*x./wne),n,1,1)+Jvr1.*t./cv; 
phined2=phine_charge-a*(t+bd-cd+dd-

e*symsum(fd*gd*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(jd*cos(n.*pi

.*x./wne),n,1,1)+Jvr1.*t./cv; 
phinee2=phine_charge-a*(t+be-ce+de-

e*symsum(fe*ge*cos(n.*pi.*x./wne),n,1,1))+h*t+(h*e)./pi*symsum(je*cos(n.*pi

.*x./wne),n,1,1)+Jvr1.*t./cv; 
phinea218000=subs(phinea2,t,18000); 
phineb218000=subs(phineb2,t,18000); 
phinec218000=subs(phinec2,t,18000); 
phined218000=subs(phined2,t,18000); 
phinee218000=subs(phinee2,t,18000); 
xx=linspace(0,0.2,201); 
subplot(2,2,1) 
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plot(xx,subs(phinea18000,x,xx),'r',xx,subs(phineb18000,x,xx),'b',xx,subs(ph

inec18000,x,xx),'g',xx,subs(phinee18000,x,xx),'k'),xlabel('Thickness,wne 

,cm'),ylabel('Potential,phine,V'),title('a'),legend('phinea18000(alpha1a=al

pha2a=0.0005S/cm)','phineb18000(alpha1b=alpha2b=0.001S/cm)','phinec18000(al

pha1c=alpha2c=0.005S/cm)','phinea18000(alpha1e=alpha2e=0.05S/cm)') 
grid on,  
subplot(2,2,2) 
plot(xx,subs(phinea118000,x,xx),'r',xx,subs(phineb118000,x,xx),'b',xx,subs(

phinec118000,x,xx),'g',xx,subs(phinee118000,x,xx),'k'),xlabel('Thickness,wn

e 

,cm'),ylabel('Potential,phine,V'),title('b'),legend('phinea18000(alpha1a=al

pha2a=0.0005S/cm)','phineb18000(alpha1b=alpha2b=0.001S/cm)','phinec18000(al

pha1c=alpha2c=0.005S/cm)','phinea18000(alpha1e=alpha2e=0.05S/cm)') 
grid on,  
subplot(2,2,3) 
plot(xx,subs(phinea218000,x,xx),'r',xx,subs(phineb218000,x,xx),'b',xx,subs(

phinec218000,x,xx),'g',xx,subs(phinee218000,x,xx),'k'),xlabel('Thickness,wn

e 

,cm'),ylabel('Potential,phine,V'),title('c'),legend('phinea18000(alpha1a=al

pha2a=0.0005S/cm)','phineb18000(alpha1b=alpha2b=0.001S/cm)','phinec18000(al

pha1c=alpha2c=0.005S/cm)','phinea18000(alpha1e=alpha2e=0.05S/cm)') 
grid on,   

 

Appendix H2: MATLAB scripts for the numerical solutions of EDLCs models without 

self-discharge  
 

 

function model_without_self-discharge 
clear all 
clc 
tf = 18000; 
x0 = 0; 
xf = 0.2; 
n = 50; 
x = linspace(x0, xf, n+1); 
dx = x(2) - x(1); 
c_v = 400; 
alp_1 = 0.05; 
alp_2 = alp_1; 
bta = alp_1*alp_2/(c_v*(alp_1 + alp_2)); 
r = 0.3906; 
J0 = 0.00533; 
phi_0 = 0.9; 
w_n = 0.2; 
dt = r*dx^2/(bta); 
m = round(tf/dt); 
e = ones(n+1,1); 
dia= (2 + 2*r)*e; 
ofd = -r*e; 
A = spdiags([ofd dia ofd],-1:1,n+1,n+1); 
A(1,1:2) = [2+2*r -2*r]; 
A(end,end-1:end) = [-2*r 2+2*r]; 

  
dia_2 = (2 - 2*r)*e; 
A_rh = spdiags([-ofd dia_2 -ofd],-1:1,n+1,n+1); 
A_rh(1,1:2) = [2-2*r 2*r]; 
A_rh(end,end-1:end) = [2*r 2-2*r]; 
e2 = zeros(n-1,1); 
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b1 = 4*r*J0*dx; 
b_r = [-b1/alp_1; e2; -b1/alp_2];  
f = @(y)phi_0 - J0*y/alp_1 + J0*(alp_1+alp_2)*y.^2/(2*w_n*alp_1*alp_2); 
phi(:,1) = f(x); 

  
for j = 2:m+1 
    v0 = phi(:,j-1); 
    rhs = A_rh*v0 + b_r; 
    vn = A\rhs; 
    phi(:,j) = vn; 
end 
        set( 0, 'DefaultTextFontName', 'times' ); 
        set( 0, 'DefaultAxesFontName', 'times' ); 
        set( 0, 'DefaultTextFontSize', 20 ); 
        set( 0, 'DefaultAxesFontSize', 20 ); 
        set( 0, 'DefaultLineLineWidth', 2 ); % default is 1 
        set( 0, 'DefaultLineMarkerSize',8 ); % default is 6 
 subplot(2,1,1) 
 plot(x, phi(:,end)) 
 t = linspace(0,tf,m+1); 
 subplot(2,1,2) 
 mesh(x,t,phi') 
print -depsc 'energy' 

  
 

Appendix H3: MATLAB scripts for the numerical solutions of EDLCs models with self-

discharge  

 

function model_with_self-discharge 
clear all 
clc 
tf = 18000;x0 = 0;xf = 0.2;n = 50; 
x = linspace(x0, xf, n+1); 
dx = x(2) - x(1); 
c_v = 400; 
alp_1 = 0.05; 
alp_2 = alp_1; 
bta = alp_1*alp_2/(c_v*(alp_1 + alp_2)); 
r = 0.3906; 
J0 = 0.00533; 
phi_0 = 0.9; 
w_n = 0.2; 
Jc = 0.00393125; 
dt = r*dx^2/(bta); 
m = round(tf/dt); 
e = ones(n+1,1); 
dia= (2 + 2*r)*e; 
ofd = -r*e; 
A = spdiags([ofd dia ofd],-1:1,n+1,n+1); 
A(1,1:2) = [2+2*r -2*r]; 
A(end,end-1:end) = [-2*r 2+2*r]; 
 dia_2 = (2 - 2*r)*e; 
A_rh = spdiags([-ofd dia_2 -ofd],-1:1,n+1,n+1); 
A_rh(1,1:2) = [2-2*r 2*r]; 
A_rh(end,end-1:end) = [2*r 2-2*r];  
e2 = zeros(n-1,1); 
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b1 = 4*r*J0*dx; 
b2 = 2*dt*Jc/c_v; 
b_r = [-b1/alp_1; e2; -b1/alp_2] + b2; 
f = @(y)phi_0 - J0*y/alp_1 + J0*(alp_1+alp_2)*y.^2/(2*w_n*alp_1*alp_2); 
phi(:,1) = f(x); 
 for j = 2:m+1 
    v0 = phi(:,j-1); 
    rhs = A_rh*v0 + b_r; 
    vn = A\rhs; 
    phi(:,j) = vn; 
end 
        set( 0, 'DefaultTextFontName', 'times' ); 
        set( 0, 'DefaultAxesFontName', 'times' ); 
        set( 0, 'DefaultTextFontSize', 20 ); 
        set( 0, 'DefaultAxesFontSize', 20 ); 
        set( 0, 'DefaultLineLineWidth', 2 ); % default is 1 
        set( 0, 'DefaultLineMarkerSize',8 ); % default is 6 
subplot(2,1,1) 
 plot(x, phi(:,end)) 
 t = linspace(0,tf,m+1); 
 subplot(2,1,2) 
 mesh(x,t,phi') 
%print -depsc 'case1' 

 

Appendix H4: MATLAB script for optimization of coefficient associated to battery-kind 

material, KBM 

 
x_1=0:0.1:1; 
x_2=0:0.1:1; 
[x1,x2]=meshgrid(0:0.1:1); 
[x1a,x2a]=meshgrid(0:0.05:0.5,0:0.07:0.7); 
y1=(1-x1).*(1-x2.^2); 
y1a=(1-x1a).*(1-x2a.^2); 
a=1-x_1; 
b=1-x2.^2; 
subplot(2,2,3) 
surf(x1a, x2a, y1a),xlabel('Mass ratio (x1a) '),ylabel('Voltage ratio 

(x2a)'),zlabel('Constant of Battery Mat (Kbm)'),title('c') 
subplot(2,2,1) 
surf(x1, x2, y1),xlabel('Mass ratio (x1) '),ylabel('Voltage ratio 

(x2)'),zlabel('Constant of Battery Mat (Kbm)'),title('a') 
subplot(2,2,4) 
surf(x1a, x2a, y1a),xlabel('Mass ratio (x1a) '),ylabel('Voltage ratio 

(x2a)'),zlabel('Constant of Battery Mat (Kbm)'),title('d') 
subplot(2,2,2) 
surf(x1, x2, y1),xlabel('Mass ratio (x1) '),ylabel('Voltage ratio 

(x2)'),zlabel('Constant of Battery Mat (Kbm)'),title('b') 

 

 

 



 

365 
 

Appendix H5: MATLAB script for optimization of coefficient associated to electrolyte-

kind material, KE 

 
x3=0:0.05:1;x4=x3.^2;x3a=0:0.1:1;x4a=0:0.1:1; 
x_3=0:0.015:0.3; 
x_4=0:0.025:0.5; 
y=meshgrid(x_4.*(x_3.^2).^-1); 
[y2]=meshgrid(x4a.*(x3a.^2).^-1); 
subplot(2,2,2) 
surf(x4a, x3a, y2),xlabel('Voltage ratio (x3)'),ylabel('Capacitance ratio 

(x4)'),zlabel('Electrolyte Mat. constant (KE)'),title('b') 
subplot(2,2,3) 
surf(x3a, x4a, y2),ylabel('Voltage ratio (x3)'),xlabel('Capacitance ratio 

(x4)'),zlabel('Electrolyte Mat. constant (KE)'),title('b') 
subplot(2,2,1) 
plot(x4, x3,'b'),ylabel('Voltage ratio (K3)'),xlabel('Capacitance ratio 

(K4)'),title('a') 
grid on 

 

Appendix H6: MATLAB script for optimization of coefficient associated to electrolyte-

kind material, KE 

 
k1=0:0.05:0.5; 
k2=0:0.07:0.7; 
k3=0.3:0.1:1; 
k4=0.5:0.07142857:1; 
y1=(1-k1).*(1-k2.^2); 
y2=k4./k3.^2; 
[y2]=meshgrid(k4.*(k3.^2).^-1); 
subplot(1,2,1) 
surf(k3, k4, y2),xlabel('Voltage ratio (k3)'),ylabel('Capacitance ratio 

(k4)'),zlabel('Electrolyte Mat. constant (KE)'),title('a') 
subplot(1,2,2) 
surf(k3, k4, y2),xlabel('Voltage ratio (k3)'),ylabel('Capacitance ratio 

(k4)'),zlabel('Electrolyte Mat. constant (KE)'),title('b') 

 

 

Appendix H7: MATLAB script for determing effective electrodes thickness in 

supercapacitors [we] 
 
 

alpha1=50;alpha2=0.05;wne=0.2;e=1.2;cv=400;epselon=0.25;wsp=0.05;wne0=0:0.0

01886:0.2;alpha1a=50;alpha1b=5;alpha1c=0.5;alpha1d=0.05;alpha2a=0.5;alpha2b

=0.05;alpha2c=0.005;alpha2d=0.0005;J0=0:0.11320755:12.00;ea=1.5; 
alpha2s=5;alpha21=0.075;J01=0.00533;J02=0.0533;J03=0.533;J04=5.33;J05=6.50; 
w1=(alpha2a*e)./(2.*J0);w2=(alpha2b*e)./(2.*J0); 
w3=(alpha2c*e)./(2.*J0);w4=(alpha2d*e)./(2.*J0); 
subplot(2,2,1)  
plot(J0,w1,'b'),xlabel('Current density J0 (A/cm^2)'),ylabel('Effective 

electrode thickness [w](cm)'),title('a'),legend('(\alpha2 = 0.5 S/c m )') 
grid on 



 

366 
 

subplot(2,2,2) 
plot(J0,w2,'r'),xlabel('Current density J0 (A/cm^2)'),ylabel('Effective 

electrode thickness [w](cm)'),title('b'),legend('(\alpha2 = 0.05 S/c m )') 
grid on 
subplot(2,2,3) 
plot(J0,w3,'k'),xlabel('Current density J0 (A/cm^2)'),ylabel('Effective 

electrode thickness [w](cm)'),title('c'),legend('(\alpha2 = 0.005 S/c m )') 
grid on 
subplot(2,2,4) 
plot(J0,w4,'g'),xlabel('Current density J0 (A/cm^2)'),ylabel('Effective 

electrode thickness [w](cm)'),title('d'),legend('(\alpha2 = 0.0005 S/c m 

)') 
grid on 

 

Appendix H8 : MATLAB script for determing electrodes utilization in supercapacitors 

[u] 

 

alpha1=50;alpha2=0.05;wne=0.2;e=1.2;cv=400;epselon=0.25;wsp=0.05;wne0=0:0.0

01886:0.2;alpha1a=50;alpha1b=5;alpha1c=0.5;alpha1d=0.05;alpha2a=0.5; 

alpha2b=0.05;alpha2c=0.005;alpha2d=0.0005;J0=0:0.11320755:12.00;ea=1.5; 
J01=0.00533;J02=0.0533;J03=0.533;J04=5.33;J05=6.50; 
w1=(alpha2a*e)./(2.*J0); 
w2=(alpha2b*e)./(2.*J0); 
w3=(alpha2c*e)./(2.*J0); 
w4=(alpha2d*e)./(2.*J0); 
J01a=[0.1132 0.2264 0.4528 0.566 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

10.0 11.0 12.0]; 
w1b=[13.25 6.625 3.3125 2.65 1.5 1.0 0.75 0.50 0.37 0.30 0.25 0.215 0.19 

0.165 0.15 0.135 0.126]; 
w2b=[1.325 0.6625 0.33125 0.265 0.15 0.10 0.075 0.050 0.037 0.030 0.025 

0.0215 0.019 0.0165 0.015 0.0135 0.0126]; 
w3b=[0.1325 0.06625 0.033125 0.0265 0.015 0.010 0.0075 0.0050 0.0037 0.0030 

0.0025 0.00215 0.0019 0.00165 0.0015 0.00135 0.00126]; 
w4b=[0.01325 0.006625 0.0033125 0.00265 0.0015 0.0010 0.00075 0.00050 

0.00037 0.00030 0.00025 0.000215 0.00019 0.000165 0.00015 0.000135 

0.000126]; 
u1=w1b*100; 
u2=w2b*100; 
u3=w3b*100; 
u4=w4b*100; 
subplot(2,2,1)  
plot(J01a,u1,'b'),xlabel('Current density J0 (A/cm^2)'),ylabel('Electrode 

utilization, u (%)'),title('a'),legend('(\alpha2 = 0.5 S/c m )') 
grid on 
subplot(2,2,2) 
plot(J01a,u2,'r'),xlabel('Current density J0 (A/cm^2)'),ylabel('Electrode 

utilization, u (%)'),title('b'),legend('(\alpha2 = 0.05 S/c m )') 
grid on 
subplot(2,2,3) 
plot(J01a,u3,'k'),xlabel('Current density J0 (A/cm^2)'),ylabel('Electrode 

utilization, u (%)'),title('c'),legend('(\alpha2 = 0.005 S/c m )') 
grid on 
subplot(2,2,4) 
plot(J01a,u4,'g'),xlabel('Current density J0 (A/cm^2)'),ylabel('Electrode 

utilization, u (%)'),title('d'),legend('(\alpha2 = 0.0005 S/c m )') 
grid on 


