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Definitions of Terms and Abbreviations 

Artificial Intelligence - A branch of computer science focusing on the simulation of intelligent 

behaviour in computers. This concept relates to the capability of a machine to imitate intelligent 

human behaviour.  

Beta - A measure of the volatility of a security or a portfolio in comparison to the market as a 

whole. Beta is computed as a variable known as the beta coefficient. 

Bloomberg Professional Platform - A popular software platform that combines real-time data on 

markets, news and research, analytics, communication tools and execution capabilities into one 

fully integrated solution. 

Correlation - A statistical measure that evaluates the degree to which two securities move in 

relation to one another. Correlation is represented by the variable termed the correlation coefficient 

and is bound between the values -1 and 1.  

Covariance - A measure of the degree to which two variables move in tandem. This is computed 

by calculating the mean value of the product of the deviations of two variates from their respective 

means.  

Diversification - The act of spreading one’s assets so as to minimise the effect of a singular event 

affecting all assets held negatively. 

Efficient Frontier – Refers to a set of optimal portfolios that offer the highest expected return for 

a defined level of risk, or alternatively, the lowest amount of risk an investor need encounter to 

receive a given level of expected return. Portfolios that lie below the efficient frontier are deemed 

sub-optimal while those that lie on or above the efficient frontier are considered superior. 

Genetic Programming – This term refers to a set of mathematical techniques that are based on 

biological principles that mimic concepts such as natural evolution/selection as well as the 

neurological functioning of the brain. 
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Idiosyncratic Risk – Also termed unsystematic risk, relates to firm specific risk factors such as 

key person risks, fraud risks and the like. Idiosyncratic risk is possible to limit through the use of 

diversification. This stands in contrast to systematic risk which refers to the risk inherent in the 

equity market as a whole. 

Johannesburg Stock Exchange (JSE) - The JSE offers secure, efficient primary and secondary 

capital markets across a diverse range of securities, supported by post-trade and regulatory 

services.  

Law of Large Numbers - A statistical term used in probability theory that describes the result of 

performing the same experiment a large number of times. According to the law, the average of the 

results obtained from a large number of trials should be close to the expected value, and will tend 

to become closer as more trials are performed. 

Markowitz Portfolio Theory - A theory on how risk-averse investors can construct portfolios to 

optimize or maximize expected return based on a given level of market risk, emphasising that an 

increased amount of risk is an inherent function of obtaining higher rewards. 

Neural Network - A computer system modelled on the human brain and nervous system. A Neural 

Network is characterised by the pattern of connections among various network layers, the number 

of neurons in each layer, the learning algorithm and the neuron activation functions.  

Neurons - Specialized cells in the brain which transmit information across the central nervous 

system. 

Particle Swarm Optimization (PSO) - A population based stochastic optimization technique 

inspired by social behaviour of bird flocking or fish schooling. 

Penny Stocks - Common shares of small public companies that trade at low prices per share. These 

stocks are generally considered highly speculative and high risk because of their inherent lack of 

liquidity, large bid-ask spreads, small market capitalisation and limited monitoring and disclosure. 
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St. Petersburg Paradox – This paradox relates to probability and decision theory in economics. 

It is based on a particular (theoretical) lottery game that leads to a random variable with an infinite 

expected payoff but nevertheless seems to be worth only a very small amount to potential 

participants. The St. Petersburg paradox is a situation where a naive decision criterion which takes 

only the expected value into account predicts a course of action that presumably no actual person 

would be willing to take. 

Standard Deviation - A measure used to quantify the amount of variation or dispersion of a set 

of values from its mean. This is equivalent to the square root of variance. 

Swarm Intelligence - The collective behaviour of decentralized, self-organized systems that can 

be natural or artificial. Individual members of the swarm follow simple rules, and although there 

is no centralized control structure dictating how individual members should behave, interactions 

between members lead to the emergence of "intelligent" global behaviour, unknown to the 

individual members.  

Systematic Risk – Risks that are assumed to affect the equity market as a whole and thus cannot 

be diversified, if one assumes the portfolio held by an investor is restricted to the equity asset class. 

Traditional Simulation – An approach utilising a random selection of shares over multiple trials, 

under specific constraints, in an attempt to find the optimally diversified portfolio.  

Transaction Costs - Costs incurred when making an economic exchange or equivalently the cost 

of participating in a market.  

Variance - A measurement of how far each number in a data set is from its mean. 
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The Optimally Diversified Equity Portfolio in South Africa: An Artificial Intelligence Approach 

Abstract 

Diversification has remained a central tenet in investment theory over multiple decades due to its 

demonstrated value as a risk mitigation technique. Increasing the number assets in a portfolio, where the 

magnitude of correlation is relatively slim, increases the amount of diversification while also encountering 

increased costs in the form of transaction costs, taxes and the like. Thus, it is imperative to solve for the 

optimal point of diversification to ensure an investor does not encounter unnecessary costs.  

This study aims to solve for the point of optimal diversification in an equity portfolio, focusing on the South 

African environment. This is achieved by employing a framework using both the traditional simulation 

method as well as more advanced mathematical techniques, namely: genetic programming and particle 

swarm optimisation. Marked improvements are realised in this study with regards to the methodology and 

results through the application of advanced mathematical approaches in addition to removing the restriction 

of equal weightings being applied to each share in the portfolio.  

The results revealed that an optimal portfolio can be constructed using up to only 15 shares. Secondly, the 

genetic programming approach demonstrated increased strength compared to the traditional simulation and 

particle swarm optimisation approaches, obtaining a greater level of diversification with fewer shares. 

Finally, although the aim of the study is focused on modelling the relationship between the number of shares 

in a portfolio and the achievable diversification benefits, it is also established that the portfolios indicated 

as being optimally diversified achieved market beating returns. 
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Chapter 1: Introduction 

Diversification is defined as the act of spreading one’s assets so as to minimise the effect of a 

singular event affecting all assets held negatively. The term also refers to the situation where a 

company may vary its range of products in order to protect against a downturn in any individual 

product’s industry (Stevenson, 2010). The work by Bernoulli on the St. Petersburg paradox in 

1738 (as cited in Rubinstein, 2002) is widely believed to be the first evidence of the study of 

diversification and the effects. Diversification is utilised as a risk mitigation technique, however it 

must be recognised that diversifying beyond that which is deemed necessary may lead to 

suboptimal outcomes. This is due to the reality that by marginally increasing the amount of 

diversification one will also encounter marginally increasing costs.  

This can be observed in both an asset management scenario, as is the focus of this dissertation, as 

well as in the application of product diversification. In the case of asset management, focusing on 

an equity portfolio, one can decrease the risk in the portfolio by adding uncorrelated shares to a 

portfolio, as will be further expounded upon in this study. Increasing the number of shares to a 

portfolio however leads one to encounter increased costs in the form of trading costs, taxes and 

the like. In the product diversification example it can be observed that a firm increasing its product 

set has a positive effect on risk, as if one product category were to be negatively impacted the firm 

would also be exposed to the second, uncorrelated product category. This strategy may limit the 

economies of scale that a firm can obtain, resulting in the firm being less efficient.  

The above illustrates the importance of discovering the intersection of where marginal benefit of 

diversification meets the marginal cost. The point where the marginal benefit of diversification 

meets the marginal cost can be said to be the optimal point of diversification. This study aims to 

solve for the point of optimal diversification in an equity portfolio focusing on a South African 

environment. Three mathematical approaches are applied with this intention in mind: a traditional 

simulation approach, a genetic programming approach and a particle swarm optimisation 

approach. Each of these approaches will be applied to the data over a set of four separate but related 

tests as to both solve for the optimal point of diversification as well as further allowing for a 

comparative inspection as to which mathematical approach attains the best result, thus being 

deemed the strongest mathematical approach. Each of these approaches and the relevant tests will 
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be elucidated upon in turn however it is valuable to continue by further reviewing the initial 

literature on diversification, credited to Bernoulli (1954) exploring the St. Petersburg paradox. 

The St. Petersburg paradox involves the flipping of a fair coin until it lands on tails. The total 

number of flips, n, determines the magnitude of the pay-out which is made to equal $2n. If the coin 

lands on tails the game ends immediately, conversely if heads is landed on the coin is flipped again 

– this continues until the coin lands on tails. The question proposed related to what a rational 

person would be prepared to pay to play this game? 

Traditional mathematics at the time suggested that a rational person should be prepared to pay an 

infinite amount to play this game as the potential pay-out tends towards infinity. This inference is 

not practical as no individual in reality could be thought to be prepared to pay an infinite amount 

to play a game where he has small probability of winning an infinite amount in return. Bernoulli 

(1954) solved this problem by introducing the concept of marginal utility. Marginal utility refers 

to the concept that the additional unit of return resulting from any small increase in wealth is 

inversely proportionate to the quantity of wealth previously possessed. In other words, a $1 prize 

would make a greater positive impact to a person whom only possesses $1, or a similar small 

amount, as opposed to someone whom may have a million dollars. As such the current quantity of 

one’s wealth should be considered when deciding the worth of a potential pay-out. The St. 

Petersburg paradox was solved in this way as instances as where the pay-out begins to become 

extraordinarily large will lead to the subsequent win having less additional utility to the investor; 

this will continue until the additional pay-out has such a limited impact on an investor’s utility that 

it should not be included when considering what an investor would be prepared to pay to play the 

game. As such the entry fee tends towards a finite amount that a player would be prepared to pay 

to play the game (Bernoulli, 1954). 

Bernoulli (1954) then applied this to the case where an individual may stand to lose an amount, 

rather than gain an amount as in the traditional St. Petersburg paradox. The question was rephrased 

to “what amount should a rational person be prepared to pay to minimise the probability that a 

certain loss could be incurred?” Using the same principles as mentioned above, it was conceived 

that if an individual experiences the potential of a loss, they would be willing to pay an increasing 

amount to insure against this, up unto the point where the marginal cost of insuring an additional 

unit is equal to the marginal benefit of insuring the same unit. It was thus asserted that it is better 
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to divide goods that are exposed to some small danger (risk) into several portions so as to not risk 

them altogether (Bernoulli, 1954). The payment necessary to minimise the probability of a loss 

should continue, however one should not encounter needless additional costs if the additional 

benefit from dividing the goods is worth less than the cost of doing so. This line of thought formed 

the foundation for several studies aimed at assessing the optimal amount of diversification by 

weighing the costs of additional diversification against the risk minimising benefits thereof 

(Bernoulli, 1954). Therefore, Bernoulli (1954) provided the groundwork of both the mathematical 

equations that underpin solving for optimal points while taking into account cases of marginality, 

as well as expounding upon the thought paradigms one should consider when exploring 

diversification and risk to reward trade-offs.  

The concepts of diversification and risk go hand in hand however it is important to not use the 

terms ‘risk’ and ‘uncertainty’ interchangeably as was first highlighted by Knight in 1921 (Knight, 

2012). The term ‘risk’ refers to situations where there are known outcomes that occur from a 

known probability distribution (Tversky & Fox, 1995). ‘Risk’ can thereby be quantified by 

attaching probabilities to each potential risk event based on statistical analysis or experience. 

‘Uncertainty’ however relates to either known or unknown outcomes that occur from an unknown 

probability distribution (Tversky & Fox, 1995). Diversification is shown to only be useful when 

the probability of a specific outcome is unknown but where the probability distribution is known 

or can be approximated. Regarding investments, known or approximated probability distributions 

are required in order to use various statistical models that could be applied to forecast future share 

price changes. Relating these definitions to the realm of investment demonstrates that although an 

investor may be uncertain about the changes of future asset prices, it can be said that he does not 

face uncertainty but rather that he faces risk – as the distribution of asset prices can be 

approximated.  

Practically, an investor may be uncertain of a specific company’s future share price. However, by 

understanding the probability distribution of all share price changes (all being understood to mean 

a representative sample), an investor can probabilistically predict what a company’s future share 

price may be. This is accomplished by utilising the probability distribution of a share as an input 

into a model that relies upon this measure to forecast the next series of prices for the share that still 

match the same probability distribution as the one input (Markowitz, 1991; Akgiray, 1989). This 
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can be applied repetitively to calculate a series of future prices for each share in the representative 

sample (Pai & Lin, 2005). Once each share’s price in the sample has been forecast, an investor is 

able to construct a portfolio with the risk-reward characteristics that he desires. This study 

demonstrates a methodology that allows an investor to employ a set of prices to discover a portfolio 

that delivers the optimal level of diversification. Furthermore, if an investor elects to hold more 

risk than is necessary, the above approach will allow him to adjust his portfolio accordingly until 

a suitable level of diversification is found and utilised. 

When an investor faces risks regarding the probability of specific future events and how they could 

affect his portfolio, he can utilise the strategy of diversification in an attempt to minimise the risk 

of his portfolio, independent of what the various outcomes may be. This protects the investor from 

idiosyncratic risks – risks that are attribute specific (Markowitz, 1952b). In the case of equities 

idiosyncratic risk is usually taken to refer to firm specific (unsystematic) risk factors (such as key 

person risks, fraud risks and the like). Idiosyncratic risk can also however refer to other risks such 

as industry specific risks (such as new regulations being enforced that hinder a specific sector) or 

country specific risks (Markowitz, 1952b). By using the strategy of diversification, which would 

spread an investors wealth across various assets (or equities as in this study) each exposed to 

different countries and industries the investor is protecting himself from the effects that 

idiosyncratic events may have on their portfolio. Lowering the effects of individual risk factors in 

this fashion is in line with the theory set forth by Markowitz (1952b).  

By the same logic, if an investor is sure of all future events or of all future share price movements 

with 100% certainty, he will in no case utilise diversification or prefer a diversified portfolio 

(Markowitz, 1991). The investor will, in this instance, place all of their available funds in the 

security that they know for certain will achieve the maximum returns. Thus, being certain of future 

outcomes the investor holds a risk free position and in this way he has no need to diversify his 

portfolio. A risk free position can be described as a position when the known outcome is certain 

to occur at a point in the future, and thus is independent of the former probability distribution. In 

the situation where an investor knows future events and future share price movements with 

certainty he faces neither idiosyncratic risk factors, nor systematic (market wide) risk factors as all 

possible events and their effects are known with certainty (Markowitz, 1991).. 
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Furthermore, if two securities are known (with certainty) to achieve maximum but equal returns 

an investor will, ideally, be indifferent as to which of the securities or which combination of the 

securities to invest all of their available funds in, ceteris paribus (Markowitz, 1952b). The ceteris 

paribus assumption above excludes the considerations of behavioural factors, transaction costs, 

taxes, liquidity and the like that may be different between the two alternatives. 

The foundations for understanding diversification as well as the importance of calculating the 

optimal point of diversification has been laid out above. The aim of this study is to solve for the 

minimum number of shares to be included into a portfolio in order to obtain the optimally 

diversified portfolio within a South African environment. This problem is solved by applying three 

approaches, namely: the traditional simulation approach, the genetic programming approach and 

the particle swarm optimisation approach all of which will be explained in further sections of the 

dissertation. The secondary initiative of this study is to demonstrate which of the above three 

approaches obtains the best results – the result where either a smaller number of shares is shown 

to expose the investor to the same amount of risk as a larger portfolio of shares that was calculated 

by another approach, or conversely the approach that solves for the result that exposes the investor 

to a smaller amount of risk whilst utilising the same number of shares in the portfolio as was 

calculated by a different approach. The approach that obtains the best result is said to be the 

strongest mathematical method with regards to solving the above problem. 

Thus this study investigates two research questions. The first refers to the question: “What is the 

minimum number of shares to include into an equity portfolio, in order to achieve an optimal level 

of diversification in a South African environment?” The second research question focuses on 

answering the question: “Of the three selected mathematical approaches, which demonstrates the 

most strength when solving for the optimally diversified portfolio in a South African 

environment?” With regards to the first research question, it is hypothesised that that optimally 

diversified portfolio will consist of between 10 and 30 shares, in agreement with previous literature 

that will be further explored in the following section. This question is explored in two scenarios, 

the first being when each share in the portfolio is restricted to be of equal weight, while in the 

second scenario the weights are allowed to vary between 0 and 1 while also restricting the sum of 

the weights in the portfolio to equal 1; these restrictions will be explained in more detail in further 

sections. Although previous literature has analysed this research question by making use of 
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portfolios where shares are restricted to be of equal weightings, this dissertation is one of the first 

to allow the weights on each of the shares in the portfolio to vary – this has the potential to display 

further insight into the strength of the optimisation processes and may indeed uncover further 

diversification benefits due to the more flexible allowances. The hypothesis for the second research 

question is that the more computationally intensive and complex models of genetic programing 

and particle swarm optimisation will display increased strength in solving for the optimally 

diversified portfolio as opposed to the traditional simulation method. The advanced approaches of 

genetic programming and particle swarm optimisation have not been applied to the South African 

equity market in prior literature. Additionally, the most recent study with a focus on the number 

of shares required to construct an optimally diversified portfolio in a South African environment 

was completed by Neu-Ner and Firer in 1997, as will be further discussed in Chapter 2. This study 

serves to update and compare the results achieved while including the employment of the 

contemporary, advanced approaches of genetic programming and particle swarm optimisation 

This dissertation will continue in Chapter 2 by exploring the findings and methodology of past 

literature relating to the aims of this study. The review of past literature is completed in sections, 

firstly the two types of diversification are elaborated upon as well as the literature relating to the 

respective concepts. The chapter then continues by examining literature covering the two artificial 

intelligence approaches, genetic programming and particle swarm optimisation. This section 

describes the methodology that underpins each artificial intelligence approach and continues by 

elucidating upon the work of previous authors that employed these approaches along with their 

respective results and shortcomings. The discussion is then followed by an inspection into 

behavioural factors that may lead an investor to sub-optimal diversification. Thereafter, Markowitz 

portfolio theory is elaborated upon. The dissertation continues in Chapter 3 with an elaboration 

upon the data and methodology utilised. Finally, the analysis and results discovered are discussed 

in Chapter 4 which is followed by Chapter 5, which provides a conclusion to the dissertation 

accompanied by a section detailing the considerations and limitations of the current study, a 

summary of the results as well as an examination of the potential areas where future research could 

aim to contribute and improve upon current literature. 
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Chapter 2: Literature Review 

In this chapter, the concept of diversification and how one can attain the ‘optimal amount’ of 

diversification will be further analysed and discussed in depth, through the compilation of past 

studies and their respective results. The approaches, strengths and pitfalls of each paper as well as 

their findings will also be further elucidated upon. The following analysis will discuss the concept 

of diversification across all three mathematical approaches implemented in this dissertation, 

namely: the traditional simulation approach, the genetic programming approach and finally the 

particle swarm optimisation approach. In addition, studies where the above mentioned approaches 

were applied to scenarios other than investigations into diversification are elaborated upon in order 

to assess the generalisability of the approaches to both financial and non-financial problems. The 

chapter then continues with an exploration of the Markowitz portfolio theory and thereafter 

concludes by expanding upon the behavioural factors that may lead to sub-optimal diversification. 

2.1 Optimal Diversification 

Diversification as it relates to finance can be demonstrated by two main concepts. The first, and 

more well-renowned, is when diversification is applied to asset (commonly equity) portfolios to 

minimise the risk of an investors’ portfolio at a given level of return. This concept can be viewed 

conversely too – diversification can be applied to an asset portfolio to maximise the return of the 

portfolio at a given level of risk. The second method of diversification relates to product 

differentiation by a firm. Although this second method of diversification has gone largely 

undocumented in financial literature, many of the lessons learned from this method can be 

transferred and applied to the first, more traditional approach. Both methods as well as how they 

relate to the diversification of financial assets will be discussed below. 

2.1.1 Diversification by Assets  

The relationship between the risk of a portfolio and the number of securities (usually referring to 

the number of equities) in that portfolio has received a great deal of attention over the years due 

to the major implications it has for the structure and very existence of financial intermediaries, as 

well as for the behaviour of all investors. When an investor decides on the size of the portfolio he 

will hold, he is establishing a trade-off between the decreased risk due to more effective 

diversification by increasing the number of shares included in the portfolio – particularly those 

that have enhanced diversification properties such as exhibiting low correlations with one 
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another, against the increased transaction costs of adding additional securities to the portfolio. 

Transaction costs can come in the form of potentially decreased returns, as well as monitoring 

costs which refer to costs borne by an investor that enable him to monitor an increasing number 

of securities (these can be direct, such as licenses allowing him to buy or sell additional shares as 

well as indirect, such as the increased attention required to monitor a portfolio comprising of a 

larger number of securities) amongst others (Elton & Gruber, 1977). 

Elton and Gruber (1977) hypothesise that if large portfolios are required to get most of the benefits 

of diversification then financial intermediaries should exist solely as a method for providing 

investors with the benefits of diversification at lowered transaction costs. However, if one can 

obtain most of the benefits of diversification with a portfolio consisting of a relatively small 

number of securities, then an investor can achieve effective diversification directly – he can 

maximise the diversification benefits of his portfolio using a small number of securities thus 

avoiding numerous transaction costs that would be encountered by the need to incorporate a large 

number of securities and as such will not need a financial intermediary to assist in attaining this 

benefit. This would mean that financial intermediaries can only justify their existence by their 

ability to select securities that will exhibit superior (above market) performance. 

Whilst several previous papers have made use of a simulation based approach as a method to 

discover the most efficiently diversified portfolio, and which shares it is made up of, Elton and 

Gruber (1977) used an analytical expression to model the relationship between risk and the number 

of securities included into a portfolio. The derived mathematical expression allowed the 

researchers to utilise factors of the population of shares being investigated (which included the 

average variance, co-variance, returns and expected returns) and specify the number of shares the 

portfolio should consist of. The formula would provide an approximate minimal variance that a 

portfolio with the specified number of shares should yield. The number of shares to be included in 

a portfolio would then be adjusted and the respective answers analysed and compared to one 

another. As this approach computes the hypothetical optimally diversified portfolio using a 

mathematical approach which relies on parameters derived from the population of shares, the 

approach does not allow the researchers to view which of the shares should be included in the 

optimal portfolio, but merely how many shares should be utilised. 
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In this way one can observe the effects on risk when new securities are added into the population 

of those initially forming part of the portfolio. Elton and Gruber (1977) argue that one need not 

resort to simulation when relatively well-developed statistical models allow for the determination 

of the relationship between risk and return across fluctuating market conditions. This further 

allows one to explicitly observe which factors influence the effect of the size of the portfolio on 

risk and the relative importance of each factor. The analytical solution should however be 

approximately equal to a simulated solution, should all possible iterations be simulated in the 

analysis.  

Furthermore Elton and Gruber (1977) noted that the risk measure used by previous authors, as was 

employed by Evans and Archer (1968), somewhat underestimated the true ‘total risk’ of a 

portfolio. Previous studies examined the dispersion of a portfolio’s return around its mean return. 

Elton and Gruber (1977) note that this neglects the probability that the mean return will be different 

from the market. As such they stated that when analysing the benefits of diversification, the risk 

(standard deviation or variance) of the selected portfolio should be compared to the risk of an 

equally weighted portfolio of all the tradable securities in the population (the standard deviation 

of a portfolio is taken to be a quantity expressing the amount that the members of a group differ 

from the mean value of the group). In this way, two parts of portfolio risk are captured, the first 

being the variance of the return on the portfolio from the portfolio’s expected return and secondly, 

the variation caused by the difference between the expected return on the portfolio and the 

expected return of the population of shares included (Elton & Gruber, 1977). It is assumed that the 

equally weighted portfolio was utilised as opposed to the value weighted portfolio as this was 

commonly accepted at that period in time, although this reasoning was not expressly stated in the 

study.  

Elton and Gruber (1977) analysed the weekly returns of a population consisting of 150 shares 

selected from the New York Stock Exchange (NYSE) and American Stock Exchange over the 

period of June 1971 to June 1974. It was demonstrated that 51% of a portfolio’s standard deviation 

of returns can be diversified away with between one and ten shares; adding a further ten shares 

eliminates another 5% and adding a third set of ten shares further eliminates the standard deviation 

by a further 2%. The analysis assumed equal weightings on all securities included into the 

portfolio. This approach is said to be optimal when an investor has no information about future 
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returns, variances and co-variances of the shares involved (as in standard probability theory and 

statistics, covariance refers a measure of how much two variables change together). It is noted that 

to the extent that these factors can be forecast, risk could be further reduced.  

It is hypothesised that utilising a portfolio where the weightings on individual shares are allowed 

to be adjusted (so that the shares are no longer equally weighted), could yield further risk reduction 

benefits. Unequal weightings allow the model to be relatively more nimble than the rigid 

methodology of assigning an equal weighting to each share included in the portfolio. As such, 

using equal weightings on each share in the portfolio provides an upper limit on the risks an 

investor faces (Elton & Gruber, 1977). This could not be accomplished previously due to 

computing limitations at the time of writing the article, however it is expected that the drastic 

increase in computing power coupled with the methodology that will be utilised in this dissertation, 

to be explained in the following sections, can be employed to derive optimal weightings of shares 

within a portfolio. The flexibility of this approach could potentially uncover further positive effects 

of diversification.  

Elton and Gruber (1977) further noted that if transaction costs for a security are strictly 

proportional to the size of the transaction, then the total amount of transactions would be 

independent of the number of securities in the portfolio. A fixed component to transaction costs 

would however modify the conclusion – if transaction costs increase as the number of securities 

included in a portfolio increases, it is likely that an investor would prefer to hold fewer securities 

rather than more. 

Statman (1987) indicated that a well-diversified portfolio should consist of at least 30 shares. This 

evidence stood contrary to the industry accepted norm of the time, which was that a well-

diversified portfolio need only consist of 10 shares, as was shown to be optimal in previous 

research (Elton & Gruber, 1977). The approach used by Statman (1987) was a traditional 

simulation based approach, as is the first approach applied by this dissertation. The traditional 

simulation approach refers to the utilisation of a random selection of shares over multiple trials, 

under specific constraints, in an attempt to find the optimally diversified portfolio (Statman, 1987). 

As the selection of shares is completed at random, the most optimally diversified portfolio found 

may not be the globally most optimal diversified portfolio as there may be various combinations 
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of shares that were not included in the testing phase (Abraham & Nath, 2000). This problem, 

referred to as the ‘local optimum trap’, is a generic fault inherent in the simulation approach. 

Statman (1987) stated, in line with previous research, that the risk of a stock portfolio depends on 

the proportions of the individual stocks included in the portfolio as well as their variances and 

covariance’s respectively (these terms are each explained as well as their formulas provided in the 

sections that follow). A change in any of these variables will change the risk (variance) of the 

portfolio. It is however generally true that when stocks are randomly selected and combined in 

equal weighting into a portfolio, the risk of the portfolio declines as the number of different stocks 

included into the portfolio increases (Markowitz, 1952b). Furthermore, it should be noted that only 

the unsystematic risk can be diversified, as systematic risk is assumed to affect the equity market 

as a whole and thus this risk cannot be diversified if one assumes the portfolio held by an investor 

is restricted to equity (Statman, 1987). Unsystematic risk refers to firm specific risk while 

systematic risk refers to risks that affect the entire market – this risk cannot be diversified as 

mentioned previously (Markowitz, 1952b). 

Statman (1987) used the analogy that diversification can be viewed in the light of traditional 

economics, where one should continue to increase the number of shares in a portfolio until 

marginal benefits equal marginal costs. Marginal benefit in the context of diversification is the 

reduction in risk of the portfolio. Marginal costs refer to the transaction costs involved in adding 

an extra share to a portfolio (Statman, 1987). The transaction costs can be accounted for directly 

(by subtracting a portion of a portfolio’s return for each additional security added to a portfolio) 

or they can be statistical, by adding a measure to the variance of a portfolio for each additional 

security added to the portfolio, or by the introduction of a rule stating that an additional share 

should not be added to a portfolio if the addition does not reduce the variance of the portfolio by a 

pre-specified amount (Magill & Constantinides, 1976; Fang, Lai & Wang, 2006).  

Statman (1987) mentions the difficulties in attempting to quantify the transaction cost of adding a 

share to a portfolio directly as these differ drastically across different geographies and exchanges. 

In some instances transaction costs are related to the nominal amount of the trade (those who trade 

in larger sizes attract a relative reduction in transaction costs) while in other instances the 

transaction costs are related to the frequency of the trades (the transaction costs are higher for those 

that trade more frequently); in some circumstances transaction costs may be a combination of both 
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factors as well as others (such as the market capitalisation of the companies involved, with 

companies with smaller market capitalisations attracting higher fees) (Statman,1987). Due to these 

difficulties in quantifying transaction costs, this dissertation makes use of a statistical transaction 

cost when attempting to create the optimally diversified portfolio, as will be further expounded 

upon in the sections to follow. 

It is expected that initially the marginal benefit of adding a share to a portfolio will far outweigh 

the marginal cost of doing so, however as more shares are added to a portfolio the marginal costs 

will begin to increase at a faster rate than the marginal benefits until eventually marginal benefits 

equal marginal costs. At this point a portfolio can be said to be optimally diversified (Mayshar, 

1979; Statman, 1987). 

Statman (1987) utilised returns as the common measure necessary to compare marginal benefits 

to marginal costs. In this way the risk reduction benefits of diversification, in units of expected 

return, can be determined by a simple comparison of any two portfolios. A 500-stock value-

weighted portfolio was used as a benchmark and as such was believed to represent an attainable, 

fairly diversified portfolio. Although this benchmark portfolio is notably different to the 

benchmark used by Elton and Gruber (1977), in that it is value weighted while Elton and Gruber 

(1977) used an equally weighted benchmark; it is assumed that the costs of maintaining a value 

weighted portfolio and an equally weighted portfolio are equal and thus the findings can be directly 

compared to one another (Statman, 1987). It is not however necessary to create or utilise a 

benchmark portfolio in the current research study as a statistical transaction cost is used as will be 

explained in the methodology section. 
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Number of Shares Required to Optimally Diversify a Portfolio 

There has been a vast amount of additional literature focused on how many shares constitute an 

optimally diversified portfolio, with many finding differing results. Evans and Archer (1968) 

examined the rate at which the variation of returns for a randomly selected portfolio is reduced as 

a function of the number of securities included in the portfolio. They concluded that an optimally 

diversified portfolio should contain approximately ten shares. Gup (1983) argued that an investor 

does not need to invest in a large number of industries or shares and that an optimally diversified 

portfolio can be gained by acquiring between eight or nine shares while Stevenson and Jennings 

(1984) noted that an optimally diversified portfolio should consist of between eight and sixteen 

shares; similar findings were made by Reilly (1985) whom asserted that between 12 and 18 shares 

should be included in an optimally diversified portfolio. Statman (1987) thereafter, counter to 

previous research, stated that an optimal portfolio should consist of at least 30 shares. 

Solnik (1974) analysed the variance of weekly returns and displayed how diversification affects 

large share portfolios in various countries. It was concluded that the effectiveness of diversification 

in reducing the risk of a portfolio differs from country to country. This is due to the average 

covariance relative to the overall variance being different internationally; in some countries share 

prices tend to move together to a greater extent than they do in other countries. Table 1 below 

demonstrates their findings: 

Table 1: Changes in the Effectiveness of Diversification by Country 

 

 

 

 

 

 

 

Note: Adapted from “Why not Diversify Internationally rather Domestically?”, by Solnik, 1974, Financial 

Analyst Journal 

Percentage of the risk of an individual security that 

can be eliminated by holding a random portfolio of 

shares within selected national markets 

USA 73.0% 

UK 65.5% 

France 67.3% 

Germany 56.2% 

Italy 60.0% 

Belgium 80.0% 

Switzerland 56.0% 

Netherlands 76.1% 

International Shares 89.3% 



Page 14 

 

Neu-Ner and Firer (1997) wrote the seminal paper of a study on diversification focusing on the 

Johannesberg Stock Exchange (JSE). The objective of the study was to establish how many 

randomly selected JSE shares are required to achieve a well-diversified portfolio. This was 

compared to an equally weighted portfolio of all securities in the population. Neu-Ner and Firer 

(1997) noted that risks inherent in an investment are often described as being made up of the risks 

which are common to all assets and thus cannot be diversified (systematic or market risk) and 

those which are unique to the asset and thus can be eliminated by diversification (firm specific 

risk). As portfolio size increases, so the risk of the portfolio falls due to the elimination of firm-

specific risk. Of importance to investors, is the number of assets in the portfolio beyond which the 

addition of further assets will not (for all practical purposes) result in further reduction in risk 

without the costs involved overcoming the benefit. 

It is interesting to note that the JSE is unique in several of its’ characteristics. It experiences a very 

high concentration of economic power in very few hands (Neu-Ner & Firer, 1997). It is widely 

acknowledged that although the JSE lists over 400 shares, the top 40 shares can act as a fair 

reflection of the South African stock market as a whole as the top 40 companies (as listed by 

market capitalisation) represent over 80% of the total market capitalisation of all JSE listed 

companies at any one time. This fact was demonstrated by accessing data from the Bloomberg 

professional system and calculating the ratio of the value of the JSE Top 40 index to the JSE All 

Share index. Furthermore the JSE does not allow for short selling shares (Neu-Ner & Firer, 1997; 

JSE Equities Rules, 2016).  

The only study of diversification on the JSE before Neu-Ner and Firer (1997) appears to have been 

an unpublished pilot study by Bradfield (1993). Bradfield (1993) found that in comparison with 

the NYSE, approximately five more shares were needed to create a ‘completely’ diversified 

portfolio on the JSE. As such it can be said that South African shares have a proportionally higher 

percentage of undiversifiable risk as the South African economy is somewhat less diversified than 

that of the U.S. However holding an excessive number of shares increases monitoring costs as well 

as potentially transaction costs. This highlights the importance of finding the optimal number of 

shares on the JSE necessary to be included in order to achieve a well-diversified portfolio.  
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Neu-Ner and Firer (1997) had three objectives in their study. Firstly, using a simulation approach 

they aimed to determine the relationship between the number of randomly selected JSE listed 

shares in a portfolio and the risk of the portfolio.The second objective was to find out how many 

randomly selected shares are required to achieve a relatively well-diversified portoflio. Thirdly, 

whether the relationship between the number of randomly selected shares from the JSE and the 

risk an investor faces can be modified through the utilisation of certain selection rules; for example 

selecting only shares from the list of Financial Mail “Top 100” Top performer companies, 

restriction of the selection of shares to only those that have a relatively high market capitalisation 

value or the selection of shares based on the value of their beta. The beta of a share is a measure 

of volatiliy or systematic risk. A share with a beta of 1.5 for example denotes that for each 1% that 

the market moves, the share (or portfolio of shares) will move 1.5% in the same direction as the 

market. A beta of 0.8 is taken to reflect that for each 1% move of the market the share (or portfolio 

of shares) will move 0.8%. 

The population studied by Neu-Ner and Firer (1997) included all securities listed on the main 

board of the JSE during the period June 1993 to June 1996; shares that were listed or de-listed 

during the study period were excluded. Furthermore the role of dividends when calculating the 

share returns was not taken into account. This eventually provided a research population of 532 

securities. The data studied consisted of the weekly closing prices of these respective shares. Once 

the data was downloaded from INET (Intelligent Network Share Data Service) into an excel 

spreadsheet, the weekly returns on the shares were calcuated. Portfolios were thereafter randomly 

constructed assuming equal investment in each share . 

The process of simulation was carried out by randomly selecting N shares (between 1 and 532) 

and then finding the risk associated with that portfolio. Simple random sampling without 

replacement was utilised. In statistics, simple random sampling refers to selecting a random subset 

of individuals from a larger population with each individual being chosen randomly and entirely 

by chance. Furthermore, each individual has the same probability of being selected at any stage 

throughout the sampling process. Using simple random sampling without replacement ensures that 

the same security cannot be included into a portfolio more than once, for logical reasons (Singh, 

2003). 
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One thousand portfolios were created for each value of N and the average risk over the 1000 trials, 

where each trial represents a portfolio comprised of N shares, was then taken to be the expected 

risk associated with that portfolio. Risk was measured by three different methods. Firstly, the 

standard deviation of the weekly returns on the portfolio were calculated; secondly, the variance 

was calculated (this measure was seen as necessary to calculate, despite that it is derived from the 

standard deviation, as it allowed the results to be compared to previous studies, such as to the study 

by Elton and Gruber (1977), whom utilised the variance metric as a proxy to illustrate the risk of 

a portoflio) and finally the comparison of the standard deviation of the portfolio to the standard 

deviation of the equally weighted population portfolio was calculated.  

Six sets of simulations were run, each employing a seperate sub-population of shares derived from 

the overall population. Each sub-population was selected from the overall population with the 

guidence of a distinct rule. The following rules were used to create the various six portfolios: firstly 

portfolios consisting of shares from the entire sample were created and analysed. Secondly the 

selection of shares was limited to only those that were in the Financial and Industrial sectors of the 

JSE. Thirdly the portfolios were simulated using only the shares listed in the Financial Mail’s 

“Top 100” top performer companies. Fourth, portfolios were made to consist of only the shares 

listed as the largest 150 companies as listed in the Financial Mail’s “Top 150” Market leaders by 

market capitilisation. Finally shares were seperated according to their beta with shares with a beta 

above 1.1 in 1993 being classified as high beta while shares with a beta value lower that 0.5 were 

classified as low beta; thereafter the portfolios were created through random simulation of each 

sample population as explained above respectively (Neu-Ner & Firer, 1997). 

The results showed that using the first set of simulations, where the entire available population of 

shares was utilised, the expected risk associated with holding a single share can be reduced by 

25% by holding two shares and by 50% if a portfolio consisting of six shares is held. Increasing 

the number of shares in a portfolio to 10 reduces the risk by 60% and increasing the number of 

shares in a portfolio to 25 decreases the risk by 70%. The maximum reduction of risk by 

diversification is 80.5% however this can only be reached utilising a portfolio consisting of over 

200 shares.  
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These findings were relatively in line with those of Bradfield (1993), although Bradfield (1993) 

did not investigate portfolios greater than 50 shares. The percentage of total risk that was 

diversified in a random 50 share portfolio was 25.2% while Bradfield (1993) found it to be 25.3%. 

The period studied by Bradfield (1993) spanned from January 1988 to December 1992; the 

difference between this period and the period studied by Neu-Ner and Firer (1997) may explain 

the slight differences found as different securities may have been observed and the relationships 

between the securities could have changed across the periods. Both Bradfield (1993) and Neu-Ner 

and Firer (1997) found the the average weekly return did not depend on the number of shares 

included into the portfolio. 

When the risks were converted to variance terms they can be compared to the results of Elton and 

Gruber (1977). Elton and Gruber (1977) found that the ratio of portfolio variance of a 1000 share 

portfolio to the variance of a single share was 15%; in essence this indicates that a portfolio 

consisting of 1000 shares reduces the variance experienced by the portfolio by a measure of 85% 

when compared to a portfolio consisting of a single share. Furthermore, the reasoning above can 

be perceived to postulate that 85% of risk in the above portfolio is diversifiable. Neu-Ner and Firer 

(1997) found that 96.6% of the variance of a single share was diversifiable leaving only 3.4% of 

non-diversifiable market risk. This shows that a more significant reduction in risk was found by 

Neu-Ner and Firer (1997). 

The results found by the simulations run on the Financial and Industrial sector of the JSE showed 

slightly lower risk than the previous set of simulations where the shares of all industries were 

included. A portfolio with a single share from the Financial and Industrial sector had an expected 

risk of 6.15% compared with 6.73% for a share selected at random from the entire sample. This 

finding continued to grow proportionally as the number of shares in a portfolio increased; utilising 

shares from the Financial and Industrial sector offered a substantially better risk reduction benefit 

as an increasing number of shares was added to a portfolio (Neu-Ner & Firer, 1997). 

In the next set of simulations run by Neu-Ner and Firer (1997), where the sample population was 

limited to Financial Mail’s list of “Top 100” performer companies in June 1993. The aim was to 

assess the impact of limiting the choice set to the best companies in terms of share price 

performance over the previous five years. The results showed that portfolios constructed using 

these shares exhibited much lower risk. Compared to 6.73% of risk associated to holding one share 
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in a portfolio in the first set of simulations, the same portfolio under the above criteria now showed 

the risk associated with holding one share to be 4.51%. Similar reductions of risk were observed 

as the number of shares to be included in a portfolio increased. Once again it was found that 

increasing the number of shares in the portfolio was independent of the returns of the portfolio, 

although the average return of the respective portfolios was lower when compared with the first 

set of simulations (Neu-Ner & Firer, 1997). The results when the population of shares were limited 

to the top 150 largest companies in terms of market capitalisation were found to be in line to the 

previous set of simulations run (the “Top 100” performers) with the exception that the average 

return was lower (Neu-Ner & Firer, 1997). 

Finally, the study led by Neu-Ner & Firer (1997) analysed the results when the population was 

restricted based on the sensitivity of the shares to the market (based on the share’s beta). When 

shares were exceptionally sensitive to market movements (had a beta of above 1.1), portfolios 

exhibited a higher level of risk for each number of shares included in a portfolio. The expected 

risk of holding a portfolio of one share increased from 6.73% to 8.79%. This finding continued as 

more shares were included in the portfolio. Interestingly, this increase in risk was not compensated 

for by increased returns.  

Shares with a relatively low sensitivity to market movements (having a beta of below 0.5) showed 

lower levels of risk; with the risk of holding one share reduced to 5.98%, with similar reductions 

occuring as the number of shares in a portfolio increased. The benefit to the portfolio was further 

emphasised as the decrease in risk coincided with higher expected returns of 0.73% per week 

instead of 0.69% as in the first set of simulations. It was shown once again that the expected returns 

were independent of the number of shares to be included in a portfolio. 

In essence Neu-Ner and Firer’s (1997) findings agreed with those of Statman (1987), that a well 

diversified portfolio should include at least 30 shares. It was further established that significant 

benefits of diversification could be achieved by holding smaller portfolios; holding a portfolio of 

ten shares reduces risk by nearly 60% when compared to the average risk of holding a single share. 

Increasing the number of shares in a portfolio from 10 to 30 reduces risk by a further 12%. The 

second key finding was that as the number of shares in a portfolio increases, the risk associated 

with the portfolio decreases too. Lastly, the study found that the average weekly return on the 

portfolio is independent of the number of shares included in the portfolio.  
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An additional feature noted by Neu-Ner and Firer (1997), is that the magnitude of benefits an 

investor can obtain through the employment of diversification strategies is dependant on the type 

of ‘rule’, if any, applied to the population of shares. The table below highlights this feature - it can 

be observed that depending on which selection of shares was utilised to represent the population 

(based on the sector, past performance and beta of the share), differing amounts of risk could be 

diversified out of the portfolio. The findings between the different sets of simulations is 

summarised in the table below: 

Table 2: Results of Simulations Run by Neu-Ner and Firer (1997) 

Selection 

Rule: 
Portfolio Risk 

Portfolio 

Return 
Summary 

        

Financial 

and 

Industrial 

Slightly Lower No Change No Change 

Top 

Performers 

and Market 

Leaders 

Lower Risk 

with few shares 

and converges 

with many 

Much Lower 

Lower risk 

with few shares 

coupled with 

lower return 

Large Beta 

Much larger 

systematic risk 

irrespective of 

the number of 

shares 

No Change Higher Risk 

Small Beta 

Lower 

systematic risk 

no matter the 

number of 

shares 

Slightly higher 

Lower risk 

with the 

possibility of a 

higher return. 

 

Note: Adapted from “The Benefits of Diversification on the JSE”, by Neu-Ner and Firer, 1997, Investment 

Analysts Journal, 46, 57  

The current study aims to advance the methodology of Neu-Ner and Firer (1997) in the following 

ways: Firstly, shares that were listed or de-listed over the time period are still included into the 

sample period as to avoid survivorship bias, which refers to the bias that occurs when only live 

securities are incorporated (Gregoriou, 2008). Surviorship bias leads to distorted results as it is 

common that the securities that delist do so due to extremely poor performance; albeit that delisting 
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can also occur for other reasons such as privatisation. If these shares are not assimilated into the 

population it creates a distorted environment wherein achievable returns, benchmark returns and 

the effects of diversification are all misrepresented. In addition, diversification generally provides 

significant benefits in scenarios where a single, or a few, shares perform particularly poorly. These 

benefits would be overlooked without the inclusion of shares that list/delist over the observed 

period (Swensen, 2009). Secondly the role of dividends has been included into the return on shares 

calculated. Thirdly, the best iteration is utilised when observing the risk reduction benefits of a 

portfolio rather than the average of all iterations as was used in Neu-Ner and Firer (1997). Finally, 

simulations are run on both portfolios when the constituents are equally weighted as well as on 

portfolios where the individual weights on shares are allowed to vary within given constraints. 

These improvements are expected to find further risk reduction benefits when investing on the JSE 

as well as serving to update the study done by Neu-Ner and Firer (1997) for the current period 

studied.  

This study aims to carry out the analysis of the benefits of diversification while applying the 

advancements mentioned above as well as across three methodologies, as opposed to the analysis 

of diversification under various population selection rules as in Neu-Ner and Firer (1997). In 

addition to the traditional simulation approach, this study employs the methodology of Genetic 

Programming and Particle Swarm Optimisation; these approaches are discussed in turn in the 

sections to follow. Furthermore, the increased computing power currently available compared to 

that which was available at the time of Neu-Ner and Firer’s (1997) paper is expected to provide 

better simulated results than those presented by Neu-Ner and Firer (1997). The methodology of 

Genetic Programming and Particle Swarm Analysis is expected to further positively effect the 

diversification benefit for an investor. This is due to the approaches being more advanced and 

computational in nature, as opposed to the method of chance employed in random simulation. The 

chapter continues now by exploring the second method of diversification, relating to product 

differentiation by a firm. 
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2.1.2 Diversification by Product/Service Offering 

The second method of diversification relates to when a firm attempts to differentiate their product 

(service) offering. Although this line of thought is traditionally kept separate from diversification 

as it relates to share portfolios, many findings from this second method (such as those that will be 

discussed below) can be applied to the first. Furthermore it is important to include the effects of 

product diversification as it relates to firm performance (and share price performance) to discover 

if any diversification or performance benefits exist to be gained when a firm diversifies its own 

product offering. 

Ansoff (1957) stated that diversification of a product offering can be viewed as a ‘growth 

alternative’ for a company. There are several reasons a company may select to utilise this strategy 

such as to: distribute risk, utilise excess productive capacity, reinvest earnings, obtain top 

management and the like. In addition Comment and Jarrell (1995) suggested that some firms may 

diversify their product offering or look to engage in acquisitions as a way to increase the 

performance of their core business – they could branch out if they are performing poorly in a 

certain sector.  

Furthermore, Ansoff (1957) pointed out that there are certain conditions, which were referred to 

as contingencies, which make diversification particularly desirable. These are environmental 

conditions that cannot be predicted, but if they occur will greatly affect sales and thus firm 

performance. Examples of contingencies are technological breakthroughs, recessions, wars as well 

as economic and consumer trends. The effectiveness of diversification relies on both external 

factors (such as how firms and their competitors will perform in addition to contingencies) as well 

as internal factors (such as the ability to diversify, capital allowances and risk tolerance) (Ansoff, 

1957). 

Rumelt (1982) demonstrated that the product diversification strategy that had the largest positive 

impact on firms financially were strategies that entailed the firm diversifying into areas that drew 

on some common skill or resource that the firm had already acquired or had control of. In this 

regard, it was concluded that firms would perform better when diversifying if they stay within the 

bounds of their core competencies or if they are willing to hire experts to be actively involved in 

the management of the diversified section of the business.  
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Lang and Stultz (1994) found weak evidence to support that diversified companies perform 

relatively poorer compared to their specialised counterparts. Morck, Shleifer, and Vishny (1990) 

found that in some cases the market reacts negatively to unrelated acquisitions, however in other 

instances a positive reaction is experienced. A positive reaction was generally experienced if it 

could be shown that the newly diversified firms could easily be dismantled and run separately. 

This would lead to investors believing that shares in the parent company would now offer similar 

benefits to investing in two separate specialised companies (Comment & Jarrell, 1995). 

Interestingly however, if an investor were concerned with the effectiveness of the diversification 

of their portfolio, they would be indifferent between purchasing shares of one company that has 

diversified their own operations and between two companies where both have chosen to specialise 

and thus not diversify their own operations. Transaction costs may however sway the investor to 

purchase the share of the company that is diversified themselves so as to only incur these 

transaction costs once. This would however be offset by the ability of one company to compete 

with two companies, both specialising in where their core competencies lie – this follows the same 

principles as examined by Markowitz (1952b). 

Examining both methods of diversification reveals a key common warning with regards to 

diversification. That is: extreme care that must be taken so as to be not overly diversify or what 

Francis (1986) refers to as having “superfluous diversification”. With regards to the diversification 

of a share portfolio, Ansoff (1957) cautions investors against spreading their portfolio too thin as 

this will lead to no real gains being felt in any sector. Rumelt (1982) makes a similar warning to 

firms with regards to product diversification; he states that when a firm desires to diversify their 

offering the benefits of diversification must be weighed off against the cost of no longer being 

industry experts. These warnings highlight the importance of finding how many shares make an 

optimally diversified portfolio as both under- and over-diversification entails costs associated with 

them, many of which are unnecessary as they could have been avoided. The Literature Review 

section continues below with a focus on the methodology underlying genetic programming, 

accompanied by an exploration of instances where the approach has been previously applied. 
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2.2 Genetic Programming 

The following section elaborates on the fundamental techniques and concepts key to understanding 

the methodology underpinning genetic programming. The section begins by describing the origins 

of genetic programming and continues by exploring the two theoretical approaches that form the 

foundation of genetic programming, namely from the neurological perspective and thereafter from 

the evolutionary perspective. The study continues by expounding upon the mathematical processes 

and respective constructs employed by genetic programming and thereafter follows by elucidating 

upon the advantages and disadvantages of the approach. The section then concludes with a 

thorough review of the implementations and applications completed by previous literature.  

The methodology of genetic programming is an applied extension that is founded upon the 

concepts underlying genetic algorithms that were initially developed by Holland (1962). Genetic 

programming and a genetic algorithm are dissimilar in their technical aspects as an algorithm 

provides an answer in a symbolic form as opposed to a neural network or solution given by a 

genetic program, which represents an answer in a numerical form (Allen & Karjalainen, 1993). 

The methodology behind both however is extremely similar and as such the terms will be used 

interchangeably in the section below.  

Genetic algorithms refer to a set of mathematical techniques that are based on biological principles 

that mimic concepts such as natural evolution/selection (Miles & Smith, 2010) as well as the 

neurological functioning of the brain (Abraham & Nath, 2000), both of which will be further 

expanded upon below. Within the broad definition of genetic algorithms, a potential solution can 

be represented as a set of parameters, termed genes. These genes can then be joined together to 

form strings of values, known as chromosomes. By allowing the genetic algorithm to follow these 

processes, one can apply a structured architecture with learning and generalisation capabilities 

which in turn are able to evolve with the aim to compute and optimise real world problems 

(Abraham & Nath, 2000). The above terms and definitions as well as the process that genetic 

programming involves is discussed further in the sections below. 

Miller (1986) further developed the work of Holland (1962) by developing an adaptive model of 

economic behaviour. Miller (1986) overcame the critiques against the utilisation of the biological 

approach, which concentrated on the argument that the models at the time focused on equilibrium 

conditions as well as the use of assumptions regarding the abilities of individual agents. This was 
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accomplished through the creation of a model that relied on specific biological concepts. This 

structured methodology led to reduced ambiguity which confounded previous biological based 

approaches. Through the use of two major assumptions Miller (1986) was able to overcome the 

previously mentioned concerns aimed at biological models at the time. Firstly, it was assumed that 

some economic behaviour has close analogues to the biological behaviour of ecosystems and 

species and secondly, that this behaviour can be effectively modelled and analysed (Miller, 1986). 

The first tenet was relatively well recognised by economists at the time and can even be found in 

instances as far back as 1798 (Miller, 1986), however, it was not until specific biological processes, 

which incorporated both economic and psychological theories of behaviour, were utilised that one 

could infer important properties of the model by deriving them theoretically. This approach 

allowed for a more highly efficient adaptive model to be developed as compared to the one initially 

used by Holland (1962). The approach used by Miller (1986) is further expounded upon below. 

Miller (1986) noted that any system with an adaptive process could be described in terms of three 

major elements: allowable structures, its environment and an adaptive plan. It is observed that in 

an adaptive system, individual actors interact with the environment through various characteristics 

that are described by structural forms. These are guided by factors such as purchasing patterns, 

decision rules and genetic forms among other factors relevant to the problem at hand. At every 

time period the environment determines the performance of the various structures and thereafter 

provides a given level of information back to the actor. When using this model, no assumptions 

are necessary with regards to the stability of the environment nor the level of information presented 

to the actor – although some degree of feedback is required. Finally, the dynamic interactions 

between the environment and the structural forms are determined by the adaptive plan which 

governs changes in the existing set of structures from one time period to the next based on the 

available information. One therefore only needs to be able to define the environment, structures 

and the adaptive plan in order to be enabled to use an adaptive model. This is not however simple 

as it is necessary to make inferences regarding which elements of the structure, and consequently 

of the environment, are important to the analysis. The elements of choice may include the 

information on hand, computational ability and available time (Miller, 1986). 
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Miller (1986) further explains the model by describing that the economic agents follow an adaptive 

plan which modifies a small set of memorised behaviours based on the relative performance of 

each behaviour in previous evaluations. The model further assumes that behaviours are composed 

of individual building blocks and that the individuals reproduce and recombine themselves based 

on past successful actions. At any given time a behaviour is undertaken, the agent receives a known 

payoff and thereafter at any given time period the agent maintains a small subset of previous past 

behaviours. The retained (learned) subset is then used to develop new behaviours through the 

constructs of crossover and mutation. These allow the model to exploit information gained about 

the structures in previously run iterations while simultaneously exploring new structures (Miller, 

1986). These constructs will be further expound upon in the sections to follow. 

Miller (1986) applied the developed adaptive model to a variety of contexts including consumer 

demand behaviour, decision making under uncertainty, market structures, technological change 

and economic demography. In all of the examples the adaptive model was shown to be a valuable 

approach to modelling economic and social phenomenon and the results were demonstrated to be 

extremely promising. The results indicated that given enough time and proper conditions, agents’ 

behaviour tend towards optimal patterns and that adjustments to new environmental conditions is 

initially very rapid but quickly slows as the behaviours approach optimal levels. Consequently, 

Miller (1986) demonstrated that various parameter values may generate testable hypotheses using 

an adaptive modelling approach, and furthermore, the application to varied problem sets in the 

paper confirmed the flexibility of the model to various contexts. 

Miller (1986) developed upon and advanced the work of Holland (1962). As previously mentioned, 

developments on the biological approach since the work of Miller (1986), specifically within the 

framework of genetic algorithms, can be described as being based on two major themes: firstly, 

those which concentrate on mimicking neurological, cognitive and organisational processes of the 

human brain and secondly, those which aim to mimic the processes involved in evolutionary 

biology (Shachmurove, 2002). Each of these two themes and their relation to genetic algorithms 

will be expanded upon below, commencing with the neurological perspective.  
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2.2.1 Neurological Framework 

The brain consists of billions of functional elements called neurons (specialized cells which 

transmit information across the central nervous system). An individual neuron consists of a cell 

body, dendrites and an axon (Gerstner, Kistler, Naud, & Paninski, 2014). A graphical 

representation of an individual neuron is displayed below: 

Figure 1: Representation of a Single Neuron 

Figure 1:  Drawing by Ramon y Cajal, extracted from: “Neuronal Dynamics: From Single Neurons to 

Networks and Models of Cognition”, Gerstner, Kistler, Naud and Paninsk, 2014 

Each individual neuron receives electrical stimuli from other neurons surrounding it through 

connectors called dendrites. Dendrites can be thought of as the input device that collects signals 

from other neurons and transmits them to the soma. The soma refers to the cell body and is 

equivalent to the central processing unit of a computer, essentially performing the processing step. 

This step consists of testing whether the total input arriving at the soma exceeds a certain threshold 

(the action potential) or not. If it does not, then the cell does not ‘fire’ or send any further 

information. If however the input exceeds the action potential, an output signal is generated and 

control of the process is then assumed by the output device, referred to as the axon. The axon then 

delivers the signal to the surrounding neurons and so the process continues (Gerstner, Kistler, Naud 

& Paninski, 2014). 
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The signals that are sent between neurons consist of short electrical pulses. The space between two 

neurons that is used to transfer signals between two neurons is called the synapse (Shachmurove, 

2002). The neuron that sends a signal across the synapse is called the presynaptic cell while the 

receiving neuron is called the postsynaptic cell (Gerstner, Kistler, Naud & Paninski, 2014). 

Neurons are embedded in networks of countless other neurons that are used to store information 

and learn meaningful patterns. This is achieved by strengthening the interconnections between 

neurons (Shachmurove, 2002; Gerstner, Kistler, Naud & Paninski, 2014). A group of 

interconnected neurons is displayed graphically below:  

Figure 2: Representation of a Group of Neurons 

 

Figure 2: Drawing by Ramon y Cajal, extracted from: “Neuronal Dynamics: From Single Neurons to 

Networks and Models of Cognition”, Gerstner, Kistler, Naud and Paninsk, 2014 

This process, modelled mathematically, is the basis of genetic algorithms and neural networks 

(Shachmurove, 2002). The neural network is characterised by the pattern of connections among 

various network layers, the number of neurons in each layer, the learning algorithm and finally the 

neuron activation functions, each of which will explained further below. The neural network is 

essentially a set of input and output units with each connection having an associated weight. The 

system begins with the learning phase which tweaks and adjusts the weights with the aim of 

correctly predicting or classifying the output target. It then continues to optimise the output process 

with utilising various forms of feedback (Thawornwong & Enke, 2004). 
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2.2.2 Evolutionary Framework 

The second approach to the genetic algorithm process is based on natural selection, as first 

described by Charles Darwin in “The Origin of Species” (Darwin, 1859). This follows the idea 

that over generations, certain individuals of a species will survive due to some trait that they have 

whilst others, who do not possess the trait, will cease to exist (Gibson & Gibson, 2009). Holland 

(1962), as previously mentioned, invented the methodology behind genetic algorithms. In 

traditional genetic algorithms, genetic structures are represented as character strings of a fixed 

length. Although adequate across an array of applications, this is restrictive when the size or form 

of the solution cannot be assessed beforehand. Koza (1992) extended the methodology by 

changing the processes put forward by Holland (1962) to allow variable length representation of 

genetic structures. Following this ideology, genetic programming can be seen to comprise of three 

main sections (as described by many authors including Allen & Karjalainen, 1993). The three main 

processes that make up genetic programming are: search, adaptation and finally optimisation. 

These can be split into five further components, namely population, evaluation, selection, 

crossover and mutation. These processes and their respective components are elucidated upon 

below. 

Although a genetic algorithm and genetic programming are dissimilar in their technical aspects 

(an algorithm provides an answer in a symbolic form as opposed to a neural network or solution 

given by a genetic program, being represented in a numerical form (Allen & Karjalainen, 1993); 

they can best be described by expounding upon a similar idea. Kaastra and Boyd (1996) discussed 

an eight step process to design a neural network, however genetic programming can be most easily 

understood by elucidating upon the framework laid down by Allen and Karjalainen (1993).  

As previously mentioned, genetic programming is inspired by the theory of natural selection in 

order to allow one to generate new candidate solutions (Miles & Smith, 2010). The process begins 

with data being input; thereafter a population of randomly generated solution possibilities is 

formed. The next generation of solutions is created by recombining promising candidates from the 

first (previous) generation. This process is called crossover which entails randomly selecting two 

parents from the population; selection is biased towards selecting parents that are relatively fit – 

that have a seemingly strong explanatory power (Allen & Karjalainen, 1993). The parents are 

subsequently split at randomly chosen locations and then combined by joining a portion of genetic 

material from each parent. This results in a new unit in the next generation with a new genetic 
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structure (Allen & Karjalainen, 1993). This effectively refers to the mixing of subtrees in a 

population. A second operator, known as mutation, is also used in genetic programming. Mutation 

refers to replacing subtrees with new randomly generated subtrees (Miles & Smith, 2010). This 

essentially alters each gene with a small probability, introducing a small proportion of randomness 

into the model. Traditionally crossover was viewed as the more important of the two techniques 

as it allows for rapid exploration of a search space (Allen & Karjalainen, 1993). This is however 

somewhat offset as mutation aids to ensure that no point in the search space has a zero probability 

of being examined. This aims to guarantee that the algorithm does not quickly become trapped in 

a local optimum (Allen & Karjalainen, 1993). 

This new unit is then tested and, if it has a relatively strong fitness level, replaces one of the 

relatively unfit members of the parent population. This process continues until the generation is 

complete and will continue to occur to until a termination criterion is satisfied. The final result is 

a collection of relatively fit solution candidates of which one or more can be applied to the original 

problem (Holland, 1975).  

The exact subset of genetic programming that will be utilised is called a flexible neural tree model. 

In this model, solution candidates are represented as hierarchical compositions of functions. In 

these tree like structures the successors of each node afford the arguments for the function to the 

corresponding node. The terminal nodes (bottom level) refer to the input data. In this way the entire 

tree is interpreted as a function which can be evaluated by working successively from the bottom 

layer to the top. Furthermore, the structure of the tree is not specified beforehand but rather is 

solved for as part of the process within the algorithm (Allen & Karjalainen, 1993). 
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The flexible neural tree model follows a specific sequence of events. This entails beginning with 

random structures and corresponding parameters (Chen, Yang, Dong & Abraham, 2005). 

Secondly, the structure is improved and once an improved structure is found the model fine tunes 

the parameters (Chen et al., 2005).  

This process continues until a satisfactory solution is found (Chen et al., 2005). This is displayed 

graphically by Figure 3 below:  

Figure 3: Representation of a Neural Tree 

 

Figure 3: A typical representation of neural tree with three instruction sets and three input 

variables x0, x1 and x2 (Chen, Yang & Dong, 2004).  

The tree structure optimisation is governed by the following set of processes; firstly, one can 

change one terminal node (the terminal node refers to the bottom (first) layer of the tree structure) 

by randomly replacing it with another terminal node. The second option is to change all the 

terminal nodes in the neural tree and replace each with another terminal node. Thirdly, one can 

select a random ‘leaf’ in a hidden layer (as shown in Figure 3) and replace it with a newly generated 

sub-tree. The final option is termed pruning and refers to selecting a functional node (a node that 

is a function of other nodes or variables) and replacing it with a terminal node (Chen, Yang & 

Abraham, 2007). Each of these processes is used in order to optimise the tree structure.  
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The parameters are optimised by using three techniques. The first technique involves all variables 

being selected (or combinations thereof) with equal probability of surviving into the next strain of 

the tree. The variables that have a greater contribution towards forecasting (and thus explanatory) 

power are then be enhanced and have a relatively higher probability of surviving further 

generations. Finally, various evolutionary operators are used to govern how the model selects the 

appropriate variables to include into the model automatically (Chen et al., 2007). As previously 

described, tree structure optimisation and parameter optimisation continue until a satisfactory 

solution is found. This process ensures good individual performance of variables as well as for 

combinations thereof and consequently removes the effects of multicollinearity to a large extent. 

(Chen et al., 2007).  

It is important when implementing a neural algorithm to be mindful of the Bias/Variance dilemma. 

Bias and variance are two useful concepts in characterising the generalisation behaviour of 

learning algorithms (German, Bienenstock & Doursat, 1992). Bias refers to the systematic 

component of the generalisation error while variance refers to the additional error incurred due to 

over-responsiveness of an algorithm to random fluctuations. Chen, Yang, Dong and Abraham 

(2005) describe the dilemma by elucidating that members of the population must be both accurate 

and diverse. This poses a new dilemma whereby when a set of predictors is generated they are 

required to have reasonably good individual performances and independently distributed 

predictions for test points (Chen, Yang, Dong & Abraham, 2005). The Bias/Variance dilemma can 

be stated as follows: models with too few parameters are inaccurate due to a large bias; in other 

words they lack flexibility as the number of parameters is limited.  In addition models with too 

many parameters are inaccurate because of a large variance. These models are overly sensitive to 

the sample details and as such changes to the sample will cause vast variations in the results. 

Finally, the third step involves solving for the appropriate model complexity. This involves the 

proper architecture and number of parameters (Battiti & Brunato, 2014).  

The third step should follow the principle of Occam’s razor. Occam’s razor is often considered 

one of the fundamental tenets of modern science (Domingos, 1999). In its original form Occam’s 

razor was translated to mean ‘Entities should not be multiplied beyond necessity’ (Tornay, 1938).  

In essence Occam’s razor states that given two explanations of the data, with all other things being 

equal, the simpler explanation is preferable. This principle asserts the notion that one should avoid 
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using overly complicated models in favour of using simpler models with similar results (Blumer, 

Ehrenfeucht, Haussler & Warmuth, 1987). 

It is imperative to follow careful experiment procedures to measure the effectiveness of the 

learning process, a specific caveat to be mindful of is to not test the performance of an algorithm 

on the same example data that was used for training (Battiti & Brunato, 2014). As mentioned 

above, the objective of using methods of machine learning is to obtain a system capable of 

generalisation to new and previously unseen data. If the genetic algorithm is not capable of or 

efficient in this, it cannot be seen to be ‘learning; but merely ‘memorising’ the set patterns found 

in the data (Battiti & Brunato, 2014). 

Time series analysis is one of the most widely used traditional approaches in finance and 

economics modelling. In general time series analysis possesses the following traits: data intensity, 

an unstructured nature, encompasses a high degree of uncertainty and finally contains hidden 

relationships (Huang, Lai, Nakamori, Wang & Lean, 2007). There are two models that can be used 

to describe the behaviour of time series data, linear and nonlinear models (Huang et al., 2007). 

Linear models take a linear approach to time series analysis and are typically applied through Box-

Jenkins techniques, Kalman filters, Brown’s theory of exponential smoothing or piecewise 

regression. Each technique relies on transforming the data from the time series into a linear 

function that is then used to forecast future values. Nonlinear models take a nonlinear approach to 

the time series analysis and are typically applied through one of the following techniques: Takens 

theorem, the Mackey-Glass equation and neural networks (genetic programing and algorithms) 

(Huang et al., 2007). It has become widely accepted that through the use of intelligent systems, 

human like expertise can be modelled (Abraham & Nath, 2000).  
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2.2.3 Advantages and Disadvantages 

Genetic programming has various advantages as well as disadvantages. Miller (1986) noted that 

the framework places small demands on the abilities of economic agents whilst also being 

inherently dynamic in nature, thus avoiding the need for the system to be in an equilibrium state 

in order to demonstrate good performance. This allows the model to be less sensitive and 

consequently increases the ability to find accurate solutions in environments that contain error 

term assumptions, noise, and chaotic (unpredictable) components (Miller, 1986). Furthermore, the 

methodology does not make assumptions regarding the nature of the distribution of the data 

(Shachmurove, 2002). This allows the system to also display good performance in the presence of 

abnormal distributions of data, of which mainly non-linear relationships is particularly useful 

(Kaastra & Boyd, 1996; Huang et al., 2007; Shachmurove, 2002).   

Shachmurove (2002) highlights that since economic, financial and social systems are complex and 

subject to human reactions and counter-reactions by different agents or players, it is difficult, if 

not impossible, to model such a system from first principles that incorporates all potential reactions 

and counter-reactions. In such systems it is extremely beneficial to utilise models which emulate 

and simulate the economy or society in question; this is what the neural network methodology is 

capable of delivering. The genetic methodology has been shown to be powerful for uses such as 

pattern recognition, classification as well as forecasting (Kaastra & Boyd, 1996; Huang et al., 

2007). It has the ability to analyse complex patterns quickly and with a high degree of accuracy 

(Shachmurove, 2002). In addition genetic programming allows one to search extremely large rule 

spaces while allowing a multitude of potential rules to be tested in a practical manner (Allen & 

Karjalainen, 1993). It has been shown that a network can approximate continuous function to any 

desired accuracy and is still able to perform relatively well with missing or incomplete data (Huang 

et al., 2007; Shachmurove, 2002). Genetic programming’s main advantage however has been 

shown to lie in the domain of problems that cannot be solved easily, if at all, using classical 

techniques (Miles & Smith, 2010). 

Conversely, genetic programming has a few disadvantages and is subject to various limitations. 

There is no common framework or structured methodology for choosing data, development, 

training or verifying results (Shachmurove, 2002). Thus, output quality may be unpredictable. In 

addition, genetic programming is data dependant and as such any optimisation or prediction 

performance will be vastly affected by differing input data (Huang et al., 2007). Changes of a 
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model’s constraints and parameters would also lead to a marked difference in the quality of output 

(Wagner & Brauer, 2007). Furthermore, excessive training times may be needed in certain 

situations (Abraham & Nath, 2000). Genetic programming is also critiqued due to its ‘black box’ 

nature which refers to the fact that it is extremely difficult if not impossible for a user to calculate 

how relations in the hidden layers are estimated and applied (Goonatilake & Treleaven, 1995). In 

addition, the concept of ‘previous knowledge’ is difficult to incorporate as the model gains its 

strength based on how this knowledge is represented (Abraham & Nath, 2000). A neural network’s 

performance is also highly dependent on its structure as the interaction allowed between the 

various nodes of the network is specified using the structure only (Chen, Yang & Dong, 2004). 

The results also have two shortcomings: They frequently do not provide analytical solutions that 

are provided by other models (Miller, 1986) and secondly, genetic programming may be 

‘overzealous’ and attempt to over-fit or under-fit data (Gilbert, Krishnaswamy & Pashley, 2000 as 

cited in Shachmurove, 2002). It is always possible to model a mathematical function that perfectly 

represents the historical data of a time series but this limits the predictive capability of the model 

and leaves it with very little, if any, generalisation capacity.  

The section above expounded upon the central techniques and concepts that underpin the 

methodology of genetic programming. The subchapter continued by outlining the two thought 

paradigms that can be used when analysing the methodology of genetic programming: the 

neurological approach and the evolutionary approach. The way in which genetic programming 

overcame the initial critiques brought against biological approaches at the time it was initially 

discovered were discussed and thereafter the methodology behind genetic programming was 

described and analysed. It was indicated that genetic programming has become widely accepted 

and that through the use of intelligent systems, human like expertise can be modelled. The 

subchapter then concluded with a summary of both the advantages and disadvantages of using 

genetic programming. This dissertation now continues by further investigating previous literature 

where the methodology of genetic programming was applied to a variety of concepts. These were 

examined through the analysis of their specific methodologies and findings respectively. 
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2.2.4 Implementations of Genetic Programing 
The methodology and concepts that underlie genetic programming was examined in detail in 

section above however it is interesting to note, in this section, the great deal of evidence displaying 

the effectiveness of genetic programming when applied to financial data sets. As mentioned 

previously, genetic programming refers to a set of mathematical techniques that are based on 

biological principles that mimic concepts such as natural evolution/selection (Miles & Smith, 

2010) as well as the neurological functioning of the brain (Abraham & Nath, 2000). Genetic 

programming and a genetic algorithm are dissimilar in their technical aspects, an algorithm 

provides an answer in a symbolic form as opposed to a neural network or solution given by a 

genetic program, being represented in a numerical form (Allen & Karjalainen, 1993). However, 

the methodology that underlies both, as discussed in previously, is extremely similar and as such 

the terms will be used interchangeably. The following section outlines the results yielded from 

previous papers where a genetic programming approach was utilised.  

Allen and Karjalainen (1993) used a genetic algorithm approach to establish technical trading rules 

to model the daily price movements of the S&P 500 composite stock index over the period 2 

January 1963 to 29 December 1989 (technical analysis refers to the use of past prices, trading 

volumes, and other backward looking variables to forecast future price changes). Despite much 

academic scepticism, technical analysis is still widely used in practice (Zhu & Zhou, 2009). The 

rules found were then compared to a buy-and-hold strategy as well as the benchmark models of a 

random walk and an autoregressive model. A random walk model can be defined as a model 

wherein stock price changes have the same distribution and are independent of one another. In this 

manner, past share prices cannot be used to predict future share prices (Malkiel, 2015). Conversely, 

an autoregressive model refers to a stochastic process in statistical calculations where future values 

(share prices) can be estimated by previous values (Roehner, 1995). Furthermore, conventional 

statistical tests and bootstrapping simulations were carried out to study the robustness of the 

results.  
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In the paper by Allen and Karjalainen (1993), the training set (referring to the set of data used to 

discover potentially predictive relationships as well as the strength and utility thereof) was made 

up of the daily data over the years 1964 to 1967 while the validation set was made up of the daily 

data over the years 1968 to 1969. From each trial, one rule was saved and then tested during the 

years 1970 to 1989. A population size of 500 was selected and the genetic structures were limited 

to 100 nodes and had a maximum of 10 levels of nodes. Evolutions were then allowed to continue 

for a maximum of 50 generations or until there was no improvement shown for 25 generations. 

100 independent trials were then carried out using the above mentioned parameters, each being 

initialised from a different random population.  

The technical trading rules established were compared to a buy-and-hold strategy and were found 

to demonstrate positive excess returns; in addition the results indicated a reduced variability of the 

returns. The excess returns were both statistically and economically significant but they did 

however experience slight declines in significance after trading costs were taken into account. 

Moody and Saffell (2001) made use of genetic algorithms that aimed to optimise portfolios, select 

asset allocations as well as to develop trading systems. In their work they viewed investment 

decision making as a stochastic control problem where the investor’s ultimate goal is to optimise 

a relevant measure of performance, such as profit. A direct reinforcement method was utilised, 

which gave the system the ability to bypass the need to learn a value function (which refers to a 

mathematical condition that relates each input value to a corresponding output value), which 

thereby allowed the system to trade a single security as well as to manage a portfolio and allocate 

assets.  

Moody and Saffell (2001) used an innovative method of viewing the investment process, seeing 

investment performance as depending upon the sequences of interdependent decisions and as such 

being path dependant. In this way it is essential for a trading system to take into account the current 

system state, which includes both current market conditions as well as the currently held positions. 

In addition the authors took transaction costs (such as commissions, bid/ask spreads as well as 

others) into consideration, noting that arbitrarily frequent trades or large changes in the portfolios’ 

composition led to excessive costs to the portfolio (Moody & Saffell, 2001). 
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In their analysis they utilised fixed trade sizes while the algorithm adjusted the parameters of the 

system in order to maximise the Sharpe ratio (a reference to the risk adjusted returns) of the 

portfolio (Moody & Saffell, 2001. The system was applied with the intention of discovering 

tradable structures in the intraday trading of the USD/GBP foreign exchange rate as well as to find 

value investment methods based on the combination of the S&P 500 stock index and treasury bills 

(applied monthly). It was found that over the test period of 25 years, in both cases the system 

discovered a predictable trading structure and showed that the method dismisses the need to build 

better forecasting models in order to achieve increased trading performance (Moody & Saffell, 

2001). 

Wagner and Brauer (2007) applied a dynamic forecasting version of genetic programming to 

examine the relationship between US GDP and its various determinants, including military 

expenditure. In addition, the length of the time series was allowed to be automatically discovered 

by the genetic algorithm. The FRED database was utilised from the Federal Reserve Bank, from 

which quarterly data was analysed, ranging over the period 1947 to 2000. Wagner and Brauer 

(2007) aimed to rather find which variables demonstrated importance with regards to explaining 

the behaviour of GDP in the past rather than attempting to discover which variables could be used 

to predict future GDP.  

The results achieved by Wagner and Brauer (2007) were compared to a regression based 

forecasting model. Regression refers to a relatively simple statistical method used to determine the 

relationship between a dependent variable and one or more independent variables (Gelman & Hill, 

2007). The results showed no clear outperformer between the dynamic forecasting approach and 

the regression based model - it was found that the dynamic forecasting version gave mostly 

comparable and relatively equivalent results. The models did however each have their own 

assumptions. The dynamic method was not allowed to make any prior assumptions with regards 

to the functional form or the time span of data series that was used as an input while the regression 

based model assumed a linear functional form and that the entire time span represents a single data 

generation process which was perceived to be mostly unrealistic. Additionally, their results 

indicated that when the models were used on undifferentiated data the dynamic based model 

outperformed (Wagner & Brauer, 2007). 
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Thawornwong and Enke (2004) used neural networks in order to find relevant variables that 

displayed strength with regards to forecasting the direction of stock returns. The resulting variables 

were then provided to the neural networks, including probabilistic and feed-forward networks with 

the aim of predicting the direction of future excess stock returns. The returns found were then 

compared to a risk-free return on a one month T-bill, as this is viewed as the minimum returns 

expected from depositing money into a risk free account, as well as three other models namely: 

the buy-and-hold strategy, the conventional linear regression strategy and the random walk model. 

The neural network approach was selected as it demonstrates strong performance in its ability to 

model non-linear processes without a priori assumptions regarding the nature of the generating 

processes (Hagan, Demuth, Beale & De Jesus, 1996). This is particularly useful in finance and 

investment as it is common that little is known, but much is assumed, about the nature of the data 

generating processes that determine asset prices (Burrell & Forlarin, 1997). Furthermore this 

approach allows the user to input a large amount of data without the requirement of knowing 

beforehand which sections of the data are useful (Thawornwong & Enke, 2004). 

The variables considered included 31 financial and economic indicators that were collected on a 

monthly basis over the period March 1976 to Dec 1999 (totalling 286 months). The data was then 

divided into four sliding window periods. Each of these sliding periods was further split into two 

period sets. The first period set of each sliding period was used for training and validating the 

forecasting models, while the second period set was reserved for out-of-sample evaluation and 

comparison of performance among the forecasting models. As an example, sliding period 1 would 

consist of a training and validation period from March 1976 to October 1992 and then would run 

an out of sample test on the period ranging from November 1992 to August 1994. The second 

sliding period slightly overlapped the first (thus deserving the name ‘sliding window’) and ranged 

from January 1978 to August 1994 in the training and validation period and the out of sample test 

was run on the period September 1994 to June 1996 (Thawornwong & Enke, 2004). 

This analysis was completed with the aim of discovering the predictive effect of the relevant 

variables over various time periods as well as to establish the robustness of the out of sample 

forecasting performance. With this in mind the data was mined to determine which of the 31 

variables has the most predictive ability (or combination thereof) and then those were used and 

input into the model. Trend and seasonal components were excluded from the variables considered 
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as the neural networks attempted to learn the trends and use it in the prediction. The results showed 

that the neural network strategies outperformed buy and hold strategies, linear regression models 

and the random walk model as they generated higher profits with lower risks (Thawornwong & 

Enke, 2004). 

Liu, Ng and Quek (2007) also highlighted the fact that time series prediction is traditionally 

handled by linear models such as autoregressive and moving average models. These however are 

inadequate when dealing with non-linear data. The authors used neural networks to determine the 

input dimension and time delay to predict the daily stock price of General Motors Corporation. 

These are viewed as the two critical factors that affect the performance of a neural network. 

The input dimension refers to the number of delayed values used for prediction while the time 

dimension is the time interval between two data points. Liu, Ng and Quek (2007) used a 

reinforcement learning-based method to simultaneously determine both of these factors. 

Reinforcement learning refers to a learning scheme wherein the agent learns from the interaction 

between itself and its environment. The goal of reinforcement learning is to learn an optimal policy 

from past experience of the agent, thereby maximising the total amount of reward the system 

receives over the long run. An agent is the learner as well as the decision maker, in that it takes 

actions and receives feedback from the environment. 

When analysing such a problem one must be cognisant that if the dimension selected is too small, 

the information for prediction of the next point may not be sufficient; if too large redundant 

information and noise may be brought into the forecast and over fitting could occur. Furthermore 

if the delay is too small, two adjacent data points may be too highly correlated but if it is too large, 

useful information in the delay period may be lost. In order to determine the time delay there are 

two principal methods. The first method determines the time delay at which the value of the 

autocorrelation of the data becomes zero for the first time. The second indicates the time delay 

based on the first local minimum of average mutual information. The proper choice of dimension 

and delay may be effected by both the prediction model and the data (Liu, Ng & Quek, 2007). 
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The results illustrated by Liu, Ng and Quek (2007) showed that their method, which was based on 

reinforcement learning, was able to achieve near optimal performance and selected a dimension 

and delay factor of 1. These were both shown to be the optimal choices. These predictors were not 

however used to build automated investment strategies, however more recent literature (as 

highlighted in this study) has included the building of trading strategies (with the output being a 

buy, hold or sell signal) through the use of genetic programming (Liu, Ng & Quek, 2007). 

Jin, Tsang and Li (2009) utilised an evolutionary constraint-guided method algorithm to examine 

two economic problems. The first was to search for equilibriums for bargaining problems and the 

second was aimed at reducing the rate of failure in financial prediction problems. The constraint-

guided method is capable of handling both hard and soft constraints within optimisation problems. 

While searching for constraint satisfactory solutions, the method differentiates candidate solutions 

by assigning them with different fitness values, enabling favoured solutions to be more easily and 

effectively distinguished from less favoured ones (Jin, Tsang, & Li, 2009).   

This approach is based upon the idea that candidate solutions to an optimisation problem (with 

both hard and soft constraints) can be categorised into three qualitatively different sets: the 

infeasible, the feasible and the preferable. Hard constraints refer to conditions of the variables that 

are required to be satisfied for the solution to be valid. Soft constraints however refer to conditions 

of the variables which are penalised if they are not met based on the extent of them missing the 

acceptable criteria. Solutions in an infeasible set refer to solutions that do not satisfy all hard 

constraints while solutions in the feasible set are those that do satisfy all hard constraints, as well 

as some soft constraints (if not all). The solutions in the preferable set are considered as the best 

candidate solutions. These solutions satisfy all hard constraints and are ranked according how well 

they satisfy the soft constraints, in order of their priority (Jin, Tsang & Li, 2009).  

An ideal search approach should be capable of not only identifying the feasible set among all 

possible solutions, but also distinguishing a preferable set from the feasible sets more easily and 

efficiently. This is the motivation behind the approach used by Jin, Tsang and Li (2009) which 

accomplished the above through using a carefully designed fitness function which incorporated 

problem-specific knowledge about hard and soft constraints directly. They compared their 

constraint-guided method against other computational techniques such as repair methods and 
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penalty methods over both economic problems and found in both instances that their model 

compared favourably (Jin, Tsang & Li, 2009). 

It must be noted however than when modelling bargaining or social construct problems, Arrow’s 

impossibility problem applies (Arrow, 1963). Arrow’s impossibility theorem relates to the central 

difficulty with focusing on individual preferences and the aggregation of those preferences into a 

general choice rule. If all individuals are in agreement, this may be possible, however, when there 

is disagreement this becomes vastly more difficult. In the case of an election, Arrow’s theorem 

begins with a finite set of outcomes, being the potential candidates for office, a finite set of voters 

as well as their individual preferences over potential outcomes. If individual preferences are 

assumed to be an unrestricted domain and independent of irrelevant alternatives, relating to 

independence from other influences, then Arrow’s impossibility theorem states that it is not 

possible to derive a complete and consistent social choice rule exclusively from individual 

preferences, apart from in dictatorships which are characterised by an inability to determine the 

intensity of preference (Arrow, 1963). This theorem is as applicable to bargaining and political 

problems as to threats of nuclear war and reaching new international trade agreements (Jin, Tsang 

& Li, 2009). 

Genetic programming has been utilised to forecast one day ahead share prices (Abraham & Nath, 

2000) and has proved useful in economic forecasting and market behaviour (Kaastra & Boyd, 

1996). There have been numerous other uses for genetic programming which include predicting 

exchange rates (Álvarez-Díaz & Álvarez, 2005) as well as others further detailed below. 

Fernández and Gómez (2007) used neural networks to compute the mean-variance curve (the 

mean-variance curve is further explained in the section entitled ‘Markowitz Portfolio Theory’). 

The generalised Markowitz model was utilised in their approach as to include bounding and 

cardinality constraints - this tactic was employed in order to take into account that smaller amounts 

of money cannot purchase certain shares. This is not considered as a necessary requirement in this 

study as the barrier can easily be overcome in ‘real world’ scenarios through the use of contracts 

for difference (Norman, 2010). Secondly, the amount of capital to be invested in each asset was 

limited in both its upper and lower bounds. It is acknowledged that the problem is a mixed 

quadratic and integer programming problem and as such no computational efficient algorithm 
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exists. This is one of the downfalls of the genetic programming methodology, more of which will 

be described later. 

Chen, Yang, Dong and Abraham (2005) aimed to investigate how the seemingly chaotic behaviour 

of share prices could be represented using a subcategory of genetic algorithm, specifically a 

flexible neural tree model. The authors aimed to predict the NASDAQ-100 and S&P CNX NIFTY 

stock indexes. Their results found that the model considered could represent the stock indices 

extremely accurately. 

Freitas, Souza and de Almeida (2009) used an optimal portfolio prediction based neural model in 

an effort to discover whether the model could take advantage of short-term investment 

opportunities. Neural network predictors were utilised to predict stocks’ returns and thereafter 

derived a risk measure based on the prediction errors that were built on the same foundation as the 

mean-variance model. The results from this model were subsequently compared to the returns 

accomplished through the stock market index as well as on the corresponding mean-variance 

model. 

Freitas, Souza and de Almeida (2009) highlighted the difference between the prediction-based 

portfolio optimisation model and the mean-variance model by examining three factors. Firstly, in 

the prediction-based portfolio optimisation model the expected return of each stock is its predicted 

return, instead of the mean of its time series of returns, as is the case in the mean-variance model. 

Secondly, the prediction-based portfolio optimisation model calculates the individual risk of each 

stock and the interactive risk between each pair of stocks from the variance and covariance of the 

time series of the errors of prediction; the mean-variance model however calculates the individual 

risk of each stock and the interactive risk between each pair of stocks from the variances and 

covariance of the time series of returns. Finally, although both models are based on the normal 

framework, in the prediction-based portfolio optimisation model the normal variable of interest is 

the error of prediction of the return of the stocks, while, in the mean-variance model, the normal 

variable of interest is the return of the stocks. 
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The analysis was performed initially on 82 stocks that participated on the IBOVESPA Brazilian 

stock index over the period between October 1999 and September 2007. From the population, a 

subset of 52 stocks was selected that had a long enough time series for training the neural network 

and calculating the necessary parameters of the portfolio optimisation model. For each stock of the 

subset the weekly closing prices (sampled on Wednesdays) between 27 October 1999 and 19 

September 2007 were used to train the network. On all days where there was missing data the last 

available closing price was used (Freitas, Souza & de Almeida, 2009). Risk in the portfolio was 

measured by the RMSE (root mean squared error), the mean absolute percentage error and the hit 

rates on the returns. The portfolio was then evaluated based on risk and return measures as well as 

on accumulated return, portfolio change measure and the turnover index (Freitas, Souza & de 

Almeida, 2009). 

To train and test the neural networks involved in the experiments Freitas, Souza and de Almeida 

(2009) used a sliding window of 168 weeks of the weekly 413 returns available. In total 12 792 

training sessions were calculated (413 weekly returns, minus the 168 sliding window of train and 

test cycles multiplied by 52 stocks). The sliding window contains the training set (163 input-output 

pairs) and the testing set (1 input-output pair).  

The results demonstrated that the model achieved returns of 291% above the mean-variance model 

for similar levels of risk. Furthermore, the predictive portfolio showed an improved market index 

tracking capability, achieving returns of 77% above the IBOVESPA market index. These increases 

appear optically large; this is due to the nature of the initial results, being numerically extremely 

small. As such relatively small numerical improvements on a relatively small scale are magnified 

through the demonstration of percentage improvements, these are commonly referred to as base 

effects. The results also displayed that it was possible to obtain normal prediction errors even when 

the time series consists of non-normal data (Freitas, Souza & de Almeida, 2009). 

Miles and Smith (2010) employed genetic programming to develop trading rules, which were 

applied to test the Efficient Market Hypothesis (which refers to the belief that the market fairly 

reflects that value of securities). There is a large amount of research focused on the Efficient 

Market Hypothesis and studying its various forms, however that is not the focus of this dissertation. 

The majority of previous research that aimed at testing the Efficient Market Hypothesis was 

limited to utilising trading rules that returned simple buy-sell signals. Miles and Smith (2010) used 
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a broader approach wherein the framework was consistent with the standard portfolio model. This 

technique developed trading rules that are defined as the proportion of an investor’s total wealth 

which should be invested into a risky asset. The methodology utilised the average utility of 

terminal wealth as the fitness function. The technique was developed using data, retrieved from 

Datastream, on daily stock prices (unadjusted for dividends) from 1985 to 2005 from 24 diverse 

companies that traded on the (NYSE). To ensure diversity among the companies selected, two 

shares were selected from each of the 12 industries implied by Fama and French’s industry 

classification scheme (as cited in Miles and Smith, 2010). These categories were namely: 

consumer durables, consumer non-durables, manufacturing, energy, chemicals, business 

equipment, telecommunications, utilities, shops, healthcare, finance, and other. Further selection 

criteria included that companies must have been active in the market for the time period beginning 

at the start of the last quarter of 1979 and continued trading on the NYSE through to the end of 

2005. The algorithm that was developed aimed to find trading rules for the 24 individual stocks. 

These rules were then applied to out-of-sample data to test the adaptive efficiency of the markets 

studied. 

When markets are efficient, it is said that investors cannot make profits by exploiting publicly 

available information (Miles & Smith, 2010). Daniel and Titman (1999) introduced a weaker 

concept of market efficiency called adaptive efficiency: a market is characterised by adaptive 

efficiency if profit opportunities disappear when they become obvious. The objective of Miles and 

Smiths’ (2010) paper was to test adaptive efficiency of stock markets by conducting a broadly 

representative study (using data from 24 stocks across a wide spectrum of industries, as mentioned 

above) of the efficiency of trading rules evolved using a genetic programming methodology. If the 

rules evolved by genetic programming using in-sample data have a relatively low fitness when 

applied to new (out-of-sample) data, it is interpreted as evidence of adaptive efficiency. 

The study performed the analyses using 21 out-of-sample periods for each of 24 stocks (for a total 

of 504 out-of-sample periods). A genetic programming methodology is employed to generate 

portfolio rules to determine the fraction of wealth to be allocated to a risky asset (one of the 24 

stocks) and test adaptive efficiency of the markets on the 21 out-of-sample periods. Any of the 

remaining wealth would be invested into a riskless U.S. treasury asset. A rolling 5-year in-sample 

period is used as an input to evolve and select trading rules that are then tested on the following 
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(sixth) year. The first half of each five year in sample period is allotted to training and the second 

half to selection. Furthermore it was assumed that an individual’s trading horizon is 60 trading 

days (Miles and Smith, 2010). 

In addition, transaction costs were incorporated into the analysis. When the investor purchases 

shares, both the cost of the shares and the transaction costs were subtracted from the cash account. 

This is completed in order to decrease the incidence of retaining rules that over-trade. This is 

carried out because rules that over-trade are more likely to be overfitting the data. Unrealistically 

high transaction costs were used in the training and selection periods and thereafter, realistic 

transaction costs were used in the testing period. For the training and selection periods, a one-way 

transaction cost of 0.5% with a two-way flat rate of $5 per share of stock was used in. This was 

deliberately unrealistically high for the reasons mentioned above. For the testing period, the 

transaction cost structure used by Allen and Karjalainen (1993) for simulating trading in the S&P 

500 index was employed. This entails incorporating a one-way transaction cost of 0.25% of the 

value of the transaction. Allen and Karjalainen (1993) argued that a one-way transaction cost of 

0.25% incorporates all costs at realistic levels, including the cost of the market impact (Miles & 

Smith, 2010).  

Each genetic programming experiment conducted as part of the study involved 10 trials, and each 

trial consisted of 50 generations. In every generation, a population size of 50 000 random potential 

trading rules was used. Furthermore, the depth of each candidate solution decision tree was limited 

to 25 levels (Miles & Smith, 2010). The process of running the 10 genetic programming trials and 

selecting, at most, one rule to be tested in the out-of-sample period consisted of the following 

steps: firstly, 50 000 random rules were generated and their fitness values evaluated in the training 

and selection periods. Thereafter, all of the rules that satisfy the criteria were identified and 

subsequently saved. If more than 50 rules satisfied the criteria, only the rules with the highest 

fitness functions in the selection periods were saved. Secondly, a probability of being selected was 

then attached to each rule. The probability corresponded to each rule’s fitness function during the 

training and selection periods, aiming to assign rules with better fitness values a higher probability 

of reproducing. Thirdly, rules were then selected based on their attached probabilities and then the 

crossover operator (with probability 95%) or the mutation operator (with probability 5%) was 

performed. In this way, 50 000 rules were generated for the following generation. The best 50 
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performing rules were thereafter saved again. If this generation was not the final generation, the 

second step was reused. If the current generation is generation 50 (the final generation) then the 

next trial should begin, going back to the first step (unless this is the tenth trial). If this is the tenth 

trial then the rules created during the 10 trials should be saved and those that do not satisfy the 

criteria should be discarded. Of the remaining eligible rules the one with the highest fitness 

function should be selected and its respective performance studied in the testing period. 

A population size of 50 000 was at the time substantially larger than other studies (usually using 

approximately 500 as a population size) (Miles & Smith, 2010). An assumption is made in the 

analysis, as is common, that the activities of the simulated trader do not have a major impact on 

the stock price. Their findings showed that in general, the trading rules that the methodology 

generated do not outperform the simple buy-and-hold strategy. This was therefore understood as 

proof that of the 24 shares examined, all were adaptively efficient between 1985 and 2005.  

The majority of the trading systems designed in academic literature (as the above) produce 

remarkable results but are typically applied to trading a single asset rather than a group or portfolio 

of assets. In this respect, risk is relatively ignored because during periods of high volatility, higher 

returns are expected. Despite this constraint, the section above highlights the robust results 

achieved by the genetic programming approach over a variety of applications, demonstrating 

strength of the methodology supporting genetic programming as well as its relatively flexible 

nature. This chapter now continues by further exploring the second of the artificially intelligent 

systems made use of in this dissertation, namely particle swarm optimisation. 
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2.3 Particle Swarm Optimisation 

The methodology behind particle swarm optimisation (PSO) was discovered by Kennedy and 

Eberhart (1995), a social psychologist and electrical engineer respectively. Their initial intent was 

to simulate the graceful but unpredictable flight of a bird flock (Eberhart & Shi, 2001). This, 

however, developed into a computational method that has demonstrated the ability to solve 

difficult problems efficiently and reliably (Poli, 2008). 

The roots of PSO are split into two main component methodologies. The first is that of artificial 

life as it relates to bird flocking, fish schooling and swarming theory in particular. The second 

relates to the ties that PSO shares with evolutionary computation and thus genetic algorithms, as 

previously described (Eberhart & Kennedy, 1995).  

When swarms solve problems in nature, their abilities are usually attributed to ‘swarm 

intelligence’. The most prolific examples of this are flocks of birds, shoals of fish as well as social 

insects such as bees and ants (Poli, 2008). The aim of PSO is to identify and thereby take advantage 

of the ‘swarm intelligence’ found within nature and apply it to separate scientific and industrial 

purposes (Poli, 2008).  

In keeping with previous literature, the data points used will be referred to as particles rather than 

as points. While it could be argued that the population members are massless and without volume 

(and in this way could be called points), it was decided that due to the fact that the members have 

velocities and accelerations associated with them, to be further elucidated upon below, it is more 

accurate to refer to them as particles (Eberhart & Kennedy 1995; Kennedy & Eberhart, 1995). 

In PSOs, a number of simple entities (the particles) are placed into the parameter space of a 

problem or a function at random (McCarthy & McCluskey, 2009). Each particle represents a 

possible solution and as such, evaluates the fitness level at its current location (McCarthy & 

McCluskey, 2009). Next, the particles each determine their movement through the parameter space 

by combining some aspect of their own historical fitness value along with one or more members 

of the swarm; subsequently the particle will move through the parameter space with a velocity 

determined by the locations and fitness values of the other members of the swarm (along with one 

or more random variable/s as will be discussed later) (Poli, Kennedy & Blackwell, 2007; Poli, 

2008). The next iteration will take place after all the particles in the swarm have moved (Poli, 

Kennedy & Blackwell, 2007). The members of a swarm that a particle can interact with are called 
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its’ neighbourhood while the social neighbourhood of all the particles (or more simply, all the 

particles in the swarm combined) are referred to as the PSO’s social network (Poli, 2008).  

It is important to highlight that one particle by itself has almost no power. Kennedy and Eberhart 

(1995) point out that it does not seem too large a leap of logic to suppose that some of the same 

rules that underlie animal social behaviour, also underlie parts of human behaviour. It is described 

that the individual members of a school of fish (or the like) can profit from the discoveries of their 

individual experience coupled with the previous experience of all other members of the school 

during the search for food, which benefits all in the population (Wilson, 1975). In the same vein, 

progress in the strength of PSO is increased by the number of particles involved as well as the 

interaction (or social informational sharing) between particles (Poli, Kennedy & Blackwell, 2007). 

When comparing the behaviour of animals such as fish and birds to that of humans (or when trying 

to simulate human behaviour through PSO), Kennedy and Eberhart (1995) highlighted one 

important distinction, namely that of abstractness. In the case of animals, the physical movement 

of an individual and of the swarm can be adjusted so as to avoid predators or to seek out food as 

well as to optimise the environment. This is the foundation of PSO as previously mentioned. 

However, when simulating human behaviour, not only should physical movement be taken into 

account but also that of cognition or experiential variables as well. The major distinction when 

considering cognition rather than merely physical movement is that cognitive does not change or 

move in patterns such as a flock of birds would change direction, but more importantly the concept 

of collision. This refers to the ability of two people to hold identical attitudes and beliefs without 

mentally ‘colliding’ into each other – this is different to animals where the same physical space 

cannot be held by two individuals at any one point in time. When modelling human behaviour 

using PSO this is arguably the most important consideration – two particles are now allowed to 

occupy the same space with regards to cognition, but cannot occupy the same space with regards 

to physical space (Kennedy & Eberhart, 1995). 

Millonas (1994) developed the five basic principles of swarm intelligence. These are namely: First, 

the proximity principle which relates to that the notion that the population should be able to carry 

out simple space and time computations. Second is the principle of quality: the population should 

be able to respond to quality factors in the environment. Third is the principle of diverse response, 

meaning that the population should not commit its activities along excessively narrow channels. 
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Fourth is the principle of stability which holds that the population should not change its mode of 

behaviour every time the environment changes. The final principle is that of adaptability: the 

population must be able to adapt its behaviour when it is worth the computational price. In addition 

it was pointed out the principles four and five are the opposite sides ‘of the same coin’ (Eberhart 

& Kennedy, 1995). 

Initially there were two main types of PSO, global and local. Global PSO follows an algorithm 

containing six steps: 

1. Initialise a population (array) of particles with random starting positions and velocities on 

d dimensions in the problem space 

2. For each particle, evaluate the desired optimisation fitness function in d variables 

3. Compare the particle’s fitness evaluation with the particles pbest (pbest is a generic term 

that refers to the best fitness value that the particle has achieved thus far). If the particles 

value is better than the stored pbest then set pbest value equal to the current value and the 

location equal to the current location, else do not change pbest 

4. Compare the particles' fitness evaluation with the population’s overall previous best fitness 

valuation (referred to as gbest). If the current value is better than gbest then set gbest equal 

to the current value and the location equal to the particles array index, else do not change 

gbest 

5. Change the velocity, acceleration and position of each particle according to equations 

1 and 2  below respectively:  

a. Vid = Vid[t-1] + c1*rand()*(pid-xid) + c2*rand()*(pgd-xid)   (1) 

b. xid = xid[t-1] + Vid        (2) 

6. Repeat step 2 until a criterion is met (the termination criteria can be time, a sufficiently 

good fitness function or a maximum number of iterations). 

This process was set out initially in Eberhart and Kennedy (1995). In equation 1, c1 and c2 refer to 

the weighting of the stochastic acceleration terms that pull each particle toward the pbest and gbest 

positions respectively. Low values allow particles to roam far from the target regions before 

tugging back while high values result in an abrupt movement toward or past target regions 

(Eberhart & Shi, 2001). In essence, the acceleration coefficients, c1 and c2, when combined with 
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random numbers control the random search effect of the cognitive (local) and social (global) 

components of velocity. Thus the relative nature implies the exploratory nature of the particles. It 

has been found that the general best values for c1 and c2 are 2.0 for almost all applications (Eberhart 

& Shi, 2001; Poli, 2008).  

Vid refers to the particle’s velocity and Vid[t-1] denotes the particle’s previous velocity. The 

particle’s cumulated velocity on each dimension is subject to a constraint of Vmax which refers to 

the sum of the accelerations. If the sum of the accelerations is larger than Vmax, then Vmax is 

limited to the value input by the user. This is an important parameter as if Vmax is too high, 

particles might fly past good solutions however if Vmax is too small particles may become stuck 

in local optima (Eberhart & Shi, 2001). Xid refers to the particle’s current position, Xid[t-1] refers to 

the particle’s previous position while pid refers to the particle’s previous best position and pgd refers 

to the previous best position of the best particle in the population. Rand() refers to a random 

number generator, generating number of between 0 and a  maximum number input by the user 

(Poli, 2008). 

The local version of PSO works in the same way as the global version, however, with the exception 

that now in addition to pbest (which refers to the best fitness value that the particle has achieved 

thus far) each particle also keeps track of lbest in place of gbest (Eberhart & Shi, 2001); lbest refers 

to the best value of one (or more) of the neighbouring particles’ fitness values (Eberhart & 

Kennedy, 1995). In the local model, the number of particles that will be included in a certain 

particle’s neighbourhood is specified by the user (Eberhart & Kennedy, 1995). It has been shown 

that a neighbourhood of 15 percent of the population size provides near optimal performance in 

the majority of PSO applications (Eberhart & Shi, 2001). 

Conceptually, a particle’s velocity can also be viewed as simple nostalgia – the individual will 

tend to return to the place that most satisfied it in the past; the pbest value can be seen to represent 

autobiographical memory, as each individual remembers its own experience while gbest can be 

seen to represent publicised knowledge, or a group norm or standard that individuals seek to attain 

(Kennedy & Eberhart, 1995).  
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Since the inception of PSO there has been a large amount of changes, revisions and updates made 

to the algorithms in order to optimise PSO for specific application areas. Suganthan (1999) 

suggested that the Ibest topology seemed superior for exploring the search space whilst gbest 

converged faster – thus it would be best to begin the search with an Ibest lattice and slowly increase 

the size of the neighbourhood until the population was fully connected by the end of a run. Liang 

and Suganthan (2005) created a subpopulation of size n and occasionally randomised all of the 

connections. Clerc (2006) developed a parameter free PSO algorithm called TRIBES, established 

upon concepts inherent in the development of human tribes,  where details of the topology evolve 

over time in response to performance feedback (in this method good tribes can benefit from the 

removal of their weakest member whilst bad tribes could benefit from the addition of the same 

new member). There have been numerous other proposals for PSO (for an in depth analysis see 

Poli, Kennedy and Blackwell (2007) however, this is not the primary focus of this dissertation and 

therefore will not be discussed in detail. 

McCarthy and McCluskey (2009) used a PSO algorithm for the cost optimum design of reinforced 

concrete beams. They made use of this approach while incorporating multiple constraints. This 

made the optimisation a multi-variable problem as it furthermore took into account factors such as 

bending and shear experienced in the beams as well as the reinforcement conditions that are 

required to resist these forces. It was found that PSO performed relatively well when used for this 

purpose.  

Multiple factors regarding PSO were highlighted by McCarthy and McCluskey (2009), firstly, that 

the size of the population has a high influence on the performance of the algorithm. If a high 

number of particles are employed it allows the algorithm to search a greater area in each iteration 

leading to a greater chance of finding a global optimum. This advantage is however offset because 

as the swarm size is increased, so too is the required time to find an appropriate solution. Secondly, 

if c1 > c2 (as defined in equation 1) particles tend to wander excessively while if the converse is 

true, the particles will tend to converge rapidly, increasing the possibility of becoming trapped in 

a local minima (McCarthy & McCluskey, 2009). 
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As mentioned previously, PSO was established by Kennedy and Eberhart (1995) with the initial 

intent to simulate the flight patterns of a bird flock. This advanced into a methodology that applies 

the concepts of swarm theory to efficiently evaluate a computational problem. The methodology 

behind PSO was examined above however it is interesting to note that PSO has shown promise in 

a wide array of applications.  

Poli (2008) used a mechanical process to divide the literature applying PSO into various categories. 

Through a search phrase and key terms analysis Poli (2008) generated a graphical representation 

of key terms that are mentioned in previous literature. This was then used to determine categories 

wherein past literature had applied the PSO methodology. An example of the graphical 

representation is shown in Figure 4. Each node in the figure below is representative of a key term, 

for example “Network”, “Neural” or “Particle”. The lines joining each node demonstrate that the 

terms have been used in conjunction with one another in the same paper. The closer a node is to 

the centre of the graph represents the number of times a term has been used over various studies, 

with the more central nodes illustrating a term has been used more often that the nodes towards 

the outskirts of the image.  

 

 

 

 

 

 

 

 

 

 

 



Page 53 

 

Figure 4: Representation of Key Terms Relevant to PSO Applications 

Figure 4: Example of a graphical representation of key terms relevant to PSO applications and their 

relationships as demonstrated in: “Analysis of the Publications on the Applications of Particle Swarm 

Optimisation”, by Poli, 2008, Journal of Artificial Evolution and Applications, 3, 1-10 

Poli (2008) used the analysis above to determine categories where the application of PSO had been 

documented in the past. The categories highlighted wherein PSO showed promise included the 

application to biomedical problems, communication networks, security and military efforts as well 

as, as in this dissertation, to financial and investment problems (Poli, 2008). The study however 

did not make reference to which previous studies were included in the analysis above. 

It was demonstrated by Poli (2008), that the extent of literature that focuses on the application of 

PSO to computational problem sets, with documented results, is extremely limited. The vast 

majority of the literature, thus far, has focused on the theoretical variations, improvements and 

assumptions of PSO. Poli (2008) indicated that their methodology found 1100 publications using 

PSO. Of these publications, 350 were proposals for improvements and specialisations of PSO. 

Around 700 papers could be classified as applications of PSO however the majority of these still 

focus on the customisation or extension of the methodology to better suit an application of interest. 
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Furthermore, of the 700 papers, only 55 were journal articles. The remaining findings were those 

of conference proceedings and other miscellaneos entries. As such it can be observed that the 

domain of PSO is still in its infancy but the attention focused on the approach is increasing 

exponentially each year; this notion is further elaborated upon below.  

The interest in PSO has surged since the paper by Kennedy and Eberhart (1995) first brought PSO 

to light. Through the completion of an extensive study, partly outlined above, Poli (2008) created 

the figure below (Figure 5) demonstrating the increasing attention being focused on PSO. Figure 

5 reiterates that the domain of PSO is still in its early stages. Additionally it highlights the notion 

that the attention being paid to PSO is increasing exponentially each year. This dissertation aims 

to further the domain by a comparison to the traditional simulation approach as well as to the 

genetic programming approach with regards to aiming to minimise the variance of a portfolio of 

shares. 

Figure 5: Number of Papers Published per year on PSO 

Figure 5: Display showing the number of papers published per year on PSO (Poli, 2008) since its inception 

in 1995. 
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Papers that directly compare PSO to other optimisation techniques are extremely limited (Zhu, 

Wang, Wang & Chen, 2011) and this dissertation aims to reduce that gap in the literature, 

especially with regards to solving financial problems. In the few studies that have aimed to 

compare PSO with other optimisation techniques, PSO has been shown to achieve results 

comparable or superior to state of the art solvers (Zhu, Wang, Wang & Chen, 2011). Furthermore, 

when examining real world problems, where users may have limited computation time and limited 

precision in estimating instance parameters, many analytical methods have been shown to not be 

particularly suitable. This is due to the idea that as the problems become larger and more complex, 

the computing power and time required to find an adequate solution becomes exponentially larger. 

PSO however has demonstrated the ability to find high quality solutions in a reasonable amount 

of time, with reasonable computing power (Zhu, Wang, Wang & Chen, 2011). Eberhart and 

Kennedy (1995) also found that PSO may perform better than genetic programming as the 

interaction between group members enhances rather than detracts from progress towards the 

solution. This outperformance was thought to be due to the methodology where the interaction of 

the particles in PSO will increase the power of the performance while in genetic programming, if 

two tree structures (as displayed earlier in Figure 3) are different and both have high fitness 

evaluations, a recombination of them may not yield a better overall result. 

Kendall and Su (2005) applied PSO to the problem of constructing an optimal risky portfolio. The 

optimal risky portfolio, as described earlier, denotes the particular selection of securities and their 

respective weights that results in the maximum reward-to-variability ratio. The PSO algorithm was 

developed and tested across multiple restricted and unrestricted portfolios. A restricted portfolio 

refers to a portfolio where the weightings on each share is constrained between 0 and 1, as such 

no short selling is allowed. An unrestricted portfolio denotes a portfolio where the short selling of 

shares is permitted - the weightings on each share is constrained between -1 and 1. At all times, in 

both restricted and unrestricted portfolios, the total sum of the weights across all shares is ensured 

to be equal to 1. 

In the study above, PSO was tested and compared against the traditional Excel Solver (Kendall & 

Su, 2005). Initially the data set included 7 share indexes, each from a different country. In further 

tests, the data set was expanded to include a random selection of shares from the Hang Seng index 

over the period 5 October 1998 to 2 October 2003.  Tests were then run when the number of 
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available shares varied between 5, 7, 12 and 30 shares in turn. Kendall and Su (2005) found that 

PSO delivered favourable results compared to the traditional Excel Solver method. The 

performance of the PSO approach however severely decreased in efficiency when the number of 

available shares increased above 15. This was noted to be chiefly due to larger portfolios requiring 

exponentially longer run test times. This was noted as a limitation of the study and an aim for 

future research (Kendall & Su, 2005). 

PSO and genetic programming share two main similarities. In both methodologies the system is 

initialised with a population of random solutions and works methodically through steps, governed 

by parameters in order to improve on the initial random solution (Eberhart & Kennedy, 1995; 

Eberhart & Shi, 2001).  In addition both systems have been shown to display adequate strength 

and remain effective in noisy environments (Poli, 2007). It was even shown that in some cases 

noise improved the strength of PSO as to allow it not to become trapped in local optima (Poli, 

2007). 

There are however fundamental differences between PSO and genetic programming. In PSO, once 

the system is initialised with a population of random solutions, each potential solution is assigned 

a randomised velocity and the potential solutions are then flown through the problem space (as 

described above) (Eberhart & Shi, 2001). Thereafter, each particle keeps track of its’ coordinates 

in the problem space which are associated with the best solution thus far (Eberhart & Shi, 2001).  

This is notably different from the methodology of genetic programming as outlined in the earlier 

section of the dissertation. 

In summary, PSO shines for its simplicity and for the ease in which it can be adapted to best suit 

different systems, multiple different application domains as well as the ease with which it can by 

hybridised with other techniques (Poli, 2008). PSO combines the evolutionary methodology 

behind genetic programming with the paradigm of artificial life based on swarm intelligence. The 

sub-chapter above described the methodology and foundations that the PSO approach is built on. 

Despite research comparing PSO to other optimisation techniques still being fairly limited, the 

studies that have done so thus far were expounded upon above in addition to the studies that 

focused on the variety of other areas that particle swarm intelligence has been applied too. Their 

respective methodologies were explored, their results illustrated and finally a comparison of the 

similarities and differences between PSO and genetic programming was completed.  
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The sections thus far in the Literature Review section have highlighted the importance of finding 

the optimal number of shares to include into a diversified portfolio, as well as the costs of failing 

to do so. This establishes the significance of fully grasping the relationship between the risk of a 

portfolio and the number of shares the portfolio consists of. As such, an exploration of the 

Markowitz Portfolio Theory is carried out in the sub-section below in order to further elaborate on 

this relationship.  
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2.4 Markowitz Portfolio Theory 

Markowitz stated that the process of selecting a portfolio can be divided into two stages 

(Markowitz, 1952b). The first stage starts with observation and experience and ends with beliefs 

about the future performances of available securities. The second stage begins with relevant beliefs 

about future performances of securities and ends with the choice of the portfolio. Markowitz aimed 

to explore the second stage of portfolio selection (Markowitz, 1952b). 

Throughout his analysis, Markowitz assumed that an investor views increasing returns positively 

and thus should aim to maximise returns while viewing increasing variance of a portfolio 

negatively and thus should aim to minimise a portfolio’s variance (Markowitz, 1952b). 

Furthermore, it is noted that should an investor know the future returns of a selection of shares 

with certainty he would in no case utilise diversification but would instead choose to place all 

funds available in the security with the greatest return. 

It is further noted that although adding securities to a portfolio should generally decrease the risk 

of the portfolio, the ‘Law of Large Numbers’ does not fully apply to a portfolio of securities 

(Pearson, 1925). The ‘Law of Large Numbers’ is a statistical term used in probability theory that 

refers to the finding that the average of the results obtained from a large number of trials should 

approximate the expected value and will tend closer to the expected value as an increasing number 

of trials are performed. The ‘Law of Large Numbers’ assumes that each trial run is independent of 

the results achieved previously. This is not the case with a portfolio of securities as the returns 

from securities may be inter-correlated and if two shares are perfectly correlated to one another, 

adding both to a portfolio would not reduce the amount of variance inherent in the portfolio. As 

such the optimal selection of shares would entail selecting a portfolio of shares, each with low 

joint risk. Furthermore, diversification cannot eliminate all risk as market risk will continue to 

remain (only idiosyncratic risk can be diversified away, as previously explained). 

Independently, Roy (1952) concentrated on a specific portfolio that an investor should select based 

on minimising the upper bound of the chance of a dread (negative black swan) event. This was 

then applied to a portfolio of n assets for either speculative gain or to maximise the income yielded 

(Roy, 1952). Although Roy (1952) has not received the same recognition as the 1952 article by 

Markowitz, Markowitz (1999) noted that Roy (1952) can claim an equal share of the honour of 

being called the father of modern portfolio theory. 
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Markowitz (1952b) laid the foundations of modern portfolio theory by outlining the general ‘rule’ 

that investors do not get rewarded for non-systematic risk and thus should diversify their holdings 

accordingly. The ‘Law of Large Numbers’ (Bauer, 1996) was applied to share price expectations 

– that an investor’s actual return should trend towards the expected return of the market as more 

securities are added to his portfolio (as non-systematic risks, such as black swan events, affecting 

a single company would only have a limited effect on a well-diversified portfolio; compared to if 

the investor held only the one share that the event negatively affected). This was applied under the 

constructs mentioned previously regarding the ‘Law of Large Numbers’. 

Markowitz (1952b) discovered numerous notable findings. Firstly, diversification can reduce (and 

potentially minimise) the risk of a portfolio, nevertheless it cannot eliminate all possible risk. This 

is due to the fact that only diversifiable risk (or non-systematic risk) can be diversified away.  

Secondly, a portfolio with a maximum expected return does not necessarily imply that it has 

minimal variance. Thus, the return alone should not be the deciding factor when selecting a 

portfolio but rather the ratio of return to risk. This leads to the derivation of Figure 6, below: 

Figure 6: Markowitz Efficient Frontier 

 

Figure 6: The graph showing the relationship between the expected return and the standard deviation of a 

portfolio – as put forward in Markowitz (1952b). 
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Figure 6 displays that for each level of return there is an associated minimal level of standard 

deviation. Furthermore, the dual problem states that for each level of risk (standard deviation) there 

is not a point that can offer a greater return. The line displayed is known as the efficient frontier. 

At any point along the efficient frontier an investor can be viewed as owning an optimally 

diversified portfolio as he cannot realise any additional returns without assuming additional 

standard deviation (risk). Rephrased, the investor now achieves minimum variance on their 

portfolio on a given expected return. Any points above the efficient frontier are preferable to any 

points vertically below them as the investor would be increasing return while assuming the same 

level of risk. Points below the efficient frontier are sub-efficient as an investor is assuming a lower 

return than is possible when assuming the given level of risk. This also points to the notion that an 

investor can increase his expected return by increasing a portfolio’s variance and thus assuming 

more risk.  

The final conclusion of Markowitz (1952b) is that the expected return – variance figure (as pictured 

above) does not imply that any and all diversification will pay off – but rather that one should 

diversify for the right reasons. This is to take into account share price covariance, industries and 

other company factors. It is highlighted, however, that if two shares of equal variance are 

purchased, the resulting portfolio will have less variance than either of the two shares held 

separately due to a portion of the non-systematic risk being diversified away, assuming non-perfect 

correlation between the two shares. 

Markowitz (1991) mentions how an optimising investor would behave with regards to portfolio 

diversification. The statement that if an investor knew all of the future share returns with certainty 

he would invest in one share only (the one with the highest return) and in no case would he prefer 

a diversified portfolio, is reiterated in this article. Thus, the existence of risk and uncertainty is 

imperative to the study of diversification. It is acknowledged, as previously explained, that risk 

cannot be thought of as equivalent to uncertainty. 

This dissertation focuses not on optimising the risk and return trade off as displayed by the 

Markowitz efficient frontier, exhibited in Figure 2, but rather on optimising the number of shares 

to the portfolio variance exchange (Markowitz, 1952b). In order to observe this a number of 

formulas must be utilised. Firstly, once the data series of the share prices to be studied are retrieved 

the share price returns must be calculated respectively. This is completed as follows (assuming 
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monthly closing share prices): The closing price of the current month, minus the closing price of 

the previous month plus the dividends accrued for the month, all divided by the closing price of 

the previous month.  

Assuming the accrued dividends are taken through share price adjustments, the formula for a share 

prices’ monthly return can be seen below: 

𝑅𝑡 =
𝑃𝑡−𝑃𝑡−1

𝑃𝑡
          (3)  

In the above equation, R represents the return of a share at time t, Pt represents the price of the 

share at time t while Pt-1 represents the price of the share the previous period. The result is the 

return which an investor would have made or lost if he invested funds into a security at the 

beginning of a month, collected the dividends accrued to him throughout the month and sold the 

security at the end of the month. A loss is represented by a negative return. The analysis in this 

dissertation, as in Markowitz (1959), assumes that a dollar of capital gain one might receive is 

exactly equivalent a dollar of dividends received; as such no tax implications are taken into account 

(Markowitz, 1959). 

The portfolio return can then be calculated by the summation of weighting the respective shares 

and multiplying their weight by their return respectively. This is completed using the formula 

below: 

𝑅𝑝 = 𝑤1 ∗ 𝑟1 + 𝑤2 ∗ 𝑟2+ …  𝑤𝑥 ∗ 𝑟𝑥        (4) 

 

Or alternatively 

 

𝐸(𝑟𝑝) = ∑ 𝑊𝑖
𝑛
𝑖=0 ∗ 𝐸(𝑟𝑖)          (5) 

In equation 4, Rp represents the portfolio return while 𝑤1 ∗ 𝑟1 represents the weight on the first 

share multiplied by its respective return, 𝑤2 ∗ 𝑟2 represents the weight on the second share 

multiplied by its respective return and so on. In order to calculate the return on the overall portfolio 

of shares, the weighted return formula was used.  
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Similarly, if one forecasts possible future share prices rather than looking retrospectively at past 

share prices, equation 5 should be utilised. In equation 5 above, 𝐸(𝑟𝑝) refers to the expected return 

on the portfolio of shares. This is once again equal to the summation of the weight on each share 

multiplied by the expected return on each share. In the methodology employed in this study, the 

sum of the weights on each share is always made to be equal to one; furthermore the weights on 

all shares must be non-negative. This restricts the analysis to an environment where an investor is 

not allowed to short sell a share, but may assign either a 0 weighting or a weighting of larger than 

0 but smaller or equal to 1 to any share. 

It can be expected therefore that the return of a portfolio should lie between the potential return 

that could be realised through the highest returning share and the potential return that could be 

realised by the lowest returning share – any combination of shares cannot yield returns greater than 

the single share maximum or less than the single share minimum (Markowitz, 1959).  

It could then be assumed that similar constraints could be expected when analysing the variance 

of a portfolio, however this is proven not to be the case. Computing the variance of a portfolio 

requires not only the weighted variances of the respective shares to be taken into account, but also 

how the shares may covary. When analysing a portfolio of shares the best measure of variability 

of the return series is the standard deviation of the portfolio (Markowitz, 1959). The standard 

deviation on each share can be calculated in the classical statistical sense, as seen below: 

𝜎 = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
         (6) 

In the equation above 𝜎 represents a single share’s standard deviation. 𝑥𝑖 refers to the current 

observation in the series while �̅� refers to the mean or average of the series. The sum of these 

squared differences, divided by n-1 (n referring to the total number of observations in the series) 

equates to the standard deviation of the share. The square of this measure equates to the share’s 

variance. 

The standard deviation for each share as well as the variance (variance being equal to the standard 

deviation squared) for each share in a portfolio can be worked out in the classical statistical 

manner; however when calculating the standard deviation or variance of a portfolio the process 

must take into account three factors: firstly the standard deviation of each share, secondly the 
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correlation between each pair of shares and finally, the weights to be assigned to each share. Thus 

one should not simply utilise the average standard deviation of the individual shares included in a 

portfolio to be the standard deviation of the portfolio, as it is necessary to account for how shares 

may covary, or move together (Markowitz, 1959).  

One share’s covariance with another can be calculated as follows: 

𝐶𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖−�̅�𝑛

𝑖=1 )(𝑌𝑖−�̅�)

𝑛−1
        (7) 

This formula demonstrated that the covariance between two securities is the sum of the product of 

the deviation of the first security from its mean, multiplied by the deviation of the second security 

from its mean, divided by the number of observations in the series subtracted by 1. This measure 

allows insight into how the two securities move together in a portfolio. If the deviations of the 

securities move in the same direction (both positive or both negative), one can conclude that they 

move in generally the same direction and as such there is limited diversification benefit when 

combining the first security with the second. If they move in opposite directions however, one 

should expect the volatility of the resulting portfolio to be lower than either of the securities’ 

volatility on their own. Additionally, if the securities are completely unrelated, in theory the 

covariance between the two tends to be zero (Elton, Gruber, Brown & Goetzmann, 2009). 

A related concept to covariance is correlation. Correlation is calculated as the formula below: 

𝑟 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛(∑ 𝑥2)−(∑ 𝑥)2][𝑛(∑ 𝑦2)−(∑ 𝑦)2]
       (8) 

In this formula 𝑟 is the correlation coefficient, 𝑥 is the first series observation and y is the second 

series observation. The correlation coefficient refers to the strength of the relationship between 

two shares and is a measure that will lie between -1 and +1. If the value is -1 it can be said that the 

securities move in perfectly opposite directions, thus if security A moves in a positive direction by 

one unit, security B will move in the opposite direction, also by one unit. If the value is +1 the 

securites move in the same direction perfectly. In this case, if security A moves in a positive 

direction by one unti, security B will move in the same direction by the same magnitude. A value 

of 0.5 means that if the first security moves in a positive direction of one unit, the second security 

will move in the same direction by a unit of 0.5 and so on. The hypothesis from this is that the 
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optimal benefit of diversification will be obtained on two securities if they move in perfectly 

opposite directions, thus all moves will offset oneanother.  

To move between between the correlation and covariance between two shares, the following 

formula can be used: 

𝑟(𝑥,𝑦) =
𝐶𝑂𝑉(𝑥,𝑦)

𝑆𝑥𝑆𝑦
          (9) 

The 𝐶𝑂𝑉(𝑥, 𝑦) refers to the covariance between share 𝑥 and share 𝑦 while 𝑆𝑥 refers to the standard 

deviation of 𝑥 and the same is true for 𝑆𝑦 respectively. 

The general formula to calculate the variance of a portfolio can be seen below: 

�̂� =  �̂�𝑝
2 =  ∑ 𝑋𝑖

2𝜎𝜀𝑖
2 + ∑ ∑ 𝑋𝑖 𝑋𝑗𝛾𝜀𝑖𝑗

𝑀
𝑗=1
𝑗≠𝑖

𝑀
𝑖=1

𝑀
𝑖=1      (10) 

In equation 10 (above), �̂� represents the variance of a portfolio (which is also equal to �̂�𝑝
2, the 

standard deviation of the portfolio squared).  M represents the portfolio, being the collection of M 

shares, each with their own weight. The first summation represents the contribution of risk that 

each stock adds to the portfolio (sum of the square of the participation (weight of each share) Xi, 

multiplied by the variance of the share price). The second group of summations represents the 

contribution of the covariance between shares i and j (covariance being 𝛾𝜀𝑖𝑗) multiplied by their 

respective weightings (Markowitz, 1952b). The variance of a portfolio is a measure of how the 

actual returns of the group of securities fluctuate. It is expected that the lower the correlation 

between securities, the greater the benefit of diversification will be. This occurs because the 

addition of shares to a portfolio with a low correlation to shares already in the portfolio will push 

the overall portfolio variance lower. 

The return and variance equation are optimised under the following constraints: 

∑ 𝑋𝑖 = 1𝑀
𝑖=1            (11) 

𝑋𝑖 ≥ 0, 𝑖 = 1, … , 𝑀          (12) 
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Equation 11 ensures that the sum of the weights of the potential shares is equal to 1. In other words 

all resources are utilised in the portfolio choice. Equation 12 ensures that all weights can only 

range between 0 and 1. This restricts the portfolio choice to one that does not include short selling 

shares nor allowing leverage (where the sum of the weights of the shares could equal to larger than 

1, as one is borrowing money to increase positions taken on certain shares) (Freitas, Souza & de 

Almeida, 2009). The restriction on short selling is fitting to the current study as the JSE, the 

exchange on which the study is performed, does not allow for the short selling of shares (JSE 

Equities Rules, 2016). The aim of this dissertation is thus to find the optimum number of shares 

needed in order to minimise the risk inherent in a portfolio.  

All else being equal, it can be said that the higher the correlations among security returns, the 

greater the standard deviation of the portfolio as a whole. In other words, the more the returns on 

individual securities tend to move in the same direction together, the less do variations in other 

individual securities ‘cancel out’ these movements by moving in the opposite direction, this leads 

to a greater variability (standard deviation) in the portfolio as a whole. If however individual 

securities tend to move in opposite directions, the inclusion of both to a portfolio should decrease 

the variance of the portfolio. It is also noted that diversification is extremely powerful when shares 

are uncorrelated. Even when large portfolios are considered, if the shares included are highly 

correlated, diversification can have only a limited impact on risk reduction. It can thus be said that 

a security adds much or little to the variability of a portfolio based on the sum of all of its 

covariances rather than on its own variance (Markowitz, 1959). 
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Generally, one finds that as the number of shares included in a portfolio increases, the variance of 

the portfolio decreases at a decreasing rate. This is displayed in Table 3 below:  

Table 3: Relation between the Number of Securities in a Portfolio to the Expected Portfolio 

Variance 

Note: The Effects of Diversification, Adapted from: “Modern Portfolio Theory and 

Investment Analysis”, by Elton, Gruber, Brown and Goetzman, 2009 

Table 3 shows the relationship between the number of shares in a portfolio and the portfolio’s 

variance. This data was analysed from U.S. equities – this included monthly share price data on 

all shares listed on the NYSE in 1975. As described previously, the variance of a portfolio cannot 

be completely diversified away but merely optimised as to remove the unsystematic risk inherent 

when purchasing individual shares. The systematic risk in the above sample can thus be seen to be 

approximately equal (as it tends to) to the variance number of 7.058. It can be observed that the 
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greatest difference, when aiming to minimise portfolio variance, is felt when between 10 and 12 

shares are included in the portfolio (in this sample). Thereafter the effect of adding another share 

to the portfolio becomes decreasingly significant. This can be seen graphically in Figure 7 below: 

Figure 7: Graphical Representation of the Relation between the Number of Shares in a Portfolio 

to the Portfolio Variance 

 

Figure 7: Graph displaying the Number of Stocks vs Risk (variance) on the sample shown in Table 

3. Adapted from: “Modern Portfolio Theory and Investment Analysis”, by Elton, Gruber, Brown 

and Goetzman, 2009. 

The above section allows one an in depth understanding of the Markowitz Portfolio Theory. In 

addition the importance of discovering the number of shares to include to a portfolio in order to 

achieve optimal diversification is clearly demonstrated. The numerous findings of Markowitz: that 

diversification can reduce but never eliminate risk, a portfolio with a maximum expected return 

does not necessarily imply that it has a minimal variance and finally that not all diversification will 

pay off, are outlined and thereafter the formulas utilised to analytically describe the findings are 

presented. The theory of the efficient frontier is explored and thereafter graphically displayed. 

Finally the graph of the effect that adding securities to a portfolio has on the variance of that 

portfolio is shown.  
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Despite the significance highlighted above of discovering the optimal number of shares to include 

into a diversified portfolio there are instances when investors have been found to be holding sub-

optimally diversified portfolios. This can be partly attributed to inherent irrational beliefs and 

behaviours implemented by investors. This chapter continues with an inspection into the various 

behavioural factors that can lead to sub-optimal diversification. 
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2.5 Behavioural Factors Leading to Sub-Optimal Diversification 

It is interesting to note that when studying investors’ actual portfolios, a common anomaly tends 

to appear – that investors are in fact not ‘properly diversified’ (Statman, 1987). The concept of 

being ‘properly diversified’ refers an occurrence whereby the investor avoids superfluous 

diversification – that is, diversifying across shares without much added benefit of the portfolio’s 

risk being decreased (Statman, 1987). Superfluous diversification is balanced against the investor 

being overly focused in his investments, such as being overly weighted in particular categories 

such as in certain industries, geographies, sectors and the like.  

Jacob (1974) made the assertion that an investor can decrease the number of shares needed to 

properly diversify their holdings by choosing them judiciously. Attention must be paid to the 

industries, geographies, sectors and the like that the investor is investing in so as to actively seek 

a portfolio that is not too heavily focused on one particular factor. Furthermore, it was 

acknowledged that perhaps the reason that investors tend to be under-diversified is that their share 

portfolio only makes up a small proportion of their wealth holdings; with the remainder of their 

wealth being invested in bonds, real estate and the like (Jacob, 1974). However, King and Leape 

(1998) found that after completing a wide survey, investors appeared not to be properly diversified 

even after accounting for other assets in the investors’ portfolios. Transaction costs were then 

included into their model but they concluded that the under-diversification anomaly still remained. 

Shiller (1990) questioned American and Japanese investors and required them to value each other’s 

markets as well as their own. Significant differences were found, with both investors valuing their 

own market higher than the others which led to sub-optimal diversification. This could be a display 

of national pride but also purely because it is natural to overweight factors that we have more 

knowledge of. 

This reinforces the results found by French and Poterba (1993) that in spite of the increasing proof 

that international diversification tends to pay off, the majority of investors still hold the bulk of 

their holdings in their domestic country. Notably these findings were shown to be the result of 

investor choices rather than of institutional constraints. They hypothesise that this could be due to 

the homecoming bias – the empirical anomaly in finance that states that domestic investors may 

prefer to invest in domestic rather than international securities. This behaviour occurs despite the 

fact that it may lead to the selection of suboptimal portfolios which may further lead investors to 
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lose out on the benefits that international diversification may offer (French and Poterba, 1993). 

The table below shows explicitly that investors tend to hold more domestic assets as compared to 

non-domestic assets leading them to be under-diversified. 

Table 4: Portfolio Distribution Achieved by Investors Across Geographic Locations 

 

Note: Adapted from Equity Portfolio Weights: British, Japanese, U.S. Investors, adapted from “Investor 

Diversification and International Equity Markets”, by French and Poterba, 1993 

The table above illustrates the cross matrix of the portfolio weightings held by investors based in 

various countries. The left vertical axis shows the countries whose holdings were examined while 

the horizontal axis demonstrates the respective weightings held by each country. It can be seen, 

for example, that of the U.S. based investors analysed, their average holdings are 93% based in the 

U.S. In addition 1.31% of their holdings are focused in the Japanese markets and 5.9% are held in 

U.K. equities. The additional countries holdings (Japan, U.K., France, Germany and Canada) can 

be interpreted in a similar fashion. These notably do not sum to 100%, however, it is noted in the 

study that the figures are estimations and do not account for factors such as intercorporate cross-

holdings (French and Poterba, 1993). 
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Further explanation of the sub-optimal diversification anomaly is provided by Kahneman and 

Tversky, who are widely viewed as pioneers in the field of behavioural economics largely due to 

their 1979 paper on prospect theory (Kahneman & Tversky, 1979). Prospect theory describes the 

hyperbolic discounting curve that is a mental model utilised by people which runs contrary to the 

traditional theories of utility theory. Prospect theory essentially states that people display risk 

aversion in choices involving sure gains and display risk seeking behaviours when facing choices 

involving sure losses (Kahneman & Tversky, 1979). In this way prospect theory can play a major 

function in explaining why investors may be over or under diversified. If an investor is facing a 

large probability of an extreme loss to his portfolio, instead of diversifying the portfolio as would 

traditionally be thought to be rational, the investor would leverage up his position on a selection 

of very few shares based on the small probability that this decision could lead to large, market 

beating gains. Similarly, in the situation when the investor is faced with a decision involving an 

almost sure gain, instead of leveraging up the position in a bid to further enhance gains (albeit 

while assuming increasing amounts of risk) the investor would prefer to over-diversify his 

portfolio in an attempt to refrain from losing any value, irrespective of the outcome of an event.  

Kahneman and Tversky (1984) further illustrated that sub-optimal diversification decisions can be 

partly attributed to the way in which diversification is commonly referred to. Kahneman and 

Tversky (1984) revealed that a decision is preferred if it is structured as the full protection of one 

event rather than the partial risk reduction of the overall risk, despite that they may be 

mathematically equal. Diversification is typically referred to as being a tool that can be utilised to 

reduce (and optimally minimise) the overall risk of a portfolio. In this way the decision to employ 

diversification is presented as a relatively less appealing option compared to the instance wherein 

specific strategies could be said to fully eliminate certain risks afflicting a portfolio.  

There are numerous additional behavioural factors that are understood to potentially effect 

diversification decisions. These include the self-attribution bias, overconfidence and over-

optimism (thinking the securities one selects will outperform), anchoring, availability, interference 

theory, herding, confirmation bias and mental accounting. Each factor/bias is discussed in turn in 

the section below. 
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Self-attribution bias refers to situations in which people overestimate the degree to which they are 

responsible for their own success (Baker & Nofsinger, 2010). This bias can occur if an investor 

had selected a portfolio of shares that performed excessively well but is not properly diversified. 

This scenario may lead an investor to attribute their portfolios performance to their share selection 

skills rather than ‘luck’ or other potential variables. In this case it is unlikely that an investor will 

elect to adjust their current portfolio to a more diversified one as they may hold the belief that they 

do not need to diversify their portfolio to the same extent as other investors due to their superior 

share selecting abilities. 

The self-attribution bias can routinely lead to an overconfident belief system. Overconfidence 

refers to an instance in which one believes they are right more often than they realistically are 

(Baker & Nofsinger, 2010). This behavioural bias works in a similar manner to the behavioural 

bias of self-attribution - if an investor wrongly (or rightly) believes that the high returns on their 

portfolio are due exclusively to their personal share selections, they may become overconfident in 

their abilities. This may in turn lead to an investor downplaying the benefits of diversification as 

the belief is held that their portfolio selection ability is better than the markets, referring to all other 

investors. In this way overconfidence can lead to a sub-optimally diversified portfolio. 

A related behavioural factor is that of over-optimism which refers to the tendency of over 

exaggerating one’s own abilities while holding an overly hopeful outlook (Tversky & Kahneman, 

1990). This could lead to a decrease in the diversification of an investor’s portfolio as an investor 

may hold exaggerated ideas of how the economy and selected shares will perform. Consequently 

this could lead to an underweighting of the potential negative outcomes of their portfolios which 

may in turn lead to a downplaying of the benefits of diversification, resulting in an under-

diversified portfolio. 

The fourth behavioural bias is termed anchoring. Anchoring refers to the occurrence when initial 

information (whether correct or incorrect) impairs ones judgement (Tversky & Kahneman, 1990). 

Anchoring can lead to ‘stickiness’ of an ideological system. For example, if an investor believes 

that the optimally diversified portfolio consists of a minimum of 30 shares, they may disregard 

current research that states that the optimal portfolio is made up of less (or more) shares. In the 

same light, if an investor believes diversification is unnecessary, literature stating the opposite may 

not affect the investor’s behaviour.  



Page 73 

 

Anchoring is a behavioural bias that can influence an investor in tandem with, or separate from, 

the availability heuristic. The availability heuristic refers to the behaviour that current and future 

probability outcomes anticipated by an investor are dependant on past experience (Tversky & 

Kahneman, 1973; Tversky & Kahneman, 1990). Information that is more memorable (and thus 

more easily available to recall) will lead to the possible incorrect conclusion that a secondary event 

is more or less likely, based on the availability of occurrences of similar previous events. This bias 

can lead, as described with anchoring, to an individual basing current and future behaviour on past 

experience. This process can occur both consciously and unconsciously.  

The availability heuristic poses multiple threats to academic literature that may indicate that an 

investor’s current behaviour could be suboptimal – as the impact of the literature could be 

drastically underweighted due to an investors recent experiences. For example, if an investor has 

experienced a large degree of success by employing diversification in a portfolio consisting of 30 

shares, they may be unwilling to modify their strategy even in the face of new literature that may 

demonstrate the behaviour as being suboptimal. Similarly, if an investor has experienced success 

devoid of diversification in the past, they may be unwilling to adjust to a strategy that includes 

diversification. Conversely, this bias could enhance the impact of literature as in the case where 

an investor encountered an extremely negative loss as a result of not possessing a diversified 

portfolio, such as those experienced during the 2008 financial crises. This could lead to an investor 

being aggressively inclined to favour the selection of a portfolio that includes diversification post 

the undesirable event. This predisposition is due, in part, to their previous negative experience 

which may be potentially reinforced by the finding that people are more averse to losses than they 

are pleased with gains (Kahneman & Tversky, 1979).  

Linked to the availability heuristic is interference theory. Interference theory relates to the 

phenomenon that past memories can have an influence when learning new material (Nevid, 2013). 

There are two categories of interference theory: retroactive and proactive. Retroactive interference 

refers to when interference affects a memory after it is learned but before it is consolidated and 

recalled (Nevid, 2013). This is commonly observed in the situation when learning more 

information leads to remembering less past information. Of more interest in this study is proactive 

interference. Proactive interference refers to an occasion when new material attempting to be 

learned is influenced by old, previously learned material (Nevid, 2013). In this way, new memories 
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can interact and thus alter older memories. This can affect investor choice as selective memory 

can alter investment decisions as these are dependent on the type of memory that is recalled (for 

example losses when holding less than 30 shares). If a memory is readily available then the effect 

on investor behaviour will be compounded, in line with the availability heuristic described above. 

Proactive interference could similarly create a barrier to learning and adapting to new information 

that was previously thought to be incorrect. 

Investor decisions relating to diversification can also be affected by a behavioural bias known as 

herding or groupthink. Herding or groupthink refers to an occurrence when an individual in a group 

is reluctant to challenge the conventional wisdom of the group, even when presented with 

contradicting evidence (Wilcox, 2010). This could impact on the behaviour of investors as if they 

are involved in an environment that is specifically aimed against or in favour of diversification, it 

is highly likely that the investor will adopt similar beliefs and behaviours as those around them. 

This would directly impact on the level of diversification obtained by an investor but notably 

excludes the case when an investor may follow a contrarian strategy. A contrarian strategy is 

identified by the buying and selling of securities that stand in opposition to current market 

sentiment, for example buying shares that the majority of investors are selling due to their belief 

that the price will progressively move lower. 

Additionally, confirmation bias can affect the decisions that an investor may make with regards to 

diversification. Confirmation bias refers to the human tendency to interpret or remember 

information that confirms ones’ own current preconceptions (Miller, Vandome, & McBrewster, 

2009). In other words, the seeking out of information which agrees with one’s ideas, values and 

beliefs while simultaneously disregarding evidence that points towards a contradictory belief 

(Nickerson, 1998). It can be easily appreciated as to how this can detrimentally affect an investor’s 

portfolio; investors will tend to disregard new evidence that disproves their current investment 

models or supports a new method that illustrates how to achieve optimum diversification. This 

evidence would, by way of the confirmation bias, either be ignored or underweighted implying 

that a large amount of time may be necessary for new research to be accepted as the norm in the 

investment industry. 
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The final behavioural factor discussed in relation to the sub-optimal diversification anomaly is that 

of mental accounting. Mental accounting was recognised by Black (1982, as cited in Statman, 

1987) who reasoned that people tend to invest their money in different ‘mental pockets’. Each of 

these pockets has an associated risk preference to it. This notion supports the under-diversification 

anomaly (sub-optimal portfolio diversification) as investors do not tend to value an asset based on 

how it can contribute to their portfolio but rather as a standalone investment decision. This could 

result in a portfolio that may be comprised of positively performing assets that are, for example, 

concentrated on one industry – leading to the overall portfolio exhibiting under-diversified. In this 

way, Black (1982) made the assertion that a lack of diversification does not imply a lack of 

education or of investor sophistication but rather, could be due to the ingrained human bias to view 

financial decisions in different mental pockets. 

The discussion above highlighted evidence displaying the numerous occurrences where investors’ 

portfolios have demonstrated sub-optimal diversification properties and additionally several 

behavioural factors that the anomaly could be attributed to were investigated. It is important to 

note the aforementioned behavioural biases that could affect investor behaviour. As indicated 

earlier, genetic programming and particle swarm optimisation algorithms are designed to 

constantly learn from data. These approaches have proven to be efficient in recognising patterns 

in a data set (for example, determining if a share needs to be sold based on a predefined rule set). 

It is possible however, that a human element could inadvertently be included into the algorithm 

(as the programmer of the algorithm sets predefined rules). For example, literature has highlighted 

a behavioural anomaly - that people are more averse to losses than they are enthusiastic over gains 

(Markowitz, 1952a; Fischer & Jordan, 1995; Kahneman & Tversky, 1984). This bias could lead 

to suboptimal investment decisions if included by way of a predefined rule introduced by the 

investor/programmer. This bias could also be inadvertently included if the investor/programmer 

interprets the output signal incorrectly or even disregards the output signal intentionally due to a 

behavioural bias. Therefore, it is necessary to ensure that the algorithmic process is scrutinised to 

ensure that behavioural biases do not creep in. Providing these are avoided, the various studies 

described previously offer strong evidence in support of why genetic programming and particle 

swarm optimisation can be used to solve for optimal portfolios of assets as well as in potentially 

forecasting the returns of these portfolios. 
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2.6 Summary 

In Chapter 2 above, the past literature relating to diversification is thoroughly examined. Both 

types of diversification, as it relates to assets and to products, were inspected for insight and the 

study continued with a review of how previous authors utilised and implemented the traditional 

method as well as the two artificial intelligence approaches namely: genetic programming and 

particle swarm optimisation. The studies were carried out using various methodologies, while the 

majority also differed over the sample period used; this took the form of using a different time 

period and (or) analysing differing stock markets. Despite these differences, the studies were able 

to illustrate the vast differences in the number of shares indicated as necessary to obtain an 

optimally diversified portfolio. The method in which the current dissertation aims to improve on 

previous literature was discussed but will however be further elaborated on in subsequent chapters. 

The optimally diversified portfolio was established to consist of from as few as 5 shares to as many 

as a minimum 30. The comparison analysis uncovered key insights with relation to how the number 

of shares needed to obtain an optimally diversified portfolio has changed over time, stock markets 

and the like. The chapter continued with an elaboration on the Markowitz portfolio theory and 

finally, the behavioural factors that may impact an investor’s selection of assets were highlighted.  

The dissertation now continues by expanding on the data utilised in the current study as well as 

further elaboration regarding the methodology behind the two artificial intelligence approaches 

(genetic programming and particle swarm optimisation) and the way in which each was employed 

to answer the research questions posed in this research. 
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Chapter 3: Data and Methodology 

3.1 Data  

The data employed was sourced through the Bloomberg Professional Platform. The data utilised 

was the monthly closing share price of each company that was listed at any time on the JSE Main 

Board over the period from December 1994 – December 2014 (this includes shares that may have 

been delisted over the period). The share prices were taken as on the 25th of each month starting 

from the 25th December 1994 and ending on the 25th of December 2014. The day of the 25th of 

each month was selected, instead of the last day of each month, as to avoid the potential bias of 

synchronicity of price movements and distortions due to month end trading. On months where the 

25th fell on a non-trading day (as in the case of a Saturday or Sunday as well as on a public holiday) 

the closing price from the closest previous trading day was utilised.  

Once the complete list of respective companies had been established, three adjustments were made 

to their closing share prices (before calculating the return series), in an attempt to obtain the 

cleanest data set possible and properly account for corporate actions. Firstly, normal cash 

adjustments were made. This included adjusting the historical share prices for any interim 

dividends and special dividends, interest on capital as well as partnership distributions. Secondly, 

abnormal cash adjustments were made. This entailed adjusting the historical share prices to reflect 

liquidation, capital gains, rights redemptions as well as proceeds or warrants. Finally, capital 

changes were taken into account which included adjusting the historical share prices to reflect 

spin-offs, share splits and/or consolidations as well as any rights offerings. 

Over and above the three adjustments made to the data mentioned above, there were three further 

adjustments made in order to clean the data. Firstly, companies whom were on the list but however 

had zero observations over the entire 20 year period were removed from the data set. Thereafter, 

companies whom had share price below 100 cents at any point over the 20 year period were 

removed from the data set. This was due to the sporadic and random nature of these ‘penny stock’ 

type shares (as the share prices can be drastically changed, in terms of return, on a day to day basis 

due to single small trades on the company). Lastly, if a share was listed for part of the time period 

and was subsequently delisted at any stage (or was listed after the beginning of the subset period) 

the return series was made to equal 0% for the periods that the company was unlisted. Furthermore, 
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if a share did not trade over a monthly period, a 0% return was used. By including companies that 

were listed (delisted) over the full time period, survivorship bias is avoided. 

The preliminary data set, before cleaning, consisted of 984 companies. The three initial 

adjustments mentioned above were completed (which included normal and abnormal cash 

adjustments as well as incorporating capital change adjustments). Thereafter, the three additional 

adjustments were made which caused numerous firms to drop out of the sample. Once the data 

was cleaned as described in the processes above 356 companies remained.  

The remaining population, consisting of 356 companies, were split across 11 sectors in the 

proportions shown in Figure 8. The below chart is constructed by analysing the composition of the 

population of companies based on the number of companies in each sector. It can be observed that 

the majority of shares were concentrated in the financial sector, representing 28% of the 

population. Furthermore, 73% of the population can be represented through the combination of the 

top 4 weighted industries. This representation grows to 83.43% when the next heaviest weighted 

industry is included into the analysis. The utilities sector is represented by merely 1 share, which 

equates to 0.28% of the population; as such it is shown to round to 0% in the figure below. When 

analysing the strength of each mathematical approach in solving for the minimum variance 

portfolio utilising an optimal number of shares, the above analysis will be included as a technique 

allowing one to assess if the population is adequately represented through the optimally diversified 

portfolio selected by each mathematical approach. This will be further explained in the 

methodology section to follow.  
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Figure 8: Population Split by Industry 

After completing the above adjustments, the return series of the remaining shares was calculated 

using the standard return formula: 

𝑅𝑡 = [
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
] ∗ 100         (13) 

This is a repeat of equation 3 but expressed as a percentage. Rt is the return at time t, Pt is the 

closing share price at time t and Pt-1 is the closing share price at time t-1. In this instance, Pt is the 

current month’s closing price and Pt-1 is the previous month’s closing price. The return series thus 

ran from 25 January 1995 – 25 December 2014. The return series is used in place of the absolute 

share price values, as in previous literature, in order to avoid the standard deviation of a share 

being larger purely due to higher share prices and lower for those with lower share prices 

respectively. Utilising the share price returns overcomes this and allows the standard deviation of 

shares to be compared like for like. It was thus on the return series that the analysis was performed. 

As mentioned above, shares that were not listed or did not trade over any specific month to month 

period were allocated a 0% return for the respective month. 

Basic Materials
19%

Communications
5%

Consumer, Cyclical
13%

Consumer, Non-
cyclical

13%
Diversified

4%

Energy
3%

Financial
28%

Industrial
10%

Property Fund
2%

Technology
3%

Utilities
0%



Page 80 

 

3.2 Methodology 

The traditional simulation approach, the Genetic Programming approach and the Particle Swarm 

Optimisation approach are each applied to the full 20 year data set in turn. The analysis of each 

approach is applied using four tests – in essence, four tests are run for each mathematical approach; 

thus 12 tests were run in total. Thereafter, tests to assess the stability of the results were run on the 

equally weighted pre-specified portfolios, to analyse the variability of the outputs using each 

approach. Stability testing gives one further insights as to the strength of the application of the 3 

mathematical approaches. Through stability testing one can assess whether a method converges to 

the optimal answer or whether the answer is found by pure chance – which would lead to a large 

variability in the output with little stability of the results. This will be further expounded upon 

below.  

The first test to be run with each approach solves for the minimum variance portfolio at each 

number of share, ranging from 1 to 30, while maintaining equal weightings. In this way the 

portfolio is set so as to ensure that when the portfolio is restricted to consist of only 2 shares, each 

share will carry a weight of 0.5. When the portfolio is restricted to consist of 3 shares, each share 

will carry a weighting of 0.333 and so on. This simulation continues under the constraints 

previously mentioned. 

The second test solves for the minimal variance portfolio with no restrictions on the number of 

shares that can be utilised in any given trial but while still maintaining equal weightings on each 

share selected. In this test the opportunity set available for each iteration in the simulation is greatly 

increased as now the portfolio opportunities are not limited to a contain a specific number of 

shares. In one iteration a portfolio of 4 shares may be selected (with a weighting of 25% on each) 

while in the next iteration a portfolio of 10 shares may be selected (with a weighting of 10% on 

each share). 

This test however carries the following additional constraints. The portfolio must contain at least 

one share – this constraint ensures that the optimisation process does not solve for a portfolio 

containing 0 shares and therefore yielding a minimum portfolio variance of 0. Furthermore, a 

statistical transaction cost is taken into account to prevent the optimisation process from 

consistently adding shares to the portfolio with each additional share having an extremely limited 

impact. This was achieved by ensuring that the best solution found (the portfolio yielding the 
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minimum variance) is better than the previously solved for best solution by at least a measure of 

0.01%, or else it is not used. 

Test three is similar to the first test but with the added requirement of equal weightings being 

applied to each share being waived. This test consists of solving for the minimal variance portfolio 

for each number of share, again ranging from 1 to 30, this time however removing the restriction 

of equal weightings on each share in the portfolio. This again increases the number of potential 

portfolios that can be constructed exponentially as in this test a portfolio consisting of 2 shares can 

be constructed in numerous different ways – for example a 75% allocation to the one share and a 

25% allocation to the other, an 80% allocation to one share and a 20% to the other and so on. In 

order to somewhat limit the opportunity set that the optimisation process can solve for, the 

weightings on each share were constricted to 3 decimal places and were allowed to vary by a 

minimum measure of 0.01. 

The final test consists of solving for the minimal variance portfolio with no restrictions on the 

number of shares that can be utilised, whilst no longer requiring equal weightings on shares to be 

used. This test carries the same restrictions as the second test, namely that the portfolio must 

contain at least one share; a statistical transaction cost is taken into account to prevent the 

optimisation process from consistently adding shares to the portfolio with each additional share 

having an extremely limited impact - this was again achieved by ensuring that the best solution 

found (the portfolio yielding the minimum  variance) is better than the previously solved for best 

solution by at least a measure of 0.01%.  

Each of the four tests were applied using each of the three approaches (the traditional simulation 

approach, genetic programming approach and particle swarm optimisation approach) in turn. The 

tests that construct a portfolio at each number of share (tests 1 and 3), ranging from 1 to 30, allow 

the traditional simulation methodology utilised by Neu-Ner and Firer (1997) to be compared to the 

Genetic Programming and Particle Swam Optimisation approaches in order to discover if they can 

provide additional benefits to diversification through a decreased portfolio variance. 
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The minimum variance reached through each mathematical approach is thereafter compared in 

order to find out if the more advanced methods, being genetic programming and particle swarm 

optimisation, offer additional significant value in further reducing portfolio variance compared to 

the more traditional simulation method. The simulations that solve for the minimum variance 

portfolio without solving for a particular number of shares (tests 2 and 4) allows for the strength 

of the mathematical models to be more transparently compared to one another as one can 

accurately view which method solves for the minimum number of shares to include in the portfolio 

that yields the minimum variance in a relatively less constricted environment – one with 

exponentially more options to select in each iteration. The time allowance for each simulation is 

set to 10 minutes and the sum of the weightings in the portfolio is set to equal 1 at all times while 

restricting short selling – where weights on a share may be below 0.  

The 10 minute time allowance was selected through the application of initial exploratory testing. 

A sample of tests were run, applying each mathematical approach sequentially, with time 

allowances of 2, 5, 10, 15, 30 and 45 minutes in turn. Across each of the tests it was demonstrated 

that the majority of the diversification benefit obtained by an investor was accumulated within the 

first 10 minutes. Below this point (shorter than 10 minutes) the investor continued to experience 

noticeable additional diversification benefits as the run time approached the 10 minute mark, 

demonstrated by a lower portfolio variance. Post this point, incremental diversification benefits to 

the investor were not significant and in numerous cases were unchanged to those achieved at or 

before the 10 minute mark. Figures displaying this occurrence are observed and discussed further 

in Chapter 4. 

In summation, this dissertation involves testing the data in four ways. Firstly the minimum 

variance portfolio is solved for iteratively at each number of shares to be included in the portfolio, 

ranging from 1 to 30 systematically. This first test carries the additional restriction that each share 

included in the portfolio is equally weighted. The results of each approach are tested against the 

hypothesis - the optimal number of shares to include in the minimum variance portfolio should lie 

between 10 and 30. The second hypothesis is also tested by comparing the minimum variance 

found using the more advanced mathematical models to the results obtained through the more 

traditional simulation approach. An additional strength test is carried out on each approach using 

the results of the test above. The portfolios that are restricted to consist of 5, 15 and 25 shares 
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respectively are simulated not once, but five times. The repetition of simulations is an additional 

test that is run which provides additional insight to further asses the strength of the respective 

mathematical approaches. A strong mathematical approach will display results where the 

minimum variance on each simulation should be extremely similar, if not equivalent. Slight 

differences could occur if the portfolio selected consists of slightly different constituents that 

previous or future simulations – such differences when using a strong mathematical approach 

should prove to be marginal. If these differences are substantial, one can assert that the 

mathematical approach being used does not display strength in the calculation process. 

Following which the second test will be run. This test solves for the minimum variance portfolio 

while maintaining equal weightings on the shares included in the portfolio; this test however 

carries a notable difference to the first. This second test no longer pre-specifies the number of 

shares that should be included into the portfolio. This exponentially increases the potential 

combinations of shares that can be tested within any given simulation. For example, in the first run 

of the simulation a portfolio can be constructed to contain 5 shares, in the next run the portfolio 

may contain 40 shares and so on. The inclusion of this test allows one to more optically view the 

performance, and thus the strength of each of the three approaches. The results of this test are 

examined through the use of multiple techniques. Firstly the minimum variance portfolio is 

examined both with regards to the resulting variance of the portfolio, as well as with regards to the 

number of shares that were utilised to achieve this minimum variance. If the number of shares 

utilised lies between 1 and 30, the result is compared back to the corresponding portfolio 

constructed in the first test. If the portfolio variance solved for is close to or better than the one 

solved for in test 1, the approach can be said to display strength in the calculation process. Again, 

these results could be slightly different to those obtained in test 1 due to different underlying shares 

being selected to be included into the portfolio. Furthermore, the restriction on time allowed for 

each simulation combined with the exponentially increased number of potential simulations that 

could occur provide a more rigorous strength test for the mathematical approaches. 

The third test is similar to the first in that it calculates the minimum variance portfolio iteratively 

at each number of shares (ranging from 1 to 30), however, this test no longer requires the shares 

in the portfolio to be equally weighted. The potential portfolios grow exponentially in this 

approach as previously a finite amount of portfolios could be constructed, however, the potential 
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possibilities are now far more abundant. For example, the population consisted of 356 companies, 

to be further elucidated upon in a further section; when constructing a portfolio restricted to 2 

shares of equal weightings the number of potential portfolios is 126 736 calculated by the square 

of the number of individual shares in the population. When the weightings on each share in a 

portfolio are allowed to vary, even when assuming a restriction of 3 decimal places on each 

weighting, the number of potential combinations in a portfolio constructed of merely two shares 

grows exponentially. This allows one to further examine the strength of each approach through a 

comparison to test one, both by examining the performance of each approach in calculating the 

minimum variance portfolio as well as allowing one to examine the stability of the series – the 

Markowitz theory (discussed previously in Chapter 1) illustrates that as more shares are added to 

a portfolio, so the resultant portfolio should display a lower minimum variance. 

The fourth and final test is similar to the second test in that the variance portfolio will be found 

overall without the number of shares to be included in the portfolio being pre-specified. Although, 

in this test the restriction of equal weightings on each share is removed. The results of this test are 

analysed with the same methodology applied in test 2, with the comparison now being carried out 

against test 3, where the number of shares to be included in the portfolio were pre-specified while 

allowing the weightings of each share to vary. In all simulations, the sum of the weightings on 

each share in the portfolio is required to be equal to 1. 

The above analysis allows one to answer the two key research questions in this study, as 

highlighted in the previous section. Firstly, “what is the minimum number of shares that can be 

included into a portfolio in order to achieve the optimal level of diversification?” This research 

question is answered using two approaches, the first and more traditional requires the weightings 

on each share in the portfolio to be equal and sum to 1. The second approach however allows the 

weighting on each share to vary – this constitutes a novel addition to previous literature. The 

weights on each share, as mentioned previously, must vary between 0 and 1 and in addition must 

sum to 1. Thereafter, the second research question is addressed: “Will the more advanced 

mathematical models of Genetic Programming and Particle Swarm Optimisation reveal new 

findings compared to the simulation based approach of previous literature?” The comparison of 

results achieved when applying each mathematical approach in turn, namely: the traditional 

simulation approach, the Genetic Programming approach and the particle swarm optimisation 
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approach constitutes a further addition to previous literature as comparative studies in this regard 

are relatively limited as indicated in the literature review section. 

Markowitz portfolio theory states that, as one adds shares to a portfolio, the portfolio’s variance 

should decrease. The decrease in variance should initially be significant but should gradually begin 

to be increasingly marginal as more shares are added past a point – this point is said to be the 

optimal point of diversification (Markowitz, 1959). The first hypothesis is that this optimal point 

portfolio is expected to consist of between 10 and 30 shares, in agreement with previous literature. 

Secondly, it is hypothesised that allowing the weights on each share to vary could discover 

previously hidden additional benefits of diversification due to the exponentially increased 

opportunity set that the algorithms can construct. The final hypothesis is that the advanced 

mathematical models of Genetic Programming and Particle Swarm Optimisation will yield better 

results (meaning a lower portfolio variance) than the more traditional simulated approach. This 

will add to the relatively small amount of literature that compares the Genetic Programming 

approach to the Particle Swarm Optimisation approach, and further compares both back to the 

traditional simulation approach that was utilised in numerous papers in the past. 

As previously mentioned, once all the simulations have been run, using each of the three 

mathematical approaches in turn, not only will the results be compared but stability testing will 

also be carried out. This is completed by analysing the first and third tests and entails running the 

same simulation five times on the sets when the portfolio is restricted to contain 5, 15 and 25 shares 

respectively. This is carried out on both test 1, where the weights on each share are restricted to be 

equal to one another, as well as on test 3, where the weightings on each share are allowed to vary. 

Each of the three mathematical approaches are applied in turn. A stable optimisation process 

should yield the outcomes showing little variance of the results between simulations when the 

same constraints are utilised. Finally, when the mathematical approaches are applied to test 2 and 

test 4, their respective portfolios will be analysed and compared with regards to inspecting the 

diversification over potential industries included in the population portfolio. 
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In order to more efficiently calculate the portfolio variance at each level of share as well as when 

the overall portfolio variance is considered, matrix multiplication is utilised as per the equation 

below: 

 

   

   

  

 (14) 

 

Equation 14 is the matrix multiplication extension of equation 10. As in equation 10, �̂�𝑝
2 represents 

the portfolio variance while w represents the weight on each share and is the standard deviation of 

the respective share. P in equation 14 (equivalent to 𝛾𝜀𝑖𝑗 in equation 10) represents the correlation 

between two shares, as noted by the subscripts associated beneath P. Using the matrix 

multiplication approach allows one to more efficiently compute the minimum variance portfolio 

when the number of shares to be included to the portfolio is pre-specified (ranging from 1 to 30), 

as well as when solving for the overall minimum variance portfolio (when the number of shares to 

be included to the portfolio is not pre-specified) – the same formula can be simply applied in this 

case as, all shares not being used can still be included in the equation by assigning them a zero 

weighting. Thus a new equation is not required to be evaluated for each additional share included 

into the optimal portfolio, but rather the three approaches need only to adjust the weightings of the 

shares for the same formula, under the respective restrictions. 

The study aims to find the optimally diversified portfolio, in other words the portfolio with the 

least variance, by using the minimum (or pre-specified) number of shares – as such the study is 

retrospective or backward-looking. There is potential in future studies to build in a predictive 

element, and as such develop a forward looking ability rather than the retrospective approach used 

in this dissertation, which could effectively indicate to the investor how many shares are expected 

to provide the optimally diversified portfolio in the future and furthermore which shares this 

portfolio should comprise of, however developing a forward looking simulation is not the aim of 

this dissertation. The final constraints that are applied to all of the simulations run are that, firstly, 
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the possible weightings on each share will range between zero and one. This thus excludes the 

possibility of short selling a share as well as the possibility of purchasing a share with leverage 

(investing more capital than one has on hand). Furthermore, the sum of the weightings of the 

utilised shares must always be equal to one – thus all of one’s capital must be invested in the 

market at any one time, assuming that the investors’ portfolio consists of only equity and no other 

assets. 

The way in which the full methodology and analysis was carried out in Microsoft Excel is 

explained thoroughly in a worked example found in Appendix 1.  Appendix 1 demonstrates the 

technique by which the correlation matrix was calculated and thereafter the process in which the 

portfolio variance is calculated using a matrix multiplication approach combined with binary 

factors is elucidated upon. Finally, the way in which the various constraints were incorporated into 

each simulation respectively are revealed. 

3.2.1 Implementation of Approaches 
The traditional simulation approach as well as the Genetic Programming approach were 

implemented using the Palisade Student software package. This is a package that can be utilised 

within Microsoft Excel for building and running of mathematical models. In both approaches the 

default parameters were utilised. When implementing the traditional simulation approach the ‘Risk 

Optimizer’ plugin was used. When specifying the model definitions both the optimisation goal and 

the criteria to optimise was set to minimum while the constraints were added as per the constraints 

previously mentioned. Thereafter the settings were input. All default settings were used while the 

termination was set for each test respectively under the criteria previously stated, namely that of 

the time of the simulation allowed to run for a maximum of 10 minutes while in tests 2 and 4 the 

best solution had to in addition improve from the previous best solution by a factor of at least 

0.01%. Furthermore, the simulation settings were set to run using an automatic number of 

iterations and the sampling type used was set to a Monte Carlo with a Mersenne Twister (default) 

over the Latin Hypercube methodology. These two sampling methods are similar yet contain some 

differences. Latin Hypercube sampling is a method to ensure that each probability distribution in 

a model is evenly sampled. This method was used in the past when the accessible computing speed 

was low as it allowed one to gain a stable output with a smaller number of samples than a simple 

Monte Carlo Simulation (Glasserman, 2004).  
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Latin hypercube sampling is a stratified sampling method and shows small advantages over the 

Monte Carlo simulation methods when the number of variables in a simulation is small, as well as 

the number of distributions and number of simulations to be run. When there are multiple variables 

and distributions and a large number of simulations can be run, Latin hypercube samples lose its 

advantages over the Monte Carlo method. Furthermore, the Latin hypercube sampling method 

requires a large amount of computing memory as each possible distribution must be sampled 

before the simulation begins. For example, if a data set has 100 distributions and 5 000 samples 

are to be run, one would need to generate, shuffle and store 500 000 random numbers prior to 

beginning the simulation (Glasserman, 2004). The Monte Carlo methodology, however, relies on 

repeated random sampling to run through the search space to obtain the optimal solution for a 

mathematical problem (Thomopoulos, 2012). Although this methodology does not ensure that 

each distribution and sample will be used in at least one iteration, it allows for a larger number of 

simulations to be run quicker (McLeish, 2011).  

In the Genetic Programming simulations, the default settings were also utilised, aside from the 

constraints previously mentioned. In the model definition, the optimisation goal is set to the 

minimum while the adjustable cell ranges and constraints are set as previously stated. The sole 

setting altered from the default settings relates again to the time allowed for the simulation to be 

run, being set to 10 minutes. Tests 2 and 4 encountered an additional adjustment from the default 

settings, notably that the best minimum variance portfolio is required to be better than the previous 

best minimum variance portfolio by a factor of at least 0.01% or else the previous best solution is 

kept. 

For the implementation of the Particle Swarm Optimization the software package provided by 

XLOptimizer was utilised. In a similar fashion to the Palisade Software, XLOptimizer allows for 

various mathematical models to be built and run within Microsoft Excel. Ensuring both packages 

are compatible and work as a plugin, aids to guarantee that neither approach is given preference 

or computational power advantages with regards to the speed of the optimisation. 
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Once again the default parameters were used, although these are slightly more numerous and 

require further in depth exploration. Firstly, the respective adjustable variables are added to the 

model and their type adjusted to binary (as previously discussed). The constraints are then added, 

similarly to those added to the Palisade software. Thereafter the specific scenario was chosen, 

namely Simple PSO, in order to run the Particle Swarm Optimisation analysis. The population 

variable, which depends on the complexity of the problem and usually range between 10 and 30 

was selected at 20, which is the default value. Thereafter, a cognitive and social parameter are 

confirmed as well as the inertia weight and parameter gamma. The cognitive parameter controls 

the weight of the pull of each particle to the best position previously achieved by the same particle, 

this is referred to as pbest earlier in the dissertation. The default value is 2, which is the value that 

was selected. The social parameter controls the weight of the pull of each particle to the best 

position previously achieved by any particle of the whole swarm, this is referred to as gbest in the 

PSO section above. The default parameter is 2, which is what was selected. The inertia parameter 

controls the acceleration of each particle, again the default of 0.8 was selected. Finally, the gamma 

parameter controls the initial maximum velocities of the particles as the fraction of the design 

space (per variable) that can be travelled in one time step. The default value of 0.4 was selected. 

The initial placement of particles was also selected to be randomised. The final constraint added, 

as implemented in the previous approaches, was to limit the amount of time that the process can 

run for to be equal to 10 minutes. Furthermore, in the Particle Swarm Optimisation method, a large 

penalty function was utilised in order to ensure that hard constraints, such as the sum of all of the 

weights of the included shares equal 1, were adhered too. The penalty function is set at 100,000*X, 

100 times stricter than the default 1,000*X. 
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3.3 Summary 

This chapter provided further detail on the data utilised in the current study. This included an 

elaboration on the platforms employed to source the data as well as a discussion regarding the 

various adjustments completed in an attempt to obtain the cleanest data set possible. Following 

which the industry split of the resultant population of shares was examined. The industry split of 

the population portfolio will be compared to the industry split of the portfolios deemed optimally 

diversified by each mathematical approach in Chapter 4. This provides an additional technique 

allowing one to assess whether the resultant population is adequately represented by the portfolios 

deemed optimally diversified by each mathematical approach. 

The chapter continued by expounding upon the formulas and the methodology employed in the 

current study. This included elaborating on the four tests applied across each of the three 

mathematical approaches as well as describing the stability testing to be carried out thereafter. A 

clarification on the software involved, the respective settings applied and parameters employed 

was then provided. The dissertation now continues in Chapter 4 which outlines the outcomes 

achieved when the above methodology was implemented. 
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Chapter 4: Analysis and Results 

This section encompasses the evaluation of the results obtained through the application of the 

methodology described in Chapter 3. As described previously, each mathematical approach is 

applied to the data by means of employing 4 tests. This is completed with the aim of answering 

the two research questions. The first research question relates to: “what is the minimum number 

of shares that can be included into an equity portfolio, in order to achieve the optimal level of 

diversification in a South African environment?” A sub-question to this regards investigating 

whether allowing the weights on each share to vary uncovers previously undetected diversification 

benefits. The second research question focuses on enquiring as to: “which of the three selected 

mathematical approaches demonstrates the most strength when solving for the optimally 

diversified portfolio in a South African environment?” The second research question aims to 

ascertain whether the more computationally intensive and complex models of genetic programing 

and particle swarm optimisation will display increased strength in solving for the optimally 

diversified portfolio as opposed to the traditional simulation method. 

Chapter 4 aims to answer these research questions through the computation and analysis of the 

results achieved by each test on each mathematical approach in turn. These results relate to solving 

for the minimum number of shares that can be employed to construct an optimal portfolio. With 

this in mind, Chapter 4 commences with a demonstration of the results achieved by the traditional 

simulation approach and continues with the results of the genetic programming and particle swarm 

optimisation approaches. The section initiates by presenting the results achieved by test 1 and test 

3 across each mathematical approach. Test 1 and test 3 relate to the instance when the number of 

shares the portfolio should consist of was expressly pre-specified for each simulation, ranging from 

2-30 shares, as previously described. Additionally, stability testing is carried out on each approach 

in turn. The chapter continues with an analysis of the results achieved by test 2 and test 4 across 

each mathematical approach; these tests relate to the scenarios when the number of shares the 

portfolio should consist of was not pre-specified, while ensuring that the sum of the weightings on 

each share included into the optimal portfolio should equal 1.  
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The chapter concludes with a section detailing direct comparisons of the results. This is initiated 

by a comparison between the results achieved by the simulation approach when the weightings on 

each share were required to be equal against the results achieved when unequal weightings on each 

share was permissible. This is followed by a similar comparison, focused on the results achieved 

by the genetic programming approach. These two comparisons allow for the first research question 

and corresponding sub-question to be decisively answered as one is enabled to discover the 

minimum number of shares necessary to optimally diversify one’s portfolio, contrasted across  

equally weighted and unequally weighted portfolios.  

The chapter continues with a comparison between the results achieved by the simulation approach 

with equal weightings and the results achieved by the genetic programming approach with equal 

weightings. This is followed by a similar analysis comparing the results achieved by both 

approaches when the weights on each share were allowed to vary. This permits the second research 

question to be answered. The chapter thereafter incorporates a discussion on the unconstrained 

portfolios – relating to the simulations where the number of shares to be included in the portfolio 

was not pre-specified. This is completed across approaches, both when equal weightings were 

required on each share as well as when weightings were allowed to vary. In this section all 

implications of the current study are addressed and expanded upon. Finally, the chapter concludes 

with an evaluation of the diversification benefits of the portfolios deemed optimal across each 

mathematical approach where the number of shares in the portfolio was pre-specified in each 

simulation, ranging from 2-30 as previously discussed. This examination differs from the analysis 

previously described as the diversification benefits in this section relate not to the minimum 

standard deviation achieved by the portfolio, but rather investigates how the portfolio is spread 

across various industries. 
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4.1 Constrained Analysis (Pre-Selected Number of Shares) 

4.1.1 Simulation Results 

4.1.1a Equally Weighted Portfolio 

The first simulation consisted of solving for the minimum variance portfolio for each number of 

shares (ranging from 1-30) using the traditional simulation approach. This portfolio is restricted to 

be equally weighted and for the sum of the weights on each share to always equal 1. The results 

from this first set of simulations are shown in Appendix 2 and can be observed graphically in figure 

9 (below). From the graph below it can be seen that although the trend is unstable (in certain 

instances adding a share to the portfolio in fact increased monthly variance) the anticipated 

downward trend is observed. It is expected that the stability of the trend can be enhanced by 

allowing the simulation to run for longer (albeit potentially excessive) amounts of time. This is 

due to the notion that the simulation approach does not ensure that every available combination of 

securities will be evaluated, which would become increasingly more difficult as the number of 

shares added to the portfolio increases. 

 

Figure 9: Graphical representation of the results achieved from the first simulation 
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In keeping with the methodology employed by previous literature, the monthly variance 

observations are annualised. The trend of the annualised variance is demonstrated below: 

 

Figure 10: Annualised variance trend of the first test – traditional simulated approach with equal weightings. 

In the minimum monthly variance graph it can be seen that optimal portfolio consists of merely 

10 shares as after this point the additional benefit of diversification is negligible and in some 

instances in fact decreases. In the minimum annualised variance graph the point of maximal benefit 

of diversification indeed also lies at approximately 10 shares. Thereafter, one can further analyse 

each simulation. Due to the above, the ninth simulation is of particular interest – in this simulation 

the portfolio was restricted to consist of 10 shares.  

In this simulation a total of 4 762 runs were completed. The first portfolio that was generated that 

satisfied all constraints was discovered on the 2nd run at a time of 46 seconds. This gave the 

minimum variance portfolio to be equal to 9.282. The minimal portfolio variance was found at the 

run time of 7 minutes 49 seconds, on trial number 3 652. The progress graph of how the portfolio 

variance was progressively minimised in this simulation can be observed in Figure 11. The vertical 

axis on the graph below refers to the portfolio variance achieved while the horizontal axis refers 

to the simulation number. The graph thus shows that the first successful run achieved a portfolio 

variance of 9.282. Within 58 seconds, the 84th run achieved a minimum portfolio variance of 2.07. 

This shows an improvement of approximately 348%. The final best simulation, which was the 3 
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652th simulation achieved at a time of 7 min 49 seconds, solved for a minimum portfolio variance 

of 0.307. This is a further improvement of 1.763 or a further 574%. 

 

 

Figure 11: Progression of simulation when the portfolio is restricted to consist of 10 shares 
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The summary table is shown below: 

Table 5: Summary table of the Simulation displayed graphically in Figure 11 

Results   

Valid Trials 4761 

Total Trials 4762 

Best Value Found 0,307131749 

  + soft constraint penalties 0,00 

  = result 0,307131749 

  Best Trial Number 3652 

  Time to Find Best Value 0:07:49 

Reason Optimization Stopped Elapsed time 

Total Optimization Time 0:10:00 

 

Table 5 provides a summary of the full simulation. Here it is shown that 4 762 trials were run, 4 

761 of which were valid (99.98%). The best value (minimal portfolio variance) found was 0.307 

as demonstrated above. Furthermore the total optimisation time allowed was for 10 minutes. These 

results demonstrate the extent that the pre-specified, equally weighted traditional simulation 

approach can optimise the diversification benefits available to an investor within a relatively short 

amount of time. The extent to which the level of diversification achieved is significant is discussed 

by application of comparative analytics, expounded upon in the sections to follow. 
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An additional assessment is carried out in order to test the variability of the method’s results. In 

this case the same simulation is run 5 times in order to further analyse how the outcome changes 

each time. This is applied to the 5, 15 and 25 share portfolio. The results are as below: 

An equally weighted portfolio of 5 shares, with the simulation being run 5 times, yielded the 

following results: 

Table 6: Variability of Variance Test when the Portfolio is restricted to consist of 5 Shares 

 

 

 

 

 

Table 6 shows that the monthly variance over 5 runs ranges between 0.452 – 0.519 which equates 

to a maximum deviation of 0.067 or a variance of 0.002061. The total number of runs completed 

averaged 4 676 with 4 out of the 5 simulations falling within 120 runs from each other. Thus far 

this points towards a relatively stable method. This is somewhat contrasted when observing the 

run when the best observation was found as well as the time when it was found. The best run fell 

between 1 704 (this was within the first 35% of observations) and 4 547 (this was within the last 

9% of observations). The quickest time where the optimal solution was found was at 3 minutes 57 

seconds while the longest, taking almost the full allocated time, occurred at 9 minutes 18 seconds. 

The 3rd and 5th simulations utilise significantly more time (almost double) to solve for the optimal 

solutions compared to the other 3 simulations. This was primarily due to a relatively small 

improvement being made to the portfolio near the end of the simulation – this can be observed 

through the analysis of the progress across each of the above simulations.  

 

 

 

 

Simulation 1 2 3 4 5 

Monthly Variance 0.519 0.452 0.548 0.454 0.452 

Annualised Variance 2.495 2.328 2.563 2.333 2.328 

Total number of runs 4878 4832 4831 3891 4951 

Run when best found 1704 2168 4416 1912 4547 

Time when best found 3:57 5:00 9:17 4:56 9:18 
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The graphs for each of the 5 simulations is shown in the figure below: 

Simulation 1      Simulation 2 

 

Simulation 3      Simulation 4 

  

Simulation 5 

Figure 12: Graphs illustrating the variance minimisation progress achieved over the above simulations 
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The same exercise aiming to test the stability of the series was completed when the portfolio was 

given the constraint to consist of 15 shares, the results are displayed below: 

Table 7: Variability of Variance test when the Portfolio is restricted to consist of 15 shares 

Simulation 1 2 3 4 5 

Monthly Variance 0.421 0.275 0.395 0.420 0.362 

Annualised Variance 2.248 1.817 2.177 2.245 2.084 

Total number of runs 4859 4851 4883 4863 4569 

Run when best found 2483 4700 3799 4472 4455 

Time when best found 5:30 9:44 7:54 9:19 9:47 

 

Here it is demonstrated that the monthly variance ranges between 0.275 and 0.421; this equates to 

a maximum spread of only 0.146 which equates to a variance of 0.00368. The average total number 

of runs completed was equal to 4 805. Four of the five simulations fell under 78 cumulative total 

runs of the average. Once again this points towards a stable methodology. The run and time when 

the best simulation was found again shows slightly more variability. The run when the best result 

was found ranged between 2 483 (this represents completing 51% of the total number of runs 

completed) and 4 700 (which represented 96.8% of the simulation being completed). The fastest 

time in which the best solution was found was at 5:30 minutes with the longest being at 9:44 

minutes. 
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The figure depicting each of the 5 simulations is observed below: 

Simulation 1      Simulation 2 

 

Simulation 3      Simulation 4 

 

Simulation 5 

Figure 13: Graphs illustrating the variance minimisation progress achieved over the above simulations 
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This stability test was then completed with the portfolio consisting of 25 shares. The results can 

be seen below: 

Table 8: Variability of Variance test when the Portfolio is restricted to consist of 25 Shares 

Simulation 1 2 3 4 5 

Variance 0.270 0.368 0.326 0.352 0.342 

Annualised 1.801 2.102 1.979 2.054 2.026 

Total number of runs 4837 4751 4730 4744 4445 

Run when best found 2484 3884 4299 4159 4087 

Time when best found 5:31 8:16 9:03 8:46 9:11 

 

The variance of the portfolio ranged between 0.27 and 0.368 showing a range of 0.098. This 

equates to a variance of variance of 0.001413 over the 5 simulations. The average of the number 

of total runs completed was 4 701.4 with 3 out of the 5 simulations being completed within 50 

runs of the average. The best solution was found between 2 484 runs (51% of the simulation) and 

4 299 runs (with 90% of the simulation being completed). The time to find the best solution ranged 

between 5:31 minutes and 9:03 minutes.  
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The graphs of each of the 5 simulations is shown in the figure below: 

Simulation 1      Simulation 2 

 

Simulation 3      Simulation 4 

Simulation 5 

Figure 14: Graphs illustrating the variance minimisation progress achieved over the above simulations 
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4.1.1b Unequally Weighted Portfolio 

The simulation of the portfolio’s that allowed the weights on each share to vary, while maintaining 

the summation of the weights equal to one, was then generated. The table of the simulated results 

are shown in Appendix 2 while the graphical representation can be seen in Figure 1Figure 15 

(below). This graph shows that the series has become further unstable as the trend of the line does 

not show evidence of slowly and smoothly decreasing but is rather relatively violent in its moves. 

This can be attributed to the increased quantum on the number of potential possibilities the 

portfolio may consist of. Nevertheless the graph still displays that the optimal number of shares to 

have included into the minimal variance portfolio lies between 9 and 15 shares. 

 

 

Figure 15: Graphical representation of the results achieved through the traditional simulation approach with variable 

weights 
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The annualised variance graph is displayed below. This provides evidence reinforcing the views 

obtained by utilising the monthly graph and table. Namely, the optimal number of shares lies 

between 9 and 15, albeit in an unstable series. The detailed results of each trial can be individually 

analysed. Of particular interest is the 15th observation in this series. 

 

Figure 16: Adjusts the data in Figure 15 to be annualised 
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In total, 4 484 simulations were run in this test. The first valid scenario where all constraints were 

satisfied occurred at trial number 553 and at a time of 1 minute and 42 seconds. This achieved a 

minimum portfolio variance of 0.832. Although the number of trials was larger and the time to the 

first successful trial was significantly longer in this set of simulations, the first result found was 

also significantly lower than the result on the initial equally weighted portfolio. The minimal 

variance portfolio that was solved for when the portfolio was limited to select 15 shares was found 

at a time of 8 minutes 55 seconds. This was at trial number 3 983 and the minimal portfolio 

variance solved for was 0.744.  The progression of the optimisation is displayed graphically below: 

Figure 17: Progression of simulation when the portfolio is restricted to consist of 15 shares 
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The table summarising the simulation is presented below: 

Table 9: Summary table of the simulation displayed graphically in Figure 17 

Results   

Valid Trials 865 

Total Trials 4484 

Best Value Found 0,743779012 

  + soft constraint penalties 0,00 

  = result 0,743779012 

  Best Trial Number 3983 

  Time to Find Best Value 0:08:55 

Reason Optimization Stopped Elapsed time 

Total Optimization Time 0:10:00 

 

Here it can be seen that the valid trials were far fewer than in the equal weighted simulation, just 

19.29% of all trials ran satisfied all constraints. The minimum portfolio variance value found was 

0.744. Once again, the simulation was halted after 10 minutes. 

Section 4.1.1 commenced by outlining the results achieved by the pre-specified equally weighted 

simulation approach. It was demonstrated that the optimally diversified portfolio consisted of 10 

shares, exhibiting a variance of 0.307. The section followed with the analysis of the results 

achieved the pre-specified unequally weighted simulation approach. The optimally diversified 

portfolio using this approach employed 15 shares, exhibiting a variance of 0.744 and a less stable 

series. Instances where shares were added to the portfolio and a higher overall variance was 

obtained are assumed to be primarily due to permitting variable weightings on each share. This 

resulted in an increased quantum of potential possible portfolios leading to a smaller possibility of 

the globally optimally diversified portfolio being discovered, as described previously. These 

results indicate an improvement to the previous literature of Neu-Ner and Firer (1997) and that of 

Statman (1987) whom ascerted that an optimal portoflio should consist of at least 30 shares. The 

chapter continues with the analysis focused on the results achieved by the genetic programming 

approach when the number of shares a portfolio should consist of was pre-specified, as previously 

explained. 
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4.1.2 Genetic Programming Results (Pre-Selected Number of Shares) 

4.1.2a Equally Weighted Portfolio  

The Genetic Programming approach was thereafter applied to the data to solve for an equally 

weighted portfolio for each number of shares to be included respectively. A table of the results can 

be found in Appendix 2 and are displayed graphically in Figure 18 below. From the graph it can 

be seen that the series is far more stable than the simulation tests. It can therefore by hypothesised 

that the use of genetic algorithms allowed the analysis to explore more of the search space, giving 

it a higher probability of finding a global minimum variance portfolio for each portfolio consisting 

of increasing number of shares. Once again one can visually observe that the majority of the benefit 

of diversification can be obtained by holding between 10 and 15 shares. This implies that an 

investor will diversify his portfolio to include between 10 and 15 shares and thereafter will face 

ever decreasing diversification advantages to have an additional share included to their portfolio. 

This result is slightly different to the finding previously which displayed the majority of the 

diversification benefit can be obtained by holding a portfolio of between 9 to 15 shares. The 

unstable nature of the series inherent in the previous simulation is believed to be the underlying 

reason for the minor difference in the result. 

Figure 18: Graphical representation of the results achieved with a genetic programming simulation with equally 

weighted shares. 
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The results were once again annualised and the graph of the annualised series is shown below. The 

annualised minimum portfolio variance graph demonstrates equivalent results to the monthly 

minimum portfolio variance graph - the optimal diversification benefit can be obtained by 

including between 9 and 15 shares into a portfolio. As previously shown, each individual 

simulation can be analysed, here the 13th simulation will be further analysed (this equates to the 

portfolio that consists of 14 shares). 

 

Figure 19: Adjusts the data in Figure 18 to be annualised 
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In this simulation a total of 11 696 runs were completed. The first portfolio that was generated that 

satisfied all constraints was discovered on the 2nd run at a time of 46 seconds. This gave the 

minimum variance portfolio to be equal to 7.152. The overall minimal portfolio variance was 

found at the run time of 8 minutes 5 seconds, on trial number 9 234. The progress graph of how 

the portfolio variance was progressively minimised in this simulation can be seen below: 

Figure 20: Progression of simulation when the portfolio is restricted to consist of 14 shares 

Figure 20 shows that the first successful run achieved a portfolio variance of 7.152. Within a 

minute the best optimal solution was found to be 0.71 the 320th run. This shows an improvement 

of approximately 694%. The final best simulation, which was the 9 234th simulation achieved at a 

time of 8 min 5 seconds, solved for a minimum portfolio variance of 0.266. This is an improvement 

on the initial value of 6.182 or an improvement of 737%. 
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The summary table is shown below: 

Table 10: Summary table of the simulation displayed graphically in Figure 20 

Results   

Valid Trials 11695 

Total Trials 11696 

Best Value Found 0,26631385 

  + soft constraint penalties 0,00 

  = result 0,26631385 

  Best Trial Number 9234 

  Time to Find Best Value 0:08:05 

Reason Optimization Stopped Elapsed time 

Total Optimization Time 0:10:00 

 

Table 10 (above) provides a summary of the full simulation. Here it is shown that 11 696 trials 

were run, 11 695 of which were valid (99.9%). The best value (minimal portfolio variance) found 

was 0.266 as demonstrated above. Furthermore the total optimisation time allowed was for 10 

minutes. These results demonstrate the degree to which a pre-specified, equally weighted genetic 

programming approach can provide an investor with enhanced diversification benefit within a 

relatively short amount of time. This is further explored in section 4.4 which directly compares the 

results achieved by each approach. 

An additional test was then completed in order to calculate the variability of the results. Five 

simulations were run in turn on each of the portfolios constructed of 5, 15 and 25 shares 

respectively in an attempt to view the stability of the output. The results are demonstrated below. 
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The results from the below table show the simulations run when the portfolio was restricted to 

consist of 5 shares.  

Table 11: Variability of Variance test when the portfolio is restricted to consist of 5 Shares 

Simulation 1 2 3 4 5 

Monthly Variance 0.452 0.452 0.493 0.452 0.452 

Annualised Variance 2.328 2.328 2.431 2.328 2.328 

Total number of runs 11980 10129 10054 10254 10048 

Run when best found 8894 3658 5122 2167 8799 

Time when best found 7:42 4:00 5:19 2:29 8:52 

 

The variance of the portfolio ranged between 0.452 and 0.493 showing a range of 0.041. This 

equates to a variance of variance of just 0.000333 over the 5 simulations. The stability of the series 

is shown to be strong as 4 of the 5 simulations yielded the equivalent monthly variance. The 

average of the number of total runs completed was 10.493. This was more variable with the 

simulations ranging between 239 runs and 1 487 runs away from the average. The best solution 

was found between 2 167 runs (21.1% of the simulation) and 8 894 runs (with 74.24% of the 

simulation being run). The time to find the best solution ranged between 2:29 minutes and 8:52 

minutes.  
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The graphs of each of the 5 simulations is shown in the figure below: 

Simulation 1      Simulation 2 

Simulation 3      Simulation 4 

Simulation 5 

Figure 21: Graphs illustrating the variance minimisation progress achieved over the above simulations 
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This test was then applied to portfolios that were restricted to consist of only 15 shares, the results 

of which are show in the table below: 

Table 12: Variability of Variance test when the Portfolio is restricted to consist of 15 Shares 

Simulation 1 2 3 4 5 

Monthly Variance 0.288 0.275 0.299 0.283 0.276 

Annualised Variance 1.859 1.818 1.896 1.842 1.820 

Total number of runs 10054 10893 11538 11407 11248 

Run when best found 9804 5321 6336 9266 6559 

Time when best found 9:49 5:12 5:44 8:14 6:11 

 

The variance of the portfolio ranged between 0.275 and 0.288 showing a range of 0.003. This 

equates to a variance of variance of 0.0000992 (approximately zero) over the 5 simulations. 

Although this points towards extreme stability, the average of the number of total runs completed 

was 10 493. This illustrates that the simulations varied in the total number of runs completed by 

between 974 and 135. The best solution was found between 5 321 runs (48.85% of the simulation) 

and 9 804 runs (with 97.51% of the simulation being completed). The time to find the best solution 

ranged between 5:12 minutes and 9:49 minutes.  
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The figure displaying the graphs of each of the 5 simulations is shown below: 

Simulation 1:      Simulation 2 

Simulation 3:      Simulation 4 

Simulation 5: 

Figure 22: Graphs illustrating the variance minimisation progress achieved over the above simulations 
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This stability test was then run once again, this time on the portfolio restricted to consist of 25 

shares. The results of this test are shown in the table below: 

Table 13: Variability of Variance test when the Portfolio is restricted to consist of 25 Shares 

Simulation 1 2 3 4 5 

Monthly Variance 0.282 0.353 0.234 0.236 0.257 

Annualised Variance 1.839 2.058 1.677 1.684 1.758 

Total number of runs 11291 10897 11544 11355 11455 

Run when best found 8966 9420 10693 9717 8645 

Time when best found 8:09 8:48 9:15 8:33 7:37 

 

The variance of the portfolio ranged between 0.234 and 0.353 showing a range of 0.119. This 

equates to a variance of 0,00239476 (approximately zero) over the 5 simulations. The average total 

number of runs completed was equal to 11308.4. Therefore a range in the total number of runs 

completed was between 411.4 and just 17.4 runs away from the average. The best solution was 

found between 8,645 runs (75.47% of the simulation) and 10 693 runs (with 92.63% of the 

simulation being completed). The time to find the best solution ranged between 7:37 minutes and 

9:15 minutes.  
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The graphs of each of the 5 simulations are shown in the figure below: 

Simulation 1:       Simulation 2: 

Simulation 3:      Simulation 4: 

Simulation 5: 

Figure 23: Graphs illustrating the variance minimisation progress achieved over the above simulations 
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4.1.2b Unequally Weighted Portfolio 

The methodology described above was then applied under the constraints where the weights on 

each share were allowed to vary, however the weights of all the shares to be included in the 

portfolio is required to sum to 1. Applying the genetic programming approach yielded table of 

results shown in Appendix 2. These results are displayed graphically below. As in the simulation 

approach with unequal weightings, the results are far more erratic compared to the equally 

weighted counterpart due to the increasing possibilities of portfolio construction, only a fraction 

of which can be explored in the ten minute time restriction. However similar findings hold, the 

minimum variance portfolio can be constructed by using between 10 and 15 shares. 

 

Figure 24: Graphical representation of the results achieved utilising a genetic programming approach while allowing 

the weightings on each share in the portfolio to vary 
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The annualised series of the above is graphically displayed below: 

 

Figure 25: Adjusts the data in Figure 24 to be annualised 

Once again it is demonstrated that despite using a relatively more advanced approach, the resulting 

series remains erratic. Obtaining an unstable series across both the traditional simulation approach 

as well as the genetic programming approach provides a practical demonstration illustrating the 

extent to which the number of potential portfolios is increased when the weightings on each share 

are permitted to vary. Figure 25 however still displays that optimal results are achieved with a 

portfolio of between 10 to 15 shares. As previously shown, each individual simulation can be 

analysed, here the 14th simulation will be further analysed (this equates to the portfolio that consists 

of 15 shares). 

In this simulation a total of 9 931 runs were completed. The first portfolio that was generated that 

satisfied all constraints was discovered on the 502nd run at a time of 55 seconds. This gave the 

minimum variance portfolio to be equal to 1.889. The overall minimal portfolio variance was 

found at the run time of 9 minutes 47 seconds, on trial number 9 657.  
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The progress graph of how the portfolio variance was progressively minimised in this simulation 

can be seen below: 

 

Figure 26: Progression of simulation when the portfolio is restricted to consist of 15 shares 

Figure 26 shows that the first successful run achieved a portfolio variance of 1.889. The algorithm 

took 1:46 minutes to achieve a portfolio variance of below 1 – at the 1 438nd run a portfolio variance 

of 0.926 was achieved. This shows an improvement of approximately 204%. The final best 

simulation, which was the 9 657th simulation achieved at a time of 9 min 47 seconds, solved for a 

minimum portfolio variance of 0.679. This is an improvement on the initial value of 1.21 or an 

improvement of 278%. 
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The summary table is shown below: 

Table 14: Summary table of the simulation displayed graphically in Figure 26 

Results   

Valid Trials 2146 

Total Trials 9931 

Best Value Found 0,679013707 

  + soft constraint penalties 0,00 

  = result 0,679013707 

  Best Trial Number 9657 

  Time to Find Best Value 0:09:47 

Reason Optimization Stopped Elapsed time 

Total Optimization Time 0:10:00 

 

Table 14 provides a summary of the full simulation. Here it is shown that 9 931 trials were run, 2 

146 of which were valid (21.1%). The best value (minimal portfolio variance) found was 0.679 as 

demonstrated above. Furthermore the total optimisation time allowed was for 10 minutes. 

Chapter 4 opened in section 4.1.1 by expounding upon the results achieved by the pre-specified 

equally weighted simulation approach. The chapter continued in section 4.1.2 with a similar 

inspection into the results achieved by the pre-specified equally weighted genetic programming 

approach. This technique obtained a less unstable series than that of the simulation approach. 

When equal weightings were employed the optimally diversified portfolio consisted of 14 shares 

and a variance of 0.266 was observed. When the weightings on each share were allowed to vary 

the approach solved for an optimally diversified portfolio containing 15 shares, exhibiting a 

variance of 0.307. These results demonstrate increased strength of the approach compared to the 

traditional simulation approach and to past literature. The comparable improvements are discussed 

further in section 4.4. The chapter now continues by examining the results achieved across 

mathematical approaches when an unconstrained approach was employed. 
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4.2 Unconstrained Analysis (Absent of Pre-Selected Number of Shares) 

The next section aimed to solve the research question regarding how many shares the minimum 

variance portfolio would consist of, if the restriction that the portfolio should consist of a pre-

specified number of shares was removed. The minimum variance in that optimal portfolio will be 

thereafter calculated. Firstly, the traditional simulation approach was applied to the data. 

This approach used slightly different constraints that what were previously applied in the 

simulations above. The only constraint on the number of shares in the portfolio was that the 

portfolio needed to consist of at least 1 share. If this were not a constraint, the simulations would 

consistently solve for a portfolio consisting of 0 shares. Secondly, once the simulation had solved 

for the initial portfolio variance, the next best portfolio variance needed to be at least 0.01% better 

in order to replace the current best portfolio. In addition, if the portfolio variance is not bettered 

by 0.01% over 100 runs the simulation will be stopped and the current lowest portfolio variance 

utilised. This is in an attempt to restrict the simulation from continuously adding shares to the 

portfolio, each in turn with decreasing impact on lowering the variance of the portfolio. Initially a 

simulation approach was used on an equally weighted portfolio of shares and thereafter on an 

unequally weighted portfolio of shares. Secondly, the same test was run but employed a genetic 

programming approach. 
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4.2.1 Simulation Results 

4.2.1a Equally Weighted Portfolio 

When the simulation approach was made use of in the test above on an equally weighted portfolio, 

the minimum variance portfolio consisted of 37 shares and achieved a portfolio variance of 

0.39542. Notably, in the simulation analysis previously, this portfolio variance was achieved using 

only 12 shares. Presumably the increased potential search space prevented the simulation analysis 

from solving for this portfolio construction. This is discussed in more detail in section 4.4. 

In this simulation a total of 3 583 simulations were run. The minimum variance portfolio was 

solved for at a time of 9:57 minutes (simulation number 3 559) and achieved a monthly portfolio 

variance of 0.395 which equates to an annualised variance of 2.178. This portfolio solved for the 

minimum portfolio variance using 37 shares. The graph of the progression of the simulation is 

displayed below: 

Figure 27: Shows the progression of the simulation when the number of shares to be included in the 

portfolio is not pre-specified, weightings on each share are equal 
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In Figure 27 one can visually determine that the initial portfolio achieved a monthly portfolio 

variance of just over 70 – the portfolio variance was 70.654. Within 500 simulations the minimum 

monthly portfolio variance was equal to 1.329. This is a significant improvement of 5 316%. A 

table of the overall performance of the simulation is displayed below: 

Table 15: Summary table of the simulation displayed graphically in Figure 27 

Results   

Valid Trials 3582 

Total Trials 3583 

Best Value Found 0,395420345 

  + soft constraint penalties 0,00 

  = result 0,395420345 

  Best Trial Number 3559 

  Time to Find Best Value 0:09:57 

Reason Optimization Stopped Elapsed time 

Total Optimization Time 0:10:00 

 

This summary shows that 99.97% of the simulations run were valid. The minimum variance 

portfolio was equal to 0.3954 and was achieved at a time of 9:57 minutes. 

Computation of the Benchmark Portfolio 

The primary objective of this dissertation is to discover the optimally diversified portfolio through 

the use of the three mathematical approaches (simulation approach, genetic programming 

approach and particle swarm optimisation approach). Solving for the optimally diversified 

portfolio requires modelling the relationship between the number of shares in the portfolio and the 

risk (standard deviation) inherent in the portfolio. Thereafter portfolios are modelled to include 

various adjustments to their constraints, such as allowing the weights on each share in the portfolio 

to vary as opposed to be equally weighted. Throughout the analysis of this dissertation the same 

assumptions were applied as utilised throughout past literature, as described in the literature review 

section. This focus of study is significant as it identifies the fundamental relationship between the 

number of shares and the risk in a portfolio; this was the initial step which thereafter enables one 

to concentrate on the relationship between the risk and reward (return) of a portfolio.  
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Although not the primary focus of the dissertation, it is interesting to examine the return profiles 

of the portfolio’s identified as optimally diversified in the various stages of analysis. The returns 

achieved by the optimally diversified portfolios should then be compared to the returns an investor 

would earn if he simply bought the market portfolio, referring to the portfolio containing every 

available share on the JSE Main Board, post the respective adjustments described in Chapter 3. In 

this way, the market portfolio acts as a benchmark. The analysis below is completed with the aim 

to state whether holding an optimally diversified portfolio allows the investor to earn excess, 

benchmark beating returns. 

In line with the above, firstly the mean returns of the equally weighted market portfolio are 

calculated. This is completed by computing the average return of all the respective listed shares in 

each month over the observed time period. Secondly, the median of the market returns is computed 

for each month. The median represents the midpoint of the frequency distribution of observed 

values and as such represents the middle most value in a range of data such that there is an equal 

probability of falling above or below it. The median value is immune to outliers which would 

otherwise effect the mean.  

The returns in the above analysis are calculated absent of transaction costs. The majority of brokers 

enabling an investor to transact (buy and sell shares) on the JSE main board issue either a fixed 

cost or a sliding fee dependant on the value of each completed transaction (Corbbett, 2013). 

Although there are other costs involved (such as a monthly account fee) the transaction costs will 

constitute the majority of the costs faced by an investor. If the fees faced by an investor are purely 

dependant on the value of the portfolio to be initiated, both the optimally diversified portfolio and 

the benchmark portfolio would experience equivalent transaction costs. Alternatively, if the fees 

faced by an investor are dependant on the number of transactions to be completed, representative 

of the number of shares in the portfolio, fees on the optimally diversified portfolio provide a lower 

bound to the amount of fees an investor could incur while the benchmark portfolio represents the 

upper bound (encompassing all available shares). Transaction costs are not incurred post initiation 

of the respective portfolios due to their buy-to-hold nature; shares are purchased on the first 

observed day and held until termination of the observed period. As the analysis below is 

comparative in nature it is not considered imperative to include an exact figure in the return 

calculation representative of the transaction fees. The aim of the analysis below is to indicate 
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whether the optimal portfolios achieve benchmark beating returns as opposed to quantifying the 

exact post-cost outperformance. 

The figure below compares the mean market returns against the median market returns as a ratio 

over time. This ratio should remain fairly constant; if it does not, it indicates there may be outliers 

in the population. This can be assumed as an outlier would drag the mean in the respective direction 

but would not affect the median. The graph depicting this ratio is displayed below: 

Figure 28: Ratio of Returns using a Mean Market Portfolio against the returns of the Median Market Portfolio 

In Figure 28 the solid line displays the ratio over time of the mean market returns against the 

median market returns while the dotted line reflects the linear trend line thereof. As stated above, 

with no notable outliers the ratio of the mean return series to the median return series should be 

approximately constant. Figure 28 illustrates that this is not the case; the mean return over the time 

period observed consistently outperforms the median. A ratio of 2 in the above figure can be 

interpreted as the mean return of the market portfolio being double that of the median portfolio at 

that point in time. Over the observation period, the mean portfolio earns a return of approximately 

3.9 times the median portfolio. This gives evidence that there may be notable outliers in the 

population. Additionally it can be observed that the aforementioned outliers occurred across the 

time series in the population - if there was a single outlier occurring in a single month, the ratio 

would adjust at that point in time but would thereafter remain at the new ratio constantly. As this 

is not the case it, as displayed by Figure 28, it can be stated that there is at least one share in the 

population in the majority of months observed whose return can be considered a relative outlier. 
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Notably, this is not indicative that it is the same share each month. Analysis of the underlying 

return distributions demonstrates that this is indeed the case – the share with an outlying return in 

each month over the time series differs from month to month. Due to this observation, it is prudent 

to make adjustments to the mean market portfolio, as to remove the outliers prevalent in the period 

or to reduce their weighting. This is completed through the use of two adjustments to the mean 

return portfolio. 

The two adjustments made to the mean return series were completed in order to obtain a return 

series that is a better representation of the true obtainable market portfolio. This would be 

observable if the return series of the portfolio, post adjustments, better approximated the returns 

achieved by the median return portfolio. The adjustments made entailed removing the returns of 

the single best and single worst performing shares from the market portfolio each month over the 

time period observed. In a similar fashion to the above representation, the ratio of the adjusted 

mean market return portfolio to the median market return portfolio is shown in Figure 29. Here 

the solid line reflects the ratio of the mean market returns in the adjusted sample against the median 

market returns while the dotted line represents a linear trend line thereof. 

 

Figure 29: Ratio of Returns of the Adjusted Mean Market Portfolio against the returns of the Median Market Portfolio 
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Figure 29 demonstrates that the adjusted mean market portfolio is a better representative of the 

market return series, as observed by the ratio to the median portfolio. The ratio is more stable 

linear than the unadjusted return series. In addition, this is further demonstrated by the smaller 

range of values within the series. The range of the ratio in Figure 28 was between 0.99 and 3.99.  

Figure 29 however demonstrated a narrower range, between 0.91 and 1.27, the average of which 

is centred very near to 1 (1.095). This reflects that the return series from the adjusted market 

portfolio is a relatively better approximate of the population as it is displays an increased amount 

of similarity to the median returns. As such, the resultant portfolio post the above two adjustments 

is selected to represent the benchmark portfolio. The return series generated from both the average 

market portfolio and the adjusted mean market portfolio (benchmark portfolio) is shown below: 

Figure 30: The unitised return series comparing the difference between the returns of the mean market portfolio, 

adjusted mean market portfolio and the median market portfolio 

The vertical axis in Figure 30 represents a unitised return, for example, if the portfolio reaches a 

value of 5 it can be interpreted that if an investor had invested one unit on the first trading day of 

the time series, they would currently have 5 units – the investor would have earned a 500% return, 

absent of costs as previously discussed. Figure 30 illustrates the marked difference between the 

return series of the original mean market portfolio and the adjusted mean market (benchmark) 

portfolio. The median return series is also plotted above and is shown to be much better 

approximated by the benchmark portfolio as opposed to the unadjusted mean market return series. 
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Analysis of Returns 

As mentioned above, this section includes the analysis of the returns achieved by both the 

unconstrained equally weighted portfolios. This examination compares the monthly returns 

achieved by both the simulated and genetic programming approaches to the benchmark portfolio 

described previously. The monthly returns are calculated as an equally weighted average of the 

returns achieved by each listed share included in each respective portfolio. As previously stated, 

shares that were not listed over the entire observation period were still included in the population 

with the aim to reduce survivorship bias. The inclusion of these shares can, however, skew the 

portfolio returns downward. This can occur, for example, where a share is assigned a weighting 

and as such is included into the portfolio. If this share is not listed over a period, thus presenting a 

return of 0 for the respective unlisted month, it will drag the return of the portfolio downward.  

This limitation can be overcome in the case of an equally weighted portfolio. In the event a share 

is not listed over a specific time period, the weightings of each of the remaining shares included 

in the portfolio can be subsequently reweighted on an equal basis. These weightings are derived 

from the number of shares actively employed by the portfolio in a specific month. This construct 

is employed for the unconstrained equally weighted portfolios generated by the simulated 

approach and the genetic programming approach as well as the when calculating the returns 

achieved by the benchmark portfolio expounded upon above. Notably, this construct would not be 

necessary if shares included in the population were restricted to only those that were listed over 

the entire period. However, employing this restriction would lead to survivorship bias as 

previously explained. 

The above observation insinuates that the returns achieved by the unequally weighted portfolios 

cannot be as transparently evaluated compared to the equally weighted portfolios. This is primarily 

due to the reasoning that the portfolio cannot be rebalanced with equally distributed weightings, 

as this would not reflect the varying weightings assigned to each share. As such, it would be 

necessary to include the return series of all selected shares, even over periods when they were not 

listed and thus reflected a return of 0. This would lead to a false reflection of the returns earned by 

the portfolio as including the return series of unlisted shares leads to the portfolio return being 

drawn lower, as described previously. The effect of this would be exacerbated if the weightings 

on the unlisted shares are relatively large. Due to this, the return analysis is performed across 

approaches but only on the portfolios where equal weightings were employed. 
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Through the use of the method mentioned above, the return series achieved by the unconstrained 

equally weighted simulation approach and by the equally weighted genetic programming approach 

can be analysed and compared to the benchmark portfolio. These comparisons are completed in 

the sections to follow. The return performance of the optimally diversified portfolio obtained when 

the equally weighted simulation approach is applied is shown in the graph below: 

Figure 31: Unitised return comparison of the equally weighted simulation approach against the equally weighted 

median simulation approach and the benchmark portfolio 

Figure 31 demonstrates the unitised return series (as described above) generated by the optimally 

diversified portfolio when the equally weighted simulation approach was applied, absent of 

transaction costs. This is compared to the median points achieved by the equally weighted 

simulation approach as well as against the benchmark portfolio. It is observed that although the 

return of the portfolio was not directly optimised, the return of the equally weighted portfolio 

generated by the simulation approach did in fact outperform the benchmark portfolio. This was 

true of both the portfolio computed as well as when the median return series was employed. The 

return of the actual portfolio appears to be unrealistically high and markedly different to the median 

return earned by the portfolio, indicating that there may be one or more shares with an outlying 

return distribution. This is more likely in the simulated portfolio given the relatively larger number 

of shares (37) in the portfolio, as discussed previously.  
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The figure below demonstrates the performance of the equally weighted simulated portfolio 

against the benchmark portfolio as a ratio: 

Figure 32: Ratio of market mean portfolio returns (benchmark) against the returns achieved using a simulated equally 

weighted portfolio  

Figure 32 displays the ratio of the return series generated by the benchmark portfolio and the series 

generated by the optimally diversified portfolio solved for by using an equally weighted simulated 

approach. The downward trend illustrates that over the time period observed, the simulated 

portfolio continued to outperform the adjusted benchmark portfolio. 
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Further insights can be gleaned by examining the industry split achieved from the above simulated 

portfolio and thereafter completing a comparison to the industry spilt displayed by the entire 

population. These insights can be collected through the analysis of the figure below. Figure 33 is 

constructed through analysis of the number of companies present in each sector of the simulated 

portfolio, as opposed to being weighted by the market capitalisation of the respective companies. 

The figure is created in this way as the simulation assumed equal weightings on shares and as such 

is the correct method to depict the diversification across industries of the resulting portfolio. The 

figure displays that 8 of the 11 potential industries of the population are represented in the above 

portfolio. Moreover the financial sector is shown to be notably over-weighted while the basic 

materials sector is slightly underweighted compared to the portfolio consisting of the full 

population. The industries that were not represented in the above portfolio constituted 5.3% of the 

population portfolio cumulatively. Due to the various industries that the above portfolio has 

included, it can be said that the above portfolio has been diversified across sectors. 

Figure 33: Industry split achieved by the optimal portfolio generated by the equally weighted simulation approach  
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4.2.1b Unequally Weighted Portfolio  

The simulation approach was then applied to a portfolio of shares where the weighting on each 

share is not restricted to be equal. The minimum portfolio variance solved for in this approach 

consisted of a portfolio of 13 shares, giving a monthly portfolio variance of 0.592. This was solved 

for at a time of 9:50 minutes and at simulation number 3229. Although this variance is larger than 

the equally weighted portfolio, this is due to the exponentially larger possible number of 

possibilities the portfolio could utilise. The graph of the simulation progress is shown below: 

Figure 34: Progression of the simulation when the number of shares to be included in the portfolio is not pre-

specified and the weightings on each share are not required to be equal 
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The initial portfolio variance was solved to be 5.245. Within 500 iterations this was reduced to 1.8. 

The table of the overall performance of the simulation is shown below: 

Table 16: Summary table of the simulation displayed graphically in Figure 34 

Results   

Valid Trials 3302 

Total Trials 3303 

Best Value Found 0,592347141 

  + soft constraint penalties 0,00 

  = result 0,592347141 

  Best Trial Number 3229 

  Time to Find Best Value 0:09:50 

Reason Optimization Stopped Elapsed time 

Total Optimization Time 0:10:00 

 

Table 16 shows that a total of 3 303 simulations were run and of that 3 302 were valid (99.7%). 

The minimum variance portfolio found was at a time of 9:50 minutes and was equivalent to 0.592. 

The industry segmentation achieved from the above portfolio is then compared to the industry spilt 

of the population portfolio. The industry split of the above simulation is shown in Figure 35. The 

figure demonstrates the industry split of the resulting portfolio based on the number of shares 

representing each industry. This is equivalent to the resultant portfolio being equally weighted. 

The industry split displayed of the above portfolio, when each share is weighted according to the 

optimal weighting scheme illustrated above is then discussed further in the following section.  

Comparing the diversification across industries achieved by the above approach against the 

industry split of the population portfolio shows that the approach covered 5 of the available 11 

industries. The industries that were not included constituted 16.57% of the population portfolio. 

Although below 50% of the industries were utilised in the above approach, the industries that 

constituted the majority of the population were represented. As previously stated, the industries 

that were not utilised in the above approach amounted to 16.57%, which is notably higher 

compared to the 5.3% not used from the equal weightings simulation. This points against the initial 

hypothesis that allowing the weighting of the shares to vary will provide a better optimally 

diversified portfolio with a minimum number of shares compared to the equally weighted 

simulation. It should however be noted that the variance of the first simulation, 0.395, is only 
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slightly lower than the variance of this simulation of 0.592. Conversely this variance is achieved 

with less than half of the number of shares – 37 shares were utilised in the first simulation while 

only 13 were necessary in this simulation. 

Figure 35: Industry spilt (number of shares representing each industry) achieved by the optimal portfolio solved for 

using a simulation approach with unequal weightings.  

The figure below illustrates the resulting industry split when the shares constituting the optimally 

diversified portfolio are weighted according to the optimal weights calculated using the simulated 

approach: 

Figure 36: Industry spilt (weighted result) achieved by the optimal portfolio solved for using a simulation approach 

with unequal weightings. 
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When the weightings solved for by the unequally weighted simulation approach are applied to the 

portfolio Figure 36 is obtained. This is the true representation of the resulting diversification 

benefits obtained by an investor. This demonstrates that a much larger weighting is placed on the 

financial sector when compared to the industry split demonstrated by the market portfolio. It is 

interesting to note however, that of the financial firms included in the above portfolio, none were 

banks. The financial shares included were non-bank institutions such as insurance providers and 

financial companies with large exposures to property and real estate.  The companies with large 

exposure to property and real estate dominated the representation of financial institutions – of the 

63% of the portfolio that was represented by financial institutions, 98% of these were companies 

with exposure to local property and real estate as opposed to the remaining 2%, represented by 

insurance firms. It is interesting to observe that of the financial firms selected by this approach, 

the majority were not listed over the entire observed period. One firm was listed from 1991-1996 

while the remaining were all listed post the financial crisis that occurred in 2008. Therefore it is 

understandable why these companies featured with the relatively large weighting as demonstrated 

in the figure above – firms with large exposure to property experienced a relatively stable return 

series (with the exception of during the period of the 2008 financial crisis). The lower volatility in 

the property sector in addition to its relatively non-cyclical nature explains why the approach 

would have heavily weighted these shares.  

Chapter 4 continued in this section (4.2) which aimed to solve for the minimum number of shares 

necessary to obtain a minimum variance portfolio if the restriction that the portfolio should consist 

of a pre-specified number of shares was removed. This analysis commenced with section 4.2.1a, 

analysing the results obtained through the application of the unconstrained equally weighted 

simulation approach. It was demonstrated that the optimally diversified portfolio should employ 

37 shares, exhibiting a minimum variance of 0.3954. This was notably the only simulation across 

all tests that employed greater than 30 shares as part of the optimally diversified portfolio. The 

computation of the benchmark portfolio returns was then completed in order to contribute to the 

analysis wherein the returns achieved by the unconstrained equally weighting simulation approach 

is compared to the returns achieved by the benchmark portfolio. The unconstrained equally 

weighting simulation approach outperformed the benchmark portfolio. Analysis of the 

diversification across industries was thereafter examined and the portfolio deemed optimally 

diversified was shown to be considered representative of the population portfolio. 
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In section 4.2.1b the results from the unconstrained unequally weighted simulation portfolio were 

examined. The optimally diversified portfolio employed 13 shares and obtained a minimum 

variance of 0.592. Additionally, the optimally diversified portfolio could once more be considered 

representative of the population portfolio, although, an overweighting of the financial sector was 

found. These results are further compared and expounded upon in section 4.4. This chapter 

continues with section 4.2.2 which inspects the results obtained by the unconstrained portfolios 

when a genetic programming approach is applied. 
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4.2.2 Genetic Programming Results 

4.2.2a Equally Weighted Portfolio 

In the same method as above, genetic algorithms were then applied to the data under the same 

restrictions. When the portfolio was restricted so that each share included had an equal weighting, 

the following results were obtained. The minimum variance portfolio consisted of 24 shares and 

yielded a portfolio variance of 0.254. This was found in the simulation 10 092. The portfolio 

variance calculated is notably 64.24% smaller than the 0.39542 calculated using the simulation 

approach. Nevertheless one should also note that over twice the number of simulations were able 

to be run in the same amount of time (genetic algorithms completed 11 361 simulations while the 

simulation approach completed only 3 583 simulations). The graph of the simulation performance 

is displayed below:  

Figure 37: Progression of the simulation when the number of shares to be included in the portfolio is not pre-

specified (equally weighted)  
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The initial valid simulation using the genetic algorithm approach yielded a minimum portfolio 

variance of 4.5. This is notably better than the simulation approach, producing an initial minimum 

portfolio variance of 70.654. The summary of the performance of this simulation can be seen in 

the table below: 

Table 17: Summary table of the simulation displayed graphically in Figure 37 

Results   

Valid Trials 11360 

Total Trials 11361 

Best Value Found 0,253713261 

  + soft constraint penalties 0,00 

  = result 0,253713261 

  Best Trial Number 10092 

  Time to Find Best Value 0:08:58 

Reason Optimization Stopped Elapsed time 

Total Optimization Time 0:10:00 

 

Table 17 shows that in total, 11 361 trials were run of which 11 360 were valid. The minimum 

variance portfolio was found to consist of 24 shares and had a variance of 0.254. This was solved 

for on simulation number 10 092 at a time of 8:58 minutes. In this simulation genetic algorithms 

demonstrate a better performance than the traditional simulation method. Interestingly, this result 

is correspondingly better than all portfolios solved for in the previous analysis (where the number 

of shares to be included in the portfolio was entered as a constraint) up until the portfolio consisted 

of 30 shares. 
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Analysis of Returns 

Although not the primary aim of this dissertation it is interesting to analyse the performance (with 

respect to the returns earned) of the portfolio classified as optimally diversified. Figure 38 exhibits 

the performance of the optimally diversified equally weighted portfolio when the genetic 

programming approach was applied. The figure demonstrates the return series achieved by the 

equally weighted portfolio when a genetic programming approach was utilised. As in the instance 

where the optimally diversified portfolio was obtained using the equally weighted simulation 

approach, the equally weighted genetic programming approach solves for an optimally diversified 

portfolio that also outperforms the benchmark portfolio. This holds true both when the actual 

equally weighted (mean) portfolio was utilised as well as when the median portfolio at each time 

period was used. The similarity between the actual performance of the portfolio and the 

performance of the median portfolio indicates that there is a relatively lower likelihood of the 

portfolio containing shares with an outlying return distribution.  

Figure 38: Return series of the optimally diversified portfolio when an equally weighted genetic programming 

approach was utilised benchmarked against the median return series achieved by the equally weighted genetic 

programming approach as well as the returns series of the benchmark portfolio. 
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The outperformance of the equally weighted genetic programming approach is displayed as a ratio 

to the benchmark portfolio in the figure below. It is observed that the ratio tends downwards across 

time which demonstrates the constant outperformance by the genetic programming portfolio. This 

is an important observation as this establishes that the outperformance of the equally weighted 

genetic programming approach against the benchmark portfolio is not due to one outlier in the 

series. Rather, genetic programming shows a constant trend of outperformance over the observed 

period. 

Figure 39: Ratio of returns earned by the benchmark portfolio against the returns earned by the equally weighted 

portfolio when a genetic programming approach was utilised 

 

 

 

  

 

 

0.4

0.6

0.8

1

1.2

1.4

1.6

R
et

u
rn

 S
er

ie
s

Ratio of Market Mean Returns (Adjusted Sample) vs Returns of Equally
Weighted Genetic Programming Portfolio



Page 141 

 

The analyses of industry split achieved from the above portfolio compared to the split observed in 

the population portfolio was then completed. Figure 40 illustrates these findings. It is displayed, 

in Figure 40, that 7 of the 11 potential industries of the population are represented in the above 

portfolio. Moreover, the financial sector is shown to be notably over-weighted while the basic 

materials sector is slightly underweighted compared to the portfolio consisting of the full 

population. The industries that were not represented in the above portfolio constituted 18.54% of 

the population portfolio cumulatively. A relatively fewer number of shares were employed in this 

portfolio (24 as opposed to 37 in the unconstrained equally weighted simulation approach) which 

led to a larger proportion of the population portfolio not being represented (18.54% opposed to 

5.3% in the unconstrained equally weighted simulation approach). Despite this, the portfolio 

achieved a lower minimum variance than that obtained by the unconstrained equally weighted 

simulation approach. A further elaboration of this is carried out in section 4.4. Due to the various 

industries that the above portfolio has included, it can be said that the above portfolio has been 

diversified across sectors. 

Figure 40: Industry split achieved by the optimal portfolio when implementing an equally weighted Genetic 

Programming Approach 
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4.2.2b Unequally Weighted Portfolio 

When the weighting on each share in the portfolio were not restricted to be equal, the following 

set of results was found. The minimum variance portfolio was found at a time of 5:23 minutes, 

simulation number 4 553, and was found to be equal to 0.497. The initial valid minimum variance 

portfolio was found to be 3.519. This demonstrates an improvement to the initial minimum 

variance portfolio found using the simulation approach of 5.245. Furthermore, more simulations 

were able to be run in the same amount of time using genetic programming, 4 640 as compared to 

3 303 in the traditional simulation approach. The minimum variance portfolio of 0.497 using 11 

shares is better than the simulation approach of computing for a minimum portfolio variance of 

0.592 whereby 13 shares were utilised. Once more the genetic programming approach outperforms 

the traditional simulation approach.  

The graph of the performance of this simulation can be seen in Figure 41. The initial minimum 

variance portfolio is shown to be equivalent to 3.518. Within 500 simulations the minimum 

variance portfolio was 3.13. However, as the simulation continued the minimum portfolio variance 

tended towards the final figure found of 0.497 (achieved at a time of 5:23 minutes and at simulation 

number 4 553). 

Figure 41: Progression of the simulation when the number of shares to be included in the portfolio is not pre-

specified, weightings on each share are not required to be equal 
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The summary table of this simulation is shown below: 

Table 18: Summary table of the simulation displayed graphically in Figure 41 

Results   

Valid Trials 4639 

Total Trials 4640 

Best Value Found 0,497380714 

  + soft constraint penalties 0,00 

  = result 0,497380714 

  Best Trial Number 4553 

  Time to Find Best Value 0:05:23 

Reason Optimization Stopped Progress condition 

Total Optimization Time 0:05:27 

 

Table 18 demonstrates that 4 640 trials were run, of which 4 639 were valid and a minimum 

portfolio variance of 0.497 was solved for at a time of 5:23 minutes. 
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An analysis of the industry diversification of the above portfolio yields the results shown 

graphically in Figure 42. The industry split displayed represents the number of companies included 

in the portfolio from each sector. It is shown that of the 11 potential industries that could be utilised, 

6 were included. The industries that were not included contributed a combined total of 12.08% of 

the population portfolio. Although this portfolio obtained a higher variance than that of the equally 

weighted portfolio when applying genetic programming (0.498 against 0.254) it achieved this 

variance with less than half of the number of shares, using 11 against the 24 used by the previous 

simulation. 

Figure 42: Industry split (number of shares representing each industry) achieved by the optimal portfolio when 

applying the Genetic Programming Approach with unequal weightings.  
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Once the respective weightings were applied to the shares included in the portfolio, the weighted 

industry split is obtained and displayed in Figure 43. As in the results obtained from the unequally 

weighted simulation approach, the financial sector is heavily over weighted. The companies 

representing the financial sector are the same companies as in the results obtained using the 

unequally weighted simulation approach described previously with one exception. There are no 

insurance companies included in the portfolio generated from using an unequally weighted genetic 

programming approach. The overweighting of the property and real estate industry is likely to have 

occurred for the same reasons as elaborated upon previously. 

Figure 43: Industry spilt (weighted result) achieved by the optimal portfolio solved for using a genetic programming 

approach with unequal weightings. 
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the financial sector experienced an overweighting. This is further discussed in section 4.4. The 

chapter continues with the analysis of the results achieved by the particle swarm optimisation 

approach. 
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4.3 Particle Swarm Optimisation Results 

Notably absent in the above results are the results obtained from the Particle Swarm Optimisation 

simulations. This is due to the algorithm displaying extremely poor performance when attempting 

to minimise the variance of the portfolio. On numerous occasions hard constraints, such as the 

weight allowed on each share and the number of shares to be included, were not adhered to which 

led to numerous runs within each simulation being invalid and unable to be used. Furthermore 

outputs were extremely unstable, achieving a wide range of results, albeit none close to those 

achieved using a traditional simulation approach or the genetic programming approach.  

In the first test, which attempted to solve for the minimum variance portfolio consisting of a pre-

specified number of shares while maintaining equal weightings on each, the algorithm frequently 

achieved only 1 valid run where the constraints were met. Furthermore many of the simulations 

achieved no valid output throughout the ten minute run. When solving for the optimum portfolio 

when the number of shares to be included in the portfolio was not specified , but equal weightings 

on each share was maintained (test 2) the following set of results were obtained:  

Table 19: The Optimal number of Shares to be included in the Portfolio, requiring equal weightings 

on each share while required the sum to add to 1 using a Particle Swarm approach 

 

Simulation 

1 

Simulation 

2 

Simulation 

3 

Simulation 

4 

Simulation 

5 

 

Optimal Number of Shares: 176 171 175 170 177 

Monthly Portfolio Variance: 4.077 3.496 3.693 4.120 4.045 

Annual Portfolio Variance: 6.994 6.477 6.657 7.032 6.967 

 

The optimal number of shares to be included in the portfolio was significantly greater using this 

approach. It also did not achieve a lower portfolio variance than in the traditional simulation and 

genetic programming approaches which used a lower number of shares. When the weightings on 

the shares were allowed to vary, but the number of shares to be included in the portfolio was pre-

specified (test 3), similar problems were encountered as in the approach that maintained equal 

weightings. Furthermore, the final test demonstrated that when the number of shares to be included 

in the portfolio was not pre-specified and the weightings were allowed to vary, no simulations 

gave valid results within a ten minute run.  
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The results above demonstrate the poor performance achieved by the Particle Swarm Optimisation 

approach. The performance is indiscriminately poor across each of the four tests. This is 

hypothesised to be due to the fact that when initialised, many particles did not satisfy the 

appropriate constraints. This severely limited the number of valid pbest (pid) positions experienced 

by the particles. In addition, if no particles had valid positions when initiated, the gbest (pgd) 

variable would not be assigned a value. This significantly reduces the influence that variables such 

as velocity (Vid) and acceleration (c1 and c2) ascribed to each particle can have in solving for the 

optimal portfolio. The combination of the above factors led to a minimal amount of interaction 

between particles; as explained previously, a particle by itself has almost no explanatory power. 

As such this limited the effectiveness of the approach. Finally, the restrictions placed on the above 

simulations led to a violation of the principles put forward by Millonas (1994), as discussed 

previously. Specifically, the third principle was violated as the required restrictions forced the 

model to act along an excessively narrow channel. The above results demonstrate an unstable 

series and illustrate the unsuitability of Particle Swarm Optimisation to be applied to combinatorial 

type problems with strict hard constraints. This establishes that the employment a more advanced 

approach does not ensure increased performance. These results agree with the findings of Kendall 

and Su (2005) where it was noted that in an instance where the population consists of more than 

15 available shares, the PSO approach experiences extreme difficulties in performance. As 

mentioned previously, the current data set consists of 356 shares.  
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4.4 Direct Comparisons 

The section below will directly address each hypothesis of this study. The first research question 

was: “what is the optimal number of shares a portfolio should consist of in order to achieve a 

minimum variance?” The hypothesis was that the optimal portfolio would consist of between 10 

to 30 shares. In addition a sub-research question to this aimed to discover whether allowing the 

weights on each share in the portfolio to vary would unleash further diversification benefits. It was 

hypothesised that the more flexibility allowed through varying weights would unlock further 

benefits of diversification. The second research question aimed to examine whether the more 

complex mathematical models such as genetic programming and particle swarm optimisation 

would display increased strength in solving for the optimal number of shares to include into a 

minimum variance portfolio. The hypothesis was that genetic programming and particle swarm 

optimisation would indeed demonstrate increased strength when compared to the results found by 

the traditional simulation approach. 

This section will test the above hypotheses through an analysis using the following structure. 

Firstly, the results found using a simulation approach with equal weightings will be compared to 

the results established using a simulation approach that allowed for varying weightings on each 

share. This analysis will take place by observing the trend of each test as well as comparative 

analysis of the optimal points achieved. This same analysis will then be completed through the 

comparison of the results achieved through genetic programming, where the results from portfolios 

consisting of equal weightings are compared to those achieved when the weightings were allowed 

to vary. Thereafter a comparison of the results where the number of shares to be included in the 

portfolio was not pre-specified will take place across both the traditional simulation and genetic 

programming approaches. Finally, an analysis of the diversification across industries of the above 

approaches will be completed. 

 In order to investigate the second research question and test the applicable hypothesis, similar 

comparisons and tests as mentioned above are carried out however, in this instance the simulation 

approach results are compared directly against the results achieved by the genetic programming 

methodology. The equally weighted portfolio achieved through the traditional simulation approach 

will be compared to the equally weighted portfolio of the genetic programming approach and so 

forth.  
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The table comparing the results of the optimal portfolio when utilising each approach is presented 

on the following page. This table will be referenced throughout the below analysis in order to 

answer the two research questions, thereby offering evidence to either reject or fail to reject the 

initial hypotheses. 
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Table 20: Comparative table summarising the results of the Optimal Portfolios solved for across each Mathematical Approach 

 

Simulation 

Approach, Equal 

Weightings

Simulation 

Approach, 

Unequal 

Weightings

Genetic 

Programming 

Approach, Equal 

Weightings

Genetic 

Programming 

Approach, 

Unequal 

Weightings

Simulation 

Approach, 

Single Share, 

Equal 

Weightings

Simulation 

Approach, 

Single Share, 

Unequal 

Weightings

Genetic 

Programming 

Approach, 

Single Share, 

Equal 

Weightings

Genetic 

Programming 

Approach, 

Single Share, 

Unequal 

Weightings

Optimal Number of Shares 10 15 14 15 37 13 24 11

Minimum Variance Achieved 0.307 0.744 0.266 0.679 0.3954 0.592 0.254 0.497

Optimal Solution Simulation Number 3652 3983 9234 9657 3559 3229 10092 4553

Optimal Solution Simulation Time 7 min 49 sec 8 min 55 sec 8 min 5 sec 9 min 47 sec 9 min 57 sec 9 min 50 sec 8 min 58 sec 5 min 23 sec

Minimum Variance achieved on First 

valid Trial 9.282 0.832 7.152 1.889 70.65 21.81 21.81 21.81

First Valid Trial Number 2 553 2 502 2 2 2 2

First Valid Trial Time 46 sec 1 min 42 sec 46 sec 55 sec 1 min 21 sec 43 sec 33 sec 33 sec

Total Trials;  Per cent of Valid trials 4762; 99.98% 4484; 19.29% 11969; 99.9% 9931; 21.1% 3583; 99.97% 3303; 99.7% 11361; 99.99% 4640; 99.98%
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4.4.1 Simulation Approach (Equal Weightings) compared to Simulation Approach 

(Unequal Weightings) 
Reviewing the above results it is shown that both of the above approaches improved upon the 

results found by previous literature. In chapter 2 it was revealed that numerous studies inferred 

that an optimally diversified portfolio should consist of between 10 and 30 shares (Elton & Gruber, 

1977; Neu-Ner & Firer, 1997). Both the simulation approach with equal weightings and the 

simulation approach with unequal weightings indicated that the optimally diversified portfolio 

should consist of 15 shares or less. This reinforces the first respective hypothesis – the optimally 

diversified portfolio is shown to consist of between 10 and 30 shares. The second hypothesis 

however, was not supported from the above analysis. This hypothesis stated that by allowing the 

weights on each share to vary, the optimal portfolio should be enhanced and further diversification 

benefits unlocked. This proved not to be the case, the first approach solved for a portfolio 

consisting of 10 shares that yielded a variance of 0.307. This is notably superior to the portfolio 

solved for by the second approach; this portfolio consisted of 15 shares and yielded a variance of 

0.744. The first approach also solved for this superior portfolio using a lesser number of 

simulations and in a quicker amount of time. However, it should be noted however that a result 

achieved on a portfolio where all of the shares are required to be weighted equally, should act as 

the lower bound of the potential best portfolio that could be established if the weights were allowed 

to vary. This is due to the fact that adding further flexibility to the methodology should only 

improve the results; if an equally weighted portfolio is indeed the optimal portfolio, using an 

approach where the weights on each share were allowed to vary would merely solve for the optimal 

portfolio which in this case would be an equally weighted portfolio. 

The results found are not in agreement with the above argument. This could be due to the limited 

computing power available to the simulations. As previously discussed, allowing the weights on 

each share to vary exponentially increases the number of potential portfolios that can be 

constructed. It can be assumed that if sufficient computing power was available or if the simulation 

was allowed to run for a vastly increased amount of time, an improved result may have been 

established. This theory explains why varying the weights on each share as opposed to maintaining 

an equally weighted portfolio may have led to inferior results. This is supported by the results – 

the first valid trial number when the weights were equal was solved for in 46 seconds and found 

on the second simulation. When the weights were allowed to vary the first valid trial number was 
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found after 1 minute and 42 seconds – this was simulation number 533. Furthermore, 99.98% of 

the trials run in the equally weighted simulation were valid but merely 19.29% of the trials were 

valid when the weightings on each share were allowed to vary. In summary, the above comparison 

reinforces the first hypothesis that an optimal portfolio does indeed consist of between 10 to 30 

shares. The second hypothesis is not however proven – allowing the weights to vary does not in 

fact lead to an enhanced performance in solving for the optimal portfolio. 

A graphic illustration of the results achieved from the traditional simulation approach (equally 

weighted and unequally weighted) when the portfolio was restricted to incrementally consist of a 

number of shares, ranging from 1 to 30 is shown in Figure 44. It can be seen from the figure that 

the expected trend (the minimum variance portfolio initially begins higher for a lower number of 

shares and dramatically decreases up to a point where including additional shares to the portfolio 

adds only a slight diversification benefit) is observed more noticeably in the simulation where the 

weights have been restricted to be equal. The trend of the equally weighted approach above is 

unstable (in some cases adding a share in fact increases monthly variance). This instability is 

exacerbated when the weightings allowed on each share are variable. It is expected that both trends 

should display a stronger trend if the simulations were allowed to run for longer (albeit potentially 

excessive) amounts of time, as mentioned previously. The reasoning for the weaker trend in the 

instance with unequally weighted constituents is discussed previously, and can be said to be due 

to the increased quantum of potential portfolios. Furthermore, the figure reiterates the findings 

mentioned earlier - allowing the weights to vary does not provide additional benefits to 

diversification. It is shown however, that the minimum variance portfolio contains less than 30 

shares, demonstrating alignment to the findings of Neu-Ner and Firer (1997) and those of Statman 

(1987), with a slight improvement as fewer shares were deemed necessary to be employed 

(between 10 and 15), amongst other previous authors as discussed in Chapter 2. The analysis now 



Page 154 

 

continues to further answer the first research question through a similar comparative analysis, now 

aimed at the results achieved from the genetic programming approach. 

Figure 44: Traditional Simulation Approach: Comparison of equally weighted and unequally weighted results  

4.4.2 Genetic Programming Approach (Equal Weightings) compared to Genetic 

Programming Approach (Unequal Weightings) 
The results achieved when using the genetic programming approach reinforce those found by the 

traditional simulation approach. Both of the equally weighted and unequally weighted portfolios 

were shown to consist of between 10 to 30 shares – the equally weighted approach consisted of 14 

shares while the unequally weighted approach consisted of 15 shares. This is again in line with 

previous literature, such as Neu-Ner and Firer (1997) and that of Statman (1987) as discussed in 

Chapter 2, as well as with the hypothesis of this dissertation. Similarly to the traditional simulation 

approach, the genetic programming approach does not find additional benefits to diversification 

when allowing the weightings of individual shares to vary. When the weightings on each share 

were equal, the optimal portfolio consisted of 14 shares which yielded a portfolio variance of 

0.266. Utilising an unequally weighted portfolio increases the number of shares necessary to be 

held in the portfolio to 15 while also achieving a higher portfolio variance (less efficient) of 0.679. 

Furthermore, the equally weighted approach utilised less simulations to solve for the optimal 

portfolio and did so in a shorter time period. The earlier argument again applies to the underlying 

reasoning as to why this may be the case and is given further impotence due to the results 

illustrating that 99.9% of the trials were valid when equal weights were used while only 21.1% of 
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trials were valid when the weights were allowed to vary. The first valid trail number was also the 

second trial on the equally weighted approach but was only the 502nd trial on the variably weighted 

portfolio.  

A graphical illustration of the results achieved by the genetic programming approach is shown in 

Figure 45. Once again it is shown that the simulation with the clearer trend is the equally weighted 

simulation. The graph displayed in Figure 45 again demonstrates that the optimal portfolio consists 

of a portfolio of 15 shares or less, reinforcing our initial hypothesis. The results do however again 

exhibit that allowing for more flexibility in the simulations does not in fact enhance the 

diversification benefit available to the investor. This could be due to the arguments noted 

previously in this section. 

Figure 45: Genetic Programming Approach: Comparison of equally weighted and unequally weighted 

results  

Through the use of the above comparative analysis the first research question and associated sub 

question are answered. The optimal portfolio can be seen to consist of between 10 to 15 shares, in 

agreement with the initial hypothesis. Secondly, contrary to the hypothesis, allowing for more 

flexibility in the simulations by way of allowing the weights of each share in the portfolio to vary, 

does not in fact enhance the diversification benefits available to an investor.  
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This section now continues with further comparative analysis with the aim to answer the second 

research question: “Of the three selected mathematical approaches, which demonstrates the most 

strength when solving for the optimally diversified portfolio in a South African environment?” It 

is hypothesised that the more computationally intensive and complex model of genetic programing 

will display increased strength in solving for the optimally diversified portfolio as opposed to the 

traditional simulation method. 

4.4.3 Simulation Approach (Equal Weightings) compared to Genetic Programming 

Approach (Equal Weightings) 
Both the equally weighted simulation approach and the equally weighted genetic programming 

approach achieve an optimal portfolio containing between 10 and 15 shares. The equally weighted 

simulation approach utilises a portfolio containing 10 shares yielding a variance of 0.307. The 

equally weighted genetic programming approach draws upon 4 additional shares to obtain a 

variance of 0.266 which is a 13% reduction in portfolio variance compared to the equally weighted 

simulation approach. In addition, although the genetic programming approach used 2.5 times more 

trials to find the optimal portfolio it also completed 2.5 times more trials in total compared to the 

equally weighted simulation approach, with similar levels of these trials being valid (satisfying all 

constraints). Both approaches found the first valid simulation on the second trial although it is 

acknowledged that this trial yielded a lower variance when using genetic programming. The results 

of these tests, when the number of shares to be included in the portfolio increases from 1 to 30 

incrementally is depicted graphically in Figure 46. The figure shows that an equally weighted 

genetic programming approach achieves a stronger, more stable trend when compared to the 

results from an equally weighted traditional simulation approach. Furthermore, it can be seen that 

an equally weighted genetic programming approach solves for a minimum variance that is smaller 

than that solved for by the traditional simulation approach for 22 out of the 29 observations.  
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This reinforces the second hypothesis: the more complex mathematical approach of genetic 

programming does indeed yield better diversification benefits to an investor. 

Figure 46: Traditional Simulation Approach and Genetic Programming Approach: An equally weighted comparison 

when the number of shares to be included in the portfolio was pre-specified 

4.4.4 Simulation Approach (Unequal Weightings) compared to Genetic 

Programming Approach (Unequal Weightings) 
The above finding is reinforced when comparing the results achieved by each approach when the 

weights of the shares are allowed to vary. Both approaches solve for an optimal portfolio which 

consisted of 15 shares, however, the portfolio variance achieved by genetic programming is 8.74% 

lower than that achieved by the traditional simulation approach. Yet the genetic programming 

approach used 2.4 times more trials to solve for the optimal portfolio but completed 2.2 times more 

trials in total. Both tests experienced a similar level of trials being valid, 19.29% using a traditional 

simulation approach and 21.1% using a genetic programming approach. The genetic programming 

approach did however take longer to solve for the optimal portfolio.  
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An illustration of the results achieved over both approaches is presented in Figure 47. This figure 

illustrates that both approaches yield a less clear trend. Although, it is calculated that the genetic 

programming approach remains superior as on 21 of the 29 observations, the genetic programming 

approach yields a lower variance while using the same number of shares in the portfolio. 

Consequently, this comparison highlights that genetic programming demonstrated more power in 

solving for the minimum portfolio variance compared to the traditional simulation approach. 

 

Figure 47: Traditional Simulation Approach and Genetic Programming Approach: An unequally weighted 

comparison when the number of shares to be included in the portfolio was pre-specified  
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4.4.5 Unconstrained Portfolio Analysis 
The analysis now continues through a similar comparative procedure, now aimed at the tests when 

the number of shares to be included in the portfolio were not pre-specified. When this approach 

was used under the constraint of equal weightings, the following results were obtained: 

The traditional simulation approach solved for a portfolio consisting of 37 shares which yielded a 

portfolio variance of 0.3954. This was notably the only result that was not in agreement with the 

first hypothesis that an optimal portfolio should consist of between 10 and 30 shares. When the 

simulation approach was applied without the constraint of equal weightings the optimal portfolio 

consisted of 13 shares and yielded a portfolio variance of 0.592. The results show that although 

less shares were utilised when the traditional simulation approach with unequal weightings was 

used, the additional flexibility allowed to the approach did not lead to further benefits of 

diversification being uncovered for the investor. 

A similar result was uncovered when the genetic programming methodology was applied. Under 

this methodology, the equally weighted portfolio solved for the optimal portfolio consisting of 24 

shares which yielded a portfolio variance of 0.254. When the weights were allowed to vary the 

optimal portfolio was shown to consist of 11 shares which yielded a portfolio variance of 0.497. 

Once more it is observed that although less shares were utilised, the more flexible approach did 

not uncover further additional benefits of diversification available to the investor. There was 

however, a notable drop in both the total number of trials completed as well as the trial number 

when the optimal solution was found. These results again reinforce the findings made previously, 

the optimal portfolio can be said to consist of between 10 to 30 shares and additionally, the more 

flexible approach does not in fact yield additional diversification benefits to an investor. 

In order to further answer the second research question, regarding which approach displays the 

most strength in solving for the optimal portfolio, the comparisons are now made across the 

mathematical approaches when the number of shares to be included in the portfolio were not pre-

specified. When the weightings on each share are required to be equal the simulation approach 

uses a portfolio consisting of 37 shares yielding a variance of 0.3954. The genetic programming 

approach uses both fewer shares and achieves a lower portfolio variance, the minimum variance 

portfolio consisted of 24 shares and yielded a portfolio variance of 0.254. The portfolio variance 

calculated is notably 35.76% smaller than the 0.39542 calculated using the simulation approach 
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while also utilising fewer shares. In addition it should also be noted that although the genetic 

programming approach used 2.8 times more trials in order to solve for the optimal portfolio, the 

approach completed 3.2 times more trials in total.  

When the weightings on each share in the portfolio were allowed to vary the traditional simulation 

approach solved for an optimal portfolio consisting of 13 shares which yielded a variance of 0.592. 

Once again the genetic programming approach utilised a fewer number of shares to obtain a 

smaller portfolio variance – 11 shares were utilised to yield a portfolio variance of 0.497. These 

results again reiterate previous findings. The optimal portfolio is demonstrated to include between 

10 and 30 shares, with one exception. Secondly, allowing increased flexibility of the methodology 

by allowing the weightings on each share to vary in fact detracts from the benefits achievable by 

an investor. Finally, it is established that the genetic programming approach displays increased 

strength over the traditional simulation approach in solving for the optimal number of shares to 

include into a minimum variance portfolio. 

4.4.6 Diversification Benefits 

A final comparative analysis is carried out in this section. Below the diversification achieved 

across industries obtained by both mathematical approaches where the number of shares to be 

included in the portfolio was not pre-specified is examined. A table demonstrating the industry 

diversification obtaining by each approach is shown in Table 21.  

When comparing the approaches where traditional simulation was applied it is observed that a 

higher number of industries are included in the equally weighted share portfolio, albeit with a 

higher number of shares. In addition the percent of the population industries that are not included 

is less in the equally weighted example. As such the equally weighted traditional simulation 

approach can be said to be better diversified and more representative of the population than the 

unequally weighted traditional simulation approach (which is demonstrated through a lower 

portfolio variance). When comparing the equally weighted genetic programming approach to the 

unequally weighted genetic programming approach, it is observed that the equally weighted 

portfolio is diversified over more industries, however of the industries that were neglected the 

unequally weighted portfolio included the industries that carried a greater weighting of the 

population. The equally weighted genetic programming approach can however be said to be better 

diversified within industries and as such achieves a lower portfolio variance. 
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When weights remain equal, comparing the traditional simulation approach to the genetic 

programming approach shows that although the traditional simulation approach included a higher 

number of industries and was more representative of the population, the genetic programming 

approach, as previously argued, is better diversified within industries and thus achieved a lower 

portfolio variance. When the weightings on the share were allowed to vary, the genetic 

programming approach outperformed the traditional simulation approach. It utilised shares across 

more industries that the traditional simulation approach, was more representative of the population 

and also achieved a lower portfolio variance. A graphical summary of the diversification across 

industries achieved by each approach is displayed in Figure 48.  

Table 21: Diversification across Industries achieved by each Approach 
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 Figure 48: Graphical representation of the industry diversification achieved by each mathematical approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic 
Materials

9% Consumer, 
Cyclical

4%

Consumer, 
Non-

cyclical
19%

Financial
63%

Industrial
5%

Industry Split: Simulation 
Approach with Unequal 

Weightings (Weighted Result)

Basic 
Materials

6%

Consumer, 
Cyclical

2%

Consumer, 
Non-

cyclical
17%

Diversified
1%

Financial
70%

Industrial
4%

Industry Split: Genetic 
Programming Approach with 
Unqual Weightings (Weighted 

Result)



Page 164 

 

4.4.7 Summary 
This chapter aimed to provide a thorough analysis of the results achieved by this study as well as 

discussion as to the respective implications. This was accomplished with the intention of 

answering the two research questions. With the exception of one instance, all results were in 

agreement as to the first hypothesis – an optimally diversified portfolio should consist of between 

10 and 30 shares (the results ranged between making use of between 10 and 24 shares, apart from 

the singular instance employing 37 shares which occurred in the unconstrained equally weighted 

simulation approach). Secondly, contrary to initial expectations, on no occasion did allowing the 

weights on each share to vary provide an investor with additional diversification benefits. This is 

believed to be primarily due to the increased quantum of potential possible portfolios leading to a 

smaller probability of the globally optimally diversified portfolio being discovered. 

In response to the second research question, the results showed that genetic programming was the 

strongest mathematical approach with regards to solving for the optimally diversified portfolio. In 

all instances the genetic programming approach solved for a smaller minmum variance of the 

optimally diversified portfolio than that discovered by the corresponding traditional simulation 

approach, albeit by occasionally employing a larger number of shares. Particle swarm optimisation 

was the notable underperformer. This was hypothesised to occur due to the fact that when 

initialised, many particles did not satisfy the appropriate constraints. Finally, in the unconstrained 

portfolios, in all instances the portfolios described as optimally diversified outperformed the 

benchmark portfolio. Additionally, through an examination of the diversification across industries, 

all optimally diversified portfolios were found to display an adequate level of diversification and 

thus could be said to be representative of the population portfolio. The equally weighted simulation 

approach achieved a greater level of diversification across industries when compared to the 

unequally weighted simulation approach. This was validated once more when the results obtained 

from the equally weighted genetic programming approach were compared to the unequally 

weighted genetic programming approach. Furthermore, in both respective instances the genetic 

programming approach achieved a greater level of diversification across industries than the 

corresponding traditional simulation approaches. The study continues in Chapter 5 provides a 

conclusion to the dissertation accompanied by a section detailing the considerations and limitations 

of the current study, a summary of the results as well as an examination of the potential areas 

where future research could aim to contribute and improve upon current literature. 
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Chapter 5: Conclusion 

Diversification continues to be a central tenant of investment theory due to its far reaching impacts, 

both theoretical and practical in nature. The act of diversification refers to spreading one’s assets 

so as to minimise the effect of a singular event affecting all assets held, negatively. As such, 

diversification is regarded as a risk mitigation technique. It is imperative to solve for the optimal 

amount of diversification investors should obtain due to the reality that a marginal increase in the 

amount of diversification is accompanied by a marginal increase in associated costs.  

With this in mind this dissertation aimed to answer two research questions. The first research 

question was: “what is the minimum number of shares to include into an equity portfolio, in order 

to achieve an optimal level of diversification in a South African environment?” The hypothesis 

was that, in line with previous literature, an optimally diversified portfolio should consist of 

between 10 to 30 shares. Additionally, the sub-question to the above was: “will allowing the 

weights on each share to vary uncover increased diversification benefits to an investor?” It was 

hypothesised that this would be the case due to the increased flexibility allowed to the simulation. 

The second research question was: “of the three selected mathematical approaches, which 

demonstrates the most strength when solving for the optimally diversified portfolio in a South 

African environment?” It was hypothesised that the more computationally intensive and complex 

models of genetic programing and particle swarm optimisation would display increased strength 

in solving for the optimally diversified portfolio as opposed to the traditional simulation method.  

The research questions above were answered through the application of the traditional simulation 

approach as well as the methodology of genetic programming and particle swarm optimisation. 

The study employed monthly share price data from the JSE with the aim being to solve for the 

optimal number of shares that should be included to a portfolio in order to achieve a minimum 

variance portfolio. The results achieved by each approach were thereafter compared to one another. 

The analysis was completed with various noted considerations and limitations to the methodology. 

These are discussed in section 5.1 below, which is followed by section 5.2 containing a summary 

of the results. The dissertation is thereafter concluded with an examination of possible future 

extensions to the current research. 
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5.1 Considerations and Limitations 

When carrying out the methodology and analysis in the dissertation a number of considerations 

were made. These will be discussed below as well as the limitations facing the current study. The 

first consideration made was that transaction costs were taken into account. Elton and Gruber 

(1977) noted that if transaction costs for a security were strictly proportional to the size of the 

transaction, then the total amount of transaction costs would be independent of the number of 

securities in the portfolio. If, however, transaction costs increased as N, the number of shares in a 

portfolio, increased then an investor would prefer a portfolio consisting of a lower number of 

shares. In previous literature transaction costs were taken into account in three ways. The first was 

to include a fixed cost (monetary or secondly, statistical) to each additional share added to the 

portfolio while the third was to include a cost in proportion to the size of the amount placed on 

each share (with higher values incurring higher costs). The approach of this dissertation however, 

was rather than to include transaction costs directly, a termination criterion was required to be met 

in order for the processes to terminate (Magill & Constantinides, 1976; Fang, Lai & Wang, 2006). 

This termination criterion was discussed previously in the methodology section and with its 

inclusion, a statistical transaction cost is accounted for. 

The second consideration highlighted was that the optimal number of shares to include in a 

diversified portfolio through testing on a data set may not necessarily have predictive capability 

for other data sets. This does not pose a problem to the research if the assumption is made that a 

South African investor is restricted to South African Equity. The third consideration made was 

that the liquidity of shares is taken into account, as previously discussed. This was completed by 

removing the shares in the population whose share price fell below 100 cents at any time over the 

observed period. This was completed as many shares that trade below 100 cents are viewed as 

‘penny-stocks’ and as such their liquidity is exceptionally low and they trade with an excessively, 

irrational nature which results in extremely large daily moves followed by periods of extremely 

muted volatility. This was further expounded upon in the methodology section.  
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The fourth consideration is behavioural in nature - if two portfolios (or indexes) are perfectly 

diversified, an investor could still not be indifferent to the portfolios due to various behavioural 

factors towards the leadership of the various companies; the outlook that one portfolio is more 

likely to experience a negative black swan event (referring to an unforeseen event with an 

extremely low probability of occurring) as well as due to a plethora of others. Thus, it may be 

believed by the investor to be necessary to further diversify a ‘completely’ diversified portfolio. 

There is potential to find various behavioural factors to add into several models in order to 

analytically take them into account – although this is not the aim of this study. 

The final consideration was that although optimal portfolio weightings may be found using the 

methodology, these weightings may be unachievable in reality as one cannot buy a portion of a 

share which may be necessary for the exact weightings to be achieved. This problem is not 

however considered extremely limiting as contracts for difference can be used to overcome this 

difficulty (Norman, 2010). This would allow one to achieve the exact weightings specified on each 

share to be included into the portfolio. This approach does not however take into account the 

potentially increased transaction costs of using contracts for difference to implement the same 

strategy, in place of using equity. 

Furthermore, there are three limitations of this study, firstly taxes are not taken into account and 

secondly the costs with regards to constant rebalancing of the portfolio through time are not 

explicitly taken into account. The exclusion of the above two factors does not have a material 

impact on the primary aims of this dissertation. This is for the reason that the relationship between 

the number of shares and the risk in the portfolio is not substantially exposed to the costs of 

implementation. The aforementioned costs would affect the returns achieved by the portfolios 

which would be exhibited through inferior returns realised by the optimal portfolios. The inclusion 

of taxes could alter the shares selected by the simulations if returns are considered in addition to 

the relationship between the number of shares in the portfolio and the risk of the portfolio. For 

example, if dividends are taxed at a favourable rate compared to capital gains, shares with higher 

dividend pay-out ratios would be preferred over those with lower pay-out ratios. Similarly, if the 

costs of rebalancing the portfolio on a recurrent basis (daily, monthly, annually and the like) is 

considered (in order to maintain the respective weightings on each share), it will play an integral 

role in determining the returns achieved by the optimal portfolio. In this dissertation it is assumed 
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that the weightings are set in the beginning of the period and held constant throughout the 

remainder of the period. There is potential for future studies to include the two above factors 

however, this does not pose an excessive threat to the value of the current dissertation as previous 

literature, in general as discussed in the literature review section, did not account for these 

limitations. As such this dissertation maintained a similar methodology to previous studies in order 

to ensure results attained are comparable.  

The final limitation is that the portfolio is restricted to be comprised of only equity – holdings in 

cash, bonds and other alternative investments are not in the investors’ potential universe. This is 

an intentional limitation included in this dissertation as it is necessary to restrict the portfolio to 

comprise of only equity in order to make the findings directly comparable to previous literature, 

the majority of which included the same limitation as previously elaborated. This chapter continues 

with a summary of the results of this dissertation and thereafter concludes with a discussion 

incorporating the aims that future research could focus on in order to continue to advance and 

make significant contributions to this division of financial literature.  
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5.2 Summary of Results 

This dissertation aimed to answer the two research questions highlighted previously through a 

comparison of the results achieved by each of the three different approaches. This was 

accomplished through the use of four tests. The first test pre-specified the number of shares to be 

included into the portfolio and maintained an equal weighting on all shares utilised. This was 

completed using a number of shares ranging from 1 to 30. Thereafter the optimisation approaches 

were applied to a test where a number of shares were not specified beforehand, but equal 

weightings on all shares were to be maintained. The final two tests were similar to the first two 

tests but with a key difference – in these tests the weightings on each share in the portfolio were 

not required to be equal. 

The completion of the above analysis allowed one to answer both research questions. The first 

research question targeted discovering the minimal number of shares to be included to obtain an 

optimally diversified portfolio in a South African environment. It was hypothesised that an optimal 

portfolio should consist of between 10 to 30 shares, as described by previous literature discussed 

in Chapter 2. The findings of this dissertation are in agreement with this and demonstrated that in 

all but one simulation, the optimal portfolio consisted of between 10 to 30 shares; the majority of 

results illustrated that a portfolio can be optimally diversified by utilising up to only 15 shares. It 

is demonstrated that one can however continue to add shares to the portfolio which is shown to 

further reduce the variance of a portfolio, however this becomes less and less significant as more 

shares are added to the portfolio - the positive impact of adding an additional share to a portfolio 

will further decrease if transaction costs are taken into account. These results provide an 

improvement upon those found by previous literature. 

The objective of the sub-question was to evaluate whether allowing the weights on each share to 

vary would uncover increased diversification benefits. It was hypothesised that this would be the 

case; an equally weighted portfolio should construe a lower bound regarding the potential available 

diversification benefits available to an investor. However, evidence pointed towards the contrary; 

the portfolios that allowed for variable weights underperformed the equally weighted portfolios. 

This is likely due to the increased computing power and time necessary to thoroughly compute the 

enlarged search space. The search space is increased exponentially due to the vastly increased 
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number of potential portfolios that can be constructed under the new constraints, as previously 

discussed. 

The second research question centred on ascertaining which of the three mathematical approaches 

was the strongest in solving for the optimally diversified portfolio. It was hypothesised that the 

performance of the more computationally complex models would dominate the results achieved 

by the traditional simulation method. This was found to be true for the genetic programming 

approach - the genetic programming approach was recognised to be stronger than the traditional 

simulation approach. The genetic programming approach solved for portfolios yielding lower 

portfolio variances than the traditional simulation approach in all of the tests where the number of 

shares to be included in the portfolio was incrementally increased. Furthermore, where the number 

of shares included to the portfolio was not pre-specified the genetic programming approach solved 

for portfolios yielding a lower variance while also utilising fewer shares than the portfolios 

computed using the traditional simulation methodology. Conversely, the notable underperformer 

was the particle swarm optimisation approach, clearly showing its weaknesses. This approach 

performed significantly worse than both the genetic programming and the traditional simulation 

approaches. Reasons for the underperformance of the particle swarm optimisation approach were 

outlined in the results section.  

Finally, although not the primary aim of the dissertation, the return profiles of the portfolio’s 

identified as optimally diversified using the unconstrained equally weighted simulation approach 

and the unconstrained equally weighted genetic programing approach were analysed and 

compared. This established that in both cases the portfolios deemed as optimally diversified 

outperformed the benchmark portfolio. Additionally, through an examination of the diversification 

achieved across industries, all optimally diversified portfolios were found to display a sufficient 

level of diversification and thus could were deemed to be representative of the population portfolio. 

The equally weighted simulation approach achieved a greater level of diversification across 

industries when compared to the unequally weighted simulation approach. This was validated once 

more when the results obtained from the equally weighted genetic programming approach were 

compared to the results achieved by the unequally weighted genetic programming approach. 

Furthermore, in both respective instances the genetic programming approach achieved a greater 

level of diversification across industries than the corresponding traditional simulation approaches. 
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The dissertation now concludes with a discussion summarising the potential aims for future 

research. 

5.3 Aims for Future Research  

Previous literature thus far, with regards to solving for the optimally diversified portfolio, has 

primarily focused on the utilisation of a single asset class – equity. This holds true in the analysis 

of this dissertation too. There is thus the potential for future research to include various additional 

asset classes into the analysis with the aim of being able to further diversify the wealth of an 

investors’ portfolio. There are numerous asset classes that could be included such as fixed income, 

currencies, property and the like. In addition to the inclusion of a larger number of asset classes, 

there is potential to include assets that range across a number of geographic locations. The above 

inclusion could further enhance the diversification benefits available to an investor. This 

dissertation focused solely on South African equity intentionally in order to ensure the results 

achieved were directly comparable to those achieved by previously discussed literature. In doing 

so, one gains a like for like comparison enabling a fair discernment in answering the proposed two 

research questions.  

Future research could also aim to include the effect that taxes may have on an investors’ portfolio. 

For example, if dividends are taxed at a lower rate than capital gains, with respect to equities, the 

diversification analysis should aim to optimally diversify an investors’ portfolio while favouring 

high dividend paying shares over shares that obtain returns primarily through capital appreciation, 

as previously described. Similarly, the costs of constantly rebalancing a portfolio in order to obtain 

the targeted weightings could also be brought into account. The above two future research aims 

assume that the study will be focused on both the relationship between the number of shares in a 

portfolio and the risk inherent in that portfolio as well as the returns achieved by the specified 

optimal portfolio. As discussed previously, this is not the primary concentration of this dissertation 

albeit that an analysis of the returns achieved by the unconstrained equally weighted portfolios 

was completed and compared to a benchmark portfolio. 

Finally, future research focusing on applying artificial intelligence to minimise the variance of a 

portfolio could include incorporating various other artificial intelligence methodologies such as 

simulated annealing, fuzzy logic, reinforcement learning as well as involving other paradigms of 

thinking, such as cybernetics. The simulated annealing algorithms were initially inspired by the 
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annealing process in metal work. In this process metal is heated and then cooled with the aim to 

alter its physical properties. The algorithm works by ‘heating’ the data which allows for various 

solutions to be found in different areas of the search space. The algorithm is then ‘cooled’ which 

involves the process of gradually decreasing the probability of a less optimal solution being 

accepted in place of the best solution found at any time. This approach is relatively simple and 

aims to solve for an appropriate solution, although it may not be the globally optimal solution. 

Fuzzy logic is a mathematical approach that stands in contrast to Boolean logic. Boolean logic 

refers to the fact that variables may only have values of 0 or 1 whereas fuzzy logic allows values 

of variables to be any value between 0 and 1. This could be applied by allowing values, such as 

the weightings on shares, to represent a range of continuous values rather than a simple discreet 

weighting. Variables are thus based on a ‘degree of truth’ as opposed to the ‘true’ or ‘false’ 

variables used by Boolean simulations. Fuzzy logic was initially founded with the aim of assisting 

computers to understand natural language and is said to be closer to the way in which the human 

brain works – data is aggregated from a number of partial truths to reach new, higher levels of 

truth. 

Reinforcement learning refers to a type of machine learning that is able to automatically determine 

the ideal behaviour within a specific context, aiming to maximise performance. The behavioural 

technique revolves around the simple framework of reward based learning. The algorithm is 

rewarded for behaving in a certain manner. This leads the algorithm to learn this behaviour as a 

positive one and as such when a similar situation is encountered again the algorithm should behave 

in a similar way to the one for which it was previously rewarded. Cybernetics grew from a desire 

to understand and build goal orientated systems. Cybernetics is applicable when a system 

incorporates a closed signalling loop. This is understood as a system wherein an action generates 

a change in the environment which is then reflected in the environment. The change in the 

environment is thereafter learned from and another change is then introduced to the environment 

with the aim of achieving an optimal state. There is potential for each of the above approaches to 

be applied to the problem of achieving an optimally diversified portfolio. Finally, future literature 

can aim to include a predictive component in the analysis which would allow an investor to forecast 

which shares should be included in order to generate the minimum variance portfolio in the future. 
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In conclusion, it was found that optimal portfolios should consist of between 10 to 30 shares, in 

line with previous literature. This outcome was emphasised by the fact that the results of both the 

traditional simulation and genetic programming approaches were in agreement with this 

hypothesis. Secondly, contrary to expectations, it was demonstrated that allowing the weights on 

each share to vary decreased the performance of each approach, limiting the diversification 

benefits available to an investor. Finally, the genetic programming approach was revealed as the 

strongest approach in solving for the optimally diversified portfolio, followed by the traditional 

simulation approach and thereafter by the significantly underperforming particle swarm 

optimisation approach. Future research can aim to incorporate multiple asset classes across 

numerous geographies. Additional costs such as taxes and rebalancing costs could be incorporated 

into the analysis when an optimally diversified portfolio is considered in conjunction with the 

objective of maximising returns. Finally, applying additional advanced mathematical approaches 

escalates the possibility of discovering further diversification benefits available to an investor. 

Through a focus on the above mentioned aims, future research would be enabled to contribute to 

the current literature available on the topic of diversification while making significant strides 

forward in potentially uncovering previously unknown superior diversification benefits available 

to investors. 
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Appendix 1 
Procedures in Excel 

Below is a step by step guide revealing how the data was retrieved and utilised in the current 

dissertation: 

As described previously the monthly closing prices of the respective shares were imported from 

the Bloomberg data base. Thereafter the adjustments previously mentioned were performed on the 

data and the return series as well as the standard deviation for each share was calculated 

respectively, an example of the output is illustrated in Table 22 below: 

Table 22: The 6 Month Return Series with Respective Standard Deviations for 4 

Hypothetical Shares 

Returns:         

  Share A Share B Share C Share D 

Month 1 2.00% 4.00% 0.50% -2.00% 

Month 2 1.50% 3.00% 1.00% -1.00% 

Month 3 -0.50% 2.00% -0.75% 2.00% 

Month 4 0.25% 1.00% -0.25% 0.45% 

Month 5 1.00% 2.00% 0.00% -0.10% 

Month 6 0.50% 1.00% 1.00% 1.00% 

          

Standard 

Deviations 
0.009 0.012 0.007 0.014 

 

Note: The table above shows the return matrix of a hypothetical portfolio consisting of 4 

shares over the period of 6 months followed by the standard deviation of each shares returns 

respectively 
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In order to calculate the portfolio variance the correlation matrix was required to be evaluated. 

This was accomplished by utilising the default excel functioning as follows: under the ‘data’ tab 

one should click on ‘data analysis’. Thereafter one can select the series of returns as the input range 

and output the correlation matrix into a new sheet. This will give one half of the correlation matrix. 

The output of the calculated correlation matrix is illustrated in the table below: 

Table 23: Correlation matrix calculated from the return series data in Table 22 

  Column 1 Column 2 Column 3 Column 4 

Column 1 1       

Column 2 0.752241 1     

Column 3 0.667651 0.241943 1   

Column 4 -0.97481 -0.77987 -0.53489 1 

 

As the excel based portfolio variance calculation requires a full correlation matrix, the table above 

needed to be filled completely. This can be achieved by copying the data from Table 23, selecting 

‘paste special’, and the option ‘transpose’ and then pasting this output data to a separate section in 

the sheet. Thereafter the newly pasted data can be selected, copied and then pasted into the original 

correlation table (Table 23) using the options ‘paste special’ and ‘skip blanks’ when selecting the 

first data point in the correlation matrix. This will yield the result of a full correlation matrix, as 

seen below: 

Table 24: The full correlation matrix of the share returns shown in Table 22 

  Column 1 Column 2 Column 3 Column 4 

Column 1 1 0.752241 0.667651 -0.97481 

Column 2 0.752241 1 0.241943 -0.77987 

Column 3 0.667651 0.241943 1 -0.53489 

Column 4 -0.97481 -0.77987 -0.53489 1 
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Thereafter, the section in Table 22 showing the series of standard deviations for each share return 

respectively should be transposed to be vertical. One can then create the table below: 

Table 25: The table necessary to compute the portfolio variance 

Used 
Standard 

Deviations 
Weight Used*S.D.*Weight 

1 0.009 0.5 0.005 

1 0.012 0.5 0.006 

0 0.007 0.5 0 

0 0.014 0.5 0 

 

In the table above the standard deviations are the transposed matrix of the standard deviations for 

the shares previously reported in Table 22. The column headed ‘Used’ contains a binary field (that 

will contain either 1 or 0, indicating 1 for when a share is included in the portfolio and 0 for when 

a share is not included into the portfolio). The column entitled ‘weight’ demonstrates the weight 

to be allocated to each share in the portfolio. The derivation of this figure will be explained below. 

The final column holds the horizontal product, being whether or not a share is included into a 

portfolio (binary field) multiplied by the standard deviation of the respective share multiplied by 

the weight assigned to the specific share. The portfolio variance is then calculated by the following 

formula: 

=MMULT(MMULT(TRANSPOSE(T7:T10),K4:N7),T7:T10)    (15) 
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Cells T7:T10 represent the product cell (the final column in Table 25) while cells K4:N7 represent 

the full correlation matrix shown in Table 24. It is important to note that as this a formula involving 

matrix multiplication the keys ‘Ctrl’, ‘Shift’ and ‘Enter’ must be pressed simultaneously in order 

to calculate the portfolio variance. The final answer (using the data above) should be equivalent to 

the table below: 

Table 26: Displaying the final portfolio variance for the hypothetical portfolio exhibited 

previously 

Portfolio Variance 0.000106134 

 

The optimisation process for the equally weighted test is run under the following constraints:  

Table 27: The constraints utilised on an Equally Weighted Portfolio 

Constraints: 

Number of shares used 2 

Weights 0.5 

Number of shares to be used 2 

 

The ‘number of shares used’ contains a ‘countif’ formula that calculates how many shares are used 

(how many shares possess a ‘1’ value in the ‘Used’ column). The weight is then calculated as 1 

divided by the number of shares included in the portfolio. The final constraint assists the 

optimisation process by restricting results to only be successful trials when the number of shares 

used equals the number of shares to be used (which is a measure of the number of shares the user 

desires the optimal portfolio to consist of). The number of shares to be used is increased from 1 to 

30 as described previously and should always be equal to the number of cells actually used. Test 

one then optimises the portfolio variance by adjusting the binary cells in the ‘Used’ column until 

an optimum solution is found that meets all constraints or until a termination criterion is met as 

described previously. 
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The optimum overall portfolio is then found (test 2) by removing the first restriction (that the 

number of shares included in a portfolio equal the number of shares requested by the investor) and 

allowing the optimisation to run with the constraint that a specific number of shares is deemed 

necessary by the optimisation process. The process is however still subject to the other termination 

criteria while retaining equal weightings on all shares included in the portfolio. 

Test 3 is then computed under the following constraints: 

Table 28: Showing the constraints needed to compute the optimal variance for an unequally 

weighted portfolio 

Constraints: 

Number of shares used 2 

Sum weights : 1 

Number of shares to be 

used 
2 

Number of shares with a 

0 weighting by used 
0 

 

The ‘number of shares used’ as well as the ‘number of shares to be used’ cells serve the same 

purpose as those in test 1 and 2 respectively. The ‘sum weights’ cell is a ‘sumifs’ function that is 

equal to the sum of all the weights under the ‘weights’ column where the binary ‘used’ cell is equal 

to 1. This constraint should always be equal to 1 (meaning that the full portion of an investors 

funds are always invested into the portfolio, without short selling or leverage). The sum of the 

number of shares with a 0 weighting but where the binary used cell is equal to 1 is the final 

constraint. This constraint should always be equal to 0 as to not affect the count of how many 

shares were included into the portfolio as a share included into a portfolio with a weight of 0 should 

not be counted as being included into the portfolio.  
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Test 4 is then computed by removing the same constraints as were removed from test 1 while 

keeping the remaining constraints applied to test 3. The final test will then optimise the variance 

of the portfolio until the termination criterion is met, as described previously. Furthermore, over 

all the tests the constraint that the weights on each of the shares should always range between 0 

and 1 and add up to 1 should always remain true. 
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Appendix 2 
The table below shows the results obtained in the first simulation, when the minimum variance 

portfolio for each pre-specified number of shares (ranging from 1 to 30) was calculated using the 

traditional simulation approach. As discussed previously, the portfolio is restricted to be equally 

weighted and for the sum of the weights on each share to always equal 1. 

Table 29: Simulation approach solving for minimum variance portfolio for each number of shares 

(1-30) using an equally weighted portfolio, restricting the sum of the weights to be equal to 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

Shares  in Portfolio 

Minimum Monthly 

Variance (%) 

Minimum Variance 

Annualised (%) 

1 1.186 3.773 

2 0.806 3.109 

3 0.745 2.990 

4 0.522 2.502 

5 0.519 2.495 

6 0.632 2.754 

7 0.451 2.327 

8 0.487 2.418 

9 0.477 2.393 

10 0.307 1.920 

11 0.390 2.164 

12 0.389 2.160 

13 0.441 2.300 

14 0.416 2.233 

15 0.421 2.248 

16 0.346 2.039 

17 0.503 2.458 

18 0.358 2.071 

19 0.566 2.606 

20 0.445 2.310 

21 0.336 2.009 

22 0.376 2.123 

23 0.266 1.786 

24 0.415 2.231 

25 0.27 1.801 

26 0.489 2.423 

27 0.343 2.030 

28 0.320 1.958 

29 0.335 2.005 

30 0.351 2.053 



Page 189 

 

The table below demonstrates the results obtained in the second simulation. Here the minimum 

variance portfolio for each pre-specified number of shares (ranging from 1 to 30) was calculated 

using the traditional simulation approach. This differs from the above table as in this simulation 

the weights on each share were allowed to vary however the sum of the weights was still required 

to be equal to 1. 

Table 30: Simulation approach solving for the minimum variance portfolio for each number of 

shares (1-30) using a portfolio that is not required to be equally weighted, while still restricting 

the sum of the weights to be equal to 1  

Number of Shares in Portfolio Minimum Monthly Variance (%) Minimum Variance Annualised (%) 

1 1.186 3.773 

2 1.076 3.594 

3 1.640 4.436 

4 2.314 5.269 

5 1.929 4.812 

6 1.670 4.476 

7 1.987 4.883 

8 1.600 4.382 

9 0.777 3.053 

10 1.879 4.749 

11 0.792 3.084 

12 1.646 4.444 

13 1.672 4.480 

14 1.643 4.440 

15 0.744 2.988 

16 1.713 4.534 

17 1.592 4.370 

18 0.955 3.385 

19 1.700 4.516 

20 1.028 3.513 

21 1.011 3.484 

22 1.356 4.034 

23 0.996 3.457 

24 1.517 4.267 

25 1.682 4.493 

26 1.658 4.461 

27 1.561 4.328 

28 1.844 4.705 

29 1.855 4.718 

30 2.116 5.039 
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The genetic programming approach was then applied to the data. The minimum variance portfolio 

was once again calculated for each pre-specified number of shares utilising an equally weighted 

portfolio. The table below displays the results obtained from the utilisation of this approach. 

Table 31: Genetic Programming approach solving for the minimum variance portfolio for each 

number of shares (1-30) using an equally weighted portfolio, restricting the sum of the weights to 

be equal to 1 

Number of 

Shares in 

Portfolio 

Minimum 

Monthly 

Variance 

(%) 

Minimum 

Variance 

Annualised 

(%) 

1 1.186 3.773 

2 0.806 3.109 

3 0.682 2.861 

4 0.582 2.643 

5 0.452 2.328 

6 0.394 2.175 

7 0.375 2.121 

8 0.364 2.089 

9 0.347 2.042 

10 0.344 2.032 

11 0.303 1.906 

12 0.312 1.934 

13 0.290 1.864 

14 0.266 1.788 

15 0.288 1.859 

16 0.350 2.050 

17 0.282 1.839 

18 0.262 1.772 

19 0.267 1.790 

20 0.324 1.971 

21 0.350 2.049 

22 0.335 2.006 

23 0.276 1.819 

24 0.298 1.891 

25 0.282 1.839 

26 0.282 1.839 

27 0.251 1.737 

28 0.270 1.799 

29 0.266 1.787 

30 0.249 1.727 
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The results below are obtained from applying the genetic programming approach to the data, 

however in this instance the weights on each respective share were allowed to vary. The weights 

on the shares were however still restricted to sum to 1. 

Table 32: Genetic Programming approach solving for the minimum variance portfolio for each 

number of shares (1-30) without requiring equal weightings on each share while still restricting 

the sum of the weights to be equal to 1 

Number of 

Shares in 

Portfolio 

Minimum 

Monthly 

Variance 

(%) 

Minimum 

Variance 

Annualised 

(%) 

1 1.186 3.773 

2 2.33 5.060 

3 0.794 3.087 

4 1.090 4.659 

5 1.990 4.898 

6 0.780 3.060 

7 1.610 4.851 

8 1.060 4.524 

9 1.120 4.533 

10 1.550 4.178 

11 1.040 3.471 

12 0.747 2.993 

13 0.791 3.081 

14 1.010 3.465 

15 0.679 2.854 

16 0.801 3.100 

17 1.500 3.873 

18 0.896 3.278 

19 0.711 2.920 

20 1.990 4.381 

21 1.930 4.372 

22 0.777 3.054 

23 1.580 3.886 

24 1.530 4.030 

25 0.947 3.371 

26 1.530 3.554 

27 1.080 3.962 

28 1.940 4.374 

29 1.790 4.068 

30 1.960 3.788 
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Appendix 3 
The table below lists the share codes and corresponding company names of all shares that were 

incorporated in the analysis of this dissertation. 

Table 33: Share Codes and Respective Company Names 

Share Code  Company Name  Share Code Company Name 

AAC  Anglo American Corp S Africa   IPF Investec Property Fund Ltd 

AAL  Alpha Limited   IPL Imperial Holdings Ltd 

ABI  Amalgamated Beverage Inds   IPR Iprop Holdings Ltd 

ABT  Ambit Properties Ltd   IRV Irvin & Johnson Limited 

ACP  Acucap Properties Ltd   ITL Interleisure Limited 

ADC  Adcock Ingram Ltd   ITU Intu Properties Plc 

ADN  Adcock Ingram Ltd-"N" Shs   IVG Invego Investment Limited 

ADV  Advent Properties Limited   JCG Jci Gold Ltd 

AEG  Aveng Ltd   JDG Jd Group Ltd 

AEL  Allied Electronics Cor-A Shr   JNC Johnnic Holdings Ltd 

AEN  Allied Electronics Co-N Shrs   JOE Hj Joel Gold Mining Co Ltd 

AFE  Aeci Ltd   JSE Jse Ltd 

AFT  Afrimat Ltd   KEH Keaton Energy Holdings Ltd 

AFX  African Oxygen Ltd   KIO Kumba Iron Ore Ltd 

AGL  Anglo American Plc   KLO Kloof Gold Mining Co Ltd 

AGR  A M Moolla Group Limited   KOH Kohler Limited 

AHH  Afrox Healthcare Ltd   KTL Kunene Technology Ltd 

AHV  African Harvest Ltd   LBH Liberty Holdings Ltd 

AIA  Ascension Properties Ltd-A   LDM Lindum Reefs Gold Mining Co 

AIB  Ascension Properties Ltd-B   LES Leslie Gold Mines Limited 

AIP  Adcock Ingram Holdings Ltd   LEW Lewis Group Ltd 

AKJ  Arthur Kaplan Jewellery Hldg   LGB Langeberg Holdings Limited 
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ALT  Allied Technologies Ltd   LGL Liberty Group Ltd 

AMB  Amb Holdings Ltd   LHC Life Healthcare Group Holdin 

AMC  Anglo American Coal Corp Ltd   LNC Lenco Holdings Limited 

AMG  Anglo Amer Gold Investment   LON Lonmin Plc 

AMI  Anglo Amer Industrial Corp   LOR Loraine Gold Mines Limited 

AMS  Anglo American Platinum Ltd   LTA Lta Limited 

AND  Andulela Investment Holdings   LTH Lithotech Limited 

ANG  Anglogold Ashanti Ltd   MAF Mutual & Federal Insurance 

ANN  Anglovaal Ltd-N Shares   MAS Masonite Africa Ltd 

APA  Apexhi Properties-Unit Cl A   MDG Mdm Growth Investments Ltd 

APB  Apexhi Properties-Unit Cl B   MDI Master Drilling Group Ltd 

APG  Autopage Holdings Limited   MDN Madison Property Fund Manage 

APP  Amb Private Equity Partn-Uts   MDS Midas Pty Ltd 

AQP  Aquarius Platinum Ltd   MEG Millennium Entmt Grp Africa 

ARD  Ardor Sa   MES Messina Ltd 

ARI  African Rainbow Minerals Ltd   MHH Mih Holdings Pty Ltd 

ARL  Astral Foods Ltd   MKL Makalani Holdings Ltd 

ARO  Anglo American Properties   MLB Malbak Ltd 

ASC  Ascendis Health Ltd   MMI Mmi Holdings Ltd 

ASG  Assmang Limited   MND Mondi Ltd 

ASR  Assore Ltd   MNO Mainstreet Property Fund 

ATT  Attacq Ltd   MNP Mondi Plc 

AUK  Aukland Health Limited   MNR Minorco Sa 

AVG  Avgold Ltd   MNS Supersport International Hol 

AVM  Avmin Ltd   MPC Mr Price Group Ltd 

AVS  Avis Southern Africa Ltd   MPR Metboard Property Fund 

AVU  Avusa Pty Ltd   MPT Mpact Ltd 
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AWA  Arrowhead Properties Ltd   MSM Massmart Holdings Ltd 

AWB  Arrowhead-B   MTE Marshall Monteagle Holding S 

AWR  Allwear Limited   MTK Metkor Group Pty Ltd 

AXC  Apexhi Properties-Unit Cl C   MTN Mtn Group Ltd 

BAT  Brait Se   MTX Metorex Ltd 

BAW  Barloworld Ltd   MUR Murray & Roberts Holdings 

BCX  Business Connexion Group   MZG Metje & Ziegler Ltd 

BET  Beatrix Mines Limited   NCW New Central Witwatersrand 

BGA  Barclays Africa Group Ltd   NED Nedbank Group Ltd 

BIL  Bhp Billiton Plc   NEP New Europe Property Invest 

BJM  Barnard Jacobs Mellet Hldgs   NIB Nedcor Investment Bank Hldgs 

BLU  Blue Label Telecoms Ltd   NIN Ninian & Lester Holdings Ltd 

BLY  Blyvooruitzicht Gold Mining   NIV Niveus Investments Ltd 

BPRD  Barprop Limited-11% Min Ln   NPK Nampak Ltd 

BTG  Bytes Technology Group Ltd   NPN Naspers Ltd-N Shs 

BTI  British American Tobacco Plc   NPT Newport Property Fund 

BTS  British American Tobacco Hld   NRB Nrb Holdings Ltd 

BUF  Buffelsfontein Gold Mines   NT1 Net 1 Ueps Technologies Inc 

BUR  Burlington Industries Ltd   NWH Norwich Holdings Sa Ltd 

BVT  Bidvest Group Ltd   NWL Nu-World Holdings Ltd 

BZK  Berzack Brothers (Holdings)   ODM Ocean Diamond Mining Holding 

CAN  Canadian Overseas Packaging   ODV Oceana Investment Corp Plc 

CAS  Cadbury Schweppes S Africa   OML Old Mutual Plc 

CAT  Caxton And Ctp Publishers An   OMN Omnia Holdings Ltd 

CBH  Country Bird Holdings Ltd   ORS Orion Selections Limited 

CCO  Capital & Counties Propertie   PAM Palabora Mining Co Ltd 

CFC  Commercial Finance Co Ltd   PAS Protea Assurance Co Limited 
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CFR  Financiere Richemont-Dep Rec   PEI Pep Limited 

CGS  C.G. Smith Limited   PEN Penrose Holdings Ltd 

CGU  Cgu Holdings Limited   PEP Pepkor Limited 

CGW  Consol Limited/Old   PFG Pioneer Foods Group Ltd 

CHE  Chemical Services Ltd   PGL Pallinghurst Resources Ltd 

CHR  Charter Plc   PIK Pick N Pay Stores Ltd 

CIL  Consolidated Infrastructure   PIN Polifin Limited 

CKS  Crookes Brothers Ltd   PKN Pick'N Pay Stores Ltd-N Shs 

CLE  Clientele Life Assurance Co   PMA Primedia Ltd/South Africa 

CLH  City Lodge Hotels Ltd   PMG Primegro Properties-Link Unt 

CLI  Clientele Ltd   PMN Primedia Ltd-'N' Shrs 

CLR  Clover Industries Ltd   PON Profurn Limited 

CLS  Clicks Group Ltd   POT Brian Porter Holdings Ltd 

CMI  Cons Metallurgical Inds Ltd   POW Power Technologies Ltd 

CML  Coronation Fund Managers Ltd   PRA Paramount Property Fund Ltd 

CMP  Cipla Medpro South Africa Lt   PRI Primedia Ltd-Units 

CNC  Concor Limited   PRP Premier Pharmaceutical Co Pt 

CNF  Congella Federation Limited   PSL Psg Financial Services Ltd 

CNX  Conafex Hldgs Sa   PSY Plessey Corporation Limited 

COH  Curro Holdings Ltd   RBP Royal Bafokeng Platinum Ltd 

COT  Coates Bros. (South Africa)   RBX Raubex Group Ltd 

CPB  Micawber 274 Ltd   REB Rebosis Property Fund Ltd 

CRM  Ceramic Industries Ltd   REI Reinet Investments Sa-Dr 

CRW  Corwil Investments Ltd   REM Remgro Ltd 

CVH  Capevin Holdings Ltd   RES Resilient Reit Ltd 

CXT  Caxton Publishers & Printers   RFN Randfontein Estates Limited 

DAG  Da Gama Textile Co Ltd   RHE Rhoex Ltd 
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DDT  Dimension Data Holdings Plc   RLO Reunert Ltd 

DIV  Diversified Property Fund   RMI Rand Merchant Investment Hol 

DLF  Del Monte Royal Foods Ltd   RMR Rms Property Holdings Ltd 

DLK  Deelkraal Gold Mining Co Ltd   ROM Romatex Limited 

DLT  Delta Property Fund Ltd   RPL Redefine International Plc 

DRD  Drdgold Ltd   RTN Rex Trueform Clothing-N Shs 

DST  Distell Group Ltd   RTO Rex Trueform Clothing Co Ltd 

DSY  Discovery Ltd   SAB Sabmiller Plc 

DTC  Datatec Ltd   SAP Sappi Limited 

DUK  Duiker Mining Limited   SBK Standard Bank Group Ltd 

ECO  Edgars Consolidated Stores   SBO Saambou Holdings Ltd 

EGN  Engen Limited   SDG South African Druggists Ltd 

EHS  Evraz Highveld Steel And Van   SFW Stellenbosch Farmers' Winery 

ELA  Elandsrand Gold Mining Co   SGG Sage Group Ltd 

ELH  Ellerine Holdings Ltd   SGL Sibanye Gold Ltd 

EMI  Emira Property Fund Ltd   SHF Steinhoff Intl Holdings Ltd 

ENR  Energy Africa Ltd   SHP Shoprite Holdings Ltd 

EQS  Eqstra Holdings Ltd   SHV Sea Harvest Corporation Ltd 

ERG  East Rand Gold & Uranium Co   SLM Sanlam Ltd 

ESV  Eastvaal Gold Holdings Ltd   SLU Investment Solutions Hldgs 

EUR  Eureka Industrial Ltd   SMA Samancor Chrome Ltd 

EVR  Evander Gold Mines Ltd   SNT Santam Ltd 

EVT  Everite Group Limited   SOL Sasol Ltd 

EXX  Exxaro Resources Ltd   SON Southern Life Association 

FAM  Frame Group Limited   SPE Spearhead Property Hold -Uts 

FDC  Foodcorp Limited   SPG Super Group Ltd 

FFA  Fortress Income Fund Ltd-A   SPN Specialty Stores Ltd-N Shs 
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FIN  Fintech Ltd   SPP Spar Group Limited/The 

FIT  First International Trust   SPU Spur Steak Ranches Limited 

FRE  Free State Development & Inv   SRL Sa Retail Properties Ltd 

FRG  Free State Cons Gold Mines   SRT Smart Group Holdings Ltd 

FSB  First Natl Bank Holdings Ltd   SRY Sentry Group Limited 

FSC  Lion Match Co Pty Ltd/The   SSK Stefanutti Stocks Holdings 

FSP  Freestone Property Hldgs   STH St Helena Gold Mines Limited 

FWD  Kansai Plascon Africa Ltd   SUI Sun International Ltd 

GAR  Guardian National Insurance   SUN Suncrush Limited 

GBL  Genbel South Africa Limited   SVL Southvaal Holdings Limited 

GDA  Glodina Holdings Ltd   SYA Siyathenga Property Fund 

GDO  Gold One International Ltd   TAM Tamboti Property Fund Ltd 

GFC  Gold Fields Coal Limited   TBS Tiger Brands Ltd 

GFI  Gold Fields Ltd   TCP Transaction Capital 

GFN  Griffin Shipping Hldgs Ltd   TDH Tradehold Ltd 

GIJ  Gijima Group Ltd   TFG The Foschini Group Ltd 

GOC  General Optical Company Ltd   TIW Tiger Wheels Ltd 

GPL  Grand Parade Investments Ltd   TKG Telkom Sa Soc Ltd 

GPN  Group Five Ltd-"N" Shs   TLF Tile Afrika Holdings Limited 

GPT  Global Capital Private Eq   TLJ Teljoy Holdings Limited 

GRA  Gray Security Services Ltd   TME Johnnic Publishing Ltd 

GRC  Aveng Grinaker-Lta Ltd   TMG Times Media Group Ltd/South 

GSC  Genbel Securities Limited   TMX Telemetrix Plc 

GTA  Gentyre Industries Ltd-A   TON Tongaat Hulett Ltd 

GTB  Gentyre Industries Ltd-B   TOY Toyota South Africa Pty Ltd 

GUB  Gubb & Inggs Ltd   TRE Trencor Ltd 

HAG  Haggie Limited   TRU Truworths International Ltd 
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HAL  Halogen Holdings   TSX Trans Hex Group Ltd 

HAR  Harmony Gold Mining Co Ltd   TUN T & N Holdings Limited 

HBN  Hartebeestfontein Gold Mng   UMN Umdoni Property Fund 

HCT  Hoechst South Africa Limited   USV United Service Technologies 

HDC  Hudaco Industries Ltd   UTR Unitrans Ltd 

HGT  Higate Property Fund   UUU Uranium One Inc 

HLH  Hunt Leuchars & Hepburn Hldg   VIL Village Main Reef Ltd 

HLM  Hulamin Ltd   VKE Vukile Property Fund Ltd 

HPA  Hospitality Property Fund-A   VLY Velocity Holdings Limited 

HPB  Hospitality Property Fund-B   VNF Venfin Pty Ltd 

HSP  Holdsport Ltd   VOD Vodacom Group Ltd 

IBM  Ibm South Africa Group Ltd   WAL Waltons Stationery Co Ltd 

ICH  Indus & Commercial Hldgs Grp   WAR Gold Fields Operations Ltd 

ICS  Ics Holdings Limited   WDL Western Deep Levels Limited 

IDW  Independent Newspapers Hldgs   WET Wetherlys Investment Hldgs 

IFR  Ifour Properties Ltd   WGR Witwatersrand Consolidated G 

IGE  Ingwe Coal Corporation Ltd   WHL Woolworths Holdings Ltd 

ILV  Illovo Sugar Ltd   WPH Women Investment Portfolio-B 

IMP  Impala Platinum Holdings Ltd   WRC West Rand Consolidated Mines 

INL  Investec Ltd   ZED Zeder Investments Ltd 

INP  Investec Plc   ZSA Zurich Insurance Co South Af 

 

 


