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Abstract

Sequences of numbers have important applications in the field of Computer Science.

As a result they have become increasingly regarded in Mathematics, since analysis

can be instrumental in investigating algorithms.

Three concepts are discussed in this thesis, all of which are concerned with ‘words’

or ‘sequences’ of natural numbers where repeated letters are allowed:

• The number of distinct values in a sequence with geometric distri-

bution

In Part I, a sample which is geometrically distributed is considered, with the

objective of counting how many different letters occur at least once in the

sample. It is concluded that the number of distinct letters grows like log n as

n → ∞. This is then generalised to the question of how many letters occur

at least b times in a word.

• The position of the maximum (and/or minimum) in a sequence

with geometric distribution

Part II involves many variations on the central theme which addresses the

question: “What is the probability that the maximum in a geometrically dis-

tributed sample occurs in the first d letters of a word of length n?” (assuming

d ≤ n). Initially, d is considered fixed, but in later chapters d is allowed to

grow with n. It is found that for 1 ≤ d = o(n), the results are the same as

when d is fixed.

• The average depth of a key in a binary search tree formed from a

sequence with repeated entries

Lastly, in Part III, random sequences are examined where repeated letters

are allowed. First, the average left-going depth of the first one is found,

and later the right-going path to the first r if the alphabet is {1, . . . , r} is

examined. The final chapter uses a merge (or ‘shuffle’) operator to obtain

the average depth of an arbitrary node, which can be expressed in terms of

the left-going and right-going depths.
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Chapter 1

Thesis synopsis

Words (sequences of natural numbers) are discussed, and various parameters are

analysed with the help of symbolic equations, generating functions, probabilities,

Rice’s method, Mellin transforms and the Combinatorial Laplace transform. Ex-

pressing ideas symbolically is always a useful way of getting a more concrete,

intuitive understanding of abstract concepts, and translating these ideas into gen-

erating functions allows many calculations to take place. “Generating functions

are more than a technical tool used to solve recurrences and compute moments

– they are a necessary and natural link between the algorithms that are our ob-

jects of study and analytic methods that are necessary to discover their properties.

Generating functions serve both as a combinatorial tool to facilitate counting and

as an analytic tool to develop precise estimates for quantities of interest.” ([36,

page 82])

The parameters of interest in this thesis for which we make use of this powerful tool

are discussed in detail below. After the generating function has been determined,

often further manipulations are required to obtain the (sometimes asymptotic)

results. Unless otherwise stated, all asymptotic results are taken as n→ ∞. Rice’s

method (introduced in Chapter 2) is used frequently in the theorems from which

this thesis is composed. This method allows us to approximate an alternating sum

expression of the form

n∑

k=1

(
n

k

)

(−1)kf(k), (n ∈ N)

whose magnitude would otherwise be difficult to estimate. However this method

is very specific and it is sometimes necessary to make use of other techniques.

In Part II we see such a case, and the Mellin transform is used. This transform

(along with its inverse) allows the user to approximate more diverse expressions
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than Rice’s method. Finally, the ‘shuffle’ operator is introduced in Part III, which

necessitates the use of the Laplace transform which converts between ordinary and

exponential generating functions. The original generating functions in this case are

ordinary, but in order to produce a ‘shuffle’, a product of exponential generating

functions is required. The use of exponential generating functions ensures that the

ordering of the letters does not pose a problem within the generating function, a

property used elsewhere in the thesis too – see, for example, Chapter 3 in Part I.

1.1 Distinct values

How many distinct values could one expect in a geometrically distributed sample

(defined below) of length n? This question is addressed in Chapter 3, and gener-

alised in Chapter 4 to the number of values in such a sample that appear at least

twice – or even, say, five times or more.

Words (sequences) of length n are considered. The entries in the sequence or

letters are natural numbers which occur independently of each other (i.e., the

letter appearing in the first position has no effect on the letter in the second,

third or eleventh positions). Each letter occurs with geometric probability (i.e.,

letter j will occur with probability pqj for p + q = 1 – see Chapter 2). Thus any

natural number could occur, but smaller numbers (letters) are more common. The

expected value and variance are found for the number of letters occurring at least

once in a word. That is, we predict that we will have E(dn) different letters in

a random (geometrically distributed) word of length n, and then find how closely

the numbers of distinct values are clustered around this mean (this quantity is the

variance, expressed by V(dn)). Then both the expected value and variance are

found for the number of letters occurring at least b times in a word.

Consider the specific example 182122211211212161142643171131, which is a word

of length n = 30 created by Mathematica from geometric random variables where

p = q = 1
2
. There are seven distinct values, namely {1, 2, 3, 4, 6, 7, 8}. Five of the

letters occur at least twice ({1, 2, 3, 4, 6}), and two of these letters ({1,2}) occur

eight times or more. If we let Q = 1
q
, L = logQ and γ ≈ 0.57721, then according

to the main term in the results, we would expect approximately

logQ n+
γ

L
+ logQ(Q− 1) − 1

2
= log2 30 +

γ

log 2
+ log2 1 − 1

2

= 5.23964

2



distinct values and approximately

logQ n+
γ

L
+ logQ(Q− 1) − 1

2
− 1

L
Hb−1 = log2 30 +

γ

log 2
+ log2 1 − 1

2
− 1

log 2
H1

= 3.79694

letters occurring at least twice. For the number of letters appearing in the word

eight times or more, we would expect about

logQ n+
γ

L
+ logQ(Q− 1) − 1

2
− 1

L
Hb−1 = log2 30 +

γ

log 2
+ log2 1 − 1

2
− 1

log 2
H7

= 1.49893.

Hence these random experimental values, though enabling one to understand the

problem better, give results greater than those we would expect (the average).

This can be explained by the fact that these results are asymptotic as n→ ∞, so

for n = 30 we are unlikely to get accurate results.

The distinct value problem can also be viewed as a problem of balls in urns or

boxes. After throwing n balls into an infinite row of boxes which are initially empty,

with the relevant probability that a ball falls into a certain box (for example, if

p = q = 1
2
, it is twice as likely that the ball will land in the box closest to you as in

the next box along), the analogous question would then read: “How many boxes

are non-empty after n balls have been thrown?”. In the more general case, we

would ask: “How many boxes contain at least b balls after n have been thrown?”.

It is necessary to assume that the thrower has perfect aim and that the probability

of the ball landing outside every box is zero.

Chapters 2 and 5 introduce and conclude this portion of the thesis.

1.2 Maxima and minima

The position of the maximum and/or minimum of a geometrically distributed

sample of length n is now considered. After introducing the problem in Chapter 6,

Chapter 7 is used to address the question: “What is the probability that the

maximum value in a geometrically distributed sample lies in the first position?”.

Then, by extending the possible positions of the maximum to the first d places in

the word, this is generalised in Chapter 8. At first, d is considered fixed, but later

chapters allow d to grow with n.

It is necessary to consider different cases because repeated maxima can either

be allowed or not. In the first scenario, two cases must be considered. We re-

fer to these as ‘weak’ and ‘strict’, which correspond respectively to allowing the

3



maximum to appear again in the word (any number of times) and not allowing

another recurrence of the maximum. For example, the words 422131221113 and

311213212131 both satisfy the ‘weak’ condition, but only the former satisfies the

‘strict’ condition. For the more general scenario of having the maximum in the

first d letters of the word, four cases need to be considered. This is because the

weak/strict classification applies to both the first d letters and also (independently)

to the remaining n− d letters in the word. Table 1.1 gives examples of each case.

The different cases are denoted by an ordered tuple where the first entry corre-

sponds to the first d letters of the word and the second refers to the rest of the

word. In Table 1.1, we take n to be 20 and let d be 6 and assume that each

letter (j) occurs in the word with probability
(

1
2

)j
. (For geometric distribution,

we assume each letter j occurs with probability pqj−1 where p + q = 1. Here,

we choose the values p = q = 1
2
.) The maximum in each case is the letter 3.

Note that these cases are not disjoint. For example, any of the first three cases

would also fall under the (weak, weak) classification, but not necessarily vice versa.

Classification Example

(strict, strict) 11231211122111212211

(weak, strict) 13231311122121211112

(strict, weak) 12311221312122113311

(weak, weak) 32111322121122111231

Table 1.1: Examples of words in each of the four cases where n = 20 and d = 6.

The same cases are considered for the minimum value (see Chapters 9 and 10)

with different results due to the geometric probabilities attached to each letter (or

natural number). For these cases, the restrictions have more influence because

of the geometric distribution: the probabilities decrease as the value of the letter

increases. Hence smaller letters occur more frequently than larger letters. Because

4



of this, a large letter is much more likely to occur only once than a small letter

and consequently we expect there to be a greater difference between classifications

here than when the maximum was considered. The results for these cases are exact

and, unlike the restricted maximum cases, do not require asymptotic analysis.

In Chapter 11, the probability that the minimum of the first d letters is greater

than (and possibly equal to) all letters in the rest of the word is found. Again,

four cases are considered and as in Chapters 7 and 8, asymptotics are involved in

obtaining the results. In all of the above categories, it can be seen that the second

component in each tuple plays more of a role than the first, for n large. This is

due to the fact that d is fixed relative to n, so as n gets larger, the second part

of the word (all letters from position d+ 1 onwards) dominates the first d letters.

But what if d grows with n?

The remaining chapters in Part II do not assume d is fixed. In Chapter 12, d is

allowed to grow linearly with n – i.e., d = αn for 0 < α ≤ 1. Finally in Chapter 13,

d grows with n according to the relationship d = αnγ for 0 < α ≤ 1 and 0 < γ < 1.

It is found that the results for the d fixed cases hold in this chapter too, and further

manipulations show that these results hold for 1 ≤ d = o(n).

Part II is concluded in Chapter 14 with a brief analysis of the results.

1.3 Binary search trees

For this section of the thesis, the sequences are no longer geometrically distributed.

Sequences of length n are created from letters {1, . . . , r} (which can appear more

than once in the word) according to two models.

The first is the ‘multiset’ model. For this we assume that we know how many

appearances each letter makes in the word, i.e., we assume that we know ni for

i ∈ {1, . . . , r} in the multiset {n1 · 1 ; n2 · 2 ; . . . ; nr · r}.

The second model is the ‘probability’ model. A probability is attached to each

letter in the alphabet {1, . . . , r}, and we assume each letter occurs independently

of all the rest. A more symbolic generating function is used, and in general the

calculations are easier because of the restriction that P[1,r] = p1 + · · ·+ pr = 1 (i.e.,

the total sum of all probabilities in the finite alphabet will be one).

The results sought are as follows:

• The average left-going depth of the first 1, and its variance;
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• The average right-going depth of the first r, and its variance;

• The average depth of an arbitrary key α, and its variance.

For the ‘left-going’ and ‘right-going’ cases, the binary search tree (which contains

equal/repeated keys) corresponding to each sequence is built as follows: the first

letter of the word is the root. Subsequent nodes are inserted as children, to the

left if they are strictly less than the parent node and to the right if they are larger

than or equal to the parent node. In this way we create a left-going branch only

when we have a strict left-to-right minimum, and we create a right-going branch

when we have a weak left-to-right maximum. See Figure 1.1.

For the average depth of the key α, we assume that from a sequence with repeated

letters, we create a binary search tree with distinct nodes. Thus keys smaller than

the parent node will be inserted to its left and those larger will be inserted to the

right. Those equal to the parent node will be passed over. As an example, consider

Figure 1.1 which shows the two different methods of creating a binary search tree

from the sequence 23131.

With repeats

r 2
r 1

r 1

r 3
r 3

��
@@

@@
@@

Without repeats

r 2
r 1 r 3
�� @@

Figure 1.1: Two binary search trees corresponding to the sequence 23131.

Generating functions are used to express the situation in each case, and then the

moments are calculated by partial differentiation. The variables in the multiset

model case are z (which counts all letters); u (which counts all relevant left/right-

going branches), and xi, i ∈ {1, . . . , r} (where xi counts how many times the letter

i appears in the word). In the probability model, variables z and u have the same

role, but we replace each xi with a pi which is the probability the letter i occurs

in the word. Thus only the coefficients of z and u are needed, as each pi has a set

value which can be substituted directly into the expression.

Binomials and multinomials emerge in the course of the calculations, and identities

are used to simplify these. Other identities used are harmonic number identities

(see [12, 19, 23, 37]).

For both models, the expectation and variance are found in each of the three cases.

The multiset model produces an exact form in terms of ni, i ∈ {1, . . . , r}, where ni

6



is the number of times the letter i occurs in the sequence, and n1+· · ·+nr = n, the

length of the sequence. The probability model gives an asymptotic approximation

in terms of pi, i ∈ {1, . . . , r} where pi represents the probability of letter i occurring

in the input sequence, and p1 + · · ·+ pr = 1. In all cases, the results from the two

models are asymptotically equal, which can be intuitively understood by thinking

of the probability of the letter i occurring in the multiset model as ni

n
.
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Part I

Distinct Values
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Chapter 2

Introduction

We consider words x1x2 · · ·xn with letters xj ∈ {1, 2, . . .}. The letter i occurs with

(geometric) probability pqi−1 where p+ q = 1, and the letters are considered to be

independent, so that the word x1x2 · · ·xn appears with probability

(pqx1−1)(pqx2−1) · · · (pqxn−1) = (p/q)nqx1+···+xn.

In this way larger letters occur less frequently than smaller letters, and if we

consider the case where p = q = 1
2
, then about half of the letters must be 1, and

letter 1 occurs twice as often as letter 2 which occurs twice as often as letter 3 and

so forth.

The combinatorics of geometric random variables has gained importance because of

applications in computer science. We mention just two areas: skiplists [5, 27, 33]

and probabilistic counting [9, 16].

Some of the previous studies relating to combinatorics of geometric random vari-

ables are as follows. In [29] the number of left-to-right maxima was investigated in

the model of words (strings) a1 · · ·an, where the letters aj ∈ N are independently

generated according to the geometric distribution described above. H.-K. Hwang

and his collaborators obtained further results about this limiting behaviour in [3].

The two parameters ‘value’ and ‘position’ of the rth left-to-right maximum for

geometric random variables were considered in a subsequent paper [21]. Other

combinatorial questions have been considered in [25, 28, 30, 31].

The following question is addressed: “How many different letters appear in words

of length n, generated by geometric random variables?” For this parameter (dn),

we derive expectation and variance. We use the following notation: Q := 1
q
,

L := logQ, n∗ := n(Q − 1), γ ≈ 0.57721 (Euler’s constant), and χk := 2kπiii
L

for

k ∈ Z, k 6= 0. We use δ(x) to represent a periodic function with mean zero.

9



These results (expectation and variance of this quantity) have been found previ-

ously for the special case of p = q = 1
2
, see [13]. The results in this thesis extend

this idea to any values of p and q where p+ q = 1 and p, q ≥ 0.

We then generalise this question as follows: “How many letters appear at least

b times, where b ≥ 1 is a design parameter?”. Using this notation, b = 1 is the

previous case.

In the asymptotic formulæ that we derive, there appear periodic oscillations, due

to poles of certain functions at z = χk := 2kπiii
L

, k ∈ Z, k 6= 0. They are usually

tiny, but play an essential role especially in the variance. In some cases, there are

no fluctuations in the variance, see [32].

A technique from complex analysis which we make use of frequently hereafter is

called ‘Rice’s method’. This method can be used to approximate alternating sums

as follows. The lemma states (see [10, 29, 38])

Lemma 1 Let C be a curve surrounding the points 1, 2, . . . , n in the complex plane,

and let f(z) be analytic inside C. Then

n∑

k=1

(
n

k

)

(−1)kf(k) = − 1

2πiii

∫

C

[n; z]f(z)dz, (2.1)

where

[n; z] =
(−1)n−1n!

z(z − 1) · · · (z − n)
=

Γ(n+ 1)Γ(−z)
Γ(n + 1 − z)

.

(The expression [n; z] is sometimes called the kernel.) By extending the contour

of integration, it turns out that under suitable growth conditions (see [10]) the

asymptotic expansion of our alternating sum is given by

∑

Res([n; z]f(z)) + smaller order terms,

where the sum is taken over all poles different from 1, . . . , n. Poles that lie more

to the left lead to smaller terms in the asymptotic expansion.

10



Chapter 3

Classical case: The distinct value

problem

Consider the following bivariate generating function:

F (z, u) :=
∏

i≥1

(
1 + u(ezpqi−1 − 1)

)
=
∏

i≥0

(
1 + u(ezpqi − 1)

)
. (3.1)

Suppose the total number of letters in a word is represented by n, and k represents

the number of distinct values appearing in that word, then the coefficient of zn

n!
uk

is the probability that a word of length n has k distinct values. The function in

(3.1) is an exponential generating function in terms of z, hence the factor n!. It is a

probability generating function in terms of the variable u, and thus differentiating

partially with respect to this variable will lead to the expected number of distinct

letters in any word of length n. If letter i occurs at least once, then this will be

accommodated by the presence of the u in front of the expression (ezpqi−1−1) which

represents all non-empty ‘sets’ of letter i which occur in the word. The initial 1

inside the product denotes the empty set – used if the letter i does not appear

in the word. The problem of letters appearing at different places in the word is

overcome by the use of the exponential generating function.

Note that substituting u = 1 into this function gives ez (since all probabilities sum

to 1, see (3.4) below), which is to be expected because it reduces to a generating

function whose coefficients represent the probability that a word of length n has

no restrictions.

The theorems which follow are proved in this chapter.

Theorem 3.1 The number of distinct letters in a word of length n whose letters

11



occur independently and with geometric probability, is on average

E(dn) = logQ n+
γ

L
+ logQ(Q− 1) − 1

2
+ δE(logQ n

∗) +O

(
1

n

)

, (3.2)

as n→ ∞, where n∗ = n(Q− 1) and

δE(x) = − 1

L

∑

k 6=0

Γ(−χk)e
2kπiiix,

is defined in equation (3.8).

Theorem 3.2 The variance of the number of distinct letters in a word of length

n of geometric random variables is

V(dn) = logQ 2 + δV (logQ n
∗) + o(1), (3.3)

as n→ ∞, where

δV (x) = δE(x+ logQ 2) − δE(x),

with δE(x) from (3.8).

3.1 The expected value (classical case)

Let dn be the number of distinct values in a word of length n, and let E(dn)

represent the expected value of this quantity. Then (see [12])

E(dn) = n![zn]
∂

∂u
F (z, u)

∣
∣
∣
u=1

,

where F (z, u) is defined as in (3.1). We have

∏

i≥0

(
1 + u(ezpqi − 1)

)
∣
∣
∣
u=1

=
∏

i≥0

ezpqi

= ezpezpqezpq2 · · ·
= ez(p+pq+pq2+··· )

= ez. (3.4)

Also note that the derivative of a product can be written as a sum, whose summand

(in this case) includes a product we know. So for fi(z, u) := 1 + u(ezpqi − 1),

d

du

∏

i≥0

fi(z, u) =
∑

j≥0

∏

i≥0

fi(z, u)

fj(z, u)

d

du
fj(z, u),

12



since by the product rule for derivatives, to differentiate a product we must keep

all terms the same, except one which we differentiate. Then all of these terms are

summed. Thus the derivative of this product is the sum of all the terms where a

factor has been removed from the product, and has been replaced by its derivative.

Using this and (3.4), we get

E(dn) = n![zn]
∂

∂u

∏

i≥0

(
1 + u(ezpqi − 1)

)
∣
∣
∣
u=1

= n![zn]ez
∑

i≥0

ezpqi − 1

ezpqi

= n![zn]ez
∑

i≥0

(1 − e−zpqi

)

= n![zn]
∑

i≥0

(
ez − ez(1−pqi)

)

=
∑

i≥0

(
1 − (1 − pqi)n

)

=
∑

i≥0

(

1 −
n∑

k=0

(
n

k

)

(−pqi)k

)

=
n∑

k=1

∑

i≥0

(
n

k

)

(−1)k−1pkqik

=

n∑

k=1

(
n

k

)

(−1)k−1pk
∑

i≥0

qik

=

n∑

k=1

(
n

k

)

(−1)k−1 pk

1 − qk

=

n∑

k=1

(
n

k

)

(−1)k−(1 −Q−1)k

1 −Q−k

=

n∑

k=1

(
n

k

)

(−1)k−(Q− 1)k

Qk − 1
.

This gives an expression for the expectation. However, we cannot easily see what

the number of distinct values would be from this form. To get a better idea we

approximate this alternating sum using Rice’s method, which is described in the

introduction and requires the function to be written in this form (i.e., a finite

alternating sum of a binomial and a function of the index of summation). We

use Lemma 1 (see (2.1)) to approximate this alternating sum (i.e., the expected

value). The poles we look at (from definition (3.5) below) occur at z = 0 and

z = χk := 2kπiii
L

, k ∈ Z\{0}. All other poles lead to smaller terms.
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The first pole we will deal with is at z = 0. For

f(z) := −(Q− 1)z

Qz − 1
, (3.5)

and (see Lemma 1)

[n; z] =
(−1)n−1n!

z(z − 1) · · · (z − n)
,

we can see that [n; z]f(z) has a double pole at z = 0. We thus expand everything

to two terms. Firstly, we have ([29]):

[n; z] =
(−1)n−1n!

z(z − 1) · · · (z − n)
∼ −1

z
(1 + zHn),

where Hn =
n∑

i=1

1
i

is the nth harmonic number. We expand f(z) to get:

f(z) = −(Q− 1)z

Qz − 1

= − ez log(Q−1)

ez log Q − 1

∼ − 1 + z log(Q− 1)

1 + z logQ+ z2 log2 Q
2

− 1

= − 1 + z log(Q− 1)

z logQ(1 + z log Q
2

)

∼ − 1

z logQ
(1 + z log(Q− 1))

(

1 − z logQ

2

)

= − 1

zL
(1 + z log(Q− 1))

(

1 − zL

2

)

.

To calculate the residue at z = 0 we consider the coefficient of z−1 in [n; z]f(z),

[z−1]
1

z
(1 + zHn)

1

zL
(1 + z log(Q− 1))

(

1 − zL

2

)

= [z]
1

L
(1 + zHn)(1 + z log(Q− 1))

(

1 − zL

2

)

=
1

L

(

Hn + log(Q− 1) − L

2

)

=
1

L

(

log n+ γ + log(Q− 1) − L

2

)

+O

(
1

n

)

, as n→ ∞

= logQ n+
γ

L
+ logQ(Q− 1) − 1

2
+O

(
1

n

)

,

where γ is Euler’s constant and the harmonic numbers are given by log n+γ+O
(

1
n

)

as n → ∞. But f(z) = − (Q−1)z

Qz−1
also has simple poles at z = χk = 2kπiii

L
, k ∈ Z,

k 6= 0. For ε := z − χk, we have

f(z) = −(Q− 1)z

Qz − 1
= −(Q− 1)ε+χk

Qε+χk − 1
= −(Q− 1)ε(Q− 1)χk

QεQχk − 1
.
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Now,

Qχk = (elog Q)
2kπiii

L = e2kπiii = 1, (3.6)

so

f(z) = (Q− 1)χk

(

− (Q− 1)ε

Qε − 1

)

.

Since

−(Q− 1)ε

Qε − 1
= − eε log(Q−1)

eε log Q − 1
∼ − 1

1 + εL− 1
= − 1

εL
, (3.7)

we have that the residue of f(z) is

[ε−1](Q− 1)χk

(

− 1

εL

)

= − 1

L
(Q− 1)χk .

From [1], we can see that

[n;χk] =
Γ(−χk)Γ(n + 1)

Γ(n+ 1 − χk)
= Γ(−χk)n

χk

(

1 +O

(
1

n

))

,

and

(Q− 1)χknχk = e(log n∗)χk = e2kπiii logQ n∗

,

which means that we can write the main term of the fluctuations as δE(logQ n
∗),

with

δE(x) := − 1

L

∑

k 6=0

Γ(−χk)e
2kπiiix. (3.8)

We thus have a formula for the expected value so we can approximate the number

of distinct letters in a word of length n as:

E(dn) = logQ n +
γ

L
+ logQ(Q− 1) − 1

2
+ δE(logQ n

∗) +O

(
1

n

)

,

for δE(x) as in (3.8). This concludes the proof of Theorem 3.1. �

Remark:

It is of interest to compare this result with the mean of the largest value in a geo-

metrically distributed sample of n letters, denoted by E(Mn), due to Szpankowski

and Rego [39]:

E(Mn) = logQ n+
γ

L
+

1

2
+ δE(logQ n) +O

(
1

n

)

, as n→ ∞. (3.9)

Ignoring the small fluctuating terms we see that the expected number of missing

values in the range 1 up to E(Mn) is asymptotically given by

E(Mn) − E(dn) ≈ 1 − logQ(Q− 1). (3.10)
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Observe that as Q goes from 1 to ∞ (or as q goes from 1 to 0), expression (3.10)

goes monotonically from infinity to 0. Thus E(dn) → E(Mn) as q = Q−1 → 0,

which is intuitively clear, since the limiting word is just the sequence 111 · · ·1 with

only one distinct value.

Our expected value is sandwiched between (3.9) and the number of consecutive

non-empty boxes (equivalently the first value which does not occur in our sample).

The case q = 1
2

is dealt with in [9], where this value was given as

E(cn) = log2 n+ log2 ϕ+ P (log2 n) + o(1)

for ϕ = 0.77351 . . . and periodic function P (x) with period 1 and amplitude

bounded by 10−5. We can now see that all three grow like log2 n for Q = 2. Thus

it is the constants that determine the (intuitive) ordering E(cn) ≤ E(dn) ≤ E(Mn).

We calculate the constants numerically (correct to three decimal places) for the

case Q = 2 to see by how much each expected value differs from the next.

E(cn) E(dn) E(Mn)

Constant log2 ϕ
γ
L

+ log2 1 − 1
2

γ
L

+ 1
2

Numerical value −0, 371 0,333 1,333

Table 3.1: Numerical values of the constant terms of E(cn), E(dn) and E(Mn).

3.2 The variance (classical case)

The formula for variance from a probability generating function is given in [12],

with a similar application in [29].

V(dn) = n![zn]
∂2

∂u2
F (z, u)

∣
∣
∣
u=1

+ E(dn) − E
2(dn).

Again, the generating function we deal with is (see (3.1))

F (z, u) =
∏

i≥0

(
1 + u(ezpqi − 1)

)
,
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and so the first term in the variance expression can be calculated as follows: Let

fi(z, u) := 1 + u(ezpqi − 1),

then since (from (3.4))
∏

i≥0

(
1 + u(ezpqi − 1)

)
∣
∣
∣
u=1

= ez,

the second moment is

n![zn]
∂2

∂u2
F (z, u)

∣
∣
∣
u=1

= n![zn]
∂2

∂u2

∏

i≥1

fi(z, u)
∣
∣
∣
u=1

= n![zn]

[
∏

i≥1

fi(z, u)2
∑

j<k

∂
∂u
fj(z, u)

fj(z, u)
·

∂
∂u
fk(z, u)

fk(z, u)

+
∏

i≥1

fi(z, u)
∑

j

∂2

∂u2fj(z, u)

fj(z, u)

∣
∣
∣
∣
∣
u=1

]

. (3.11)

The second term in (3.11) is zero: any second partial derivative with respect to u

will be zero, as each fj(z, u) is linear with respect to u. Thus

n![zn]
∂2

∂u2
F (z, u)

∣
∣
∣
u=1

= n![zn]2ez
∑

j<k

ezpqj − 1

ezpqj · e
zpqk − 1

ezpqk

= n![zn]2ez
∑

j<k

(1 − e−zpqj

)(1 − e−zpqk

)

= n![zn]2
∑

j<k

(ez − ez(1−pqj) − ez(1−pqk) + ez(1−pqj−pqk))

= 2
∑

j<k

(1 − (1 − pqj)n − (1 − pqk)n + (1 − pqj − pqk)n).

This quantity can be split up (preserving convergence) as follows in order to be

dealt with in two parts:

2
∑

j<k

[
1 − (1 − pqk)n

]

︸ ︷︷ ︸

(a)

+2
∑

j<k

[
(1 − pqj − pqk)n − (1 − pqj)n

]

︸ ︷︷ ︸

(b)

. (3.12)

The reason for this is that now the summand of (a) is independent of j and can be

dealt with separately from (b) which requires a slightly different approach. The

factor of two is temporarily ignored.

Part (a)

Since 1 − (1 − pqk)n is independent of j,

∑

k≥0

k−1∑

j=0

[
1 − (1 − pqk)n

]
=
∑

k≥0

k
[
1 − (1 − pqk)n

]
.
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This can be rewritten as an alternating sum so that Rice’s method can be used.

Using the binomial expansion we get

∑

k≥0

k
[
1 − (1 − pqk)n

]
=
∑

k≥0

k
[

1 −
n∑

i=0

(
n

i

)

(−pqk)i
]

=
∑

k≥0

k
[

−
n∑

i=1

(
n

i

)

(−pqk)i
]

=
∑

k≥0

k

n∑

i=1

(
n

i

)

(−1)i+1piqki

=

n∑

i=1

(
n

i

)

(−1)i+1pi
∑

k≥0

k(qi)k

=

n∑

i=1

(
n

i

)

(−1)i+1pi qi

(1 − qi)2

=
n∑

i=1

(
n

i

)

(−1)i −(pq)i

(1 − qi)2

=

n∑

i=1

(
n

i

)

(−1)i−((1 − q)q)i

(1 − qi)2

=
n∑

i=1

(
n

i

)

(−1)i−(Q− 1)i

(Qi − 1)2
.

So f(z) = −(Q−1)z

(Qz−1)2
and we have a triple pole at z = 0 as [n; z] has a simple pole

and −(Q−1)z

(Qz−1)2
has a double pole. If we expand to three terms we get

(−1)n−1n!

z(z − 1) · · · (z − n)
∼ −1

z

(

1 + zHn + z2H
2
n +H

(2)
n

2

)

,

(from [29]), and

−(Q− 1)z

(Qz − 1)2
=

−elog(Q−1)z

(elog Qz − 1)2

=
−ez log(Q−1)

(ez log Q − 1)2

∼ − 1 + z log(Q− 1) + z2 log2(Q−1)
2

(1 + z logQ+ z2 log2 Q
2

+ z3 log3 Q
6

− 1)2

= −1 + z log(Q− 1) + z2 log2(Q−1)
2

z2L2(1 + zL
2

+ z2L2

6
)2

∼ − 1

z2L2

(

1 + z log(Q− 1) +
z2 log2(Q− 1)

2

)

·
(

1 −
(
zL

2
+
z2L2

6

)

+
z2L2

4

)2
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∼ − 1

z2L2

(

1 + z log(Q− 1) +
z2 log2(Q− 1)

2

)(

1 − zL+
5z2L2

12

)

.

We now briefly note that as n→ ∞ (see [36])

H2
n =

(

logn + γ +O

(
1

n

))2

= log2 n+ 2γ logn + γ2 + o(1), (3.13)

and

H(2)
n =

π2

6
+O

(
1

n

)

. (3.14)

The residue for the triple pole at z = 0 as n→ ∞ is

[z−1]
1

z3L2

(

1 + z log(Q− 1) +
z2 log2(Q− 1)

2

)(

1 − zL+
5z2L2

12

)

·
(

1 + zHn + z2H
2
n +H

(2)
n

2

)

= [z2]
1

L2

(

1 + z log(Q− 1) +
z2 log2(Q− 1)

2

)(

1 − zL +
5z2L2

12

)

·
(

1 + zHn + z2H
2
n +H

(2)
n

2

)

=
1

L2

(
log2(Q− 1)

2
+

5L2

12
+
H2

n +H
(2)
n

2
− L log(Q− 1) +Hn log(Q− 1) − LHn

)

=
log2

Q(Q− 1)

2
+

5

12
+
H2

n +H
(2)
n

2L2
− logQ(Q− 1) +

logQ(Q− 1)Hn

L
− Hn

L

=
log2

Q(Q− 1)

2
+

5

12
+

1

2L2
(log2 n + 2γ log n+ γ2) +

1

2L2

(
π2

6

)

− logQ(Q− 1)

+
logQ(Q− 1)(log n+ γ)

L
− logn + γ

L
+ o(1) (by (3.13) and (3.14))

=
1

2
log2

Q n +
γ

L
logQ n+ logQ(Q− 1) logQ n− logQ n+

1

2
log2

Q(Q− 1)

− logQ(Q− 1) +
γ

L
logQ(Q− 1) +

5

12
+

π2

12L2
+

γ2

2L2
− γ

L
+ o(1).

Now f(z) also has double poles at z = χk = 2kπiii
L

, k ∈ Z, k 6= 0. By letting

ε := z − χk, we can do the following

f(z) =
−(Q− 1)z

(Qz − 1)2
=

−(Q− 1)ε+χk

(Qε+χk − 1)2
=

−(Q− 1)χk(Q− 1)ε

(QεQχk − 1)2
.

By (3.6), Qχk = 1, so

f(z) = (Q− 1)χk

(

− (Q− 1)ε

(Qε − 1)2

)

.

We have already expanded the fraction to three terms for the pole at z = 0, so we

merely note the expansion to two terms as

f(z) ∼ (Q− 1)χk
−1

ε2L2
(1 + ε log(Q− 1))(1 − εL). (3.15)
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Lastly,

[n;χk] =
Γ(−z)Γ(n + 1)

Γ(n+ 1 − z)

needs to be expanded to 2 terms around z = χk. The term Γ(n + 1) is just a

constant in this case. Using a Taylor expansion we can write

Γ(−z) ∼ Γ(−χk) − Γ′(−χk)(z − χk) = Γ(−χk)
[
1 − ψ(−χk)(z − χk)

]
,

where ψ(x) is the Digamma function, and similarly

Γ(n + 1 − z) ∼ Γ(n+ 1 − χk)
[
1 − ψ(n + 1 − χk)(z − χk)

]
.

This means that with the same substitution as before (ε := z − χk), we have

[n;χk] ∼ Γ(n+ 1)
Γ(−χk)

Γ(n+ 1 − χk)

[
1 − ψ(−χk)ε+ ψ(n+ 1 − χk)ε

]
,

around ε = 0. We approximate the ψ function by [1, page 259]

ψ(n+ 1 − χk) ∼ log(n+ 1 − χk) = log
(

n
(

1 +
1 − χk

n

))

∼ logn,

as n→ ∞, so that

[n;χk] ∼ Γ(n + 1)
Γ(−χk)

Γ(n+ 1 − χk)

[
1 − ψ(−χk)ε+ ε logn

]

= Γ(−χk)
Γ(n+ 1)

Γ(n+ 1 − χk)

[
1 − ψ(−χk)ε+ ε logn

]

∼ Γ(−χk)n
χk
[
1 − ψ(−χk)ε+ ε logn

]
, (3.16)

as n→ ∞. If we put (3.15) and (3.16) together we get

[n;χk]f(z) ∼ (Q−1)χk
−1

ε2L2
Γ(−χk)n

χk
[
1−ψ(−χk)ε+ε logn

]
(1+ε log(Q−1))(1−εL),

as n→ ∞, and by rewriting (Q− 1)χknχk as

(Q− 1)χknχk = eχk log n∗

= e2kπiii logQ n∗

,

we get the residue (coefficient of ε−1) from the poles at z = χk, k 6= 0 to be

(asymptotically)

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk)
−1

L2

[
− ψ(−χk) + logn + log(Q− 1) − L

]

=
−1

L2

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk)
[
− ψ(−χk) + log n+ log(Q− 1) − L

]

=
−1

L

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk)
[
logQ n− ψ(−χk)

L
+ logQ(Q− 1) − 1

]
.
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So the total result for Part (a) is:

∑

k≥0

k−1∑

j=0

[
1 − (1 − pqk)n

]

=
1

2
log2

Q n+
γ

L
logQ n+ logQ(Q− 1) logQ n− logQ n+

1

2
log2

Q(Q− 1)

− logQ(Q− 1) +
γ

L
logQ(Q− 1) +

5

12
+

π2

12L2
+

γ2

2L2
− γ

L
(3.17)

− 1

L

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk)

[

logQ n− ψ(−χk)

L
+ logQ(Q− 1) − 1

]

+ o(1).

Part (b)

Applying the Binomial Theorem to (b) gives

∑

j<k

[
(1 − pqj − pqk)n − (1 − pqj)n

]

=
∑

j<k

[
∑

i≥0

(
n

i

)

(−pqj − pqk)i −
∑

i≥0

(
n

i

)

(−pqj)i

]

=

n∑

i=1

(
n

i

)

(−1)i−1
∑

j<k

[
(pqj)i − (pqj + pqk)i

]
(3.18)

(since term i = 0 is zero). This is now written in the correct form for Rice’s method

to be used, where

f(z) = −
∑

j<k

[
(pqj)z − (pqj + pqk)z

]

= −
∑

j<k

(pqj)z
[
1 − (1 + qk−j)z

]

= −
∑

j≥0

(pqj)z
∑

m≥1

[
1 − (1 + qm)z

]
, for m := k − j

= −pz
∑

j≥0

(qz)j
∑

m≥1

[
1 − (1 + qm)z

]

= − pz

1 − qz
g(z),

if we define

g(z) :=
∑

m≥1

[
1 − (1 + qm)z

]
.

In order to find out more about the function g(z), we expand g(z) around z = 0

g(z) =
∑

m≥1

[
1 − (1 + qm)z

]
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=
∑

m≥1

[
1 − elog(1+qm)z]

=
∑

m≥1

[
1 − ez log(1+qm)

]

=
∑

m≥1

[

1 −
(

1 + z log(1 + qm) +
z2 log2(1 + qm)

2
+ · · ·

)]

=
∑

m≥1

[

− z log(1 + qm) − z2 log2(1 + qm)

2
+ · · ·

]

= z
∑

m≥1

− log(1 + qm) − z2

2

∑

m≥1

log2(1 + qm) + · · ·

= z
∑

m≥1

∑

k≥1

(−1)k(qm)k

k
− z2

2

∑

m≥1

(
∑

k≥1

(−1)k+1(qm)k

k

)2

+ · · ·

= z
∑

k≥1

(−1)k

k

∑

m≥1

(qm)k − z2

2

∑

k≥1

∑

j≥1

(−1)k+j

kj

∑

m≥1

qmk+mj + · · ·

= z
∑

k≥1

(−1)k

k

qk

1 − qk

︸ ︷︷ ︸

α

+z2

(

−1

2

∑

k≥1

∑

j≥1

(−1)k+j

kj

qk+j

1 − qk+j

︸ ︷︷ ︸

β

)

+ · · · .

With the aid of Mathematica, α and β can be evaluated to give constants for fixed

values of q. For example, see Table 3.2 below for these values for q = 1
2

and q = 1
3
.

Constant α β

Definition
∑

k≥1

(−1)k

k
qk

1−qk −1
2

∑

k≥1

∑

j≥1

(−1)k+j

kj
qk+j

1−qk+j

At q = 1
2

−0.868877 −0.116506

At q = 1
3

−0.447844 −0.047677

Table 3.2: The values of the constants α and β when q = 1
2

and q = 1
3
.

So g(z) can be written as g(z) = αz + βz2 + · · · where α, β, . . . are constants. A

polynomial does not have a pole at z = 0, and thus when we apply Rice’s method
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to (3.18) we have a simple pole at z = 0 since there is one pole in [n; z] and none

in f(z) (there would be one pole in the expression − pz

1−qz = − (Q−1)z

Qz−1
, but it is

cancelled by the zero of g(0)). Consequently we expand everything to one term,

giving
(−1)n−1n!

z(z − 1) · · · (z − n)
∼ −1

z
,

−(Q− 1)z

Qz − 1
∼ − 1

zL
,

and

g(z) ∼ αz.

The residue for z = 0 is thus

[z−1]

(

− 1

z

)(

− 1

zL

)

αz = [z]
αz

L
=
α

L
.

But − (Q−1)z

Qz−1
also has simple poles at z = χk = 2kπiii

L
, k ∈ Z, k 6= 0. We rearrange

g(z) as follows to get the contribution of g(z) at χk.

g(χk) =
∑

m≥1

[
1 − (1 + qm)χk

]

=
∑

m≥1

[

1 −
∑

l≥0

(
χk

l

)

(qm)l

]

= −
∑

m≥1

∑

l≥1

(
χk

l

)

(qm)l

= −
∑

l≥1

(
χk

l

)
∑

m≥1

(ql)m

= −
∑

l≥1

(
χk

l

)
ql

1 − ql

= −
∑

l≥1

(
χk

l

)
l

Ql − l
.

To work out the residue of − (Q−1)z

Qz−1
, we again let ε := z − χk, and use the same

method as in Part (a):

−(Q− 1)z

Qz − 1
= −(Q− 1)ε+χk

Qε+χk − 1
= −(Q− 1)χk

(Q− 1)ε

Qε − 1
,

since Qχk = 1 as in (3.6). Now

(Q− 1)ε

Qε − 1
∼ 1

εL
,

and so the residue is 1
L
. As in Part (a)

(Q− 1)χk [n;χk] ∼ Γ(−χk)e
2kπiii logQ n∗

,
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and so the main term of the contribution from the simple poles at z = χk is

− 1

L

∑

k 6=0

g(χk)Γ(−χk)e
2kπiii logQ n∗

,

which means that the total result for Part (b) is

∑

j<k

[
(1 − pqj − pqk)n − (1 − pqj)n

]
=
α

L
− 1

L

∑

k 6=0

g(χk)Γ(−χk)e
2kπiii logQ n∗

+ o(1).

The variance resolved

Now that (a) and (b) have been found, we can return to the variance calcula-

tions, which in addition to the second moment (equation (3.12)), must include the

following two terms (the approximate expected value is given in (3.2)).

E(dn) = logQ n +
γ

L
+ logQ(Q− 1) − 1

2
+ δE(logQ n

∗) +O

(
1

n

)

.

and

E
2(dn) = log2

Q n + 2 logQn δE(logQ n
∗) + 2 logQn logQ(Q− 1) +

2 γ logQn

L

− logQn− logQ(Q− 1) +
2 γ logQ(Q− 1)

L
+ log2

Q(Q− 1)

+ 2 logQ(Q− 1) δE(logQ n
∗) +

1

4
− γ

L
+
γ2

L2
− δE(logQ n

∗)

+
2 γ δE(logQ n

∗)

L
+ δ2

E(logQ n
∗) + o(1).

We can now put all of these together (remembering that Part (a) and Part (b)

must include a factor of two) to get

V(dn) = n![zn]
∂2

∂u2
F (z, u)

∣
∣
∣
u=1

+ E(dn) − E
2(dn)

= log2
Q n +

2γ

L
logQ n + 2 logQ(Q− 1) logQ n− 2 logQ n+ log2

Q(Q− 1)

− 2 logQ(Q− 1) +
2γ

L
logQ(Q− 1) +

5

6
+

π2

6L2
+
γ2

L2
− 2γ

L

− 2

L

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk)
[

logQ n− ψ(−χk)

L
+ logQ(Q− 1) − 1

]

+
2α

L
− 2

L

∑

k 6=0

g(χk)Γ(−χk)e
2kπiii logQ n∗

+ logQ n+
γ

L
+ logQ(Q− 1) − 1

2
+ δE(logQ n

∗)

−
[

log2
Q n + 2 logQ nδE(logQ n

∗) + 2 logQ n logQ(Q− 1) +
2γ logQ n

L
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− logQ n− logQ(Q− 1) +
2γ logQ(Q− 1)

L
+ log2

Q(Q− 1)

+ 2 logQ(Q− 1)δE(logQ n
∗) +

1

4
− γ

L
+
γ2

L2
− δE(logQ n

∗)

+
2γδE(logQ n

∗)

L
+ δ2

E(logQ n
∗)
]

+ o(1)

=
1

12
+

π2

6L2
+

2α

L

− 2

L

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk)
[

logQ n− ψ(−χk)

L
+ logQ(Q− 1) − 1

]

− 2

L

∑

k 6=0

g(χk)Γ(−χk)e
2kπiii logQ n∗

+ δE(logQ n
∗) − 2 logQ nδE(logQ n

∗)

− 2 logQ(Q− 1)δE(logQ n
∗) + δE(logQ n

∗) −
2γδE(logQ n

∗)

L

− δ2
E(logQ n

∗) + o(1),

where

δE(x) = − 1

L

∑

k 6=0

Γ(−χk)e
2kπiiix.

We can split up the δ2
E(logQ n

∗) term into a constant term (the mean of the fluc-

tuating function) and a fluctuating function of period 1 and mean zero (see [17]

and (4.9)). Let

δ2
E(logQ n

∗) := [δ2
E ]0 + δ̂E(logQ n

∗)

=
π2

6L2
+

1

12
− logQ 2 − 2

L

∑

h≥1

(−1)h−1

h(Qh − 1)
+ δ̂E(logQ n

∗).

Then we have
(

for α =
∑

k≥1

(−1)k

k
qk

1−qk

)

V(dn) = logQ 2 +
2α

L
+

2

L

∑

h≥1

(−1)h−1

h(Qh − 1)
+ δV (logQ n

∗) + o(1)

= logQ 2 + δV (logQ n
∗) + o(1),

where

δV (x) :=
2

L

∑

k 6=0

Γ(−χk)e
2kπiiix

[ψ(−χk)

L
− g(χk) +

γ

L

]

− δ̂E(x)

= δE(x+ logQ 2) − δE(x), (3.19)

for δE(x) as in (3.8), and with

g(x) = −
∑

l≥1

(
x

l

)
ql

1 − ql
.

Appendix A shows the simplification of (3.19), which concludes the proof of The-

orem 3.2. �
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3.2.1 Extreme cases of α

For interest we look at the extreme cases of α in g(z) = αz+βz2 + · · · . As q → 0,

α→ 0. As q → 1, then if q = e−t, we can instead consider t→ 0. I.e.,

α =
∑

k≥1

(−1)k

k

qk

1 − qk
=
∑

k≥1

(−1)k

k

e−tk

1 − e−tk
= −

∑

k≥1

(−1)k−1

k

1

etk − 1
.

This can be found in the appendix of [20], and by defining it as a function of t,

say h(t) we get the following result from that paper, which makes use of Mellin

transforms to get:

α = h(t) = − π2

12t
+

log 2

2
− t

24
+ h

(
2π2

t

)

.

This identity holds for 0 < t < 2π2. We are interested in what happens as t → 0.

Since

h(t) = −
∑

k≥1

(−1)k−1

k

1

etk − 1
,

it can be seen that h
(

2π2

t

)
→ 0 as t→ 0, and thus the last term in the expression

for α is small enough to be insignificant. The remaining three terms provide an

approximation for α near q = 1 where t = log 1
q
.
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Chapter 4

General case: The number of

letters occurring at least b times

We now generalise this idea and consider the number of values which appear at

least b times in a word. Our probability generating function needs to be extended.

To do this we need to ensure that u only takes into account those values that occur

at least b times. So it is necessary to subtract the letters that occur fewer times,

and add them elsewhere. For example, for b = 3, we would have

F3(z, u) :=
∏

i≥0

(

1 + zpqi +
(zpqi)2

2
+ u

(

ezpqi − 1 − zpqi − (zpqi)2

2

))

,

where the term zpqi corresponds to the letter i occurring exactly once in the word

and (zpqi)2

2
corresponds to the letter i occurring exactly twice in the word. For

general b we have

Fb(z, u) :=
∏

i≥0

(
b−1∑

k=0

(zpqi)k

k!
+ u

(

ezpqi −
b−1∑

k=0

(zpqi)k

k!

))

. (4.1)

The results proved in this chapter are presented below.

Theorem 4.1 The expected number of digits occurring at least b times in a word

of length n whose letters are independently generated with geometric probability is

Eb(dn) = logQ n+
γ

L
+ logQ(Q− 1) − 1

2
− 1

L
Hb−1 + δEb

(logQ n
∗) +O

(
1

n

)

, (4.2)

as n→ ∞, where

δEb
(x) =

1

L

∑

j 6=0

e2jπiiix

χj

Γ(b− χj)

Γ(b)
,

as in (4.9).
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Theorem 4.2 The variance of this quantity is

Vb(dn) = logQ 2 +
2

L

∑

i≥1

(−1)i+b−1

i(Qi − 1)

(
i+ b− 1

i

)(
i− 1

b− 1

)

− 2

L

b−1∑

j=1

1

2j

(
2j

j

)
∑

h≥0

(−2j

h

)
1

Qh+j − 1
+

2

L

∑

h≥1

(−1)h−1

h(Qh − 1)

− 1

L

b−1∑

j=1

1

2j

(
2j

j

)

2−2j + δVb
(logQ n

∗) + o(1), (4.3)

as n→ ∞. The fluctuating function δVb
(x) is defined in (4.30).

4.1 The expected value (general case)

To find the average number of letters occurring b times or more in a sequence

of length n whose letters occur independently and with geometric distribution,

we differentiate (4.1) partially with respect to u, then replace u by 1 and find

the coefficient of zn (not forgetting the n! since this is an exponential generating

function).

Eb(dn) = n![zn]
∂

∂u

∏

i≥0

(
b−1∑

k=0

(zpqi)k

k!
+ u

(

ezpqi −
b−1∑

k=0

(zpqi)k

k!

)) ∣∣
∣
∣
∣
u=1

= n![zn]
∑

i≥0

ez
(

ezpqi −
b−1∑

k=0

(zpqi)k

k!

)

ezpqi

= n![zn]
∑

i≥0

ez(1+pqi) − ez
b−1∑

k=0

(zpqi)k

k!

ezpqi

= n![zn]
∑

i≥0

(

ez − ez(1−pqi)
b−1∑

k=0

(zpqi)k

k!

)

=
∑

i≥0

(

1 − n![zn]

(

ez(1−pqi)
b−1∑

k=0

(zpqi)k

k!

))

=
∑

i≥0

(

1 −
b−1∑

k=0

(
n

k

)

(1 − pqi)n−k(pqi)k

)

=
∑

i≥0

(

1 −
b−1∑

k=0

(
n

k

)
∑

j≥0

(
n− k

j

)

(−pqi)j(pqi)k

)

=
∑

i≥0

(

1 −
∑

j≥0

(
n

j

)

(−pqi)j

)

−
∑

i≥0

b−1∑

k=1

(
n

k

)
∑

j≥0

(
n− k

j

)

(−pqi)j(pqi)k
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= −
∑

i≥0

∑

j≥1

(
n

j

)

(−pqi)j −
∑

i≥0

b−1∑

k=1

(
n

k

)
∑

j≥0

(
n− k

j

)

(−pqi)j(pqi)k

= −
∑

i≥0

∑

j≥1

(
n

j

)

(−1)jpjqij −
∑

i≥0

b−1∑

k=1

(
n

k

)
∑

j≥0

(
n− k

j

)

(−1)jpj+kqi(j+k)

= −
∑

j≥1

(
n

j

)

(−1)jpj
∑

i≥0

qij −
b−1∑

k=1

(
n

k

)
∑

j≥0

(
n− k

j

)

(−1)jpj+k
∑

i≥0

qi(j+k)

=
n∑

j=1

(
n

j

)

(−1)j−1 pj

1 − qj

︸ ︷︷ ︸

△

−
b−1∑

k=1

(
n

k

) n−k∑

j=0

(
n− k

j

)

(−1)j pj+k

1 − qj+k

︸ ︷︷ ︸

▽

. (4.4)

In the above expression, △ is our original expected value (i.e., for the number of

distinct values) and Rice’s method (with the contour of integration surrounding

0, . . . , N , for N = n− k) can be used for ▽:

▽ =

n−k∑

j=0

(
n− k

j

)

(−1)j pj+k

1 − qj+k
=

N∑

j=0

(
N

j

)

(−1)j (1 −Q−1)j+k

1 −Q−(j+k)
.

We have the function

fk(z) :=
(1 −Q−1)z+k

1 −Q−(z+k)
=

(Q− 1)z+k

Qz+k − 1
, (4.5)

which has a simple pole at z = −k, since k ≥ 1. The contribution of [N ; z] around

z = −k is

[n− k;−k] =
(−1)n−k−1(n− k)!

(−k)(−k − 1) · · · (−k − (n− k))

=
(−1)n−k−1(n− k)!

(−1)n−k+1(k)(k + 1) · · · (n)

=
(n− k)!(k − 1)!

n!
. (4.6)

To expand fk(z) to one term around the simple pole at z = −k, let ε := z+ k and

then use (3.7) to obtain

fk(z) ∼
1

εL
,

and so the residue is

[ε−1]
1

εL

(n− k)!(k − 1)!

n!
=

(n− k)!(k − 1)!

Ln!
.

This can now be substituted into (4.4) as the inner sum (▽), giving

b−1∑

k=1

(
n

k

)
(n− k)!(k − 1)!

Ln!
=

b−1∑

k=1

1

Lk
=

1

L
Hb−1. (4.7)
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Lastly, we need to calculate the fluctuations contributed by the simple poles at

z + k = χj , j ∈ Z, j 6= 0. We have

fk(z) =
(Q− 1)z+k

Qz+k − 1
,

so for ε := z + k − χj, and from (3.6) and (3.7),

fk(z) =
(Q− 1)ε+χj

Qε+χj − 1
= (Q− 1)χj

(Q− 1)ε

Qε − 1
∼ (Q− 1)χj

1

εL
,

so the residue is

(Q− 1)χj
1

L
.

The contribution of [N ; z] around z = −k + χj is (refer to [1])

[n− k;−k + χj] =
Γ(k − χj)Γ(n− k + 1)

Γ(n− k + 1 + k − χj)

=
Γ(k − χj)Γ(n− k + 1)

Γ(n+ 1 − χj)

= Γ(k − χj)n
χj−k

(

1 +O

(
1

n

))

. (4.8)

Again we can write

(Q− 1)χjnχj = e(log n∗)χj

= e2πiiij logQ n∗

.

This means that for each value of k we have a main term contribution of

1

L

∑

j 6=0

Γ(k − χj)n
−ke2πiiij logQ n∗

.

We sum this to get

b−1∑

k=1

(
n

k

)
1

L

∑

j 6=0

Γ(k − χj)n
−ke2πiiij logQ n∗

,

which we can subtract from the δE function in the case b = 1 (see (3.8)) to get the

fluctuations to be

−1

L

∑

j 6=0

e2jπiii logQ n∗

(

Γ(−χj)+

b−1∑

k=1

(
n

k

)

Γ(k − χj)n
−k

)

=
−1

L

b−1∑

k=0

(
n

k

)

n−k
∑

j 6=0

e2jπiii logQ n∗

Γ(k − χj)

=
−1

L

b−1∑

k=0

nk

k!nk

∑

j 6=0

e2jπiii logQ n∗

Γ(k − χj)
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=
−1

L

b−1∑

k=0

∑

j 6=0

e2jπiii logQ n∗ Γ(k − χj)

k!

(

1 +O

(
1

n

))

=
−1

L

∑

j 6=0

e2jπiii logQ n∗

b−1∑

k=0

Γ(k − χj)

k!

(

1 +O

(
1

n

))

=
−1

L

∑

j 6=0

e2jπiii logQ n∗

(

− 1

χj

Γ(b− χj)

Γ(b)

)(

1 +O

(
1

n

))

=
1

L

∑

j 6=0

e2jπiii logQ n∗

χj

Γ(b− χj)

Γ(b)

(

1 +O

(
1

n

))

.

Thus the expected number of digits occurring at least b times in a word is (see

(3.2) and (4.7))

Eb(dn) = logQ n+
γ

L
+ logQ(Q− 1) − 1

2
− 1

L
Hb−1 + δEb

(logQ n
∗) +O

(
1

n

)

,

as n→ ∞, where

δEb
(x) :=

1

L

∑

j 6=0

e2jπiiix

χj

Γ(b− χj)

Γ(b)
. (4.9)

This concludes the proof of Theorem 4.1. �

4.2 The variance (general case)

We use the same formula as before, namely:

Vb(dn) = n![zn]
∂2

∂u2
Fb(z, u)

∣
∣
∣
u=1

+ Eb(dn) − E
2
b(dn),

for Fb(z, u) as defined in equation (4.1). We define

fi(z, u) :=

b−1∑

k=0

(zpqi)k

k!
+ u

(

ezpqi −
b−1∑

k=0

(zpqi)k

k!

)

.

The second factorial moment can be calculated in a similar fashion to (3.11),

namely:

∂2

∂u2
Fb(z, u)

∣
∣
∣
u=1

=
∂2

∂u2

∏

i≥0

fi(z, u)
∣
∣
∣
u=1

=
∏

i≥0

fi(z, u)
∑

0≤l<j

2
∂

∂u
fl(z, u)

∂

∂u
fj(z, u)

fl(z, u)fj(z, u)
+
∏

i≥0

fi(z, u)
∑

j

∂2

∂u2
fj(z, u)

fj(z, u)
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= 2ez
∑

0≤l<j

(

ezpql −
b−1∑

k=0

(zpql)k

k!

)(

ezpqj −
b−1∑

k=0

(zpqj)k

k!

)

ezpqlezpqj

= 2ez
∑

0≤l<j

(

1 − e−zpql

b−1∑

k=0

(zpql)k

k!

)(

1 − e−zpqj

b−1∑

k=0

(zpqj)k

k!

)

= 2
∑

0≤l<j

[

ez − ez(1−pql)
b−1∑

k=0

(zpql)k

k!
− ez(1−pqj)

b−1∑

k=0

(zpqj)k

k!

+ ez(1−pql−zpqj)

b−1∑

k=0

(zpql)k

k!

b−1∑

k=0

(zpqj)k

k!

]

= 2
∑

0≤l<j

[

ez − ez(1−pqj)

b−1∑

k=0

(zpqj)k

k!

]

(4.10)

+ 2
∑

0≤l<j

[

ez(1−pql−zpqj)
b−1∑

k=0

(zpql)k

k!

b−1∑

k=0

(zpqj)k

k!
− ez(1−pql)

b−1∑

k=0

(zpql)k

k!

]

. (4.11)

Expression (4.10)

The expression given by (4.10) is in fact two terms which are treated together

because of their mutual independence of the index l. Hence

2
∑

0≤l<j

[

ez − ez(1−pqj)

b−1∑

k=0

(zpqj)k

k!

]

= 2
∑

0≤j

j

[

ez − ez(1−pqj)

b−1∑

k=0

(zpqj)k

k!

]

.

We want the coefficient of zn

n!
of these exponential generating functions, which is 1

for ez, and for the other functions we look at a term for any k between 0 and b− 1

to get a coefficient of:

n![zn]ez(1−pqj)
(zpqj)k

k!
=
n!(pqj)k

k!
[zn]zkez(1−pqj)

=
n!(pqj)k

k!
[zn−k]ez(1−pqj)

=
n!(pqj)k

k!

(1 − pqj)n−k

(n− k)!

=

(
n

k

)

(pqj)k(1 − pqj)n−k.

The coefficient of the expanded sum is thus

2
∑

j≥0

j

[

1− (1− pqj)n − npqj(1− pqj)n−1 − · · ·−
(

n

b− 1

)

(pqj)b−1(1− pqj)n−(b−1)

]

.
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Now this can be split up into

2
∑

j≥0

j
[
1 − (1 − pqj)n

]
, (4.12)

which is known from (3.17), and

−2
∑

j≥0

j

[

npqj(1 − pqj)n−1 + · · ·+
(

n

b− 1

)

(pqj)b−1(1 − pqj)n−(b−1)

]

. (4.13)

A typical term in (4.13) is:

−2

(
n

s

)
∑

j≥0

j(pqj)s(1 − pqj)n−s = −2

(
n

s

)
∑

j≥0

j(pqj)s

n−s∑

h=0

(
n− s

h

)

(−1)h(pqj)h

= −2

(
n

s

) n−s∑

h=0

(
n− s

h

)

(−1)h
∑

j≥0

j(pqj)h+s

= −2

(
n

s

) n−s∑

h=0

(
n− s

h

)

(−1)h (pq)h+s

(1 − qh+s)2

= −2

(
n

s

) N∑

h=0

(
N

h

)

(−1)h (pq)h+s

(1 − qh+s)2
,

(where N := n − s) for which there is a double pole at z = −s. Again Rice’s

method can be used. Let

f(z) :=
(pq)z+s

(1 − qz+s)2
,

and let ε := z + s. Then we expand around ε = 0 to two terms:

(pq)ε

(1 − qε)2
=

((1 −Q−1)Q−1)ε

(1 −Q−ε)2

=
(Q− 1)ε

(Qε − 1)2

=
eε log(Q−1)

(eε log Q − 1)2

∼ 1 + ε log(Q− 1)

(1 + ε logQ+ ε2 log2 Q
2

− 1)2

=
1 + ε log(Q− 1)

ε2L2(1 + εL
2

)2

∼ 1

ε2L2

(
1 + ε log(Q− 1)

)
(

1 − εL

2

)2

∼ 1

ε2L2

(
1 + ε log(Q− 1) − εL

)
. (4.14)

The Taylor expansion of [N ; z] around z = −s (i.e., around ε = 0) to two places

(this can be done by Mathematica) is

[n− s;−s] ∼ Γ(n− s+ 1)Γ(s)

Γ(n+ 1)

[
1 + (z + s)ψ(n+ 1) − (z + s)ψ(s)

]
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=
(n− s)!(s− 1)!

n!

[
1 + ε ψ(n+ 1) − ε ψ(s)

]
. (4.15)

We can now calculate the residue by multiplying (4.14) and (4.15) and looking at

the coefficient of ε−1.

[ε−1]
1

ε2L2

(
1 + ε log(Q− 1) − εL

)(n− s)!(s− 1)!

n!

[
1 + ε ψ(n+ 1) − ε ψ(s)

]

=
(n− s)!(s− 1)!

n!
[ε]

1

L2

(
1 + ε log(Q− 1) − εL

)[
1 + ε ψ(n+ 1) − ε ψ(s)

]

=
(n− s)!(s− 1)!

n!

1

L2

(
log(Q− 1) − L+ ψ(n+ 1) − ψ(s)

)
. (4.16)

We also have double poles at z + s = χk, k ∈ Z, k 6= 0. Let ε := z + s− χk, then

using (3.6), the function f(z) can be written as

f(z) =
(pq)z+s

(1 − qz+s)2

=
((1 −Q−1)Q−1)ε+χk

(1 −Q−(ε+χk))2

=
Q2(ε+χk)Q−ε−χk(1 −Q−1)ε+χk

Q2(ε+χk)(1 −Q−ε−χk)2

=
(Q− 1)ε+χk

(Qε+χk − 1)2

= (Q− 1)χk
(Q− 1)ε

(Qε − 1)2
, (4.17)

since Qχk = 1 from (3.6). Expanding the fraction to two terms, we have

(Q− 1)ε

(Qε − 1)2
=

eε log(Q−1)

(eε log Q − 1)2

∼ 1 + ε log(Q− 1)

(1 + ε logQ+ ε2 log2 Q
2

− 1)2

=
1 + ε log(Q− 1)

(ε logQ+ ε2 log2 Q
2

)2

=
1 + ε log(Q− 1)

ε2L2(1 + εL
2

)2

∼ 1

ε2L2
(1 + ε log(Q− 1))

(

1 − εL

2

)(

1 − εL

2

)

.

The [N ; z] factor (N = n − s) expanded to two terms around z = χk − s (i.e.,

around ε = 0) is

[n− s;χk − s]

∼ Γ(n− s+ 1)Γ(s− χk)

Γ(n+ 1 − χk)

[
1 + (z + s− χk)ψ(n− χk + 1) − (z + s− χk)ψ(s− χk)

]
.
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We put these together (including the factor (Q−1)χk from (4.17)) to get the main

term of the residue,

[ε−1](Q− 1)χk
1

ε2L2
(1 + ε log(Q− 1))

(

1 − εL

2

)(

1 − εL

2

)

· Γ(n− s+ 1)Γ(s− χk)

Γ(n+ 1 − χk)

[
1 + ε ψ(n− χk + 1) − ε ψ(s− χk)

]

= (Q− 1)χk
1

L2

Γ(n− s+ 1)Γ(s− χk)

Γ(n+ 1 − χk)
[ε](1 + ε log(Q− 1))

(

1 − εL

2

)(

1 − εL

2

)

·
[
1 + ε ψ(n− χk + 1) − ε ψ(s− χk)

]

= (Q− 1)χk
1

L2

Γ(n− s+ 1)Γ(s− χk)

Γ(n+ 1 − χk)

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)

∼ 1

L2
Γ(s− χk)(Q− 1)χknχk−s

(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)

∼ 1

L2
Γ(s− χk)n

−se2kπiii logQ(n(Q−1))
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)
,

which holds for all k 6= 0, and so the residue at each χk is asymptotic to

1

L2
Γ(s− χk)n

−se2kπiii logQ n∗
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)
,

(recall n∗ = n(Q− 1)), which can be summed over all k 6= 0 to get

∑

k 6=0

1

L2
Γ(s− χk)n

−se2kπiii logQ n∗
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)

= n−s 1

L2

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)
.

This result can be combined with equation (4.16) to give the total residues for a

typical term as asymptotic to

−2

(
n

s

)[
(n− s)!(s− 1)!

n!

1

L2

(
log(Q− 1) − L+ ψ(n + 1) − ψ(s)

)

+ n−s 1

L2

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)
]

= −2

s

1

L2

(
log(Q− 1) − L+ ψ(n+ 1) − ψ(s)

)

− 2

(
n

s

)

n−s 1

L2

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)

∼ −2

s

1

L2

(
log(Q− 1) − L+ ψ(n+ 1) − ψ(s)

)
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− 2

(
n

s

)
Γ(n− s+ 1)

Γ(n+ 1)

1

L2

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)

= −2

s

1

L2

(
log(Q− 1) − L+ ψ(n+ 1) − ψ(s)

)

− 2

(
n

s

)
(n− s)!

n!

1

L2

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

= − 2

sL2

(
log(Q− 1) − L+ ψ(n+ 1) − ψ(s)

)

− 2

s!L2

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)
.

Since we have b − 1 of these terms added together, we can now sum them to get

(from (4.13))

b−1∑

s=1

[

− 2

L2s

(
log(Q− 1) − L+ ψ(n + 1) − ψ(s)

)

− 2

s!L2

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)
]

= − 2

L2

b−1∑

s=1

1

s

(
log(Q− 1) − L+ ψ(n + 1) − ψ(s)

)

− 2

L2

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)

= − 2

L2

b−1∑

s=1

1

s

(
log(Q− 1) − L+ ψ(n + 1)

)
+

2

L2

b−1∑

s=1

1

s
ψ(s)

− 2

L2

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)

= − 2

L2

(
log(Q− 1) − L+ ψ(n+ 1)

)
Hb−1 +

2

L2

b−1∑

s=1

ψ(s)

s

− 2

L2

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

·
(
log(Q− 1) − L+ ψ(n− χk + 1) − ψ(s− χk)

)
.
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Expression (4.12) was dealt with in the classical variance discussion (Part (a)),

where it was shown that

2
∑

j≥0

j
[
1 − (1 − pqj)n

]
= 2

n∑

i=1

(
n

i

)

(−1)i−(Q− 1)i

(Qi − 1)2

whose residue is

log2
Q(Q− 1) +

5

6
+ log2

Q n+
2γ

L
logQ n+

γ2

L2
+

π2

6L2
− 2 logQ(Q− 1)

+ 2 logQ(Q− 1) logQ n +
2γ

L
logQ(Q− 1) − 2 logQ n− 2γ

L

+
2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗

[

− logQ n +
ψ(−χk)

L
− logQ(Q− 1) + 1

]

+ o(1).

Since ψ(n− χk + 1) ∼ log n, we have that the total residue for (4.10) is

− 2

L

(
logQ(Q− 1) − 1 + logQ n

)
Hb−1 +

2

L2

b−1∑

s=1

ψ(s)

s

+ log2
Q(Q− 1) +

5

6
+ log2

Q n+
2γ

L
logQ n+

γ2

L2
+

π2

6L2
− 2 logQ(Q− 1)

+ 2 logQ(Q− 1) logQ n+
2γ

L
logQ(Q− 1) − 2 logQ n− 2γ

L

− 2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗

logQ n

︸ ︷︷ ︸

♭

+
2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗ψ(−χk)

L

− 2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗

logQ(Q− 1) +
2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗

− 2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

logQ(Q− 1)

+
2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗ − 2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

logQ n

︸ ︷︷ ︸

♯

+
2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗ψ(s− χk)

L
+ o(1).

Although it is not clear now why the following changes are made, it will become

apparent when cancelling terms in the variance. We take terms ♭ and ♯ from the

above formula, and use [12] get

♭+ ♯ =
−2

L
logQ n

∑

k 6=0

e2kπiii logQ n∗

(

Γ(−χk) +
b−1∑

s=1

1

s!
Γ(s− χk)

)

=
−2

L
logQ n

∑

k 6=0

e2kπiii logQ n∗

b−1∑

s=0

Γ(s− χk)

s!

37



=
−2

L
logQ n

∑

k 6=0

e2kπiii logQ n∗

b−1∑

s=0

Γ(s+ a)

s!
(let a := −χk)

=
−2

L
logQ n

∑

k 6=0

e2kπiii logQ n∗

b−1∑

s=0

(s+ a− 1)!

s!

=
−2 (a− 1)!

L
logQ n

∑

k 6=0

e2kπiii logQ n∗

b−1∑

s=0

(
s+ a− 1

a− 1

)

=
−2 (a− 1)!

L
logQ n

∑

k 6=0

e2kπiii logQ n∗

(
b+ a− 1

a

)

=
−2

L
logQ n

∑

k 6=0

e2kπiii logQ n∗ (b+ a− 1)!

a (b− 1)!

=
−2

L
logQ n

∑

k 6=0

e2kπiii logQ n∗ Γ(b+ a)

aΓ(b)

=
2

L
logQ n

∑

k 6=0

e2kπiii logQ n∗ Γ(b− χk)

χk Γ(b)

= 2 logQ nδEb
(x).

Now the final residue for expression (4.10) is

− 2

L

(
logQ(Q− 1) − 1 + logQ n

)
Hb−1 +

2

L2

b−1∑

s=1

ψ(s)

s

+ log2
Q(Q− 1) +

5

6
+ log2

Q n+
2γ

L
logQ n+

γ2

L2
+

π2

6L2
− 2 logQ(Q− 1)

+ 2 logQ(Q− 1) logQ n+
2γ

L
logQ(Q− 1) − 2 logQ n− 2γ

L
+ 2 logQ nδEb

(x)

+
2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗

[ψ(−χk)

L
− logQ(Q− 1) + 1

]

(4.18)

− 2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

(

logQ(Q− 1) − 1 − ψ(s− χk)

L

)

+ o(1).

Expression (4.11)

We now turn our attention to the other portion of the second factorial moment,

namely the expression in (4.11). We have

Υ := 2
∑

0≤l<j

[

ez(1−pql−zpqj)

b−1∑

k=0

(zpql)k

k!

b−1∑

k=0

(zpqj)k

k!
− ez(1−pql)

b−1∑

k=0

(zpql)k

k!

]

= 2
∑

0≤l<j

[

ez(1−pql−pqj)

(

1 + · · ·+ (zpql)b−1

(b− 1)!

)(

1 + · · ·+ (zpqj)b−1

(b− 1)!

)

︸ ︷︷ ︸
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− ez(1−pql)

(

1 + · · ·+ (zpql)b−1

(b− 1)!

)]

.

The bracketed factor is split up into two parts. We write

Υ = 2
∑

0≤l<j

[

ez(1−pql−pqj)

(

1 + · · · + (zpql)b−1

(b− 1)!

)

− ez(1−pql)

(

1 + · · ·+ (zpql)b−1

(b− 1)!

)

+ ez(1−pql−pqj)

(

1 + · · ·+ (zpql)b−1

(b− 1)!

)(

zpqj + · · ·+ (zpqj)b−1

(b− 1)!

)]

= 2
∑

0≤l<j

[(

1 + · · ·+ (zpql)b−1

(b− 1)!

)
(
ez(1−pql−pqj) − ez(1−pql)

)

+ ez(1−pql−pqj)

(

1 + · · ·+ (zpql)b−1

(b− 1)!

)(

zpqj + · · ·+ (zpqj)b−1

(b− 1)!

)]

.

We now call the first sum P and the second sum R. Thus

P := 2
∑

0≤l<j

[(

1 + · · ·+ (zpql)b−1

(b− 1)!

)
(
ez(1−pql−pqj) − ez(1−pql)

)
]

, (4.19)

and

R := 2
∑

0≤l<j

[

ez(1−pql−pqj)

(

1 + · · ·+ (zpql)b−1

(b− 1)!

)(

zpqj + · · ·+ (zpqj)b−1

(b− 1)!

)]

. (4.20)

Dealing with P

Let Ps be a typical term of (4.19), where s ∈ {0, 1, . . . , b− 1}.

Ps := 2
∑

0≤l<j

[
(zpql)s

s!

(
ez(1−pql−pqj) − ez(1−pql)

)
]

.

In this way we simplify the expression and can extract coefficients more easily. We

now look at the coefficients of this expression (which is an exponential generating

function, hence the n!).

n![zn]Ps = n![zn]2
∑

0≤l<j

zs(pql)s

s!

(
ez(1−pql−pqj) − ez(1−pql)

)

= 2
∑

0≤l<j

n![zn]
zs(pql)s

s!

∑

k≥0

(
zk(1 − pql − pqj)k

k!
− zk(1 − pql)k

k!

)

= 2
∑

0≤l<j

n![zn]
∑

k≥0

zk+s

k!s!
(pql)s

(
(1 − pql − pqj)k − (1 − pql)k

)

= 2
∑

0≤l<j

n![zn]
∑

n≥s

zn

(n− s)!s!
(pql)s

(
(1 − pql − pqj)n−s − (1 − pql)n−s

)

= 2
∑

0≤l<j

n!

s!(n− s)!
(pql)s

(
(1 − pql − pqj)n−s − (1 − pql)n−s

)
, for n ≥ s
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= 2
∑

0≤l<j

(
n

s

)

(pql)s
(
(1 − pql − pqj)n−s − (1 − pql)n−s

)

= 2
∑

0≤l<j

(
n

s

)

(pql)s

[
n−s∑

k=0

(
n− s

k

)

(−pql − pqj)k −
n−s∑

k=0

(
n− s

k

)

(−pql)k

]

= 2
∑

0≤l<j

(
n

s

)

(pql)s

n−s∑

k=0

(
n− s

k

)

(−1)k
(
(pql + pqj)k − (pql)k

)

= 2

(
n

s

) n−s∑

k=0

(
n− s

k

)

(−1)k
∑

0≤l<j

(pql)s(pql)k
(
(1 + qj−l)k − 1

)

= 2

(
n

s

) n−s∑

k=0

(
n− s

k

)

(−1)k
∑

l≥0

(pql)s(pql)k
∑

h≥1

(
(1 + qh)k − 1

)
(h := j − l)

= 2

(
n

s

) n−s∑

k=0

(
n− s

k

)

(−1)k
∑

l≥0

ps+kq(s+k)l
∑

h≥1

(
(1 + qh)k − 1

)

= 2

(
n

s

) n−s∑

k=0

(
n− s

k

)

(−1)k ps+k

1 − qs+k

∑

h≥1

(
(1 + qh)k − 1

)

= 2

(
n

s

) N∑

k=0

(
N

k

)

(−1)k ps+k

1 − qs+k

∑

h≥1

(
(1 + qh)k − 1

)
, (4.21)

where N := n− s. We can now use Rice’s method. If

H(k) :=
∑

h≥1

(
(1 + qh)k − 1

)
,

then H(z) has no poles, so we only need to look at the fraction,

ps+k

1 − qs+k
=

(1 − q)s+k

1 − qs+k
=

(1 −Q−1)s+k

1 −Q−(s+k)
=

(Q− 1)s+k

Qs+k − 1
,

which is the same fraction as that in the expected value for the number of values

occurring at least b times (see definition (4.5)). We thus use the expansions from

that calculation for the poles at z = −s and z = −s + χk (here we use variable s

instead of k). In the first case we had (in (3.7))

fs(z) :=
(Q− 1)s+z

Qs+z − 1
∼ 1

L(s+ z)
,

making the residue 1
L
. The (exact) contribution of quantity [N ; z] around z = −s

was also calculated above as being (see equation (4.6))

[n− s;−s] =
(n− s)!(s− 1)!

n!
.

We must also calculate the contribution of the new quantity H(z).

H(z) =
∑

h≥1

(
(1 + qh)z − 1

)
,
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so

H(−s) =
∑

h≥1

(
(1 + qh)−s − 1

)

=
∑

h≥1

(
1

(1 + qh)s
− 1

)

=
∑

h≥1

(
∑

i≥0

(
i+ s− 1

i

)

(−qh)i − 1

)

=
∑

h≥1

∑

i≥1

(
i+ s− 1

i

)

(−qh)i

=
∑

i≥1

(
i+ s− 1

i

)

(−1)i
∑

h≥1

(qi)h

=
∑

i≥1

(
i+ s− 1

i

)

(−1)i qi

1 − qi

=
∑

i≥1

(
i+ s− 1

i

)

(−1)i 1

Qi − 1
.

The total residue from the pole at z = −s is thus

1

L

(n− s)!(s− 1)!

n!
H(−s),

and by substituting this back into the expression for the coefficients of Ps (see

(4.21)), and summing on s, we get

b−1∑

s=0

2

(
n

s

)
1

L

(n− s)!(s− 1)!

n!
H(−s)

=
b−1∑

s=0

2

(
n

s

)
1

L

(n− s)!(s− 1)!

n!

∑

i≥1

(
i+ s− 1

i

)

(−1)i 1

Qi − 1

=
2

L

∑

i≥1

(−1)i 1

Qi − 1

b−1∑

s=0

(
n

s

)
(n− s)!(s− 1)!

n!

(
i+ s− 1

i

)

=
2

L

∑

i≥1

(−1)i 1

Qi − 1

b−1∑

s=0

1

i

(
i+ s− 1

i− 1

)

=
2

L

∑

i≥1

(−1)i 1

Qi − 1

1

i

(
i+ b− 1

i

)

=
2

L

∑

i≥1

(−1)i

i(Qi − 1)

(
i+ b− 1

i

)

. (4.22)

For the poles occurring at z = χk − s we calculated in equations (3.6) and (3.7)

that for ε := z + s− χk we have

fs(z) ∼ (Q− 1)χk
1

εL
,
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and [N ; z] around z = χk − s was also dealt with above in (4.8),

[n− s;χk − s] ∼ Γ(s− χk)n
χk−s.

Again we need to calculate the contribution of the new quantity H(z),

H(χk − s) =
∑

h≥1

(
(1 + qh)χk−s − 1

)

=
∑

h≥1

(
1

(1 + qh)s−χk
− 1

)

=
∑

h≥1

(
∑

i≥0

(
i+ s− χk − 1

i

)

(−qh)i − 1

)

=
∑

h≥1

∑

i≥1

(
i+ s− χk − 1

i

)

(−qh)i

=
∑

i≥1

(
i+ s− χk − 1

i

)

(−1)i
∑

h≥1

(qi)h

=
∑

i≥1

(
i+ s− χk − 1

i

)

(−1)i 1

Qi − 1
,

to get the fluctuating residues

∑

k 6=0

(Q− 1)χk
1

L
Γ(s− χk)n

χk−sH(χk − s)

= n−s 1

L

∑

k 6=0

(Q− 1)χknχkΓ(s− χk)H(χk − s)

= n−s 1

L

∑

k 6=0

e2kπiii logQ n∗

Γ(s− χk)H(χk − s).

These can also be substituted into the expression for the coefficients of Ps (see

(4.21)) and summed to get

b−1∑

s=0

2

(
n

s

)

n−s 1

L

∑

k 6=0

e2kπiii logQ n∗

Γ(s− χk)H(χk − s)

∼ 2

L

b−1∑

s=0

(
n

s

)
Γ(n− s+ 1)

Γ(n+ 1)

∑

k 6=0

e2kπiii logQ n∗

Γ(s− χk)H(χk − s)

=
2

L

b−1∑

s=0

1

s!

∑

k 6=0

e2kπiii logQ n∗

Γ(s− χk)H(χk − s). (4.23)

Altogether we have that the coefficient for the quantity P is (from (4.22) and

(4.23))

n![zn]P =
2

L

∑

i≥1

(−1)i

i(Qi − 1)

(
i+ b− 1

i

)
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+
2

L

b−1∑

s=0

1

s!

∑

k 6=0

e2kπiii logQ n∗

Γ(s− χk)H(χk − s) + o(1). (4.24)

Dealing with R

Previously, see (4.20), R was defined to be

R = 2
∑

0≤l<j

[

ez(1−pql−pqj)
(

1 + · · ·+ (zpql)b−1

(b− 1)!

)(

zpqj + · · · + (zpqj)b−1

(b− 1)!

)]

.

A typical term is

Rst := 2
∑

0≤l<j

ez(1−pql−pqj) (zpq
l)s

s!

(zpqj)t

t!
,

with 0 ≤ s ≤ b− 1 and 1 ≤ t ≤ b− 1. We follow the same procedure as for P ,

n![zn]Rst = n![zn]2
∑

0≤l<j

ez(1−pql−pqj) (zpq
l)s

s!

(zpqj)t

t!

= n![zn]2
∑

0≤l<j

∑

k≥0

zk(1 − pql − pqj)k

k!

(zpql)s

s!

(zpqj)t

t!

= 2
∑

0≤l<j

∑

k≥0

n![zn]
zk(1 − pql − pqj)k

k!

zs(pql)s

s!

zt(pqj)t

t!

= 2
∑

0≤l<j

∑

k≥0

n!

k!s!t!
[zn]zk+s+t(1 − pql − pqj)k(pql)s(pqj)t

= 2
∑

0≤l<j

n!

(n− s− t)!s!t!
(1 − pql − pqj)n−s−t(pql)s(pqj)t

= 2
∑

0≤l<j

n!

(n− s− t)!s!t!
(pql)s(pqj)t

n−s−t∑

k=0

(
n− s− t

k

)

(−pql − pqj)k

= 2
n!

(n− s− t)!s!t!

n−s−t∑

k=0

(
n− s− t

k

)

(−1)kpk+s+t
∑

0≤l<j

qls+jt+lk(1 + qj−l)k

= 2
n!

(n− s− t)!s!t!

n−s−t∑

k=0

(
n− s− t

k

)

(−1)kpk+s+t
∑

l≥0

ql(s+t+k)
∑

h≥1

qht(1 + qh)k

= 2
n!

(n− s− t)!s!t!

N∑

k=0

(
N

k

)

(−1)k pk+s+t

1 − qk+s+t

∑

h≥1

qht(1 + qh)k, (4.25)

for h := j − l and N := n− s− t and we define

Ht(k) :=
∑

h≥1

qht(1 + qh)k
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before continuing by collecting residues for Rice’s method. The function Ht(z) has

no poles, so we only need to consider the poles contributed by the function

f(z) :=
pz+s+t

1 − qz+s+t
=

(Q− 1)z+s+t

Qz+s+t − 1
,

which has simple poles at z+s+t = 0 and at z+s+t = χk for all k 6= 0. Expanding

around the poles at z = −s−t gives a residue of 1
L

(computed in (3.7)). The kernel

[N ; z] can be calculated exactly at z = −s− t as (refer to (4.6))

[n− s− t;−s− t] =
(−1)n−s−t−1(n− s− t)!

(−s− t)(−s− t− 1) · · · (−s− t− (n− s− t))

=
(n− s− t)!

(s+ t)(s+ t+ 1) · · · (n)

=
(n− s− t)!(s+ t− 1)!

n!
.

The function Ht(z) evaluated at z = −s− t is (see [36, page 83])

Ht(−s− t) =
∑

h≥1

qht(1 + qh)−s−t

=
∑

h≥1

qht 1

(1 + qh)s+t

=
∑

h≥1

qht
∑

i≥0

(
i+ s+ t− 1

i

)

(−qh)i

=
∑

i≥0

(
i+ s+ t− 1

i

)

(−1)i
∑

h≥1

q(t+i)h

=
∑

i≥0

(
i+ s+ t− 1

i

)

(−1)i qt+i

1 − qt+i

=
∑

i≥0

(
i+ s+ t− 1

i

)

(−1)i 1

Qt+i − 1
.

This means that the residue from the pole at z = −s− t is

(n− s− t)!(s + t− 1)!

Ln!
Ht(−s− t).

This can be substituted into the expression for the coefficients of Rst (from (4.25))

and summed on s and t to get

b−1∑

s=0

b−1∑

t=1

2
n!

(n− s− t)!s! t!

(n− s− t)!(s+ t− 1)!

Ln!
Ht(−s− t)

=
2

L

b−1∑

s=0

b−1∑

t=1

(s+ t− 1)!

s! t!
Ht(−s− t)
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=
2

L

b−1∑

s=0

b−1∑

t=1

(s+ t− 1)!

s! t!

∑

i≥0

(
i+ s+ t− 1

i

)

(−1)i 1

Qt+i − 1

=
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

b−1∑

s=0

(s+ t− 1)!

s! t!

(
i+ s+ t− 1

i

)

=
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

b−1∑

s=0

(i+ s+ t− 1)!

i! s! t!

=
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

(i+ t− 1)!

t! i!

b−1∑

s=0

(
i+ s+ t− 1

s

)

=
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

(i+ t− 1)!

t! i!

(
i+ b+ t− 1

t+ i

)

. (4.26)

By letting ε := z + s + t − χk, we expand f(z) = (Q−1)z+s+t

Qz+s+t−1
around ε = 0 as in

(3.6) and (3.7) to get an approximation of

f(z) ∼ 1

εL
(Q− 1)χk .

The quantity [N ; z] can be calculated at z = χk − s− t as (see (4.8))

[n− s− t;χk − s− t] ∼ Γ(−χk + s+ t)nχk−s−t.

The function Ht(z) evaluated at z = χk − s− t is

Ht(χk − s− t) =
∑

h≥1

qht 1

(1 + qh)s+t−χk

=
∑

h≥1

qht
∑

i≥0

(
i+ s+ t− χk − 1

i

)

(−qh)i

=
∑

i≥0

(
i+ s+ t− χk − 1

i

)

(−1)i
∑

h≥1

q(t+i)h

=
∑

i≥0

(
i+ s+ t− χk − 1

i

)

(−1)i 1

Qt+i − 1
.

Putting these quantities together, we get the main term of the fluctuating residues

from the poles at each z = χk − s− t to be

[ε−1](Q− 1)χk
1

εL
Γ(−χk + s+ t)nχk−s−tHt(χk − s− t)

=
1

L
(Q− 1)χknχkΓ(−χk + s+ t)n−s−tHt(χk − s− t)

=
1

L
e2kπiii logQ n∗

Γ(−χk + s+ t)n−s−tHt(χk − s− t),

which means that the residue fluctuations are given asymptotically by

1

L

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)n−s−tHt(χk − s− t).
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We now substitute this quantity into our expression for n![zn]Rst (from (4.25)) and

sum on s and t to get

b−1∑

s=0

b−1∑

t=1

2
n!

(n− s− t)!s!t!

1

L

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)n−s−tHt(χk − s− t)

=
2

L

b−1∑

s=0

b−1∑

t=1

n!

(n− s− t)!s!t!
n−s−t

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)Ht(χk − s− t)

∼ 2

L

b−1∑

s=0

b−1∑

t=1

n!

(n− s− t)!s!t!

Γ(n− s− t+ 1)

Γ(n+ 1)

·
∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)Ht(χk − s− t)

=
2

L

b−1∑

s=0

b−1∑

t=1

n!

(n− s− t)!s!t!

(n− s− t)!

n!

·
∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)Ht(χk − s− t)

=
2

L

b−1∑

s=0

b−1∑

t=1

1

s! t!

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)Ht(χk − s− t). (4.27)

Then (4.26) and (4.27) give the coefficient of R asymptotically as n→ ∞:

n![zn]R =
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

(i+ t− 1)!

t! i!

(
i+ b+ t− 1

t+ i

)

(4.28)

+
2

L

b−1∑

s=0

b−1∑

t=1

1

s! t!

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)Ht(χk − s− t) + o(1).

The variance in the general case can thus be obtained by combining these results

in the following way: (4.10) + (4.24) + (4.28) + (4.2) − (4.2)2. We would expect

the main term of the variance to be a constant with some small fluctuations which

can be written as a delta function. The definition of δEb
(x) can be found in (4.9).

Vb(dn) = n![zn]
∂2

∂u2
Fb(z, u)

∣
∣
∣
u=1

+ Eb(dn) − E
2
b(dn)

= − 2

L

(
logQ(Q− 1) − 1 + logQ n

)
Hb−1 +

2

L2

b−1∑

s=1

ψ(s)

s

+ log2
Q(Q− 1) +

5

6
+ log2

Q n+
2γ

L
logQ n+

γ2

L2
+

π2

6L2
− 2 logQ(Q− 1)

+ 2 logQ(Q− 1) logQ n+
2γ

L
logQ(Q− 1) − 2 logQ n− 2γ

L

+ 2 logQ nδEb
(logQ n

∗) +
2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗

[ψ(−χk)

L
− logQ(Q− 1) + 1

]
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− 2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

(

logQ(Q− 1) − 1 − ψ(s− χk)

L

)

+
2

L

∑

i≥1

(−1)i

i(Qi − 1)

(
i+ b− 1

i

)

+
2

L

b−1∑

s=0

1

s!

∑

k 6=0

e2kπiii logQ n∗

Γ(s− χk)H(χk − s)

+
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

(i+ t− 1)!

t! i!

(
i+ b+ t− 1

t+ i

)

+
2

L

b−1∑

s=0

b−1∑

t=1

1

s! t!

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)Ht(χk − s− t)

+ logQ n+
γ

L
+ logQ(Q− 1) − 1

2
− 1

L
Hb−1 + δEb

(logQ n
∗) − 1

4
+
γ

L
− γ2

L2

− Hb−1

L
+

2 γ Hb−1

L2
− H2

b−1

L2
− log2

Q n− 2 logQ n logQ(Q− 1) − log2
Q(Q− 1)

+ logQ n− 2 γ

L
logQ n+

2

L
Hb−1 logQ n+ logQ(Q− 1) − 2

L
γ logQ(Q− 1)

+
2

L
Hb−1 logQ(Q− 1) + δEb

(logQ n
∗) − 2

L
γ δEb

(logQ n
∗) +

2

L
Hb−1 δEb

(logQ n
∗)

− 2 logQ n δEb
(logQ n

∗) − 2 logQ(Q− 1) δEb
(logQ n

∗) − δ2
Eb

(logQ n
∗) + o(1)

=
1

12
+

π2

6L2
+

2 γ Hb−1

L2
︸ ︷︷ ︸

4

− H2
b−1

L2
︸ ︷︷ ︸

5

+
2

L2

b−1∑

s=1

ψ(s)

s
︸ ︷︷ ︸

3

+
2

L

∑

i≥1

(−1)i

i(Qi − 1)

(
i+ b− 1

i

)

︸ ︷︷ ︸

1

+
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

(i+ t− 1)!

t! i!

(
i+ b+ t− 1

t+ i

)

︸ ︷︷ ︸

2

+
2

L

b−1∑

s=0

b−1∑

t=1

1

s! t!

∑

k 6=0

e2kπiii logQ n∗

Γ(−χk + s+ t)Ht(χk − s− t)

+
2

L

∑

k 6=0

Γ(−χk)e
2kπiii logQ n∗

[ψ(−χk)

L
− logQ(Q− 1) + 1

]

− 2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiii logQ n∗

(

logQ(Q− 1) − 1 − ψ(s− χk)

L

)

+
2

L

b−1∑

s=0

1

s!

∑

k 6=0

e2kπiii logQ n∗

Γ(s− χk)H(χk − s) + 2δEb
(logQ n

∗) − 2

L
γ δEb

(logQ n
∗)

+
2

L
Hb−1 δEb

(logQ n
∗) − 2 logQ(Q− 1) δEb

(logQ n
∗) − δ2

Eb
(logQ n

∗)
︸ ︷︷ ︸

6

+o(1).

There are still a few simplifications that can be made to the variance. We can

express 1 and 2 more simply by removing the i = 0 term from 2 and including
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the t = 0 term
(
i.e., 1

)
in its place. Then

1 + 2 =
2

L

∑

i≥1

(−1)i

i(Qi − 1)

(
i+ b− 1

i

)

+
2

L

∑

i≥0

(−1)i

b−1∑

t=1

1

Qt+i − 1

(i+ t− 1)!

t! i!

(
i+ b+ t− 1

t+ i

)

=
2

L

b−1∑

t=1

1

(Qt − 1)

(t− 1)!

t!

(
b+ t− 1

t

)

+
2

L

∑

i≥1

(−1)i

b−1∑

t=0

1

Qt+i − 1

(i+ t− 1)!

t! i!

(
i+ b+ t− 1

t+ i

)

=
2

L

b−1∑

t=1

1

t(Qt − 1)

(
b+ t− 1

t

)

+
2

L

∑

i≥1

(−1)i

b−1∑

t=0

1

t(Qt+i − 1)

(
i+ t− 1

i

)(
i+ b+ t− 1

t+ i

)

=
2

L

b−1∑

t=1

1

t(Qt − 1)

(
b+ t− 1

t

)

+
2

L

b−1∑

t=0

∑

i≥1

(−1)i

Qt+i − 1

1

i+ t

(
i+ t

i

)(
i+ b+ t− 1

t+ i

)

=
2

L

b−1∑

t=1

1

t(Qt − 1)

(
b+ t− 1

t

)

+
2

L

b−1∑

t=0

∑

i≥t+1

(−1)i−t

Qi − 1

1

i

(
i

i− t

)(
i+ b− 1

i

)

=
2

L

b−1∑

t=1

1

t(Qt − 1)

(
b+ t− 1

t

)

+
2

L

b−1∑

t=0

[
∑

i≥1

(−1)i−t

Qi − 1

1

i

(
i

i− t

)(
i+ b− 1

i

)

− [t ≥ 1]
1

Qt − 1

1

t

(
t+ b− 1

t

)]

.

Note here that for t = 0, this term does not need to be removed. Hence

1 + 2 =
2

L

b−1∑

t=1

1

t(Qt − 1)

(
b+ t− 1

t

)

+
2

L

b−1∑

t=0

∑

i≥1

(−1)i−t

Qi − 1

1

i

(
i

i− t

)(
i+ b− 1

i

)

− 2

L

b−1∑

t=1

1

t(Qt − 1)

(
t+ b− 1

t

)

=
2

L

b−1∑

t=0

∑

i≥1

(−1)i−t

i(Qi − 1)

(
i

i− t

)(
i+ b− 1

i

)

=
2

L

∑

i≥1

(−1)i

i(Qi − 1)

(
i+ b− 1

i

) b−1∑

t=0

(−1)t

(
i

t

)

=
2

L

∑

i≥1

(−1)i

i(Qi − 1)

(
i+ b− 1

i

)

(−1)b−1

(
i− 1

b− 1

)

(identity from [12])
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=
2

L

∑

i≥1

(−1)i+b−1

i(Qi − 1)

(
i+ b− 1

i

)(
i− 1

b− 1

)

.

The harmonic numbers can be expressed as Hn = ψ(n+ 1) + γ. Thus

3 =
2

L2

b−1∑

s=1

ψ(s)

s

=
2

L2

b−1∑

s=1

1

s
(Hs−1 − γ)

=
2

L2

b−1∑

s=1

1

s

(

Hs −
1

s

)

− 2γ

L2

b−1∑

s=1

1

s

(

Hs−1 = Hs −
1

s

)

=
2

L2

b−1∑

s=1

1

s
Hs −

2

L2

b−1∑

s=1

1

s2
− 2γ

L2
Hb−1

=
2

L2

1

2

(
H2

b−1 +H
(2)
b−1

)
− 2

L2
H

(2)
b−1 −

2γ

L2
Hb−1

=
1

L2
H2

b−1 −
1

L2
H

(2)
b−1 −

2γ

L2
Hb−1,

which means we cancel the terms 4 − 5 . It is also necessary to look at the term

6 , whose mean is non-zero. In order to use results from [17] we rewrite

δEb
(x) =

1

L

∑

k 6=0

e2kπiiix

χk

Γ(b− χk)

Γ(b)

=
1

L

∑

k 6=0

e2kπiiix

χk

(b− χk − 1)!

(b− 1)!

=
1

L

∑

k 6=0

e2kπiiix

χk

(−χk)!

(
b− χk − 1

b− 1

)

=
1

L

∑

k 6=0

e2kπiiix
(
− (−χk − 1)!

)
(
b− χk − 1

b− 1

)

= − 1

L

∑

k 6=0

e2kπiiixΓ(−χk)

(
b− χk − 1

b− 1

)

, (4.29)

which is exactly the function dealt with in [17]. In [17] the square of this function

is split into two parts – a constant (the mean of the square of the function) and

the remaining periodic function of period 1 and mean zero. (In the classical case

the special case of this function was when b = 1.) We write

δ2
Eb

(x) = [δ2
Eb

]
0
+ δ̃Eb

(x),

where

δ̃Eb
(x) =

1

L2

∑

k 6=0

∑

j 6=0, 6=k

Γ(b− χk)

χkΓ(b)

Γ(b− χk−j)

χk−jΓ(b)
e2πiiikx.

49



Also,

[δ2
Eb

]
0

=
π2

6L2
+

1

12
− logQ 2 +

2

L

b−1∑

j=1

1

2j

(
2j

j

)
∑

h≥0

(−2j

h

)
1

Qh+j − 1

− 2

L

∑

h≥1

(−1)h−1

h(Qh − 1)
+

1

L

b−1∑

j=1

1

2j

(
2j

j

)

2−2j − H
(2)
b−1

L2
.

Therefore, the general variance is

Vb(dn) = logQ 2 +
2

L

∑

i≥1

(−1)i+b−1

i(Qi − 1)

(
i+ b− 1

i

)(
i− 1

b− 1

)

− 2

L

b−1∑

j=1

1

2j

(
2j

j

)
∑

h≥0

(−2j

h

)
1

Qh+j − 1
+

2

L

∑

h≥1

(−1)h−1

h(Qh − 1)

− 1

L

b−1∑

j=1

1

2j

(
2j

j

)

2−2j + δVb
(logQ n

∗) + o(1),

where

δVb
(x) =

2

L

∑

k 6=0

Γ(−χk)e
2kπiiix

[
ψ(−χk)

L
− logQ(Q− 1) + 1

]

(4.30)

− 2

L

b−1∑

s=1

1

s!

∑

k 6=0

Γ(s− χk)e
2kπiiix

(
logQ(Q− 1) − 1 − ψ(s− χk)

L

)

+
2

L

b−1∑

s=0

1

s!

∑

k 6=0

e2kπiiixΓ(s− χk)H(χk − s)

+
2

L

b−1∑

s=0

b−1∑

t=1

1

s! t!

∑

k 6=0

e2kπiiixΓ(−χk + s+ t)Ht(χk − s− t)

+ 2δEb
(x) − 2

L
γ δEb

(x) +
2

L
Hb−1 δEb

(x) − 2 logQ(Q− 1) δEb
(x) − δ̃Eb

(x).

This concludes the proof of Theorem 4.2. �

4.3 The mean and variance for large b

To examine this variance result as b→ ∞, we can use results from [17] which state

that

− 1

L

b−1∑

j=1

1

2j

(
2j

j

)

2−2j = − log 2

L
+

1√
π
b−

1
2 +O

(
b−

3
2

)

and (for any ε > 0)

− 2

L

b−1∑

j=1

1

2j

(
2j

j

)
∑

h≥0

(−2j

h

)
1

Qh+j − 1
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= − 2

L

∑

m≥1

log(1 +Q−m) +O

(( 4

Q(1 +Q−1)2
− ε
)b
)

= − 2

L

∑

h≥1

(−1)h−1

h(Qh − 1)
+O

(( 4

Q(1 +Q−1)2
− ε
)b
)

,

whose big-O term is exponentially small as b→ ∞. From [15],

2

L

∑

i≥1

(−1)i+b−1

i(Qi − 1)

(
i+ b− 1

i

)(
i− 1

b− 1

)

= O

((
4

Q(1 +Q−1)2
− ε

)b
)

for any ε > 0 and is likewise exponentially small. Thus as b→ ∞, the constant in

the asymptotic expansion of the variance is

1√
π
b−

1
2 +O

(
b−

3
2

)
+O

((
4

Q(1 +Q−1)2
− ε

)b
)

+ δVb
(x) = O

(
b−

1
2

)
.
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Chapter 5

Conclusion

Sequences of natural numbers (or ‘words’) were considered, where each letter oc-

curred with geometric probability. It was shown that the expected value for the

number of distinct values in a geometrically distributed sample of length n is as-

ymptotic to logQ n as n → ∞. If letters are required to occur more often (say, b

times) then the expected value is dependent on b and as b gets large the expected

value decreases logarithmically with respect to b (it will decrease asymptotically

according to the term − logQ b). For b = 1, the classical case, this extra term (the

only term dependent on b) disappears.

The variance is small, with the calculations becoming more intricate when b is

larger than 1. In addition to the main term in the classical case – which is equal

to logQ 2 – the general variance also has various sums which were shown to be

O
(
b−

1
2

)
for large b. Again, substituting 1 for b resorts back to the classical case.

An extension of this work can be found in [26].
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Part II

Maxima and Minima
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Chapter 6

Introduction

Given a word where the letters are natural numbers, we consider these letters to

occur independently and with geometric probability. So for p+ q = 1, each letter

i appears in the word with probability pqi−1.

“What is the probability that the maximum in a word occurs in the first position?”

This question is addressed in Chapter 7 and later is generalised in Chapter 8 to

finding the probability that the maximum occurs in the first d positions of a word.

We take words of length n and require d ≤ n. To begin with d is considered fixed.

The same scenarios are then considered for the minimum in Chapters 9 and 10.

Another generalisation dealt with in Chapter 11 is that the minimum value of the

first d letters is greater than (‘strict’) and possibly equal to (‘weak’) all other values

in the word. All of these ideas can be interpreted in the strict and weak sense.

A similar concept has been looked at for compositions, see [22]. Also, the proba-

bility that there is a single winner in a geometrically distributed sample is looked

at in [6] (see Chapter 7). The method in this thesis, however, is to use generating

functions and Rice’s method [2, 16, 21, 25, 28, 29, 30, 31] to obtain both the main

term and the periodic fluctuations which appear. The first case is dealt with in

more detail than the rest, as the process is similar in each case.

It must be noted that in Chapters 9 and 10, there are elementary probabilistic

explanations for the results given. It is thus unnecessary to use these techniques,

but they are included for consistency of method, and labelled ‘Proposition’ rather

than ‘Theorem’. An example of the probabilistic argument, as suggested by one

of the external examiners, would be as follows: Suppose X1, X2, . . . , Xn are inde-

pendently and identically distributed geometric random variables, with p and q as

defined above. Then P (X = k) = pqk−1 and P (X > k) = pqk+pqk+1+pqk+2+· · · =
pqk(1 + q + q2 + · · · ) = pqk 1

1−q
= qk. Hence the probability that a strict minimum
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occurs in the first position is given by

∑

j≥1

P (X1 = j,Xm > j, 2 ≤ m ≤ n) =
∑

j≥1

P (X = j)(P (X > j))n−1

=
∑

j≥1

pqj−1(qj)n−1

=
p

q

qn

1 − qn

=
Q− 1

Qn − 1
,

as in Proposition 9.1. For Proposition 9.2 the use of the non-strict inequality

(Xm ≥ j) gives the result, and the propositions in Chapter 10 follow by summing

over the first d positions.

Having established these results, a follow-up question might be “what is the prob-

ability that the maximum in a sequence of length n occurs in the first d positions,

if d grows with n?”. We use Mellin transforms to deal with the cases when d = αn

for 0 < α ≤ 1 (in Chapter 12), and when d = αnγ for 0 < γ < 1 (in Chapter 13).

Rice’s method was discussed previously. It makes use of Lemma 1 which is recalled

below.

Let C be a curve surrounding the points 1, 2, . . . , n in the complex plane, and let

f(z) be analytic inside C. Then

n∑

k=1

(
n

k

)

(−1)kf(k) = − 1

2πiii

∫

C

[n; z]f(z)dz,

where

[n; z] =
(−1)n−1n!

z(z − 1) · · · (z − n)
=

Γ(n+ 1)Γ(−z)
Γ(n + 1 − z)

. �

By extending the contour of integration, it turns out that under suitable growth

conditions (see [10]) the asymptotic expansion of our alternating sum is given by

∑

Res([n; z]f(z)) + smaller order terms,

where the sum is taken over all poles different from 1, . . . , n. Poles that lie more to

the left lead to smaller terms in the asymptotic expansion. The symbol iii is used

to represent
√
−1 (as opposed to i used elsewhere as an index).

The other technique used is the Mellin transform. The Mellin transform of a

function f(x) is a function of the complex variable s and is denoted by an asterisk.

It is defined by

f ∗(s) :=

∫ ∞

0

f(x)xs−1dx. (6.1)
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The Mellin transform exists in a strip in the complex plane, denoted 〈−u,−v〉
where −u < ℜ(s) < −v if ℜ(s) denotes the real part of the complex number s.

To find the boundary values of the strip, two limits are taken on f(x). For the

left boundary of the strip, if f(x) = O(xu) as x → 0, then −u bounds how small

the real part of s can be. The largest value of the real part of s is given by −v if

f(x) = O(xv) as x→ ∞.

In order to re-establish the original function f(x), the inversion formula must be

used. The inverse of the Mellin transform is

f(x) =
1

2πiii

∫ c+iii∞

c−iii∞
f ∗(s)x−sds (6.2)

where c ∈ R is in the fundamental strip. This is sometimes written as

f(x) =
1

2πiii

∫

(c)

f ∗(s)x−sds. (6.3)

It is in considering this inverse transform that we approximate functions using

residue calculus. We look at the poles of the integrand. If we are interested in where

the parameter is large, we move the contour right and collect negative residues.

If the parameter of interest needs to be small, positive residues are collected by

moving the contour line left. In the examples which follow, the parameter of

interest is the length of the word n, and since we wish to approximate for large n,

we move the contour right until we pass the first poles of the integrand and then

evaluate the negative residues.

References involving Mellin transforms include [7, 8, 10, 11, 20, 24, 38].

In Table 6.1 below are examples of words created randomly according to a geo-

metric distribution on certain values of q. The words were created randomly on

Mathematica (Using ‘GeometricDistribution’ from the statistics package ‘Discrete-

Distributions’):
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q Random word

1
100

11111111111111111111

1
2

13211312151511122112

99
100

168;45;3;200;83;85;49;79;43;127;17;1;2;140;123;7;116;77;58;81

Table 6.1: Examples of random words with given geometric probabilities.
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Chapter 7

The maximum in the first position

We break this problem into two parts, one case (‘strict’) where we do not allow the

maximum (k) to appear anywhere else in the word, and the other (‘weak’) where

k is allowed to appear elsewhere, as long as it first appears in position 1. As an

example, consider the words 4111322131 and 4141324112. The maximum in both

is 4, which appears only in the first position in the former but in positions 1,3 and

7 in the latter.

The results which follow are proved in this chapter. A different (probabilistic)

approach with similar results can be found in [6] following a problem stated in

[34]. Eisenberg, Stengle and Strang ([6]) consider the probability that there is only

one maximum in a geometrically distributed sample, and by multiplying this result

by 1
n
, we have a similar idea to that in Theorem 7.1. Similarly in Chapter 8 one

can multiply by d
n

to obtain a more general result.

Theorem 7.1 The probability that the only maximum value in a word of length n

is in the first position of the word is

Ps(M) ∼ 1 −Q−1

Ln
(1 + δ(n)), (7.1)

as n→ ∞, where Q = q−1, L = logQ, and

δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x

as defined in (7.5).

Theorem 7.2 The probability that the maximum value in a word of length n is in

the first position and possibly other positions is

Pw(M) ∼ Q− 1

Ln
(1 + δ(n)), (7.2)
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as n→ ∞, where

δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x.

7.1 Maximum in the first position – (strict)

We wish to construct words whose largest element appears in the first position

and nowhere else in the word (i.e., the strict case). We interpret this situation

symbolically as
⋃

k≥1

k{1, . . . , k − 1}∗.

The union is taken over all natural numbers k, where in each case k represents the

maximum value in the word. We start with the maximum k and this is followed

by a sequence of any length from the set of letters {1, . . . , k−1} in any order, with

repeats allowed.

We translate this symbolic equation into a generating function whose coefficients

represent the probability that a word of length n has its maximum in the first

position. It is

F
(s)
M (z) :=

∑

k≥1

zpqk−1 1

1 −
k−1∑

j=1

zpqj−1

,

where the sum on j is a telescoping series (since p = 1 − q), and thus

F
(s)
M (z) =

∑

k≥1

zpqk−1 1

1 − z
k−1∑

j=1

(qj−1 − qj)

=
∑

k≥1

zpqk−1 1

1 − z(1 − qk−1)

=
∑

k≥1

zpqk−1
∑

j≥0

zj(1 − qk−1)j

=
∑

k≥1

∑

j≥0

zj+1pqk−1(1 − qk−1)j .

We want to consider the coefficient of zn (i.e., n := j + 1 so n − 1 = j) in this

ordinary generating function, as this will give us the probability that a word of

length n has a strict maximum in the first position.

[zn]F
(s)
M (z) =

∑

k≥1

pqk−1(1 − qk−1)n−1

=
∑

k≥1

pqk−1
n−1∑

j=0

(
n− 1

j

)

(−qk−1)j

59



=
∑

k≥1

n−1∑

j=0

(
n− 1

j

)

(−1)jpq(k−1)(j+1)

=

n−1∑

j=0

(
n− 1

j

)

(−1)jp
∑

k≥1

q(k−1)(j+1)

=

n−1∑

j=0

(
n− 1

j

)

(−1)jp
∑

K≥0

(qj+1)K (where K := k − 1)

=

n−1∑

j=0

(
n− 1

j

)

(−1)jp
1

1 − qj+1

=
n−1∑

j=0

(
n− 1

j

)

(−1)j 1 −Q−1

1 −Q−(j+1)
.

We can now use complex analysis to evaluate the alternating sum asymptotically.

The method is called ‘Rice’s method’ and was discussed in Part I. We use the same

lemma (Lemma 1, see (2.1)), which allows us to express a sum such as this as an

integral.

In our case, the sum begins at zero, so we start with a contour surrounding points

0, 1, . . . , n−1. The function whose poles we examine is f(z) := 1−Q−1

1−Q−(z+1) , and thus

the poles we need to consider are at z + 1 = 0 and z + 1 = χk, where χk = 2kπiii
L

for all k ∈ Z \ {0}, (L = logQ). For the first of these poles we have (expanding

around z = −1)

1 −Q−1

1 −Q−z−1
=

1 −Q−1

1 − e(−z−1)L
∼ 1 −Q−1

1 − (1 + (−z − 1)L)
=

1 −Q−1

(z + 1)L
,

so the residue is 1−Q−1

L
. The contribution of the kernel is

[n− 1;−1] =
(−1)n−1−1(n− 1)!

(−1)(−1 − 1) · · · (−1 − (n− 1))

=
(−1)n−2(n− 1)!

(−1)(−2) · · · (−n)

=
(−1)n−2(n− 1)!

(−1)nn!

=
1

n
. (7.3)

Thus for the pole at z = −1 we have 1−Q−1

nL
. For the other poles we let ε := z+1−χk.

Then (since Qχk = 1 by (3.6))

1 −Q−1

1 −Q−z−1
=

1 −Q−1

1 −Q−ε−χk
=

1 −Q−1

1 −Q−ε
=

1 −Q−1

1 − e−εL
∼ 1 −Q−1

1 − (1 − εL)
=

1 −Q−1

εL
,

so again we have a residue of 1−Q−1

L
. In this case, the contribution of the kernel is
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asymptotic as n→ ∞.

[n− 1;χk − 1] =
Γ(n− 1 + 1)Γ(−χk + 1)

Γ(n− 1 + 1 − χk + 1)

= Γ(1 − χk)
Γ(n)

Γ(n− χk + 1)

∼ Γ(1 − χk)n
χk−1

(
see [1, page 257]

)
,

=
1

n
Γ(1 − χk)e

χk log n. (7.4)

So altogether for the remaining poles we have

1 −Q−1

Ln

∑

k 6=0

Γ(−χk + 1)e2kπiii logQ n.

Putting these results together, it can be seen that the expected value is asymptotic

to
1 −Q−1

Ln
+

1 −Q−1

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n, as n→ ∞.

Since the fluctuating function will occur frequently, we define it as

δ(x) :=
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x. (7.5)

We can thus approximate the probability that the strict maximum is in the first

position as

Ps(M) ∼ 1 −Q−1

Ln
(1 + δ(n)).

This concludes the proof of Theorem 7.1. �

7.2 Maximum in the first position – (weak)

If we allow the maximum to occur elsewhere in the word too, we change the

symbolic equation slightly, to

⋃

k≥1

k{1, . . . , k}∗,

since the sequence which follows the initial k may now include the letter k. This

can be given as the generating function

F
(w)
M (z) :=

∑

k≥1

zpqk−1 1

1 −
k∑

j=1

zpqj−1

.

61



As before, we can rewrite this as

F
(w)
M (z) =

∑

k≥1

zpqk−1 1

1 − z(1 − qk)

=
∑

k≥1

zpqk−1
∑

j≥0

zj(1 − qk)j

=
∑

k≥1

∑

j≥0

zj+1pqk−1(1 − qk)j

which makes it easier to find the coefficient of zn:

[zn]F
(w)
M (z) = [zn]

∑

k≥1

∑

j≥0

zj+1pqk−1(1 − qk)j

=
∑

k≥1

pqk−1(1 − qk)n−1

=
∑

k≥1

pqk−1
n−1∑

j=0

(
n− 1

j

)

(−qk)j

=

n−1∑

j=0

(
n− 1

j

)

(−1)j p

q

∑

k≥1

(qj+1)k

=

n−1∑

j=0

(
n− 1

j

)

(−1)j p

q

qj+1

1 − qj+1

=
n−1∑

j=0

(
n− 1

j

)

(−1)j p

q

1

Qj+1 − 1

=
n−1∑

j=0

(
n− 1

j

)

(−1)j Q− 1

Qj+1 − 1
.

Again we use Rice’s method and look at the poles of the function f(z) := Q−1
Qz+1−1

.

We must consider the poles at z = −1 and z + 1 = χk. The first of these gives

f(z) =
Q− 1

e(z+1)L − 1
∼ Q− 1

(z + 1)L
, near z = −1,

and the kernel is the same as in the previous example (see (7.3)),

[n− 1,−1] =
1

n
.

Thus the residue is Q−1
Ln

. For the remaining poles, if ε := z + 1 − χk, then

f(z) =
Q− 1

Qz+1 − 1
=

Q− 1

Qε+χk − 1
=

Q− 1

Qε − 1
=

Q− 1

eεL − 1
∼ Q− 1

εL
, (7.6)

and the coefficient of ε−1 in (7.6) is Q−1
L

. The kernel is again the same, so (from

(7.4))

[n− 1;χk − 1] ∼ 1

n
Γ(1 − χk)e

2kπiii logQ n,
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and we sum this over all non-zero k to get

Q− 1

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n.

In all, we get an expected probability asymptotic to

Pw(M) ∼ Q− 1

Ln
(1 + δ(n)),

as n→ ∞. Recall δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x from equation (7.5).

Hence Theorem 7.2 is proved. �

The only difference between this and the strict case is the Q − 1 instead of the

1 − Q−1. Since Q > 1 ⇒ Q − 1 > 1 − Q−1, the weak case will be slightly larger.

This is to be expected as it is more likely that we have a k in position 1 if there

is more than one k in the word. That is, if there is one k in a word of length n,

there is a small chance of it being exactly in position 1. However, if there are, say,

3 k’s in a word of length n, then there is a greater chance that one of them is in

position 1.
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Chapter 8

The maximum in the first d

positions

This idea can be viewed in four different ways, all of which end up with similar

results asymptotically. These asymptotic results are proportional to d (in fact, are

the previous results with a factor d) as there are d chances that k will be where we

want it to be, so the probability increases. For the problem to make sense, we need

a word of length d or more (where, for the time being, d is fixed and independent

of n) in all of these scenarios. We can have the (strict, strict) case where k can

only appear once in the whole word, and this appearance must be in the first d

letters of the word. Next, we can allow k to appear more than once in the first

d positions, but never in the rest of the word. We will call this the (weak, strict)

case. Alternatively, we can allow the letter k to appear any number of times in the

rest of the word, but only once in the first d places – i.e., the (strict, weak) case.

Lastly we can let k be anywhere in the word, any number of times, as long as it

occurs at least once in the first d places. We call this case (weak, weak).

The following results are presented:

Theorem 8.1 The probability that the single maximum value in a geometrically

distributed sample of length n appears in the first d positions of a word is asymptotic

(as n→ ∞) to

Pss(M) ∼ (1 −Q−1)d

Ln
(1 + δ(n)), (8.1)

where δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x as defined in equation (7.5).

Theorem 8.2 The probability that the maximum value in a geometrically distrib-

uted sample of length n appears in the first d positions of a word any number of
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times (but at least once), and nowhere else in the word is approximately

Pws(M) ∼ (1 −Q−1)d

Ln
(1 + δ(n)), (8.2)

as n→ ∞, where δ(x) is defined in equation (7.5).

Theorem 8.3 The probability that the maximum value in a geometrically distrib-

uted sample of length n appears only once in the first d positions of a word and

any number of times in the remaining n− d letters is asymptotic to

Psw(M) ∼ (Q− 1)d

Ln
(1 + δ(n)), (8.3)

as n→ ∞, where δ(x) is defined in (7.5).

Theorem 8.4 The probability that the maximum value in a geometrically distrib-

uted sample of length n appears at least once in the first d positions of a word and

any number of times anywhere else in the word is asymptotic to

Pww(M) ∼ (Q− 1)d

Ln
(1 + δ(n)), (8.4)

as n→ ∞, for δ(x) from (7.5).

8.1 Maximum in the first d positions – (strict,

strict)

In this case we have strictly only one maximum (k) in the word, which has to

appear somewhere in the first d places. All other letters in the word must be

natural numbers which are less than or equal to k − 1. Symbolically we represent

the first d letters as

A
(s)
k :=

d−1⋃

i=0

{1, . . . , k − 1}ik{1, . . . , k − 1}d−1−i, (8.5)

and thus all possible words with this restriction can be symbolised by

⋃

k≥1

A
(s)
k {1, . . . , k − 1}∗.

The generating function then becomes

F
(s,s)
M (z) :=

∑

k≥1

d−1∑

i=0

(
k−1∑

j=1

zpqj−1

)i

zpqk−1

(
k−1∑

j=1

zpqj−1

)d−1−i

1

1 −
k−1∑

j=1

zpqj−1
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=
∑

k≥1

d−1∑

i=0

zi(1 − qk−1)izpqk−1zd−1−i(1 − qk−1)d−1−i 1

1 − z(1 − qk−1)

=
∑

k≥1

d−1∑

i=0

zd(1 − qk−1)ipqk−1(1 − qk−1)d−1−i
∑

j≥0

zj(1 − qk−1)j,

and thus

[zn]F
(s,s)
M (z) = [zn]

∑

k≥1

d−1∑

i=0

zd(1 − qk−1)ipqk−1(1 − qk−1)d−1−i
∑

j≥0

zj(1 − qk−1)j

=
∑

k≥1

d−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk−1)d−1−i(1 − qk−1)n−d

=
∑

k≥1

d−1∑

i=0

(1 − qk−1)n−1pqk−1

=
∑

k≥1

d(1 − qk−1)n−1pqk−1

=
∑

k≥1

d

n−1∑

h=0

(
n− 1

h

)

(−qk−1)hpqk−1

=

n−1∑

h=0

d

(
n− 1

h

)

(−1)h p

qh+1

∑

k≥1

q(h+1)k

=

n−1∑

h=0

d

(
n− 1

h

)

(−1)h p

qh+1

qh+1

1 − qh+1

=

n−1∑

h=0

d

(
n− 1

h

)

(−1)hQ
h+1(1 −Q−1)

Qh+1 − 1
.

We use Rice on f(z) := Qz+1(1−Q−1)
Qz+1−1

, and consider poles at z+1 = 0 and z+1 = χk.

To expand f(z) about z = −1, we let ε := z + 1. Then

f(z) =
Qε(1 −Q−1)

Qε − 1
=
eεL(1 −Q−1)

eεL − 1
∼ 1 −Q−1

εL
(8.6)

and the residue is 1−Q−1

L
. This is combined with the kernel contribution (see (7.3))

[n− 1,−1] =
1

n
,

so that the first pole gives us
1 −Q−1

Ln
.

The remainder of the poles use ε := z + 1 − χk, so

f(z) =
Qε+χk(1 −Q−1)

Qε+χk − 1
=
Qε(1 −Q−1)

Qε − 1
∼ 1 −Q−1

εL
,
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as in (8.6) and the residue is 1−Q−1

L
. The kernel is

[n− 1, χk − 1] ∼ 1

n
Γ(1 − χk)e

2kπiii logQ n,

from (7.4) which means that the remaining poles give

1 −Q−1

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n.

In total, we have the probability asymptotic to

(1 −Q−1)d

Ln
+

(1 −Q−1)d

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n

and thus

Pss(M) ∼ (1 −Q−1)d

Ln
(1 + δ(n)),

where δ(x) is defined as in equation (7.5). This brings us to the end of the proof

of Theorem 8.1. �

8.2 Maximum in the first d positions – (weak,

strict)

For this scenario we require that there is at least one k in the first d places, and

possibly more. However, the rest of the word may only have letters from the set

{1, . . . , k − 1}. We express the first d letters symbolically as

A
(w)
k =

d−1⋃

i=0

{1, . . . , k − 1}ik{1, . . . , k}d−1−i. (8.7)

Note that we must fix the first k to avoid counting the same sequence more than

once. Altogether we get
⋃

k≥1

A
(w)
k {1, . . . , k − 1}∗.

Thus the generating function is

F
(w,s)
M (z) :=

∑

k≥1

d−1∑

i=0

(
k−1∑

j=1

zpqj−1

)i

zpqk−1

(
k∑

j=1

zpqj−1

)d−1−i

1

1 −
k−1∑

j=1

zpqj−1

=
∑

k≥1

d−1∑

i=0

zi(1 − qk−1)izpqk−1zd−1−i(1 − qk)d−1−i 1

1 − z(1 − qk−1)
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=
∑

k≥1

zd

d−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)d−1−i
∑

j≥0

zj(1 − qk−1)j

=
∑

k≥1

zd+j

d−1∑

i=0

∑

j≥0

(1 − qk−1)i+jpqk−1(1 − qk)d−1−i.

Before considering coefficients of this generating function, note that although we

make use of Rice’s method here, we could just as well have used a Mellin transform.

We keep to Rice for consistency, noting that Mellin transforms are discussed later

in detail (when we make d dependent on n), and the equivalent calculation for this

generating function, and that of the (weak, weak) case, can be found in Appendix

B.

[zn]F
(w,s)
M (z)

=
∑

k≥1

d−1∑

i=0

(1 − qk−1)i+n−dpqk−1(1 − qk)d−1−i (8.8)

=
∑

k≥1

d−1∑

i=0

i+n−d∑

h=0

(
i+ n− d

h

)

(−qk−1)hpqk−1
d−1−i∑

l=0

(
d− 1 − i

l

)

(−qk)l

=
d−1∑

i=0

i+n−d∑

h=0

(
i+ n− d

h

) d−1−i∑

l=0

(
d− 1 − i

l

)

(−1)l+h p

qh+1

∑

k≥1

qk(l+1+h)

=

d−1∑

i=0

i+n−d∑

h=0

(
i+ n− d

h

) d−1−i∑

l=0

(
d− 1 − i

l

)

(−1)l+h p

qh+1

ql+1+h

1 − ql+1+h

=

d−1∑

i=0

d−1−i∑

l=0

(
d− 1 − i

l

)

(−1)l

i+n−d∑

h=0

(
i+ n− d

h

)

(−1)hQ
h+1(1 −Q−1)

Ql+1+h − 1
︸ ︷︷ ︸

. (8.9)

Again, Rice’s method is useful to evaluate the sum in the brace, and we consider

poles of the function f(z) := Qz+1(1−Q−1)
Qz+1+l−1

. These occur at z + 1 + l = 0 and

z + 1 + l = χk. We start with the former, and define ε := z + 1 + l. Then

f(z) =
Qε−l(1 −Q−1)

Qε − 1

=
eεLQ−l(1 −Q−1)

eεL − 1

∼ Q−l(1 −Q−1)

εL
(8.10)

and so the residue is Q−l(1−Q−1)
L

. For N := n+ i− d, the contribution of the kernel

is

[N ;−1 − l] =
(−1)N−1N !

(−1 − l)(−1 − l − 1) · · · (−1 − l −N)
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=
(−1)N−1N !

(−1)N+1(l + 1)(l + 2) · · · (l +N + 1)

=
N !

(l + 1)(l + 2) · · · (l +N + 1)

=
N !l!

(l +N + 1)!

=
1

(l +N + 1)
(

N+l
l

) , (8.11)

and so from this pole we get

Q−l(1 −Q−1)

L

1

(l + 1 +N)
(

N+l
l

) .

The other poles give us (for ε := z + 1 + l − χk)

f(z) =
Qε−l+χk(1 −Q−1)

Qε+χk − 1

=
Qε−l(1 −Q−1)

Qε − 1

∼ Q−l(1 −Q−1)

εL
,

by (3.6) and (8.10), so the residue is Q−l(1−Q−1)
L

. The kernel can be expressed in

terms of Gamma functions. If we assume that d is fixed (i.e., independent of n),

we get

[N ;χk − 1 − l] =
Γ(n+ i− d+ 1)Γ(−χk + 1 + l)

Γ(n+ i− d+ 1 − χk + 1 + l)

= Γ(−χk + 1 + l)
Γ(n+ i− d+ 1)

Γ(n+ i− d+ 1 − χk + 1 + l)

∼ Γ(−χk + 1 + l)nχk−1−l (see [1, page 257]) (8.12)

=
1

nl+1
Γ(−χk + 1 + l)eχk log n

=
1

nl+1
Γ(l + 1 − χk)e

2kπiii logQ n.

Thus we have
Q−l(1 −Q−1)

Ln1+l

∑

k 6=0

Γ(1 + l − χk)e
2kπiii logQ n

for the remaining poles, and altogether the probability from (8.9) is

d−1∑

i=0

d−1−i∑

l=0

(
d− 1 − i

l

)

(−1)l

(
Q−l(1 −Q−1)

L

1

(l + 1 +N)
(

N+l
l

)

+
Q−l(1 −Q−1)

Ln1+l

∑

k 6=0

Γ(1 + l − χk)e
2kπiii logQ n

)

. (8.13)
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It can now be seen that the l = 0 term dominates. This is because the l = 0 term

is of order 1
N

, the l = 1 term is O( 1
N2 ), the l = 2 term is O( 1

N3 ) etc. Thus we need

only consider this term when discussing the asymptotics. By substituting l = 0 in

the above expression, we get (recall that d is fixed)

1 −Q−1

L

d−1∑

i=0

(
1

N + 1
+

1

n

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n

)

=
1 −Q−1

L

d−1∑

i=0

1

n+ i− d+ 1
+

1 −Q−1

L

d−1∑

i=0

1

n

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n

∼ (1 −Q−1)d

Ln
+

(1 −Q−1)d

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n. (8.14)

Hence

Pws(M) ∼ (1 −Q−1)d

Ln
(1 + δ(n)).

This is the asymptotic expansion of the probability in the (weak, strict) case, where

δ(x) is defined in (7.5). This concludes the proof of Theorem 8.2. �

8.3 Maximum in the first d positions – (strict,

weak)

Here we assume that k only appears once in the first d positions, but can occur

any number of times in the rest of the word. Therefore we again use (see (8.5))

A
(s)
k =

d−1⋃

i=0

{1, . . . , k − 1}ik{1, . . . , k − 1}d−1−i,

and in total we have
⋃

k≥1

A
(s)
k {1, . . . , k}∗.

The generating function is thus

F
(s,w)
M (z) :=

∑

k≥1

d−1∑

i=0

(
k−1∑

j=1

zpqj−1

)i

zpqk−1

(
k−1∑

j=1

zpqj−1

)d−1−i

1

1 −
k∑

j=1

zpqj−1

=
∑

k≥1

d−1∑

i=0

zi(1 − qk−1)izpqk−1zd−1−i(1 − qk−1)d−1−i 1

1 − z(1 − qk)

=
∑

k≥1

d−1∑

i=0

∑

j≥0

zd+j(1 − qk−1)d−1pqk−1(1 − qk)j
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=
∑

k≥1

∑

j≥0

dzd+j(1 − qk−1)d−1pqk−1(1 − qk)j.

We are interested in the coefficient of zn, hence

[zn]F
(s,w)
M (z) =

∑

k≥1

d(1 − qk−1)d−1pqk−1(1 − qk)n−d (8.15)

=
∑

k≥1

d
d−1∑

l=0

(
d− 1

l

)

(−qk−1)lpqk−1
n−d∑

h=0

(
n− d

h

)

(−qk)h

= d

d−1∑

l=0

(
d− 1

l

)

(−1)l

n−d∑

h=0

(
n− d

h

)

(−1)h p

ql+1

∑

k≥1

qk(h+l+1)

= d
d−1∑

l=0

(
d− 1

l

)

(−1)l

n−d∑

h=0

(
n− d

h

)

(−1)h p

ql+1

qh+l+1

1 − qh+l+1

= d
d−1∑

l=0

(
d− 1

l

)

(−1)l

n−d∑

h=0

(
n− d

h

)

(−1)hQ
l+1(1 −Q−1)

Qh+l+1 − 1
. (8.16)

Again, to find the alternating sum on h asymptotically, we use Rice’s method on

the function f(z) := Ql+1(1−Q−1)
Qz+l+1−1

. The simple poles we need to consider are at

z + l+ 1 = 0 and z + l+ 1 = χk, and for both we define N := n− d. For the first,

let ε := z + l + 1, then

f(z) =
Ql+1(1 −Q−1)

Qε − 1
=
Ql+1(1 −Q−1)

eεL − 1
∼ Ql+1(1 −Q−1)

εL
, (8.17)

with residue Ql+1(1−Q−1)
L

. We join this with

[N ;−l − 1] =
1

(l +N + 1)
(

N+l
l

) ,

(see (8.11)) to get the result for the first pole as

Ql+1(1 −Q−1)

L(l +N + 1)
(

N+l
l

) .

For the remaining poles (where z+ l+1 = χk for all k 6= 0), let ε := z+ l+1−χk.

Then since Qχk = 1 by (3.6), the asymptotics are the same as the previous pole –

see (8.17) – so

f(z) =
Ql+1(1 −Q−1)

Qε+χk − 1
=
Ql+1(1 −Q−1)

Qε − 1
∼ Ql+1(1 −Q−1)

εL
,

and again we have a residue of Ql+1(1−Q−1)
L

. The kernel is similar to (8.12):

[N ;χk − 1 − l] = Γ(−χk + 1 + l)
Γ(n− d+ 1)

Γ(n− d+ 1 − χk + 1 + l)
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∼ Γ(−χk + 1 + l)nχk−1−l (for d fixed)

=
1

nl+1
Γ(l + 1 − χk)e

2kπiii logQ n.

These poles thus contribute

Ql+1(1 −Q−1)

Lnl+1

∑

k 6=0

Γ(1 + l − χk)e
2kπiii logQ n.

So to find the probability asymptotically, we add these together and put them

inside the previous sums from (8.16), i.e.,

d
d−1∑

l=0

(
d− 1

l

)

(−1)lQ
l+1(1 −Q−1)

L

·
(

1

(l +N + 1)
(

N+l
l

) +
1

nl+1

∑

k 6=0

Γ(1 + l − χk)e
2kπiii logQ n

)

.

Again, due to the fraction 1

(l+N+1)(N+l
l )

, we can see that the l = 0 term is the

largest for large n, and thus we can simplify the asymptotic approximation of the

probability (as n→ ∞) to

Q(1 −Q−1)

L
d

(
1

N + 1
+

1

n

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n

)

=
Q− 1

L

d

n− d+ 1
+

(Q− 1)d

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n

∼ (Q− 1)d

Ln
+

(Q− 1)d

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n.

Thus

Psw(M) ∼ (Q− 1)d

Ln
(1 + δ(n)),

as n → ∞, for δ(x) as defined in (7.5). The proof of Theorem 8.3 has thus been

completed. �

8.4 Maximum in the first d positions – (weak,

weak)

The requirement for this case is that there is at least one k in any position between

1 and d. All other letters in the word can be anything in the alphabet {1, 2, . . . , k}.
We express the first d letters symbolically as (refer to (8.7))

A
(w)
k =

d−1⋃

i=0

{1, . . . , k − 1}ik{1, . . . , k}d−1−i.
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Since we do not want to count k more than once, we secure the position of the

first k in the first d letters. Now the union is taken over all k – i.e., over all words

where k is the maximum, and we include the rest of the word ({1, . . . , k}∗), giving:

⋃

k≥1

A
(w)
k {1, . . . , k}∗.

In terms of generating functions, this reads as

F
(w,w)
M (z) :=

∑

k≥1

d−1∑

i=0

(
k−1∑

j=1

zpqj−1

)i

zpqk−1

(
k∑

j=1

zpqj−1

)d−1−i
1

1 −
k∑

j=1

zpqj−1

=
∑

k≥1

d−1∑

i=0

zi(1 − qk−1)izpqk−1zd−1−i(1 − qk)d−1−i 1

1 − z(1 − qk)

=
∑

k≥1

zd

d−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)d−1−i 1

1 − z(1 − qk)
.

We are interested in a word of length n, and thus consider the coefficient of zn in

this series.

[zn]F
(w,w)
M (z)

= [zn−d]
∑

k≥1

d−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)d−1−i
∑

j≥0

(z(1 − qk))j

=
∑

k≥1

d−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−1−i (8.18)

=
∑

k≥1

d−1∑

i=0

i∑

l=0

(
i

l

)

(−qk−1)lpqk−1
n−1−i∑

h=0

(
n− 1 − i

h

)

(−qk)h

=

d−1∑

i=0

i∑

l=0

(
i

l

)

(−1)l p

ql+1

n−1−i∑

h=0

(
n− 1 − i

h

)

(−1)h
∑

k≥1

q(l+1+h)k

=
d−1∑

i=0

i∑

l=0

(
i

l

)

(−1)lQl+1(1 −Q−1)
n−1−i∑

h=0

(
n− 1 − i

h

)

(−1)h 1

Ql+1+h − 1
. (8.19)

Not surprisingly, Rice’s method is used to evaluate the alternating sum on h as-

ymptotically. Our contour surrounds points 0, . . . , n− 1− i in the complex plane.

For N := n− 1 − i, we can rewrite the relevant sum as

N∑

h=0

(
N

h

)

(−1)h 1

Ql+1+h − 1
.

So the function we consider for residue collection is f(z) := 1
Ql+1+z−1

, and therefore

the poles we deal with are at l + 1 + z = 0 and l + 1 + z = χk (χk as before is
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defined for all non-zero integers k). If ε := z + 1 + l then expanding around ε = 0

produces

f(z) =
1

Qε − 1
=

1

eεL − 1
∼ 1

1 + εL− 1
=

1

εL
,

and so the residue is 1
L
. The contribution of [N ; z] at z = −1 − l is (see (8.11))

[N ;−l − 1] =
1

(l + 1 +N)
(

N+l
l

) .

For the poles at z = χk − 1 − l we put ε := z + l + 1 − χk and again we have

f(z) ∼ 1

εL

and so the residue is 1
L
. For the kernel (see (8.12) and recall that d is independent

of n),

[N ;χk − 1 − l] = Γ(1 + l − χk)
Γ(n− i)

Γ(n− i− χk + 1 + l)

∼ Γ(1 + l − χk)n
χk−1−l

=
1

nl+1
Γ(1 + l − χk)e

2kπiii logQ n. (8.20)

So for the poles at z = χk − 1 − l, the contribution is

1

Lnl+1

∑

k 6=0

Γ(1 + l − χk)e
2kπiii logQ n.

Altogether the expected value is

d−1∑

i=0

i∑

l=0

(
i

l

)

(−1)lQl+1(1 −Q−1)

·
[

1

L

1

(l +N + 1)
(

N+l
l

) +
1

Lnl+1

∑

k 6=0

Γ(1 + l − χk)e
2kπiii logQ n

]

=

d−1∑

i=0

i∑

l=0

(
i

l

)

(−1)lQl+1(1 −Q−1)
1

L

1

(l +N + 1)
(

N+l
l

)

+
d−1∑

i=0

i∑

l=0

(
i

l

)

(−1)lQl+1(1 −Q−1)
1

Lnl+1

∑

k 6=0

Γ(1 + l − χk)e
2kπiii logQ n.

Again, the l = 0 term dominates, leaving

=
d−1∑

i=0

Q− 1

L(n− i)
+

d−1∑

i=0

(Q− 1)
1

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n

∼ (Q− 1)d

Ln
+

(Q− 1)d

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n,
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as n→ ∞. Therefore

Pww(M) ∼ (Q− 1)d

Ln
(1 + δ(n)),

for δ(x) as in (7.5). Theorem 8.4 is now proved. �

It can now be seen that the cases with k allowed to repeat in the ‘rest’ of the

word have probabilities which are larger than those which are strict for the second

part. As in Chapter 7, this is due to the factor Q− 1 as opposed to 1 −Q−1. As

n → ∞ the length of the ‘rest’ of the word dominates the first d letters, and thus

our results are dependent on the second restriction rather than the first. Some

numerical examples (of the main term only, for Q = 2) are given below for a

comparison:

(strict, strict)/(weak, strict) (strict, weak)/(weak, weak)

n = 10, d = 4 0.28854 0.57708

n = 100, d = 4 0.02885 0.05771

Table 8.1: Numerical values (main term) for the maximum in the first d positions.

Also, the results in cases (strict, strict) and (weak, strict) are exact replicas of the

strict case (7.1) in Chapter 7, except for the extra factor of d which indicates that

we have the same probability in each of the first d positions. Similarly, multiplying

(7.2) by d gives the results in the (strict, weak) and (weak, weak) cases in this

chapter, as the probability in (7.2) applies to each position of the first d letters in

a word, and the total probability is the sum of d of these.
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Chapter 9

The minimum in the first position

Suppose we now restrict the set of words we consider to those where the minimum

value (j) lies in the first position. We can either allow this minimum to repeat

in the rest of the word or not. If we allow repeats, we call this the ‘weak’ case,

whereas the ‘strict’ case refers to the scenario when j does not appear again.

Proposition 9.1 The probability that the minimum value in a geometrically dis-

tributed sample of length n appears in the first position and nowhere else in the

word is

Ps(m) =
Q− 1

Qn − 1
. (9.1)

Proposition 9.2 The probability that the minimum value in a geometrically dis-

tributed sample of length n appears in the first position and any number of times

elsewhere else in the word is

Pw(m) =
Qn−1(Q− 1)

Qn − 1
. (9.2)

9.1 Minimum in the first position – (strict)

Here we assume that the minimum (j) appears only once in the word – and that

it is in the first position of that word. We can express this idea symbolically as

⋃

j≥1

j{j + 1, j + 2, . . . }∗

where the union on j signifies all possible values of the minimum (all j ∈ N); the

minimum in position 1 is followed by a sequence of any length but consisting only
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of letters whose values exceed j. As a generating function this can be expressed as

F (s)
m (z) :=

∑

j≥1

zpqj−1 1

1 −
∞∑

k=j+1

zpqk−1

=
∑

j≥1

zpqj−1 1

1 − zqj
(telescoping series, p = 1 − q)

=
∑

j≥1

zpqj−1
∑

k≥0

zk(qj)k

=
∑

k≥0

zk+1 p

q

qk+1

1 − qk+1
,

whose coefficient of zn is thus

Ps(m) = [zn]F (s)
m (z) =

p

q

qn

1 − qn
=

Q− 1

Qn − 1
.

Here we have the result exactly, with no fluctuations (as we did in the case with

maxima). This completes the proof of Proposition 9.1. �

9.2 Minimum in the first position – (weak)

Now we allow the minimum to repeat – i.e., the same situation as before, only now

j can appear more than once in the word. Symbolically

⋃

j≥1

j{j, j + 1, . . . }∗

which translates to

F (w)
m (z) :=

∑

j≥1

zpqj−1 1

1 −
∞∑

k=j

zpqk−1

=
∑

j≥1

zpqj−1 1

1 − zqj−1

=
∑

j≥1

zpqj−1
∑

k≥0

zk(qj−1)k

=
∑

k≥0

zk+1 p

1 − qk+1
.

The coefficient of zn is

Pw(m) = [zn]F (w)
m (z) =

p

1 − qn
=
Qn−1(Q− 1)

Qn − 1
.

This proves Proposition 9.2. �

77



By comparing these two results, we can see that the weak case is larger (since

Q > 1), which is to be expected since we are including more words as possibilities.

Also, because the sample is geometrically distributed, it is highly unlikely that

such a sample will have a strict maximum at all, let alone have it occurring in the

first position.
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Chapter 10

The minimum in the first d

positions

As in Chapter 8, we have four different scenarios here, since we can apply our

weak/strict classification to the first d letters as well as to the rest of the word.

We require a word of length d or more. The first case we look at is where we only

allow the minimum (j) to appear once in the word – and its position is restricted

to the first d places in the word. We call this (strict, strict). Secondly we let j

occur more than once in the word, but only in the first d places – (weak, strict).

Allowing j to occur in the rest of the word, but only once in the first d positions,

gives the case (strict, weak). Finally, we can let j occur any number of times,

anywhere in the word, as long as it occurs at least once in the first d letters –

namely (weak, weak).

The results which follow are proved in this chapter. These results are exact (which

is also the case in Chapter 9).

Proposition 10.1 The probability that the one and only time the minimum value

of a geometrically distributed sample of length n occurs in the sample is in the first

d positions, is

Pss(m) =
(Q− 1)d

Qn − 1
. (10.1)

Proposition 10.2 The probability that the minimum value of a geometrically dis-

tributed sample of length n occurs at least once in the first d positions of the sample,

but never in the last n− d positions is

Pws(m) =
Qd − 1

Qn − 1
. (10.2)
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Proposition 10.3 The probability that the minimum value of a geometrically dis-

tributed sample of length n occurs once only in the first d positions of the sample

and any number of times elsewhere in the sample, is

Psw(m) =
Qn−d(Q− 1)d

Qn − 1
. (10.3)

Proposition 10.4 The probability that the minimum value of a geometrically dis-

tributed sample of length n occurs anywhere in the sample, but at least once in the

first d positions, is

Pww(m) =
1 −Q−d

1 −Q−n
. (10.4)

10.1 Minimum in the first d positions – (strict,

strict)

Suppose we have a geometrically distributed word of length n. What is the prob-

ability that its minimum value (j) appears once in the first part of the word but

never again? Symbolically we express the first part (the first d letters) of any such

word as

A
(s)
j :=

d−1⋃

i=0

{j + 1, . . .}ij{j + 1, . . .}d−1−i (10.5)

and so all possible words of this type could be expressed as
⋃

j≥1

A
(s)
j {j + 1, . . .}∗.

The generating function is

F (s,s)
m (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

k=j+1

zpqk−1

)i

zpqj−1

( ∞∑

k=j+1

zpqk−1

)d−1−i

1

1 −
∞∑

k=j+1

zpqk−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj)d−1−i 1

1 − zqj

=
∑

j≥1

d−1∑

i=0

zdpqjd−1
∑

k≥0

zkqjk

=
∑

j≥1

∑

k≥0

dzk+dpqj(k+d)−1,

and thus the probability that the strict minimum occurs only once in the first d

positions is

[zn]F (s,s)
m (z) =

∑

j≥1

dpqjn−1
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= d
p

q

∑

j≥1

qjn

= d
p

q

qn

1 − qn
.

Hence

Pss(m) =
(Q− 1)d

Qn − 1
,

and Proposition 10.1 is proved. �

This result is the same as the minimum in the first position (strict, see Chapter 9),

but multiplied by d, as there are d opportunities for j to occur somewhere in the

first d positions.

10.2 Minimum in the first d positions – (weak,

strict)

Suppose we allow j to recur within the first d but not thereafter. We express the

first d letters as

A
(w)
j :=

d−1⋃

i=0

{j + 1, . . .}ij{j, j + 1, . . .}d−1−i, (10.6)

where the position of the first j is fixed. This can be substituted into the symbolic

equation for all such words, namely

⋃

j≥1

A
(w)
j {j + 1, . . .}∗.

Then we can define the generating function as

F (w,s)
m (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

k=j+1

zpqk−1

)i

zpqj−1

( ∞∑

k=j

zpqk−1

)d−1−i

1

1 −
∞∑

k=j+1

zpqk−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj−1)d−1−i 1

1 − zqj

=
∑

j≥1

d−1∑

i=0

zdpqjd−d+i
∑

k≥0

zkqjk

=
∑

k≥0

zk+dpq−d
∑

j≥1

qj(k+d)

d−1∑

i=0

qi

=
∑

k≥0

zk+dpq−d qk+d

1 − qk+d

1 − qd

1 − q
,
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and thus

[zn]F (w,s)
m (z) = pq−d qn

1 − qn

1 − qd

1 − q

= p
1

q−n − 1

q−d − 1

1 − q
.

Consequently,

Pws(m) =
Qd − 1

Qn − 1
,

which completes the proof of Proposition 10.2. �

10.3 Minimum in the first d positions – (strict,

weak)

If we now allow j to appear only once in the first d letters of a geometrically

distributed sample of length n, but any number of times in the rest, then (from

(10.5))

A
(s)
j =

d−1⋃

i=0

{j + 1, . . .}ij{j + 1, . . .}d−1−i,

as in the (strict, strict) case, but altogether we include a j in the starred sequence

to get
⋃

j≥1

A
(s)
j {j, j + 1, . . .}∗.

The generating function is

F (s,w)
m (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

k=j+1

zpqk−1

)i

zpqj−1

( ∞∑

k=j+1

zpqk−1

)d−1−i

1

1 −
∞∑

k=j

zpqk−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj)d−1−i 1

1 − zqj−1

=
∑

j≥1

d−1∑

i=0

zdpqjd−1
∑

k≥0

zkqk(j−1)

=
∑

k≥0

dzk+dpq−k−1
∑

j≥1

qj(k+d)

=
∑

k≥0

dzk+dpq−k−1 qk+d

1 − qk+d
,

so the probability is

[zn]F (s,w)
m (z) = dpq−(n−d)−1 qn

1 − qn
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= dpqd−1 1

1 − qn

= d(1 −Q−1)Q1−d 1

1 −Q−n
.

Hence

Psw(m) =
Qn−d(Q− 1)d

Qn − 1
,

which concludes the proof of Proposition 10.3. �

10.4 Minimum in the first d positions – (weak,

weak)

Now we consider the final option. We let j occur anywhere, as long as it appears

at least once in the first d places.

A
(w)
j =

d−1⋃

i=0

{j + 1, . . .}ij{j, j + 1, . . .}d−1−i,

as in (10.6) where the first j’s position is fixed, but others may occur to the right.

All such words are represented by

⋃

j≥1

A
(w)
j {j, j + 1, . . .}∗.

The generating function is

F (w,w)
m (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

k=j+1

zpqk−1

)i

zpqj−1

( ∞∑

k=j

zpqk−1

)d−1−i
1

1 −
∞∑

k=j

zpqk−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj−1)d−1−i 1

1 − zqj−1

=
∑

j≥1

d−1∑

i=0

zdpqjd−d+i
∑

k≥0

zkqk(j−1)

=
∑

k≥0

zk+dpq−d−k
∑

j≥1

qj(k+d)
d−1∑

i=0

qi

=
∑

k≥0

zk+dpq−d−k qk+d

1 − qk+d

1 − qd

1 − q

=
∑

k≥0

zk+d 1 − qd

1 − qk+d
,
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and so in this case the coefficient of zn (i.e., the probability) is

Pww(m) = [zn]F (w,w)
m (z) =

1 − qd

1 − qn
=

1 −Q−d

1 −Q−n
.

This proves Proposition 10.4. �

It can be seen by substituting even small values for n and d, that these different

situations are what we would expect. Again, for a fixed d and large n, we can see

that it is the classification of the ‘rest’ of the word that takes precedence, i.e., the

(strict, strict) and (weak, strict) cases are in a different order of magnitude to the

(strict, weak) and (weak, weak) cases. For example, if we take Q = 2, we get:

(strict, strict) (weak, strict) (strict, weak) (weak, weak)

n = 10, d = 4 0.00391 0.01466 0.25024 0.93842

n = 100, d = 4 3.1554 ∗ 10−30 1.183 ∗ 10−29 0.25 0.9375

Table 10.1: Numerical values for the minimum in the first d positions.
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Chapter 11

The minimum of the first d is the

maximum of the rest

We require the minimum value (j, possibly repeated) of the first d letters to be

either strictly greater than or greater than or equal to the maximum of the rest

of the word. Again there are four cases, which are all combinations of the pair

(strict, weak).

The theorems below are proved in this chapter.

Theorem 11.1 The probability that the strict (i.e., occurs only once) minimum

value of the first d positions is the strict maximum value of the remaining letters

in a geometrically distributed sample of length n is asymptotic to

Pss(mM) ∼ (Q− 1)d!

LndQd
+

(Q− 1)d

LndQd
δd(n), (11.1)

as n→ ∞, where

δd(x) =
∑

k 6=0

Γ(d− χk)e
2kπiii logQ x, (11.2)

which is defined in (11.10).

Theorem 11.2 The probability that the weak (i.e., possibly repeated) minimum

value of the first d positions is the strict maximum value of the remaining letters

in an n-letter geometrically distributed sample is approximately

Pws(mM) ∼ (Qd − 1)(d− 1)!

LndQd
+

(Qd − 1)

LndQd
δd(n), (11.3)

as n→ ∞, where δd(x) =
∑

k 6=0

Γ(d− χk)e
2kπiii logQ x as in (11.10).
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Theorem 11.3 In a geometrically distributed sample of length n, the probability

that the strict minimum value of the first d letters is the weak maximum value of

the remaining letters is asymptotic (as n→ ∞) to

Psw(mM) ∼ (Q− 1)d!

Lnd
+

(Q− 1)d

Lnd
δd(n), (11.4)

where δd(x) is defined in (11.10).

Theorem 11.4 The asymptotic probability that the weak minimum value of the

first d positions is the same as the weak maximum value of the rest in a geometri-

cally distributed sample of length n is

Pww(mM) ∼ (Qd − 1)(d− 1)!

Lnd
+
Qd − 1

Lnd
δd(n), (11.5)

as n→ ∞ for δd(x) as in (11.10).

11.1 Minimum of first d is greater than the rest

– (strict, strict)

Here we do not allow j to occur anywhere else in the word. That is, j occurs only

once in the first d letters, and is strictly the minimum there. It does not occur in

the rest of the word either, and nor does any letter larger than j.

We can express the first d letters symbolically as we did in Chapter 10 (see (10.5))

A
(s)
j =

d−1⋃

i=0

{j + 1, . . .}ij{j + 1, . . .}d−1−i,

so that our total symbolic equation is

⋃

j≥1

A
(s)
j {1, . . . , j − 1}∗.

This can be translated into the generating function

F
(s,s)
d (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

h=j+1

zpqh−1

)i

zpqj−1

( ∞∑

h=j+1

zpqh−1

)d−1−i
1

1 −
j−1∑

h=1

zpqh−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj)d−1−i 1

1 − z(1 − qj−1)

=
∑

j≥1

d−1∑

i=0

zdpqij+j−1+jd−j−ij
∑

h≥0

zh(1 − qj−1)h
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=
∑

h≥0

∑

j≥1

dzd+hpqjd−1(1 − qj−1)h.

We wish to examine the coefficient of zn:

[zn]F
(s,s)
d (z) =

∑

j≥1

dpqjd−1(1 − qj−1)n−d

=
∑

j≥1

dpqjd−1
n−d∑

l=0

(
n− d

l

)

(−qj−1)l

=
n−d∑

l=0

(
n− d

l

)

(−1)ldpq−l−1
∑

j≥1

qj(d+l)

=

n−d∑

l=0

(
n− d

l

)

(−1)ldpq−l−1 qd+l

1 − qd+l

= d

n−d∑

l=0

(
n− d

l

)

(−1)lQ
l(Q− 1)

Qd+l − 1

=
(Q− 1)d

Qd

n−d∑

l=0

(
n− d

l

)

(−1)l Qd+l

Qd+l − 1
. (11.6)

We can now make use of Rice’s method (the contour surrounds points 0, 1, . . . , n−
d) to evaluate this asymptotically. We consider the function f(z) := Qd+z

Qd+z−1
. The

poles about which we must expand are the simple poles at z+d = 0 and z+d = χk

where k 6= 0. If ε := z + d, the former gives us

f(z) =
Qε

Qε − 1
=

eεL

eεL − 1
∼ 1

εL
, (11.7)

so the residue is 1
L
. The kernel is

[n− d;−d] =
(−1)n−d−1(n− d)!

(−d)(−d− 1) · · · (−d− (n− d))

=
(−1)n−d−1(n− d)!

(−d)(−(d+ 1)) · · · (−n)

=
(−1)n−d−1(n− d)!

(−1)n−d−1(d)(d+ 1) · · · (n)

=
(−1)n−d−1(n− d)!

(−1)n−d−1(d)(d+ 1) · · · (n)

=
(n− d)!(d− 1)!

n!

=
1

d
(

n
d

) .

Since we are interested in n large, we can approximate this (as n → ∞, see [1,

page 257]) to:

[n− d;−d] =
1

d
(

n
d

) =
d!(n− d)!

dn!
=

(d− 1)!Γ(n− d+ 1)

Γ(n+ 1)
∼ (d− 1)!

nd
. (11.8)
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So for the simple pole at z + d = 0, we need to multiply by the (Q−1)d
Qd in (11.6) to

get
(Q− 1)d!

LndQd
.

For the other simple poles (at z + d = χk) let ε := z + d− χk, then since Qχk = 1

by (3.6) we have

f(z) =
Qε+χk

Qε+χk − 1
=

Qε

Qε − 1
∼ 1

εL

giving a residue of 1
L

as in (11.7). This time the kernel is

[n− d;χk − d] =
Γ(d− χk)Γ(n− d+ 1)

Γ(n + 1 − χk)

∼ Γ(d− χk)n
χk−d

=
1

nd
Γ(d− χk)e

2kπiii logQ n, (11.9)

and thus we get the contribution of the remaining poles as (see (11.6))

(Q− 1)d

LndQd

∑

k 6=0

Γ(d− χk)e
2kπiii logQ n.

Adding these together will give the probability as asymptotic to

Pss(mM) ∼ (Q− 1)d!

LndQd
+

(Q− 1)d

LndQd
δd(n),

as n→ ∞, where

δd(x) :=
∑

k 6=0

Γ(d− χk)e
2kπiii logQ x. (11.10)

This concludes the proof of Theorem 11.1. �

11.2 Minimum of first d is greater than the rest

– (weak, strict)

Here we allow j to appear any number of times (and at least once) in the first d

letters, but it is not allowed to appear in the rest of the word. From (10.6) we have

A
(w)
j =

d−1⋃

i=0

{j + 1, . . .}ij{j, . . .}d−1−i,

then all possible words would be

⋃

j≥1

A
(w)
j {1, . . . , j − 1}∗.

88



Translating this into a generating function gives

F
(w,s)
d (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

h=j+1

zpqh−1

)i

zpqj−1

( ∞∑

h=j

zpqh−1

)d−1−i

1

1 −
j−1∑

h=1

zpqh−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj−1)d−1−i 1

1 − z(1 − qj−1)

=
∑

j≥1

d−1∑

i=0

zdpqjd−d+i
∑

h≥0

zh(1 − qj−1)h

=
∑

j≥1

∑

h≥0

zh+dpqjd−d(1 − qj−1)h

d−1∑

i=0

qi

=
∑

j≥1

∑

h≥0

zh+dpqjd−d(1 − qj−1)h 1 − qd

1 − q

= (q−d − 1)
∑

j≥1

∑

h≥0

zh+dqjd(1 − qj−1)h,

so

[zn]F
(w,s)
d (z) = (q−d − 1)

∑

j≥1

qjd(1 − qj−1)n−d

= (q−d − 1)
∑

j≥1

qjd

n−d∑

l=0

(
n− d

l

)

(−qj−1)l

= (q−d − 1)
n−d∑

l=0

(
n− d

l

)

(−1)lq−l
∑

j≥1

qj(d+l)

= (q−d − 1)

n−d∑

l=0

(
n− d

l

)

(−1)lq−l qd+l

1 − qd+l

= (1 − qd)

n−d∑

l=0

(
n− d

l

)

(−1)l 1

1 − qd+l

=
n−d∑

l=0

(
n− d

l

)

(−1)l 1 −Q−d

1 −Q−d−l

=

n−d∑

l=0

(
n− d

l

)

(−1)lQ
d+l(1 −Q−d)

Qd+l − 1

=
Qd − 1

Qd

n−d∑

l=0

(
n− d

l

)

(−1)l Qd+l

Qd+l − 1
.

Rice’s method tells us to examine f(z) := Qd+z

Qd+z−1
at z + d = 0 and z + d = χk, so

we expand about ε := z + d to get (see (11.7))

f(z) =
Qε

Qε − 1
∼ 1

εL
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so we end up with 1
L
. From equation (11.8)

[n− d;−d] ∼ (d− 1)!

nd
.

For ε := z + d− χk, from (3.6) and (11.7)

f(z) =
Qε+χk

Qε+χk − 1
∼ 1

εL

with residue 1
L
, and (from (11.9))

[n− d;χk − d] ∼ 1

nd
Γ(d− χk)e

2kπiii logQ n.

As a result we get

Pws(mM) = [zn]F
(w,s)
d (z) ∼ (Qd − 1)(d− 1)!

LndQd
+

(Qd − 1)

LndQd
δd(n),

(as n → ∞) for δd(x) =
∑

k 6=0

Γ(d − χk)e
2kπiii logQ x as in (11.10). This completes the

proof of Theorem 11.2. �

11.3 Minimum of first d is greater than or equal

to the rest – (strict, weak)

If we now consider a word in which j is the strict minimum of the first d letters,

but that we allow any of 1, 2, . . . , j in the rest of the word then we have the same

A
(s)
j as in (10.5), namely

A
(s)
j =

d−1⋃

i=0

{j + 1, . . .}ij{j + 1, . . .}d−1−i,

which is part of the overall symbolic equation

⋃

j≥1

A
(s)
j {1, . . . , j}∗.

This translates into the generating function

F
(s,w)
d (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

h=j+1

zpqh−1

)i

zpqj−1

( ∞∑

h=j+1

zpqh−1

)d−1−i

1

1 −
j∑

h=1

zpqh−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj)d−1−i 1

1 − z(1 − qj)

90



=
∑

j≥1

d−1∑

i=0

zdpqjd−1
∑

h≥0

zh(1 − qj)h

=
∑

h≥0

∑

j≥1

dzd+hpqjd−1(1 − qj)h,

of which the coefficient is

[zn]F
(s,w)
d (z) =

∑

j≥1

dpqjd−1(1 − qj)n−d

=
∑

j≥1

dpqjd−1

n−d∑

l=0

(
n− d

l

)

(−qj)l

=
n−d∑

l=0

(
n− d

l

)

(−1)ldpq−1
∑

j≥1

qj(d+l)

=

n−d∑

l=0

(
n− d

l

)

(−1)ldpq−1 qd+l

1 − qd+l

=
n−d∑

l=0

(
n− d

l

)

(−1)ld
Q− 1

Qd+l − 1

= (Q− 1)d

n−d∑

l=0

(
n− d

l

)

(−1)l 1

Qd+l − 1
.

We consider the poles of f(z) := 1
Qd+z−1

at z+d = 0 and at z+d = χk. Expanding

around ε = 0 (where ε := z + d) gives

f(z) =
1

Qε − 1
=

1

eεL − 1
∼ 1

εL
, (11.11)

with residue 1
L
. As in the (strict, strict) case, see equation (11.8),

[n− d,−d] ∼ (d− 1)!

nd
.

For ε := z + d− χk, assuming (3.6) and (11.11), we have

f(z) =
1

Qε+χk − 1
∼ 1

εL

so the residue is also 1
L
, and (as in (11.9))

[n− d;χk − d] ∼ 1

nd
Γ(d− χk)e

2kπiii logQ n.

Altogether as n→ ∞, the probability is given by

Psw(mM) ∼ (Q− 1)d!

Lnd
+

(Q− 1)d

Lnd
δd(n),

where δd(x) =
∑

k 6=0

Γ(d− χk)e
2kπiii logQ x. This proves Theorem 11.3. �
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11.4 Minimum of first d is greater than or equal

to the rest – (weak, weak)

We now consider the case where j can appear more than once in the first d letters,

and can also appear any number of times in the rest of the word. So we have a

word whose first d letters contain anything from {j, j + 1, . . .}, with at least one

j, and the remainder of the word consists of anything from {1, 2, . . . , j}. We start

with (see (10.6))

A
(w)
j =

d−1⋃

i=0

{j + 1, . . .}ij{j, . . .}d−1−i,

to get all such words symbolised by:

⋃

j≥1

A
(w)
j {1, . . . , j}∗.

The generating function is thus

F
(w,w)
d (z) :=

∑

j≥1

d−1∑

i=0

( ∞∑

h=j+1

zpqh−1

)i

zpqj−1

( ∞∑

h=j

zpqh−1

)d−1−i

1

1 −
j∑

h=1

zpqh−1

=
∑

j≥1

d−1∑

i=0

zi(qj)izpqj−1zd−1−i(qj−1)d−1−i 1

1 − z(1 − qj)

=
∑

j≥1

d−1∑

i=0

zdpqjd−d+i
∑

h≥0

zh(1 − qj)h

=
∑

h≥0

zd+h
∑

j≥1

pqjd−d(1 − qj)h

d−1∑

i=0

qi

=
∑

h≥0

zd+h
∑

j≥1

pqjd−d(1 − qj)h 1 − qd

1 − q

=
∑

h≥0

zd+h
∑

j≥1

qjd−d(1 − qj)h(1 − qd).

The probability is then

[zn]F
(w,w)
d (z) =

∑

j≥1

qjd−d(1 − qj)n−d(1 − qd)

= (1 − qd)
∑

j≥1

qjd−d

n−d∑

l=0

(
n− d

l

)

(−qj)l

= (1 − qd)q−d

n−d∑

l=0

(
n− d

l

)

(−1)l
∑

j≥1

qjl+jd
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= (1 − qd)q−d

n−d∑

l=0

(
n− d

l

)

(−1)l ql+d

1 − ql+d

=
n−d∑

l=0

(
n− d

l

)

(−1)l Q
d − 1

Ql+d − 1

= (Qd − 1)
n−d∑

l=0

(
n− d

l

)

(−1)l 1

Ql+d − 1
.

We now find the alternating sum asymptotically by looking at f(z) := 1
Qz+d−1

at

z + d = 0 and z + d = χk. Using (11.11), we define ε := z + d to get

f(z) =
1

Qε − 1
=

1

eεL − 1
∼ 1

εL
,

so the contribution is 1
L
, and for ε := z + d− χk (by (3.6)),

f(z) =
1

Qε+χk − 1
=

1

Qε − 1
=

1

eεL − 1
∼ 1

εL
,

with the same contribution. Again the kernels are

[n− d;−d] ∼ (d− 1)!

nd

from (11.8) and

[n− d;χk − d] ∼ 1

nd
Γ(d− χk)e

2kπiii logQ n,

from (11.9). So the probability in the final (weak, weak) case tends to

Pww(mM) ∼ (Qd − 1)(d− 1)!

Lnd
+
Qd − 1

Lnd
δd(n)

as n→ ∞ if δd(x) =
∑

k 6=0

Γ(d− χk)e
2kπiii logQ x. Theorem 11.4 is proved. �

93



Chapter 12

The maximum in the first d

positions for d = αn

Here, as in Chapter 8, we consider the probability of having the maximum in the

first d positions. This time, however, we suppose that d grows linearly with n:

define d = αn, where 0 < α ≤ 1. Do the previous results still hold? In the

(strict, strict) case for the maximum, we had a dominant term of pd
Ln

when d was

fixed, and so by replacing the d with αn gives a probability of pα
L

. If α = 1, then

d = n so we have split the word into a first part of n letters and an empty second

part. This is equivalent to considering the probability of having a single maximum

anywhere in a geometrically distributed sample of size n. Our result is then p
L
,

which corresponds to an equivalent result in [18, page 3], where the probability is

found of having a single winner (highest value) in a sample of players who each

toss a coin until a head is obtained.

If d were independent of n then the (strict, weak) case for the maximum should

give the same result. This result was pd
qLn

which becomes p
qL

for d = n. We have

an extra factor of q in the denominator, implying that d does indeed depend on n.

In both the (weak, weak) and (weak, strict) cases we would expect a probability of

1 for d = n, as we are considering the probability that the maximum in a sample

can occur any number of times (i.e., there are no restrictions on the word). The

two results are again p
L

and p
qL

, which are not equal to 1 in general.

The discussion above suggests that the previous results do not hold for at least

three of the cases if d is proportional to n. This is true, and it is due to the limit as

n→ ∞. If we consider the (weak, strict) case of the maximum (see Chapter 8), we

see that the expected value expression involves two sums on i and l respectively.

For d fixed the l = 0 term was dominant. This can be seen by substituting a few
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values of l into the dominant term of equation (8.13) to see that for d independent

of n, each of these is of order O(n−(l+1)). If however d = αn, then this is not the

case (due to the presence of the d and the fact that both the upper limits of the

sums depend on d, all of which introduce more n’s into the expression) and each

term is of order O( 1
n
). So the l = 0 term does not necessarily dominate and the

rest of the argument will not be valid. Also, towards the end of the calculations,

several approximations are made which assume that d is independent of n. (For

example, see the asymptotics (8.12) and (8.14) in the (weak, strict) case.) Only

in the (strict, strict) case is this not a problem, as our dominant term is not

troublesome and only involves a single sum on i of a summand independent of i.

Also, in this case, the asymptotics for n large do not depend on d. For the other

three cases we make use of a different technique from complex analysis called the

‘Mellin’ transform. Why? “Harmonic sums surface recurrently in the context of

analytic combinatorics and Mellin transforms are a method of choice for coping

with them” ([11, page 575]).

Mellin transforms were discussed in more detail in Chapter 6 and allow us to

transform a function (say f(x)) into an integral which exists in a strip in the

complex plane, determined by the behaviour of f(x) as x → 0+ and x → ∞. We

write

f ∗(s) :=

∫ ∞

0

f(x)xs−1dx

which exists for s in 〈−u,−v〉, see (6.1). Then the inversion formula can be invoked,

to give a contour integral on the complex variable s which can be approximated

by residue calculus. As in (6.2)

f(x) =
1

2πiii

∫ c+iii∞

c−iii∞
f ∗(s)x−sds

for −u < c < −v. We denote this inversion with a shorthand of (see (6.3))

f(x) =
1

2πiii

∫

(c)

f ∗(s)x−sds.

The results proved in this chapter are stated below and use the assumption that

d = αn for 0 < α ≤ 1.

Theorem 12.1 The probability that the maximum of a geometrically distributed

sample occurs at least once in the first d letters, and never again is

P αn
ws (M) ∼ 1

L
log

(
1

1 − α(1 −Q−1)

)

+
1

L

(
δ0(n(1 − αp)) − δ0(n)

)
, (12.1)

95



as n→ ∞, where

δ0(x) =
∑

k 6=0

Γ(−χk)e
2kπiii logQ x,

as defined in (12.12).

Theorem 12.2 The probability that the maximum of a geometrically distributed

sample occurs only once in the first d letters, but any number of times in the rest

of the word is

P αn
sw (M) ∼ α(Q− 1)

L(1 + α(Q− 1))

(
1 + δ(n(q + pα))

)
, (12.2)

as n→ ∞, where

δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x,

from (7.5).

Theorem 12.3 The probability that the maximum of a geometrically distributed

sample occurs at least once in the first d letters, and any number of times in the

rest of the word is

P αn
ww(M) ∼ log(1 + α(Q− 1))

L
+

1

L

(

δ0(n) − δ0

(

n
(q + αp

q

)))

, (12.3)

as n→ ∞, where

δ0(x) =
∑

k 6=0

Γ(−χk)e
2kπiii logQ x,

as in (12.12).

12.1 Case (weak, strict), for d = αn

Suppose d = αn for 0 < α ≤ 1 in the (weak, strict) case of the maximum. We

start with equation (8.8), with d replaced by αn.

[zn]F
(w,s)
M (z) =

∑

k≥1

αn−1∑

i=0

(1 − qk−1)i+n−αnpqk−1(1 − qk)αn−1−i

=
∑

k≥1

(1 − qk−1)n(1−α)pqk−1(1 − qk)αn−1
αn−1∑

i=0

(
1 − qk−1

1 − qk

)i

.

Note that

αn−1∑

i=0

(
1 − qk−1

1 − qk

)i

=
1 −

(
1−qk−1

1−qk

)αn

1 − 1−qk−1

1−qk
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=
(1 − qk)αn − (1 − qk−1)αn

(1 − qk)αn
· 1 − qk

1 − qk − (1 − qk−1)

=
(1 − qk)αn − (1 − qk−1)αn

(1 − qk)αn−1qk−1(1 − q)
, (12.4)

and thus, (since p = 1 − q, and (1 − a)n ∼ e−an for small a)

[zn]F
(w,s)
M (z) =

∑

k≥1

(1 − qk−1)n(1−α)pqk−1(1 − qk)αn−1 (1 − qk)αn − (1 − qk−1)αn

(1 − qk)αn−1qk−1p

=
∑

k≥1

(1 − qk−1)n(1−α)
[
(1 − qk)αn − (1 − qk−1)αn

]

∼
∑

k≥1

e−qk−1n(1−α)
[
e−qkαn − e−qk−1αn

]

=
∑

k≥1

[

e−nqk−1(1−α(1−q)) − e−nqk−1
]

=
∑

k≥1

[

e−nqk−1(1−αp) − e−nqk−1
]

. (12.5)

We are now in a position to use Mellin transforms to find an approximation.

Unfortunately, taking the Mellin transform of the exponential function gives a

fundamental strip of 〈0,∞〉. This fundamental strip can only be valid where it

overlaps the interval of convergence of the geometric series in (12.8), which is

(−∞, 0). Note that the fundamental strip does not include endpoints, and thus

the intersection is empty. We therefore subtract one from each of the exponentials

in (12.5), keeping the total value the same. The Mellin transform is now valid in

the strip 〈−1, 0〉. We define a function of x (which replaces n) as follows:

f(x) :=
∑

k≥1

[
(e−xqk−1(1−αp) − 1) − (e−xqk−1 − 1)

]
.

The Mellin transform of this function can be found using two rules (see [11, page

576]). By ‘linearity’,

∑

i

λifi(x) transforms to
∑

i

λif
∗
i (s), (12.6)

so in our example the sum on k is taken care of. (In this case λi is simply one.)

The ‘scaling’ rule for Mellin transforms states that for µ > 0,

f(µx) transforms to µ−sf ∗(s). (12.7)

The scaling rule is applicable in this case, where f(x) = e−x and µ is respectively

qk−1(1 − αp) and qk−1. The Mellin transform of this function is thus:

f ∗(s) =
∑

k≥1

[(
qk−1(1 − αp)

)−s
Γ(s) − (qk−1)−sΓ(s)

]
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=
∑

k≥1

qs(1−k)Γ(s)
[
(1 − αp)−s − 1

]

= qsΓ(s)
[
(1 − αp)−s − 1

]∑

k≥1

(q−s)k

= qsΓ(s)
[
(1 − αp)−s − 1

] q−s

1 − q−s
, for ℜ(s) < 0 (12.8)

= Γ(s)
[
(1 − αp)−s − 1

] 1

1 − q−s
.

The final fundamental strip is the overlap between the strip found previously and

the real s values for which the geometric sum converges. In this case our fun-

damental strip is 〈−1, 0〉. We choose a value inside this, say −1
2
, with which to

perform our inverse Mellin transform:

f(x) =
1

2πiii

∫ − 1
2
+iii∞

− 1
2
−iii∞

Γ(s)
[
(1 − αp)−s − 1

] 1

1 − q−s
x−sds.

We approximate this by moving the contour right and collecting negative residues.

The first poles we encounter are at s = 0 (which would be a double pole except

that one of them cancels with the factor (1 − αp)−s − 1, so it is simple) and the

simple poles at s = χk = 2kπiii
L

, k 6= 0. As usual the former contributes the main

term and the rest contribute the fluctuations which are comparatively extremely

small. As s→ 0,

Γ(s) ∼ 1

s
,

(1 − αp)−s − 1 ∼ 1 − s log(1 − αp) − 1 = −s log(1 − αp),

1

1 − q−s
=

1

1 − e−s log q
∼ 1

1 − (1 − s log q)
=

1

s log q
(12.9)

and

x−s ∼ 1.

Thus the negative residue is

−[s−1]
1

s

(
− s log(1 − αp)

) 1

s log q
=

log(1 − αp)

log q
. (12.10)

(If α = 1 and thus d = n, we have the expected result of probability one.) We also

have simple poles at s = χk, for k 6= 0. Let ε := s− χk then at ε = 0,

Γ(s) = Γ(ε+ χk) = Γ(χk),

(1 − αp)−s − 1 = (1 − αp)−χk−ε − 1 = (1 − αp)−χk − 1,
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x−s = x−χk−ε = x−χk .

Since expanding 1
1−q−s around s = 0 is the same as expanding 1

1−q−ε around ε = 0

(see (12.9)) and Qχk = 1 (see (3.6)),

1

1 − q−s
=

1

1 − q−χk−ε
=

1

1 − q−ε
∼ 1

ε log q
.

Hence the total negative residues for the simple poles at s = χk, k 6= 0 are (recall

L = logQ)

∑

k 6=0

(−1)[ε−1]Γ(χk)
[
(1 − αp)−χk − 1

] 1

ε log q
x−χk

=
1

L

∑

k 6=0

Γ(χk)
[
(1 − αp)−χk − 1

]
x−χk

=
1

L

∑

k 6=0

Γ(χk)
[
e−χk log(1−αp) − 1

]
e−χk log x

=
1

L

∑

k 6=0

Γ(χk)
[
e−2kπiii logQ(1−αp) − 1

]
e−2kπiii logQ x

=
1

L

∑

k 6=0

Γ(χk)
[
e−2kπiii logQ(x(1−αp)) − e−2kπiii logQ x

]

=
1

L

∑

k 6=0

Γ(−χk)
[
e2kπiii logQ(x(1−αp)) − e2kπiii logQ x

]
. (12.11)

(The sign of each k can be changed since we are summing over all non-zero k.) Now,

substitute back x = n and put (12.10) and (12.11) together to get the probability

of having a weak maximum in the first d positions which does not repeat in the

rest of the word (where d = αn grows with n):

log(1 − αp)

log q
+

1

L

∑

k 6=0

Γ(−χk)
[
e2kπiii logQ(n(1−αp)) − e2kπiii logQ n

]
.

Thus

P αn
ws (M) ∼ 1

L
log

(
1

1 − α(1 −Q−1)

)

+
1

L

(
δ0(n(1 − αp)) − δ0(n)

)
,

where

δ0(x) :=
∑

k 6=0

Γ(−χk)e
2kπiii logQ x. (12.12)

This concludes the proof of Theorem 12.1. �

Note that if α = 1 then d = n which represents a word of length n with a (possibly

repeated) maximum. This is the same as a word of length n with no restrictions,

which will occur with a probability of 1. Replacing α by 1 in the main term yields

a probability of 1.

99



For interest we plot the dominant term of this result for α from 0 to 1. It is

interesting to note that different values of q give differently-shaped graphs.

Figure 12.1: Probability of a (weak, strict) maximum for d = αn, where q = 999
1000

.

Figure 12.2: Probability of a (weak, strict) maximum for d = αn, where q = 1
2
.

Figure 12.3: Probability of a (weak, strict) maximum for d = αn, where q = 1
1000

.

The graphs above demonstrate that for large q (close to 1), the graph is practically

linear, tending to be more exponential as q → 0. Why would this be the case?

Because of the geometric distribution, q small means that in practice we have a

word made up almost entirely of ones (for example, for q = 1
1000

, if we considered

a word of length n = 1000, we would expect only one of the thousand letters not

to be a one). In this case, having the maximum occurring in the first d positions

is unlikely for small α (i.e., d relatively small compared with n), simply because

100



the maximum hardly ever occurs, whereas for α near 1 (d near n) the probability

improves. On the other hand, for q large (close to one) we have a more even spread

(larger letters occurring with greater variety), tending towards a permutation of

the natural numbers as n → ∞. We would expect a linear graph when plotting

these probabilities for permutations, because the maximum in a permutation is

just as likely to occur anywhere, and so the probability of it being in the first part

of the word will grow linearly with α. Examples of words of length 20 are given in

Table 6.1.

12.2 Case (strict, weak), for d = αn

From (8.15), replacing d with αn gives

[zn]F
(s,w)
M (z) =

∑

k≥1

αn(1 − qk−1)αn−1pqk−1(1 − qk)n−αn

=
∑

k≥1

αnpqk−1(1 − qk−1)αn−1(1 − qk)n(1−α)

∼
∑

k≥1

αnpqk−1(1 − qk−1)αn(1 − qk)n(1−α)

∼
∑

k≥1

αnpqk−1e−(αn)qk−1

e−n(1−α)qk

=
∑

k≥1

αnpqk−1e−(αn)qk−1−n(1−α)qk

=
∑

k≥1

αnpqk−1e−nqk−1(α+q−qα)

=
∑

k≥1

αnpqk−1e−nqk−1(q+pα).

We are now ready to take the Mellin transform. Define

f(x) :=
∑

k≥1

αxpqk−1e−xqk−1(q+pα).

Again, the linearity and scaling rules (see (12.6) and (12.7)) can be used. In this

case, because of the factor of x, the ‘power’ rule is also used. This rule is stated in

(13.8), and is responsible for the s + 1 replacing the expected s in the transform

to follow.

f ∗(s) =
∑

k≥1

αpqk−1(qk−1)−(s+1)(q + pα)−(s+1)Γ(s+ 1)

= αp(q + pα)−(s+1)Γ(s+ 1)
∑

k≥1

(qk−1)−s
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= αpqs(q + pα)−(s+1)Γ(s+ 1)
∑

k≥1

q−sk

= αpqs(q + pα)−(s+1)Γ(s+ 1)
q−s

1 − q−s
, for ℜ(s) < 0

= αp(q + pα)−(s+1)Γ(s+ 1)
1

1 − q−s
.

The fundamental strip is the overlap of the interval (−∞, 0) and the fundamental

strip of xe−x which has a left boundary at −1, since

lim
x→0

xe−x = 0, and xe−x ∼ x− x2, which grows like x1 as x→ 0,

and a right boundary of ∞, since

lim
x→∞

xe−x = 0 = O(x−m) for any positive m.

Thus the fundamental strip for f(x) is 〈−1, 0〉. We choose the contour integral

from −1
2
− iii∞ to −1

2
+ iii∞, and perform the inverse Mellin transform to get:

f(x) =
1

2πiii

∫

(− 1
2
)

αp(q + pα)−(s+1)Γ(s+ 1)
1

1 − q−s
x−sds.

By moving the contour right (since we are interested in x large), the first poles we

reach are the simple pole at s = 0, as well as the simple poles at s = χk, k 6= 0.

From (12.9),
1

1 − q−s
∼ 1

s log q
,

and so the negative residue is

−[s−1]αp(q + pα)−1Γ(1)
1

s log q
= −αp(q + pα)−1Γ(1)

1

log q

= αp(q + pα)−1 1

logQ

=
αp

L(q + pα)
. (12.13)

That is the main term, but there are also fluctuations which come from the negative

residues of the poles at s = χk. Let ε := s − χk, then around ε = 0 we get (see

(12.9) and (3.6))
1

1 − q−s
∼ 1

ε log q
,

and so the residues are:

−
∑

k 6=0

[ε−1]αp(q + pα)−(χk+1)Γ(χk + 1)
1

ε log q
x−χk

= −
∑

k 6=0

αp(q + pα)−(χk+1)Γ(χk + 1)
1

log q
x−χk
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=
αp

L

∑

k 6=0

(q + pα)−(χk+1)Γ(χk + 1)x−χk

=
αp

L(q + pα)

∑

k 6=0

Γ(χk + 1)(x(q + pα))−χk

=
αp

L(q + pα)

∑

k 6=0

Γ(χk + 1)e−χk log(x(q+pα))

=
αp

L(q + pα)

∑

k 6=0

Γ(χk + 1)e−2kπiii logQ(x(q+pα))

=
αp

L(q + pα)

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ(x(q+pα)). (12.14)

The expressions (12.13) and (12.14) give a total probability in the (strict, weak)

case of

αp

L(q + pα)
+

αp

L(q + pα)

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ(n(q+pα)),

and so

P αn
sw (M) ∼ α(Q− 1)

L(1 + α(Q− 1))

(
1 + δ(n(q + pα))

)
,

for δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x as in (7.5). Hence the proof of Theorem 12.2 is

completed. �

To check the above result we again put α = 1, but in this case we do not expect

a probability of 1, since we want the probability of getting a strict maximum in

a word of length n (for d = n, the first strict/weak classification is valid for the

entire word). This probability has been found in [18] to be p
L
. For α = 1:

αp

L(q + pα)
=

p

L(q + p)
=
p

L
,

as required. Again we look at three different graphs, corresponding to various

values of q.
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Figure 12.4: Probability of a (strict, weak) maximum for d = αn, where q = 999
1000

.

Figure 12.5: Probability of a (strict, weak) maximum for d = αn, where q = 1
2
.

Figure 12.6: Probability of a (strict, weak) maximum for d = αn, where q = 1
1000

.

Here the graphs follow the same pattern as in the (weak, strict) case in that the

larger the value of q, the straighter the line. However, the graphs here are convex

rather than concave. The probability reaches its maximum (not necessarily one)

quickly, as a strict maximum is very unlikely to occur anyway, but if it does it will

almost certainly be a weak maximum of the rest of the word. Also, the maximum

probability decreases as q decreases. This is because for small q we expect a

majority of ones and thus we are unlikely to find a strict maximum, whatever the

value of d.
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12.3 Case (weak, weak), for d = αn

Using the approximation (1 − a)n ∼ e−an for small a, we start with (8.18) to get

[zn]F
(w,w)
M (z) =

∑

k≥1

αn−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−1−i

=
∑

k≥1

pqk−1(1 − qk)n−1
αn−1∑

i=0

(
1 − qk−1

1 − qk

)i

=
∑

k≥1

(1 − qk)n(1−α)
[
(1 − qk)αn − (1 − qk−1)αn

]
, see (12.4)

∼
∑

k≥1

e−nqk(1−α)
[
e−αnqk − e−αnqk−1]

=
∑

k≥1

[
e−nqk − e−nqk−1(q+αp)

]

=
∑

k≥1

[
(e−nqk − 1) − (e−nqk−1(q+αp) − 1)

]
.

As in the (weak, strict) case, we subtract one from each exponential so that the

fundamental strip is non-empty i.e., there is an overlap of the strip where the

Mellin transform of e−cx exists (namely 〈−1, 0〉) and the geometric sum (to follow)

converges (for ℜ(s) < 0). We define

f(x) :=
∑

k≥1

[
(e−xqk − 1) − (e−xqk−1(q+αp) − 1)

]
,

so that (by (12.6) and (12.7))

f ∗(s) =
∑

k≥1

[
q−skΓ(s) − (qk−1)−s(q + αp)−sΓ(s)

]

= Γ(s)
∑

k≥1

[
q−sk − q−skqs(q + αp)−s

]

= Γ(s)
[
1 − qs(q + αp)−s

]∑

k≥1

q−sk

= Γ(s)
[
1 − qs(q + αp)−s

] q−s

1 − q−s
, for ℜ(s) < 0,

exists in the strip 〈−1, 0〉. We can thus rewrite f(x) as the contour integral

f(x) =
1

2πiii

∫

(− 1
2
)

Γ(s)
[
1 − qs(q + αp)−s

] q−s

1 − q−s
x−sds.

Moving the contour right to collect negative residues, the first poles we encounter

are simple poles which occur at s = 0 and s = χk, k 6= 0. The former contributes

the main term and the latter the fluctuations. At s = 0:

Γ(s) ∼ 1

s
,
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1 − qs(q + αp)−s = 1 −
(q + αp

q

)−s

= 1 − e−s log
(

q+αp
q

)

∼ 1 −
(

1 − s log
(q + αp

q

))

= s log
(q + αp

q

)

,

q−s

1 − q−s
∼ 1

s log q
, (12.15)

and

x−s = 1.

Thus the negative residue at s = 0 is

−[s−1]
1

s
s log

(q + αp

q

) 1

s log q
=

1

L
log
(q + αp

q

)

. (12.16)

At s = χk, let ε := s− χk. Then expanding around ε = 0 gives (see (12.15))

q−s

1 − q−s
∼ 1

ε log q
,

and so the sum of the negative residues is

−
∑

k 6=0

[ε−1]Γ(χk)
[
1 − qχk(q + αp)−χk

] 1

ε log q
x−χk

= −
∑

k 6=0

Γ(χk)
[
1 − qχk(q + αp)−χk

] 1

log q
x−χk

=
1

L

∑

k 6=0

Γ(χk)
[

1 −
(q + αp

q

)−χk
]

x−χk

=
1

L

∑

k 6=0

Γ(χk)
[

1 − e−χk log( q+αp
q

)
]

e−χk log x

=
1

L

∑

k 6=0

Γ(χk)
[

e−2kπiii logQ x − e−2kπiii logQ(x( q+αp
q

))
]

=
1

L

∑

k 6=0

Γ(−χk)
[

e2kπiii logQ x − e2kπiii logQ(x( q+αp
q

))
]

. (12.17)

Therefore from (12.16) and (12.17), the total probability in the (weak, weak) case

is

1

L
log
(q + αp

q

)

+
1

L

∑

k 6=0

Γ(−χk)
[

e2kπiii logQ n − e2kπiii logQ(n( q+αp
q

))
]

.

Consequently

P αn
ww(M) ∼ log(1 + α(Q− 1))

L
+

1

L

(

δ0(n) − δ0

(

n
(q + αp

q

)))

,

where δ0(x) =
∑

k 6=0

Γ(−χk)e
2kπiii logQ x as in (12.12). Thus the proof of Theorem 12.3

is complete. �
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This case, (weak, weak), is similar to the (weak, strict) case above, and when

α = 1, d = n and we are calculating the probability of having a weak maximum

in a word of length n – that is – a word with no restrictions. If we put α = 1 into

the main term above, we get

log(1 + α(Q− 1))

L
=

log(1 + (Q− 1))

L
=

logQ

L
= 1,

as expected. The three graphs in this case will be

Figure 12.7: Probability of a (weak, weak) maximum for d = αn, where q = 999
1000

.

Figure 12.8: Probability of a (weak, weak) maximum for d = αn, where q = 1
2
.

Figure 12.9: Probability of a (weak, weak) maximum for d = αn, where q = 1
1000

.

For q large, the same explanation of linearity for permutations holds. For q small

the graph is convex since there are so few distinct letters that a weak maximum of
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the first d will still most likely continue to be a weak maximum of the rest, hence

the maximum is reached quite soon. Note that the curve is more gentle than in

the previous case due to the weak classification.
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Chapter 13

The maximum in the first d

positions for 1 ≤ d = o(n)

What if d is dependent on n, but does not grow linearly with n? For example, take

d = αnγ for 0 < γ < 1. It can be shown that the results are the same as when d

is fixed. We can thus refer back to the step in the calculations for d fixed where

the d = αn calculations failed. The important stage is when the main term of the

probability is given by the expression

d
d−1∑

l=0

(
d− 1

l

)

︸ ︷︷ ︸

i

(−1)lQ
l+1(1 −Q−1)

L

1

(n− d+ 1 + l)
(

n−d+l
l

)

︸ ︷︷ ︸

ii

. (13.1)

This is the (strict, weak) case but the others are similar. For d fixed, it can be

seen that the l = 0 term dominates, since each term in the sum on l is O
(

1
nl+1

)
.

For d proportional to n, each term is O( 1
n
), so none clearly dominates, and Mellin

transforms are required to find the result (see Chapter 12). But what if d = αnγ

for 0 < γ < 1, or even d = n
log n

? It turns out that for 1 ≤ d = o(n), we get the

same results as the d fixed case. The explanation is given below.

Suppose we let f(n) = o(n) for some f(n) such that f(n) → ∞ as n → ∞. Then

we can write d = n
f(n)

(
= o(n)

)
. In general, a typical term in the sum on l is

O
(

1
f l+1(n)

)
. This is because the final fraction (ii) in (13.1) will be O

(
1

nl+1

)
, and

the first part (i) will be O
(

nl+1

f l+1(n)

)
. Thus since f(n) → ∞ as n → ∞, the l = 0

term dominates and the same calculations as in the d fixed case hold. The results

listed below and proved in this chapter support this (using Mellin transforms) for

d = αnγ where 0 < γ < 1. We consider the same three cases as in Chapter 12.

Theorem 13.1 The probability that the maximum in a geometrically distributed

sample appears at least once in the first d = αnγ letters, but not in the rest of the
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sample is

P αnγ

ws (M) ∼ (1 −Q−1)αnγ

Ln

(
1 + δ(n)

)
, (13.2)

as n→ ∞, where

δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x,

as defined in (7.5).

Theorem 13.2 The probability that the maximum in a geometrically distributed

sample appears exactly once in the first d = αnγ letters, and any number of times

in the rest of the sample is

P αnγ

sw (M) ∼ (Q− 1)αnγ

Ln
(1 + δ(n)), (13.3)

as n→ ∞, for δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x as in (7.5).

Theorem 13.3 The probability that the maximum in a geometrically distributed

sample appears at least once in the first d = αnγ letters, and any number of times

in the rest of the sample is

P αnγ

ww (M) ∼ (Q− 1)αnγ

Ln
(1 + δ(n)) (13.4)

as n→ ∞, where δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x is defined in (7.5).

13.1 Case (weak, strict), for d = αnγ

Again we start with equation (8.8) for the (weak, strict) case of the maximum,

and replace d by αnγ where 0 < α ≤ 1 and 0 < γ < 1. Then

[zn]F
(w,s)
M (z) =

∑

k≥1

d−1∑

i=0

(1 − qk−1)i+n−dpqk−1(1 − qk)d−1−i

=
∑

k≥1

(1 − qk−1)n−αnγ

pqk−1(1 − qk)αnγ−1

αnγ−1∑

i=0

(
1 − qk−1

1 − qk

)i

.

The sum on i can be simplified as follows

αnγ−1∑

i=0

(
1 − qk−1

1 − qk

)i

=
1 −

(
1−qk−1

1−qk

)αnγ

1 − 1−qk−1

1−qk

=
(1 − qk)αnγ − (1 − qk−1)αnγ

(1 − qk)αnγ · 1 − qk

1 − qk − (1 − qk−1)
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=
(1 − qk)αnγ − (1 − qk−1)αnγ

(1 − qk)αnγ−1qk−1p
. (13.5)

Substituting this back into the initial equation allows us to cancel the denominator:

[zn]F
(w,s)
M (z) =

∑

k≥1

(1 − qk−1)n−αnγ

pqk−1(1 − qk)αnγ−1 (1 − qk)αnγ − (1 − qk−1)αnγ

(1 − qk)αnγ−1qk−1p

=
∑

k≥1

(1 − qk−1)n−αnγ[
(1 − qk)αnγ − (1 − qk−1)αnγ]

=
∑

k≥1

[
(1 − qk−1)n−αnγ

(1 − qk)αnγ − (1 − qk−1)n
]

∼
∑

k≥1

[
e−qk−1(n−αnγ)e−qkαnγ − e−qk−1n

]

using the approximation (1− a)n ∼ e−an for small a. We are now ready to use the

Mellin transform. We define the function we want to transform as

f(x) :=
∑

k≥1

[
e−qk−1x+αpqk−1xγ − e−qk−1x

]
. (13.6)

In this case the first exponential is a function of two different powers of x. To

better understand how to deal with this, we first consider the simplified expression

e−x+
√

x, and use a series expansion to write

e−x+
√

x = e−x
∑

i≥0

1

i!
(
√
x)i.

So instead of transforming e−x+
√

x, we transform
∑

i≥0

1
i!
x

i
2 e−x. This can be done

using the ‘harmonic sum rule’ (see [11, page 576]), namely for µi > 0,

∑

i

λif(µix) transforms to
(∑

i

λiµ
−s
i

)

· f ∗(s), (13.7)

and the ‘power rule’, which states that

xρf(xθ) transforms to
1

θ
f ∗
(s+ ρ

θ

)

. (13.8)

Then (‘M’ denotes the Mellin transform)

M
(
x

i
2e−x

)
= Γ

(

s+
i

2

)

,

and so

M
(
e−x+

√
x
)

=
∑

i

1

i!
Γ
(

s+
i

2

)

.

Now all that remains is to generalise the power 1
2

to γ and introduce some constant

coefficients. Thus

M
(
e−ax+bxγ)

= M
(

e−ax
∑

i≥0

1

i!
(bxγ)i

)
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=
∑

i≥0

1

i!
biM

(
e−axxγi

)

=
∑

i≥0

1

i!
bia−s−γiΓ(s+ γi).

In our case, a = qk−1 and b = αpqk−1. We first rewrite the function in (13.6) as

f(x) =
∑

k≥1

e−qk−1x
(
eαpqk−1xγ − 1

)

=
∑

k≥1

e−qk−1x

(
∑

j≥0

(αpqk−1xγ)j

j!
− 1

)

=
∑

k≥1

e−qk−1x
∑

j≥1

(αpqk−1xγ)j

j!

=
∑

j≥1

(αpq−1)j

j!

∑

k≥1

qjkxγje−qk−1x.

Then using the above we get the Mellin transform of f(x) to be

f ∗(s) =
∑

j≥1

(αpq−1)j

j!

∑

k≥1

qjk(qk−1)−s−γjΓ(s+ γj)

=
∑

j≥1

(αpq−1)j

j!
Γ(s+ γj)qs+γj

∑

k≥1

qk(j−s−γj)

=
∑

j≥1

(αpq−1)j

j!
Γ(s+ γj)qs+γj qj−s−γj

1 − qj−s−γj
, for ℜ(s) < j(1 − γ)

=
∑

j≥1

(αp)j

j!
Γ(s+ γj)

1

1 − qj−s−γj
.

Now we must find the fundamental strip. To do that we examine what happens

to f(x) as x→ 0 and when x→ ∞. Around x = 0, we need only consider

e−x(exγ − 1) ∼ e−x(1 + xγ − 1) = xγe−x ∼ xγ ,

which tells us that the left boundary of the fundamental strip is −γ. We also have

lim
x→∞

e−x(exγ − 1) = 0 = O(x−m) for any positive m,

so the right boundary will be ∞. However, we must also consider the convergence

of the sum on k. For this to converge we need the real part of s to lie in the

interval (−∞, j(1 − γ)). The intersection of these gives the strip in which the

Mellin transform exists, i.e., 〈−γ,∞〉 ∩ 〈−∞, j(1 − γ)〉 = 〈−γ, j(1 − γ)〉. To

continue with the inversion formula, we must pick a value in this range. Since

j ≥ 1 and 0 < γ < 1, we can choose this value to be 0. The inverse Mellin
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transform (which gives us back our original function as a contour integral) will

then be

f(x) =
1

2πiii

∑

j≥1

(αp)j

j!

∫

(0)

Γ(s+ γj)
1

1 − qj−s−γj
x−sds

which can be approximated using residue calculus. Since we are interested in x

(= n, the size of a word) large, we collect negative residues by moving the contour

to the right. Possible poles lie at s+γj = 0,−1,−2, . . . or at j−s−γj = χk, ∀ k.
Moving right from 0 means that the first poles we encounter will be at j = 1 (so

s = 1−γ) when k = 0, and 1−s−γ = χk when k 6= 0. The first of these gives the

dominant pole, and for ε := s+ γ − 1, expanding around ε = 0 gives (set j = 1)

Γ(s+ γ) = Γ(ε+ 1) = Γ(1) = 1,

1

1 − q1−s−γ
=

1

1 − q−ε
∼ 1

ε log q
, (by 12.9)

x−s = x−ε−1+γ = xγ−1.

The contribution from this pole is thus

−[ε−1](αp)
1

ε log q
xγ−1 =

αpxγ−1

L
. (13.9)

For the remaining simple poles, define ε := χk − 1 + s + γ. Then, around ε = 0:

Γ(s+ γ) = Γ(ε+ 1 − χk) = Γ(1 − χk),

1

1 − q1−s−γ
∼ 1

ε log q
, from (12.9)

x−s = xχk−ε−1+γ = xχk+γ−1.

Therefore in total, for all of the poles at 1 − s− γ = χk, the negative residue is:
∑

k 6=0

(−1)[ε−1](αp)Γ(1 − χk)
1

ε log q
xχk+γ−1 =

αpxγ

Lx

∑

k 6=0

Γ(1 − χk)x
χk

=
αpxγ

Lx

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x.

(13.10)

Replacing x with n in (13.9) and (13.10) gives the final probability in the (weak,

strict) case as asymptotic to

αpnγ

Ln
+
αpnγ

Ln

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n,

as n→ ∞. Hence

P αnγ

ws (M) ∼ (1 −Q−1)αnγ

Ln

(
1 + δ(n)

)
,

where δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x as in (7.5). This concludes the proof of

Theorem 13.1. �
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13.2 Case (strict, weak), for d = αnγ

We begin in the same manner as always. From (8.15), as n→ ∞

[zn]F
(s,w)
M (z) =

∑

k≥1

αnγ(1 − qk−1)αnγ−1pqk−1(1 − qk)n−αnγ

∼
∑

k≥1

αnγ(1 − qk−1)αnγ

pqk−1(1 − qk)n−αnγ

∼
∑

k≥1

αnγe−qk−1αnγ

pqk−1e−qk(n−αnγ)

=
∑

k≥1

αpqk−1nγe−qkn−pqk−1αnγ

.

In order to perform the transform, we define the function:

f(x) :=
∑

k≥1

αpqk−1xγe−qkx−pqk−1αxγ

.

Again we have two different powers of x in the exponential function, and we trans-

form this function (using the ‘harmonic sum rule’, and the power rule with θ = 1

and ρ = γ(i+ 1)) to

f ∗(s) := M
(
∑

k≥1

αpqk−1xγe−qkxe−pqk−1αxγ

)

=
∑

k≥1

αpqk−1M
(

xγe−qkx
∑

i≥0

1

i!
(−pqk−1αxγ)i

)

=
∑

k≥1

αpqk−1
∑

i≥0

1

i!
(−pqk−1α)iM

(
xγ(i+1)e−qkx

)

=
∑

k≥1

αpqk−1
∑

i≥0

1

i!
(−pqk−1α)i(qk)−s−γ(i+1)Γ(s+ γ(i+ 1))

=
∑

i≥0

1

i!
(−pq−1α)iαpq−1Γ(s+ γ(i+ 1))

∑

k≥1

qk(i+1−s−γ(i+1))

=
∑

i≥0

1

i!
(−pq−1α)iαpq−1Γ(s+ γ(i+ 1))

qi+1−s−γ(i+1)

1 − qi+1−s−γ(i+1)

=
∑

i≥0

1

i!
(−pα)iαpΓ(s+ γ(i+ 1))

q−s−γ(i+1)

1 − qi+1−s−γ(i+1)
,

for ℜ(s) < (1−γ)(i+1). We determine the fundamental strip as follows. Ignoring

constants, our function behaves like xγe−x−xγ

, so we consider the behaviour around

x at 0 and x at infinity. First the series expansion around x = 0 is

xγe−x−xγ ∼ xγ(1 + (−x− xγ)) = O(xγ),
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so the left border of the fundamental strip is −γ. Second,

lim
x→∞

xγ

ex+xγ = lim
x→∞

γx1−γ

ex+xγ (1 + γx1−γ)
= 0 = O(x−m)

for any positive m, thus the right border of the fundamental strip is ∞. The

transform f ∗(s) exists in the intersection of the domain of convergence of the

generalised Dirichlet series and the fundamental strip of f ∗(s). This is the overlap

between 〈−γ,∞〉 and 〈−∞, (i + 1)(1 − γ)〉, so the transform exists in the strip

〈−γ, (i + 1)(1 − γ)〉. We can choose an x value of 0 again. Then the inverse

transform will be

f(x) =
1

2πiii

∑

i≥0

1

i!
(−pα)iαp

∫

(0)

Γ(s+ γ(i+ 1))q−s−γ(i+1) 1

1 − qi+1−s−γ(i+1)
x−sds.

To approximate this integral, we move the contour right and collect negative

residues. In doing this, the first pole we pass is when i = 0. For the dominant

pole, let ε := s+ γ − 1, and expand around ε = 0.

Γ(s+ γ) = Γ(ε+ 1) = Γ(1) = 1,

q−s−γ = q−ε−1 = q−1,

1

1 − q1−s−γ
∼ 1

ε log q
, (see (12.9))

x−s = x−ε+γ−1 = xγ−1.

Putting these together gives a negative residue of

−[ε−1]αpq−1 1

ε log q
xγ−1 =

αpxγ−1

qL
. (13.11)

For the other simple poles (which lead to the fluctuations), let ε := s+ γ − 1+χk.

Then around ε = 0,

Γ(s+ γ) = Γ(ε+ 1 − χk) = Γ(1 − χk),

q−s−γ = qχk−ε−1 = qχk−1,

1

1 − q1−s−γ
∼ 1

ε log q
, (from (12.9))

x−s = xχk−ε+γ−1 = xχk+γ−1.

Altogether, for all values of k except 0, the (negative) residues of these remaining

poles will be

∑

k 6=0

(−1)[ε−1]αpΓ(1 − χk)q
χk−1 1

ε log q
xχk+γ−1
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=
αpxγ

Lqx

∑

k 6=0

Γ(1 − χk)q
χkxχk

=
αpxγ

Lqx

∑

k 6=0

Γ(1 − χk)e
χk log(qx)

=
αpxγ

Lqx

∑

k 6=0

Γ(1 − χk)e
2kπiii(− logQ Q+logQ x)

=
αpxγ

Lqx

∑

k 6=0

Γ(1 − χk)e
2kπiii(logQ x−1)

∼ αpxγ

Lqx

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x. (13.12)

We write the probability in terms of n rather than x and sum (13.11) and (13.12)

to get

αpnγ

qLn
+
αpnγ

Lqn

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n.

Therefore

P αnγ

sw (M) ∼ (Q− 1)αnγ

Ln
(1 + δ(n)),

as n → ∞ for δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x from (7.5). Hence the proof of

Theorem 13.2 is complete. �

13.3 Case (weak, weak), for d = αnγ

From (8.18), the coefficient of the generating function is

[zn]F
(w,w)
M (z) =

∑

k≥1

αnγ−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−1−i

=
∑

k≥1

pqk−1(1 − qk)n−1

αnγ−1∑

i=0

(
1 − qk−1

1 − qk

)i

=
∑

k≥1

pqk−1(1 − qk)n−1 (1 − qk)αnγ − (1 − qk−1)αnγ

(1 − qk)αnγ−1pqk−1
(by (13.5))

=
∑

k≥1

(1 − qk)n−αnγ
[

(1 − qk)αnγ − (1 − qk−1)αnγ
]

=
∑

k≥1

[

(1 − qk)n − (1 − qk)n−αnγ

(1 − qk−1)αnγ
]

∼
∑

k≥1

[
e−qkn − e−qk(n−αnγ)e−qk−1αnγ]

=
∑

k≥1

[
e−qkn − e−qkn−αnγpqk−1]

.
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In order to perform the Mellin transform, we define

f(x) :=
∑

k≥1

[
e−qkx − e−qkx−pqk−1αxγ]

=
∑

k≥1

e−qkx

(

1 −
∑

j≥0

(−pqk−1αxγ)j

j!

)

= −
∑

k≥1

e−qkx
∑

j≥1

(−pqk−1αxγ)j

j!

= −
∑

j≥1

(−pq−1α)j

j!

∑

k≥1

qkjxγje−qkx.

This can be transformed to

f ∗(s) = −
∑

j≥1

(−pq−1α)j

j!

∑

k≥1

qkj(qk)−s−γjΓ(s+ γj)

= −
∑

j≥1

(−pq−1α)j

j!
Γ(s+ γj)

∑

k≥1

qk(j−s−γj)

= −
∑

j≥1

(−pq−1α)j

j!
Γ(s+ γj)

qj−s−γj

1 − qj−s−γj
, for ℜ(s) < j(1 − γ)

= −
∑

j≥1

(−pα)j

j!
Γ(s+ γj)q−s−γj 1

1 − qj−s−γj
,

which again exists in the strip 〈−γ,∞〉∩〈−∞, j(1−γ)〉 = 〈−γ, j(1−γ)〉. We can

position our line of integration at 0 on the real axis (s ∈ C), then inverting this

transform gives

f(x) =
−1

2πiii

∑

j≥1

(−pα)j

j!

∫

(0)

Γ(s+ γj)q−s−γj 1

1 − qj−s−γj
x−sds.

Moving the contour right means that the first poles we reach are at j = 1. When

1 − s − γ = χk, we have the fluctuations, but we begin with the main term. For

ε := s+ γ − 1, around ε = 0:

Γ(s+ γ) = Γ(ε+ 1) = Γ(1) = 1,

q−s−γ = q−1−ε = q−1,

1

1 − q1−s−γ
∼ 1

ε log q
, (see (12.9))

x−s = xγ−1−ε = xγ−1.

The negative residue of the dominant term is thus:

−[ε−1](−1)(−pα)q−1 1

ε log q
xγ−1 =

pαxγ−1

qL
. (13.13)
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For the fluctuations, we look at the simple poles at 1 − s − γ = χk. Define

ε := −1 + s+ γ + χk, to get expansions around ε = 0.

Γ(s+ γ) = Γ(ε+ 1 − χk) = Γ(1 − χk),

q−s−γ = q−1−ε+χk = qχk−1,

1

1 − q1−s−γ
∼ 1

ε log q
, (from (12.9))

x−s = xγ−1−ε+χk = xγ+χk−1.

Putting these results together means that we get the following contributions from

all non-zero values of k (k = 0 is the dominant pole).

−[ε−1]
∑

k 6=0

(−1)(−pα)Γ(1 − χk)q
χk−1 1

ε log q
xγ+χk−1

=
pαxγ

qLx

∑

k 6=0

Γ(1 − χk)q
χkxχk

=
pαxγ

qLx

∑

k 6=0

Γ(1 − χk)e
χk log(qx)

=
pαxγ

qLx

∑

k 6=0

Γ(1 − χk)e
χk(log q+log x)

=
pαxγ

qLx

∑

k 6=0

Γ(1 − χk)e
χk(log x−1)

∼ pαxγ

qLx

∑

k 6=0

Γ(1 − χk)e
χk log x

=
pαxγ

qLx

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x. (13.14)

In terms of the length of the word (n) this probability is asymptotic to (see (13.13)

and (13.14))

pαnγ

qLn
+
pαnγ

qLn

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n,

which gives a result of

P αnγ

ww (M) ∼ (Q− 1)αnγ

Ln
(1 + δ(n)),

as n → ∞, with δ(x) as defined in (7.5). This concludes both the proof of Theo-

rem 13.3 and the chapter. �

118



Chapter 14

Conclusion

Before concluding Part II, we make some observations. The first is an investigation

into how some results are affected as q changes. For this we use the probability of

the minimum being strict in the first d positions and weak in the rest of the word.

Secondly, a comparison is made of the results for the maximum cases. We look at

two possible categories in which d can lie.

14.1 What happens as q moves from 0 to 1?

It is interesting to look at what happens as the value of q changes, and particularly

what happens at the extreme values of q, namely 0 and 1. We have already

discussed what it means intuitively to have q = 1
2
: we expect about half of our

values to be 1, about a quarter to be 2, an eighth to be 3, and so forth. Since

p+q = 1, if q = 0 then p = 1 and this means that the probability of a 1 occurring is

1. All other letters occur with probability 0. Thus we have a word consisting only

of 1’s. As q gets larger more and more larger letters are allowed. So as q tends to

1 the probability of every letter becomes smaller and smaller and we expect each

letter in the alphabet to occur only once. At this extremum the probabilities tend

to 0 = 1
∞ , so as n → ∞ the word would tend to a permutation of all the natural

numbers.

An interesting example of what happens between these two extrema is the prob-

ability in the (strict, weak) case for the minimum value occurring in the first d

positions of the word. The graphs below demonstrate this for different (fixed) val-

ues of d. On the horizontal axis, q ranges from 0 to 1 and thus the left and right

endpoints represent the scenarios discussed above. The vertical axis represents the

probability for the (strict, weak) case for the minimum. This is the probability of
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having a strict minimum in the first d letters of the word, which is a weak min-

imum in the rest of the word. We choose n = 1000000 and plot the graphs for

d = 1, 2, 3, 4, 5.

Figure 14.1: Graphs of (strict, weak) minimum probability for d = 1, . . . , 5.

From the above graphs, it appears that the peak occurs at around d−1
d

if d ≥ 2.
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The result from Chapter 10 (see 10.3) states that the probability is

Qn−d(Q− 1)d

Qn − 1
=
Q−d(Q− 1)d

1 −Q−n
∼ Q−d(Q− 1)d

as n→ ∞. We can express this function in terms of lowercase q as

f(q) := (q−1 − 1)dqd,

which can then be differentiated to confirm this hypothesis:

f ′(q) = d(d− 1)qd−2 − d2qd−1.

To find the turning point (where the tangent is horizontal) we put f ′(q) = 0, and

divide by dqd−2 to get

0 = d− 1 − dq.

Solving for q gives the result.

This result indicates that we are mostly likely to get a geometrically distributed

word with a strict minimum in the first d positions where the minimum is allowed

to repeat in the rest of the word if q = d−1
d

(for d ≥ 2). This comes from the fact

that we attach a geometric probability to each letter in the first d positions of a

word. If q = 1
2

then we would expect about half the letters in the word to be 1’s.

Similarly in the first d letters. So if d = 2, we expect a strict minimum if we have a

single 1 and one other letter. This situation is maximised by putting q = d−1
d

= 1
2
.

The other cases are similar. If d = 3, and q = d−1
d

= 2
3
, then the probability of

getting a 1 in the first d positions is pqj−1 = pq0 = 1
3
(2

3
)0 = 1

3
. I.e., 1 out of every

3 letters will be a 1 (a strict minimum), and more specifically, 1 out of the first

d = 3 letters will be a strict minimum.

This carries to the cases for general d ≥ 2. We are most likely to get a word of these

specifications (i.e., with a strict minimum in the first d letters which can recur in

the remaining letters) if q = d−1
d

. This is because the probability of getting a 1 in

the first d positions is 1
d
, since p+ q = 1 and the geometric probability attached to

1 is pq0 = p and p = 1 − q = 1 − d−1
d

. This is exactly what we require: that 1 out

of d letters is a 1 and the rest are any other letters.

If q < d−1
d

, then the probability of getting a 1 increases, so we are more likely to

get a second (or third etc.) occurrence of the minimum (the most likely is 1) in

the first d letters of the word which means this word does not fit the specifications.

If q > d−1
d

, then the probability of getting a 1 has decreased and so we are more

likely to get a word does not have a 1 in the first d letters of the word and this

does not suit the specifications either.
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14.2 Analysis of results for the maximum

We are now ready to compare the results we have obtained in finding the proba-

bility that the maximum in a word (either ‘strict’ or ‘weak’) occurs in the first d

positions of a word of length n. We considered two categories. The first was the

original case, where d was fixed relative to n, but also where d = o(n) (sometimes

denoted d << n). The other category was for d proportional to n, that is, if we

let d := αn where 0 < α ≤ 1.

For the first category, four cases were considered, whereas for d proportional to

n we only considered three. This was because the same method worked for both

categories in the (strict, strict) case. The (weak, strict), (strict, weak) and (weak,

weak) cases required a different method when d grows linearly with n. This is the

case because of the asymptotics, as explained in the previous chapters.

Table 14.1 shows the dominant term for the results of the two categories for the

four cases, expressed in terms of Q(= 1
q
).

Case (strict, strict) (weak, strict) (strict, weak) (weak, weak)

1 ≤ d = o(n) (1−Q−1)d
Ln

(1−Q−1)d
Ln

(Q−1)d
Ln

(Q−1)d
Ln

d = αn (1−Q−1)α
L

1
L

log 1
1−α(1−Q−1)

α(Q−1)
L(1+α(Q−1))

log(1+α(Q−1))
L

Table 14.1: Summary of maximum results – main term only.

If we consider α small (i.e., close to 0) in the second category, we should get similar

solutions to category one (in which d is always small relative to n for n large). We

thus determine what these dominant terms look like asymptotically as α→ 0. We

use approximations log(1 + x) ∼ x and 1
1−x

∼ 1 as x → 0 (see [36]). Suppose

d = αn, then for the (weak, strict) case, we have

log(1 − α(1 −Q−1))

logQ−1
∼ −α(1 −Q−1)

logQ−1
=
α(1 −Q−1)

L
.

For the (strict, weak) case, we find that

α(Q− 1)

L(1 + α(Q− 1))
∼ α(Q− 1)

L
,
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and for the (weak, weak) case,

log(1 + α(Q− 1))

L
∼ α(Q− 1)

L
.

By replacing α by d
n
, it can be seen that each of these corresponds to the results

when 1 ≤ d = o(n) (see Table 14.1 above).

14.3 Concluding remarks

In Part II we found the probabilities of having the maximum and/or minimum

occurring in specific positions in a word of length n whose letters are natural

numbers which occur independently and with geometrically probability. It was

found that the weak/strict classification had more effect on the results for the

minima than the maxima, and also that on the whole the classification had more

sway in the latter part of the word rather than the first d positions. This is because

in general n is considerably larger than d, and usually that n → ∞. The minima

probabilities (for d fixed) were O(qn) if the second restriction (referring to the last

n− d letters of the word) was strict, and a constant (relative to n) if it was weak.

The probability that the minimum value of the first d letters was the maximum

of the rest was O( 1
nd ) in all cases for d fixed. For the probability of finding the

maximum occurring in the first d positions of a word, we considered more options

and let d grow with n. The two categories discussed were 1 ≤ d = o(n) and

d = αn where 0 < α ≤ 1. For the former the probabilities were either (1−q)d
Ln

or
(1−q)d

Lqn
, depending on whether the second restriction was strict or weak. For small

α, the second category’s results were the same.
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Part III

Binary Search Trees
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Chapter 15

Introduction

We examine binary search trees formed from sequences with equal entries. A binary

search tree is a planar tree where each node has a maximum of 2 children. These

trees are created from input sequences (where repeats are allowed) as follows: the

first element in the sequence is the root of the tree and thereafter elements which

are strictly less than the parent node are placed to the left (as the left child) and

those greater than or equal to the parent node, are inserted as the right child. For

example, the binary search tree of the sequence 323123411343 would be drawn as

follows:

x3

x2 x3

x1

x3

x3

x3x2

x4

x4

x1

x1

@
@@

�
��

@
@@

@
@@

�
��

�
��

@
@@

@
@@

@
@@

@
@@

@
@@

Figure 15.1: The binary search tree of sequence 323123411343.

The sequences (words) are now no longer generated with geometric distribution,

but rather are created from finite alphabets according to two models, as discussed

in Section 15.1.

Previous research on this topic includes:
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Burge (1976) [4] uses a recursive argument to find the expected value of the left-

going depth (number of left-going branches from root to key) of the first 1 inserted

into a binary tree produced from the multiset {m1 ·1 ; m2 ·2 ; m3 ·3 ; . . . ; mn ·n}.
Burge uses similar methods to find the right-going depths of keys and ultimately

the expected depth.

Sedgewick (1977) [35] wrote a paper on this subject from the point of view of

a computer scientist. This paper deals with the quicksort applications of this

analysis, and the author notes that “we can be fairly certain that conclusions

that we draw based on the number of comparisons will carry through to the total

running time”.

Kemp (1996) [14] also looks at the left/right depth of a given key using two models

(the same models used in this thesis) – one where the input sequence is composed

of elements of a given multiset with all possible sequences equally likely, and one

where the input sequence is n elements chosen (independently) from a finite set

of elements, each with some specified probability. Kemp’s approach makes use of

recurrences, whereas the approach outlined below is symbolic.

15.1 Method

We describe the situation in a similar way to Kemp, but use generating functions

rather than probabilistic recurrence arguments (see [14]) to find the expected value

and variance.

15.1.1 The ‘multiset’ model

The first model we use assumes that we have input sequences of length n, formed

from the multiset {n1 · 1 ; n2 · 2 ; . . . ; nr · r}. That is, we assume we know how

many times the letter occurs in the sequence, and we let ni denote the number

of times the letter i occurs in the sequence. The multinomial
(

n
n1,...,nr

)
expresses

how many sequences there are, and all are equally likely to occur. We have n1 +

n2 + · · · + nr = n. It suffices to consider the alphabet {1, 2, . . . , r}, as we are

only interested in the letters relative to each other. Any other alphabet with such

an ordering would be dealt with in the same way, (‘we use the notation “the ith

smallest key” and “the key i” synonymously’ [14, page 40]). Hence the assumption

that ni > 0, for i ∈ {1, . . . , r}. Manipulating the bivariate generating function of

all such sequences makes it possible for us to find the parameters we want (the
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three different cases we consider are discussed below), and dividing by the number

of possible sequences gives the expected value. Then further manipulation allows

us to find the variance.

15.1.2 The ‘probability’ model

The second model is a probabilistic model, sometimes called the ‘memoryless’

model or the ‘Bernoulli’ model. A probability is attached to every letter in the

alphabet, so the letter i would appear in the sequence with probability pi. The

sequence of length n consists of letters chosen independently from this alphabet.

We assume that the probabilities of the letters in the alphabet add up to 1, and

that each probability is non-zero. The probability distribution function is thus

well-defined.

15.2 Cases

The three parameters or ‘cases’ discussed are:

15.2.1 Left-going depth of the first 1

The left-going depth of the first 1 is the number of left-going branches from the

root to the node corresponding to the first 1. It is numerically equal to one fewer

than the number of strict left-to-right minima. This is because we create a left-

going branch only when we have a strict left-to-right minima, but we will end up

with one extra because the first letter of the word (first element of the sequence)

will also count as a strict left-to-right minimum, but does not create a left-going

branch.

In Figure 15.1, the left-going depth of the first 1 is 2, and the number of (strict)

left-to-right minima in the corresponding sequence (323123411343) is 3.

The result obtained in Theorem 16.1 below gives the expected value of the left-

going depth of the first 1 in all binary search trees formed from a particular mul-

tiset. Theorem 16.2 gives the same result for a particular alphabet whose letters

have specific probabilities. As an example, consider the sequences 323123411343,

212411433333, 432343321131, and 123123443331. All of these sequences are built

from the multiset {3 ·1 ; 2 ·2 ; 5 ·3 ; 2 ·4}, or could be drawn independently from

the alphabet {1, 2, 3, 4} where 1 occurs with probability 1
4
; 2 and 4 occur with

127



probability 1
6
; and 3 occurs with probability 5

12
. The left-going depths of the first

1 in each sequence are respectively 2,1,3, and 0. To find the average one needs

to consider all possible sequences, add all the left-going depths of the first 1, and

divide by the total number of sequences (in this case
(

12
3,2,5,2

)
= 166320). The result

is not necessarily a whole number.

15.2.2 Right-going depth of the first r

If our alphabet is {1, 2, . . . , r}, finding the right-going depth of the first r is equiv-

alent to finding the number of weak left-to-right maxima up to the first occurrence

of r, subtract one. In this case the fact that we allow equal keys is more relevant

than in the previous case (finding the left-going depth of the first 1) because of

the way we form the tree by putting keys strictly less than on the left and greater

than or equal to on the right of the parent node.

For example, in Figure 15.1, (where the alphabet is {1, . . . , 4}) the right-going

depth of the first 4 is 3, and the number of (weak) left-to-right maxima up to the

first occurrence of 4 in the sequence (323123411343) is 4.

Again, this is a specific example, and the expected value (see Theorems 17.1 and

17.2) would be the average of all such results.

15.2.3 Expected depth of an arbitrary key α

This is created by summing the right-going and left-going depths. We use the idea

of a ‘shuffle’ operator. Here, we only allow one appearance of each letter in the

binary search tree. First, we calculate the left/right-going depths (i.e., the (strict)

left-to-right minima of elements {α+1, . . . , r} and the (strict) left-to-right maxima

of elements {1, . . . , α−1}) and then ‘shuffle’ these sequences and concatenate them

with the first α followed by the rest of the sequence. This idea is described in more

detail in Chapter 18.

15.3 Notation

The expected value and variance are found for each of the three cases. Also, there

are two versions of each result which correspond to the multiset model (an exact

result) and the probability model (an asymptotic result). The following notation

is used: E and V represent the expectation and variance. Their subscripts ‘lg’, ‘rg’
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and ‘α’ denote the three cases, namely left-going depth of the first 1, right-going

depth of the first r, where the alphabet is {1, . . . , r} and average depth of any key

α. The model used is represented by the superscript ‘m’ or ‘p’. For the multiset

model, ni stands for how many times the letter i appears in the sequence. In the

probability model, pi represents the probability that the letter i will occur in the

sequence. As a shorthand, we denote N[2,5] = n2 + n3 + n4 + n5 or P[4,4] = p4. We

assume N[i,j] = P[i,j] = 0 for i > j, and we let n be the length of the sequence.
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Chapter 16

Left-going depth of first 1

16.1 Introduction

Sequences are created according to the multiset model (number of appearances

of each letter fixed) and the probability model (each letter appears independently

with a certain probability). Generating functions then express the situation and

the moments are found by differentiating partially.

The left-going depth of the first 1 is the number of left-going branches which must

be followed from the root of the tree to the first node labelled 1. This is also the

longest path on the left-most side of the tree. By counting the number of nodes

which must be passed while travelling from the root to this node, one obtains a

count of exactly one more than the number of branches. The result is found by

counting these nodes, each of which corresponds to a strict left-to-right minimum

in the input sequence.

The results of this chapter are:

Theorem 16.1 The expected value of the left-going depth of the first one is (mul-

tiset model)

E
m
lg =

r∑

k=2

nk

N[1,k]

.

Theorem 16.2 According to the probability model, the expectation of the left-going

depth of the first one is

E
p
lg =

r∑

i=2

pi

P[1,i]

(
1 − P n

[i+1,r]

)
∼

r∑

i=2

pi

P[1,i]

,

as n→ ∞.
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Theorem 16.3 The left-going depth of the first one has a variance of

V
m
lg =

r∑

k=2

nk

N[k,r]

−
r∑

k=2

n2
k

N2
[k,r]

,

by the multiset model.

Theorem 16.4 There exists a real λ, 0 ≤ λ < 1, such that the variance of the

left-going depth of the first one is

V
p
lg =

(
r∑

i=2

pi

P[1,i]

−
r∑

i=2

p2
i

P 2
[1,i]

)

(
1 +O(λn)

)

∼
r∑

i=2

pi

P[1,i]
−

r∑

i=2

p2
i

P 2
[1,i]

,

as n→ ∞, by the probability model.

16.2 Left-going expectation – multiset model

Suppose we have an alphabet of {1, 2, . . . , r} from which we construct binary search

trees of n nodes with repeats, where we have n1 1’s, n2 2’s etc. so that n1 + n2 +

· · ·+nr = n and sequences are formed from the multiset {n1 ·1 ; n2 ·2 ; . . . ; nr ·r}.
Finding the left-going depth of the first 1 in the binary search tree is the same as

counting the number of strict left-to-right minima and subtracting one. We can

express all possible words of this form (i.e., of length n with letters chosen from

our alphabet) symbolically as

{1, . . . , r}∗ =
(
ε+ r{r}∗

)(
ε+ (r − 1){r − 1, r}∗

)(
ε+ (r − 2){r − 2, r − 1, r}∗

)

· · ·
(
ε+ 1{1, . . . , r}∗

)
.

Note that the presence of ε indicates that we may not have an r (respectively, an

r − 1, . . . , 1) in the sequence. This does not affect the result but simplifies the

calculations. All it means is that we create more words than we need initially

but afterwards we look at the coefficient only for the cases that make sense in our

problem (i.e., ni > 0).

This symbolic equation can be expressed as a generating function where z counts

every letter, u counts all (except the last) of the left-to-right minima (which will

correspond to the relevant left-going branches of the corresponding tree), and

x1, . . . , xr respectively mark the number of 1’s, . . ., r’s. We use the shorthand

131



notation of X[i,j] = xi + xi+1 + · · ·+ xj−1 + xj and write

f(z, u, x1, . . . , xr) :=

r∏

i=2

(

1 +
zuxi

1 − zX[i,r]

)(

1 +
zx1

1 − zX[1,r]

)

. (16.1)

Here u can be seen to count only the values r, r − 1, . . . , 2 which are strict left-to-

right minima.

For the first moment we want the partial derivative of f with respect to u. Since

derivatives of products in general are quite tedious, we use the logarithmic deriv-

ative instead. This means differentiating a sum rather than a product. We use

(log f)′ = f ′

f
to give f ′ = f(log f)′, which we then evaluate at u = 1 to get the

moment. Now if u = 1, then f is a telescoping series, so

f
∣
∣
u=1

=
r∏

i=1

(

1 +
zxi

1 − zX[i,r]

)

=

r∏

i=1

(
1 − zX[i,r] + zxi

1 − zX[i,r]

)

=
r∏

i=1

(
1 − zX[i+1,r]

1 − zX[i,r]

)

=

(
1 − zX[2,r]

1 − zX[1,r]

)(
1 − zX[3,r]

1 − zX[2,r]

)(
1 − zX[4,r]

1 − zX[3,r]

)

· · ·
(

1 − zX[r+1,r]

1 − zX[r,r]

)

=
1

1 − zX[1,r]
, (16.2)

since X[r,r] = xr and X[r+1,r] = 0. This is to be expected as we consider all

possibilities if we do not put a restriction on the number of left-to-right minima

(i.e., if u = 1). The other factor is

∂

∂u
log f

∣
∣
∣
u=1

=

r∑

i=2

∂

∂u
log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

=
r∑

i=2

∂

∂u
log

(
1 − zX[i,r] + zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

=
r∑

i=2

1
1−zX[i,r]+zuxi

1−zX[i,r]

· zxi

1 − zX[i,r]

∣
∣
∣
∣
∣
u=1

=
r∑

i=2

zxi

1 − zX[i,r] + zuxi

∣
∣
∣
∣
∣
u=1

=
r∑

i=2

zxi

1 − zX[i,r] + zxi

=

r∑

i=2

zxi

1 − zX[i+1,r]

. (16.3)
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(Both of the above calculations can also be done by Maple or similar.) Thus

∂

∂u
f
∣
∣
∣
u=1

=
1

1 − zX[1,r]

r∑

i=2

zxi

1 − zX[i+1,r]

.

In order to get the coefficient of zn, we consider a typical term in this sum to which

we can apply partial fraction decomposition to get

[zn]
zxi

(1 − zX[1,r])(1 − zX[i+1,r])

= [zn]
xi

X[1,i]

(
1

1 − zX[1,r]

− 1

1 − zX[i+1,r]

)

=
xi

X[1,i]

(
Xn

[1,r] −Xn
[i+1,r]

)

=
xi

X[1,i]

((
X[1,i] +X[i+1,r]

)n −Xn
[i+1,r]

)

=
xi

X[1,i]

( n∑

k=0

(
n

k

)

Xk
[1,i]X

n−k
[i+1,r] −Xn

[i+1,r]

)

=
xi

X[1,i]

n∑

k=1

(
n

k

)

Xk
[1,i]X

n−k
[i+1,r]

= xi

n∑

k=1

(
n

k

)

Xk−1
[1,i] X

n−k
[i+1,r]

= xi

n∑

k=1

(
n

k

)
∑

j1+···+ji=k−1

(
k − 1

j1, . . . , ji

)

xj1
1 · · ·xji

i

·
∑

ji+1+···+jr=n−k

(
n− k

ji+1, . . . , jr

)

x
ji+1

i+1 · · ·xjr
r

=

n∑

k=1

∑

j1+···+ji=k−1

∑

ji+1+···+jr=n−k

(
n

k

)(
k − 1

j1, . . . , ji

)(
n− k

ji+1, . . . , jr

)

· xj1
1 · · ·xji+1

i x
ji+1

i+1 · · ·xjr
r .

To find the expected value or first moment, we want to the find the coefficient of

x
np
p , ∀ p = 1, . . . , r in the above expression. We do this by equating all np’s with

the jp’s, except for ni which is ji + 1. Thus (recall n = n1 + · · · + nr, and let

N[i,r] := ni + · · ·+ nr)

[znxn1
1 · · ·xnr

r ]
∂

∂u
f
∣
∣
∣
u=1

= [znxn1
1 · · ·xnr

r ]
r∑

i=2

zxi

(1 − zX[1,r])(1 − zX[i+1,r])

=

r∑

i=2

(
n

j1 + · · ·+ ji + 1

)(
j1 + · · · + ji
j1, . . . , ji

)(
ji+1 + · · ·+ jr
ji+1, . . . , jr

)
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=
r∑

i=2

(
n

N[1,i]

)(
N[1,i] − 1

n1, . . . , ni − 1

)(
N[i+1,r]

ni+1, . . . , nr

)

=

r∑

i=2

n!(N[1,i] − 1)!(N[i+1,r])!

(N[1,i])!(N[i+1,r])!n1! · · · (ni − 1)!ni+1! · · ·nr!

=
r∑

i=2

ni

N[1,i]

(
n

n1, . . . , nr

)

.

To get the expected value, we divide through by the total number of possibilities for

words of length n from the alphabet {1, . . . , r}, i.e.,
(

n
n1,...,nr

)
. Thus the expected

value for the left-going depth of the first 1 – i.e., the length of the path consisting

only of left-going branches is

E
m
lg =

r∑

i=2

ni

N[1,i]

, (16.4)

as in [4, page 453]. This concludes the proof of Theorem 16.1. �

16.3 Left-going expectation – probability model

The same solution can be found using the probability model which also uses gen-

erating functions but the calculations are simpler as probabilities are substituted

for the ‘place-holder’ variables x1, . . . , xr. It works as follows: Suppose we wish to

generate all possible words of length n, where letter i occurs with probability pi.

We express the generating function in a different way. The first line is the previous

definition and the second is the new step.

f(z, u, x1, . . . , xr) :=
r∏

i=2

(

1 +
zuxi

1 − zX[i,r]

)(

1 +
zx1

1 − zX[1,r]

)

=
∑

w∈A∗

ul(w)z|w|x
|w|1
1 · · ·x|w|r

r , (16.5)

where w is any word from alphabet A = {1, . . . , r}, l(w) is the left-going depth

of the first one (we need not know what this function is defined to be), |w| is the

length of the word (previously called n) and |w|i is the number of times the letter i

occurs in the word, which was denoted ni for the multiset model. With this model,

the expected value for a word of length |w| = n can be found using

E
p
lg = [zn]

∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

where pi is the probability of the letter i occurring. So we have an easy way to

find the expected value, especially since we have just performed this derivative in
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the previous model. So in this case the expected value is

E
p
lg = [zn]

∂

∂u

r∏

i=2

(

1 +
zupi

1 − zP[i,r]

)(

1 +
zp1

1 − zP[1,r]

)

,

whose partial derivative was found via logarithmic differentiation to be a product

of (refer to (16.2) and (16.3) from Section 16.2)

f
∣
∣
u=1

=
1

1 − zP[1,r]

and
∂

∂u
log f

∣
∣
∣
u=1

=
r∑

i=2

zpi

1 − zP[i+1,r]

.

Again, using partial fractions this can be rewritten as (note that 0 < pi < 1 here

is a probability and not a counter (i.e., ∈ N) for the number of i’s as in [4])

E
p
lg = [zn]

r∑

i=2

1

1 − zP[1,r]

zpi

1 − zP[i+1,r]

= [zn]
r∑

i=2

pi

P[1,i]

(
1

1 − zP[1,r]

− 1

1 − zP[i+1,r]

)

=

r∑

i=2

pi

P[1,i]

(
P n

[1,r] − P n
[i+1,r]

)
.

Now, since the pi’s are probabilities, we have P[1,r] = p1 + · · · + pr = 1. Also,

P[i+1,r] < 1, hence as n→ ∞, P n
[i+1,r] → 0, leaving the result:

E
p
lg ∼

r∑

i=2

pi

P[1,i]

, (16.6)

as n→ ∞. The proof of Theorem 16.2 is thus complete. �

It can now be seen that we get a similar result for both models. However, the

former is in terms of ni’s, which are integer values representing how many i’s there

are in the word, whereas the latter is in terms of pi’s which are fractional values

representing probabilities. Intuitively it seems plausible that by associating ni with

pin for large n (and i = 1, . . . , r), the results of Theorems 16.1 and 16.2 should

not be too far from each other. We thus compare expression (16.4) with (16.6) as

follows:

r∑

i=2

ni

N[1,i]

∼
r∑

i=2

pin

p1n+ p2n+ pin
=

r∑

i=2

pi

P[1,i]

,

as n→ ∞.
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16.4 Left-going variance – multiset model

We have already found the expected value of the left-going depth of the first 1 in

a binary tree with repeats allowed using generating functions. We now find the

variance by first finding the second moment using this generating function. The

generating function is still (see equation (16.1), X[i,j] = xi + · · · + xj etc.)

f(z, u, x1, . . . , xr) =

r∏

i=2

(

1 +
zuxi

1 − zX[i,r]

)(

1 +
zx1

1 − zX[1,r]

)

,

and the variance is given by

V
m
lg := [znxn1

1 · · ·xnr
r ]

∂2

∂u2
f(z, 1, x1, . . . , xr) + [znxn1

1 · · ·xnr
r ]

∂

∂u
f(z, 1, x1, . . . , xr)

−
(

[znxn1
1 · · ·xnr

r ]
∂

∂u
f(z, 1, x1, . . . , xr)

)2

. (16.7)

To find the second moment (i.e., the first term in (16.7)), we can use Maple (or

use the same trick as before, twice over i.e., since (log f)′′ = f ′′f−1 − (f ′)2f−2, we

have f ′′ = f(log f)′′ + f ′(log f)′ which is easier to calculate). Either way, we end

up with (for X = x1 + · · ·+ xr)

f ′′|u=1 =
1

1 − zX

(( r∑

i=2

zxi

1 − zX[i+1,r]

)2

−
r∑

i=2

z2x2
i

(1 − zX[i+1,r])2

)

. (16.8)

A typical term of the first sum would be zxi

1−zX[i+1,r]
· zxj

1−zX[j+1,r]
, where i and j both

run from 2 to r. All the terms where i = j will be of the form
z2x2

i

(1−zX[i+1,r])2
, where

i runs from 2 to r. These are all cancelled by the second sum, leaving only those

where i 6= j. Because this is symmetric (i.e., i and j can be swapped to give the

same term again), we can include a factor of 2 and write this as

f ′′|u=1 = 2
1

1 − zX

r∑

i=2

r∑

j=i+1

zxi

1 − zX[i+1,r]
· zxj

1 − zX[j+1,r]

= 2
r∑

i=2

r∑

j=i+1

z2xixj

(1 − zX)(1 − zX[i+1,r])(1 − zX[j+1,r])

= 2

r∑

i=2

r∑

j=i+1

z2xixj

∑

k≥0

zkXk
∑

l≥0

zlX l
[i+1,r]

∑

m≥0

zmXm
[j+1,r].

We are interested in coefficients of this quantity, and we start by looking at that

of zn, and then consider the xi’s. Put n := k + l +m+ 2 to get

[zn]f ′′|u=1 = 2

r∑

i=2

r∑

j=i+1

xixj

∑

k≥n−2

Xk
∑

n−k−l−2≥0

X l
[i+1,r]X

n−k−l−2
[j+1,r]
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= 2

r∑

i=2

r∑

j=i+1

n−2∑

k=0

n−k−2∑

l=0

xixjX
kX l

[i+1,r]X
n−k−l−2
[j+1,r]

︸ ︷︷ ︸

♠

.

For ease of notation we simplify the bracketed portion on its own, so

♠ = xixj(X[1,i] +X[i+1,r])
kX l

[i+1,r]X
n−k−l−2
[j+1,r]

= xixj

k∑

s=0

(
k

s

)

Xs
[1,i]X

k−s
[i+1,r]X

l
[i+1,r]X

n−k−l−2
[j+1,r]

= xixj

k∑

s=0

(
k

s

)

Xs
[1,i]X

k−s+l
[i+1,r]X

n−k−l−2
[j+1,r]

= xixj

k∑

s=0

(
k

s

)

Xs
[1,i](X[i+1,j] +X[j+1,r])

k−s+lXn−k−l−2
[j+1,r]

= xixj

k∑

s=0

(
k

s

)

Xs
[1,i]

k−s+l∑

t=0

(
k − s+ l

t

)

X t
[i+1,j]X

k−s+l−t
[j+1,r] Xn−k−l−2

[j+1,r]

= xixj

k∑

s=0

(
k

s

)

Xs
[1,i]

k−s+l∑

t=0

(
k − s+ l

t

)

X t
[i+1,j]X

k−s+l−t+n−k−l−2
[j+1,r]

= xixj

k∑

s=0

k−s+l∑

t=0

(
k

s

)(
k − s+ l

t

)

Xs
[1,i]X

t
[i+1,j]X

n−s−t−2
[j+1,r]

= xixj

k∑

s=0

k−s+l∑

t=0

(
k

s

)(
k − s+ l

t

)
∑

b1+···+bi=s

(
b1 + · · ·+ bi
b1, . . . , bi

)

xb1
1 · · ·xbi

i (16.9)

·
∑

bi+1+···+bj=t

(
bi+1 + · · · + bj
bi+1, . . . , bj

)

x
bi+1

i+1 · · ·xbj

j

·
∑

bj+1+···+br=n−s−t−2

(
bj+1 + · · · + br
bj+1, . . . , br

)

x
bj+1

j+1 · · ·xbr

r .

We are now ready to take the coefficient of xnm
m for m = 1, . . . , r. We can equate

bm = nm for all m values except i and j, for which we have, respectively: ni = bi+1

and nj = bj + 1 owing to the presence of the factor xixj in line (16.9) above.

Consider the complete expression to get

[znxn1
1 · · ·xnr

r ]f ′′|u=1

= 2

r∑

i=2

r∑

j=i+1

n−2∑

k=0

n−k−2∑

l=0

(
k

b1 + · · · + bi

)(
k + l − (b1 + · · · + bi)

bi+1 + · · ·+ bj

)

·
(
b1 + · · ·+ bi
b1, . . . , bi

)(
bi+1 + · · ·+ bj
bi+1, . . . , bj

)(
bj+1 + · · ·+ br
bj+1, . . . , br

)
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= 2

r∑

i=2

r∑

j=i+1

n−2∑

k=0

(
k

N[1,i] − 1

)

♣
︷ ︸︸ ︷
n−k−2∑

l=0

(
k + l − (N[1,i] − 1)

N[i+1,j] − 1

)

︸ ︷︷ ︸

♦

·
(

N[1,i] − 1

n1, . . . , ni − 1

)(
N[i+1,j] − 1

ni+1, . . . , nj − 1

)(
N[j+1,r]

nj+1, . . . , nr

)

. (16.10)

By letting w := k + l − (N[1,i] − 1), we can write

♣ =
n−k−2∑

l=0

(
k + l − (N[1,i] − 1)

N[i+1,j] − 1

)

=

k−(N[1,i]−1)+n−k−2
∑

w=k−(N[1,i]−1)

(
w

N[i+1,j] − 1

)

=

n−(N[1,i]−1)−2
∑

w=k−(N[1,i]−1)

(
w

N[i+1,j] − 1

)

=

N[i+1,r]−1
∑

w=k−(N[1,i]−1)

(
w

N[i+1,j] − 1

)

=

N[i+1,r]−1
∑

w=0

(
w

N[i+1,j] − 1

)

−
k−N[1,i]
∑

w=0

(
w

N[i+1,j] − 1

)

=

(
N[i+1,r]

N[i+1,j]

)

−
(
k −N[1,i] + 1

N[i+1,j]

)

,

by ‘upper summation’ in [12, page 174]. Making use of ‘upper summation’ again

and the identity
(

r
m

)(
m
k

)
=
(

r
k

)(
r−k
m−k

)
(‘trinomial revision’ [12, page 174]) we can

write

♦ =

n−2∑

k=0

(
k

N[1,i] − 1

)[(
N[i+1,r]

N[i+1,j]

)

−
(
k −N[1,i] + 1

N[i+1,j]

)]

=

n−2∑

k=0

(
k

N[1,i] − 1

)(
N[i+1,r]

N[i+1,j]

)

−
n−2∑

k=0

(
k

N[1,i] − 1

)(
k −N[1,i] + 1

N[i+1,j]

)

=

(
n− 1

N[1,i]

)(
N[i+1,r]

N[i+1,j]

)

−
n−2∑

k=0

(
k

N[1,j] − 1

)(
N[1,j] − 1

N[1,i] − 1

)

=

(
n− 1

N[1,i]

)(
N[i+1,r]

N[i+1,j]

)

−
(
n− 1

N[1,j]

)(
N[1,j] − 1

N[1,i] − 1

)

.

The quantity ♦ can now be substituted back into equation (16.10) to get

[znxn1
1 · · ·xnr

r ]f ′′|u=1

= 2

r∑

i=2

r∑

j=i+1

(
n− 1

N[1,i]

)(
N[i+1,r]

N[i+1,j]

)
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·
(

N[1,i] − 1

n1, . . . , ni − 1

)(
N[i+1,j] − 1

ni+1, . . . , nj − 1

)(
N[j+1,r]

nj+1, . . . , nr

)

− 2
r∑

i=2

r∑

j=i+1

(
n− 1

N[1,j]

)(
N[1,j] − 1

N[1,i] − 1

)

·
(

N[1,i] − 1

n1, . . . , ni − 1

)(
N[i+1,j] − 1

ni+1, . . . , nj − 1

)(
N[j+1,r]

nj+1, . . . , nr

)

= 2

r∑

i=2

r∑

j=i+1

(n− 1)!N[i+1,r]!

N[1,i]!(N[i+1,r] − 1)!N[i+1,j]!N[j+1,r]!

· (N[1,i] − 1)!(N[i+1,j] − 1)!N[j+1,r]!

n1! · · · (ni − 1)!ni+1! · · · (nj − 1)!nj+1! · · ·nr!

− 2
r∑

i=2

r∑

j=i+1

(n− 1)!(N[1,j] − 1)!

N[1,j]!(N[j+1,r] − 1)!(N[1,i] − 1)!N[i+1,j]!

· (N[1,i] − 1)!(N[i+1,j] − 1)!N[j+1,r]!

n1! · · · (ni − 1)!ni+1! · · · (nj − 1)!nj+1! · · ·nr!

= 2

r∑

i=2

r∑

j=i+1

ninjN[i+1,r]

nN[1,i]N[i+1,j]

(
n

n1, . . . , nr

)

− 2

r∑

i=2

r∑

j=i+1

ninjN[j+1,r]

nN[1,j]N[i+1,j]

(
n

n1, . . . , nr

)

= 2
r∑

i=2

r∑

j=i+1

ninjN[i+1,r]N[1,j] − ninjN[j+1,r]N[1,i]

nN[1,i]N[1,j]N[i+1,j]

(
n

n1, . . . , nr

)

= 2

r∑

i=2

r∑

j=i+1

ninj(N[i+1,j] +N[j+1,r])(N[1,i] +N[i+1,j]) − ninjN[j+1,r]N[1,i]

nN[1,i]N[1,j]N[i+1,j]

(
n

n1, . . . , nr

)

= 2
r∑

i=2

r∑

j=i+1

ninj

N[i+1,j](N[1,i] +N[i+1,j]) +N[j+1,r]N[i+1,j]

nN[1,i]N[1,j]N[i+1,j]

(
n

n1, . . . , nr

)

= 2

r∑

i=2

r∑

j=i+1

ninj

N[i+1,j]N[1,r]

nN[1,i]N[1,j]N[i+1,j]

(
n

n1, . . . , nr

)

= 2
r∑

i=2

r∑

j=i+1

ninj

N[1,i]N[1,j]

(
n

n1, . . . , nr

)

,

since n = N[1,r]. Dividing by the total number of words of such a multiset,
(

n
n1,...,nr

)
,

gives us the second moment. We now recall (equation (16.7)) that to calculate the

variance we also need to add the expected value and subtract the square of the

expected value (see equation (16.4)). So we have a variance of:

2
r∑

i=2

r∑

j=i+1

ninj

N[1,i]N[1,j]

+
r∑

i=2

ni

N[i,r]

−
(

r∑

i=2

ni

N[i,r]

)2

. (16.11)

As in the beginning of this calculation, we use the idea of splitting up a squared

sum into terms which are perfect squares and those which are not. It can be seen

that the terms in the second moment (i.e., the first term in (16.11)) correspond to

the terms in the squared expected value which are not squares. This simplifies the
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variance to

V
m
lg =

r∑

i=2

ni

N[i,r]

−
r∑

i=2

n2
i

N2
[i,r]

. (16.12)

This concludes the proof of Theorem 16.3. �

16.5 Left-going variance – probability model

We now calculate the variance using the probability model, which we recall from

the expected value calculations. The generating function is (see equation (16.5))

f(z, u, x1, . . . , xr) =

r∏

i=2

(

1 +
zuxi

1 − zX[i,r]

)(

1 +
zx1

1 − zX[1,r]

)

=
∑

w∈A∗

ul(w)z|w|x
|w|1
1 · · ·x|w|r

r ,

where w is the word from alphabet A = {1, . . . , r}, l(w) is the left-going depth of

the first one, |w| is the length of the word (this was called n before) and |w|i is the

number of times the letter i occurs in the word. With this model, the variance for

a word of length |w| = n is

V
p
lg = [zn]

∂2

∂u2
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

+ [zn]
∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

−
(

[zn]
∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

)2

. (16.13)

Again, pi is the probability that the letter i occurs. Equation (16.6) gives the

second and third terms, and we use our previously-found derivative (above, see

equation (16.8)) for the first term (the second moment), which we calculate now.

[zn]
∂2

∂u2
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

= [zn]
1

1 − zP

(( r∑

i=2

zpi

1 − zP[i+1,r]

)2

−
r∑

i=2

z2p2
i

(1 − zP[i+1,r])2

)

.

As explained in the multiset model, the squared terms (where we multiply a term

by itself) in the first sum cancel with the second sum. This leaves all the other

terms (twice each due to symmetry). The triple product can be decomposed into

partial fractions, as shown below.

[zn]
∂2

∂u2
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

= [zn]
2

1 − zP

r∑

i=2

r∑

j=i+1

zpi

1 − zP[i+1,r]

· zpj

1 − zP[j+1,r]
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= [zn]
r∑

i=2

r∑

j=i+1

2z2pipj

(1 − zP )(1 − zP[i+1,r])(1 − zP[j+1,r])

= [zn]

r∑

i=2

r∑

j=i+1

[
2pipj

(1 − zP )P[1,i]P[1,j]

− 2pipj

(1 − zP[i+1,r])P[i+1,j]P[1,i]

+
2pipj

(1 − zP[j+1,r])P[1,j]P[i+1,j]

]

=
r∑

i=2

r∑

j=i+1

[
2pipj

P[1,i]P[1,j]

P n − 2pipj

P[i+1,j]P[1,i]

P n
[i+1,r] +

2pipj

P[1,j]P[i+1,j]

P n
[j+1,r]

]

.

Finally, we note that P = p1+· · ·+pr = 1 and also that P[i+1,r] < 1 and P[j+1,r] < 1.

This inequality is strict since pi 6= 0, ∀ i = 2, . . . , r. So if we consider what happens

as n→ ∞,

lim
n→∞

P n = 1, lim
n→∞

P n
[i+1,r] = 0, and lim

n→∞
P n

[j+1,r] = 0,

which means that we do not need to consider the second two terms if we take the

limit as n→ ∞. Thus

[zn]
∂2

∂u2
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

∼
r∑

i=2

r∑

j=i+1

2pipj

P[1,i]P[1,j]

,

as n → ∞. To get the variance we must add the expected value and subtract

its square. These quantities can be obtained from the probability model expected

value section (see (16.6)).

V
p
lg ∼

r∑

i=2

r∑

j=i+1

2pipj

P[1,i]P[1,j]

+
r∑

i=2

pi

P[1,i]

−
( r∑

i=2

pi

P[1,i]

)2

,

as n → ∞. Again, cancellations can take place to simplify this expression. The

first sum represents all the terms of the last sum (the square of the expectation)

which are not squares, and thus both of these disappear, leaving

V
p
lg ∼

r∑

i=2

pi

P[1,i]

−
r∑

i=2

p2
i

P 2
[1,i]

, (16.14)

as n→ ∞, which completes the proof of Theorem 16.4. �

As in the expected value results, replacing ni by pi ·n in equation (16.12) will yield

the result in (16.14).
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Chapter 17

Right-going depth of first r

17.1 Introduction

We find the expected value and variance of the right-going depth of the first r

in a binary search tree formed from a word drawn from the alphabet {1, . . . , r}
and where repeats are allowed. In this case the fact that we allow equal keys is

more relevant than in the previous case (finding the left-going depth of the first 1)

because of the way we form the tree by putting keys strictly less than the parent

node to its left and those greater than or equal to the parent node to the right.

Multivariate generating functions are used to determine this expected value. We

use n to represent the total number of letters in the word and we denote the number

of 1’s by n1, the number of 2’s by n2 and so on. Thus n1 + n2 + · · ·+ nr = n.

In this chapter, we prove the following:

Theorem 17.1 The multiset model gives the expected value of the right-going

depth of the first r as

E
m
rg =

r−1∑

i=1

ni

N[i+1,r] + 1
.

Theorem 17.2 Using the probability model, the expected value of the right-going

depth of the first r is

E
p
rg ∼

r−1∑

i=1

pi

P[i+1,r]

,

as n→ ∞.
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Theorem 17.3 The variance of the right-going depth of the first r according to

the multiset model is

V
m
rg = 2

r−1∑

i=1

ni(ni − 1)

(N[i+1,r] + 1)(N[i+1,r] + 2)
+

r−1∑

i=1

ni

N[i+1,r] + 1
−

r−1∑

i=1

n2
i

(N[i+1,r] + 1)2
.

Theorem 17.4 By the probability model, this variance is

V
p
rg ∼

r−1∑

i=1

pi

P[i+1,r]

+
r−1∑

i=1

p2
i

P 2
[i+1,r]

,

as n→ ∞.

17.2 Right-going expectation – multiset model

One way to express symbolically all words from the alphabet {1, . . . , r} is

(ε+ 1{1}∗)(ε+ 2{1, 2}∗)(ε+ 3{1, 2, 3}∗)...(ε+ r{1, .., r}∗),

where ε represents an empty sub-word. This symbolic expression can be translated

into a function which will generate all possible words from the alphabet. In this

generating function, z will count every letter in the word (or every node/key in the

tree) and u will count only those nodes which will cause a right-going branch (this

corresponds to the weak left-to-right maxima up to – but not including – the first

occurrence of r). Thus we have a probability generating function with respect to

u, and the expected value and variance can be calculated by differentiating with

respect to u. The other variables are x1, x2, . . . , xr where xi counts the number of

times the letter i appears in the word. So for this situation we have the following

generating function (where we write X[i,j] = xi + · · ·+ xj):

f(z, u, x1, . . . , xr) :=

r−1∏

i=1

(

1 +
zuxi

1 − z(X[1,i−1] + uxi)

)(

1 +
zxr

1 − zX[1,r]

)

. (17.1)

Thus u will count only the right-going branches (the number of weak left-to-right

maxima, not including those corresponding to r’s in the word). Now we are in-

terested in finding the partial derivative with respect to u and evaluating this at

u = 1. We then want the coefficient of znxn1
1 x

n2
2 · · ·xnr

r . Now, (log f)′ = f ′

f
implies

that f ′ = f(log f)′. In this way we can change the log product into a sum of logs

and find the derivative more easily. The derivative is the product of

f
∣
∣
u=1

=

r∏

i=1

(

1 +
zxi

1 − zX[1,i]

)
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=
r∏

i=1

(
1 − zX[1,i] + zxi

1 − zX[1,i]

)

=

r∏

i=1

(
1 − zX[1,i−1]

1 − zX[1,i]

)

=

(
1

1 − zx1

)(
1 − zx1

1 − zX[1,2]

)(
1 − zX[1,2]

1 − zX[1,3]

)

· · ·
(

1 − zX[1,r−1]

1 − zX[1,r]

)

=
1

1 − zX[1,r]

,

(which represents the generating function for all words drawn from the alphabet

{1, . . . , r} with no restrictions) and

∂

∂u
log f

∣
∣
∣
u=1

=
∂

∂u
log

r−1∏

i=1

(

1 +
zuxi

1 − z
(
X[1,i−1] + uxi

)

)(

1 +
zxr

1 − zX[1,r]

) ∣
∣
∣
u=1

=
r−1∑

i=1

∂

∂u
log

(

1 +
zuxi

1 − z
(
X[1,i−1] + uxi

)

)
∣
∣
∣
u=1

=
r−1∑

i=1

1

1 + zuxi

1−z(X[1,i−1]+uxi)

∂

∂u

(

1 +
zuxi

1 − z
(
X[1,i−1] + uxi

)

)
∣
∣
∣
u=1

=

r−1∑

i=1

1

1 + zuxi

1−z(X[1,i−1]+uxi)

∂

∂u

[

zuxi

(
1 − z(X[1,i−1] + uxi)

)−1
]∣
∣
∣
u=1

=
r−1∑

i=1

1
1−z(X[1,i−1]+uxi)+zuxi

1−z(X[1,i−1]+uxi)

[

zxi

(
1 − z(X[1,i−1] + uxi)

)−1

+ zuxi(−1)
(
1 − z(X[1,i−1] + uxi)

)−2
(−zxi)

]∣
∣
∣
u=1

=

r−1∑

i=1

1 − z
(
X[1,i−1] + uxi

)

1 − z
(
X[1,i−1] + uxi

)
+ zuxi

·
[
zxi

(
1 − z(X[1,i−1] + uxi)

)
+ zuxi(−1)(−zxi)

(
1 − z(X[1,i−1] + uxi)

)2

]∣
∣
∣
∣
u=1

=
r−1∑

i=1

1 − z
(
X[1,i−1] + uxi

)

1 − z
(
X[1,i−1] + uxi

)
+ zuxi

·
[
zxi − z2xiX[1,i−1] − z2x2

iu+ z2ux2
i

(
1 − z(X[1,i−1] + uxi)

)2

]∣
∣
∣
∣
u=1

=
r−1∑

i=1

1 − z
(
X[1,i−1] + uxi

)

1 − z
(
X[1,i−1] + uxi

)
+ zuxi

zxi − z2xiX[1,i−1]
(
1 − z(X[1,i−1] + uxi)

)2

∣
∣
∣
∣
u=1

=

r−1∑

i=1

1 − zX[1,i−1] − zxi

1 − zX[1,i−1] − zxi + zxi

zxi − z2xiX[1,i−1]
(
1 − z(X[1,i−1] + xi)

)2

=

r−1∑

i=1

1 − zX[1,i]

1 − zX[1,i−1]

zxi(1 − zX[1,i−1])
(
1 − zX[1,i]

)2
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=

r−1∑

i=1

zxi

1 − zX[1,i]
.

So our expression becomes

f ′∣∣
u=1

=
1

1 − zX[1,r]

r−1∑

i=1

zxi

1 − zX[1,i]
(17.2)

=
r−1∑

i=1

(
xi

X[i+1,r]

1

1 − zX[1,r]

− xi

X[i+1,r]

1

1 − zX[1,i]

)

,

as a partial fraction decomposition. From this we wish to determine the coefficient

of znxn1
1 x

n2
2 · · ·xnr

r . We start by finding the coefficient of zn:

[zn]
∂

∂u
f
∣
∣
∣
u=1

=

r−1∑

i=1

xi

X[i+1,r]

(

Xn
[1,r] −Xn

[1,i]

)

=

r−1∑

i=1

xi

X[i+1,r]

(
n∑

k=0

(
n

k

)

Xk
[i+1,r]X

n−k
[1,i] −Xn

[1,i]

)

=

r−1∑

i=1

xi

n∑

k=1

(
n

k

)

Xk−1
[i+1,r]X

n−k
[1,i]

=

r−1∑

i=1

xi

n∑

k=1

(
n

k

)
∑

ji+1+···+jr=k−1

(
k − 1

ji+1, . . . , jr

)

x
ji+1

i+1 · · ·xjr

r

·
∑

j1+···+ji=n−k

(
n− k

j1, . . . , ji

)

xj1
1 · · ·xji

i

=

r−1∑

i=1

n∑

k=1

∑

ji+1+···+jr=k−1

∑

j1+···+ji=n−k

·
(
n

k

)(
k − 1

ji+1, . . . , jr

)(
n− k

j1, . . . , ji

)

xj1
1 · · ·xji+1

i x
ji+1

i+1 · · ·xjr
r ,

and then equate np = jp, ∀ p ∈ {1, . . . , r}, p 6= i, and ni = ji + 1 to get the

coefficient of znxn1
1 x

n2
2 · · ·xnr

r to be

r−1∑

i=1

(
n

N[i+1,r] + 1

)(
N[i+1,r]

ni+1, . . . , nr

)(
N[1,i] − 1

n1, . . . , ni − 1

)

=
r−1∑

i=1

n!

(N[i+1,r] + 1)!(N[1,i] − 1)!

N[i+1,r]!

ni+1! . . . nr!

(N[1,i] − 1)!

n1! . . . (ni − 1)!

=

r−1∑

i=1

nin!

(N[i+1,r] + 1)n1! . . . ni!ni+1! . . . nr!

=

r−1∑

i=1

ni

N[i+1,r] + 1

(
n

n1, . . . , nr

)

.
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If we then divide by the number of all possible words
(

n
n1,...,nr

)
, we get the expected

value of the right-going depth of the first r in a word of length n with ni occurrences

of the letter i, i ∈ {1, . . . , r}. It is

E
m
rg =

r−1∑

i=1

ni

N[i+1,r] + 1
. (17.3)

This is the same result as in [4], but with slightly different notation. Theorem 17.1

is thus proved. �

In the next chapter, a similar expression is found, but with an ni instead of the

one in the denominator. This corresponds to the fact that for this case we insert

all the letters from the input sequence into the tree, whereas to find an arbitrary

key α, we construct a binary search tree where all the keys are distinct, from an

input sequence with repeated keys.

17.3 Right-going expectation – probability model

The generating function for the probability model in the right-going case is

f(z, u, x1, . . . , xr) =
r−1∏

i=1

(

1 +
zuxi

1 − z
(
X[1,i−1] + uxi

)

)(

1 +
zxr

1 − zX[1,r]

)

=
∑

w∈A∗

z|w|ur(w)x
|w|1
1 x

|w|2
2 · · ·x|w|r

r , (17.4)

where w is a word with length |w| and |w|i is the number of i’s appearing in the

word w. We choose letters from the alphabet A = {1, . . . , r} to form each word.

In this case we want u to count the number of right-going branches from the root

to the first occurrence of letter r in a binary search tree with equal keys. This is

formed from an input sequence whose (possibly repeated) letters are chosen from

the alphabet {1, . . . , r}. Note that it is not necessary to know the definition of the

function r(w) which measures the right-going path to the first r. Also note that

this is not necessarily the longest path to the right as in the left-going case, since

we may have repeats of the letter r which would lead to subsequent right-going

branches which are not counted.

Now that we have expressed the generating function as a sum, we can find the

expected value of this right-going depth in a tree with these criteria by taking the

partial derivative with respect to u, which will make r(w) a coefficient. We then

substitute u = 1 into the function as u is no longer needed. After that we find the

coefficient of zn which means we are interested in words of length n, and lastly we
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substitute pi for xi, where pi is the probability with which the letter i occurs in

the word. In this way, we multiply the right-going depth of the first r (r(w)) by

the probability of each tree occurring – i.e., the product of the probabilities of all

the letters. We multiply the probability p1 |w|1 times, and find the product of this

with the probability p2 |w|2 times etc. up to letter r whose probability is pr and

we must multiply this to our product |w|r times.

More concisely, this means that

E
p
rg := [zn]

∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

.

The fact that we have already found this partial derivative helps us here, since we

know that (see multiset model above, equation (17.2))

E
p
rg = [zn]

1

1 − zP[1,r]

r−1∑

i=1

zpi

(1 − zP[1,i])

= [zn]
r−1∑

i=1

(
pi

P[i+1,r]

1

(1 − zP[1,r])
− pi

P[i+1.r]

1

(1 − zP[1,i])

)

=
r−1∑

i=1

(
pi

P[i+1,r]

P n
[1,r] −

pi

P[i+1.r]

P n
[1,i]

)

.

We now recall that P n
[1,r] = 1n = 1 and that P[1,i] < 1, ∀ i = 1, . . . , r − 1, and so

P n
[1,i] → 0 as n→ ∞. Thus

E
p
rg ∼

r−1∑

i=1

pi

P[i+1,r]

, (17.5)

as n→ ∞. This concludes the proof of Theorem 17.2. �

Now suppose we refer back to the multiset model result in equation (17.3). By

associating ni with npi for large n, we can write

E
m
rg =

r−1∑

i=1

ni

1 +N[i+1,r]

∼
r−1∑

i=1

npi

1 + npi+1 + · · ·+ npr

=
r−1∑

i=1

pi

1
n

+ pi+1 + · · · + pr

∼
r−1∑

i=1

pi

P[i+1,r]

, as n→ ∞,

and this corresponds to the probability model result in equation (17.5).
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17.4 Right-going variance – multiset model

We now investigate the variance of the right-going depth of the first r in a binary

search tree with equal keys whose alphabet is {1, . . . , r}. The generating function

is the same as in equation (17.1):

f(z, u, x1, . . . , xr) :=

r−1∏

i=1

(

1 +
zuxi

1 − z
(
X[1,i−1] + uxi

)

)(

1 +
zxr

1 − zX[1,r]

)

,

from which we will find

V
m
rg := [znxn1

1 · · ·xnr

r ]
∂2

∂u2
f(z, 1, x1, . . . , xr) + [znxn1

1 · · ·xnr

r ]
∂

∂u
f(z, 1, x1, . . . , xr)

−
(

[znxn1
1 · · ·xnr

r ]
∂

∂u
f(z, 1, x1, . . . , xr)

)2

. (17.6)

To do this we start with the second moment and use Maple to give us:

∂2

∂u2
f(z, 1, x1, . . . , xr) = f(z, 1, x1, . . . , xr) ·

∂2

∂u2
log f(z, 1, x1, . . . , xr)

+
∂

∂u
f(z, 1, x1, . . . , xr) ·

∂

∂u
log f(z, 1, x1, . . . , xr)

=
1

1 − zX[1,r]

r−1∑

i=1

∂

∂u

zxi

(1 − zX[1,i−1] − zuxi)

∣
∣
∣
∣
∣
u=1

+
1

1 − zX[1,r]

(
r−1∑

i=1

zxi

(1 − zX[1,i−1] − zuxi)

)2∣
∣
∣
∣
∣
u=1

=
1

1 − zX[1,r]

r−1∑

i=1

z2x2
i

(1 − zX[1,i−1] − zuxi)2

∣
∣
∣
∣
∣
u=1

+
1

1 − zX[1,r]

(
r−1∑

i=1

zxi

(1 − zX[1,i−1] − zuxi)

)2∣
∣
∣
∣
∣
u=1

=
1

1 − zX[1,r]





r−1∑

i=1

z2x2
i

(1 − zX[1,i])2
+

(
r−1∑

i=1

zxi

(1 − zX[1,i])

)2




= 2
r−1∑

i=1

z2x2
i

(1 − zX[1,r])(1 − zX[1,i])2

︸ ︷︷ ︸

A

(17.7)

+ 2

r−1∑

i=1

r−1∑

j=i+1

z2xixj

(1 − zX[1,r])(1 − zX[1,i])(1 − zX[1,j])
︸ ︷︷ ︸

B

.

We deal with A and B separately, and note that X := X[1,r].

A := 2

r−1∑

i=1

z2x2
i

(1 − zX)(1 − zX[1,i])2
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= 2

r−1∑

i=1

z2x2
i

∑

j≥0

zjXj

(
∑

k≥0

zkXk
[1,i]

)2

= 2
r−1∑

i=1

z2x2
i

∑

j≥0

zjXj
∑

k≥0

k∑

l=0

X l
[1,i]X

k−l
[1,i]z

k

= 2

r−1∑

i=1

z2x2
i

∑

j≥0

zjXj
∑

k≥0

k∑

l=0

Xk
[1,i]z

k

= 2

r−1∑

i=1

z2x2
i

∑

j≥0

zjXj
∑

k≥0

(k + 1)Xk
[1,i]z

k.

So

[zn]A = 2
r−1∑

i=1

x2
i

∑

n−j−2≥0

(n− j − 2 + 1)XjXn−j−2
[1,i]

= 2

r−1∑

i=1

x2
i

n−2∑

j=0

(n− j − 1)XjXn−j−2
[1,i]

= 2
r−1∑

i=1

x2
i

n−2∑

j=0

(n− j − 1)(X[1,i] +X[i+1,r])
jXn−j−2

[1,i]

= 2
r−1∑

i=1

x2
i

n−2∑

j=0

(n− j − 1)

j
∑

m=0

(
j

m

)

Xm
[1,i]X

j−m
[i+1,r]X

n−j−2
[1,i]

= 2
r−1∑

i=1

x2
i

n−2∑

j=0

(n− j − 1)

j
∑

m=0

(
j

m

)

Xj−m
[i+1,r]X

m+n−j−2
[1,i]

= 2

r−1∑

i=1

x2
i

n−2∑

j=0

(n− j − 1)

j
∑

m=0

(
j

m

)
∑

ki+1+···+kr=j−m

(
j −m

ki+1, . . . , kr

)

x
ki+1

i+1 · · ·xkr

r

·
∑

k1+···+ki=m+n−j−2

(
m+ n− j − 2

k1, . . . , ki

)

xk1
1 · · ·xki

i

= 2
r−1∑

i=1

n−2∑

j=0

j
∑

m=0

∑

ki+1+···+kr=j−m

∑

k1+···+ki=m+n−j−2

(n− j − 1)

·
(
j

m

)(
j −m

ki+1, . . . , kr

)(
m+ n− j − 2

k1, . . . , ki

)

xk1
1 · · ·xki−1

i−1 x
ki+2
i x

ki+1

i+1 · · ·xkr

r .

Thus for ks = ns, ∀ s 6= i and ki + 2 = ni,

[znxn1
1 · · ·xnr

r ]A

= 2
r−1∑

i=1

n−2∑

j=0

(n− j − 1)

(
j

ki+1 + · · ·+ kr

)(
ki+1 + · · ·+ kr

ki+1, . . . , kr

)(
k1 + · · ·+ ki

k1, . . . , ki

)

= 2

r−1∑

i=1

n−2∑

j=0

(n− (j + 1))

(
j

N[i+1,r]

)(
N[i+1,r]

ni+1, . . . , nr

)(
N[1,i] − 2

n1, . . . , ni − 2

)
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= 2

r−1∑

i=1

(
N[i+1,r]

ni+1, . . . , nr

)(
N[1,i] − 2

n1, . . . , ni − 2

)[

n

n−2∑

j=0

(
j

N[i+1,r]

)

−
n−2∑

j=0

(j + 1)

(
j

N[i+1,r]

)]

.

From [12, page 174]:

•
(

r
k

)
= r

k

(
r−1
k−1

)
for integer k 6= 0

•
n∑

k=0

(
k
m

)
=
(

n+1
m+1

)
for integers m,n ≥ 0

to simplify the following (note that
(
0
d

)
= 0 for d 6= 0):

n
n−2∑

j=0

(
j

N[i+1,r]

)

−
n−2∑

j=0

(j + 1)

(
j

N[i+1,r]

)

= n

(
n− 1

N[i+1,r] + 1

)

−
n−2∑

j=0

(N[i+1,r] + 1)

(
j + 1

N[i+1,r] + 1

)

= (N[i+1,r] + 2)

(
n

N[i+1,r] + 2

)

− (N[i+1,r] + 1)

n−2∑

j=0

(
j + 1

N[i+1,r] + 1

)

= (N[i+1,r] + 2)

(
n

N[i+1,r] + 2

)

− (N[i+1,r] + 1)
n−1∑

J=0

(
J

N[i+1,r] + 1

)

= (N[i+1,r] + 2)

(
n

N[i+1,r] + 2

)

− (N[i+1,r] + 1)

(
n

N[i+1,r] + 2

)

=

(
n

N[i+1,r] + 2

)
[
(N[i+1,r] + 2) − (N[i+1,r] + 1)

]

=

(
n

N[i+1,r] + 2

)

.

So we can substitute this back into the coefficient of A to get

[znxn1
1 · · ·xnr

r ]A

= 2

r−1∑

i=1

(
n

N[i+1,r] + 2

)(
N[1,i] − 2

n1, . . . , ni − 2

)(
N[i+1,r]

ni+1, . . . , nr

)

= 2
r−1∑

i=1

n!(N[1,i] − 2)!N[i+1,r]!

(N[i+1,r] + 2)!(n− (N[i+1,r] + 2))!n1! · · ·ni−1!(ni − 2)!ni+1! · · ·nr!

= 2
r−1∑

i=1

n!(N[1,i] − 2)!N[i+1,r]!

(N[i+1,r] + 2)!(n1 + · · · + ni − 2)!n1! · · ·ni−1!(ni − 2)!ni+1! · · ·nr!

= 2
r−1∑

i=1

ni(ni − 1)

(N[i+1,r] + 1)(N[i+1,r] + 2)

(
n

n1, . . . , nr

)

,
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which gives the contribution of the A term to the second moment after dividing

by
(

n
n1,...,nr

)
. The contribution is thus

2
r−1∑

i=1

ni(ni − 1)

(N[i+1,r] + 1)(N[i+1,r] + 2)
. (17.8)

On the other hand, we have (from (17.7))

B := 2
r−1∑

i=1

r−1∑

j=i+1

z2xixj

(1 − zX)(1 − zX[1,i])(1 − zX[1,j])

= 2

r−1∑

i=1

r−1∑

j=i+1

z2xixj

∑

k≥0

zkXk
∑

l≥0

zlX l
[1,i]

∑

m≥0

zmXm
[1,j],

and thus

[zn]B = 2

r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

∑

n−l−k−2≥0

XkX l
[1,i]X

n−l−k−2
[1,j]

= 2
r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

n−k−2∑

l=0

(X[1,j] +X[j+1,r])
kX l

[1,i]X
n−l−k−2
[1,j]

= 2
r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

n−k−2∑

l=0

k∑

s=0

(
k

s

)

Xs
[1,j]X

k−s
[j+1,r]X

l
[1,i]X

n−l−k−2
[1,j]

= 2
r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

n−k−2∑

l=0

k∑

s=0

(
k

s

)

Xk−s
[j+1,r]X

l
[1,i]X

s+n−l−k−2
[1,j]

= 2
r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

n−k−2∑

l=0

k∑

s=0

(
k

s

)

Xk−s
[j+1,r]X

l
[1,i](X[1,i] +X[i+1,j])

s+n−l−k−2

= 2
r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

n−k−2∑

l=0

k∑

s=0

(
k

s

)

Xk−s
[j+1,r]X

l
[1,i]

·
s+n−l−k−2∑

t=0

(
s+ n− l − k − 2

t

)

X t
[1,i]X

s+n−l−k−2−t
[i+1,j]

= 2

r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

n−k−2∑

l=0

k∑

s=0

s+n−l−k−2∑

t=0

·
(
s+ n− l − k − 2

t

)(
k

s

)

Xk−s
[j+1,r]X

t+l
[1,i]X

s+n−l−k−2−t
[i+1,j]

= 2

r−1∑

i=1

r−1∑

j=i+1

xixj

n−2∑

k=0

n−k−2∑

l=0

k∑

s=0

s+n−l−k−2∑

t=0

(
s+ n− l − k − 2

t

)(
k

s

)

·
∑

bj+1+···+br=k−s

(
k − s

bj+1, . . . , br

)

x
bj+1

j+1 · · ·xbr
r

∑

b1+···+bi=t+l

(
t+ l

b1, . . . , bi

)

xb1
1 · · ·xbi

i

·
∑

bi+1+···+bj=s+n−l−k−t−2

(
s+ n− l − k − t− 2

bi+1, . . . , bj

)

x
bi+1

i+1 · · ·xbj

j
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= 2

r−1∑

i=1

r−1∑

j=i+1

n−2∑

k=0

n−k−2∑

l=0

k∑

s=0

s+n−l−k−2∑

t=0

∑

bj+1+···+br=k−s

∑

b1+···+bi=t+l

∑

bi+1+···+bj=s+n−l−k−t−2

·
(
s+ n− l − k − 2

t

)(
k

s

)(
s+ n− l − k − t− 2

bi+1, . . . , bj

)(
t+ l

b1, . . . , bi

)(
k − s

bj+1, . . . , br

)

· xbj+1

j+1 · · ·xbr
r x

b1
1 · · ·xbi+1

i x
bi+1

i+1 · · ·xbj+1
j .

Now we can write

[znxn1
1 · · ·xnr

r ]B = 2

r−1∑

i=1

r−1∑

j=i+1

d
︷ ︸︸ ︷
n−2∑

k=0

n−k−2∑

l=0

(
N[1,j] − l − 2

N[i+1,j] − 1

)

(17.9)

·
(

k

N[j+1,r]

)(
N[i+1,j] − 1

ni+1, . . . , nj − 1

)(
N[1,i] − 1

n1, . . . , ni − 1

)(
N[j+1,r]

nj+1, . . . , nr

)

,

from which we extract and simplify the quantity

d :=

n−2∑

k=0

n−k−2∑

l=0

(
N[1,j] − l − 2

N[i+1,j] − 1

)(
k

N[j+1,r]

)

=
n−2∑

k=0

(
k

N[j+1,r]

) n−k−2∑

l=0

(
N[1,j] − l − 2

N[i+1,j] − 1

)

=

n−2∑

k=0

(
k

N[j+1,r]

) n−k−2∑

l=0

(
N[1,j] − 2 − (n− k − 2) + l

N[i+1,j] − 1

)

=

n−2∑

k=0

(
k

N[j+1,r]

) n−k−2∑

l=0

(
k + l − nj+1 − · · · − nr

N[i+1,j] − 1

)

=

n−2∑

k=0

(
k

N[j+1,r]

) N[1,j]−2
∑

t=k−nj+1−···−nr

(
t

N[i+1,j] − 1

)

(where t := k + l − nj+1 − · · · − nr)

=

n−2∑

k=0

(
k

N[j+1,r]

)[ N[1,j]−2
∑

t=0

(
t

N[i+1,j] − 1

)

−
k−nj+1−···−nr−1

∑

t=0

(
t

N[i+1,j] − 1

)]

=

(
n− 1

N[j+1,r] + 1

)(
N[1,j] − 1

N[i+1,j]

)

−
(
N[i+1,r]

N[j+1,r]

) n−2∑

k=0

(
k

N[i+1,r]

)

=

(
n− 1

N[j+1,r] + 1

)(
N[1,j] − 1

N[i+1,j]

)

−
(
N[i+1,r]

N[j+1,r]

)(
n− 1

N[i+1,r] + 1

)

.

Thus we have, from (17.9)

[znxn1
1 · · ·xnr

r ]B

= 2

r−1∑

i=1

r−1∑

j=i+1

(
N[i+1,j] − 1

ni+1, . . . , nj − 1

)(
N[1,i] − 1

n1, . . . , ni − 1

)(
N[j+1,r]

nj+1, . . . , nr

)

152



·
[(

n− 1

N[j+1,r] + 1

)(
N[1,j] − 1

N[i+1,j]

)

−
(
N[i+1,r]

N[j+1,r]

)(
n− 1

N[i+1,r] + 1

)]

= 2

r−1∑

i=1

r−1∑

j=i+1

(N[i+1,j] − 1)!(N[1,i] − 1)!N[j+1,r]!

n1! · · · (ni − 1)!ni+1! · · · (nj − 1)!nj+1! · · ·nr!

· (n− 1)!(N[1,j] − 1)!

(N[j+1,r] + 1)!(N[1,j] − 2)!N[i+1,j]!(N[1,i] − 1)!

− 2

r−1∑

i=1

r−1∑

j=i+1

(N[i+1,j] − 1)!(N[1,i] − 1)!N[j+1,r]!

n1! · · · (ni − 1)!ni+1! · · · (nj − 1)!nj+1! · · ·nr!

· N[i+1,r]!(n− 1)!

N[j+1,r]!N[i+1,j]!(N[i+1,r] + 1)!(N[1,i] − 2)!

= 2

r−1∑

i=1

r−1∑

j=i+1

ninj(N[1,j] − 1)

n(N[j+1,r] + 1)N[i+1,j]

n!

n1! · · ·ni!ni+1! · · ·nj !nj+1! · · ·nr!

− 2
r−1∑

i=1

r−1∑

j=i+1

ninj(N[1,i] − 1)

nN[i+1,j](N[i+1,r] + 1)

n!

n1! · · ·ni!ni+1! · · ·nj!nj+1! · · ·nr!

= 2
r−1∑

i=1

r−1∑

j=i+1

ninj

(N[j+1,r] + 1)(N[i+1,r] + 1)

(
n

n1, . . . , nr

)

·
[

(N[1,j] − 1)(N[i+1,r] + 1) − (N[1,i] − 1)(N[j+1,r] + 1)

nN[i+1,j]

]

= 2

r−1∑

i=1

r−1∑

j=i+1

ninj

(N[j+1,r] + 1)(N[i+1,r] + 1)

(
n

n1, . . . , nr

)

.

The B contribution to the second moment is then

2
r−1∑

i=1

r−1∑

j=i+1

ninj

(N[i+1,r] + 1)(N[j+1,r] + 1)
. (17.10)

Together, A and B give the second moment as (see (17.8) and (17.10))

2
r−1∑

i=1

ni(ni − 1)

(N[i+1,r] + 1)(N[i+1,r] + 2)
+ 2

r−1∑

i=1

r−1∑

j=i+1

ninj

(N[i+1,r] + 1)(N[j+1,r] + 1)
.

For the variance, we also need to include two more terms (see (17.6)). We use

equation (17.3) to write

V
m
rg = 2

r−1∑

i=1

ni(ni − 1)

(N[i+1,r] + 1)(N[i+1,r] + 2)
+ 2

r−1∑

i=1

r−1∑

j=i+1

ninj

(N[i+1,r] + 1)(N[j+1,r] + 1)
︸ ︷︷ ︸

+

r−1∑

i=1

ni

N[i+1,r] + 1
−
( r−1∑

i=1

ni

N[i+1,r] + 1

)2

.
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The square of the expectation includes the bracketed terms which then cancel

leaving only each term squared, i.e.,

V
m
rg = 2

r−1∑

i=1

ni(ni − 1)

(N[i+1,r] + 1)(N[i+1,r] + 2)
+

r−1∑

i=1

ni

N[i+1,r] + 1
−

r−1∑

i=1

n2
i

(N[i+1,r] + 1)2
.

(17.11)

This is the exact formula. The asymptotic expression of this as n→ ∞ is simpler.

We have
r−1∑

i=1

ni(ni − 1)

(N[i+1,r] + 1)(N[i+1,r] + 2)
∼

r−1∑

i=1

n2
i

(N[i+1,r] + 1)2
,

and
ni

N[i+1,r] + 1
∼ ni

N[i+1,r]

,

and thus

V
m
rg ∼

r−1∑

i=1

ni

N[i+1,r]
+

r−1∑

i=1

n2
i

(N[i+1,r])2
,

as n→ ∞. This completes the proof of Theorem 17.3. �

17.5 Right-going variance – probability model

To find the variance using the probability model, we use (see equation (17.4))

f(z, u, x1, . . . , xr) :=

r−1∏

i=1

(

1 +
zuxi

1 − z(X[1,i−1] + uxi)

)(

1 +
zxr

1 − zx[1,r]

)

=
∑

w∈A∗

z|w|ur(w)x
|w|1
1 x

|w|2
2 · · ·x|w|r

r ,

and

V
p
rg := [zn]

∂2

∂2u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

+ [zn]
∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

− ([zn]
∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

)2. (17.12)

We only lack the second moment (i.e., the first term of (17.12)), and for this we

use the calculations from the multiset model. We have (see (17.7))

[zn]
∂2

∂2u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

= [zn]
r−1∑

i=1

2z2p2
i

(1 − zP[1,r])(1 − zP[1,i])2

︸ ︷︷ ︸

†

+ [zn]
r−1∑

i=1

r−1∑

j=i+1

2z2pipj

(1 − zP[1,r])(1 − zP[1,i])(1 − zP[1,j])
︸ ︷︷ ︸

‡

,
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and we know that by expanding this expression in terms of partial fractions we

can find the coefficient of zn. This method is quite long so we start by making a

few remarks which will shorten the calculations.

• We can write

[zn]
z2

(1 − az)(1 − bz)(1 − cz)

= [zn]

(
1

(1 − az)(a− b)(a− c)
+

1

(1 − bz)(b − a)(b− c)
+

1

(1 − cz)(c− b)(c− a)

)

=
1

(a− b)(a− c)
an +

1

(b− a)(b− c)
bn +

1

(c− b)(c− a)
cn.

In our case we have this situation where a = P[1,r] = 1, b = P[1,i] < 1 and

c = P[1,j] < 1 (for i, j < r). As n→ ∞, we have an → 1, bn → 0 and cn → 0.

Thus it is unnecessary to do all the calculations – we need only include the

terms of the partial fraction expansion which have the factor 1
1−zP[1,r]

(or

P n
[1,r]). This takes care of the double sum (from ‡) in the second moment

above.

• For the terms which have a repeated factor (see †) in the denominator this

idea remains the same. We have

[zn]
z2

(1 − az)(1 − bz)2

= [zn]

(
1

(1 − az)(a− b)2
+

a− 2b

(1 − bz)b(a − b)2
+

1

(1 − bz)2b(b− a)

)

=
1

(a− b)2
an +

a− 2b

b(a− b)2
bn +

1

b(b− a)
(n+ 1)bn.

Again we have that a = P[1,r] = 1 and b = P[1,i] < 1 since i < r, and

pi > 0, ∀ i = 1, . . . , r. Thus since an → 1, bn → 0 and nbn → 0 as n → ∞,

we need only consider the terms of the form 1
(1−az)(a−b)2

.

We can now give an asymptotic approximation of the second moment (as n→ ∞):

[zn]
∂2

∂2u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

∼
r−1∑

i=1

2p2
i

P 2
[i+1,r]

+
r−1∑

i=1

r−1∑

j=i+1

2pipj

P[i+1,r]P[j+1,r]

.

For the variance we must also include the other two terms in (17.12), so

V
p
rg ∼ 2

r−1∑

i=1

p2
i

P 2
[i+1,r]

+ 2
r−1∑

i=1

r−1∑

j=i+1

pipj

P[i+1,r]P[j+1,r]

+
r−1∑

i=1

pi

P[i+1,r]

−
(

r−1∑

i=1

pi

P[i+1,r]

)2

= 2

r−1∑

i=1

p2
i

P 2
[i+1,r]

+ 2

r−1∑

i=1

r−1∑

j=i+1

pipj

P[i+1,r]P[j+1,r]
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+

r−1∑

i=1

pi

P[i+1,r]
−

r−1∑

i=1

p2
i

P 2
[i+1,r]

− 2

r−1∑

i=1

r−1∑

j=i+1

pipj

P[i+1,r]P[j+1,r]
,

and thus

V
p
rg ∼

r−1∑

i=1

pi

P[i+1,r]

+
r−1∑

i=1

p2
i

P 2
[i+1,r]

, (17.13)

as n→ ∞. The proof of Theorem 17.4 is thus complete. �

Once again, a link can be shown between the two results 17.11 and 17.13 as n→ ∞,

replacing ni by npi.
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Chapter 18

Expected depth of an arbitrary

node α

18.1 Introduction

In this section we investigate the cost of searching for a key α in the binary search

tree formed from a word (w) of length n made up of letters (possibly repeated)

from the alphabet {1, . . . , r}. The cost can also be thought of as the number of

comparisons or length of path from the root to the node α, as in the previous

cases. In this case, allowing each element to appear only once in the binary search

tree means that we consider strict left-to-right maxima (and minima, though this

is no different to Chapter 16). Note that previously in the right-going section we

included all nodes in the tree and thus considered weak left-to-right maxima.

Why is this different to the distinct key case? If only the distinct keys are allowed

into the tree, the binary search tree will always only have r nodes. However, since

it was formed from a multiset of {1, . . . , r}, each tree will appear with a different

probability than if it originated from a sequence with distinct keys. Consider the

set {1, 2, 3} and the multiset {1 · 1 ; 1 · 2 ; 2 · 3}. For the former, there are 3! = 6

possible sequences, giving rise to 5 different binary search trees, see Figure 18.1

below.

123

r 1
r 2

r 3

@@
@@

132

r 1
r 3

r 2

@@
��

213

r 2
r 3r 1

@@��

231

r 2
r 3r 1

@@��

312

r 3
r 1

r 2

��
@@

321

r 3
r 2

r 1

��
��

Figure 18.1: The binary search trees from the set {1, 2, 3}.
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Of the five trees in Figure 18.1, all have the probability 1
6
, except the tree cor-

responding to the sequences 213 and 231, which occurs with a probability of 1
3
.

However, if we look at the
(

4
1,1,2

)
= 12 sequences from the set {1, 2, 3, 3}, we get:

1233

r 1
r 2

r 3

@@
@@

1323

r 1
r 3

r 2

@@
��

1332

r 1
r 3

r 2

@@
��

2133

r 2
r 3r 1

@@��

2313

r 2
r 3r 1

@@��

2331

r 2
r 3r 1

@@��

3123

r 3
r 1

r 2

��
@@

3132

r 3
r 1

r 2

��
@@

3213

r 3
r 2

r 1

��
��

3231

r 3
r 2

r 1

��
��

3312

r 3
r 1

r 2

��
@@

3321

r 3
r 2

r 1

��
��

Figure 18.2: The binary search trees from the set {1, 2, 3, 3}.

Figure 18.2 shows that even though we get the same five trees resulting, their

probabilities have changed. In this case all trees occur with probability 1
4
, except

for the first (corresponding to sequence 1233) and the second (corresponding to

sequences 1323 and 1332) which occur with probabilities 1
12

and 1
6

respectively.

Thus searching for the average depth of a certain key will be different, even if the

number and shape of the trees are the same. For example, the average depths of

1,2 and 3 in that order are 5
6
, 1 and 5

6
in Figure 18.1 and 1, 7

6
and 7

12
in Figure

18.2. (The average depth of 3, the repeated letter has decreased significantly.)

Again, generating functions are used to express the situation, and similar tech-

niques to Chapters 16 and 17 are used. The alphabet is divided into two distinct

sub-alphabets at the value α – those letters larger than α and those letters smaller

than α. Thus we use the fact that we already know how to find the left-going

depth (left-to-right minima) of the smallest element in a sub-alphabet, and the

right-going depth (left-to-right maxima) of the largest element in a sub-alphabet.

We use the notation r = card(A), i.e., A = {1, . . . , r}. So if w ∈ A∗ then the binary

search tree of w has every symbol of w inserted once only. (This differs from the

general quicksort analyses which only deal with binary search trees formed from

permutations of sequences of distinct letters.) The question we address is: “what

are the expected value and variance of the cost of finding node α”, using each of

these models?

To answer this question we use the left-going and right-going depth, and a tool

called the ‘shuffle’ product, which is simply the product of two exponential gener-
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ating functions (EGFs), but which produces a ‘shuffle’ between two words whose

alphabets are distinct. So by applying the shuffle product to two words we end up

with all possible combinations of the original words with the letters interwoven,

but with the original order within the original two words unchanged. For exam-

ple, take the two words ab and cd. If we shuffle these like cards, we get
(
4
2

)
= 6

solutions: {abcd, acbd, acdb, cabd, cadb, cdab}. The definition of the shuffle product

is

aux bv := a(ux bv) + b(aux v).

The product of exponential generating functions produces this shuffle product.

However, the original generating functions for calculating the left-going and right-

going depths are ordinary generating functions (OGFs), so at some point we need

to change from ordinary generating functions to exponential generating functions,

perform the shuffle, and then convert the result back again. To do this we use the

combinatorial Laplace transform. Ultimately we want to apply the shuffle product

to two languages, which we assume to be distinct. This is why an exponential

generating function product is the answer, because each exponential generating

function represents a language, and we multiply the two to get all possible combi-

nations of words from these languages. The output will thus be a language of all

words which were formed from a shuffle of two words, one from each of the original

languages.

The (combinatorial) Laplace transform states the following (see [36, page 92]):

Given an EGF Â(x) for a sequence {ak}, the ordinary generating function for the

sequence is given by ∫ ∞

0

Â(zt)e−tdt

if the integral exists. To show this we consider the exponential generating function

Â(z) =
∑

n≥0

an
zn

n!
, and then show that

∑

n≥0

anz
n =

∫ ∞

0

Â(zt)e−tdt.

Firstly,

∫ ∞

0

Â(zt)e−tdt =

∫ ∞

0

∑

n≥0

an

zntn

n!
e−tdt =

∑

n≥0

an

zn

n!

∫ ∞

0

tne−tdt

and by Euler’s integral which defines the Gamma function as Γ(z) =
∫∞
0
tz−1e−tdt,

we have that
∫∞
0
tne−tdt = n! and we are done. To change from an ordinary

generating function to an exponential generating function one uses the inverse

Laplace transform. This is done using Hankel’s contour integral ([1, page 255]),

159



which says (note that we use ‘iii’ for the complex number instead of ‘i’ to differentiate

from the index we use later):

1

Γ(z)
=

iii

2π

∫

C

(−t)−ze−tdt, (|z| <∞),

i.e.,
1

n!
=

1

Γ(n+ 1)
=

iii

2π

∫

C

(−t)−n−1e−tdt. (18.1)

So whereas when we transform from an exponential generating function to an

ordinary generating function we multiply by n!, to transform from an ordinary

generating function to an exponential generating function, we must divide by n!,

or multiply by the Hankel contour integral in (18.1). So if A(z) =
∑

n≥0

anz
n, then

our corresponding exponential generating function (with the same coefficients) is

∑

n≥0

anz
n iii

2π

∫

C

(−t)−n−1e−tdt =
iii

2π

∫

C

∑

n≥0

anz
n(−t)−n(−t)−1e−tdt

=
−iii
2π

∫

C

∑

n≥0

an

( z

−t
)n 1

t
e−tdt

=
1

2πiii

∫

C

A
(

− z

t

) 1

tet
dt

=
1

2πiii

∫

C

∑

n≥0

an

(

− z

t

)n 1

tet
dt

=
∑

n≥0

anz
n 1

2πiii

∫

C

(−t)−n 1

tet
dt

=
∑

n≥0

anz
n iii

2π

∫

C

(−t)−n−1e−tdt

=
∑

n≥0

an

zn

n!
,

from equation (18.1).

As an example consider the ordinary generating function A(z) :=
∑

n≥0

zn = 1
1−z

which has coefficients of 1 everywhere. The exponential generating function with

coefficients of 1 which we expect is ez. We have that the exponential generating

function is

1

2πiii

∫

C

A
(

− z

t

) 1

tet
dt =

1

2πiii

∫

C

1

1 − (−z
t
)

1

tet
dt

=
1

2πiii

∫

C

1

t
(
1 − (−z

t
)
)

1

et
dt
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=
1

2πiii

∫

C

f(t)

t− (−z)dt, where f(t) = e−t

= f(−z)
= ez,

as required.

Using the above, the theorems below are proved in the sections to follow. As in

the previous two chapters, the results correspond asymptotically as n→ ∞.

Theorem 18.1 The expected depth of some α ∈ {1, . . . , r} is given by the exact

formula

E
m
α =

α−1∑

i=1

ni

N[i,α]

+

r∑

i=α+1

ni

N[α,i]

.

Theorem 18.2 Alternatively, the expectation of the depth of α can be expressed

asymptotically in terms of probabilities:

E
p
α ∼

α−1∑

i=1

pi

P[i,α]

+
r∑

i=α+1

pi

P[α,i]

as n→ ∞.

Theorem 18.3 The variance of the depth of some α ∈ {1, . . . , r} can be expressed

(by the multiset model) as

V
m
α = 2

α−1∑

i=1

i−1∑

k=1

(

nink

N[i,α−1]N[k,α−1]

− nαnink

N[k,i−1]N[i,α−1]N[i,α]

− nαnink

N[k,i−1]N[k,α−1]N[k,α]

)

+ 2
r∑

i=α+1

i−1∑

k=α+1

(

nink

N[α+1,i]N[α+1,k]

+
nαnink

N[k+1,i]N[α+1,i]N[α,i]

− nαnink

N[k+1,i]N[α+1,k]N[α,k]

)

+ 2
α−1∑

i=1

r∑

j=α+1

(

ninj

N[i,α−1]N[α+1,j]

− nαninj

N[i,α−1]N[α+1,j]N[α,j]

− nαninj

N[i,α−1]N[α+1,j]N[i,α]

− nαninj

N[i,α−1]N[α+1,j]N[i,j]

)

+

α−1∑

i=1

ni

N[i,α]

+

r∑

i=α+1

ni

N[α,i]

−
(

α−1∑

i=1

ni

N[i,α]

)2

− 2
α−1∑

i=1

ni

N[i,α]

r∑

i=α+1

ni

N[α,i]

−
(

r∑

i=α+1

ni

N[α,i]

)2

.
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Theorem 18.4 Using the probability model, the variance of the depth of α as

n→ ∞ is

V
p
α ∼ 2

α−1∑

i=1

i−1∑

k=1

(

pipk

P[i,α−1]P[k,α−1]

− pαpipk

P[k,i−1]P[i,α−1]P[i,α]

+
pαpipk

P[k,i−1]P[k,α−1]P[k,α]

)

+ 2
r∑

i=α+1

i−1∑

k=α+1

(

pipk

P[α+1,i]P[α+1,k]

+
pαpipk

P[k+1,i]P[α+1,i]P[α,i]

− pαpipk

P[k+1,i]P[α+1,k]P[α,k]

)

+ 2

α−1∑

i=1

r∑

j=α+1

(

pipj

P[i,α−1]P[α+1,j]

− pαpipj

P[i,α−1]P[α+1,j]P[α,j]

− pαpipj

P[i,α−1]P[α+1,j]P[i,α]

+
pαpipj

P[i,α−1]P[α+1,j]P[i,j]

)

+

α−1∑

i=1

pi

P[i,α]

+

r∑

i=α+1

pi

P[α,i]

−
(

α−1∑

i=1

pi

P[i,α]

)2

− 2

α−1∑

i=1

pi

P[i,α]

r∑

i=α+1

pi

P[α,i]

−
(

r∑

i=α+1

pi

P[α,i]

)2

.

18.2 Expectation – multiset model

We start by considering the cost function of finding some element α in our binary

search tree. We define the generating function as:

f(z, u, x1, . . . , xr) :=
[
Nmax(z, u,X[1,α−1])xNmin(z, u,X[α+1,r])

]
zxα · 1

1 − zX
,

where X = x1 + x2 + · · · + xr and x indicates the shuffle product. The shuffle

product is the usual · for exponential generating functions if the alphabets are

distinct. This shuffle product takes place between ordinary generating functions

Nmax (which counts the number of left-to-right maxima in the letters smaller than α

to the left of the first α) and Nmin (which counts the number of left-to-right minima

the letters larger than α to the left of the first α). The factor zxα represents the

first occurrence of α, and the remaining factor of 1
1−zX

represents everything to

the right of the first α which can be of any length and which consists of any letters

from 1 to r (with repeats). The variables are as follows: z counts all letters, u

counts all left-to-right maxima (resp. minima), and x1 counts all ones, x2 counts

all twos etc.. We also use the shorthand X[3,5] = x3 + x4 + x5, X[4,4] = x4 and so

on. Notice that u does not appear after the first α since the depth of the first α is

only dependent on the letters which occur to the left of α in the word.

Now we need to define the ordinary generating functions Nmax and Nmin. We want

Nmax(z, u,X[1,α−1]) to count the number of left-to-right maxima in all the letters
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strictly smaller than α which appear to the left of the left-most α in the word. If

we let ε represent an empty word, we can express these letters symbolically as

(
ε+ 1{1}∗

)(
ε+ 2{1, 2}∗

)(
ε+ 3{1, 2, 3}∗

)
· · ·
(
ε+ (α− 1){1, . . . , α− 1}∗

)
,

which can be translated into the generating function

Nmax(z, u,X[1,α−1]) :=

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)

.

This is a product of factors which correspond to the bracketed factors in the sym-

bolic equation above. Each factor corresponds to a new letter (one larger than

the previous one), with the possibility of a new left-to-right maximum occurring if

such a letter occurs in such a position. If it is a left-to-right maximum, then both

z and u will count the xi, and this is followed by a sequence,
(

1
1−zX[1,i]

)

, which

can have any element less than or equal to that element. If it is not a left-to-right

maximum, then the only contribution from that factor is the 1 (or symbolically the

ε). Note that this letter can still occur in the word, either as part of the 1
1−zX[1,i+1]

factor in the subsequent bracket, or as part of the 1
1−zX

factor after the first α).

This only means that it appears to the right of a larger value and thus is not a

left-to-right maximum.

For the other case we want to count the number of left-to-right minima among

those letters which appear to the left of the left-most α which are strictly greater

than α. We use a similar argument to translate the symbols

(
ε+ r{r}∗

)(
ε+ (r − 1){r, r − 1}∗

)
· · ·
(
ε+ (α + 1){r, r − 1, . . . , α + 1}∗

)
,

into the generating function

Nmin(z, u,X[α+1,r]) :=

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)

.

Now that these two functions have been defined we can rewrite the cost function

more explicitly:

f(z, u, x1, . . . , xr) =

[
α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)

x

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)]

zxα

1 − zX
.

(18.2)

Our next task is to find the expected value, which for probability generating func-

tions such as these means we will need to find the first order partial derivative with

respect to u. First we note that

∂

∂u
(f x g)

∣
∣
∣
u=1

=

(
∂

∂u
f
∣
∣
∣
u=1

)

x g
∣
∣
u=1

+ f
∣
∣
u=1

x

(
∂

∂u
g
∣
∣
∣
u=1

)

. (18.3)
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So we let f := Nmin and g := Nmax in (18.3), and deal with the shuffle product

by making use of the inverse Laplace transform and the Laplace transform in that

order. Each of these four expressions is now written in a form which can easily

be transformed into a corresponding exponential generating function so that the

shuffle product can be performed. For the first factor of interest we have:

∂

∂u
Nmin

∣
∣
∣
u=1

=
∂

∂u
logNmin

∣
∣
∣
u=1

·Nmin

∣
∣
∣
u=1

=
∂

∂u
log

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

·
r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

=
r∑

i=α+1

∂

∂u
log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

·
r∏

i=α+1

(

1 +
zxi

1 − zX[i,r]

)

=

r∑

i=α+1

∂

∂u
log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

·
r∏

i=α+1

(
1 − zX[i,r] + zxi

1 − zX[i,r]

)

=
r∑

i=α+1

∂

∂u
log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

·
r∏

i=α+1

(
1 − zX[i+1,r]

1 − zX[i,r]

)

=

r∑

i=α+1

∂

∂u
log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

·
(

1 − zX[α+2,r]

1 − zX[α+1,r]

)(
1 − zX[α+3,r]

1 − zX[α+2,r]

)

· · ·
(

1 − zX[r,r]

1 − zX[r−1,r]

)(
1

1 − zX[r,r]

)

=
r∑

i=α+1

∂

∂u
log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

·
(

1

1 − zX[α+1,r]

)

=

r∑

i=α+1

∂

∂u
log

(
1 − zX[i,r] + zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

·
(

1

1 − zX[α+1,r]

)

=
r∑

i=α+1

1
1−zX[i,r]+zuxi

1−zX[i,r]

· zxi

1 − zX[i,r]

∣
∣
∣
∣
u=1

·
(

1

1 − zX[α+1,r]

)

=
1

1 − zX[α+1,r]

r∑

i=α+1

1 − zX[i,r]

1 − zX[i+1,r]

· zxi

1 − zX[i,r]

=
1

1 − zX[α+1,r]

r∑

i=α+1

zxi

1 − zX[i+1,r]
.

We make use of partial fraction decompositions (this can be done by hand or on

Maple) to get

∂

∂u
Nmin

∣
∣
∣
u=1

=

r∑

i=α+1

xi

X[α+1,i]

(
1

1 − zX[α+1,r]
− 1

1 − zX[i+1,r]
︸ ︷︷ ︸

♥

)

.
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Now ♥ is the difference of two ordinary generating functions of the form 1
1−bz

which

can be transformed into corresponding exponential generating functions (with the

same coefficients) of the form ebz. This is a useful form to have it in because we

now want to find the product of these exponential generating functions (assuming

the alphabets are distinct, which they are in this case, being either all smaller

than α for Nmax, or all larger than α for Nmin). It is also then easy to transform

back into an ordinary generating function of the form 1
1−cz

. So if we transform the

ordinary generating function ∂
∂u
Nmin

∣
∣
u=1

into an exponential generating function

with the same coefficients, and let ‘E’ denote the exponential generating function

and ’d’ the differentiation, we get:

NEd
min :=

r∑

i=α+1

xi

X[α+1,i]

(
ezX[α+1,r] − ezX[i+1,r]

)
. (18.4)

The next factor of interest is the ordinary generating function

Nmax

∣
∣
u=1

=

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

=
α−1∏

i=1

(

1 +
zxi

1 − zX[1,i]

)

=
α−1∏

i=1

(
1 − zX[1,i−1]

1 − zX[1,i]

)

=

(
1

1 − zX[1,1]

)(
1 − zX[1,1]

1 − zX[1,2]

)(
1 − zX[1,2]

1 − zX[1,3]

)

· · ·
(

1 − zX[1,α−3]

1 − zX[1,α−2]

)(
1 − zX[1,α−2]

1 − zX[1,α−1]

)

=
1

1 − zX[1,α−1]
,

which transforms to the exponential generating function

NE
max := ezX[1,α−1] . (18.5)

So the product of (18.4) and (18.5) gives us the first term in (18.3), namely the

exponential generating function of
(

∂
∂u
Nmin

∣
∣
∣
u=1

)

xNmax

∣
∣
u=1

, which is (note this

is the usual product and is thus commutative):

ezX[1,α−1] ·
r∑

i=α+1

xi

X[α+1,i]

(
ezX[α+1,r] − ezX[i+1,r]

)

=
r∑

i=α+1

xi

X[α+1,i]

ezX[1,α−1]
(
ezX[α+1,r] − ezX[i+1,r]

)

=

r∑

i=α+1

xi

X[α+1,i]

(
ezX[1,α−1]ezX[α+1,r] − ezX[1,α−1]ezX[i+1,r]

)
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=
r∑

i=α+1

xi

X[α+1,i]

(

ez

(
X[1,α−1]+X[α+1,r]

)

− ez

(
X[1,α−1]+X[i+1,r]

))

.

By doing this we have performed the shuffle and all that remains is to transform

back into an ordinary generating function. So

( ∂

∂u
Nmin

∣
∣
∣
u=1

)

xNmax

∣
∣
u=1

=

r∑

i=α+1

xi

X[α+1,i]

(
1

1 − z
(
X[1,α−1] +X[α+1,r]

) − 1

1 − z
(
X[1,α−1] +X[i+1,r]

)

)

, (18.6)

which we will leave in this form because later we will need to find the coeffi-

cient of zn. We now turn our attention to the second term in (18.3), which

is Nmin

∣
∣
u=1

x

(

∂
∂u
Nmax

∣
∣
∣
u=1

)

and which we will deal with in a very similar way.

Firstly,

Nmin

∣
∣
u=1

=

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

=
r∏

i=α+1

(

1 +
zxi

1 − zX[i,r]

)

=

r∏

i=α+1

(
1 − zX[i,r] + zxi

1 − zX[i,r]

)

=
r∏

i=α+1

(
1 − zX[i+1,r]

1 − zX[i,r]

)

=

(
1 − zX[α+2,r]

1 − zX[α+1,r]

)(
1 − zX[α+3,r]

1 − zX[α+2,r]

)(
1 − zX[α+4,r]

1 − zX[α+3,r]

)

· · ·
(

1 − zX[r,r]

1 − zX[r−1,r]

)(
1

1 − zX[r,r]

)

=
1

1 − zX[α+1,r]

,

whose corresponding exponential generating function is

NE
min := ezX[α+1,r]. (18.7)

The other operand of the shuffle operator in this case is the ordinary generating

function

∂

∂u
Nmax

∣
∣
∣
u=1

=
∂

∂u

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

=
∂

∂u
log

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

·
α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1
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=

α−1∑

i=1

∂

∂u
log

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

·
α−1∏

i=1

(
1 − zX[1,i] + zxi

1 − zX[1,i]

)

=
α−1∑

i=1

∂

∂u
log

(
1 − zX[1,i] + zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

·
α−1∏

i=1

(
1 − zX[1,i−1]

1 − zX[1,i]

)

=
α−1∑

i=1

∂

∂u
log

(
1 − zX[1,i] + zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

·
(

1

1 − zX[1,1]

)(
1 − zX[1,1]

1 − zX[1,2]

)

· · ·
(

1 − zX[1,i−3]

1 − zX[1,α−2]

)(
1 − zX[1,α−2]

1 − zX[1,α−1]

)

=

α−1∑

i=1

∂

∂u
log

(
1 − zX[1,i] + zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

· 1

1 − zX[1,α−1]

=

α−1∑

i=1

1
1−zX[1,i]+zuxi

1−zX[1,i]

zxi

1 − zX[1,i]

∣
∣
∣
∣
u=1

· 1

1 − zX[1,α−1]

=

α−1∑

i=1

1 − zX[1,i]

1 − zX[1,i−1]

zxi

1 − zX[1,i]

1

1 − zX[1,α−1]

=

α−1∑

i=1

zxi

1 − zX[1,i−1]

1

1 − zX[1,α−1]
.

Under partial fraction decomposition, this becomes

∂

∂u
Nmax

∣
∣
∣
u=1

=

α−1∑

i=1

xi

X[i,α−1]

(
1

1 − zX[1,α−1]

− 1

1 − zX[1,i−1]

)

,

which is easy to transform into an exponential generating function as before, giving

NEd
max :=

α−1∑

i=1

xi

X[i,α−1]

(
ezX[1,α−1] − ezX[1,i−1]

)
. (18.8)

The product of (18.7) and (18.8) gives us the exponential generating function of

the second term in (18.3) (i.e., performs the shuffle product of the two ordinary

generating functions), which is

ezX[α+1,r] ·
α−1∑

i=1

xi

X[i,α−1]

(
ezX[1,α−1] − ezX[1,i−1]

)

=

α−1∑

i=1

xi

X[i,α−1]

(
ezX[α+1,r]ezX[1,α−1] − ezX[α+1,r]ezX[1,i−1]

)

=
α−1∑

i=1

xi

X[i,α−1]

(

ez

(
X[1,α−1]+X[α+1,r]

)

− ez

(
X[1,i−1]+X[α+1,r]

))

.

This can be transformed back using the Laplace transform, to get the ordinary

generating function:

Nmin

∣
∣
u=1

x

( ∂

∂u
Nmax

∣
∣
∣
u=1

)
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=

α−1∑

i=1

xi

X[i,α−1]

(
1

1 − z
(
X[1,α−1] +X[α+1,r]

) − 1

1 − z
(
X[1,i−1] +X[α+1,r]

)

)

. (18.9)

Therefore, by adding (18.6) and (18.9), we have the first-order partial derivative

(with respect to u) of the shuffle product in the cost function (18.2). We must still

include the final factor zxα

1−zX
, but since this is independent of u (and thus does not

need to be differentiated) this is a simple product, giving

zxα

1 − zX

[
α−1∑

i=1

xi

X[i,α−1]

(
1

1 − z
(
X[1,α−1] +X[α+1,r]

) − 1

1 − z
(
X[1,i−1] +X[α+1,r]

)

)

+
r∑

i=α+1

xi

X[α+1,i]

(
1

1 − z
(
X[1,α−1] +X[α+1,r]

) − 1

1 − z
(
X[1,α−1] +X[i+1,r]

)

)]

.

(18.10)

Multiplying through by the factor zxα

1−zX
produces four terms of the form az

(1−bz)(1−cz)
,

each of which can be decomposed into partial fractions. Then the coefficient can

be found, and thus ultimately the expected value. We make use of Maple for the

partial fraction decompositions. For the first term,

α−1∑

i=1

xixα

X[i,α−1]

z
(
1 − zX

)(
1 − z

(
X[1,α−1] +X[α+1,r]

))

=

α−1∑

i=1

xixα

X[i,α−1]

(
1

xα(1 − zX)
− 1

xα

(
1 − z

(
X[1,α−1] +X[α+1,r]

))

)

=
α−1∑

i=1

xi

X[i,α−1]

(
1

1 − zX
− 1

1 − z
(
X[1,α−1] +X[α+1,r]

)

)

. (18.11)

The second term is

−
α−1∑

i=1

xixα

X[i,α−1]

z
(
1 − zX

)(
1 − z

(
X[1,i−1] +X[α+1,r]

))

= −
α−1∑

i=1

xixα

X[i,α−1]X[i,α]

(
1

1 − zX
− 1

1 − z
(
X[1,i−1] +X[α+1,r]

)

)

, (18.12)

and the third term is

r∑

i=α+1

xαxi

X[α+1,i]

z
(
1 − zX

)(
1 − z

(
X[1,α−1] +X[α+1,r]

))

=

r∑

i=α+1

xi

X[α+1,i]

(
1

1 − zX
− 1

1 − z
(
X[1,α−1] +X[α+1,r]

)

)

. (18.13)

Finally the fourth term is

−
r∑

i=α+1

xαxi

X[α+1,i]

z
(
1 − zX

)(
1 − z

(
X[1,α−1] +X[i+1,r]

))
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= −
r∑

i=α+1

xαxi

X[α+1,i]X[α,i]

(
1

1 − zX
− 1

1 − z
(
X[1,α−1] +X[i+1,r]

)

)

. (18.14)

Once we have the coefficient of znxn1
1 · · ·xnr

r in each of the four quantities, we

divide by the number of possible words to get the expected value. First we note

that of the two terms in (18.11) and (18.13), the second in each case has no xα

(i.e., nα = 0) and thus these terms need not be counted. So we are left with one

term each for (18.11) and (18.13) and two terms each for (18.12) and (18.14). We

deal with these by first considering the coefficient of zn and then rewriting the

expressions in terms of multinomial expansions so that the ‘trouble’ terms in the

denominator can be cancelled. All that then remains is to expand further in terms

of multinomial expansions to get the coefficient of xn1
1 · · ·xnr

r . Only the methods

for (18.12) and (18.13) are included, since (18.11) and (18.14) are similar. For

(18.13) we have:

[zn]
r∑

i=α+1

xi

X[α+1,i]

1

1 − zX

=

r∑

i=α+1

xi

X[α+1,i]

Xn

=
r∑

i=α+1

xi

X[α+1,i]

∑

k1+k2+k3=n

(
n

k1, k2, k3

)

(X[1,α])
k1(X[α+1,i])

k2(X[i+1,r])
k3

=
r∑

i=α+1

xi

∑

k1+k2+k3=n

(
n

k1, k2, k3

)

(X[1,α])
k1(X[α+1,i])

k2−1(X[i+1,r])
k3

=
r∑

i=α+1

xi

∑

k1+k2+k3=n

(
n

k1, k2, k3

)
∑

b1+b2+···+bα=k1

(
k1

b1, b2, . . . , bα

)

xb1
1 · · ·xbα

α

·
∑

bα+1+···+bi=k2−1

(
k2 − 1

bα+1, . . . , bi

)

x
bα+1

α+1 · · ·xbi

i

·
∑

bi+1+···+br=k3

(
k3

bi+1, . . . , br

)

x
bi+1

i+1 · · ·xbr

r . (18.15)

To find the coefficient of xn1
1 · · ·xnr

r , we can equate all nm to bm for allm ∈ {1, . . . , r}
except for m = i, when ni = bi + 1 (because of the extra xi in the first line of

(18.15)). The coefficient is then

r∑

i=α+1

(
n

b1 + b2 + · · · + bα, bα+1 + · · ·+ bi + 1, bi+1 + · · · + br

)

·
(
b1 + b2 + · · · + bα
b1, b2, . . . , bα

)(
bα+1 + · · ·+ bi
bα+1, . . . , bi

)(
bi+1 + · · · + br
bi+1, . . . , br

)

=

r∑

i=α+1

(
n

N[1,α], N[α+1,i], N[i+1,r]

)
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·
(

N[1,α]

n1, n2, . . . , nα

)(
N[α+1,i] − 1

nα+1, . . . , ni − 1

)(
N[i+1,r]

ni+1, . . . , nr

)

=

r∑

i=α+1

n!

N[1,α]!N[α+1,i]!N[i+1,r]!

· N[1,α]!(N[α+1,i] − 1)!N[i+1,r]!

n1!n2! · · ·nα!nα+1! · · · (ni − 1)!ni+1! · · ·nr!

=
r∑

i=α+1

ni

N[α+1,i]

n!

n1!n2! · · ·nα!nα+1! · · ·ni!ni+1! · · ·nr!

=

r∑

i=α+1

ni

N[α+1,i]

(
n

n1, . . . , nr!

)

.

For (18.12) we have (ignoring the negative):

[zn]

α−1∑

i=1

xixα

X[i,α−1]X[i,α]

(
1

1 − zX
− 1

1 − z
(
X[1,i−1] +X[α+1,r]

)

)

=
α−1∑

i=1

xixα

X[i,α−1]X[i,α]

(

Xn −
(
X[1,i−1] +X[α+1,r]

)n
)

=
α−1∑

i=1

xixα

X[i,α−1]X[i,α]

((
X[1,i−1] +X[i,α] +X[α+1,r]

)n −
(
X[1,i−1] +X[α+1,r]

)n
)

=
α−1∑

i=1

xixα

X[i,α−1]X[i,α]

( n∑

k=0

(
n

k

)

Xk
[i,α]

(
X[1,i−1] +X[α+1,r]

)n−k −
(
X[1,i−1] +X[α+1,r]

)n
)

=
α−1∑

i=1

xixα

X[i,α−1]X[i,α]

n∑

k=1

(
n

k

)

Xk
[i,α]

(
X[1,i−1] +X[α+1,r]

)n−k

=

α−1∑

i=1

xixα

X[i,α−1]

n∑

k=1

(
n

k

)

Xk−1
[i,α]

(
X[1,i−1] +X[α+1,r]

)n−k

=
α−1∑

i=1

xixα

X[i,α−1]

n∑

k=1

(
n

k

) k−1∑

j=0

(
k − 1

j

)

Xj
[i,α−1]x

k−1−j
α

(
X[1,i−1] +X[α+1,r]

)n−k

=
α−1∑

i=1

xixα

n∑

k=1

(
n

k

) k−1∑

j=0

(
k − 1

j

)

Xj−1
[i,α−1]x

k−1−j
α

(
X[1,i−1] +X[α+1,r]

)n−k

=
α−1∑

i=1

xixα

n∑

k=1

(
n

k

) k−1∑

j=0

(
k − 1

j

)
∑

bi+···+bα−1=j−1

(
j − 1

bi, . . . , bα−1

)

xbi

i · · ·xbα−1

α−1 x
k−1−j
α

·
∑

b1+···+bi−1+bα+1···br=n−k

(
n− k

b1, . . . , bi−1, bα+1, . . . , br

)

xb1
1 · · ·xbi−1

i−1 x
bα+1

α+1 · · ·xbr
r .

At this stage we can find the coefficient of xn1
1 · · ·xnr

r by equating nm with bm for

all m ∈ {1, . . . , r} except i and α. For these we have ni = bi + 1 and nα = k − j.
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We end up with (n = n1 + · · ·+ nr)

α−1∑

i=1

(
n

N[1,i−1] +N[α+1,r]

)(
n− (N[1,i−1] +N[α+1,r]) − 1

ni − 1 + · · ·+ nα−1 + 1

)

·
(
ni − 1 + · · · + nα−1

ni − 1, . . . , nα−1

)(
N[1,i−1] +N[α+1,r]

n1, . . . , ni−1, nα+1, . . . , nr

)

=
α−1∑

i=1

(
n

N[i,α]

)(
N[i,α] − 1

N[i,α−1]

)(
N[i,α−1] − 1

ni − 1, . . . , nα−1

)(
N[1,i−1] +N[α+1,r]

n1, . . . , ni−1, nα+1, . . . , nr

)

=

α−1∑

i=1

n!

N[i,α]!(n− ni − · · · − nα)!

(N[i,α] − 1)!

N[i,α−1]!(N[i,α] − 1 −N[i,α−1])!

· (N[i,α−1] − 1)!

(ni − 1)!, . . . , nα−1!

(N[1,i−1] +N[α+1,r])!

n1!, . . . , ni−1!, nα+1!, . . . , nr!

=

α−1∑

i=1

ninα

N[i,α]N[i,α−1]

(
n

n1, . . . , nr

)

.

The method is the same for (18.11) and (18.14), and after dividing by the number

of all possible words
(

n
n1,...,nr

)
we end up with:

E
m
α =

α−1∑

i=1

(
ni

N[i,α−1]

− ninα

N[i,α]N[i,α−1]

)

+
r∑

i=α+1

(
ni

N[α+1,i]

− ninα

N[α,i]N[α+1,i]

)

=
α−1∑

i=1

niN[i,α] − ninα

N[i,α]N[i,α−1]

+
r∑

i=α+1

niN[α,i] − ninα

N[α,i]N[α+1,i]

=

α−1∑

i=1

niN[i,α−1]

N[i,α]N[i,α−1]

+

r∑

i=α+1

niN[α+1,i]

N[α,i]N[α+1,i]

,

so that

E
m
α =

α−1∑

i=1

ni

N[i,α]
+

r∑

i=α+1

ni

N[α,i]
. (18.16)

This concludes the proof of Theorem 18.1. �

18.3 Expectation – probability model

As we did in the left-going and right-going cases, we can now use a few of the

calculations from the multiset model to help us find the result using the probability

model. In this case we have (see equation (18.2)):

f(z, u, x1, . . . , xr) =

[
α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)

x

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)]

zxα

1 − zX

=
∑

w∈A∗

z|w|ua(w)x
|w|1
1 x

|w|2
2 · · ·x|w|r

r (18.17)
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where w is a word of length |w| from alphabet A = {1, . . . , r}, |w|i is the number

of i’s in the word, and a(w) is the depth of α. The expected value is

E
p
α = [zn]

∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

,

where pi is the probability of letter i appearing in the word (input sequence).

We have

E
p
α = [zn]

zpα

1 − zP

[
α−1∑

i=1

pi

P[i,α−1]

(
1

1 − z
(
P[1,α−1] + P[α+1,r]

) − 1

1 − z
(
P[1,i−1] + P[α+1,r]

)

)

+

r∑

i=α+1

pi

P[α+1,i]

(
1

1 − z
(
P[1,α−1] + P[α+1,r]

) − 1

1 − z
(
P[1,α−1] + P[i+1,r]

)

)]

= [zn]

[
α−1∑

i=1

pi

P[i,α−1]

(
1

1 − zP
− 1

1 − z
(
P[1,α−1] + P[α+1,r]

)

)

−
α−1∑

i=1

pipα

P[i,α−1]

(
1

P[i,α](1 − zP )
− 1

P[i,α]

(
1 − z

(
P[1,i−1] + P[α+1,r]

))

)

+

r∑

i=α+1

pi

P[α+1,i]

(
1

1 − zP
− 1

1 − z
(
P[1,α−1] + P[α+1,r]

)

)

−
r∑

i=α+1

pαpi

P[α+1,i]

(
1

P[α,i](1 − zP )
− 1

P[α,i]

(
1 − z

(
P[1,α−1] + P[i+1,r]

))

)]

.

Since P = p1 + p2 + · · · + pr = 1 and P[i,j] < 1 in all other cases, the coefficient of

zn of the second term in each sum will go to zero as n→ ∞. This leaves us with

E
p
α ∼ [zn]

[
α−1∑

i=1

pi

P[i,α−1]

1

1 − zP
−

α−1∑

i=1

pipα

P[i,α−1]

1

P[i,α](1 − zP )

+

r∑

i=α+1

pi

P[α+1,i]

1

1 − zP
−

r∑

i=α+1

pαpi

P[α+1,i]

1

P[α,i](1 − zP )

]

=
α−1∑

i=1

pi

P[i,α−1]

P n −
α−1∑

i=1

pipα

P[i,α−1]P[i,α]

P n +
r∑

i=α+1

pi

P[α+1,i]

P n −
r∑

i=α+1

pαpi

P[α+1,i]P[α,i]

P n

=

α−1∑

i=1

pi

P[i,α−1]

−
α−1∑

i=1

pipα

P[i,α−1]P[i,α]

+

r∑

i=α+1

pi

P[α+1,i]

−
r∑

i=α+1

pαpi

P[α+1,i]P[α,i]

=

α−1∑

i=1

piP[i,α] − pipα

P[i,α−1]P[i,α]
+

r∑

i=α+1

piP[α,i] − pαpi

P[α+1,i]P[α,i]

=
α−1∑

i=1

piP[i,α−1]

P[i,α−1]P[i,α]

+
r∑

i=α+1

piP[α+1,i]

P[α+1,i]P[α,i]

.

Therefore

E
p
α ∼

α−1∑

i=1

pi

P[i,α]

+

r∑

i=α+1

pi

P[α,i]

, (18.18)
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as n→ ∞, which completes the proof of Theorem 18.2. �

18.4 Expectation – all keys distinct

Now we make the substitutions ni = 1 for all i ∈ {1, . . . , r} which will mean that

we consider the case where equal keys are not allowed. These calculations have

been done previously and we expect an average search cost of

2Hn − 3 +
2Hn

n
(18.19)

(see [36, page 249]). The final term is given as negative in [36], but it is obtained

by dividing

2(n+ 1)(Hn+1 − 1) − 2n,

(the result of Theorem 5.5 [36, page 247]), by n and adding 1, which produces

a positive third term. The result stated above gives us the average search cost

for finding key α in a binary search tree. Thus we must sum our result over

α = 1, . . . , r and divide by r to get the average. We also note that if all keys are

distinct, the length of the word (n) is the same as the length of the alphabet (r),

as we assume all keys are used exactly once. Thus from (18.16) we have (where

‘d’ stands for distinct)

E
d
α =

n∑

α=1

(
α−1∑

i=1

1

α− i+ 1
+

n∑

i=α+1

1

i− α + 1

)

1

n

=

n∑

α=1

(
α∑

k=2

1

k
+

n−α+1∑

k=2

1

k

)

1

n

=
n∑

α=1

(
Hα − 1 +Hn−α+1 − 1

)1

n
.

Since
n∑

k=1

Hk = (n+ 1)Hn − n, (18.20)

from [23], we can continue to get

E
d
α =

n∑

α=1

(
Hα − 1 +Hn−α+1 − 1

)1

n

=

(
n∑

α=1

Hα +

n∑

α=1

Hn−α+1 −
n∑

α=1

2

)

1

n

=
(
(n + 1)Hn − n+

n∑

i=1

Hi − 2n
) 1

n
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=
(
(n + 1)Hn − n+ (n+ 1)Hn − n− 2n

)1

n

= 2Hn +
2Hn

n
− 4.

Finally note that looking at left-to-right maxima/minima implies that this is the

average search cost less one. Graphically, this means that we were counting

branches and not nodes in the binary search tree. This can easily be remedied

by adding one to the result, which gives us equation (18.19).

18.5 Variance – multiset model

Again we start with the generating function (see equation (18.2))

f(z, u, x1, . . . , xr) =
[
Nmax(z, u,X[1,α−1])xNmin(z, u,X[α+1,r])

] zxα

1 − zX

=

[
α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)

x

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)]

zxα

1 − zX
.

To find the variance we need to find

V
m
α := [znxn1

1 · · ·xnr

r ]
∂2

∂u2
f(z, 1, x1, . . . , xr) + [znxn1

1 · · ·xnr

r ]
∂

∂u
f(z, 1, x1, . . . , xr)

−
(

[znxn1
1 · · ·xnr

r ]
∂

∂u
f(z, 1, x1, . . . , xr)

)2

. (18.21)

The expected value calculations will give us the second and third terms, so we

concentrate on the first term (i.e., the second moment) which requires us to perform

a second-order derivative. For the time being we ignore the factor zxα

1−zX
which is

independent of u, and we let

f := Nmax =

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)

,

and

g := Nmin =

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)

,

to write

∂2

∂u2
(f x g)

∣
∣
∣
u=1

=
∂2

∂u2
f
∣
∣
∣
u=1

x g
∣
∣
∣
u=1

(18.22)

+ 2
∂

∂u
f
∣
∣
∣
u=1

x

∂

∂u
g
∣
∣
∣
u=1

(18.23)

+
∂2

∂u2
g
∣
∣
∣
u=1

x f
∣
∣
∣
u=1

. (18.24)
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Of the above, only the two second-order partial derivatives in (18.22) and (18.24)

have not been already calculated (see (18.4), (18.5), (18.7) and (18.8)). We thus

look at those now (recall that f ′′ = f(log f)′′ + f ′(log f)′):

∂2

∂u2
f
∣
∣
∣
u=1

=
∂2

∂u2
Nmax

∣
∣
∣
u=1

=
∂2

∂u2

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

=

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

· ∂
2

∂u2

α−1∑

i=1

log

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

+
∂

∂u

α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

· ∂
∂u

α−1∑

i=1

log

(

1 +
zuxi

1 − zX[1,i]

)∣
∣
∣
∣
u=1

=
1

1 − zX[1,α−1]

(

−
α−1∑

i=1

z2x2
i

(1 − zX[1,i−1])2

)

+
1

1 − zX[1,α−1]

(
α−1∑

i=1

zxi

1 − zX[1,i−1]

)2

=
1

1 − zX[1,α−1]

((
α−1∑

i=1

zxi

1 − zX[1,i−1]

)2

−
α−1∑

i=1

z2x2
i

(1 − zX[1,i−1])2

)

.

The square of the sum will give us all combinations of terms such as

z2xixk

(1 − zX[1,i−1])(1 − zX[k−1])
.

The terms for which i = k will be cancelled by the second sum, thus:

∂2

∂u2
f
∣
∣
∣
u=1

=
∂2

∂u2
Nmax

∣
∣
∣
u=1

=
1

1 − zX[1,α−1]

((
α−1∑

i=1

zxi

1 − zX[1,i−1]

)2

−
α−1∑

i=1

z2x2
i

(1 − zX[1,i−1])2

)

= 2
α−1∑

i=1

i−1∑

k=1

(
xixk

(X[1,α−1] −X[1,i−1])(X[1,α−1] −X[1,k−1])(1 − zX[1,α−1])

− xixk

(X[1,i−1] −X[1,k−1])(X[1,α−1] −X[1,i−1])(1 − zX[1,i−1])

+
xixk

(X[1,i−1] −X[1,k−1])(X[1,α−1] −X[1,k−1])(1 − zX[1,k−1])

)

= 2
α−1∑

i=1

i−1∑

k=1

(
xixk

X[i,α−1]X[k,α−1](1 − zX[1,α−1])
− xixk

X[k,i−1]X[i,α−1](1 − zX[1,i−1])

+
xixk

X[k,i−1]X[k,α−1](1 − zX[1,k−1])

)

,
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(decomposed into partial fractions in order to perform the shuffle). Similarly

∂2

∂u2
g
∣
∣
∣
u=1

=
∂2

∂u2
Nmin

∣
∣
∣
u=1

=
∂2

∂u2

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

=
r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

· ∂
2

∂u2

r∑

i=α+1

log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

+
∂

∂u

r∏

i=α+1

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

· ∂
∂u

r∑

i=α+1

log

(

1 +
zuxi

1 − zX[i,r]

)∣
∣
∣
∣
u=1

=
1

1 − zX[α+1,r]

(

−
r∑

i=α+1

z2x2
i

(1 − zX[i+1,r])2

)

+
1

1 − zX[α+1,r]

(
r∑

i=α+1

zxi

1 − zX[i+1,r]

)2

=
1

1 − zX[α+1,r]

((
r∑

i=α+1

zxi

1 − zX[i+1,r]

)2

−
r∑

i=α+1

z2x2
i

(1 − zX[i+1,r])2

)

= 2

r∑

i=α+1

i−1∑

k=α+1

(
xixk

(X[α+1,r] −X[i+1,r])(X[α+1,r] −X[k+1,r])(1 − zX[α+1,r])

+
xixk

(X[k+1,r] −X[i+1,r])(X[α+1,r] −X[i+1,r])(1 − zX[i+1,r])

− xixk

(X[k+1,r] −X[i+1,r])(X[α+1,r] −X[k+1,r])(1 − zX[k+1,r])

)

= 2

r∑

i=α+1

i−1∑

k=α+1

(
xixk

X[α+1,i]X[α+1,k](1 − zX[α+1,r])

+
xixk

X[k+1,i]X[α+1,i](1 − zX[i+1,r])

− xixk

X[k+1,i]X[α+1,k](1 − zX[k+1,r])

)

.

Now that the second derivatives have been found, we can proceed to the shuffle

products and the Laplace transforms. First, equation (18.22) is a shuffle product

between the ordinary generating functions

∂2

∂u2
f
∣
∣
∣
u=1

= 2

α−1∑

i=1

i−1∑

k=1

(
xixk

X[i,α−1]X[k,α−1](1 − zX[1,α−1])
− xixk

X[k,i−1]X[i,α−1](1 − zX[1,i−1])

+
xixk

X[k,i−1]X[k,α−1](1 − zX[1,k−1])

)

,

and

g
∣
∣
u=1

=
1

1 − zX[α+1,r]
.

176



These transform to the exponential generating functions

2
α−1∑

i=1

i−1∑

k=1

(
xixk

X[i,α−1]X[k,α−1]

ezX[1,α−1] − xixk

X[k,i−1]X[i,α−1]

ezX[1,i−1]

+
xixk

X[k,i−1]X[k,α−1]

ezX[1,k−1]

)

,

and

ezX[α+1,r]

respectively. Now an ordinary product suffices, and we have

2

α−1∑

i=1

i−1∑

k=1

(
xixk

X[i,α−1]X[k,α−1]

ez(X[1,α−1]+X[α+1,r]) − xixk

X[k,i−1]X[i,α−1]

ez(X[1,i−1]+X[α+1,r])

+
xixk

X[k,i−1]X[k,α−1]

ez(X[1,k−1]+X[α+1,r])

)

,

which is transformed back to the ordinary generating function

2

α−1∑

i=1

i−1∑

k=1

(
xixk

X[i,α−1]X[k,α−1]

(
1 − z(X[1,α−1] +X[α+1,r])

)

− xixk

X[k,i−1]X[i,α−1]

(
1 − z(X[1,i−1] +X[α+1,r])

)

+
xixk

X[k,i−1]X[k,α−1]

(
1 − z(X[1,k−1] +X[α+1,r])

)

)

.

For the equation (18.24) it is a similar process, and we have a shuffle product

between ordinary generating functions

∂2

∂u2
g
∣
∣
∣
u=1

= 2
r∑

i=α+1

i−1∑

k=α+1

(
xixk

X[α+1,i]X[α+1,k](1 − zX[α+1,r])

+
xixk

X[k+1,i]X[α+1,i](1 − zX[i+1,r])

− xixk

X[k+1,i]X[α+1,k](1 − zX[k+1,r])

)

,

and
1

1 − zX[1,α−1]

.

Making use of the Laplace transform we can write these first as exponential gen-

erating functions

2

r∑

i=α+1

i−1∑

k=α+1

(
xixk

X[α+1,i]X[α+1,k]
ezX[α+1,r] +

xixk

X[k+1,i]X[α+1,i]
ezX[i+1,r]

− xixk

X[k+1,i]X[α+1,k]
ezX[k+1,r]

)

,
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and

ezX[1,α−1] ,

and then multiply them to get

2

r∑

i=α+1

i−1∑

k=α+1

(
xixk

X[α+1,i]X[α+1,k]
ez(X[α+1,r]+X[1,α−1]) +

xixk

X[k+1,i]X[α+1,i]
ez(X[i+1,r]+X[1,α−1])

− xixk

X[k+1,i]X[α+1,k]
ez(X[k+1,r]+X[1,α−1])

)

.

This can be written back in ordinary generating function form as

2

r∑

i=α+1

i−1∑

k=α+1

(
xixk

X[α+1,i]X[α+1,k](1 − z(X[α+1,r] +X[1,α−1]))

+
xixk

X[k+1,i]X[α+1,i](1 − z(X[i+1,r] +X[1,α−1]))

− xixk

X[k+1,i]X[α+1,k](1 − z(X[k+1,r] +X[1,α−1]))

)

.

Lastly, for equation (18.23)

2
∂

∂u
f
∣
∣
∣
u=1

x

∂

∂u
g
∣
∣
∣
u=1

= 2

[

1

1 − zX[1,α−1]

α−1∑

i=1

zxi

1 − zX[1,i−1]

]

x

[

1

1 − zX[α+1,r]

r∑

i=α+1

zxi

1 − zX[i+1,r]

]

= 2

[
α−1∑

i=1

(
xi

X[i,α−1]

1

1 − zX[1,α−1]
− xi

X[i,α−1]

1

1 − zX[1,i−1]

)]

x

[
r∑

i=α+1

(
xi

X[α+1,i]

1

1 − zX[α+1,r]

− xi

X[α+1,i]

1

1 − zX[i+1,r]

)]

which transforms to

2

α−1∑

i=1

(
xi

X[i,α−1]

ezX[1,α−1] − xi

X[i,α−1]

ezX[1,i−1]

)

·
r∑

j=α+1

(
xj

X[α+1,j]

ezX[α+1,r] − xj

X[α+1,j]

ezX[j+1,r]

)

= 2
α−1∑

i=1

r∑

j=α+1

(
xixj

X[i,α−1]X[α+1,j]

ez(X[1,α−1]+X[α+1,r]) − xixj

X[i,α−1]X[α+1,j]

ez(X[1,α−1]+X[j+1,r])

− xixj

X[i,α−1]X[α+1,j]

ez(X[1,i−1]+X[α+1,r]) +
xixj

X[i,α−1]X[α+1,j]

ez(X[1,i−1]+X[j+1,r])

)

,

and transforms back to

2

α−1∑

i=1

r∑

j=α+1

(
xixj

X[i,α−1]X[α+1,j]

(
1 − z(X[1,α−1] +X[α+1,r])

)
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− xixj

X[i,α−1]X[α+1,j]

(
1 − z(X[1,α−1] +X[j+1,r])

)

− xixj

X[i,α−1]X[α+1,j]

(
1 − z(X[1,i−1] +X[α+1,r])

)

+
xixj

X[i,α−1]X[α+1,j]

(
1 − z(X[1,i−1] +X[j+1,r])

)

)

.

We have now looked at all three terms in the shuffle product which give us every-

thing for the cost function except the factor zxα

1−zX
which we include below. This

means that we must decompose once again into partial fractions in order to find

the coefficient of zn. We get:

∂2

∂u2
f(z, 1, x1, . . . , xr)

= 2

α−1∑

i=1

i−1∑

k=1

(

zxαxixk

X[i,α−1]X[k,α−1](1 − zX)(1 − z(X[1,α−1] +X[α+1,r]))

− zxαxixk

X[k,i−1]X[i,α−1](1 − zX)(1 − z(X[1,i−1] +X[α+1,r]))

+
zxαxixk

X[k,i−1]X[k,α−1](1 − zX)(1 − z(X[1,k−1] +X[α+1,r]))

)

+ 2
r∑

i=α+1

i−1∑

k=α+1

(

zxαxixk

X[α+1,i]X[α+1,k](1 − zX)(1 − z(X[α+1,r] +X[1,α−1]))

+
zxαxixk

X[k+1,i]X[α+1,i](1 − zX)(1 − z(X[i+1,r] +X[1,α−1]))

− zxαxixk

X[k+1,i]X[α+1,k](1 − zX)(1 − z(X[k+1,r] +X[1,α−1]))

)

+ 2
α−1∑

i=1

r∑

j=α+1

(

zxαxixj

X[i,α−1]X[α+1,j](1 − zX)(1 − z(X[1,α−1] +X[α+1,r]))

− zxαxixj

X[i,α−1]X[α+1,j](1 − zX)(1 − z(X[1,α−1] +X[j+1,r]))

− zxαxixj

X[i,α−1]X[α+1,j](1 − zX)(1 − z(X[1,i−1] +X[α+1,r]))

+
zxαxixj

X[i,α−1]X[α+1,j](1 − zX)(1 − z(X[1,i−1] +X[j+1,r]))

)

= 2

α−1∑

i=1

i−1∑

k=1

(

xαxixk

X[i,α−1]X[k,α−1](X − (X[1,α−1] +X[α+1,r]))(1 − zX)

+
xαxixk

X[i,α−1]X[k,α−1]((X[1,α−1] +X[α+1,r]) −X)(1 − z(X[1,α−1] +X[α+1,r]))

− xαxixk

X[k,i−1]X[i,α−1](X − (X[1,i−1] +X[α+1,r]))(1 − zX)

− xαxixk

X[k,i−1]X[i,α−1]((X[1,i−1] +X[α+1,r]) −X)(1 − z(X[1,i−1] +X[α+1,r]))
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+
xαxixk

X[k,i−1]X[k,α−1](X − (X[1,k−1] +X[α+1,r]))(1 − zX)

+
xαxixk

(X[k,i−1]X[k,α−1]((X[1,k−1] +X[α+1,r]) −X)(1 − z(X[1,k−1] +X[α+1,r]))

)

+ 2

r∑

i=α+1

i−1∑

k=α+1

(

xαxixk

X[α+1,i]X[α+1,k](X − (X[α+1,r] +X[1,α−1]))(1 − zX))

+
xαxixk

X[α+1,i]X[α+1,k]((X[α+1,r] +X[1,α−1]) −X)(1 − z(X[α+1,r] +X[1,α−1]))

+
xαxixk

X[k+1,i]X[α+1,i](X − (X[i+1,r] +X[1,α−1]))(1 − zX)

+
xαxixk

X[k+1,i]X[α+1,i]((X[i+1,r] +X[1,α−1]) −X)(1 − z(X[i+1,r] +X[1,α−1]))

− xαxixk

X[k+1,i]X[α+1,k](X − (X[k+1,r] +X[1,α−1]))(1 − zX)

− xαxixk

X[k+1,i]X[α+1,k]((X[k+1,r] +X[1,α−1]) −X)(1 − z(X[k+1,r] +X[1,α−1]))

)

+ 2
α−1∑

i=1

r∑

j=α+1

(

xαxixj

X[i,α−1]X[α+1,j](X − (X[1,α−1] +X[α+1,r]))(1 − zX)

+
xαxixj

X[i,α−1]X[α+1,j]((X[1,α−1] +X[α+1,r]) −X)(1 − z(X[1,α−1] +X[α+1,r]))

− xαxixj

X[i,α−1]X[α+1,j](X − (X[1,α−1] +X[j+1,r]))(1 − zX)

− xαxixj

X[i,α−1]X[α+1,j]((X[1,α−1] +X[j+1,r]) −X)(1 − z(X[1,α−1] +X[j+1,r]))

− xαxixj

X[i,α−1]X[α+1,j](X − (X[1,i−1] +X[α+1,r]))(1 − zX)

− xαxixj

X[i,α−1]X[α+1,j]((X[1,i−1] +X[α+1,r]) −X)(1 − z(X[1,i−1] +X[α+1,r]))

+
xαxixj

X[i,α−1]X[α+1,j](X − (X[1,i−1] +X[j+1,r]))(1 − zX)

+
xαxixj

X[i,α−1]X[α+1,j]((X[1,i−1] +X[j+1,r]) −X)(1 − z(X[1,i−1] +X[j+1,r]))

)

= 2

α−1∑

i=1

i−1∑

k=1

(

xixk

X[i,α−1]X[k,α−1](1 − zX)

− xixk

X[i,α−1]X[k,α−1](1 − z(X[1,α−1] +X[α+1,r]))

− xαxixk

X[k,i−1]X[i,α−1]X[i,α](1 − zX)

+
xαxixk

X[k,i−1]X[i,α−1]X[i,α](1 − z(X[1,i−1] +X[α+1,r]))

+
xαxixk

X[k,i−1]X[k,α−1]X[k,α](1 − zX)
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− xαxixk

(X[k,i−1]X[k,α−1]X[k,α](1 − z(X[1,k−1] +X[α+1,r]))

)

+ 2

r∑

i=α+1

i−1∑

k=α+1

(

xixk

X[α+1,i]X[α+1,k](1 − zX))

− xixk

X[α+1,i]X[α+1,k](1 − z(X[α+1,r] +X[1,α−1]))

+
xαxixk

X[k+1,i]X[α+1,i]X[α,i](1 − zX)

− xαxixk

X[k+1,i]X[α+1,i]X[α,i](1 − z(X[i+1,r] +X[1,α−1]))

− xαxixk

X[k+1,i]X[α+1,k]X[α,k](1 − zX)

+
xαxixk

X[k+1,i]X[α+1,k]X[α,k](1 − z(X[k+1,r] +X[1,α−1]))

)

+ 2
α−1∑

i=1

r∑

j=α+1

(

xixj

X[i,α−1]X[α+1,j](1 − zX)

− xixj

X[i,α−1]X[α+1,j](1 − z(X[1,α−1] +X[α+1,r]))

− xαxixj

X[i,α−1]X[α+1,j]X[α,j](1 − zX)

+
xαxixj

X[i,α−1]X[α+1,j]X[α,j](1 − z(X[1,α−1] +X[j+1,r]))

− xαxixj

X[i,α−1]X[α+1,j]X[i,α](1 − zX)

+
xαxixj

X[i,α−1]X[α+1,j]X[i,α](1 − z(X[1,i−1] +X[α+1,r]))

+
xαxixj

X[i,α−1]X[α+1,j]X[i,j](1 − zX)

− xαxixj

X[i,α−1]X[α+1,j]X[i,j](1 − z(X[1,i−1] +X[j+1,r]))

)

.

We can write the coefficient of zn explicitly as

[zn]
∂2

∂u2
f(z, 1, x1, . . . , xr)

= 2

α−1∑

i=1

i−1∑

k=1

(

xixk

X[i,α−1]X[k,α−1]
Xn − xixk

X[i,α−1]X[k,α−1]
(X[1,α−1] +X[α+1,r])

n

− xαxixk

X[k,i−1]X[i,α−1]X[i,α]

Xn +
xαxixk

X[k,i−1]X[i,α−1]X[i,α]

(X[1,i−1] +X[α+1,r])
n

+
xαxixk

X[k,i−1]X[k,α−1]X[k,α]

Xn − xαxixk

X[k,i−1]X[k,α−1]X[k,α]

(X[1,k−1] +X[α+1,r])
n

)

+ 2

r∑

i=α+1

i−1∑

k=α+1

(

xixk

X[α+1,i]X[α+1,k]
Xn − xixk

X[α+1,i]X[α+1,k]
(X[α+1,r] +X[1,α−1])

n
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+
xαxixk

X[k+1,i]X[α+1,i]X[α,i]
Xn − xαxixk

X[k+1,i]X[α+1,i]X[α,i]
(X[i+1,r] +X[1,α−1])

n

− xαxixk

X[k+1,i]X[α+1,k]X[α,k]
Xn +

xαxixk

X[k+1,i]X[α+1,k]X[α,k]
(X[k+1,r] +X[1,α−1])

n

)

+ 2

α−1∑

i=1

r∑

j=α+1

(

xixj

X[i,α−1]X[α+1,j]
Xn − xixj

X[i,α−1]X[α+1,j]
(X[1,α−1] +X[α+1,r])

n

− xαxixj

X[i,α−1]X[α+1,j]X[α,j]

Xn +
xαxixj

X[i,α−1]X[α+1,j]X[α,j]

(X[1,α−1] +X[j+1,r])
n

− xαxixj

X[i,α−1]X[α+1,j]X[i,α]

Xn +
xαxixj

X[i,α−1]X[α+1,j]X[i,α]

(X[1,i−1] +X[α+1,r])
n

+
xαxixj

X[i,α−1]X[α+1,j]X[i,j]

Xn − xαxixj

X[i,α−1]X[α+1,j]X[i,j]

(X[1,i−1] +X[j+1,r])
n

)

.

Now the coefficient of xn1
1 · · ·xnr

r needs to be found. The process is exactly the

same as for the expectation (refer to the way (18.12) and (18.13) were dealt with),

hence (see equation (18.21))

V
m
α = [znxn1

1 · · ·xnr

r ]
∂2

∂u2
f(z, 1, x1, . . . , xr) + [znxn1

1 · · ·xnr

r ]
∂

∂u
f(z, 1, x1, . . . , xr)

−
(

[znxn1
1 · · ·xnr

r ]
∂

∂u
f(z, 1, x1, . . . , xr)

)2

= 2

α−1∑

i=1

i−1∑

k=1

(

nink

N[i,α−1]N[k,α−1]
− nαnink

N[k,i−1]N[i,α−1]N[i,α]
+

nαnink

N[k,i−1]N[k,α−1]N[k,α]

)

+ 2

r∑

i=α+1

i−1∑

k=α+1

(

nink

N[α+1,i]N[α+1,k]

+
nαnink

N[k+1,i]N[α+1,i]N[α,i]

− nαnink

N[k+1,i]N[α+1,k]N[α,k]

)

+ 2

α−1∑

i=1

r∑

j=α+1

(

ninj

N[i,α−1]N[α+1,j]
− nαninj

N[i,α−1]N[α+1,j]N[α,j]

− nαninj

N[i,α−1]N[α+1,j]N[i,α]

+
nαninj

N[i,α−1]N[α+1,j]N[i,j]

)

+
α−1∑

i=1

ni

N[i,α]

+
r∑

i=α+1

ni

N[α,i]

−
(

α−1∑

i=1

ni

N[i,α]

)2

− 2

α−1∑

i=1

ni

N[i,α]

r∑

i=α+1

ni

N[α,i]
−
(

r∑

i=α+1

ni

N[α,i]

)2

. (18.25)

This is an explicit form of the variance for the cost of finding an arbitrary key α in

a binary search tree without equal keys formed from a sequence with equal keys.

The proof of Theorem 18.3 is thus complete. �
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18.6 Variance – probability model

We have (from equations (18.2) and (18.17))

f(z, u, x1, . . . , xr) =

[
α−1∏

i=1

(

1 +
zuxi

1 − zX[1,i]

)

x

r∏

j=α+1

(

1 +
zuxj

1 − zX[j,r]

)]

· zxα

1 − zX

=
∑

w∈A∗

z|w|ua(w)x
|w|1
1 x

|w|2
2 · · ·x|w|r

r ,

where A = {1, . . . , r} etc. as before. For the variance, we need

V
p
α = [zn]

∂2

∂2u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

+ [zn]
∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

−
(

[zn]
∂

∂u
f(z, u, p1, . . . , pr)

∣
∣
∣
u=1

)2

, (18.26)

where pi is the probability of letter i appearing in the sequence. Now, for P = P[1,r],

[zn]
∂2

∂u2
f(z, 1, p1, . . . , pr)

= 2

α−1∑

i=1

i−1∑

k=1

(

pipk

P[i,α−1]P[k,α−1]

P n − pipk

P[i,α−1]P[k,α−1]

(P[1,α−1] + P[α+1,r])
n

− pαpipk

P[k,i−1]P[i,α−1]P[i,α]

P n +
pαpipk

P[k,i−1]P[i,α−1]P[i,α]

(P[1,i−1] + P[α+1,r])
n

+
pαpipk

P[k,i−1]P[k,α−1]P[k,α]

P n − pαpipk

P[k,i−1]P[k,α−1]P[k,α]

(P[1,k−1] + P[α+1,r])
n

)

+ 2

r∑

i=α+1

i−1∑

k=α+1

(

pipk

P[α+1,i]P[α+1,k]

P n − pipk

P[α+1,i]P[α+1,k]

(P[α+1,r] + P[1,α−1])
n

+
pαpipk

P[k+1,i]P[α+1,i]P[α,i]

P n − pαpipk

P[k+1,i]P[α+1,i]P[α,i]

(P[i+1,r] + P[1,α−1])
n

− pαpipk

P[k+1,i]P[α+1,k]P[α,k]

P n +
pαpipk

P[k+1,i]P[α+1,k]P[α,k]

(P[k+1,r] + P[1,α−1])
n

)

+ 2

α−1∑

i=1

r∑

j=α+1

(

pipj

P[i,α−1]P[α+1,j]

P n − pipj

P[i,α−1]P[α+1,j]

(P[1,α−1] + P[α+1,r])
n

− pαpipj

P[i,α−1]P[α+1,j]P[α,j]
P n +

pαpipj

P[i,α−1]P[α+1,j]P[α,j]
(P[1,α−1] + P[j+1,r])

n

− pαpipj

P[i,α−1]P[α+1,j]P[i,α]

P n +
pαpipj

P[i,α−1]P[α+1,j]P[i,α]

(P[1,i−1] + P[α+1,r])
n

+
pαpipj

P[i,α−1]P[α+1,j]P[i,j]

P n − pαpipj

P[i,α−1]P[α+1,j]P[i,j]

(P[1,i−1] + P[j+1,r])
n

)

.

Now recall that P = P[1,r] = 1, and that P[i,j] < 1 for all other allowable values of

i and j. Thus, every second term above can be written in the form b · an where
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a < 1, and b is independent of n. These terms will consequently not contribute

when taking the limit as n→ ∞. Then

[zn]
∂2

∂u2
f(z, 1, p1, . . . , pr)

∼ 2

α−1∑

i=1

i−1∑

k=1

(

pipk

P[i,α−1]P[k,α−1]

− pαpipk

P[k,i−1]P[i,α−1]P[i,α]

+
pαpipk

P[k,i−1]P[k,α−1]P[k,α]

)

+ 2

r∑

i=α+1

i−1∑

k=α+1

(

pipk

P[α+1,i]P[α+1,k]

+
pαpipk

P[k+1,i]P[α+1,i]P[α,i]

− pαpipk

P[k+1,i]P[α+1,k]P[α,k]

)

+ 2

α−1∑

i=1

r∑

j=α+1

(

pipj

P[i,α−1]P[α+1,j]

− pαpipj

P[i,α−1]P[α+1,j]P[α,j]

− pαpipj

P[i,α−1]P[α+1,j]P[i,α]

+
pαpipj

P[i,α−1]P[α+1,j]P[i,j]

)

.

For the full variance expression, substituting (18.18) into (18.26) gives

V
p
α ∼ 2

α−1∑

i=1

i−1∑

k=1

(

pipk

P[i,α−1]P[k,α−1]

− pαpipk

P[k,i−1]P[i,α−1]P[i,α]

+
pαpipk

P[k,i−1]P[k,α−1]P[k,α]

)

+ 2

r∑

i=α+1

i−1∑

k=α+1

(

pipk

P[α+1,i]P[α+1,k]

+
pαpipk

P[k+1,i]P[α+1,i]P[α,i]

− pαpipk

P[k+1,i]P[α+1,k]P[α,k]

)

+ 2

α−1∑

i=1

r∑

j=α+1

(

pipj

P[i,α−1]P[α+1,j]

− pαpipj

P[i,α−1]P[α+1,j]P[α,j]

− pαpipj

P[i,α−1]P[α+1,j]P[i,α]
+

pαpipj

P[i,α−1]P[α+1,j]P[i,j]

)

+

α−1∑

i=1

pi

P[i,α]

+

r∑

i=α+1

pi

P[α,i]

−
(

α−1∑

i=1

pi

P[i,α]

)2

− 2

α−1∑

i=1

pi

P[i,α]

r∑

i=α+1

pi

P[α,i]

−
(

r∑

i=α+1

pi

P[α,i]

)2

. (18.27)

Theorem 18.4 is thus proved. �

18.7 Variance – all keys distinct

We now insist that only one of each letter occurs (i.e., ni = 1, ∀ i = 1, . . . , r) and

then compare to the result for the case where there are no equal keys. In [36, page

249], this variance is given as asymptotic to 2Hn. We have (where ‘d’ stands for
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distinct)

V
d
α = 2

α−1∑

i=1

i−1∑

k=1

(

1

(α− i)(α− k)
− 1

(i− k)(α− i)(α− i+ 1)

+
1

(i− k)(α− k)(α− k + 1)

)

(18.28)

+ 2
r∑

i=α+1

i−1∑

k=α+1

(

1

(i− α)(k − α)
+

1

(i− k)(i− α)(i− α + 1)

− 1

(i− k)(k − α)(k − α + 1)

)

(18.29)

+ 2
α−1∑

i=1

r∑

j=α+1

(

1

(α− i)(j − α)
− 1

(α− i)(j − α)(j − α + 1)
(18.30)

− 1

(α− i)(j − α)(α− i+ 1)
+

1

(α− i)(j − α)(j − i+ 1)

)

+
α−1∑

i=1

1

(α− i+ 1)
+

r∑

j=α+1

1

(j − α + 1)
(18.31)

−
(

α−1∑

i=1

1

(α− i+ 1)

)2

− 2
α−1∑

i=1

1

(α− i+ 1)

r∑

j=α+1

1

(j − α + 1)

−
(

r∑

j=α+1

1

(j − α + 1)

)2

. (18.32)

We would like to write this more simply, and for that we use harmonic numbers.

From [12, page 280], we have that

∑

1≤j≤k≤n

1

jk
=

1

2

(
H2

n +H(2)
n

)
,

where Hn :=
n∑

k=1

1
k
, and H

(2)
n :=

n∑

k=1

1
k2 . This is because the left-hand side of

the equation represents all possible combinations of products in the denominator

of the numbers 1, . . . , n, each product appearing exactly once. As for the right-

hand side, squaring a harmonic number will also give such products, but the terms

where j 6= k appear twice. For this reason, we must add the second-order harmonic

number (representing the terms where j = k). Thus we have every term appearing

exactly twice and the factor of a half reduces this to what we want. By a similar

explanation we can express

∑

1≤j<k≤n

1

jk
=

1

2

(
H2

n −H(2)
n

)
, (18.33)
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which is the same idea but without the terms where j = k. The strict inequality

on the left-hand side of the equation balances the negative sign on the right-hand

side. In this case we subtract the second-order harmonic number, which gets rid

of the terms where j = k in H2
n (each appears once). This leaves us with all the

terms where j 6= k, but each term appears twice, hence the factor of a half.

We use (18.33) to simplify the first line of the variance in the distinct case. We

can rewrite (18.28) as:

2

α−1∑

i=1

i−1∑

k=1

(

1

(α− i)(α− k)
− 1

(i− k)(α− i)(α− i+ 1)

+
1

(i− k)(α− k)(α− k + 1)

)

= 2
α−1∑

i=1

i−1∑

k=1

1

(α− i+ 1)(α− k + 1)

= 2
∑

2≤j<l≤α

1

jl

=
(
Hα − 1

)2 −
(
H(2)

α − 1
)
.

This represents all terms of the form 1
jl

where j and l run from 2 to α, and j 6= l.

Each term will appear twice. Using the same idea as in [12], we can think of

this as the square of the harmonic number Hα, without the 1. Again we have

a correction factor and this time we want to exclude terms where j = l, so we

subtract the second-order harmonic number. The factor of two in the second-last

line is cancelled with the factor of a half introduced after squaring Hα.

The expression (18.29) can be written as:

2

r∑

i=α+1

i−1∑

k=α+1

(

1

(i− α)(k − α)
+

1

(i− k)(i− α)(i− α + 1)

− 1

(i− k)(k − α)(k − α + 1)

)

= 2
r∑

i=α+1

i−1∑

k=α+1

1

(i− α + 1)(k − α + 1)

=
(
Hr−α+1 − 1

)2 −
(
H

(2)
r−α+1 − 1

)
.

Again, choosing a few values shows that the second-last line depicts twice all non-

equal combinations from 2 to r − α + 1, as is shown in the last line by squaring

the harmonic number less one, and removing those terms we do not want which

are where the factor is repeated.
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Merging the terms and applying a partial fraction decomposition to (18.30), pro-

duces

2
α−1∑

i=1

r∑

j=α+1

(

1

(α− i)(j − α)
− 1

(α− i)(j − α)(j − α+ 1)

− 1

(α− i)(j − α)(α− i+ 1)
+

1

(α− i)(j − α)(j − i+ 1)

)

= 2
α−1∑

i=1

r∑

j=α+1

(

1

(α− i+ 1)(j − i+ 1)
+

1

(j − α + 1)(j − i+ 1)

)

= 2

α∑

k=2

1

k

(
Hr−α+k −Hk

)
+ 2

r−(α−1)
∑

k=2

1

k

(
Hk+α−1 −Hk

)

= 2
α∑

k=2

1

k
Hr−α+k + 2

r−(α−1)
∑

k=2

1

k
Hk+α−1 − 2

α∑

k=2

1

k
Hk − 2

r−(α−1)
∑

k=2

1

k
Hk. (18.34)

To deal with this, we refer to two identities: In [12, page 280] we find the identity

n∑

k=1

1

k
Hk =

1

2

(
H2

n +H(2)
n

)
, (18.35)

and the reciprocity law in Lemma 2 in [19, page 116], namely

j
∑

k=1

Hn+k−j

k
+

n+1−j
∑

k=1

Hj+k−1

k
=

1

2

(
H2

j +H
(2)
j

)
+

1

2

(
H2

n+1−j +H
(2)
n+1−j

)

+HjHn+1−j +
1

j(n + 1 − j)

+
n + 1

j(n+ 1 − j)

(
Hn −Hj −Hn+1−j

)
,

takes care of the other two terms. Replacing n and j by r and α respectively;

subtracting the relevant k = 1 term and multiplying everything by 2 simplifies

(18.34) (and thus (18.30)) to:

2

α∑

k=2

1

k
Hr−α+k + 2

r−(α−1)
∑

k=2

1

k
Hk+α−1 − 2

α∑

k=2

1

k
Hk − 2

r−(α−1)
∑

k=2

1

k
Hk

= 2

[
1

2

(

H2
α +H(2)

α

)

+
1

2

(

H2
r+1−α +H

(2)
r+1−α

)

+HαHr+1−α +
1

α(r + 1 − α)

+
r + 1

α(r + 1 − α)

(
Hr −Hα −Hr+1−α

)
−Hr−α+1 −Hα

]

− 2

[
1

2

(

H2
α +H(2)

α

)

− 1

]

− 2

[
1

2

(

H2
r−(α−1) +H

(2)
r−(α−1)

)

− 1

]
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= H2
α +H(2)

α +H2
r+1−α +H

(2)
r+1−α + 2HαHr+1−α + 2

1

α(r + 1 − α)

+ 2
r + 1

α(r + 1 − α)

(
Hr −Hα −Hr+1−α

)
− 2Hr−α+1 − 2Hα

−H2
α −H(2)

α + 2 −H2
r−(α−1) −H

(2)
r−(α−1) + 2

= 2HαHr+1−α − 2Hr−α+1 − 2Hα + 4 + 2
1

α(r + 1 − α)

+ 2
r + 1

α(r + 1 − α)

(
Hr −Hα −Hr+1−α

)
.

The expectation (18.31) and negative expectation squared (18.32) are easier. We

get

α−1∑

i=1

1

(α− i+ 1)
+

r∑

j=α+1

1

(j − α+ 1)

=
α∑

i=2

1

i
+

r−α+1∑

j=2

1

j

= Hα − 1 +Hr−α+1 − 1,

and

−
( α−1∑

i=1

1

(α− i+ 1)

)2

− 2
α−1∑

i=1

1

(α− i+ 1)

r∑

j=α+1

1

(j − α + 1)
−
( r∑

j=α+1

1

(j − α + 1)

)2

= −
( α∑

i=2

1

i

)2

− 2

α∑

i=2

1

i

r−α+1∑

j=2

1

j
−
( r−α+1∑

j=2

1

j

)2

= −(Hα − 1)2 − 2(Hα − 1)(Hr−α+1 − 1) − (Hr−α+1 − 1)2,

respectively.

We can put all of these results together to get:

V
d
α =

(
Hα − 1

)2 −
(
H(2)

α − 1
)

+
(
Hr−α+1 − 1

)2 −
(
H

(2)
r−α+1 − 1

)

+ 2HαHr+1−α − 2Hr−α+1 − 2Hα + 4 + 2
1

α(r + 1 − α)

+ 2
r + 1

α(r + 1 − α)

(
Hr −Hα −Hr+1−α

)

+Hα − 1 +Hr−α+1 − 1

− (Hα − 1)2 − 2(Hα − 1)(Hr−α+1 − 1) − (Hr−α+1 − 1)2

= H2
α − 2Hα + 1 −H(2)

α + 1

+H2
r−α+1 − 2Hr−α+1 + 1 −H

(2)
r−α+1 + 1
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+ 2HαHr+1−α − 2Hr−α+1 − 2Hα + 4 + 2
1

α(r + 1 − α)

+ 2
r + 1

α(r + 1 − α)

(
Hr −Hα −Hr+1−α

)

+Hα +Hr−α+1 − 2

−H2
α + 2Hα − 1 − 2HαHr−α+1 + 2Hα + 2Hr−α+1 − 2

−H2
r−α+1 + 2Hr−α+1 − 1

= 2 +Hα +Hr−α+1 −H(2)
α −H

(2)
r−α+1 +

2

α(r + 1 − α)

+
2(r + 1)

α(r + 1 − α)

(
Hr −Hα −Hr+1−α

)
.

Recall that from [36, page 249], the variance on average should grow like 2Hr as

r → ∞ (recall r = n for the distinct case). To get the average variance, we sum

on α and divide by r. Note the symmetry between α and r − α + 1 which aids

simplification.

r∑

α=1

1

r
V

d
α =

r∑

α=1

1

r

[

2 +Hα +Hr−α+1 −H(2)
α −H

(2)
r−α+1 +

2

α(r + 1 − α)

+
2(r + 1)

α(r + 1 − α)

(
Hr −Hα −Hr+1−α

)
]

= 2 +
2

r

r∑

α=1

Hα − 2

r

r∑

α=1

H(2)
α +

2

r

r∑

α=1

1

α(r + 1 − α)

+
2(r + 1)

r

r∑

α=1

1

α(r − α + 1)

(
Hr −Hα −Hr+1−α

)
.

We now need (see [12, 23])

n∑

k=1

Hk = (n+ 1)Hn − n,

n∑

k=1

H
(2)
k = (n+ 1)H(2)

n −Hn,

and
n∑

k=1

1

n− k + 1
Hk = H2

n+1 −H
(2)
n+1,

as well as equation (18.35). Also, we note that by partial fractions:

1

α(r − α+ 1)
=

1

r + 1

(
1

α
+

1

r − α + 1

)

.

Thus we can write
r∑

α=1

1

r
V

d
α = 2 +

2

r

(
(r + 1)Hr − r

)
− 2

r

(
(r + 1)H(2)

r −Hr

)
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+
2

r(r + 1)

r∑

α=1

(
1

α
+

1

r − α + 1

)

+
2

r

r∑

α=1

(
1

α
+

1

r − α + 1

)
(
Hr −Hα −Hr+1−α

)

= 2 +
2

r
(r + 1)Hr −

2

r
r − 2

r
(r + 1)H(2)

r +
2

r
Hr

+
2

r(r + 1)

r∑

α=1

1

α
+

2

r(r + 1)

r∑

α=1

1

r − α + 1

+
2

r

r∑

α=1

1

α
Hr −

2

r

r∑

α=1

1

α
Hα − 2

r

r∑

α=1

1

α
Hr+1−α

+
2

r

r∑

α=1

1

r − α + 1
Hr −

2

r

r∑

α=1

1

r − α + 1
Hα

− 2

r

r∑

α=1

1

r − α+ 1
Hr+1−α

= 2 + 2Hr +
2

r
Hr − 2 − 2

r
H(2)

r r − 2

r
H(2)

r +
2

r
Hr

+
2

r(r + 1)
Hr +

2

r(r + 1)
Hr

+
2

r
H2

r − 1

r

(
H2

r +H(2)
r

)
− 2

r

r∑

α=1

1

r − α + 1
Hα

+
2

r
H2

r − 2

r

(
H2

r+1 −H
(2)
r+1

)

− 1

r

(
H2

r +H(2)
r

)

=

(

2 +
4

r
+

4

r(r + 1)

)

Hr −
(

2 +
4

r

)

H(2)
r

+
2

r
H2

r − 4

r
H2

r+1 +
4

r
H

(2)
r+1.

As r → ∞, the dominant term is the expected 2Hr. We can use the asymptotics

Hn ∼ logn and H
(2)
n ∼ π2

6
from [36] to see this. This expression thus grows like

the logarithmic function, and a plot on Mathematica confirms this:

Figure 18.3: Plot of the average variance.
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Chapter 19

Conclusion

This third and final part of the thesis was concerned with sequences drawn from

finite alphabets. If the number of times each letter appeared in the sequence was

known, then an exact formula was obtained in terms of these values which make

up a multiset. If, however, this was not known and instead a sequence was formed

from an alphabet with fixed probabilities attached to each letter, then approximate

results were obtained (which become more accurate as the length of the sequence

increases).

The average depth of a certain key or node was obtained, by first examining the

left-going depth of the smallest letter in a sequence and then examining the right-

going depth of the largest letter in a sequence. Then these ideas were merged to

get an average depth of

E
m
α =

α−1∑

i=1

ni

N[i,α]

+
r∑

i=α+1

ni

N[α,i]

,

using the multiset model, and

E
p
α ∼

α−1∑

i=1

pi

P[i,α]

+
r∑

i=α+1

pi

P[α,i]

,

as n→ ∞, with the probability model.

For each of the three parameters, the results for the two different models were

found to be the same asymptotically as the length of the word went to infinity, as

explained in Section 16.3.
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Part IV

Appendix
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Appendix A

Fourier series for distinct values

The Fourier series (3.19) we want to simplify can be written as δV (x) =
∑

k 6=0

ake
2πiiikx

where

ak =
2

L
Γ(−χk)

[
ψ(−χk) + γ

L
− g(χk)

]

− 1

L2

∑

j 6=0, 6=k

Γ(−χj)Γ(−χk−j),

with g(x) = −
∑

l≥1

(
x
l

)
1

Ql−1
. We consult [32] to do this, and start by using the

formula Γ(−x+ l)(−1)l = (x− l + 1) · · · (x− 1)xΓ(−x) to rewrite

Γ(−χk)g(χk) = −
∑

l≥1

(−1)lΓ(l − χk)

l!Ql − 1
,

so that we have

ak =
2

L
Γ(−χk)

[ψ(−χk) + γ

L

]

+
2

L

∑

l≥1

(−1)lΓ(l − χk)

l!Ql − 1
− 1

L2

∑

j 6=0, 6=k

Γ(−χj)Γ(−χk−j).

We now consider the function [17]

F (z) = L
Γ(z)Γ(−χk − z)

eLz − 1
,

with integral

I1 =
1

2πiii

∫ 1
2
+iii∞

1
2
−iii∞

F (z)dz.

This function is chosen because of the residues produced when the contour of

integration is shifted. We evaluate this integral twice, by shifting the contour first

left and then right. We start by shifting the line left to ℜ(z) = −1
2
. Simple poles

occur at z = −χj for all j ∈ Z\{0}, with a double pole at z = 0.

Res(F, 0) = −γΓ(−χk) −
L

2
Γ(−χk) − Γ(−χk)ψ(−χk),
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Res(F,−χk) = −Γ(−χk)ψ(−χk) +
L

2
Γ(−χk) − γΓ(−χk),

Res(F,−χj) = Γ(−χk)Γ(−χk + χj), ∀j 6= 0, 6= k.

Thus

I1 =
1

2πiii

∫ − 1
2
+iii∞

− 1
2
−iii∞

F (z)dz − 2Γ(−χk)(γ + ψ(−χk) +
∑

j 6=0, 6=k

Γ(−χk)Γ(−χk + χj),

and we use 1
eLz−1

= −1 − 1
e−Lz−1

and a change of variable z := z + χk to get

2I1 = −LI2 − 2Γ(−χk)(γ + ψ(−χk)) +
∑

j 6=0, 6=k

Γ(−χk)Γ(−χk + χj), (1.1)

where I2 is an integral of Mellin-Barnes type [40, page 286ff]

I2 =
1

2πiii

∫ − 1
2
+iii∞

− 1
2
−iii∞

Γ(z)Γ(−χk − z)dz =
1

2πiii

∫ − 1
2
+iii∞

− 1
2
−iii∞

Γ(z − χk)Γ(−z)dz.

To evaluate I2 we shift the contour line to the right to get negative residues. The

poles we consider are at z = χk, a simple pole with residue −Γ(−χk) and at

z = l, l ∈ N0, with residues
∑

l≥0

(−1)l

l!
Γ(l − χk). So

I2 = −Γ(−χk) +
∑

l≥0

(−1)l

l!
Γ(l − χk)

= −Γ(−χk) + Γ(−χk)
∑

l≥0

(
χk

l

)

= Γ(−χk)
(

e2πiiik logQ 2 − 1
)

.

On the other hand, if we write I1 = 1
2πiii

∫ 1
2
+iii∞

1
2
−iii∞ LΓ(−χk+z)Γ(−z)

eLz−1
dz and shift the

contour of integration to the right, we collect the negative residues at l = 1, 2, 3, . . .

as

I1 = L
∑

l≥1

(−1)lΓ(l − χk)

l!Ql − 1
. (1.2)

Since we now have two expressions for I1, which must be equal, we can combine

(1.1) and (1.2), and cancel all terms except I2, leaving us with

δV (x) = − 1

L

∑

k 6=0

Γ(−χk)
(

e2πiiik logQ 2 − 1
)

e2πiiikx = δE(x+ logQ 2) − δE(x),

which, for Q = 2, is δE(x+ 1)− δE(x), which is zero since δE(x) has period 1 [32].
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Appendix B

Mellin transforms for d fixed

Below are the Mellin transform equivalents for the (weak, strict) and (weak, weak)

cases for the maximum when d is fixed. The previous calculations made use of

Rice’s method. Here the same results are obtained using the Mellin transform, as

discussed in Chapters 12 and 13 which deal with d = αn and d = αnγ. The initial

manipulations remain the same, until the coefficient of the generating functions is

sought.

B.1 The (weak, strict) case.

As discussed above, we keep the same generating function and begin after the

coefficient of zn has been found (see equation(8.8)).

[zn]F
(w,s)
M (z) =

∑

k≥1

d−1∑

i=0

(1 − qk−1)i+n−dpqk−1(1 − qk)d−1−i

=
∑

k≥1

(1 − qk−1)n−dpqk−1(1 − qk)d−1
d−1∑

i=0

(
1 − qk−1

1 − qk

)i

.

This geometric series on i can be simplified as:

d−1∑

i=0

(
1 − qk−1

1 − qk

)i

=
1 −

(
1−qk−1

1−qk

)d

1 −
(

1−qk−1

1−qk

)

=
(1 − qk)d − (1 − qk−1)d

(1 − qk)d

1 − qk

1 − qk − (1 − qk−1)

=
(1 − qk)d − (1 − qk−1)d

(1 − qk)d−1qk−1(1 − q)
.
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Since p = 1 − q, we have the following cancellations

[zn]F
(w,s)
M (z) =

∑

k≥1

(1 − qk−1)n−dpqk−1(1 − qk)d−1 (1 − qk)d − (1 − qk−1)d

(1 − qk)d−1qk−1p

=
∑

k≥1

(1 − qk−1)n−d
(
(1 − qk)d − (1 − qk−1)d

)

=
∑

k≥1

(1 − qk−1)n−d(1 − qk)d − (1 − qk−1)n

∼
∑

k≥1

e−qk−1(n−d)e−qkd − e−qk−1n

=
∑

k≥1

e−qk−1n+qk−1d(1−q) − e−qk−1n

=
∑

k≥1

e−qk−1n
(
eqk−1dp − 1

)
.

By defining the function f(x) :=
∑

k≥1

e−qk−1x
(
eqk−1dp−1

)
, we can now use the Mellin

transform. The Mellin transform of this function exists in the fundamental strip

〈0,∞〉, and can be found using the ‘linearity’ and ‘scaling’ rules in [11, page 576].

f ∗(s) =
∑

k≥1

(
eqk−1dp − 1

)
(qk−1)−sΓ(s).

In order to sum on k, we must expand the exponent as a series, which will bring

all k’s into the first level power. Then the j = 0 term of the new sum is one, so

that our expression simplifies and we can sum on k as a geometric series.

f ∗(s) =
∑

k≥1

(
∑

j≥0

(qk−1dp)j

j!
− 1

)

(qk−1)−sΓ(s)

=
∑

k≥1

∑

j≥1

(qk−1dp)j

j!
(qk−1)−sΓ(s)

=
∑

j≥1

(q−1dp)j

j!
qsΓ(s)

∑

k≥1

qjk(qk)−s

=
∑

j≥1

(q−1dp)j

j!
qsΓ(s)

qj−s

1 − qj−s
, for j > s

=
∑

j≥1

(dp)j

j!
Γ(s)

1

1 − qj−s
.

The convergence of the series restricts the strip in which f ∗(s) exists. The new

strip will be 〈0,∞〉 ∩ 〈−∞, j〉 = 〈0, j〉. We must thus pick an x-value between

0 and j, and since j ≤ 1, we choose the value 1
2
. This means we can define our

inverse transform as

f(x) =
1

2πiii

∑

j≥1

(dp)j

j!

∫

( 1
2
)

Γ(s)
1

1 − qj−s
x−sds.
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For x large (recall x = n, and we are interested in words of length n), we move the

contour right and collect negative residues. Possible poles in this integrand occur

at s = 0,−1,−2, . . . (from Γ(s)) and at j − s = 0 and j − s = χk, k 6= 0
(
from

1
1−qj−s

)
. Moving right from 1

2
, the first poles we encounter are at s = j = 1 and

1 − s = χk. The first of these gives the dominant term and the others give the

fluctuations (which we called δ(n) in equation (7.5)). For the dominant term we

expand around s = 1, replacing j with 1:

1

1 − q1−s
=

1

1 − e(1−s) log q
∼ 1

1 − (1 + (1 − s) log q)
=

1

(s− 1) log q
,

and thus the negative residue is

− [(s− 1)−1]dpΓ(1)
1

(s− 1) log q
x−1

= −dp 1

log q
x−1

=
dp

x logQ

=
dp

nL
,

as before. For the fluctuating terms, we let ε := −1 + s + χk and expand around

(or evaluate at) ε = 0.

Γ(s) = Γ(1 − χk + ε) = Γ(1 − χk),

1

1 − q1−s
=

1

1 − q−ε+χk
=

1

1 − q−ε
∼ 1

1 − (1 − ε log q)
=

1

ε log q
,

and

x−s = x−ε−1+χk = xχk−1.

So for the fluctuations, we have

∑

k 6=0

(

− [ε−1]dpΓ(1 − χk)
1

ε log q
xχk−1

)

=
dp

xL

∑

k 6=0

Γ(1 − χk)x
χk

=
dp

xL

∑

k 6=0

Γ(1 − χk)e
χk log x

=
dp

xL

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x.

Finally, replacing x by n, we can confirm the same result as when Rice’s method

was used, namely that the probability that the maximum in a word occurs in the

first d position in the (weak,strict) case is

dp

nL
+
dp

nL

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n =

d(1 −Q−1)

nL

(
1 + δ(n)

)
,

where δ(x) =
∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x, as in (7.5).
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B.2 The (weak, weak) case.

Again we start by taking the coefficient of zn in the relevant generating function.

This time, we take line (8.18) from the original version, which has already had

some simplifications done, to give

[zn]F
(w,w)
M (z) =

∑

k≥1

d−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−1−i

=
∑

k≥1

pqk−1(1 − qk)n−1
d−1∑

i=0

(
1 − qk−1

1 − qk

)i

=
∑

k≥1

pqk−1(1 − qk)n−1 (1 − qk)d − (1 − qk−1)d

(1 − qk)d−1qk−1p
(as above)

=
∑

k≥1

(1 − qk)n−d
(
(1 − qk)d − (1 − qk−1)d

)

=
∑

k≥1

(1 − qk)n − (1 − qk)n−d(1 − qk−1)d

∼
∑

k≥1

e−qkn − e−qk(n−d)e−qk−1d

=
∑

k≥1

e−qkn − e−qkn+qkd−qk−1d

=
∑

k≥1

e−qkn
(
1 − e−(1−q)qk−1d

)

=
∑

k≥1

e−qkn
(
1 − e−pqk−1d

)
.

Now let f(x) :=
∑

k≥1

e−qkx
(
1− e−pqk−1d

)
, and our transform will exist in the funda-

mental strip 〈0,∞〉. We have

f ∗(s) =
∑

k≥1

(
1 − e−pqk−1d

)
(qk)−sΓ(s),

and again expand the exponential to get

f ∗(s) =
∑

k≥1

(
1 −

∑

j≥0

(−pqk−1d)j

j!

)
(qk)−sΓ(s)

= −
∑

j≥1

(−pq−1d)j

j!
Γ(s)

∑

k≥1

qk(j−s)

= −
∑

j≥1

(−pq−1d)j

j!
Γ(s)

qj−s

1 − qj−s
, for s < j

= −
∑

j≥1

(−pd)j

j!
q−sΓ(s)

1

1 − qj−s
.
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Once again the s < j restriction means that our new strip is 〈0, j〉, so our inverse

transform becomes

f(x) =
−1

2πiii

∑

j≥1

(−pd)j

j!

∫

( 1
2
)

q−sΓ(s)
1

1 − qj−s
x−sds.

As in the case above, the pole at s = j = 1 gives the dominant term in the result,

with
1

1 − q1−s
∼ 1

(s− 1) log q
,

in the negative residue (let j = 1)

− [(s− 1)−1] − (−pd)q−1Γ(1)
1

(s− 1) log q
x−1

= −pdq−1 1

log q
x−1

=
pd

nq logQ

=
(Q− 1)d

nL
.

For the fluctuations, we look at the poles at 1 − s = χk, for k 6= 0. At this stage,

we define ε := χk + s− 1, and expand around (or evaluate at) ε = 0.

q−s = qχk−1−ε = qχk−1,

Γ(s) = Γ(ε− χk + 1) = Γ(1 − χk),

1

1 − q1−s
=

1

1 − qχk−ε
=

1

1 − q−ε
∼ 1

1 − (1 − ε log q)
=

1

ε log q
,

and

x−s = xχk−1−ε = xχk−1.

This means that the negative residues from the non-dominant poles are

∑

k 6=0

(−1)[ε−1](−1)(−pd)qχk−1Γ(1 − χk)
1

ε log q
xχk−1 =

pd

Lqx

∑

k 6=0

qχkΓ(1 − χk)x
χk

=
pd

Lqx

∑

k 6=0

Γ(1 − χk)x
χk

=
pd

Lqx

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ x,

and thus in total the probability is asymptotic to

(Q− 1)d

nL
+

(Q− 1)d

nL

∑

k 6=0

Γ(1 − χk)e
2kπiii logQ n =

(Q− 1)d

nL

(
1 + δ(n)

)
,

as n → ∞, for δ(x) as in (7.5). This corresponds to the result obtained using

Rice’s method in Theorem 8.4.
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Appendix C

Proving the (weak, strict) case for

d = n

The following calculations support the fact that our solution is 1 in the (weak,

strict) case of the maximum if d = n. Two methods are used.

C.1 Method 1

We examine the (weak, strict) case of the maximum (the same proof is true for

the (weak, weak) case where the result is the same if d = n). In this case, if d = n

then there is no ‘strict’ restriction, and so we expect a probability of 1 as there

will definitely be a maximum which could recur (i.e., there are no restrictions on

the word). If we put d = n into equation (8.8), we have the following argument:

Let

f(n) := [zn]F
(w,s)
M (z) =

∑

k≥1

n−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−1−i.

In order to show that f(n) = 1, we consider the expression f(n)− f(n− 1), which

turns out to be 0. This tells us that f(n) is a constant and we can find this constant

by letting n = 1.

f(1) =
∑

k≥1

1−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)1−1−i =
∑

k≥1

pqk−1 = 1,

as we are working with a geometric probability distribution of the natural numbers.

What remains is to show that f(n) − f(n− 1) = 0.
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f(n) − f(n− 1)

=
∑

k≥1

n−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−1−i −
∑

k≥1

n−2∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−2−i

=
∑

k≥1

pqk−1
[

(1 − qk−1)n−1 +
n−2∑

i=0

[
(1 − qk−1)i(1 − qk)n−1−i − (1 − qk−1)i(1 − qk)n−2−i

]]

=
∑

k≥1

pqk−1

[

(1 − qk−1)n−1 +
n−2∑

i=0

[

(1 − qk)n−1

(
1 − qk−1

1 − qk

)i

− (1 − qk)n−2

(
1 − qk−1

1 − qk

)i]
]

=
∑

k≥1

pqk−1

[

(1 − qk−1)n−1 + (1 − qk)n−2(1 − qk − 1)

n−2∑

i=0

(
1 − qk−1

1 − qk

)i
]

=
∑

k≥1

pqk−1

[

(1 − qk−1)n−1 − qk(1 − qk)n−2

(

1 −
(

1−qk−1

1−qk

)n−1

1 − 1−qk−1

1−qk

)]

=
∑

k≥1

pqk−1

[

(1 − qk−1)n−1 − qk(1 − qk)n−2

( (1−qk)n−1−(1−qk−1)n−1

(1−qk)n−1

1−qk−1+qk−1

1−qk

)]

=
∑

k≥1

pqk−1

[

(1 − qk−1)n−1 − qk(1 − qk)n−2

(
(1 − qk)n−1 − (1 − qk−1)n−1

(1 − qk)n−2(−qk + qk−1)

)]

=
∑

k≥1

pqk−1

[

(1 − qk−1)n−1 − qk(1 − qk)n−1

qk−1(1 − q)
+
qk(1 − qk−1)n−1

qk−1(1 − q)

]

=
∑

k≥1

[
(1 − q)qk−1(1 − qk−1)n−1 − qk(1 − qk)n−1 + qk(1 − qk−1)n−1

]
(p = 1 − q)

=
∑

k≥1

[
qk−1(1 − qk−1)n−1 − qk(1 − qk−1)n−1 − qk(1 − qk)n−1 + qk(1 − qk−1)n−1

]

=
∑

k≥1

[
qk−1(1 − qk−1)n−1 − qk(1 − qk)n−1

]
,

which is a telescoping series in which all terms cancel except the very first one

which is zero, i.e., qk−1(1 − qk−1)n−1|k=1 = 0.

C.2 Method 2

Again, we examine the (weak, strict) case of the maximum where, if d = n, there

are no restrictions on the word and so we expect a probability of 1. If we put d = n

into equation (8.8), we have the following argument:

f(n) := [zn]F
(w,s)
M (z)
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=
∑

k≥1

n−1∑

i=0

(1 − qk−1)ipqk−1(1 − qk)n−1−i

=
∑

k≥1

pqk−1(1 − qk)n−1

n−1∑

i=0

(
1 − qk−1

1 − qk

)i

=
∑

k≥1

pqk−1(1 − qk)n−1
1 −

(
1−qk−1

1−qk

)n

1 − 1−qk−1

1−qk

=
∑

k≥1

pqk−1(1 − qk)n−1

(1−qk)n−(1−qk−1)n

(1−qk)n

1−qk−(1−qk−1)
1−qk

=
∑

k≥1

pqk−1(1 − qk)n−1 (1 − qk)n − (1 − qk−1)n

(1 − qk)n−1qk−1(1 − q)

=
∑

k≥1

[(1 − qk)n − (1 − qk−1)n]

=
∑

k≥1

[(
(1 − qk)n − 1

)
−
(
(1 − qk−1)n − 1

)]

= −
(
(1 − q1−1)n − 1

)

= 1,

since it is a telescoping series (adding −1 twice to take care of convergence).
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