FOSSIL HYAENIDAE FROM THE MAKAPANSGAT LIMEWORKS DEPOSIT, SOUTH AFRICA

by

R.M. Randall

Department of Zoology, University of Port Elizabeth, P.O. Box 1600, Port Elizabeth 6000

ABSTRACT

The remains of three hyaena species have been recovered from the Makapansgat Limeworks deposit. A common small form, *Hyaena hyaena makapani*, and a rare large form, *Pachycrocuta brevirostris*, were recovered from Member 3 (Lower Phase 1 grey breccia). The rare *Crocuta crocuta* was recovered from Member 4 (Upper Phase 1 breccia), and was the only hyaena from this horizon.

Abundant cranial and dental material of *H. h. makapani* facilitated comparisons with extant and fossil forms to confirm its identification as a subspecies of the extant striped hyaena. Despite morphological differences in the skull and teeth, *H. abronia* from Langebaanweg is confirmed as its likely ancestor. Some deciduous teeth of *H. h. makapani* are described and the eruption sequence of permanent cheekteeth deduced. *P. brevirostris* appears to be the largest fossil hyaena from Africa, showing affinities to *P. bellax* from Kromdraai. *C. crocuta* is similar to the extant form and the fossil forms from East Africa. As in the East African deposits, *C. crocuta* appears relatively late in the succession.

The hyaena material has limited value in site faunal correlations for dating purposes, but does not contradict the palaeomagnetic age estimate of more than 2,9 My for Member 3 (grey breccia) (Partridge 1979).

CONTENTS

	Page
INTRODUCTION	75
MATERIALS AND METHODS	76
RESULTS AND DISCUSSION	76
Hyaena hyaena makapani	76
Skull	76
Permanent dentition	78
Deciduous dentition	79
Pachycrocuta brevirostris	81
Crocuta crocuta	82
Correlations and dating	83
CONCLUSIONS	84
ACKNOWLEDGEMENTS	84
REFERENCES	84

INTRODUCTION

The family Hyaenidae is well represented in most of the Transvaal cave deposits (Toerien 1952, Ewer 1954, 1955a, Hendey 1974a, Collings *et al.* 1975). The Makapansgat Limeworks deposit is no exception; from there Toerien (1952) described the remains of a small hyaena similar to the extant striped hyaena, *Hyaena hyaena*, which he called *H. makapani*, as well as a large hyaena which he called *Crocuta* cf. *brevirostris*. Since then additional material of both species has been recovered. This material was briefly reported in Collings *et al.* (1975), together with an account of a third species attributed to *C. crocuta*.

The taxonomic and phyletic relationships of the Plio/Pleistocene Hyaenidae have been the subject of many papers (Ewer 1955b, 1967, Kurten 1956, Ficcarelli and Torre 1970, Hendey 1974b, 1978). The close relationship between the Makapansgat small hyaena and the extant striped hyaena is generally acknowledged, and in a review of the African fossil hyaenids Ewer (1967) concluded that they were only subspecifically different. Ewer (1955b) suggested that the Pliocene hyaena *H. namaquensis* might be a possible ancestor of *H. h. makapani*, but this was later considered unlikely (Ewer 1967). The late Miocene/early Pliocene deposit at Langebaanweg has yielded much hyaenid material including the species *H. abronia*, which has been proposed as the likely ancestor of the Makapansgat form and the extant striped hyaena (Hendey 1978).

This paper presents a detailed account of the hyaena material reported in Collings *et al.* (1975), and it covers all the cranial material on hand at the Bernard Price Institute for Palaeontological Research in 1972. The relationships of the hyaenas and their significance is discussed primarily in relation to finds elsewhere in Africa.

MATERIAL AND METHODS

The fossil material was mechanically prepared, mostly by staff preparators at the Bernard Price Institute, using hammer and punch. A few specimens were also prepared by the author using a "Vibro-tool" and emery disc.

With the exception of the carnassials, where additional measurements were taken, two measurements were taken on all teeth. These were the mesiodistal and buccolingual distances, corresponding to the length (L) and breadth (B) respectively. The measurements were taken at the level of the cingulum, and the mean of three measurements was recorded each time. Use was made of ratio diagrams in comparisons between species, and in particular those based upon percentages.

In references to the stratigraphy of the Limeworks the sequence and terminology of Partridge (1979) and Brain (1958) is followed.

RESULTS AND DISCUSSION Hyaena hyaena makapani

Except for specimen M244 from Member 2 (basal red mud), all *H. h. makapani* specimens were recovered from Member 3 (Lower Phase 1 grey breccia) (J.W. Kitching, pers. comm.).

Skull (table 1; figs. 1, 2)

The skull is morphologically similar to the two extant *Hyaena* species, but is smaller than either *H*. *hyaena* or the fossil *H*. *abronia* (table 2).

TABLE 1 Skull measurements of *Hyaena hyaena makapani* from the Makapansgat Limeworks deposit

Dimension	Sample	Mean (mm)	Std. Dev. (mm)	Range (mm)
Condylobasal				
length	5	200,4	6,5	194,0-210,0
Zygomatic width	1	138,0		
Palate width	4	63,3	3,4	60,3-68,1
Interorbital width	6	45,3	2,9	40,4-47,8

T	Δ	R	T	F	9
					~

Comparison of mean skull measurements: Hyaena hyaena makapani, Hyaena abronia and extant Hyaena hyaena

Species	Condylobasal	Zygomatic	Interorbital
	length	width	width
	(mm)	(mm)	(mm)
H. h. makapani ^a	200,4	138,0	45,3
H. abronia ^b	217,0	<i>c.</i> 145,0	47,7
H. hyaena	211,0	<i>c.</i> 146,0	44,0

a = composite reconstruction (figs. 1, 2) based on M 2530, M 299, M 8348

b = Hendey (1974b)

A comparison of H. h. makapani with the illustration and description of H. abronia in Hendey (1974b) revealed a few cranial differences. In H. h. makapani the palate (fig. 2a) is relatively shorter and narrower, and there appears to be a slightly longer precanine diastema. In lateral view (fig. 1a) the angular process of the mandible in H. h. makapani is not bulbous as it is in H. abronia, and it has a slightly dorsally directed distal end. In all these features H. h. makapani is similar to the striped hyaena.

Permanent dentition (table 3)

The dental formula 3/3:1/1:4/3:1/1 = 34 is identical to that in *H. hyaena* and *H. brunnea* (Ewer 1973).

With the exception of the robust caniniform I³, the incisors are small teeth and are seldom recovered. Of the 28 canines recovered one upper and two lower were still in their alveoli. Upper and lower canines could be distinguished because upper canines are straighter and more elliptical in cross-section. Premolars, both loose and in their alveoli, were the most common hyaenid teeth recovered. Upper and lower premolars could be distinguished because lower premolars have their cusps arranged in a straight line parallel to the jaw ramus, whereas upper premolars have the first cusp offset lingually.

The cusp terminology used for the carnassials is taken from Gromova (1968), and is illustrated in Figure 3. The talonid of M_1 has a mean value of

		TABLE 3			
Measurements of the Makapansga	of teeth at Limew	of Hyaena orks depos	<i>hyaena</i> it	makapani	from

Tooth	Dimension	Sample	Mean (mm)	Std. dev. (mm)	Range (mm)
I ¹	length	2	3,1	1.51.21.5	2,8-3,4
	breadth	2	4,4		
I^2	length	3	4,6		4,1-5,6
	breadth	3	6,6		6,2-7,2
I^3	length	6	7,5	0,4	7,1-8,0
	breadth	6	8,9	0,6	8,2-9,7
C	length	12	13,0	0,5	12,3-14,0
	breadth	12	9,1	0,5	8,3-9,9
\mathbf{P}^{1}	length	5	6,4	0,4	6,0-7,0
	breadth	5	5,9	0,5	5,4-6,6
\mathbf{P}^2	length	21	14,6	1,1	12,6-16,1
	breadth	20	9,4	0,5	8,6-10,2
P^3	length	29	19,6	1,1	16,5-21,1
	breadth	31	12,6	0,7	11,0-13,8
P4 -	length	28	28,8	1,1	25,8-31,2
	breadth length	26	17,1	1,1	15,6-19,5
	metastyle	26	10,5	0.5	9,3-11,5
M^1	length	16	5.6	0.5	4,7-6,6
	breadth	16	12,8	0,7	12,0-14,1
I ₃	length	4	5.6	0.2	5,4-5.8
	breadth	4	6.2	0.1	6,1-6,3
С	length	15	12.9	0.6	11.6-13.9
	breadth	15	9,8	0,5	8,9-10,5
P ₂	length	13	13.6	0.7	11,9-14.8
	breadth	14	8,1	0,6	7,2-9,1
P ₃	length	20	17,9	0,7	16,7-19,1
	breadth	21	10,8	0,5	9,7-11,5
P.	length	23	19,2	0,7	17,4-20,4
	breadth	21	10,9	0,5	9,7-12,1
M ₁	length	17	20,8	0,9	19,1-22.0
	breadth	19	10,1	0,6	9,3-11.0
	length talonid	15	4,3	0,3	3,7-4,7

Figure 1. Skull of *Hyaena hyaena makapani* showing (a) lateral and (b) dorsal aspects (scale bar = 5 cm). (Composite reconstruction based mainly on M 2530, M 8348 and M 299.)

In keeping with the small skull size, the teeth of H. h. makapani are also smaller than the extant H. hyaena (fig. 4). The similarity between the two is

seen to be close in terms of various tooth ratios (table 4); this is especially true for the carnassials. The biggest differences in the cheekteeth are for the anterior upper premolars. In *H. hyaena* there has been a reduction of P^1 and an increase in size of P^2

Figure 2. Reconstructed skull and mandible of *Hyaena hyaena makapani* showing (a) ventral aspect of skull and (b) lateral aspect of mandible (scale bar = 5 cm). (Skull reconstruction as in Figure 1; mandible based on M 262.)

Figure 3. Lingual, buccal and occlusal aspects of the carnassials of *Hyaena hyaena makapani*. Terminology: pr= protocone, pas = parastyle, amph = amphicone, mes = metastyle, pad = paraconid, prd = protoconid, med = metaconid, tal = tal-onid, end = entoconid, hyd = hypoconid (after Gromova 1968).

relative to *H. h. makapani*. The pattern for *H. abronia* and *H. namaquensis* is similar to the other two except for the upper molar, and to a lesser extent the lower molar (fig. 4). This is not unexpected in view of the fact that there has been less reduction in the molars of *H. abronia* and *H. namaquensis*, where both M^2 and M_2 may be present (Hendey 1978). Another difference between the cheekteeth of the older *H. abronia* and *H. namaquensis* and the other two is the presence of P_1 and the higher length:breadth ratio of most of the cheekteeth (table 4).

These comparisons illustrate the close relationship between H. h. makapani and the extant H. hyaena, and supports the contention of Ewer (1967) that they are not separate species, but rather that the Makapansgat form should be regarded as a subspecies. The relationship between H. h. makapani and the older species H. abronia and H. namaquensis is more obscure in terms of skull morphology and tooth measurements. Hendey (1978) also noted differences in postcranial elements, where H. abronia had relatively longer hind limbs than the extant H. hyaena. Hendey (1978) concluded that H. abronia was the likely ancestor of H. hyaena, with H. h. makapani the intermediate form, and H. namaquensis the possible ancestor of H.

brunnea. The comparisons in Figure 4 and Table 4 indicate that H. abronia and H. namaquensis are more closely related to one another than to either of the others. The relationship appears even stronger when the entire dentition is considered, since they both possess P1, M2 and M2 and have more similar postcranial elements than either of the extant Hyaena species or H. h. makapani. If H. abronia was the ancestor of H. h. makapani then there must have been a relatively rapid evolutionary developmental phase between the late Miocene/early Pliocene H. abronia at Langebaanweg, dated 4-5 My (Hendey 1978), and the first appearance of H. hyaena, dated at 3 My in East Africa (Coppens and Howell 1976). A form from East Rudolf exhibiting the dental characters of H. hyaena and many of the cranial features of H. abronia may well be an intermediate form (Leakey 1976).

Deciduous dentition (table 5, fig. 5)

The deciduous dentition of hyaenas bears little resemblance to the permanent dentition, and without good comparative material it is unlikely that deciduous teeth would be correctly identified. Fortunately, two specimens from the Limeworks contained deciduous teeth with permanent teeth erupting. By working the surrounding bone away

80

TABLE 4

Comparison of	f cheektooth	ratios in	Hyaena	hyaena	makapani,	two	species	of fossil	hyaenas
from southern	Africa, and t	wo extan	t hyaena	species					

Teeth	Dimensions	H. h. makapani (Makapansgat)	H. hyaena (extant)	H. abronia (Langebaan)	H. namaquensis (Namaqua- land)	H. brunnea (extant)
\mathbf{P}^{1}	L/B	1,09	1,04ª	1,08°	1,18 ^d	1,04ª
\mathbf{P}^2	L/B	1,56	1,64°	1,82°	1,78 ^d	1,49°
\mathbf{P}^3	L/B	1,54	1,61°	1,64°	1,57 ^d	1,43°
\mathbf{P}^{4}	L/B	1,69	1,62	1,73°	1,70 ^d	1,70 ^b
M^1	L/B	0,44	0,50°	0,62°	0,56 ^d	0,44
P_2	L/B	1,70	1,55	1,77°	1,75 ^d	1,41°
P_3	L/B	1,65	1,74°	1,82°	1,77 ^d	1,47°
P_4	L/B	1,77	1,82°	1,90°	1,88 ^d	1,71°
M_1	L/B	2,06	2,00 ^b	2,02°	2,20 ^d	2,05 ^b
M_1	Trigonid/L	0,79	0,80 ^r		0,75 ^d	0,84 ^r
\mathbf{P}^{4}	Metastyle/L	0,37	0,36 ^r			0,38 ^r
P^{3}, P^{4}	L P ³ /L P ⁴	0,68	0,68 ^b	0,71°	0,71 ^d	0,65 ^b
M^1 , P^4	W M1/L P4	0,44	0,46°	0,54°	0,54 ^d	0,37°
P ₃ , P ₄	$L P_3/L P_4$	0,92	0,93 ^b	0,92°	0,92 ^d	0,87 ^b
P ₃ , P ₄	$B P_3/B P_4$	1,01	0,99°	0,96°	0,97 ^d	1,04°
P_4, M_1	$L P_4/L M_1$	0,92	0,98	0,90°	0,89 ^d	1,01

Key:

a = Toerien (1952), b = Ficcarelli and Torre (1970), c = Hendey (1974b),

d = Hendey (1978), e = Ewer (1955a), f = Kurten (1956).

Unless otherwise stated = own measurements.

Figure 4. Ratio diagram comparing (a) mean crown lengths and (b) mean crown widths in Hyaena hyaena makapani (○), Hyaena hyaena extant (△), Hyaena abronia (▲) and Hyaena namaquensis (▼). Standard of comparison (100 per cent) Hyaena brunnea extant (●). Data from Toerien (1952), Kurten (1956), Hendey (1974b, 1978) and own measurements.

with an emery disc and "Vibro-tool" the permanent teeth were exposed and identification as *H*. *h*. *makapani* confirmed.

Specimen M 603 is a portion of a right maxilla with DM³, DM⁴ and M¹ in situ, with P⁴ starting to erupt, and P³ about to do so. DM⁴ resembles M¹ in having a similar crown pattern and being located in a comparable position. Like M^1 , it also has a greater breadth (buccolingual axis) than length (mesiodistal axis). DM³ is a slender shearing tooth functioning as the upper carnassial, and it is comparable to P⁴. It has three cusps and a blade arranged roughly in a straight line, meaning that it has one more cusp than P⁴, its functional replace-

TABLE 5 Measurements of *Hyaena hyaena makapani* deciduous teeth from the Makapansgat Limeworks deposit

Specimen number	Tooth	Length (mm)	Breadth (mm)
M 2340	DM^3	21,3	
M 603	DM^3	20,2	12,0
	DM^4	7,6	12,3
M 2284	DM_2	c. 14,0	c. 5,7
	DM_3	15,0	6,3
M 2342	DM_3	14,7	5,8

Figure 5. Hyaena hyaena makapani mandibles from Makapansgat showing specimen M 2284 with deciduous teeth, and permanent teeth erupting, and adult paratype (M 252). The mandible of M 2284 was worked away to expose the permanent teeth.

ment tooth. The extra cusp on DM³ is the paracone which is separate from the metacone, unlike in P⁴ where these two cusps have fused to form the amphicone. The DM³, therefore, has a parastyle, paracone, metacone and metastyle in a line proceeding from the mesial to the distal end. It also has a large protocone situated lingually relative to the paracone and metacone. The amphicone of P⁴ was erupting immediately distal to DM⁴, and the tip of the protocone of P⁴ had erupted anterior to the lingual extension of DM⁴. When the permanent premolars were exposed by working away the maxilla, the parastyle of P⁺ could be seen erupting immediately lingual to the metastyle of DM³, and P³ beneath the paracone and parastyle of DM³. It appears that P⁴ would have erupted before P³, and the order of eruption of the three hindmost permanent cheekteeth was M1-P4-P3.

Specimen M 2284 consists of the major portion of a right mandible with DM_2 and DM_3 in situ, and the permanent teeth C, P₂, P₃ and P₄ about to replace. M₁ had been lost prior to fossilization and DM_4 had either been shed, or like M₁ had been lost. Unlike in the adult, the mandible is short, shallow and comparatively fragile. Both DM_2 and DM_3 are unlike the permanent teeth, being high and narrow. The mandible was worked away on both lingual and buccal sides to expose the permanent teeth. P_2 is erupting beneath DM_2 with its main cusp between the two roots of DM_2 . P_3 is replacing DM_3 , and P_4 is replacing DM_4 in a similar manner. The order of eruption of the permanent checkteeth appears to be $M_1-P_2-P_4-P_3$.

The state of development of the roots of the erupting permanent teeth indicates that many of the isolated teeth found are from animals of a similar age.

The deciduous teeth have little taxonomic value at this stage primarily because of the paucity of comparative material, and because Kurten (1956) did not consider the lower deciduous teeth. The mean length of 14,85 mm (n = 2) for DM₃ is identical to that recorded for the striped hyaena (Kurten 1956), which is surprising considering the larger size of the striped hyaena. The damaged DM₂ has an approximate length of 14 mm, but this seems to be an overestimate in view of the mean length of 11,76 mm for *H. hyaena* (Kurten 1956).

Ewer (1967) expressed doubts about Toerien's (1952) identification of the maxillary fragment (M 603), but by exposing the erupting permanent teeth it has been possible to confirm the identification. Toerien (1952) drew attention to the large size of DM³ compared to specimens of *H. brunnea*, and also to morphological differences between them. It has not been possible to verify these observations but, in relation to the lower dentition, the deciduous teeth of *H. h. makapani* appear larger than might be expected.

The eruption sequence for the upper teeth deduced from the maxilla (M 603) fits the pattern shown by examples from the families Felidae, Mustelidae and Viverridae (Ewer 1973). In these families the eruption sequence of the lower teeth is $M_1-P_2-P_3-P_4$, and not $M_1-P_2-P_4-P_3$ as it appears to be in specimen M 2284.

Pachycrocuta brevirostris

All *Pachycrocuta brevirostris* material obtained came from Member 3 (Lower Phase 1 grey breccia) (J.W. Kitching, pers. comm.).

Since Toerien's (1952) description of the remains of a large hyaena from the Limeworks three additional specimens attributed to the same species have been found. The isolated left lower canine (M 606) described by Toerien fits into the canine alveolus of specimen M 2565, and may be from the same individual. The specimens were mostly fragmentary and the teeth extensively worn, so that accurate measurements could not always be obtained (table 6, fig. 6).

The most noteworthy feature of this form relates to its size, and only *P. brevirostris* has teeth of a comparable size (Howell and Petter 1980). It is principally on this basis that the Makapansgat specimens are assigned to the genus *Pachycrocuta*. The features considered most characteristic of the genus relate to details of M_1 , P_4 and P^4 (Ficcarelli and Torre 1970, Howell and Petter 1980). Unfortunately, in the Makapansgat specimens neither M_1 nor P_4 is present, and in neither of the P^4 specimens

TABLE 6 Measurements of *Pachycrocuta brevirostris* teeth from the Makapansgat Limeworks deposit

Specimen number	Tooth	Length (mm)	Breadth (mm)
M 2565	\mathbf{P}_2	18,4	13,0
	P_3	23,0	17,1
M 604	P ₃	24,9	19,4
M 6010	P ⁺	42,0	
M 2533	\mathbf{P}^{3}	c. 25,2	c. 16,1
	P4	c. 44,0	c. 20,5
	M^1	c. 6,0	c. 11,5

Figure 6. Pachycrocuta brevirostris mandible fragments from Makapansgat. (a) Specimen M 604 and (b) specimen M 2565.

available can details of the crown pattern be discerned. Nevertheless the Makapansgat form has the robust premolars found in *Pachycrocuta*. In particular, the breadth:length ratios of 0,71 and 0,74–0,78 for P_2 and P_3 respectively are closer to *P*. brevirostris than to other species of Pachycrocuta or Hyaena (Howell and Petter 1980).

The only hyaena of comparable size from South African Plio/Pleistocene deposits is Hyaena bellax from Kromdraai (Ewer 1954). Ewer (1967) concluded that the closest relative of the Kromdraai form was Hyaena brevirostris from Europe, a viewpoint supported by Ficcarelli and Torre (1970) when they grouped them as two species under the genus Pachycrocuta. Howell and Petter (1980) went further and synonymized the Makapansgat and Kromdraai forms as P. bellax. There are, however, differences, notably the larger teeth in the Makapansgat form, particularly P⁴. In addition the breadth:length ratios in the Kromdraai form are smaller - 0,67 and 0,72 for P₂ and P₃ respectively. The M¹ is less developed in the Makapansgat form, being considerably smaller in relation to P⁴. These differences seem sufficient to warrant separation at the specific level and consequently the Makapansgat form has been assigned to P. brevirostris.

Large hyaenas of the *Pachycrocuta* type have therefore twice appeared in southern Africa. As far as can be established the only other site in Africa where these large hyaenas have been recovered is Ain Brimba in Tunisia (Howell and Petter 1980).

Crocuta crocuta

One specimen (M 2567) attributed to *C. crocuta* was obtained from Member 4 (Upper Phase 1 breccia) (J.W. Kitching, pers. comm.) (fig. 7). No other hyaena material has been recovered from this horizon.

Figure 7. Crocuta crocuta mandible M 2567 from Makapansgat.

The specimen is the major part of a left mandible with P_2 , P_3 , P_4 and M_1 . Part of the talonid of M_1 was damaged, but otherwise the teeth are well preserved and could be measured (table 7). The trigonid comprises about 87 per cent of the total length of M_1 . The damage to the talonid is such that it is impossible to establish if a metaconid was present. Absence of a metaconid would have confirmed identification as *Crocuta*, although its presence would not have excluded the possibility that the specimen belongs to *Crocuta* (Kurten 1956).

 TABLE 7

 Measurements of Crocuta crocuta teeth (specimen M 2567) from the Makapansgat Limeworks deposit

Tooth	Length (mm)	Breadth (mm)	Trigonid (mm)
P_2	14,2	9,1	113 200
P ₃	19,3	13,7	
P_4	21,5	13,1	
M	c. 26,3	11,4	23,0

The teeth are slightly smaller than those of the extant *C. crocuta*, but their similarity is immediately apparent, particularly when compared to the genus *Hyaena* (fig. 8). Ficcarelli and Torre (1970) established several useful dental characters for separating the genera *Crocuta* and *Hyaena*, including two based upon the lower dentition — P_4 length: M_1 length, and M_1 breadth: M_1 length. Both of these ratios for specimen M 2567 fall within the *Crocuta* range (table 8) and outside the *Hyaena* range (table 4).

A comparison of tooth dimensions between the extant *C. crocuta* and the specimens from Makapansgat, East Rudolf, Olduvai, and Swartkrans plus Kromdraai combined shows the similarity between the forms (table 8). The most marked change is seen in M_1 , where there has been a trend towards a relative increase in the length up to the extant form. There appears to have been little change in the lower dentition since the earliest occurrence of *C. crocuta*. Leakey (1976) stated that there had been little change in cranial or postcranial morphology of *C. crocuta* for 2 My.

Percentage scale

Figure 8. Ratio diagram comparing mean crown lengths in Crocuta crocuta from Makapansgat (□), C. crocuta from Swartkrans plus Kromdraai (♥), Hyaena hyaena makapani (○) and Hyaena brunnea (●). Standard of comparison (100 per cent) Crocuta crocuta extant (■). Data from Ewer (1954, 1955a), Kurten (1956), Leakey (1976) and own measurements.

 TABLE 8

 Comparison of cheektooth ratios in Crocuta crocuta from several Plio/Pleistocene deposits in Africa, and the extant form

Teeth	Dimension	Makapansgat	East Rudolf ^a	Olduvai ^b	Swartkrans and Kromdraai ^c	Extant ^d
M	L/B	2,31	2,26	2,27	2,32	2,39
P.,	L/B	1,64	1,66	1,61	1,72	1,77
P_3	L/B	1,41	1,44	1,44	1,50	1,44
\mathbf{P}_2	L/B	1,56	1,41	1,43	1,43	
P_4, M_1	$L P_4/L M_1$	0,82	0,77	0,76	0,80	0,81
P ₃ , P ₄	$L P_3/L P_4$	0,90	0,94	0,95	0,94	0,94

Key:

a = Leakey (1976), b = Petter (1973), c = Ewer (1954, 1955a), d = Ficcarelli and Torre (1970).

Correlations and dating

Both *H. hyaena* and *C. crocuta* have been recovered at several sites of Plio/Pleistocene age in East Africa and South Africa (table 9). These include some sites in East Africa for which K-Ar dates have been obtained. The earliest datable deposits at which a small hyaena similar to the Makapansgat form have been recovered are the lower member of the Koobi Fora Formation, East Rudolf (Leakey 1976), and the Usno Formation and Member B of the Shungura Formation, Omo Group (Howell and Petter 1976). The earliest dated deposits containing *C. crocuta* are the lower member of the Koobi Fora Formation, East Rudolf (Leakey 1976) and Member G of the Shungura Formation, Omo Group (Howell and Petter 1976). Dates for these formations are: lower member Koobi Fora 2,61–3,18 My (Fitch and Miller 1976); Usno Formation > 2,97 My, Member B Shungura Formation 2,95–2,97 My, and Member G Shungura Formation 1,83–1,93 My (Coppens and Howell 1976). It must be emphasized that *H. hyaena*, and to a lesser extent *C. crocuta*, occurred in later horizons from both East Rudolf and the Omo Group (Leakey 1976, Howell and Petter 1976). Leakey (1976) drew attention to the fact that the Hyaenidae, especially *H. hyaena*, have little value in site comparisons and correlations because the denSites in South Africa and East Africa where hyaena species represented at Makapansgat Limeworks have been recovered

Sites	H. hyaena	C. crocuta	P. brevirostris and P. bellax
South Africa			
Makapansgat	x	x	х
Swartkrans*		х	
Kromdraai ^b		x	x
East Africa			
Olduvai ^c	x	x	
Omo Group ^d	x	x	
East Rudolf ^e	x	x	
Laetolil ^f	х	x	

Key:

a = Ewer (1955a), b = Ewer (1954), c = Petter (1973),

d = Coppens and Howell (1976), e = Leakey (1976), f = Dietrich (1942).

tition has changed little in 3 My, and in *C. crocuta* there has been little cranial or postcranial change in 2 My. Thus, based upon the hyaena material, Member 3 (Lower Phase 1 grey breccia) could be any age up to 3 My and Member 4 (Upper Phase 1 breccia) up to 2,6 My but, because of their conservatism, hyaenas appear to have limited use in correlations for dating purposes. Consequently there is nothing in the hyaena material to contradict the palaeomagnetic age estimate of > 2,9 My for the Makapansgat Limeworks grey breccia (Member 3) (Partridge 1979).

CONCLUSIONS

Cranial and dental characters confirm the identification of the abundant remains of the small hyaena in Member 3 (Lower Phase 1 breccia) as a subspecies of the extant striped hyaena. Comparisons support Hendey's (1978) suggestion that its likely ancestor is *H. abronia* from Langebaanweg. However, the relationship between *H. h. makapani* and extant *H. hyaena* seems to be closer than the relationship between *H. h. makapani* and *H. abronia; H. abronia* seems to be more closely related to *H. namaquensis.*

Fragmentary remains of a large hyaena in Member 3 (Lower Phase 1 grey breccia) are identified

- BRAIN, C.K. (1958). The Transvaal ape-man-bearing cave deposits, Tvl. Mus. Mem., 11, 131 pp.
- COLLINGS, G.E., CRUICKSHANK, A.R.I., MAGUIRE, J.M. and RANDALL, R.M. (1975). Recent faunal studies at Makapansgat Limeworks, Transvaal, South Africa. Ann. S. Afr. Mus., 71, 153-165.
- COPPENS, Y. and HOWELL, F.C. (1976). Mammalian faunas of the Omo Group: distributional and biostratigraphical aspects. In: Coppens, Y., Howell, F.C., Isaac, G.Ll. and Leakey, R.E.F., Earliest man and environments in the Lake Rudolf Basin, 177-192. Chicago, University of Chicago Press.
- DIETRICH, W.O. (1942). Altestquartäre Säugetiere aus der Südlichen Serengeti, Deutsch-Ostafrika. Palaeontographica Abt. A, 94, 43–133.

EWER, R.F. (1954). The fossil carnivores of the Transvaal

as *P. brevirostris*. This large hyaena shows affinities to *P. bellax* from Kromdraai, and these specimens seem to be the only records of these large hyaenas from Africa.

Hyaenas are represented by one specimen from Member 4 (Upper Phase 1 breccia), here identified as *C. crocuta*. This form is similar to the extant form and to fossil Plio/Pleistocene forms from East Africa.

C. crocuta seems to have replaced H. h. makapani and P. brevirostris in the upper horizons. Kurten (1956) documented replacement of *P. brevirostris* by C. crocuta at several deposits in Europe and China, which he believed was due to direct competition. A similar replacement of H. hyaena by C. crocuta occurred in the Upper Pleistocene of Palestine, with H. hyaena only reappearing after the extinction of C. crocuta (Kurten 1965). By contrast, in several East African deposits both H. hyaena and C. crocuta have been recovered from the same horizon (Leakey 1976, Howell and Petter 1976), and the ranges of the extant forms overlap (Kruuk 1976). Consequently the apparent disappearance of H. h. makapani in later horizons at Makapansgat is unlikely to be due only to competition with C. crocuta.

H. h. makapani and C. crocuta are morphologically similar to forms from datable deposits in East Africa. Correlations indicate that the age of Member 3 (Lower Phase 1 grey breccia) could be up to 3,0 My, and Member 4 (Upper Phase 1 breccia) up to 2,6 My. The hyaena material therefore provides general support for the palaeomagnetic age estimate of > 2,9 My for the grey breccia (Partridge 1979). However, because the Hyaenidae, especially H. hyaena and to a lesser extent C. crocuta, are so conservative they have limited value in site correlations for dating purposes.

ACKNOWLEDGEMENTS

Dr. J.W. Kitching is thanked for his advice and assistance with the preparation and identification of material. Drs. A.R.I. Cruickshank, C. Gow, Q.B. Hendey, J.W. Kitching, J.M. Maguire and Mrs. B.M. Randall commented on drafts of the manuscript.

This work was done at the Bernard Price Institute for Palaeontological Research, and financial support was provided in the form of a C.S.I.R. postgraduate bursary.

REFERENCES

caves. The Hyaenidae of Kromdraai. Proc. zool. Soc. Lond., **124**(3), 565–585.

- ---- (1955a). The fossil carnivores of the Transvaal caves. The Hyaenidae, other than Lycyaena, of Swartkrans and Sterkfontein. Proc. zool. Soc. Lond., **124**(4), 815–837.
- ---- (1955b). The fossil carnivores of the Transvaal caves. The lycyaenas of Sterkfontein and Swartkrans, together with some general considerations of the Transvaal fossil hyaenids. Proc. zool. Soc. Lond., **124**(4), 839–857.
- ---- (1967). The fossil hyaenids of Africa a reappraisal.
 In: Bishop, W.W. and Clark, J.D., Eds., Background to evolution in Africa, 109-123. Chicago, Chicago University Press.
- ---- (1973). The carnivores. Cornell, Cornell University Press.
- FICCARELLI, H. and TORRE, D. (1970). Remarks on the taxonomy of hyaenids. *Palaeontogr. ital.*, **66**(n.s.36), 13-33.

- FITCH, F.J. and MILLER, J.A. (1976). Conventional Potassium-Argon and Argon-40/Argon-39 dating of volcanic rocks from East Rudolf. In: Coppens, Y., Howell, F.C., Isaac, G.Ll. and Leakey, R.E.F., Eds.; Earliest man and environments in the Lake Rudolf Basin, 123–147. Chicago, University of Chicago Press.
- GROMOVA, V.I. (1968). Mammals. Fundamentals of Palaeontology, 13, 5-37. Israel program for scientific translation.
- HENDEY, Q.B. (1974a). New fossil carnivores from the Swartkrans australopithecine site (Mammalia: Carnivora). Ann. Transv. Mus., 29, 27–51.
- ---- (1974b). The late Cenozoic Carnivora of the southwestern Cape Province. Ann. S. Afr. Mus., 63, 1–369.
- ---- (1978). Late Tertiary Hyaenidae from Langebaanweg, South Africa, and their relevance to the phylogeny of the family. Ann. S. Afr. Mus., 76(7), 265-297.
- HOWELL, F.C. and PETTER, G. (1976). Carnivora from Omo Group Formations, southern Ethiopia. *In:* Coppens, Y., Howell, F.C., Isaac, G.Ll. and Leakey, R.E.F., Eds., *Earliest man and environments in the Lake Rudolf Basin*, 314–331. Chicago, University of Chicago Press.
- ---- and ---- (1980). The Pachycrocuta and Hyaena lineages (Plio-Pleistocene and extant species of the Hyaeni-

dae). Their relationships with Miocene ictitheres: *Palhyaena* and *Hyaenictitherium. Geobios* **13**(4), 579–623.

- KRUUK, H. (1976). Feeding and social behaviour of the Striped Hyaena (Hyaena vulgaris Desmarest). E. Afr. Wildl. J., 14, 91–111.
- KURTEN, B. (1956). The status and affinities of Hyaena sinensis Owen and Hyaena ultima Matsumoto. Am. Mus. Novit., no. 1764, 1-48.
- ---- (1965). The Carnivora of the Palestine Caves. Acta zool. fenn., 107, 1-74.
- LEAKEY, M.G. (1976). Carnivora of the East Rudolf succession. In: Coppens, Y., Howell, F.C., Isaac, G.Ll. and Leakey, R.E.F., Eds., Earliest man and environments in the Lake Rudolf Basin, 302–313. Chicago, University of Chicago Press.
- PARTRIDGE, T.C. (1979). Re-appraisal of lithostratigraphy of Makapansgat Limeworks hominid site. *Nature*, *Lond.*, 279, 484–488.
- PETTER, G. (1973). Carnivores Pléistocènes du Ravin d' Olduvai (Tanzanie). In: Leakey, L.S.B., Savage, R.J. and Coryndon, S.C., Eds., Fossil vertebrates of Africa, 3, 43-100.
- TOERIEN, M.J. (1952). The fossil hyenas of the Makapansgat Valley. S. Afr. J. Sci., 48(9), 293-300.

INTERDIDERCTION.

restance in a single basis in the same single for a second second

reactions for service in adversion on sine dimension-