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I. INTRODUCTION 
The automatic matching of a template image onto a scene 
has great practical application in the field of computer 
vision, medicine, remote sensing and image watermarking 
[1]-[3]. Being able to determine how best the template 
image fits into the scene poses several problems that have 
to be overcome. The registration process may involve 
shifting, scaling, rotation, perspective projection or other 
non-linear transformations. The shear number of possible 
transformations makes it difficult to automate the process 
and usually requires a person to verify the results. This 
paper presents findings on the use of non-evolutionary 
(classical) optimisation methods for automating the 
template matching of 2-dimensional intensity images. 

A. Image Registration 
Image registration is the process by which a template is 
oriented in such a way as to match an entire, or a portion 
of, a given scene [1][2]. Either the scene or the template is 
transformed in such a way that it matches the other image 
as closely as possible. This can be used to determine the 
position of characteristic objects in a scene, as is 
commonly done in automatic target recognition and 
tracking [4]-[6]. Image registration is used to stitch 
multiple views of a scene together to make a larger 
representation of the scene [1]. When several images of 
the same object are taken from different sources, the data 
must be combined or reinterpreted [7][8]. This sensor 
fusion requires that the position of the same object is 
known in each of the separate images so that the 
information can be processed. 
 
There are four main steps required for registration of an 
image. These are feature detection, feature matching, 
transform model estimation and image transformation [1]. 
It is possible to extract higher level features from the 
image and attempt to perform the registration based on 
these. It normally means extracting the data into a feature 
space that is usually very specific. It is also possible to 

use area based detection which compares the actual image 
intensity values and other low level information that makes 
up the appearance of the image. Feature based detection 
makes it easier to determine the orientation of the template 
with respect to the scene. Area based detection methods are 
much more computationally expensive due to the amount of 
data that needs to be processed. Since the area based 
detection methods depend on the appearance of the images, 
they are intolerant of changes in illumination and ambient 
conditions [1][2]. The feature based detection methods do 
not suffer from this but it is more difficult to automatically 
extract the features for any general image. It is common to 
combine the advantages from both methods to form a hybrid 
approach to the registration process [2].  
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Correlation-like methods are typically used for area-based 
detection methods where a correlation surface is calculated 
for the template and the maximum point is found and 
interpreted as the best fit for the template [1]. This method 
is adversely affected by self similarity in the image and it is 
characterised by high computational complexity. It also 
does not allow much variance in template rotation or other 
more complex transformations. This approach, is still 
however attractive for real-time object tracking [1][6][9]. 
 
An alternative to cross correlation is to use optimisation to 
find the best fit for the template in the scene [7][8][10]. The 
advantage of this approach is that one can apply more 
complex transformations to the templates, and thus make the 
method robust when compared to cross correlation. This 
method also requires less computation because the 
correlation surface does not have to be determined.  
 
In this paper, we use different non-evolutionary (classical) 
optimisation techniques to register a template to a particular 
scene. For simplicity, only three transformation parameters 
are defined. The first two, horizontal and vertical 
translation, define where in the scene the template belongs. 
They represent the most elementary operations required for 
image registration. In order to demonstrate the ability of the 
algorithms to register images with more complex 
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transformations, a third parameter: uniform scaling, is 
introduced. This is a simple transformation where the size 
of the template is changed proportionally, while keeping 
the aspect ratio the same. It is intentionally left as a 
simple transformation so that we do not get distracted by 
the nuances of more complex transformations. 

B. Non-evolutionary Optimisation 
To find the optimal registration parameters for template 
matching, it is important to construct a multivariate cost 
function that represents how well the template matches 
the scene [11]. The traditional techniques for optimisation 
make use of the objective function value, first derivative 
or its second derivative [11][12]. The general approach 
for all non-evolutionary optimisation methods is to select 
an initial guess for the registration parameters and travel 
in a direction as to improve the objective function. Once a 
suitable direction is found, it is possible to make either 
fixed or varying successive steps towards the local 
optimum. A brief review of the methods suitable for 
image registration is given below: 

1) Random Search 
This method relies on trying random values for the 
objective function parameters [13]. Although this does not 
seem like a feasible technique, it has certain advantages. 
If one tries a sufficient number of samples then the global 
optimum will always be found. Another advantage of this 
method is that it does not require a continuous function or 
any gradient evaluations. The disadvantage is that a large 
number of samples need to be taken to find the global 
optimum. 

2) Univariate Search 
This method performs a series of linear (one dimensional) 
optimisations by keeping all but one parameter constant at 
a time [13]. This is a direct search method and therefore 
does not require any gradient evaluations. The one 
dimensional line search can make use of bracketing 
techniques or more complex gradient based methods [13]-
[16]. It is only necessary to find the optimum in the line 
search approximately, since it must merely take us in the 
general direction of the multi-dimensional optimum. 

3) Pattern Search 
A pattern search relies on the accelerated performance of 
line searches along conjugate directions towards the 
optimum [13]. Most non-linear problems can be 
approximated by a quadratic function and it has been 
proven that searches along conjugate directions are 
quadratically convergent [13][17]. This method uses 
direct search and the most common algorithm is given by 
Powell’s method (cited in [13]). 

4) Simplex Method 
A simplex is a geometric figure that has one more vertex 
than the number of dimensions in the parameter space (a 
triangle in two dimensions) [14]. The objective function is 
sampled at each vertex and the one that has the worst 
value gets removed from the simplex. A new vertex is 
then created by reflecting the simplex about the centroid. 
In this manner, the algorithm steps its way towards the 

optimum point. This method is relatively robust when used 
for discontinuous objective functions [15].  

5) Steepest Descent 
All of the direct search methods described above tend to 
converge relatively slowly towards the optimum. This is 
because the methods do not make complete use of the 
objective function information at the current sampling point 
[13]. By travelling in the opposite direction to the gradient 
of the objective function, the local optimum can always be 
found [14], and it can be shown that this process is linearly 
convergent [13]. The Steepest Decent method performs well 
when it is far from the optimum and the objective function 
is smooth and continuous. This is because the gradient tends 
to be large the further away we are from an optimum, and 
therefore the algorithm takes bigger steps in this situation. 

6) Conjugate Gradient 
This method makes use of a similar idea to conjugate 
directions already described in the Pattern Search. The 
journey towards the optimum is accelerated by using 
conjugate gradients with the steepest descent [13]. The 
optimal step size is computed at each iteration by 
performing a line search in a conjugate direction [17]. 

7) Scaled Conjugate Gradient 
This method does not perform a line search to find the 
optimal step size, since it is computationally expensive [16]. 
It rather calculates it from the Hessian of the objective 
function [17] but this method is only appropriate when the 
Hessian is easily available, such as when an analytic 
solution can be provided.  

8) Newton’s Method 
All of the Newton-like methods make use of a second order 
Taylor series expansion about the current sampling point to 
decide on a suitable search direction [13]. The new 
parameters for the next iteration are calculated as follows: 

kkk sxx +=+1  (1) 
where xk+1 is the parameter vector for the next iteration, xk is 
the current parameter vector and sk is the current search 
direction. The search direction is calculated as: 

( ) T
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Where 
kxxx P2∇  is the second derivative (Hessian matrix) 

of the objective function evaluated at xk and 
kxx P∇  is the 

gradient of the objective function evaluated at xk. 
 
This method outperforms the Steepest Descent near to the 
optimum and often converges faster than Conjugate 
Gradient methods [16]. It does however require that the 
Hessian be calculated at each step as is shown in (2), 
followed by a matrix inversion. 
 
It is therefore not suitable to use this method when it is 
difficult to get an analytical equation (that is differentiable) 
for the objective function. This automatically rules out using 
the direct form of Newton’s method to most image 
processing tasks because it is expensive to find an analytic 

Lukasz Machowski Non-Evolutionary Optimisation Methods for Image Registration Page 2 



equation for any general image while still maintaining 
sufficient detail. 

9) Quasi-Newton Method 
The Quasi-Newton approach is suitable when the Hessian 
can only be calculated numerically, such as in image 
registration. It makes use of partial derivative information 
to update and build an approximate Hessian matrix which 
gives the second order curvature of the objective function 
[13][14]. This method therefore makes use of two 
approximations: the Taylor Series expansion and the 
approximate Hessian. There are two major variations for 
computing this approximate Hessian: the Davidon-
Fletcher-Powell (DFP) and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithms. The algorithms 
differ by how they handle round-off error and 
convergence issues, while the BFGS algorithm is 
considered to be better for most general problems 
[13][15][16].  
 
The Quasi-Newton methods require more memory storage 
and computation than the conjugate gradient methods. 
The extra computation is due to the approximate Hessian 
that must be calculated at each iteration, along with a 
matrix inversion, as shown in the equation for the search 
direction (2). This may pose a problem for large 
dimensional problems since the matrix has a n2 
relationship [16].  

10) Levenberg-Marquardt Method 
This method is a hybrid of the Steepest Descent and the 
Newton Method. When it is far from the optimum, it 
behaves like the Steepest Descent method, and thus 
always travels in a direction to decrease the objective 
function. When it approaches the optimum then it behaves 
like the Newton Method in order to converge quickly 
[13]. This is accomplished by modifying the diagonal of 
the Hessian matrix during iteration. The Marquardt 
method is most suited to non-linear least squares 
problems [13]. 

C. Pyramidal Approach 
Registering real-world images by using non-evolutionary 
optimisations methods poses several problems in the form 
of multiple local-minima. These minima are also non-
unique in areas of uniform intensity, which affects the 
optimisation due to the lack of a gradient when perturbing 
the registration parameters. For this reason, it is important 
to determine a suitable starting point for the optimisation, 
which can be achieved by pre-processing the image. The 
pyramidal approach to optimisation uses a coarse-to-fine 
hierarchical strategy to narrow down on the optimal 
solution [1]. With this approach, the consequences of 
making an error in the coarse levels have a large impact 
on the final solution. It is therefore important to perform a 
consistency check at each level.   

II. METHOD 
Before the template can be registered with the scene, it is 
necessary to select suitable starting points for the 
optimisation routine. This is important because all of the 

practically useful optimisation methods described above can 
only find local optima, which is problematic for reliable 
image registration. An image may have many areas where 
the template fits approximately, especially if it can be 
scaled, rotated or non-uniformly transformed. A pre-
processing stage to find acceptable starting points is 
therefore critical for image registration using non-
evolutionary algorithms. 

A. Finding the Starting Points 
A simple approach is taken to find regions in the scene that 
are likely to contain the template. First a histogram of the 
template is calculated and the top n bins with the most 
counts are used to categorise the template. The colours 
corresponding to these bins (cmax) are then calculated and a 
threshold is applied to the scene image to show only the 
pixels that match cmax. The starting points for the 
optimisation algorithm are chosen randomly from the pixel 
positions having those colours. Similar to the random 
search, this method is bound to find the global optimum if 
enough samples are taken. The thresholding is used to 
substantially decrease the number of possible starting 
points. This method assumes that the intensity of the 
template is the same as that of the scene image.  

B. Objective Function 
In order to perform optimisation, it is necessary to define an 
objective function that captures the essence of the problem 
at hand. In image registration, one wants to maximise 
correspondence between the scene image and the template 
posed at its current position. The correspondence can be 
measured as the sum-squared difference between the 
intensities of overlapping pixels. This can be expressed as 
an error function where a value of zero represents a perfect 
match. The parameters to be optimised in this problem are 
horizontal translation (x), vertical translation (y) and 
uniform scaling (s). The objective function used when there 
are overlapping pixels between the template and the scene 
image is given by: 
 )()( 2 AnumelTAerror ∑ −=  (3) 
where A is the scene image, T is the template, the 2 refers to 
element-wise squaring and the summation is over each 
element of the resultant matrix. This error is then 
normalised with the number of pixels that are overlapping 
between both images. The gradient of this function can only 
be calculated numerically and a central difference 
approximation is used. Due to the discrete nature of images, 
it is important to use large perturbations when calculating 
the partial derivatives. A value of 2 pixels is used for the 
differences, meaning that translational perturbations are 2 
pixels across and scaling perturbations change the image 
size by 2 pixels. It is also important to interpolate sub-pixel 
values for the optimisation algorithm to be able to function 
correctly. If the perturbation size is smaller than a pixel then 
inaccurate or highly discontinuous gradients can be 
calculated.  
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It is necessary to penalise the error function for the case 
when there are no overlapping pixels between the two 
images. The error function then becomes: 

 
hw T
y

T
x

error +=  (4) 

where |x| and |y| are the absolute values of the positional 
parameters, Tw is the width and Th is the height of the 
template in pixels. This has the effect of constraining the 
x and y parameters back into range when the images no 
longer overlap. It is necessary to hard-limit the scale 
parameter because the optimisation algorithms might try 
ridiculously high values which require extremely large 
amounts of memory. Very seldom does a template match 
a scene at very high scaling values. Similarly, if the 
template gets scaled to one pixel in size, then a fit can be 
found nearly anywhere in the scene.  

C. Test Image 
The image registration problem described in this paper 
has three parameters that would require 4-Dimensional 
plots (or volumetric renderings) to be able visualise the 
objective function. It is however possible to choose a 
sample image that effectively eliminates the one 
dimension in order to simplify visualisation. Such an 
image is given in Figure 1. The image is a linear gradient 
function with intensities varying uniformly between 0 and 
1. The template is ‘cut out’ from the middle of the image 
and the global optimum is non-unique (any y position will 
give the minimum value). This image is suitable for 
understanding and observing how each algorithm 
performs. The error function values shown in the contour 
plot vary from 0 to 0.0322. The function is smooth and 
continuous but it is valley-like near to the optimum.  

 
Figure 1 Y Position Invariant Test Function 

D. Optimisation 
Two different optimisation toolboxes are used to perform 
the automatic registration in Matlab. The Matlab 
Optimization toolbox [15] is used for its Simplex and 
Quasi-Newton (BFGS) methods. The Netlab [12] toolbox 
is used to compare Steepest Descent, Conjugate Gradient, 
Scaled Conjugate Gradient and Quasi-Newton methods.  

E. Automatic Registration 
The automatic registration process is shown in Figure 2.  
 

 
Figure 2 Automatic Registration Process 

The algorithm begins by finding all the suitable starting 
points as described previously. A variable is created to keep 
track of the minimum error that has been calculated 
(smallest local optimum). The next starting point is then 
randomly selected from the set of possible values and it is 
flagged so that it is not chosen again. The optimisation is 
performed and if the error value is lower than any 
previously calculated value, then the position and scale 
parameters are saved. The minimum error variable is 
updated to this newly found value. The process repeats until 
either the minimum error is below some threshold or the 
complete set of starting points have been traversed. The 
minimum error variable will then contain the best guess at 
how the template should be registered to the scene.  

III. RESULTS 

A. Starting Points 
Since the most common pixel colours are used to categorise 
the template, it is possible for the image to have substantial 
variability when compared to the template, as long as the 
most common colours stays the same. This makes the 
algorithm robust. It does however generate a large number 
of starting points, but experimentation has shown that on 
average 15 starting points are required before the template is 
matched. 

B. Optimisation 
A comparison of the results for the various methods is given 
in Table 1. The rows that appear greyed did not converge 
within the maximum number of iterations. It is important to 
remember that these results are in the context of image 
registration and the algorithms usually behave differently 
for more common objective functions. The nature of the test 
function is that it has a very shallow trough near the 
optimum and the numerical partial derivatives are expected 
to be badly scaled. Artefacts in these partial derivatives 
from the transformation and descretisation process cause 
havoc with some of the algorithms, especially the ones that 
calculate the Hessian matrix (such as SCG).  

Table 1 Performance results for various methods 

Method Iter Func Grad Time(s) Err 
Simplex 58 106 - 2.016 2.9e-12 
Step. D. !200! 201 200 22.375 1.6e-3 

Conj. Gr. 5 137 5 3.078 5.8e-34 
SCG !200! 201 300 30.547 4.4e-3 

Q.Newt 12 84 12 2.937 9.2e-14 
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1) Simplex Method 
This method is especially robust for functions that have 
peculiar gradients or that are discontinuous, as is common 
in image registration. The robustness can be attributed to 
the fact that the simplex does not depend directly on 
gradients for its direction of travel. The method of travel 
by the simplex acts as a pseudo-gradient that plays a 
similar role as in the gradient methods. The typical 
disadvantage of this method is that it converges slowly 
but this method proved to give the most stable and 
reliable results. From the test results, it is clear that the 
simplex method took the fewest function evaluations 
(which are very computationally expensive), especially if 
it is taken into account that each gradient evaluation 
requires 6 function calls. The running time is therefore a 
good indication of the algorithm performance in this case. 
The behaviour of each algorithm is shown in Figure 3. 

2) Steepest Descent 
In image registration, it is common to have objective 
function contours that are elongated ellipses, such as in 
the test image. The Steepest Descent method does not 
perform well in these situations because it is extremely 
slow to converge [14]. This is clearly seen from the 
results in Table 1 and Figure 3. To remedy this, the 
gradient values returned to the algorithm are artificially 
scaled by a factor of 1000 and a momentum factor of 0.9 
is used. 

3) Conjugate Gradient 
This method performs very well on the test image, but it 
tends to cause parameter explosions, where exceptionally 
large values are generated, when performing the line 
search. This is seen in the total number of function calls 
taken by the method. The parameter explosion often 
produces values that are in the penalise-able constraints. 
When tested on real-world images, the algorithm gets 
confused by the complex gradient information present in 
typical images.  

4) Scaled Conjugate Gradient 
Making the step size depend on the gradient is normally 
valid for well behaved objective functions. This is not 
always the case for registering a template to the image, 
where it is common to have steep partial derivatives close 
to the optimum due to transformation and descretisation 
artefacts. Since this method uses the Hessian matrix 
instead of a line search for its next step, the misbehaving 
gradient errors compound themselves and produce poor 
results.  

5) Quasi-Newton 
This method performs well on the test image and can be 
attributed to the objective function behaving very much 
like a quadratic smooth surface. When testing the 
algorithm on real-world images, it performs worse 
because of the misleading information that the gradients 
of the image give to the algorithm. This normally sends 
the parameter values into infeasible regions.  

C. Other Sample Data 
Appendix A shows the successful results of tests on other 
scenes and templates. The algorithm managed to register the 
template of a face to a scene of the entire person. The 
randomised choosing of starting points gave generally fast 
matching times, requiring and average of 15 starting points 
in order to achieve an accurate registration. The algorithm 
also proved to be robust in terms of its ability to register 
templates that are similar but substantially corrupted by 
noise. The only requirement was to adjust the stopping 
threshold on the minimum error value to suite the given 
template. The various modifications to the templates that 
were made include, Gaussian blurring, the addition of 
Gaussian noise, vortex rotation, smudging and non-uniform 
stretching.  
 

  
Figure 3 Iteration steps of the various methods. 

IV. CONCLUSION 
The poor performance of the gradient-based methods can be 
attributed to the numerical error in calculating partial 
derivatives and the form of the objective function for real 
world images. This discontinuous nature makes the use of 
gradient based methods computationally expensive and un-
productive for image registration. It was demonstrated that 
the direct search method gives overall better results and 
does not suffer from parameter explosions. The simple 
technique employed to generate feasible starting points is 
merely required to overcome the problem of multiple local 
minima in the objective function. It is therefore expected 
that evolutionary techniques or particle swarm systems 
should be able to find the template matching parameters 
more reliably and predictably. This paper has shown that 
template based image registration using non-evolutionary 
techniques that do not evaluate gradient information are 
reliable and perform acceptably. 
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V. APPENDIX A: SUCCESSFUL REGISTRATIONS 
The following scene and templates images were 
successfully registered automatically using the simplex 
(Nelder-Mead) method and the choice of starting points 
described by the algorithm in this paper. 
 
Image Scene: 

 
 
Templates Matched Automatically: 
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