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Abstract

This dissertation reviews population dynamic type models of viral infection and

introduces some new models to describe strain competition and the infected cell

lifecycle. Laboratory data from a recent clinical trial, tracking drug resistant virus

in patients given a short course of monotherapy is comprehensively analysed, paying

particular attention to reproducibility. A Bayesian framework is introduced, which

facilitates the inference of model parameters from the clinical data. It appears that

the rapid emergence of resistance is a challenge to popular unstructured models of

viral infection, and this challenge is partly addressed. In particular, it appears that

minimal ordinary differential equations, with their implicit exponential lifetime (con-

stant hazard) distributions in all compartments, lack the short transient timescales

observed clinically. Directions for future work, both in terms of obtaining more in-

formative data, and developing more systematic approaches to model building, are

identified.
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Chapter 1

Introduction

The purpose of this research project is to build mathematical models that can explain
various important aspects of retro-viral strain competition, such as the emergence
of resistant strains during antiviral treatment. The field of structured population
dynamics [1, 2, 3], provides many methods and insights that can be applied to popu-
lations of interacting target cells, virions and infected cells. This project investigates
ways of building structure into simple models governing dynamics at a population
level. Models of biological systems generally result in a trade-off between math-
ematical tractability and biological faithfulness, as observed by [4]. Models that
capture a great deal of biological detail can only be explored by computer simula-
tion. Simple models allow mathematical analysis, but often oversimplify biological
facts. Both approaches have limitations when applied to phenomena in biological
systems. The principle adopted here is to make use of simple mathematical models,
that nevertheless incorporate enough biological detail to explain clinically observed
features.

Viral evolution is central to a number of clinically and epidemiologically relevant
questions and is the subject of much ongoing research. A proper understanding of
these phenomena is essential for optimal treatment planning, and can provide guid-
ance for: 1) understanding the risk associated with non-adherence to a prescribed
regimen, 2) designing regimen strategies, such interruption strategies of combination
therapy, where different pharmacokinetics may lead to periods of monotherapy, 3)
estimating the time period after which treating a general population with a par-
ticular regimen may become ineffective, and so on. It is studied here from the
perspective of competition between viral strains in a host environment perturbed by
anti-viral drug therapy, with particular emphasis on single dose Nevirapine treat-
ment. Nevirapine is a non-nucleoside reverse transcriptase inhibitor and is often used
in a resource-poor setting, to reduce the risk of transmission of HIV from mother
to child. This treatment reduces the viral load of the mother whilst providing the
infant with Nevirapine, via the placenta, at levels known to reduce the risk of vi-
ral transmission during labor. Researchers in this field have investigated strategies
for reducing drug resistance in both mother and child. Data from a recent clinical
trial, made available by the National Institute for Communicable Diseases (NICD),
suggest that resistance to a single dose of Nevirapine treatment emerges within 14
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Chapter 1. Introduction 2

days. This clinical outcome conflicts with predictions obtained from a well-known
class of mathematical models [5, 6] widely used for treating in-vivo HIV dynamics.
These models exhibit much slower response times. One of the aims of this study is
to investigate appropriate modifications of these models.

Dynamic behavior of populations depends on how the individuals in that popu-
lation are distributed with respect to the developmental variables of age, size, mass
and so on. Most models for HIV dynamics assume exponential lifetime distributions
for virions and target cells alike. An investigation of a particular model for in-vivo
competition between strains, which assumes that cells and virions do not age or
develop, shows that significant drug resistance emerges after three weeks of perfect
treatment, even if the modelled fitness of the resistant strain is only marginally
compromised. This is at odds with the clinical evidence which shows that resistance
emerges on a time scale significantly shorter than three weeks. This disagreement
would be even greater if the models incorporate the results of in-vitro experiments
conducted to track the relative fitness of competing clones, which confirmed that
there are significant fitness differences between competing strains [7].

Chapter 2 considers some of the widely used models for in-vivo HIV-1 dynam-
ics i.e. those based on interacting populations of target cells and virions. Their
assumptions of individual structure, for example age structure, are examined. They
are found to be limited in addressing certain clinically relevant features. This is a
motivation for investigating models with additional structure. It is a simple matter
to produce a significant drug resistant virion population arbitrarily quickly by giving
the lifetime distribution of productively infected cells an ever shorter tail. Gamma
lifetime distributions are particularly easy to implement, by simply introducing a
linear chain of compartments or stages [8, 9, 10]. Moreover, it has the exponential
and delta distribution as two limiting special cases: An exponential distribution is a
gamma distribution with one stage. A delta distribution, obtained in the limit as the
number of compartments increase, models the assumption that all individuals live
to the same age and then ‘die’. Knowledge of the physiological mechanisms at the
binding sites on the surfaces of cells and virions suggests constraints on how these
models should depend on development or age. A simple algorithm suggests that cell
and virion lifetimes follow a delta-like distribution, which means that the probability
of survival is high for a characteristic period where after it rapidly expires. A system
of partial and integro-differential equations is modified and implemented by means
of a numerical scheme called the Escalator Boxcar Train (EBT) algorithm [11]. It
is used to explore arbitrary age structure for populations of infected cells.

The resistance data consist of estimates of plasma viral load in blood samples
collected over the space of one year, after the initial single dose of Nevirapine. Ini-
tial estimates for the concentration of K103N resistance variants have been reported
by [12]. These estimates are produced by a Polymerase Chain Reaction (PCR)
process, a standard method for amplifying and quantifying small quantities of DNA
sequences. A rudimentary investigation of the PCR process is reported in Chapter
3. PCR is based on multiple cycles of enzymatic DNA synthesis that form a chain
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reaction. Each cycle includes denaturation (splitting) of double stranded templates
into complementary single strands, annealing of primers to their complementary
sites on these single stranded templates, and extension of the primer. The efficiency
of the process of synthesizing DNA is a critical factor in the attempt to estimate
initial concentrations. Most methods are based on the assumptions that all tem-
plates are faithfully duplicated. Substantial effort was spent on developing methods
to investigate the implications of PCR efficiency for accurate prediction of initial
concentrations. The software was then used to estimate the relative fraction of two
competing viral sub-populations. It was found that target specific amplification,
as employed in the PCR process which produced the afore mentioned data set, is
of limited usefulness in quantifying sub-populations of mRNA. An alternative, and
possibly superior method is discussed as part of the chapter summary.

A quantitative theory of any physical system, such as host-viral dynamical sys-
tems, requires a description of all the uncertainties in the theory. These uncer-
tainties are expressed as probability distributions over a corresponding parameter
space. The model and parameter space have uncertainties associated with incorrect
theories and inaccurate measurements respectively. The Bayesian approach is often
used as a subjective interpretation of probability and is widely used to solve inverse
problems. It is a systematic way of combining all the uncertainties and limitations
in the forward modelling and measurement of a system [13]. A review of inverse
problem theory is reported in Chapter 4, providing some theoretical background
for the inference techniques used in this project. Two important discussions concern
homogeneous and hierarchical prior distributions. The latter is often used when
parameters in multiparameter inference problems are related in some way. For ex-
ample, in a clinical trial designed to infer in-vivo viral parameters of different trial
attendees, it is reasonable to assume that there exists a relationship between viral
parameters of different individuals. Hierarchical Bayesian modelling is frequently
applied to longitudinal data sets and clinical data [14, 15]. It has recently been
used in the context of HIV dynamics [16, 17] and is applied in this project to infer
parameters relating to the host-virus models developed in Chapter 2.

Bayesian inference of viral parameters is the subject of Chapter 5. When un-
realistic assumptions about the lifetime distributions of infected cells are built into
dynamical models, it leads to unrealistic inferred values for model parameters. The
‘shape’ of lifetime distributions of infected cells have been structured into a staging
scheme. Inferring ‘the number of stages’ will shed some light on the tail of these
distributions. The inference result can be obtained in a way that is insensitive to the
precise value of the ‘the number of stages’. This is achieved by means of a homoge-
neous prior distribution for the shape parameter, which assigns equal probability to
a parameter corresponding to long-tailed (exponential), short-tailed (delta) and an
intermediate (gamma-like) lifetime distribution. The resistance profiles, obtained
from the PCR data set in Chapter 3, are too few to provide an accurate estimate of
the population level distribution of viral parameters. The data set was not collected
to meet our inference and modelling requirements. A positive outcome for work of



Chapter 1. Introduction 4

this kind would be a collaboration between clinicians and modelers, and a realiza-
tion that mathematical modelling can provide valuable tools for the interpretation
of clinical data.



Chapter 2

Population dynamical models

for HIV infection

Dynamical processes that arise in epidemiology, ecology, pharmacokinetics, chemical
engineering, and so on, can often be modelled as a flow of material between com-
partments, governed by mass balance laws. Compartmental modelling is a method
for finding the differential equations that govern the flow or transfer of material
between compartments.

The term ‘material’ could mean molecules, population members, target cells or
virions, depending on the system being studied. ‘Compartment’ refers to a kineti-
cally homogenous amount of material, in the sense that the material is assumed to
be well mixed at all times and furthermore that it mixes instantaneously with new
material entering the compartment [10]. All units experience the same probability
per unit time of being transferred in a kinetically homogenous system. Furthermore,
the transfer of material between compartments is modelled as a continuous process,
determined by the transfer rates of the system. The transfer of material between
compartments is in reality a discrete process, where an arbitrary small number of
units is transferred in a (sufficiently) small time interval.

Bodily compartments for HIV infection would typically include lymphatic tissue,
peripheral blood and so on. These compartments host the interaction between bil-
lions of target cells and virions and can be thought of as the limit of a corresponding
stochastic system. This limit is obtained by enlarging the compartments until they
contain enough individuals to smooth out fluctuations due to individual stochas-
ticity. The compartmental models we build become deterministic in this limit and
they govern the time evolution of the expectation values of the underlying stochastic
processes. There are scenarios when this assumption may not hold, for example
when viral loads are low in the early stages of infection or when suppressed during
anti-viral treatment. Stochastic models for HIV infection are not investigated in this
project.

Compartmental HIV models are set up as ordinary differential equations describ-
ing the time evolution of cell and virion cohorts. Populations of cells and virions are
usually not differentiated beyond the viral genotype and mayor cell phenotype level.
Individuals in such populations are assumed to be equal in every relevant respect,

5



2.1 A simple model for HIV infection 6

for example: 1) they experience the same risk of dying or being cleared from the
system, 2) they have same production rate, and 3) they have the same response to
environmental factors, such as treatment. Models that incorporate various types of
delays and physiological structure have been explored, providing a more nuanced
description of viral load decline during therapy. Delays, for example, are used to
model aspects of the life cycle of infected cells, such as the delay between viral cell
entry and the onset of the production of new virions [18]. Partial differential equa-
tions [19, 20, 21] have been introduced to implement ‘age structure’ in models that
include non-constant hazards of infection, production, survival and death. However,
additional structure, whilst complicating both the models and their implementa-
tion, has yet to produce new insights for the management of HIV infection. From a
modelling perspective, this chapter considers:

• What aspects of structured populations may explain the clinically relevant
features of the system?

• How can these be modelled by extending simple models, for example, by in-
troducing appropriate discrete categories of cell and virion populations?

• Which physiological insights can be promoted by mathematical modelling.

We introduce the following population structure, beyond those already used in the
simplest models:

• Viral genotypes found: 1) circulating in bodily compartments, and 2) tran-
scribed into the DNA of a host cell.

• Age of infected cells, where ‘age’ refers to time since infection by a viral
genome.

The discussion proceeds by starting from the simplest models, which lack either
of these population structures, and then considers each in turn, as well as models
with both. The modelling principle of explaining known properties of the system by
introducing only minimal extra degrees of freedom is applied.

2.1 A simple model for HIV infection

Perhaps the simplest sensible model of HIV infection is constructed by specifying
time derivatives for the populations of healthy T cells T (t), ‘productively infected’
T cells P (t) and free virions V (t). The following simple dynamical model is widely
used in this field and has been thoroughly reviewed [5, 6]:

dT (t)
dt

= ST − kV (t)T (t)− µT T (t) (2.1)

dP (t)
dt

= fkV (t)T (t)− µP P (t) (2.2)

dV (t)
dt

= NµP P (t)− µV V (t) (2.3)
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where,

• The body produces new T cells at a rate ST . Production will typically be
assumed to be constant over the course of a simulation. In reality there is no
doubt an effect from chronic infection, which is not properly understood.

• µT and µP are constant mortality rates for healthy and productively infected
T cells respectively.

• Healthy cells are homogenously mixed with virions and they are infected at
rate k. This mass action term for the infection rate is probably not phys-
ically precise, but may be adequate as an average of the mixing in crucial
compartments on the time scale being probed.

• A fraction of f cells entered by a virion become productively infected.

• Infected cells produce N new virions over their lifetime. A constant fraction
of new virions are able to reproduce, i.e they are equipped with functional
reproduction, capsid and other proteins.

• Virions have a constant hazard of ‘death’ µV , and this term can be increased
to include the loss of virions that manage to enter and infect a cell.

• This simple mathematical model mimics a biological description of the viral
life cycle. More details are given in Appendix A.

This class of models implements the assumption that: 1) uP can be described by an
exponential distribution with mean 1

uP
, i.e. that infected cells do not ‘age’, and 2)

there is no delay between the infection and viral production stages in the life cycle
of an infected cell.

Equilibrium state

There exists a trivial equilibrium condition for the model of equations (2.1)-(2.3),
when the system is in a non-infected state:

Teq =
ST

µT
(2.4)

Peq = 0 (2.5)

Veq = 0 (2.6)

It is easy to find the equilibrium condition during infection by setting the time
derivatives of all state variables equal to zero [6]:



2.1 A simple model for HIV infection 8

Teq =
µP µV

fkβ
=

T0

R0
(2.7)

Peq = (R0 − 1)
µT µV

fkβ
(2.8)

Veq = (R0 − 1)
uT

fk
(2.9)

where,

• β = NµP represents the average number of virions produced by a productively
infected cell.

• T0 = ST
µT

is the initial uninfected T-cell population.

• R0 = ST βk
µT µP µV

represents the basic reproductive value of the virus [6]. Note
that a disease steady state can only exist if R0 > 1. This can also be stated
as k > µT µP µV

ST β , highlighting k, the infection rate.

• The equilibrium state is stable [22], i.e the system tends (to return) to its
equilibrium value when perturbed from it.

We now provide a short account of some of the developments of HIV dynamics mod-
elling and we focus on those that have clear origins in clinically observed features of
HIV infection. More detailed accounts can be found in [5, 6]. The most important
impact on our understanding of HIV dynamics to be derived from a mathematical
model, resulted from the seminal work of Ho et al [23]. Fitting a linearized version
of the model given by equations (2.1)-(2.3) to the viral load data for 20 patients dur-
ing anti-viral treatment, elucidated the rapid turnover and relatively short average
lifetime of populations of infected cells. This high turnover rate is part of the mech-
anism by which the virus extends its genetic diversity. This finding, together with
his pioneering work in HIV treatment, has won David Ho Time’s award: ”Person
Of The Year” in 1996. HIV dynamics modelling has not continued to produce such
dramatic findings. Nevertheless, attempts to capture clinically observed features of
HIV infection has led to important modelling questions, and the remainder of this
section highlights some of these.

An observed feature during anti-viral treatment is that patients experience a
rapid decline in viral load, but not quite viral eradication. When treatment is
modelled as a reduction in infectivity, this observed fact can only be produced for a
narrow range of modelled parameters. This is called ‘fine tuning’; model parameters
have to be tuned very carefully for the model to produce a certain relevant behavior.
‘Fine tuning’ problems often point to an incomplete model; a physical mechanism is
missing from the model, and it would not be necessary to ‘fine tune’ the parameters
of a complete model. This is one of the motivations for including additional structure
in simple models for HIV dynamics.
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Clinical data show that plasma viral loads for infected individuals follow a rapid
rise that peaks within a few weeks after infection. Viral loads then decline, reaching
a set point which is very low compared to the peak and which varies substantially
between patients. Characteristics of primary infection, including: 1) the time to
peak 2) amplitude of the peak, and 3) eventual viral set point, have been correlated
with subsequent disease progression. The main conclusion is that a high viral set
point after primary infection can be correlated with increased risk during disease
progression.

The characteristic decline has been attributed to: 1) target cell limitation, and
2) immune system responses. The extent to which these processes contribute to the
decline in viral load, has not been answered completely. Staffard et al [24] have
shown that variation in the parameters of model (2.1)-(2.3) can account for the
variation in the rise and subsequent fall of viral loads observed between patients.
They also show that the viral load in many patients falls to levels below what can
be predicted by this simple model. Including immune system responses into model
(2.1)-(2.3), does allow the prediction of low viral set points, but [24] concludes that
it is not clear how the contributions of different processes in viral load decline may
be disentangled.

Including additional physiological processes

It is a simple matter to incorporate additional physiological processes, by adding
new population compartments and dynamical terms to the model of equations (2.1)-
(2.3), depending on the features to be addressed. Some of the familiar extensions
are briefly discussed below:

• T cells undergoing clonal expansion to maintain homeostasis of total T cell
populations, or in response to antigen threats, can be captured by adding a
logistic term to (2.1):

dT (t)
dt

= ST + T (t)
(

1− T (t)
Tmax

)
− kV (t)T (t)− µT T (t) (2.10)

• Some models use functional forms such ST (a, V, t) to model the fact that both
aging and viral infection tend to reduce thymus activity [25]. The thymus,
an organ situated behind the breast plate, expresses most ‘self’ (as opposed
to foreign) epitopes. The thymus helps to select self-tolerant T cells and to
de-select T cells expressing high affinity for ‘self’ epitopes. The self-tolerant
T cells are initially ‘naive’, and continue to circulate through various bodily
compartments. Maturing is reached after these ‘naive’ T cells are exposed
to their cognitive epitopes, leading to ‘memory’ T cells. Lymphocyte circula-
tion models are often captured by distinguishing compartments of ‘naive’ and
‘memory’ T cells, with thymus activity typically modelled as input for ‘naive’
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T cell compartments [25]. For the purposes of this investigation we assume
that ST (t) = ST is constant.

• Patients do not experience viral eradication during HAART (highly active
antiviral treatment), even when the ability of the virus to infect is almost com-
pletely suppressed. Instead, clinical evidence suggests that viral load declines
in more than one phase. This feature can be explained by including other viral
compartments [6], that cannot be reached by treatment, of cells being ‘latently’
infected and living for much longer than the more active ‘productively’ infected
cells. These cells may be reactivated to produce new viral particles, feeding
new virions into this peripheral blood system. This is an example of how a
delay process can be captured by introducing a suitable compartment.

• A minimal model for HIV in vivo dynamics can easily be extended to keep
track of more than one viral strain [6], and such a model is the subject of the
next section.

It seems reasonable to expect that additional population compartments and dynam-
ical terms will extend the range of dynamical behavior that can be modelled. What
is not clear is how additional dynamical behavior can be explained by introducing
minimal complexity, or degrees of freedom, into a system such as the one given by
equations (2.1)-(2.3).

2.2 Multi strain models

A minimal model of HIV infection by Ns strains is:

dT (t)
dt

= ST − T (t)
Ns∑
i=1

kiVi(t)− µT T (t) (2.11)

dPi(t)
dt

= fkiVi(t)Ti(t) + T (t)
Ns∑
j 6=i

εjikjVj(t)− µPiPi(t) (2.12)

dVi(t)
dt

= NiµPiPi(t)− µViVi(t) (2.13)

where,

• Pi is a categorization of T cells infected with genome of viral strain Vi.

• Each infected cell Pi will produce Ni virions during its life time.

• f is the probability of error free transcription and εji is the probability of a
transcription error of the required kind, to cause a cell entered by a virion
carrying a genome of strain j to become infected with a genome of strain i.
This could be as high as about 0.0001 for strains differing by a single base
mutation, and rapidly declines as the strains become more distinct.
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From a modelling point of view it is not necessary to include more than two viral
strains when studying strain competition during monotherapy. The wild type strain
will refer to the fittest drug sensitive strain, whilst the drug resistant strain will
refer to the fittest drug resistant strain. If the drug sensitive wild-type strain is
eradicated during anti-viral therapy, then any less fit drug sensitive strain will also
be eradicated. For the remainder of this chapter, (V1, P1) and (V2, P2) will refer
to virions and cells productively infected with the drug sensitive wild type and the
drug resistant strain respectively. V1 and V2 will refer K103 and K103N when the
modelling ideas of this chapter is connected with clinical data in later chapters.
K103N is the fittest Nevirapine resistant mutant [26].

Equilibrium State

The equilibrium state of a two strain model is obtained by means of perturbation
analysis (Appendix B). A perturbation analysis is set up to make small corrections
to the equilibrium state of a model without mutation, a state which is easy to obtain.
Equilibrium states are given by:

Teq =
µP

fk1
(2.14)

P1eq =
(

ST − µT T (0)
k1T (0)

)
− ε

(
k2

k1
P

(1)
2

)
+ O(ε2) (2.15)

P2eq = ε

(
k1P1(0)T (0)
µP − fk2T0

)
+ O(ε2) (2.16)

where ε is the mutation rate, which is assumed to be the same for both strains.

Some important features of multi strain models

Important features of multi strain models include:

• Immune system pressure, a key determinant in ‘fitness’ measures, is not in-
cluded explicitly in this model. It is modelled indirectly by means of clearance
rates µX , X = T, P andV . Equilibrium conditions are also dependent on
immune system pressure, and in particular on the degree to which the im-
mune response is strain-specific or cross-reactive [27]. Section 2.5 shows how
a immune system response can be modelled by a interplay between maternity
(virion production) and mortality of infected cells.

• There is no equilibrium between strains of varying fitness that do not mutate
into each other; without mutation the fittest strain will outcompete all less fit
strains, and a marginal relative weakness leads to extinction.

‘Fitness’ is meant to be a measure of the reproductive ability of a strain. Data
on relative in vivo fitness is scarce, and are generally based on in vitro growth
competition experiments between mutant clones. In [7] fitness is equated with
ability to reproduce in a defined host cell environment.
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• The time required to approach equilibrium between identically fit strains which
differ by a single mutation is many years.

• Resistance to monotherapy, often conferred by single base mutations, requires
three weeks of almost perfect selective pressure to emerge at levels comparable
to pre-treatment levels of the wild-type strain.

The last point is at odds with clinical evidence, as indicated by analysis of the
data made available by NICD. This analysis suggests a more rapid emergence of
resistance during single dose Neverapine treatment, even when these models are
modified to include significant fitness differences for viral strains (as suggested by
in vitro tests). Age-structured models are now introduced, which helps us to inter-
pret resistance data in the light of assumptions about physiological structure in the
population of infected cells.

2.3 Age structured models for HIV infection

Introducing age structure is a natural way of generalizing HIV models and allows for
variable hazards of infection, recovery, reproduction, death and other individually
variable attributes. The focus here is to demonstrate that the turnover rates of
competing populations, such as strains of varying drug sensitivity, depend not just
on the mean, but also the shapes of lifetime distributions in the model.

The following model, similar to the one first introduced by [19] and more recently
by [20], describes time dependent age distributions for productively infected T cells
P (a, t).

dT

dt
= ST − kV (t)T (t)− µT T (t) (2.17)

∂P (a, t)
∂t

= −∂P (a, t)
∂a

− µP (a) P (a, t) (2.18)

dV

dt
=

∫ ∞

0
m(a) P (a, t) da− µV (a) V (a, t) (2.19)

P (0, t) = fkV (t)T (t) (2.20)

where,

• Construction of a specific initial value problem involves specifying T (t0), P (a, t0),
and V (t0), where T (t0) and P (a, t0) are initial concentration of healthy and
infected T-cells prior to infection, and V (t0) the initial virus concentration.

• Boundary conditions are given by equation (2.20). Once appropriate initial
conditions have been specified, equations (2.17) to (2.20) can be used to de-
termine T (t), P (a, t), and V (t) for t > t0.

• The introduction of f captures the possibility that only a fraction of cells
removed from the healthy cell pool, would become productively infected.
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• Infected cells P (a, t) experience age dependent ‘mortalities’ µP (a).

• m(a) is the rate of virion production for an infected cell aged a. Estimates for
m(a) are the subject of [20]. Two hypothetical functional forms for m(a) are
studied in Section 2.5.

• This model would be substantially complicated by the introduction of an age
structure for the population of healthy T cells. It is a simple matter to include
an age structure for V , the population of virions, in order to model infectivity
k as a function of virion age. However, virions have life spans that are very
short compared to other time scales in this system and an age structure for
virions may typically be omitted.

Equilibrium condition

Obtaining the equilibrium condition is a simple matter that 1) begins with setting
the time derivatives in the model of equations (2.17) to (2.19) to zero:

Teq =
sT

uT + kVeq
(2.21)

Peq(a) = Peq(0)l(a) = fkVeqTeql(a) (2.22)

Veq =
1

µV

∫ ∞

0
m(a)Peq(a) da (2.23)

and 2) makes use of the fact that when a population p(a, t) experiences time inde-
pendent but age dependent mortality rates µ(a), then p(a, t) obeys:

p(a, t) = p(0, t− a)e−
R a
0 µ(s) ds (2.24)

= p(0, t− a)l(a) (2.25)

where l(a) = e−
R a
0 µ(s) ds is the probability that an individual will survive from

birth to age a. The equilibrium condition for the model of equations (2.17) to (2.20)
follows, after applying (2.22) to (2.23), as the solution of a simple set of simultaneous
equations [20]:

Teq =
µV

fkN
(2.26)

Peq(a) =
(
sT f − µT µV

kN

)
l(a) (2.27)

Veq =
sT fN

µV
− µT

k
(2.28)

where N =
∫∞
0 m(a)l(a) da is the ‘burst size’ of an infected cell. This equilibrium

condition is stable, as is the case with the equilibrium condition of a comparable
system of ordinary differential equations [20].
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An infected steady state will exist only if Veq > 0, i.e. if:

fkN

µV
>

µT

sT
=

1
T0

(2.29)

The ratio of infected cells before infection to infected cells at equilibrium is given
by:

T0

Teq
= R0 (2.30)

where R0, the ‘basic reproductive number’ of an infected cell, equals the number of
infections of healthy cells due to one infected cell that is introduced to the initial
phase of the infection. The simplicity of this expression is the result of a naive
model for viral dynamics, which does not, for example, include clonal expansions of
T cells in response to various threats. Substituting (2.26) into (2.30), shows that
the expression

R0 =
T0fkN

µV
(2.31)

summarizes the fitness of the virus [21]. It is interesting to investigate a more general
scenario, where the survivorship of infected cells is dependent on viral production
schedules:

l(a) = e−
R a
0 µP (m(a)) da (2.32)

In this case infected cell mortality µP (m(a)) is an implicit function of age. Following
[21, 28], Section 2.5 investigates how this implicit relationship can be constrained
by physiological arguments relating to the life-cycle of infected cells.

2.4 Multi-strain age structured models for HIV

infection

The age structured model given by (2.17)-(2.20) can be generalized to model strain
competition:

dT (t)
dt

= ST (t)− T (t)
Ns∑
i=1

kiVi(t)− µT T (t) (2.33)

∂Pi(a, t)
∂t

= −∂Pi(a, t)
∂a

− µPi(a)Pi (2.34)

Pi(0, t) = fkiVi(t)Ti(t) + T (t)
Ns∑
j 6=i

εjikjVj(t) (2.35)

dVi(t)
dt

=
∫ ∞

0
mi(a)Pi(a, t) da− µViVi(t) (2.36)
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The equilibrium state can again be derived by means of perturbation analysis in-
volving the mutation rate ε (Appendix C):

Teq =
µV

fkN1
(2.37)

V1eq =
(

ST fN1

µV
− µT

k

)
− ε

(
k2

k1
V

(1)
2

)
+ O(ε2) (2.38)

V2eq = ε

(
k1N2V1(0)T (0)

µV − fk2N2T (0)

)
(2.39)

P1eq(a) = (fk1V1eqTeq + εk2V2eqTeq) l1(0, a) + O(ε2) (2.40)

P2eq(a) = (fk2V2eqTeq + εk1V1eq(t)Teq) l2(0, a) + O(ε2) (2.41)

Simplified lifetime distributions

Various assumptions can reasonably be made about the age dependence of virion
production and cell mortality rates. For example, models with constant mortality
assume that cells do not age, and hence that the lifetime distribution follows an ex-
ponential distribution. When the lifetime distribution is given by the delta function,
i.e, when it is sharply peaked around the mean life expectancy for infected cells, the
assumption is made that all cells live a hazard free life, up to a certain age, and
then ‘die’. It could also be imagined that the probability of cell death is given by
a gamma distribution, which is often used to represent a system with multistage
internal processes. The lifetime of such a system can be seen as the time delay
between the first and last sub-processes and ‘death’ occurs only after a number of
sub-processes are completed.

These assumptions can be built into simple delay models, which can then be
used to model simplified age distributions. Consider a modification of the original
constant hazard model. By making the lifetime distribution in the P population
perfectly sharply peaked about its mean value λ, we obtain a fixed delay model:

dT (t)
dt

= ST (t)− T (t)
Ns∑
i=1

kiVi(t)− µT T (t) (2.42)

dPi(t)
dt

= fkiVi(t)Ti(t) + T (t)
Ns∑
j 6=i

εjikjVj(t)− fkiVi(t− λ)Ti(t− λ) (2.43)

−T (t− λ)
Ns∑
j 6=i

εjikjVj(t− λ)

dVi(t)
dt

=
βiPi(t)

λ
− µViVi(t) (2.44)

where,

• βi is the rate of viral production for infected cell of type Pi over its fixed
lifetime of λ.
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Exponential and delta-like lifetime distributions lead to very different dynamical
behavior. By means of Figure 2.3, it will be demonstrated shortly how resistance
emerges more rapidly when the lifetimes follow a delta distribution. A more realistic
alternative to discrete delays is a continuous distribution of delays, and finding simple
ways of modelling such delays by introducing suitable compartments into the model.
Delay models arise in dynamical systems when the current state of the system is
dependent on the history of the system [29]. A model with delays can always be
expanded into a model without explicit delay terms, by including the process causing
the delays [10]. Gamma lifetime distributions are particularly easy to implement,
by simply introducing a linear chain of compartments or stages. Moreover, it has
the exponential and delta distribution as two limiting special cases: An exponential
distribution is a gamma distribution with one stage. A delta distribution captures
the assumption that all individuals live to the same age and then ‘die’. It is obtained
in the limit as the number of compartments increase. The ‘linear chain trick’ has
been applied in [8], which explores some of the implications that the assumed lifetime
distribution of infected cells may have for inferences based on viral load data.

Thus, implementing a gamma lifetime distribution amounts to introducing a
number of categories, or life stages:

dT (t)
dt

= ST (t)− T (t)
Ns∑
i=1

kiVi(t)− µT T (t) (2.45)

dPi,1(t)
dt

= fkiVi(t)Ti(t) + T (t)
Ns∑
j 6=i

εijkiVi(t)− µPi,1Pi,1(t) (2.46)

dPi,2(t)
dt

= µPi,1Pi,1(t)− µPi,2Pi,2(t) (2.47)

.

.

.
dPi,n(t)

dt
= µPi,n−1Pi,n−1(t)− µPi,nPi,n(t) (2.48)

dVi(t)
dt

= Ni,1Pi,1(t) + Ni,2Pi,2(t) + . . . + Ni,nPi,n(t)− µViVi(t) (2.49)

where,

• Each infected cell population Pi, is stepped through n stages: Pi,1 to Pi,n.

• The mean (of the exponentially distributed) time spent in each stage is 1
µPi,j

.

• Mortality rates µPi,n are adjusted in each stage to give overall mortality µP .

• The stage in the infected cell life cycle when viral production starts, can be
controlled by setting Ni,j = 0 for some of the stages j <= n.
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The subsystem governing Pi can be decoupled from T and Vi by cutting of the supply
of new infected cells. This is achieved by setting by setting ki = 0 in (2.46). The
infected cells Pi are then governed by the following system of linear ODE’s:


P ′

i,1(t)
P ′

i,2(t)
...

P ′
i,n−1(t)
P ′

i,n(t)

 =



−µ1 0 . . . . . . 0
µi,1 −µi,2 . . . . . . 0
...

. . .
...

... . . . µi,n−2 −µi,n−1
...

0 . . . . . . µi,n−1 −µi,n−1




Pi,1(t)
Pi,2(t)

...
Pi,n−1(t)
Pi,n(t)


stated compactly as:

P ′
i (t) = UPi (2.50)

This system is easily solved for Pi(t):

Pi(t) = eUtPi(0) (2.51)

where Pi(0) = [Pi,1(0), Pi,2(0), . . . , Pi,n(0)] is the initial population state. We con-
sider a special initial condition Pi(0) = [Pi,1(0), 0, . . . , 0] to observe survivorship in
the cohorts Pi,n. Figure 2.1 demonstrates how mortality approaches a step function
as the number of stages increase. The same (arbitrary) value for Pi,1 is used in each
model.
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Tab. 2.1: State variables and parameters

State Variable Descriptions

T Uninfected, heathy T cell population
i = 1, 2 Number of strains distinguished
Pi T cells infected with genome of strain Vi

Vi Infectious viral strain i

V1 Wild type
V2 Resistant type

Parameter Descriptions Value

T0 Initial T cell population 9× 1010mm−3

ST T cell production rate 1, 8× 108mm3d−1

µT Mortality rate of healthy T cells 1
500d−1

µPi Mortality rate for infected T cells 1
2.6d−1

µVi Mortality rate for free virus 1
0.3d−1

N1 Number of free virions produced by P1 500
N2 Number of free virions produced by P2 400
k1 Rate at which T cells become infected by V1 4× 10−12mm3d−1

k2 Rate at which T cells become infected by V2 4× 10−12mm3d−1

ε12 Mutation rate from V1 to V2 3× 10−5mm3d−1

ε21 Mutation rate from V2 to V1 3× 10−5mm3d−1
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Fig. 2.1: Mortality or death can be equated with the rate at which the population
exits the last stage, indicated by the increasing blue line.

The corresponding survivorship functions (in blue) and lifetime distributions (in
red) are displayed in Figure 2.2. It can be seen that lifetime distribution becomes
more peaked as the number of stages are increased. The survival function, which
can be calculated from the rate at which cells exit the last stage, can be seen to
approach a step function, as the number of stages are increased.
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Fig. 2.2: Lifetime distribution (represented by the red curve) become sharply
peaked as the ‘number of stages’ increase.

Figure 2.3 simulates 7 days of perfect treatment, by four different models. The
same dynamical parameters, listed in Table 2.1, are used in each model. The only
difference between these models is that the cohort of infected cells is stepped through
an increasing number of stages.
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Fig. 2.3: Simulating 7 days of perfect RTI treatment of HIV, 80 days (indicated
by vertical lines) after initial infection with one perfectly resistant(green)
and one perfectly drug sensitive strain(red). All dynamical parameters
are identical, except that the cohort of infected cells is stepped through an
increasing number of stages. The key point is the differential impact on
population turnover behavior. The horizontal line represents equilibrium
states calculated with perturbation scheme (B.26) - (B.28), and it can
be seen that the calculation is in good agreement with the simulated
equilibrium state. Note that viral loads are displayed on a logarithmic
scale.

We see that a resistant virion population emerges rapidly, when we assume a
short tail for the lifetime distribution for infected cells. Thus, by varying the num-
ber of stages, and the exponentially distributed time spent in each stage, we can
investigate a continuum of lifetime distributions. The overall distribution of the
above mentioned scheme is a gamma distribution, and the exponential and delta
distributions are two special cases. These two distributions will provide a ‘natural’
constraint for a range of possible distributions, and in the next section we look at
ways to constrain lifetime distributions using physiological considerations.
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2.5 Physiological constraints on ‘age’ dependent

parameters for populations of infected cells

We have added age structure, and considerable extra complexity, into a minimally
sensible model for multi strain HIV dynamics. This extra complexity is useful to
explain certain clinically relevant features of host virus dynamics, such as the rapid
emergence of resistance during treatment. It was shown that certain types of age
structure can be modelled in a simple way by subdividing cell and virion populations
through the use of discrete compartments or categories. The question arises whether
the use of these simplifications can be justified on a physiological basis. This section
attempts to show how physiological arguments can be used to suggest the shapes
of the age distributions of populations of infected cells. These insights can then be
used to inform or devise sensible discretization schemes.

Age dependent characteristics of an individual do not depend on age in an intrin-
sic way, but rather on internal development [9]. The ‘age’ of an individual happens to
be highly correlated with development, and so are other attributes, including mass,
size, and so on. In the context of virus and immune system dynamics, attributes
include the number of functional glycoprotein ‘spikes’ on a virus particle, and the
number of warning signals displayed by infected cells to immune system surveillance.
Little is known about the details of how the viability of infected cells degrades as a
result of their infected status and prevailing immune system responses. Four of the
contributing processes are [6, 21, 30]:

• When a virus infects a cell it manipulates the biosynthetic machinery of the
cell to produce viral proteins. The rate at which vital resources are lost is
proportional to the rate at which viral proteins are produced. The extent to
which the cell is compromised is called viral cytopathicity.

• These cells are fortunately equipped with a mechanism to inform the immune
system that they have been hijacked to produce virions. The immune system
reacts to eliminate the cell with a process called CTL-mediated lysis. The
following is a most condensed account of this mechanism. A complete and
accessible account is available in [31]. Some of the viral proteins are cut into
peptides and transported, via the endoplasmic reticulum to the surface of the
cell. Peptides of a certain length (approximately 9 amino acids), are loaded
into the class I-MHC molecules on the surface, to inform killer T cells of its
internal status.

• All cells experience a risk of being cleared by the system. This risk is inde-
pendent of the cell’s infection status and is called the ‘background mortality’.

• Like all blood cells, T cells originate in the bone marrow where they descend
from stem cells. Each T cell is at the end of a (possibly long) line of cell
divisions, and the dependence of cell life expectancy on its position in this line
is not explored here.
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We now propose a model of infected cell mortality. To the extent that this model
is realistic, infected cell lifetime distributions are quite sharply peaked and have
rapidly decreasing tails. A number of physiological assumptions are built into the
following model for a immune system detection mechanism:

• Viral protein fragments are loaded into the class I-MHC molecules at a rate
which is proportional to viral production rate. These locations are uncorrelated
and spread evenly over the cell membrane.

• There is a constant rate of class I-MHC inspection by cytotoxic T cells.

• Immune system surveillance ‘samples’ Ns class I-MCH molecules during each
time unit.

• At least Nr of the ‘sampled’ class I-MCH molecules must display viral peptides
for cross-linking to produce a ‘kill this cell’ type signal.

• The probability of survival of the cell is proportional to the probability that
less than the required number of peptides will be available for cross-linking.

The process generating a ‘kill this cell’ signal is much more complicated than this
algorithm may suggest. In reality, the distribution of these receptors over the cell
membrane, situated as they are on mobile and floating structures, may only be
approximately uniform. Accessory proteins associate with the heavy protein chains
of these receptors, and serve to amplify the signal of antigen matching into the
cytoplasm of the cell. The clustering of receptor and accessory proteins is called
cross-linking, and it is vital for efficient antigen recognition. Cross-linking attracts
nearby receptors to the linking site. This increases the concentration of receptors and
amplifies the signal. Depending on the signal strength it generates, a receptor cluster
thus formed interacts with other cell processes. Such processes are not included in
this algorithm. Having pointed out some of the limitations of the algorithm, the
remainder of this section aims to illustrate some of its implementations.

A number of physiological details must be specified before this model can be
implemented:

• The original number of class I-MHC molecules is approximately 100000. The
exact number is not directly relevant in this model, except that it provides
an upper bound on sensible values of Ns. It is estimated that approximately
100 MHC molecules must be recognized by the receptors of a naive T cell to
be activated [31]. The exact number is again not directly relevant, and serves
as an upper bound for activation requirements. T cells that have already
encountered their cognitive antigen, have less strict re-activation requirements.

• Two plausible viral production schedules are proposed by [20]. Both are char-
acterized by a maximum production rate due to limited cellular resources.
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They also take into account possible delays between initial infection and the
onset of viral production.

The first functional form is a delayed exponential:

P (a) =

{
Pmax(1− e−β(a−a1)) : a ≥ a1

0 : otherwise
(2.52)

where a1 is the earliest age of viral production and β controls the rate at which
the maximum production rate (Pmax) is approached.

The second is a Hill type function:

P (a) = Pmax

(
an

Kn
a + an

)
(2.53)

where Kn
a is a constant related to the half-suturation level and n an arbitrary

constant.

• There is also no clear relationship between viral production rate and details of
how fragments of viral proteins are loaded into class I-MHC molecules. The
simplest assumption is that fixed number peptides (Npep) are loaded for each
virion produced.

We can now evaluate the survivorship function of a hypothetical cohort of T cells, as
a function of the time spent exposed to the hazard of being detected by the immune
system. The algorithm implements the survivorship function given by an integral
equation (2.32):

• State values for Nr,Ns and the original number of class I-MHC molecules.

• State a value for Npep.

• Select a functional form for viral production, such as those given by (2.52) and
(2.53).

• Discretize a plausible life span for an newly infected T cell. For each age
interval of this discretization calculate the number of virions produced, and
increase the amount of loaded class I-MHC molecules according to Npep. The
probability of finding one loaded class I-MHC molecule in a particular age
interval, pNr(a), is calculated by dividing the current number of loaded mole-
cules by the original number of unloaded molecules. The probability that
immune system will find Nr out of Ns loaded class I-MHC molecules is:

l(a) = Bino (Nr, Ns, pNr(a)) (2.54)
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where Bino (Nr, Ns, pNr(a)) is the cumulative binomial distribution, for Nr

successes out of Ns trials, given that the probability of one success is pNr(a).

A range of plausible model parameters leads to a survivorship function with a shape
depicted in the Figures 2.4 and 2.5. The first figure assumes a delayed exponential
type function for viral production. In the second figure a Hill type function with no
delay is assumed. Note that apart from CTL mediated lysis, there is also a ‘constant
background’ threat experienced by infected T cells. A constant increase/decrease
in mortality over all ages, will however not dramatically affect the shape of a life-
time distribution (Appendix E). The argument that mechanisms at binding sites
of infected T cells determine the shape of lifetime distributions of these cells, may
therefore be extended to an environment of slowly varying immune system response.

Fig. 2.4: The blue curve shows a decline in the immune system escaping ability
of an infected T cell, due to increasing class I-MHC display. Normal-
ized viral production is depicted in red. An exponential viral production
function, delayed by one day, is assumed.
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Fig. 2.5: The blue curve shows a decline in the immune system escaping ability of
an infect T cell, due increasing class I-MHC display. Normalized viral
production is depicted by means of the red curve.

The importance of this discussion seems to be that physiological insights and
knowledge of binding mechanisms, can lead to constraints on the kinds of age de-
pendence that parameters in age-structured models will exhibit. In the present
example, these constraints arise entirely from the combinatorics of risk exposure at
surface binding sites. A range of plausible model parameters leads to step-function-
like survivorship rates; i.e. infected cells will go about unnoticed for a characteristic
time, after which their guarantee for survival expires rapidly. The model derived in
this section is by no means exact, but could be improved and adapted to incorporate
additional physiology that determine the survivorship of infected cells.

2.6 A numerical tool for exploration of structured

viral dynamics models

A simple model expressing survivorship of infected cells as a function of viral produc-
tion and immune system response, has been discussed in Section 2.5. The purpose
of this section is to build these survivorship functions into an age structured viral
dynamics model, to solve this model numerically, and to discuss solutions in the
context of the physiological constraints mentioned above.

Section 2.3 introduced an age structured model for populations of infected cells:
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∂P1,2(a, t)
∂t

= −∂P1,2(a, t)
∂a

− µP (a) P1,2(a, t) (2.55)

with initial conditions P1,2(a, 0) and boundary conditions for P1,2(0, t). The main
difficulty with a numerical implementation of equation (2.55) is the calculation of a
continuous ‘flow’ of infected cells along the age axis. The EBT (Escalator Boxcar
Train) method, introduced by [11, 9], is a powerful technique for studying the dy-
namical behavior of physiologically structured populations. The algorithm is built
around simple rules designed to keep track of cohorts of population members: 1)
the population is firstly divided into a collection of cohorts, in a manner permitting
characterization of these cohorts by the number and total age of individuals it con-
tains, 2) cohorts are tracked through time, subject to the rule that individuals stay
in their cohorts unless removed by death, and 3) new cohorts are created through
reproduction only. This is in contrast with the simplified model for gamma lifetime
distribution, introduced in Section 2.4, where a continuous flow of individuals oc-
curs across stage boundaries. Both approaches are built on the observation [9], that
aging is a movement towards increased development. Consider a modification to the
2-strain model of equations (2.45)-(2.49), where the EBT algorithm is used to keep
track of cohorts of infected cells:

dT (t)
dt

= ST (t)− T (t)
Ns∑
i=1

kiVi(t)− µT T (t) (2.56)

dPi,j(t)
dt

=

{
Pi,j(0, t)− µ

′
Pi

(tb)Ai,j(0, t)− µPi(tb)Pi,j(t) : tj∆a

−µPi(ai,j , t)Pi,j(t) : otherwise
(2.57)

dAi,j(t)
dt

=

{
(t− tb)Pi,j(0, t) + Pi,j(0, t)− µPi(tb)Ai,j(t) : tj∆a

Pi,j(t)− µPi(ai,j , t)Ai,j(t) : otherwise
(2.58)

tj∆a → j∆a ≤ t ≤ (j + 1)∆a (2.59)

ai,j(t) =
Ai,j(t)
Pi,j(t)

(2.60)

dV (t)
dt

= Ni,1(ai,1, t)Pi,1(t) + . . . + Ni,n(ai,n, t)Pi,n(t)− µVjVj(t) (2.61)

The origin of this algorithm, as well as factors that contribute to its accuracy, are
discussed in Appendix D. It is demonstrated that the discretization scheme de-
scribed by equations (2.56)- (2.61), becomes exact when the age interval is divided
into intervals over which the mortality function µPi is piecewise linear.



2.6 A numerical tool for exploration of structured viral dynamics models 28

The following remarks are aimed at highlighting some of the features of the algo-
rithm, originally designed to model a single population with physiological structure
(size,mass,age, and so on), by means of its specific application to model interacting
populations with age structure. These remarks describe the terms in the equations
above and also highlight some useful implementation details. The algorithm was
implemented from scratch in Matlab for the present work.

• Pi,j , where i = 1, 2 and j = 1, . . . , n, refer to the total count of individuals in n

cohorts distinguished for the wild type P1,j and the drug resistant strain P2,j

respectively. These cohorts are recruited during a time interval of ∆a = amax
n

each. It is assumed that individuals cells do not live longer than age amax.

• Equations (2.58)-(2.60) are ‘bookkeeping’ equations for the total (Ai,j) age
and the average age (ai,j) in each cohort. The term

Pi,j(0, t) = kiVi(t)Ti(t) + T (t)
N∑

j 6=1

εijkiVi(t)

in equations (2.57) and (2.58) refers to ‘newborn’ infected cells that are re-
cruited due to new infections of healthy cells. The conditional statement of
(2.57) and (2.58) emphasizes that one boundary or birth cohort is distinguished
into which all births are recruited. The ODE’s for tracking the birth cohort
are different from the ODE’s tracking any other cohort. Notice that the aver-
age age ai,j is used as a representative statistic for general cohorts (equation
(2.57)), but that the boundary cohort (equation (2.58)) uses the time of birth
tb. The reason why the average age of the boundary cohort is considered to be
an unreliable statistic, is that the average age is not well defined when Pi,j(t) is
zero in equation (2.60). This could happen during the initial stage of integra-
tion, as the boundary cohort is initially empty. Equation (2.58), tracking the
total age of a cohort, describes the rate of change of the total age (Ai,j) due
to aging and mortality [3]. Thus a population of infected cells can be viewed
as moving along an escalator, hence the name of the algorithm.

• µPi(ai,j , t) is the rate at which strain cohort Pi,j is cleared from the system,
when the average age of the cohort is ai,j .

• Ni,j(ai,j , t) represents the rate at which virions are produced by a cohort Pi,j

with an average age of ai,j .

• The model of equations (2.56) - (2.61) can be implemented in a simple way
according to the following scheme. Any integration algorithm, providing an
interface to specify the derivative of state variables (i.e. the right hand sides of
equations (2.56) to (2.61)), and a time range over which to integrate, will do.
Equations (2.56) and (2.61) are straightforward to integrate, by ‘passing’ the
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derivatives dT (t)
dt and dV (t)

dt to the integration routine. The latter equation will
require the average age ai,j of each cohort to be passed the routine calculating
derivatives. The average age is also required for the calculation of derivatives
dPi,j(t)

dt and dAi,j(t)
dt , and hence the latest estimate for ai,j must be continuously

available. Tracking the state variables defined by equations (2.56) and (2.58)
is slightly more tricky but manageable when the integration of the system of
ODE’s is stopped at every ∆a interval. Each Pi,j and Ai,j cohort is moved
along the age axis, i.e. Pi,j = Pi,j−1 for j = 2, . . . , n, while new productively
infected cells are recruited into cohort Pi,1. With this scheme, a fixed number
of ODE’s are maintained, which simplifies implementation.

• Matlab supports the parsing of string expressions into numerical values. This
allows for great flexibility in implementing this algorithm, as we briefly explain.
‘Matlab’ provides a wide range of ODE algorithms and they all require as
input: 1) the time derivatives of the system, 2) the integration range, and
3) parameters to optimize integration. These are two main aspects of the
implementation. The time derivatives are first written as string expressions,
containing terms for state and other variables. These string expressions are
then parsed using the current values of all variables used in the expression,
resulting in a vector containing the numerical values of the time derivatives,
one value for each ODE in equations (2.56) and (2.58). We have already
mentioned that the integration algorithm is stopped at each ∆a interval in
order to ‘move the cohorts along the escalator’. This is the second aspect of the
implementation and determines the integration range. The flexibility of this
implementation is due to the fact that a new system of ODE’s is generated for
each choice of the mortality functions (µP1(a) and µP2(a)) and discretization
of the age interval.

• The EBT algorithm is accurate only when individuals in each cohort Pi,j are
accurately described by their average age ai,j . High accuracy can be achieved
1) by using a model with high resolution (small ∆a), and 2) when mortality
can be approximated by a piecewise linear function. The first option comes
with increased computational effort, a typical tradeoff between resolution and
accuracy. The second option allows for the possibility of an accurate low
resolution model, provided that mortality is piecewise linear.

2.7 Exploring structured viral dynamics models

Some effort has been invested in exploring age structured models in the context
of known clinical features of viral dynamical systems. The dynamics of an age
structured model during primary infection, for example, have been studied by Nelson
et al [20]. They noted that it is possible to find production schedules that fit primary
infection studied by Stafford et al [24]. Another important issue regarding HIV
progression, is the extent to which viral loads are reduced due to immune system
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responses and viral cytopathicity respectively. A study by Nowak and May [6]
interprets the consistency of viral decay slopes for patients undergoing drug therapy
as evidence for the cytopathicity of the HIV virus. Simple mathematical models
show that a fast acting immune system response can eliminate a significant fraction
of the productively infected cell population, and thereby reduce viral production,
without having much of an effect on the average life of infected cells.

This kind of analysis often highlights some of the discrepancies between math-
ematical models and clinical results. The drawback of this pursuit is that merely
meeting test case standards does not necessarily produce models that could advance
physiological and clinical insights, as much as simply following them. It would
clearly be desirable for mathematical models to predict and explain dynamical be-
havior that would otherwise remain hidden. The purpose of this section is to explore
the impact that our assumptions about the age distributions of infected cells have
on strain competition.

Fitness implications of the maternity (viral production) schedule

The fundamental relationship between the intrinsic growth rate and the maternity
schedule of a single self-generating population have been summarized in Appendix
E. It follows from the observation that the characteristic equation (E.18) is the
Laplace transform of the maternity schedule m(a)l(0, a):

g(r) =
∫ ∞

0
e−ram(a)l(a) da (2.62)

Normalizing the maternity schedule with respect to R0:

g(r)
R0

=
∫ ∞

0
e−ra m(a)l(a)

R0
da (2.63)

and taking the logarithm of g(r)
R0

generates an expression for R0 in terms of r, µ and
σ:

−log(R0) = −rµ +
r2σ2

2!
− . . . (2.64)

where,

• r is the intrinsic growth rate.

• R0 is the reproductive number.

• µ and σ is the mean and variance of the maternity schedule respectively.

• Moments of higher order than σ2 have been omitted.
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Using equation (2.64), [2] performed a perturbation analysis, providing an expression
(detailed in Appendix E) for comparing the intrinsic growth rates of populations with
different R0, µ and σ respectively (all other parameters being equal). The following
summary captures the essential points of this useful result:

• The population with a larger reproductive value R0 =
∫∞
0 mi(a)li(a) da will

have a higher intrinsic growth rate.

• A population with a larger average age at which birth is given, will have a
lower intrinsic growth rate. Convergence to the stable age distribution is more
rapid when the average fertility is localized at young ages.

• A population with a more dispersed age at which birth is given, will have a
higher intrinsic growth rate.

Consider the two strain age structured model of equations (2.33)-(2.33):

dT (t)
dt

= ST (t)− T (t)

(
Ns∑
i=1

kiVi(t)

)
− µT T (t) (2.65)

∂Pi(a, t)
∂t

= −∂Pi(a, t)
∂a

− µPi(a)Pi (2.66)

Pi(0, t) = fkiVi(t)Ti(t) + T (t)

 Ns∑
j 6=i

εjikjVj(t)

 (2.67)

dVi(t)
dt

=
∫ ∞

0
mi(a)Pi(a, t) da− µViVi(t) (2.68)

where Ns = 2, i = 1, 2 and j = 1, 2.
The dynamical behavior of the two populations of infected cells P1, P2 are cou-

pled. They mutate into each other and compete for the same healthy T cells. It is
instructive to investigate the impact that two different maternity schedules would
have on strain competition, even though the theoretical result mentioned above only
holds for the idealization of a single self-generating population. Figure 2.6 depicts
the hypothetical age-structures of two strains. Information in this figure is organized
as follows:

• Survivorship functions l(a) are shown in blue.

• Lifetime distributions L(a) are shown in red.

• Maternity or production function m(a) are shown in green.

• Age dependent mortality rates µ(a) are shown in black.

• The lifetime distributions are gamma distributions and they are not implicitly
related to maternity functions m(a). Both age structures are hypothetical and
may not comply with physiological constraints.
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Fig. 2.6: Two viral strains with different hypothetical age structures. These age
structures were generated by two slightly different sets of parameters for
gamma lifetime distributions and exponential virion production functions.
The values of these parameters are purely hypothetical. These age struc-
tures can be generated with the Matlab code provided in Appendix D.1

Recall from Section 2.3 that burst size N has been defined as:

N =
∫ ∞

0
m(a)l(a) da (2.69)

The maternity distribution is obtained by normalizing the maternity schedule with
respect to burst size:

M(a) =
∫ ∞

0

m(a)l(a)
N

da (2.70)

and is displayed in Figure 2.7 for the two strains.
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Fig. 2.7: Maternity distributions corresponding to the age structures depicted in
Figure 2.6.

Notice that these maternity distributions:

• Have the same mean.

• They were also chosen to have the same burst size, namely 500 virions born
to infected cells of either type.

• They differ however in the variance of the age at which new virions are pro-
duced: strain 2 has a higher variance in the age at giving birth to new virions.

We can expect strain 2 to dominate strain 1 as Figures 2.8 and 2.9 show.
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Fig. 2.8: Illustrating the dominance of a strain with a higher variance in age of
giving birth. Both strains have mean age at birth of 2.6, i.e. infected
cells give birth at an average age of 2.6 days. Both strains have a burst
size of 500 virions and start with an initial viral count of 10. Strain 2
outcompetes strain 1 due to the fact that it has a greater variance with
respect to the age at giving birth to new virions.

It can be seen from these two examples that fitness advantages implied by the
maternity schedules of idealized self-generating populations, can still be seen when
populations are coupled by competition and mutation. The fitness arguments for
single self-generating populations derive from assumptions about their stable distri-
bution. The question arises as to how much time can we expect populations to spend
following their respective stable age distributions and asymptotic growth rates, and
if stable age considerations are relevant for competing populations with a stable
equilibrium. The following argument can be used to construct a scenario in which
the stable age distribution and growth rates are well defined [32]: One could argue
that the initial infection starts from a very small initial viral population. The initial
target population is very large and remains roughly constant, at least for a period
long enough for both populations to have reached their respective asymptotic growth
rates and stable age distributions. The intrinsic growth rates of the two strains can
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Fig. 2.9: The model is essentially the same as the model depicted in Figure 2.7.
However, in this model strain 2 starts with an initial count of zero, and is
created from mutating strain 1. The slight fitness advantage of strain 2
allows it to replace and dominate strain 1 eventually, even though strain
1 has ‘won the race’ to dominance during primary infection.

be equated with the slope of the initially linear parts on the logarithmic plots above.
Strain 2, the fitter strain, has a steeper slope and therefore a greater intrinsic growth
rate.

This digression shows that results from mathematical population dynamics, com-
bined with numerical tools, can advance understanding of viral evolution. While it
seems intuitively obvious that the strain with the greatest burst size will dominate
‘less fit’ strains, it is less obvious that maternity distributions, given by equation
(2.70) will have such an important impact.

Modelling strain turnover dynamics with simplified lifetime

distributions

In the previous section we have made use of an approximation scheme (i.e the EBT
algorithm) for the system PDE’s governing age-structured populations to implement
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arbitrary age and maternity distributions. Certain aspects of strain competition and
turnover dynamics can also be modelled using the simplified-lifetime-distribution ap-
proach developed in Section 2.4. We now investigate the consequences of assumed
lifetime distributions for strain turnover rates. Consider again the two-strain model
of Section 2.4 that uses the ‘linear chain trick’ to model gamma-like lifetime distrib-
utions. The model is put in equilibrium to avoid the dynamics of primary infection
when studying the time required for a fitter mutant to replace the wild-type strain.
The system is time-evolved starting from the equilibrium values for T , P1 and V1.
The mutant is now ‘created from rare mutation’ by means the initial conditions
P2 = 1 and V2 = 0, indicating that one cell, productively infected by the rare mu-
tant, is introduced to the system. This scenario can only be physically possible if
the wild-type and mutant have not been mutating into each other. The mutant pro-
duces N2 = 600 virions compared to N1 = 500 virions produced by the wild type. Its
fitness advantage could be the result of the immune system being unprimed for the
specific peptides (see Section 2.5) produced by the rare mutant. The time required
by the mutant to replace the wild type is depicted in Figure 2.10 below. The lifetime
distributions of cells infected by the two competing strains are given a shorter tail
in each subplot, while keeping the mean age fixed. These lifetime distributions are
depicted in Figure 2.3. It can be seen that the time required for replacement by
an emerging strain, depends on the lifetime distribution of both competing strains,
and ultimately on the rate at which existing cohorts are replaced by newly created
cohorts. A short-tailed lifetime distribution compounds a fitness advantage, by al-
lowing it to be used more often in the fitness competition that is being played out
all the time. Notice that ‘time to replacement’ can be divided into three categories:
1) a distinctly longer time required by infected cells following exponential lifetime
distributions, 2) a much shorter time required when these lifetime distributions are
short-tailed, and 3) the time required for replacement tends to level off beyond a
certain shape, which corresponds to roughly after 9 stages in the Figure 2.10 below.
In Chapter 5 we infer the approximate shape of the lifetime distribution by assign-
ing a probability to each of these categories. Knowledge of the precise value of ‘the
number of stages’ in the life cycle of infected cells is not as important as simply
knowing if the distribution is shorter-tailed than the usually assumed long-tailed
exponential lifetime distribution.
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Fig. 2.10: Demonstrating a shorter time to replacement when a mutant follows a
gamma-like lifetime distribution. The vertical line indicates the time
required for replacement.

It is again demonstrated that the shape of a lifetime distribution determines a
fitness differential beyond those that could be explained by the ‘burst size’ and mean
lifetime of an infected cell. A mutant can emerge: 1) through a rare mutation event,
2) an immune system escaping strain or 3) as a resistant strain during anti-viral
treatment. The shape of the lifetime distribution is a mechanism that determines
the time to replacement in both cases.

A closer look at strain competition using scaling

arguments

Structured population dynamics aim to find ways of structuring individual detail into
models for dynamics at a population level. Models for HIV dynamics govern the
interaction between billions of target cells and virions, and the method of averaging
over individual detail is often used. This leads, for example, to the use of: 1) µP -
the average lifetime of infected cells, 2) N - the average number of virions produced
by an infected cells, and so on. This chapter has also focused on building details of
the lifetime distribution in appropriate models. To this end, we have used staged
ODE’s to model gamma lifetime distributions and also PDE’s to model lifetime
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distributions with arbitrary shape.
This question could also be asked in a different and in a sense opposite way:

what individual details can we be ignorant about? Scaling arguments are often used
to help answer such questions, and we next investigate a simple scaling argument in
the context of strain competition. In the previous section we have demonstrated the
shorter time to replacement when a rare mutant follows a short-tailed lifetime distri-
bution, and from Figure 2.10 it appears that strain competition can be completely
described by exponential growth/decline of the two strains. This is concluded from
the linearity of the growth curves on the log scale used in the figure. To investigate
this phenomena in more detail we make use of the EBT algorithm, which allows us
to model lifetime distributions of arbitrary shape. Another motivation is to ensure
that observations made thus far do not depend on the use of gamma-lifetime distri-
butions and staged ODE’s. Using an lifetime distribution with shape given by the
hypothetical age structure of the wild-type strain depicted in Figure 2.6, where the
rare mutant is given a fitness advantage by increasing its production of virions by a
factor of two across all ages, leads to a similar dynamical situation:

Fig. 2.11: Strain competition is completely described by the slope of growth curves
during ‘early infection’. This is the period when a growing infection
is ‘small in numbers’ compared to other populations it interacts with.
Strain 2, for example, remains small in numbers compared to the total
count if Strain 2 and T cell populations, until a region near the cross
over point is reached.



2.8 Summary 39

The equilibrium condition for any two strain model with differential fitness and
no cross-mutation, is the eventual extinction of all but the fittest strain. This is the
asymptotic behavior of the system. But there is also an intermediate and substan-
tially large time region of linear behavior in the two strain model depicted above,
namely the region of ‘early infection’. We can make the observation that all en-
vironmental and individual detail is summarized into a single parameter, namely
the intrinsic growth rate of a curve during ‘initial infection’. A model consisting of
two growth rates provides a complete description of strain replacement dynamics,
at all times, except for a narrow time window when interacting populations coexist
in comparable numbers.

2.8 Summary

This chapter has investigated mathematical models for HIV-dynamics. These mod-
els range from simple compartmental models, modelling simple virus-immune-system
dynamics, to complex models that include general structure for populations of in-
fected cells. Models for populations with physiological structure have been the focus
of this research project, as simple compartmental models do not predict the rapid
emergence of resistance during anti-viral treatment, at least not for plausible para-
meter values.

It was shown that simplified age distributions, such as gamma distributions, can
be modelled quite easily by introducing suitable categories of stages traversed by
infected cells. Resistance emerges more rapidly when the lifetimes of infected cells
follow delta-like distributions, and the shape of these distributions were controlled by
varying the number of ‘stages’ that an infected cell passes through. Using a simple
algorithm that counts the number of viral peptides loaded on MHC complexes, it was
demonstrated that infected cells will evade the immune system for a characteristic
time, after which the probability of escaping immune system surveillance rapidly
diminishes. This argument may justify the use of short-tailed lifetime distributions.

The seminal work of Ho et al [23] elucidated the rapid turnover rate of popula-
tions of infected cells. The mean of an assumed exponential lifetime distribution was
inferred by fitting clinical data, obtained during therapy, to a simple model for HIV
dynamics. Few other clinical insights have been directly obtained from mathemati-
cal models. The EBT algorithm was used to (numerically) explore the dynamics of
two competing strains with hypothetical age structures. It was demonstrated that
viral dynamics depend in detail on the whole maternity distribution. Mathematical
models have focused mainly on the mean of the lifetime distribution. It may be
instructive to investigate whether studying structures at the binding sites, together
with other physiological facts of infected cells, may lead to a better understanding
of infected cell lifetime distributions and associated viral production schedules.

This chapter also investigated methods for structuring some viral-life cycle details
into mathematical models. The last section asked the ‘opposite’ question: which
details can we be ignorant about. An argument exploiting the relative constancy of



2.8 Summary 40

state variables, demonstrates that all environmental and intrinsic fitness variables are
summarized into one variable. This variable was found to be the slope of exponential
growth curves, giving an accurate description of viral dynamics during a period of
‘early infection’. This observation has a general context: Can mathematical analysis
provide practical methods that can be used both to find relevant variables, and the
time scale over which they are relevant?



Chapter 3

Measuring small quantities of

DNA

The most frequently used technique for the amplification and quantification of spe-
cific sequences of deoxyribonucleic acid (DNA) molecules, is generally known as PCR
(for Polymerase Chain Reaction). This technique implements the natural process
of enzymatic DNA replication. During each temperature cycle, primers attach to
DNA regions for which they are (designed to be) complementary. The primer is then
extended to duplicate the target sequence. The number of target DNA molecules is
ideally doubled in each cycle, leading to an exponential replication process with a
theoretical efficiency of 2. This level of efficiency is usually not attained in practice
due to a number of contributing factors: 1) nonspecific target amplification, 2) en-
zyme degradation due to short enzyme lifetime, and 3) product inhibition, to name
but a few.

A ‘Real Time’ PCR (RT-PCR) machine performs a measurement (by fluores-
cence - to be discussed in detail later) of the amount of DNA present at each cycle.
This measurement is dominated by background noise during the initial cycles be-
cause the amount of DNA is so small that it is essentially undetectable. The amount
of DNA grows exponentially with each PCR cycle, and its measurement soon domi-
nates the background signal. At this point the measurement can be used to estimate
the unknown initial concentration of DNA. The more cycles of PCR required to reach
a standard quantity of PCR product, the less there was present to begin with.

A picture of viral evolution and strain competition can be formed by measuring
how the viral loads (or their relative fractions) of competing strains change over
time. The purpose of this chapter is to study the PCR process for DNA synthe-
sis in some detail, to estimate the relative concentrations of viral DNA sequences,
and to estimate the uncertainties in these estimates due to the imperfect PCR and
measurement processes.

A Matlab toolbox was developed to process PCR data. These routines use a sim-
ple mathematical formulation for the branching probability of each DNA sequence.
Although the model is idealized, it is convenient and accurate in explaining the
exponential growth phase of the PCR process. The toolbox implements a few stan-
dard methods and introduces two unique methods of processing PCR data. The

41
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first technique estimates the background signal in the measurement process and
removes it from the data. The second method is a correction to subtle effects intro-
duced into PCR data by non-specific (unintended) amplification. This correction is
applied to estimates of the magnitudes of relative fractions of viral subpopulations.
The correction derives from calibration PCR runs, where primers are used to amplify
plasmids (commercially manufactured DNA sequences) that they are not specifically
designed to amplify. Modelling these mispriming, or spurious amplification effects,
shows that these errors are compounded by each PCR cycle. A conclusion of this
analysis is that a small population of DNA may have been unintentionally created
from other DNA populations, and that caution should be applied when reporting
that they exist in vivo. Accurate quantification of small viral subpopulations is a
crucial component of this project, as it provides us with data that could be used
to calibrate the mathematical models developed in Chapter 2. An alternative PCR
method that does not compound mispriming errors, is discussed in the summary of
this chapter.

3.1 Genetics: basic concepts

The purpose of this section is to provide a simple introduction to some of the concepts
and terminology of genetics and its molecular structure, regarded as relevant to study
PCR. Compact, but informative, introductions can be found in [33, 34].

Genetic instructions are carried in deoxyribonucleic acid (DNA). This is a nucleic
acid consisting of a string of covalently-bound nucleotides. Encoding is achieved with
four nucleotides (also called bases): adenine (A), thymine (T), cytosine (C), and
guanine (G). A and G are known as purines and C and T as pyrimidines. A ‘pairs
up’ with T , and C with G, by means of hydrogen bonds, forming a double helix.
A DNA sequence can be replicated by splitting (dissociating) the double strand.
This provides two single strands that can be used as templates for synthesizing two
identical copies of the original strands. Mutations, or errors of the copying process,
occur when nucleotides are incorrectly copied, skipped or inserted.

The genetic code is made up of three letter words termed codons, such as ACT ,
CAG, TTT , and so on, up to 64 possibilities. A codon corresponds to a amino
acid. This is a many to one relationship, as there are only 20 amino acids but 64
codons. Only some regions of the genome encode for proteins. Encoding regions are
‘demarcated’ by, and is situated between, ‘stop’ codons.

The chemical structure of ribonucleic acid (RNA) is very similar to that of DNA.
RNA molecules have an additional hydroxyl group. Another difference is the use
of uracil (U) instead of thymine (T). RNA is transcribed from a DNA template
using RNA polymerase enzymes. Viral genetic material can be found in distinct
compartments and can be related to distinct viral RNA activities:

• Viral RNA is first turned into DNA by means of the reverse transcriptase en-
zyme before it is integrated into the host cell genome by the integrase enzyme.
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• One of the main functions of RNA is to translate genetic information from
DNA into proteins. Messenger RNA (mRNA) is transported to ribosomes in
the cytoplasm of the cell, where the information is translated into instructions
for protein synthesis. Quantifying mRNA is called ‘gene expression’ or ‘gene
activity’ analysis.

• Free virus, circulating in the body, is essentially a piece of viral RNA protected
by a capsid.

3.2 The PCR process

The PCR system is a method for in vitro DNA replication and provides a quanti-
tative method for detecting small quantities of DNA. The PCR process uses poly-
merase enzymes to replicate DNA. Attention is focused on a particular region of
the DNA molecule, selected for amplification by means of primers. These are short
sequences of synthetic DNA that are complementary to the sequence to be amplified.

In this project we analyzed data from a PCR experiment which was designed
to quantify the distribution of the nucleotides A,C,G, and T at codon 103 at the
env gene. This codon is of interest because 103A and 103G encode for a drug
(Nevirapine) sensitive genotype, while 103C and 103T encode proteins for a resistant
genotype. Primers 103A,103C ,103G and 103T will refer to primers targeting viral
strains 103A,103C ,103G and 103T respectively.

An initial small amount of DNA (template) is placed in a well, together with
primers, polymerase enzymes, and other biochemical components. The PCR cycle
then proceeds through the following steps:

• Denaturation: The temperature is raised to 94◦C, for approximately one
minute. At this temperature double stranded DNA opens into single strands.
Enzymes used in this process (usually the Taq polymerase enzyme) are de-
signed to survive this high temperature. Note that enzymatic reactions will
stop at this high temperature, resulting in incomplete extensions and popula-
tions of synthesized DNA with different lengths.

• Annealing: The temperature is lowered to 54◦C, allowing primers to attach
to the single stranded template. Stable attachments allow the polymerase
enzymes to attach (hybridize) to the small section of double stranded DNA
(formed by the primer and the template) and copying of the template can
start.

• Extension: The temperature is again raised to 72◦C, the optimal temperature
for extension of the template by the polymerase enzymes. Loose bonds, from
primers not matching the template exactly, break and will therefore not be ex-
tended. This limits the amplification of non-specific primer-template matches.
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These steps are repeated for approximately 40 cycles by a thermocycler, programmed
to cycle between the denaturation, annealing, and extension temperatures. The
temperatures mentioned above are specific to to a particular process and depend on
physical properties of the nucleic acids participating in the reaction.

3.3 Measuring PCR product

The PCR experiment used to generate the data of this project includes one ‘reporter
dye’ in the biochemical mix of each well. This dye interchelates non-specifically into
the double stranded DNA generated during each PCR cycle. The dye will generate a
characteristic emission profile only if interchelated, when light (from the UV part of
the spectrum) is projected through the well. This fluorescence profile is monitored
during the extension phase of each cycle. In practise, the data from the experiment is
an electric signal from a detector, which has a linear response to fluorescence in only
a part of its dynamical range. A passive dye is also added, and is part of the master
mix which forms the basis of the biochemistry in each well. The passive dye does not
interchelate into double stranded DNA and its emission profile is used to monitor
fluctuations that result from PCR independent processes. Figures 3.1 and 3.2 show
emission profiles for a passive (ROX) and a reporter dye (SYBR) respectively.

Fig. 3.1: Passive dye(ROX) fluorescence. The PCR process does not extend beyond
the vertical line, although measuring of the degrading product continues.
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Fig. 3.2: Reporter dye(SYBR) fluorescence.

A number of properties of the PCR process are reflected in these amplification
plots. The process degrades toward cycle 40 as it runs out of biochemical ingredients.
Thermal cycling is stopped after 40 cycles, ending the PCR process. Measurement
of the degrading product continues. The cycles of interest lie between 10 and 35,
when the reporter dye rises sharply above the background signal. The cycle number
at which a reference quantity of product (PT ) is attained is called the threshold
cycle (ct). The passive dye signal also increases in this phase of the process. The
apparent reason for this that the ROX detection channel picks up the tail of the
SYBR emission spectrum.

Reporter signal is normalized (and then called Rn) after division by the passive
signal. This corrects the reporter signal for well-specific fluctuations, allowing inter
well comparison of reporter signal data [35]. A further correction to the reporter
signal is made by subtracting a background signal. This corrected reported signal
is usually called ‘Delta Rn’ (∆Rn) and refers to a normalized reported signal from
which the background has been removed.

3.4 Estimating PCR amplification rate

The simplest mathematical model for the PCR process assumes that the probability
(m) for a single DNA molecule to duplicate during each cycle, remains constant:
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P (c) = P (0)mc = P (0)(1 + meff )c (3.1)

where,

• P (0) is the initial concentration of template.

• c is the cycle number.

• m is the amplification rate of PCR product.

• meff is the efficiency of the process.

Detector signal processing, background subtraction and

normalization

A formula for the detection of PCR product has the following form:

Rn(c) = A + F (P (c)) (3.2)

• Rn is normalized fluorescence.

• F is a detector response function which has a region of linear response to
fluorescing PCR product.

• A is the background signal to be estimated and removed from the reported
signal.

The fluorescence signal of the first few PCR cycles is dominated by measurement
noise when synthesized DNA is present in too low concentration for the signal to
rise above this background. The literature [35] suggests that simply subtracting the
average fluorescence from the first few cycles, will correct the signal for background
noise. We make use of a slightly more nuanced method to estimate the background
signal.

The discrete ‘cycle number’ variable can be replaced by a continuous time vari-
able to make use of this relationship. Measuring the PCR reaction may then be
written as:

Rn(c) = A + F
(
P (0)eλc

)
(3.3)

Fluorescing PCR product dominates background noise in the reported measurement:

A � Rn(ct) = F (P (0)mct) (3.4)

A theoretical curve (depicted in Figure 3.3) can be defined in this region, and its
initial concentration can be calculated as follows
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F (P (0)) = F
(
PT e−λct

)
(3.5)

and inserted into equation (3.3) to obtain the measured signal at at arbitrary cycle
c:

F (P (c)) ≈ A + F
(
PT eλ(c−ct)

)
(3.6)

Fig. 3.3: Background signal (A), depicted with the apparent constant part of the
red curve, dominates the fluorescence during the first few cycles. The
theoretical curve, used to calculate an estimate for the latest cycle where
measurement reports only the background signal, is depicted by the dot-
ted black line.

We can now estimate the background signal as the average signal of the first cA

cycles, where cA is the cycle number and where F
(
PT eλ(c−ct)

)
becomes more than

1 percent of what was previously called ‘background signal’. This provides a more
accurate description of the background signal, as it is based on the linear and most
reliable part of the measured curve. All reporter signals now refer to a reporter
signal that has been normalized with respect to the passive dye and corrected for
background noise using this method. ∆Rn will refer to background-removed signals.

With the background removed, equation (3.3) reduces to:
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F (P (c)) = F
(
P (0)eλc

)
(3.7)

At this point we drop explicit reference to the detector response function F , and
adopt

P (c) = P (0)eλc (3.8)

as a working description of the measured PCR process. Several cycles of linear
increase in fluorescence may be identified by plotting the normalized reporter signal
on a log scale. We rewrite (3.8) as

ln (P (c)) = ln (P (0)) + λc (3.9)

This relationship can be used to find the most linear region in the exponential phase
of the reaction and hence to estimate λ as the slope of this line. Several methods
are available for estimating the amplification rate of the PCR process.

The ‘Amplification Rate’ method

In this method an exponential curve is fitted to the reporter signal. This is possible
as the exponential growth curve is detectable for 3 to 4 cycles on a log-linear plot.
Four dilution runs were performed in this study, using primers designed to target
pure plasmids with an A,C, G or T at codon 103. The exponential phase can easily
be identified as linear on a log plot. This method is illustrated with Figure 3.4, using
the dilutions runs for plasmid A.

The exponential curves estimated from log(∆Rn) plots are displayed in Figure
3.5. It can be seen that they are in good agreement with the fluorescence data in
the exponential phase of the PCR process.

The standard curve method

This method relates the ‘threshold cycle’ required to attain a reference quantity of
product across a set of wells where an initial (unknown quantity) of template is
serially diluted. The dilution experiments in this study for Primers 103A, 103G and
103T yielded accurate ‘standard curves’. The dilution experiment for Primer 103C

was unsuccessful, necessitating a further investigation into the efficiency of the PCR
reaction, in order to estimate the efficiency of Primer 103C .

The ‘threshold cycle’ was estimated for each curve at the intersection of the
curves depicted in Figure 3.5, with a user defined reference quantity (yellow line).
The linearity of the ct vs n relationship, where n is the two-fold dilution num-
ber, can be used to estimate the amplification rate. The leftmost curve, with the
fastest rise time, corresponds to amplification of the initial (unknown amount of)
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Fig. 3.4: Dilution runs for primer 103A.

Fig. 3.5: Estimating amplification processes for primer 103A.
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template P (0, 0). If P (0, n) represents the same template diluted n times, then
P (0, n) = P (0,0)

2n . The general relationship between threshold cycle and diluted ini-
tial concentration is given by:

P
(n)
T = P (0, n)mct

and therefore:

P (0, 0)mct = PT 2n

It follows that the slope of the linear relationship between ct and n equals ln(2)
ln(m) . If

the slope of the line is given by S, then m = e
ln(2)

S , where S is estimated as the slope
of the line depicted in Figure 3.6.

Fig. 3.6: Linearity of CT vs template dilution.

The ‘Standard Curve’ method gives a constant multiplication rate of 1.75 for
the amplification rate of 103A template, whereas the ‘Amplification Rate’ method,
i.e. that of curve fitting on individual wells, gives a set of values clustered around
1.65. This discrepancy between amplification rates estimated by the two methods
does not have an obvious explanation.
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The ‘Standard Curve’ method is based on the assumptions that: 1) the increasing
number of cycles required to get a more diluted template to a threshold amount of
product, is linearly related to the two-fold dilution number of the template, 2) the
slope of this line, i.e. the amplification rate, is assumed to be unchanged for the
duration of the number of cycles required to reach threshold, and 3) template dilution
does not change the amplification rate. To the extent that these assumptions are
accurate, the ‘Standard curve method’ gives an accurate estimate of PCR efficiency.
This method seems to give an estimate of efficiency during the first few cycles, on
the basis that the PCR process decreases in efficiency towards higher cycle numbers
[36]. Note that two templates which differ by a two-fold dilution factor, will be
of approximately the same concentration after (a bit more than) one cycle. The
reaction will proceed identically, in an environment of perfect chemistry, as soon as
the PCR product in the diluted well has ‘caught up’. The linear ct vs n relationship
is therefore established during the (early) cycles required to get the diluted templates
up to the concentration of less diluted templates. This takes roughly 10 cycles for
the situation depicted in Figure 3.6.

Factors contributing to decline in efficiency

There are many factors contributing to the decline in efficiency and the better un-
derstood factors include [36]:

• The polymerase enzyme has an intrinsic half life of about 30 minutes, when
subjected to the high temperatures of PCR thermal cycling. This half life is
reached after about 30 PCR cycles. At this time half of the enzyme population
is no longer viable for use in the process, but the enzyme loss is a process that
starts before this time. This enzyme activity will contribute in a non trivial
way, in terms of availability, viability, and the rate at which viable enzymes
are used by the process.

• Within a few cycles after a process reaches threshold the reaction efficiency
declines as ingredients are depleted, being rapidly used as a resource for repli-
cating the exploding populations of synthesized DNA.

• As the population of synthesized DNA increases the relative availability of
nucleotides decreases. This may lead to ineffective and incomplete primer
extensions.

• Inhibition of all reactions with increasing concentration of inhibitors (byprod-
ucts of the reaction).

• Reduction in denaturation efficiency, as the denaturation temperature is typi-
cally not adjusted at each cycle to a temperature of optimal DNA separation.

• Optimal denaturation is only possible by understanding in detail the physics
governing reactions in each well.
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Estimating declining efficiency of PCR

The simple formula PT = P (0)eλct allows us to estimate the initial concentration
in (arbitrary) units of fluorescence. However, simply using P (0) = PT e−λct seems
naive in the light of the fact that the amplification λ appears to be a function which
decreases with cycle number. This formula should be written as:

PT = P (0)e
R ct
0 λ(c) dc (3.10)

To estimate λ(c) empirically, we pooled 220 amplification curves and looked at the
relationship of the fitted amplification rates for each of the primers. The amplifica-
tion rates are displayed in Figure 3.7, against cycle number, and a regression line is
fitted to each data set.

Fig. 3.7: Decline in amplification efficiency as a function of increasing cycle number.

It can be seen that the decline in efficiency can be observed to first order with a
regression line. The regression line for the decline in efficiency of the PCR reaction
with cycle number is listed below for each primer:
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m103A = −0.0049ct + 1.74 (3.11)

m103C = −0.0035ct + 1.69 (3.12)

m103G = −0.0025ct + 1.58 (3.13)

m103T = −0.0044ct + 1.71 (3.14)

(3.15)

From the visible scatter of amplification rates it is clear that a regression line can only
be a first order description. In reality the process is stochastic, and the amplification
rate at each cycle can be viewed as a draw from an unknown distribution, possibly
peaked around the regression lines. A stochastic formulation will however require
much more information about the underlying PCR and detection processes.

This digression into PCR efficiency has raised questions that will remain unan-
swered until additional experiments and data sets become available. Primers are
typically tailor-made for a particular target sequence, allowing rapid amplification,
leaving a very narrow window for estimating PCR efficiency by the curve fitting
methods. This PCR experiment was not designed to resolve PCR efficiency ques-
tions. The most important questions for the purposes of this project are: 1) do the
primers have significantly different amplification efficiency, and 2) does Primer 103C ,
designed to quantify the resistant mutant, behave much differently from Primer
103A, designed to quantify the wild-type. Based on the amplification vs cycle num-
ber relationships depicted in Figure 3.7, and expressed in equations (3.11)- (3.14),
the following assumptions are made:

• There is not enough information to warrant the use of different efficiency re-
lationships λA(c), λC(c) and λT (c).

• This decision is corroborated by the similar standard curves of Primers 103A

and 103T , the standard curve for 103C being absent.

• The standard curve for Primer 103G along with the estimate for λG(c) (equa-
tion (3.13)), suggests that Primer 103G appears to be less efficient than the
other primers. This is not expected to have a big implication for estimating
initial fractions as 103G viral RNA generally appear in very low concentrations.

3.5 Estimating initial concentrations of RNA

Initial concentrations calculated by equation (3.10) are represented by the red lines
in Figure 3.8. The green curve represents exact two fold dilution starting with the
initial concentration of the undiluted template, given by the intercept of the red
curve. Estimated initial concentrations can be seen to be in close agreement with
exact two fold dilution.
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Fig. 3.8: Estimated initial concentration for dilutions runs of plasmid 103A,103G
and 103T. Dilution runs for 103C were not successful.

Calibrating initial concentrations for measurable mispriming effects

It can be observed that primers generate spurious product from incorrect targets.
What happens, approximately, is that the primer binds loosely to the incorrect
target. This bond survives the temperature increase to the extension phase of the
thermal cycle, triggering the creation of a copy of the intended target sequence.
This copy contains the true target sequence after denaturation, and will hence be
amplified in subsequent PCR cycles at the rate at which the primer amplifies its
intended target. Mispriming can therefore introduce subtle effects in PCR data
analysis [37]. It is sensible to investigate a calibration scheme, aimed at calibrating
initial concentrations for this effect.

Let ei,j be the probability of producing product j from source i and ci−j
t be the

observed values for the threshold time until product j attains a reference quantity.
Consider first two primers, one targeting 103A and the other 103C . After one cycle,
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a sample with C at the relevant location will produce a erroneous product with A,
the amount depending on eC,A and the initial concentration of C:

A(1) = eC,AC(0) (3.16)

After n cycles of amplifying this spurious product, the amount of product A is:

A(n) = eC,A

(
1 + m + m2 + . . . + mn−1

)
C(0) (3.17)

A(n) = eC,A

(
1−mn

1−m

)
C(0) (3.18)

where the last simplification uses the formula for a geometric series. Since m < 1.75
and ct > 10, for typical values of m and ct, mct − 1 > 200 − 1, it follows that
mct − 1 ≈ mct , and the expression for A in (3.18) reduces to:

A
(
cC−A
t

)
= eC,A

(
mcC−C

t

m− 1

)
C(0) = Pt (3.19)

Using the same multiplication rate m, and the same initial concentration of C for a
primer targeting C at the relevant location, the following also holds:

C(0)mcC−C
t = Pt (3.20)

and therefore :

eC,A =
(m− 1)(mcC−C

t )

mcC−A
t

(3.21)

When a primer is added to samples of real DNA, arbitrary initial concentrations of
sequences with A,C, G or T may exist at a relevant location. For this reason, we
have to consider all primer/plasmid permutations, with one channel of faithful and
three channels of spurious amplification for each primer.

P i(n) = mn
i,iP

i(0) +
∑
j 6=i

eji(1 + mi,i + m2
i,i + . . . + mn−1

i,i )P j(0) (3.22)

Equation (3.22) can be written in a convenient form when a threshold amount of
product is attained:

Pt = P i(ci
t) = m

ci
t

i,iP
i(0) +

m
ci
t

i,i − 1
mi,i − 1

∑
j 6=i

(mi,i − 1)(mcj−j
t

i,i )

m
cj−i
t

i,i

P j(0) (3.23)

Pt = m
ci
t

i

P i(0) +
∑
j 6=i

m
cj−j
t

j,j

m
cj−i
t

i,i

P j(0)

 (3.24)

where,
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• i, j ∈ {A,C, G, T}.

• The last simplification follows from the use of the formula for a geometric
series, together with the formula for ei,j .

• mi,i, i ∈ {A,C, G, T}, is the faithful amplification rate when a primer of type
i acts on its intended target sequence, allowing for amplification rates which
depend on i

The calibration of initial concentrations can therefore be stated as a linear problem,
with four equations and four unknown initial concentrations. The entries of the
matrix are calculated from 12 sets of calibration runs from 12 plates, where 16 wells
were prepared on each plate to measure all 16 channels of potential mispriming.
Below we list the all the information required to construct the calibration matrix
C, followed by a discussion. The structure is the same in all three matrices: The
leftmost column is an index for the primers used (103A, 103C , 103G, 103T ), and the
top row is an index for the plasmids.

mi,j =


PlasA PlasC P lasG PlasT

103A 1.73 1.50 1.52 1.58
103C 1.62 1.71 1.47 1.63
103G 1.61 1.49 1.68 1.51
103T 1.57 1.63 1.60 1.71

 (3.25)

ct(i, j) =


PlasA PlasC P lasG PlasT

103A 20.30 31.05 27.81 27.57
103C 24.47 15.33 32.44 22.13
103G 24.79 31.73 17.06 34.54
103T 28.51 22.22 24.58 15.91

 (3.26)

C =


PlasA PlasC P lasG PlasT

103A 1 0.04 0.05 0.01
103C 0.01 1 0 0.06
103G 0.4 0 1 0.03
103T 0.03 0.06 0 1

 (3.27)

From the mi−j matrix we note high diagonal entries, and lower rates for off
diagonal entries, as can be expected for intended primer and plasmid combinations.
The ci−j

t matrix has low diagonal and higher off-diagonal entries, again as we expect.
From the ci−j

t matrix and the calculated calibration matrix C, it seems that the only
channels of detectable mispriming are: eT,C = 0.03,eA,G = 0.14,eT,G = 0.02,eA,T =
0.06 and eC,T = 0.04.
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3.6 Estimating sub populations of viral genotypes

The theory must now be applied to estimate the relative concentrations of viral
subpopulations 103A, 103C , 103G and 103T . An automated system was developed
in Matlab to process PCR data from 253 wells on 24 plates, and to collect this
data into profiles (viral load measurements over time) for the trial attendees. The
functionality of the software is explained below:

• All PCR samples were processed by NICD, using the ABI Prism 7000 Real
Time PCR machine. Software that accompanies this machine, was used to
export comma separated files, containing passive and reporter dye fluorescence.
A system of Matlab routines was developed to process this data set.

• The first correction is a between well normalization of the reporter signal
(SYBR), dividing it by the passive signal (ROX), to correct for non-PCR
related fluctuations. This signal is called Rn.

• An exponential curve is fitted to Rn, and the background signal A is defined
to be the average of the first ctA cycles, where ctA is the cycle number when
the estimated curve rises to above 1 percent of the average Rn signal during
the first few cycles. The signal is now called Delta Rn.

• Initial concentrations for 103A,103C ,103G and 103T , in the arbitrary units of
‘fluorescence’:

P i(0) = P i
T e−

R ci
t

0 λi(c) dc (3.28)

where i ∈ {103A, 103C , 103G, 103T } and λi is the regression line for the declin-
ing amplification efficiency, as estimated in Section 3.4.

• The initial concentrations P i(0) are normalized to 1 to obtain ‘naive fractions’:

f i =
P i(0)∑
j P j(0)

(3.29)

• These fraction are now corrected for mispriming effect. ‘Calibrated fractions’
(f i

c) are obtained as the solution of the following linear problem:

f i
c = Cf i (3.30)

C is the calibration matrix estimated in Section 3.5, i ∈ {103A, 103C , 103G, 103T },
and fc and f are the naive and calibrated fractions (as vectors) respectively.
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This algorithm was applied to all the PCR plates, on sets of four wells, grouped
by trial attendee name and date. An example of a plot, for the processing of the
samples for Patient R8 at 7 months, is displayed in Figure 3.9. The PCR curves
for 103A,103C ,103G and 103T are shown in red, green, blue and amber respectively,
and the fitted amplification rates are shown in black. Vertical lines indicate when
threshold cycle ct was reached. In the title of the plot is displayed: 1) fractions
calculated using a constant amplification rate of 2 (the industry standard), 2) naive
fractions using equation (3.29), and 3) calibrated fractions using equation (3.30).

Fig. 3.9: Estimated viral subpopulations for patient 8 at 7 months

It can be noted that the industry method appears to overestimate the concentra-
tion of the strain/fluorescence that reaches threshold first. Also, that calibrating for
mispriming effects removes small concentrations of subpopulations, which would be
incorrectly introduced as true sub populations when ‘naive’ fractions are reported.
Initial concentrations are converted to a resistance profile, displayed below. Figure
3.10 depicts a resistance profile for patient 8. All resistance data is pooled in Figure
3.11 . No attempt is made to indicate an ‘average’ profile, as it is not given by aver-
aging over all individual profiles. The method of hierarchical Bayesian modelling is
used in Chapter 5 to estimate dependence between individual parameters. The plot
seems to indicate a high resistance initially, which gradually fades away as the wild
type regains its dominance.
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Fig. 3.10: Estimated resistance profile for patient R16.

Fig. 3.11: Resistance dataset for all patients.
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3.7 Repeated measurements of viral fractions

Three PCR plates were devoted in this study to repeat measurements, performing
repeated PCR runs on plasma (DNA from patients) and on plasmids (commercial
DNA). Figure 3.12 shows four repeated PCR runs on plasma from a patient at two
weeks. It shows that significant resistant viral sub-population (103C and 103T ) can
reliably be detected at two weeks.

Fig. 3.12: A typical PCR repeat run. The instrument seems to reliably detect
initial concentrations of different strains.

The variability of ct is now investigated in terms of cycle number. Figure 3.13
shows the relationship of a 4-repeat ct data with respect to the average ct value
for each repeat, and it can be seen that each ct become more variable if threshold
product is attained at an higher cycle.
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Fig. 3.13: Increase in variability in threshold detection at higher cycle numbers.

Repeatability statistics

A noise model can be derived from the set of repeated PCR runs. The algorithm
outlined in the previous section can be applied to estimate the relative fraction of
viral strains for each group of four measurements. The pairwise differences of all
comparable (i.e each pair in a group of four measurements) relative fractions can
then be pooled. A histogram of this pooling strategy is depicted in Figure 3.14.
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Fig. 3.14: Fitting a Gaussian noise model. This noise model does not represent the
full dynamic range of the instrument, and it is at best a crude estimate
of its accuracy. Many of the samples that contribute to the large bin
near zero error, have been obtained 8 months after treatment. The wild
type completely dominates such samples, as it has regained dominance,
and the PCR can accurately detect this fact. It is unclear how well the
instrument would detect a more even mix of viral strains.

It is possible to identify many factors that would contribute to the lack of repeata-
bility of PCR processes. It is however not clear how to quantify these contributions.
The factors can be broadly classified. A class of factors concerns sample preparation.
Sequences of RNA are first extracted from plasma before they can be amplified. The
repeats performed do not capture randomness of this extraction process. PCR ex-
periments are usually nested, as had been the case for this particular experiment.
RNA sequences must first be amplified around a codon of interest, to provide suffi-
cient quantities for subsequent sequence-specific amplification. At each stage small
but unknown pipetting errors are made. The second class contributes to the local
chemistry in each well, including primer efficiencies. Another class of repeatability
factors originates from the measurement device itself.

3.8 Summary

In this chapter we have seen that quantification of relative fractions for viral RNA
populations by a RT-PCR process is a complex technique subject to limitations that
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are inherent to PCR procedures. The method of using non-specific DNA binding
dyes (SYBR in this project) is a widely used technique to quantify specific DNA
product. There are known drawbacks when this method is applied to processes
running at different efficiencies, as demonstrated in this chapter: 1) many well-
specific and external factors contribute to different amplification efficiencies in each
well, 2) at each cycle there is a contribution to these inefficiencies from primers
that bind sub-optimally to their target sequences. This effect is compounded by
each subsequent cycle, and 3) the primers may attach to unintended templates to
produce true target sequences, an effect that is also compounded by subsequent
amplification cycles.

A fundamental principle of PCR based methods is that the average properties
and behavior of the procedure are reproducible: Each well is subjected to similar 1)
concentrations of the so called master mix, 2) temperature cycles, 3) fluorescence
detection, and so on. By assuming the same average process in each reaction, we
can estimate viral subpopulations that are, in some average sense, free of the errors
introduced by the PCR process. A model specific to each well can be used, when the
PCR process is understood in greater detail. However, such a level of understanding
has not been achieved in this project.

Some of the fundamental concepts of quantitative PCR analysis have been ex-
plored in this chapter, highlighting some of the factors contributing to inaccuracies.
The compounding of errors associated with primer-specific detection, motivates a
search for more accurate methods for using PCR to quantify relative fractions of
RNA. Such methods are in fact available. The idea is to use one primer to non-
specifically target and amplify a larger part of the genome. Detection of the viral
subpopulations is achieved by designing probes to specifically detect codons of inter-
est. Introducing specificity at the detection stage of each cycle leads to more accurate
results, because amplification rate differences at each cycle are not compounded.

Probe-based methods are used in a wide range of applications. Its application
to quantifying relative viral fractions is one of the more recent. It is unlikely to be
applied extensively to data obtained from monotheraphy clinical trials, as multiple
drug therapy has become the preferred method. Data from monotheraphy trials are
in principle simpler to relate to models for viral evolution, as a larger modelling
space can be associated with data from multi-drug therapy; i.e. there are more ways
to explain the data. From a modelling perspective, a monotherapy data set would
be preferred when investigating viral evolution, although this motivation is unlikely
to supersede the advantages that multi-drug therapy holds for the health patient.
It is therefore likely that an investigation using a probe-based method will have to
deal with the fact that viral evolution will be a more hidden effect in multi-drug
data.

We note the caveats and assumptions regarding this dataset, and set them aside
in order to proceed with estimating parameters of the models introduced in Chapter
2. A (combinatorial) argument using the number of loaded MHC molecules on
the membrane of infected cells has been used to estimate the risk an infected cell
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faces of being cleared. In particular, delta-like distributions are put forward as the
distributions we expect to ‘see’ and validate with this data set. The next chapters
aim to infer more supporting evidence for this claim from the data set analyzed in
this chapter.



Chapter 4

Bayesian inverse problem theory

The purpose of this chapter is to demonstrate how Bayesian inference provides a
flexible and rational framework in which we can combine all the states of informa-
tion associated with an inverse problem. States of information are represented by
probability distributions. Information available before measurement is called the
prior distribution. A likelihood distribution represents a joint state of information
over the model and data space. The prior and likelihood distributions are combined
using Bayes’ theorem resulting in a unique posterior distribution. All inferences
about the physical system being studied derives from the posterior distribution,
and in this sense the posterior distribution represents the solution of an inference
problem.

In a clinical trial designed to infer in-vivo viral parameters of different trial at-
tendees, it is reasonable to assume that there exists a relationship between viral
parameters of different individuals. Individual parameters can be viewed as in-
dependent draws from a population level distribution. In this study, hierarchical
Bayesian modelling is investigated as a technique for introducing a population level
distribution into multiparameter inference problem, and to obtain this population
level distribution using the Bayesian paradigm, i.e to obtain its posterior distribution
from a data set.

The Bayesian framework can be developed with simple concepts in probability
calculus, and is shown to be an elegant, rational and scientific approach for studying
a wide range of inverse problems associated with physical systems. This approach
has many features which makes suitable and attractive for modelling inverse prob-
lems:

• The use of prior distributions is a coherent way of specifying information avail-
able independent of measurement.

• Hierarchical Bayesian modelling techniques provide a natural and systematic
framework for combining uncertainties at the individual level into an inference
of population level parameters. Specifying and solving hierarchical Bayesian
models have only recently (in the last two decades) become feasible due to
progress in Markov Chain Monte Carlo (MCMC) computational techniques
[15, 38, 39], and the Bayesian approach has now become the most widely used
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approach to solving hierarchical inverse problems.

• The end result of Bayesian inference is a posterior probability distribution over
an inferred parameter. This is a unique feature of Bayesian inference, and the
posterior distribution provides all relevant information on model parameters:
mean values, error bars over parameter values, and so on. Traditional meth-
ods for solving inverse problems, such as the method of least squares, would
typically return only an estimator for a parameter of interest along with ways
of calculating a variance for the estimator.

Linear and non-linear squares methods are also widely used for solving inverse
problems. It is known that the least-squares method provides a minimum-variance
estimator for linear functions of observed data and prior model values. Least-squares
methods are easy to implement (especially for linear or linearizable inverse problems)
but lack robustness, as they are sensitive to outliers in the data set. This often makes
‘minimum-variance’ a bad criteria [13]. Prior information can be also incorporated
into inverse problem by means of constraint-least-squares method, but is not straight
forward to implement hierarchical prior information.

4.1 Distinguishing a model and data space

Consider an arbitrary ‘system’, and a set of parameters describing it. It is often not
possible to observe the interesting parameters of the system directly, and they are
distinguished from a set of observable parameters. The observable parameters, or
observable events, follow a distribution that depends on model parameters, through
a relationship called the forward model. Inverse theory is concerned with inferring
or estimating the values of model parameters, given observed values for the observ-
able parameters. The following steps can be distinguished when posing an inverse
problem [13]:

• Parametrization of the system: Firstly, a minimal set of parameters to char-
acterize the system has to be selected. The parameter set is separated into
model parameters (m) describing the system and observable parameters (d)
measuring the system. The following notation is used:

m = mα, α ∈ IM (4.1)

d = di, i ∈ ID (4.2)

where IM and ID are indices for the set of model and data parameters respec-
tively.

• Forward modelling : A model that relates model parameters to data parameters
is called a forward model. In abstract notation, it is a relation, G : m → d,
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from the model space to the data space. There are many ways of finding a
forward model. Relationships between model and data parameters could for
instance be suggested by physical laws for a class of phenomena. It could
also be a purely ‘statistical’ relation, obtained from accumulating correlations
between the model and data space.

Phenomena typically depend on physical parameters, for example time, in
complicated ways and it is therefore not always possible to describe such phe-
nomena exactly [40]. Physical theories, or forward models, often capture only
the average behavior of a system, and an important aspect of inverse theory
is to describe uncertainties over inferred parameters that would be introduced
by inexact forward models.

• Inverse modelling : The use of observed parameters to estimate model para-
meters. This is achieved by combining (states of) information on model para-
meters from forward modelling, information from measurements and a priori
knowledge.

Inverse theory has wide application, such as:

• As in vivo viral dynamical systems cannot be observed directly, virologists
usually rely on in vitro measurements to gain understanding about a system
of virus and immune system interaction. These observation include counts of
immunological markers and viral particles are usually obtained by means of in
vivo measurements. Viral RNA, collected for example from a blood sample,
cannot be counted or measured directly. The Polymerase Chain Reaction
procedure amplifies small quantities of DNA in vitro, until it can be measured.
Methods relating these measurements to estimates of in vivo viral activity were
investigated in Chapter 3.

• CAT scans are used to diagnose tumors, by measuring the amount of radiation
absorbed in body tissues and relating this to the opacity of the particular tissue
under study.

• Geophysicists inferring properties of the earth’s core from remotely sensed
data.

4.2 Probability calculus

This section reviews a few fundamental concepts in probability calculus. More de-
tailed discussions may be found in [13, 40]. Probability theory is usually developed
in terms of measures over sample spaces. This rigorous formalism is not required
here, and a less formal (and less concise) description of probability is used.

Let X be a non-empty set. A measure P over X is a function that associates a
non-negative real number to any subset of A of X, in such a way that:
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P (∅) = 0 (4.3)

where ∅ is the empty set and

P

(⋃
i

Ai

)
=

∑
i

P (Ai) (4.4)

where Ai is a sequence of disjoint sets in X. If a measure P is finite, it is called a
probability distribution and is normalized to 1 in the sense that

P (X) = 1 (4.5)

The Raydon-Nikodym theorem guarantees that given any probability density func-
tion P , it is possible to find a function p(x), such that P (A ⊂ X) can be expressed
as an integral:

P (A) =
∫

A
p(x) dx (4.6)

where p(x) is a probability density. Note that measures over sets with physical
dimensions results in a density with dimension that has physical dimensions inverse
to the particular volume space. A random variable is specified in terms of both the
set (range) of possible values, and a measure P over this set.

The expected value of any function f(x) over X is:

< f(x) >x∈X=
∫

X
f(x)p(x) dx (4.7)

In this notation:

• < Xm > is called the m-th moment of X.

• The mean value is < X >.

• The variance, or square of standard deviation, is < (X− < X >)2 >.

• An important notion for multivariate distributions of xi is the covariance ma-
trix. The entry of the i-th row and the j-th column is given by:

Cij =< (Xi− < Xi >)(Xj − < Xj >) >=< XiXj > − < Xi >< Xj > (4.8)
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Interpretation of probability

There are many ways to interpret a probability distribution, and two of the usual
approaches are worth noting. The first approach is statistical. A ‘random process’
leads to ‘realizations’, also called random variables. A random variable is given a
statistical description after observing many ‘realizations’.

The second approach is a subjective interpretation of probability, to which the
Bayesian approach can be applied. A particular investigator’s belief of a theory or
hypothesis m is treated as a random variable. When observed data d is available
this belief is modified and is represented by a conditional distribution p(m|d) [41].
The most general way of describing the degree of belief or state of information on X,
is to define a probability measure (and density) over X [13]. A state of knowledge
on X will generally lie between two extremes:

• Perfect Knowledge : When it is known that X can assume only one value,
x = x0, the probability density p over X is defined to be a delta function
p(x) = δ(x− x0).

• Ignorance is defined in terms of a ‘reference’ or homogeneous distribution µ(x),
a controversial notion in inverse theory. A homogeneous distribution is a dis-
tribution that assigns equal probability to events occupying equal volumes in
the sample space. There is no distribution, which can be called ‘the homo-
geneous’ distribution and there is no principle that can be used to define it
uniquely [40]. The ‘principle of insufficient reason’ is often used. It implements
the notion that two events must be assigned the same probability if there is
no reason to believe they should be different. The hypothesis must however
be accompanied by a specification for the random variables being studied. It
is therefore dependent on the chosen scale, units of measurement and other
properties of this specification.

There is a historic and ongoing debate about the issue of whether a probability
distribution must be viewed only as a relative frequency of events, or whether it
can also be viewed as a subjective state of knowledge. This discussion has a general
setting [40]: can general laws be deduced from a finite number of observations?

Transformation of variables

It is often necessary to work in different parametrizations of a particular system, for
example, a change of units. The Jacobian of a bijection (i.e. a one-to-one and onto
map) is used to transform probability distributions.

Consider a probability measure P over a measurable space X, and a probability
density p representing P . Let y = f(x) be a continuous mapping of x onto another
variable y ⊂ Y , representing for example a change of coordinates. The probability
pY that y assumes a value between y and y + dy is:
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pY dy =
∫

y<f(x)<y+dy
pY dx (4.9)

This can be written conveniently and equivalently as [40]:

pY dy =
∫

δ[f(x)− y]pX dx (4.10)

where δ is an indicator function over the domain of f(x). When f is a bijection (i.e.
one-to-one and onto), the transformation of the probability density can be deduced:

pY (y) = pX(x)J (4.11)

where J =
∣∣∣∂x
∂y

∣∣∣ is the absolute value of the Jacobian of the transformation.

Joint, marginal and conditional distributions

Consider a two component parameter set (x1, x2), and its joint probability distrib-
ution p(x1, x2). The probability that x2 assumes a value between x2 and x2 + dx2,
while allowing x1 to range through X1, is called the marginal distribution for x2:

pX2(x2) =
∫

X1

p(x1, x2) dx1 (4.12)

When the value for x1 = x∗1 is fixed, the conditional probability of x2 is defined by:

pX2|X1
(x2|x∗1) =

p(x∗1, x2)∫
X2

p(x∗1, x2) dx2
(4.13)

The joint probability is equal to the marginal probability for X1 to have the value
x1, times the conditional probability that X2 has the value x2:

p(x1, x2) = pX2|X1
(x2|x1)pX1(x1) (4.14)

4.3 Inference using the Bayesian paradigm

From the symmetry in the role played by x1 and x2 in equation (4.13) for their joint
probability distribution, follows the theorem of Bayes:

pX2|X1
(x2|x1) =

pX1|X2
pX2(x2)∫

X2
pX1|X2

pX2(x2) dx2
(4.15)
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Bayes’ theorem is particularly useful in calculating a joint conditional distribution
when the probability model admits a representation in terms of a parametric model
and a prior distribution. It allows us to solve inverse problems: We identify the
observable parameters d = di, i ∈ ID and model parameters m = mj , j ∈ IM of the
inverse problem. Equation (4.15) is used to infer model parameters given observable
parameters:

pm(m|d) =
pm(m)pd(d|m)∫

M pm(m)pd(d|m) dm
(4.16)

where,

• pm(m|d) is called the posterior probability distribution of the model parame-
ters m.

• pm(m) is the prior distribution for model parameters m.

• pd(d|m), the likelihood of observing d given m, is a distribution from which the
observed data can be viewed as independent and identically distributed (i.i.d)
draws.

• The subscripts in pm and pd make a distinction between probability distribu-
tions used in the model and data space respectively. These subscripts will be
dropped from now on, to avoid unnecessary detail in the expressions to follow.
The argument of each distribution will be its domain.

Multiple parameter inference

It is often the case that an inverse problem is stated in terms of model parameters
with more than one component, i.e. m = (m1, . . . ,mIM

) , but the aim is to infer
only a subset of the model parameters, say m1. The posterior distribution for the
parameter of interest is obtained by averaging the joint posterior distribution over
the remaining parameters, often called nuisance parameters:

p(m1|d) =
∫

p(m1, . . . ,mIM
|d) dm2 . . . dIM

(4.17)

It is often not possible to use Bayes’ theorem to infer only a parameter of interest,
m1 say, directly and without reference to nuisance parameters. This occurs when the
specification of the likelihood p(d|m1,m) includes the nuisance parameters m. Such
a likelihood would typically be interpreted as a distribution from which observed
data are i.i.d given m1 and the nuisance parameters.

If the likelihood does not depend on a parameter of interest m1, then m1 is
said to be non-identifiable from the data [41]. Suppose m = (m1,m2) and that
likelihood is given by p(d|m) = p(d|m2), i.e d is independent of m1 given m2. From
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the marginal distribution for m1 it can be seen that d provides information on m1

indirectly through m2 if we assume knowledge of p(m2|m1):

p(m1|d) ∝ p(m1)
∫

p(m2|m1)p(d|m2) dm2 (4.18)

Hierarchical modelling

An important class of inverse problems involves model parameters that are related in
some way. For example, in a clinical trial designed to infer in-vivo viral parameters
of different trial attendees, it is reasonable to assume that there exists a relationship
between viral parameters of different individuals. It is natural to view these indi-
vidual parameters as draws from the same population level distribution. Clinical
trials are in fact designed to inform strategies for the population represented by the
trial attendees. Estimating the population level distribution is the primary motiva-
tion for the trial. The use of a population level distribution is called hierarchical
Bayesian modelling. A population distribution is also called a hyperdistribution, and
is described in terms of hyperparameters. This section investigates the hierarchical
modelling strategy.

Suppose that nothing is known about the hyper distribution. After obtaining
posterior distributions for a few individuals, one will be able to provide constraints
for the hyper distribution. And generally, as more individual posterior distribu-
tions become available, the description of the hyper distribution will become more
precise. Does it make sense, from a Bayesian inference point of view, to use this hy-
per distribution as a prior for inference regarding subsequent observed individuals?
Objections to this approach include:

• The same data set would be used twice, a procedure that cannot increase the
precision of posterior distributions.

• Would the prior distribution change if we changed the order in which posterior
distributions are combined?

The approach advocated by [42, 38] is to estimate the population or hyper distrib-
ution from all data. Assume that a set of parameters m1, . . . ,mIM

represents viral
parameters for individual patients, and also that the population level distribution is
given by p(φ). The distribution p could for example be a normal distribution with a
known variance and an unknown mean φ. The following figure, adapted from [38],
is a useful way of visualizing individual parameters as draws from a population level
distribution:
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φ = (µ, σ)
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Fig. 4.1: A simple hierarchical model. The hyperparameter φ = (µ, σ) typically
represents the mean and variance of the population level distribution.
The point emphasized by this model is that data di is obtained for each
individual and this information must be propagated to the population
level distribution φ = (µ, σ) via individual parameters mi.

Individual parameters can be assumed to be exchangeable when no information is
available to suggest otherwise. This means that they are independent and identically
distributed given φ. Their joint probability distribution has the form:

p(m1, . . . ,mIM
|φ) =

IM∏
i=1

p(mi|φ) (4.19)

and is obtained by averaging over φ, which may be treated as nuisance parameters:

p(m) =
∫ [IM∏

i=1

p(mi|φ)

]
p(φ) dφ (4.20)

The set of random variables (m1, . . . ,mIM
) is called exchangeable if the joint

distribution p(m1, . . . ,mIM
) is invariant with respect to permutation of the labels
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(1, . . . , IM ). A theoretical result, known as de Fenetti’s theorem states that if the
sequence of real-valued random variables is exchangeable, then there exists a para-
meter θ and a distribution p(θ) that allows a rewriting of the joint distribution in
the form of equation (4.20). The existence of p(θ) according to this theoretical result
is often used for a justification of both its interpretation and its use as a prior distri-
bution. This interpretation is debated [43], where objections to this interpretation
include the fact that the theorem requires an infinite set of exchangeable variables.

A hierarchical model involving φ, m and d can be given the following general
three stage specification [38, 42, 41]:

p(φ,m, d) = p(φ)p(m|φ)p(d|m) (4.21)

which requires definitions for:

p(d1, . . . , dIM
|m1, . . . ,mIM

) =
IM∏
i=1

p(di|mi) (4.22)

p(m1, . . . ,mIM
|φ) =

IM∏
i=1

p(mi|φ) (4.23)

p(φ) (4.24)

where,

• At the first stage of the hierarchy one specifies the parametric form of the
likelihood model. The data set d = d1, . . . , dIM

represents observables for IM

related sources.

• At the second stage, individual parameters m1, . . . ,mIM
are modelled as ex-

changeable, given the population-level or hyperparameter φ. A hyperparame-
ter often directly characterizes the population level distribution. It may, for
example, represent the mean or the variance of the population level distribu-
tion from which individual parameters m1, . . . ,mIM

are drawn.

• Finally, a prior distribution p(φ) is specified for the hyperparameter. The
hyperprior distribution defines a prior for m via exchangeability relationship
(4.20).

Bayes’s theorem is used to make inferences about m1, . . . ,mIM
and φ:

p(mi|d) =
∫

p(mi|φ, d)p(φ|d) dφ (4.25)

where
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p(mi|φ, d) ∝ p(d|mi)p(mi|φ) (4.26)

p(φ|d) ∝ p(φ)p(d|φ) (4.27)

p(d|φ) =
∫

p(d|m)p(m|φ) dm (4.28)

The last two equations show that the hyperparameter φ is non-identifiable with
respect to the data d in the sense of (4.18). Evaluation of equation (4.28) appears
to be a daunting task, as it is multiple integral with the following form:

p(d|φ) =
∫ U(m1)

L(m1)
. . .

∫ U(mIM
)

L(mIM
)

IM∏
i=1

p(di|mi)
IM∏
i=1

p(mi|φ) dm1, . . . , dmIM
(4.29)

where L(mi) and U(mi) are the lower an upper bounds in the range of integration
for parameter mi of the joint distribution p(m) = p(m1, . . . , pIM

). The integrand can
be written as product of IM terms that depend on each of the variables m1, . . . ,mIM

respectively. This multiple integral can be written as a product of integrals using
Fubini’s theorem:

p(d|φ) =
∫ U(m1)

L(m1)
p(d1|m1)p(m1|φ)dm1 ∗ · · · ∗ (4.30)∫ U(mIM
)

L(mIM
)

p(dIM
|mIM

)p(mIM
|φ) dmIM

4.4 Solving inverse problems by combining states of

information

In Section 4.3 we have demonstrated that the unique solution of an inverse problem
is given by a posterior distribution over model parameters. It is the result of com-
bining all available information, namely information represented by the definition
of a prior distribution and information obtained from measurement. The purpose
of this section is to investigate the notion of information in inverse problems. More
details regarding information in inverse problems and their classification presented
in the next few sections, may be found in [13, 39].

Relative information content

The following measure can be used to make a precise statement about relative infor-
mation content. Given two normalized density functions, the relative information
content of p1(x) with respect to p2(x), is defined by:

I(p1, p2) =
∫

p1(x)log
(

p1(x)
p2(x)

)
dx (4.31)
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This is also known as Shannon’s measure or entropy of information content. The
relative information content of p(x), with respect to a homogeneous probability
density µ(x), is called the information content of p(x). Information content has the
properties:

• The information content of a homogeneous distribution with respect to itself
is zero. All other distributions have positive information content with respect
to a homogeneous distribution.

• The relative information content of a distribution is invariant under a bijection.
In this sense, two proportional distributions are equivalent.

• A sharply peaked distribution has high information content relative to flat or
diffuse distributions.

These properties make this measure suitable for measuring how much information
a prior distribution and a likelihood function introduce into an inverse problem
respectively when compared to a homogeneous probability density. The difference
between the information content of the prior and posterior densities is a measure of
the amount of information introduced by experiment.

Shannon’s information measure is also used to derive prior information that
would maximize entropy under certain constraints. This is the basic idea of the prin-
ciple of maximum entropy, discussed briefly in Section 4.4. This principle ‘selects’ a
distribution that would contain minimum information, apart from the information
introduced by specific constraints.

Information in inverse problems

A good understanding of all the uncertainties (states of information) associated with
a particular problem is necessary for a successful application of any inverse theory.
In this section a few idealized examples are used to explain such information.

Information from forward modelling

Generally, forward models cannot predict data exactly, due to modelling and experi-
mental errors. These two sources of uncertainties are described by a joint probability
distribution, θ(d,m), on the data and model space. It gives the probability that the
forward model will simultaneously predict the model and data parameters. This
distribution can be factored as

θ(d,m) = θ(d|m)µM (m) (4.32)

when an explicit forward model is available.

• For an exact theory:

θ(d|m) = δ (d− g(m)) (4.33)
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• It is often necessary to treat uncertainty introduced by inexact forward models.
This uncertainty is defined by a probability distribution. A number of reasons
for an inexact theory may be distinguished [39]:

– The model predicted data values may include a statistical element. These
models g are stochastic forward models, such as models given by sto-
chastic differential equations. Other examples include models that are
approximations to exact models.

– Uncertainty in model predicted values may be introduced due to uncer-
tainty in specifying model parameter values m in the forward model g(m).

– Uncertainty in g could result from uncertainty in specifying g(m) and m.

The following form is often used for an inexact theory that assigns independent
‘error bars’ to predicted data values:

θ(d|m) =
[
Πi∈ID

1
2σi(m)

]
exp

[
−Σi∈ID

|di − gi(m)|
σi(m)

]
(4.34)

where Ii is an index for the data set d and σi(m) is the precision of the i-th
data point that depends on the value of the model parameter m.

When error bars follow a Gaussian distribution, uncertainties in the theory
assume the following form:

θ(d|m) =
1

(2π)Ndet(CT )
exp

[
−1

2
(d− g(m))T C−1

T (d− g(m))
]

(4.35)

where CT is the covariance operator over the model space.

• When errors are independent of the model parameter values:

d = g(m) + εT (4.36)

and

θ(d|m) = fT (d− g(m)) (4.37)

where fT describes the error statistics for the theory.



4.4 Solving inverse problems by combining states of information 78

Information obtained from measurements

Instruments cannot measure observable parameters exactly and repeated measure-
ments will vary in a random way, even under strict experimental control. This state
of information is described by the conditional probability density, v(dobs|d), of ob-
serving dobs given that the true value is d. The forward modelling errors θ(d|m)
reported in the previous section can alternatively be stated as measurement errors
v(dobs|d).

It is in also possible to treat forward modelling and measurements errors sepa-
rately. A frequently used assumption in inverse problems is that measurement errors
are independent from measurement input. Also, that errors in the theory θ(d|m)
are independent of the model values m. These assumptions can be stated as:

dobs = d + εD (4.38)

and

d = g(m) + εT (4.39)

respectively. It is also assumed that these errors follow known distributions:

v(dobs|d) = fD(dobs − d) (4.40)

and

θ(d|m) = fT (d− g(m)) (4.41)

If it can be assumed that measurement and theoretical uncertainties are uncorre-
lated, then applying Bayes’ theorem gives [39, 13]:

p(m|d) =
f(dobs − g(m))pM (m)∫

f(dobs − g(m))pM (m) dm
(4.42)

where

• ε = εD + εT and f(ε) = fD(ε) ∗ fT (ε) is the convolution of fD and fT .

• pM (m) is a prior distribution over model space M .

This demonstrates how the likelihood function can be constructed when uncertainties
in measurement and theory can be distinguished. The convolution of theoretical and
experimental uncertainties given by equation (4.42) is particularly simple to calculate
when both follow Gaussian probability distributions. In this case the result is again
Gaussian.
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A Priori information

The prior distribution is a distribution ρM (m) over the model space that is inde-
pendent of measurements d. Information on a parameter is often available before
measurement. The order of magnitude and bounds for m are usually known. It
could be the result of previous measurement, or it may be implied by the physical
laws of the class of phenomena being studied. Inserting specific information into
a prior distribution, results in informative prior distributions. Maximum entropy
methods are used to obtain such priors. This section reviews some of the frequently
used prior distributions.

Flat or uniform priors

If constraints for a quantity m can be given only in terms of upper and lower bound
for model parameter values, a uniform distribution is used:

pM (m) =

{
1

(Um−Lm) : Lm ≤ m ≤ Um

0 : otherwise
(4.43)

where Lm and Um are the lower and upper bounds of m respectively.

Log-normal priors

The log-normal distribution is often used to model a priori information based on the
constraint that a physical parameter must be positive. In this case, the log of the
parameter follows a normal (Gaussian) distribution.

Minimally informative priors

Many approaches have been developed to find prior distributions that would affect
the posterior distribution in a minimal way. A minimally informative distribution
is also called noninformative or vague. The principle of transformation invariance,
introduced by Jeffreys, leads to such priors. According to this principle, a rule or
requirement used to select a prior distribution for a parameter, must give the same
result when the parameter is subjected to a one-to-one transformation. If a prior
density p(m) for m is selected, then a prior density for a transformed parameter,
m∗ = h(m), must be consistent with equation (4.11):

p(m∗) = p(m)
∣∣∣∣ ∂m

∂m∗

∣∣∣∣ (4.44)

This principle leads to the use of [44, 38]:

• p(m) ∝ K for a location parameter, e.g. the mean of a normal distribution
with known variance.
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• p(m) = K
m for a scale parameter, e.g. the variance of a normal distribution with

a known mean. The value of K is determined by a normalization requirement
for m.

Another approach to obtain noninformative priors, also suggested by Jeffreys, is
based on Fisher’s information content. This principle chooses

p(m) = [J(m)]
1
2 (4.45)

as a noninformative prior, where

J(m) = −
〈

∂2log p(x|m)
dm2

∣∣∣∣m〉 (4.46)

is the Fisher information for m. It follows easily that J(m) is transformation in-
variant [38]. Using equation (4.45), it can be demonstrated [44] that the prior for a
location θ and a scale parameter σ is given by:

p(θ, σ) =
1
σ2

(4.47)

Priors from maximum entropy arguments

The principle of maximum entropy can be used to introduce specific information
into a prior distribution so that it would reflect the current state of knowledge. For
example, if the moments Mk of a probability density function p(x) are known, then
the functional form of p(x) can be obtained by minimizing an objective function:
Find the distribution p(x), with minimal information content and the given moments
Mk. It is solved using Lagrange multipliers (λk):

∫
p(x)log

p(x)
µ(x)

dx + Σkλk

[∫
xkp(x) dx−Mk

]
(4.48)

The following is an brief account of familiar maximum entropy distributions [39].
Each case is subjected to additional constraints on the moments Mk of p, where

Mk =
∫

xkp(x) dx (4.49)

• The principle of maximum entropy selects the uniform distribution when the
only requirement is that a distribution should be normalized in an interval
[a, b].

• A second case arises when, in addition to the normalization requirement, the
expected value of p in [a, b] is known, i.e M1 = m. It can be shown that the
principle of maximum entropy selects a distribution with an exponential form.
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• When the first three moments, i.e M0,M1 and M2 of p are known, maximum
entropy selects a Gaussian distribution, making this distribution admissible as
a prior in a variety of inference problems.

Hierarchical priors

A higher order distribution p(m∗) can be introduced to model the dependence among
the model parameters, when it is known that model parameters are related in some
way. Higher order distributions are usually called hyper or hierarchical priors and
they are used in hierarchical probability models, as discussed in Section 4.3. For
these models a joint prior distribution is introduced:

p(m,m∗) = p(m∗)p(m|m∗) (4.50)

Hierarchical modelling is used in Section 5.3, where viral parameters of a particular
trial attendee are viewed as draws from a ‘population level’ distribution. The main
purpose of a clinical trial is indeed to understand this hyper distribution, and to
design treatment strategies for the ‘population’ it represents.

For some problems, a higher order distribution can often be derived by intuitive
arguments. Consider an experiment designed to estimate the half-life of an arbitrary
element. A natural prior distribution to use is the distribution representing the
half-life of all known atoms. The half-life of the particular atom must clearly be a
draw from this distribution. In an interesting example, [13] derives this distribution
by constructing a histogram from the tabulated half-lives of (most) known atomic
nuclei, showing it to be in good agreement with log-uniform distribution derived
using invariance arguments. We may similarly expect the hyper-parameters relevant
to the estimation of in-vivo viral parameters to be tabulated in future as more results
from these types of inverse problems become available.

Conjugate priors

The requirement that the posterior distribution follow the same distribution as the
prior distribution is called conjugacy. This method is often used to simplify calcu-
lations when the analytic form of the prior distribution and the likelihood model
are known. Although it might seem questionable to choose conjugate priors just for
the sake of ‘simplifying’ calculations, their use can usually be justified when using a
dominant data set, i.e a data set that would give a likelihood function p(d|m) which
dominates the prior distribution p(d|m) when applying Bayes’ theorem to calculate
a posterior distribution.

Choosing a prior distribution

What is a natural prior to use? It depends on what is meant by natural, and what
information is available:
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• The uniform or log-normal distribution can be used when physical constraints
of the system are known.

• The method of maximum entropy is used when specific information has to be
introduced into the prior distribution.

• Conjugate priors are used when it is important obtain a simple analytical form
for the posterior distribution.

• Hierarchical priors are used when it is natural to view parameters as draws
from a population level distribution. These (hyper) priors are also preferred
if the probability model contains a large number of parameters, and they are
often chosen to meet conjugacy requirements.

• Jeffrey’s invariance principles can be used to find priors that are minimally in-
formative. This method is usually not used when a population level description
for the prior distribution is available.

There are clearly no cast-in-stone rules for selecting the priors for a particular inverse
problem. What has to be borne in mind, even when using the best possible prior
distribution, is that solving an inverse problem is a passage from prior to posterior
information, obtained by conditioning on observed data. An informative data set will
dominate any reasonable prior distribution. The choice of prior should ultimately be
a statement about what kind of prior information for a particular inference problem
would make the data dominant [42].

4.5 Summary

Some of the fundamental concepts in Bayesian inference theory have been discussed
in this chapter. Following [13], an inverse problem has been divided into three steps:
1) distinguishing a model and data space 2) obtaining a forward model from the
model to the data space and 3) estimating model parameters from observed values
of observable parameters.

States of information over model and observable parameters were defined by
probability distributions, and an inverse problem was described as combining a priori
information, theoretical information and information obtained from measurement.
The notion of combining information to solve inverse problems is formalized by [13]
and is reported in Appendix G.

Hierarchical Bayesian modelling techniques are used to construct probability
models that are required to accommodate individual parameters with population
level correlations. This technique is widely used to interpret longitudinal data sets,
where models must allow within-subject and between-subject variations. Instead of
using ad hoc methods to find a reasonable prior for individual parameters, it was
argued that a population distribution must be used, from which individual parameter
can be viewed as ‘iid’ draws. This population level distribution defines the prior
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distribution for individual parameters, and its posterior distribution is obtained by
performing Bayesian inference on the joint distribution of model parameters and on
the complete data set. Hierarchical modelling poses computational challenges on
all but the simplest models. Advanced computational techniques, such as Markov
Chain Monte Carlo (MCMC) methods [15, 38, 39] are used when high levels of
processing are required.



Chapter 5

Estimating viral parameters

The purpose of this chapter is to develop and implement procedures for inferring
viral parameters by fitting multi-strain resistance models developed in Chapter 2 to
the longitudinal data set for resistant viral fractions analyzed in Chapter 3.

The objective is to infer parameters of individual cells, such as lifetime distri-
butions, based on observing populations of infected cells. To this end, models for
the competition and turnover dynamics of two strains have been implemented in
Section 2.2. These models incorporate survival probabilities of individual cells as
‘the number of stages’ that infected cells pass through, into a model for populations
of infected cells given by the equations (2.46) to (2.48). Thus, information about
individuals can be obtained from measurements on a population of such individu-
als, by structuring properties of the individual into equations for the population.
These parameters are inferred using the Bayesian framework developed in Chapter
4. Inferring ‘the number of stages’ will shed some light on the shape of the lifetime
distributions of infected cells. Inferring other parameters, where the focus will be
on treatment efficiency and duration, will show that a class of widely used models
will fit clinical data only when these parameters assume unrealistic values.

These objectives are addressed by solving an inverse problem.

5.1 Statement of the inverse problem

An inverse problem can be formulated as the combination of a priori, theoretical
and experimental information, stated in [13] and explained in Section 4.3:

p(m|d) =
p(m)p(d|m)∫

M p(m)p(d|m)dm
(5.1)

where,

• p(d|m) represents theoretical and measurement information. The host-viral
dynamical systems are modelled by deterministic models and they are assumed
to be exact, i.e p(d|m) = δ(d − g(m)). As a consequence of this assumption,
the likelihood function can only be defined in terms of measurement errors:

84
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di,j = g(mi, tij) + εi,j (5.2)

where di,j represents the measured response and g(mi, tij) the predicted re-
sponse for the i-th patient at time j. The usual assumption is that errors εi,j

are normally distributed:

pεi,j |mi) ∼ N(µ, τ−1) (5.3)

where τ−1 is the precision of measurement and µ is often taken to be zero.
Approximate values for τ−1 are derived in Section 3.7.

• Data parameters have the form:

di,j = (Ri, tij ), ti,j ∈ {14, 42, 84, 168, 196, 365 days} (5.4)

where Ri,j represents the fraction or ratio of mRNA of patient i that originates
from the resistant strain. These fractions were measured at 2 weeks, 6 weeks,
3 months, 7 months, 8 months and 12 months respectively. Complete profiles
are not available for all patients, as some patients failed to complete the trial.

• The complete set of model parameters for each patient is:

m = {S, µT , µPi,j , µV , f, ki, Ni,j , n, T reatmentDuration} (5.5)

Innate infectivity of the wild-type and resistant viral strains ki are indexed by
i, and it is reduced, for a period of TreatmentDuration, by different amounts
for the two competing strains. The number of stages the infected cells pass
through are represented by n.

We are going to solve different inverse problems by assuming known values
for all parameters, except for TreatmentDuration, ki,j and n in each of these
inference model. Values for fixed model parameters are given by Table 2.1.

• p(m) represents prior information on the joint data and model parameter
space.

When inferring TreatmentDuration and ki,j we will assume flat priors (ex-
plained in Section 4.4). For the parameter representing ‘the number of stages’
it is necessary to introduce a homogenous prior. Section 5.4 investigates two
intuitive arguments that could be used to obtain µ(n).

• p(m|d) represents the posterior distribution over the model parameters and
the solution of the inverse problem.
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5.2 Estimating treatment efficiency and duration

The purpose of this section is to see what would happen if we fit the simplest of
mathematical models to the strain dynamics data set of Chapter 3. These models
assume exponentially distributed lifetimes for populations of infected cells and they
are a limiting case of gamma lifetime distributions introduced in Section 2.4, where
only one stage in the life cycle of infected cells is assumed. Estimating treatment
duration and efficiency has the following Bayesian solution:

pM (R, Dur|d) =
pM (R,Dur)pD(d|R,Dur)

pD(d)
(5.6)

where,

• pM (R,Dur) = pM (R)pM (Dur) is the joint prior distribution for treatment
efficiency or resistance R and treatment duration Dur. The prior for R is
assumed to independent of the prior for Dur. Flat priors are assumed:

pM (R,Dur) =


1

(UR−LR)(UDur−LDur) : LR ≤ R ≤ UR

: LDur ≤ Dur ≤ UDur

0 : otherwise
(5.7)

It is assumed that lower and upper bounds for R and Dur is given by LR =
0, UR = 0.6 and LDur = 0, UDur = 30 respectively.

• The likelihood function p(d|R,Dur) is assumed to follow a Gaussian distribu-
tion:

pD(d|R,Dur) =
ID∏
i=1

1
σ
√

2π
e

(di−g(R,Dur))2

2σ2 (5.8)

• The marginal distribution p(d), i.e. the normalization factor for the posterior
distribution in equation (5.6), is given by:

pD(d) =
∫ UR=0.6

LR=0

∫ UDur=30

LDur=0
pM (R,Dur)pD(d|R,Dur) d(R) d(Dur) (5.9)

The solution of the inverse problem stated by equation (5.6) is given by the posterior
distribution p(R, dur|d) and is displayed in Figure 5.1.

It can be seen that approximately three weeks of very efficient treatment is
required to produce resistance to Nevirapine, when the treatment induced selective
pressure is ‘perfect’, i.e. if reproduction is completely blocked for the wild-type,
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Fig. 5.1: Contour plot of joint posterior probability density for treatment efficiency
and treatment duration.

but not affected at all for the resistant strain. Imperfect treatment requires a longer
treatment period to produce a significant drug resistant population. Note that these
model has used the same value for k1 and k2 for the infectivity parameter for the
two competing strains. The reality, suggested by in-vitro experiments conducted to
track the relative fitness of competing clones [7], is that there are significant fitness
differences between competing strains. The model gives an almost unrealistic fitness
advantage to the resistant strain during treatment.

The response times of the simplest models (i.e exponential lifetime distribution
for populations of infected cells) are apparently to slow to exhibit realistically the
fast rise in a drug resistant viral population.

5.3 Estimating the population-level distribution for

treatment efficiency and duration

The conclusion of the previous section is thus far based on the viral profile for a single
patient, and the question arises if this conclusion will also hold for the population
this patient is drawn from. This population refers in particular to a population of
Nevirapine naive women. These women are infected with the wild type K103 that
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frequently mutates into resistant type K103N . A hierarchical probability model is
specified as follows:

p(φ|d) =
p(φ)p(d|φ)

p(d)
(5.10)

where,

• p(φ) is the prior for the population level distribution parameterized by φ. In
the implementation details introduced shortly, φ = (µR, σR), i.e. we assume a
normal distribution for the population level treatment efficiency R, with mean
µR and variance σR.

• The likelihood function pd|m) has the following general form:

p(d|φ) =
∫

p(d|m)p(m|φ) dm (5.11)

The hyper-parameter φ affects the data only through m.

• p(d) is the normalization factor for the posterior distribution p(m|d).

Due to complexity and time constraints in numerically evaluating high dimensional
integrals, the population level distribution for R(resp. Dur) will be estimated sep-
arately, assuming a fixed value for Dur (resp. R). Advanced computational tech-
niques, such as MCMC (Markov Chain Monte Carlo) Bayesian analysis [45, 38], are
required for multidimensional hyper-distribution problems, and the details of these
methods are not pursued here.

Inferring population level treatment efficiency

It is assumed that the population level distribution follows a normal distribution,
i.e p(φ) ∼ N(µR, σR), and the objective is to estimate φ = (µR, σR). The prior
distribution for φ is specified as:

p(φ) = p(µR)p(σR) (5.12)

assuming that prior information in µR is independent of prior information in σR.
Referring to Section 4.4 it is seen that sensible priors for the location parameter µP

is given by:

p(µR) =

{
1

(UµR
−LµR

) : LµR ≤ µR ≤ UµR

0 : otherwise
(5.13)

and a sensible prior for a scale parameter σR is given by:



5.3 Estimating the population-level distributions 89

p(σR) =

{
1

σ2
R

: LσR ≤ σR ≤ UσR

0 : otherwise

The likelihood of observing data set d given the population level distribution φ =
(µR, σR), has the form given by equation (4.30). It is a a product of likelihoods of
observing each individual profile:

p(d|µR, σR) = L(d1|R1) . . . L(dIM
|RIM

) (5.14)

The population level distribution φ = (µR, σR) influences the likelihood indirectly
through φ:

L(di|Ri) =
∫ U(Ri)

L(Ri)
p(di|Ri)p(Ri|µR, σR) dR1 (5.15)

where i ∈ (1, . . . , IM ) and di and Ri represent the observed resistance profile and
the treatment efficiency parameter R, experienced by patient i. The likelihood of
observing each profile p(di|Ri) is given by equation (5.8). The posterior distribution
p(µR, σR|d) is obtained by substituting numerical evaluations of expressions (5.12)
- (5.15) into equation (5.10).

Due to the lack of actual data to implement and test a hierarchical inversion
algorithm, a hypothetical data set from a hypothetical trial was generated. To
this end, a normal distribution for the population level distribution for treatment
efficiency is assumed. The distribution was given mean of 0.2 and a variance of 0.1
and 100 samples were drawn from this distribution. Viral profiles were generated
based on these values for treatment efficiency. Gaussian noise, with a mean of zero
and a variance of 5 percent, was added to these profiles to produce the data set
displayed in Figure 5.2. The resulting posterior distribution is displayed in Figure
5.3 and Figure 5.4.
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Fig. 5.2: Population level distribution for a hypothetical data set. A normal dis-
tribution with a mean 0.2 and a variance of 0.1 is assumed.

Fig. 5.3: Joint posterior probability density for mean and variance of population
level distribution for treatment efficiency.
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Fig. 5.4: Contour plot of joint posterior probability density for mean and variance
of population level distribution for treatment efficiency. Contours repre-
sent points of equal posterior probability.

Recovering the population level distribution associated with a hypothetical and
ideal data set is of course expected. Hypothetical data sets are useful to explore
other properties of an inference scheme, apart from confirming their correct imple-
mentation. In particular, it is useful to estimate how many individual profiles are
required to recover a known population level distribution. Repeating this analysis a
few times while varying the number of individual profiles in each inference scheme,
provided the following (rough) estimate of: 1) 40 profiles for estimating the mean
of a normal population level distribution, and 2) 60 profiles for estimating both the
mean and variance of a normal population level distribution. More nuanced aspects
of hierarchical inference schemes can also be investigated: 1) to what extent does
the inferred population distribution depend on how well it is sampled or represented
by individual distributions. For example, 1) how many profiles must correspond to
parameters drawn from the tail of the population level distribution, 2) what is the
impact of noise in measured individual profiles on inferred population level parame-
ters, and so on.

The rough estimates given above are sufficient to conclude that the data set used
in this project (see Chapter 3) is unlikely to give accurate estimates of population
level distribution. In fact, many profiles are incomplete, and the data set is char-
acterized by infrequent sampling, which is possibly linked to deteriorating patient
health. The data set had not been collected to meet the above mentioned inference
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requirement. Having noted the limited usefulness of this data set for hierarchical
Bayesian inference schemes, the next section investigates how the ‘number of stages’
can be estimated from a single complete profile.

5.4 Estimating survival distributions for populations

of infected cells

Concerns are raised in [5] regarding the basis and methodology for estimating para-
meters for lifetime distributions, other than the usually assumed exponential lifetime
distributions. The purpose of this section is to address these concerns by investigat-
ing a method for inferring other types of lifetime distributions. It is worth pointing
out that inferring the lifetime distribution of infected cells is an ill-posed inverse
problem: the discussions of Section 2.5 and Section 2.7 show that the dynamical be-
havior of age structured models depends in detail on the maternity distributions of
infected cells. The problem is ill-posed because there is no unique solution; different
maternity schedules can lead to the same dynamical behavior, depending on the re-
lationship between the mean, variance and reproductive number of these schedules.
We illustrate one way of adding prior information into the inverse problem.

We are going to assume that lifetime distributions of infected cells are accurately
represented by gamma distributions. A gamma distribution is determined by a
location and a shape parameter. When the location parameter, or the mean of the
lifetime distribution, is kept constant, then no additional parameters are required
when investigating gamma lifetime distributions. By fixing the mean value of the
lifetime distribution a parameter relating to the shape of the distribution may be
estimated from data instead. The next section investigates methods to estimate this
parameter.

Homogeneous prior for age distribution

A homogeneous distribution is defined as a distribution that assigns equal probabil-
ity to events of occupying equal volume in the sample space. For this simple model
the sample space is the integers (1, 2, . . . ,∞). In particular, n = 1 corresponds to the
assumption of an exponential lifetime distribution, n →∞ to the delta distribution,
and 1 < n << ∞ to a continuum of gamma distributions between these two ex-
tremes. All these distributions have the same mean and differ only in shape. In this
sense, the sample space (1, 2, . . . ,∞) is an indirect way of sampling (n1, n2, . . . , n∞),
the standard deviations of the lifetime distributions. The variance converges to zero
as n → ∞ when the lifetime distribution converges to a delta distribution, sharply
peaked about the average life time. Consider Figure 5.5, where the shape of the
lifetime distribution is characterized by the standard deviation of each lifetime dis-
tribution. It is clear that a sampling strategy giving equal probability to all stages
(n > 1), would be biased towards models corresponding to sharply peaked lifetime
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distributions. The blue lines are an attempt to transform and categorize n into a
new parameter n∗, over which a homogenous distribution can be defined.

Fig. 5.5: Variance of lifetime distribution decreases as ‘number of stages’ increase.

The idea is to assign the same probability to all model parameters for which the
corresponding variances lie between the same blue lines. The exception is n1, the
exponential distribution, and n1 will simply be mapped to n∗1. This transformation
is listed below:

n∗1 = n1 (5.16)

n∗2 = n2 → n4 (5.17)

n∗3 = n5 → n18 (5.18)

n∗4 = n19 →∞ (5.19)

There is no intrinsic reason why this is the correct way to introduce a homogenous
distribution over the space {n∗1, n∗2, n∗3, n∗4}, and similar arguments for alternatives
could be used. The following argument considers the relation between the tail of
the lifetime distribution, and the rate a which the population will be eradicated
during antiviral treatment. Consider a population with a constant mortality rate
and no reproduction, i.e. consider m1, and turn off the infectivity parameter from
an arbitrary time after equilibrium had been reached. The half life, λ

1
2 , of the

population is defined to be the time when half of the population of infected cells are
cleared. Recall that l(a) = e−

R a
0 µ(s) ds represents the probability that an individual

will survive from birth to age a, where µ(a) is the mortality rate experienced by the
individual. We see that the half life is the time when
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l(t) = e−
R t
0 µP (t) dt =

1
2

(5.20)

For the exponential distribution, µ(t) = µP is constant and the well known formula
follows:

λ
1
2 =

log(2)
µP

(5.21)

After 7 half lives less than 1% of the population remains. The choice of 1% is
somewhat arbitrary, but corresponds approximately to the ratio before and after a
period of treatment, during which the viral load drops from equilibrium to being
undetectable. Figure 5.6 displays time to 99% clearance as the number of stages
increase:

Fig. 5.6: Time to clearance decreases as ‘number of stages’ increase.

Note that the time to 99% percent clearance for M1 is approximately 7 ∗ λ
1
2 for

the exponential distribution. Also, that the time to clearance for Mi, i → ∞ tend
to the average life time of approximately 2.6 days. The corresponding homogeneous
distribution is given by:

n∗1 = n1 (5.22)

n∗2 = n2 → n4 (5.23)

n∗3 = n5 → n13 (5.24)

n∗4 = n14 →∞ (5.25)
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Note that these two arguments lead to very similar homogeneous distributions for the
‘number of stages’ parameter. We adopt the homogenous prior given by equations
(5.22)-(5.25) in the inference scheme. Estimating n∗ has the following Bayesian
solution:

p(n∗|d) =
p(n∗)p(d|n∗)

p(d)
(5.26)

where,

• p(n∗) is the prior for n∗. With no prior information on the distribution over n∗,
it seems reasonable to assign equal probabilities to each n∗i . Thus p(n∗i ) = 1

4 ,
which translates to:

p (ni) =


1
4 : i = 1

(1
3)(1

4) : i = 2, 3, 4
(1
9)(1

4) : i = 5, . . . , 13
1
4 : i >= 14

(5.27)

and a sensible prior for a scale parameter σR is given by:

• The likelihood function, p(d|n∗) is assumed to follow a Gaussian distribution:

p(d|n) =
ID∏
i=1

1
σ
√

2π
e

(di−g(n∗))2

2σ2 (5.28)

• The marginal distribution p(d) is given by:

p(d) =
∑

n

p(n)p(d|n) (5.29)

Data set d (Table 5.1) refers to the resistance profile of patient R21 (Appendix F).
It consists of resistance measurements made on certain dates after treatment with
a single dose of Nevirapine. The posterior distribution of the discrete parameter n,
the number of stages, is displayed in Figure 5.7 and Figure 5.8. We have assumed
treatment periods of 21 and 11 days for the situations depicted in Figure 5.7 and
Figure 5.8 respectively.
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Tab. 5.1: Resistance profile of patient R21

Patient Dates Resistance

R21 42, 84, 196, 365 0.28, 0.34, 0.06, 0.01

Fig. 5.7: An exponential lifetime distribution (n = 1 at point of maximum posterior
distribution) is consistent with a treatment period of 21 days.

5.5 Summary

This chapter has applied the Bayesian framework as a sensible way to combine in-
formation for population dynamics. This information consists of: 1) forward models
(developed in Chapter 2), 2) resistance profiles (‘measured’ in Chapter 3), and 3)
prior distributions for parameters to be inferred. One of the strengths of Bayesian
modelling is its ability to handle information that has a hierarchical structure. The
first level of structure is built into the forward model; i.e. details of individual cells
are structured into equations for populations of infected cells. Another level is built
into a population level prior distribution. This level of modelling has been applied
to a hypothetical data set, demonstrating that (roughly) 60 resistance profiles can
shed light on the mean and variance of a population level parameter.

The main purpose of this chapter is to gain supporting evidence for the proposi-
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Fig. 5.8: A delta-like lifetime distribution (n = 5 at point of maximum posterior
distribution) is consistent with a treatment period of 11 days.

tion that the lifetime distribution of infected cells may follow short-tailed distribu-
tions. A physiological model has been developed in Section 2.5, which demonstrates
how short-tailed lifetime distributions can be obtained in a way that is insensitive
to the exact details of the proposed physiological model. A mathematical forward
model was built in Section 2.4 as a staged system of ODE’s, where the staging para-
meter corresponds to n, the number of life stages. This parameter is also the shape
parameter of gamma-like lifetime distributions. The shape of gamma-like distribu-
tions is not at odds with shapes that can be predicted by the physiological model
of Section 2.5. Gamma-like lifetime distributions, via staged ODE’s, provide a way
of keeping the average lifetime fixed, while varying only the variance (essentially
the shape of the tail) of the distribution. Another motivation for this modelling ap-
proach, apart from it simple implementation, is that allows us to have the commonly
used theory as a special case. We have introduced a homogeneous prior (Figures
5.5 and 5.6) to reduce n to 4 categories, since the exact value is not important.
The inference scheme is designed to merely distinguish the possibility of long-tailed,
medium-tailed and short-tailed lifetime distributions. A value of 5 was inferred for
the number of stages, assuming an effective treatment period of 11 days. This shape
lies somewhere between an exponential and a delta distribution, and Figure 2.3 can
be used to visualize its approximate shape.

A more conclusive inference result will require a more suitable data set. Such a
result should ideally be based on the posterior distribution of a population level para-
meter, but our available data set is not sufficient for hierarchical Bayesian inference.
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The data set made available for this project was obtained for substantially differ-
ent purposes, not for our modelling and inference calculations. It has nevertheless
demonstrated that a quantitative picture of strain competition can be obtained from
PCR measurements, which can in principle be used to obtain a posterior estimate
for the shape of the lifetime distribution of infected cells.



Chapter 6

Conclusions

In this project we have explored mathematical models for HIV-dynamics with a view
to gaining a better understanding of the features of models with structured virion
and infected cell populations. The simplest of models are usually not structured be-
yond the viral genotype and mayor cell phenotype level. These unstructured models
have slow response times to environmental perturbations, for example, by anti-viral
treatment. It was demonstrated that transient phenomena, such as the rapid emer-
gence of a resistant strain, are realistically captured by including age structure for
populations of infected cells. Age structure introduces considerable extra complex-
ity into HIV dynamics models. It was shown that simplified age distributions, such
as gamma distributions, can be modelled quite easily by introducing suitable cate-
gories of stages traversed by infected cells. Knowledge of physiological mechanisms
at the binding sites on the surfaces of cells suggests constraints on how these models
should depend on age or development in general. A simple combinatorial argument,
which counts the number of viral peptides loaded onto the MHC complex of an in-
fected cell, shows that infected cells can reasonably be expected to have short-tailed
or gamma-like lifetime distributions. The Escalator Boxcar Train (EBT) algorithm
was implemented to simulate a system of partial and integro-differential equations
for two competing viral strains, where infected cells can have arbitrary age structure.
Using this algorithm, it was demonstrated that strain competition depends not only
on the mean age at which infected cells produce new virions and the average number
that are produced, but on the entire maternity schedule.

Quantitative estimates of the relative fractions of K103 and K103N , the wild-
type and Nevirapine resistant strains respectively, were obtained from a PCR ex-
periment. A PCR processing toolbox was developed to process raw fluorescence
data and to investigate the PCR process at a rudimentary level. The toolbox in-
cludes processing routines for: 1) normalizing the reporter signal with respect to
the passive signal, 2) estimating and removing the background signal, 3) estimating
the relative concentrations of viral subpopulations 103A, 103C , 103G and 103T , 4)
correcting estimates for mispriming effects, based on a calibration matrix estimated
from all calibration wells, and 5) collecting final estimates into resistance profiles for
all trial attendees. A crude noise model was obtained as a repeatability statistic of
the process.

99
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A Bayesian inference framework was constructed for estimating viral parameters
from the resistance data set. The solution of a Bayesian inverse problem (the poste-
rior distribution) is the result of combining all available information. After stating
a noise model for the measurement process, appropriate prior distributions were
stated for the model parameters required to be inferred. An important notion in
inverse problem theory is that of a homogenous, minimally informative or vague dis-
tribution. Shannon’s measure of information then allows for the information content
of a given distribution to be compared to that of a homogeneous distribution. The
principle of translation invariance is used to derive a minimally informative prior
distribution for location and scale parameters, such as the mean and variance of a
normal distribution respectively. It was also demonstrated how population level pri-
ors can be used, whenever parameters can be viewed as independent draws from their
joint population distribution. Population level priors are widely used in Bayesian
interpretations of longitudinal data sets, where models must allow within-subject
and between-subject variations.

The Bayesian inference framework was applied to estimate viral parameters from
the Nevirapine resistance data set. It was found that simple and commonly used
models for in-vivo HIV dynamics have slow response times, as it required almost
three weeks of ‘perfect’ treatment to produce a significant drug resistant popula-
tion. This conflicts with clinical evidence, which suggests a much faster emergence
of resistant strains. A class of simple compartmental models for HIV dynamics was
extended to include ‘age’ structure for populations of infected cells. It was demon-
strated how resistance can be produced rapidly, by giving infected cells short-tailed
survival distributions. A simple inference scheme was developed to infer the ap-
proximate shape of these survival distributions. The shape of this distribution was
identified with the ‘number of life stages’ traversed by an infected cell, and mortal-
ity with the rate at which the last stage is approached. A homogenous prior was
constructed for the ‘number of stages’ parameter, using two intuitive arguments.
This was deemed necessary because it becomes increasingly difficult to distinguish
the dynamical behavior of models structured according to an increasing number of
life stages. This behavior converges to that of a fixed delay model, where cells all
live up to a certain age after which they all ‘die’. It was demonstrated that 1) the
posterior distribution peaks at 1 stage when a treatment period of 21 days is as-
sumed, and 2) peaks at 5 stages when a treatment period of 11 days is assumed. We
have put forward supporting evidence for the claim that infected cells follow short-
tail survival distributions, rather than evidence for a claim about an exact shape.
Although we have developed an hierarchical approach to infer individual viral para-
meters, we do not have a suitable data set to infer population level viral parameters.
We have demonstrated by means of inference on a hypothetical data set, that more
than 60 individual viral load profiles are required to infer the mean and variance
of a population level distribution. It would be useful to establish a relationship be-
tween accuracy in data obtained from the PCR process and the resolution at which
population level parameters can be inferred.
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Which aspects of this research project can be taken forward? A number of
interesting questions have been asked in this project, which must be addressed to
gain a better understanding of viral dynamics model and also of their interpretation
from viral load data. These issues include:

• Is it possible to develop models for the cell life cycle that are more physiolog-
ically informative?

• Can effective population dynamics models be produced in a systematic way
using scaling arguments?

• Substantial effort is required to quantify and control errors in PCR processes.
Probe-based measurements may provide more accurate estimates of relative
viral fractions, and this possibility is well worth exploring.



Appendix A

Viral life cycle

The following is a brief review of the main features, characterizing this life cycle into
sequential steps [30, 6]:

• Attachment and cell entry : When a virion ‘collides’ with a target cell, it may
attach itself, depending on local properties of the binding site. Affinity (or
strength of the bond) is a function of the complementarity in shape and charge
between the GP120 viral envelope protein (GP-spikes) and the receptors on
the target cell membrane. If the area of interaction at the binding site is
large enough to include a sufficient number of these GP-spike-and-receptor
attachments, the viral and cellular membranes will fuse and virus empties its
core (consisting of viral RNA and proteins) into cytoplasm of its host.

• Reverse Transcription: Once inside the cell the virus begins to exploit the cell’s
processes in order to synthesize new virus components. Using enzymes, the
virus is able to initiate and optimize these processes for maximal production
of viral protein sequences.

The Reverse Transcriptase enzyme, of which multiple copies are present in the
viral core, first reads the sequence of viral RNA nucleic acids and then tran-
scribes this sequence into double stranded DNA. This transcription process is
error-prone, producing single base mutations at every transcription cycle. Mu-
tants that are more (genetically) distinct are produced at a rapidly declining
rate.

The import of this DNA complex into the host cell chromosome is signaled
by viral proteins, followed by integration into the chromosome using the viral
Integrase enzyme. Once integrated, the DNA is known as provirus.

• Production of viral proteins and genomes

4) Packaging and cell exit : Viral proteins and RNA (genomes) are packaged
into an envelope consisting of host cell membrane. The new virions are now
equipped with envelope proteins, and exits the cell by ’budding’ from the
membrane, initiating new infections of susceptible cells.

Viral life cycles are more complex than this simplification, and each step in the
process, comprise several steps. Viral production, for example, is a highly regulated
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dynamic process, optimized with regard to resources required from the host cell and
the advantages strategy to maximize viral production rate. It involves assembly of
viral proteins and genomes, transport within the host cell, fusion with and release
from host cell membrane.



Appendix B

Equilibrium state for multi

strain dynamics

The equilibrium state for an n-strain model cannot be obtained by tedious algebraic
manipulations of equations (2.11),(2.12) and (2.13). It can be obtained by means of
a perturbation analysis, demonstrated here for a 2-strain model. A similar result is
given by [6] but they use a more naive model, where mutation occurs only from the
dominant to the sub-dominant strain. Consider the following 2-strain model:

dT (t)
dt

= ST − uT T − k1V1T1 − k2V2T (B.1)

dP1(t)
dt

= fk1V1T + ε21k2V2T − µP P1 (B.2)

dP2(t)
dt

= fk2V2T + ε12k1V1T − µP P2 (B.3)

dV1(t)
dt

= N1µP1P1 − µV V1 (B.4)

dV2(t)
dt

= N2µP2P2 − µV V2 (B.5)

The meaning of all symbols is explained in Section 2.2. The state variables in the
equation are T (t), P (t) and V (t), representing total counts of healthy T cells,‘productively
infected’ T cells and free virions, respectively. The system is put into its equilibrium
state by setting the time derivatives of all the state variables to zero:

0 = ST − uT T − k1V1T1 − k2V2T (B.6)

0 = fk1V1T + εk2V2T − µP P1 (B.7)

0 = fk2V2T + εk1V1T − µP P2 (B.8)

0 = N1µP1P1 − µV V1 (B.9)

0 = N2µP2P2 − µV V2 (B.10)

where,

• We have assumed that strains V1,2 have the same mutation rate.
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• Mortality rates µP and µV are assumed to be equal for both classes of infected
cells P1,2 and viral strains V1,2.

• We are going to assume that V1 is the wild-type and V2 the less fit strain.
Differential fitness is captured by k2 < k1.

• Viral strains V1,2 participate in short time scale dynamics and may be replaced
in equations (B.6),(B.7),(B.8) by rescaling infectivity parameters k1,2 such that

k1,2 →
k1,2N1,2µP1,2

P1,2

µV
. The notation X1,2 indicates a property associated with

strain 1 and strain 2 respectively.

A perturbation analysis is set up to make small corrections to the equilibrium state
of a model without mutation, a state which is easy to obtain. The feature of eventual
extinction of the less fit strain can be used in an approximation scheme to estimate
the equilibrium state for P1,2. When there is no mutation, i.e. when ε = 0, the less
fit strain will receive no contributions from a mutating dominant strain. Thus for
ε = 0, we have the following solution:

P2(0) = 0 (B.11)

T (0) =
µP

fk1
(B.12)

P1(0) =
S − µT T

k1T
(B.13)

The system is expanded in terms of the small parameter ε:

T (ε) = T (0) + εT (1) + ε2T (2) + O(ε3) (B.14)

P1(ε) = P1(0) + εP
(1)
1 + ε2P

(2)
1 + O(ε3) (B.15)

P2(ε) = P2(0) + εP
(1)
2 + ε2P

(2)
2 + O(ε3) (B.16)

where,

• T (0), P1(0), P2(0) are the zero’th order (ε = 0) solutions given by equations
(B.11),(B.12),(B.13)

• T (n), P
(n)
1 , P

(n)
2 indicate higher order terms.

The system can now be written in terms of these expansions:

0 = S − µT T (ε)− k1P1(ε)T (ε)− k2P2(ε)T (ε) (B.17)

0 = fk1P1(ε)T (ε) + εk2P2(ε)T (ε)− µP P1(ε) (B.18)

0 = fk2P2(ε)T (ε) + εk1P1(ε)T (ε)− µP P2(ε) (B.19)
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Collecting only first order terms, and omitting all terms involving P2(0) = 0, we
have the following O(ε) equations:

0 = µT T (1) − k1P
(1)
1 T (0)− k2P

(1)
2 T (0) (B.20)

0 = fk1P
(1)
1 T (0) + fk1P1(0)T (1) − µP P

(1)
1 (B.21)

0 = fk2P
(1)
2 T (0) + k1P1(0)T (0)− µP P

(1)
2 (B.22)

which can be solved for the O(ε) terms:

T (1) = 0 (B.23)

P
(1)
1 = −k2

k1
P

(1)
2 (B.24)

P
(1)
2 =

k1P1(0)T (0)
µP − fk2T0

(B.25)

The solutions of P
(1)
1,2 reflect the fact that first order corrections due to mutations are

negative for P1. Parameters µP , f , k2 and T (0) are constrained by the relationship
µP −fk2T (0) > 0, as first order corrections to P2 must be positive, and by definition
the total count of T cells infected with strain 2 will be increasing due to mutations
of strain 1. The ‘first order’ equilibrium states are:

Teq =
µP

fk1
(B.26)

P1eq =
(

S − µT T (0)
k1T (0)

)
− ε

(
k2

k1
P

(1)
2

)
+ O(ε2) (B.27)

P2eq = ε

(
k1P1(0)T (0)
µP − fk2T0

)
+ O(ε2) (B.28)



Appendix C

Equilibrium state for

multi-strain dynamics including

age structure

Appendix B derives the equilibrium state of a 2-strain model, assuming that the
lifetime distributions of infected cell populations follow exponential distributions. A
similar perturbation analysis can be used to calculate the equilibrium condition for
general lifetime distributions. Consider the following 2-strain model, where general
age-distributions are given to populations of infected cells. Restating equations
(2.33)-(2.36):

dT (t)
dt

= ST (t)− T (t)
Ns∑
i=1

kiVi(t)− µT T (t) (C.1)

∂Pi(a, t)
∂t

= −Pi(a, t)
da

− µPi(a)Pi (C.2)

Pi(0, t) = fkiVi(t)Ti(t) + T (t)
Ns∑
j 6=i

εjikjVj(t) (C.3)

dVi(t)
dt

=
∫ ∞

0
mi(a)Pi(t) da− µViVi(t) (C.4)

where,

• i = 1, 2 and Ns = 2.

The equilibrium state is obtained by setting the time derivatives of all the state
variables to zero:
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0 = ST − µT T (t)− k1V1(t)T (t)− k2V2(t)T (t) (C.5)

−∂P1(a, t)
∂a

= −µP1(a)P1(a, t) (C.6)

−∂P2(a, t)
∂a

= −µP2(a)P2(a, t) (C.7)

0 =
∫ ∞

0
m1(a)P1(a) da− µV V1(t) (C.8)

0 =
∫ ∞

0
m2(a)P2(a) da− µV V2(t) (C.9)

where values for state variables refer to the values of the system when it is in equi-
librium. In Section 2.3 it was shown that when a population p(a, t) experiences time
independent but age dependent mortality rates µ(a), then p(a, t) obeys:

p(a, t) = p(0, t− a)e−
R a
0 µ(s) ds (C.10)

= p(0, t− a)l(a) (C.11)

where l(a) = e−
R a
0 µ(s) ds is the probability that an individual will survive from birth

to age a. Using equation (C.11), we have the following boundary conditions:

P1(a) = (fk1V1(t)T (t) + εk2V2(t)T (t)) l1(0, a) (C.12)

P2(a) = (fk2V2(t)T (t) + εk1V1(t)T (t)l2) (0, a) (C.13)

The system is again expanded in terms of the mutation rate ε, which is assumed to
be a small parameter:

T (ε) = T (0) + εT (1) + ε2T (2) + O(ε3) (C.14)

P1(ε) = P1(0) + εP
(1)
1 + ε2P

(2)
1 + O(ε3) (C.15)

P2(ε) = P2(0) + εP
(1)
2 + ε2P

(2)
2 + O(ε3) (C.16)

V1(ε) = V1(0) + εV
(1)
1 + ε2V

(2)
1 + O(ε3) (C.17)

V2(ε) = V2(0) + εV
(1)
2 + ε2V

(2)
2 + O(ε3) (C.18)

The zeroth order solution, i.e. setting ε = 0, is obtained in Section 2.3:

T (0) =
µV

fkN1
(C.19)

P1(0) =
(

ST f − µT µV

kN1

)
l1(0, a) (C.20)

V1(0) =
ST fN1

µV
− µT

k
(C.21)

P2(0) = 0 (C.22)

V2(0) = 0 (C.23)
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The system can now be written in terms of ε expansions:

0 = S − µT T (ε)− k1V1(ε)T (ε)− k2V2(ε)T (ε) (C.24)

V1(ε) =
1

µV

∫ ∞

0
m1(a) [fk1V1(ε)T (ε) + εk2V2(ε)T (ε)] l1(0, a) da (C.25)

V2(ε) =
1

µV

∫ ∞

0
m2(a) [fk2V2(ε)T (ε) + εk1V1(ε)T (ε)] l2(0, a) da (C.26)

(C.27)

Collecting only first order terms, and omitting all terms involving P2(0) = 0, we
have the following O(ε) equations for T (1), V

(1)
1 and V

(1)
2 :

0 = µT T (1) − k1V
(1)
1 T (0)− k2V

(1)
2 T (0) (C.28)

V
(1)
1 =

1
µV

∫ ∞

0
m1(a)fk1

[
V

(1)
1 T (0) + V1(0)T (1)

]
l1(0, a) da (C.29)

V
(1)
2 =

1
µV

∫ ∞

0
m2(a)fk2V

(1)
2 T (0)l2(0, a) da

+
1

µV

∫ ∞

0
m2(a)k1V1(0)T (0)l2(0, a) da (C.30)

which can be solved for the O(ε) terms:

T (1) = 0 (C.31)

V
(1)
1 = −k2

k1
V

(1)
2 (C.32)

V
(1)
2 =

k1N2V1(0)T (0)
µV − fk2N2T (0)

(C.33)

The integrals on the left hand side of equations C.29 and C.30 simplify using N1,2 =∫∞
0 m1,2(a)l1,2(0, a) da. Equilibrium states are given by:

Teq =
µV

fkN1
(C.34)

V1eq =
(

ST fN1

µV
− µT

k

)
− ε

(
k2

k1
V

(1)
2

)
+ O(ε2) (C.35)

V2eq = ε

(
k1N2V1(0)T (0)

µV − fk2N2T (0)

)
(C.36)

P1eq(a) = (fk1V1eqTeq + εk2V2eqTeq) l1(0, a) + O(ε2) (C.37)

P2eq(a) = (fk2V2eqTeq + εk1V1eq(t)Teq) l2(0, a) + O(ε2) (C.38)



Appendix D

The escalator boxcar train

algorithm

The EBT algorithm was introduced in Section 2.6 as a tool for numerically inves-
tigating the dynamics of structured populations. The algorithm follows cohorts of
population members trough time and keeps track of the total population and age
count of each cohort. A key requirement for successful implementation is that each
cohort can be characterized by their average ‘age’. The purpose of this section is to
determine factors that contribute to the accuracy of the algorithm. This discussion
follows [11] closely, but focuses on age, instead of more general physiological struc-
ture such as size, length, and so on. Consider an age structured population that
evolves in time according to:

∂p(a, t)
∂t

= −∂p(a, t)
∂a

− µ(a)p(a, t) (D.1)

P (t) =
∫ ∞

0
p(a, t)da (D.2)

p(0, t) =
∫ ∞

0
n(a)p(a, t) da (D.3)

p(a, 0) = p0 (D.4)

where,

• p(a, t) is the population density and P (t) the population count.

• n(a) is the number of offspring born to an individual aged a.

• p(0, t) and p(t, 0) are boundary and initial conditions respectively.

Consider next the total population P (t), age count A(t) and average age a of the
population in a time interval (t1, t2):
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P (t) =
∫ t2

t1

p(a, t) da (D.5)

A(t) =
∫ t2

t1

ap(a, t) da (D.6)

a =

∫ t2
t1

ap(a, t) da∫ t2
t1

p(a, t) da
(D.7)

The derivative of P (t) with respect to time is given by:

dP (t)
dt

=
∫ t2

t1

∂p(a, t)
dt

da + p(t2, t)
d(t2)
dt

− p(t1, t)
d(t1)
dt

(D.8)

=
∫ t2

t1

∂p(a, t)
∂t

da +
∫ t2

t1

∂p(a, t)
∂a

da (D.9)

= −
∫ t2

t1

µ(a)p(a, t) da (D.10)

where the terms d(t2)
dt = 1 and d(t2)

dt = 1 make explicit reference to the fact that
the integration range is a function of time. This reference will be omitted from the
remainder of the analysis. A key part of the method is to obtain approximations to
integrals of the type

∫ t2
t1

φ(a)p(a, t) da, where φ(a) is a weighting function for p(a, t).
[11] obtains an approximation by Taylor expanding φ(a) around the value a = a,
where a is the average age in the interval (t1, t2). Expanding µ(a) around a = a

gives the following approximation for P (t):

dP (t)
dt

= −
∫ t2

t1

µ(a)p(a, t) da−
∫ t2

t1

µ′(a)(a− a)p(a, t) da (D.11)

−1
2

∫ t2

t1

µ(a)′′(a− a)2p(a, t) da

= −µ(a)
∫ t2

t1

p(a, t) da− µ′(a)
∫ t2

t1

(a− a)p(a, t) da (D.12)

−µ′′(a)
1
2

∫ t2

t1

(a− a)2p(a, t) da

The term involving µ′ is zero, as substituting the definition of a given by equation
(D.7) shows. The term involving µ′′(a− a)2 corresponds to how much age varies in
the cohort, and can be omitted if the variation is small. Omitting all terms in the
expansion involving dnµ

da where n ≥ 2 gives:

dP (t)
dt

= −µ(a)
∫ t2

t1

p(a, t) da (D.13)

dP (t)
dt

= −µ(a)P (t) (D.14)
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and hence P (t) can be tracked by an ODE. Deriving an ODE for A(t) in the time
interval (t1, t2) proceeds along the same lines:

dA(t)
dt

=
∫ t2

t1

d

dt
(ap(a, t)) da (D.15)

=
∫ t2

t1

p(a, t) da +
∫ t2

t1

a
d

dt
p(a, t)da (D.16)

=
∫ t2

t1

p(a, t) da−
∫ t2

t1

aµ(a)p(a, t) da (D.17)

If second and higher order corrections are omitted, as they were for the simplification
of equation (D.13) hold, then

dA(t)
dt

= P (t)− µ(a)A(t) (D.18)

Equations (D.14) and (D.18) hold for cohorts born at time 0, i.e 0 < t1 < t2. A
different expansion is used for the boundary cohort (i.e. the cohort into which new
individuals are recruited), as the average age will be ill-defined when in p(a,t) is zero
equation (D.7). This issue is resolved by expanding around tb, instead of around the
average age a. Another approach is to simply ignore this potential problem [3], and
to use the expansion given by equations (D.14) and (D.18) for all cohorts.

Consider the total population P0(t) and age count A0(t) of the initial cohort in
a time interval (tb, t1), where tb is the time at birth:

dP0(t)
dt

=
∫ t1

tb

p(a, t) da (D.19)

A0(t) =
∫ t1

tb

(a− tb)p(a, t) da (D.20)

The time derivative of P0(t) is given by:

dP0(t)
dt

=
d

dt

∫ t1

tb

p(a, t) da (D.21)

=
∫ t1

tb

∂p(a, t)
dt

da + p(t1, t) (D.22)

noting that the lower bound of integration tb is independent time, and the term
−p(tb, t) is therefore not present in the right hand side of equation (D.22). It can
however be added, together with +p(tb, t), to obtain:

dP0

dt
(t) =

∫ t1

tb

∂p(a, t)
∂t

da +
∫ t1

tb

∂p(a, t)
∂a

da + p(tb, t) (D.23)

= −
∫ t1

tb

µ(a)p(a, t) da +
∫ t1

tb

n(a)p(a, t) da (D.24)
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where the second term on the left hand side of the equation (D.24) is boundary
condition D.3. Equation (D.24) is approximated by expanding µ(a) around the
value a = tb:

dP0(t)
dt

= −
∫ t1

tb

µ(tb)p(a, t) da−
∫ t1

tb

µ′(tb)(a− tb)p(a, t) da (D.25)

−1
2

∫ t1

tb

µ′′(a)(a− tb)2p(a, t) da +
∫ t1

tb

n(a)p(a, t) da

= −µ(tb)P (t)− µ′(tb)A0(t) +
∫ t1

tb

n(a)p(a, t) da (D.26)

omitting all terms in the expansion involving dnµ
da where n ≥ 2. An approximation

for A0(t) is obtained in a similar way:

dA0(t)
dt

=
∫ t1

tb

p(a, t) da +
d

dt

∫ t1

tb

(a− tb)p(a, t) da (D.27)

= P0(t)−
∫ t1

tb

(a− tb)
∂p(a, t)

∂t
da + (t1 − tb)p(t1, t) (D.28)

= P0(t)−
∫ t1

tb

(a− tb)µ(a)p(a, t) da + (t1 − tb)p(tb, t) (D.29)

= P0(t)−
∫ t1

tb

(a− tb)µ(a)p(a, t) da (D.30)

+(t1 − tb)
∫ t1

tb

n(a)p(a, t) da

expanding µ(a) around a = tb gives:

dA0(t)
dt

= P0(t)− µ(tb)A0(t) + (t1 − tb)
∫ t1

tb

n(a)p(a, t) da (D.31)

To summarize, we have obtained the following ODE’s to track cohorts through time:

dP (t)
dt

= −µ(a)P (t) (D.32)

dA(t)
dt

= P (t)− µ(a)A(t) (D.33)

while the boundary or birth cohort is tracked by:

dP (t)
dt

= −µ(tb)P (t)− µ′(tb)A0(t) +
∫ t1

tb

n(a)p(a, t) da (D.34)

dA0(t)
dt

= P0(t)− µ(tb)A0(t) + (t1 − tb)
∫ t1

tb

n(a)p(a, t) da (D.35)
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These equations were all obtained by truncating an expansion in age dependent
mortality µ(a) at second or higher order terms. This truncation is justified if, in
each cohort, mortality varies linearly with age. These ODE’s will therefore track
cohorts accurately when the mortality can be approximated by piecewise linear
functions, where the domains of these functions are given by the cohort boundaries.
The assumption of linearly varying mortality can always be attained by decreasing
the size of the age cohorts. This increased resolution will naturally be accompanied
by increased computational effort.

D.1 Matlab code

This section lists the Matlab (Version 7.0) code used in Section 2.7 to explore strain
competition. The function MATERNITY-SCEDULES.m can be used to generate
the age-structures for two competing strains depicted in Figure 2.6. The lifetime
distributions are gamma distributions and they are not implicitly related to mater-
nity functions m(a). The function creates age structures for strain 1 and strain 2,
with the following properties:

• They have the same mean age.

• They were also chosen to have the same burst size, namely 500 virions born
to infected cells of either type.

• They differ however in the variance of the age at which new virions are pro-
duced: strain 2 has a higher variance in the age at giving birth to new virions.

The functions required for producing the two age structures are: 1) MATERNITY-
SCHEDULES.m, 2) GAMMA-LIFE.m and 3) EXP-PRODUCTION.m.

The function ESCALATOR-BOX-CAR.m is the starting point for an imple-
mentation of the ‘Escalator Box Car’ algorithm applied to modelling competition
between two strains. In this model strain 2 starts with an initial count of zero,
and is created from mutating strain 1. The slight fitness advantage of strain 2
allows it to replace and dominate strain 1 eventually, even though strain 1 has
won the race to dominance during primary infection. The functions required for
running the ‘Escalator Box Car’ algorithm are: 1) ESCALATOR-BOX-CAR.m,
2) INTEGRATE-MODEL.m, 3) EVALUATE-DERIVATIVES.m, 4) sEVALUATE-
DERIVATIVES.m, 5) INTERP-CURVE.m and 6) da-dmu.m.

D.1.1 Hypothetical Age structures for two competing strains

function MATERNITY_SCHEDULES(k1,k2,n1,n2,a1,a2,b1,b2)

%

% This function calls GAMMA_LIFE to calculate age structures

% (survivorship function, lifetime distribution, maternity

% or production function, and age dependent mortality) of an

% infected cell. Results are displayed at the end.

%

% INPUT:
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% k1 - Number of stages for strain1.

% k2 - Number of stages for strain2.

% n1 - The max number of virions produced by a cell infected with strain1.

% n2 - The max number of virions produced by a cell infected with strain2.

% a1 - Age at which strain1 starts producing virions.

% a2 - Age at which strain2 starts producing virions.

% b1 - Rate at which strain1 approached max production rate.

% b2 - Rate at which strain2 approached max production rate.

%

% OUTPUT:

% The age structures for the two strains are saved in

% MAT_SCHEDULE.mat. It is loaded in the BOX-CAR algorithm.

%

% Example of typical use

% [age,m,L,dl,mu,G]=MATERNITY_SCHEDULE(6,3,370,308,1,0.7,0.4,0.5)

age=0:0.25:10;

avg_age=2.6; %days

[Ages1,Maternity1,Survivorship1,d_Survivorship1,Mortality1,LT1]=GAMMA_LIFE(age,k1,(1/avg_age),a1,b1,n1);

’Total number of virions produced by cell infected with strain1:’

N1=sum(Maternity1(:,2).*Survivorship1(:,2))

mat1=Maternity1(:,2).*Survivorship1(:,2); mat1=mat1/N1;

age_mat1=Maternity1(:,1);

mt1=trapz(mat1.*age_mat1); ’Variance of maternity schedule of cell

infected with strain1:’

mv1=trapz(mat1.*((age_mat1-mt1).*(age_mat1-mt1)))

[Ages2,Maternity2,Survivorship2,d_Survivorship2,Mortality2,LT2]=GAMMA_LIFE(age,k2,(1/avg_age),a2,b2,n2);

’Total number of virions produced by cell infected with strain2:’

N2=sum(Maternity2(:,2).*Survivorship2(:,2))

mat2=Maternity2(:,2).*Survivorship2(:,2); mat2=mat2/N2;

age_mat2=Maternity2(:,1);

’Variance of maternity schedule of cell infected with strain2:’

mt2=trapz(mat2.*age_mat2);

mv2=trapz(mat2.*((age_mat2-mt2).*(age_mat2-mt2)))

%/////////////////////////////////////////////////////////////////////////

%plot age structures

close all;

h1=figure(1); subplot(2,1,1); hold on;

h_l=plot(Survivorship1(:,1),LT1,’r’); set(h_l,’linewidth’,2);

h_l=plot(Survivorship1(:,1),Survivorship1(:,2),’b-’);

set(h_l,’linewidth’,2);

h_l=plot(Maternity1(:,1),Maternity1(:,2)/max(Maternity1(:,2)),’g-’);

set(h_l,’linewidth’,2);

h_l=plot(Mortality1(:,1),Mortality1(:,2),’k-’);

set(h_l,’linewidth’,2);

legend(’L(a)’,’l(0,a)’,’m(a)’,’u(a)’,’Location’,’NorthEast’);

title(’Age structure for strain 1’); xlabel(’Days’);

figure(h1); subplot(2,1,2); hold on;

h_l=plot(Survivorship2(:,1),LT2,’r’); set(h_l,’linewidth’,2);

h_l=plot(Survivorship2(:,1),Survivorship2(:,2),’b-’);

set(h_l,’linewidth’,2);

h_l=plot(Maternity2(:,1),Maternity2(:,2)/max(Maternity2(:,2)),’g-’);

set(h_l,’linewidth’,2);

h_l=plot(Mortality2(:,1),Mortality2(:,2),’k-’);

set(h_l,’linewidth’,2);

legend(’L(a)’,’l(0,a)’,’m(a)’,’u(a)’,’Location’,’NorthEast’)

title(’Age structure for strain 2’); xlabel(’Days’);

%/////////////////////////////////////////////////////////////////////////

%plot maternity schedules

h2=figure(2); subplot(2,1,1); hold on

h_l=plot(Maternity1(:,1),mat1,’g-’); set(h_l,’linewidth’,2);

h_l=plot([mt1 mt1],[0 1],’k:’); set(h_l,’linewidth’,2);

h_l=plot([mt1+mv1 mt1+mv1],[0 1],’k:’); set(h_l,’linewidth’,2);

h_l=plot([mt1-mv1 mt1-mv1],[0 1],’k:’); set(h_l,’linewidth’,2);

axis([0 6 0 0.3]); title(’Maternity distribution for strain

1’,’FontSize’,[12]); xlabel(’Days’,’FontSize’,[12]);

figure(h2) subplot(2,1,2); hold on

h_l=plot(Maternity2(:,1),mat2,’g-’); set(h_l,’linewidth’,2);

h_l=plot([mt2 mt2],[0 1],’k:’); set(h_l,’linewidth’,2);

h_l=plot([mt2+mv2 mt2+mv2],[0 1],’k:’); set(h_l,’linewidth’,2);

h_l=plot([mt2-mv2 mt2-mv2],[0 1],’k:’); set(h_l,’linewidth’,2);
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axis([0 6 0 0.3]); title(’Maternity distribution for strain

2’,’FontSize’,[12]); xlabel(’Days’,’FontSize’,[12]);

%/////////////////////////////////////////////////////////////////////////

%save the age structures for use in the BOX-CAR algorithm

MAT_SCHEDULE{1,1}=Ages1; MAT_SCHEDULE{2,1}=Maternity1;

MAT_SCHEDULE{3,1}=Survivorship1;

MAT_SCHEDULE{4,1}=d_Survivorship1; MAT_SCHEDULE{5,1}=Mortality1;

MAT_SCHEDULE{6,1}=LT1;

MAT_SCHEDULE{1,2}=Ages2; MAT_SCHEDULE{2,2}=Maternity2;

MAT_SCHEDULE{3,2}=Survivorship2;

MAT_SCHEDULE{4,2}=d_Survivorship2; MAT_SCHEDULE{5,2}=Mortality2;

MAT_SCHEDULE{6,2}=LT2;

save MAT_SCHEDULE.mat MAT_SCHEDULE

end %function MATERNITY_SCHEDULES

function [age,m,L,dL,mu,G]=GAMMA_LIFE(age,k,muP,a_m,b,P_max)

%

% This function calculates the survivorship function, lifetime distribution,

% maternity or production function, and age dependent mortality of an

% infected cell

%

% The lifetime distributions are gamma distributions and they

% are not implicitly related to maternity functions.

%

% INPUT:

% age - Array containing age discritization (in days), ex. age=[0:0.25:10]

% k - The number of stages traversed by an infected cell.

% muP - Mortality rate.

% a_p - The earliest age at which the onset of viral production begins.

% b - Controls the rate at which the maximum production rate is approached.

% P_max - The max number of virions produced by an infected cell.

%

% OUTPUT:

% age - Array containing age discritization (in days), ex. age=[0:0.25:10]

% m - Virion production schedule.

% L - Survivorship function.

% dL - Derivative of L.

% mu - Mortality rate.

% G - Gamma lifetime distribution.

%

% Example of typical use

% [age,m,L,dl,mu,G]=GAMMA_LIFE_D(1,1,0:0.25:10,5,0.3846,370,1,0.4000)

%

lambda= muP*k; for j=1:size(age,2)

% Calc gamma distribution

% gamma is a matlab function

G(j)=((lambda^k)*(age(j)^(k-1))*(exp(-1*lambda*age(j))))/(gamma(k));

% Calc gamma cumulative distribution function

% gamma cdf is a matlab function

G2(j)=gamcdf(age(j),k-1,1/lambda);

G3(j)=G(j)/(1-G2(j));

m(j,1)= age(j);

m(j,2)= EXP_PRODUCTION(age(j),a_m,b,P_max);

end

LT=ones(size(G2))-G2;

%Calc mu

mu(:,2)=diff(LT,1); for i=1:length(mu)

mu(i,1) = age(i);

mu(i,2)= (-1*mu(i,2))/(LT(i));

end

%Calc DL

dL(:,2)=-1*diff(LT); for i=1:length(dL)

dL(i,1) = age(i);

dL(i,2)= dL(i,2);

end

%Calc L

L(:,1)=age; L(:,2)=LT;

end %function GAMMA_LIFE
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function p = EXP_PRODUCTION(cell_age,a_p,b,P_max)

%

% This function calculates the number of virions produced by an infected

% cell using the exponential virion production schedule of equation (2.52).

%

% INPUT:

% cell_age - Age of infected cell.

% a_p - The earliest age at which the onset of viral production begins.

% b - Controls the rate at which the maximum production rate is approached.

% P_max - The max number of virions produced by an infected cell.

%

% OUTPUT:

% p - The number of virions produced at cell_age.

%

if(cell_age>=a_p)

p = P_max*(1 - exp(-b*(cell_age-a_p)) );

else

p = 0;

end

end %function EXP_PRODUCTION

D.1.2 An implementation of the ‘Escalator Box Car’ Algorithm
function ESCALATOR_BOX_CAR

%

% This function is where the ’escalator box car’ algorithm starts.

% It is assumed that age structures for two competing strains have

% already been produced by means of MAT_SCHEDULES.m, which must be run first,

% using for example: MATERNITY_SCHEDULES(6,3,370,308,1,0.7,0.4,0.5)

% This function manages the population cohorts and the time intervals over

% which to integrate, calling the function INTEGRATE_MODEL.

%

% The function implements the algorithm explained in Section 2.6 and

% Appendix D. Matlab supports the parsing of string expressions into

% numerical values. This allows for great flexibility in implementing

% this algorithm. The time derivatives are first written as string

% expressions, containing terms for state and other variables. These string

% expressions are then parsed using the current values of all variables

% used in the expression, resulting in a vector containing the numerical

% values of the time derivatives, one value for each ODE in equations (2.56)

% and (2.58). The state and auxiliary variables are declared as global variables

% in order for their values to be continuously available in the functions:

% ESCALATOR_BOX_CAR->INTEGRATE_MODEL->EVALUATE_DERIVATIVES->sEVALUATE_DERIVATIVES

% Results are plotted at the end. Note that the function takes a while t0

% complete. Integrating the model detailed in this function, which ranges

% from day 0 to day 250 (set in variable T_MAX), takes +- 40 minutes.

%clear all variables. Important as global variables are used.

clear all;

%//////////////////////////////////////////////////////////

%Treatment start, duration and end

global RTIstart RTItime RTIend

%Initial T cell population

global T0

%T cell production rate

global S

%Life span assumptions, mortality rates

global muT muP1 muP2 muV

%Infectivity parameters

global k1nat k2nat

%Treatment efficiency

global teff1 teff2

%Probability of correct transcription

global f

%Number of virrions produced by infected cell during life span

global N1 N2

%Mutate_ji - transcription error required for strain j to infect cell with

%genome of strain i

global mutate_12 mutate_21

%Some model parameters can be adjusted here

PAR(1)=14;%RTItime

PAR(2)=0.1;%teff1
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PAR(3)=0.9;%teff2

PAR(4)=0.00003; %mutate_12, mutate_21

%/////////////////////////////////////////////////////////////////////////

%Init model

RTIstart=150; RTItime=PAR(1); RTIend=RTIstart+RTItime; muT=0.002;

muV=3;

%muP1,muP2 from MAT_SCHEDULE

T0=90000000000; S=muT * T0; k1nat=0.000000000004;

k2nat=0.000000000004; teff1=PAR(2); teff2=PAR(3); f=1;

%Ni from MAT_SCHEDULE

mutate_12=PAR(4); mutate_21=PAR(4);

%///////////////////////////////////////////////////////////////////////

%Age structures loaded from MAT_SCHEDULE.m

load MAT_SCHEDULE age=0:0.5:7; global Ages1 Maternity1

Survivorship1 d_Survivorship1 Mortality1 d_Mortality1 global Ages2

Maternity2 Survivorship2 d_Survivorship2 Mortality2 d_Mortality2

global Ages1 Maternity1 Survivorship1 d_Survivorship1 Mortality1

d_Mortality1 global Ages2 Maternity2 Survivorship2 d_Survivorship2

Mortality2 d_Mortality2

Ages1=MAT_SCHEDULE{1,1}; Maternity1=MAT_SCHEDULE{2,1};

Survivorship1=MAT_SCHEDULE{3,1};

d_Survivorship1=MAT_SCHEDULE{4,1}; Mortality1=MAT_SCHEDULE{5,1};

LT1=MAT_SCHEDULE{6,1};

Ages2=MAT_SCHEDULE{1,2}; Maternity2=MAT_SCHEDULE{2,2};

Survivorship2=MAT_SCHEDULE{3,2};

d_Survivorship2=MAT_SCHEDULE{4,2}; Mortality2=MAT_SCHEDULE{5,2};

LT2=MAT_SCHEDULE{6,2};

d_Mortality1 = da_dmu(Mortality1); d_Mortality2 =

da_dmu(Mortality2);

%///////////////////////////////////////////////////

%EBT housekeeping variables

global nCohorts;%number of cohorts

nCohorts=length(age);

%Total cohort counts

global P_P1 P_P2 P_P1=zeros(1,nCohorts); P_P2=zeros(1,nCohorts);

%Total age in cohorts

global A_P1 A_P2 A_P1=zeros(1,nCohorts); A_P2=zeros(1,nCohorts);

%Average age in cohorts

global a_P1 a_P2 a_P1=zeros(1,nCohorts); a_P2=zeros(1,nCohorts);

T_MAX=10;%time to where the model must be calculated

T_STEP=age(2)-age(1);%age discritization

T_PAR=0:T_STEP:T_MAX;%time discritization

TPAR=cell(1);%declare a variable of type cell

TPAR{1}=T_PAR(1); INITIAL=0; MODEL=[]; m_c=0; for

i=1:length(T_PAR)-1

TPAR{2}=T_PAR(i+1)

[t,y,indT,indP1,indA1,indP2,indA2,indV1,indV2,INIT]=INTEGRATE_MODEL(TPAR,INITIAL);

%//////////////////////////////////////////////////////////////////////////

%Load integration results to state variables

T_P = INIT(indT);

P_P1=INIT(indP1); A_P1=INIT(indA1); P_P2=INIT(indP2);

A_P2=INIT(indA2);

V_P1=INIT(indV1); V_P2=INIT(indV2);

%Save integration results to model

m_c=m_c+1; MODEL(:,m_c)=INIT’;

%Move cohorts along the ’escalator’

for j=length(P_P1):-1:2

P_P1(j)=P_P1(j-1);

A_P1(j)=A_P1(j-1);

P_P2(j)=P_P2(j-1);

A_P2(j)=A_P2(j-1);

end

%Clear initial cohort

P_P1(1)=0;A_P1(1)=0;P_P2(1)=0;A_P2(1)=0;

%//////////////////////////////////////////////////////////////////

%Use integration results as intitial values for new integration
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sI=’[T_P’; for j=1:nCohorts

sp=sprintf(’P_P1(%i)’,j);

sI=[sI,’,’,sp];

end %for j

for j=1:nCohorts

sp=sprintf(’A_P1(%i)’,j);

sI=[sI,’,’,sp];

end %for j

for j=1:nCohorts

sp=sprintf(’P_P2(%i)’,j);

sI=[sI,’,’,sp];

end %for j

for j=1:nCohorts

sp=sprintf(’A_P2(%i)’,j);

sI=[sI,’,’,sp];

end %for j

sI=[sI,’,’,’V_P1’,’,’,’V_P2’,’]’];

INITIAL=eval(sI);

%//////////////////////////////////////////////////////////////////////////

TPAR{1}=T_PAR(i+1);

end %for i

%Calc the total number of the two strains across all ages

for i=1:size(MODEL,2)

D(i)=T_PAR(i);%value of time interval

T=MODEL(indT,i);

P1(i)=sum(MODEL(indP1,i));%total amount of strain1

P2(i)=sum(MODEL(indP2,i));%total amount of strain2

end

’MODEL’ size(MODEL)

close all; h1=figure; hold on;

%Display on a log-plot

h_l=plot([RTIstart RTIstart],[0 30],’k:’); set(h_l,’linewidth’,2);

h_l=plot (D, log(P1),’r-’); set(h_l,’linewidth’,2); h_l=plot (D,

log(P2),’g-’); set(h_l,’linewidth’,2);

ylabel(’Viral Load’,’FontSize’,[12])

xlabel(’Days’,’FontSize’,[12])

%axis([0 max(D) 0 30]);

Ha = gca; legend(Ha,’off’); h_lr=plot([0],[0],’r.-’);

h_lg=plot([0],[0],’g.-’); lg=legend([h_lr h_lg],’strain 1’,’strain

2’,’Location’,’NorthEast’);

end %function ESCALATOR_BOX_CAR

function

[t,y,indT,indP1,indA1,indP2,indA2,indV1,indV2,INIT]=INTEGRATE_MODEL(TPAR,INITIAL)

%

% This function performs the integration for a time interval of the EBT algorithm explained in

% Section 2.6 and Appendix D. It is called from ESCALATOR_BOX_CAR.

%

% INPUT:

% TPAR - Specifies integration interval.

% INITIAL - Specifies values for state variables at integration start.

%

% OUTPUT:

% t - Time points of integration.

% y - Vector of state variables at integration time points.

% indT,indP1,indA1,indP2,indA2,indV1,indV2 - Indices to state variables.

% INIT - y(:,end), the final values for state variables to use as initial

% value for next integration.

%

%Integration start and end

Tstart=TPAR{1}; Tend=TPAR{2};

%EBT housekeeping variables

global P_P1 P_P2 global A_P1 A_P2 global a_P1 a_p2

%Age structures
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global Ages1 Maternity1 Survivorship1 d_Survivorship1 Mortality1

d_Mortality1 global Ages2 Maternity2 Survivorship2 d_Survivorship2

Mortality2 d_Mortality2 global nCohorts

%Initialize state variables for first integration step

if(INITIAL==0)

%Initialize T

global T0

T = T0;

P1=zeros(1,nCohorts);

P1(1)=1;%one cell infected with strain1

A1=zeros(1,nCohorts);

P2=zeros(1,nCohorts);

A2=zeros(1,nCohorts);

P_P1=P1;

A_P1=A1;

P_P2=P2;

A_P2=A2;

%Initialize viral populations

V1 =10;

V2 =0;

sI=’[T’;

for i=1:nCohorts

sp=sprintf(’P1(%i)’,i);

sI=[sI,’,’,sp];

end

for i=1:nCohorts

sp=sprintf(’A1(%i)’,i);

sI=[sI,’,’,sp];

end

for i=1:nCohorts

sp=sprintf(’P2(%i)’,i);

sI=[sI,’,’,sp];

end

for i=1:nCohorts

sp=sprintf(’A2(%i)’,i);

sI=[sI,’,’,sp];

end

sI=[sI,’,’,’V1’,’,’,’V2’,’]’];

% Integrates the system of differential equations y’ = f(t,y) from time

% Tstart to Tend

[t y] = ode113(@EVALUATE_DERIVATIVES, [Tstart Tend], eval(sI),[],Tstart,Tend);

% other ode solvers: ode45, ode23, ode15s, ode23s, ode23t, ode23tb

P1=P_P1;

A1=A_P1;

else

[t y] = ode113(@EVALUATE_DERIVATIVES, [Tstart Tend], INITIAL,[],Tstart,Tend);

% other ode solvers: ode45, ode23, ode15s, ode23s, ode23t, ode23tb

end % if INITIALIZE MODEL

%Return final values to serve as initial values for next integration

INIT=y(end,:);

%Indices for state variables

indT =1; p1=2;indP1=[p1:p1+nCohorts-1];

a1=p1+nCohorts;indA1=[a1:a1+nCohorts-1];

p2=a1+nCohorts;indP2=[p2:p2+nCohorts-1];

a2=p2+nCohorts;indA2=[a2:a2+nCohorts-1]; indV1=indA2(end)+1;

indV2=indV1+1;

end %function INTEGRATE_MODEL

function dydt=EVALUATE_DERIVATIVES(t,y,t_l,t_u)

%

% This function returns the derivatives, i.e. the right hand side of a

% system of ODE’s, when requested by the integration solver.

%

% INPUT:
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% t - Time points of integration.

% y - Vector of state variables at integration time points.

% t_l,t_u - Lower and upper bound of integration.

%

% OUTPUT:

% dydt - derivatives of state variables.

%

global RTIstart RTItime RTIend muT muP1 muP2 muV T0 S global

k1nat k2nat teff1 teff2 N1 N2 f mutate_12 mutate_21 global

nCohorts

k1eff=k1nat; if((t>RTIstart)&(t<

RTIend)),k1eff=k1nat*(1-teff1);end k2eff=k2nat;

if((t>RTIstart)&(t< RTIend)),k2eff=k2nat*(1-teff2);end

%Load state variables

T=y(1); p1=1; for i=1:nCohorts

sp=sprintf(’P1(%i)=y(%i);’,i,p1+i);

eval(sp)

end %for i

a1=p1+nCohorts; for i=1:nCohorts

sp=sprintf(’A1(%i)=y(%i);’,i,a1+i);

eval(sp)

end %for i

p2=a1+nCohorts; for i=1:nCohorts

sp=sprintf(’P2(%i)=y(%i);’,i,p2+i);

eval(sp)

end %for i

a2=p2+nCohorts; for i=1:nCohorts

sp=sprintf(’A2(%i)=y(%i);’,i,a2+i);

eval(sp)

end %for i

p3=a2+nCohorts+1; V1=y(p3); V2=y(p3+1);

dydt = eval(sEVALUATE_DERIVATIVES(t,t_l,t_u))’;

end %function EVALUATE_DERIVATIVES

function eq=sEVALUATE_DERIVATIVES(t,t_l,t_u)

%

% This function will return the string defining the derivatives, i.e. the right

% hand side of a system of ODE’s for the implementation of the EBT algorithm to strain

% dynamics:

%

% T’ = S - k1eff*T*V1- k2eff*T*V2 -muT

%

% P1,P2 is defined by the EBT explained in

% Section 2.6 and Appendix D.

%

% V1’ = m1(a(1))*P1(a(1)) + .... + m1(a(n))*P1(a(n)) - muV * V1

% V2’ = m2(a(1))*P2(a(1)) + .... + m2(a(n))*P2(a(n)) - muV * V2

%

% INPUT:

% t - Time points of integration

% t_l,t_u - Lower and upper bound of integration.

%

% OUTPUT:

% eq - String expression for the equations of the derivatives of the state

% variables.

%

%EBT housekeeping variables

global P_P1 P_P2 global A_P1 A_P2 global a_P1 a_p2

%Age structures

global Ages1 Maternity1 Survivorship1 d_Survivorship1 Mortality1

d_Mortality1 global Ages2 Maternity2 Survivorship2 d_Survivorship2

Mortality2 d_Mortality2 global nCohorts

%Calculate average age in cohorts

global nCohorts a_P1=zeros(size(A_P1)); a_P2=zeros(size(A_P2));

da=t-floor(t); d_age1=Ages1(2)-Ages1(1); a_P1(1)=da; a_P2(1)=da;

for i=2:nCohorts

if(P_P1(i)<=0)

a_P1(i)=0;
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else

a_P1(i)=A_P1(i)/P_P1(i);

end

if(P_P2(i)<=0)

a_P2(i)=0;

else

a_P2(i)=A_P2(i)/P_P2(i);

end

if(a_P1(i)<0),a_P1(i)=0;end

if(a_P2(i)<0),a_P2(i)=0;end

end % for i

%New/Birth cohort

cohort_b=1; b_age=0;

%Healthy (target cells)

eqT = ’S - k1eff*T*V1- k2eff*T*V2 - muT*T’;

%Productively infected with strain1

eqP1=’’; for n=1:length(P_P1)

eqP1n=’’; if(n==cohort_b)

age=b_age;

mu=INTERP_CURVE(Mortality1,age);

d_mu=INTERP_CURVE(d_Mortality1,age);

eqP1n=sprintf(’(f*k1eff*V1*T + mutate_21*k2eff*T*V2) - (%f)*A1(%i) - (%f)*P1(%i)’,d_mu,cohort_b,mu,cohort_b);

else

age=a_P1(n);

mu=INTERP_CURVE(Mortality1,age);

eqP1n=sprintf(’- (%f)*P1(%i)’,mu,n);

end

if(length(eqP1)==0)

eqP1=[eqP1n];

else

eqP1=[eqP1,’,’,eqP1n];

end

end %for n

%Total age in cohorts of cells productively infected with strain1

eqA1=’’; for n=1:length(A_P1)

if(n==cohort_b)

age=b_age;

mu=INTERP_CURVE(Mortality1,age);

eqA1n=sprintf(’ (%f)*(f*k1eff*V1*T + mutate_21*k2eff*T*V2)+ P1(%i) - (%f)*A1(%i)’,(t-t_l),n,mu,n);

else

age=a_P1(n);

mu=INTERP_CURVE(Mortality1,age);

eqA1n=sprintf(’ P1(%i) - (%f)*A1(%i)’,n,mu,n);

end

if(length(eqA1)==0)

eqA1=[eqA1n];

else

eqA1=[eqA1,’,’,eqA1n];

end

end %for n

%Productively infected with strain2

eqP2=’’; for n=1:length(P_P2)

eqP2n=’’; if(n==cohort_b)

age=b_age;

mu=INTERP_CURVE(Mortality2,age);

d_mu=INTERP_CURVE(d_Mortality2,age);

eqP2n=sprintf(’f*k2eff*V2*T + mutate_12*k1eff*T*V1 - (%f)*A2(%i) - (%f)*P2(%i)’,d_mu,cohort_b,mu,cohort_b);

else

age=a_P2(n);

mu=INTERP_CURVE(Mortality2,age);

eqP2n=sprintf(’- (%f)*P2(%i)’,mu,n);

end

if(length(eqP2)==0)

eqP2=[eqP2n];

else

eqP2=[eqP2,’,’,eqP2n];

end
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end %for n

%Total age in cohorts of cells productively infected with strain2

eqA2=’’; for n=1:length(A_P2)

if(n==cohort_b)

age=b_age;

mu=INTERP_CURVE(Mortality2,age);

eqA2n=sprintf(’ (%f)*(f*k2eff*V2*T + mutate_12*k1eff*T*V1) + P2(%i) - (%f)*A2(%i)’,(t-t_l),n,mu,n);

else

age=a_P2(n);

mu=INTERP_CURVE(Mortality2,age);

eqA2n=sprintf(’ P2(%i) - (%f)*A2(%i)’,n,mu,n);

end

if(length(eqA2)==0)

eqA2=[eqA2n];

else

eqA2=[eqA2,’,’,eqA2n];

end

end %for n

%Strain1

eqV1= ’0’; for n=1:length(P_P1)

age=a_P1(n);

m=INTERP_CURVE(Maternity1,age);

eqV1n=sprintf(’ (%f)*P1(%i) ’,m,n);

eqV1=[eqV1,’+’,eqV1n];

end %for n

eqV1=[eqV1,’- muV*V1’];

%Strain2

eqV2= ’0’; for n=1:length(P_P2)

age=a_P2(n);

m=INTERP_CURVE(Maternity2,age);

eqV2n=sprintf(’ (%f)*P2(%i) ’,m,n);

eqV2=[eqV2,’+’,eqV2n];

end %for n

eqV2=[eqV2,’- muV*V2’];

%When evaluated using current values of state variables, this string

%expression will be an array containing derivatives

eq=[’[’,eqT,’,’,eqP1,’,’,eqA1,’,’,eqP2,’,’,eqA2,’,’,eqV1,’,’,eqV2,’]’];

end %function sEVALUATE_DERIVATIVES

function v=INTERP_CURVE(curve,age)

%

% This function interpolates a value on ’curve’ at particular ’age’.

%

v=0; X=curve(:,1); Y=curve(:,2);

v = interp1(X,Y,age);%matlab interpolate function

end %function INTERP_CURVE

function d_mu = da_dmu(mortality)

%This function calculates the derivative of mortality

dd_mu=diff(mortality(:,2)); for i=1:length(dd_mu)

d_mu(i,1)=mortality(i,1);

d_mu(i,2)=dd_mu(i);

end

end %function da_dmu



Appendix E

Linear models for

age-dependent population

dynamics

Models for structured population dynamics aim to describe how the distribution
of a population changes over time, with respect to structure variables. Structure
variables include age, size, mass and other variables that are correlated to individual
development. This section investigates classical linear models for age-structured
populations. These models can be used to describe population dynamics in constant
or changing environments. If a population is subjected to constant environmental
conditions, i.e maintains the same fertility and mortality schedules (vital rates),
then a stable age distribution eventually emerges. Environmental changes perturb
the vital rates, resulting in transient population dynamics.

The McKendrick-Von Foster equation is a partial differential equation for con-
tinuous age and time variables:

n(a, t)
∂t

= −n(a, t)
∂a

− µ(a, t)n(a, t) (E.1)

The birth law enters as a boundary condition for a:

n(0, t) =
∫ ∞

0
m(a)n(a, t) da, t > 0 (E.2)

where,

• m(a), the maternity function, is the expected number of offspring per individ-
ual aged a, in next time interval (t, t + dt).

• The range of integration is determined by the earliest and latest age at which
an individual can be productive. For simplicity it is taken to be 0 and ∞
respectively.

• n(0, t) = B(t) may be viewed as birth rate at time t.
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An initial age distribution serves as a boundary condition for t:

n(a, 0) = n0(a), a >= 0 (E.3)

(E.1),(E.2) and (E.3) define the classic linear model of age-dependent population
dynamics [46]. This system of equations is solved using the method of characteristics.
Note that equation (E.1) can be written as

dn(a, t)
dt

= −u(a)n(a, t) (E.4)

along curves in the A×T plane for which da
dt = 1, i.e. along the lines a− t = c. The

value of n(a, t) can be obtained from any previous value n(a− α, t− α), that is on
the line a− t = c through (a, t) and (a− β, t− β):

n(a, t) = n(a− β, t− β)e−
R a

a−β µ(s) ds (E.5)

The general solution is obtained by extending this line until it intersects either the
line a = 0 or t = 0, for a < t and a >= t respectively. The solution to equation
(E.4) is then given by [46]:

n(a, t) = n(0, t− a)e−
R a
0 µ(s) ds, a < t (E.6)

n(a, t) = n(a− t, 0)e−
R a

a−t µ(s) ds, a ≥ t (E.7)

The solution has a natural interpretation in terms of survivorship. The probability
of surviving the time interval between age a1 and age a2, where 0 <= a1 <= a2, is
given by:

l(a1, a2) =
l(0, a2)
l(0, a1)

= e
−
R a2

a1
µ(s) ds (E.8)

The probability of surviving from birth to age a will be abbreviated by l(a). In
terms of the survival function, (E.8), (E.6) reduces to:

n(a, t) = n(0, t− a)l(0, a), a < t (E.9)

n(a, t) = n(a− t, 0)l(a− t, a), a ≥ t (E.10)

where (E.9) represents those individuals born t− a time units ago who survived to
age a and (E.10) those members aged a − t at time t = 0, who survived to age a.
The population density function n(a, t) would be completely determined if the birth
rate B(t) was known. Substituting n(0, t) into (E.2) gives the birth rate [46]:
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B(t) =
∫ t

0
m(a)n(a, t) da +

∫ ∞

t
m(a)n(a, t) da (E.11)

=
∫ t

0
m(a)B(t− a)l(a) da +

∫ ∞

t
m(a)n(a− t, 0)l(a− t, a) da (E.12)

It is seen that birth rate B(t) satisfies the renewal equation

B(t) =
∫ ∞

0
m̃(a)B(t− a) da + B0 (E.13)

where,

• m̃(a) = m(a)l(a), the maternity schedule, is the ‘kernel’ of the integral (E.13).

• B0 is the contribution to the birth rate from the population that existed at
time t = 0. For simplicity it may be assumed that B0 = 0, i.e that initial
population given by the second integral in (E.13) has passed away.

Exponential population growth

Lotka studied a special class of solutions to (E.13), known as stable age distributions.
They have the following form, obtained by separating variables a and t [46]:

n(a, t) = T(t)A(a) (E.14)

Lotka made the assumption that the population will eventually grow exponentially.
This is a reasonable assumption: a single self-generating population will eventually
grow exponentially or die off exponentially. Thus, in the long time limit we have a
natural basis in which to express the population density:

n(a, t) = ertA(a) (E.15)

Substituting (E.15) into (E.1) gives:

dA
da

= − (µ(a) + r)A(a) (E.16)

with solution

A(a) = A(0)e−ra−
R a
0 µ(a) da (E.17)

Boundary condition (E.2) implies:
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1 =
∫ ∞

0
e−ram(a)l(a) da = g(r) (E.18)

known as a characteristic equation for the asymptotic growth rate r. It has an infinite
number of roots for a general maternity schedule m(a)l(a) [2]. The asymptotic
growth rate is determined by the unique positive real root, where uniqueness follows
from the fact that g(r) is a monotonically decreasing function of r. The number

R0 = g(0) =
∫ ∞

0
m(a)l(a) da (E.19)

is called the reproductive value of an individual. It is the expected number of off-
spring of the individual during its lifetime and it is a critical parameter:

• When R0 > 1, the population grows exponentially.

• When R0 < 1, the population dies out exponentially.

• When R0 = 1, the population fluctuates stochastically.

The birth rate B(t) can be written as [47]:

B(t) =
∞∑
1

cie
rit (E.20)

where erit are solutions of the homogenous renewal equation:

B(t) =
∫ ∞

0
m̃(a)B(t− a) da (E.21)

It can be shown that a dominant eigenvalue exists, that its real part is larger than
the real part of any other eigenvalue, and that it determines the asymptotic or
long-time behavior of the population age-structure [47, 48]. Note that in, equation
(E.14) we have selected this dominant eigenvalue r = rd by making the ansatz that
the population time and stable age distribution separates in the long time limit
according to this equation. It then follows that the population density will tend
asymptotically to:

n(a, t) ∼ erdtA(0)e−rdal(a) (E.22)

where,

• Time dependence is given by erdt.
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• Age dependence is given by A(0)e−rdal(a).

• The shape of the stable age distribution tends to e−rdal(a).

This stable age distribution will emerge for each possible initial age distribution,
i.e. the population will eventually ‘forget’ its initial conditions and grow or decay
according to rd.

Uniform change in mortality rate

The stable age distribution of a population governed by equation (E.18) is unaffected
by a uniform change in mortality. This is demonstrated by [2], using the following
simple approach. Suppose that mortality changes from µ(a) to µ(a)+c. Survivorship
l(a) changes by a factor e−ca:

l∗(a) = e−
R a
0 (µ(a)−c) da = e−cal(a) (E.23)

Survivorship will decrease rapidly towards older ages if c > 0. The shape of the age
distribution is given by:

e−(rd−c)al∗(a) = e−(rd−c)ae−cal(a) = e−rdal(a) (E.24)

showing that the shape of the stable age distribution remains unchanged by a uni-
form change in mortality.

Dynamical behavior in response to changing environment

Lotka’s model has shown how the stable age distribution can be obtained from the
birth rate and the survivorship function, i.e. from the maternity schedule. It shows
how a stable or characteristic age distribution emerges when stable environmental
conditions prevail, i.e when the maternity schedule remains constant. The model
exhibits transient population dynamics if environmental conditions change. The
dynamical behavior of the population can be described in great detail by eigenvalue
analysis on set of eigenvalues of characteristic equation (E.18).

An alternative approach derives from the fundamental relationship between the
intrinsic rate of increase and moments of the maternity schedule, discussed in detail
by [2]. It follows from the observation that the characteristic equation (E.18) is the
Laplace transform of the maternity schedule m(a)l(0, a):

g(r) =
∫ ∞

0
e−ram(a)l(a) da (E.25)

Normalizing the maternity schedule with respect to R0:
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g(r)
R0

=
∫ ∞

0
e−ra m(a)l(a)

R0
da (E.26)

and taking the logarithm of g(r)
R0

generates the cumulants [40, 1]:

log
(

g(r)
R0

)
= −log(R0) = −rκ1 +

r2κ2

2!
− r3κ3

3!
+ . . . (E.27)

or in terms of moments about the mean:

−log(R0) = −rµ +
r2σ2

2!
− . . . (E.28)

omitting moments of higher order than σ2, the variance of the normalized fertility
schedule.

Equation (E.28) makes it possible to compare the intrinsic growth rate of popu-
lations with different maternity schedules, or to compare the intrinsic growth rate of
the same population before and after a perturbation to its maternity schedule. Per-
turbation analysis gives the following equations for the derivatives of r with respect
to σ2, µ and R0 [2]:

dr

dσ2
=

r2

2(µ− rσ2)
(E.29)

dr

dµ
=

−r

µ− rσ2
(E.30)

dr

dR0
=

1
R0(u− rσ2)

(E.31)

Equations (E.29)-(E.31) suggest the following comparison for the intrinsic rate of two
populations, equal in all respects, except for a difference in µ, σ or R respectively:

• The population with a more dispersed age of birth will have a higher intrinsic
growth rate.

• The population with a larger average age of birth will have a lower intrinsic
growth rate. Convergence to the stable age distribution is more rapid when
the average fertility is localized at young ages.

• The population with a larger reproductive value R0 will have a higher intrinsic
growth rate.

These relationships allow modellers to construct classes of {µ, σ,R0} that would lead
to equivalent changes in the natural rate of increase. These arguments may suggest
functional forms for maternity schedules for populations of infected cells.
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Listed on next page.
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Tab. F.1: Nevirapine resistance data set.

Patient Dates Resistance

R196 14, 42, 84, 168, 196, 365 0.01, 0.27, 0.22, 0.11, 0.02, 0.00
R108 42, 84, 196, 365 0.01, 0.00, 0.00, 0.00
R149 42, 84, 196, 365 0.32, 0.24, 0.00, 0.00
R16 42, 84, 196, 365 0.33, 0.08, 0.00, 0.00
R21 42, 84, 196, 365 0.28, 0.34, 0.06, 0.01
R24 42, 84, 196, 365 0.00, 0.00, 0.00, 0.00
R32 42, 84, 196, 365 0.03, 0.19, 0.11, 0.00
R35 42, 84, 196, 365 0.34, 0.06, 0.01, 0.00
R46 42, 84, 196, 365 0.02, 0.00, 0.00, 0.00
R70 42, 84, 196, 365 0.05, 0.00, 0.00, 0.00
D2 42, 42, 365 0.06, 0.00, 0.00
R116 42, 84, 196 0.17, 0.01, 0.00
R150 42, 196, 365 0.97, 0.16, 0.05
R17 84, 196, 365 0.02, 0.00, 0.00
R189 14, 196, 365 0.01, 0.00, 0.00
R191 42, 196, 365 0.12, 0.00, 0.00
R33 42, 196, 365 0.15, 0.00, 0.00
R88 42, 84, 365 0.27, 0.13, 0.01
R97 42, 84, 196 0.11, 0.00, 0.00
D108 42, 365 0.79, 0.00
D11 42, 365 0.02, 0.00
D150 42, 365 0.36, 0.00
D185 42, 365 0.65, 0.00
D188 42, 365 0.21, 0.00
D196 42, 365 0.18, 0.02
D20 42, 365 0.02, 0.00
D29 42, 365 0.20, 0.00
D32 42, 365 0.01, 0.00
D58 42, 365 1.00, 0.00
D70 42, 365 0.03, 0.00
R27 42, 365 0.19, 0.00
R58 84, 365 0.18, 0.00
R58 84, 365 0.18, 0.00
R8 196, 365 0.19, 0.00
D113 42 0.09
D115 42 0.03
D136 42 0.19
D149 42 0.21
D16 365 0.04
D164 365 0.00
D164B 42 0.01
D186 365 0.00
D191 42 0.16
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Solving inverse problems by
combining states of information

A formulation for the solution of inverse problems as a combination of information
has been introduced by [13], and this section provides a short review of this approach.
Consider two probability measures P1 and P2, and let p1 and p2 be their probability
densities respectively. A ‘combination’ of p1 and p2, given a homogenous distribution
µ(x), is given by:

Φ(x) = C(p1, p2) =
p1(x)p2(x)

µ(x)
(G.1)

It has the desired properties that:

• 1) C(p1, p2) is invariant under reparametrization.

• 2) C(p1, p2) is commutative; i.e. C(p2, p1).

• 4) If p1(A) = 0 for all events A ⊂ X, then combining p1 with any P2 gives
zero.

• 5) C(p, µ) = p; i.e. combining any distribution p with the homogeneous dis-
tribution does not change the information content of p.

It is demonstrated in [13, 49] that Φ is the only distribution that would ‘combine’
P1 and P2 in a way that is consistent with these properties. The following relation
combines all information associated with any inverse problem, to obtain a posteriori
information:

Φ(d, m) =
ρ(d, m)θ(d,m)

µ(d,m)
(G.2)

where,

• ρ(d, m) is the joint probability density function for prior information, which
could be reduced to

ρ(d,m) = ρD(d)ρM (m) (G.3)

if a priori information of model parameters has been obtained independently
of measurement.



Appendix G. Solving inverse problems by combining states of information 133

• θ(d, m) represents theoretical information. When an explicit theory is avail-
able, it has the form:

θ(d, m) = θ(d|m)µM (m) (G.4)

It is stated as a conditional distribution for d, given a homogeneous distribution
over m.

It can easily be shown that (G.2) reduces to Bayes’s theorem when an explicit
theory θ(d|m) is available. This can however not be done for a large class of
problems, where the joint probability density p(d, m) can only be specified in
terms of accumulating joint observations in D×M , the data and model space.

Another feature of (G.2), is that it provides a coherent framework for studying
uncertainties in both the data and model space. The term θ(d,m) is usually
called likelihood, and ultimately represents the probability of observing the
data, given particular model parameter values. As has been demonstrated in
Section 4.3, this influence may be indirect in multiparameter and hierarchical
models.

• µD,M (d, m) is a homogeneous distribution on D ×M

Posterior information on the model space is obtained by marginalizing (G.2) for m:

Φm =
∫

D
Φ(d, m) dd = ρM (m)

∫
D

ρD(d)θ(d|m)
uD(d)

dd (G.5)

The posterior distribution contains all interesting information on model parameters,
including mean values, variance and confidence intervals for values of m.
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