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ABSTRACT 

Saccharomyces cerevisiae is the principle fermentative agent used in the production of wine, beer and 

bread. It is also an extremely well-studied organism and serves as a model system for many fields of 

research. Although the human-impact on the evolution of the species is notable, the discovery of ancient 

wild populations in China, in areas untouched by humans, has ignited interest in its use as an ecological 

and evolutionary model organism. In this study, we collected 300 samples from a variety of 

geographical and climatic regions in Africa, and through enrichment culturing, isolated 5 strains of S. 

cerevisiae from 3 bark samples. The isolation rate was 1%, much lower than other studies, and the low 

prevalence of the species could be attributed to the absence of a major niche. The phylogeny of isolated 

strains and global populations was constructed using the UTP14 gene. This included 9 wild African S. 

cerevisiae isolates. The wild African isolates clustered closely with global domesticated isolates and 

diverged recently in the history of the species. Phenotypic characterisation studies (which included 5 

non-Saccharomyces isolates) revealed that maximum growth rates and tolerance to stress varied greatly 

within and between species, and that isolates did not cluster according to their phylogeny. Volatile 

metabolite detection by headspace GC-MS showed that most S. cerevisiae isolates were strong 

fermenters and that wild isolates performed just as well as commercial isolates, indicating that they may 

have a domestic origin. Further sampling needs to be performed in remote areas of Africa in order to 

elucidate the natural history of this species. Our results, however, support the hypothesis that Far East 

Asia is the origin of the species.         
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1 INTRODUCTION 

 

1.1 SPECIALISED FERMENTER 

For thousands of years, fermented foods and beverages have been an integral part of the human diet 

(Legras et al. 2007). It was not until the late nineteenth century that the reliance of naturally occurring 

microbes to spontaneously ferment products, or the inoculation of a small sample of product that was 

already fermented, was replaced with the inoculation of predefined microbial cultures (Steensels and 

Verstrepen 2014). Saccharomyces spp., especially Saccharomyces cerevisiae, were abundant and 

dominant in many of these spontaneous fermentations. Members of the Saccharomyces genus produce 

desirable flavours, display high ethanol production and tolerance, and do not produce toxins (Piŝkur et 

al. 2006). It is probable that S. cerevisiae was the first living organism domesticated by man-kind, albeit 

unknowingly, and is crucial in the production of beer, wine and bread. The species name is derived 

directly from the Latin word for beer (Vaughan-Martini and Martini 1995). As the name suggests, the 

yeasts comprising the Saccharomyces genus favour sugars as a carbon source (Fay and Benavides 

2005). They are specialised in the uptake of glucose and its subsequent utilisation in the glycolytic 

pathway (Otterstedt et al. 2004).  

While a lack of oxygen is the common factor responsible for switching respiration to fermentation, 

members of the Saccharomyces genus have the ability to switch to a fermentative form of metabolism 

when high concentrations of sugar and oxygen are present. Fermentation, whether aerobic or anaerobic, 

results in the production of ethanol and CO2. S. cerevisiae can limit respiration by repressing the 

synthesis of respiratory enzymes (De Deken 1966). This is known as the Crabtree effect (Crabtree 

1929). The growth of S. cerevisiae on high concentrations of glucose can be characterised by an initial 

rapid growth phase when aerobic fermentation occurs, followed by a relatively slow growth fuelled by 

the oxidation of the accumulated ethanol (De Deken 1966). While the adenosine triphosphate (ATP) 

yield is not maximized in this process, the Crabtree effect means that sugar is able to be utilised more 

rapidly and this, therefore, can support faster growth (Pfeiffer, Schuster, and Bonhoeffer 2001; Piŝkur 

et al. 2006). A high growth rate in combination with the ability to produce large amounts of ethanol and 

to tolerate it, extends a competitive advantage to members of this genus (Otterstedt et al. 2004). 

 

1.2 EUKARYOTIC MODEL ORGANISM 

S. cerevisiae is one of the most intensely studied organisms on Earth and acts as an extremely powerful 

genetic model system (Hittinger 2013). The importance of yeast in industrial processes, namely 

brewing, motivated yeast genetics experiments. The Danish biologist, Øjvind Winge, who is regarded 
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as the founder of yeast genetics, conducted breeding experiments at the Carlsberg laboratory with the 

aim of combining desirable brewing traits (Barnett 2007). The use of S. cerevisiae as a model eukaryotic 

organism is due to several advantages that it possesses. Unlike more complex eukaryotes, it can be 

grown on a defined medium, allowing for a chemically controlled environment to be produced during 

experimental procedures. S. cerevisiae has a life cycle that is relatively easy to control and is suited to 

classical genetic analysis (Goffeau et al. 1996). The S. cerevisae S288c strain, which can be traced back 

to six progenitors, was adopted as a reference strain early on in research using this organism as a model 

system. The use of this specific strain is advantageous as is it stable in a haploid state, making it easier 

to genetically modify as well as to study the effects of mutations. The segregate and mutant strains that 

have historically been used in research are all derivatives of S288c (Mortimer and Johnston 1986).  

The genome of S. cerevisiae S288c was completely sequenced through an effort involving scientists 

from around the world. It was the first eukaryotic genome, and the largest at the time, to be sequenced 

(Goffeau et al. 1996). The genome was found to be 12 068 kilobases in size, and a potential 5 885 

protein-encoding genes were identified. The sequence has now been annotated more comprehensively 

than any other eukaryote (Cherry et al. 2011). Several strain libraries have been created for S. cerevisiae, 

containing information pertaining to specific genome modifications. The vast amount of knowledge 

that has been accumulated, and the tools that have been developed to allow for the study of this 

organism, means that it will stay at the forefront of system genetics for years to come (Liti 2015). 

 

1.3 TAXONOMY 

Species forming the Saccharomyces genus were initially group based on morphological and phenotypic 

characteristics, forming the Saccharomyces sensu stricto complex. Members of the complex can 

generate viable hybrids when interbred, however, these hybrids are sterile, only very rarely produce 

viable spores (Liti and Louis 2005; Greig 2009). Advances in molecular techniques allowed for the 

otherwise phenotypically indistinguishable complex to be divided into several species (Borneman and 

Pretorius 2015). These are: S. cerevisiae; Saccharomyces paradoxus; Saccharomyces cariocanus; 

Saccharomyces bayanus; Saccharomyces mikatae; Saccharomyces kudriavzevii; Saccharomyces 

arbicolus; Saccharomyces uvarum and Saccharomyces pastorianus, a sterile hybrid of S. cerevisiae and 

a cryotolerant Saccharomyces yeast. Members of the S. sensu stricto complex all share the fact that they 

are specialised to grow on high-carbohydrate substrates and that they are Crabtree-positive (Sicard and 

Legras 2011). Whilst S. cerevisae is the most common species of the complex associated with 

fermentations involved in the production of wine, beer, sake and leavened bread, S. bayanus, S. uvarum 

and S. pastorianus have also been implicated in these processes (Sicard and Legras 2011). S. bayanus 

is the oldest sibling of the complex, diverging approximately 20 million years ago (MYA) (Kellis et al. 

2003). It has been estimated that the divergence of S. cerevisae occurred 5-10 MYA (Kellis et al. 2003). 
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There is evidence that allopatric speciation is causing the emergence of new species in this relatively 

young complex (Kellis et al. 2003). 

 

1.4 DOMESTICATED S. CEREVISIAE 

Due to the abundance of S. cerevisiae in fermented beverages, the species was broadly considered to 

exist solely as a domesticated species that arose due to evolution and specialisation in the production of 

alcoholic beverages (Vaughan-Martini and Martini 1995). These domesticated strains are no longer 

interchangeable as substrate variability between different beverages such as wine, beer and sake has 

selected for different specialised yeast strains (Fay and Benavides 2005). After yeast was discovered as 

the agent responsible for these human-associated fermentations, most of the first isolated strains were 

associated with alcoholic beverages, and it was believed that the occasional strains isolated from natural 

environments were originally from human-associated fermentations (Fay and Benavides 2005). The 

domestication of S. cerevisiae influenced its global distribution as well as selected for traits such as the 

resistance to ethanol, acidic environments and osmotic stress (Replansky et al. 2008). The domestication 

of strains of S. cerevisiae responsible for the production of wine and sake likely preceded those of beer 

and bread-making strains as these fermentations occurred via the natural inoculation of the yeast (Fay 

and Benavides 2005). It seems that the thousands of yeasts commercially available today stem from 

only a few ancestors, and that these evolved to suit specific industrial applications (Gallone et al. 2016). 

An interesting example of the human impact on the distribution and selection of traits in yeasts, is the 

lager beer yeast, S. pastorianus (previously classified as S. carlsbergensis), which is physiologically 

and genetically distinct to the ale yeast S. cerevisiae (Dunn and Sherlock 2008). While the production 

of ale beer has been around possibly as early as 6000BC, lager brewing, which originated in Bavaria, 

only began in the late 1400s and became very popular in the late 1800s (Hornsey 2003). S. pastorianus 

is responsible for conducting low temperature lager fermentations (5°C-14°C) and is thought to have 

arisen in response to selective pressures during successive low temperature fermentations. It has been 

known for many years that S. pastorianus is an interspecific hybrid between ale yeast (S. cerevisiae) 

and an unknown cryotolerant Saccharomyces yeast. The source of the non-ale portion of the genome is 

still under some debate. Earlier research suggested that the genome is a hybrid between S. cerevisiae, 

S. bayanus and S. uvarum and possibly another fourth unknown lager-type species (Casaregola et al. 

2001; Naumova et al. 2005; Rainieri et al. 2006). More recent discoveries, however, suggest otherwise.  

A major break-through in the identification of the donor of the non-ale portion of the genome of S. 

pastorianus, was the isolation of a new cryotolerant species of Saccharomyces from a forest in 

Patagonia (Libkind et al. 2011). This species was named S. eubayanus and is 99.56% similar to the non-

ale portion of the widely used Weihenstephan 34/70 lager yeast (S. pastorianus). As S. eubayanus has 
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never been isolated anywhere else in the world, despite intensive efforts to isolate cryotolerant species 

of Saccharomyces in Europe (Sampaio and Goncalves 2008), which is the wild genetic stock of lager 

yeast, the hypothesis that S. eubayanus was introduced into Europe from Patagonia via trans-Atlantic 

trade, was formed (Libkind et al. 2011). This hypothesis has been challenged by Bing et al. (2014) who 

isolated a population of S. eubayanus from Tibet which is more closely related to S. pastorianus than 

the Patagonian isolate. A strain from this population was 99.82% similar to the non-ale moiety of 

Weihenstephan 34/70, strongly suggesting that this population is the direct donor of this subgenome in 

S. pastorianus. As Asia and Europe are connected by the Eurasian continental bridge, trade history 

between these continents began about 2000 years ago much longer than trans-Atlantic trade which only 

began in the 1500s. The hypothesis that S. eubayanus made its way into Europe from Asia seems the 

more likely of the two hypotheses. In addition to the Tibetan population of S. eubayanus being more 

closely related to S. pastorianus, the longer trade history gives sufficient time for this population to 

have colonised Europe and subsequently be domesticated in Bavaria in the late 1400s (Bing et al. 2014).  

    

1.5 NATURAL PREVALENCE OF S. CEREVISIAE 

Relatively recently it has been revealed that S. cerevisiae is abundant in wild habitats untouched by 

humans. The isolation can be difficult due to nutrient-poor substrates which results in relatively small 

population sizes (Liti 2015). An enrichment medium is generally used which favours the growth of 

Saccharomyces. Several sampling efforts have focused on sampling trees belonging to the Fagacae 

family (which includes oak trees), as these trees represent a natural niche for members of the sensu 

stricto complex (Sniegowski, Dombrowski, and Fingerman 2002; Sampaio and Goncalves 2008). Other 

than this major niche, S. cerevisiae has been found associated with plants, soils and insects from a 

diverse range of geographical and climatic regions. Stefanini et al. (2012) have shown that wasps 

represent a natural niche for the species, serving as a vector and reservoir during all seasons. Local, 

diverged populations have been identified in Taiwan, Japan and Malaysia (Gennadi I. Naumov, Lee, 

and Naumova 2013). The largest and possibly most influential study of wild Saccharomyces yeasts was 

conducted in China (Q. M. Wang et al. 2012). A field survey was conducted over a period of three years 

covering a wide variety of habitats and climatic regions in China. This resulted in the identification of 

eight new distinct wild lineages (CHN I –VIII) (Fig. 1). Although previous studies showed that S. 

cerevisiae was not solely a domesticated species, wild strains were underrepresented and were isolated 

from a limited number of ecological regions. Isolates from primeval forests in China are highly diverged 

and display strong population structures which seem to be ancestral. They also do not cluster with the 

other global populations (Fig. 1). This study showed that this yeast is ubiquitous in nature and is found 

in areas that are remote from human activity.  
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Figure 1. Phylogenetic tree revealing the large genetic diversity that wild S. cerevisiae possesses and the eight 

distinct clades of S. cerevisiae that were discovered in China. The tree was constructed using sequences of 12 

genes and four intergenic loci of the 99 Chinese isolates and 38 isolates obtained from the Saccharomyces Genome 

Resequencing Project (SGRP) database. The tree clearly shows the different habitats and niches that the isolates 

occupy. Bootstrap support values of over 50% are indicated. Kimura´s two-parameter was used to calculate 

evolutionary distances with the scale bar representing 0.002 substitutions per nucleotide position (from Wang et 

al. 2012).   

 

1.6 LIFE CYCLE 

The life cycle of S. cerevisiae is very well understood and can be manipulated using precise laboratory 

conditions. The ability of researchers to switch the reproductive mode of the yeast between sexual and 

asexual cycles is an extremely powerful tool (Liti 2015). Mitotic cell division consists of budding, the 

process whereby the 17 chromosomes of the haploid cell are doubled, followed by the mother cell 

giving rise to a slightly smaller daughter cell composed of completely new cell material (Herskowitz 

1988). This occurs during sufficient nutrient concentrations and enables rapid duplication. S. cerevisiae 

can exist as three specialised cell types which all can undergo mitotic cell division. Two of these are 

haploid mating types, the a and α cells. Using signalling molecules to facilitate the mating process, they 

form the third specialised cell type, the diploid a/α cell (Herskowitz 1988). Under certain environmental 

cues such as nutritional starvation, the sexual cycle may be triggered. This results in the diploid a/α cell 

giving rise to four meiotic haploid spores. These spores are able to withstand extreme temperatures, 

desiccation and remain viable until favourable conditions return, after which they germinate (Liti 2015). 
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Very little is known about the life cycle of S. cerevisiae in the wild and it is likely that it spends a lot of 

time in a state of quiescence due to nutritional limitations (Gray et al. 2004). Currently, only inferences 

from laboratory strains can be made regarding the relative frequencies of the different mating types. It 

is therefore necessary to study S. cerevisiae populations in nature in order to develop an in-depth 

understanding the importance of different life-cycle phases and how its life cycle affects genetic 

variation and fitness (Boynton and Greig 2014; Replansky et al. 2008; Liti 2015). 

 

1.7 ECOLOGICAL AND EVOLUTIONARY MODEL ORGANISM 

A major criticism of microbial model systems is that their applicability to natural systems may be 

limited. Concerns are that laboratory model systems may be over simplified and that they are not large 

enough on a spatial and temporal scale to be useful (Jessup et al. 2004) A solution to this would be to 

use the natural population of these organisms in order to conduct experiments (Replansky et al. 2008). 

S. cerevisiae is used extensively as a model organism in genetics and in molecular biology. Due to the 

large amount of available knowledge and molecular techniques relating to this species, it would be 

largely advantageous to utilise this organism as a model for evolutionary and ecological studies 

(Replansky et al. 2008). 

In modern biology a major aim is to determine how the gene pool of a population changes due to the 

selection of specific phenotypic traits and genetic variants. S. cerevisiae will most likely be the first 

eukaryotic organism for which these mechanisms are properly understood, due to the vast knowledge 

of its cellular machinery that has been acquired (Warringer et al. 2011).  An issue is that the laboratory 

strains poorly reflect the natural state of the S. cerevisiae population. The artificial mosaic of alleles in 

these strains have never been exposed to natural selection processes (Liti 2015). Conclusions on such 

processes, therefore, cannot be drawn, as most of the current knowledge of yeast gene-trait relationships 

are based on lab-domesticated strains (Warringer et al. 2011). Auxotrophic laboratory strains of S. 

cerevisiae are often used in experimental work. These strains have mutations that render them unable 

to synthesise essential compounds. This is then exploited in order to function as a selection marker by 

only enabling growth of the organism through the addition of the required nutrient (Mülleder et al. 

2012). These mutations may act in combination and therefore the compensation by the addition of the 

required nutrient will not reduce the bias sufficiently in metabolic and physiological studies. This is an 

example of why it has been argued that S. cerevisiae may not be an ideal model system for such studies.  

After S. cerevisiae, S. paradoxus is the best studied member of the sensu stricto complex. S. paradoxus 

co-exists with S. cerevisiae and is phenotypically indistinguishable from its sister species (Sniegowski, 

Dombrowski, and Fingerman 2002; Naumov, Naumova, and Sniegowski 1998; Sampaio and Goncalves 

2008). It has been suggested that S. paradoxus might be a better model for ecological and evolutionary 



7 

 

studies as the evolution and distribution of S. cerevisiae has been impacted by its association with 

humans, but that of S. paradoxus has not (Sweeney, Kuehne, and Sniegowski 2004). Wang et al. (2012), 

however, have argued that S. cerevisae is in fact a good model for ecological and evolutionary studies 

as they have shown that S. cerevisae occurs in highly diverged and genetically isolated populations in 

areas with very little to no human activity. While these populations would undoubtedly be useful to 

study the natural history of the species, they will also allow for the human-driven adaptations of 

domesticated strains to be further elucidated by comparative studies. These include specific genome 

signatures created through hybridisation, polyploidisation, gene duplication and gene transfer events 

(Sicard and Legras 2011). 

The findings by Wang et al. 2012 that show that the Chinese isolates essentially display double the 

amount of genetic variation than all other global isolates. Far Eastern Asia is also the only region where 

all members of the sensu stricto complex have been isolated (Liti 2015). These findings support the 

hypothesis that far Eastern Asia is the reservoir of Saccharomyces natural variation and the origin of S. 

cerevisiae (Naumov, Gazdiev, and Naumova 2003). No other global populations have been identified 

that would suggest otherwise. It has been suggested that worldwide surveys of forests remote from 

human activity should be conducted in order to further elucidate the natural ecology, population 

structure and genetic diversity of this species (Wang et al. 2012). Sequencing of varied populations will 

give insight into its natural history, and studying highly diverged lineages which predate domestication, 

such as the wild Chinese populations, will reveal the human impact on species. This will also allow for 

associations between genotype and phenotype to be revealed which are not only limited to single 

nucleotide polymorphisms (SNPs), but can extend to copy number, ploidy and structural variations (Liti 

2015).     

It is vital to study new isolates which are both wild and associated with human activities in order to get 

better insight in various ecological, physiological and evolutionary processes. This will help answer 

questions of how its life cycle progresses, what its niche is, how it interacts with other microbes, and 

the genetic variation within the species. This will be crucial in developing S. cerevisiae, and the sensu 

stricto complex, as a model for ecology and evolution. While African S. cerevisaie strains associated 

with fermentations have been included in population genetic studies (Fay and Benavides 2005), there 

have been no previous sampling efforts to isolate wild strains. The isolation of wild African S. cerevisiae 

strains will help further elucidate the natural and human-associated history of this species.      

 

. 
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2 AIM & OBJECTIVES 

 

2.1 AIM 

The aim of the study was to isolate wild Saccharomyces cerevisae from remote areas in Africa in order 

to determine the prevalence, diversity and phylogeny of the species.  

2.2 OBJECTIVES 

The specific objectives of the study were: 

• To sample remote areas in Africa (predominantly South Africa) that are far-removed from 

human activities, covering a range of habitats and climatic conditions. 

• To isolate Saccharomyces cerevisiae by enrichment culturing and subject the isolates to 28S 

Ribosomal RNA sequencing. 

• To determine the phylogeny of isolated strains through the sequencing of the UTP14 gene. 

• To characterize the isolates by performing growth, stress tolerance, and fermentation 

analyses. 
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3 METHODS & MATERIALS 

 

3.1 SAMPLING 

Samples were collected from a variety of climatic regions as well as substrates throughout Southern 

Africa. As far as possible the samples were collected from areas that are untouched by humans. In this 

study, a total of 300 samples were screened for the presence of S. cerevisiae. Soil, bark, flower and fruit 

samples were collected in sterile 15ml falcon tubes where the enrichment culture was added. Areas 

sampled included: Mkhomazi Wilderness area (Sani Pass); Hluhluwe-Umfolozi Game Reserve (Kwa-

Zulu Natal North Coast); Mtwalume (Kwa-Zulu Natal South Coast); Zimbabwe and Namibia 

(Swakopmund). Samples previously screened by the lab have come from: Ethiopia (Addis Ababa, 

Gondar and Lalibela); Mauritius; The Eastern Cape; Kwa-Zulu Natal (Port Edward); The Western Cape 

(Stellenbosch); Mpumalanga (Timbavati) and Limpopo. Collectively, more than 700 samples have been 

screened from Africa. 

         

3.2 ENRICHMENT 

Isolation of yeasts were performed using the enrichment method as described by Sniegowski et al. 2002 

with the modifications described by Wang et al. 2012. This media contained 8% ethanol (v/v) which 

exploits the inherent competitive advantage of S. cerevisiae to tolerate ethanol. The antibiotic 

chloramphenicol which inhibits the proliferation of bacteria is also included (25 µg/ml). Samples were 

incubated at 25 °C for one month (Sampaio & Goncalves 2008). A 10-fold serial dilution of the cultures 

(in dH2O) ranging from 10-1 to 10-6 was performed in an attempt to obtain isolated colonies after plating. 

After dilution, 100 µl of the culture was spread plated onto Yeast Extract-Peptone-Dextrose (YEPD) 

Agar [Yeast Extract (10 g/L), Peptone (20 g/L), Dextrose (20 g/L) and Agar (15 g/L)] using sterilised 

glass beads. The plates were allowed to dry, inverted and incubated at 25 °C. Plates that showed no 

growth after a week, or plates that did not show isolated colonies, but rather a lawn, were discarded. 

Plates containing isolated colonies were stored at 4 °C for a maximum of 2 weeks. 

 

3.3 SCREENING 

Colonies with the characteristics of S. cerevisiae were selected for screening by colony PCR. It involves 

using colony material directly in a PCR reaction, avoiding the need to perform DNA extractions and 

therefore increased sample processing time. The NL1/NL4 primer set was used to amplify the 5´ end of 
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the large ribosomal subunit (25S). The sequences for NL1 and NL4 are: 5’-

GGTCCGTGTTTCAAGACGG-3’ and 5’-GCATATCAATAAGCGGAGGAAAAG -3’ respectively.  

Prior to colony PCR, colonies chosen for screening were sub-cultured onto YEPD agar plates divided 

into 16 segments (4x4 grid). Each segment was assigned a specific co-ordinate (plate number and 

location) therefore giving each sub-cultured colony a unique ID. Colony material was picked off the 

plates using a sterile pipette tip and transferred into 10.5 µl PCR grade water. The 25 µl PCR reaction 

was composed of: 12.5 µl of 2X KAPA2G™ Robust HotStart ReadyMix, 1 µl of each of the primers 

(0.4 µM) and 10.5 µl of PCR grade water (containing colony material). The cells involved were lysed 

during the initial denaturation step of the reaction releasing the DNA template material required for 

successful PCR. The PCR cycle conditions composed of an initial denaturation step at 95 °C for 5 

minutes, followed by 35 cycles of: denaturation (95 °C, 30 seconds), annealing (56 °C, 30 seconds) and 

extension (72 °C, 30 seconds). After PCR, the DNA was electrophoresed on a 1% agarose gel (1x TAE) 

in order to visualise whether the approximate 600 bp amplicon had been formed.  Successful amplicons 

(any yeast strains) were sent to Inqaba Biotec™ for Sanger sequencing using the NL1 primer. The 

approximately 600 bp amplicon sequences were checked for quality and low-quality regions were 

trimmed appropriately using Chromas v2.6.4 (Technelysium Pty Ltd.). The edited sequences were then 

run through the Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990) nucleotide 

database. Identified S. cerevisiae strains were subcultured and glycerol stocks were made by culturing 

strains in YEPD broth for 24 hours and thereafter adding sterile glycerol, achieving a final concentration 

of 25% (v/v). These were then stored at -80 °C. 

 

3.4 PHYLOGENY 

The UTP14 gene was chosen as an inference for the phylogenetic structure of the species (Bai 2016, 

unpublished data). The UTP14 protein is involved in the production of the 18S ribosomal RNA and is 

one of 17 Utp proteins included in the small subunit processome (Dragon et al. 2002). DNA extractions 

were performed on the chosen isolates using the Quick-DNA™ Fungal/Bacterial Miniprep Kit (Zymo 

Research). For cell disruption, the ZR BashingBead™ Lysis Tubes were placed in the TissueLyser II 

(Qiagen®) for 5 minutes at 300 rpm. After DNA extraction, the concentration was determined using a 

Qubit® 2.0 fluorimeter (Life Technologies).  The gene was amplified via PCR using the +122 and -

2541 primers (Table 1). The PCR reaction (25 µl) comprised of: 12.5 µl of 2X KAPA2G™ Robust 

HotStart ReadyMix, 1 µl of each of the primers (0.4 µM of each of the primers), PCR grade water and 

25 ng of genomic DNA (volumes were dependant on DNA concentration). The PCR cycle conditions 

comprised of an initial denaturation step at 95 °C for 5 minutes, followed by 35 cycles of: denaturation 

(95 °C, 30 seconds), annealing (55 °C, 30 seconds) and extension (72 °C, 30 seconds). After PCR, the 
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DNA was electrophoresed on a 1% agarose gel (1 x TAE) in order to visualise whether the approximate 

2 700 bp amplicon had been formed. 

Table 1.  Primers used for UTP14 gene amplification and sequencing (Dragon et al. 2002). PCR resulted 

in an approximate 2400 base pair amplicon. After sequence assembly and alignment, 2 260 base pairs 

were used for phylogenetic analysis. 

Primer Sequence (5’-3’) Use 

+122 ATGATGCTCGTCGTAATGG PCR and Sequencing 

+852 TAAGGCAGCATACGAGAT Sequencing 

-2541 TACCGCTGAAGATTGGTAT PCR and Sequencing 

 

Sequencing of the UTP14 gene resulted in three gene fragments that were assembled using the Sequence 

Assembly tool in DNA Sequence Assembler v4.36.0.2 (2013), Heracle BioSoft. Whole genome 

sequence data for 24 S. cerevisiae strains by the Saccharomyces Genome Resequencing Project (SGRP) 

were downloaded from their website: (ftp://ftp.sanger.ac.uk/pub/users/dmc/yeast/latest). 

Saccharomyces paradoxus was included as an outgroup and the whole genome sequence data was also 

downloaded from the SGRP website. The corresponding UTP14 gene sequences for SGRP isolates, 

including S. paradoxus, were obtained by searching for the UTP14 +122 and -2541 primer sequences 

on Chromosome XIII. UTP14 sequence data for 16 wild Chinese and 4 wild South African S. cerevisiae 

strains were obtained from Professor Bai and colleagues (State Key Laboratory of Mycology, Institute 

of Microbiology, Chinese Academy of Sciences, Beijing). 

Alignment of these 55 sequences was performed using the online version of MAFFT version 7 (Katoh 

et al. 2002; Katoh and Standley 2013) using the default parameters. The program automatically selected 

the L-INS-i algorithm (Katoh et al. 2005) , which uses an iterative refinement method and is ideal for 

sequences that have one align able domain with flanking sequences. The alignment was downloaded in 

FASTA format and viewed in MEGA 7 (Kumar, Stecher, and Tamura 2016). The unaligned flanking 

regions were deleted, resulting in 2 266 aligned nucleotide residues. Single Nucleotide Polymorphisms 

(SNPs) were identified for the Chinese, SGRP and Wild African populations using MEGA 7. A 

sequence identity matrix was constructed using BioEdit version 7.2.6 (T. A. Hall 1999). This alignment 

was then converted to PHYLIP format using BioEdit version 7.2.6.   

Phylogenetic analysis was conducted using the web server version of PhyML (Guindon et al. 2010) 

with Smart Model Selection (SMS) (Lefort, Longueville, and Gascuel 2017) available at: 

http://www.atgc-montpellier.fr/phyml-sms/. PhyML estimates phylogenies using a maximum-

likelihood based approach while the integration of SMS allows for the selection of the best substitution 

matrix with minimal computing time. The PHYLIP format alignment file was uploaded and “DNA” 

was selected as the Data Type. By default “Automatic Model Selection by SMS” was selected and 

Akaike Information Criterion (AIC) (Akaike 1998), was the selection criterion to be used by SMS. 

Under the “Branch Support” section, it was defined that 1 000 bootstrap replicates should be performed. 



12 

 

After the analysis had been performed it was revealed that the TN93 model was used (Tamura and Nei 

1993). This model allows for the rates of the two types of transition substitutions to differ and while 

transversions are assumed to occur at the same rate, this rate can differ from the transition rates. The 

model also allows for the frequency of nucleotide bases to be unequal. Phylogenetic trees were 

visualised and edited using MEGA 7 and TreeGraph2 v2.14.0-771 beta (Stöver and Müller 2010). 

Phylogenetic trees were rooted using S. paradoxus.  

                       

3.5 GROWTH ANALYSIS 

Growth analyses were performed on 16 yeast isolates. One colony was used to inoculate 20 ml of YEPD 

broth in 100 ml Erlenmeyer flasks, and incubated for 48 hours at 30 °C, with shaking at 300 rpm. Five 

hundred microliters (of the respective culture) was used to inoculate 20 ml of YEPD broth in 100 ml 

Erlenmeyer flasks. These were incubated at 30 °C with shaking at 300 rpm for a period of 36 hours. 

Several dilutions of these cultures were made (50, 100 and 200-fold) and OD600 readings were recorded. 

A Boeco S-20 visible range spectrophotometer was used for all readings, using uninoculated YEPD 

broth as the blank. Using the OD600 readings of the culture dilutions, calculations were performed in 

order to inoculate 20 ml of YEPD broth (in 100 ml Erlenmeyer flasks) to an OD600 of 0.075 (using 

YEPD broth as a blank). The cultures were then incubated at 30 °C with shaking at 300 rpm and OD600 

readings were taken every two hours for a period of 20 hours. In the interest of accuracy and 

repeatability the cultures were diluted appropriately so that the OD600 readings never exceeded 1.0. 

These readings were then multiplied by the dilution factor in order to obtain the actual values. All strains 

were analysed in triplicate.  

Data for all replicates and isolates were imported into an Excel spreadsheet as OD600 values vs. time in 

minutes (528 data points). This was saved as a tab-delimited text file. Data was analysed using the 

Growth Rates (v2.1) program (B. G. Hall et al. 2017). The program first converts all OD600 values to ln 

OD600 values (using the text file that was created as the input file) thus linearizing any portions of the 

growth curve that were previously exponential (where the growth rate is at the maximum). It then 

calculates five-point slopes until the final reading (points 1-5; 2-6; 3-7; etc.), in order to determine 

which points will be used to calculate the maximum growth rate. The output file specifies which points 

were used to calculate the growth rate, the calculated specific growth rate and standard error, the 

doubling time in minutes, the mean R (correlation coefficient between the data and calculated rate), the 

maximum OD and lag time for each replicate.  

The Compare Growth Rates (v1.1) program (available at: https://sourceforge.net/projects/growthrates/) 

was used in order to calculate the mean growth rates and the standard error for each isolate, as well as 

to statistically compare the growth rates between isolates. The input files for this program are the output 
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text files from the Growth Rates program and a “sets” file which is a user-created text file specifying 

which samples belong to which strain (in this case there were three replicates for each strain). The 

program also compares each “set” (isolate in this case) to each other, using bootstrap sampling. This 

essentially randomly samples the data set of each isolate, creating new bootstrap samples, and compares 

these. The more the distributions of the growth rates overlap, the less confidence one has that one isolate 

is faster than the other. It performed 10001 bootstrap replicates, reporting a confidence level that one 

strain has a faster/slower growth rate than the other.  

  

3.6 ETHANOL AND OSMOTIC TOLERANCE 

The ethanol as well as osmotic tolerance of the strains was explored as these are common limiting 

factors in an industrial setting. Two consecutive cultures for each strain was made in 5 ml YEPD broth. 

Cultures were incubated for 48 hours at 30 °C with shaking at 300 rpm. OD600 readings were taken of 

the second culture, and cultures were diluted with YEPD broth to obtain an OD600 of 1. A serial dilution 

of this was then made (10-1; 10-2;10-3 and 10-4) and 10 µl of these cultures (and undiluted culture) were 

plated onto YEPD agar containing ethanol and NaCl. Ethanol was added at concentrations of: 7.5 %; 

10 %; 12.5 % and 15 % (v/v). YEPD agar was autoclaved separately to ethanol and the ethanol was 

added at 50 °C (just above the solidification point of the agar) to minimize evaporation and therefore 

maximize the ethanol concentration accuracy. NaCl was added to the YEPD agar solution prior to 

autoclaving at concentrations of: 2 %; 5 %; 7.5 % and 10 % (w/v). Agar plates were segmented into 4 

rows and 5 columns. Each row represented a different strain and each column represented a different 

culture concentration. 

 

3.7 AROMA PRODUCTION 

There are several key volatile compounds in beer that affect the aroma and flavour. Gas 

Chromatography coupled to Mass Spectrometry (GC-MS) is a widely used tool for the identification 

and quantification of these compounds. Headspace analysis refers to sampling the vapour-phase 

analytes that are in equilibrium with the liquid phase in a sealed vial. By separating these compounds 

from a very complex liquid sample, it makes them easier to detect when coupled to GC-MS. 

3.7.1 Fermentations  

For these analyses dried malt extract (DME) was used as a base for the wort (the medium), as it most 

closely resembles the actual beer brewing process. DME was added to distilled water (110 g/L) and 

boiled for 30min. The wort was cooled to 20°C and then aliquoted accordingly. Single yeast colonies 

were first inoculated into 15ml wort and cultured for 48 hours at 30 °C with shaking at 300 rpm. These 
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cultures were then pelleted (2000 x g for 5 min), the supernatant discarded, and the yeast pellet was 

resuspended in 50ml of fresh wort. Cultures were then incubated for 36 hours at 20 °C with shaking at 

300 rpm. The cultures were then centrifuged (2000 x g for 5 min) and the supernatant was discarded. 

Fermentations were set up in 250 ml Schott bottles. Holes were drilled into the standard lids and airlocks 

were fitted with a silicon seal. This allowed the CO2 produced during fermentation to escape, by 

bubbling through the ethanol in the airlock, but prevented air from entering the fermentation vessel, 

which would cause oxidation and contamination. Two hundred millilitres of the wort was aliquoted into 

each Schott bottle which was then inoculated with 2 ml of the yeast slurry, yielding a pitch rate of 

approximately 10 million cells/ml. An un-inoculated control was also included in the study in order to 

eliminate any malt extract-derived volatile compounds. Cultures were allowed to ferment at 20 °C for 

2 weeks, without agitation, and thereafter were sealed and stored at 4 °C for a further 2 weeks to allow 

maturation.  

3.7.2 Headspace GC-MS 

3.7.2.1 Sample Preparation 

Samples were prepared for Headspace GC-MS by aliquoting 15 ml into pre-chilled 15 ml falcon tubes. 

These were then centrifuged at 2000 x g for 5 min. Five millilitres of this supernatant was then 

transferred to pre-chilled 18mm thread, 20ml headspace vials (Machery-Nagel) and sealed with N18 

magnetic screw closures with a 1.5mm thick septum (Machery-Nagel). Sample handling at these stages 

was very important as volatiles can be lost to the atmosphere easily. An internal standard, 1-butanol, 

was added to all samples at a concentration of 100 mg/ml (100 ppm). 

3.7.2.2  Headspace Parameters and Injection Methods 

The analysis was conducted on a Leco GCxGC-TOF low resolution mass spectrophotometer. It was 

used in conjunction with a Gerstel Multi-Purpose auto sampler. Samples were incubated at 55 °C for 

10 minutes with shaking at 500 rpm (agitator on time of 10 seconds and off time of 1 second) to allow 

for headspace equilibration. After incubation, 1 ml of the headspace sample was injected into the 

injection port (Topaz liner, split single taper gooseneck w/Wool 4 mm x 6.5 mm x 78.5 mm) using a 

2.5 ml Gerstel syringe at a rate of 200 µl/sec. The pull up delay was set to 0.5 seconds and both the 

post-injection and pre-injection delays were 0 seconds. The total GC oven cycle was set to 25 minutes. 

3.7.2.3 GC Methods   

A Restek Stabilwax column was used with a length of 29.414 m (of 30 m) a diameter of 250 µm, and a 

film thickness of 0.25 µm. A maximum temperature of 260 °C was used. Helium was used as the carrier 

gas and the front inlet type was split/splitless with a split mode activated (split ratio of 20:1). The flow 

rate was a constant 2 ml/minute for the entire run and the front inlet temperature was set to 280 °C. The 

initial oven temperature of 40 °C was maintained for 12 seconds and ramped at 10 °C/minute to 210 °C 

which was held for 2 minutes. The transfer line temperature was 225 °C. 
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3.7.2.4 MS Methods 

The data acquisition delay was set to 0 minutes and a mass range of 41-150 m/z with an acquisition rate 

of 10 spectra/sec was used. The acquisition voltage was set to 1468 eV and an electron energy 

(ionization energy) of -70 eV was used. The ion source temperature was 200 °C. 

3.7.2.5 Data Processing Methods   

The base line offset of 1 (just above the noise) was used, with a peak width of 4 seconds and signal to 

noise (S/N) ratio of 10. The library search mode was normal and forward. The number of library hits 

was set to 10, while the molecular weight range allowed was 41-150. Mass threshold was 5% and 

minimum similarity before name was assigned was 50%. The library used was Replib and mainlb from 

NIST. 

Peak area values of compounds crucial to the quality, aroma and flavour of fermented beverages were 

identified and compared between the 16 isolates. Absolute peak area values were standardised relative 

to the mean for ease of interpretation and comparison within and between compound categories. 

Standardised levels of the compounds produced were graphed. In order to visualise any prevailing 

patterns of compound production within and between species of yeasts, the order of isolates was kept 

standard. The first 11 (17.14 to SC2) being S. cerevisiae isolates, followed by three P. kudriavzevii 

isolates (E23 to SC9) and the lastly two isolates belonging to the Candida genus (E36 and N3). The 

coefficient of variance (CoV), which is a measure of the relative variability, was calculated by 

dividing the standard deviation by the mean. This was calculated for all compound sets. 

In order to assess the relationship of the production of the various compounds, pairwise and multiple 

regressions were conducted. Pairwise analysis consisted of comparing the production of each compound 

against all the other compounds individually and assessing the R2 values and the statistical significance 

of these values. Multiple regression analysis was first conducted with one variable (compound) and all 

other compounds as predictors. The regression was then re-run using the predictors that were shown to 

be significant (p < 0.05). This prevented overfitting the model, as R2 values will always increase as the 

number of predictors used increases. 
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4 RESULTS 

4.1 SCREENING 

After the dilution and plating of samples, many cultures yielded few to no colonies. Undiluted cultures 

were plated in these instances, in an attempt to detect yeast isolates. Amplification of the D1/D2 domain 

proved difficult for many of the isolated colonies. These were subsequently identified as bacterial as 

these colonies did not grow in the presence of chloramphenicol (50 µg/ml). Of the 300 samples 

screened, yeasts were isolated from 105 samples. In total, the D1/D2 domain of 142 colonies was 

amplified, revealing 16 different yeast species spanning 10 genera. Amplification of this region resulted 

in one prominent band of variable size situated between the 500 and 750 bp band of the molecular 

weight marker that was visualised on an agarose gel (Fig. 2). Following Sanger sequencing and BLAST 

analysis, 5 strains of S. cerevisiae were isolated from 3 individual bark samples, all originating from 

the South Coast of Durban, Kwa-Zulu Natal (Table 2). The success rate of isolating the species was 1% 

(3 of 300 samples). Some yeasts were isolated much more frequently than S. cerevisiae, most notably 

from the Torulaspora, Pichia, and Candida genera (Table 2). No other species were isolated from the 

Saccharomyces genus. 

Table 2. The most prevalent yeast species or genus that were isolated and the number of samples that they were 

isolated from.  

Yeast species/genus No. of Samples 

Torulaspora spp. 21 

Pichia spp. 23 

Candida spp. 11 

Saccharomyces cerevisiae 3 

 

 

Other than the five wild S. cerevisiae strains isolated in this study, six other S. cerevisiae strains were 

also included (B2, B9, SC2, E18 and Ale and Wine), shown in Table 3. B2 and B9 are wild S. cerevisiae 

isolates previously deposited in the Yeast Culture Collection of the University of The Free State. SC2 

and E18 are fermentative isolates that were previously isolated by the lab. The Ale and Wine isolates 

(not shown in Table 3) are the commercial yeast strains WLP550 Belgian Ale Yeast (White Labs) and 

VIN13 Wine Yeast (Anchor Yeast). Five other non-Saccharomyces yeast species that were previously 

isolated by the lab, 4 of which are fermentative isolates, were included in the phenotypic studies. 
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Figure 2. Colony PCR products of the D1/D2 domain amplification resolved on a 1% agarose gel. The NL1 and 

NL4 primers were used and 5 µl of the PCR product was loaded onto the gel. Lane 1 was loaded with the 

GeneRuler™ 1 Kb DNA ladder (Thermo Scientific). Lanes 2 to 8 each represent one isolate and show one distinct 

band that lies between the 750 bp and 500 bp markers of the DNA ladder (lane 1). 

 

Table 3. Wild and non-commercial yeast isolates included in this study. 17.13 to 42.7 are S. cerevisiae strains 

that were isolated in this study. The table shows the species of the isolate, source of the sample where the isolate 

was extracted from, the geographic location as well as the country of origin. All S. cerevisiae isolates (including 

the two commercial Ale and Wine strains not shown in this table) were included in the phylogenetic and 

phenotypic characterisation portions of the study. The non-Saccharomyces isolates were only included in the 

phenotypic characterisation portion.    

Strain Species Source Location Country 

17.13 S. cerevisiae Wild (Bark) Mtwalume/Hibberdene South Africa 

40.5 S. cerevisiae Wild (Bark) Mpenjati Margate South Africa 

42.5 S. cerevisiae Wild (Bark) Mtwalume/Hibberdene South Africa 

42.6 S. cerevisiae Wild (Bark) Mtwalume/Hibberdene South Africa 

42.7 S. cerevisiae Wild (Bark) Mtwalume/Hibberdene South Africa 

B2 S. cerevisiae Wild (Unknown) UFS Culture Collection South Africa 

B9 S. cerevisiae Wild (Unknown) UFS Culture Collection South Africa 

SC2 S. cerevisiae Fermented Milk Eastern Cape South Africa 

SC6 Pichia kudriavzevii Fermented Milk Eastern Cape South Africa 

SC9 Pichia kudriavzevii Fermented Milk Eastern Cape South Africa 

E18 S. cerevisiae Water Gonder Tej House Ethiopia 

E23 Pichia kudriavzevii Fermenting Mash Lalibella Distellery Ethiopia 

E36 Candida humilis Injera Yeast Lalibella Tej House Ethiopia 

N3 Candida floricola Wild (Shrub) Swakopmund Namibia 
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4.2 PHYLOGENY 

4.2.1 UTP14 gene amplification and Sequencing 

In order to infer the phylogeny of the strains, the UTP14 region was amplified and sequenced. The 

UTP14 gene was successfully amplified in all 11 strains of S. cerevisiae, resulting in a single amplicon 

estimated to be approximately 2 400bp in size (Fig. 3). 

UTP14 sequence data from 55 isolates, including African, Chinese and SGRP isolates were used for 

molecular phylogenetic analysis. From this 2 260 base pair single-gene analysis, 100 Single Nucleotide 

Polymorphisms (SNPs) and 14 singleton sites were revealed amongst the S. cerevisiae strains. Variation 

within the Chinese population (16 isolates) was by far the largest with 75 SNPs and 13 singleton sites, 

while the 24 SGRP isolates displayed 41 SNPs and 10 singletons. The Wild African population (isolated 

in this study) displayed the lowest sequence diversity, with 23 SNPs and 4 singletons amongst the 11 

isolates. Across all S. cerevisiae strains sequenced, there is more than 98 % shared sequence identity 

and a maximum genetic distance of 0.0402 substitutions per nucleotide site.  As a comparison, there is 

on average only 88 % shared sequence identity between S. cerevisiae and S. paradoxus and a relatively 

large genetic distance of 0.327 between S. paradoxus and the base of the S. cerevisiae isolates.   

 

Figure 3. PCR products of the UTP14 gene amplification of 6 S. cerevisiae strains resolved on a 1% agarose gel. 

The +122 and -2541 primers were used. Lane 1 contains the GeneRuler™ 1Kb DNA ladder (Thermo Scientific). 

A single band just below the 2500 bp marker is seen in lanes 2-7. 
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The following results will focus on the clustering of isolates and the genetic distances between the 

various identified clades. The clustering of isolates, and their geographic origins and environmental 

sources, can be visualised in Figure 4A which is a cladogram with arbitrary branch lengths. Figure 4B 

is a maximum likelihood tree which is drawn to scale, and therefore is useful to visualise the genetic 

distances (Table 4) between isolates as well as the divergence of individual populations. 

Across all strains isolated from South Africa, there is a shared sequence identity of 99.1 % and a 

maximum genetic distance of 0.0194 (between strains SC2 and B9). The South African strains 42.5, 

42.6, 42.7 and B9 cluster together, forming the clade labelled C (72.7 % bootstrap support). Falling just 

outside clade C, is the wild South African strain B2 and the two commercial fermentative yeasts 

sequenced in this study, Wine (VIN13) and Ale (WLP550), with an average genetic distance of 0.0035 

from clade C. This clade shares a recent common ancestor with the Wine/European clade and the genetic 

distance between these clades is very small (0.0032 substitutions per site), which is the smallest distance 

between any pairwise combination of the identified clades. The South African isolates SC2 and 17-13 

cluster into clade B (64.6 % bootstrap support) along with the African fermentative strain, Y12, an 

SGRP isolate. The average genetic distance between clade B and clade C is 0.0175 substitutions per 

site. Clades B and C are also the most diverged clades from the base of the tree with distances from 

clade A of 0.0378 and 0.0368 nucleotide substitutions per site, respectively. Strain 40.7 does not fall 

into a well-supported clade but shares a more recent common ancestor with clade B than C. The genetic 

distance of 40.7 to clades B and C is 0.0080 and 0.0137 nucleotide substitutions per site, respectively. 

Other South African wild isolates (S9-1; S10-1; S10-5 and S24-2) cluster between 40.7 and clade B.     

Wild isolates from Asia form very distinct clades with high bootstrap support. They form the basal 

branches of the maximum likelihood tree and diverged early on in the evolution of the species. Clade 

A (95.6 % bootstrap support), composed of strains JXXY16 and JXXY10 (isolated from a primeval 

forest in China) represents the first divergence from the common ancestor of all S. cerevisiae isolates. 

Clade A is also the most genetically distant population analysed with genetic distances to other 

identified clades ranging from 0.021 (Clade CHN II) to 0.038 (Clade B) nucleotide substitutions per 

site, much further than any other pairwise combinations. Clades CH I (99 % bootstrap support), CH II 

(98.8 % bootstrap support), CH III (100% bootstrap support) and CH IV (99 % bootstrap support), 

previously identified by Wang et al. (2011) are clearly resolved. GT39 and FJ11 form a clade (76.5 % 

bootstrap support) sharing a recent common ancestor with the Malaysian lineage. Isolate NX1, isolated 

from orchard soil in Ninxia Province, is located at the base of the Wine/European lineage. The Chinese 

isolates SD2 and FJ12 do not cluster with their Chinese counterparts and do not fall within any well-

defined clades. 

Four of the five worldwide lineages, previously described by Liti et al. (2009), are resolved, including: 

Malaysia (70.4 % bootstrap support); Wine/European (63.4 % bootstrap support); West African (97.8 
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% bootstrap support) and the North American lineage (85 % bootstrap support). The only SGRP 

population that is not clearly resolved and supported by strong bootstrap values, is that of the Sake 

lineage, which includes the Y9, Y12 and K11 strains which are all fermentative strains, arising from 

Indonesia, Africa and Japan respectively. They do fall into a larger clade with 78% bootstrap support, 

which includes the South African wild isolates: SC2; 17.13, S24-2 and S10-1, as well S288C and W303, 

two laboratory strains. The Ethiopian strain isolated in this study, E18, isolated from a Tej (Honey 

Wine) house, clusters with SGRP strain DBVPG1853, also isolated from Tej Fermentation in Ethiopia.  

Table 4. Average genetic distances calculated by the TN93 model between lineages of S. cerevisiae identified 

through phylogenetic analysis using UTP14 gene sequence data. CH I – CH IV represent previously 

identified wild Chinese Populations (Q. M. Wang et al. 2012). The Malaysian, North American, West 

African and Wine/European populations have been previously identified by the SGRP (Liti et al. 2009). 

Clade A is composed of wild Chinese Isolates, while clades B and C contain wild South African strains 

isolated in this study. 

 

 

 

A CH II CH I CH III CH IV Malaysia 
N. 

America 

West 

Africa 

Wine/ 

European 
C 

A 
          

CH II 0.021 
         

CH I 0.024 0.0132 
        

CH III 0.0327 0.0223 0.0169 
       

CH IV 0.031 0.0206 0.0152 0.0115 
      

Malaysia 0.0268 0.0164 0.011 0.0123 0.0106 
     

N. America 0.0318 0.0214 0.016 0.0123 0.0106 0.0114 
    

West Africa 0.0335 0.0231 0.0177 0.014 0.0123 0.0161 0.0081 
   

Wine/European 0.0356 0.0252 0.0198 0.0161 0.0144 0.0182 0.0102 0.0103 
  

C 0.0368 0.0264 0.0208 0.0171 0.0154 0.0192 0.0114 0.0115 0.0038 
 

B 0.0378 0.0274 0.0218 0.0181 0.0164 0.0202 0.0088 0.0137 0.016 0.0175 
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B. 

 

 

Figure 4. Phylogenetic trees constructed from UTP14 sequence data using the maximum likelihood method.        

A- Cladogram of isolates included in the phylogenetic study. The Branch lengths are arbitrary. Bootstrap values 

of over 500 (n=1 000) are shown. Geographic origin is indicated by branch line colour, and the source is indicated 

by the text (name) colour. Clades that have been previously identified in studies are named accordingly while 

other clades are designated letters (A, B and C). B- Maximum likelihood tree constructed using UTP14 sequence 

data with a length of approximately 2 200 base pairs. The scale bar indicates 0.05 substitutions per nucleotide 

position. Tree is rooted with S. paradoxus. The scale bar represents 0.05 substitutions per nucleotide site. Black 

dots represent nodes that have more than 50 % bootstrap support. 
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4.3 GROWTH CURVES 

 

The maximum growth rates of all isolates listed in Table 3, as well as the commercial Ale and Wine 

yeasts, were determined in YEPD broth at 30 °C. The reliability of the data is measured by the 

correlation coefficient which shows the fit between the data and the calculated growth rate. The different 

strains, their corresponding growth rates, standard errors, doubling time as well as the correlation 

coefficients are presented in Table 5, ordered from highest to lowest specific growth rates. 

Specific Growth rates across all strains tested ranged from 0.304 × 10-2 min-1 (± 0.0026 × 10-2) to 1.032 

× 10-2 min-1 (±0.0019 × 10-2 min-1), which is the equivalent to doubling times of 228.01 to 67.17 minutes, 

respectively. The standard errors for the specific growth rates, as calculated from triplicate cultures, 

ranged from 0.0003 × 10-2 min-1 to 0.0219 × 10-2 min-1. The correlation coefficients (Mean R) were 

high, and values ranged from 0.9689 (the only score to lie below 0.99) to 0.9997.  

The three fastest growing strains, SC9, E23 and SC6 are all Pichia kudriavzevii isolates with growth 

rates of 1.032 × 10-2 min-1 (±0.0019 × 10-2 min-1), 1.02 × 10-2 min-1 (±0.0219 × 10-2 min-1) and 1.017 × 

10-2 min-1 (±0.0091 × 10-2 min-1) respectively. The statistical bootstrap analysis shows that isolate SC9 

approximately 70% support that it is faster growing than E23 and 98% support that its rate is higher 

than SC6. There is only 58% bootstrap support that E23 is faster growing than SC6 but 97% confidence 

that it is faster growing than SC2. There is 100% support that SC6 has a higher growth rate than SC2. 

The growth rate of SC9 is therefore significantly faster than all strains but E23, that the growth rate of 

E23 is significantly faster than all strains except for SC9 and SC6. The three P. kudriavzevii isolates 

have higher growth rates than other isolates, with doubling times below 70 minutes.  

The fastest growing S. cerevisiae isolate was the South African wild strain, SC2, with a growth rate of 

0.97 × 10-2 min-1 (±0.006 × 10-2 min-1), which equates to a doubling time of 71.46 minutes. This is 

followed closely by another South African wild strain, 17.13, with a growth rate of 0.924 × 10-2 min-1 

(±0.0069 × 10-2 min-1) and doubling time of 75 minutes. Isolate SC2 proved to be the faster of these two 

isolates in 100% of the bootstrap runs. Strain B2 displayed the lowest growth rate of S. cerevisiae and 

all other isolates by some margin, 0.304 × 10-2 min-1 (±0.0026 × 10-2 min-1). This results in a doubling 

time of 228 minutes, which is nearly two-fold higher than that of the next slowest grower, the 

commercial Ale strain (122.68 minutes). The growth rates of the two commercial strains differ 

significantly, 0.565 × 10-2 min-1 (±0.0131 × 10-2 min-1) for Ale and 0.88 × 10-1 min-1 (±0.0033 × 10-2 min-

1) for the Wine strain. This equates to a difference in doubling time of 43.9 minutes. 
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Table 5. The results of the growth rate analysis. The experiment was conducted in triplicate, at 30 °C, with shaking 

at 300 rpm. OD600 readings were taken every 2 hours for 20 hours. The Growth Rates and Compare Growth Rates 

programs were used to extract the mean growth rates (from which doubling time was calculated) the quality of 

the results, as well as the mean correlation coefficients for each strain. The program also compared the mean 

growth rates to determine if they are significantly different from one another (data not shown).   

Strain Specific Growth 

Rate (min-1) 

Standard 

Error 

Doubling 

Time (min) 

Mean R 

SC9 1.032 × 10-2 0.0019 × 10-2 67.17 0.9938 

E23 1.02 × 10-2 0.0219 × 10-2 68 0.9954 

SC6 1.017 × 10-2 0.0091 × 10-2 68.16 0.9927 

SC2 0.97 × 10-2 0.006 × 10-2 71.46 0.9992 

17.13 0.924 × 10-2 0.0069 × 10-2 75 0.9992 

E36 0.88 × 10-2 0.0018 × 10-2 78.77 0.9978 

Wine 0.88 × 10-2 0.0033 × 10-2 78.77 0.9994 

B9 0.879 × 10-2 0.0099 × 10-2 78.86 0.9994 

40.7 0.867 × 10-2 0.0024 × 10-2 79.95 0.9983 

E18 0.795 × 10-2 0.01 × 10-2 87.19 0.9985 

42.7 0.768 × 10-2 0.004 × 10-2 90.25 0.9989 

42.6 0.732 × 10-2 0.0019 × 10-2 94.69 0.9997 

42.5 0.633 × 10-2 0.0003 × 10-2 109.5 0.9932 

N3 0.631 × 10-2 0.0096 × 10-2 109.85 0.9968 

ALE 0.565 × 10-2 0.0131 × 10-2 122.68 0.9982 

B2 0.304 × 10-2 0.0026 × 10-2 228.01 0.9689 

 

The growth rates of isolate E36 (Candida humilis), and the S. cerevisiae strains Wine and B9, are very 

similar: 0.88 × 10-1 min-1 (±0.0033 × 10-2 min-1), 0.88 × 10-1 min-1 (±0.0018 × 10-2 min-1) and 0.879 × 

10-1 min-1 (±0.0099 × 10-2 min-1), respectively. They could not be differentiated on a statistical basis, 

with pairwise bootstrap values close to 50%, meaning that one rate was not shown to be consistently 

higher than the other. The rate of B9 was also shown not to be significantly higher (higher in 86.5% of 

the bootstrap replicates) than that of 40. 7 (0.867 × 10-1 min-1 ±0.0024 × 10-2 min-1). The rate of the wild 

South African S. cerevisiae strain, 42.5 (0.633 × 10-1 min-1 ±0.0003 × 10-2 min-1) could not be 

statistically differentiated from that of N3 (0.631 × 10-1 min-1 ±0.0096 × 10-2 min-1), a Candida floricola 

isolate, as it had a faster rate in only 62% of the bootstrap replicates. While all three P. kudriavzevii 

isolates clustered together with respect to their growth rates, S. cerevisiae and Candida isolates 

displayed large variation in growth rates with no clear clustering based on their source (wild or 

fermentative).  
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4.4 ETHANOL AND OSMOTIC TOLERANCE 

The tolerance of the strains to these two factors was analysed by spot plating cultures on YEPD agar 

containing incremental concentrations of ethanol and NaCl. This proved to be a relatively rapid 

screening technique.  The system used to classify tolerance of the isolates to the stressors consisted of: 

tolerance, partial tolerance and intolerance. If a strain was able to grow at all five culture concentrations 

(100 to 10-4) on a certain concentration of stressor, it was classified as tolerant (+). If the particular 

isolate wasn’t able to grow at the lowest concentration (10-4) but at any of the other plated 

concentrations, it was rated as partially tolerant (+/-). If it was not able to grow at any culture 

concentrations it was deemed to be intolerant (-). An example of the rating system is shown in Figure 

5B, where rows represent different isolates and columns represent different culture concentrations. The 

isolate in row 1 (the South African wild isolate 17.3) was partially tolerant to 12.5% ethanol, as it 

displayed growth but not in the furthermost left position (the lowest plated concentration). The isolate 

in row two (the South African wild isolate 40.7) was tolerant to 12.5 % ethanol as single colonies were 

visible at the lowest spotted culture concentration. The two isolates in rows 3 and 4 showed no growth 

and were therefore intolerant.       

 

       

Figure 5.  Examples of the spot plates used to determine the tolerance of isolates to stress. Rows 1 to 4 represent 

different isolates. Columns 1 to 5 represent different culture concentrations A- shows a control YEPD agar spot 

plate where all spotted areas formed colonies. Column 1 represents the lowest concentrations of culture (10-4), 

and single colonies are visible. B- The image shows 4 strains spot plated onto YEPD Agar supplemented with 

12.5% (%v/v) ethanol. The isolate in row 1 is partially tolerant to 12.5 % ethanol as there was growth in the row 

but no growth displayed at the lowest culture concentration (column 1) after incubation for 1 week at 30 °C. The 

isolate in row 2 is tolerant to 12.5 % ethanol as there was growth at the lowest culture concentration (column 1). 

Isolates in rows 3 and 4 are not tolerant to 12.5 % ethanol as there was no growth at any of the concentrations.  
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No strains were able to completely tolerate 15% ethanol or 10% NaCl. Four of the 16 yeast isolates 

were able to partially tolerate 15% ethanol, these were all S. cerevisiae strains (40.7, 17.3, Wine and 

E18). Seven of the 16 strains were able to partially tolerate 10% NaCl. Only 3 strains were able to 

partially tolerate both 15% ethanol and 10% NaCl (40.7, 17.3 and Wine). The three P. kudriavzevii 

isolates (E23, SC6 and SC9) displayed moderate tolerance to both stressors and were able to partially 

tolerate 12.5% ethanol and 7,5% NaCl. The two Candida isolates, N3 and E36, displayed relatively 

poor tolerance to ethanol, as they could only partially tolerate 7.5% ethanol. Isolate N3 showed high 

osmotolerance as it was able to partially tolerate 10% NaCl and E36 could partially tolerate 7.5% NaCl. 

The Ale and B2 isolates, both S. cerevisiae strains, were overall the least resistant to these two stressors. 

The Ale strain could tolerate 7.5% ethanol and partially tolerate 5% NaCl while the B2 strain could 

partially tolerate 10% ethanol and tolerate 2% NaCl. 

Isolates that were tolerant or partially tolerant to high concentrations of ethanol also displayed good 

osmotolerance. Isolates with a high osmotolerance, however, were not necessarily very tolerant to 

ethanol. While non-Saccharomyces isolates clustered well with respect to their tolerance to these two 

stressors, there was large variability within the S. cerevisiae species. Wild S. cerevisiae isolates showed 

a very large variability in tolerance and did not cluster. Commercial or fermentation-derived isolates of 

S. cerevisiae (Wine, E18, SC2 and Ale) generally showed good tolerance to both ethanol and NaCl, 

with the exception of the Ale isolate. There was no obvious link between the phylogenetic position of 

the S. cerevisiae isolates and their stress tolerance. Isolates 17.3, SC2 and 40.7 are closely related 

phylogenetically and all show a high stress tolerance. On the other hand, the Wine, Ale, B2 and B9 

isolates are also closely related phylogenetically but have very different stress tolerances.  There is also 

no clear correlation between the growth rates of isolates and their stress tolerance, although when just 

analysing the S. cerevisiae isolates there does appear to be a pattern correlating a high growth rate to 

high tolerance to these two compounds.           
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Table 6. The tolerance of the yeast strains to various concentrations of ethanol (EtOH) and table salt (NaCl) 

when spotted onto YEPD Agar plates containing the indicated concentration of the compounds. A “+” indicates 

tolerance, a “+/-“ indicates partial tolerance and a “-“ indicates intolerance. Isolates are ordered according to 

their combined tolerance to both stressors (from highest to lowest tolerance). 

 Stress 

  

EtOH 

7,5% 

EtOH 

10% 

EtOH 

12,5% 

EtOH 

15% 

NaCl 

2% 

NaCl 

5% 

NaCl 

7,5% 

NaCl 

10% 

40.7 + + + +/- + + + +/- 

17.3 + + +/- +/- + + + +/- 

WINE + + + +/- + + +/- +/- 

E18 + + + +/- + + +/- - 

SC2 + + + - + + + +/- 

42.7 + + + - + + + - 

42.5 + + - - + + + +/- 

42.6 + + - - + + + +/- 

B9 + + +/- - + + +/- - 

E23 + + +/- - + + +/- - 

SC9 + + +/- - + + +/- - 

SC6 + + +/- - + + +/- - 

N3 +/- - - - + + + +/- 

E36 +/- - - - + + +/- - 

ALE + - - - + +/- - - 

B2 +/- +/- - - + - - - 

 

 

 

 

4.5 HEADSPACE GC-MS ANALYSIS 

Peak area values of 5 compounds crucial to the quality of beer (in addition to the internal standard 1 – 

butanol) were compared between the 16 isolates. These were the alcohols: ethanol, isobutanol (2-

methylpropan-1-ol) and isoamyl alcohol (3-methyl-1-butanol) and the acetate esters: ethyl acetate and 

isoamyl acetate (3-methylbutyl acetate). Absolute values were standardised (relative to the mean) for 

ease of interpretation. The standardised values of each compound produced were graphed (Fig. 6), and 

the order of isolates was kept consistent. The first 11 isolates (17.13 – SC2) are S.cerevisiae isolates 

followed by the three P. kudriavzevii strains (E23, SC6 and SC9) and  lastly the two Candida species 

(E36 and N3). 

The internal standard, 1 – butanol was added to all samples at a concentration of 100 mg/L. The variance 

in the amount of 1- butanol detected in all samples was used as a proxy to determine the repeatability 

and accuracy of the HS-GC-MS method. The variance in the level of the internal standard was within 

10 % of the mean (Fig. 6A). The level of the compound detected does not show any trends with respect 

to the isolate species or order in which the samples were processed.  There was no significant correlation 

found between the level of 1 – butanol detected and any of the other 5 identified compounds detected. 
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The data points are evenly distributed with no drastic outliers indicated by the median (Q2) positioned 

very close to the mean. The data is also not skewed in any direction (above or below the mean) indicated 

by the relatively even spacing of the first and third quartiles around the mean. The CoV is 6 %, which 

is considerably lower than the other compounds ranging from 35 % to 192 %. 

The level of isobutanol produced varied considerably between isolates. Standardised levels ranged from 

0.26 to 1.6 with the Candida isolate E36 producing the least of the compound and E18, the Ethiopian 

S. cerevisiae strain, producing the most (Fig. 6B). On average, S. cerevisiae isolates produced almost 

double the amount of isobutanol than non-Sacchoromyces yeasts, with standardised average production 

of 1.16 and 0.65, respectively. The commercial S. cerevisiae isolates, Ale and Wine, were among the 

three lowest producers of this compound within the species. The CoV is 36 %, meaning that the 

variation in the production of isobutanol between isolates is similar to that of ethanol. 

Isolates could be grouped into two major groups with regard to the production of isoamyl alcohol, those 

producing between 1.2 and 1.65 standardised amounts, and those producing between 0.2 and 0.7 

standardised amounts (Fig. 6C). The group producing relatively high amounts consisted of 9 S. 

cerevisiae isolates, and no non-Saccharomyces isolates. The group producing relatively low amounts 

consisted of the S. cerevisiae isolate, B2, and the five non-Saccharomyces isolates (E23, SC6, SC9, E36 

and N3). The Wine isolate produced a moderate amount of the compound (0.87) and therefore wasn’t 

grouped with either of the two groups. S. cerevisiae isolates produced considerably higher levels than 

the non-Saccharomyces isolates with average standardised amounts of 1.24 and 0.48, respectively. The 

CoV is 46 % which represents quite a large variation in the production of the compound.  

Isolates clustered into two main groups regarding the production of ethanol (Fig. 6D). The group 

producing a relatively high amount of ethanol were all S. cerevisiae isolates. They produced the 

compound within a 40% range (standardised values of approximately 1 to 1.4). Within this group were 

the two commercial S. cerevisiae strains, Ale and Wine. Only one S. cerevisiae isolate, B2, did not 

cluster in this group. It clustered with four non-Saccharomyces isolates which produced approximately 

half the ethanol of the other isolates. These included 3 P. kudriavzevii isolates (E23, SC6 and SC9) and 

one of the Candida isolates, E36. The other Candida isolate, N3, produced a moderate amount of 

ethanol and did not cluster with either of the two groups. The CoV is 33 % which is more than 5-fold 

higher than that of the internal standard (6 %). While the variation is considerable, it does represent the 

lowest variation between the 5 chosen compounds.      

The level of ethyl acetate produced was dominated by three extreme outliers, which were all isolates of 

P. kudriavzevii, E23, SC6 and SC9 (Fig 6E). They produced approximately 3 to 6-fold higher amounts 

of this compound relative to the mean (which itself is heavily skewed due to the bias of these three 

isolates). On average, these three isolates produced approximately 30 times more ethyl acetate than the 

other isolates. Isolate B2, was also an outlier, producing a standardised level of 0.78. This is more than 
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5 times the amount of the compound in comparison to its S. cerevisiae counterparts. The standardised 

level of ethyl acetate produced by the remaining 12 isolates ranged from 0.03 to 0.11 with the two 

Candida isolates produced the lowest amount. The CoV value is 192 %, indicating the extreme range 

in ethyl acetate production.  

The amount of isoamyl acetate produced ranged from not detected to 2.5-fold higher than the mean.  

This is the second largest variation in compound production between isolates represented by a relatively 

high CoV of 53 %. The absolute peak area values of this compound were the lowest detected amongst 

any of the other 5 compounds. The commercial beer yeast, Ale, was a significant outlier, producing the 

highest amount of isoamyl acetate (2.5), with the next highest producer also being an S. cerevisiae 

strain, SC2 (1.5). The Wine isolate produced the lowest detected amount (0.4). The compound was not 

detected in two samples both of which were fermented with Candida isolates (E36 and N3). The level 

of isoamyl acetate produced by the other 3 non-Saccharomyces isolates (E23, SC6 and SC9) ranged 

from 0.6 to 0.8, ranking these isolates in the bottom half of the production spectrum.   

The analysis of these 5 compounds revealed some general patterns of production and the overall 

fermentation performance of isolates and species. This can be visualised in Figure 7. which excludes 

ethyl acetate due to the extreme outliers. Most of the S. cerevisiae strains were good fermenters and 

produced above average levels of the alcohols (ethanol, isobutanol and isoamyl alcohol). The non-

Saccharomyces yeasts were generally poor fermenters which produced low levels of these alcohols. To 

assess the relationship of the production of these compounds, and whether they are significantly 

correlated, a regression analysis was conducted (Table 7). All statistically significant pairwise 

correlation coefficients were positive except for that between ethyl acetate and ethanol. This is the case 

because the four outliers for ethyl acetate production produced low levels of ethanol and this had a 

dramatic influence on the model. When the four outliers were excluded, a statistically significant 

positive correlation was found. For all pairwise combinations the same statistics apply when using one 

compound to predict the other or vice versa.   
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Figure 6. Graphs of standardised levels of compounds produced. The 1st, 2nd and 3rd quartiles are indicated. The first 11 

isolates (17.13 – SC2) are S. cerevisiae isolates followed by the three P. kudriavzevii strains (E23, SC6 and SC9) and  

lastly the two Candida species (E36 and N3). A- Standardised level of 1-butanol (the internal standard) detected. B- 

Standardised level of isobutanol detected. C- Standardised level of isoamyl alcohol detected. D- Standardised level of 

ethanol detected. E- Standardised level of ethyl acetate detected. F- Standardised level of Isoamyl acetate detected. 
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A statistically significant linear regression equation was fitted when using isoamyl alcohol to predict 

ethanol levels (F(1,14) = 40.75, p < 0.001, R2 = 0.71) Isoamyl alcohol was the strongest individual 

predictor of ethanol. Ethyl acetate was a significant but much weaker predictor of ethanol levels (F(1,14) 

= 14.89, p < 0.01, R2 = 0.52). Isoamyl alcohol and ethyl acetate were shown to be good predictors of 

ethanol in a multiple regression model (F(2,13) = 48.38, p < 0.001, R2 = 0.88), accounting for 88% of 

the variance in ethanol production. 

The level of isobutanol was best predicted by isoamyl alcohol. The linear regression model showed that 

isoamyl alcohol could account for 75 % of the variation in the production of isobutanol (F(1,14) = 

41.11, p < 0.001, R2 = 0.75). Individually, Ethanol was also a significant predictor, but a relatively weak 

one, and could only account for 48 % of the variation in the production of isobutanol, hence, in the 

multiple regression model, isoamyl alcohol was the only significant predictor. 

As previously mentioned, isobutanol and ethanol have a strong correlation to isoamyl alcohol. The level 

of isoamyl alcohol can be predicted by using these compounds individually, yielding identical statistics 

as when isoamyl alcohol is used to predict the levels of these compounds. A combination model of the 

two predictors can account for 86 % of the variation in the production of isoamyl alcohol (F(2,13) = 

40.75, p < 0.001, R2 = 0.86). 

Isoamyl acetate is weakly predicted by the other compounds. Isoamyl alcohol can account for 43 % of 

the variation (F(1,14) = 10.74, p < 0.01, R2 = 0.43). Ethanol was also a statistically significant predictor 

but could only account for 34 % of the variation (F(1,14) = 7.12, p < 0.05, R2 = 0.34). 

In addition to using the compound production data from all 16 isolates, a reduced data set excluding the 

3 P. kudriavzevii isolates and the S. cerevisiae isolate B2 was used when predicting ethyl acetate 

production. without the dramatic influence of the 4 outliers, a reduced data set was used. Using the full 

data set, ethyl acetate could only be significantly predicted by ethanol. Excluding the four outliers, all 

4 other compounds were significant predictors, but were not very strong. Isobutanol could account for 

54 % of the variance (F(1,14) = 11.79, p < 0.01, R2 = 0.54) in ethyl acetate production. Isoamyl acetate 

could also account for 54 % of the variance (F(1,14) = 11.77, p < 0.01, R2 = 0.54). In a multiple 

regression model these two predictors could account for 75% of the variance in the production of ethyl 

acetate (F(2,13) = 13.95 , p < 0.01, R2 = 0.75). Ethanol could account for 51 % of the variance (F(1,14) 

= 10.2, p < 0.01, R2 = 0.51) and isoamyl alcohol could account for 49 % of the variation (F(1,14) = 

9.65, p < 0.05, R2 = 0.49) 
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Figure 7. The standardised levels of ethanol, isobutanol, isoamyl alcohol and isoamyl acetate produced by the 

16 yeast isolates. The mean is represented by the ‘0’ value on the y axis. The mean was subtracted from 

standardised values resulting in positive (levels above the mean) and negative values (levels below the mean). 

Isoamyl acetate was not detected in fermentations carried out by the Candida isolates E36 and N3. 

 

Table 7. Regression analysis of each of the 5 compounds detected. Analysis was done using single factors  

(Pairwise analysis) and then using multiple factors. The R2 values are indicated with p values in brackets. If a 

regression model using multiple factors was significant, this was indicated, and the factors that contributed to 

this model separated from the other predictors using a horizontal line. Ethyl Acetate * refers to a reduced sample 

size that was used which excluded the four ethyl acetate outliers (E23, SC2, SC9 and B2).  

Compound 
Predictors 

Name Single  Multiple 

Ethanol 

Isoamyl Alcohol 0.71 (0.0000) 
0.88 (0.0000) 

Ethyl Acetate 0.52 (0.0017) 

Isobutanol 0.48 (0.0031)  

Isoamyl Acetate 0.34 (0.0183)  

Isobutanol 

Isoamyl Alcohol 0.75 (0.0000)   

Ethanol 0.48 (0.0031)  

Isoamyl Acetate 0.21 (0.0700)  

Ethyl Acetate 0.08 (0.2990)   

Isoamyl 

Alcohol 

Isobutanol 0.75 (0.0000) 
0.86 (0.0000) 

Ethanol 0.71 (0.0000) 

Isoamyl Acetate  0.43 (0.0055)  

Ethyl Acetate 0.16 (0.1228)  

Isoamyl Acetate 

Isoamyl Alcohol 0.43 (0.0055)   

Ethanol 0.34 (0.0184)  
Isobutanol 0.21 (0.0695)  

Ethyl Acetate 0.03 (0.5034)  

Ethyl Acetate 

Ethanol 0.52 (0.0017)   

Isoamyl Alcohol 0.16 (0.1228)  

Isobutanol 0.08 (0.2990)  

Isoamyl Acetate 0.03 (0.5034)  

Ethyl Acetate * 

Isobutanol 0.54 (0.0064) 
0.75 (0.0017) 

Isoamyl Acetate 0.54 (0.0064) 

Ethanol 0.51 (0.0094)  
Isoamyl Alcohol 0.49 (0.0111)  
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5 DISCUSSION 

5.1 SCREENING 

The success rate for the isolation of S. cerevisiae was 1%, which is much lower than previously reported 

from studies conducted in other areas of the world. Wang et al. (2012) had a success rate of 10.9% from 

a wide variety of habitats in China, including primeval forests. A success rate of 11.9% was achieved 

by Sniegowski et al. (2002) from substrates including: bark, soil and fluxes associated with oak trees 

(Quercus spp.) and other broad-leafed trees, where S. cerevisiae and other members of the sensu stricto 

complex have often been found to be associated with (Bowles and Lachance 1983; G I Naumov, 

Naumova, and Sniegowski 1998). Sampaio and Goncalves (2008) had a success rate 3-fold higher 

(33%) from trees belonging to the Fagacae family (which includes Oak) than non Fagacae trees (9%) 

when sampling Canada, Germany, Portugal and the United States. South Africa has no indigenous trees 

belonging to the Fagaceae family, and although S. cerevisiae is not exclusively found associated to 

these trees, the absence of this major niche could contribute to the low isolation success rate.  

All samples that were found to contain S. cerevisiae in this study were bark samples. In comparison to 

a total success rate of 10.9%, Wang et al. (2012) had an isolation success rate of 16.5% from bark, 

which was the highest of any substrate. It has been suggested that tree bark is the primary reservoir for 

Saccharomyces as it is isolated most frequently from this substrate. While the species is adapted to 

sugar-rich environments, conditions that would be found in flowers and fruits, these structures are often 

seasonal and therefore serve as secondary habitats. The genus must also have adapted to the different 

environmental conditions presented by bark (Sampaio and Goncalves 2008). While the low isolation 

rate doesn’t allow the comparison of the relative abundance of S. cerevisiae between substrates in 

Africa, the fact that the only substrate that the species was isolated from was bark, supports many 

observations that it is the substrate on which the species is most prevalent. 

The non-Saccharomyces yeasts belonging to the Torulaspora, Pichia and Candida genera were isolated 

in relatively high proportions in comparison to S. cerevisiae. They are often found in spontaneous wine 

fermentations and contribute significantly to wine quality (Jolly, Augustyn, and Pretorius 2006). In 

general, these yeasts can tolerate relatively high ethanol concentrations, low pH and high osmotic 

pressure which are conditions that exist in the enrichment medium. In wine must, S. cerevisiae, is rarely 

detected at the start and in the early stages of fermentation (Martini, Ciani, and Scorzetti 1996), with 

non-Saccharomyces yeasts predominating. Non-Saccharomyces diversity rapidly decreases at high 

ethanol concentrations (6-7%) (Combina et al. 2005) and they have been shown to be particularly 

sensitive to low oxygen concentrations due to their oxidative and weakly fermentative metabolisms 

(Holm Hansen et al. 2001). Despite the low initial incidence of S. cerevisiae, as oxygen levels decrease 

and ethanol concentrations increase, it rapidly takes over the fermentation. The presence of S. cerevisiae 
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in our samples would have resulted in a decrease in oxygen levels during yeast growth and an increase 

in ethanol concentration from the initial 8 %, via fermentation, therefore outcompeting the non-

Saccharomyces yeasts. While it is likely that the non-Saccharomyces yeasts did not necessarily 

proliferate in the enrichment medium, the absence of S. cerevisiae allowed them to survive until the 

medium was plated.       

The low overall yeast viability after the enrichment culturing period could be explained by several 

factors. In all sampling efforts, samples were stored at ambient temperature until the addition of 

enrichment medium. The length of time was variable, but in some cases, this was up to one month. This 

was due to time taken to get from sampling areas to the laboratory, as well as a limited number of 

samples that could be processed at any one time, creating a bottle-neck. In several other studies, samples 

were refrigerated as soon as they were collected and stored for only a few days until enrichment medium 

was added (Sniegowski, Dombrowski, and Fingerman 2002; Sampaio and Goncalves 2008). The 

incubation time of 1 month could also have been too long, and this coupled with the bacterial 

contamination, reduced the chances of isolating S. cerevisiae. While these factors probably did hinder 

the success rate, we managed to isolate non-Saccharomyces yeasts with relative success, indicating that 

the natural prevalence of S. cerevisiae (and Saccharomyces in general) is likely lower in Africa than in 

many other parts of the world. 

 

5.2 PHYLOGENY 

The UTP14 gene proved to be a useful tool in rapidly grouping S. cerevisiae isolates as this analysis 

only required the sequencing of one gene and subsequent assembly of 3 gene fragments. It was able to 

resolve many previously identified clades including wild Chinese populations (Q. M. Wang et al. 2012) 

and those identified through the SGRP (Liti et al. 2009). Wang et al. (2012) identified eight Chinese 

clades designated CHN I-VIII, numbered according to their location from the base of a neighbour-

joining (NJ) tree (based on the sequence data of 13 loci) rooted with S. paradoxus. UTP14 data analysis 

managed to clearly resolve the CH I-IV populations (sequence data for strains forming clades CHN V-

VIII were not available), there were a few differences in the tree topology in comparison to Wang et al. 

(2012). It was suggested that CH II diverged before CH I from the base of the tree and that the Malaysian 

population clustered with the wild Chinese populations. This disagrees with Wang et al. (2012), who 

show that CH I diverged before CH II and that the Malaysian population clusters more closely with the 

other global lineages. They also encountered different topologies when using single loci to predict the 

phylogeny as opposed to the concatenated data from 13 loci.        

The wild southern African strains broadly form two populations that are closely related to domestic 

lineages of S. cerevisiae. While they show high divergence from the common ancestor of all S. 
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cerevisiae isolates, most of this genetic divergence is shared by global strains, indicating their domestic 

origin. They do not display strong population structure (represented by very small genetic distances to 

other populations) and are mixed with domesticated isolates of the species. Domesticated strains 

generally cluster according to their use and not by geographical boundaries, representing recent 

migration history. Wild yeasts generally cluster geographically such as the Chinese, Malaysian and 

North American populations (Liti 2015). The 5 strains isolated in this study do not cluster together 

despite being isolated from the same geographical area and this further reinforces the idea that they are 

not truly wild isolates.  Although the sample size of wild southern African strains is limited, neither our 

sampling efforts or those performed by our Chinese collaborators has resulted in the discovery of an 

isolate that is distantly related from other global strains or that shows early divergence from the common 

ancestor of S. cerevisiae.  

While this single gene analysis may not be as powerful as using more loci and more genetic data, it 

does reveal clades that are highly diverged and that have strong population structures. The effect of 

having a small amount of data is evident as there is much lower resolution when separating closely 

related isolates. A higher resolution could be achieved by increasing the genetic data used in the 

phylogenetic analysis and this would be useful in determining the ancestry and population structure of 

the Southern African isolates. The large genetic variation found within the Chinese isolates, the strong 

population structure as well as early divergence from the common ancestor found through the UTP14 

gene sequencing agrees with Wang et al. (2012). More sampling needs to be conducted in Africa, 

especially of environments not associated to humans, as this will further contribute to what is currently 

known about the ecology and evolution of S. cerevisiae. The relatively small genetic variation and very 

close relationship to domesticated populations of the Southern African isolates indicates that they most 

likely have domestic origins themselves. These findings support the hypothesis that China is the origin 

of the species. Whole genome sequencing is currently underway in China which will further elucidate 

the population structure of global isolates.  

                          

5.3 GROWTH RATES 

It has been shown that growth rates are very strain-dependant across different yeast species and that it 

is not always possible to confirm whether one species or another would have a competitive advantage 

over another  (Charoenchai, Fleet, and Henschke 1998). While the three P. kudriavzevii isolates did 

cluster together, S. cerevisiae isolates showed a large variation in growth rates. While maximum 

specific growth rates are of importance in an industrial setting when trying to cultivate yeast biomass, 

there is an attempt to prevent aerobic fermentation, as decreases the yield from the carbohydrate source 

and the maximum growth rate before respirofermentative metabolism sets in is very strain dependant 

(Hoek, Dijken, and Pronk 1998). Most of the S. cerevisiae isolates displayed growth rates that would 
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not be prohibitive in an industrial setting, although their maximum growth rates without entering 

aerobic fermentation may differ considerably. Varying the doubling time of one S. cerevisiae strain 

between 2 and 35 hours, affects the expression of about half of the genes in the entire genome 

(Regenberg et al. 2006). This means that controlling the growth rates of yeasts can have profound 

impacts on fermentation performance and on the final product.      

The rapid growth rates displayed by the P. kudriavzevii strains under aerobic conditions could allow 

them to establish themselves early on in fermentations. This would account for its prevalence in many 

fermented beverages and foods such as a Ugandan fermented butter product (Ongol and Asano 2009), 

the Tanzanian fermented maize and sorghum product togwa (Mugula, Narvhus, and Sørhaug 2003) and 

in fermented pineapple juice from Thailand and Australia (Chanprasartsuk et al. 2010). P. kudriavzevii 

has even been shown to be able to dominate over S. cerevisiae in spontaneous wine fermentations (C. 

Wang and Liu 2013). Strain E36, a Candida humilis strain from the starter culture of Injera (fermented 

Ethiopian bread) also displays a high aerobic growth rate thus also enabling it to establish its population 

in the dough fermentation. The only non-Saccharomyces isolate that was a wild isolate, N3, displayed 

relatively slow aerobic growth and it is likely that a very high growth rate doesn’t lend any advantage 

in its natural niche. In an industrial setting yeast are never in the optimum condition, they are exposed 

to a variety of stresses, but need to be able to withstand these stresses while yielding biomass 

economically as well as have a high fermentative capacity when applied to their specific uses (Attfield 

1997).  

 

5.4 STRESS TOLERANCE 

The generally high tolerance displayed by fermentative strains (commercial or isolated in this study) 

can be explained by the selective pressures that they are exposed to. Wine strains of S. cerevisiae show 

good tolerance to stress conditions as they are exposed to high sugar contents as well as high ethanol 

concentrations (Gallone et al. 2016). The Ale isolate displayed poor ethanol and osmotolerance. Beer 

strains have become very specialized to the environment in which they are utilised in and have lost the 

ability to cope with stressful conditions that are not found in wort, such as very high ethanol levels and 

osmotic pressure. Beer strains can generally only accumulate between 7.5% and 10% ethanol whereas 

sake and wine strains can accumulate much more (Gallone et al. 2016). Continuous re-use of beer yeasts 

in a specialized environment has resulted in human-driven evolution. Beer yeasts generally display 

increased maltotriose utilization, lower stress tolerance and the loss of the sexual cycle (Gallone et al. 

2018). The other two fermentative S. cerevisiae isolates, E18 and SC2 displayed high tolerance, 

indicating that they are domesticated strains specialised in carrying out fermentations in high sugar and 

ethanol environments. 
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The wild S. cerevisiae strains isolated in this study displayed a relatively large variation in their stress 

tolerance. Isolates 17.13 and 40.7 both displayed very high stress tolerances, possibly indicating a 

domestic origin. S. cerevisiae has an inherent tolerance to ethanol and osmostic stress (Steensels and 

Verstrepen 2014) and excluding B2, all wild isolates were able to tolerate at least 10 % ethanol and 

partially tolerate 7.5% NaCl. The variation in stress tolerance between wild and industrial yeasts has 

been examined by Zheng & Wang (2015). They included many wild Chinese isolates representing the 

same clades that were identified in this study. They found that wild isolates from primeval forests 

generally displayed poorer tolerance to ethanol, osmotic stress and heat than those from industrial and 

orchard sources. A larger sample size of both wild African and domesticated yeasts would be required 

to adequately compare the stress tolerance of the different populations. 

The non-Saccharomyces yeasts showed varying tolerance to stress. Species belonging to the Pichia and 

Candida genus are commonly isolated from grape skins and generally have good ethanol and 

osmotolerance (Holm Hansen et al. 2001). It has been suggested that many non-saccharomyces yeasts 

don’t survive until the end of the wine making process due to a lack of oxygen rather than the presence 

of toxic compounds such as ethanol and that they are more tolerant to ethanol when small amounts of 

oxygen are available than when in fully anaerobic conditions (Holm Hansen et al. 2001). The three P. 

kudriavzevii isolates, all isolated from fermentations, proved to be robust, while the two Candida 

isolates (E36 and N3) were much less tolerant to ethanol. This may be due to differences in the selective 

pressures of their respective niches. It would be noteworthy to determine how anaerobic conditions 

affect the ethanol tolerance of the non-Saccharomyces isolates.  

It would also be of interest to determine how ethanol affects the growth rates of the various species and 

strains. It has been shown that there are many wild non-Saccharomyces isolates from grape skin that 

can tolerate 15% ethanol but that generally do not grow well at concentrations above 7% ethanol (Lee 

et al. 2011). Toxicity induced by ethanol may negatively affect the growth rates of all isolates, but 

isolates with higher growth rates still showed growth within the given time frame, and hence were 

judged to be more tolerant to ethanol. This could explain the general pattern observed that isolates with 

high growth rates displaying higher ethanol tolerance. The possible correlation between ethanol and 

osmotolerance that was observed has been investigated before. Sharma (1997) found that yeast cells 

that were exposed to high concentrations of NaCl subsequently show better tolerance to both heat and 

ethanol. It has been suggested that trehalose might play a role in this effect. It accumulates under 

osmotic stress and subsequently confers resistance to the leakage of electrolytes through the cell 

membrane that is caused by ethanol (Mansure et al. 1994; Sharma 1997). Unsaturated fatty acid levels 

(You, Rosenfield, and Knipple 2003), ergosterols (Daum et al. 1998) and certain amino acids (Hu, Bai, 

and An 2005) have been implicated in resistance to ethanol-induced toxicity. 
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5.5 FERMENTATION ANALYSIS  

5.5.1 Ethanol production indicates fermentation performance 

All wild S. cerevisiae strains other than B2 produced ethanol levels comparable to that of the 

commercial yeast strains included. In wort, the most common sugar is maltose (50-60% of the 

fermentable carbohydrate content), which is a dimer of glucose, followed by maltotriose (15-20%), a 

trimer of glucose. Glucose only accounts for 10-15 % of the fermentable carbohydrates. In S. cerevisiae, 

several unlinked MAL loci have been identified and any one functional locus will enable the yeast to 

ferment maltose (Barnett 1976). Each locus encodes a maltose permease, a maltase (α-glucosidase) and 

a transcription inducer which activates transcription in the presence of maltose. A maltose permease 

homolog AGT1 is responsible for transporting maltotriose into the yeast cell, while the same α-

glucosidase is responsible for its hydrolysis (Charron and Michels 1988). Not all strains of S. cerevisiae 

are able to ferment maltose and maltotriose. For instance, two MAL loci have been identified in the lab 

strain of S. cerevisiae S288C, which has wild origins. They are both not functional due to mutations in 

the regulatory protein (Charron, Dubin, and Michels 1986). S288C and S288C-like strains can therefore 

not utilize maltose and therefore would not be used in bread or beer fermentations. The ability to 

ferment, or different fermentation efficiencies of maltose and maltotriose between strains, can account 

for differences in ethanol production.                        

Genome analysis of beer strains has revealed an increased copy number of the MAL genes, improving 

maltose utilisation (Dunn and Sherlock 2008). Improved maltotriose uptake and metabolism is also a 

trait of domesticated brewing strains (Gallone et al. 2018). Domesticated baking strains of S. cerevisiae 

are faster to adapting to maltose utilisation as well as having a higher fermentative capacity than wild 

strains (Bell, Higgins, and Attfield 2001). It has been shown that wild isolates are very poor at utilising 

wort sugars. Only 12 % of wild S. cerevisiae strains that were tested could ferment 50 % of wort sugars 

(Steensels and Verstrepen 2014). By using ethanol production as an indicator, it seems that the wild S. 

cerevisiae isolates (other than B2) seem to be just as efficient as the commercial strains and other 

fermentative S. cerevisiae isolates at utilising maltose and maltotriose. Although the rate of adaptation 

to maltose or the rate of fermentation of the carbohydrate was not measured in this experiment, the 

overall efficiency of converting the wort carbohydrates is similar, indicating that these isolates may not 

be truly wild. Isolate B2 may not be able to ferment maltose and maltotriose hence it produced a low 

ethanol concentration. Based on the very poor aerobic growth of B2, it might also be a very slow 

fermenter. If the fermentation was sluggish or stuck, it would only have fermented a small proportion 

of the wort carbohydrates. This isolate would not be useful in a fermentative application. 

The low ethanol yields of most of the non-Saccharomyces species can be explained by their inability to 

ferment maltose. The inability to use this carbohydrate source would significantly lower the potential 

ethanol yield from the wort. P. kudriavzevii (isolates E23, SC2 and SC6) is not able to ferment maltose 
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(Kurtzman, Fell, and Boekhout 2011).  Candida humilis (isolate E36), which is a dominant yeast species 

in sourdoughs cannot ferment maltose, although it is a common sugar in wheat flour. The presence of 

lactobacillus in the sourdough culture hydrolyses maltose to glucose, which is then in turn fermented 

by C. humilis causing the leavening of the bread (Gullo et al. 2003). Candida floricola (isolate N3) has 

been shown to be a slow fermenter of maltose (Tokuoka et al. 1987). This supports the moderate level 

of ethanol detected as it is possible that the yeast had not totally consumed all the maltose in the two-

week fermentation period. The ability of N3 to ferment maltose allowed it to produce more ethanol than 

its non-Saccharomyces counterparts.  

5.5.2 Higher Alcohol Production 

The major source of assimilable Nitrogen from wort are amino acids. Higher alcohols, also known as 

fusel alcohols, can be formed by the catabolism of amino acids by the Ehrlich pathway (Ehrlich 1907). 

Isobutanol and isoamyl alcohol are derived from Valine and Leucine, respectively. The respective 

amino acid is first transaminated to an α-keto acid, followed by decarboxylation into a fusel aldehyde 

and finally this is reduced to form the fusel alcohol. Amino Acids taken up by Ehrlich pathway 

(including valine and leucine) are done so slowly throughout fermentation (Jones and Pierce 1964). The 

source of the α-keto acid or amino acid can also arise from the biosynthetic pathway of the respective 

amino acids from pyruvate. Both of these pathways of production have been shown to be important in 

brewing (Oshita et al. 1995). The significant positive correlation of the production of higher alcohols 

and ethanol, indicates a link to the fermentation performance of the isolates. A more complete and rapid 

metabolism of amino acids from the wort to support high fermentation rates result in a higher final 

concentration of higher alcohols (Hazelwood et al. 2008). The pattern is evident when comparing the 

wild S. cerevisiae strains, which produced relatively high ethanol and fusel alcohol levels, and the non-

Saccharomyces isolates which produced relatively low ethanol and fusel alcohol levels.   

The commercial S. cerevisiae strain Ale produced relatively low levels of isobutanol while the Wine 

strain produced relatively low levels of isobutanol and isoamyl alcohol when compared to their S. 

cerevisiae counterparts. These strains have been most likely been selected for these characteristics, as 

fusel alcohols have a large impact on the smell and taste of fermented products. When present in high 

concentrations they have a negative impact on the flavour (Singh and Kunkee 1976). The wild S. 

cerevisiae yeasts would possibly not be ideal for use in the fermentation of beer or wine due to the 

relatively high production of fusel alcohols. The non-Saccharomyces yeasts would have a small 

contribution to fusel alcohol aroma and flavour if used in a mixed-culture fermentation using a substrate 

that is predominantly maltose. It would be noteworthy to investigate higher alcohol production in a 

glucose substrate as this would remove the bias of the ability to ferment maltose or not.  

Differences in higher alcohol production at the strain level can be explained by the relative activities of 

several key enzymes. It has been shown that the production of higher alcohols is highly strain-
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dependent, even amongst very closely related commercial beer strains (Singh and Kunkee 1976). Fusel 

alcohol production is highly correlated to alcohol dehydrogenase activity (ADH) activity which is 

responsible for the reduction of the aldehyde to the alcohol. As the specific activity of ADH varies 

between strains of yeasts, this influences the rate of higher alcohol accumulation as well as the final 

concentrations in the product (Singh and Kunkee 1976). The enzymes involved in the biosynthetic 

pathways of the respective amino acids are also crucial and the overexpression of the genes coding for 

these enzymes can increase the amount of fusel alcohols produced significantly (Chen et al. 2011). The 

high correlation found between isobutanol and isoamyl alcohol concentrations indicates that shared 

enzymatic activities responsible for the production of these compounds are present. Commercial strains 

of S. cerevisiae have been selected for their varying regulation of these pathways. 

 

5.5.3 Acetate Ester Production   

The acetate esters ethyl acetate and isoamyl acetate were detected in all the fermentations except those 

carried out with the Candida isolates E36 and N3, where only ethyl acetate was found. Acetate esters 

are produced through the reaction of acetyl CoA and an alcohol. Alcohol acetyltransferases (AATs) are 

responsible for catalysing this reaction. The source alcohols for ethyl acetate and isoamyl acetate are 

ethanol and isoamyl alcohol, respectively. High concentrations of substrate and the relatively slow 

degradation by esterases means that acetate esters are found in higher concentrations than other esters 

(Peddie 1999). This makes them very important in the aroma of fermented beverages (Plata et al. 2003). 

There are several enzymatic pathways that can account for variation in the production of the two acetate 

esters detected as well as the correlations (or lack thereof) between the two compounds and between 

them and their respective source alcohols.    

The production of these two compounds was not correlated when data from all strains were included. 

There was a statistically significant positive correlation when the 4 ethyl acetate outliers were excluded 

from the data set indicating that there is a link in the production of these compounds. In S. cerevisiae, 

the ATF1 and ATF2 genes encode for AATs. The expression of these genes strongly affects the 

concentration of acetate esters that are produced. Overexpression of the ATF1 gene by Verstrepen et 

al. (2003) resulted in a 130-fold and 30-fold increase in isoamyl acetate and ethyl acetate production, 

respectively. It was also shown that while ATFs are responsible for total isoamyl acetate production, it 

is only partially responsible for ethyl acetate production as strains with ATF1 and ATF2 deletions do 

not produce any isoamyl acetate but still produce significant amounts of ethyl acetate (Verstrepen et al. 

2003). This could explain the discrepancy in the correlation when the outliers are included or excluded. 

A large proportion of the ethyl acetate produced by the three P. kudriavzevii strains and the S. cerevisiae 

strain B2 could be accounted for by pathways of production which are independent of isoamyl acetate 

production, as these strains do not produce high levels of isoamyl acetate.     
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In addition to AATs, esterases and hemiacetyl dehydrogenases have also been implicated in ethyl 

acetate production, although it is now believed that an AAT is mostly responsible (Kruis et al. 2017). 

The Eat1 enzyme family has recently been discovered. It is distantly related to other known AATs and 

is responsible for ethyl acetate production in some yeasts (Kruis et al. 2017). A member of this family 

was found in S. cerevisiae and could account for the ethyl acetate production not accounted for by the 

ATF genes. It was shown that it is responsible for a large proportion of ethyl acetate synthesis in some 

yeasts and that it is strongly upregulated during ethyl acetate synthesis. The presence and upregulation 

of a member of the Eat1 family in P. kudriavzevii and isolate B2 could account for the large amount of 

this compound detected. These isolates would most likely impart a solvent aroma and flavour to 

fermented beverages due to the high level of ethyl acetate produced and ,therefore, would not be fit for 

this purpose. They could, however, be investigated for several industrial uses.  

Yeast strains that produce ethyl acetate can inhibit the growth of other microorganisms. This has been 

shown by a strain of Pichia anomala, which exhibits biocontrol of the fungus Penicillium roquefortii 

on grain (Fredlund et al. 2004). Such yeast species are therefore industrially important and could be 

used to prevent spoilage, and the four strains producing high amounts of ethyl acetate could be 

investigated for use as biocontrol agents. Ethyl acetate is also an industrially important solvent and is 

used in the synthesis of a wide variety of products (Löser, Urit, and Bley 2014). It is popular due to its 

relatively non-toxic and biodegradable nature, however, its chemical synthesis is currently very energy 

intensive.  Bio-based alternatives are needed and the potential of yeasts to produce this compound at an 

industrial scale is being researched (Löser, Urit, and Bley 2014) P. kudriavzevii could be of particular 

interest.    

Statistically significant correlations were found between the acetate esters and their corresponding          

source alcohols. The correlations were, however, not very strong and therefore it seems that enzymatic 

activity plays a bigger role in the acetate ester accumulation than substrate availability. This is in 

agreement with several other studies found no correlations between acetate esters and their source 

alcohols (Antonelli et al. 1999; Soles, Ough, and Kunkee 1982; Gil et al. 1996). The balance of the 

formation (catalysed by an AAT) and degradation (catalysed by an esterase) of acetate esters is crucial 

in their accumulation and, therefore, increasing the AAT:esterase ratio results in an increase of acetate 

ester concentration (Fukuda et al. 1998). The observed strain-specific variations in acetate ester 

production are caused either by the upregulation of enzymes responsible for their formation and/or the 

downregulation of enzymes responsible for their degradation. Yeast strains used in the production of 

fermented products have been selected for specific traits. For example, the commercial ale strain 

produces relatively large amounts of isoamyl acetate, imparting a banana aroma and flavour to beer. 
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5.5.4  HS GC-MS Technique 

Other higher alcohols that have a large effect on the flavour and aroma of fermented beverages, n-

propanol and 2-methyl butanol (active amyl alcohol) were detected in some samples but this was 

inconsistent and did not merit comparison between isolates. The HS-GC-MS method employed 

therefore still needs optimisation in order to effectively concentrate and separate these compounds. This 

could be achieved relatively easily by using standards of these compounds and separating them using 

the method. This would also allow us to determine what the sensitivity of this technique is and to 

perform quantitative analyses.                        

5.6 CONCLUSION 

The prevalence of Saccharomyces yeasts in the wild seems to be low in Africa. Other than S. cerevisiae 

no other Saccharomyces were isolated. The wild S. cerevisiae strains isolated from southern Africa are 

closely related to domesticated strains of the species. They do not display strong population structures, 

unlike isolates from primeval forests in China and the genetic variation between species is fairly limited. 

The southern African isolates also display good maltose utilisation, generally high fermentation 

performance and good stress tolerance and this may indicate that they have a domestic origin. While 

the sample size of wild African isolates is relatively small, and the resolution of the phylogenetic 

analysis could be improved, there is no indication that Africa has an ancestral history regarding this 

species. Sampling needs to be conducted on a larger scale in remote areas of Africa to truly determine 

the ecology and evolution of the species, as it was only through this type of intensive sampling that the 

truly wild Chinese strains were discovered. The results from this study supports the hypothesis that Far 

East Asia is the origin of the species. More work needs to be done to fully characterize wild S. cerevisiae 

isolates for their significance in industrial applications such as food and beverage fermentations. The 

possible contribution of non-Saccharomyces yeasts for industrial applications should also not be 

excluded. The evolution of distinct metabolic pathways such as sugar catabolism, the Crabtree effect 

and primary metabolite formation has to be studied in more detail. Knowledge of these pathways could 

lead to rational protein and strain design, broadening the application of yeasts and improving current 

industrial processes.     
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