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ABSTRACT 

 

Genetic variation in haptoglobin, a plasma protein, has been reported to be associated 

with susceptibility to and the rate of HIV/AIDS progression. The purpose of this study 

was to investigate the influence of haptoglobin polymorphism on HIV/AIDS in black 

South Africans. Polymorphism in the coding region of the haptoglobin gene was detected 

by direct DNA and allele-specific amplification. Polymorphism in the coding region of 

the gene was detected by amplification of DNA and by polyacrylamide gel 

electrophoresis of plasma protein. A statistically significant association was observed 

between allele -61C and resistance to HIV infection. The Hp0 phenotype, in which no 

haptoglobin protein is detected, was associated with HIV status and some promoter 

genotypes. Since in our study population there were a few samples with usable clinical 

data , further investigations need to be done to confirm the association of the -61C allele 

and the Hp0 phenotype with the risk of HIV infection. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Genetic evolution and infectious diseases  

Numerous parasitical, viral and bacterial infectious agents initiate responses of the 

immune system of the host. Infectious agents are capable of influencing evolution 

of the host species. The evolutionary changes in the host may cause shifting 

selective pressures on the infecting agent (McMichael and Klenerman, 2002; 

Borghans et al, 2004). Adaptation system can be demonstrated by human 

immunodeficiency virus (HIV) and the cells of the human host’s immune system. 

After infection by HIV, the virus replicates at the host makes antibodies against 

the virus. However, because the virus mutates at a very high rate during reverse 

transcription, mutants arise the escape the antibodies, and attack the CD4
+
 cells. In 

this process, HIV kills CD4
+
 cells and selects against the host in general; CD4

+
 

cells attack specific strains and select against non-mutated strains and HIV strains 

that have a low replication rates (Plumelle, 2003).  

Host and pathogens exert strong selective pressures on each other. These pressures 

lead to the two organisms affecting each other’s evolution, the process called 

coevolution. An example of coevolutionary system is a human host gene CCR5 

and a poxvirus. The CC-chemokine receptor 5 (CCR5) is one of the coreceptor 

proteins for HIV. The CCR5-∆32 deletion confers resistance to HIV infection and 

the rate of the disease progression (section 1.3) (Dean and O’Brien, 1997; O’Brien 

and Moore, 2000). The deletion allele was selected in Europe by incessant 

smallpox epidemics more than 2000 years ago (Hopkins, 2002; Galvani and 
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Slatkins, 2003). The CCR5∆32 allele age is estimated between 275 and 1 875 

years (Stephen et al, 1998). To date, the frequency of this allele is estimated at an 

average of 10% in European populations (Dean et al, 1996). Geographic 

distribution of smallpox correlates with the frequencies of CCR5∆32 in Europe. 

Moreover, both poxvirus and HIV use chemokine receptors to enter cells. Thus, 

CCR5∆32 could confer resistance to both poxvirus and HIV (Galvani and Slatkin, 

2003).  

The ability of the HIV to mutate rapidly and escape immune recognition makes it 

difficult to control HIV infection. The escape mutations occur at critical positions. 

One escape mutation is the amino acid substitution within the HLA-restricted 

cytotoxic T lymphocyte (CTL) epitope that hinders epitope-HLA binding. In that 

way, the mutants escape recognition by HLA (Fig 1.1) (Moore et al, 2002). The 

polymorphisms in HIV are a result of selective pressure from HLA and are HLA 

class I allele-specific (Moore et al, 2002; McMichael and Klenerman, 2002). 

Other HLA types select epitopes that for structural and functional reasons are 

harder to mutate without compromising virus survival (Fig 1.1). HLA B27 and 

HLA B57 select such epitopes. Individuals with these alleles fight the HIV 

infection better than individuals carrying other HLA alleles (Moore et al, 2002; 

McMichael and Klenerman, 2002).  

 

 

 

 

 

 

 



 3 

                           

 

 

 

 

 

 HIV pol      

 

 

 

 

                             Selection of escape                       No or slow selection   

                                      mutants 

 

   

 

HLA binding affected                      Recognition by TCR affected  

 

Fig 1.1.  HLA molecules on the surface of the CTLs direct the CTL response to 

specific epitopes within the HIV pol protein. Some of these CTL responses exert 

selective pressures on the virus which lead to viral escape mutants that are either 

not recognized by HLA or fail to interact with T cell receptors (left). Other 

responses are directed against epitope regions that are structurally or functionally 

constrained which may select slowly or not select at all (right) (McMichael and 

Klenerman, 2002). 
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Selective pressures modifying genes to confer a better adaptation to environment 

may select for alleles that enhance susceptibility (Bottini et al, 1999) or resistance 

to other diseases (Galvani and Slatkin, 2003). Identification of the genetic changes 

that provide protection against diseases could lead to more effective treatment 

methods.   

 

1.2 HIV/AIDS 

1.2.1 HIV types and its origins 

AIDS, or Acquired Immunodeficiency Syndrome, was first recognised in the early 

1980’s, and has grown to be a devastating global epidemic. AIDS is caused by 

Human Immunodeficiency Virus or HIV (Barré-Sinoussi et al, 1983; Gallo et al, 

1984; Levy et al, 1984). HIV belongs to a family of viruses called lentiviruses, a 

subfamily of the retroviruses, which have genes composed of ribonucleic acid 

(RNA) molecules (Gaynor, 1992). Lentiviruses other than HIV have been found 

in nonhuman primates, chimpanzees. In these primates the virus is called Simian 

Immunodeficeincy Virus or SIV (Gao et al, 1999). 

 

There are two types of HIV: HIV-1 and HIV-2. HIV-1 is responsible for global 

AIDS, while HIV-2 is largely confined to West Africa and has tended to spread to 

other countries with strong links to this region of Africa, such as France (O’Brien 

and Dean, 1997; Matheron et al, 2003).  

HIV-1 is a highly variable virus which mutates very readily. Therefore there are 

many genetically different strains of HIV-1, which are classified according to 

groups and subtypes. There are three groups: M, N and O (Yang et al, 2000). 
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Within the HIV-1 M-group there are ten HIV-1 subtypes: subtypes A to J.  The 

subtypes are unevenly distributed throughout the world. The most common 

subtype in South Africa is subtype C (Swanson et al, 2003).  

It is now generally accepted that HIV is a descendent of SIV (Gao et al, 1999; 

Georges-Courbot et al, 1998). The virus crossed over from chimpanzees to 

humans perhaps as a result of exposure to the blood during killing and eating them 

for food. This process of species crossing is called zoonosis and is not uncommon 

a source for novel pathogenesis in humans (Gao et al, 1999; Weber and Alcorn, 

2000). 

HIV-1 is most similar in sequence and genomic organisation to viruses found in 

chimpanzees (Fig 1.2).  However, some subspecies of chimpanzees harbour an 

SIVcpz strain that is genetically divergent from HIV-1. The chimpanzee 

subspecies that harbours SIVcpz closely related to HIV-1 is Pan troglodytes 

troglodytes. The natural habitat of Pan troglodytes troglodytes coincides with 

areas of group M, N and O epidemicity. Thus, the genetic relatedness and 

geographic coincidence suggest that Pan troglodytes troglodytes is a reservoir for 

HIV-1 (Gao et al, 1999).   

 HIV-2 is phylogenetically closely related to SIV harboured by sooty mangabey 

monkeys, SIVsm (Fig 1.2). The epicenter of the HIV-2 coincides with the natural 

habitat of wild-living sooty mangabey monkeys. Thus, the primate reservoir of 

HIV-2 has been clearly identified as the sooty mangabey monkey (Gao et al, 

1999; Georges-Courbot et al, 1998). 
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Fig 1.2. A phylogenetic tree of HIV/SIV constructed from RT region (pol).  All 

the HIV-1 strains formed a cluster with SIVcpz. HIV2 clustered with SIVsm. The 

numbers at nodes indicated bootstrap values in 1000 replication. Six primate 

lentivirus lineages are indicated by brackets (Takemura and Hayami, 2004). 
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1.2.2 Epidemiology 

AIDS is one of the major causes of death worldwide since the outbreak of the 

disease. Globally, about 40 million people were living with HIV/AIDS in 2003; 5 

million of them were newly infected in 2003 (UNAIDS 2003). In 2003 alone, an 

estimated 3 million deaths were reported to have been caused by AIDS-related 

diseases.  A total of 27.8 million people died of AIDS-related diseases from the 

beginning of the epidemic until the end of 2001, of whom 4.3 million are children 

less than 15 years of age (UNAIDS 2003). Sub-Sahara Africa is the world’s most 

affected region.  About 26.6 million people were living with the virus in this 

region in 2003. HIV prevalence considerably varies across the continent and the 

islands that fall under it; the range is between 1% (in Mauritius) and about 40% 

(in Botswana) (UNAIDS 2001, 2002). 

 

In South Africa, the first cases of HIV were reported in 1982. These cases were 

mainly amongst white gay men (Ras et al, 1983). Since then, the number of HIV 

cases has been increasing. Between 1990 and 2002, the prevalence has increased 

from 0.8% to 26.5% (Fig 1.3) (Shisana and Simbayi, 2002). In 2001, 

approximately 5 million people in South Africa were infected by HIV.  AIDS 

claimed the lives of 360 000 people in South Africa in 2001 (Dorrington et al, 

2001; UNAIDS 2002).  
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Fig 1.3. HIV prevalence rate in South Africa. The epidemic has increased from 

0.8 to 26.5% between 1990 and 2002 (Shisana and Simbayi, 2002; UNAIDS 

2002). 

 

Two surveys were conducted across all nine provinces of South Africa in 2002. 

The first study was based on data taken from the Department of Health. The study 

contacted women attending antenatal clinics in all the provinces. The figures 

showed that 26.6% women who attended antenatal clinics nationally in 2002 (Fig 

1.4) were infected. Kwa-Zulu Natal and Gauteng were leading with 36.5 and 

31.6%, respectively (UNAIDS, 2002).  
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These figures, show prevalence amongst sexually active women only; the 

conclusions cannot be applied to non-sexually active women, the elderly, men and 

children. Sampling in the second study was different from the one above. The 

Nelson Mandela study looked at proportional cross-section of society in all nine 

provinces (Shisana and Simbayi, 2002). The results of this study suggested that 

KwaZulu-Natal did not have the highest HIV prevalence in 2002 as shown by the 

Health department study, but rather the Free State and Gauteng. The Nelson 

Mandela study found that 11.4% of overall population in South Africa was 

infected with HIV in 2002 (Shisana and Simbayi, 2002). Despite the difference in 

figures between the two studies, one thing clear is that South Africa has high HIV 

prevalence, and it is still increasing. There is a huge challenge facing the fields of 

prevention, care and science.     
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Fig 1.4.   HIV/AIDS prevalence in South Africa: Provincial statistics (UNAIDS, 

2002). 
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1.2.3 How does the virus work? 

The healthy body’s immune system fights off infections with a combination of 

cellular and chemical responses. HIV infects the key components of the immune 

system, the white blood cells called CD4
+
 lymphocytes or T-helper cells. This 

infection progressively depletes the CD4
+
 cells in the blood; eventually causing 

AIDS when the immune system becomes compromised and it can no longer fight 

off diseases. This leaves the host subject to infection from a wide array of 

infectious agents, many of which do not usually adversely affect healthy people 

(Dean et al, 1996). Often, when someone is said to have died of AIDS, the real 

cause of death is usually TB, pneumonia, or some other disease which took hold 

because of the disabled immune system (Nissapatorn et al, 2003).  

 

Like all viruses, HIV uses the host’s cellular machinery to enter the cell, replicate 

and produce disease (Saah, et al, 1998; Gaynor, 1992; Bednarik and Folks, 1992). 

HIV infection begins when the viral particle enters the cell. This requires CD4+ 

receptors and other ligands, which are part of the host (O’Brien and Dean, 1997). 

After the virus has gained entry into the cell, the viral RNA is converted to DNA 

by HIV reverse transcriptase, an enzyme coded for by retroviruses. Then the 

newly made HIV DNA moves to the cell’s nucleus, where it is spliced into the 

host’s DNA with the help of HIV integrase. The integrated HIV DNA is now 

called provirus (Bednarik and Folks, 1992). The integration of retroviral DNA is 

important for the transcription of new viral copies in the form of messenger RNA 

(mRNA). The mRNA-making process involves host cell’s own enzymes. 

Cytokine proteins that are involved in the normal regulation of the immune 
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system, may also regulate transcription. Molecules such as tumor necrosis factor 

(TNF)-α and interleukin-6 (IL-6), secreted in elevated levels by the cells of HIV-

infected individuals may, help to activate HIV proviruses (Bednarik and Folks, 

1992; Molina et al, 1990). After mRNA has been synthesized in the nucleus, it is 

transported to the cytoplasm for viral protein synthesis (translation). Again, the 

host’s protein-making machinery plays an essential role in the process (Bednarik 

and Folks, 1992).  

 

1.2.4 Factors affecting HIV/AIDS progression 

HIV is slow to cause illness in comparison to other viral infections like influenza, 

and many people may be infected for years without knowing it. Time from 

infection with HIV to AIDS varies from a few months (Isaksson et al, 1988) to 20 

years (Muzon et al, 1995; Matheron et al, 2003). This large survival difference is 

dependent on a number of factors: pathogenecity of the infecting virus (O’Brien 

and Dean, 1997; Matheron et al, 2003), CD4+ lymphocytes in the peripheral 

blood (Carré et al (1998), behaviour (Farzadegan et al, 1996), anti-immune 

response (Ullum et al, 1999),  viral load (Mellors et al, 1995; Mellors et al, 1996; 

Carré et al, 1998), and genetic make-up (Haynes et al., 1996; Ullum et al., 1999). 

These factors are probably involved both alone and in combinations to affect the 

rate at which HIV/AIDS progresses.   

 

The progression of HIV to AIDS is characterised by gradual depletion of CD4
+ 

cells. A CD4
+
 cell count of ≤ 200/µl is predictive of AIDS or the onset of AIDS 

(Carré et al, 1998). Viral load (the number of viral particles in the blood) is highly 
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predictive of the rate of disease progression: individuals with low viral load 

progress more slowly than those with higher level of the virus in their blood.  

High viral load in the plasma (>10
5
 copies /ml) in the first year after 

seroconversion is associated with more rapid progression to AIDS (Mellors et al, 

1995; Mellors et al, 1996), but little is known of its predictive value for AIDS in 

the later stage when the CD4
+
 threshold is reached (Farzadegan et al, 1996). Viral 

load is inversely proportional to the CD4
+
 cell count in a given host. This is, in 

turn, related to the ability of the host to contain the infection (Saah et al, 1998). It 

has also been shown that viral load is predictive of the risk of transmission. 

Individuals with fewer than 1 500 copies/ml rarely transmit the virus to a partner 

(Quinn et al, 2000). 

 

Another factor that may affect the rate of HIV/AIDS progression is behaviour. 

Farzaden et al (1996) found that in the population they studied, rapid progressors 

(those who developed AIDS less than 3 years after infection) had more lifetime 

sexual partners than the non-rapid progressors. These observations suggested that 

sexually transmitted infections, or maybe an unknown factor, may affect HIV 

disease progression.    

 

Host genetic polymorphisms also account for differences in susceptibility to HIV 

infection and disease progression. These polymorphisms influence various steps 

of the HIV lifecycle (Williamson et al, 2002) and they may either retard 

(McDermott et al, 1998) or accelerate (Martin et al, 1998) progression to AIDS. 
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1.3 Genes involved in HIV/AIDS infection and disease progression 

Variation in some human genes is associated with different responses to 

infections. Genes that are involved in HIV infection work at different aspects of 

infection. There are those whose products are receptors or co-receptors of HIV 

when it enters the cell. Others produce proteins that act on the virus after it has 

gained entry, and those that play a role in the immune system.  

Polymorphisms in the following genes CCR5 (Liu et al., 1999; McDermott et al., 

2000; Martin et al, 1998), HLA (Kaslow et al, 1996; Moore et al, 2002; 

McMichael and Klenerman, 2002), NRAMP1 (Searle and Blackwell, 1998), Toll-

like receptor 4 (Arbour et al, 2000), mannose-binding protein  (Garred et al., 

1997), Interleukin-4 (Nakayama et al, 2002), and haptoglobin (Delanghe et al., 

1998; Quaye et al., 2000; Pulgiese et al, 2002) have been related to variation in 

susceptibility to a number of infections, including HIV. These genes may be 

acting singly or in combination; their effect may be independent, additive or 

multiplicative. These may not be the only genes that are related to susceptibility to 

HIV/AIDS. It is possible that some more genes or genetic variants remain 

undetected.     

 

As mentioned earlier, CC-chemokine receptor 5 (CCR5) is one of the co-receptor 

proteins for HIV (O’Brien and Dean, 1997). The most studied variation in this 

gene is a deletion of 32bp in the coding region (CCR5∆32). This deletion shifts 

the open reading frame to create a truncated protein. This shortened protein 

version fails to reach the cell surface in homozygous individuals, leading to 

resistance to infection by HIV (O’Brien and Dean, 1997; O’Brien and Moore, 
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2000). Individuals who are heterozygous for this variant have reduced levels of 

CCR5 protein on the cell surface. This results in retarded rate of the disease 

progression (Williamson et al, 2000; Dean and O’Brien, 1997; O’Brien and 

Moore, 2000). This genetic variant is extremely rare in Africans (Williamson et 

al, 2000; Martison et al, 1997). There is another less common variant, 

CCR5m303, which also results in the introduction of premature stop codon 

(Quillent et al, 1998). This variant was not found in the South African population 

(Williamson et al, 2000).  

Mutations at the promoter region of CCR5 have been found to either accelerate or 

retard the rate of the disease progression. CCR5 59029-G/G and CCR5P1/P1 

genotypes respectively retard and accelerate progression to AIDS (Martin et al, 

1998; McDermott et al, 1998).  

CCR2 is another HIV co-receptor. A common variant is CCR2-641, which 

substitutes an isoluecine for a valine in the first transmembrane domain of CCR2 

was found to delay AIDS by 2 to 4 years (Michael, 1997). This is the only known 

chemokine co-receptor variant that was significantly higher in Africans compared 

with Caucasians, and there was no significant association between CCR2-641 

variant and HIV status in Africans (Williamson et al, 2000). Strong linkage 

disequilibrium has been demonstrated between CCR5∆32 and CCR2-64I (Struyf 

et al, 2000) and between CCR2-64I and CCR5 59029A alleles (Hancock, 2002). 

CCR5P1/P1 and CCR5 59029A/A genotypes which have been shown to 

independently accelerate HIV/AIDS in Caucasians, were also found to be in 

complete linkage disequilibrium (An et al, 2000). 
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In an epidemiological study done to address validity of overdominant selection at 

the HLA class I loci entailed an analysis of HIV positive individuals (Carrington  

et al., 1999), it was found that heterozygosity at HLA class I loci confers relative 

resistance  to AIDS progression because individuals who are homozygous at 

HLA-A, HLA-B and HLA-C, for example, present a limited repertoire of 

antigenic epitopes compared to individuals who are heterozygous at these loci. It 

has also been shown that individuals carrying HLA B27 and HLA B57 alleles 

have better prognosis after HIV infection than individuals carrying other HLA 

alleles (Moore et al, 2002; McMichael and Klenerman, 2002). 

 

 Mannose-binding protein (mannose-binding lectin) is a member of the collectin 

family of proteins and acts in the first line of defence against various bacterial, 

viral and parasitic infections, before the establishment of the adaptive immune 

protection by B and T cells (Turner, 1996). Polymorphisms in the promoter region 

of the mannose-binding protein gene (Madsen et al., 1995) and the first exon of 

this gene (Lipscombe et al., 1992) have been shown to affect serum concentration 

of mannose-binding protein. Low serum levels of this protein are associated with 

opsonozation defects and impaired phagocytosis (Super et al., 1989). A study 

done by Ezekowits et al (1989) demonstrated that mannose-binding protein was 

able to inhibit HIV. 

This present study was focusing on the genetic polymorphisms in the haptoglobin 

gene which has been shown to be associated with the rate of the disease 

progression. 
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 1.4 Haptoglobin 

Haptoglobin is a type II acute phase plasma α2-sialoglycoprotein (Langlios and 

Delanghe, 1996; Aucan et al, 2002). Haptoglobin is synthesized by hepatocytes 

(Smithies and Walker, 1995; Bowman, 1993) and there is evidence which 

suggests that haptoglobin originates from the organs of reproductive system 

including human uterus (O’Bryan et al, 1997; Olson et al, 1997; Sharpe-Timms et 

al, 2002). Transcription of the haptoglobin gene is induced by interleukin-6 (IL-6) 

in human hepatoma cells. This involves several nucleoprotein-DNA complexes 

associated with specific regions in the promoter region: -157, -111 and -61. These 

protein complexes are 1, 2, 3, 4, 5, 6 and V (Oliviero and Cortese, 1989). In the 

absence of IL-6, proteins responsible for the formation of protein complexes 1, 2, 

3, 5 and/or 6 are bound around and including nucleotide positions -157 and -61, 

flanking the complex V at position -111 (Fig 1.5a). This conformation causes poor 

transcription of the haptoglobin gene. In the presence of IL-6, the IL-6-dependent 

proteins responsible for the formation of complex 4 substitutes the other proteins 

on site -157 and -61 (Fig 1.5b). This conformation results in the activation of 

transcription (Oliviero and Cortese, 1989; Teye et al, 2003).  
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                                  Complex 1, 2, 3, 5 and 6 proteins 

 A 

 

 

 

 

                     -157                         -111                           -61 

 

                                                                                  Low level of transcription 
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B                                     

                                                Complex 4 proteins 

 

 

 

 

                       -157                       -111                   -61 

                                                                                             

                                                                                            Active gene transcription  

 

Fig 1.5. (A) In the absence of IL-6, haptoglobin gene is transcribed at a low level. 

(B) The presence of IL-6 triggers the substitution of the protein complexes at 

positions -157 and -61 by complex 4. This results in active transcription (Oliviero 

and Cortese, 1989). 
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1.4.1 Haptoglobin structure and types 

The haptoglobin protein has a tetrameric structure consisting of 2 α and 2 β chains 

encoded by a single gene on chromosome 16q22.3. These chains are generated by 

posttranslational cleavage from a single polypeptide (Yang et al, 1983; Ranyuei et 

al, 1983). The β chains are identical in all individuals, while the α chains are 

polymorphic (Smithies et al, 1962; Langlois and Delanghe, 1996) and found only 

in humans (Black and Dixon, 1968; Teye et al, 2004; Langlois and Delanghe, 

1996).  Although haptoglobin is found in serum of all mammals, this 

polymorphism is only found in humans (Bowman, 1993).  The protein 

polymorphism is due to two codominant alleles Hp
1
 and Hp

2 
which result to three 

common genotypes Hp1-1, Hp2-1 and Hp2-2. These genotypes give rise to 

structurally and functionally distinct phenotypes: Hp1-1, Hp2-1 and Hp2-2. Hp1-1 

has α1 chains, Hp2-2 has α2 chains whereas Hp2-1 contains both chains (Fig 1.6A 

and 1.6B) (Koda et al, 2000; Schultze, 1996, Teye et al, 2002; Melamed-Frank, 

2001). Hp
1
 is further divided into Hp

1S
 and Hp

1F
. These alleles encode 

polypeptides of equal length, Hp1S and Hp1F respectively (Giblett, 1969; Maeda 

and Smithies, 1985; Asakawa et al, 1999). The two polypeptides differ in the 

number of charged amino acids that make them migrate slowly (Hp1S) or fast 

(Hp1F) during electrophoresis with an acidic buffer. Lysine in Hp1F is substituted 

by glutamic acid in Hp1S at position 54 (Giblett, 1969; Asakawa et al, 1999).  
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Fig 1.6A: Schematic representations of haptoglobin monomers and polymers. 

Hp1 monomer is a monovalent, meaning it can form a bond with one other 

monomer to form a dimer. Hp2 monomer is bivalent and can associate with 2 

different monomers, which could result in circular structure in homozygous Hp2 

individuals.   
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 Fig 1.6B. Structural differences between haptoglobin types. The haptoglobin 

chains are held together by disulfide bonds (Melamed-Frank, 2001). 
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The α2 chain contains two free cysteine residues compared to one in the α1 chain, 

leading to polymerization in Hp2-1 and Hp2-2, while Hp1-1 is a small monomer 

(Fig 1.6A) (Wuyts et al, 2002). 

 The main difference between Hp
1
 and Hp

2
 alleles is the duplication of a 1 700 bp 

segment in Hp
2
 but not in Hp

1 
(Maeda and Smithies, 1986; Maeda et al, 1984). 

Each of the copies includes two of the exons encoding the α-chain of the 

haptoglobin (Koch et al, 2002).  This duplication was formed by non-homologous 

cross-over between the Hp
1S

 and Hp
1F

 alleles (Fig 1.7) in a heterozygote during 

meiosis (Wuyts et al, 2002; Asakawa et al, 1999; Maeda et al, 1984; Maeda and 

Smithies, 1986).  The crossing over occurred between the fourth intron of Hp
1F

 

allele and the second intron of the Hp
1S

 allele, between regions 480 of Hp
1S

 and 

region 1271 of Hp
1F

 (Asakawa et al, 1999).  
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Hp
1F

                                                  

                    480                     1271 

 

 

                                                                                                               

  Hp
1S

                                                                        480             1271 

                                                                                                                                                                            

 

 

Hp
2
                                                                                                   

                        480                    1271                 2204            2995 

 

 

 

Fig 1.7: A diagrammatic representation of formation of Hp
2
 allele by 

nonhomologous cross-over between Hp
1F

 and Hp
1S

. The numbered blocks and 

circle represent exons. The numbers show position in the gene (Asakawa et al, 

1999).  

   

 

The haptoglobin phenotypes are distinguished by their band pattern on starch 

(Smithies, 1955) or polyacrylamide (Linke, 1984) gel electrophoresis. The 

homozygote Hp1-1 shows a single fast-migrating band of 86 kDa.  The 

homozygote Hp2-2 has a series of slower-migrating bands, whose size is between 

170 to 900 kDa. The heterozygote Hp2-1 displays another series of slow-moving 

bands and weak Hp1-1 band, the sizes of the bands range between 86 and 300 kDa 

(Wuyts et al, 2002; Michel et al., 1996; Smithies, 1955). The slow-moving bands 
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are found only in humans. In other animals including higher primates, haptoglobin 

shows only a single band corresponding to the human Hp1-1 (Langlois and 

Delanghe, 1996). 

 

Another haptoglobin variant, Hp2-1 modified or Hp2-1 mod, is common is black 

Americans, but it is also found in other races (Maeda et al, 1991). The variant 

contains either Hp1F or Hp1S chain and an α chain that is not distinguishable 

from Hp α2 chain, except by its fainter staining (Giblett, 1969). Hp2-1 mod is 

formed when the amount of Hp2 polypeptide synthesized in the Hp
2
/Hp

1
 

heterozygote is less than that of Hp1 polypeptide. This unequal expression of the 

polypeptides is the result of polymorphism in the promoter region of haptoglobin 

gene. The polymorphism is a single base pair substitution (A/C) at position -61 in 

one of the interluekin-6 responsive elements of the haptoglobin gene (Maeda, 

1991). The polymorphism has also been reported in Africans (Teye et al, 2003).  

 

The fourth phenotype, Hp0, represents hypohaptoglobinemia or 

anhaptoglobinemia (Giblett, 1969). The Hp0 and Hp1 phenotypes in subSaharan 

African countries have been reported to be linked to a selection pressure by 

malaria parasite (Trape and Fribourg-Blanc, 1988). In Hp0 phenotype, the 

expression of haptoglobin is either absent (anhaptoglobinemia) or very low (less 

than 15 to 20 mg/100ml) to be detected by gel electrophoresis 

(hypohaptoglobinemia) (Giblett, 1969; Delanghe et al, 1998).  Although Hp0 

could be caused by pathological states such as liver dysfunction and haemolytic 

disorders, there is evidence that this phenotype has a genetic origin (Koda et al, 
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1998; Teye et al. 2003, Teye et al, 2004). In Asian populations Hp0 occurs by an 

allelic deletion. The deletion which is 28 kb (Fig 1.8) extends from the promoter 

region of the haptoglobin gene to the exon 5 of the Hpr. The corresponding allele 

is Hp
del 

(Koda et al, 1998).    

                                          

 

                            

 

Fig 1.8: A schematic representation of the Hp
del

 breakpoints. The deletion extends 

from the promoter region to exon 5 of Hpr gene. The blocks represent exons and 

their numbers (Koda et al, 1998). 

 

 

The homozygous gene deletion (Hp
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/Hp
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) is associated with haptoglobin 

deficiency or anhaptoglobinemia, whereas the heterozygous genotype, Hp
2
/Hp

del
 - 

but not Hp
1
/Hp

del
, is associated with low haptoglobin concentrations or 

hypohaptoglobinemia (Koda et al, 1998).  
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Hp0 occurs at frequencies of 10 to 40% in SubSahara Africa (Constants et al, 

1981). Unlike in Asian populations, the cause of Hp0 is not Hp
del

, since this allele 

is not found in Africans (Koda et al, 2000; Teye et al, 2003). In Ghanaians the 

Hp
2
 allele was found to be associated with anhaptoglobinemia. The absence of 

haptoglobin expression in Hp
2
 allele was reported to be caused by a T to C point 

mutation in the exon 7 at position 6802, leading to the alteration of the codon 247 

from ATT to ACT. The result of this mutation was an I247T substitution of a 

nonpolar amino acid isoleucine to a polar amino acid threonine (Teye et al, 2004).  

None of the anhaptoglobinemic individuals had an Hp
1
/Hp

1
 genotype. Hp

1
/Hp

1
 

was present in the hypohaptoglobinemic individuals, predominantly as Hp
1S

 (Teye 

et al, 2003). Teye et al (2003) also reported that promoter sequences are 

associated with Hp0: -61C and -101G single nucleotide polymorphisms were 

associated with anhaptoglobinemia and hypohaptoglobinemia, respectively. The 

promoter sequence -101G was found in Ghanaians (Teye et al, 2003), but not in 

Americans (Maeda, 1991).   

 

At the 3΄-end of the haptoglobin gene cluster lies a haptoglobin-related gene, Hpr 

(Fig 1.8).  It is a result of Hp1 gene duplication on chromosome 16, and is found 

only in apes and humans (Giblett, 1969; Maeda, 1984).  The coding sequence of 

Hpr gene appears to be normal and to have no frameshift or splicing mutations 

(Maeda, 1985). Its predicted amino acid sequence differs by 8% from that of the 

Hp1F. The differences appear to be located on the surface of the protein molecule, 

and the regions and specific residues considered to be important for haemoglobin 
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binding are identical in Hp and Hpr proteins. Hpr gene in humans is 2.2kb 

downstream of Hp gene, and it is not expressed in humans (Bensi et al, 1985). 

 

1.4.2 Variation in the haptoglobin promoter region   

Some variation in the noncoding region of the haptoglobin gene has been found in 

African-Americans (Maeda, 1991) and Ghanaians (Teye et al, 2003). As genetic 

variation is higher in Africans than in other populations, Teye et al (2003) found 

three polymorphisms in the promoter region (-242C/T, -191T/G and -101C/G) in 

addition to those previously reported (-55A/G, -61A/C and -104T/A) (Maeda, 

1991). Some of these polymorphisms are linked with certain phenotypes. The -

61A/C base substitution is associated with Hp2-1 mod phenotype (Maeda, 1991). 

As mentioned earlier that position -61 is one of the IL-6 responsive elements, the 

A/C base substitution explains the unequal synthesis of Hp1 and Hp2 polypeptides 

in Hp2-1 mod protein. None of the promoter sequences were linked to Hp0 in 

African-Americans (Maeda, 1991). By contrast, the -61C and -101G promoter 

sequences showed strong association with ahaptoglobinemia and 

hypohaptoglobinemia, respectively (Teye et al, 2003). 

 

1.4.3 Functions of the haptoglobin 

Haptoglobin has several functional properties of biological and pathological 

importance. Haptoglobin types differ in their functional properties (Langlios and 

Delanghe, 1996).  
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1.4.3.1 Haemoglobin binding 

The best known function of haptoglobin is haemoglobin binding. After 

erythrocyte destruction, free haemoglobin is not filtered through the glomeruli 

because of the bound haptoglobin. This reduces the risk of renal damage and the 

loss of haemoglobin and iron. The Hb-Hp complex is transported to the liver, 

where it is broken down in the parenchymal cells by lysosomes. The binding 

property of haptoglobin also prevents accumulation of free radicals generated by 

iron Fe
2+ 

in the presence of H202 (van Vlierberge et al, 2004). The binding of 

haemoglobin to haptoglobin is dependent of the serum haptoglobin concentration 

and haptoglobin type. Hp2-2 phenotype clears haemoglobin circulating in the 

plasma with less efficiency than Hp1-1 and Hp2-1 (Langlois and Delanghe, 1996).  

 

 1.4.3.2 Bacteriostatic effect 

Due to free haemoglobin capture by haptoglobin, heme iron is unavailable for 

bacterial growth. This indicates the role of haptoglobin as part of non-specific 

defence against bacterial invasion (Langlois and Delanghe, 1996). Haptoglobin 

also plays a role in repairing tissue injuries. Exposure of the lung to chemicals, 

organic and inorganic dust makes it vulnerable. Haptoglobin synthesized in the 

lung provides a source of anti-oxidant in the mucous blanket that protects the lung 

(Dobryszycka, 1997) 

 

 1.4.3.3 Agglutination effect of the haptoglobin 

Hp2-2 and Hp2-1 proteins have an ability to agglutinate antigen T4 carried by S. 

pyogenes group A. Hp2-2 serum has higher agglutination titer than Hp2-1. 
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However, haptoglobin is not a true antibody, and it does not activate complement. 

The agglutination effect of Hp2-1 and Hp2-2 is probably mediated via binding 

with lectin-like structure. In contrast, Hp1-1 has no agglutination effect (Langlois 

and Delanghe, 1996).  

 

1.4.3.4 Inhibition of prostaglandin synthesis 

Haptoglobin functions as prostaglandin synthetase inhibitor. The inhibitory effect 

of haptoglobin on prostaglandins synthesis is important in anti-inflammatory 

action. The inhibitory effect of Hp2-2 and Hp2-1 on prostaglandin synthesis is 

less strong than that of Hp1-1 phenotype (Dobryszycka, 1997; Langlois and 

Delanghe, 1996).  

 

1.4.3.5 Angiogenesis 

Haptoglobin has been reported to stimulate angiogenesis, the processes leading to 

the generation of new blood vessels through sprouting from already existing blood 

vessels. The angiogenic effect of Hp2-2 is more pronounced than that of Hp2-1 

and Hp1-1 types (Langois and Delanghe, 1996). 

 

1.5 Involvement of haptoglobin types with HIV/AIDS and other diseases  

Haptoglobin types differ in their biological activities, and they may influence the 

course of a disease (Langlois and Delanghe, 1996). Haptoglobin polymorphism 

has been reported to be associated with infection by TB (Fedoseeva et al, 1993) 

and outcomes after treatment initiation (Kasvove et al, 2000). Hp2-2 phenotype 
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was found to be associated with recurrent pulmonary TB in comparison with Hp1-

1 and Hp2-1 (Eisaev, 1995).  

Fedoseeva et al (1993) reported that Hp2-2 individuals with TB carrying an HLA-

DR2 exhibited large cavities due to tissue destruction, advanced dissemination 

and fast disease progression. In contrast, a study done in Zimbabwe showed no 

association between haptoglobin phenotypes and susceptibility to clinical 

pulmonary TB, however, haptoglobin genotypes had an effect on the outcome of 

TB after initiation of treatment. A high number of Hp2-2 carriers died compared 

to the other haptoglobin phenotypes (Kasvove et al, 2000).  

 

A high incidence of Hp0 was observed among malaria patients in Indian (Joshi et 

al, 1987) and Republic of the Congo (Trape and Fribourg-Blanc, 1988) 

populations, suggesting that anhaptoglobinemia is associated with malaria. Unlike 

in an Indian population, in a Sudanese population Hp1-1 phenotype was found to 

be associated with susceptibility to malaria and development of severe 

complications. The other phenotypes were found to confer resistance (Elagib et al, 

1998). The two above studies show that haptoglobin polymorphism was in some 

way associated with susceptibility to malaria. By contrast, no significant 

association between haptoglobin polymorphism and susceptibility to malaria was 

found in Gambia (Aucan et al, 2002). 

 

Haptoglobin variation has been shown to be associated with diabetes, 

atherosclerosis and cardiovascular diseases (van Vlierberghe et al, 2004). 

Coronary artery lesions and target organ damage in hypertension are commoner 
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among Hp2-2 carriers. For hypertension treatment, Hp2-2 individuals need a more 

complex combination of antihypertension drugs than Hp1-1 individuals (van 

Vlierberghe et al, 2004). Diabetic patients who are homozygous for Hp
1
 allele are 

protected against the development of vascular complications. It has been proposed 

that the specific interaction between diabetes, cardiovascular disease and 

haptoglobin phenotypes is the result of the impaired clearing capacity of 

glycosylated haemoglobin-haptoglobin complexes from the subendothelial space. 

A delay in the clearing of these complexes result in oxidation of low-density 

lipoproteins to atherogenic oxidized low-density lipoproteins (Asleh et al, 2003)         

 

Haptoglobin polymorphism has been reported to be associated with prognosis in 

HIV infection (Delanghe et al, 1996; Quaye et al, 2000). This effect of 

haptoglobin polymorphism on HIV progression to AIDS and death is related to 

iron stores in the body. As mentioned earlier, haptoglobin functions to capture and 

clear free haemoglobin from the plasma. Hp2-2 binds haemoglobin with less 

affinity, resulting in the retention of iron in Hp2-2 individuals (Delanghe et al, 

1996). All organisms, large and small, require iron to a certain concentration 

(Weinberg, 1978). In humans excess iron has harmful consequences. During iron 

overload, excess iron is stored in parenchymal cells and macrophages (Bothwell et 

al, 1960). This causes direct cytotoxicity, enhancement of infection and increased 

oxidative stress (Weinberg, 1990). Excess iron also accelerates oxidative 

catabolism of ascorbic acid (vitamin C), leading to deficiency of this vitamin 

(Kasvove et al, 2002). Vitamin C provides antioxidant protection because is a free 

radical scavenger. In the presence of excess iron, vitamin C has a pro-oxidant 
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activity. Iron gets trapped within ferritin as Fe
3+

 and enters the pores of the ferritin 

where it is converted to Fe
2+

; vitamin C becomes oxidized in the process. Fe
2+

 

then leaks out of the ferritin protein and generate free radicals (Delanghe et al, 

2002). In HIV infection, if free haemoglobin is not removed from the plasma, free 

radicals generated activate HIV replication through the activation of the nuclear 

transcription factor NF-κB, an element in the modulatory region of HIV LTR   

and thus results in increased HIV-RNA in the body (Boelaert et al, 1996). The 

mechanism by which free radicals activate NF-κB (Fig 1.9), is through either 

degradation or modification of IκB (a cytoplasmic protein that inhibits NF-κB), 

that results in its dissociation from the p50-p65 complex of proteins that bind and 

activate NF- κB. After the dissociation of the inhibitor from the p50-p65 complex, 

the complex is translocated to the nucleus and binds to the NF-κB. This activates 

the NF-κB factor and subsequently HIV gene expression (Gaynor, 1992).  

 

Harakeh et al (1990) found that vitamin C suppresses HIV reverse transcriptase 

activity and viral replication in HIV-infected cells. Therefore, the combination of 

oxidative stress and vitamin C deficiency may contribute to a high viral load and 

poor prognosis in Hp2-2 individuals. Lower vitamin C concentrations have been 

also observed in healthy individuals with Hp2-2 phenotype compared with the 

other haptoglobin phenotypes (Delanghe et al, 1998). This shows that Hp2-2 

carriers are less protected against haemoglobin/iron-driven oxidation. 
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Fig 1.9: Schematic representation of NF-κB activation. Dissociation of IκB from 

the p50-p65 complex results in NF-κB activation and subsequent activation of 

HIV gene replication (Gaynor, 1992).  
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1.6 Haptoglobin frequencies in South Africans 

The South African black population has nine different subpopulations which are 

distributed across all the nine provinces. These groups are Zulu, Swazi, Xhosa, 

Ndebele (collectively known as Nguni), Tswana, Southern Sotho, Nothern Sotho 

(known as Sotho-speakers), Venda and Tsonga. Although certain groups dominate 

in certain provinces, Johannesburg (in Gauteng province) is a home for all nine 

subpopulations. The South African black ethnic groups originate from Bantu 

expansion and share a common ancestor (Lane et al, 2001); however, there is little 

genetic differentiation among them. The analysis of autosomal DNA and Y 

chromosome polymorphisms revealed that subpopulations that fall under Nguni 

are genetically closely related. The Sotho-speakers formed another cluster, and 

Venda showed close similarity with Tsonga (Lane et al, 2001).    

 

The gene frequencies of haptoglobin show marked geographic differences, with 

lowest Hp
1
 allele frequency in Southeast Asia and the greatest frequency in Africa 

and South America (Schultze and Heremans, 1966). However, these Hp
1
 gene 

frequencies are significantly different from higher frequency found among West 

African blacks, and there is evidence suggesting that as one passes south from the 

Congo through Zambia to South Africa, a decrease in the frequency of this gene 

might be demonstrable (Jenkins and Steinberg, 1966). A very large number of 

papers have been written about the haptoglobin allele frequencies in various 

populations throughout the world. Jenkins and Steinberg (1966) and Barnicot et al 

(1959), found that Hp
1
 gene frequency is 0.47 in Cape Coloureds (Barnicot et al., 

1959); 0.29 and 0.31 in South African Bushmen according to Barnicot et al (1959) 
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and Jenkins and Steinberg (1966), respectively. In a recent study by Koda et al., 

(2000), no Hp
del

 was observed in a group of Xhosa and European-Africans based 

in Cape Town. Haptoglobin allele frequencies in South African black populations 

are shown in table 1.1.  
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Table 1.1. Distribution of haptoglobin alleles in black South African populations.  

Population Hp
1
 frequency Hp

2
 frequency Reference 

Zulu 0.505-0.575 0.425-0.495 Jenkins, (1972); McDermid and 

Vos, (1971a); Hitzeroth and 

Hummel, (1978); Nurse et al, 

(1974) 

Swazi 0.475-0.545 0.525-0.455 Jenkins (1972);  Hitzeroth and 

Hummel (1978) 

Ndebele 0.440-0.480 0.520-0.560 Jenkins (1972); Hitzeroth and 

Hummel (1978) 

Xhosa 0.491-0.535 0.509-0.465  Jenkins (1972); Weissman et al, 

(1982); Giblett et al (1966) 

Venda 

Urban 

0.555-0.586 0.415-0.445 Jenkins (1972); Hitzeroth and 

Hummel (1978); Jenkins (1972); 

Nurse et al (1985) 

Venda  

 Rural 

0.541-0.553 0.456-0.447 Jenkins (1972) and Nurse et al 

(1985) 

N. Sotho  

Urban 

0.585-0.541 0.415-0.459 Jenkins, (1972) and Nurse et al, 

(1974). 

N. Sotho   

Rural 

0.493-0.500 0.507 and 0.500  Jenkins (1972) and Hitzeroth and 

Hummel (1978) 

Tswana 0.493 0.507  Hitzeroth and Hummel (1978) 

S. Sotho 0.511-0.545 0.455-0.489 Giblett et al (1966); Moullec et al 

(1966) 

Tsonga 0.546-0.555 0.445-0.454 Hitzeroth and Hummel (1978); 

Jenkins (1972); Matznetter and 

Spielmann (1969) 

 

 

Although the statistics given above shows that Hp
1 

is low in Swazi and Ndebele 

groups compared with the other South African populations, the difference in the 

frequencies among South African blacks is small, 0.1 and less. Although their 
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languages differ, they originate from the Bantu expansion, which explains the 

genetic similarity. The difference in frequencies between black South Africans 

and Bushmen is huge. Bushmen show genetic similarity with Khoi. This similarity 

could be due to that they share a common ancestor or due to genetic flow (Nurse 

et al, 1985).   

 

1.7 Problem identification 

Genetic diversity is higher within African populations, than in any other human 

populations in the world. The diversity is observed even between closely related 

or located groups (Jorde et al, 1997, Tishkoff, 2002). It has been mentioned earlier 

that variation in the coding region of the haptoglobin gene was found to be 

associated with the rate of HIV/AIDS progression in Europeans. Similar studies 

have not been done in black South African population. South Africa has the 

highest number of people living with HIV/AIDS. In 2001 alone, 360 000 people 

died of this disease. In this study we looked at the impact of variation in the 

coding region of the haptoglobin gene on the rate of the disease progression in the 

black South Africans population. Because of high genetic diversity in Africans, 

we further detected variation in the upstream noncoding (promoter) region of this 

gene and determined whether the previously reported and additional 

polymorphisms found in black South Africans in this region have any impact on 

the rate of HIV/AIDS progression.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Subjects 

The study population comprises of 163 black South Africans with proven HIV 

infection and 52 samples from a general population taken regardless of HIV 

status. One hundred HIV positive and two HIV negative blood samples along with 

clinical data were collected from willing participants from Johannesburg General 

Hospital. Clinical data collected was self reported and included an estimate of 

number of years after HIV infection, most recent CD4
+ 

cell count, whether the 

participant had ever had TB or not or any other HIV-related diseases. About 80% 

of our participants were woman who had tested positive when they were pregnant. 

They were asked their HIV status on their previous pregnancies or HIV tests to get 

a close estimate of the number of years after infection. Sixty three DNA samples 

from HIV positive people with viral load and CD4
+ 

count data were provided by 

Dr Clive Gray from NICD. Forty blood samples were collected regardless of HIV 

status from willing black students and staff members of the University of the 

Witwatersrand. Ten DNA samples with unknown HIV status were provided by 

Prof Himla Soodyall from the NHLS. Written informed consent to participate in 

this study was obtained from all participants. The study protocol was approved by 

the University of the Witwatersrand Committee for Research on Human Subjects, 

protocol M040221 (Appendix). Blood was aseptically collected into 

ethylenediaminetetraacetic acid (EDTA) tubes.  
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 2.2 DNA isolation 

The blood tubes were centrifuged at 80 rpm for 10 minutes to separate plasma, 

buffy coats (leukocytes) and whole blood. Plasma was stored at -70
o
C, and later 

used for determination of protein polymorphism. DNA was extracted from the 

leukocytes of the blood samples using QIAmp® Blood DNA kit according to 

manufacturer’s instructions (Qiagen). DNA extraction was carried out in QIAamp 

spin columns which have DNA-adsorbing silica-gel membrane. RNase was used 

to eradicate any traces of RNA or virus that might be in the DNA. The DNA 

adsorbed onto the membrane was eluted in Tris-EDTA (TE) buffer consisting of 

10 mM Tris and 1.0 mM EDTA and stored at -20
o
C. After purification, the 

concentration and size of the DNA was checked by electrophoresis on 0.8% 

agarose gel in TBE buffer at 70V for 45 minutes. The TBE buffer contained 0.9 M 

Tris, 0.89 M boric acid and 25 mM EDTA. This DNA was used for 

characterization of variation in the haptoglobin promoter and coding regions.  

 

2.3 Detection of variation in the promoter region of haptoglobin gene by 

direct sequencing 

Variation in the promoter region of the haptoglobin gene was detected in 52 

samples collected from 42 HIV positive and 10 individuals with unknown HIV 

status. The detection was done by PCR amplification and direct sequencing of a 

645 bp fragment of the promoter region. This sample size was large enough to 

detect genetic variation that occurs frequently in the population. 

Polymerase chain reaction was carried out in a 50µl reaction volume as described 

by Maeda (1991), except that amplification programmes were slightly modified. 
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The reaction mixture contained 1.25 units of Taq polymerase, 200µM of dNTPs, 

1.5mM MgCl2, 0.2µM of each of the primers and 200ng of template DNA. The 

primers used have the following sequences:  

5’-ACTATAAAACCATGAGAACCAC-3’ (forward primer) and  

5’-CCTCATCTTGGTTGGTCTTGC-3’ (reverse primer). The primers were 

synthesized by Inqaba Biotec, and were dissolved in Tris-EDTA consisting of 10 

mM Tris and 1.0 mM EDTA. 

The amplification consisted of predenaturation at 94
o
C for 5 minutes, followed by 

35 cycles of denaturation at 94
o
C for 30 seconds, annealing at 55

o
C for 45 seconds 

and extension at 72
o
C for 60 seconds, followed by final extension at 72

o
C for 5 

minutes. The presence of the desired product was checked on 1% agarose gel in 

TBE buffer at 70V for 45 minutes. The 645 bp PCR product was purified and 

sequenced in both directions by Inqaba Biotec. Sequencing primers used have the 

following sequences:  

5’-CATGAGAACCACTGCCATTG-3’ (forward) and  

5’-CTTGCCTCTGGAAGAGCAG-3’ (reverse). Sequences were aligned with the 

haptoglobin reference sequence from GeneBank using computer software 

Sequencher™ 4.0.  

 

2.4 Alternative methods for detecting single nucleotide polymorphism 

Allele-specific amplification (ASA) was used for the detection of single 

nucleotide polymorphism (SNP) found by direct sequencing, which is applicable 

to a large number of samples and less expensive than direct sequencing.  
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The method uses one set of primers for each allele of the single nucleotide 

polymorphism (Okayama et al, 1989). The primers are designed such that the 3'-

end of one primer in a primer set matches allele A, and another primer in the other 

set with the 3'-end matching B allele (Fig 2.1). Homozygous samples for A (or B) 

will yield a PCR product only with A-specific (or B-specific) primer. 

Heterozygous samples (AB) will yield a product with both primers. PCR was ran 

at stringent annealing temperatures for specific binding (Okayama et al, 1989). 

The ASA was optimized by using samples with known nucleotide sequences. A 

control was included during optimization in order to conclude with certainty that 

the PCR amplification was allele-specific under those amplification conditions. 

For the -295T allele, optimization did not include a control as only TT and TC 

genotypes were found by direct sequencing. In that case, the amplification was 

done at the highest possible annealing temperature. 

Based on the polymorphisms obtained by direct sequencing, allele-specific 

primers for the four most common polymorphisms were designed (Fig 2.1).  PCR 

was carried out in a 20 µl reaction volume containing 1.25 units of Taq 

polymerase, 200 µM of dNTPs, 1.5 mM MgCl, 0.2 µM of each of the primers and 

1 µg of template DNA. The thermocycling
 
procedure consisted of predenaturation 

at 94°C for 5 minutes, 35 cycles of denaturation at 94°C for 1 min, annealing for 

45 seconds at different temperatures due different GC contents (Table 2.1) and 

extension at 72°C for 1 minute, 
 
followed by a final extension at 72°C for 7 min. 

The presence of the PCR products was verified on 1 to 1.7% agarose gels, 

depending on the size of the expected fragment. Electrophoresis was carried out in 

TBE buffer for 45 minutes at a constant voltage of 75V. The gels were then  
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visualised  under the UV light using the image analyser. 
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                        ASA Fw 

-695 ctagtacctgggatacacacaggtgc 

-671 agacatttgactgagacatattgatttttctcatctgcctatttaggctaatcaccag 

              PCR Fw 

-611 actataaaaccatgagaaccactgccattgagtatagtctgtgtcagtctacactatagc 

                                Seq Fw 

-551 tttaactagttgtgtgatttcttgcaaagagcaatcagagaagacacaataaacacattt 

      

-491 actgatttcaggctggagagcttttaagcaatagggagatggccacacacaaggtggaga 

      

-431 aaattactgtgaaaaggaagtactttctttagagccccacctaagctaggctgcagaaat 

      

-371 gtctacaatgggtttgaaaaaactcaaaatgagcctttctgcagtgtgaaaatcctccaa 

           -295C Fw           -295T Rv 

-311gataaagagacagac/ttgatggttcctgccgccgccctgtcctgcccagttgctgatttca 

      

-251 ggaaatactttggcaggtttgtgggtcatagagttgccaggtttcttgggatttgtaata 

      

-191 gaacatcacaagaaaatcaagtgtgaagcaagagctcaactcttaacaggggtattgttt 

                  -104T Fw              -104A Rv 

-131gtggttttgttactggaaaagatagt/agaccttaccagggccaaagtttgtagacacagga 

                                                     

-71     

attacgaaa/ctggaga/gagggggagaagtgagctagtggcagcataaaaagaccagcagatg 

   -61C Fw                    -55G Rv 

                        +1                   PCR Rv 

 -9   ccccacagcactgctcttccagaggcaagaccaaccaagatgaggtgggtccacagcttt                       

                       Seq Rv 

                                         ASA Rv 

 52   ccctcctgcctttcctctggttctttatttcagtcttttttgca 

 

Fig 2.1. Nucleotide sequence of the promoter region of the haptoglobin gene. The 

arrows show the binding sites of the primers and the directions in which they 

extend. The nucleotide bases in bold are the single nucleotide polymorphisms. 

 

 

-55A Rv -61A fw 

Rv 
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Table 2.1. Primer set sequences used in ASA, annealing temperatures for the 

primers and sizes of the products.  The nucleotide bases in bold at the 3´-end are 

allele-specific.  

Primer 

name  

Primer sequence SNP Annealing 

temp 

Product 

size 

-295T Rv 

ASA Fw 

5’GCGGCGCAGGAACCATCAA-3’ 

5’-CCTGGGATACACACAGGTGC -3’ 

-295T/C 68oC 416 bp 

-295C Fw, 

PCR Rv  

5’-TCCAAGATAAAGAGACAGAC-3’ 

5’-CTTGCCTCTGGAAGAGCAG-3’ 

-295T/C 56
o
C 350 bp 

-104A  Rv 

Seq Fw 

5’-CTTTGGCCCTGGTAAGGTCTT-3’ 

5’- CATGAGAACCACTGCCATTG -3’ 

-104A/T 60
 o

C 517 bp 

-104T Fw 

ASA Rv 

5’-TTGTTACTGGAAAAGATAGT-3’ 

5’- AAAGACTGAAATAAAGAACCA 3’ 

-104A/T 55
o
C 212 bp 

-61A Fw 

ASA Rv 

5’-TAGACACAGGAATTACGAAA-3’ 

5’- AAAGACTGAAATAAAGAACCA - 3’ 

-61A/C 54.4oC 168 bp 

-61C Fw, 

ASA Rv 

5’-TAGACACAGGAATTACGAAC -3’ 

5’- AAAGACTGAAATAAAGAACCA -3’ 

-61A/C 60
o
C 168 bp 

-55A Rv 

Seq Fw 

5’-CTAGCTCACTTCTCCCCCTT-3’ 

5’- CATGAGAACCACTGCCATTG -3’ 

-55A/G 60
 o

C 547 bp 

-55G Rv 

Seq Fw 

5’-CTAGCTCACTTCTCCCCCTC-3’ 

5’- CATGAGAACCACTGCCATTG -3’ 

-55A/G 61
 o

C 547 bp 
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2.5. Protein polymorphism  

2.5.1 Haptoglobin genotype determination 

Exploiting the known size difference between Hp
1
 and Hp

2
 alleles (Fig 2.2), 

specific alleles were amplified by PCR with one pair of primers (Koch et al, 

2002). The primers used were 5'-GAGGGGAGCTTGCCTTTCCATTG-3' (primer 

A) and 5'-GAGATTTTTGAGCCCTGGCTGGT-3' (primer B). The primers bind 

to sites that are not specific to the alleles, upstream and downstream of the allele-

specific regions (Fig 2.2). 

Depending on the genotype presented by the template, an Hp
1
/Hp

1
 product of 

1757 bp, a 3481 bp product of Hp
2
/Hp

2
, or both bands in Hp

2
/Hp

1
 were generated 

by PCR using primer set AB. In most cases, the Hp
2
-specific 3481 bp product was 

very faint or invisible in the presence of the 1757 bp band. In such cases another 

set of primers, CD, was used to amplify a 349 bp Hp
2
 allele-specific sequence to 

verify the absence of the 3481 bp product (Fig 2.2). The primers have the 

following sequences: 5'-CCTGCCTCGTATTAACTGCACCAT-3' (primer C)
 
and  

5'-CCGAGTGCTCCACATAGCCATGT-3' (primer D). The primers were 

synthesized by Inqaba Biotec and were diluted in TE. PCR was carried out in a 20 

µl reaction volume containing 1.25 units of Taq polymerase, 200 µM of dNTPs, 

1.5 mM MgCl, 0.2 µM of each of the primers and 1 µg of template DNA. After 

initial
 
denaturation at 95°C for 2 min, the thermocycling

 
procedure consisted of 

denaturation at 95°C for 1 minute,
 
annealing 69°C for 2 min and extension at 

69°C for 2 min, repeated for 35 cycles, and
 
followed by a final extension at 72°C 

for 5 min (Koch et al, 2002). The PCR products were separated on 1% agarose gel 

containing 0.5 µg/ml ethidium bromide in TBE buffer at 70V for 1 hour.  



 44 

 

 

 

Fig 2.2. Structure of haptoglobin alleles Hp
1
 and Hp

2
. The arrows show the 

direction in which the primers extend. The letters A, B, C and D are the names of 

the primers; they show the sites where they bind (Koch et al, 2002) 

 

2.5.2 Phenotype determination 

The haptoglobin genotypes were confirmed by phenotype determination. The 

plasma samples were first treated with nevirapine (0.02mg/L) to deactivate any 

HIV that might be in the samples. Haptoglobin phenotypes were determined from 

12 µl of haemoglobin-enriched plasma by polyacrylamide gel electrophoresis 

(PAGE) followed by peroxidase staining (Linke, 1984; Koch et al, 2002). The 

haemoglobin stock solution (10%) was prepared from an HIV negative sample. 

After the removal of plasma, the blood sample was spun at 2500 rpm for 10 

minutes. The sedimented blood cells were washed five times, each time in 10 ml 

of phosphate buffer saline (PBS) containing 0.1 M sodium phosphate and 0.075 M 
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NaCl, pH 7.2. One millilitre of packed cells was lysed for 30 minutes with 9 ml of 

distilled water. The solution was centrifuged at 10 000 g for 1 hour, and the 

supernatant (haemoglobin solution) was kept in aliquots at -70
o
C. Ten microliters 

of plasma was mixed with 2 µl of 10% haemoglobin solution, and the samples 

were incubated at room temperature for 5 minutes to permit haptoglobin-

haemoglobin (Hp-Hb) complexes to form. An equal volume of sample buffer 

containing 0.125 mol/L Tris (pH 6.8), 200 g/L glycerol and 0.01g/L bromophenol 

blue was added to each sample before loading and electrophoresis. The Hp-Hb 

complexes were resolved by electrophoresis on continuous 4.7% polyacrylamide 

gel in Tris-Borate buffer containing 0.05 M Tris and 0.023 M boric acid, pH 8.7, 

using Tris-Borate buffer. Electrophoresis was performed at a constant voltage of 

250 for 2.5 hours.  

After electrophoresis, the Hp-Hb complexes were visualised by soaking the gel in 

the fresh peroxidase staining solution containing 0.14 M phosphate –citrate buffer, 

0.3% guaiacol and 0.03% hydrogen peroxide for about 15 minutes. 

 

2.6. Data analysis 

2.6.1. Determination of allele and genotype frequencies 

Genotype and allele frequencies were determined by gene counting. This was 

done by counting the total number of each genotype and allele in the population, 

and determined the proportion of each in the population (Hartl and Clark, 1989). 
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If x, y and z respectively mean the number of individuals carrying AA, AB and 

BB genotypes in a population, and the total sample size is n, then:               

 

 

                                        Frequency of AA = x       

                                                                        n 

    

                                        Frequency of BB = y 

                                                                       n 

      

                                        Frequency of AB = z          

                                                                       n   

 

 

The A and B alleles’ numbers in the population were deduced from the number of 

individuals carrying genotypes AA, AB and BB, and the frequencies were 

calculated:     

Number of A alleles = 2x + y 

Number of B allele = 2z + y   

The total number of alleles is 2n because each individual carries two alleles, then: 

                                    A freq = 2x + y  = p 

                                                     2n                    

 

                                    B freq = 2z + y = q 

                                                    2n 

 

 

2.6.2. Hardy-Weinberg equilibrium 

To determine whether the population was in Hardy-Weinberg equilibrium, 

expected and observed genotypes numbers were compared. The expected 

genotypes numbers were calculated from allele frequencies using the Hardy-

Weinberg equation: p
2
 + 2pq +q

2
 = 1 
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If the population is in Hardy-Weinberg equilibrium, AA, AB and BB frequencies 

would be p
2
, 2pq and q

2 
respectively (Crow, 1986; Hartl and Clark, 1989).  

The observed and the expected numbers were compared using the chi-squared (χ
2
) 

test:  

                                                χ
2
 = Σ (o-e)

2 

                                                                                            
e 

    

 where o =  observed number 

               e = expected number. 

 

The χ
2 

test determines whether observed numbers are significantly different from 

the expected numbers (Crow, 1986). A P value of below 0.01 was considered to 

indicate a lack of significant deviation from the predicted Hardy-Weinberg 

distribution. 

 

2.6.3. Linkage equilibrium and disequilibrium 

Linkage disequilibrium measures association of specific alleles at different loci on 

the same chromosome (Nei, 1987). Pairwise linkage disequilibrium was analysed 

using a computer program called Linkage Disequilibrium Analyzer (LDA) version 

1.0 (Keyue et al, 2003).  

 

 

 If there are two alleles on the same chromosome:  

             Allele 1                           A1                   B1 

             Allele 2                           A2                   B2 
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Let the allele frequencies of A1, A2, B1 and B2 be y1, y2, y3 and y4, respectively.  

The possible genotypes are A1B1, A1B2, A2B1 and A2B2. If x1, x2, x3 and x4 are the 

frequencies of these genotypes, respectively, then: 

 The frequency of gametes that carry A1 =  x 1 + x2 

 The frequency of gametes that carry B1 =  x1 + x3 

 The frequency of gametes that carry A2 =  x3 + x4 

 The frequency of gametes that carry B2 =  x2 + x4 

Linkage disequilibrium was calculated using the formula that compares the 

gametic frequency with the product of allele frequencies (Nei, 1987; Hartl and 

Clark, 1989): 

                                                   D = x1 – y1y3  

Where x1 = A1B1 frequency, y1 = A1 frequency and y3 = B1 frequency. 

If D > 0, allele A1 is associated with B1 and A2 with B2  

If D = 0, different alleles are randomly associated at different loci, and the alleles 

are in linkage equilibrium 

If D < 0, A1 is associated with B2 and A2 is associated with B1 (Nei, 1987; 

Lewontin, 1988; Hartl and Clark, 1989).  

 

The degree of the non-random association of the alleles was measured using the 

formula:  

                                    D´ = D__ 

                                            Dmax 

 

where D = linkage disequilibrium, Dmax is the largest value D can take with given 

marginals (Nei, 1987; Lewontin, 1988; Hartl and Clark, 1989). 
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The largest value D can be is either y1y4 or y2y3, while the most negative value can 

be either y1y3 or y2y4, thus: 

                                            Dmax = min (y1y3, y2y4) when D<0 

                                                                and          

                                             Dmax = min (y1y4, y2y3) when D>0 

 

The value of D´ ranges between -1 and 1 (Lewontin, 1988). 

      

2.6.4. Haplotype analysis 

A haplotype is a set of SNP alleles along a region of a chromosome. If a 

chromosome has two SNP alleles, A/G and C/T, the four possible haplotypes for 

these alleles are AC, AT, GC and GT (Tregouet et al, 2004). Haplotypes and 

haplotype frequencies were determined using Arlequin version 2.000 software 

which implements expectation maximization (EM) algorithm (Schneider et al, 

2000).  

 

2.6.5 Determination of genotype and phenotype /disease status association     

To examine whether variation in the coding and noncoding regions of the 

haptoglobin gene are associated with susceptibility to infection by HIV and TB, 

and the rate of HIV/AIDS disease progression, the study population was divided 

into groups and subgroups.  

For susceptibility to HIV and TB, the study population was divided into: 

(i) HIV positive and general population (with unknown HIV status)  

(ii) With TB and without TB. 
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To examine whether the polymorphisms have an impact on the rate of HIV/AIDS 

disease progression, the HIV positive group was divided into the following 

groups: 

(i) A group that was diagnosed with HIV 5 years or less prior to the 

collection of the samples and were symptomatic and the group that had 

been HIV positive for more than 5 years and were asymptomatic 

(ii) A group that was diagnosed with HIV 5 years or less prior to the 

collection of the samples and had a CD4
+
 cell count of ≤200 cells/ml

3
 

and the group that had been HIV positive for more than 5 years and 

had  a CD4
+
 cell count of greater than 200 cells/ml

3
. 

(iii) Rapid progressors (those who were diagnosed with HIV 5 years or less 

prior the collection of the samples and were symptomatic) and the 

long-term nonprogressors (those who had been living with the virus for 

8 to 14 years). 

Frequencies of genotypes and phenotypes were determined amongst the 

subgroups. Because of the small values in the subgroups, Fisher’s exact test 

was used to determine whether the numbers between the subgroups differed 

significantly. The Fisher's exact test procedure calculates an exact probability 

value for the relationship between two variables (Sokal and Rohlf, 1981; 

Rosner B, 1990). Statistical Analysis System (SAS) software was used to 

perform the Fisher’s exact test.   
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2.7.6 Haplotype/Disease status association 

We examined whether haplotypes of the haptoglobin gene have an impact on 

susceptibility to HIV and TB infection. The study population was categorized as 

in section 2.7.5. Haplotype frequencies between the subgroups were determined 

using Arlequin software, and compared between the subgroups. Statistical 

Analysis System (SAS) software was used to perform the Fisher’s exact test. 
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CHAPTER 3 

RESULTS 

 

3.1. Direct sequencing 

Sequencing of both strands of the 645 bp fragment of the promoter region (Fig 

3.1) showed polymorphism at six sites (Fig 3.2), which resulted in 34 different 

sequences in 52 samples from 42 HIV positive subjects and 10 subjects with 

unknown HIV status. In addition to the four previously known base substitutions, 

i.e., -55A/G, -61A/C, -104T/A (Maeda, 1991; Teye et al, 2003) and -242T/C 

(Teye et al, 2003), two which were not reported previously were found at 

positions -103 and -295. The polymorphisms were G/T and T/C, respectively.  

None of the individuals was homozygous for C at position -295; only -295TT and 

TC were found.  Homozygous genotypes TT for polymorphisms -103G/T and -

242C/T were not found. At position  -61, only one individual was C homozygous.  

Genotype and allele frequencies for all the polymorphic sites were determined 

(Table 3.1.1).  As in Ghanaians, -242T/C occurred at a very low frequency (0.02) 

in the study population. The polymorphism at site -103 was rare as well, with 

frequency of 0.02. The C alleles at sites -61 and -295, respectively, were found at 

low frequencies in the population: 0.15 and 0.11 respectively.   

The χ
2
 test for goodness of fit showed that the population did not deviate 

significantly from the expectations of the Hardy-Weinberg equilibrium at any of 

the six sites (Table 3.1.1). 
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 Fig 3.1.1. An agarose gel of the 645 bp promoter region. In lane 1 is a molecular 

weigh marker VI.                     

 

 

                          -295*              -242 
# 

                    -104 -103* 
#
              -61      -55 

 

 

 

                          C/T                  C/T                       T/A  G/T                  A/C      A/G 

 

Fig 3.1.2. Schematic diagram showing locations of the six SNPs found by direct 

sequencing of the 645 bp fragment of the upstream noncoding region of the 

haptoglobin gene.  The new ones are indicated by *, the ones that occur at low 

frequencies in the population are indicated by #. 
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Table 3.1.1. Genotype and allele frequencies for the 6 polymorphic sites found by 

direct sequencing and the χ
2 

test for the goodness of fit between the genotypes for 

each site. There was no significant deviation from the expectations of Hardy-

Weinberg equilibrium (P<0.01). 

Site Genotype n Genotype 

frequency 

Allele n Allele 

frequency 
χ

2 
1df 

-55 AA 18 0.35 A 57 0.55  

 AG 21 0.40     

 GG 13 0.25 G 47 0.45  

Total  52   104  1.80 

        

-61 AA 37 0.71 A 88 0.85  

 AC 14 0.27     

 CC 1 0.02 C 16 0.15  

Total  52   104  0.09 

        

-103 GG 51 0.98 G 103 0.99  

 TG 1 0.02     

 TT 0 0.00 T 1 0.01  

Total  52   104  0.00 

        

-104 AA 6 0.11 A 35 0.34  

 AT 23 0.44     

 TT 23 0.44 T 69 0.66  

Total  52   104  0.005 

        

-242 CC 51 0.98 C 103 0.99  

 TC 1 0.02     

 TT 0 0.00 T 1 0.01  

Total  52   104  0.00 

        

-295 TT 41 0.79 T 93 0.89  

 TC 11 0.21     

 CC 0 0.00 C 11 0.11  

Total  52   104  0.73 
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3.2. Allele-specific amplification 

Allele-specific amplification was applied to a large population to detect the four 

most common SNPs found by direct sequencing.  The presence or absence of the 

PCR product is dependent on the allele or genotype presented by the DNA 

template. Samples homozygous for a certain allele yielded a product in the 

presence of the primer specific for that allele, and not with the other allele-specific 

primer. Heterozygous samples gave products with both sets of primers. The sizes 

of PCR products for different alleles are shown in figures 3.2.1, 3.2.2, 3.2.3 and 

3.2.4.   

                              

 

 

 

 

 

 

 

 

 



 56 

                                                                       

 

Fig 3.2.1. An agarose gel showing allele-specific PCR products for the -55A/G 

polymorphism. Lanes 2-4 show -55A allele-specific product, lanes 4-7 show -55G 

allele-specific product. The PCR products are of the same size (547 bp) for both 

alleles because the allele-specific primers differ by one nucleotide base at the 3'-

end, they extend in the same direction and they were used with the same allele-

nonspecific forward primer. The reactions for each allele were done separately 

(Fig 2.1). The samples were run against 100bp molecular weight marker (lane 1). 

Samples which are genotype -55AA produced a -55A allele PCR products only, -

55GG samples gave -55G allele PCR products only, and heterozygous samples 

yielded a product with both allele-specific reactions. 

                                          

   1      2     3     4     5    6    7 
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Fig 3.2.2. A 1.7% agarose gel showing PCR products of allele-specific 

amplification for -61A (lanes 2-4) and -61C (lanes 5-7) alleles run against a 100 

bp molecular weight marker (lane 1). The size of the product was 168 bp for both 

alleles because the allele-specific primers differ by one nucleotide base at the 3'-

end, they extend in the same direction and they were used with the same allele-

nonspecific forward primer. The reactions for each allele were done separately 

(Fig 2.1). Samples which were homozygous for A yielded a -61A allele product 

only, homozygous C yielded a -61C allele product only. Heterozygous samples 

showed PCR products in both reactions.   

          

   1      2     3      4      5       6      7 

168 bp 

3000 bp 

  500 bp 

  200 bp 

       100 bp 
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Fig 3.2.3. An agarose gel showing allele-specific PCR products for the A/T 

polymorphism at site -104. Allele T was characterized by a 212 bp PCR product 

(lanes 2-4). Allele T was characterized by a 517 bp PCR product (lanes 5-7). The 

samples were run against the 100 bp ladder (lane 1). Samples which were 

homozygous for genotypes AA and TT yielded 212- and 517-bp bands, 

respectively.   The AT genotype was characterized by the presence of both the 

212- and 517-bp products.    
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A                                                              B 

                                                              
                                                                         

                                                             

 

Fig 3.2.4. An agarose gel showing allele-specific PCR products for -295T (A) and      

-295C (B) alleles. The TT genotype gave a 416 bp PCR product (A, lanes 2 and 

3), the CC genotype gave a 350 bp product (B, lanes 1 and 2), and the 

heterozygote TC was distinguished by the presence of both 416 and 350 bp PCR 

products. 

 

 

3.2.1. Genotype and allele frequencies 

 

Genotype and allele frequencies in the whole study population were determined, 

and the χ
2
 test demonstrated that the population did not deviate significantly from 

the expectations of the Hardy-Weinberg equilibrium at any of the four sites at 

P<0.01 (Table 3.2.1). 
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Table 3.2.1. Genotype and allele frequencies for the four common polymorphisms 

in the whole study population and the χ2 
 
 test. 

 

 

3.3. Protein polymorphism 

Polymorphism in the protein coding region of the haptoglobin gene was 

determined by amplifying allele-specific fragments according to Koch et al 

(2002). The genotypes were then confirmed by phenotype determination on 

polyacrylamide gel.    

 

3.3.1 Haptoglobin protein polymorphism genotype determination 

In PCR, primer set AB gave 1757- and 3481-bp products for Hp1-1 and Hp2-2 

genotypes, respectively. Heterozygote genotype Hp2-1 was characterized by the 

presence of both 1757 and 3481 bp bands (Fig 3.3.1.1 A). In some cases, it was 

Site  Genotype n Frequency Allele n Allele 

frequency 
χ

2  
1df 

-55 AA 66 0.30 A 243 0.56  

 AG 111 0.52     

 GG 38 0.18 G 187 0.43  

Total  215   430  0.51 

        

-61 AA 178 0.83 A 392 0.91  

 AC 36 0.17     

 CC 1 0.005 C 38 0.09  

Total  215   430  0.53 

        

-104 AA 42 0.19 A 183 0.43  

 AT 99 0.46     

 TT 74 0.34 T 247 0.57  

Total  215   430  0.70 

        

-295 TT 134 0.62 T 341 0.79  

 TC 73 0.34     

 CC 8 0.04 C 89 0.21  

Total  215   430  0.17 
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not possible to determine with certainty the presence of the 3481-bp Hp2-specific 

band in Hp2-1 samples. In such cases, primer set CD was used to confirm the 

presence or absence of Hp2 band in the samples that produced a 1757-bp band 

with primer set AB. Hp2-1 genotype gave a 349-bp Hp2-specific band in the 

presence of primer set CD (Fig 3.3.1.1 B). Genotype and allele frequencies were 

calculated. The Hp2-1 genotype occurred at a high frequency, 0.567. The 

homozygous genotypes occurred at fairly similar frequencies: 0.22 and 0.21 for 

Hp1-1 and Hp2-2, respectively.  The Hp
1
 and Hp

2
 allele frequencies were fairly 

similar in the population, 0.502 and 0.498, respectively (Table 3.3.1.1).  The χ
2 

test illustrates that the population does not deviate significantly from the 

expectations of Hardy-Weinberg equilibrium (P<0.01).  
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A.                                                                               B. 

 

Fig 3.3.1.1. Hp
1
 and Hp

2
 allele-specific PCR products.  (A) Depending on the 

genotype presented by the template, an Hp2-2 product of 3481bp (lanes 2 and 3), 

a 1757bp band of Hp1-1 (lane 4) or both bands in Hp2-1 were amplified (lane 1) 

using primer set AB. Lane 5 is a molecular weight marker. (B) A 349bp product 

of primer set CD yielded by Hp2-1 samples in the confirmation of the absence or 

presence of the Hp2-allele-specific fragment. In lane 1 is a 100bp molecular 

weight marker ladder. 
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Table 3.3.1.1. Genotype and allele frequencies of the coding region in the whole 

study population.  

Genotype n  Genotype 

frequency 

Allele n Allele 

frequency 

χ
2 

1df 

Hp1-1 47 0.22 Hp1 216 0.50  

Hp2-1 122 0.57     

Hp2-2 46 0.21 Hp2 214 0.50  

Total 215   430  3.65 

 

 

3.3.2 Phenotype determination 

Polyacrylamide gel electrophoresis of plasma gave a band pattern that 

differentiated between Hp1-1, Hp2-1 and Hp2-2 protein phenotypes (Fig 3.3.2.1). 

Samples which are phenotypically Hp0 were identified by showing no protein 

bands on the polyacrylamide gel. The Hp1-1 phenotype was characterized by a 

single fast-migrating band, Hp2-2 by a series of slow-migrating bands, Hp2-1 by 

the presence of both slow- and fast-migrating bands (Fig 3.3.2.1).  

The proportion of each phenotype in the whole study population was determined. 

Hp0 phenotype occurred at the frequency of 0.303 (Table 3.3.2.1). This frequency 

is in accordance with findings of Constants et al (1981), who found that in Sub-

Sahara Africa the frequency of the Hp0 phenotype is between 10 to 40%.  

The Hp0 phenotype was not exclusively found in one genotype, but distributed 

among all three genotypes, Hp1-1, Hp2-1 and Hp2-2. The Hp1-1 and Hp2-1 

genotypes were found in equal frequencies in Hp0 individuals (0.42). This 

difference in frequencies was statistically significant (P=0.0001) (Table 3.3.2.2).  

Among the polymorphisms of the promoter region, the Hp0 phenotype was most 

common in individuals who carried a -55GG and -104AA genotypes. The 
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frequency difference was statistically significant for both polymorphic sites 

(P<0.05). Previous studies have reported -61C allele to be a cause of Hp0 

phenotype in Africans (Teye et al, 2003). In this study, there was only one 

individual who was homozygous for this allele. The individual was Hp0.  

 

 

 

 

Hp2 bands 

 

 

 

   

 

 

 

 

 

Fig 3.3.2.1. Haptoglobin phenotypes on the polyacrylamide gel. The band pattern 

distinguished between the phenotypes. Hp1-1 showed a single fast-moving band 

(lane 2). Hp2-2 was characterized by a series of slow-moving bands (lane 4). Hp2-

1 phenotype showed both Hp1 and Hp2 bands (lanes 1 and 3). 
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Table 3.3.2.1. Haptoglobin phenotype distribution in the whole study population.                                      

                                                         

                                                 

Phenotype n Phenotype 

frequency 

Hp0-0 43 0.30 

Hp1-1 12 0.08 

Hp2-1 64 0.45 

Hp2-2 23 0.16 

     Total 142  

 

 

Table 3.3.2.2. Genotype distribution in Hp0 phenotype and the other phenotypes 

 Hp0 (n=42) With Hp protein (n=100)  P 

Promoter 

region 

Genotype n Freq  n Freq   

-55 AA 6 0.14  32 0.34  0.002 

 AG 18 0.43  54 0.54   

 GG   18 0.43  14 0.14   

         

-61 AA 35 0.83  86 0.86  0.426 

 AC 6 0.14  14 0.14   

 CC 1 0.02  0 0   

         

-104 AA 16 0.38  12 0.12  0.0005 

 AT 20 0.48  52 0.52   

 TT 6 0.14  36 0.36   

         

-295 TT 25 0.59  57 0.57  0.853 

 TC 15 0.36  38 0.38   

 CC 1 0.02  5 0.05   

         

Coding 

region 

Genotype        

 Hp1-1 18 0.43  11 0.11  0.0001 

 Hp2-1 18 0.43  68 0.68   

 Hp2-2 6 0.14  21  0.21   

 

P = Fisher’s probability  
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3.4. Distribution of haptoglobin alleles in Black South African ethnic groups 

In our study population of 136 Black South Africans with information on family 

origin, some groups were represented by sample sizes too small for frequency 

distribution analysis. Venda and Ndebele groups were each represented by one 

individual, Swazi group by 5 individuals (Table 3.4.1). Twenty five percent of the 

individuals in the study population had parents or grandparents from different 

ethnic groups, or from outside South Africa.  

The frequency of Hp
1 

allele in Zulu and Sotho groups was lower than the 

previously reported frequencies, while in Tswana and Tsonga groups it was higher 

(Table 3.4.1) (Nurse et al, 1974).  The allele distribution in Xhosa and Pedi groups 

was in accordance with values published (Jenkins, 1972; Nurse et al, 1974).  The 

frequencies in Zulu, Xhosa and Tswana groups were similar. The allele’s 

distribution in Pedi and Tsonga groups showed very similar frequencies. The 

Southern Sotho group showed a very low Hp
1 

frequency, lower than the reported 

frequency (Nurse et al, 1974). These distributions are comparable to the ones 

previously published (Nurse et al, 1974), where Zulu, Swazi, Xhosa, Tswana and 

Sotho groups showed very similar frequencies. 
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Table 3.4.1. Hp
1
 allele distribution in South African ethnic groups.  

Ethnic group n Hp
1
 frequency 

Zulu 60 0.47 

Xhosa 16 0.50 

Pedi 11 0.59 

Tswana  19 0.53 

Sotho 14 0.43 

Tsonga 9 0.60 

                            

 

3.5. Association of genotypes and phenotypes with HIV/AIDS disease status  

Even though the size of the HIV positive population was 163, there were only a 

few subjects with usable clinical data for studying association between the rate of 

the disease progression and the haptoglobin gene polymorphism.  Thirty percent 

of the samples collected from Johannesburg General Hospital were collected from 

individuals who were diagnosed with HIV infection between the years 2000 and 

2003, and they were still asymptomatic at the time of sample collection. Sixty 

three samples from the NICD had no dates of diagnosis. However, these samples 

were useful in studying susceptibility to infection by HIV.   

Genotype and phenotype frequencies were determined and compared between the 

HIV positive population and the general population, between a TB+ and TB- 

groups, and between the groups defined by fast and slow rate of the disease 

progression. 
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3.5.1.1. Genotype and phenotype distribution in HIV positive and the general 

populations 

Neither the HIV positive population nor the general population deviated 

significantly from Hardy-Weinberg equilibrium at all the four polymorphic sites 

of the promoter region at significance level P<0.05 (Table 3.5.1.1). There was 

significant difference between the HIV positive and the general population at only 

one site. A significant difference (P=0.04) was observed at site -61, with a higher 

frequency of AC genotype in the general population. No significant association 

was observed between any of the other polymorphisms and the risk of HIV 

infection. 

An excess of the heterozygous genotype Hp2-1 was observed in the HIV positive 

population. The frequencies of the homozygote genotypes were similar in the HIV 

positive population. The χ
2 

test showed no significant deviation from the 

expectations of Hardy-Weinberg in both the HIV positive and the general 

populations for haptoglobin coding region genotypes (P<0.01). There was no 

association between the haptoglobin genotypes or alleles and susceptibility to HIV 

infection.   

Hp0 phenotype occurred at a frequency of 0.43 in the general population, and 0.25 

in the HIV positive population. These frequencies are in accordance with the 

findings of Quaye et al (2000), where the Hp0 phenotype was higher in HIV 

negative individuals than in the HIV positive individuals. Despite the difference in 

Hp0 phenotype frequency distribution observed in HIV positive and the general 

populations, the Fisher’s exact test showed no significant difference between the 

distribution of the four phenotypes in these two populations (Table 3.5.1.1).  
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Table 3.5.1.1. Genotype and phenotype distribution among HIV positive and 

general populations.  

 HIV positive General population P 

Promoter 

region 

Genotype n Freq χ
2

1df 
 
 n Freq χ

2 
1df  

-55 AA 53 0.32 0.03 13 0.25 1.246 0.551 

 AG 81 0.50  30 0.58   

 GG   29 0.18  9 0.17   

 Total  163   52    

         

-61 AA 140 0.86 0.01 38 0.73 1.36 0.045 

 AC 22 0.13  14 0.27   

 CC 1 0.01  0 0.00   

Total  163   52    

         

-104 AA 36 0.22 0.90 6 0.12 0.18 0.212 

 AT 74 0.45  25 0.48   

 TT 53 0.33  21 0.40   

Total  163   52    

         

-295 TT 104 0.64 0.23 30 0.58 3.7 0.118 

 TC 51 0.31  22 0.42   

 CC 8 0.05  0 0.00   

Total  163   52    

       

Coding 

region 

Genotype        

 Hp1-1 35 0.21 4.81 12 0.23 0.0 0.435 

 Hp2-1 96 0.59  26 0.50   

 Hp2-2 32 0.20  14 0.27   

Total      163   52    

       

Protein Phenotype      

 Hp0-0   25 0.25 18 0.43 0.169 

 Hp1-1  9 0.09 3 0.07  

 Hp2-1  50 0.50 14 0.33  

 Hp2-2  16 0.16 7 0.17  

Total         100                  - 42                    -  

 

P = Fisher’s probability 
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3.5.1.2. Haptoglobin polymorphism and the rate of the HIV/AIDS 

progression 

To determine whether the haptoglobin polymorphism has an impact on the rate of 

HIV/AIDS progression, phenotype and genotype frequencies were compared 

between the groups below, and the Fisher’s exact test was used to determine 

whether the frequencies differ significantly among the groups: 

(i) A group that was symptomatic 5 years or less prior the sample 

collection and the group that had been HIV positive for more than 5 

years and were asymptomatic (Table 3.5.1.2.1) 

(ii) Rapid progressors and long-term nonprogressors (Table 3.5.1.2.2). 

(iii) A group that was diagnosed with HIV 5 years or less prior the 

collection of the samples and had a CD4
+
 cell count of ≤200 cells/ml

3
 

and the group that had been HIV positive for more than 5 years and 

had  a CD4
+
 cell count of greater than 200 cells/ml

3 
 (Table 3.5.1.2.3). 

 

The χ
2 

test showed none of the groups in all the categories deviated significantly 

from the expectations of the Hardy-Weinberg equilibrium at all the polymorphic 

sites of the promoter region at P<0.01.  

A high frequency of the genotype Hp2-1 was observed in both the symptomatic 

and asymptomatic groups. The symptomatic group did not deviate significantly 

from the expectations of Hardy-Weinberg equilibrium at P<0.01. The 

asymptomatic group showed a deviation from the Hardy-Weinberg equilibrium at 

P<0.01, and no deviation at P<0.001 (Table 3.5.1.2.1). Both groups in the other 
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two categories did not show a significant deviation from the expectations of 

Hardy-Weinberg equilibrium for the coding region polymorphism (P<0.01). 

The genotype and the phenotype frequencies did not differ significantly from each 

other in the symptomatic/asymptomatic groups, and the rapid progressors and the 

long-term nonprogressors. There was no significant difference between the 

genotype and phenotype distribution (Table 3.5.1.2.1; Table 3.5.1.2.2).   

 

In the CD4
+
cell depletion rate category, a statistically insignificant but noteworthy 

difference in frequency distribution between the groups was observed at site -104 

of the promoter region, the coding region and the phenotypes (Table 3.5.1.2.3).  

 At site -104, there was a high frequency of a heterozygous genotype AT in the 

group with a CD4
+
 cell count of below 200 (0.72) compared with 0.31 in the 

group with a count of more than 200 cells/ml
3
. The frequency of homozygote AA 

at the same site was considerably higher in the group with a CD4
+
 cell count of 

above 200 (0.38) than the group with a count of below 200 cells/ml
3
 (0.11).  

The frequency of Hp2-2 genotype was higher in the group with a count of below 

200 cells/ml
3
 (0.39) than Hp1-1 genotype of the same group (0.11), and higher 

than the frequency of Hp2-2 genotype in the group with a count of above 200 

cells/ml
3 

(0.15).  

The phenotype frequencies of Hp0 and Hp2-2 differed between the two groups. A 

high frequency of Hp0 phenotype was observed in the group with a CD4
+
 count of 

above 200 cells/ml
3
. This phenotype was found at a low frequency in the other 

group. Hp2-2 phenotype was higher in the group with a CD4
+
 count of below 200 

cells/ml
3
 and lower in the other group. The frequencies for Hp0-0 were 0.17 and 
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0.38 for the group with below and above 200 cells/ml
3
, respectively. For Hp2-2 

the frequencies were 0.39 and 0.15 for the group with a count of below and above 

200, respectively.  

The high frequency of Hp2-2 in the group with  the faster rate of CD4
+
 cell 

depletion is in agreement with previous studies where it was reported that Hp2-2 

is associated with a faster rate of CD4
+
 cell depletion (Quaye et al, 2000), and the 

rate of HIV/AIDS progression (Delanghe et al, 1996; Quaye et al, 2000). 

Although these frequency differences were statistically insignificant, further 

investigations need to be done on a larger population size with a more reliable 

clinical data.  
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Table 3.5.1.2.1. Genotype and phenotype frequencies between asymptomatic and 

symptomatic subjects five years after diagnosis with HIV infection. 

  ≤5yrs since diagnosis, 

symptomatic 

>5yrs since diagnosis, 

asymptomatic 

  P 

Promoter 

region 

Genotype n Freq χ
2 

1df n Freq χ
2 

1df  

-55 AA 5 0.26 0.05 6 0.22 0.04 1.000 

 AG 9 0.47  14 0.52   

 GG 5 0.26  7 0.26   

Total  19   27    

         

-61 AA 17 0.89 0.10 23 0.85 3.73 1.000 

 AC 2 0.10  3 0.11   

 CC 0 0.00  1 0.04   

Total  19   27   

         

-104 AA 4 0.21 0.05 7 0.26 0.03 1.000 

 AT 10 0.53  13 0.48   

 TT 5 0.26  7 0.26   

Total  19   27    

         

-295 TT 10 0.53 0.20 16 0.59 0.13 0.712 

 TC 7 0.37  10 0.37   

 CC 2 0.10  1 0.04   

Total  19   27    

       

Coding 

region 

Genotype        

 Hp1-1 4 0.21 2.79 2 0.07 8.67 0.502 

 Hp2-1 13 0.68  21 0.78   

 Hp2-2 2 0.10  4 0.15   

Total  19   27    

    

 Protein Phenotype   

 Hp0-0      5 0.26 9 0.33 0.575 

 Hp1-1     3 0.16 1 0.04  

 Hp2-1     9 0.47 14 0.52  

 Hp2-2     2 0.10 3 0.11  

Total     19                   - 27                -  

P = Fisher’s probability 
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Table 3.5.1.2.2. Genotype and phenotype frequencies in rapid progressors and 

long-term nonprogressors 

  Rapid progressors Long-term nonprogressors    P 

Promoter 

region 

Genotype n Freq χ
2 

1df n Freq χ
2 

1df 

-55 AA 5 0.26 0.05 4 0.18 0.01 

 AG 9 0.47  11 0.50  

 GG 5 0.26  7 0.32  

Total  19   22   

        

 

 

0.845 

-61 AA 17 0.89 0.10 20 0.91 0.00 

 AC 2 0.10  2 0.09  

 CC 0 0.00  0 0.00  

Total  19   22   

        

1.000 

-104 AA 4 0.21 0.05 5 0.23 0.00 

 AT 10 0.53  11 0.50  

 TT 5 0.26  6 0.27  

Total  19   22   

        

1.000 

-295 TT 10 0.53 0.20 13 0.59 0.00 

 TC 7 0.37  8 0.36  

 CC 2 0.10  1 0.04  

Total  19   22   

0.893 

        

Coding 

region 

       

 Hp1-1 4 0.21 2.79 2 0.09 6.57 0.599 

 Hp2-1 13 0.68  17 0.77  

 Hp2-2 2 0.10  3 0.14  

Total  19   22   

    

Protein Phenotype     

 Hp0-0  5 0.26 9 0.35 0.645 

 Hp1-1 3 0.16 1 0.07  

 Hp2-1 9 0.47 10 0.45  

 Hp2-2 2 0.10 2 0.13  

Total  19                     - 22                     -  

 

P = Fisher’s probability 
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Table 3.5.1.2.3. Phenotype and genotype distribution in groups with a CD4
+
 cell 

count of below and above 200 cells/ml
3
 five years after diagnosis 

 CD4
+
≤200, ≤5 yrs  

since diagnosis 

CD4
+
>200, > 5yrs  

since diagnosis 

  P 

Promoter 

region 

Genotype n Freq χ
2 

1df n Freq χ
2 

1df  

-55 AA 6 0.33 0.48 3 0.23 0.05 0.499 

 AG 10 0.56  6 0.46   

 GG   2 0.11  4 0.31   

Total  18   13    

         

-61 AA 16 0.89 0.10 12 0.92 0.00 1.000 

 AC 2 0.11  1 0.08       

 CC 0 0.00  0 0.00  

Total  18   13   

        

-104 AA 2 0.11 3.58 5 0.38 1.93 0.669 

 AT 13 0.72  4 0.31   

 TT 3 0.17  4 0.31   

Total  18   13    

         

-295 TT 11 0.61 0.02 7 0.54 1.19 0.832 

 TC 6 0.33  6 0.46       

 CC 1 0.06  0 0.00  

Total  18   13   

      

Coding 

region 

Genotype       

 Hp1-1 2 0.11 0.09 1 0.08 3.82 0.365 

 Hp2-1 9 0.50  10 0.77   

 Hp2-2 7 0.39  2 0.15   

Total    18   13    

      

Protein Phenotype     

 Hp0-0  3 0.17   - 5 0.38      - 0.238 

 Hp1-1 2 0.11  0 0.00   

 Hp2-1 6 0.33  6 0.46   

 Hp2-2 7 0.39  2 0.15   

Total  18      13        

 

P = Fisher’s probability 
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3.5.1.3. Genotype and phenotype frequencies in TB groups 

Both the TB+ and TB- groups did not show a significant deviation from the 

Hardy-Weinberg at any of the four polymorphic sites of the promoter region 

(Table 3.5.1.3).  

Excess of the Hp2-1 genotype was observed in both groups, and thus, deviation 

from the expectations of Hardy-Weinberg equilibrium at the statistical level 

P<0.001. The frequencies of the genotypes were comparable between the groups. 

Genotypes for all the polymorphic sites were comparable in the TB+ and TB- 

groups, and there was no significant difference between the two groups. These 

findings do not agree with the previous report on association of Hp2-2 with 

susceptibility to infection by TB (Fedoseeva et al, 1993), but are consistent with 

another study (Kasvosve et al, 1998) where the haptoglobin polymorphism was 

not associated with susceptibility to TB. 
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Table 3.5.1.3. Genotype and phenotype frequencies in groups with and without 

TB. 

 

 With TB Without TB    P 

Promoter 

region  

Genotype n Freq χ
2 

1df n Freq χ
2 

1df  

-55 AA 4 0.27  23 0.29  0.873 

 AG 7 0.46  39 0.49   

 GG   4 0.27  17 0.21   

Total  15  0.07 79  0.00  

         

-61 AA 14 0.93  67 0.85  0.733 

 AC 1 0.07  11 0.14   

 CC 0 0.00  1 0.01   

Total  15  0.00 79  0.59  

         

-104 AA 3 0.20  16 0.20  0.929 

 AT 7 0.47  42 0.53   

 TT 5 0.33  21 0.27   

Total  15  0.00 79  0.37  

         

-295 TT 10 0.67  47 0.59  0.901 

 TC 4 0.26  27 0.34   

 CC 1 0.07  5 0.06   

Total  15  0.42 79  0.18  

       

Coding 

region 

Genotype        

 Hp1-1 3 0.20  10 0.13  0.502 

 Hp2-1 11 0.73  55 0.70   

 Hp2-2 1 0.07  14 0.17   

Total  15  4.41 79  11.83  

      

Protein Phenotype     

 Hp0-0  5 0.33  20 0.25               0.815 

 Hp1-1 1 0.07  8 0.10  

 Hp2-1 8 0.53  38 0.48  

 Hp2-2 1 0.07  13 0.16  

Total  15     - 79       - 

 

P = Fisher’s probability 
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 3.6. Haplotype analysis 

3.6.1 Haplotypes in the study population 

Haplotypes for all five polymorphic sites were analyzed using Arlequin software. 

The frequencies of the haplotypes for all five polymorphic sites were determined 

in the whole study population.  

A total of 32 haplotypes was found in 215 samples.  The most common haplotype 

in the 20 most common ones, Hap14, occurred at the frequency of 0.215 in the 

study population. Hap10, Hap 19 and Hap 20 were the least common haplotypes 

in the population, with frequencies that was between 0.002 and 0.003 (Table 

3.6.1).  
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Table 3.6.1. Haplotype frequencies in the study population 

Haplotype name                          Frequency                          Haplotype 

Hap 1 0.013 AAAC1 

Hap 2 0.035 AAAT1 

Hap 3 0.042 AAAT2 

Hap 4 0.007 AATC1 

Hap 5 0.063 AATC2 

Hap 6 0.183 AATT1 

Hap 7 0.139 AATT2 

Hap 8 0.011 ACAT2 

Hap 9 0.021 ACTC2 

Hap 10 0.003 ACTT1 

Hap 11 0.048 ACTT2 

Hap 12 0.047 GAAC1 

Hap 13 0.045 GAAC2 

Hap 14 0.215 GAAT1 

Hap 15 0.018 GAAT2 

Hap 16 0.023 GATC1 

Hap 17 0.028 GATT1 

Hap 18 0.054 GATT2 

Hap 19 0.002 GCTT1 

Hap 20 0.003 GCTT2 

          

 

 

3.6.2. Pairwise allelic linkage disequilibrium  

Pairwise allelic linkage analysis of the five polymorphic sites showed that all the 

alleles were nonrandomly associated (linkage disequilibrium). The specific 

associations were deduced from the value of D, whether it was positive or 

negative (Table 3.6.2.). The degree of nonrandom association was very strong 

between the haplotypes of -55/-61 and -61/coding region, 0.88 and 0.84, 

respectively. The haplotypes of -55/-104, -61/-104 and -61/-295 sites also showed 

strong linkage disequilibrium. The degree of nonrandom association was weak 

between the other haplotypes, with |D'| values of 0.46 and less (Kidd et al, 1998).  
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Table 3.6.2. Linkage disequilibrium between haptoglobin alleles. 

 

Sites D Specific 

associations 

|D'| Std 

deviation 

-55/-61 -0.42 -55G with -61A, 

-55A with -61C 

-0.88 0.03 

-55/-104  0.56 -55A with -104T, 

-55G with -104A 

 0.57 0.02 

-55/-295  0.22 -55G with -295C, 

-55A with -295T 

 0.31 0.02 

-61/-104 -0.32 -61A with -104A, 

-61C with -104T 

-0.69 0.02 

-61/-295 -0.16 -61A with -295C, 

-61C with -295T 

-0.73 0.03 

-104/-295  0.16 -104A with-295C, 

-104T with -295T 

 0.22 0.02 

-55/Coding region -0.41 -55A with Hp
2
, 

-55G with Hp
1
 

-0.46 0.01 

-61/ Coding region  0.48 -61A with Hp
1
, 

-61C with Hp
2
 

 0.84 0.03 

-104/Coding region -0.38 -104T with Hp
2
, 

-104A with Hp
1
 

-0.44 0.01 

-295/Coding region -0.19 -295T with Hp
2
, 

-295C with Hp
1
 

-0.31 0.01 

 

 

 

3.6.3. Haplotype/Disease status association 

Given our small sample size, the haplotype/disease status association 

determination was done on the three promoter region polymorphic sites that are 

found within the IL-6 response segment, sites -55, -61 and -104. The sites are 

close together and showed strong linkage disequilibrium (Table 3.6.2). The 

Fisher’s exact test was used to test for statistical significance.     

 

3.6.3.1. HIV status/Haplotype association 

The most common haplotype in both the HIV positive and the general populations 

was Hap2 (AAT). This haplotype occurred at a frequency of 0.41 and 0.37 in HIV 
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positive population and the general population, respectively (Table 3.6.3.1). The 

least common haplotype in both groups was Hap1 with frequencies of 0.1 and 

0.05 in HIV positive group and the general population, respectively. Overall, the 

haplotype frequencies were comparable between the groups, and the there was no 

significant difference in the distribution of frequencies between the two groups.  

 

Table 3.6.3.1. Haplotype distribution in HIV positive and the general populations 

Haplotype 

name 

Haplotype HIV positive 

(n=163) 

General population 

(n=52) 

Hap1 AAA 0.10      0.05  

Hap2 AAT 0.41      0.37 

Hap3 ACA 0.01      0.01 

Hap4 ACT 0.06      0.11 

Hap5 GAA 0.33     0.29 

Hap6 GAT 0.09      0.15 

Hap7 GCT 0.00   0.01 

 

 

3.6.3.2. Disease progression rate/haplotype association 

 Haplotype frequencies were compared between the groups that define the rate of 

HIV/AIDS disease progression (Table 3.6.3.2.1, Table 3.6.3.2.2 and Table 

3.6.3.2.3). The most common haplotype in all three rate-defining categories in 

both the compared groups were AAT and GAA. The frequency distribution 

among the study groups and there was no significant association between the 

haplotypes and the rate of the disease progression.    
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Table 3.6.3.2.1. Comparisons of haplotype frequencies between rapid progressors 

and long-term nonprogressors 

Haplotype 

name 

Haplotype Rapid progressors 

(n=19) 

Long-term 

nonprogressors (n=22) 

Hap1 AAA 0.09 0.02 

Hap2 AAT 0.38 0.36 

Hap3 ACT 0.03 0.05 

Hap4 GAA 0.39 0.45 

Hap5 GAT 0.09 0.12 

Hap6 GCT 0.02 0.00 

 

 

Table 3.6.3.2.2.  Haplotype frequencies and the rate of CD4
+
 cell count depletion. 

 

 

Table 3.6.3.2.3. Comparison of haplotypes in symptomatic and asymptomatic 

groups 

Haplotype 

name 

Haplotype Symptomatic, ≤5 yrs 

since diagnosis (n=19) 

Asymptomatic, >5 yrs 

since diagnosis (n=27) 

Hap1 AAA 0.09 0.06 

Hap2 AAT 0.38 0.33 

Hap3  ACT 0.03 0.09 

Hap4  GAA 0.39 0.44 

Hap5 GAT 0.10 0.08 

Hap6 GCT 0.02 0.0 

 

 

Haplotype 

name 

Haplotype  CD4
+
≤ 200, ≤5 yrs 

since diagnosis (n=18) 

CD4
+
>200, > 5 yrs since 

diagnosis (n=13) 

Hap1 AAA 0.09 0.04  

Hap2 AAT 0.46 0.38 

Hap3 ACA 0.02 0.0 

Hap4 ACT 0.04 0.04    

Hap5 GAA 0.36 0.50  

Hap6 GAT 0.03 0.04 
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3.6.3.3. TB status/Haplotype association 

In six haplotypes found in TB+ and TB- study groups, the most common ones 

were Hap2 and Hap4 (Table 3.6.3.3). The overall distribution of the haplotypes 

between the study groups was similar, no statistical significance was found. 

 

Table 3.6.3.3. Haplotype distribution in TB+ and TB- groups. 

Haplotype name Haplotype With TB (n=15) Without TB (n=79) 

Hap1 AAA 0.07 0.07  

Hap2 AAT 0.43 0.39 

Hap3 ACT 0.00 0.08 

Hap4 GAA 0.36 0.40 

Hap5 GAT 0.11 0.06 

Hap6 GCT 0.03 0.00 
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CHAPTER 4 

DISCUSSION 

 

PCR amplification and direct sequencing of the 645 bp promoter fragment 

revealed six polymorphisms in 52 samples. This sample size was large enough to 

detect common polymorphisms that occur at a frequency of more than 2% in the 

population. The study population did not show any significant deviation from the 

expectations of Hardy-Weinberg equilibrium at any of the six polymorphic sites in 

the 52 sequenced samples. The indirect methods for detection of the four most 

common SNPs were successful. There was no significant deviation from the 

expectations of Hardy-Weinberg equilibrium at any of the four polymorphic sites. 

This showed that all the alleles of the polymorphic sites under investigation were 

accounted for.  

Sequencing of a 647 bp promoter region fragment in Ghanaians showed six 

polymorphisms as well. When put together, there are eight polymorphisms in a 

promoter fragment of about 650 bp in Africans, compared with three in African-

Americans. This high genetic diversity in these two African populations 

emphasizes that non-African populations have a subset of genetic variation found 

in Africans (Jorde et al, 1997; Tishkoff, 2002). 

 

The Hp
1
 and Hp

2
 alleles were found in equal frequencies in the study population. 

In Africans, Hp
1 

allele frequency ranges between 0.40 and 0.87 (Giblett, 1969). In 

South African populations, the frequency is between 0.44 and 0.58 (Nurse et al, 

1985). The frequency calculated for our study population was within this range.  
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An excess of the heterozygous genotype, Hp2-1 was observed at a frequency of 

0.57, nonetheless, the population did not deviate significantly from the 

expectations of the Hardy-Weinberg equilibrium.    

 

Using polyacrylamide gel electrophoresis, we were able to characterize the four 

major protein phenotypes in the population: Hp0, Hp1-1, Hp2-1 and Hp2-2. The 

Hp0 phenotype was characterized by the lack of protein bands on the gel. It was 

not investigated whether the Hp0 phenotype was because the protein was 

expressed at very low concentrations to be detected by gel electrophoresis 

(hypohaptoglobinemia), or due to a complete lack of protein expression 

(anhaptoglobinemia). And so, we did not discriminate between the two conditions 

and use Hp0 to describe both conditions.  

  

The genetic origin of the Hp0 phenotype has been reported to be deletion in 

Asians (Koda et al, 1998). But in Africans, where the frequency of the Hp0 

phenotype is high, the deletion was not found (Koda et al, 1998; Teye et al, 2003). 

The genetic basis for this phenotype in Ghanaians has been reported to be a single 

nucleotide base substitution in one of the functional sites of the promoter region, 

A to C at -61 (Teye et al, 2003).  Another haptoglobin mutation within the β-chain 

of Hp
2
 allele in Ghanaians was reported to be associated with Hp0 phenotype 

(Teye et al, 2004). In this study, there was only one individual homozygous for C 

at this site, and was found to be Hp0. Only 17% (7 out of 42) of Hp0 individuals 

had a C at site -61 in this study. Overall, there was no significant association 
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between the A to C substitution at -61 with phenotype Hp0. Rather, the Hp0 

phenotype was associated with -55G and -104A alleles. 

A high frequency of Hp0 individuals who were homozygous for G at -55 

polymorphic site was observed, even though the frequency of this genotype was 

low in the whole study population. The frequency of the G allele was 0.64, and the 

frequency of the homozygous genotype -55GG was 0.43. In 61% (11 out of 18) 

individuals who had Hp0, the -55GG genotype occurred with the -104AA 

genotype, and only 1 in 18 occurred with -104TT genotype. The -55 polymorphic 

site lies six base pairs downstream of the -61 site, which is one of the responsive 

sites to IL-6 (Oliviero and Cortese, 1989). The -55 polymorphic site is within the 

216 bp segment (between positions -186 and +30) of the haptoglobin promoter 

that responds to induction by IL-6 (Oliviero and Cortese, 1989). It has been 

reported (Maeda, 1991) that a G at position -55 can negatively affect haptoglobin 

protein expression. The combination of the promoter polymorphisms -55G and -

104A has been observed in Hp0 in black Americans (Maeda, 1991), although no 

conclusion on association between the promoter polymorphism and Hp0 

phenotype was drawn in that study because of small sample size.  The significant 

association between -55GG and -104AA genotypes suggests that there is a 

relationship between these genotypes and the Hp0 phenotype: carriers of one or 

both these genotypes are more likely to be Hp0.   

The Hp0 phenotype was also found to be more common in individuals who were 

genotypically Hp1-1 than in Hp2-2 individuals, and most common in Hp2-1 

individuals. The high frequency of the heterozygous genotype was not 

unexpected, since in the whole study population there was an excess of this 



 87 

genotype. When comparing the distribution of the homozygous genotypes and the 

alleles in those with the Hp0 phenotype, Hp1-1 genotype and Hp
1 

allele 

frequencies were high, even though they were comparable in the whole study 

population. The frequency of Hp
1
 allele was 0.64, and Hp1-1 was 0.36. The 

distribution of haptoglobin genotypes in Hp0 individuals was significantly 

different.  Teye et al (2003) found an association of Hp
2 

allele with 

anhaptoglobinemia, and Hp
1 

allele with hypohaptoglobinemia. In this study, an 

association between the Hp
1
 allele and the Hp0 phenotype was observed. Other 

studies have found that Hp0 phenotype in Hp
1
 individuals is due to anomalous 

inheritance (Koda et al, 1998). As no distinction was made between 

anhaptoglobinemia and hypohaptoglobinemia in this study, it cannot be said 

which of these two conditions was associated with the polymorphisms. 

Nonetheless, these results show a fourth set of genetic polymorphism that is 

associated with the Hp0 allele. The association of Hp0 with different haptoglobin 

genetic polymorphisms suggests that this phenotype is caused by more than one 

polymorphism. These polymorphisms could be acting singly or in combination, 

with an exception of the Hp
del

 which is not found in Africans.  

  

The frequency of Hp0 phenotype in the entire study population was 0.30. These 

findings are in accordance with the previous studies in which the frequency of the 

Hp0 phenotype in Sub-Saharan Africa was reported to range between 10 and 40% 

(Constants, 1981). Since in the Gauteng region of South Africa there is no malaria 

endemic, the Hp0 phenotype found in this population would be due to genetic 

influences, and/or other factors.   
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In South African blacks, the frequency of Hp
1 

allele ranged between 0.43 and 

0.59, which is within the reported range in Africans (Giblett, 1989; Nurse et al, 

1985). The Zulu group sample size was large enough to get a close estimation of 

the frequency of the allele in the group; the other groups were present in small 

numbers in the study population. The allele frequencies were close in Zulu, Xhosa 

and Tswana groups, Xhosa group frequency being the median point. Pedi and 

Tsonga groups showed very close frequencies. The Sotho group (Southern Sotho) 

showed the lowest frequency, lower than the previously reported one (Nurse et al, 

1985). The expectations were that the frequencies in the groups under the Nguni 

group (Zulu and Xhosa groups), and the groups under the Sotho-speakers (Pedi, 

Tswana and Sotho groups) would show frequencies be very similar to each other 

(Lane et al, 2001). Intercultural mating, which was common in our study 

population, and the small numbers of other ethnic groups would explain the shift 

from the expected groupings. Nevertheless, the frequency distribution in this study 

does not differ significantly from a previous study where Zulu, Xhosa, Swazi, 

Tswana and Sotho groups showed very similar frequencies (Nurse et al, 1985).  

Although there are differences in frequencies among South African blacks, 

different languages, cultures and geographic locations, they all originate from the 

Bantu expansion and share a common ancestral population (Lane et al, 2001) 

which explains the small difference in allele frequencies.    

 

The very strong linkage disequilibrium between the promoter region site -61 and 

the coding region was not unexpected. Site -61 is one of the IL-6 response 

elements. The strong association is due to the fact that this site correlates with the 
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coding region. Sites -55/-61, -61/-104 and -55/-104 showed strong to very strong 

linkage disequilibrium. These site are close to each other and they demonstrate the 

D-55,-61 > D-61,-104 > D-55,-104 order, which indicates that the closer the loci, the 

greater the linkage disequilibrium (Lewontin, 1964).   It is not clear why -61/-295 

showed such strong linkage disequilibrium. The association is stronger than that 

of -55/-104 and -61/-104 but the sites are farther apart, and site -295 is not a 

functional site. 

 

Among the four polymorphisms of the promoter region, -61A/C showed marginal 

association with susceptibility to HIV infection (P=0.045). The frequency of the C 

allele was higher in the general population than in the HIV positive population. As 

mentioned previously, position -61 is one of the response elements for the inducer 

of the protein expression. The A to C base substitution at this site reduces the 

activity of the promoter (Maeda, 1991). Haptoglobin protein is indirectly involved 

in the entry of the HIV into the host cell during infection (El Ghamati, 1996) or 

cell to cell transmission (Quaye et al, 2000). The effect of the reduced protein 

expression on the infection by HIV has been reported (Quaye et al, 2000) where 

the Hp0 phenotype was more common in HIV negative individuals. A previous 

study reported the association of Hp0 and the -61C allele (Teye et al, 2003). 

Although in this study there was no significant association between the -61C allele 

and Hp0, the decreased protein expression in -61C individuals would explain the 

association between the reduced risk of HIV infection and the -61C allele. We 

also observed a high frequency of Hp0 phenotype in the general population, 0.43 
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compared with 0.25 in the HIV positive population, though the difference was not 

statistically significant.  

 

The results of this study showed no association between the haptoglobin 

genotypes and susceptibility to HIV infection. The Hp
1
 and Hp

2
 allele frequencies 

did not differ significantly between the HIV positive and the general populations. 

This implied that the Hp
1
 and Hp

2
 alleles have the same chances of HIV infection. 

These findings are in agreement with the study done in Ghana (Quaye et al, 2000). 

 

There was no association between susceptibility to infection TB and any of the 

polymorphisms. Previous studies reported that polymorphism in the coding region 

of the haptoglobin gene is associated with susceptibility TB infection (Fedoseeva 

et al, 1993) and outcome after treatment initiation (Kasvove et al, 2000). In this 

study, the effect of the genetic polymorphism on severity of the disease and 

treatment outcome remained uninvestigated. It could happen that the 

polymorphisms affect the outcome after treatment initiation or severity of the 

disease in our population. Thus, the lack of significant association between 

haptoglobin polymorphism and TB infection in this study does not mean the 

complete lack of association between TB and haptoglobin polymorphism.  

 

Even though the total sample size was large, only a few samples had usable 

clinical data for studying the impact of the haptoglobin polymorphism on the rate 

of the disease progression. In addition, the clinical data we had was self reported, 

which made it unreliable to a certain extent. That made it difficult to conclude 
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with certainty that there was a complete lack of significant correlation between 

other polymorphisms and the rate of progression.  

There was no statistically significant association between any of the 

polymorphisms, including the coding region polymorphism which has been 

previously reported to be associated with the rate of the disease progression in 

Europeans (Delanghe et al, 1996) and Ghanaians (Quaye et al, 2000).  

 

Because CD4
+
 cell depletion is one of the indicators of the rate of HIV/AIDS 

progression (Carré et al, 1998), the association between polymorphism and the 

rate of CD4
+ 

cell depletion was examined. Although there was no significant 

association between the polymorphisms and the rate of CD4
+
 cell depletion, two 

polymorphisms are noteworthy: -104A/T and the coding region. A high frequency 

of -104AT genotype (0.72) was observed in the group with faster rate of CD4
+
 

cell depletion, and the higher frequency of -104AA genotype (0.38) in the group 

with slower rate of cell depletion. It must be pointed out that the frequency of AT 

in the whole study population was 0.46, meaning there was no excess of this 

genotype, and the AA genotype was found in lower frequency in the whole 

population (0.19). The -104 site is within the IL-6 response segment, between 

positions -186 and +30 (Oliviero and Cortese, 1989). It is possible that variation at 

this site could have an effect on the level of protein expression and the disease, 

though no conclusion could be drawn at this stage. The effect of this 

polymorphism on the activity of the promoter needs to be studied, and its possible 

effects on the rate of CD4
+
 cell destruction. 
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In the coding region polymorphism, an excess of the Hp2-1 genotype was 

observed in the whole study population and all the other categories, but not in the 

group with faster rate of CD4
+
 cell depletion (and the general population). High 

frequencies of Hp2-2 genotype and Hp2-2 protein phenotype were observed in the 

group with the faster rate of CD4
+ 

cell depletion. The association between CD4
+
 

cell depletion and Hp2-2 protein phenotype has been reported (Quaye et al, 2000). 

Since CD4
+ 

cell destruction is one of the indicators of the rate of HIV/AIDS 

progression (Carré et al, 1998), the high frequency of Hp2-2 in the group with 

faster rate of CD4
+
 cell depletion is in agreement with the previous study of 

Delanghe et al (1996), where the association of this protein phenotype and the 

faster rate of HIV/AIDS progression was reported, but the difference was not 

statistically significant.  

 

Another frequency difference which was not statistically significant was in the 

Hp0 phenotype. The frequency of this phenotype was higher in the group with a 

slower rate of CD4
+
 cell depletion. This suggested a possibility of association 

between the Hp0 phenotype with the slower rate of the disease progression, as has 

been reported previously (Quaye et al, 2000). 

  

We looked at the haplotypes for three polymorphic sites (-55, -61 and -104) and 

their effect on TB and HIV infection, and the rate of HIV/AIDS disease 

progression. The reason for taking haplotypes for three polymorphic sites is that 

our sample size was small; taking haplotypes for all five sites would result in a 

large number of haplotypes with few samples of each. The polymorphic sites 
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chosen are close to each other and they show strong to very strong linkage 

disequilibrium and they are found within the IL-6 response segment. There was no 

association between any of the haplotypes and either susceptibility or the rate of 

disease progression. The lack of correlation between the haplotype for these 

polymorphic sites and the disease status was not unexpected as there was no 

significant association between -55 and -104 polymorphic sites and the disease 

status, and the association with -61 was marginal.  

 

The hemoglobin clearance efficiency differs between haptoglobin types. The poor 

prognosis in Hp2-2 individuals with HIV was explained by retention of iron in the 

plasma by Hp2-2 phenotype that leads to oxidative stress, resulting in high rate of 

viral replication (Delanghe et al, 1996). In this study no association was found 

between the haptoglobin genotypes/phenotypes that have been previously reported 

to be associated with TB and the rate of HIV/AIDS progression. There are two 

possible explanations for this. One, that is more likely, could be that our sample 

size was small. Alternatively, it could be explained by the findings of Kasvosve et 

al (2002) that iron metabolism is not influenced by haptoglobin phenotypic 

variation in African blacks. This could also explain the lack of association 

between Hp phenotypes and TB infection in the Zimbabweans (Kasvove et al, 

2000). There are contradicting results regarding susceptibility to malaria and Hp 

phenotypes (Trape and Fribourg-Blanc, 1988; Joshi et al, 1987; Elagib et al, 1998; 

Aucan et al, 2002) which could point out population diversity or differences in the 

functioning of haptoglobin. 
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South Africa has the highest number of people living with HIV/AIDS than any 

country, and the prevalence is still increasing. That poses a challenge to 

researchers to find a cure for the millions of people already infected with the 

virus, and a vaccine for those who are uninfected. Studying the influence of 

genetics on susceptibility to HIV infection and the rate of the disease progression 

is another way that could lead to treatment and prevention of AIDS. A number of 

genes have been reported to be associated with HIV infection and disease 

progression; most of these studies have been done in non-Africans. These 

associations may not be a general picture for all the populations.  As genetic 

diversity is high in Africans, searching for additional polymorphisms found in 

Africans, and determining whether these polymorphisms have an impact on 

susceptibility to HIV infection and the rate of the disease progression may lead to 

the solving of the HIV/AIDS endemic. 

  

The findings of this study present a need to further investigate the impact of 

haptoglobin genetic variation on susceptibility to HIV infection and the rate of 

HIV/AIDS disease progression in black South Africans. The study should be done 

on a long term established cohort with large sample size.  

The novel association of Hp0 phenotype and -55GG and -104AA genotypes in 

South Africans also needs further investigation. It should be investigated whether 

the -55GG and -104AA genotypes are associated with anhaptoglobinemia or 

hypohaptoglobinemia, and if so how these genotypes affect the level of 

haptoglobin expression.       
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CONCLUSIONS  

Until now, the effect of polymorphism in the promoter region of the haptoglobin 

gene on HIV infection and the rate of progression of AIDS has not been reported. 

We have found a significant association between the -61C allele and low risk of 

HIV infection. This association could be related to the low levels of haptoglobin 

protein expression caused by the A-C base substitution at position -61. Since we 

have looked at small sample sizes, further investigation on larger population size 

with reliable clinical data need to be done to confirm this.  

 The significant association of the Hp0 phenotype with -55GG and -104AA 

genotypes suggests that there is a relationship between these genotypes, singly or 

in combination, and Hp0 phenotype, not that they are exactly the cause of the Hp0 

phenotype because the genotypes were also found in the other phenotypes. The 

association of Hp1-1 genotype with Hp0 could be due to anomalous inheritance, 

or related to the level of protein expression in Hp1-1 individuals. 

We have also observed frequency differences which were not statistically 

significant, but noteworthy: a high frequency of -104AA genotype and Hp0 

phenotype in individuals with a slower rate of CD4
+ 

cell depletion; high frequency 

of -104AT genotype and Hp2-2 phenotype in individuals with a faster rate of 

CD4
+ 

cell depletion. The observed associations, both the statistically significant 

and the one that were not statistically significant, portray a need to do further 

investigations on the effect of the polymorphisms in the noncoding region of the 

haptoglobin gene on HIV infection and the rate of disease progression. Since few 

samples had usable data in this study, further investigation needs to be done on a 

large established cohort with more reliable clinical data, including the rate of viral 
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load increase, would likely lead to a concrete conclusion. If significant 

associations are found, they could be used in drug development and treatment 

trials.   
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APPENDIX 1 

  

 Table E.1. Raw data – Sample genotypes and phenotypes  

        

Sample Group -55 -61 -104 -295 Hp Genotype Phenotype 

206 W AG A A T Hp2-1 Hp0 

207 W A A AT CT Hp1-1 Hp0 

208 W AG A AT CT Hp2-1 Hp0 

209 W AG A AT CT Hp1-1 Hp0 

210 W A A T CT Hp2-2 Hp2-2 

211 W A AC T CT Hp2-1 Hp2-1 

212 W A A T CT Hp2-1 Hp2-1 

213 W AG A AT T Hp2-1 Hp2-1 

214 W G A A T Hp1-1 Hp0 

215 W A A T CT Hp2-1 Hp2-1 

216 W AG A T CT Hp2-1 Hp2-1 

217 W A A T T Hp2-2 Hp2-2 

218 W AG AC T CT Hp2-1 Hp0 

219 W G A A CT Hp1-1 Hp0 

220 W AG A T CT Hp2-1 Hp2-1 

221 W AG A AT T Hp2-1 Hp2-1 

222 W AG A T T Hp2-2 Hp2-2 

223 W G A AT CT Hp1-1 Hp0 

224 W A A T CT Hp2-2 Hp2-2 

225 W G A AT CT Hp1-1 Hp0 

226 W A A T CT Hp2-1 Hp2-1 

227 W AG AC AT T Hp2-1 Hp2-1 

228 W G A T T Hp1-1 Hp0 

229 W AG A A T Hp2-1 Hp2-1 

230 W AG A AT T Hp2-1 Hp2-1 

231 W AG A AT T Hp1-1 Hp1-1 

232 W AG A AT T Hp2-1 Hp0 

233 W G A AT T Hp2-1 Hp2-1 

234 W AG AC A T Hp2-1 Hp0 

235 W AG A A T Hp1-1 Hp0 

236 W A A T CT Hp1-1 Hp0 

237 W AG AC AT T Hp2-1 Hp0 

238 W AG A AT T Hp1-1 Hp0 

239 W AG AC AT CT Hp2-2 Hp2-2 

240 W AG A AT CT Hp2-2 Hp2-2 

241 W AG A T T Hp2-1 Hp2-1 

242 W AG AC AT CT Hp2-2 Hp0 

243 W AG A AT T Hp1-1 Hp1-1 

244 W G A AT T Hp2-2 Hp0 

245 W AG A AT CT Hp2-1 Hp2-1 

A001 W G AC T T Hp2-2  

A002 W G A T T Hp2-1  
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Sample genotypes and phenotypes (continued) 

 

Sample Group -55 -61 -104 -295 Hp Genotype Phenotype 

A003 W AG A AT T Hp2-1 Hp2-1 

A004 W A AC T T Hp2-2 Hp2-2 

A005 W AG AC AT T Hp2-1 Hp2-1 

A006 W A AC T T Hp2-2 Hp2-2 

A007 W A AC T T Hp2-2 Hp2-2 

A008 W AG A T T Hp2-2 Hp2-2 

A009 W AG AC AT T Hp2-1 Hp2-1 

A010 W A AC T T Hp2-2 Hp2-2 

101 P G A T T Hp2-2 Hp2-2 

102 P G A AT TC Hp2-1 Hp2-1 

103 P G A A T Hp1-1 Hp0 

104 P G A AT T Hp2-1 Hp0 

105 P G A AT TC Hp1-1 Hp0 

106 P G A A T Hp1-1 Hp0 

107 P A A T T Hp2-1 Hp2-1 

108 P G A AT T Hp2-1 Hp2-1 

109 P A A T T Hp2-1 Hp2-1 

110 P G A A T Hp1-1 Hp0 

111 P G A AT T Hp2-1 Hp0 

112 P AG A AT T Hp2-1 Hp2-1 

113 P A A T T Hp2-1 Hp0 

114 P AG A AT T Hp2-1 Hp0 

115 P AG A AT T Hp2-1 Hp2-1 

116 P A AC T TC Hp2-1 Hp2-1 

117 P AG AC T T Hp1-1 Hp0 

118 P AG A AT TC Hp1-1 Hp1-1 

119 P A A T T Hp2-1 Hp2-1 

120 P A A T T Hp2-2 Hp2-2 

121 P AG A A TC Hp1-1 Hp1-1 

122 P AG A AT TC Hp2-1 Hp2-1 

123 P A A T T Hp2-2 Hp2-2 

124 P G A A TC Hp2-1 Hp0 

125 P AG A AT TC Hp2-1 Hp2-1 

126 P AG A AT T Hp2-1 Hp2-1 

127 P AG AC AT TC Hp2-1 Hp0 

128 P A AC T T Hp2-1 Hp2-1 

129 P AG A AT T Hp2-1 Hp2-1 

130 P AG A AT T Hp2-1 Hp2-1 

131 P AG A AT T Hp2-1 Hp2-1 

132 P A AC T T Hp2-1 Hp2-1 

133 P AG A AT TC Hp2-1 Hp0 

135 P G A A T Hp2-1 Hp0 

136 P A A T T Hp2-1 Hp0 
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Sample genotypes and phenotypes (continued) 

 

Sample Group -55 -61 -104 -295 Hp Genotype Phenotype 

137 P AG A AT T Hp2-1 Hp2-1 

138 P AG A AT T Hp2-1 Hp2-1 

139 P A AC T T Hp2-2 Hp2-2 

140 P A AC T T Hp2-2 Hp2-2 

141 P A A T T Hp2-1 Hp2-1 

142 P A C T T Hp2-2 Hp0 

143 P AG A AT TC Hp2-1 Hp2-1 

144 P AG A AT TC Hp2-1 Hp2-1 

145 P G A A T Hp1-1 Hp1-1 

146 P G A A C Hp2-1 Hp0 

147 P A A AT T Hp1-1 Hp1-1 

148 P AG A AT T Hp2-2 Hp2-2 

149 P G A A TC Hp2-1 Hp2-1 

150 P AG A AT TC Hp2-1 Hp2-1 

151 P AG A AT T Hp2-1 Hp0 

152 P G A AT TC Hp2-1 Hp2-1 

153 P A AC AT T Hp2-2 Hp2-2 

154 P G A A TC Hp2-1 Hp0 

155 P AG A AT TC Hp2-1 Hp2-1 

156 P A A AT T Hp2-1 Hp2-1 

157 P G A AT T Hp2-1 Hp2-1 

158 P AG A AT T Hp2-1 Hp2-1 

159 P AG A AT T Hp2-2 Hp2-2 

160 P G A A TC Hp2-1 Hp2-1 

161 P AG AC AT T Hp2-1 Hp2-1 

162 P AG A T T Hp2-1 Hp2-1 

163 P G A A TC Hp2-1 Hp0 

164 P AG A AT TC Hp2-1 Hp2-1 

166 P AG A AT T Hp2-1 Hp2-1 

167 P A A AT T Hp2-2 Hp2-2 

168 P A A AT T Hp2-1 Hp0 

169 P A AC T T Hp2-2 Hp2-2 

170 P AG A A T Hp2-1 Hp2-1 

171 P AG A AT TC Hp2-1 Hp2-1 

172 P AG A AT T Hp2-1 Hp0 

173 P AG A T TC Hp2-1 Hp2-1 

175 P AG A T T Hp2-1 Hp2-1 

176 P AG A AT T Hp2-1 Hp0 

177 P AG A T T Hp2-1 Hp2-1 

178 P AG A A C Hp1-1 Hp1-1 

179 P AG A AT TC Hp2-2 Hp2-2 

180 P A A AT T Hp2-2 Hp2-2 

181 P G A A T Hp2-1 Hp2-1 
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Sample genotypes and phenotypes (continued) 

 

Sample Group -55 -61 -104 -295 Hp Genotype Phenotype 

182 P A A T T Hp2-1 Hp2-1 

183 P AG A T TC Hp1-1 Hp1-1 

184 P G A A TC Hp2-1 Hp2-1 

185 P G A A C Hp1-1 Hp1-1 

186 P A AC T C Hp2-2 Hp2-2 

187 P A A T T Hp2-1 Hp2-1 

188 P G A A T Hp2-1 Hp0 

189 P AG A AT T Hp1-1 Hp1-1 

190 P A A T TC Hp2-1 Hp2-1 

191 P G A AT C Hp1-1 Hp1-1 

192 P A A T TC Hp2-1 Hp2-1 

193 P A A T T Hp2-1 Hp2-1 

194 P AG A AT TC Hp2-1 Hp2-1 

195 P AG A AT C Hp2-1 Hp2-1 

196 P AG A A TC Hp2-1 Hp2-1 

197 P AG A AT T Hp2-1 Hp2-1 

198 P AG A AT TC Hp2-1 Hp2-1 

199 P AG A AT TC Hp2-1 Hp2-1 

200 P AG A AT T Hp2-1 Hp2-1 

201 P G A AT TC Hp2-2 Hp2-2 

203 P A A T TC Hp2-2 Hp2-2 

204 P AG AC AT T Hp2-1 Hp2-1 

205 P A AC AT T Hp2-1 Hp2-1 

220+ P AG A A T Hp2-1 Hp0 

525 171 CG AG A AT TC Hp2-1  

525 327 CG A A T T Hp2-2  

525 301 CG AG A T T Hp2-1  

525 343 CG AG A AT T Hp1-1  

525 316 CG AG A A T Hp2-1  

525 298 CG A A T T Hp2-2  

525 160 CG A A A T Hp1-1  

525 028 CG G A A T Hp1-1  

536 031 CG AG AC AT T Hp2-1  

536 121 CG A A T T Hp2-1  

536 107 CG AG AC A T Hp2-1  

536 015 CG A A T T Hp2-1  

536 149 CG G A A C Hp2-1  

536 173 CG AG AC AT T Hp2-1  

541 144 CG A A AT C Hp2-1  

541 085 CG A A T T Hp2-2  

541 049 CG A A T T Hp2-1  

541 062 CG AG A A T Hp1-1  
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Sample genotypes and phenotypes (continued) 

 

Sample Group -55 -61 -104 -295 Hp Genotype 

541 036 CG AG AC T T Hp2-2 

541 073 CG A A T T Hp2-1 

541 115 CG A A T TC Hp2-1 

541 131 CG AG A A TC Hp2-1 

541 178 CG A AC T T Hp2-2 

541 098 CG A A T T Hp2-2 

541 180 CG AG A AT TC Hp1-1 

541 193 CG AG A A TC Hp1-1 

541 228 CG A AC T T Hp2-2 

541 234 CG AG A A T Hp1-1 

541 242 CG AG A T T Hp2-1 

541 256 CG G A T T Hp1-1 

541 353 CG A AC T T Hp1-1 

615 015 CG A A T T Hp2-1 

615 093 CG AG AC A T Hp2-1 

615 080 CG AG A AT T Hp1-1 

615 078 CG AG A A T Hp1-1 

615 067 CG AG A A T Hp1-1 

615 059 CG A A AT T Hp2-2 

615 044 CG AG A AT TC Hp1-1 

615 031 CG AG A AT T Hp2-1 

615 026 CG AG A AT TC Hp1-1 

615 107  CG A A T TC Hp2-2 

615 110 CG A A AT T Hp2-2 

615 121 CG AG A AT T Hp2-1 

615 136 CG AG A AT T Hp2-1 

615 325 CG A A AT T Hp2-2 

615 332 CG AG A AT TC Hp2-1 

615 340 CG AG A T T Hp2-1 

615 377 CG A A T T Hp2-2 

615 381 CG AG A T TC Hp1-1 

615 394  CG AG A AT TC Hp2-1 

615 406 CG AG A AT TC Hp1-1 

615 366 CG AG A A TC Hp1-1 

616 017 CG AG A AT T Hp2-2 

616 042 CG AG A T TC Hp1-1 

616 091 CG AG A A T Hp2-1 

616 358 CG A A AT T Hp2-2 

616 445 CG G A AT T Hp2-1 

616 453 CG A A T T Hp1-1 

616 457 CG A A A T Hp1-1 

616 472 CG A AC AT TC Hp2-2 

616 486 CG AG A AT TC Hp2-1 

616 499 CG AG A A T Hp2-1 

616 503 CG AG A T T Hp1-1 
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   P = Samples collected from HIV positive subjects 

  W = With unknown HIV status 

CG = Samples provided by Dr Clive Gray (also from HIV positive subjects) 
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